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INTRODUCTION

While the normal impact and perforation of thin plates or those
of intermediate thickness has heen extensively investigated both
analytically and erxperimentally, corresponding studies involving
oblique impact have been reported much less frequently (References
1-11). Penetration of targets at obliquity was treated analytically
in a general fashion by energy methods (Reference 9) and for
cvlindro-conical projectiles by momentum considerations (Reference
12). For spherical strikers, an analytical approach has delineated
regions of perforation and ricochet and corresponding tests have
provided a phase diagram in the plane of initifal velocity versus
angle of incidence providing for these two evertualities, but
involving either intact or shattered projectilee or target regions
(References 13 and 14). An experimental program employing 22~
caliber lead bhulleis fired against pure aluminum and aluminum allny
plates at velocities of about 400 m/s at angles of incidence up to
about 350 degrees (Reference 15) showed results ia reasonable apree-
ment with the predictions of a three-stage phenoaenological analiysis
(Reference 3) when adjusted to take into account a presented target
area and thickness for an undeviated projectile psth., An extensive
experimental Investigation of penetration and rlcochet of steel
spheres on aluminum targets at obliquity has been conducted previ-
ously elsewhere (Reference 16).

The objective of the present investigaticn Is to provide an
extensive data base of the effect of obliquitv on perfonration of
both aluminum and steel plates. Hard-ste:2l cylinders of 12,7-mm
(1/2 inch) nominal diameter, either tlunt or with a 60-degree
frontal cone, as well as blunt aluminum cvlinders of the same dia-
meter were utilized as projectilies, Targets with an eftective dia-
meter of 114.3 mm (4 !/2 inclies) were clamped in a special holder
whose angular posirion conld be adiusted in fncrements af 5 degresc
relative to the directfon of firing, although the test sequence was
generally spaced at ‘utervals of 10 degrees. It was limited to a
maximum obliquity of 50 degrees by safety requirements that demanded
avoidance of uncratrolled projectile ricochet posing significant
danger to both equipment and personnel,

APPARATUS, INSTRUMENTATION, AND PROCEDURE

Two different ballistic facilities were utilized in the present
invegtigation. Tests Involving initisl velocities below about 200
m/s were executed al the University of (:lifornfa, Berkeleyv, ucili-
zing a compressed gas gun with an cverall barrel length of 1.40 m,
Two slots with centers 152 mm apart, with the initial port opening

~i
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1.03 m from the breech., served both to inhibit further projectile
acceleration and to measure {ts muzzle velocity. This was accom-
plished by the signals generated from the interruption of two light
beams focussed on photosensitive elements due to projectile passage,
with pulse separation Indicated by a time interval meter. A similar
arrangerent was provided for the measurement of the terminal veloc-
ity immediately behind the target, except that the second light ray
was replaced by a zigzag path produced by consecutive reflections of
the beam between a set of inclined mirrors. This covered a plane
perpendicular to the direction of initial projectile travel and
served to insure interruption of the laser ray by the projectile
even though the striker was turned through an initially unknown
angle as the result of perforation for an inclined target. This
device was mechanically isolated from the test stand to avoid its
actuation by spurious transients. Substantial care was also exer-
cised to Insure the appropriate setting of both slope and level of
start and stop gates of the recording devices to obtain velocity
measurements accurate withln 1 percent. This required the simulta-
neous use of a digital counter and a Riomation digital unit (Gould
Corp., Santa Clara, California) an arrangement which could differen-
tiate between the motion of the striker and a preceding plug or
petal (Reference 5).

The target holder, which could be clamped rigidly either to a
test stand with a horizontal surface or on a 5-degree shimming
block, consisted of two parallel circular rings with holes dril.ed
at l0-degree intervals perpendicular to the direction of projectile
motion. These holes served o accommodate screws fitting into a
plate holder that consisted of two pairs of segments of a plate
annulus and permitted clamping the target in place by the tightening
of another set of serews. In this manner, the target could be
anchcred at any desired angle of obliquity in 5-degree increments.

A trough filled with Celotex was placed behind the zigzag light grid
for proiectile recovery, and a witness paper marked initially at the
extension of the harrel centerline placed on the front of the
catcher tank permitted the determination of the angle of reflection
hased on the deviatinn from this mark upon entry and the distance
from the paper to the target center. Alternatively, this angle
could be ascertained photographically when camera coverage was
employed. This occurred in a number of cases where the event wvas
recorded at the rate of 10" frames/s by a Photec 1V framing camera
(Phiotonic Systems, Sunnyvale, California) with the system {]llumi-
nated by hbulhs supplied with 2400 W of power. The vertical location
of he laser net and catcher tank was crucial and required continu-
ous adiustment to allow for the variations In the angle of the pro-
jectile deflection for different impact conditions. A diagram of
the experimental arrangement for these low-velocity tests Is
presented in Figure I[.
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The experiments were initiated by emplacement of the projectile
in the breech, closure of the firing end, and activation of the
solenold that opened the valve hetween the gas reservoir and the
barrel, thus propelling the striker forward. When the framing
camera was not employed, all other measuraments were executed auto-
maticaily. However, when the cameire was utilized, triggeriag of the
solenoid was produced by an automatic signal emitted by the camera
upon reaching the desired framing rate. This occurred after passage
of about 73 m of the 123-m roll of 16-mm black and white film, which
had an ASA rating of 400,

In several tests, special conical-headed steel projectiles were
fired that incorporated a modified version of the force-measuring
device that was subsequently further refined; the latest changes
were required to accommodate the oblique impact conditions (Refer-
ences 8 and 5). The unit is sketched in Figure 2. The body con-
sists of a hard-steel cylinder of 12.7-mm diameter with a length of
41.3 mm whose rcar surface was tapped along the axis with a 7.9-mm
(5/16-inch)~-diareter UNC-ZB screw thread to a depth of about 26 mm.
The front of this unit consisted of a cone of 60-degree total angle.
A mating steel ccrew was inserted tightly intn the back of the steel
cylinder that still maintained a small air gap at {ts tip. A 6.35-
mm-diameter X—cut quartz crystal, 0.794 mm thick, was fasrened with
conducting epoxy, Eccobond 56C (Emerson and Cuming, Gardena,
California) to the back of the screw shaft, and a 6.35-nm-dilameter
steel disc, 2 mm thick, was similarly cemented to the back surface
of the crystal; the latter represented "an 1inertial mass.” The
joints were cured at 75°C for at least 30 minutes to minimize
resistivity. The screw was inserted into the hole unti: the tubular
sections were tight. Two copper wires of 0.5-mm~diameter and
lengths somewhat greater than that of the gun barrel were soldered
to the rear of a second steel disk of similar dimensions and pro-
truded backwards from the projectile. This disk was pressed against
the {nertial mass by a egpring attached to 2 tail plece guitehly
threaded for insertion into the rear of the hollow aluminum
cylinder. A plastic grommet and polymeric coating insulated the
trailing wires from all components nf the projectile except their
disk terminal. The other ends of the wires, which were inftially
colled, were Luped to the breech end of the grounded gun and were
thus in continuous contact with this device while uncoilling during
the motion of the projectile until subsequent to target perforation.

