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SECTION I

I NTRODUCTI ON

1. LIMITATIONS OF CLASSICAL TECHNIQUES

Pattern recognition is often performed in autonomous hardware by comparing
imagery from an on-board sensor with an ideal or reference image stored in a
memory. Military systems frequently are required to recognize patterns even
though they are slightly different from the reference for which the system was

designed. Signal processing techniques to overcome certain types of distor-
tions in sensed imagery have been described in the literature, Reference 1.
The most common distortions are scale and orientation changes. Classical

matched filters are unreliable unless the reference and sensed objects are very
nearly the same. When the peak signal to RMS noise ratio (SNR) of the correla-
tion function is used as a figure of merit for the holographic matched filter
technique, losses in SNR of 27 db can occur with as little as 2 percent scale
difference and 3.5 degrees of orientation difference, Referapnce 2.

2. THE MELLIN-FOURIER CORRELATION PROCESS

Distortions such as scale changes and rotations of the pattern of the
sensed image may be overcome by using the proper choice of geometrical trans-
formations. Since most scale invariant transformations are not invariant to
translation, the Fourier transform magnitude is sometimes used as the first
step in a pattern matching scheme to achieve shift invariance before the scale
invariant geometrical transformation is performed. The scale invariant trans-
formation is achieved in practice by resampling the original image. This
resampling process causes spatial distortion, e.g. warping, and is therefore
sometimes called space variant. Figure 1 shows the process used to achieve
Mellin-Fourier (scale and shift invariant) correlation between a reference
image and a sensed image. The first step is to calculate the magnitude of the
Fourier transform o? the reference and sensed images. The Mellin transform is
not invariant to object translation, so pattern recognition using Mellin trans-
forms is usual ly done using the magnitude of the Fourier transform of an
object. This technique uses the shift invariance of the Fourier transform to
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provide a centered image for later exponential resampling. The magnitude of

the Fourier transform is equivalent to the diffraction pattern obtained when an
image is used as the aperture of an optical system. This pattern contains no

phase, i.e. position, information, and as a result is invariant to the position

of the pattern within the system field of view.

The next step in the Mellin-Fourier correlation process is to perform the
geometrical transformation necessary to changes in the input image. The geome-

tric transformation used in this research maps the Fourier transform polar
plane into a rectangular plane. The orthogonal axes in the new rectangular

coordinate system are defined as the logarithm of radial distance and the polar
angle in the original Fourier transform plane. These axes are denoted as In

(R) and B. respectively. The quantity R is the radial distance from the zero
frequency, or d.c. term. The natural logarithm of R is used in the transforma-

tion because a multiplicative scale change occurring in the Fourier transform
plane causes a linear shift in the In (R) axis. The quantity 9 is the angle

measured counterclockwise from the horizontal axis. When a Fourier transform
image is mapped using this geometric transformation, a new image plane is

created with each location in the In (R),9 plane corresponding to one or more
locations in the Fourier transform plane. Figure 2 shows what happens in the

ln(R),9 plane when a scale change occurs in the original image. The top image
in Figure 2 is the ln(R),O image generated by a 10 x 10 reference square. The
ln(R),O images below it are sensed images with various scale changes present.

As the scale of the sensed image changes, the pattern in the ln(R),G image

simply translates. Features in the In(R),9 image do not change size as they

would in the Fourier transform image. It is this scale-to-translation property

of the ln(R),9 mapping that is exploited in the scale invariant Mellin-Fourier

correlator.

The final step in Mellin-Fourier correlation is a standard cross correla-

tion calculation performed with the In(R),G reference and sensed images as
inputs. The correlator in this work is implemented with a computer simulation,

and cross correlation is performed using transform techniques rather than by
direct calculation. This technique requires fewer calculations than cross

correlation performed directly. The output of the Mellin-Fourier correlator is

3
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a cross correlation image with a peak value whose X coordinate reveals the

amount of scale change between the reference and sensed images. The Y coordi-

nate of the cross correlation peak gives the amount of rotation difference

between the reference and sensed images. This work is concerned with consider-

ations in sampling the ln(R),S image and the scale invariance expected of a

system using the sequence of operations described in Figure 1. In addition,

the effects of noise added to the reference and sensed images on the shape and

amplitude of the cross correlation image are determined.

3. RESULTS OBTAINED BY OTHER WORKERS

Cassasent and Psaltis, Reference 3, have shown how space variant processors

can be used to perform scale invariant correlation. With their technique,

scale and rotation changes in a sensed pattern were converted into a transla-

tion by use of the logarithmic coordinate transformation described above.

Standard shift invariant correlation methods, i.e., Fourier transform methods,

were then used for pattern recognition of the scaled function.

An analysis performed by Cassasent and Psaltis showed that the spatial

distortion introduced by the logarithmic transformation resulted in increased

space bandwidth requirements. The logarithmic coordinate transformation is

equivalent to resampling an image at exponentially spaced intervals, and the

increase in space bandwidth (number of samples) is caused by the oversampling

which takes place at small values of the input coordinate. Their analysis

considered the increased sampling requirements imposed by a function which

moved partially out of the sampled domain when scaled by a factor A. This loss

of information gave rise to inaccuracies. Space bandwidth requirements were

said to increase by a factor of 5.3 when 100 percent scale change (A=2) was

accommodated, Reference 3.

Analysis done by Anderson and Callary, Reference 4, involved a function

which remained entirely within the sampled domain when scaled by a factor A.

In this case, there were no inaccuracies introduced because the function was

defined to be zero outside the domain of interest, and no information about the

function was lost when scale changes occurred. They showed that the increase

in space bandwidth could be minimized by careful choice of the constants used

5
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FOURIER TRANSFORM MAGNITUDE
SENSED 20 X 20 SQUARE

240-

220-

200

S180

120-

100 ,
so

so

40-

20

0 ,
0 20 40 80 80 100 120

SPATIAL rREQUENCY (CYCLES/rRAME)

Figure 5. Amplitude along a line passing through
the center of the Fourier transform of a 20 X 20
square. Normalized from 0 to 255.
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FOURIER TRANSFORM MAGNITUDE
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Figure 4. Amplitude along a line passing through
the center of the Fourier transform of a 10 X 10
square. Normalized from 0 to 255.

