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SUMMARY LIRS

-

Some classes of Non—;iﬁéér Second Order Elliptic and Parabolic
Partial Differenti&i Operatiors affected by the presence of a
small parameter € are invesgtigated.

The reduced problem (£ = 0) is characterized by the
appearence of a free boundary of the solutions.
The Existence, Uniqueness and reqularity results are establised
for both perturbed and reduced problems. Sharp two-sided estimates
for the difference of the solutions of the perturbed and reduced
problems are proved and some constructive procedures are found out
for localizing and computing the free boundary of the reduced
problem. The Kinetic Theory of membranes with enzymotic activity
is one of the possible fields of applications of the results
established, theffmal; g?rameter/being the so—cqllié Michaelis'
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L.S. Frank & W.D. Wendt

Elliptic and Parabolic Singular Perturbations in the Kinetic Theory of Enzymes

Introduction

In the Kinetic theory of membranes with enzymotic activity, a second order
semilinear parabolic operator appears to be a suitable mathematical model for
describing the dynamical process for the corresponding concentrations. The
nonlinearity of this operator is affected by the presence of two positive
parameters: € , the so-called Michaelis' constant, and X , the latter being
connected with the ratio of initial concentrations of the enzyme and the
substratum. For several realistic membranes, € is small compared to )

and the data of the problem ([12]).

For each € > 0 fixed, the mathematical model above fits the classical
framework of Fréchet differentiable nonlinear operators. One can view this
model as a family of perturbations (regular or singular, according to the
magnitude of A ) of some reduced parabolic operator with a piecewise constant
discontinuous nonlinearity. The same is also true for the corresponding elliptic
stationary problem.

Further, for the stationary problem, there exists a critical value Ac of
the second parameter X , such that for A < Ac the original problem is a
regular perturbation of the "reduced" one, whereas for A > Ac , it becomes
a singular perturbation and is characterized by the presence of boundary layers
located in a neighbourhood of the free boundary of the solution to the "reduced"
problem. The set Ec of zeroes of the corresponding critical solution “Ac
plays an important role in the investigation of the reduced problem.

One of the central results presented here is the sharp error estimate in the
Hl-norm for the difference of the solutions to the perturbed and reduced
problems. Further, Ac is investigated as a functional of the data of the
reduced problem. . .

Now the contents of the paper will be briefly sketched.

Part I deals with the stationary problem. Section 1.1 contains existence,
uniqueness and regularity results as well as continuity results for the
operators considered. In section 1.2, asymptotic solutions (for € + O ) of

the perturbed stationary problem are constructed under some regularity




assumptions on the free boundary and the sharp Hl-estimate for the difference
Ve between the solutions of the reduced and the perturbed problems is

established. Namely, the following two~sided estimate holds with some constant C :
-1 33 , 3/ . .

C e < hws HHI £Ce . The special case of a piecewise linear nonlinearity

plays an important role and allows a considerable simplification in the

construction of asymptotic solutions in the general case, as well. A one-sided

1
estimate of the form ”wE ”H < Ce/2

, whose proof was merely based on the
monotonicity of the nonlinearity and did not require regularity assumptions on
the free boundary, had previously been given in [2], (see also [1¢]).

In section 1.3, properties of the critical value A_ are stated and an
improved convergence result of the form ”we ”Hl < CC(lc -X)-l is established
when A < Ac . Sections 1.4 and 1.5 contain investigation of Xc as a
functional of the data.

Estimates of Ac from above and from below are indicated and the formula
for the Fréchet derivative of Ac stated in [6,8] is Proved. In section 1.6, the
asymptotic behaviour for A + ®@ of the solution of the reduced problem and of
the corresponding free boundary are investigated.

In Part I , the nonstationary problem is considered.

Section 2.1 contains existence, unigqueness and regularity results. In section 2.2
it is shown that the solution of the stationary problem is asymptotically stable
in H1 uniformly with respect to € . In section 2.3, an estimate for the
difference of the solutions to the nonstationary perturbed and reduced problems
is proved. Sections 2.4 and 2.5 deal with nonnegative solutions and special
solutions of the Cauchy problem for the reduced equation.

Several results in this paper have been announced in [g-g ].

The list of references contains essentially papers which are (to the best of
the authors' knowledge) tightly connected with the topics presented here. We
refer to [15,14,4), [3), [5,11], [1,13,10]) and [16, 18~-20] for more
information concerning variational inequalities, maximal monotone operators,
variational calculus and tonvex analysis, free boundary problems and singular

perturbation theory.




O. Notation. Statement of the problem

o0
Let U cr" be a bounded domain with C -boundary 93U and let R+ = (0,®)

Denote,

(0.1) Q=UXR_, Q. =Ux(0,T) , I = 3UxRr_ ., I‘,r = 3Ux{0,T)

Let the function f € COCR,R) be piecewise continuously differentiable:

1 — -
f€cC ([sk'sk+1]) vk € {0,...,r-1} , where - = S <S8y <. <5 =,

It is also assumed that

f(0) =0
(0.2)

0

A

f£'(s) € L{1 sl v ER\‘fsl,...,sr 3,

-1
where L > O is constant.

As a conseguence of (0.2), £(s) 1is monotonically increasing on R and,

rmoreover, there exist the limits

lim f(s) = ftm, < f < f < 4o
S+t

H(s) being Heaviside's function, we associate with £(s) the following

function

(0.3) £, 0s) = £ H(s) +£_ H(-s) , vs€r~{o}, £ (0)=0.

We also denote by F(s) and Fo(s) the primitive functions of £(s) and
£.{s) normalized by the condition: F(0) =0, FO(O) =0 . Let

\akj(x,t) 15X, j<n bemuffformly with respect to (x,t) €Q positive definite,
and let akj(x,t) € C (Q) . It is assumed that the family

(. ,.9)_ B ke ® 5y
(0.4) t > alxta—) = - I 5 a, iz 2 €c @

\ 19, 33n%%y K i k

stabilizes, as t = +° , to the operator:

] 9 = 9 G ™ —
(0.5) A (x,-—) = - z - a_ (X)ge— , a . €C (U . ,
®\"Ix 1Sk,j$naxj kj Bxk k3

The following initial-boundary value problem 0{:‘ is considered:

-3 -




du
—aT-i»A(x t—'—)J)‘ lf(u )= g(x,t) , (x,t) €0

(0.6) ui(x,o) = {ix) , x €U
™ uk(x' t) = ¢(x’,t) (X, t) €T
O E ’ r , ’

where X,€ are positive parameters, 'rro is the restriction operator to T ,

the data is supposed to have the following regularity:
gec®® , vecdt®, sec>tm,
to satisfy the compatibility condition:
(0.7) Trov,b(x') = ¢(x',0) , vx' € dU
and to stabilize to
o, €C® , ¢, €,

as t >+

Here, as usual, CO(E) is the space of all continuous in 5 real-valued
functions, Cz(ﬁ) is the space of all twice continuously differentiable
real-valued functions in U and C (T) is the space of all continuous
real-valued functions on ' such that their first derivatives with respect
to (x',t) €T and the second derivatives with respect o x' € U are .
continuous functions. The parameter € is assumed to be small compared to
A: O0<e<<d,

Along thh the problem 0{ , we also consider the corresponding stationary
problem 0{

A

"
(x, +)\f( E'w)= g (x), = x€U
we)'{ ox € ”

(x)=¢( x € 3U .

Example O.1. With A = -A , £(s) = s(l 'u-lsl)-1 , the problem (0.6) appears
in the kinetic theory of membranes with enzymotic activity (fi2)y. '

In this case fo(s) = ggn s Vs € R~1{0} . since in applications one is

essentially interested in non-negative solutions (u:‘ is interpreted as the

. _4-




dynamical concentration of enzyme in this case), one can also define f(s)

-1
to be f(s) = s+(1 +s) with s, = max(s,0) . Then one has fo(s) = H(s) .
Example 0.2. Let l,a+,a_ € IR+ be fixed and let fl denote the piece-

wise linear function

£,(s) = H{(s) min{ls,a+} +H (~s) max{ls,—a_}

A .
An asymptotic (for € +0) solution of 0(5 w With £ = fl is constructed
in section 1.2 below and used in order to investigate the asymptotic beha-
: . A
viour (for €+0) of the solutior of ?(E o With general £ .
’

For a given function u € CO(EQ-) {(or u € CO(H) ), denote by E+(u) » E_(u)
the sets where u >0, u=0, u< 0, respectively, whereas x+(u) ' )(O(u) ’

X_{u) stand for the characteristic functions of these sets.

A X
We associate with O(E the following “reduced" prcblem O

A
3u ERAMY A, p)
—§?+A(x,t,§>u +').fo(u ) = g(x,t)[l-)(o(u )} , (x,t) € Q
M < gtx,t) £ lfw , (x,t) € int Eo(u)\)
(0.9) A _
u (%,0) = y(x) , x €U
A 1]
Tu (x',t) = 0(x',t) , (x,t) €T .

The solution u)\ of (0.9) is supposed to be continuous in Q , the differen-
tial equation and the condition Af__ < gi(x,t) £ Xf_ in (0.9) are interpre-

ted in the sense of Schwartz's distributions.

The corresponding stationary 'reduced" problem 0‘{: is stated as follows:

3\ A A A
x!\m(x,§>x,l°° +Afo(uw)' = gw(x)[l -)(O(um)} ' x €U
. . A
(0.10) Af_sg(x) < )\f_.m , x € int Eo(um)
'nuk(x’)=¢ (x') , x € Ju
[ ) ©

o YR o - .

where again u_ € C (U) , the differential equation and the condition
Af_«n < g, (x) s Xfm in (0.10) are interpreted in the distributional sense,
The reduced problems (0.9), (0.10) can be reformulated in terms of maximal

monotone operators (see [31).