Fach composite striker was carefully checked prior to every shot
to insure Lthe existence of an open circuit hetween the {mpact sur-
face and trailing wires (or ground). The target was electricaliy
insulated; a lead from this plate was attached to the input side of
A Nienlet Aigital recording nseilloscone, which was triggered by the
interruption of a laser directly ia front of the target, while the
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ground side was connected to the gun., The arrangement is shown in
Figure 3. The force transducer was calibrated by firing the projec-
tile into a thin aluminum target in such a manner as to perforate,
but without exiting (Sce Reference 8)., The impulse recorded by the
crystal was equated to the measured initial momentum of the striker
to provide a force calibration. As previcusly, the observed poten-
tial difference was found to be linearly proportional tn the peak
applied force., but substantially different from the value of 3400
N/V, measured and utilized there (Reference 5). Xesults using the
force transducer were ohtained for experimeris i~vclving normal
impact on 3.175-mm-thick 2024-0 aluminum tats~is =i(ruck at and just
above the ballistic limit by the 30,5~g profecs!]..

The ballistic apparatus employed in the gun laboratory of the
Naval Weapons Center (NWC), China Lake, 1s shown in Figure 4, The
propulsion unit consisted of a powder gun with a 12.7-mm (1/2-inch)-
diameter barrel capable of beiag evacuated; shots with this device
encompassed the initjal velocity range from 300-920 m/s (1,000-3,000
fr/8) for projectiles with a mass up to 37 g. The initial projec-
tile velocity was measured from the recorded time elapsed between
the intercruption of two light beams traversing the bharrel a distance
of 265.5 wm apart, each centerad on a photosensitive unit., This
measurement occasionally gave spurious results since products of
combustion sometimes maneuvered ahead of the striker in spite of the
presence at its rear of a plastic gas check. These particles also
prevented the use of a fine copper-wire grid conducting a current
whose breakage triggered the photographic recording device.

Instead, a bhreak circuit was utilized with the conducting unit con-
sisting of a broad copper grid painted on a paper backing held in a
clamp. The individual strips had widths of 1.5¢ mm (1/16 inch) so
that even a shower of burnt particles would not totally sever the
circuit, but only a complete tearing of the grid upon hullet
arrival, Tn additinn, the gun war fired without evacuation to allow
the air within the barrel to decelerate any combustisn products Lhat
nmoved ahead of the projectile.

The photopraphic system consisted of a Beckman Whirley KFC-600
six~cell Kerr camera illuminated by a set of individual PEK Xenon
are lights that could be delayed relative to each other by a maximum
interval of 50 us with essentlially unlimited delay achievable from
circuit interruption tn the first cell with a Ritherford Model Al2
digital time delay generator. The controls were adjusted to provide
a minimum of two photographs of the projectile koth prior and sub-
sequent to contact with the target, Initial and final velocities
measured from these plctures were accnrate Lo within 2-3 percent.
The determination of the projectile position in the data reduction
from the film was facilitated by a calibration distance of 39.1 mn
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FIGURE 3. Schematic of the Experimental Setup for Force
Measurement .
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representing the separation of the tips of a caliper which was sus-
pended near the target center and photographed in each frame.

A witness paper was employed to permit the determination of the
deviation of the projectile path after passage through the target.
The position of the barrel center was scribed on this paper at the
center of the diffracted light pattern generated by a pin source at
the muzzle end. A long catcher tank filled with Celotex permitted
the recovery of the strikers and of those detached portions of the
plate, plug, or petals embedded in this unit. The tank required
continuous vertical adjustment and some tilting to conform to the
deviation of the projectile path due to plate obliquity. Initial
projectile velocity was controlled by the amount of Dupont IMR 4198
powder placed in a standard S50-caliber cartridge that was positioned
behind the projectile in the breech. Firing from a remote location
was executed after automatic cycling of the electrical system.

The majority of the strikers consisted of drill rod with a sur-
face hardness of 53-60 R; and a nominal diameter of 12.3 mm, a
6. -degree total tip cone angle, end an overall length of 38.1 mm;
their average mass was 29.1 g. In additfion, some blunt hard-steel
and 2024-0 aluminum cylinders of the same diameter were ut{lized.
When any striker was fired by the powder gun, it was either coated
with a solid film lubricant (Electrofilm, Inc., MIL-L-233988) or
else coated with copper to reduce gun wear. The copper-coated pro-
jectiles were significantly heavier than their bare counterparts,
with average masses of 30.8 + 0.5 g, 36.7 + 0.5 g, and 14.5 + 0.7 g
for the cylindro-conical and blunt hard steel and the blunt aluminum
gtrikers, respectively,

All test 3equences were limited to a maximum obliquity of
S0 degrees due to the presence of the 60-degree conical nose shape
and the protrusion of the target frame. Larger angles of incidence
were certain to produce ricochet, a dangerous condition for both
operators and equipment., In spite of substantial precautions taken
to avold such a condition, an occasional ricochet did occur, either
from the frontal! plate surface or from contact with a support struc-
ture after penetration.

Experiments at obliquity were carried out with 3.175- and 6.35-
mm-thick 2024-0 aluminum plates annealed to a Brinell hardness of 48
from an inittal heat-treated condition corresponding to a Brinell
hardness of 130 and on two types of mild steel targets designated a=s
S* and S with a Brinell hardness of 220 and 130, respectlively, at
initial velocities ranging from about 90 to 200 m/s. Impacts at
normal incidence were further executed on 2024-0 aluminum plates of
n,R0-, 1.59~, 12.7-, and 15.88-, 19.05~, and 25.4- wmmn thickress and
on 12.7- or 19.05-mm thick mild steel targets. A special series of
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runs were also conducted on aluminum plates to ascertain the ballis-
tic limit and the velocity corresponding to the first appearance of
miniscule cracks on the distal target side. Runs involving the
instrumented projectile were executed at an initial velocity of
146.3 m/s on 3.175-mm-thick 2024~0 aluminum targets with angles of
incidence ranging from O to 50 degrees. The target plates were fab-
ricated with a 139,.7-nm diameter outer ring clamped on a 114 ,3-mm-
diameter ring. The aluminum specimens were cut from a sheet which
had been hardened to a T351 condition. The plates were now placed
in an oven for 3 hours at 800°F, then exposed to successive reduc-
tions in temperature of S50°F for 1 hour each until the level of
SO0“F was attained bevond which they were oven-cooled to room
temperature. The annealing process took approximately 16 hours.

In the vast majority cf instances, even at high initial veloci-
ties, it was possible to recover both the projectile, sometimes
fragmentad into several large parts, and cohesive plugs sheared from
the targets, and to ascertain their terminal configuration and mass.
However, fndividual petals sheared from the plate could usually not
be located.

Contours of numerous targets were measured by means of a profi-
lometer whose sensing element, consisting of a cantilever leaf with
a strain gage mounted on it, passed at a constant speed over the
deformed surface of the struck targets, Vertical deflection was
calibrated by gage blocks. A number of the targels were also sec—
tioned and subjected to metallurgical examination.