18

" . * . ' . . - ..'. . - . .- , .---V X * -,- .- .- . . . . . . . .



SECTION III

APPLYING OPTIMUM SAMPLING TECHNIQUES

1. EXAMPLES OF OPTIMUM SAMPLING

The Fourier transform patterns in Figures 4 and 5 have been generated to

ill Iustrate the technique of designing a transformation which maps the
Fourier transform space into another space with coordinates R and 0. The

patterns in Figures 4 and 5 represent the magnitude of the Fourier transform

of sqaures of sizes 10 by 10 and 20 by 20, respectively. The Fourier

transform image is represented by a plot of intensity along the center of
the image. Figures 6 and 7 are from the R, 0 mapped images. Study of the
size of the features in Figures 6 and 7 shows that these features change
size and position with the object scale change, just as they do in the

Fourier transform image before mapping. In this case the scale change
encountered is a factor of 2. Figures 80 and 9 are from the in (R),8 mapped
images. Here the features present in Figure 8 simply translate to a new
position in Figure 9; they do not change size. However, new information is

introduced from the right in Figure 9 which was no present in Figure 8.
Distoriton is also introduced in both figures because of th .e many-to-one

mapping that occurs at small values of radial distance in the Fourier plane.

In producing both Figures 8 and 9, the same transformation parameters

were used;i.e. the mapping was goverened by the same set of equations. For

each figure, pixel values in the In (R),8 space were derived from the same
calculated position in the Fourier transform space. With a fixed set of
transformation equations, a scale change causes new information to enter the

transformed image, causing a decrease in the cross correlation peak value.
This difficulty may be overcome by adapting the transformation equations to
map a different region of the Fourier transform plane into the new space.
In Figures 8 and 9, range information was used to choose the size and

position of the annulus in the Fourier transform plane, and the annulus
tracked the region of critical object information over a wider range of
scale change. Of course, spatial resolution in the transformed image will

17
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Fourier plane rather than sampling bandwidth in the ln(R),e plane. It may be
argued that knowledge of range for the sensed image would allow the sensed
Fourier transform to be scaled appropriately, thus making scale invariant
schemes unnecessary. In a practical system, however, range information is
usually only approximate, making the sensed frequency annulus poorly defined.
Range adaptation is valuable because it makes a correlator more tolerant to
errors in size estimates for the sensed image. Evidence of this tolerance is
shown in the examples of the next Section.

16



transform plane. For a sensor with a field of view of 3 degrees, the cutoff
frequencies for a 6 meter object with .5 meter features at a range of 500
meters are

upper frequency - (R tan(F))/S
- (500/.5) tan (3)

- 52 cycles/frame

lower frequency a (500/6) tan (3)

= 4 cycles/frame
The full space bandwidth of the Mellin-Fourier correlation resampl ing system
may then be applied to an annulus between 4 and 52 pixels from the center or

d.c. term in the Fourier transform plane. The transformation equation neces-
sary for optimal resampling may be written in terms of radial distances in the

Fourier transform plane:
R'= In(R) - In(Rmin)

where
min <  R < Rma x

This equation is used to generate sample coordinates in the In(R),8- plane

where the value of Rmin is the lower spatial frequency limit derived for the
specific pattern, 4 pixels, and the value of R extends to the upper frequency

limit, Rmax , of 52 pixels. The region in the Fourier plane that is oversampled
to construct the logarithmic data record does not begin until a radius of 4

pixels has been reached in the Fourier plane, thereby minimizing the over-

sampling that occurs at small values of the Fourier radial coordinate. Since no

data of interest lie beyond a radius of 52 pixels in the Fourier plane, the
sampling that occurs at 52 pixels from the center can be made to just meet the

Nyquist rate.

The analysis above has shown how system space bandwidth may be conserved by
using range adaptation to define the proper annulus in the Fourier plane and

then adapting the transformation equations to map the annulus into the ln(R),e

plane. When range adaptation is performed as a normal part of signal process-
ing, like proper windowing, the space bandwidth requirements of a pattern

recognition system may be expressed in terms of spectral resolution in the

15



relevant information remains within a fixed domain when a scale change occurs,

and only translates, the lower curve shows that sampling requirements in X
space are less severe, i.e., samples are further apart, than if the transforma-

tion equations are left fixed and the upper curve is used to generate sample

coordinates in X space. The number of samples in X' space necessary to meet

the Nyquist conditions in X and still keep oversampling to a minimum at Xmin
determines the space bandwidth requirements of the scale invariant correlation

system. The theory developed by Anderson and Callary makes use of the assump-

tion that no information is allowed to leave the interval between Xmin and Xmax

when a scale change occurs, Reference 9. This means that there are no accuracy

problems such as the ones in the analysis of Cassasent and Psaltis, Reference

10. This is the basis for the savings In space bandwidth claimed in Reference

9.
b. Sample Adaptive Calulation

An example wil l show how range adaptation may be applied to a specific

pattern to derive a spatial frequency filter for use in a Mell in-Fourier corre-

lation scheme. The filter is a window appl ied to the Fourier transform plane,

defining the area to be resampled. The width and boundary values of the

region are determined by the nature of the object to be recognized and the

expected range at which it will be encountered. In the Fourier plane, the

filter specification wil l be two radial values determined from calculatiions

of expected object size in the sensor field of view. The resampling scheme
will then be applied to the region to minimize oversampling in the Mellin-

Fourier correlation. For this example, it is assumed that other sensors have

provided approximate range as R meters, and that the image and Fourier

transform are made up of N x N arrays. If the sensor field of view is F

degrees, then the number of pixels, P, occupied by a feature of size S is

P - (NS) / (R tan (F))
In a reference image, a square feature of size P produces a first spectral lobe

which goes to zero at N/P pixels from the center pixel in the Fourier plane.