I. Stationary problem

1. General proverties of the operators considered

A A N . .
Both Ofg o and OCw can be equivalently reformulated as variational minimi-

zaticn problems (see, for instance, [5]), where the corresponding functionals

1 3
Dé(u) [[— I a°° (x )_al-—-u—.+)\sl-‘(—)-gwu]dx

U 2 15k, 9<n ox, 9 j
pMw) = f{% [ oap 022 Mase w-g u]dx
ul? 1,550 K3 9% 9%y

are lower semi~-continuous, coercive and strictly convex on the hyperplane
m Joen w & € R (U)}
= u -
¢, 1 1 w© =7
Here, as usual, Hl(U) is the Sobolev space of order 1 and ﬁ (U) 1is

tha subspace of those functions in HI(U) , for which traces on 13U wvanish;

furtner &, is the solution of the following boundary value problem:

[ 8)
A =—i® =g (x) , X €U
(1.1'1) m\ ax/ ™ -]
Ty Colx") = ¢ (x') , X €3U.
Usincg the equivalent variational reformulation of OCA .O(l and the clas-

sical a priori estimates for linear second order elliptic operators, one

gets the following result:

Theoresn 1.1.1, There exist well-defined solutions

A 1,0 — A 1,00 —
U, €CTW) , u €@, we€ [0
of the problems 0( and 0(}‘ , respectively. )

We use the same notatlon(7l , for the operator

A H,(U) * L_(U) xXH (3u)

(1.1.2) 0(63,‘”: D) 2 H3/2

associated with the boundary value problem (0.8), where, as usual, HS(U)

and SI(BU) stand for the Sobolev spaces (of orders s and r , respectively)

. -6 -




of functions in U and on 93U . We are going to state several results

. A
concerning the continuity properties of the nonlinear operatorCH'E < and

r
its inverse,

prorosition 1.1.2. For any given € > O , the mapping (1.1.2) is a Lip-

schitz-continuous homeomorphism.

Propositicen 1.1.3. For any given ¢_ € HJ/Z(BU) , the operator
A, -1
(Dfe,m) :H_ (U) > n%

is Lipschitz-continuous uniformly with respect to € .

A A
Pro ition 1.1.4. With e solution of
DOS i LI th ti 0(5,w

. the mapping

= A
R, 3 ~ul  €H (V)

’

is LipscHitz-continuous uniformly with respect to € & (O,Co] , thus also
for ¢ =0 .
The proofs of Propositions 1.1.2 - 1.1.4 essentially use the fact

that f£(s) is monotonically increasing.

pronosition 1.1.5. For any given g € H-I(U) , the operator
(1.1.3) / (3U) 3 ¢, = LI € HI(U)

. : 1 .
is Holder-continuous with exponent «a = 3 uniformly with respect to ¢

Moreover, the following a priori estimate holds:

i

A -1, A (-1

" 1/2
s iy ool Ty 105l g ) -

where ¢j r 3 =1,2, is the solution of the linear problen

(1.1.4)

oy =0, x€uUu,
(1.1.5)

Tfooj-?jo % € 3u

and the constant C does not depend on ¢j,g and € .

-7 -




Proof. Let u, = (0% m)-l(‘i&,g) and denote v, =u_-% , where ¢, is
— J ’ J J J J 3

defined by (1.1.5). Then v = VTV, is the solution of the problem:
v, +d +&
. A_v +7\[f( 16 1)—f<vz€ 2)] =0, x €0
(1.1.6)
'nov(x') =0 x € du

2
The inner product in L (U) after the integration by part yields:

© vl+<1’>1 v2+d52
i()akj(x)v v dx+lf[( = )-—f( < )](¢l—d>2+v)dx=

[ s

The monotonicity of £(s) leads to the inequality:

u 0
T DY 2o, -
ULakj (x)vx_vxkdx < Atjjf(e) f(e):l( L~ 8plex <

(1.1.7) J
<2 max{fw,lf_wl}(meas w /2 H<1>1 -¢2||

L2

As a consegquence of (1.1.7), one gets the estimate:

/2 X1
l ¢)1 '°2il 2

W1
Vvl, L, ) < 22 ma)({f.MD | £ IJ {meas U) 220

L 9
where 1} Is the ellipticity constant for Ab(x,x) . Hence,

‘y 1/2

(1.1.8) [[vi] sc, e
. By ) 1 1 L (v)

where C1 depends 6nly an l,p,fg , meas U and the constant V in

. o
the Poincarée's inequality: i Vvl 2 2V Hv” 2 . Y € HI(U) .
L°(w L7(u)

As a consequence of (1.1.8), one gets (1.1.4) with C = Cl+1 .




1.2. Converaence for € +0

. ) A A
In this section, an estimate for the Hl-norm of U o~ Yg is given
i

which is a slight generalization of the result established previously

in [16,2]. Moreover, if the free boundary BEO(u::) is a sufficiently
A

A
-norm of - i
1 m o uc,w u, is of

as €+YO0O . It will be shown in the next section that

smooth manifold, it is proved that the H
order 0(53/4)
there exists a critical value )\c(%,gm) of ) such that for X <Ac .

Y )
the norm of ue'w—um is of order O(e) as ec+0 .

Theorem 1.2.1. Under the regqularity assumption

(1.2.1) 6, € cCow , g, €@ ,

the following estimate holds:

1/2

(1.2.2) “u < Ce ’

-2
where the constant C depends only on A,f,Am and U .

Theorem 1.2.1. is proved by using the monotonicity of £ and the fact

that the functions can be characterized as solutions of

ug’oo 1 YUy

corresponding elliptic variational inegualities. )

, A
Using a compactness argument and the uniqueness of the solution u,

to the reduced problem, one can also prove the following

proposition 1.2.2. If g, € CO(EJ-) P cz(au) . then one has:

A Al
ue'w-uwl

(1.2.3) lim
€40

=0, va € [0,1) .

,cl’a(ﬁ)

Now we are going to estab%ish the main result in this section.

Theorem 1.2.3. Assume that ¢_>0 on 3U, g, ® 0 in U, that the
free boundary 3!-:0 (u?;) is a Cq-manifold of dimension n-1, and that
the function £ satisfies the condition (0.2). Then the following

estimate holds:

A All

u =-u 3/4
|| 1, W)

(1.2.4) < Ce ’

C,”




where the constant C does not depend € .y .

One constructs asymptotic solutions of the probles 0(3:‘ » With a

,
specially chosen piecewise linear function f = f.'1 in order to prove
this theorem. More precisely, introducing the fuggtion

(1.2.5) fl(S) = H(s) min ls,fm}+H(~§) max {ls,f_m}

——

where H(s) is Heaviside's function and the parameter 1>0 will be
chosen later, one applies an appropriate modific_altg}on of Vishik-Lyuster-
nik's method ([19,20]; see also [16,18]) for congtyucting asymptctic
solutions of 0[2"” with f£(s) = fl(s) and for establishing (1.2.4).

For x in a sufficiently small neighbourhood ofltpe free boundary
aso(ui) , define x' € BEO(uZ:) ¢ P ER by tﬁe Fe}ations:
] = : | 1 . A '
lx—x | = min X -y l = disy x,BEO(u ) ) = ;pl
y'ESEo(u ) Eo(u
p>0 on E+(u)‘) A;
A Ty
p£0 on Eo(u ) . 2

N .
If x € E+(u ) and lies in the neighbourhood abovg, (where the coordi-
nates (x',p) are well defined), then the operater A, can be rewrit-

ten as follows:

3 32 2
Aw<x,§) = - (a(x)——2+(b(x) +c(x_)_V,'}a.—§+B(x,V'))
9p 4o

where V' denotes the gradient with respect.to..x; € an(u)‘) and
where B(x,V') is a differential operator of sgcgyd order with suffi-
ciently smooth coefficients. Besides, the functigps a(x) >0, b(x) ,

c(x) are sufficiently smooth, since the manifold, .9E_(u') is supposed

y 81 70
b
to be sufficiently smooth: Let Ue gy = {x €U Ip|U< 2¢e /3} and
, .
UE e =3ix €U ipl >€1/3} denote the interior andethe exterior region,
’ jo e .

respectively. In Ut»: jr@an asymptotic solution‘_/i;rpsought in the form
. L

(1.2.6) v x',0) = ] ej/2v.(x',e;1/2p).
- 25353 J
where the functions v, , j = 2,3 , are solution_s' 9f the following

J
boundary value problems on R with x' € 3Eo(u )wiplaying the role of

- 10 -




a parameter:

2
a(x'ﬁl—w'(x‘,c)-lf <v2(x'cC)) =0, L ER
ar2 2 1
(1.2.7) vz(x',Z) = o(l1) r LA+

vz(x',C) = <2a(x'))-1lfm§2 +0(1) . g+ 4@

2
a(x')——-\d 7'2(X';C) ‘Afi(vz(xl:C))VB(X';C) = Y3(X'rc) ’ T ER

ars
(1.2.8) v3(x'.z) = o(1) r G-
vy, = a5, 307 8 G0 o . peee
with
YJ(X‘,;) = -x;(a(x')>_lap(x‘)fl<v2(x',§))-(b(x') +c(x")V’ v2;
63(x') = -(a(x'))-lap(x')-+(b(x') +c(x')V')((a(x'))-1>

The solution of (1.2.7) is given by

A£ 1
1 (ya(x')c)—l

T s < ’é(x')
w ., XE_L
v, (x*,8) = 2
fmcz+i_ £ >,/alx)
Zalx')® 21 ' YN

and,(d/dc)v2 being a solution of the homogenecus differential eguation in
(1.2.18), the boundary value problem for vy can be solved using the

variation of constants' method.

Let X € C:tR) be a function which is identically one on the interval
[-1,1] and the support of which is contained in {-2,2] . Let ze be
defined by

(1.2.9) z (x) = x(e—lnp)vs (x',p) +(1 -x(s-]”p))ui(x)

Obviocusly, this function satisfies the boundary condition ﬂozE =6
on dU .

Lemma 1.2.4. There exist constants C , € v such that

e +36,(2)

4
for ¢ € \o.co] .

: < CCS/S

LZ(U

-1 =




Proof, We shall proceed by splitting the proof in several steps.

