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itlroduction

1. Introduction

This paper describes an implemented program that detects, localizes, and symbolically
describes certain types of significant surface changes in dense depth maps. Specifically,
we find

" steps, where the surface height function is discontinuous;

* roofs, where the surface is continuous but the surface normal is discontinuous;

" smooth joins, where the surface normal is continuous but a principal curvature is
discontinuous and changes sign; and

9 shoulders, which consist of two roofs and correspond to a step viewed obliquely.

Figures 4, 7, 9, and 10 show the idealized instances of these surface changes that are
the basis of the mathematical models used by the program. Section 6 illustrates the
performance of the program on range maps of objects of varying complexity.

The work reported here continues our investigation of surface descriptions based on
the concepts of differential geometry [Brady, Ponce, Yuille, and Asada, 1985]. Section
2 summarizes our ideas and shows the kind of geometric ("CAD") description we are
aiming at. An important component of our work is the identification and isolation of a
set of critical surface curves, including significant surface changes.

To this end, we report progress on the development of a representation of significant
surface changes. We call the representation the Surface Primal Sketch by analogy with:

% Marr's [19761 Primal Sketch representation of significant intensity changes;

* Asada and Brady's [1984] Curvature Primal Sketch representation of significant cur-
vature changes along planar contours; and

e Haralick, Watson, and Laffey's [1983] Topographic Primal Sketch representation of
image structure.

In each case, there are three distinct problems: (i) to detect significant changes; (ii) to
localize those changes as accurately as possible; and (iii) to symbolically describe those
changes. We follow the approach of Asada and Brady [1984], as sketched in Section 3. A
key component of that approach is scale space filtering, pioneered by Witkin [1983]. Yuille
and Poggio [1983a, 1983b] have proved that, in principle, scale space filtering enables a
discontinuity to be accurately localized. Canny [1983] uses the smallest scale at which a
given intensity change can be detected to most accurately localize it.

Brady, Ponce, Yuille, and Asada [19851 report initial experiments that adapt Asada
and Brady's [1984] algorithm to find surface changes. In Section 3, we describe a number
of problems, both mathematical and implementational, with that approach. Section 4
describes a robust algorithm that solves the problems enumerated in Section 3 to find
roofs, steps, smooth joins, and shoulders. Roofs are found from extrema of curvature
(positive maxima and negative mininia), whereas steps, shoulders, and smooth joins are
found from parabolic points: zero crossings of the, Gaussian curvature. We use scale-
space behavior to discriminate steps, shoulders, and smooth joins. Section 6 shows the
algorithm at work.

*i" 11



2 Surf.we prital sketch

2. Background

In this section, we recall some of the main features of our work on representing visible
surfaces. We work with dense depth maps that are the output of "shape-from" processes
such as stereo or, more usually, direct ranging systems. There are three principal problems
to be addressed:
1. Finding surface intersections. These enable the description of the depth map to be

partitioned into a set of smooth surface patch descriptions. This is the problem
addressed in the present paper. Surface intersections do not, in general, partition the
depth map. Consider, for example, a bulbous end of an American telephone handset
(Figure 1). The surface intersection marked on the figure peters out by the time the
cylindrical portion is reached. Each surface intersection has anl associated description
that includes its type (step, roof, smooth join, etc.). In general, the type of surface
intersection may vary along its length [Huffnman 1971, Turner 1974]. If a surface
intersection has a special property, such as being planar, that property is included in
the description.

2. Generating descriptions for the smooth surface patches that result from the partition-
ing in (1). This is the problem addressed by Brady, Ponce, Yuille, and Asada [1985],
who introduce a representation called Intrinsic Patches. This is discussed further
below.

3. Matching surface descriptions to a database of object models that integrate multi-
pie viewpoints of a surface. We have not yet addressed this problem. Grimson and
Lozaio-Pirez [19841, Faugeras, Hebert, Pauchon, and Ponce [1984], and Faugeras
and Hobert [1983, 1985] have made a solid start on the problem, though they restrict
attention to the case of polyhedral approximations to surfaces. However, Faugeras
and Hebert [1985] illustrate the advantages of representations based on sculptured
surfaces. B,zu [1984], Little [1985], and lkeuchi and Iorn [1984] have developed the
Extended Gaussian inage (EGI) representation for recognition and attitude determi-
nati, n. The EGI is an information-preserving representation only for complete maps
of convex objects, a rare situation in practice. Not much has been done to extend the
representation to handle non-convex objects.

The Intrinsic Patch representation that we arc developing is based on concepts of
differential geometry, principally because it provides a hierarchy of increasingly stringent
surface descriptions. A surface may simply be (doubly) curved, but, in some cases, it may
be ruled, even developable, even -onical. Our aim is to find the most appropriate and
most triugent descriptors for portions of a surface. If, for example, there is a connected
region of umbilic points, indicating that part of the surface is spherical, then it is made
explicit, as is the center of the corresponding sphere (Figure 2). If there is a portion of
the surface that is determined to be part of a surface of revolution, it is described as
such, and the axis is determined (see Figures 2 and 16).

Similarly, if there is a line of curvature or an asymptote that is planar or whose
associated curvature (principal curvature or geodesic curvature respectively) is constant,
then it is made explicit. For example, the asymptote (which in this particular case is also
a parabolic line) that marks the smooth join of the bulb and the stem of the lightbulb
in Figure 2, as well as the surface intersections marked on the oil bottle in Figure 16,

,T.