The first zero crossing defines a boundary value for the region chosen for

.'esampl ing. Two boundaries of the spatial frequency bandpass may be estab-
lished from estimated object feature sizes in the image plane. The two cutoff

frequencies will then define an annulus of spatial bandpass in the Fourier

14



The sampling In the Fourier transform plane extends over an Interval between

aand 51t# and the samples have a non-unifom spacing along the X axis.

The widest spacing in X occurs at Xmax and the closest spacing occurs at Xmin -

Since the sample spacing in X is most dense at Min, it is best to assure that
this part of the sampling curve has samples in X that are as far apart as

possible if the system bandwidth is to be most effectively used. At the same

time, the interval at Xmax most be no greater than the Nyquist distance in

order to preserve all the information present in the original image. The

slope of the logarithmic curve at Xmax is determined by the Nyquist require-

ment, and the space bandwidth of X' space is largely determined by the slope

of the sampling curve at Xmin.

When Mellin-Fourier correlation is done in two dimensions, the X' axis in

Figure 3 represents the ln(R) axis in the ln(R),e plane. The X axis repre-

sents the radial frequency coordinate, or R, in the Fourier transform plane.

If the chosen region in the Fourier transform plane does not change position
and adapt to the new object spatial frequencies as the object scale changes,

information may enter or leave the annulus defined by earlier size estimates.
The new information appearing in the In (R), e image will cause the cross

correlation with a reference pattern to be reduced. To prevent the reduction
of the cross correlation peak, the chosen region in the Fourier transform plane

must adapt by changing position when a scale change occurs in the object.

Specifically, system space bandwidth may be conserved by using range adaptation

in two ways:

- Using expected object range to select the annulus of spatial frequencies

in the Fourier transform plane over which resampling will be done, and

- Using the analysis developed for minimizing the slope of the resampling

curve at Xmi6 to modify the transformation equations to map the spatial
frequency annulus into the full space bandwidth of the ln(R),B plane.

These steps will assure Nyquist sampling over the chosen region in the Fourier

transform plane, and will I minimize oversampling at the smallest value of the

input coordinate.

a. Adapting The Coordinate Transformation

The upper curve in Figure 3 represents sampling done using a fixed set

of transformation equations in which Xmin - .10. The lower curve represents

sampling done with an adaptive tranformation equation with Xmin = .50. If the

13



SAMPLING IN X AND X' SPACE
DATA COMPRESSION AND DILATION

3.51
,2.5

2

0.5-

0.
0 2 4

XC SPACE SAMPLE POINT
0 LN(X/. 1) + LN(X/.5)

Figure 3. Sample spacing in the Fourier transform
plane, X space, and in the ln(R),9 plane, X' space.
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perfect. In cases where the spatial frequency filter in the correlation plane

includes the center, or d.c., point, the correlation coefficient should be

normalized to the energy in the reference image using the expression

C(XY)- f [S(X,Y') R(X+X',YWY$)]dXdY'

wher 'S(X',Y')12 X'dY'. 6EXY1)1Zd d
where

C(X,Y) - correlation image plane
R(X,Y) - reference image

S(X,Y) = sensed image

X,Y' - coordinates used as dummy variables in

computing the cross correlation

This expression was used for calculation of the correlation coefficient

throughout this program.

2. THEORY FOR EXTENDING THE NORMAL SCALE INVARIANCE

Use of the Mel'lin transform for pattern recognition would seem to require
more space bandwidth, i.e., more samples, than required to obtain the original

reference pattern. A brief analysis of the resampling process will show how

the requirements for increased space bandwidth may be minimized.

The theory developed to make full use of sampling capability is best illus-
trated by an example in one dimension. Figure 3 shows the relationship between

sample spacing in the Fourier transform plane, designated as X space, and
sample spacing in the In (R),e plane, designated
as X' space. The samples in X' space occur at equally spaced intervals of the
variable X. The coordinate transformation that achieves scale invariance is

represented by a curve that follows the functional form

k - In (Xk / Xmin)
where

Xk sample in X space
X'k= kth sample in X1 space
Xmi n - minimum value of spatial

frequencies in Fourier plane

I1
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functions. In one dimension, the cross correlation of two records of length N
results in 2N valid data points. If transform techniques are used to perform

the cross correlation, each Fourier transform computed must be truncated to

one-half its original size before multiplication and inverse transforming.
Otherwise, an effect called cyclic correlation causes errors in the cross
correlation plane, Reference 7. This effect is similar to aliasing, but occurs
in the cross correlation domain instead of the spatial frequency domain.

c. Considerations for Geometric Transformations

The spatial frequency characteristics of the Fourier transform magni-

tude of the input pattern must be considered if system space bandwidth is to be
* used most effectively. The symmnetry of the Fourier transform magnitude may be

used to reduce space bandwidth requirements by taking all samples from the
upper half plane of the diffraction pattern. The upper half plane of the
diffraction pattern contains all of the recoverable shape information about an
object, even though position information is lost. All available space band-
width (sampling capability) should be devoted to this region when the geometric
transformation is done. Only a portion of the Fourier transform plane carries
relevant shape information, and a geometric transformation that adapts to that
frequency band and devotes full resolution to the most relevant spatial fre-

* quencies is most likely to provide the discrimination desired. In this way,
invariance to scale may be extended to cover more than the range obtained with
a transformation which maps over a fixed frequency band.

Previous investigators have designed the polar transformation to oper-
* ate over a fixed spatial bandpass in the Fourier transform plane, thereby

limiting the inherent scale invariance of the geometrical transform, Reference
* 8. Since size information about the expected object is often available, it may

be used to select the most appropriate area in the Fourier transform plane and
thereby extend the normal scale invariance of the Mellin-Fourier correlator.

d. Choosing a Figure of Merit

In eval uating a Mell1in-Fourier correl ator, a f igure of merit must be
used which reflects the pattern recognition ability of the system. Experimen-
tal considerations such as the tendency of many sensors to drift or change the
average value of an image over time may cause the cross correlation peak value
to decrease even though the pattern match with a reference image is nearly

10



further use for pattern recognition may produce misleading results. Alterna-
tively, the number of data points, N, may be so small that the widely spaced
samples do not completely describe the shape of the spectral curve, even though
the Nyquist condition has been met and the samples are numerically accurate.