METALLURGICAL ANALYSIS

A metallurgical analysis of virgin and post-impacted target
plates was also undertaken to characterize the materials as conm-
pietely as possible prior tu testing and Lo study the penetration
and failure processes more intimately. The inspection of virgin
materials concisted of a visual scan of the surfaces to 1dentify
forming (primarily rolling) patterns, hardness tests, a microstruc-
tural examination of small wedges of materfal taken from the outer
edges, and, for one material, a gpectrographic analysis to {dentify
the alloy. Post-impact studies consisted of a visual inspection of
fracture surfaces using a microscope with a magnification Jess than
SO and a microstructural analysis of target sections taken from the
impact areas. Specimens for microstructural examination were cut
from the targets using a high-speerd, water-cooled, cut-off wheel to
minimize damage. Thev were then mounted in Bakelite, ground flat,
and finally polished and etched for viewing with an optical
microscope.
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METALLURGY OF VIRGIN MATERIALS

In all cases, the visual inspection of target surfaces revealed
a distinctive rolling pattern characteristic of plate or sheet
material. All aluminum targets exhibited approximately the same
hardness levels of 87-95 Rockwell H, consistent with v lues for a
fully annealed 2024-0 alloy. The hardness of the 3.175-mm-thick
steel measured approximately 60 Rockwell B (107 Brinell), a value
representative of a hot-rovlled or aunealed low-carbon steel. This
was verified by an inspection of the microstructure, which consisted
almost entirely of fine, equiaxed ferrite grains indicative of a
very low (less then 0.1%) amount of carbon. However, two hardness
values, 74 or 96 ckwell B (135 or 216 Brinell), were measured on
different 6.35-r .hick steel plates, which were also differentiated
by the coloring o. the oxide coating on the surfaces (bluish-black
for the steel with the lower hardness and reddish-brown for the
other). The mizcrostructure of the former consisted of fine, equi-
axed ferrite grains plus lamellar pearlite colonies consistent with
about 0.2% carbon level, while the microstructure of the second con-
gisted almost entirely of lamellar pearlite colonies with small
amounts of ferrite along the prior austenite grain boundaries. A
spectrographic analysis of the gsecond material identified it as
either SAE IN53, 1060, 1064, or 1065 composirion carbon steet.

RESULTS AND DISCUSSION

The nomenclature adopted in defining the gecmetric and kinematic
parameters involved in the oblique impact. tests is indicated in Fig-
ure 9. The results for the low-velocity shots utilizing uninstru-
mented proiectiles are presented in Table 1, while the data from the
powder gun experiments, which for the current serles of tests
involved only solid strikers, are summarized in Table 2. Runs C-l
to £-49 were executed with bullets sprayed with the sclid £film
lubrizant, while the strikers amployed in Runs C-50 to C-121 were
coated with copper. Whenever feasibie, hoth i{nitial and terminal
velocities in the powder gun experiments were determined from the
camera data. A representative series of photographs featuring the
60-degree cylindro-conical hard-steel projectile is shown in Figures
6-12. A sequence of impacts with the blunt striker of the same
material is portrayed in Figures 13-20, and a set of plctures show-
ing the results of collisions with a blunt 2024-0 aluminum cylinder
are exhihit-Ad in Figures 21-25. The photographs presented are
l1imited to impacts at normal incidence and 40-degree obliquity for
reasons of space; both mild steel and soft aluminum tarpets were
involved with initial velocities ranging from 300 to 920 m/s.
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FIGURE

NORMAL

INITIAL VELOCITY
FINAL VELOCITY (AFTER PENETRATION)

INITIAL OBLIQUITY ANGLE
FINAL OBLIQUITY ANGLE

= 0; - Gf = THE RELATIVE ANGLE BETWEEN THE FINAL
AND THE INITIAL OBLIQUITY ANGLE

Nomenclature Relating to Oblique Tmpact
of Projectiles on Plates.
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FIGURE 6. Photographic Sequence for Run No. C-52.
Total time interval: 243.4 us,

‘?’?

FIGURFE. 7. Photographic Sequence for Run Nn, C=55.
Total time interval: 248.9 ua.
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I PICURE 8. Photographic Sequence for Run ho. C-86.
Total time interval: 99.9 us.

T A A .. W -

FIGURE 9, Photographic Sequence for Run No. C-92,
Total time interval: 98.2 us.

S CA &4 3 A4 7 2 4 EmE» .
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FPIGURE 10. Photographic Sequence for Run No. C-75.
Total time interval: 150.0 us.

FTIGURE 11. Photographic Sequence for Run No. C-60.
Projectile embedded; total time interval:
244 .8 us. Gaa check detaches from striker
back.
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FIGURE 12. Photographic Sequence for Run No. C-73.
Total time interval: 125.0 us.

FIGURE 13. FPhotographic equence for Run No. C~106.
Total time interval: 245.9 us.
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FIGURE 14,

FIGURE 15.

NWC TP 6479

Photographic Sequence for Run No. C-1l4.
Total time interval: 125.0 us.

Photographic Secuence for Run No. C-108,
Total time interval: 245.0 us,

29
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FIGURE 16. Photographic Sequence for Run No. C-109.
Total time interval: 244.4 us.

FIGURE 17. Photographic Sequence for Run No. C-98.
Total time interval: 147.2 ug.
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FIGURE 18, Pherographic Sequence for Run No. C-118. {
Tot.al cime interval: 124.7 us.

FIGURF 19, Photographic Seauence for Run No. C-115.
Total time interval: 149.9 us.
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u‘ FIGURE 20. Photographilc Segueiice for Run No. ¢-112. -

l Total time interval: 1745.6 vs.
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“ FIGURE 21. Photographie Secuence for Run Re. C-10%.
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PIGURE 22. Photographic Sequencc for Run No. C-110.
Total time interval: 174.9 us.

PIGURE 23. Photographic Sequence for Run No. C-11).
Projectile embedded in target, but produced
petals and sheares! out a plug; totsl time
interval: 173.6 us.
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FIGURE 24. Photographic Sequence for Run No. {-104.,
Total time interval: 124.7 us.

FIGURE 25. Photographic Sequence for Run No. C-101.
Total time {interval: 148.9 us.
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The impact shown in Figure 14 resulted in a dual fracture of the
striker, while those presented in Figures 18 and 19 shattered the
proiectile completely. The normal collision portrayed in Figure 1l
resulted 1in perf-ration of the plate by the projectile tip with
embedment of the body, while that shown in Figure 16 embedded the
striker in the plate with ne piercing of the distal side, but only
the appearance nf a bulge in the form of a portion of a sphere with
a circnlar boundary in the original target plane.

All alumiaum cvlinders were deformed by the targets in varying
degrees, dependinsg on impact velocity, plate material, and target
thickness. Principal deformation modes included mushrooming and
significant shortening, with occasiovnal severe fracturing. Fig-
ure 23 portrays the interesting situation where the projectile did
not pass thirough the fairly thick aluminum target, yet produced both
a separated plug and petals., Figure 25, on the other hand, depicts
the case where the projectile both mushroomed and collapsed, shat-
tering small pleces of target and striker over a wide region beyond
the initial plate positicn.

Figures h-25 permit a comparison of the effect of target mate-
rial, target thickness, ard fnitial wveloclity at the two angles of
incidence chosen. In general, more debris is produced at higher
velacities on the same target, as evidewt from the pairing of Fig-
ures 7 and 8, 13 and 14. and 17 and 18, respectively. An examina-
tion of Figures 6 and 7 shows that wore debris is produced in the
cane of the steel target as compared to aluminum, and that the
former exhibits a cloud only on the distal side. In general, this
situatfioan also prevails with increzse in thickness of a given mate-
rial at a specified impact velocity, as documented hy the pairing of
Figures 8 and 9, and 13, 15. and 18, respectively, unless the pro-
jectile was embedded (Figure 16). These conclusions apply regard-
less of the angle of obliquity. As exvected. the nouse share
produced significant differences in the pernetration phenomenon only
near the ballistic 1iwmit. Figures 11 and 23 are considered to
represent conditions just below the tallistic limit, while the
¢vents portraved in Figures 24 and 25 are believed to correspond to
iniltial velnsities barely above this limit.

