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SUMMARY

Some classes of Non-;ifiear Second Order Elliptic and Parabolic

Partial Differential Operators affected by the presence of a

small parameter c are inveqtigated.

The reduced problem (E = 0) is characterized by the

appearence of a free boundary of the solutions.

The Existence, Uniqueness and regularity results are establised

for both perturbed and reduced problems. Sharp two-sided estimates

for the difference of the solutions of the perturbed and reduced

problems are proved and some constructive procedures are found out

for localizing and computing the free boundary of the reduced

problem. The Kinetic Theory of membranes with enzymotic activity

is one of the possible fields of applications of the results

established, the small parameter being the so-called Michaelis'

coefficient. . - ,. . - .
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L.S. Frank & W.D. Wendt

Elliptic and Parabolic Singular Perturbations in the Kinetic Theory of Enzymes

Introduction

In the Kinetic theory of membranes with enzymotic activity, a second order

semilinear parabolic operator appears to be a suitable mathematical model for

describing the dynamical process for the corresponding concentrations. The

nonlinearity of this operator is affected by the presence of two positive

parameters: E , the so-called Michaelis' constant, and A , the latter being

connected with the ratio of initial concentrations of the enzyme and the

substratum. For several realistic membranes, £ is small compared to X

and the data of the problem ([12]).

For each E > 0 fixed, the mathematical model above fits the classical

framework of Fr~chet differentiable nonlinear operators. One can view this

model as a family of perturbations (regular or singular, according to the

magnitude of X ) of some reduced parabolic operator with a piecewise constant

discontinuous nonlinearity. The same is also true for the corresponding elliptic

stationary problem.

Further, for the stationary problem, there exists a critical value X ofc
the second parameter A , such that for X < X the original problem is ac

regular perturbation of the "reduced" one, whereas for X > X , it becomesc'

a singular perturbation and is characterized by the presence of boundary layers

located in a neighbourhood of the free boundary of the solution to the "reduced"

problem. The set E of zeroes of the corresponding critical solution u C
C

plays an important role in the investigation of the reduced problem.

One of the central results presented here is the sharp error estimate in the

H -norm for the difference of the solutions to the perturbed and reduced

problems. Further, A is investigated as a functional of the data of thec

reduced problem.

Now the contents of the paper will be briefly sketched.

Part I deals with the stationary problem. Section 1.1 contains existence,

uniqueness and regularity results as well as continuity results for the

operators considered. In section 1.2, asymptotic solutions (for C + 0 ) of

the perturbed stationary problem are constructed under some regularity

-1-



assumptions on the free boundary and the sharp H -estimate for the difference

wE between the solutions of the reduced and the perturbed problems is

established. Namely, the following two-sided estimate holds with some constant C

-3/4 3/4
C r < I' I :5 C E . The special case of a piecewise linear nonlinearity

plays an important role and allows a considerable simplification in the

construction of asymptotic solutions in the general case, as well. A one-sided

estinate of the form 11wc I < C C2 , whose proof was merely based on the

monotonicity of the nonlinearity and did not require regularity assurptions on

the free boundary, had previously been given in [21, (see also [I().

In section 1.3, properties of the critical value A are stated and anC

improved convergence result of the form 11we 11H1 < CECA - A)-1 is established

when A < X . Sections 1.4 and 1.5 contain investigation of X as aC C

functional of the data.

Estimates of A from above and from below are indicated and the formula
c

for the Frbchet derivative of Ac stated in [6,8] is proved. In section 1.6, the

asymptotic behaviour for A - - of the solution of the reduced problem and of

the corresponding free boundary are investigated.

In Part II, the nonstationary problem is considered.

Section 2.1 contains existence, uniqueness and regularity results. In section 2.2

it is shown that the solution of the stationary problem is asymptotically stable

in H uniformly with respect to £ . In section 2.3, an estimate for the

difference of the solutions to the nonstationary perturbed and reduced problems

is proved. Sections 2.4 and 2.5 deal with nonnegative solutions and special

solutions of the Cauchy problem for the reduced equation.

Several results in this paper have been announced in [6-8 ].

The list of references contains essentially papers which are (to the best of

the authors' knowledge) tightly connected with the topics presented here. we

refer to [15, 14,4] , [3] , [5, 11] , [I , 13, 101 and [16, 18-20] for more

information concerning variational inequalities, maximal monotone operators,

variational calculus and bonvex analysis, free boundary problems and singular

perturbation theory.
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0. Notation. Statement of the problem

Let U c IRn  be a bounded domain with Ca-boundary 3U and let ]R= (0, - )

Denote,

(0.1) Q = UXPR+ I QT = UX (0,T) r I = UxIR+ , PT = 'Ux[O,T)

Let the function f E C°0R,IR) be piecewise continuously differentiable:

f E CI([sksk+1]) Vk E [0,...,r-l} , where - s = S <s1 < <Sr =

It is also assumed that

f(O) =0 s1

(0.2) 0<if(S) L(1+s 2 -1
O < f's) -<L(I +Vs E PR-,s I ..... 1 Sr1,

where L > 0 is constant.

As a consequence of (0.2), f(s) is monotonically increasing on R and,

moreover, there exist the limits

lim f(s) = f ,MF -< f, < f0 < 4
s-Otm

H(s) being Heaviside's function, we associate with f(s) the following

function

(0.3) f 0(s) = f +H(s) +f_ H(-s) , Vs EIR-{O , f 0 (O = 0.

We also denote by F(s) and F (s) the primitive functions of f(s) and

f (s) normalized by the condition: F(O) =O , F (0) 0 . Let
(0 0
a (x, t) be uniformly with respect to (x,t) EQ positive definite,
kj /l_<k,jn 00

and let ak (x,t) E C (Q) It is assumed that the family

(0.4) t - A(x,t,a-), ak EC

stabilizes, as t - 4 , to the operator:

T h e( X , o w i n t a bIaa ab s a(0.5) --a (x) - a E C (U)
Bx 15~<Ma kj a Xk kj

The following initial-boundary value prbe fXis considered:

-3-



a u

C +=(X g (x,t) , (x, t) E Q

(0.6) u C(x,o)= 4x) , x C U

|
71O x (X', t) W (x, t) *e (,t) E r

where XC, are positive parameters, 7 0  is the restriction operator to r

the data is supposed to have the following regularity:

g E.C°(Q) , E E C2 (U) C C C2' (M)

to satisfy the compatibility condition:

(0.7) Tr 0(X') = 4(x',0) , Vx' E 3U

and to stabilize to

g, E C°(U) , E C c 2 (U),

as t-0 + .

0-
Here, as usual, C (Q) is the space of all continuous in Q real-valued

functions, C2 (U) is the space of all twice continuously differentiable
-2,1real-valued functions in U and C2 ' (r) is the space of all continuous

real-valued functions on r such that their first derivatives with respect

to (x',t) E r and the second derivatives with respect to x' E U are

continuous functions. The parameter c is assumed to be small compared to

X : O<C<<

Along with the problem Oi ' we also consider the corresponding stationary
problem 0i, C

Ajx,4 I X I+Af(C) = g.(x) , xE U
(0.8) ItoU, Wx) =¢(x' )e E aU

Examole 0.1. With A = -A , f(s) = s(O + Is)- 1 , the problem (0.6) appears

in the kinetic theory of membranes with enzymotic activity Q[12]).

In this case f (s) - sgn s Vs EIR -[O) . Since in applications one is

essentially interested in non-negative solutions (u x is interpreted as the
C
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dynamical concentration of enzyme in this case), one can also define f(s)
s)-1=.

to be f(s) = s+(1 +s) with s = max(s,O) . Then one has f (s) = H(s)

Examole 0.2. Let l,a+,a- E P+ be fixed and let f denote the piece-

wise linear function

fl(s) = H(s) minlis,a+} +H(-s) maxils,-a I

An asymptotic (for C 4 0) solution of OA with f = f is constructed

in section 1.2 below and used in order to investigate the asymptotic beha-
A

viour (for e +0) of the solution o. 1C A with general f

For a given function u E C (Q) (cr u E C (U) ), denote by E (u) , E (u)

the sets where u > 0 , u = 0 , u < 0 , respectively, whereas X+(u) X (u)

X_(u) stand for the characteristic functions of these sets.

We associate with Ot the following "reduced" problem O

r (% A~~t[ +A (u~) (x,t) EQ

f_ g(X,t) _f +O, (x,t) E int E0 (u

t9 u (x, o ) = (x) , x Eu

Ou (X',t) = ¢(X',t) , (x',t) E r

The solution u of (0.9) is supposed to be continuous in Q , the differen-

tial equation and the condition If_. 5 g(x,t) _< If in (0.9) are interpre-

ted in the sense of Schwartz's distributions.