Thus, two considerations apply to all invariant pattern recognition schemes
which use digital transform techniques:

1. Spectral resolution must be sufficient to show identifying
features of the pattern.

2. Nyquist conditions must be met to assure numerical accuracy

of spectral samples.
b. Windowing and Truncation

Practical application of the principles above involves data windowing
* and truncation. These two effects are manifest in the spatial domain and
* spatial frequency domain, respectively. Windowing of input data must be per-

formed to minimize the effects on the Fourier transform of a finite input
record length. The OFT produces an output that is always a combination of the
actual data spectrum and the window spectrum, Reference 6. The window is
usually a rectangular function of unity amplitude which is multiplied by the
data. The OFT results in the convolution of the spectrum of the window with the

-spectrum from the pattern of interest. The OFT is periodic, Nyquist conditions
* require that the highest spatial frequency present in a record of N samples

be N/2 cycles per framie. The abrupt transitions at the edges of a rectangular
window cause very high spatial frequencies to occur in the spectrum. These
spectral components can be significant at N/2 cycles and can cause aliasing

* errors to occur. One way to reduce the components at N/2 cycles is to make the
* edge transitions less abrupt by using one of the well known smoothing windows

such as the Hlamming, Hanning, or cosine functions. The need to condition all1
data with a window before computing the OFT stems directly from the Nyquist

* sampling condition. Proper windowing assures numerical accuracy of all Fourier
* transform samples computed using the OFT, Reference 6. The window used in this

research tapered all images to 1/2 the original value at each edge, reducing
* the frequency components at the edge of the Fourier transform plane.

In a way completely analogous to windowing, truncation of Fourier
* transform records avoids errors in computing the cross correlation of two

9
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SECTION II

BACKGROUND

During this investigation, it was recognized that use of the Mellin-Fourier

correlation principle would require careful application of the Discrete Fourier
Transform (OFT). The paragraphs that follow discuss several aspects of the DFT
and show how to properly apply it to evaluate a pattern recognition system.

1. EXPERIMENTAL TECHNIQUES

a. Methods Used to Calculate Accurate DFTs

As mentioned earlier, in a pattern recognition system which uses trans-
form techniques to achieve invariance to translation, scale, and rotation, the
Fourier transform is usually used initially to provide translation invariance.
Actual pattern recognition is performed on the magnitude of the Fourier trans-
form of an object rather than the object itself. When the Fourier transform is

computed, the spectral resolution achieved may be insufficient for reliable
pattern recognition even though the Nyquist criteria have been met. The two
issues of spectral resolution and Nyquist sampling must be considered separ-

ately.

In a OFT algorithm, the input record consists of N data points, each
point representing T units, producing a record length NT units long. The

- output of the DFT algorithm will also contain N data points, each point repre-

senting a spatial frequency interval

delta f = 1/NT
. The discrete frequency spectrum is repeated periodically at integer multiples

- of the sampling frequency fs - l/T, with the magnitude of the spectrum being

symmetric about the folding frequency
f- (N/2) delta f - 1/2T

*: This folding frequency is a direct result of sampling the input signal, and
* gives rise to the Nyquist requirement of sampling at twice the highest spatial

frequency present in the input signal. If sampling is done at less than the
Nyquist rate, an effect called aliasing causes i.accuracies in the computed
spectrum.

The OFT of an input record may be calculated with a resolution of delta f
even though the Nyquist condition has not been met. However, the values com-
puted for the spectrum will not be accurate because of allasing, and any

8



- scaling al l imagery amplitudes between 0 and 255 each time a transformation is

*-' performed. The response to high noise levels is used to evaluate the immunity
to background clutter. Trials conducted with real sensed imagery provide

a realistic test for a scale invariant pattern recognition system intended for
tactical applications. These trials show that the scale and rotation invari-

ance predicted by theory can be appl -.4 in practice. The space bandwidth of

the correlator is varied, and the effects on the correlation images suggest
design approaches for equipment using Mellin-Fourier principles.

Experimental techniques for both zooming and downsampling the reference
image are developed to be able to provide a sensed image of exactly the proper

scale and orientation for Mellin-Fourier correlation. In this way, the Mellin-
Fourier correlator is evaluated with respect to small scale differences in the

input. The effect of different amplitude distributions of added noise is noted

*on the peak value and shape of the correlation image.
The Mellin-Fourier image correlation process is two-dimensional in nature,

but insight into the ln(R),e mapping operation and the correlation energy
distribution is gained when results are presented in the form of one-dimen-

sional plots. In this research, photographs taken from the television monitor
of an image processing computer are used to portray the nature of the entire
Mel 1in-Fourier process, but one-dimensional plots are used to show details

., of the energy distribution in the correlation image. Images are characterized

by a plot of the intensity values along a line passing through the peak value
of the image.

Additional experimental techniques, such as range adaptive bandpass, are

* applied to extend the normal scale invariance of the Mellin-Fourier type corre-
" lator. Anderson and Callary, Reference 4, calculated only the value of the

correlation peak as a figure of merit for the Mellin-Fourier correlator.
This investigation calculates the entire correlation image plane. Using this

technique, the advantages of spatial filtering are made clear.

7
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in the logarithmic coordinate transformation. In their scheme, oversampling at

small values of radial distance was governed by meeting the Nyquist criterion

at the widest sampling interval, and by oversampling only to the extent neces-

sary to accommodate the predicted scale change. Using this scheme, space

bandwidth requirements increased by a factor of only 2.7 when accommodating a

100 percent scale change.

Variations of this geometrical transformation scheme have been reported

by other researchers, Reference 5. In those studies, the location of the

correlation peak in the Mellin-Fourier correlation plane was used to identify

the actual scale change and rotation of the sensed image. Then, a new refer-
ence image was synthesized at the proper scale and rotation angle for applica-

tion of traditional correlation schemes.