Surract- intersections fron ]incs of curtrc 3

Figure 1. A telephone hvandet illu.strates that surface intersections on curved surfaces do not, hi general,
partition the surface into a patchwork of smooth componeuts.

are noted in the representation. The program described in Section 3 cannot compute
the asymptote on the lightbulb; but that described in Section 4 can. We may associate
a description with a curve that is a surface intersection; but only if it has an important
property such as being planar. For example, a slice of a cylinder taken oblique to the
axis of the cylinder produces a planar curve of intersection. Machining operations such as
filleting tend to produce planar curves. Similarly, the intersection of a finger of a dextrous
robot hand [Salisbury and Craig 1982, Jacobsen et. al. 1984, 1985] and an object surface
is planar. On the other hand, the intersection of two cylinders is not a planar curve.

Figure 2b illustrates the representation we are aiming at. The stem of the lightbalb is
determined to be cylindrical, because it is ruled and because it is a surface of revolution.
We can compute the axis of the stem. The bulb is determined to be a portion of a
sphere, because it is a connected region of umbilic points. The center of the sphere can
be computed. Similarly, the center of the spherical portion that forms the threaded end
can be determined. The stem is smoothly joined to the bulb. Moreover, the axis of

Sthe cylindrical stem passes through the centers of the spheres defined by the bulb and
threaded end. This distinguishes the diameters of each sphere that are collinear with

the stei axis, showing that the lightbulb is a surface of revolution. All of Figure 2b can
be computed by the algorithms described in this paper and in Brady, Ponce, Yuille, and
Asada [1985], except for the rightmost column, which relates to the inferences that derive

from attaching the spherical portions to the cylindrical stem. Currently, we are working
on the inference engine (see also Kapur, Mundy, Musser, and Narendran [1985]).

3. Surface intersections from lines of curvature

Asada and Brady [1984] introduce a representation, called the Curvature Primal Sketch,
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Figuire 2. Thc representation of a lightbulb. a. The dotted region consistq of tuObilic points, iIIdicati.ng

that tlic bullb is spherical. Thet p~arallel lines are the mneridianis of the cylindlrical stem. The parailcls, which
are also rulings, are not sliowui. b. The representation that we fire working towards for the lightihuib. All
&ame thc righmnost cohnu can be automiatically computed by existing programs.

of the significant changes of curvature along a planar curve. We review that work hiere
because our extension to surfaces follows ain analogous development. Asadla and Brady
describe an algorithm that not only detects and localizes significant changes, but describes
those changes symbolically. The simplest descriptor is corner, where two atrcs meet con-
tinuously but where the tangent is discontinuous. Other descriptors are composed of two
or more instances of the corner model. The curve that is input to the algorithmi is repre-
sented by its tangent O(s), where s is the intrinsic arclength coordinate. Thle algoril~hmn
is based on a mathematical analysis of a set of models that are idealized instancc3 of-the
descriptors. For example, the corner model is formed by the intersection of two circles.
Note that this is intended as a local approximation to a corner to facilitate analysis. It
does not prejudice the subsequent approximation of the contour to be piecewise circular.
Rather it suggests a set of knot points for any appropriate spline approximnation.

Asada and Brady derive a number of salient features of the curvature of the models
as they vary with the scale of the smoothing (Gaussian) filter. For example, a corner
generates a curvature maximum, equivalently a positive maximimuni flanking a negative
nminimum in the first drrivative of curvature. The height and separation of these peaks
varies in a characteric fashion over scale. The salient features are the basis of Lte tree
matching algorithm that locates a curvature change and assigns it a descriptor. Note
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that the distance between peaks varies approximately linearly (in arclength) with scale.

In the next section we develop an analogous mathematical framework for significant
surface chaligcs. Our surface analysis is local and based upon smoothing (locally) cylin-
drical functions with a Gaussian distribution. This is because of the following Theorem,
proved in Brady, Ponce, Yuille, and Asada [1985].
The Line of Curvature Theorem: The convolution of a cylindrical surface with a Gaus-
sian distribution is cylindrical. In more detail, let f z, y, z) be a surface that is the cross
product of a planar curve and a straight line. The lines of curvature of the convolution of
f with a Gaussian distribution are in the plane of the curve and parallel to the generating
line.
In vector notation, a cylindrical surface has the form r(z, y) = zi + yj + f(x)k, and
consists of parallel instances of a curve f(z) in the z - z plane. Our models for roof, step,
smooth join, and shoulder correspond to different choices for the function z = J(z).

The curvature of the smoothed curve is given by the non-linear expression

+( smooth

Since Asada and Brady [i984] could work with tangent directions 0(s) along a planar
curve, the curvature was the linear expression dO(s)/ds, so that the curvature of a
smoothed contour is simply equal to the smoothed curvature of the original contour.
This is not the case for surfaces represented as height functions z(z,y). For example,
the (constant) curvature of the parallels of a surface of revolution are modified (see Fig-
ure 15a). The non-linearity of curvature complicates considerably the analysis of surface
change models presented in Section 4 relative to those used by Asada and Brady [1984].
Non-linearity affects smoothing too, as we discuss in Section 5.

Brady, Ponce, Yuille, and Asada [19851 used the Line of Curvature Theorem directly
in a two-step process to detect, localize, and symbolically describe surface intersections,
as follows:
1. Compute the lines of curvature on the surface;
2. Conpute significant changes of curvature along the lines of curvature found in the

first step.
The liles of curvature are computed using a best-first region growing algorithm [Brady,
Ponce, Yuille, and Asada 1985]. A good continuation function is defined between neigh-
boring points of the surface. The function involves the Cartesian distance between the
poirts and the inner product of the tangent vectors corresponding to the curvature prin-
cipal directions at the two points. The region growing algorithm joins the point pair
whose good continuation function is globally maximum, and incorporates the new link
into the developing set of lines of curvature. Brady, Ponce, Yuille, and Asada [1985] show
several illustrations of the algorithm's performance. In the second step of finding surface
intersections, Asada and Brady's algorithm for computing the Curvature Prinial Sketch,
described in the previous section, is applied to the lines of curvature in turn.