The corresponding stationary "reduced" problemOI is stated as follows:

A ux + gmx[1 - X(u xE U

(0.10) Af°. < g (x) < 1f , x E int E o(U )

ToU CX') = (x') , ' E aU

0 0-
where again u., C (U) , the differential equation and the condition

Af_ < g (x) : Xf. in (0.10) are interpreted in the distributional sense.

The reduced problems (0.9),(0.10) can be reformulated in terms of maximal

monotone operators (see [3]).
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I. Stationary nroblem

1. General prooerties of the operators considered

Bot-h O' A and o can be equivalently reformulated as variational minimi-

zation problems (see, for instance, [5]), where the corresponding functionals

D (u =x ao -u-1- + AEF (U)- g dx
'U k j~n kj]x ]X C

D(u) = -o (x X -g u

U Ik,j<n kj X 0([1 1_uku _1

are lower semi-continuous, coercive and strictly convex on the hyperplane

Here, as usual, HI(U) is the Sobolev space of order 1 and HI (U) is

the s bsnace of those functions in H 1U) , for which traces on DU vanish;

further , is the solution of the following boundary value problem:

0 O  W x) = (x'), 1?EU

Usinc the eauivalent variational reformulation of X ,t and the clas-

sical a priori estimates for linear second order elliptic operators, one

gets the following result:

Theorem 1.I.1. There exist well-defined solutions

u c EC 1 'a(u) I u XEC ' (U) Va E [0,1)C'MC

of the problems OC and QLC , respectively.

We use the same notationjt for the operator

CkX : H2(U ) -' L2(U ) X H3/2(U )
F, 2 2 3/2(u

associated with the boundary value problem (0.8), where, as usual, H (U)S
and S (U) stand for the Sobolev spaces (of orders s and r , respectively)

r



of functions in U and on U . We are going to state several results

concerning the continuity properties of the nonlinear operator Of X and

its inverse.

pronosition 1.2.2. For any given c > 0 , the mapping (1.1.2) is a Lip-

schitz-continuous hnneoamorphism.

Prooosition 1.1.3. For any given E1 E H1 /2 (;U) , the operator

A :H-(U) II

is Lipschitz-continuous uniformly with respect to C

Proosition 1.1.4. With u the solution ofO , , the mapping

R-+ H I (U )

is Lipschitz-continuous uniformly with respect to C E (0,C 0 thus also

for C = 0 .

The proofs of Propositions 1.1.2 - 1.1.4 essentially use the fact

that f(s) is monotonically increasing.

Prooosition 1.1.5. For any given g E H (U) , the operator

H (lu(3 0uA E Hl (U)
(1.13) H/2(U '0 I £,

1
is H6lder-continuous with exponent a = -1 uniformly with respect to c

2
Moreover, the following a priori estimate holds:

:5 -.1.1/2 ) + 1

<_ 1  2 tL 2 1- 211 Hc 1 (U))

where €. , J = 1,2 , is the solution of the linear problemJ

and the constant C does not depend on*j and C

I7



Proof. Let u j ( g) and denote v. = u. , where 0. is) L, J J J J

defined by (1.1.5). Then v = vI v2  is the solution of the problem:

f.1.6) )C2 2)1

io v(x') = 0 x E DU

2
The inner product in L (U) after the integration by part yields:

f7 a0 x)v v dx += f(v1+P0 4 )(D 4 )d
j k)

The monotonicity of f(s) leads to the inequality:

ra .a (x)v v dx 5 f [f ()-f 2](,i -2)dx <U --  j  , k U

< 2A maxf f 'if }(meas U) /2 -2I
- L2 (U)

As a consequence of (1.1.7), one gets the estimate:

,20) 2),p-  ma f. if l (meas U)1/ 2 1 1 -
2 U 0 0 1 L 2(U)

where Ls the ellipticity constant for A, Hence,

(1.1.8) C )11 1/2(1.1,.8) 11,ii H1 ( 1 1 L2(U)

where C1  depends only on X, J f ' meas U and the constant V in

the Poincare's inequality: l, VVl )  V ( Uv" 2 Vv E

As a consequence of (1.1.8), one gets (1.1.4) with C = C +1

-B-



1.2. Converaence for c -0

In this section, an estimate for the H -norm of u -uX is given

which is a slight generalization of the result established previously

in [16,2]. Moreover, if the free boundary 3E (u.) is a sufficientlyinw
A A

smooth manifold, it is proved that the H1-norm of utw -u, is of

order O(C 3/ 4) as E 4O . It will be shown in the next section that

there exists a critical value X (c ,g ) of A such that for X <A

the norm of u -u. is of order 0(c) as E 0.

Theorem 1.2.1. Under the regularity assumption

(1.2.1) =E c2(OU) gO ( 0 (U)

the following estimate holds:

Ju ~Ai < CC1 / 2

(1.2.2) l x U 5c1/

where the constant C depends only on A,f,Aw and U

Theorem 1.2.1. is proved by using the monotonicity of f and the factA A
that the functions u X , uA can be characterized as solutions of

corresponding elliptic variational inequalities,

Using a compactness argument and the uniqueness of the solution X

to the reduced problem, one can also prove the following

Proposition 1.2.2. If g, E cO(U) , # E C2 (U) , then one has:

(1.2.3) lira u X -uX = 0 , VO E [0,1)
C1 ' CW 01 C 1 %(U)

Now we are going to establish the main result in this section.

Theorem 1.2.3. Assume that 0,>O on 9U , gco * 0 in U , that the

free boundary aE (U ) is a C -manifold of dimension n-I , and that
the function f satisfies the condition (0.2). Then the following

estimate holds:

(1 2 4 0 . ,,,- Cc- 3/

udm Cm,.m Hl~a Im mmmmm (U)m



where the constant C does not depend £

One constructs asymptotic solutions of the problem-at with a

specially chosen piecewise linear function f = f;l in order to prove

this theorem. More precisely, introducing the fu .tion

(1.2.5) fl(S) = H(s) min flsf '+H(-s) mqx{Is,f_4

where H(s) is Heaviside's function and the par 1eter I >0 will be

chosen later, one applies an appropriate modification of Vishik-Lyuster-

nik's method ([19,20]; see also [16,18]) for con tructing asymptotic

solutions of O , with f(s) = f (s) and for establishing (1.2.4).

For x in a sufficiently small neighbourhoof ofithe free boundary

3EO (u ) , define x' E 3E (u8 ) , p EIR -by the relations:
01 1

lx-x'= mi x-y'I dlst X. E(uX)) = 
--

y'EDE (u) (U
0 0

p >O on E(u)

p O on EO (u "

If x E E +(uX) and lies in the neighbourhood abovep (where the coordi-

nates (x',p) are well defined), then the operatr A. can be rewrit-

ten as follows:

Aj(x,) = - ( +c(x) V,' +B(x,V')

OP

where V' denotes the gradient with respect~tol.,> E DEo(u) and

where B(x,V') is a differential operator of secopd order with suffi-

ciently smooth coefficients. Besides, the functipnp a(x) >0 , b(x)

c(x) are sufficiently smooth, since the manifold .iE (u is supposed

to be sufficiently smooth' Let U {x E'U 'pj~r2C"'} and
1/3 'I

U ,e = Ix E U I ipI >C£ denote the interior a zde the exterior region,

respectively. In UC., an asymptotic solution, .4sought in the form

(1.2.6) vF(x',p) = J£i/2v (xC1/2P),S 2<j:53 J\

where the functions v, j -2,3 , are solutionp _qf the following

boundary value problems on IR with x'E aE o(u )wiplaying the role of

- 10 -



a parameter:

d2a (x',) 2 v ( 1 v0 , 
(1.2.7) v2(x' ,) o(1) 1 2

V3(' 2 Wf (3,~x)-13xf )O 3+(1) , 40

V~~ 3 , f(3!) 63 (x')C +0(1)

with

Y3 (X',)= -(a(x') Ia P(x')f I(v2(xuV) -(b(x') +c(x')V )v 2F.(x W) a ) + (b ) +c W ) ')v2

E.3 (x') -(a(x'ap(%')+1b(0)+c(xP))((a(x))- )

The solution of (1.2.7) is given by{ 1 a(x )/

2 (x',) = Af 2 1 IC+_
+T > V

2a(x') 21 Tf:

and, (d/d;)v2 being a solution of the homogeneous differential equation in

(1.2.18), the boundary value problem for v 3  can be solved using the

variation of constants' method.

Let X E C0 CR) be a function which is identically one on the interval
o

[-1,1] and the support of which is contained in [-2,2] . Let zE  be

defined by

(1.2.9) (x) W x(E1/3P) v(xP) +( 1X(-'p))u.,W

obviously, this function satisfies the boundary condition ITZ 4

on aU .