4. AREAS INVESTIGATED IN THIS WORK

This study evaluates the success of a pattern recognition system which

attempts to recognize objects in a sensed image which differ in scale and
rotation from the reference image. The intent is to establish the limits of

use for the Mellin-Fourier correlation techniques rather than to design a

specific algorithm for pattern recognition. Experience has shown that such

algorithms are very dependent upon a system application.

The approach used here was to calculate sampling requirements based on a

desired range of scale invariance, and then to use a computer simulation of the

correlation process to calculate system performance. The scale of the sensed

image was then allowed to exceed the design limits of the system to find the
effect on the correlation peak. The correlation coefficient and the shape

of the correlation peak were used as figures of merit to judge the success of

each trial.

This study applies the theory of Mellin-Fourier correlation to imagery

collected by a sensor carried aboard a helicopter. The correlator modeled is
intended to represent an optical implementation of a scale invariant system.

Such an optical signal processing system can be modeled realistically by numer-

ical experiments. The limited dynamic range of optical systems is simulated by
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'fiure 7. Amplitude along a line passing through
the center of the R,9 mapped image of a 20 X 20
square. Normalized from 0 to 255.
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Figure 9. Amplitude along a line passing through
the center of the ln(R),9 mapped Image of a 20 X 20
square. Normalized from 0 to 255.
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. degrade as the annulus chosen for the transformation becomes smaller and

~ smaller. This occurs at very close ranges, and is not critical if the

reference image is made at the closest expected range. In a system with the

ability for range adaptive bandpass, range information is used to change the

transformation parameters to track the critical region of spatial
frequencies in the Fourier transform plane. The cross correlation peak

should remain high over a wider range of scale change than when the peak is

reduced due to scale changes causing irrelevant information to enter the

transformed space.

Figures 10 through 13 show the results when the principles discussed

above are applied to real images. The sequence of nine images that make up

each figure show the Mellin-Fourier correlation process outlined

schematically in Figure 1. The upper left pair of images labeled "REFERENCE"

and "SENSEDO are infrared images of an armored vehicle. The right image of

the pair has been rotated about its center by 45 degrees. The second pair

of images labeled "REFERENCE FFT" and "SENSED FFT" are the magnitudes of the

Fourier transforms. The image pair labeled "LOG R, THETA TRANSFORMS" are
the ln(R),e- mappings done from the Fourier transform images immediately

above. The right ln(R),O- image shows that rotation in the-sensed image
produces vertical translation of the pattern in the ln(R),O image. The images

labeled "MELLIN TRANSFORMS" are the magnitudes of the Fourier transforms of
the images immediately above. Since the only difference between the refer-

ence and sensed ln(R),e images is a vertical shift, the magnitude images

labeled "MELLIN TRANSFORMS" are nearly identical. The last step in the

Mellin-Fourier correlation process is shown as the rightmost image labeled
"CROSS CORRELATION." The real and imaginary components of the ln(R),9
images were used to compute the cross correlation image plane. The dark

spot in the correlation image is enhancement performed by the image process-

ing computer to make the peak in the correlation plane more visible. The
vertical position of the correlation peak reveals the correct rotation

difference between the reference and sensed images, i.e., 45 degrees, and

the amplitude, indicated by the peak intensity, shows the degree of

similarity between the reference and sensed images.

Figure 10 shows that rotation of the input image by 45 degrees may be

detected using standard space variant processing techniques. In this
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example, no scale change was involved, and pattern recognition was achieved
with a normalized correlation coefficient of .9. In Figure 11, the sensed
image was scaled by a factor of 2.0, and no rotation was present. The
images labeled "LOG (R), THETA TRANSFORMSN show what happens when a scale
change causes information to leave the in (R),9 plane. The correlation
coefficient is reduced to .7, even though its position is displaced from the
center of the correlation plane by the correct amount, indicating a scale
change. Figure 12 shows that combining a scale change with a rotation
reduces the correlation coefficient still further to .6, with the appearance
of noise at high spatial frequencies being evident in the ln (R),8 images.
Application of range adaptive bandpass in Figure 13 restores the correlation
coefficient to .89, with the rotation being correctly sensed. However the

cability to detect the amount of scale change by the position of the correla-
tion peak has been given up by adapting the ln (R),8 transform equations
using range information from an independent source.

2. TESTING THEORETICAL PREDICTIONS

a. Predicted Scaling Limits
The success of the application of Mellin-Fourier correlation to the

tactical images shown in Figures 10 through 13 led to a careful analysis of
the scale invariance that should be expected of the Mellin-Fourier correlator
when used with a particular image frame size. The images used in predicting
the expected scale invariance were centered in a frame of 256 by 256 and
were scaled by sampling in a polar coordinate system in which R was multi-
plied by a scaling constant A. The value of A was used as an index to
denote the amount of scaling present in each trial. An image of the Fourier
transform of the reference scene, a side view of an armored vehicle, was

inspected to identify the most critical features for pattern recognition. The
selection of "most critical" features in the Fourier transform plane was

subjective to the extent that some spatial frequencies were identified with
the reference image window and were eliminated by specifying the lower limit
of the filter. Also, knowledge of imager characteristics as well as inspec-
tion of large nubers of Fourier transform images allowed an upper limit to
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be specified for the spatial bandpass. Limiting the frequencies used for
transformation into the ln(R),9 plane allowed the frequencies to be
adjusted for the scale change present in the sensed image. The adaptation
of the filter according to scale change is a capability that is often
present in tactical pattern recognition systems with radar altimeters or
laser rangers.

Calculations were done using the side view of the armored vehicle as a
reference image to verify that the distinct features in the Fourier trans-
form plane were due to the spacing and number of the vehicle road wheels.
The window or frame size of the reference image was used to calculate the
location of the first zero crossing in the Fourier transform plane. These
calculations were patterned after the example given in Section II, under
Sample Adaptive Calculation." The filter limits calculated using the
methods described above resulted in an annulus in the Fourier transform
plane between 20 and 110 pixels. For range adaptation, the lower and upper
limits of this annul us were scaled according to the factor A used for the
sensed image. The inverse relationship between scaling in the image plane
and scaling in the Fourier transform plane caused the filter boundaries to
be multiplied by 1/A whenever the sensed image was scaled by A. The conven-
tion used in this research was that values of A greater than 1.0 resulted in
a smaller image but a larger Fourier transform. Values of A less than 1.0
denoted a larger image and a smaller Fourier transform.