(1) For xeu . On has:
€, e

ul (x) 2 P02 2 P€2/3

wWith a constant p >0 . Thus,

#

c‘lze(x)
~1

fl(e ZQ(X)IIE 1 for ¢ ¢ (O,CO] ' €
Amz€+xfl(e ze) =0 for ¢ € (0,6

-1 -
£ uk(x) 2 pe 173 and

o Sufficiently smaly). Thus,
0] r X € Ue,e .
(ii) It will be shown that

{ — \ |
(1.2.10) h fl<v2 +r£v3>-(fl (vz) +/'Efl ("2)"3); < Ce

~-1/2
where v, = v, x'r
ze vi= v a7

2
L7(u
( e,i)
- Without restriction of generality,

one
€an assume that ) = ﬁw = 1

. Since f
tion on the left hand side of (1,2.10)

—~ . -1
v2 +ygv3,v2 does not contain 1

s .

. -1
R 1m,m!%+&5<1 <%}

1 is piecewige linear, the fune-
is zero if the interval

. Let now

def
If (x',p) € Ss , then e-j/zp>'co(x') = Vl-la(x') and

2 2
1 g_ .1 - -1 1 e 1
“—“Za(x‘) E+2l+;cv3< 1 < _—

2a(x') g 21

Since jv3(§)f = O(;B) ¢+ £+% , one obtains

pz-CpJ < g -co(x‘)z < p2

with a constant ¢ . Thus, [p-/?;o(x')l £ Ce . Since 1v2<x',co(x')) =1,
the following inequality hold: for x € Se

.
3

ffl<v2 + vsv3) - (fl (vz) + /Efi (v2)v3)

= {1(§2 +/Ev3)-]l < cel/?

The last inequality yields (1.2.10), sinc

e the measure of SE is
of order_0(g)

.

(1ii) It will be shown that

(1.2.11)

. b ond
Aazc + A(fl ("2) + fl (vz) vcv3>




1
Consider first the region [p[ <€ /3 . where Y = 1 . One has

' - ' 3/2 _ 2/3
B(x,V )zE—B(x,V )(EV2+£ v3)—o(e )

Thus, with ¢ = e—l/zp . one has

/3

— _ 2
Az€+k(fl(v2) +yz:fl (v2)v3) = r(x,e) +0(¢ Y,

where

(1.2.12) r(x,e) = -a(x')v (x',%) +lfl(v2) +

2L
+v'€<-a(x')v3c;(x',§) +Af?! (vylvy = Cap (x')szC(X'.C) -

[] ' [l t i
-(b(x ) +c(x")V )V2C(x ’v'E))

0(82/3)

according to the construction of v, .

1/ 1/3

In the region ¢ 3. lpl <2¢ , one obtains

Az +)\/f (v.,) +yEE! (v )v)= z r. (x,c)
e M\"1'72 1772 ocico 1

where T, 0<i<2, are given by

ro(x,C) = r(x,c) —(a(x') -*/pap(x'))\'l -X) uDD-<V2§C “va;))
' 3/2 A
-~ (b+cV )(l-x)\up-v?$'2;>+x8 €v2+e vy + (1 -x)Bu
- - vye—1/3 -1/3_. 3 3/2 Py
I (x,£) = -2a{x')e X' (€ o)§3<€v2 +€ vy-u
- (b +c\7')e-1/3x' (e’”%)(evz +€3/2v3 - u)‘)
r,(x,€) = -a(x)e'z/:’x"u:'lnp)(cv2 +53/2v3 —ux)

Using the boundary conditions for vj and the asymptotic expansion
u)‘(x',p) = (Za(x'))q)‘prz+Afu(3!)-183(x')p3+0(pq) R pto,

one checks easily that

2/3

sup ri(X,C)l < Ce ’ i=o0,12,

81/3<p<2c1/3

- {13 -




where the constant C does not depend upon & . Thus (1.2.11) is

proved.

(iv) Since uA(x) 2 po2 for x € E+(ux) with a constant p >0 ,

one can choose € so small that for Ve € (0,¢.] ., Vx €U ,
-1 ° (o o102 172 (9 “172 \\ & ¢
fle :C(x) =f, and f vz\x '€ pjt+e vilx'.€ o) )= f, for
xX€U_ . Nu . Thus
€,1 £,€e
”A z (x) +Af e-lz (x) ” 3
HEA € 1 L (v)

-1
= ”Amzs(x) +Afl\e z (x) “L (u i)

= “A z, (x) +Af (v2+51/2 )”
)
2 e i

lllAz +A £, (v)+f(v\/“ 1,0

| 1/2 l
+A“l(v)+f(v)e v3fv+s:u (U:.

< Css/6 ,

as a consequence of (1.2.10), (1.2.11) and given that meas (UE =
’
= 0(51/3) , EYO .

Lemma 1.2.4 is proved.

In order to prove Theorem 1.2.3 above, several auxiliary results will

be needed.

Lemma 1.2.5. There exists a well defined wvalue of the parameter

1 € (0, , such that

@ .
(1.2.13) (1) = j(( (l’m) -1( ‘”m)) =0

(1) (1)

Proof. Let v (Z) =v, (z) . Then va 172

-1
(Ghr= 1 "v(l™" %) . Using
the substitution n = v(/-i.c) , one gets on -

/Irq1) = J(f(l‘ln) -fl(n))——f?——
o) v'iv (n))

The right hand side is a strictly decreasingyfunction of 1 € (0,®) ,
so that I(l) has at mos£ one zero. For .1 sufficiently large, one
has £(17'n)-£, (M) <O WM >0, so that I(1} <0 for 1>>1 . Now
I(1) >0 for 1 sufficiently small. In fact ,one has:

- 14 -




(1.2.14) ‘ :}(f(l-jn) -fl(n)) (v' v ))-ldn l
{ o}(f(l-ln) -fw)(v'( Rt ))-ldn l
< ilf ~3/24n

1
with C independent of 1 . Hence,
! -1 -1 -1
VIiT(l) = j(f(l n)—fl(n))(v'(v (n))) dn+0(l) , when 140 .
o)

Therefore,

1
1im Y1I(1) = j(fm-f1 (n))(v’(v"l(n)))'ldn >0,
140 0

and Lemma 1.2.5 is proved.

We choose 1 to be the zero of I(l) . Let h{(s) f(s)-£ (s) '
and f?r a>0 , define Ua = lx €vu ldist(x,BEO(um)\ > a}
R, G €R||o[>a}.

We choose a >0 so small that for Ip] <a , the mapping x-=+(x',p)
is a diffeomorphism.
Lemma 1.2.6. There exist constants C,Eo >0 , which do not depend

upon € ané such that for € € (O,EO] holds:

M -
(i) Hh(e 1ze (x)) ‘ < ce

I 'L (u)

a

(ii) I'h\v ( '€ 1/20) LZ < ce

l / (aEOxRa)
-1/2 < o34
(iii) \ ( p) IIH_I(U\Ua) < Ce .

Proof. (i) For x € ualﬁE+(u:) , one has: z (x) = ul(x) 2p>0.,
where p does not depend on €,x . The inequality |h(s)| < c(l +[sl)-1
and fhe fact that for x € Uaf1Eo(u:) , one has: ze(x) = 0 , so that
h(e- ze(x) =0 yield th? first part of the Lemma. - -

(41)  since for p €R, holds vz(x',e-l/zp) 2 e-lp , ‘'where p does

not depend on x',E , the second inequality can be proved similarly
to the first one.

- 15 =




(iii) Denote t(x',s) = h(vz(x',s)) . One has

o)
(1.2.15) [ E\*' € D)h H_, (3E_X(-a,0)) :

!
”t\x € I/ZO)H H (3 *R) T 20
HH_17%, “L(BEXR)

z
Let T(x',Z) = ft(x',s)ds . The inequality ,'t(x',s)l S C(l+s ) -1 P
-0

x',€
\

which holds uniformly with respect to x' € 81-:0 , and Lemma 1.2.5

yield [T(x',7)] € c1 +l::l)'1 . Thus, TE€ L2(3EO>‘R) and

e %)| | (.7 %) |
t x',e p = sup ﬂw,l f X ,E p(x',p)dx'dp
I H_1(3£OXR) w€H ) H (V)
- 2
= sup ;0| ! / 'I/ 1/2 ) (x',p)dx’ dp‘
eCH, H, (V)
<el/? }I'I‘(x' -1/2 ))’ sup @] 1(0) i‘aw“ 9
i 12 se JR) OEH () O L ()
< c€3/4

As a consequence of (ii), the second term on the right hand side of

(1.2.15) is of order O(€) and that ends the proof of Lemma 1.2.6.

Lemma 1.2.7. (1) There exist constants C,Eo , such that
(1.2.16) c'llvz(s'l/zp) < E-llze(x)l < c!vz(e'l/zp)l Vo € (0,a)

Ve € (o,eo] .

(11) There exists a constant C >0 such that

-

(1.2.17) {h(e' z (x)) h(v (€ l/zp) “ <ce? ve € (o,col
L2 (o)
proof. (1) For 0<p< 51/3 , one has

-1 _ ~-1/2 -1/2_\-1_1/2 -1/2
€ ze(x) = v2(e p)(1+(v2(e p)) € v3(e p))

The ine:;uality

1.1/2 , ~1/2 1/3

’ vz(c'lo)‘ e v, (e o)! Scp sce

- 1A =




implies that (1.2.16) holds for © <p<5:1/3 . Now let 51/3 <p <2£:]

Then

/3
-1 TGS Vo SN 4 \
€ zs(x) = \2(6 ) \1 tr, (Z:,x)}

where the function

172 -1l
r,le,x) = v,le 1/29) lilx

can be estimated as follows:

|

lrl (e,x)

- 1 - - -
{e 1/30)5 /2v3+<1 -xfe 1/3p)>(5 1u}‘(x) »vz(e 1/Zp))}

<cp < 2(:21/3 . Ve € (o,so] ’

with some constant C>0 .

1
Finally, let 2¢ /3<p<a . Then

e—1<<23(x'))-lpz +O(p3))
s
= Vz(e‘l/zp)(l +o((v2(e 20))'1»
\

(ii) The left hand side of (1.2.17) can be estimated as fcllows:

Wl = -31/2 i
};h<s za(x))-h(vz(e p))

< J. ( sup In* (O)}>2}€-1z (x) =v,(e”
lpi<a -1 €
@E (VZIC ZE)

e_lzg(x) = s-iuA (x)

and (1.2.16) is proved.