The two step process has been tested on the objects shown in Brady, Ponce, Yuille,
and Asada [1985]: a lightbulb, a styrofoan cup, and a telephone receiver. It is robust

IVA" ~
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and gives good results, suggesting that the method has competence. Nevertheless, there
are several problems with the method:

" The method is inefficient. Typical running times on a lisp mtachine for a smoothed
depth map that is 128 points square are of the order of one hour. Much of the time
is spent on further smoothing each of the (typically hundreds of) lines of curvature

at multiple scales, as required by the Curvature Primal Sketch algorithm.

" Multiple multiple smoothing is mathematically confused. The raw surface
data is smoothed at multiple scales ui, giving a set of surfaces zi. The Curvature
Primal Sketch algorithm further smooths the lines of curvature of zi at multiple
scales oj yielding a set of smoothed lines of curvature rij(sij). There is no obvious
relation between the scales a and op.

" Discretization makes implementation difficult. The lines of curvature of an
analytic sirface form a dense orthogonal web. The (smoothed) depth maps we work
with are discrete approximations to analytic surfaces. In practice, the lines of cur-
vature found by the two step process are sometimes broken. The lines of curvature
near the perceptual join of the stem and bulb of the lightbulb shown in Figure 2 il-
lustrates this problem. This is due in part to quantisation effects, but is also because
the principal directions change rapidly near surface discontinuities. This is why the
smooth join between the bulb and the stei of the lightbulb is not found by the two
step process.

* The Line of Curvature Theorem only applies locally. In practice, few surfaces
are cylindrical in the sense of the Line of Curuature Theorem. The Theorem is only
approximately true in general, and then only locally. The application of the Curvature
Primal Sketch algorithm in the second step does not respect this.

* Lines of curvature on smoothed surfaces are not planar curves. The models
that re embodied in the Curvature Primal Sketch algorithm are not a complete set
for surface intersections.

The success of the two step process suggests that the method is on the right track.
The problems just enumerated suggest that reducing the problem to apply an existing
algorithm developed for planar curves, though expedient, is wrong. Together, these ob-
servations suggest that a real two-dimensional extension of the Curvature Primal Sketch
should be developed. The next section reports our progress toward such an extension.

4. Toward a surface primal sketch

4.1. A three-step process

In this section we develop a method for finding certain types of changes in the height of
a surface that overcomes the difficulties of the two-step process described in the previous
section. The types of changes we have analyzed and implemented are as follows: Steps,
where the surface height function is discontinuous; roofs, w'here the surface is continu-
ous but the surface normal is discontinuous; smooth joins, where the surface normal is
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continuous but a principal curvature is dIiscontinluous and changes sign; and shoulders,
which consist of two roofs and correspond to a step viewed obliquely. It turns out that
roofs consist of extreina of the dominant curvature: that is, maxima of the positive umax-
imum curvature or minima of the negative minimum curvature. On the other hand,
steps, smooth joins, and shoulders consist of parabolic points, that is zero crossings of the
Gaussian curvature. They are distinguished by their scale space behavior.

We have implemented the following three-step process (Figure 3) that is illustrated in
the examples presented in Section 6:

Them Them emoc

Ste Ste 2 StpM

X2Jr K [ K 77W*
j~crios

Figre3.Scemti o te hre-~c pocsssc~h~1 iiThs apr ndinurtl, oice Yilcan

the (ireciona) exreAM of the doifn cuvaurs;w

join aur sholdersurfce discoturuties

Nigte t.haay, Pofthe4 Ytmille, ande- A psabr [.95 ivsiatcd pa ralc, lien~ linfes of

curaure sgornin (lerocesos of srfwes Tie suggest thtsc6.iene(sadtoa
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interested in parabolic points and curvature extreia as local cues for significant surface
intersections.

We discuss smoothing in more detail in the next Section. The computation of prin-
cipal curvatures is described in Brady, Ponce, Yuille, and Asada [1985]. The next four
subsections analyze steps, roofs, smooth joins, and shoulders. Subsequent subsections
discuss the matching algorithm and further work that is needed to elaborate the model
set.

Is it necessary to use multiple scales to find surface intersections? Arguments sup-
porting multiple scales for edge finding in images have been advanced elsewhere [see Marr
and Hildreth 1980, Canny 1983, Witkin 1983]. However, it might be supposed that it
would be sufficient to smooth depth maps with a single coarse filter. Figures 12b and
15a show that this is not so. Even after thresholding, there is still a large curvature
extremum in the neck of the bottle running parallel to the axis. This extrenmum is an
artefact of non-linear smoothing, and it cannot be eliminated at a single scale. Instead,
we reject it because it does not change over scale in the characteristic manner of a roof.

4.2. Step discontinuities

A step occurs when the surface itself is discontinuous. The model we use consists of
two slanted half planes whose normals lie in the z - z plane. They are separated by a
height h at the origin (Figure 4). Using the line of curvature theorem, we study the one
dimensional rorinulatioi of this model.

'1, h k2

k,

_c

Figure 4. The Atcp model, consisting of two slanted phumes separatcd by a height h at the origin. The roof
model corrtsponds to the cae,, h = 0 and ki / k2 .