Lemma 1.2.4. There exist constants C , c°  , such that

for C C 'oco]•

- 11 -



Proof. We shall proceed by splitting the proof in several steps.
(i) For x E U e on has:

u A x) > pp > pC2/3

-I -lA -1/3With a constant p>O . Thus, r z (x) = C(x) pe andfl zC(x )  
- I for C E (O,C0o , E0 sufficiently small. Thus,

C EAf (I I ez a 0 for C E (Oeo] , x E ,e
(ii) It will be shown that

(1 2. 0 '1f (' 2  +' v) (fl ( 2 f (v 2v ) 11 ()'
where v, = vj(x,,C-1/2P) Without restriction of generality, onecan assume that A = f = I . Since fI is piecewise linear, the func-tion on the left hand side of (1.2.10) is zero if the interval

-1v2 +,i3v2) does not contain i-  . Let now

SC f- N(,,p) V 2+ V3 < 1- 1<V21/2 
def

If (xP) E S • then > >(x') = ¢ a(x') and

2 + -L+vE 1 p +2a2(x e 21 3 2a ) c2

Since )v3 ( )j O( 3 ) , , one obtains

P -_ C p 3 < E -. 0O(X ) 2 < 2

with a constant C . Thus, I(P- o(x,)f S CC Since lv2(x 1 C(x,)) Ithe following inequality hold: for x E S C

1(V2+vev) -(fl (V) +/ f!(v2)v)I (v&2 + Vv3) I c 1

The last inequality yields (1.2.10), since the measure of S is
of order 0(C)

(iii) It will be shown that

Ci~~2.11) ~ (A ) V2) + f 1vN)v~vI C, (a

- 12 -



1/3
Consider first the region IDJ <C /

, where x I . One has

B(x,V')z = B(X,)(CV2 +C 3/2 = O(t 2 / 3 )

-1/2
Thus, with = 1 p , one has

Azc + If(v 2 ) + Vf (v2)v3 = r(x,E) +O(C2/3

where

(1.2.12) r(x,E) = -a(x')v 2 C (x' , C) +)f 1 (v2 ) +

+( <-a(x')v3,(x', ) +f' (v2)v3 -Cap(x')v 2C(x',) -

0 (E2/3)

according to the construction of v.
1/3 1/3 3

In the'region E < p I < 2c one obtains

Az E+;d' 1 v 2) + V-'f Cv2 )v 3) r(xc)
1:i 2<2

where r. , O<i52 , are given byI

r°(xC) = r(xC) -a(x')+pap(x))(1 -x+ pa W) 2-X);))

- p p -( 2.' ' vC)

r1x~c) = -2~'C /X(-13 )IC C32v u1

~(b +cV ) C-1/3x.(C1/3 P) (Cv 2 +C 3/2 v3 -u)

r 2(x,E) = -a(x)E-2/3x~ic-1/3 P) (Cv 2 +C 3/2 v3 -U 1)

Using the boundary conditions for v and the asymptotic expansion

u (Cx',p) = <2a(x'))-Afp2 +,fw(3!)- 83 (x')p 3+O(p4) , pO

one checks easily that

sup (ri~xe) < cc213  i-0,1I2 ,
/3<2//33

E <P<2c

-13-



where the constant C does not depend upon 4 . Thus (1.2.11) is

proved.

(iv) Since u (x) > pp for x E E+u) with a constant p >0

one can choose E so small that for Yc E (Gc Vx E U

f(E- 1 (x)) f. and f(v2 (x',1-l/2p)+ l/2v 3(x 1/2p)) ='f for

x EU nu . Thus
Ell C,e

=IAz (x) +Xf I E-z
1  xj C W L 2 (U) i)

= I (x) + +f C 1 z
IL 1\ 3L 2 (U Eli

!1 Z () f + 1/2
<- A z +X f (v 2

) +f v 'L(U )
C (V2 /"E 2 C

+X !Ifv 1/2 2 c02
O' v2) if(v2)e v3 - f1(v2 + 31 (

5/6 2 Ei
Cc

as a consequence of (1.2.10), (1.2.11) and Oven that meas (U .) =
0(1/3

0(1 ) , E40.

Lemma 1.2.4 is proved.

In order to prove Theorem 1.2.3 above, severa; auxiliary results will

be needed.

Lemma 1.2.5. There exists a well defined value of the parameter

1 E (0,-) , such that

(1.2.13) ((1) = )d = 0

Proof. Let v( ) v2 (1 ) Then v () (O - l-v(l/2) . Using

the substitution T = v(ri ) , one gets or

tdn
(1) = (f(l-in) fln dnl

0 v'(v - (n))

The right hand side is a strictly decreasingyfunction of 1 E (O,-)

so that I(1) has at most one zero. For .1 sufficiently large, one

has f(l-In) -fl(n)<Ovn>O , so that I(1<O for 1>>l . Now

"(1) >0 for 1 sufficiently small. In fact. one has:

- 14 -



(1.2.14) f f 1I -f1(n (V (V-(n)))Idn
1

I

with C independent of 1 . Hence,

(f1() = f -fIlI) ' (n) +O(1) when 1+0

O
\

Therefore,

Jr TIM(1) = (f -fI(n) )v' (n) > 0

and Lemma 1.2.5 is proved.

We choose 1 to be the zero of I(1) . Let h(s) = f(s) -f (s)

and for a >0 , define U = 1 U dist(x 1 Ea(U )  > a

Ra = -E ipl >a.

We choose a >0 so small that for 1p] <a , the mapping x (x',p)

is a diffeozorohism.

Lerma :.2.6. There exist constants CC0 >0 , which do not depend

upon c and such that for C E (O,0j holds:

Mi tl h C-Iz(x))I < CcLl L(U )

a

h((, C-1/2 P) 5 c(ii) )h v2y , 2 <)C
I 2 (0 Ra

S(v ,c PN H1/2 : cc 3 / 4

Proof. (i) For x E U anE +(U) , one has: zC (x) = u (x) >_ p> 0

where p does not depend on C,x . The inequality jh(s)j < C(I +is!) -

and \the fact that for x E Ua n Eo(u.) , one has: ze (x) u 0 so that

h(C-Iz (x)) 0 yield the first part of the Lemma.

(ii) since for p E Ma holds v 2 (x',c-/ 2 P) > C-p , where p does

not depend on x',c , the second inequality can be proved similarly

to the first one.

- 15 -
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(iii) Denote t(x',s) = h(v 2 (x',s)). One has

(1.2.15) t C 12) H(1 E<X(a,O))

< , 2) H (Eo xR) + PR' E L 2 (E 0 a

o 2a

Let T(x', ) = ft(x',s)ds . The inequality lt(x',s)j < C(I +s2-1

which holds uniformly with respect to x' E E 0 , and Lemma 1.2.5

yield T(x, ) 1 5 C(l +I ) -  
. Thus, T E L2E X 1) and

(x, /( )i f( ' ,E-1/2p (x',P)dx'dp
= sp t- = su2(fE1/2aDIi. dc d

x', i/1)I H-_ ( EoI) supH (U) 1 () f

1 H(U) ()
sup -1 fe/2< -1/21 T

(PnH I n (U) Px,~xd

:5 C,/2 T X 1 2-)I ,, 1101 ,

:/2 lx -/ 'Il2 sup 1 1( (U) 1:1 2
L (,EoXP) C0EH, (U) H, (U L (U)

:CC3/4

As a consequence of (ii), the second term on the right hand side of

(1.2.15) is of order O(E) and that ends the proof of Lemma 1.2.6.

0

Lemma 1.2.7. i) There exist constants C,EO , such that

(1.2.16) C-11v 2 (E1/2 P) :5 C-1 Iz~( W C v2( 
1/2 pt VP E (O,a)

E E (O,Co ]

(ii) There exists a constant C >O such that

(1.2.17) [h(E IzE W))h(v (C 1/21 2 cc C 3 /4 YE E (0 E

a
1/3

proof. (i) For O<P< / , one has

The ine'quality

v2 (')-1CI1/2v 3 (C-1/2P) I S CP : CCI / 3

- 1 -



113 1/3 113implies that (1.2.16) holds for Op< /  Now let c <p<2

Then

where the function

r I(Zx) =v(- -1/2 )- I -1/3 P)F 1/2 v 3 X (C P)(E:-u W 2(x)P

can be estimated as follows:

with some constant C >0 .

Finally, let 2C / 3 <p<a . Then

- 1 ( ) = -1 A < - p O p )
C z E W u (x) =r- 2a I 2)

v 2 (E-1/2 P ( +0((, 2 (E2 p),))
and (1.2.16) is proved.