Figure 26 presents a sequence of photosgraphs for the impact at
30-degree obliquity of a hard-stcel cylindro-conical projectile on
a 2,175-mm-thick 2024-9 aluminum target at an ’‘nitial veloclity of
160 m/s taken at a rate of 10" frames/s. This set, which clearly
shows the change in projectile directior toward the plate normal, 1is
not suitable for analysis bavond jaitial and terminal velocity meas-
urement, since the nose, whose length is 12,7 mm and which is
responsihte for the change of proiectile direction, passes trrough
the target in less than one frame. 1In order to provide a
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FIGURE 26. Film Sequence at 30-Degree Obliﬂuity for Run No. B-4]
from Framing Camera. Rate: 10 pictures per second.
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FIGURE 26. (Contd.) =
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_ FIGURE 26. (Contd.)
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reasonable history of this angular change say of the order of 12-16
frames, it would be necessary to record t.. =vent at a rate of ahout
150,000 frames/s. g

Two special series of tests were conducted to ascertain the bal-
1istic 1imit of 3.175 mm thick 2024-0 aluminum targets when struck
by both blunt and 60-degree conically headed projectiles at normal
incidence, and to note the initiation of cracking in 3,175~ and
1.78-mm plates of this material. The results are presented in
Table 3 for two different masses of each type of striker. The bal-
listic limit for the 37.7-g blunt and 37.}1-g cylindro-conical pro-
jectiles was 87.8 m/s8 and the range was 82.3 to 88.4 m/s,
respectively; in the second set of experiments, the projectiles
protruded about the same amount over the velocity regime indicated.
The ballistic 1limits for blunt and cylindro-conical strikers with
the same mass of 28.9 g were found to be 105.2 m/3 and 94.8 m/s.
Other ballistic limits are shown in Figure 27. Some of tnese (and
succesding) data points reprecent merely non-perfocration (i.e.,
velocities at or below the ballistic 1limit).

The variation of the non-dimensional velocity drop (Vi - Vf)/vi

as a function of angle of incidence {3 portrayed in Figures 28
through 31 for the Impact of the cylindro-conical proiectile on

3.175- and 6.35-mm-thick aluminum and mild steel targets for various
initial velocities. 1In spite of substantial scatter, particularly
near the two extreme limits of the ordinate, the general trend of
these curves 1s concave upward, with a minimum value exhibited in
the range from 20 to 30 degrees at the hizher velocities. The scat-
ter of the data 18 due to deviations in position determination of
the projectile occasioned bhoth by further velocity reductions beyond
the iast Kerr cell photograph 1f recorded while the projectile was
still passing through the plate, and by inherent scaling and meas-
urement errors as well as yaw. The non-dimensional velncity drop
occurring in blunt steel projectiles impacting aluminum and in blunt
aluminum projectiles striking both types of targets at various
velocities and normal inclidence is depicted in Figures 32 and 33 as
a function of target thickness, while that for blunt steel strikers
impacting both at normal incidence and at 40 degrees obliquity oun
steel targets 1is shown in Figure 34 1n similar fashion. Obviously,
greater target depths generate substantial increases in the velocity
difference, with greater effects at lower velozities, but the angle
of incidence within the range covered here appears to play a second-
ary role in the diminution of the projectile speed. Considerable
uncertainty exists concerning the exact valves of the ballistic
limits, in view of substantial scatter of thte data as may he noted
by inspection of Figures 28 and 31. This parameter is siznificantly
affected by even the slightest yaw; both the blunt and cyiindro-
conical projectiles exhibit different geomelLs/ics at impact as the
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TARGET PROJECTILE
D 3176 mm ALUMINUM CYLINDRO-CONICAL
- QO 3176 mm MILD STEEL CYLINDRO-CONICAL
V 835 mm MILD STEEL CYLINDRO-CONICAL
& 12.70 mm ALUMINUM BLUNT STEEL
a 19.06 mm ALUMINUM BLUNT STEEL
1000 B O 19.06 mm MILD STEEL BLUNT ALUMINUM
900 -
800 |—
700 —
£ 600 |— x
=
z
-l
o 600 [~
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400 —
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300 P-
200 -
WA
g - A et
100#—-———& -y
0L111111!L11__:
0 10 20 30 40 50

INITIAL OBLIQUITY 3'-, DEG

FIGURE 27, Ballfatic T.im{t aq a Functinn nf Tnitfal Obliquity fo,
Various Projectile-Target Combinations,
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FIGURE 28. Non~Dimengional Veloncity Drop as a Function of Ianitial

Obliquity for 3.175=-mm=Thick 2024-0 Aluminum Targets
Struck by Cylindro-Conical Projectiles.
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FICURE 29. Non-Dimensional Velocity Nrop ae a Function of Initial
Obliguity for 6.35=-mm=Thick 2024-0 Aluminum Targets
Struck by Cylindro-Conical Projectiles.
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FIGIRE 30. Non-Dimenaional Velocity Drop as a Function of Initial
Obliquity for 3.175-mm=Thick Mild Steel Targets Struck
by Cylindro-Conical Projectiles.
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FIGURE 31. Non-Dimensional Velocity Nroo as a Function of Initial
Obliquity for 6.35-mm=Thick Mild Steel Targets Struck
by Cylindro-Conical Projectiles.
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FIGURE 32. Non-Dimensional Velocity Drop as a Function of Plate
Thickness for 2024-~0 Aluminum Targets Struck by Blunt

Hard-Steel Projectiles.
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FIGURE 33, Non-Dimensional Velocity Nrop as a Function of Plate
Thickness for Varfous Targets Struck at Normal
Incidence by Blunt Soft Aluminum Projectiles.
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result of such motion. However, as shown in Figure 27, an increase in
obliquity for tha same t:.rget-projectile combination results in only a
slight increase in this 1limit, which can be linearly related to
obliquity for thin, soft targets. Furthermore, the ballistic limir of
a mild steel target for a cylindro-conical steel projectile impact was
about double that for a 2024~0 aluminum plate.

The final projectile direction, 8¢, has been plotted in Fig-
ures 35-38 as a function of initial obliquity, 6y, for the perfora-
tion of 60-degree cylindro-conical projectilee fired at various veloc-
ittes against 3.175 and 6.35-mm-thick 2024-0 aluminum and mild steel
targets, respectively. The first of these shows a significant concave
upward trend at the lower velncities, indicating the larger changes in
direction with increase in initial obliquity. The plots exhibit a
nearly linear relationship for the higher initial velocities encom-
passed there; a threefold decrease in velocity for the thicker alumi-
num target reduces the final obliquity by about 8 degrees for an
initial angle of incidence of 50 degrees. The data in Figure 38,
encompassing velocities differing by 3:1, are the only information
obtained that can be well represented by a single linear relation.
This set of results applies to targets affording the greatest resis-
tance to penetration at chliquity employed in the current investiga-
tion. A crossplot of this informatioun for these targets in terms of
the deflected angle, A8, is shown in Figures 39-42. The results
plotted for the change in obliquity, 28, shown in Figures 39-42, are
expected to exhibit a substantial amount of scatter in view of the
senaitivity of the dependent variable on slight errors in measurement.
In particular, the data presented in Figure 41 1llustrate the degree
of this scatter to the point where the experimental information can
not even be deplcted by a pattern.