Let the curve z f (z) be defined by
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fklcj+c, x<O;
Z k.x+c + -h, x>0; (2)

where h and c are constants. In this expression, h is the height of the step. We now
derive the result of smoothing this function with a Gaussian distribution at a given scale
a. To obtain a symmetric form for this smoothed version, we introduce the two following
parameters:

k = (ki + k2)/2

6 = k2 - ki

If we denote the smoothed curve (G, * z) by z,, we then obtain

X ft 2

z], =c + a f exp(- -2-)dt

+ + C(j

ba X 2
+ 7=rexp 2a

The first and second derivatives of z, are given by

b 6 X t2  h 2

Z =k+jj exp(-- it + exp (- a); (,I)

1 hx X2

In particular, the curvature r., given by JEquation (1), has a zero crossing at the point
X, : a 2 6/h. This is at the origin if and only if ki - k2 , otherwise, the distance from x,

to the origin is proportional to o"2 . This is illustrated in Figure 5 for the step between the
cylindrical body and the cylindrical base of the oil bottle shown in Figure 16. From Figure
5, we calculate 6/h to be 0.105. The actual height of the step is about 1.5 millimeters.
By the way, the position of the zero crossing shown in Figure 5moves by about 3 pixels
over one octave.

Using the fact that the second derivative of z, is zero at X,, it is easy to show that

Kz, 26 (6)

So the ratio of the sec,,nd and first derivatives of the curvature at the zero crossing is
constant over the scales. Calculating 6/h this way gives 0. 11, which is close to the value
giwVeii 1y the slope iii Figure 5. This suggests that onie ought inot be overly coy about

computing first and second derivatives of curvature of appropriately smoothed versions
of a surface, even though they correspond to third and fourth derivatives.
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It is possible to substantially reduce the effect of this problem by smoothing in intrinsic
coordinates. At ,ach point of the surface, the nornial is estimated. Instead of smoothing
z, the SULLrfLCC J)Oiit iS movd along its normal a distance that depends upon the projected
diktances of the points neighbors from the tangent plane. In the case that the normal
faces the viewer, this is equivalent to the previous technique. However, the result is
no longer orientation-dependent. Figure 15b illustrates the computation of cturvature
after smoothing the oil bottle by this method. The drawback with the technique is the
computation it requires one to compute the tangent plane at every point.

The technique described in Brady, Ponce, Yuille, and Asada [19851 has been used in
all the examples presented here, as it represents a good tradeoff between computational
efficiency and faithful rendering of the smoothed surface.

6. Examples

In this section, we present a number of examples of the surface discontinuities found on
simple objects by our algorithm. In all the examples, we use four different scales corre-
sponding to 20, 10, 60, and 80 iterations o' the smoothing filter described in Brady, Ponce,
Yuille, and Asada [1985]. Viewing the resulting centrally-limiting Gaussian distributions
as approximately bandpass filters, they span one octave.

Figure 16 shows the final output of the algorithm for the oil bottle. The points
detected during the matching step are linked together using a connected components ex-
ploration algorithm. The smallest components (less than 3 or 4 pixels) are then removed.
Conversely, points may have been missed during the previous phases, creating gaps in
the lines that are found. These gaps are filled by adding points that have characteris-
tics compatible with the detected points. The bottle is finally segmented into six parts,
separated by three step edges and two roofs.

Brady, Ponce, Yuille, and Asada [1985, Figures 18 and 19] showed that the coffee cup
shown in Figure 17 is best represented as the join of a cylindrical body and a tube surface
that corresponds to the handle. Iere we show that the handle can be separated from the
body using the algorithms described in this paper. Note that the surface intersections
are of type roof.

The third example shows the surface intersections found on a telephone handset, Fig-

ure 18. All the mnajor intersections have been found. The representation is not symmetric
because the handset was not quite perpendicular to the scanner, causing part of the sur-
face to be occluded. Note that the surface intersections are more reliably detected at the

coarsest scale, but are more accurately localized at the finest scale.

The surface intersections found on a few simple tools, namely a hammer, a drill, and
the head of a screwdriver are showed in Figure 19.

Figure 20 shows the surface intersections found on an automobile part that has fea-
tured in several papers by the group at INRIA. On this complicated object, global lines
of curvature have no signification, so the Curvature Primal Sketch would not perform

well. Notice in particular the circular step edge found on the left "head" of the part:

it corresponds to a shallow depression whose depth is about one millimeter. This is
approximately at the resolution limit of the laser scanner, and underlines the practical

significance of the algorithms described here.



Figure 14. a. Raw data from a cross section Of anI Oil bottle after scaiig usin~g thte INRIA system.
b. Smoothing ivross surface boundaries with a GiMS.SianL MIask that is applied everywhere. c. Gaussian
sxno')thing using repeated averaging and computational nioltcjult.j. (Reproduced from Brady, Ponice, Yuille,
and Asadla [1085, Figure 12])
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types of intersections, an!d be associated to an ancestor of each of these types. The use of
multiple scales is usually sufficient to disambiguate between the dilrcrcnt cases. If several
inteypretations remain after the finest level has been taken into account, the one with the
best cumulated compatibility score is chosen.

Note that, although we have analyzed the behavior of the position of the characteristic
point of each of our models, and have found it simple and reliable, we do not use it in the
compatibility functions. The reason is that, for each intersection found, the re~d origin
on the surface is unknown. This iniplies that at least three matched points are necessary
to estimate the paraneters of the motion of the extremum or zero crossing across the
scales, and makes the measure of this movement unsuitable for a scale-to-scale tracking.
However, the estimation of the movement parameters could be used for an a posteriori
verification of the surface intersections found.

5. Smoothing a surface with a Gaussian distribution

Brady, Ponce, Yuille, and Asada [1985] discuss techniques for smoothing a depth map
with a Gaussian distribution. The main difficulty stems from bounding contours, where
the surface normal turns smoothly away from the viewer, and where there is typically a
substantial depth change between points on the surface of the object and the background.
In general, the bounding contour is easy to find, even with a simple edge operator or by
thresholding depth values. The problem is how to take the boundary into account when
smoothing the surface.