The scaling limits predicted for the example discussed above were deter-
mined from Nyquist sampling and spectral resolution requirements. It was
observed from inspection of the Fourier transform of the reference image
that this imagery was not corrupted by aliasing effects, and that the
lower frequency limit of 20 pixels still provided an adequate number of
samples to define a spectral lobe when scaling by a factor of A.3 was
performed. When scaling by factors larger than A=1.5, it was observed that
loss of high frequency information pertaining to road wheel spacing, e.g.,
the second lobe moving out of the sampled domain, would violate the Nyquist
condition. Therefore the predicted range of scale invariance for the corre-
lator chosen for this example was from A=.3 to A=1.5.

Figure 14 shows the results obtained using the computer simulation of
the Mellin-Fourier correlator. The points labeled with a square symbol were
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LIMITS OF CORRELATOR
EXTENDING SCALE INVARIANCE
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Figure 14. Scale invariance extended by adapting
the spat al filter.
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obtained from a correlator with the spatial filter fixed at 20 to 110

pixels. The filter did not adapt to scale changes in the sensed image. The

correlation coefficient steadily decreases from .9 with no scale change, and

drops below the threshold of .7 if A is less than .5. The points labeled

with cross symbols were obtained from a correlator in which the spatial filter

adapted to the scale change present in the sensed image. The annulus

defined in the Fourier transform plane for the ln (R),B transformation was

allowed to change size according to the scaling factor A. This adaptation

of the spatial filter allowed the correlation coefficient to remain fairly

constant over the entire range of predicted scale change. The correlation

coefficient for the adaptive correlator does not drop below .7 until A

becomes smaller than .1. This represents an extension of the scale invari-

ance for small values of A by a factor of 5. The performance of the corre-
lator when A was greater than 1.0 was similar for the fixed and for the

adaptive filter. At A=1.2 the upper frequency limit of the adaptive filter

moved to a value of 128, which was the edge of the available bandwidth.

Since the filter could no longer adapt, the correlators behaved similarly.

These results show that adaptive filtering may be used to extend the normal

scale invariance of the Mel 1 in-Fourier correlator to allow pattern matches

with high confidence (high correlation coefficient) even when operating near

the lower limits for the scaling factor A.

b. Failure Modes

Data acquired while investigating the scaling limits of the Mellin-

Fourier correlator caused interest in information that could be obtained

from the correlation plane even after the correlator had "failed" by giving

a correlation coefficient less than .7. The position of the peak value in

the correlation plane reveals the amount of scale change and rotation differ-

ence sensed, and this information seems to be reliable even when the value
of the correlation peak is less than that required for a confident pattern

match. Figure 15 is a plot of the scale change detected by the X position of

the correlation peak versus the actual s,,.ale change present in the sensed

image. As before, the square symbols show correlation doaie with a fixed

filter, and the cross symbols show correlation done with an adaptive filter.

The fixed filter gives incorrect values of scale change when the scaling

factor A goes below .5, as predicted by sampling theory. The adaptive
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The techniques developed for Mellin-Fourier correlation were tested in

an investigation of the benefits of higher space bandwidth. The effect of

the larger format 256 by 256 frame was to increase the system space band-

width by a factor of four. When standard scale invariant techniques were
applied to the large format frame in the same way as with the 128 by 128

image, the larger space bandwidth produced a modest improvement in the

correlation peak; not a significant improvement considering the large price

paid in increasing the system space bandwidth. When range adaptive

techniques were applied to the Mellin-Fourier correlator using the larger

frame size, the correlation peak value still did not show a significant

increase. These experiments suggest that signal processing techniques such

as range adaptive transformations and spatial filtering contribute more to
the success of the Mellin-Fourier correlator than an increase in correlator

space bandwidth. The experiments further suggest that the theory for
predicting performance of Mellin-Fourier correlator may be based on the

well-established principles of Nyquist sampling and spectral resolution.

Investigations into the sensitivity of the Mellin-Fourier correlator to

noise measured the influence of both uniform and Gaussian noise distribu-

tions on the value and position of the correlation peak. Higher space

bandwidths were investigated and sensitivity to added noise was evaluated
using the space bandwidth available in a 256 by 256 frame. Optimal choice

of the spatial filter used in processing the sensed image made the Mellin-

Fourier correlator less sensitive to Gaussian noise. Experiments with

incorrectly matched library images verified that the correlator was not
simply responding to the scaled window through which the sensed image was

viewed.
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SECTION V

CONCLUSIONS

The numerical experiments described in this paper have shown how several
issues can affect the evaluation of the space bandwidth requirements of a

scale invariant correlation system. Spectral resolution and Nyquist
sampling were seen to be the two main determinants of the space bandwidth

required to achieve correlator invariance over a given range of scale
change. Other things, such as windowing and truncation of the Fourier

transform plane, were shown to have an effect on the validity of the cross

correlation image.

Calculations done under the assumptions used by Anderson and Callary,

Reference 4, were used to see how savings in system space bandwidth could be
realized by careful choice of geometric transformation parameters. Further

refinements of the choice of transformation parameters were applied in the
development of the technique of range adaptive bandpass.

The series of examples presented in the section discussing optimum
sampling for scale invariance showed how each of the principles described

in the preceding sections could be used successfully to restore the ampli-
tude of the cross correlation peak in a scale invariant correlator.