(ii) The left hand side of (1.2.17) can be estimated as fcllows:

2 '2 a
-5< sup lh, ((9) 1 2 C-Iz (x) - vI C-120)2d
lp,<'a( E vz' -1

-cJ( sup (1 +®2)1)21 -1z (x) v2 (,,
1 /2p) 2dxSC f su ed +

O pa GE(v 2' C- z )

+C C Iz W() -v 2 (C-I/2p)12dx
-a<p<o'

Using (1.2.16) and the asymptotic behaviour of v2( ) for 4

one obtains:

ICJ ~z W)) (C -h/2p))j 2
c 2 L 2(vNU)a

S c f5 + (C-112 1)4)-2(l .C-Ip3\2d, +C f P-V(-12Pj2

S cc 3/2 VC C (0, o,

- 17-



where C does not depend upon C , and that ends the proof of

Lemma 1.2.7.

Proof of Theorem 1.2.3. Let 1 E (O,) be the zero of the function

I(1) defined by (1.2.13), and let z (x) be given by (1.2.9). One

has:

where, according to Lemma 1.2.4,

(1.2.18).IIrEII L2 (U) Ct 5/  Ve E (0,c O ]

with some constant C >O which does not depend on C

Writing the differential equations for u and for z and taking
A cE

the difference, one gets for uC -z the following differential equation.

A. (u -z +X f cIU (x))-f(x)))

=-r W(x) -f(E-Iz (W))-fl(E-iz(x))

Taking the inner product with u - z in L (U) in the last equation
E C

and using the monotonicity of f , one gets the following estimates:

J(u -z)AW(ux -z )dx - ( 1r ii _(U) +X f -IzE ) -fl (-IzC(x)l

" lu x - zcl 1 'j
C UC HZj1 (U)

The integration by part and Poincare's Lemma yield:

c z HI (U) C HI (U) If( C()- 1 ( ' ) HI (U))
The last inequality is also a consequence of Proposition 1.1.3.

According to (1.2.18), the first term on the right hand side is bounded

by Cc5/6

According to the Lemmas 1.2.6, 1.2.7, the second term can be estimated

as follows:

i
- 18 -



E-i z (x) fHE_ 1 (U ) -z (x)
- C H _ -(U)

< z (x)I v( I 0 ,- H- 1(U)
~ ~ ~ ~ ; Eh-(X) Ii~ +f Jz %x))II i(sa

(x) H}U +kL/Ill: H~ U

aa
C~~~H~ (UaUXN1 a)I

_<C3/4

This ends the proof of Theorem 1.2.2.

Remark 1.2.8. Consider the problem 0(A , in U = (-1,1) c1 with f~f

h~c-z W 2 d 2 W -S.I

definedc in (1.2.5) and A = _(-_)eu

V2 (x F- H_ I2 (UI /

Thi 2 1(, is the solution of the reduced

U.,(x) = A2) C x' + =, ) stesluino h eue

probl.em 0( . Let V, be the solution of (1.2.7) and let

(1.2.19) z (x) =U (x) (I X1 +- V/" Ix

similarly to the proof of Lemma 1.2.4, one checks that

(1.2.20) -z" +Af1(E z c ) _ < Cc
S~ 1 C (U)

where the constant C does not depend on c . Further, , z = .

Partial integration yields:

(12.1)u z :5 C
H 1(U ) <C

where the constant C does not depend on c

Since fl(+O) O , the function v2 ( ) and its derivative decrease

exponentially for --a- . Thus,

(1.2.22) -3/4 IZCII H VC E (0,s

where the constant y >0 does not depend on C . The inequalities

(1.2.21), (1.2.22) yield:

- 19-



, ll 1 ( ) -

:i u -I!U -z

3/4> -CC

2 0

where C0 > 0 is sufficiently small. Thus, one has the following two-

sided error estimate:

(1.2.23) C-IC3 / 4  < I H (U)  -

with some constant C >0 which does not depend on C . It can be

shown that the estimate (1.2.23) holds in the general case, as well,

if the assumptions of Theorem 1.2.3 and the condition f'(+O) >0 are

satisfied.

Remark 1.2.9. If g. 1 0 , then the same argument with corresponding

slight modifications in the construction of the asymptotic solutionsA
of the problem A with f - f leads to the same estimate under

the assumotions of Theorem 1.2.3.

-20-



1.3. The critical value X of .

If € (XG ) * o Vx' E 'U , then some critical value A of the parameter' C

plays a special role in the investigation of the boundary value problem

Namely, if 4. > 0 , then for A < A the problem O becomes linear,

whereas for X > A it is a nonlinear problem with piecewise constant

discontinuous (across 9E (u ) nonlinearity. Denote by C 0 tJ) and C ( U)

the cones of continuous positive and negative functions on 3U , respectively.

Further , let G(x,y) be Green's function for A,,(xT) in U with Diri-

chlet boundary conditions on aU and denote by E(x,y') the Poisson kernel

for the Dirichlet problem for the equation A u = 0 .

Theorem 1.3.1. (i) If E cO(au) (respectively, . E CO(u) ), then

there exists a well defined critical value Ac  +(4,g (respectively,

Ac = c(;,g) 3, such that

Eo(U) - if <

0 c

>0 if A>A c

(ii) If A > A , then uc is the solution of the linear problemC

A.(,-2 (xA) = g Wx - Afw xE u

(1.3.1) 'oD xI x), £
7 0 Vw W = 0(xW , E au

If g CO , then meas Eo(U) = .

(iii) The functionals I , A- can be represented as follows:C c

(1.3.2) A ' g = min (x)xEU 'g

where the function A is defined by:

(1.3.3) A W (x) = ( fG(x,y)dy))(f E(X,y')(y')dOy, +fG(x,y)g.(y)dy

The proof of Theorem 1.3.1 is similar to the proof of Theorem 2 in [9].

- 21 -



Pronosition 1.3.2. The functional ( ,g.) g ( g) has the following

properties:

(i) +(a.' ag.) = )L+( .'gw) ' V% > O

c
(ii) "'C = g < C\ c 00 , if 0 5 < , g00  < g

i) +( +( ( ( (2)) (1) (2) (()M(22
(iii) A+(') ) C + 1Y g)~j2  (1 (2) Co: * 0 ) +

+ (i- y) c(4 'g ) 9 E [O,1].

Proof. One proves (i) - (iii), using the formula (1.3.2) for A +(, )

c
ro

Analogous properties has the functional c( ,g.)

For X < Ic , the convergence result given in section 1.2 can be improved.C

One has the

Theorem 1.3.3. Assume that . E CO(RU) and that A > A . Then the follo-
wing estimate holds:

IA-
(1.3.4) u M-u (U) < CE(A -X) - I  VC > 0 Vp, I < p <

iC, l W2,p (U) c

where the constant C depends only upon p,L,U,A.,,, and g.

proof. Since N A for X<X is linear, the function w = u -uA is,0 C C i0
the solution of the problem:

A
(..)A w(x) = AI ~ (- )], x U

W w(x') = 0 , X'E aU0

One can write:

(x) C=x) + (X -A)v(x) , A x c

where v(x) is the solution of the problem

A v(x) = 1 , x EU(1.3.6) oV(X') 0 , x DE

Since v(x) > 0 , Vx E U and u c(x) > 0 , Vx' E @U , one can find a

constant y > o such that the sets:

- 22 -



=[ E U u c (x Y y(A ) U2  x E U v(x) Y(Xc-X)}

cover U , so that one has:

u0(x) > y( c-X) Vx E U

Of course, y deoends upon . and g.
I0

Denote v (x) =. Then v is the solution of the problem:

u I uxA v +1 f' 1~)C f t)X  xEUMC C C2 C C

oV (x') =0 , x'E U

2 2
Since f'(s) _ 0 , u > 0 for C sufficiently small (because u > 0

C'C x
Vx E U , VL <2 ), one gets the conclusion that v (x) > 0 , so that u

is monotonically increasing function of C and, in particular, one has:

u (x) W 2(x) > (Ac-k) , Vx E u C > 0

Hence,

C L

0<f - f( =J 4  f'(s)ds<L C
-+00 \C/ u C+u -Y -X)

and C

f-f - /-p L C(a -X)
- I (meas U)

I / P

(I.3.7) i- IL (U C

As a consequence of the a priori estimates for second order linear elliptic

operators, one gets, using (1.3.5), (1.3.6), the estimate (1.3.4).

corollary 1.3.4. If A -;k = C , 0 < 0 < I , then u converges to
AC C ,

uc in W2, (U) vp < , as c 0,

0 2Corollary 1.3.5. If - C , 0 < 0 < 1 , then u converges to
Ac C E) C'C

u in H (U) and the rate of convergence is e . In fact, let
'1- 0

V - xc - . Then, using Proposition 1.1.4 and Theorem 1.3.3, one gets:
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1.4. Estimates for the critical value of A

Let G(x,y) denote Green's function for the operator A (x,!-) with

homogeneous Dirichlet boundary conditions and let E(x,y') be the

Poisson kernel for the Dirichlet problem for the equation A U = 0.