P Brady, Ponce, Yuille, and Asada (1985] observed that if the smoothing filter is applied
everywhere, the surface "melts" into the background and changes substantially. Figure
14 is reproduced from Brady, Ponce, Yuille, and Asada [1985, Figure 13c] and shows this.
They suggested instead using repeated averaging [Burt 1981, 1983] as well as adapting
Terzopoulos' [1983] technique of computational molecules to prevent leakage across depth
boundaries. This smooths the surface without substantially altering it (see Figure 14c).

Here we point out a slight difficulty in smoothing surfaces using the technique illus-
trated in Figure 14c, and suggest a refinement. Although the smoothed surface appears
to be close to the original, small orientation-dependent errors are introduced. These
errors are magnified in computing the curvature (Figure 15a), to produce "false" cur-
vature extrema near the boundary (compare the overshoot phenomenon in Terzopoulos'
[1983j work on detecting surface discontinuities). The overshoots do not exemplify Gibbs'
ringing as we originally thought. Instead, the phenomenon is caused by two effects:

e The coordinate frame is not Intrinsic. The smoothing filter is applied in the
z - y plane, and since this is not intrinsic to the surface, the result is orientation-
dependent. For example, the difference between a cylinder and its smoothed version
monotonically increases to the boundary from a value of zero where the normal faces
the viewer.

* Points near the boundary don't get smoothed as much. Such points are
relatively nsmoothed as several of their computational molecules are continually
inhibited. The result is that the difference between the smoothed and original surfaces
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extremuin) as it is tracked across scales. Points at the finest scale that have no ancestor
'C-, tl 0 at the coarsest scale on their path are eliminated. This constitute,, the detection o surface

changes. To localize surface changes, we note that in each case analyzed in Sections 4.2
through 4.6 the distance of the feature point from the origin increases with a. For this

reason, the position of the surface change is determined from the finest scale.

Finally, each path (the scale-space tracking of a feature point) is assignc. a local

signature: roof, step, smooth join, or shoulder, depending on the behavior of its curvature
an( its first and second derivatives of its curvature across the scales. That is, the path
is analyzed according to the the models developed in Sections 4.2 through 4.6. The
parameterized local signature provides a symbolic description of the surface change on

which the feature point lies.
Figure 13 shows the matching algorithm at work on several image slices of the oil

bottle shown in Figure 12. The final result is shown in Figure 16. The three parts of
Figure l3show, for consecutive pairs of scales, points that have been niatchei in the

same set of eighteen inage slices of the oil bottle. The upper group of eighteen graphs
corresponds to the coarsest scale (called "80" because it corresponds to eighty iterations
of the smoothing computational molecules [Brady, Ponce, Yuille, and Asada, 198.]) being
imatched to the next-to-coarsest scale "60". The middle group corresponds to rmiatching
between scales 60 and 40; the bottom group to scales 40 and 20 (which is the fine;3t scale).
In a given position in the blocks of eighteen graphs, say the fourth from the left in the

middle row, an hiage slice is tracked across the three pairs of scales. Let us con:;ider one

of the pairs of scales, say 60 and 40 shown in the middle block. Feature points that are
,matched are linked by a vertical line.

Matching is not straightforward:

a Surface changes lie on space curves.

Consider, for example, a roof discontinuity whose local signature is a curvature extremuni.
In the Curvature Primal Sketch, curvature extrema are isolated points along a one-

dimensional curve, and .this makes the construction of the trees of corresponding feature
points relatively siml, le (see the figures in [Asada and Brady 198,4]). In three dimen3ions,
however, surface changes constitute continuous space curves. The association of an an-
cestor (respectively descendant) with a given feature point is often ambiguous, and this
complicates the construction of the forest. This, in turn, makes difficult an a postcriori
interpretation of this forest.

Our solution is to compute a compatibility between each matched pair of marked

point:. The compatibility function involves the Cartesian distance between the points

and the angle between their associated principal directions, but also takes into account

the roof model by comparing the ratio of the points curvatures to the inverse of the ratio

of the associated scales. At each scale, and for each thresholded extremum, we look for

an ancestor inside a square window of the previous scale image. If an ancestcr with a

sufficiently high score is found, then the point is kept as a potential ancesto: for the

next scale. Otherwise it is removed. This way, the forest is never explicitly built, and

the interpretation is done during the tracking itself, as the only extrema tracked are

those which correspond to potentiM roofs. In particular, this is how the artcfac-s due to

non-linear smoothing are removed.

-. Lad",.
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" curvature extrema whose values are less than a preset threshold are removed;

" zero crossings whose slopes are less than a (difrerent) threshold are removed.

Figure 12b shows the result of thresholding the feature point sets in 12a. The thresholds

vary according to scale. For example, the extrenutii threshold varies proportionally to

1/o, as suggested by our analysis of the roof model (see Section 4.3). To date, we have not

derived an analogous formula for the scale space variation of the zero crossing threshold.

AA

Figure 12. a. The extrema and zero cros.ing- of curvtture for the cil buttle at four scales that increase
from left to right. The total variation in scale is one octave. b. The feature points in (a) that arC above
threshold. Note the curvature ext rema pIrndiel to the axis of the bottlh thalt re avrtifacts of the non-linear
smoothing. Note as o the numerous parabolic points at the finest -cale that are not threshohied. These
non surnifirant points are eliminated by the matching idgorithin (Figures 13 and 16).

