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1. Introduction.

A very powerful approach for solving computational early vision problems is
to formulate them as estimation problems. The estimates are based on probabilistic
models that embody both our prior generic knowledge about the behavior of
the solution, as well as the process by which the observations are obtained. In
particular, various researchers have used Bayesian estimation and Markov Random
Field (MRF) models to perform image segmentation (Elliot et. a. (1983); Hansen
and Elliot (1982); Geman and Geman (1983); Marroquin (1984b); Cohen and
Cooper (1984)) and surface reconstruction tasks (Marroquin (1984a)). Most of these
researchers have assumed that the Maximum a Posteriori (MAP) estimate, which
is defined as the configuration which maximizes the posterior distribution, provides
the best possible solution to these problems, and several methods (such as dynamic
programming and "simulated annealing" (Kirkpatrick, et. al. (1983)), a form of
stochastic relaxation) have been proposed to compute it.

Let us consider, however, the example portrayed in figure 1
Panel (c) represents the MAP estimate of the binary MRF (a) (whose parameters

are assumed to be known) from the noisy observations (b). It is clear that the
estimates shown in (d) and (e) (which we will describe later) are better than the MAP
estimate from almost any viewpoint. This suggests the use of criteria other than
the value of the posterior probability to measure the performance of an estimator.
In particular, we propose the use of the following criteria for the two classes of
problems mentioned above:

1.1. Error Criterion for the Segmentation Problem.

Consider a field x with N elements each of which can belong to one of a finite
set Qj of classes. Let zi denote the class to which the ith element belongs. The
segmentation problem is to estimate z from a set of observations {y, ... ,y }. Note
that z does not necessarily correspond to the image intensity. It may represent, for
example, the texture class for a region in the image (as in Elliot et. al., 1983), etc.

A reasonable criterion for the performance of an estimate I is the number of
elements that are not classified correctly. Therefore, we define the segmentation
error e, a:

* N
e(Z', 1) = (1 -6(zi- 1i)) ,xi, 1i E Qi  1

i=-1

where
6(a) 1, if a=O (2)I (0, otherwise()

"o ) " ° 1
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(a) (b) (c)

(d) (e)

.%

Figure 1. (a) Sample function of a binary MRF. (b) Output of a binary symmetric channel
(error rate: 0.4) (c) MAP estimate. (d) Monte Carlo approximation to the MPM estimate. (e)
Deterministic approximation to the MPM estimate.

1.2. Error Criterion for the Reconstruction Problem.

In this case, we also consider a field z with N elements which can take values
on finite sets {Qi}, but now we assume specifically that z represents the intensity
of an image (or the height of a surface) at site i. This suggests that an estimate i
should be considered "good" if it is close to z in the ordinary sense, so that the
total squared error:

N

e7z~) .^X, (3)

will be a reasonable measure for its performance.

Let us now derive the optimal estimators for these error criteria.
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2. Optimal Bayesian Estimators.

In this section we introduce two estimators based on the posterior distribution
P,,,: The Maximizer of the posterior marginals iMPM, which is obtained by
maximizing separately the posterior marginal distribution of each element, and the
Thresholded posterior mean iTPM. Their formal definition is as follows:

iMPM (i) = q :Pj 1 1(q; y) = sup j~l(;y)(4)

where P/i, is the posterior marginal distribution of the iih element:

Pi1 '(q; Y) = P, 1(z; Y) (5)
Z:zimq

The TPM estimate is:

iTPM(i) = q (q - 2)' inf {(r - 2j)} (6)rEQ4

where i is the posterior mean:

= xzP~j,(x; Y) (7)

We will show that the MPM and TPM estimators are optimal with respect to the
error criteria (1) and (3) respectively. In what follows, we will assume that the prior
and conditional distributions P., Pyl= are known, so that the posterior distribution
can be obtained from Bayes rule.

Proposition 1: ZMPM is optimal with respect to the segmentation error e..

This is not a new result (see for example Abend, 1968); however, we present here
a simple proof:
Let - = iMPM, and let z denote any other estimate for z. We will show that

I _] El,.(.,)]

where the expectation is taken over all z and all possible observations y#.