Denote by C 0(U) and C (M) the cone of positive continuous functions+ .

on U and OU, respectively. For functions g E C (U) and E E C0(aU),
4

let f (g) and .44( be their mean values of order t:

(g) g( X t d x  Vt E
t eas(U) ) 1

I )t
(n( eas(aU) f 1X o Vx

= ( fx,)t~t, Vt E m, if n = 1.

XiE3U h

In tlhis section, it is assumed that g. E C0(U), $. E C 0(3U) . For the

investigation of the functional Ac (,g . ), the assumption of positivity

of g. is not a restriction of the generality. Indeed, (1.3.2) implies

that:
+( ,g ) = + -I M
c c ( .,g +p)-(f ) p Vp E iR.

Let

(1.4.1.) v(x) = f G(x,y)dy
U

and let Z be the set of the points where the function v attains a

global maximum. For functions g EC (U), E C (ZU), and for x E
+ +0

define the mean values Nx0(§), N ( ) as follows:

X(g) (v(x 0 )) f G(x0 ,y)g(y)dy,

N0 = E(x0 ,y')4(y')dO¥,.

One has the

-25-



Prccosition 1.4.1. Let U a c n n 2: 2. For V(.,g.) E C 0(aU) 0(U

Vt > 0, the following estimate holds:

(1.4.2.) pM (0 )+P if (g.) < A+(o ,g ) <.
n t - t C -
2

5 (f) I min (V(x 0 )N x (0 )+ (

x0Ej 0 0

where the constants PP t are given by the formulae:

= Cf )-meas(3U) min Al (v(x) -E(x,'))
xEJ n-

n

Pt (f) 1meas(U) min Alt (v(x)-I lx''))"
t+1

Proof. The second part of (1.4.2) is obtained by estimating the maxi-

c-um in (1.3.3) by the value of A+  at x = x0 .

In order to prove the first part of (1.4.2), note that for positive

-1 -1
functions h.,h2 , and for p > 1, p +q = 1, H61der's inequality can

be rewritten as follows:

(1.4.3.) fh1 Z 2 (Chq)

One has:

f X( _,g ) = min ((v(x) - ' f E(x,y')O.(y')do, +CxEU aU

4 (v(x))-fG(x,y)g.(y)dy)
U

! min ((vtx))- f E(x,y')¢_(y')da ,) +
xEU aU Y

+ min ((v(x)) -1 f G(xy)g.(y)dy).
xEU U

In order to estimate the first term from below, one applies (1.4.3)

with p = (n-2)- In and
I

h (y') (v(x)) E(x,y')O.(y'), h 2 (Y') 0.(y ) .
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The second term can be estimated similarly, with p = t- (t+1) and

I

hI(Y) - (v(x)) Gix,y)g.(Y), h2 (y) = g (y) P.

This yields the claim (1.4.2). 0

For the rest of this section, U is assumed to be the unit ball

in Rn . If one has:

(1.4.4.) A(x--) -A, f0 (s) = sgn s.ax0

(1.4.5.) g(x) : 0,

the estimate (1.4.2) takes the following form:

(1.4.6.) 2n M (0.) -5 A+4- ,0) -< 2n
1 -c2

Indeed, in this case, the number P can be computed as follows:

p = min 2n(2 ) J x-y'12-nd, = mi 2n = 2n if n t 3

Ix<1 l 1y'=1-- jxj<

P = min 4(Q2)1 f ]inx-y'da, = min 4 = 2n if n = 2
jXlI ly' i Ixk1l

where fZ denotes the surface of the unit ball in IRn.
n

The following result shows that the estimate (1.4.6) is sharp.

Propositicn 1.4.2. i) If n ! 2, then there exist nonconstant function

0. E C 0(aU), j = 1,2, such that

X ( ,0) = 2n M A 11 + 42,0) = 2nC1 n(01' c 2
I -- 2

(ii) There are no positive constants c and 8 such

that

c +or ;cO nll (*) vO E C (;)U).

n
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Proof. For E € U-(O fixed, let (x) = jx,-_E 2 , x, E DU (which is,

of course, the restriction to 3U of a linear function).

The corresponding critical solution is the function

2n

such that:

(1.4.7.) A+ (€ ,0 ) = 2n = 2n Al (0
c 1_n

2

Let ¢2 be the trace on 3U of the harmonic function 1+hx1 X2 The cor-

responding critical solution is given by the formula

2n W 2+xX

such that Xc +2 0) = 2n = 2n M'|c(2)' where in the last step the mean

value theorem for harmonic functions was used. The claim (ii) is an

i.--nediate consequence of (i and of the following monotonicity property

of the mean value: M () < Ml (€) if t < t2 and is nonconstant on

DB1. 0 Consider now the one dimensional case U = (-1,1).

Proposition 1.4.3. (i Under the assumption (1.4.4), one has:

+I

48 2-g',( )+2e- Al0 (g : Xc(Of,g . ) _< 2XM1 (,,)+ f(1-jyj)g.(y)dy.
-1

(ii) Under the assumptions (1.4.4), (1.4.5), one

has:

(1.4.9.) A (O,0)-

Proof. A direct computation shows that:

(1.4.10.) main ((l-x 2 ) -l (I+x'x) .lx)) = l (4.).IxI<1 I 'l-i

This proves (1.4.9). The second inequality in (1.4.8) is obtained
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similarly as the upper bound for in (1.4.2). In order to prove the
0

first inequality in (1.4.8), one uses (1.4.10) and H51der's inequality:

A M(,g) win 2(1-x2)-I( J (1+xlx)o.(x') +x <I '=1
I

+ J G(x,y)g (y)dy)
-1

Srin ((I-x2 -) (2+xx)¢ Cx')) +
S iCi Iji -1=

+ min 2(1-x2) - I f G(x,y)g_(y)dy
IX, <1 -1

Z 2M ('P. ) + P Af (g_ )  Vt > 0

with 0 t the same as in Proposition 1.4.1. A computation shows that

- t- (t+l) -1
t "(l+(t+1)-t) such that limra t = 2e-  0

t0

As an extension of (1.4.9) to the multidimensional case one can

mention the following fact:if 0_(x') can be extended as a linear

function on the ball, then X+(€,,0)c = M (€c). (See (1.4.7)). Thus,
c ~ 1-n/2

an explicit formula can be given for A (+_,0) if 0. can be extended

as a linear function. It seems to be impossible to find such a formula

for A+ (6_,0) for n > 1 and E C 0( U) (see Remark 2 in [9]).
c +
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1.5. The critical set in the case of the Laolacian

It will be assumed that

Denote
def .

(1.5.2.) . V,g ) de c  V(,g) E C 0  U) x Ca(U)

where v is the solution of (1.3.1). (If X > 0, then the proof of
C

A ( 0,g
Theorem 1.3.1. yields: E cl¢,g . ) = E0(u. C

Theoren 1.5.1. Let- ,g E C0arU) x Ca(U) with q . (0,.1]. Then for

+

Y EC¢ , ) , there exists ipE C (auW such that:

(1.5.3.) -£ (€+ 60F,g.) = ( }, Vd > 0

and,=oreover, for the solution v c of (1.3.1) corresponaing to the data

+6 ,gm, the matrix of second derivatives D 2 V is positive definite,

Y, > 0.

Proof. Without lossof generality, it will be assumed that f = 1.

Define the function _ C0 (aU) as follows:

(1.5.4.) ' .Ax') = )x,- 2 , Vx' E au, E E (0.,g.)..
4 c

Denote by wA the solution of with g. S 0 and the boundary condition

. w T.. For A = ) (ip,0), one finds easily the cor re pondisg critical

c
solution:

w C(x) = (x)-2n v(x)

where T .is the harmonic function in U, such that voy 1 and v is
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defined by (1.4.1). Hence,

+ A +

A( ) = Aw c(x) - 2n.

+

Further, since w C(x) > 0 Vx E U\( }, one has:

+I..5)A def -Iy + +
(1.5.5.) A (x W = (v(x)) T (x) > 2n = A () = min A ,0(Y).

Let u 0x) denote the solution of the problem for A = 0. Using

+
(1.5.5) and the fact that is a global minimum of A one gets:

+ def -1 0
AC (x) = (v(x)) (uO(x)+6TWx))

-u0 -x)+6(v 1) - >_

2 x (V (u 0()+6y ) A + A
->~ ~ ~ ~ ~~~~ +P (v l)(° +T() = 6, g. ( O

Vx E G\(O1.

Therefore, & E U is the only point where the function A W

attains its minimum. As ;? ccisequence, the function

V (X) = u (x)-+( + ) v(x)c

is such that Eo(v 1 ) = (V}.