This is not a major problem, however, as the thresholding step is only used for selecting
a set of candidates for the subsequent miatching process, rather than finding the surface
intersections themselves. For example, the curvature extrenia parallel to the axis of the
oil bottle, that are due to the non-linear smoothing (Figure 15), cannot be eliminated by
thresholding, but are rejected by the matching algorithm (Fig-ire 16) since they do not
conform to a model.

The matching algorithm is a two-dimensional extension of that proposed by Asada
and Brady [1984]. We track the thresholded extrema and zero crossings across scales, .,.
from coarse to fine. We obtain a forest of points, equivalent to a "fingerprint" [Yuille
and Poggio 1983]. Paths in the forest correspond to a feature point (zero crossing or
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we shall see, however, the analysis is quite difficult for a thin bar, even in simple cases.
We analyze a model of a thin bar consisting of a plateau of height h, width 2a, and

sOPC k2 , resting on flat ground of slope kj (Figure 10). We model the thin bar by the
function

ktz, x < -a;
z= h + k2x, x E [-a,+a]; (18)

klx, x > +a.
We denote k2 - ki by 6. The first and second derivatives of the smoothed thin bar are
given by:

z= k, + b zj_ exp(-2)dt

+ ,,V(2 /- 2,o
+(h - a) P( (xa)2) -(h +ba) x-a)2)(9

+- h - (a()

1 (6 -(h + 6a)( - a) ((b - r /exp\ J r ( 20)

These expressions simplify considerably in the case that the plateau surface is parallel to
the ground, that is 6 = 0. In particular, in that case z", = 0. However, the curvature
attains an extreinum at the origin, equivalently te' = 0, only when kj = 0. This is the
case depicted in Figure 11, but it is too restrictive since it is too sensitive to changes in
viewpoint. Further work is needed here. By the way, the special case kj = k2 = 0 is that
typically studied in psychophysical studies of intensity thin bars (eg Richter and lJlman
[1982]). It would be interesting to know what is the response to thin bars of intensity
superimposed on a linear intensity ramp.

4.7. The matching algorithm

We now use the models introduced in the previous sections to detect and localize
surface intersections. We track the extrema of curvature and parabolic points found
at each scale from coarse-to-fine. The tracking is directed by the particular features
associated with each model. In essence, the features constitute a local signature of the
model. This should be contrasted with the complex search for peak configurations used
by Asada and Brady [1984].

We first smooth the original depth map with a Gaussian distribution at a variety of
scales a (see Figure 3). We then compute, for each smoothed version of the surface, the
principal curvatures and their directions (using the method described in Brady, Ponce,
Yuille, and Asada [1985]). We also compute the first and second derivatives of the
principal curvatures in their associated directions. Parabolic points (zero crossings of the
Gaussian curvature) are then marked, as are the (directional) maxima of the maximum
curvature and iminiima of the mininmum curvature (Figure 12a). The marked points are
thrcsholded, according to their type:

"45 ,~
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Figure 10. Model of a thin bar compound surface discontinuity. It ronsists of a plateau otr height h, width
2ai, .id slope k2, rCstiulg on flat groud of slope ki.

Figure 11. Expected curvature respoiisc Of L Usin bar to Caimnsiau fillrs. Al. fine wavq the! Min bar Signals
two sepaa.tt Step.; Ut coirser scales it rteminbks a dliIff'reicc-of-Gaus-.siiuj-. The' stcp ;msp~ussheg l([iII to
interfere when (y equals luif the separation of the riser".

we are reluctant to implement an analogous peak matchi'ng program. In practice, the
peatks from a thin bar may cover as miany As fifteen pixels, suggesting urror-prone and
inefficient search. In this paper, we have sought local statements that apply to a singlc
zero crossing or curvature extremuin and studied its scale space behavior in isolation. As
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Z,7 log~' (16)

Using the Implicit Function Theorem as in the case of the roof, it is then straightforward
to show that:

aZ -- log Q ) (17)

so the ratio of the first and second derivatives at the zero crossing is constant over scales.

4.6. Thin bar and other compound discontinuities

The models considered so far involve isolated surface changes. Even though a shoulder
may appear as a pair of roofs if it is viewed close to the normal to the riser and if the
riser subtends a sufficient visual angle, its more typical behavior is like that of a step. As
two (or more) surface changes are brought more closely together, so that the filter width
a approaches half the separation of the changes, the filter responses due to the individual
changes interfere with each other. Since certain kinds of compound surface discontinuity
ae important for recognition and use of objects, they must be modeled and matched by
the program.

This observation raises two questions: (i) which compound surface changes should be
modeled and matched; and (ii) how shall instances be found by the program? Ultimately,
the answer to (i) is application-dependent, though the thin bar, consisting of a step up
closely followed by a step down, presses for inclusion (Figure 10). Thin bars occur as
ribs on many surfaces, for example along the sides of the neck of a connecting rod. Also,
it seems [Marr 1976, Richter and Ullman 1982] that the mamnalian visual system is
sensitive to thin intensity stripes. In the case of curvature changes along a planar curve,
Asada and Brady [1984] introduce the crank that is analogous to a thin bar since it consists
of a corncr followed closely by one of opposite sign. Other compound surface changes
that might be important are a rounded corner and a moulding, that is like a thin bar but
with one of its risers smooth and concave. We have not studied such configurations.

Restricting attention to thin bars raises question (ii): how shall instances be recog-
nised? First, let us conjecture what the curvature response to a thin bar might look like.
We may base our conjecture on Asada and Brady's [1984] analysis of a crank, though we
need to be cautious because their operators were linear. Figure 11 shows the response
that might be expected, indeed the response that is provably generated in one special
case (see below). Unfortunately, the response becomes substantially more complex in the
general case.