For any fixed y we have, from (1):

N
E.(14 I y)= El,.(z, ) 1 y] f , (1 - b(; - &))P8 ly(z; V)

Z i~l

N N

P I Pt ) = (1(i; Y))
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with Pil, given by (5). Also,

N
za ) =Y) (1 - P1 1 (zi; Y))

i=1

Therefore,
N

Y )-E,(z I=- lPiy(ii; ) - i(z; Y)) (8)

But by the definition (4) of i, each term on the right hand side of (8) is non-positive,
so that Z'(! I y) - .(z I y) < 0 for ally

and therefore,

Note that we have not made any assumption about P., Pyl,, or {Qi}, so that
this is a completely general result. In particular, the sets of valid classes Qj do not
have to be the same for all i , so that this result holds if, as in Geman and Geman
(1983), z is the pair {f, 1}, where f denotes the intensity of a piecewise constant
image, and I the boundaries between uniform regions.

Proposition 2: ^TPM is optimal with respect to the reconstruction error e,.

Proof: Again, we put i = !TPM, and let z denote any other estimate. For any fixed
y we have, from (3):

N

1,: I it) = -T( Zi)'Pxi1(z; it)
z ij=ffi

N
F(zq - 2x:,i + i?)P~j,,(xT; y)

i-z 2

N

where 1fi ziPfl,(=; Y)
= E . )

x

also,

i-4



so that

Z'(! I Y) - i'(Z I ) [ )2 _ (, _z)2] <0
i=1

from the definition (6) of i I

Remarks:

1. In the limit of fine quantization the variables zi become continuous (i.e., Qj =R
for all i). In this case we recover the classical result that establishes that the posterior
mean minimizes the mean squared error; for the particular case of Gaussian (Habibi,
1972; Nahi and Assefi, 1972) or isotropic fields (Levy and Tsitsiklis, 1983), it is then
possible to construct efficient algorithms that compute this quantity.
2. The surface reconstruction problem treated by Marroquin (1984a) can be
considered a particular instance of the reconstruction problem defined here. If we
let x be the pair {f, 1}, where f is the (continuous valued) depth process and I is
a binary line process, the optimal estimator will be TPM (note that for a binary
variable, iTPMW() = ,MPM(i)).

3. These results can also be applied to the case of an m-ary line process (like the
one suggested by Geman and Geman (1983)) by defining an appropriate mixed
error: N N,

emnyp it) -- ( fi -- Yj) + X 1: (1 _ 6Cj, _ I,))

i=l i-i

with 6 as defined in equation (2). One can show, using arguments similar to those
of the proofs above, that the optimal estimate, for any positive value of X will
be {fTPM, Impm}. Note that the posterior mean for f and the posterior marginal
distributions for I must be computed by averaging over all possible values of both
f and 1:

7i f=~ jI ' $Pl(f ,I; Y)
f I

Pi(q) = Y, P, 11y(f, 1; y)

3. Algorithms.

As in the case of the MAP estimate, the exact computation of the optimal MPM
and TPM estimates is a formidable task, except for very small N. It is possible,
however, to define general distributed Monte Carlo procedures that will allow us to

Japproximate these values as precisely as we want.

The general idea is to use the Metropolis algorithm (Metropolis, 1953) to
generate global configurations of the field x which are, asymptotically, distributed

5

"+ r * +r+, r+++++" '+,,++ + ' +* , o+ ' , ' " t, .". .r ..1



according to P, I y. Since the Markov chain defined by the Metropolis algorithm is
known to be ergodic (Geman and Geman, 1983), we can approximate i by:

1 n A

___ 2: (9)

and the posterior marginals by:

Pk-.q b__ x( q) (1

where (t) is the configuration generated by the Metropolis algorithm at time t, and
k is the time required for the system to be in thermal equilibrium. From these
values, iMPM and ZTPM can be easily computed using (4) and (6).

If we compare this procedure with the use of"Simulated annealing" (Kirkpatrick,
et.al., 1983) for approximating the MAP estimate, we note that even from a
computational viewpoint it has some distinct advantages:

1. It is difficult to determine in general the descent rate of the temperature
(annealing schedule) that will guarantee the convergence of the annealing
process in a reasonable time (it usually involves a trial and error procedure).
Since we are running the Metropolis algorithm at a fixed temperature (T 1),
this issue becomes irrelevant.
2. Since in our case we are using a Monte Carlo procedure to approximate
the values of some integrals, we should expect a nice convergence behavior, in
the sense that coarse approximations can be computed very rapidly, and then
refined to an arbitrary precision.