Representative terminal target configurations are shown in Fig-
ures 43-60. 1In gencral, the conlcally headed projectile produced
petalling of the frarget, while the blunt aluminum and steel strikers
generated plugs. Plugs produced by the soft, blunt projectile were
generally hemisphericel in shape, with a curved rear surface matzhing
the mushroomed deformed front portion of the projectile. Plug masses
increased with target thickness, hut the previously noted decrease in
the central plug thickness to an asymptote with increasing impact
gpeed for tests involving normal impact of hard-steel spheres (Refer-
ence 2) could not be totally verified in the present sequence of tests
since efforis weie not concentrated on this feature. A special and
inctensive {nvestigation 1w i1equired for an evaluation of the plug mass
and dimensional variations with striker speed. The sharp-nosed pro-
jectiles frequently extibited & small permanent deformation of the tip
in the ricochet direction under oblique impact conditions againet the
thicker steel targets. The perforation phenomenor for Rur C-111 (Fig-
ure 6]) was highly unusual in that the emhsdaent of the projectile
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FIGURE 43, Embedment of Cylindro-Conical Steel

Projectile 1in 3.175-mm-Thick Mild
Steel Target. (Run B-45)

produced a perforation that resulted in both petalling and plug for-
mation. The general pattern of target damage in numerous instances
is comparable to that observed in an earlier investigation involving
the perforation of various metallic plates by hard-steel spheres.
For blunt projectiles at normal incidence, rings were separated from
the target, primarily on the exit side, leaving the perforation dia-

ST R

',",: meter generally larger on the distal than on the impact face.

‘}: Figure 43 shows the embedment of a cylindro-conical striker in a
‘ nild steel target fired at normal incidence, while Figure 44 ghows
~ both surfaces of a thicker aluminum plate subjected to normal impact
- of a blunt steel projertile that produced perforation and embedment.
s Figures 45 and 46 portray the damage generated at low velocities by
- a cylindro-conical striker in the same aluminum target at obliquity;
. significant petalling 18 produced with the portion of the periphery
. in the direction of final projectile motion flattened out to form a
A 11p. Damage to a thicker target of this material by the same bullet

fired at or near normal incidence at a higher velocity is signifi-
cantly less, as shown in Figures 47 and 48. 1In the first photograph
the distal side of the crater is characterized by a serles of serra-
tions, while embedment is accompanied by a large number of small
petals on the impact side flattened against the target to produce a
leaf-1ike appearance. Figures 49-54 show the distal side of the

-p ¢ & e o
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(b) NDistal Side.

Impact of 39.7-g, 12,7-mm Diameter Blunt Hard-
Steel Projectile on 12,7-mm~Thick 2024-0 Alumi-
num Plate at 184.2 m/s and Normal Incidence.
Projectile perforated and embedded in the target,

FIGURE 44,
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Distal Side of a 3.175-mm=Thick Aluminum
Target After Perforation by a Cylindro-
Conical Steel Projectile. (Run B-35.)
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FIGURE 46. TNistal Side of a 3.175=mm=Thick Aluminum Tar-
get After Obllque Perforation by a Cylindro-
Conica) Steel] Projectile. (Run B-36,)
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FIGURE 47,

NWC TP 6479

(a) Impact Side.

(b) Distal Side.
Impact and Distal Sides of a 6.35=-mm=Thick

Aluminum Target After Oblique Perforation by
a Cylindro-Conical Steel Projectile. (Run C-9.)
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FICURE 4R,

NWC TP 6479

(a) Impact Side.

(b) Distal Side.

Impact and Distal Sides of a 6.35-mm=Thick M{ild
Steel Target Struck Ohtiquely by a Cylindro-
Conical Steel Projecttle. (Run C-60.)
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FIGURE 49,

NWC TP 6479

(b) Distal Side.

Tmpact and Distal Sides of a 3.175~mm~Thick
Aluminum Target After Obifque Perforation of s
Cviindro-Canfcal Steel Projectile. (Run C-67.)
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FTGURE S1. DNistal Side of a 3.175-mm=Thick M{1ld Stee)
Target After Oblique Perforation by a Cylindro-
Conical Steel Projectile. (Run C-8.)

FIGURE 52. Distal Side of a 6.35~mm=Thick Steel Plate
After Obl{ique Pertoration by a Cylindro-
Confcal Sceel Projectile. (Run C-44.)
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- (b) Distal Side.
- FIGURE 53, TImpact and Distal Sides of a 3.175-mm=Thick Mild

Steel Plate After Oblique Perforaiion by a
Cylindroc-Conical Steel Projectile. (Run C-39.)
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PIGURE 54. Distal Side of a 6.35-mm=Thick Steel Target
After Oblique Perforation hy a Cylindro-
Conical Steel Projectile. (Run C-93.)

FICURE 55. Distal Side of a 6.35=mm~=Thick Aluminum
Target Aftcr Normal Perforatior by a Blunt
Steel Projectile. (Run ©-49,)
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FIGURE 56. Distal Side of a 12.7-mm=Thick Aluminum Target
After Normal Perforatinn by a Binnt Steel
Projectile. (Run C-116.)

FIGURE S7. Distal Side of & 6.35~mm=Thick Steel
Target Struck by » Rlunt Steel Pro-
jectile. (Run C-118.)
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! Target After Normal Perforation by a Blunt
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(a) Impact Side.

(b) Distal Side.

FIGURE 60. Impact and Distal Sides of a 6.35=mm=Thick
Steel Target After Normal Perforation by a
Blunt Aluminum Projectile. (Run C-104.)
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targets perforated by the conical striker with increase ir target
resistance, initial velocity, and angle of incidence: the same
pattern is observed as previously described.

Perforatfon of two sizes of aluminum targets shown in Figures 55
and 56 was caused by normal impact at high velocity of a blunt steel
projectile that remained intact. For the same conditions involving
steel targets, the projectile shattered, as shown in Figures 57 and
58. The crater edges of the steel targets on both impact and distal
sides are somewhat more regular than for the case of aluminum.
Finally the use of an aluminum projectile with a blunt front pro-
duced a severe crater distortion, as shown for two of the higher
velocities employed in Figures 59 and 6(). Concomitantly, the pro-
jectile is snccessively shortened and mushroomed as the velocity
increases. This can be seen in Pigure 6la which shows severely
mugshroomed aluminum projectile embedded in a thick aluminum target.
A combination of plugging and petalling processes resulted from this
particular high-speed impact, as seen in Figure 61b.

The perforation geometry becomes more oval as the obliquity
increases. The major diameter of selected runs, incorporated in
Table 2, ranges from 17.8 to 28 mm for angles of incidence upward of
30 degrees. Exceptionally, Run C-121 exhibits a major diameter of
33 mm, resulting in an aspect ratio of 2.6 for the elliptical
perforation produced by this 4G-degree shot.

Central contours of the distal surface of some representative
aluminum targets were obtained by means of the profilometer and are
shown in Figure 62a through c. The difference in petal height is
graphically i11lustrated for impact at obliquity in the firsc two of
these diagrams, while the essentially symmetric pattern for normal
impact 1is portrayed in diagram 62c. Figure 62d shows the succes-
sively larger deformation of an aluminum plate as the impact veloc-
ity of the cylindro-conical striker {8 increased, with the highest
impact speed generatiag significant cracks detectable even in this
crude fashion.

Target damage for some of the special tests 1s shown in Fig-
ures 63 through 66. The first of these photographs depicts the
damage on the distal side of 3.175-mm-thick aluminum targets as the
velocity of the sharp-pointed striker striking at normal incidence
13 successively decreased. An anomaly is found in part 63b of this
composite, which shows substantially more damage than that created
at slightly higher collision speeds. The explanation for this can
only be surmised, but may be due to local inhomogeneities (or weak-
nesses) in the target, experimental errors in initial velocity
determination, or slight deviations from normality {in the case of
part a of Figure 63, Figure 64 shows both sides of the plate for
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(a) Impact Side.