<cC j ( sup {1 +92)~1)2}e—lze(x) ~v2(e‘1/2p)£2dx +
O<p<a GE(Vz.e-Izs)

r:‘lz (x) ~v

e e 2

~a<p<o

e 1% l 2ax

-

Using (1.2.16) and the asymptotic behaviour of vz(;) for [ +e,
one obtains:

T )
(x) 3 ~h{ v_{( )
l{h\c 2, (% J RN € p LZ(U\U : < .
a
sc f (1 + (5-1/20)4)-2(1 +€-193)2dp rc s| v3(c'1/2p)l Zap
O<p<a -a<p<0
3/2 |

s ce ve € (0,e5) ,
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where C does not depend upon € , and that ends the procf of
Lemma 1.2.7,

Proof of Theorem 1.2.3. Let 1 € (0,®) be the zero cf the function

I{l) defined by (1.2.13), and let ZE(X) be given by (1.2.9). One

has:
Az +Aelelz 0 ) =r (x)
e 1 £ Feix/ o

where, according to Lemma 1.2.4,

5/6
(1.2.18) “rell L, < ce , Y € (0,e]

with some constant C >0 which does not depend on € .
_ . . . A
Writing the differential eguations for ue and for z8 and taking

A
the difference, one gets for u -ze the following differential equation.

Aw(u)e\-ze) +A<f< “u (x)) f( Tz <x)>)
-1 -1
= -x_(x) - (f(s z, (x) l(e ze(x)>>
A
[

Taking the inner product with u -2 in L (U} in the last equation

and using the monotonicity of £ , one gets the following estimates:

lf etz )) ele 'z x) ;
2 )5 e H_, ()

<A A
E|J(u€- 2z )A (U ~z )dx < ( ]lrEH 5 () +

A
ug =2l B, (©)

The integration by part and Poincarg's Lemma yield:

P - i -1 / -1
”ue ZE!‘HX(U) sC O{rC"H_I(U)+ uf(e ze(x))-fl\e ze(x))!!H-I(U))

The last inequality is also a consequence of Proposition 1.1.3.

According to (1.2.18), the first term on the right hand side is bounded

by C€5/6 .

According to the Lemmas 1.2.6, 1.2.7, the second term can be estimated

as follows:

- 18 -




“ f(g—lzc (x)) - fl(c_lze(x)>
= “h(e—lze(x))! H_ (U
< “h<g_lze(x))
< Hn(g'lzc(x))‘ Lz(Ua)

o

+dh< 2z \X)>!!H_1(U\Ua)
-1/2 >H
v, {x' ) +
:h\ AUIEIIERN
h( z (x)\ h(vz(X'.e_l/zo))” H_,

3/4
< Ce / .

This ends the proof of Theorem 1.2.3.

Remark 1.2.8. Consider the problem O{A in U= (-1,1) cR with f=f

£
. . a ,
defined in (1.2.5) and A= -(E;)z » g, =0,¢_(x } = 1 | The function
A -1.1/2
U (X) = (A/2) (%, - E) » E = 1-(20 ) / . is the solution of the reduced

-

problem O(A . Let V., be the solution of (1.2.7) and let
(1.2.19) z (x) = ui(x)(l - x (%] -g))+gv2</>\/¢'(5xi -g))x(;x] -E) .

Sirilarly to the proof of Lemma 1.2.4, one checks that

-1 I
(1.2.20) j—z" +Af, (e "z )' < Ce
I e 71 e lic%@
where the constant C does not depend on ¢ . Further, “oze =1,
Partial integration yields:
(1.2.21) P -z <ce ,
€r® el HI(U) -

where the constant C does not depend on ¢ .

Since fi(+0) >0 , the function vz(g) and its derivative decrease

exponentially for (g -+-o . Thus,

(1.2.22) Y,s3/4 < ve € (o,eO] .

izl g |56

where the constant y >0 does not depend on ¢ . The inequalities
(1.2.21), (1.2.22) yield:

- 10 =
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—

A NP
(Ve Tl 1y ) T Ve, T el 1 (-6LE)
" 1 t > I _l A - ”
2 “"c,mh By (-5,8) ~ . ZE” Hy (-5,8) Ve, T %l H, (V)
> Y€3/4-CE
2153/4, ve € (0,6 ],
2 o)

where EO >0 1is sufficiently small. Thus, one has the following two-

sided error estimate:

(1.2.23) C € < < CE3/4

-1
Hl(U)

0 [-<]

A A
£

with some constant C >0 which does not depend on € . It can be
shown that the estimate (1.2.23) holds in the general case, as well,
if the assumptions of Theorem 1.2.3 and the condition £'(+0) >0 are

satisiied.

Remark-1.2.9, If g, # O, then the same argument with corresponding

slight modifications in the construction of the asymptotic solutions

A
of the problem OZE » With £ = £, leads to the same estimate under
L]

1
the assumptions of Theorem 1.2.3.

- 20 =




1.3. The critical value A of A
(&

If ¢m(x') # 0 Vx' € U , then some critical value Ac of the parameter A
plays a special role in the investigation of the boundary value problem
Of, . Namely, if ¢_ > O, then for A < Ac the problem 0{1 becomes linear,
whereas for A > kc it is a nonlinear problem with piecewise constant
discontinuous (across BEO(u:) ) nonlinearity. Denote by CS(BU) and C?(aU)
the cones of continuous positive and negative functions on dU , respectively.
Further , let G(x,y) be Green's function for A x,gi in U with Diri-
chlet boundary conditions on 09U and denote by E(x,y') the Poisson kernel

for the Dirichlet problem for the equation A u =0 .

o
Treoren 1.3.1. (i) If 6, € CO(3U) (respectively, ¢, € C_(3U) ), then

+
there exists a well defined critical value kc = kc(¢m,gm) (respectively,
Ac = lc(ﬁw,gm) }, such that

A .
Ej(ug) =8 if A <A_,

A A . . A A
meas (Eo(um) U E_(“m’) >0 if A > lc (respectively, meas(EO(uw) v E+(um))
>0 if A > lc )

(ii) 1f Xc 2 X, then ul is the solution of the linear problem

3\ X
Am(x,g;)vm(x) =g lx)-Af_ , x€U
A

“OVm‘X) =¢_(x") , x € 3U

(1.3.1)

A
If g =0, then meas E (uc)=0.
- 0O @

+ -
(iii) The functionals Xc , lc can be represented as follows:

+ +
1.3.2 A, = min A (x) ,
( ) e orrTe) :EE N x)
where the function A* is defined by:
¢m' ]
(1.3.3) A ) = (f fG(x,y)dy)-l(fE(x,y')q\w(y')do . "‘IG(x,y)gm(y)dy)
¢°,r9(,° NU 3 Yy U

.

The proof of Theorem 1.3.1 is similar to the proof of Theorem 2 in [9].
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+
Proposition 1.3.2. The functional (¢_,g ) ~* AC(¢w,gm) has the following

properties:

(1) A’ =a’ >0

i C(ac:»m,agm) =qQ c(cbm,gw) , Vo

.- 1 +(,(2) (2) . (1) (2) (1) (2)
(ii) ).:((f‘il),gci )) < AC<¢>w N ) cif o) <08, gl <ql

Cos + 1 (2) (1) (2) +( (1) (1)

(iii) )\c Y¢:, ) +(1-Y3¢, " 4 Y9, +-Yig, ) 2 Y)\c<¢°° 9y )"

2 2
+ (1 -Y))\:((b; ’,gui )) w € [o0,1].

prcof. One proves (i) - (iii), using the formula (1.3.2) for A:(¢m,gw) .

Analogous properties has the functional K;(¢m.qm) .

For A < lc , the convergence result given in section 1.2 can be improved.

One has the

Theorem 1.3.3. Assume that ¢_ € CS(SU) and that Ac > X . Then the follo-

wing estimate holds:

!
(1.3.4) ,Iu" - oMl < cz(xc-x)‘l , Ye>0, W¥p, 1<p<w
]

2,p(U)

where the constant C depends only upon p,L,U,Am,tb°° and g_ .

proof. SinceO(i for >\<)\c is linear, the function w=u2,w—ul is
the sclution of the problem:
A
u
Awo = Ale - g €u
(1.3.5) =00 =) e € rE
T ﬂow(x') =0, x'€ 3U .
One can write:
My = + O =) A<
u (x) = u (x) " v(x) , SAL .

where v(x) is the solution of the problem

avix) =1, x €U

1.3.6) 1rov($<') =0, x€3U

A
Since vi(x) >0, Vx €U and u “(x') >0, ¥x' € 3U , one can find a
constant Y > O such that the sets:
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A
L %e
U, ={x €Ulu e 2 y(xc—x)} ) U, ={x € U‘v(x) 2 YMC-M}

cover u + SO t.hat one has:
u (x) 2 Y(A A) ’ VX E u
(-] [

0f course, y depends upon ¢w and 9, -
su

Denote Ve(X) = ;;m . Then \ is the solution of the problem:
A
u u
A v +l-f' L2y = -l-f' L2 ux s, XEU
©Eg € € € 2 € €,
€
ﬂove(x') =0, x'€ aU
Since £'(s) > O, uz - 2 O for € sufficiently small (because u: >0,
’

Vx € U, VA < kc ), one gets the conclusion that ve(x) > O, so that ui

’

is monotonically increasing function of € and, in particular, one has:

u)‘m(x)zu:(x)zﬂkc-)\) . YXEU, €>0

Hence,
A
u o
Ll L 7 L e L
o<t f\ - ju}\ £'(s)ds < Le+u)‘ < Yo €
€,% €,®
and €
U)‘ l
e L -y-! 1/p
(1.3.7) “f\«m f\ o )I LP(U) < ¥ E(Ac A) (meas U) .