The main disadvantage of this procedure is that in the case of the segmentation
problem, a large amount of memory might be required if the number of classes
per element m is large (we need to store the N(m - 1) numbers that define the
posterior marginals).

With respect to the relative performance, we point out that for high signal to
noise ratios, the MAP estimate is usually close to the optimal one (which explains its
good performance in many cases). If the noise level is high, however, the difference
in the performances of the two estimators may be dramatic (see fig. 1).

Finally, from a conceptual viewpoint, the definition of the solution of the
estimation problem in terms of the posterior mean (or the posterior marginals)
may lead in some cases to the construction of efficient deterministic algorithms for
approximating the solution. To make these ideas concrete, we now analyze in detail
a specific instance of the segmentation problem.

6
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4. Optimal Segmentation or Binary MRFs.
I. \

in this section we will consider the following particular example of the general
segmentation problem:

Let f represent a binary pattern on a rectangular lattice L with N elements,
which is a particular realization of a Markov Random Field with potentials given
by:

-1, if fi = f, and Ili- ill E (0,1]
V(fVf)= i, te f fj and li-ll E (0,11

O0, otherwise

where i and j are sites of L and Ili - Jll is the distance betweeen i and j (i.e., f
is a realization of a two-dimensional Ising net). Without loss of generality, we will
assume that fh E {0, 1} for all i E L.

The probability density of the configurations F is given by:

Pr(F = f) = exp[- -U(f)] (11)

where Z is a normalizing constant; the energy U(f) is:

U(f)= V(ff)
iJENJV

where i, j E NN means that i and j are nearest neighbors, and To is the natural
temperature of the system.

Suppose that f is sent through a binary symmetric channel with error rate e,
so that the conditional distribution of the observations g is:

P(g( A) if gi -- fgP~g~f)---€,ifgi f4 A A, gi E{0, 1}

The posterior distribution is:

Pj ,10; g) = }.-u (12)

where Zp is a constant, and the posterior energy Up is:

Up = " Vyf, f3) + F'(1 - b(f - ga)) (13)

V....with
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Figure 2. Raio of the average errors of the MAP and MPM estimators for a 2 x 2 Ising net.

4.1. Error Analysis.

Using equations (1) and (12), it is not difficult to write down the exact expressions
for the average segmentation error corresponding to the MAP and MPM estimators
for this problem. However, the numerical evaluation of these expressions is feasible
only for small values of N.

In figure 2 we show a plot of the ratio:

Efe MA))
E[eMpmJ

for a 2 X 2 lattice, for different values of the error rate e and the natural temperature
To. As expected, r is never less than 1. In the worst case (for c = 0.1 and To = 0.2)
the error of the MAP estimate is 1.17 times that of the MPM estimate; if To is not

S'



too small and f is not too large, both estimates coincide, and as c approaches 0.5
(low signal to noise ratio), the MPM estimate is consistently better than the MAP.
An experimental analysis of larger lattices reveals a similar qualitative behavior, but
the values of r are much larger in this case.

4.2. Example.

We now return to the example presented in figure 1, and examine it in more
detail. Panel (a) represents a typical realization of a 64 X 64 Ising net with free
boundaries, using a value of To = 1.74 (0.75 times the critical temperature of the
lattice); panel (b), the output of a binary symmetric channel with error rate E = 0.4;
panel (c) the MAP estimate, and panel (d) an approximation to the MPM estimate
(which we will label "MPM (M.C.)") obtained using the Metropolis algorithm and
equation (10) to estimate the posterior density. The corresponding values of the
posterior energy Up (equation (13)) and the relative segmentation error (e./642) are
shown on table 1.

Table 1

f g fMAP fmpm(M.C.) fMpM(Det.)

Energy -5594.8 -226.0 -6660.9 -6460.0 -6427.0
Seg. Error - 0.4 0.33 0.128 0.124

4.3. A Fast Algorithm.

For this problem, it is possible to construct a fast deterministic algorithm whose
experimental performance (in terms of the average segmentation error) is equivalent
to the Monte Carlo method discussed above. It is based on the following ideas:

First, we note that for a binary pattern, the MPM and TPM estimates coincide.
We will approximate the posterior mean of (12) by that of a Gaussian distribution
PG with the property:

PG(h) = e-UP(h) for all h E {0, 1}.

In particular, we use:
PG(h) = exp[-. (h,- K)2 - a k(h, - gj)2].