(b) Distal Side.
FIGURE 61. Impact and Distal Sides of a 19.05-mm~Thick

Aluminum Target After Normal Impact by a
Blunt Aluminum Projectile. (Run C-111.)
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PIGURE 62. Central Contours of Perforated or Deformed Targets.
(a) 6.35-mm-thick aluminum target struck at 30 degrees by
cylindro-conical projectile at 930 m/s (Run C-79).

(b) 3.175-mm~thick aluminum yarget struck at 40 Degrees by
cylindro-conical projectile at 613 m/s (Run C-73).

(c) 6.35—mm~-thick aluminum yarget struck normally by blunt
aluminum projectile at 918 m/s (Run C-105).

(d) 3.175~mm-thick aluminum targets struck normally by
cylindro-conical projectile: (1) initial velocity 61 m/s {FRun
D-7); (2) initial velocity 46 m/s (Run D-9); (3) initial
velocity 42 m/s (Run D-10).
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(a) vg = 90.2 m/s (Run D-5).

(b) vo = 87.8 m/s (Run D-6).
FIGURE 63. Distal Side of a 3.175~mm-Thick Aluminum

‘ Target for Various Normal Impacts by a
! Cylindro-Conical Hard Steel Projectile.
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(¢) vo = 60.7 m/8 (Run D-7).
(d) vy = 45.7 m/s (Run D-9).

(Contd.)

FIGURE 63.
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(a) Impact Side.

(b) Distal Side.
FIGURE 64. Impact and Distal Sides of a 3.175-um~Thick

Aluminum Target Due to Normal Impact by a
Cylindro-Conical Steel Prolectile. (Run D--8.)
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FIGURE 65, Distal Side of a 3.175-mm-
Thieck Aluminum Target Due
to Normal Impact by a
Hemispherically Tipped
Projectile. (PRun D-30.)
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en impact that just barely produces surface cracks on the distal
face; the impact side exhibits the typical series of regular smell
rectangular petals composed of the metal removed by the indentation
also noted in the vast majority of similar collision situations, , ¢
The hemispherical hulge and circumferential shearing discontinuity
of a cap that would be separated at 3lightly higher velocities,
produced by a hemispherically tipped projectile striking normally at
gubstantially higher speeds than in the case of Figures 63 and 64,
i8 clearly shown in Pigure 65. This configuration 1is identical to
those cited in Reference B and dramatically fllustrates the higher
perforation efficiency of a sharp-pointed bullet in the vicinity of
the ballistic 1limit. Figure 66 shows incipilent and actual c¢racking
in a similar set of impacts on a thinner aluminum plate. A novel
fecture of thig group of figures is the presence of a bulge with a
circular circurference in terminal configurations representing
incipient petal formation; this hemispherical cc.tour disappears at
higher {mpact speeds for both sharp and blunt - rojectiles striking
at normal 1incidence wher either petal urmatl-.n or plugging has
reached a stage of maturity.

At lower velocities achievable with the pneumatic gun, plugs
were produced only by the impact of blunt projectiles. The mass of
the buttons separated in the ballistic limit determinations listed .
in Table 3 was of the order of 0.9 to 1.0 g. A: the higher veloci-
ties of the powder gun, plugs were also generated by cylindro-
conical projecriles. Table 4 summarizes both proje-tile and plug
data for certain selected high-speed runs. The mass of the recov-
ered central portion of the hole, or “plug,” does not urually cor-
resprond to the total mass of the target material removed. Rings and
gmall petals spalled from the distal side of the target tha't could
most frequently not be recovered. At the " {gher velocites, petals
generated by cylindro-conical projectiles not infrequently sepcrated
from the plerced target. At these speads, the blunt hard-steel pro-
Jectiles burst frequently into fragments and alvu caused fragmenta-
tion of the harder targets in a number of instances. The blunt
aluminum projectiles shortened and mushroomed under all impact
conditionsa.

Figures 67 through 72 are photographes of the projectiles, plugs,
ard a few other target components; Table 4 contains associated
information. These data may be valuabie for pnrposes of comparison
with possible future analytical predictions of penetration involving
both hard, brittle, or deformahle projectiles agalnst targets of
this type, hoth &t normal incidence and at obliquity. No phenomeno-
logical nodel of cylindrical or cylindro-conical pz2neriation or per-
foration has been developed thus far other than tor rorual
jnecldence.
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FIGURE 67. (Contd.)
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FIGURE 63. Profe :tile, Plug, and VYeripheral Taryet Feag-
met ’hotographs of Runs C-112 and C-101,
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(Contd.)

FIGURE 68.
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RUN C-104

FIGURE 69. Projectile and Plug Photographs for Runs C-104,
C-105. and C-106,
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' FICURE 70. Prolectile and Plug Photozraphs for Runs C-107,
. c-108, c~-112, and C~113,
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> RUN C-112

FIGURE 70. (Contd.)
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FIGURE 71. Projectile and Plug Photographs for Runs C-115,
c-116, C-118, and C-120.
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FIGUFRE 71. (Contd.) ]
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FIGURE 72. Projectile end Plug Photographs ror Runs C-119 |
and C-121,
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; FIGURE 72. (Contd.)
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R Two force histories measured with the special projectile are

o~ presented in Figures 73 and 74 for the shank embedment and complete
A perforation, respectively, of a 60-degree conically headed steel
projectile striking a 3.175-mm~thick 2024-0 aluminum target at

normal incidence. The curves are nearly identical in shape and peak
!' . value, differing only slightly in overall duration and the extent of
@g the inflection during the rising portion of the curve: the initjal
T velocities also differ by only about 4 percent. The process up to
-{ the inflection point represents the penetration process up to the
-~

onset of fracture, consisting of striker indentation and target
deflection due to hending and shear. The suhsequent increase in
force to the peak value 18 due to the enlargement of the initial
protrusion accompanied by crack extension and further bulk deforma-
tion of the target. The reduction in the force occurs when the
resistance to the motion of projectile decreases, most likely begin-
ning at the instant of the emergence of the shank. This period is
somewhat shorter than the rising portion, approximately 40 percent
of the total impact duration.
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A comparison of these force curves with that generated by the

i perforation well above the ballistic limit of a 1.27-mm-thick 2024-0
aluminum plate by a 39.4 g hemiapherically-nosed cylindrical steel
projeciile of 12.7-mm-diameter shows major similarities in the
shape, but some difterences (Reference 8). The former data were
obtained under conditions of plugging, whereas the present {informa-
tion pertains to processes involving crack proragation and petal
bending. In consequence, a second knee occurs in the descending
portion of the force curve for the hemispherically nosed striker
that 1s attributed to a small amount of additional plate deformation
after initial separation of the plug from the target and projectile,
Furthermore, the initial discontinuity during force ascent 1s
attributable to the initiation of shearing of the plug instead of
the present onset of cracking on the distal side. The rise time of
this curve is anproximately cre-third of the overall duravion,
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N Since the principal information obtained in this serfec of tests
concerns the drop in velocity and change in direction of the projec-
B tile as the result of target impact, the errors to he expected in

oo the data will be egstimated. The initial velocity was determined
Loth by the signals generated from the interruption of light beams
traversing the terminal end of the gun barrel and from measurements
of the projectile position in the photographic data. Agreement
between these two modes was generally satisfactory, f.e., within