Now the second claim of Theorem 1.5.1 will be proved. A straightforward

ccputation using the relations

A A
vc(&} = 0, Vxv 6 () = 0

yields the formula:

2+-l2 c C

(1.5.6.) D2 A+  W M (v(&)) V6 (2c), V& E E (u C).
S+ 6,P g,0 6

Hence,

D2v C{)- v(C)D 2 A; + g (&)

- v(C)(D2 A + {) PD 2 A(
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" 2 X - 0 2 v)x-A

Z 6 2n Id.

where Id denotes the identity matrix. 0

Now we are going to prove that for g. m 0 and for a large class of boundary

functions ¢ the set Ec (0.,O) consists of only one point.

Definition 1.5.2. For a E (0,11, Oc is defined to be the set of the pairs

( _,g E C 0(3u) x Ca(U),'such that the critical set E (¢,,g) contains
A

only one point and such that, for the solution v- ( ,g) of (1.3.1),

the Hessian D 2v () is positive definite at F.

As a consequence of Theorem 1.5.1, the set 0 is dense in C (U) x C (U).
a +

Theoren 1.5.3. 0 + is open in C+ ().. +

Proof. Let ( E.,g) O and {t) = E ( g).

With A+  defined by (1.3.3), one gets as in (1.5.6):

2 , -+2 c
(1.5.8.) D A = (v()) x 2y Id

where y > 0. Thus, there exists a constant 6 ' 0 such that

(1.5.9.) D x) : -y Id, Vx E B {x E U5 x5 12 g.

Since E is the only point in the critical set and therefore the only

global minimum of A (x), on- can choose a constant 62 > 0 such that

(1.5.10.) A ?(x) AVx E U\B

The inequalities (1.5.9), (1.5.10) will be used in order to show that

there exists a constant p > 0 such that for any (*.,h) E C 0 U) X C a(U)

satisfying the condition

- 32 -



CO- ]c Ou) + h P.C,( .

the function Ah has still only one global minimum. Indeed, one

has as a consequence of (1.3.3)

^. + + . <-+
(A.5.11.) + (N'.,h,) = min A (x) 5 A+ (C) A+ (+0(1+(v.

-- xEU h h -

Since

A+ (X) 2 (v(x)) (min , + v(x) min h.)

2 (v (x)) (min €.-O) + 9.-P,

and since the function v(x) is zero on the boundary aU, one can choose
+

3 > 0 such that for p sufficiently small, all global minima of A

are contaned in the set

us3 = {x E U dist(x,aU) Z 6 1.

Indeed, the definition of A+ implies:

+ -A+  (x) A, (x)-c(1+(v(x))

Further, (1.5.10), (1.5.11) yield the following inequalities:

A Cx) + A+ (x).-P(l+v(x) 3
'h g

A+  (M)+6 -(11+(v(x))
- )

- A+h M+6 2 -p(2+(v(x))- I+(v(&)) -

62
_a min A 4P h -, x U 6\B6

3 1

provided that o is sufficiently small. Therefore, for such p, all

global minima of A are contained in the set B The following

estimate, however, shows that the functions A are strictly con-

vex in B for p sufficiently small. Using the interior Schauder
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estimate and (1.5.9), one finds for x E B6 :

D2A+ W + = D2A + W +
x 1 ,h_ x

+ D2 ((v(x))-( E(x,y')( (y')-(Y'))doy +
au y

+ f G(x,y) (h (y)-g (y) )dy
U

DA ,h(X) - (y-Cp)Id, Vx E B
x ),h. 61

where C > 0 is some constant.

Hence, A+  has for p << 1 only one global minimum and the set
) ,h_

E ('p ,h_) contains only one point n = l( p,h.) E B6 (1.5.8) and

(1.5.12) yield that the matrix of second derivatives of the corres-

Pcnding critical solution at the point n is positive definite. 0

The next result follows immediately from the Theorems 1.5.1, 1.5.3:

Czrolla:- 1.5.4. The ccmplement of 0 inC O(3U) x Ca(U) is nowhere+ +

dense.

0 0 a.Let ( O,g) EO Then the functional

+ C(1.S.13.) C0( U). x C LU) 3 (€=,g) X /(¢ ,g) E !

0 0is Frechet-differentiable at (,g-) and its first variation in the

direction ('.,h) is given by the formula:

10 0)
(1.5.14.) 6 ( , g , P (,P,,h.) = (v( )) fI E(&,y') 1(y')do , +

+ f G( ,y)h (y)dy).
U

00
Here W } = E (.gC ) G is Green's function of the Dirichlet problem

with zero boundary condition for the Poisson equation in U, and the
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functions E and v are defined by E(x,y') - iT--,(xy') and (1.4.1),

re!'pectively.

Proof. First, one has to show that the function

s + ( O0+sp_,gO0+sh(1.5.15.) s - ( sg h
C -

is differentiable at s = 0, YO,h ) E C (3U) x C (U).

Since O is open in C (0U) x C (U), one has the following formula:

+
+151. +( O+s'PI ,0O+sh_) = A ... .s)

where A+ is defined by (1.3.3) and (s) is well defined by

(0(sfl = E( (+sq.,g+sh.) for sufficiently small.

Besides, one has for (s) the following equations:

SA0 (s)) 0.
OW+s*p, g-+sh.

Since, as a consequence of (1.5.8)),

A O0 (C(0 )) = v( (O)) x v.(O)) z y Td, y > 0,

the implicit function theorem yields: the function s - c(s) E U is

differentiable for Isl sufficiently snall. As a consequence of (1.5.16),

the regularity of the function A +(x), x E U and the differentiability

of C(s), one gets the conclusion that the function (1.5.15) is dif-

ferentiable at s = 0.

A straightforward computation using the relations:

+ 0 O
c - -c¢=g

v ((0)) 0, Vv (M()) = 0,

then yields the formula (1.5.14). 0

2
Theorem 1.5.6. Let U c m2 be a bounded, simply connected domain and
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let . E ODU)+ , g- 0 . If the coefficients a (x) of the differen-

tial operator A(x,"O are real analytic in U , then the critical set

EC(4 ,O) consists only of a finite number of points.

Theorem 1.5.7. If U c]2 is a bounded domain (not necessarily simply
connected) and if the coefficients of the differential operator A. are

real analytic, then Ec(j,O) is the collection of finitely many isolated

points and a finite nurber of closed analytic curves.

The proof of the Theorems 1.5.6, 1.5.7 stated above is similar to the proof

of Theorem 5 and Corollary 2 in [9 ].

2
It should be mentioned that even if U is the unit disk in R , there

exist functions 4 E C 0(u) , such that the set E ( 0 ,O) contains more+cC
than one point. Moreover, in this case the set Eo(u.) is not necessarily

connected (see [9]).

1.6. The asvr.totic behaviour of the solution to Of when X

In this section, an asymptotic formula for the solution u of Ot is

indicated and an error estimate in the maximum norm is stated. One uses

super- and subsolutions of special type and the maximum principle for

establishing this result (see [ Y], Theorem 7 for the case A = -A ).

First, consider the case

(1.6.1) f_ < 0f

For simplicity, it will be assumed from now on, that

(1.6.2) € E Co c 2 (U)

For x E U in a sufficiently small neighbourhood of aU , let x' E aU

and p be defined by

Ix-x'; = dist(x,3U) = min Ix-y', = p

Using the coordinates x',p , one can rewrite the operator A as follows:

32

= 'P)3p2
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Here a(x',p) is a smooth positive function an4:the differential

operator B has orders 2 and 1 in - and - , respectively. Using

the notation

a(x') = a(x',O) = (x')1 (x)N W)

12&, jSn

and the normalized distance pi '

01 = (Af (2a(x')) 1)1/2p

one has:

Theorem 1.6.1. Under the assumptions (1.6.1,.JI.6.2), the function

(1.6.3) w A1x) (.(x 1/2 ) 2

0- +

where s+ = max(s,O) , is an asymptotic solutionvofO. 0x such that

(1.6.4) wI CA

where the constant C does not depend on X . Moreover, for the free

bounda 3 E (ul, holds:

(1.6.-5) BE 0(U,) c xE U (/Wa,(-!) X f) 5t

where- the constant C1 does not depend on A

Assuming again (1.6.2), we consider now the case 0 = f_. < f

If g(x) > 0 Vx E U , then the function (1.6-31 is still an asymptotic

solution of OC! when A -0 0 . Using super- and tsubsolutions, one shows

that (1.6.4), (1.6.5) are valid in this case, as well.

If g.(x) < O x E g , g ? (U) , then it wi l turn out that for A c oA
the solution u converges on any UI cc U to the solution z(x) of

the linear boundary value problem

A ( )Z(X) g (x) x E U

IT Z(x ' ) 0 , x E V
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In a neighbourhood of DU the solution u! has again a boundary layer

behaviour as X - -

Let B(x') = r oz(X ) , x BU , and define C(x') to be the Dositive

solution of the uadratic equation (x').W(x)+ (Xf /2a(x') (x') 2

Let U = P < and denote by w (x) , x E U -U& , the solu-

tion of the following boundary value problem:

A =(x) g (x) , x E U-U
(1.6.6) W x'E u -Uw (x') =0O, x€a G a

X

On the set U , we define w, as follows:

X (P,x') W x )  (xI) -P + f,./ 2aW') (x') - P

O < p < r(x')

where W(x') denotes the restriction of the normal derivative to aUt /1U

of the solution of (1.6.6).