Note that the thin bar in Figure It generates as many as five curvature peaks at fine
scales, reducing to three at cdarser scales. Note also that there appears to be a curvature
peak at the origin. Asada and Brady [1984] extracted peaks at all scales and developed
a matcher that linked peaks across scales. The crank model explicitly checked for three
peaks splitting to five in the way shown in Figure 11. Matching such compound (planar

*.... curve curvature) changes was the source of the complexity of Asada and Brady's program.
In view of the non-linearity of surface curvature, and the two-dintensionality of surfaces,

...



14 Surfiu'e priukmd sketch

4.5. Shoulder discontinuities

A step discontinuity confounds information both about the geometry of the surface andc

the viewpoint. Shifting the viewpoint to the half space defined by the outward normal
of the "riser" of the step typically changes the depth discontinuity to a pair of roofs of

opposite sign whose separation again confounds geometry and viewpoint. We introduce

the shoulder discontinuity to cater for this situation (Figure 9).

A

II

I0
///II 11, " ... . slope m

Ii 'slope k2

I-2a--N

Figure 9. The Ahotuder discontinuity consists of two rooh of oppovite sign. The shouldcr appears as a step
when viewed from the half-space defined by the inward normal of the "riser".

We may expect the scale space behavior of the shoulder to closely resemble that of
the step when the projected separation 2a of the roofs is small compared to the filter size

a, perhaps becoming more like a pair of roofs as the viewpoint shifts. This is what we
find.

We model the shoulder by the function

(kiz+ (ki - m)a, x<-a;Z- Mi, x E I-a,+a]; (14)
k2 z + (m - k2)a, x > +a

If we denote k1 -m by 61 and k2 -m by 62, then 6i $ 0, and 62/61 is positive (otherwise the
curve is always convex, or always concave). It is easy to show that the second derivative

of the shoulder, smoothed at scale a is

S6 (x - a)2\ - (- (X -) (15)
~,exp 2c) u'

Since 52/61 is assuined positive, we deduce from Equation (15) that the curvature has a
zero crossing. The location of the zero crossing is given by:
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In particular, we deduce from Equation (I1) that the curvature has a zero crossing if and
only if

0 exp(- )du = C
v~ 0  26

This equation has a solution if and only if the absolute value of c/6 is less than 1/2,
which simply corresponds to cl and Cr having opposite signs. It follows that smooth joins
of the sort shown in Figure 7a generate a zero crossing in curvature, hence a parabolic
point on the surface. Those shown in Figure 7b do not.

For example, the parabolic lines found on the lightbulb shown in Figure 8 are smooth
joins. The two-step process utilising the Curvature Primal Sketch algorithm, discussed
in the previous section, failed to find the smooth joins (see Brady, Poice, Yuille, and
Asada [1985, Figure 1]).

',

Figure 8. Parabolic lines found by the program described in this Section for the lightbuib shown in Figure
2. The smooth join between the stein aud bulb were not found by the program dcscribcd in Section 4.

Equation (12) implies that the distance from the zero crossing location z to the
origin is proportional to a. Using this property and the fact that z" is zero at x0 , it is
then easy to use the Implicit Function Theorem to show that

itl Z1111* (2o) = ,-(zo) = -, C3

(ZO) (XU)(13)

for some constant -y. It follows that the ratio of the second and first derivatives of the
curvature in x, is inversely proportional to a. This scale space behavior allows us to
discriminate zero crossings due to steps from those due to smooth joins.

.-.
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(a)

(b)

Figure 7. The model for a smooth join conusists of two parabolns meeting smoothly at the origin, a. The
curvature changes sign generating a parabolic point on the murface. b. The curvature does not change sign.
Such smooth joins are typically perceivable only when there ia a large, discontinuotls junip in curvature.

The continuity and differentiability of the cu'rve at x 0 imply that bi = b= b, say, and
a, = a, = a, say. As in the case of the step, we introduce the parameters

c. (cl+c,)/2

C,6 = C1

We can express the surface, smoothed at the scale o, as

= (c+ exp(- -- )dt z2%g'2 aO r02

+ ,- -- (9)

+(a+ IcO2 + _ 60. exp(-- 0 dt)

The first and second derivatives of zo, are iiow given by:

24,/ + f exp(- (2)dt)

6

Vb JC xp(-- -2J (10)

Zell exp(-.. ) d t (11)
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Figure 6. Scale space behavior of tbe roof discontinity between the cylindrical neck and the conical
shoulder of the oil bottle shown in Figure 16. a. The position of the uegativc minin~fiujn or curvatilre varies
linearly as a funcIin of scale as predicted by the analysis. b.The curvature is directly proportional to t/u,
al:- predicted.

can be estinmated accurately. We use non-inaximuni suppression [Cauny 1983] to reject
local extrcma. The location of the peak, its height, its type (maximum or minimum),
and its orientation, are the features we use for the subsequent matching over scales.

4.4. Smooth join discontinuities

In ccrtain circumstances, one can perceive surface changes where both the surface and
its normal ,re continuous, b~ut where the curvature is discontinuous. We call such a
surface change a smooth join discontinuity. If the curvature changes sign at a smooth

join, the surface has a parabolic point. As we shall see, such chan~ges can be found from
zero crossings of a principal curvature. It is well-known (see Asada and Brady [1984] for
discussion and references) that smooth joins where the curvature do not change sign wre
perceptible only when the (discontinuous) jump in curvature is "sufficiently large". In
such a case, there is not a zero crossing of curvature; rather there is a level crossing, and
the curvature typically inflects. We do not yet have a complete analysis of that case.