OijENjv i

For this distribution, h is the (unique) minimizer of the convex function:

U1(h) = E (h - h,) 2 - a E(h, - gj)2

TO iJENN 9
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which corresponds to the unique fixed point of the system:

,+ j1N, h) + crTog (14)

hik) - INi + aTo 14

where
N,={jEL : I[i-jI=1}.

We could now approximate our estimate by putting:

where

to, otherwise

There is an additional consistency condition that f must satisfy, however. It can
be shown that when the posterior distribution has the form given by (12) and (13),
the MPM estimate f, which by definition satisfies:

P6j0(f,; g) > Pi19((i - Me); g)

also satisfies:
Pijg(fh; ) > Pij,((1 - M,); 2) (18)

which means that if we replace the observations by the MPM estimate, and compute
a new MPM estimate for this modified problem, we should get the same result.
Translating this condition to the case of f, we get that it must satisfy:

, =e (h*) (17)

where h" satisfies: *

hi = EN, hj JTO(h;)INI + aTo

In practice, we get he as the fixed point of the system:

h- k+,l = jEN, h;.() + aTo (h(
INI + aTo (18)

with

10
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Note that the function:

Uh(h) = (hi - h) 2 + aTO (hi- e(h) 2

iJi Ni

acts as a Lyapunov function for the system (18), which is therefore (locally) stable
(Vidyasagar, 1978).

This algorithm can be visualized as operating in two steps: In the first one,
we extract all the information that we need from the observations and encode it in
i (which is continuous-vaiued), and in the second one, we find the closest binary
pattern that satisfies the consistency condition (16).

S

To illustrate the performance of this approximation, we show f, for the
example discussed above, in panel (e) of figure 1, and its corresponding energy and
segmentation error in the last column of table I (labeled "MPM det.").

4.4. Dimensionality of the Parameter Space.

Equations (14) and (18), which describe the deterministic approximations to
fMPM depend on the parameters of the system, e and To, only through the product:

Py = aTO= To log(L~)(9

which means that the behaviour of the algorithm is completely characterized by the
single parameter -y. In the case of the Monte Carlo approximation (10), if we fix
the value of -y, the value of To cannot be chosen arbitrarily, since it has to satisfy
the consistency condition:

&

with

=log

F, (20)
w,-1

where z is the residual process defined as:

oj. w 1 if., g (21)
otherwise

11



This means that, given -y, the correct value of To can, in principle, be determined
in an adaptive way, so that in this case too, the behaviour of the approximation
depends effectively only on -y.

5. Simultaneous Estimation of the Field and the Parameters.

The above considerations suggest that we can estimate simultaneously the
original field and the parameters of the system by looking for the supremum of an
appropriate likelihood function over the one-dimensional subspace parametrized
by -y. We proceed as follows:

For a given value of -y, we can approximate the corresponding MPM estimate
using the methods developed in the previous section, and compute the residual

process z and the conditional (on -y) Maximum Likelihood Estimate of the error
rate c using equations (20) and (21). The corresponding conditional estimate for To
will be:

022)

To measure the "likelihood" of the estimate 7, we use the degree of uniformity
(or "whiteness") of the residual process z. This property can be quantified by the
variance of the local noise density, which we estimate as follows:

We cover the lattice with a set {Sjj of m non-overlapping squares (say, 8
pixels wide). For each square Sj, the relative variance of the noise density is:

2L

with 1
Zijui Z

where ISjI is the area of the iih square.

The desired likelihood function is:

.(f) =- (24)
i-i

Note that a more conventional likelihood function, such as the conditional
likelihood proposed by Besag (1972), will not work in this case; this function is
defined as:

L)) 2 with

2
sEC1



r exp EjE~N V(fL.)

iE"h exp[ +N V(e , fj)] ]ENi V(1

2
I+ Cexp[ j ( k(J,j))- , = 1,2

iEC, To jEN,

where the "codings" C, and C2 are sets of conditionally independent sites defined

as:

C= = {i (z is odd and 1/i is even) or (xi is even and yj is odd)}

02 = {i (xi is odd and yjis odd) or (zi is even and yj is even)}

with (zi, yi) denoting the row and column indices of site i. In our case, we find
that as y decreases, 2 becomes more and more uniform, while to remains almost
constant. It is not difficult to see that as a result, the conditional likelihood L will
decrease monotonically with -t, which renders it useless for our purpose.