The theoretical scaling limits of a Mellin-Fourier correlator were

calculated and a computer simulation was used to verify that the theoretical

benefits of range adaptive filtering could be applied in practice. Using only
the techniques of range adaptive sampling and careful choice of transforma-

tion parameters, the scale invariance of the Mellin-Fourier correlator was
extended by a factor of 5 for scaling factors less than 1.0 without increas-

ing the space bandwidth of the system. The performance of the Mellin-
Fourier correlator which used a range adaptive filter was similar to the

fixed filter correlator when the scaling factor A was greater than 1.0.
Design approaches were suggested for systems required only to detect

scale and rotation changes in a sensed image rather than to perform a
detailed measure of pattern match. Range adaptive filtering techniques were

seen to provide accurate measures of scale and rotation changes even though

scale changes in the sensed image had violated Nyquist sampling conditions.
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MELLIN-FOURIER CORRELATION
GAUSSIAN NOISE WITH OPTIMUM ILTER

SCALE FACTOR A=.7
0.9 ROTATION ANGLE 450

U. 0.8 -
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120 124 128 132 138 140 144 148

COLUMN Or CORRELATION IMAGE
0 NO NOISE + STD. ODV.=20 0 STD. DEV.=40

Figure 19. Gaussian distributed noise added to the
sensed image. Added noise was zero mean, with the
three standard deviations shown. Spatial filter
optimized to the scale change in the sensed image.
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change present in the sensed image. When the sensed spatial filter was
optimized for the scale change, Gaussian noise was again introduced into the
sensed image to determine the effect on the correlation curve. Figure 19
shows that use of a filter optimized for the scale change in the sensed
image can restore the correlation peak to values required for full confi-
dence in a pattern match. The shape of the correlation curve in Figure 19
is significant because the secondary peak, present in Figure 18 when the
filter was not optimized, is reduced. The secondary peak in Figure 18
represents a partial match caused by energy present in the window of the In
(R),e image. The location of the secondary peak is at the center of the
correlation plane, as expected, and represents a match between the reference
and sensed windows. Figure 19 also shows that the level of Gaussian noise
necessary to reduce the correlation peak below .7 is higher when the sensed
filter is optimized for scale change.

d. Demonstration of Insensitivity to Window
The results shown in Figure 19 caused concern that most of the

amplitude observed in the correlation peaks of Figures 16 through 19 was
caused by the window, or frame size, of the sensed Image. The scaling

algorithm used to produce precisely scaled sensed imagery also served to
scale precisely the image window by the same factor. Since the position of
the secondary peak did not change with the scaling factor of the sensed
image, it was considered likely that correlation amplitude was generated by
the In (R),@ window size, which was independent of the object scaling
factor. An experiment was performed to demonstrate that the correlation
peak was indicating the correct scale change and degree of similarity
between the reference image and the sensed image. The Mellin-Fourler system
was made to perform a correlation between the usual reference image and an
incorrect sensed image. The incorrect sensed image was scaled by a factor
of A - .7 and the filter bandpass was optimized for this scale change. The
resulting correlation peak was not expected to indicate the proper scale factor
nor was it expected to have sufficient amplitude to indicate a pattern
match. The amplitude of the correlation peak was 0.662, well below the
threshold for match, and the X position of the correlation peak Indicated a
scale factor of .85. These results indicate that the amplitude and position
of the correlation peak are reliable indicators of pattern match and scale
factor, and are not completely determined by image window size.
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MELLIN-FOURIER CORRELATION
EfrECT OF GAUSSIAN NOISE
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Figure 18. Gaussian distributed noise added to
sensed image. Added noise was zero mean, with the
three standard deviations shown.
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with the evaluations involving scale change, the correlation image was
represented by a horizontal scan through the correlation peak. The three
curves shown represent altered histogram widths of 25, 50, and 128 counts;
each region centered around the image mean value of 59 counts. Figure 17
shows that introduction of noise causes the cross correlation curve to
decrease smoothly past the threshold amplitude considered necessary for
pattern match.

b. Effect of Adding Gaussian Noise
A more physical ly significant Gaussian distribution was used in a

second series of trials with the same sensed image. The Gaussian distribu-
tion was achieved by making use of the Central Limit theorem applied to the

uniformly distributed random function described above. The mathematical
form for the transformation was

Ku 48
Y X (RAN (SEED) - .5) /2)

K i
A new random variable, Yin, with the desired mean of U and stan-

dard deviation V was obtained using the transformation

The results of trials conducted with Gaussian distributed random noise are
shown in Figure 18. The three curves represent the shape of the correlation
curve after the addition of noise having standard deviations of 0, 10.0, and
20.0. The horizontal scale of Figure 18 was changed to see better that the
correlation curve still has a discernible peak which is located at the
proper scale and rotation coordinates even though the amplitude of the
correlation peak has fallen below the threshold vaalue of .7. This charac-
teristic of the correlation image suggests that the ability of the Mellin-
Fourier correlator to detect scale and rotation changes may be preserved
even when noise levels have reduced the confidence in pattern matches between
reference and sensed images.

c. iffect of Optimal Spatial Filter
During the course of the Investigation into noise sensitivity, the

spatial filter used to eliminate low frequencies in the Fourier transform
plane was fixed for the reference and sensed images to pass all frequencies
between radii of 10 and 128 pixels. The filter was not adapted to the scale
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MELLIN-FOURIER CORRELATION
EITECT or UNIFORMLY DISTRIBUTEO NOISE
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h 0.2

0.1

0.

So 70 90 110 130 10 170 190

COLUMN or CORRELATION IMAGE

Figure 17. Uniformly distributed noise added to
sensed image. Added noise was centered around the
image mean value, and had the three histogram widths
shown.
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MELLIN-FOURIER CORRELATION
errecT or SCALE CHANGE
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100 120 140 180

COLUMN or CORELATION IMAGE
0 A l.0 +1 A =2.0 * A=0.5

Figure 165. Shape of the correlation curve for two
extreme values of scale change, A .5 and A-2.0
Range adaptive spatial filter not applied. The curve
for A-1.0 represents a sensed image with no scale
change.
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2. ADDING NOISE

a. Effects of Adding Uniform Noise
A further investigation of the Mel 1 in-Fourier correl ation scheme was

performed by adding noise to the sensed image and noting the effect on the
shape and magnitude of the correlation peak. The intent of this part of the
investigation was to simulate the imagery collected by a sensor that might
be corrupted by various noise sources. The image used as a reference was

- the same as the reference image in tests involving changes in scale and
* rotation, i.e., one which contained no added noise. A random variable

function from a computer statistical library was used which was capable of
generating a pseudo random number uniformly distributed between 0 and 1.0.