AAThe function w. defined above, is a formal asymptotic solution of

when A •

\ 1 + o( fo(w) +g(XY(w,) X g.(x) , x E u
SIo)- 0 00'0 -gm(x) < f , x E int Eo(w

IT w (x') = ¢.(x') +O0 ) , x'E aU

Note that the boundary condition is satisfied asymptotically because

U(X-) = O(A 1 / 2 ) when X - - holds uniformly w.r.t. x' E aU and because

the Schauder estimate implies that [ 0- A (3u) - O(X-1 /2) when X *

Using a maximum principle a;gument, one finds that w , is an asymptoticA

solution of Of when 1 -
' .

Note that in the case f_, = O < f. , independently on the sign of g(x)

u converges to the solution u of the following problem X

=~ g*(x)( - (u)) x E U
0 < go(x) , x E int(Eo(u))

u (X) :5 0 ,x E U

r u(x ' ) - 0 ,e E aU
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In general, is, of course, a free boundary problem.

It can be reformulated as a minimization problem as follows:

min f(IIa (x)uu - g (x)u(x) dx
O \2 X. xk

uEFI (U)

u_<O

Finally, consider the case f_, < 0 = f.

For -nx(f g(x)) , the function U. does not depend upon A and

coincides with the solution u of the following problem C :

A~u(x) = g,(x)( -Xo(U)) , x E u

gC,(x) - 0 , x E int(E (u))

u W) > 0 xEU

rox(W ' ) = (x') , x'E Du

The ecuivalent forulation as a minimization problem reads as follows:

min (j ka j xu u -g(x)u(x) dx
uEH 1 (U) 'U2k 3kx

7CoU=(;

u>o

Remark 1.6.2. One can consider a problem with more general non-linearity:

-6u A+q'(u )x (U ) = 0, x C U
(1.6.7)

" u (X') = W(x'), xI E U

where (x') > 0, Vx' c aU, A > € and q'(s) is monotonically increasing on

the interval [0,4 with .= max (x').

Then the corresponding asymptotic solution w (x',p) is defined by the formula:*

4(x') ds
(1.6.8) f 7 A P,

WA(x',p)

where q(s) is the primitive of q'(s) normalized by the condition q(0) = 0.
X X

Moreover for the free boundary BE u(u) of u., solution to (1.6.7), holds:
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4(x') ds -1
(1.6.9) BE 0 (U C( U 0 7N q ds SCI

where C1 > 0 is some constant.

In case of a general second order elliptic operator the distance p

in (1.6.8), (1.6.9) has to be replaced by the normalized distance P1

defined here above.

-39a-.1\
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II. Non-stationar-1 problem

2.1. GeneraL nrooerties of the onerators considered

Denote

(2.1.1) B(QT) = L xT XHI(U) XH3/2,3/4 ( T T O<T<,

where H s,r(T ) is the Sobolev space of all functions q (x',t) such that

Dx -t E L2( T ) Vial S , m < r for s : 0 , r 2 0 integer; if
and r are not necessarily integer, then H (1T ) is defined in a stan-

s,rT

dard way by using the partition of unity and the Fourier transform. Denote

byO I the ooerator associated with the initial-boundary value problem

(o.6):

(2.1.2) C : H 2, (QT) BT T'

Theorem 2.1.1. For any given C > 0 , the mapping (2.1.2) is a Lipschitz-

continuous homeomorphism.

Theorez 2.1.2. If (g,i, E) EC C(Q) 2 (U) x C 2' () and the compatibility

condition (0.7) is satisfied, then for Va E (0,I) uniformly with respect

to C C (OC 0 holds:

S ICi,a;(I+a)/2

0 - 2 - 2.1Theorem 2.1.3. If (g,4i, i) E C (Q) xC (U) xC (r) and (0.7) is satisfied,

then the reduced problem O(. has a well-defined (distributional) solution

UC C 1a;(l+L/2(Q) Va E [o,I) .

Moreover, the set u X _ C CI; (I+a)/2T) , where ux is the solution

of , has for VT < as its only condensatioh point the solution u

of9 O when C 4 0, so that

(2.1.3) l~ir~UA-u)~l 2  - 0 VT < -- , V 011)liO u u I  '  1, (1+ a/2 (QT|

The proof of the Theorems 2.1.1, 2.1.2 and 2.1.3 will be qiven in a cominq

authors' publication.
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2.2. Crvrernce as t -
m

For si-7l2city, we assume that

(2.2.1) A t2-aAx, ( t)r W g X )SgW

Let 11 > 0 be the least eigenvalue of A in U with Dirichlet boundary

condition on 3U

Theorem 2.2.1. The stationary solutions u E , um of the problems OtEad0A L2(U
and Ot , respectively, are asymptotically stable in L (U) as t

and , moreover, the following estimates hold:

(U) e - ti -uX,,j Vt 0 Ve > 0L22 2 E w L 2 U L 2 (U )

u A (" ,t) - u] _ -j$ tL(U) ]L2 (U)

Proof. The difference w = u -u is the solution of the following

problem:

O+ f(c-u ) 0f(e 0, (x,t) EQ
2 + -

wC (xO) -x) -U (x) x E U

rw'(x',t) = 0 , (x',t) E r
A

Multiplying the differential equation with w, integrating by parts and

using the fact that f is monotonically increasing, one gets the following

inequality:

(2.2.3) d ( +t)2 (Aw,w) 0 , Vt 2!O2 dtL C I * 2W C

Now the inequality

(2.2.4) (Aw,w) > J[w] 2  Vw E iI (U)Lz (U)

and Gronwall's Lemma yield the first of the inequalities (2.2.2). The

second inequality in (2.2.2) follows trom the first one and from (2.1.3).

0
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Theorem 2.2.2. The following estimates hold under the assumption (2.2.1):

(2.2.5) (u) (0,t) _ e1It Aj +Afl(-) 1-2g, Vt, > 0

(2.2.6) KA(u N- u A),u Ac,)/ < -i f F-1 g /

L 2(U) IL (U)

[-U 2 Vtt > 0CA L (U)

Proof. Denote v (u) so that v is the solution of the follo-Proof. DeoeC t ' othtv

wing problem:

dV) ~ A -1 -IA A
E +A x,- +E AfI (1 u )v€  0 , (x,t) E Q

3t O

A -1(2.2.7) v C (x,0) = go-A -Af(t- ) , x E U

(
Sv ?L(x't) =0, Wx, t) E r

Since f'(s) 2! , one gets, using (2.2.7):

(2.2.8) 2 dV ,12 + (A v Av 0 Vt 2 O .
(228 -Jv' (-,t) IL(Ud -tL 00

Further, (2.2.4) and Gronwall's lemma yield (2.2.5). Using (2.2.3), (2.2.4)

and (2.2.5), one obtains:

x A 1/2 1'A 11/2 rA 1/2
(A-we ,Iw)L 2 (U (u C) t (*It) IL2 (ULW CJIL2 (UL -) LLU L2(U)

< e-1 t A + Xf (C-,I _g.1/2 , .]1/2

I CL (U) ,JL 2(U)

2.3. Convercence for E 4 0

For simplicity, it is assumed that

(2.3.1) g " 0 , 2. - 0 , 2: 0

proposition 2.3.1. Under the assumptions (0.7), (2.3.1), the following

estimates hold:

(2.3.2) ' (Xt),- A(l,tl 2 ,C (TO 1/2 >0

lu (~t)_U (~t)S C1/2
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where the constant C depends only upon A , meas U , f , the ellipticity

constant of A and upon the first eigenvalue of (-A) in U with Diri-

chlet boundary conditions on aU .

Proof. The difference Vt = u -u is a solution of the following problem.

rA

(v t- A v +A f - 0 (u 0 (x,t) EQ

U-3 3) v ) (xO) = 0 , x U

TvA (x t) = 0 x' E 3U t E iR

Multiplying the differential equation with v and integrating by parts,

one obtains

A
1 d ~X*2 (V xA- -4 1 Z a (xt)(V k v dx + X- d2 dt L2 (U) kikj ttkt A A f) dx =

L( EO (u)UE_(u

A

f (f (u ) u x

E (u 
0

+

As a consequence of the assumption (2.3.1) and of Proposition 2.4.1 below,

E (u) =0 and v 0 . Thus,
CA

IA 12 At 2 /r x(1uExd
TI C(*,T) 1 2  +YJ' IV xV Cdxdt :5 Xf fkT}) dxdL2 (U) QT QT

where y > 0 is the ellipticity constant of A

Thus, A

.Ld X 2 X2 U x(2.3.4) +2[V 2 Ylj ]2 I (f 0 (u )-f(--))v dx23 dt c L2(U) c L2(U) E+(u) 0 £

where y > 0 si the ellipticity constant and i > 0 is the least eigenvalue of

-A with homogeneous DirichTlt boundary condition on aU.