The range of values [-yo, -1M1 of the parameter -y that corresponds to the class
of systems of interest can be determined as follows:

One can show that for -1 > 8 we will always have fMPMj = gi for all i, so that
we can use 'yM = 8. The value of "yo can be obtained from an upper bound for E
and a lower bound for To. For example, assuming that e < .45 and To > .5T, we
get yo = .23. (Note that when the natural temperature To of a first order, isotropic
MRF is below 0.5 times T, (the critical temperature of the lattice; see Kindermann
and Snell, 1980), the patterns become practically uniform (i.e., f, =constant for all
i), while for values of To greater than 1.5T,., we get patterns that are practically
indistinguishable from white noise. Therefore, the assumption To > .5T, covers
practically all the interesting cases).

The complete estimation procedure is as follows:

Maximum Likelihood Estimation Algorithm:

1: Sample the interval [-yo , -1m] at the points

-to _< -fl, -.-.In _< 'I

2: For each yE Q ... "y,}

2.1: Find f(-y) using (14) and (18).

2.2: Compute z using (21).

2.3: Compute i using (20). If a = 0, set L(f('y)) - -oo and proceed with the
next value of -y. Otherwise, compute & and go to 2.4.

2.4: Compute to using (22).

13
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(a) (b) (c)

Figure 3. (a) Synthetic image. (b) Noisy observations. (c) Maximum Likelihood Estimate.

2.5: Compute L(1('1)) using (23) and (24).

* [3: Compute the optimal estimate " using:

f = ?e') : = up L (')) (25)
-YEQ

The corresponding e*, to will be the optimal estimates for e and To, respectively.

Remarks:

1. This estimation algorithm allows us to reconstruct a binary pattern f from
the noisy observations g without having to adjust any free parameters. The only
prior assumptions correspond to the qualitative structure of the field f (first order,
isotropic MRF) and to the nature of the noise process, but neither the natural
temperature To nor the error rate e have to be known in advance. In practice, this
means that we can apply it to restore any binary image with uniform granularity,
even if it has not been generated by a Markov random process. We have used this
algorithm to reconstruct a variety of binary images with excellent results. In figure 3
we show such a restoration. The observations (b) were generated from the synthetic
image (a) with an actual error rate of .35 (assumed unknown). The MLE for f is
shown in (c). ,...

2. This procedure can be easily extended to handle any one-parameter noise
corruption process (such as zero mean, additive white Gaussian noise). The extension

14



to the case of N-ary fields, i.e., to the restoration of piecewise constant images, is
also straightforward (using the general algorithm (10) together with equation (4)
instead of (14) and (18) in step 2.1).

3. We have found that the likelihood function (24) is reasonably well behaved as
a function of -y. This permits us to perform the one-dimensional search for its
supremum in an economical way, by first determining its approximate location using
a coarse sampling pattern, and then refining its position by a fine sampling of a
reduced interval. In practice, it is possible to get very good results using on the
order of 15 samples.

4. The whole procedure is highly distributed, so that it is possible to implement it
in parallel hardware in a very efficient way.

6. Conclusions.

A very fruitful approach to the solution of image segmentation and surface
reconstruction tasks is their formulation as estimation problems, via the use of
MRF models and Bayes theory. However, the MAP estimate, which has been often
used, will not always give the best solution. We have shown that, for segmentation
problems, the optimal Bayesian estimator is the maximizer of the posterior marginals
(MPM), while for reconstruction tasks, the thresholded posterior mean (TPM) has
the best possible performance. In some cases, these estimators will give results
that are similar to those obtained by the MAP procedure, but in many interesting
situations (in particular for low signal to noise ratios) their performance will be
significantly better.

The exact computation of these estimates (including the MAP) is computationally
unfeasible in most practical situations. We have presented a general Monte Carlo
procedure which approximates their value as precisely as desired (at the expense of
increased computational cost). This procedure can be easily implemented in parallel
hardware, and it has the advantage that coarse solutions are computed very fast,
and are then progressively refined. We have also shown how in particular cases, it is
possible to use the conceptual framework provided by these estimators to construct
fast algorithms with very good experimental performance.

Finally, we have developed a maximum likelihood procedure for the simul-
taneous estimation of a piecewise constant field and the parameters of the system.
This construction leads to a parameter-free distributed algorithm for reconstucting
piecewise constant images from noisy observations.
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