Our model of a smooth join consists of two parabolas that meet smoothly at thc origin
(the curve is differentiable). Figure 7 shows the two distinct cases of the model. (Though
the two cases appear to be perceptually distinct land lead to different matching criteria,
they. are governed by the samie Equation (8), so it is convenient to analyze them together
at first.)

4 Consider the curve z(z) defined by

Ix+ bi + al, x<O0;(8
2 rx +br +Gra x>O0;

iiiijllil I
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Figure 5. Variation over scale of the position of the zero crossing of the curvatre of the sMIoothed atep
between the cylindrical body and the cylindrical base of the oil bottle shown in Figure 16. The abscissa

*' is a' , the ordinate the position of the zero crossing. The height of the step is about 1.5 millimeters. The
slope is 6 /h = 0.105.

4.3. roof discontinuities

A roof occurs when the surface is continuous, but the surface normal is discontinuous.
Specializing Equations (2) to (5) to the case h = 0, we obtain

z
2

be -2--y

t2 2av ,2 
(7)

t+: 1 (I- +! " - f/O exp(-!)du) ]
From Equation (7), we deduce that for a roof, we have K(x, pw) = ic(z//h, a). In particular,
this implies that the extremum value of ic is proportional to 1/, and that its distauce from
the origin is proportional to o. This is illustrated in Figure 6 for the roof discontinuity
between the cylindrical neck and the conical shoulder of the oil bottle shown in Figure
16. Figure 6a shows the variation in the position of the negative minimum of curvature
as a function of scale. Figure Gb shows that curvature is directly proportional to I/o.
It is also easy to show that the second derivative of the curvature, r.", is proportional
to 1/0 3 . However, we do not use this property in the cUrrent implemientation of the
program, relying instead on the the variation of the extremum height over ccale.

We look for points that are local maxima (respectively minima) of the maximuni (re-
spectively minimum) curvature in the corresponding direction. The curvature directions
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Figure 16. The oil bottle is segmented into six parts. Three step and two roof intersections are found by
lie algorithm de(scribed iii this paper. The algorithmns described in Brady. PonIce. Yuille, and Asaila [ 1985,

see Figure 181 determine the fines of curvature of the parts of the Wi bottle, fit circles to the parallels, and
fit axes to the centers of those circles.

Figure 17. The jois of the handle to the~ body of the coffee imug are computed by the algorithms desicribed
in this paper. They are determined to he of type reof. ________

Figure 21 shows the surface intersections found on the head of a connecting rod. The

current state of our algorithm cannot deal with thc thin bars located on the sides of the
neck of the connecting rod, but performs well for the otlher intersections.

The last exaniple is the mnask of a humian face (F~igure 22). The program finds face

.% .- .% .S .~*' .,. .~S . S
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Figure 18. a. The surface interscCtions found on a telepjhone hanudset at the coatrsest and finet xcalms that

are approximately an octave apart. The htcrmcctions are more 'eliably detected at the coarsest scale; they
are more accurately localized at the finest scale. h. The results of matching the changes across ealcs.

Figure 19. The intersections fomil by the progrntn on simple tools, a. a aen ,ner. b. a drill c. a screwdriver

features as the nose, the eyes, and the mouth. This shows its ability to deal with arbitrary
'.; curved surfaces, usually not found in man-made objects.

Although our primary concern in this paper has been with the intrinsic geometry
€,, . of a surface as found by a three-dimensional vision system, oue might suppose that

the methods described in this paper could be applied straighforwardly to extract and

-I- v'.v -.-. '
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Figure 20. Surface intersections found on an automioile part (3ve, for example, F.Lim'rtq J1982, 19841).
The circular step edge found on thc left "head" of the part uorrspovids to a shallow epreisiou whose
depth is about one millimeter. This is approximately a the resolntion limit (f the lkwrt maner.

Figure 21. Surface initer-wctions found! on t a oumeting rod. Only the I Mw of the part is shown. The
inclusion of the thin bgr models in the algorithmn would alknv a fine descriptio of the neck of this obk.-ct.

interpret sign' Icant intensity changes in images, considered as surfaces. To interpret
intensity charages, it is necessary to take irradiance effects into atccount, Since intensity
changes do not always correspond to surface changes. Rather, they mnay signify reflectance ,
or illunmination changes. Extraction and interpretation w;s in fact the intent of Marr's

'S
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Figure 22. Surface intersections foumd on a ina.k. The monuth, the nose and the eyes are found as corners
by the program.

[1976] original work on the Primal Sketch, though considerably more attention was paid
to extraction than interpretation. More recently, Haralick, Watson, and Laffey [1983]

__ _ have advocated a representation of image surface geometry that involves concave and
V convex hills, planar regions, and saddles. These geometrical aspects of the image surface

are not interpreted in ternis of the intrinsic geometry of the surface, or of illumination or
reflectance changes.

Some preliminary work exists on interpretation of intensity changes. An early edge
finder developed by Binford and Horn [Binford 1981] included filters for step, roof, and
"edge effect" changes. Horn's [1977] study of intensity changes included a suggestion
that occluding boundaries and reflectance changes correspond to step intensity changes,
while concave surface hitersections generate roof intensity changes (because of mutual
illumination). Finally, Ynille [1983] suggests that certain points along lines of curvature
of a surface can-be extracted directly from wn image. There is much scope for additional
work along these lines.

Figure 23 shows an initial experiment we have carried out on applying the methods
developed in this paper to image surfaces. The join of the wing to the fuselage of the
airplane is determined to be roof changes, consistent with Horn's suggestion.
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Figure 23. Application of the methods of the paper to an intensity surface. The interest is in the type of
the internal intensity changes. The join between the wings and fuselage is a roof, miggesting a concave
surface intersection.
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