As a consequence of the a priori estimates for second order linear elliptic
operators, one gets, using (1.3.5), (1.3.6), the estimate (1.3.4).
- e) . X
corollary 1,.3.4. 1f Ac -A=¢g ,0<0< 1, then ue o Converges to
A . !
€ in W (U) wyp<eo,as g+0,

o 2,p

Corollary 1.3.5. 1f kc -A = se , 0<B <1, then uz o CoOnverges to

A ’
unc in Hi(U) and the rate of convergence is O(EO) . In fact, let

A1=0

B = Ac'- . Then, using Proposition 1.1.4 and Theorem 1.3.3, one gets:
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lueow “C,¢

s C(h -uf +ce(xc-u)'1)

SCEO.

A
H c
e, " Ix
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1.4, Estirates for the critical value of A

Let G(x,y) denote Green's function for the operator Au(x,%;) with

homogeneous Dirichlet boundary.conditions and let E(x,y') be the

Poisson kernel for thevDirichlet problem for the equation Au = 0.

Denote by CS(U) and CS(QU) the cone of positive coantinuous functions
0

0
on U and 3U, respectively. For functijons g € C+(U) and ¢ € C+(3U),

let Ht(g) and ”t(¢) be their mean values of order t:

1 :

_ 1 t. \t

M () = (meas(u) é g(x) dx/ , VtETR
1

= 1 N 'le, \E

“-(t(é) = (m {u¢>(x )dcx,., , YVt € IR
1
M () = (‘: ) ¢(x')-t>t . Ve ER, if n =1,
x'€3U ,

In this section, it is assumed that g_ € CE(U), b € CE(BU). For the
investigation of the functional AC(¢“,9Q), the assumption of positivity
of g, is not a restriction of the generality. Indeed, (1.3.2) implies
that:

+ + -1
Ac(éa,ga) = Ac(¢@'g¢*°)"(f¢) P Yo € R.

Let

(1.4.10) vix) = [ 6(x,y)a
U .

and let Z be the set of the points where the function v attains a
global mazimum. For functions g € CE(U); $ € CE(QU), and for x, € 1.

define the mean values Nx (q), Nx {$) as follows:

0
Nx {g) = (v(xQ))-1 ] Glxq,y)g(y)dy,
0 U
Nxo(a) = gu E(xo,?')¢(y')ddy,.
One has the
- 25 =




Preoosition 1.4.1, Let U nf’, n 2 2. For V(o_,g_) € CE(BU) xCE(U),

vt > 0, the following estimate holds:

. : +
{1.4.2.) le -2(¢¢)+ptﬁl_t(g-) s A (e _.9,) s
2
s (507 min_ wixgd TN (a4 (o))
xOEZ *o o]

where the constants p.p, are given by the formulae:

p = (f’)-lmeas(au) « min M _2(v(x)-xz(x,-))
x€U D'n— .

pt==(f_)_lmeas(U) « min M (v(x)-xc(x.')).

x€U r ey

Proof. The second part of (1.4.2) is obtained by estimating the maxi-

mun in {(1.3.3) by the value of«A: g at x = x,.

@ ~“a

In order to prove the first part of (1.4.2), note that for positive

1

functions h‘,hz, and for p > 1, p' +q~1 = 1, Hélder's inequality can
&

be rewritten as follows:

1 4
5 P ra’q
(1.4.3.) fhl 2 (fnlny) (/o) .

One has:

min ((‘«'(x)-x f E(x,y"Vo {y")do_, +

x€U Ju b

« v Hetx, v a_ivray
U

v

min ((v(x)).1 f E(x,y"Y¢_(y"')ds_,) +
x€U u Y

+ min (v Gixyg_(y)dy) .
x€u U

In order to estimate the first term from below, one applies (1.4.3)

with p = (n-2)-1n and
: L
hly') = (v(x))_lE(x,y')¢_(y'), hyly') = ¢_(y')lp.
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The second term can be estimated.similarly, with p = t-‘(t+l) and

1

h ty) = (vix) T IGx,y)g (¥, hy(y) = g_(y) P.
This yields the claim (1.4.2). 0O

For the rest of this section, U is assumed to be the unit ball

in ®™. 1f one has:

3 =
(1.4.4.) A_(x,s;) = =4, fo(s) = sgn S.

(1.4.5.) g_(x)

o,

the estimate (1.4.2) takes the following form:

(4.6 20K () € 106,700 s 2n M (8.
2

Indeed, in this case, the number P can be computed as follows:

p = min 2n(2 )} J lx-y'lz'"dc , =min 2n = 2n if n 2
fxfer % fyri=t Y fxla

p = min 4(Q )-1 i ln!x—y'ldo ,=wmin 4 =2n if n = 2
] <1 [y =1 Y xla

where Qn denotes the surface of the unit ball in IRn.

The following recult shows that the estimate (1.4.6) is sharp.

Propositicn 1.4.2. (i) If n 2 2, then there exist nonconstant function

oj € CE(BU). j = 1,2, such that

+ ' +
A (4,,0) = 2n M1.:2(¢1). XC(¢2.0) = 2n M1(¢2).
2

(ii) There are no positive constants €0 and Gn such

that
2n M () s Ate,0 ve € o
1-2+¢ ¢ *
n
or 2t s M, (8) Ve €clow.
(<] " : l-.-&n +
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proof. For £ € U-{0} fixed, let él(x') = ]x'-&lz. x* € 3U (which {is,
of course, the restriction to 3U of a linear function).

The corresponding critical saolution is the function
2n 2
u, = ix'gl »
such that:

+
(1.4.7.) Ac(él,O) = 2n = 2n M1 -2}¢1).

2

.

- Let ¢2 be the trace on 3U of the harmonic function 1+Hx1x2. The cor-

responding critical solution is given by the formula

uin(x) = |x|2+Hx1x2

such that A:(¢2,0) = 2n = 2n Ml(éz), where in the last step the mean
value theorem for hafmonic functions was used. The claim (ii) is an
immediate consequence of (i) and of the following monotonicity property
of thé mean value: M ¢ ($) < M: (4) if tl < t, and ¢ is nonconstant on

1 2 2

881. 0 consider now the cone dimensional case U = (-1,1).

Procosition 1.4.3., (i) Under the assumption (1.4.4), one has:

1
(1.4.8.) 2% (¢ )+2e“.\lo(g ) s 2706_,q) < 2M e+ [U1-]y]ra_(y)ay.
] L] c @ > 1, @ -1 @

{ii) Under the assumptions (1.4.4), (1.4.5), one'

has:

+ - o1

(1.4.9.) Ac(¢°,0) 2u%(°;?-

Proof. A direct computation shows that:

(1.4.100) min (1-xH) 7 ] (extxe(x) = 2 ).
|| <1 I ]=t

This proves (1.4.9). The secand inequality in (1.4.8) is obtained
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+
0

first inequality in (1.4.8), one uses (1.4.10) and HOlder's inequality:

sinmilarly as the upper bound for A, in (1.4.2). In order to prove the

ATt,09) = min 200-xH7TNATT (e (x) +
Ix}<1 Ix*]=

1
J G(x,y)g_(y)dy)
-1

+

2min ((1-x)70 T (e'x)e_(x')) +
<t =1

1
+min 20-x3) 7 [ Gl,y)g_ty)dy
[x]<t -1

2 2“5(¢=) + otMt(gn) Ve > 0

with Py the same as in Proposition 1.4.1. A computaticn shows that

_ _p—1
P, = 2. (1+(t+1) 1r.) € (e

, such that limp_ = 2e . 0O
t
t+0

As an extension of (1.4.9) to the multidimensicnal case one can
mention the following fact:if é_(x') can be extended as a linear

function on the ball, then A.(¢,,0) = (See (1.4.7)). Thus,

ony2(9al -
an explicit formula can be given for A:(¢Q,O) if ¢_ can be extended

as a linear function. It seems to be impossible to £ind such a formula

+
for lc(¢_,0)'for n>1and ¢_€ CE(BU) (see Remark 2 in [9]).
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1.5. The critical set in the case of the lLaplacian

It will be assumed that
a .
(1.5.1.) A _(x,=) = -5, £_=1.
. . had J9xX

Denote

def  AL(8_,9.) o .
(1.5.2.) .Scfao,g-) = so(v ) vi$_.9.) € c*(ﬁu) x C (U)

wheze v) is the solution of (1.3.1). (If X! 2 O, then the proof of

+
7 Xc(¢’:g,)
Theorem 1.3.1.yields: Ec(¢°,9_) = Eo(u_ M.

IThecrem 1.5.1. Let {d_,g.) € cg(au) x c®(u) with e € (G,1]. Then for

0
£ € C+(3U) such that:

Vi € E_(é_,9_), there exists ¢
(1.5.3.) Ec(¢=*6* .g,) = {g}, ¥é > 0

)‘+

s

£

c .
and,zoreover, for the solution v of (1.3.!) corresponding to the data

N . . . 2 . . L.
Peto¥-49_ ., the matrix of second derivatives D v_ (§) is positive definite,
= £’ R x & o

Proof. Without loss.of generality, it will be assumed that £, = 1.

Deline the iugcgépn y, € CS(BU) as follows:

13

(1.5.4.) v, (x) = lxe-g]2, vxr €20, § € E_(s,,0,0.

Denste by wA the solution of ﬁi: with g_ 2 0 and the boundary condition
+ s
oY = WE.:Sor A= AC(wE,O),'one finds easily the corresponding critical

solution:

. +
Ac 2
w o (x) = [x-g]° = ?C(x)-2n v(x)
where ?E:is the harmonic function in U, such that "OYC = w( and v is
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defined by (1.4.1). Hence,
+
vy = a X°( ) = 2
c VE = fw X o= en.
2t ~
Further, since w “(x) > 0 Vx € U\{£}, one has:

+ def -1 _ o +
(1.5.5.) Aw ,O(X) = (v(x)) Wz(x) > 2n = Aw 'O(C) min A

(y).
3 £ Y€U wi'o

A .
Let ug(x) denote the solution of the problen Ct for A = 0. Using

{(1.5.5) and the fact that £ is a global minimum of A; , one gets:
+ def -1, 0
A¢,+5¢€.g_(X) = (v(x)) (uc(x)+6Y£(x))
> o s vEn e 2
-1. 0 +
> = ’
2 (v(£)) (u°(£)+6W€(E)) A¢Q+GW£.9°(5)
vx € U\{g}.