- The function is considered pseudo random because the seed, or initializing
* integer, completely determines the string of random digits generated by the
* function each time it is used. However, the probability distribution of the

digits produced by the function is the desired uniform distribution. For
initial investigations into the sensitivity of the Mellin-Fourier correlator
to added noise, the sensed image was treated as a random variable to which
another random variable with the desired statistical distribution was added.

- The addition of noise took the mathematical form
NOISY SENSED IMAGE = SENSED IMAGE + 255 X NOISE X RAN (SEED)

- where
NOISE = value from 0 to 1.0 providing a

measure of the amount of added noise
RAN (SEED) = random variable uniformly

distributed from 0 to 1.0
The mathematical form above produced aa sensed image with an altered ampli-

* tude distribution between values determined by the noise measuring variable
* NOISE. The total amplitude distribution of the sensed image was the combi-
* nation of uniformly distributed noise and the original distribution. The

effect of varying the value of NOISE was to extend the area of the image
* histogram over which the added noise had its effect. One meaningful measure

of this type of noise is the width of the histogram region that is altered.

The degradation of the correlation peak when the sensed image was trans-
formed by noise of uniform amplitude distribution is shown in Figure 17. As
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scaled or zoomed around the center of the reference image as well as rotated
by the desired angle. When higher space bandwidth was used in the experi-

ment shown in Figure 12, with scaling and rotation present, the correlation
peak value changed from .6 to .7. This increase was not considered signifi-
cant since the correlation value was so close to the threshold of .7 consid-
ered necessary for pattern match. The threshold value of .7 for pattern match
was experimentally determined by correlation experiments between both

* geometric shapes and real objects. In these experiments, even dissimilar
* objects produced correlation coefficients of .6. When range adaptation of the
* transformation equations was performed as in Figure 13 but using the higher

space bandwidth, the correlation coefficient changed from 0.89 (with the 128
by 128 frame) to 0.92. This slight increase was not considered significant,

* considering the price paid in a four-fold increase in the number of sample
- points required.

b. Effects of Exceeding the Carrel ator Design

A detailed study of the effect of scale change on the correlation
* peak value and curve shape was performed on the images with the higher space
- bandwidth. The rotation angle between the reference image and the sensed

image was fixed at 45 degrees to be sure that the location of the correla-

* tion peak still revealed the correct rotation angle. Scale factors of the
* sensed image were varied between .5 and 2.0, and Figure 16 shows a plot of
* the values of the correlation images along a line passing through the peak

value. The two curves with the legends NA = .5" and "A = 2.0" represent the
extreme values over which the Mell1in-Fourier correlation scheme was
exercised. The shape of the correlation curve for no scale change is shown
in the curve labeled 'A - 1.0." Symbols are included in the plots to define
the curves when they cross each other. The Mellin-Fourier correlator in

* this example was designed to cover a range of scale change from A = 2.0
* to a A - .5 without the use of range adaptive techniques. Figure 16 shows
* that the value of the correlation peak at these extreme scale changes drops

Just below the threshold value of .7. The range of scale change over which
* the system could operate in this example was not extended using range adap-

tive techniques. The use of higher space bandwidth has increased the range

*of scale invariance of the correlator only by the ..,t that was predicted
from sampling theory.
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SECTION IV

ADDITIONAL EXPERIMENTS

- 1. HIGHER SPACE BANDWIDTH

The tests shown in Figjures 10 through 13 were repeated with images
- having a space bandwidth of 256 by 256 pixels. The larger image format was

- equivalent to sampling the reference and sensed patterns at a higher
* frequency. To create the Fourier transform patterns, the 128 by 128 input

* images were simply centered in the 256 by 256 frames. No additional informa-

tion was added to t~e input image, but the Fourier transform calculated over
* the 256 by 256 frame extended to higher spatial frequencies. This added space

* bandwidth allowed for more shift, i.e., more scale change, in the ln (R),8

images when scale changes caused distortions in the Fourier transform plane.

The annulus of spatial frequencies chosen for logarithmic resampling was
* chosen using the same criteria suggested in discussions of the range adap-

- tive technique; i.e., frequency boundaries were established using approxi-
mate ranges supplied with the test imagery.

a. Expected Benefits of Higher Space Bandwidth
The calculations of the upper and lower spatial frequencies critical

*for pattern recognition may be done without knowledge of the system space
* bandwidth available. With the larger format frames however, the spatial

frequency boundaries could extend to larger distances, i.e., more pixels,
- from the center or d.c. term. With the larger space bandwidth available in

* a 256 by 256 format, it was expected that it would be possible to vary scale

* over a wider range while maintaining the value of the correlation coeffi-

cient. Scale change was performed using a sample and hold technique, with

the sensed image remaining centered in the frame for all scale changes. The

* sample and hold technique was implemented using the same equations to gene-

* rate sample points that were used to rotate the reference image. The sample

coordinates for the sensed image had to be generated in polar form in order
to add the required rotation angle. To generate a scaled image, the radial

* coordinate for the sample points was simply multiplied by a scaling factor A.
-~ The effect of this sampling scheme was to provide a sensed image that was
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filter gives correct values of scale change (within 20 percent) when A=.05.

The rotation reported by both correlators was within 10 percent of the correct

value for the entire range of scale changes tested. With larger values of

A, both corre.ators became insensitive to scale change, probably because the

spectral features become larger and occupy more of the ln(R),6 plane,

making small shifts in cross correlation harder to detect. This result

suggests that reliable indications of scale and rotation may be obtained

from a Mellin-Fourier correlator using an adaptive filter even when the

designed scale change has been exceeded. Correlator system design may be

extended to cover values of scale change not al lowed by sampling theory if

* information about scale change and rotation are required rather than the

degree of pattern match.
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