2 percent; however, ir some instances, substantial differences were
found. These can be attributed to (a) spurious early triggering of
the photocells due to the advance of combustion products ahead of

- the projectile, () planar recording of a three-dimensional event,

’ go that slight yaw would Iintvnduce a digrrepancv, estinated at no
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FIGURE 73. Porce History, Normal lmpact of 30,5-g, 12.7-mm-
Diameter Hard-Steel Projectile on 3.175-mm-Thick
2024-0 Aluminum Target, Velocity 94.6 m/s. Result
e wan embadment of shank,
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Diemeter Hard-Steel Projectile on 3,175-mm-Thick
2024-0 Aluminum Target, Velocity 98.5 m/s. Result
was complete perforati »n.
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more than 5 percent, and (c¢) difficulties in the photographic
results of identifying a common position reference for all pictures
of a set, requiring some adjustments. The last two problems alsc
apply to the evaluation of the terminal velocity. In consequence,
the photographic results were utilized whenever a discrepancy was
noted. In addition, there were alignment errors in the positioning
of the target relative to the gun and camera and in measurement of
the terminal trajectories from the witness papers. It is estimated
that the maximum error in absolute quantities did not exceed 5 oer-
cent and was generally much better. However, parameters involving
differences of quantitieg with nearly identical magnitude might evi-
dence a substantially greater error. Hence caution should be
utilized when examining the angular variation in the prolectile tra-
iectory and the non-dimensional velocity drop in the vicinity of the
ballistic limic.

METALLURGICAL ANALYSIS OF TARGET IMPACT REGINNS

Target plates from six different tests (C-5, C-i8, C-48, C-~1i0,
C-122, and C-124, Table 2) were subjected tc metallurgical anelysis.
These particular tests were considered to be reprecentative for nor-
mal incidence of the impact conditions e¢ncountered in this waperi-
mental program. This group included two impacts that resulted in
embedment of the striker, one ricochet, two impacts ecach by conical-
nosed steel, blunt steel, and blunt aluminum proierctiles and impacts
involving a range of projectile speeds (305-9i5 m/8) and against
several different targete (6.35-mm~thick ateel, 6.35-, 12.7-, and
19.05-mm-thick aluminum). Unfortunately, due to time constraints,
only one oblique impact could be exemined, hut rhe one chosen was
considered to be one of the more Iinteresfing ir the group.

The vast majority of the impacts 4n tne entire series resulted
in the perforation of the target, and the recovery of ejected target
material was thus only a secondary objective of the experimeat.
Consequently, a complete set of ejected iarget fragments was recov-
ered only where residual (exit) projectilc speeds were low or where
target ejecta occurred in the form of one or, at the moest, a few
large plug fragments traveling at small angles to the original
flignt path. As a result, a metallurglcal examlnation of the eutire
target zone affected by the impact could nntL Ye carried out for wany
shots involving tarszet perforation. Instead, the failure patterns
in the regions adjacent to the perfocation hole were closely exam-
ined in these cases in an attempt to identify the probable Fallure
processes in the central impact region.

The perforation of targfet plates bv projectiles (particularly
blunt or rounded ones) usually involves punching out a whoje or
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fragmented plug of target vaterial (Reference 1), The formation and
ejectior of this plug result from shear failures that initlate along
or near the boundary of the impa~t surface. During impact, these
shear fallures are often caused by the initiation and propagation of
very narrow 2ones of intenge piastic deformation within the target,
typically 10-30 microns wide. These localized bands of deformation,
termed concentrated or adiabatic shear bands (References 17-19), are
the result of large temperature gradients that occur in bodies
loaded at very high strain rates when the rate of local heat produc-
rion by mechanical work exceeds the rate of dissipation. These tem-
perature gradients result in isolated hot spots in the body where
thermal softening of the material, yielding, and eventually failure
can injtiate. Once started, these tiny yleld zones propagate out-
ward 1n narrow bhands along directions of maximum shear stress pro-
pelled by the sane heating/softening/ylelding sequence that con-
tinues to develop aleng the boundaries of the yielded zone. When
fully formed, these zones become planees of weakness where fracturing
can take place.,

Among the six targets examined metallurgically, only the 6.35-mm
high-carbon steel contained concentrated shear bands in the impact
region, as shown in Figures 75 and 76. Based on the number «f bands
fcund in the wall adjacent to the perforation hole, it is highly
probable that the plugging perforation process associated with the
{mpact of a Llunt cylinder resulted from the formation of and fail-
ure along concentrated shear bands. In this same target, additional
material in the shape of a ring was also torn away around the edges
of the distal side of the hole. The removal of thig peripheral
material involved delamination of the plate, a phenomenon termed
“gscabbing” (Reference 1), which occurs in metais and alloys that
have been formed by rolling processes. Thls rocess tends to pro-
duce grain and impurity orientations that -ru retained in varying
degrees afier subsequent heat treating or:ratioms and result in a
laminated material containing zones of r.cakness (Reference 20),
Plate materials typically acquire planes of weakness parallel to the
main surfaces. For the particular impact shown in Figure 75, shear
displacements oncurred along these planes in and arouund the impact
area causing delamination of the rnaterial there. A ring-like pilece
of this delaminated material t'cn became detached from the distal
gide by the impact process 1caving a crystalline-appearing fracture
surface along the o' ter perJphery. Figure 77 shows a magnified view
of the microstructure alccy the boundary of this fracture surface.

A few bands of coicentrated shear were found in the same target
material when struc’s by a conical-nosed projectile at a 30-degree
angle of obligquit -, as shown in Figures 78 and 79. Although these
clearly did not dominate the fracture process 1in this s{tuation,
thelr prescnce demonstrates the sgusceptibility of this particular
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FICURE 75. Section View of One Side of the Crater
in a 6.35-ma Steel Target Perforated by
a 12.7-mm Blunt~-Ended Steel Cylinder
Initially Traveling at 883 m/s. Pene-
tration path shown by arrow. (Run C-48.)

target material to localized shear deformations. Target fractures
in this instance appeared to take place largely by petal formation.
Some delamination along one side of the perforation hole also
occurred which involved both shear and tensile modes of separation,
the latter dominating in this instance.

The remainder of the targets examined were annealed 2024 series
aluminum. Two contained an embedded blunt aluminum projectile,
shown in Figures 80 and 81, the second of which had mushroomed upon
impact. The other two were perforated by hard-steel strikers, one
blunt-nosed (Figure 82) and the other conical-tipped (Figure 83).
All of these targets were characterized by the complete absence of
concentrated shear bands around the fimpact region. Although the
wall adjacent to the central impact zone in one target (Figure 82)
appeared very similar to that seen in the steel target shown in
Figure 75, shear failures in that location did not involve the prior
formation of shear bands. Instead, they looked more like the duc-
tile shear fallures presented in Figure 84 that are responsible for
plugging perforations of low-carbon or ductile steel targets (Refer-
ence 21). Concentrated shear bands were found along the impact sur-
tace of the blunt aluminum cylinder that had been severely deformed
(mushroomed) within the target, as depicted in Figures 85 and 86,
This may be indicative of the greater degree of deformation experi-
enced by the projectile in this instance and may also reflect dif-
ferences In the initial processing treatments experienced by the
projectile alloy prior to testing compared to the targel material.
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(200x

Micrograph of Brittle-Appearing
Fracture Surface Near the Distal
Side of the Perforation Crater
Shown in Figure 75.

magnification.)

(400x%
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Micrograph of Concentrated
Shear Band Adjacent to
Impact Crater in the Target
Shown in Figure 75.