Therefore, £ € U is the only point where the function A¢m+5w€,ga(x)

attains its ominimum. As & ccnsegquence, the functicn
0 +
v tx) = um(x)-kc(¢,+5w£,gw) v(x)
is such that Eo(vl) = (£},
Yow the second claim of Theorem 1.5.1 will be proved. A straightforward

cczputation using the relations

AC: AC:
Vs (£) = 0O, vxv6 () =0

yields the formula:

A A

2.+ -1.2 ¢ c
(1.5.6.) D A¢,*5¢E-q_(5) = (v(§)) D Vs (§), Vg € I-:o(u6 ).
Hence,

2 xc 2.+

D v, (8) = v(g)D A0-+6¢£,g_(£)
2.4 2.+
- &D°A
v(g) (D A@_,q_(E)’ WE:O(E))




2.+ 2 2
= v(gI0°AL 'g-(€)+60x(lx-£|  Ixeg

2 6 2n 1d.

where Id denotes the identity matrix. O

Now we are going to prove that for g = O and for a large class of boundary

functions ¢m , the set EC(¢m,O) consists of only one point.

Definition 1.5.2. For a € (0,1], O: is defined to be the set of the pairs

($6_.9.) € CS(BU) x Ca(ﬁ),'such that the critical set Ec(¢ﬂ,gw) contains
: A
only one point £ and such that, for the solution vﬁc(¢m,g°) of (1.3.1),
X
the Hessian DZVQC(E) is positive definite at §.

cL s . 0 a,=
As a consequence of Theorem 1.5.1, the set oi is dense in C+(BU) x cT(U).

0 a =
Theorem 1.5.3. O: is open in C+(30) x C (U).

Proof. Let (b_,9.) € O, and {£) = E_(s_,9.).

wWith A; g defined by {(1.3.3), one gets as in (1.5.6):
(D’ o

2 + -1.2 Ac
{1.5.8.) DxA¢ () = (v(§)) vam (g) 2 2y 14

m'qw

wnere y > 0. Thus, there exists a constant 51 > 0 such that

(1.5.9.) DiA (x) 2y 1d, Wx € B, = {(x €u | {x-g} < 51).
1

Since £ is the only point in the critical set and therefore the only

-

+
glebal minimum of A (%), on: can choose a constant 62 > 0 such that

¢_:9

w’' 7> »' = 1

+ + -
(1.5.10.) I\¢ g (x) 2 A¢ g (£)+62, vx € U\B6 .

The inequalities (1.5.9), (1.5.10) will be used in order to show that
a =
there exists a constant p > O such that for any (¢_,h ) € CS(BU) x ¢ {U),

Eatisfying the condition
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fo_-4.] Ih-g)) , _ So.

0
cY(au) O

the function A; h has still only one glocbal minimum. Indeed, one

has as a consequence of (1.3.3)

{1.5.11.) A:(w_.h_) = nin AT h (x) < A: h (6) < A; o (E)+0(1+(V(€))-1)-
. XEU UQ: - JQ: . w’ e
Since
+ -1 . ;
A (x) 2 (v{x)) (min y_ + v(x) min h_)
u’,h « : =

2 (v(x))-l(min $¢,-0) + g_-o,

and since the function v(x) is zero on the boundary 3U, one can choose

+
63 > 0 such that for p sufficiently small, all glcbal minima of A¢ h

are contained in the set

U, = {x EuU | dist(x,30) 2 §,}.
63 3

Irdeed, the definition of A implies:

(x) -2 (1+(v(x)) 1)

crther, (1.5.10), (1.5.11) vield the following inegualities:

(x)-o(1+v(x)_1)

() +8,=0 (1+(v(x)) ™ H)

v
=

v
=

(€)+52—p(2+(v(x))-1+(V(E))-1)
P
min Aw h + 3 Yx € 063\861'

-

v

provided that p is sufficiently small. Therefore, for such p, all

+
Gglobal minima of A¢ h are contained in the set B
o’ o

: . +
estimate, however, shows that the functions AW n
: . P LA™

vex in B, for p sufficiently small. Using the interior Schauder
N .

. The following
61
are strictly con-




estimate and (1.5.9), one finds for x € 86 :
1

x 19
< ¢+

2.+
A h (x) DXA¢ g (x) +

(LR w’ 7o

-1
+ 0 v TS Elxoy®) (o, (y*) -0 ly"))do , +

v .

® N

+  Glx,y) th_(y)-g_(y) )y
8}

2.+
(1.5.12.) p"A
X wg,h

(x} 2 (y-Cp)Id, Vx € B
L 1

wnere C > 0 is some constant.

Bernce, A; h has for p << 1 only one global minimum and the set
Ec(wa,ha) contains only one point n = n{y_,h.) € le. (1.5.8) and

(1.5.12) yield that the matrix of second derivatives of the corres-
conding critical solution at the point n is positive definite. [

The next result follows immediately from the Theorems 1.5.%1, 1.5.3:

Corollarv 1.5.4. The complement of Oi in CE(&U) x ¢®(0) is nowhere

— I 0 0 a .
Thecrex 1.3.5. Let (¢_.9.) € O+. Then the functicnal

(1.5.13.) <Jao) x @) 2 (o,.9) + (b .50 € R

. . . : 0 0 . ; s .
is Frechet-differentiable at {o_r5,) and its first variation in the
direction (v4sb.) is given by the formula:

(1.5.14. 8062,60 o ty_hy = wien N E(E,y" e,y )do
3U

+ [ Gle,yh (ndy).
u

Here (£} = Ec(Qg.gg). G is Green's function of the Dirichlet problem

with zero boundary condition for the Poisson equation in U, and the
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functions E and v are defined by Elx,y') = ng4 %ﬁ—-c(x,y‘) and (1.4.1),
]

recpectively.

Proof. First, one has to show that the function
0
{1.5.15.) s » x:(¢2+swu,9w+sh¢)

is differentiable at s = 0, Yiy_,h_) € CO(QU) x c®(@).

Since O: is open in CO(BU) x ¢®(0), one has the following formula:

(1.5.16.) A% (e0vsy ,qesh ) = A" (E(s))

¢2+s¢m,gg+sh°
where A% is defined by (1.3.3) and £(s) is well defined by

{g(s)} = Ec(¢2+sw°,gg+shm) for isl suificiently small.

Besides, one has for E{s) the following equaticns:

v At (E{s)) = O.

X 60vsu, qutsh,

Since, as a consequence of (1.5.8)),

A
v S(g(0)) 2y 1d, vy >0,

-]

1

A (E(0)) = v(E(O)) D

DZ
X

R

+
0 0
Pt Tem

the implicit function theorem yields: the function s + £(s) € U is
differentiable for ‘s| sufficiently small. As a censequence of (1.5.16),
the regularity of the function A+(x), x € U and the diffe;entiabilicy
cf E(s), one gets the conclusion that the function (1.5.15) is dif-
ferentiable at s = 0,
A straigntforward computa:iéh using the relation;:

+ 0 0

MORN A (30.9)
v (£(0)) =0, Vv (5(01) =0,

@ X o
then yields the formula (1.5.14). (O

Theorem 1.5.6. Let U ]R2 be a bounded, simply connected dorain and
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(0]
let ¢_ € C+(BU) -

= 0, If the coefficients akj(x) of the differen-
tial operator A x,;%) are real analytic in U , then the critical set
o

E {¢,+O) consists only of a finite number of points.

ZEEEESE_i;E;Z; If U c:R2 is a bounded domain (not necessarily simply
connected) and if the coefficients of the differential operator A, are
real analytic, then Ec(qm,o) is the collection of finitely many isolated

points and a finite number of closed analytic curves.
1

The proof of the Theorems 1.5.6, 1.5.7 stated above is similar to the proof

of Thecrem 5 and Corollary 2 in [91.

: . . 2
It should@ be mentioned that even if U 4is the unit disk in R~ , there
0] .
exist functions ¢ € C+(BU) . such that the set EC(¢N.O) contains more
than one point. Moreover, in this case the set Eo(um) is not necessarily

connected (see [9]).

. . A
1.6. The asymptotic behaviour of the solution to CXG) when A - +

. . : A P
In this section, an asymptotic formula for the soclution u_of 0{m is
indicated and an error estimate in the maximum norm is stated. One uses
super~- and subsoluticns of special type and the maximum principle for

establishing this result (see [ 9], Theorem 7 for the case A= -0,

First, consider the case

(1.6.1) f <0<t .

For simplicity, it will be assumed from now on, that
o 2

(1.6.2) 0w € C, n ¢ (3u)

For x € U in a sufficiently small neighbourhcod of 3U , let x' € 3V
and p be defined by

fx-x'! = dist(x,3U) = min |x~-y'] = p .
y'€3u

Using the coordinates x',p , one can rewrite the operator AO as follows:

2
- ) 3
A (x"-) = -a(x',p)—5+B
L ax ap2
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Here a(x',p) is a smooth positive function ang.the differential

operator B has orders 2 and 1 in 33_-; ang % , respectively. Using

the notation

a(x') = a(x',0) = ) am.(X')Nk(x')N.(x')
1<K, jsn J

and the normalized distance p1 ’

0, = (Xfm' (2a(x'>)'1)1/2p ,

ocne has:

Theorem 1.6.1. Under the assumptions (1.6.l)..[(1.6.2), the function

2
(1.6.3) W) = ((%(x-))” -pi)i ,
where. s _ = max(s,0) , is an asymptotic solution,of Oii such that
' [ A all -1/2
(1.6.9 ium—we°| o — < CA .
c (v)

where the constant C does not depend on A . Moreover, for the free

boundary aEO(ui) holds:
-1\1/2 -1
(1.6.5) 3E,)) < {x € ui l(zgn(x')a(xg)(Xfm) ) 2ol < ep }

where- the constant C; does not depend on A

Assuming again (1.6.2), we consider now the case;, O =f < f_ .

If g (x) 20 Wwx¢€ U , then the function {(1.6.3) is still an asymptotic
solution of 0{,: when A + @ . Using super- and subsolutions, one shows

that (1.6.4), (1.6.5) are vualid in this case, as well.