The integral in the right hand side of the last inequality can be estimated

as follows: A
u SoA C

(f,-f(-)vC dx S C - (u C-u )dx S

(2.3.5) A U E+u

Cg A dx 5 C c meas U.
U c+u

Using (2.3.4), (2.3.5) and Gronwall's lemma, one gets the second of the

inequalities (2.3.3).

Integrating (2.3.4) over [0,T] one gets the first of the inequalities (2.3.2).

-43-



Similarly to section 1.2, an improved estimate for the rate of convergence

of u to U can be obtained under the same assumptions upon the free

boundary of the solution u . However, the construction of asymptotic

solutions in this case is somewhat more tedious than for the stationary

problem.

2.4. Nonneoative solutions
2~ , 2>

Pronosition 2.4.1. if g - O , ) 0 , k - O , then u > 0 , u % >

Proof. Assume that the set E (u ) is nonempty. For V(x,t) E E (u
one has:

(u ) +A u g(x,t) -2f(E-u ) 0(O)t t A u

Moreover, u (x,t) = 0 for V(x,t) E aE_(u ) . The maximum principle

yields u 0 in E (u) . Thus one obtains a contradiction. The nonnega-

tivity of J is proved similarly.
a

2

Let v be the solution of the following linear problem:£

+A~-~x t'~ v~ + ) g *O ~ (x,t) EQ

(2.4.1) v ( ,0) 1,(x) , U
C 25

SVW (x',t) W qx',t) , (Mt) E r
0£

Pronosition 2.4.2. Assume f(s) to be concave and the data to be non-

negative. Then u (x,t) -> v (x,t)V(x,t) E Q where v is the solution0
of (2.4.1).

Proof. The difference w= u -vX is a solution of the following problem:

(w) + P Aw f( -f (C_ uu w (U ) h (xt) r (x,t) EQ

w (x,O) - 0 X E U

7 wX (xt) - , (x',t) E r

where the function
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h = -f(e-I )+C- f'(O)v
c C

is nonnecative since f is concave. The maximum principle yields:

w 20in Q.

Prcr'ostcr 2..3. If u~ 0 ,then u is a monotonically increasingPrpoiton24.3. If uE C hnu

CC
functicn of £ > 0

Prcof. Let w = . Then w is the solution of the problem

-aw +Awc +C -f' (c uE)wE = Af' (c u )u (x,t) EQ

w (X,o ) = 0 , x E u

S(x',t) = 0, (3-,t) EP
0w£

As a consequence of the maximum princiole, one finds w (Xt) - 0
-. X -

V(xt) E Q , since f'(s) > O , u E  0

2.5. Sceial solutions of Cauchv's problem for the reduced operator

In this section, we assume that

)U = Rn

f (s) = sgns , Vs E JR-{O , f (0) = 0
g(x,t) 0 V(x,t) E An x ]R+ .

We indicate the following two types of special nonnegative solutions of

Cauchy's problem for the reduced operator.

(I) Travelling waves' solutions:

(2.5.1) uI(xt;w,&) = Xw- (x- - wt) + -Xl&2w - 2[ 1 - ex ( - wl cl - 2(x ' - wt))]

where E It , w E=.\{0) and s= max (s,0)
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(ii) Similarity solutions:

These are solutions of the form

(2.5.2) u (x,t) = t v (xlt - 1/2

where v (s) , s E IR , are nonnegative solutions of the following ordinary
differential equation

(2.5.3) -V"(s) - s+-1-V (s) + v(s) + X (v(s)) = , s > 0

so that v(s) 2! 0 is given by the formula

(2.5.4) v (s) = (s2+2n) c I+-n 2n)e- + 2/4 +2]

I

If n = 1 , one finds the solution of the Cauchy problem

SuA 62uA + X (u 0 x E iR t > 0
(2.5.5) 2 2

u (xO) = x+

which has the form (2.5.2), where

(2.5.6) v(s) = {(s2+2) k +b f(2+2)- 2exp(2/4)d&-H(s-a)
L 0

In this case, the free boundary is a parabola x = tV . One gets a system

of threeequations for the parameters ab, , which after elimination of

a and b leads to the following functional equation for the free boundary

parameter (I

(2.5.7) ( 2 +2)_1- - 2a exp( 2 /4)f(E 2 +2)- 2 exp(_& 2 / ) 1 I

For V'A > 0 the equation (2.5.7) has a well-defined solution CL E R

For A = 2 , one gets the stationary solution u(x,t) = 2

2.6. Short time asymptotics

Consider the Cauchy problem:

u(6 - u + AX (uA) = 0, x c I, t > 0(2.6. t xx X

uA(x,0) =
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2 3 2where P(x) - 0 for x < 0, (x) = yx4(x + for x+ * 0 and qpW : Cx

Vx c IR with some constant C > 0.
+

Denote by w (x,t) the corresponding similarity solution:

wA x+AX (w x 0, x c IR , t > 0
txx +

(2.6.2)

w Ix,0) = yx+,

AA x A A
w (x,t) being defined by the formula w (x,t) = tv (7 -) with v (s) iven

by (2.5.6), (2.5.7).

Then the following estimate holds:

(2.6.3) sup 6 ju (xt)-w x(x't)) -< C a,T6 V6 > 0,
(x,t)EQa,T62

where Q {(x,t) 1 0 5 t 5 T62, jxj - a6} and the constant C doesaaT
not depend of 6.

One proves (2.6.3) using the method introduced in [21].

2.7. Asmototics for A -

In order to avoid unnecessary technical complications we consider here

the case of one 'SgDl variable x E U = (-1,1) and of special (constant) XS-tCQ.

initial and boundary conditions. Namely, consider the problemCj-

ut-u +AX (U ) 0, (x,t) E U X I +

Axx + +

(2.7.1) u (x,0) = 1, x E UA
0uX(xt) = 1, (x',t) E U x IR+

Let v(x,t) be the solution of the problem:

vt-vxx = I, (x,t) e U x M+
(2.7.2)

i v(x,0) = 0, x E U

Tr 0 v(x',t) = 0, (x',t) c aU x IR,

and let t (X) be defined by the relation:

-1
(2.7.3) v(0,tc(A)) = A

Then for t 6 [0,t (A)) holds:

A
u (x,t) = I-Xv(x,t)

Denote

(2.7.4) y = y(X) A(1-v(0,t (M))
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A

and let w (x,t) be the similarity solution of the Cauchy problem:

W W + A 0 , (x,t) c IR R

'Y w' , + 'Y +

(2.7.5)

wX(x,0) = 
Yx

2

Theorem 2.7.1. For any constants T > 0, a > 0, there exists a constant

C = C(T,a) such that for the solution u (x,t) the following inequality

holds:

(2.7.6) sup _1uX(x,t)-w (x, t-tc(A))f - C(T,a)A -

0t-t (A) <TA

c
IxI ZaA

where t (A), y, w (x,t) are defined by (2.7.2)-(2.7.5).
c f

Remark 2.7.2. One finds easily that tc(X) =X= . Furthermore, for

0 <- t < t () the following asv'rptotic formula holds:

(2.7.7) u (x,t) = (1-At) + O(X- ) for A -

while for bXt - 1 one has:

uA A
(2.7.8) u (x,t) u (x), A ,

where

u (x) =C+

is the solution of the corresponding stationary problem.

For t (A) < t < cA one has:
c

(2.7.9) u (x,t) - v(A(t-t (A)), /vdist(x,3U)), -

where v(T,4) is the solution of the problem:

v T-v +X +(v) = 0, (T,) c 3R+ x R+

(2.7.10) v( ,0) = 1, JR+

v(0,r) = 1, T I 3+

Introducing w = v one can reformulate (2.7.10) as the following slightly

modified Stefan problem:
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w -w =0, 0 < s(T), T IR

w(0,r) = 0, T c IR

w(,O) =-1, 1 ,R(2.7.11+
x +w (s(-t),'t) = 0, Wx S ), ) s ) = 0, T C IR+

S = r2

the curve = s(r) being the free boundary for the solution w( ,T) of

(2.7.11).

One nas also:

(2.7.12) lim v(C,T) = (l-C/r2)
2

The proof of Theorem 2.7.1. and the claims stated in Remark 2.7.2,

as well as the corresponding generalizations, will be presented elsewhere.

This research has been partially supported by the European Research

Office of the US Army under the contract No. DAJA-37-82-C-0731.
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