FIGURE 77

magnification.)

76'

FIGURE

W PRV s VYT CCTHEAy W e PSS Sy ) R S TS CERE e v SEEEER., Ve, %y Ty~ dE.Wre R OB



NWC TP 6479

FIGURE 78. Section View of the Crater in a 6.35-mm-
Thick Steel Target Struck by a 12.7-mm
Conical-Tipped Steel Cylinder at 30 Degrees
- Obliquity and a Speed of 325 m/s. Infitial
-~ penetration path shown by arrow (projectile
’ ricocheted). (Run C-18.)

s

. ::_" FIGURE 79. Micrograph of Fractured
A Concentrated Shear Band
g in the Target Shown in
&, Figure 78. (200X

- magnification.)
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FIGURE 80. Section View of the Crater Formed in a

v 6.35-mm-Thick Aluminum Target Struck

.. by a 12,7-mm Blunt-Ended Aluminum
Cylinder at a Speed of 265 m/s. Pene-
tration path shown by arrow (projectile

. embedded and was subgsequently removed).

l (Run C-122.)
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FIGURZ 81, Section View of One Side
of the Crater Formed in
a 25.4-uym-Thick Aluminum
Target by the Impact of
a 12.7-mn Blunt~Ended
Aluminum Cylinder at a
Speed of 921 wm/s. Pene-
tration path shown by
arrow (projectile embed-
ded and mushroomed).
(Pun C-110.)

Section View of One Side
of the Crater Formed in
a 12,7-um-Thick Aluminum |
Target Yerforated by a
12.7-mm-Diameter Blunt-
Ended Steel Cylinder
Initially Traveling at
594 m/s. Penetration
path shown by arrow.
(Run C-124.)
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FIGURE 83. Section View of One Side
of the Crater Formed in
a 6.35-mm-Thick Aluminum
Target Perforated by a
Conical-Tipped Steel
Cylinder Initially Trav-
eling at 915 m/s. Pene-
tration path shown by
arrow. (Run C-5.)

FIGURE 84. Micrograph of Shear Frac-
ture Adjacent to Impact
Crater in Target Shown in [
Figure 82. (100X '
magnification.)
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.

FIGURE 85. Micrograph of Concentrated Shear Band Adjacent {
to the Impact Surface in a Mushroomed Aluminum
Cylinder Shown in Figure 81. (100X magnification.)

FIGURE 86. Micrograph of Inwa~d Terminus of Concen-
trated Shear Band Seen in Figure 85. (100X
magnification.’
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g CONCLUSIONS
4{ Approximately 200 tests were conducted to determine the velocity
" drop and change in angular orientation of projectiles striking soft
aluminum and mild and medium~carbon steel plates at angles of obliq-
g - uity ranging from normal to 50 degrees over the velocity range from
Y ahout 20 to 1025 m/s. Impacts in the lower speed range were gener-

ated by a preumatic device, whereas those above 200 m/e were
achieved by means of a powder gun, The targets, whose thickness
ranged from 1.25 to 25.4 mm, were clampaed on a 1l4.7-mm-dlameter
ring in a holder whose configuratlion prevented employment of greater
ungles of attack withove th~ certainty of projectile ricochet. The
- strikers were comp.sed of harl-steel or soft aluminum cylinders of
. 12.7 sm noninal dfameter with blunt or 60-degree conical nose shapes
- for the former aad only bluat noses for the latter,

e The balligtic limlr of a 3.175-mm-thick 2024-0 aluminum target

! struck by a4 6U-degreeccylindro-conical steel projectile was found to
' he about 95 m/s at normal incidence; a slight increase in this value
wag noted with increasing obliquity up to 55 degrees. On the other
hand, a 12.7-mm~thirck target of this tvpe struck at 40 degrees by a
blunt steel projectile evidernced a bhallistic limit of 600 m/s,
whereas the limit for the normal lapact of the saie strlker vu a
19,05-mm~-thick plate ot this mate~ial was 305 m/s. The sharp-mosed
projeztile was stipped by a 3.175-mm-thick mild steel target at

195 m/s at normal inctdence., whereas a 19.05-mm—-thick mild steel
plate exhibited a limfit of 905 m/s when struck normally by a blunt
. aluminum prujectile. The final obliquity angle increased more

K. rapidly with inftia}) angle ¢f incidence for 3.175-mm-thick aluminum
targets, hut varied nearly lincazly with this parameter for 6.35-mm-
thick aiuminum plates and both thickaesses fur mild steel. Photo-
. grapias of the c-ater resulting from projectile embedment or perfora-
- tion clearly showed the petalling nature of the phenomenon for

- cylindrical noses and the plug removal, together with a hrittle band
L gseparatica on the distal plate side for hiunt-nnsed strikers, both
H@ at normal incidence. Obliquity completely azlters the petal pattern
: for both types of targets, with petals more frequently shorn from
the target plate for aluminum and a somewhal lar;rer number of distal
side petals at low obliquity just above the balliatic 1imit for

i steel, Large ang'es of obliquity in the lattler material producad

4 lips on the distal side with brittlie fracture «vident on the

.tJ : opposite crater side.

.4{' The irnfriatton of frastuce in thin aluminrum plztes subjected to
B normal incidence hy cylindrically tipped project.iles was carefully
Lf”' studied by glight varlatfon of the initfal velocity. The first evi-
/R dence of deformation was found to be a bulge withcut a crack evident
‘ﬂ? on the distai side; the impact sfde exhibited a venlzal crater.

e
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This vas followed by crack initiation, generally by two sets of

cracks crossing at right angles, that leads to the familiar four- or

five-petal combination at higher velocitles. However, in at least '
one case, a single linear crack was formed at a particular speed.

Symmetry of the bulges and holes generated for normal impact was

established by profilomerer measurement. - 3

In general, the hard-steel strikers remained intact with either
no or slight plastic deformation as the result of plate perforation.
However, at higher impact apeeds with thicker steel targets, these
sometimes broke into a relatively small number of parts., Under
extreme conditionrs, such strikers shattered and only & small portion
of the rearward sections could be recovered. Aluminum strikers
mushroomed as the result of processes quite similar to the genera-
tion ¢f the Munroe jet. Plugs produced by impact of blunt-nosnd
strikers also exhibited some sideways deformation and curved sur-
faces vers frequently noted on both laterzl edges. An urusua) caee
of botn plugging and petalling of an aluminuw tavget struck normally
by an aluminum projectile was noted at a nrigh Inftizl velocity.

The fcorce histories generated by the impact of a striker at nor--
mal incidence on & 3.175-mm-thick 2024-0 aluminum target did not
differ significantly undcr conditions of shank emdbedmeonc .nd com-
plete perforation just above the ballistic limit. It is speculated
that the curves will not siynificantly change at substantially
higher velocity except for rhe gradual disappearance of the knee
found in the rieging pnrtfon =f the curve that 1s attributed to crack
inftiation. Some similarities and some differences zrve obrerveil
between thege curves and thar revorted for a hemispherjcally tipped
cylindrical striker where plugging rather than petalling occurs.

Metallurgical examination of the virgin and periorated Cargets
indicated prefarred orlientations of the matertal, associated with
direction of rolling. which affect the direcrios o7 initial crack-
ing. Substantial evidence of sheur banding due to locallized adia-
batic shaar was ohserved ia both proj=ctiles and tavgets, Propagne-
tion of these zones s considered to he a controlling factor In the
plugging process, whereas pelslling aud the removal of bands from
distal target surfaces represents u tensile fracture phenomenon.
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