If g {x) <0 Wwx €& U, 9, € C“('ﬁ) , then it wil(l turn out that for A + o ,
the solution u)‘ converges on any U1 cc U to the solution z(x) of

the linear boundary value problem

. s
Aw(x,-a-;)z(x) = g, {x) o X€ U

noz(x')so, x x'€ Ju .




A
In a neighbourhood of @dU the solution u,, has again a boundary layer

behaviour as A + @

[

et B(x') ro%(x') , x' € 30 , and define E£(x') to be the positive

2
solution of the quadratic equation B(x')E(x') + ()\fm/Za(x'9 Ex")" = ¢ _(x") .
Let UE = {x € Uq! p < E(X')f and denote by w_(x) , x € U\UE , the solu-

tion of the following boundary value problem:

3\ A
Am(x,g>ww(x) = go(x) , x € U\Ug

w:(x') =0, x' € SUE\BU

(1.6.6)

A
On the set UE , we define w_, as follows:

wi(o,x') =B;\(x')<€(x‘) -O)+ (Afw/.?a(x'))<€(x') —0)2 ,

0 < p < I(x")

where E)‘ (x') denotes the restriction of the normal derivative to aug / 3u

of the sdlution of (1.6.6).

A . X
The function w, defined above, is a formal asymptotic solution of 0(09

when A + « :

o\ A -~ A A
;m<x,£—/\um + {?\ +0(» )\))fo(ww) +gm(x))(o(wm) =g {x) , x €U

) )3
0 < g (x) SAE_, x € int Eo(wm)

ﬂow:(x') = x+o” Y, x' € 3U

Note that the boundary condition is satisfied asymptotically because

-1/2
Ex) = o~
the Schauder estimate implies that ([ -BA] = 0()\_1/2) when X =+ o |

c® v
Using a maximum principle aggument, one finds that w_ is an asymptotic

when A * = holds uniformly w.r.t. x' € 3U and because

solution of 0(3; when A =+ ®

Note that in the case f__ =0 < f_ , independently on the sign of g(x) ,

u  converges to the solution u of the following problem ofm :

] .
Am(x,a—x')u = gm(x)(l —xo(u)) ;r %€V

0 S g (x), x € 1nt(Eo(u))
u(x) 0, x €U
ﬂou(x') =0, x € U
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In general, 01” is, of course, a free boundary problem.

It can be reformulated as a minimization problem as follows:

min f(iza {X)Ju u —gm(x)u(x)>dx
\2“ KJ X, X
o u j "k
uEHl(U)

u<o

Firally, consider the case wa < 0= fw .
A

For A 2 max(f_l (x)) the function u_ does not depend upon X and

R{SIOAN

coincides with the solution u of the following problem of :

aulx) = gw(x)<1 -xo(u)) ., xE€U

GeplX) SO, x € int(Eo(u))
ulx) 2 0, x €U
Toux') =9, (x") x'€ 3u .

The eguivalent formulation as a minimization problem reads as follows:

min ( Za (x)u u —gw(x)u(x))dx
u€H u) u *x j
7ou=¢w

u=0

Remark 1.6.2. One can consider a problem with more general non-linearity:

-Au:-+kq‘(ux)x+(u:) =0, xXx€U
(1.6.7) N ’
To u (x') = ¢(x'), x' €U
where ¢(x') > 0, Vvx' € 3U, A >> ¢ and q'(s) is monotonically increasing on
the interval [0,¢ J with ¢ = max ${x').
x'edul
Then the corresponding asymptotic solution w (x',0) is defxned by the formula:’
$i{x') Vv
1.6.8 A
( ) w{( ' 7===,£q(s) P
ox'ep)

where g(s) is the primitive of q'(s) normalxzed by the condition q(0) = O.

Moreover for the free boundary az (u ) of uA, solution to (1.6.7), holds:
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d(x*) ds -1
(1.6.9) 3B (u) c(xeu | lof oy~ el sy

where ¢ 2 0 is some constant.
In case of a general second order elliptic operator the distance p
in (1.6.8), (1.6.9) has to be replaced by the normalized distance oy

defined here above.
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o . Non-statjonary problem

2.1. General nroperties of the operators considered

Denote

(2.1.1) B(g) = Loy XH (U) XK (r) , oc<r<e,

3/2,3/4

where H r(I‘T) is the Sobolev space of all functions ¢ (x',t) such that
a .
Dx,Dt ;€ Lz(TT) Via| €£s , m<r for s20, r 20 integer; if s

and r are not necessarily integer, then HS r(I'T) is defined in a stan-
’

dard way by using the partition of unity and the Fourier transform. Denote

by 012 the operator associated with the initial-boundary value problem

(0.6):
A
(2.1.2) OLE:H2'1(QT) ~B(Q) , O0<T<w

Theorem 2.1.1. For any given € > O , the mapping (2.1.2) is a Lipschitz-~

continuous homeomorphism.

2,1

Theorem 2.1.2. If (g,y,q) € ey x 2@ xc* 1) and the compatibility

condition (0.7) is satisfied, then for Va € [0,1) uniformly with respect

to € € (O,SO] holds:

Jecoitmieg

Theorem 2.1.3. If (g.¥,¢) € cC@ xc2 (@ xc>' () and (0.7) is satistied,

then the reduced problem 6%1 has a well-defined (distributional) solution
A a; -
e I25 v o, .

A 1,05 (1+x) /2
Moreover, the set {ue}0<sSso c

A
of 0(2 , has for VT < ® as its only condensatioh point the solution u
of DLA when € + O, so that

[ 2

(U =-u
1

A
(QT) , where ue is the solution

(2.1.3) lim
€40

=0 VI<w™, va € [0,1) .

1,0 (1+)/2 =

c Q)

The proof of the Theorems 2.1.1, 2.1.2 and 2.1.3 will be given in a coming

authors’ publication.
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2.2. Convergence ags t + @

For simplicity, we assume that
(2.2.1) Mx,t 2 £ A (x 2 e(x',t) = ¢ (x") glx,t) = g_(x) .
’ ’ZJX w\ 'Z’X ’ ) ’ ’ oo

Let u > 0 be the least eigenvalue of A in U with Dirichlet boundary

condition on 30U .

A
of the problems&(E

; 2
and 01\ , respectively, are asymptotically stable in L (U) as t + o ,

Theorem 2.2.1. The stationary solutions Ue o ¢ Un

and , moreover, the following estimates hold:

[ e, = < My - Ve2o0, Ve>o

| e g, 2 £,®) 2
(2.2.2) L (u) L7(u)

A A -ut A
{u (*,t) -um] 2 < e [w -uw] 2 vt 20 .
L (v L (U)
. . A A A . . .
Proof. The difference wE = uE-—ue w 18 the scolution of the following
’

problem:

o A
ow

€ {3\ -1
EERESETAS **(f e v

A -1 A
) - us,w)) =0, (x,t) €90

2 A -
we(x.o) =Y (x) -uc,m(x) , x €U

ﬂowz(X',t) =0, (x',t) €T

Multiplying the differential equation with wé , integrating by parts and

using the fact that f is monotonically increasing, one gets the following

inequality:
1 af A ]z )
(2.2.3) S oW _(*,t) +(aw ,w) <0, Vt2o0
2 dt| € . LZ(U) e’ g
Now the inequality
2 Q
(2.2.4) A w,w) 2 ulwl®, Vw € H, (U)
L7 (U)

and Gronwall's Lemma yield the first of the inequalities (2.2.2). The
second inequality in (2.2.2) follows rrom the first one and from (2.1.3).




Theorem 2.2.2. The following estimates hold under the assumption (2.2.1):
~1
(2.2.5) W o) <eMay+rre N -g vt,e >0 .
€t J 2 w© o] 2
L (U) L ()
A A A 1/2 ~ut -1 1/2
(2.2.6) (A (u_ - You_ - ) <e [A U+Af(e "Y) -g ] .
=Te e e 6®/2y ® =% )
. [w-uz w]léZ vt,e > 0
ALY
A A A .
Proof. Denote vC = (ue)t , So that ve is the solution of the follo~-

wing problen:

A
ov
e VA -1 . =1 X A _
Ty +2 (X,ax)Vé +€‘ Af (e ue)vE =0, (x,t) €9
(2 A = - Af e €U
.2.7) E(x ,0) =g _=-2aY- e Y, x
-’ vk(x',t) = 0, (x,t) €T
(O
Since £f'(s) 2 O , one gets, using (2.2.7):
1 al a 2 A A
(2.2.8) 5 v (',t)} + (A v ) S0 Vt20 .
2 dt| ¢ Lz(m wVe Ve
Further, (2.2.4) and Gronwall's lemma yield (2.2.5). Using (2.2.3), (2.2.4)
ard (2.2.5), one obtains:
1 A,1/2
(Amwz,wz 22 {(uz)t(’,t)]léz [wC] é
(U) L (u) L (u)
-ut 1 1/2 A 1/2
< {Awwst)\f(e lb)-gm} 2 [w-ue'm 5 .
L™ (u) L (U)
2.3. Convercence for € v O .
For simplicity, it is assumed that
(2.3.1) gEoO,¢y20,¢ 20.
proposition 2.3.1. Under the assumptions (0.7), (2.3.1), the following

estimates hold:

(2.3.2)

ul(x t)-ul(x t)”
L ([o T), H {u))

{u (x,t) -u {x. t)“
p? ([o,=1, L, ()
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where the constant C depends only upon X , meas U, f , the ellipticity
constant of A and upon the first eigenvalue of (-4) in U with Diri-

chlet boundary conditions on 3U .

A
Proof. The difference Ve T u.-u is a solution of the following problem.
A
-~
oA A f (T A)_
(vc)t-A Ve +7\\f<e/-fo(u )j =0, (x,t) €Q

L-Q'B 3) (’ v‘é(x’o) =0, x €U
lr Akt o) = ' :
E ﬂove(x ,t) =0, xX€3Uu, t €.R+
o

A
Multiplying the differential equation with Ve and integrating by parts,

one cbtains

A
] u
%Z—t{"bz +I-Ja 0,0 <"2’k“’2’-d"” { f<_€—c)v2dx )
T LT(U) k3jU ’ 4

EO(uA)UE_(u )
u)‘
A el A
= A f}\ (fo(u ) -f(—e—))vedx
E+(u )

As a consequence of the assumption (2.3.1) and of Proposition 2.4.1 below,

E_(ux) =g and vz 2 0 . Thus,

A
u
l1\:>\(’,'I‘) 2 +YJ|V v)‘lzdxdtS)\If -f°—€ Adxdt
2e LZ(U) X € L € €
o QT
where Y > O 1is the ellipticity constant of A .
Thus, ux
.30 S?, end? s g oS ax
L7 (v) L (U) E+(u )

where y > 0 si the ellipticity constant and # > 0 is the least eigenvalue of
-4 with homogeneous Dirichltt boundary condition on 3au.
The integral in the right hand side of the last inequality can be estimated

as follows:

A
u
A
Y | (f‘;_f(—%)vE dxsc / ex(uz—ux)dx <
2.3.59 Y A U etu, .
Ue
< cef dx < C € meas U.
U £+u€

Using (2.3.4), (2.3.5) and Gronwall's lemma, one gets the second of the
inequalities (2,3.3).

Integrating (2.3.4) over [0,T] one gets the first of the inequalities (2.3.2).
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Similarly to section 1.2, an improved estimate for the rate of convergence
A . .
of ue to u.A can be obtained under the same assumptions upon the free
. A . ,
boundary of the solution u . However, the construction of asymptotic
solutions in this case is somewhat more tedious than for the stationary

problem,

2.4. Nonrezative solutions

A

A
Proovosition 2.4.1. 1If g20, Y20, ¢ 20, then ug 20, u 20.

. A
Proof. Assume that the set E_(ui) is nonempty. For Vix,t) € E_(ua) ’

one has:
A A PN 9
= - >
(uc)t~fA ug gi{x,t) - Af(e us) 20 .
A A . N
Moreover, ue(x,t) =0 for Vi(x,t) € SE_(uE) . The maximum principle
yields ui >0 in E (uz) . Thus one obtains a contradiction. The nonnega-

tivity of ﬁ“ is proved similarly.

A
Let VE be the solution of the following linear problem:

v
€ IV A A, Ao
3T +A<x.t,§§)vs +Ef (O)vs =g, (x,t) €Q
(2.4.1) vZ(x.O) = ¥(x) , * €0
T V)(x' ) = ¢(x',t) (X,£) €T .
0 E ’ ’ ’ ’

Propogition 2.4.2. Assume f(s) to be concave and the data to be non~

negative. Then ui(x,t) >4 vz(x,t)V(x,t) € 6 , where vé is the solution
of (2.4.1).

Proof. The difference wi = ué -vk is a solutjon of the following problem:

€

py A -1 2 -1 X A :
(wc)t+ Awe +l(f(€ ue)-f<€ (us-ws))) = he(x.t) R (x,t) €0

wztx,o) =0, : . x€U
ﬂowé(x‘,t) =0, (x,t) €T,

where the function
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h_ = -f(e:'1 A

-1_, A
e VE) +e f (O)Ve

is nonnecative since f is concave. The maximum principle yields:

A -

w_ 20 i
cOan.

o]
e A A, . . .
Prorositicn 2.4.3. If ug 2 0, then u. is a monotonically increasing
functicn of ¢ > 0 .
y 2 A
Precof, Let we = 3 - Then v is the solution of the problem
~ ,,wk s
. [}
£ A -1 1A A 2, =1 XA A
[ = , e
It +ch+e: Af' (e ue)we € Af'(e ue)uC v (x,t) Q.
¢ wi‘(x,o)=0, x €U
5
.’wl(x‘ t) =0, (x,t) €T
- oe
A
As a cornseguence of the maximum principle, one finds we (x,t) 20,
Vix, t) 65 , since f'(s) 20, uﬁ >20.
o
2.5. Special solutions of Cauchv's problem for the reduced operator
In this section, we assume that
3
A(X,t,s—;) = -A
U=mR"
£,(s) = sgns , Vs € rn{o} , £, 0) =0
n
gilx,t) = 0 Vix,t) ER XR_ .
We indicate the following two types of special nonnegative solutions of
Cauchy's problem for the reduced operator.
(i) Travelling waves' solutions:
- 2 =2 -2
(2.5.1) u)‘(x,t;w.i) = Aw 1(x cE-wt) - AE] “w [1 - exp(—leI (x+§ -wt)’)}

where £ €R", w € R\{0} ana s, = max (s,0).




(ii) similarity solutions:

These are solutions of the form
A -1
(2.5.2) u (x,t) = tv (,'xlt /2) ,
where VvV (s) , g € :R+ s are nonnegative solutions of the following ordinary
differential equation

(2.5.3) -v'(s) —(%+2;—1>v' (s) + v(s) +>\x+(v(s)) =0, s >0,

so that v(s) 2 0 1is given by the formula

s 2
(2.5.4) v (s) = (s2+2n)[c1 IEI'"(52+2n)'2e'E /4d€ +c2]-x
i

If n=1, one finds the solution of the Cauchy problem
A L2

«——83“ R +2 W =0, x€R, t>O0
t 2 +
{2.5.5) 2 9x 2

u (x,0) =%,

which has the form (2.5.2), whare

J 2 $ .2 -2 2, .-
(2.5.6) v(s) = 1(5 +2){a+b [(E°+2) “exp(-E°/4)aZ | - MH(s ~a) .
L o
In this case, the free boundary is a parabola x = av't . One gets a system
of threeequations for the parameters a,b,a , which after elimination of
a2 and b leads to the following functional equation for the free boundary

parameter Q :

w

(2.5.7) @+ 27 w20 expe?/a)f (€2 4 2) 2exp(-E2/araE = A7) .
[+ 3

For VA > 0 the equation (2.5.7) has a well-defined solution a € R .
2

For A = 2, one gets the stationary solution u(x,t) = x, .

2.6. Short time asymptotics

Consider the Cauchy problem:

A A A
ut-uxx+kx+(u)=0, xe R, t>0

(2.6.1) .
u (x,0) = ¢(x)
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where Y(x) = 0 for x < 0, ¥(x) = YXE*O(Xi) for x, * 0 and . Yix) < sz
Vx ¢ IR+ with some constant C > 0O,

A . . . :
Denote by w (x,t) the corresponding similarity solution:

wt-wix+xx+(wk) =0, x¢ R, t >0
(2.6.2)

A 2

w o (x,0) = vx_ .

A p
W (x,t) being defined by the formula wA(x't) = tv)‘ (%) with v (s) given
by (2.5.6), (2.5.7).

Then the following estimate holds:

A Py
(2.6.3) sup 5 Ju” (x,0)-w" (x,t) ] < C o8 V6 >0,
(x,t)eQa T !

where Qs = {(x,£) | 0=t x TGZ, |x| £ aé} and the constant C, p does

not depend of §.

One proves (2.6.3) using the method introduced in [21].

2.7. Asvmptotics for A »> =

In order to avoid unnecessary technical complications we consider here
the case of one speciad variable x € U = (-1,1) and of special (constant) LS’S(\QGL

o . . A
initial and boundary conditions. Namely, consider the problem as:

oA )y
ut—uxx+Ax+(u ) =0, (x,t) € U * R,
(2.7.1) u)‘(x,O) =1, X €U
A
ﬂou (x',t) =1, (x',t) € 3V x n{*

Let v(x,t) be the solution of the problem:

v(:-vxx =1, (x,t) € U x IR+
(2.7.2)

v(x,0) = 0, Xx €U

ﬂov(x',t) = 0, (x',t) € aU x IR+,

and let t_(A) be defined by the relation:

(2.7.3) v(O,tc(A)) = )\_1.

The_n“fo; t ,E,l.:,o,'t_c“_)_),,ho_ldsz
uA(x.t) = 1-Av(x,t)

Denote

(2.7.4) Y = y(A) = A(l-v(o.tc(x))

-7




and let w:(x,t) be the similarity solution of the Cauchy problem:

A\ X A
(wy)t_ (wy)xx + Ax*(wy) =0, (x,t) ¢ IRx IR+
(2.7.5)
wx(x,O) = yxz
Y

Theorem 2.7.1. For any constants T > 0, a > 0, there exists a constant

C = C(T,a) such that for the solution ux(x,t) the following inequality

holds:
X -1
(2.7.6) sup _1[uA(x,t)—w (x,t—tC(A))l g c(T,a)r ,
ost-t_(X)<TA Y
lx[saA’B )
A . Q Q +0(A )
where tc(A), Y, wy(x,t) are defined by (2.7.2)-(2.7.5).
. . -1 Xﬂf b
Remark 2.7.2. One finds easily that tC(A) = A* ¢ . Furthermore, for -

0 <t < tc(k) the following asyrptotic formula holds:

(2.7.7) uA(x,t) = (1-it) + O(A—l) for A » =

while for YAt >> 1 one has:

A
(2.7.8) ux(x,t) ~ um(x), A > o,
where

—~T
wloo = o2y (xj-1e/ah 2

is the solution of the corresponding stationary problem.

.
For tC(A) < t < ¢cX ° one has:
A .
(2.7.9)  u'ix,t) ~ vde-t (), /T dist(x,00)), Ao,

where v(7,4) is the solution of the problem:

vT-vc;+x+(v) = O,_ (g,1) € IR+x 1R+
(2.7.10){ v(z,0) = 1, g ¢ R
v(0,1) = 1, T elm+

Introducing w = v, one can reformulate (2.7.10) as the following slightly

modified Stefan problem:

-48-
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wt-wLC=0' 0 < g <s(1), T¢ ]R+
w(0,1) = 0, T <R,
w{z,0) = -1, [ IR+

(2.7.11 .
wis{1),1) = 0, WX(S(T),I)+S(T) =0, T¢ R

s(®) = V2

+

the curve [ = s(1) being the free boundary for the solution w(Z,T) of
(2.7.11).

One has also:

2
(2.7.12)  lim v(Z,1) = (1-¢/VD) .

T+
The proof of Theorem 2.7.1. and the claims stated in Remark 2.7.2,

as well as the corresponding generalizations, will be presented elsewhere.
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