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EXECUTIVE SUMMARY

- ‘i iy

Analysis of procedures for allocating channels to randomly
arriving message traffic by mathematical methods aids in making

. decisions. This paper provides an example. First, we provide
some background.

r i A

There are situations in which many different message sources
independently compete for' service at one, or a finite number of-
channels or other facilities. If one message is on the channel,
and another applies, a conflict occurs, and both are destroyed,
meaning that they go into a re-try or limbo state, from which they
independently attempt to access the channel at random (exponentially
distributed) intervals; of course retries can also collide and be
destroyed, but the process continues indefinitely.

et ]

The usual formulation assumes that messages appear in discrete
packets; then, assuming an infinite message source, and that
interrupted packets must re-start, the number in limbo will eventually
increase indefinitely -- the process is unstable, with delays
increasingly to infinity. Only by allowing for takedown or defection
in the model can stability be reached.

Lk s s A A AN

This report generalizes the classical model slightly to consider
a long stream of very small packets. Interruption is still possible,
: but re-start is not required. It is shown that for this setup
2 stability may be achieved provided demand rate is less than a critical
] value. The probability distribution of limbo state takes on a simple
. form, as do the low moments (mean and variance).
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A RESOURCE CONFLICT RESOLUTION PROBLEM
FORMULATED IN CONTINUOUS TIME

D.P. Gaver
G. Fayolle
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/' 1. 1Introduction

(

‘\i) In many situations involving data transmission from diverse

sources there can be conflict for a limited number of channels

e A

or other facilities. Uncoordinated attempts by several sources
to use a single facility can result in J:ollision,JLéhe

}/

SL“dest:ruction of all participants in the collision, meaning the
- loss of the transmission, and hence the need for re-transmission.
- AR important problem concerns the development of workable proce-

dures for alleviating the conflict .and corresponding message

3 [RAGEOTURNEN

delay problems.

Often such problems are viewed as occurring in discrete time:

OIS

-, slots of equal length occur in temporal succession, and each slot
can handle just one packet of data at a time, if two or more
'packets try to use the same slot simultaneously, a collision
occurs that somehow must be resolved. A recent paper, by Fayolle,
Flagolet, and Hofri (1983), hereafter FFH, analyze?ka stack
protocol for handling such a situation, but there are many other

proposals.

R s

This report is concerned with some simple models for conten-
5 tion for a single facility (channel), and for contention or
. conflict resolution. The models are formulated in a continuous-
time manner: messages, or numbers of packeté constituting

. -

messages, are ”long," meaning that they occupy many consecutive

.4

slots on the average if a 51ngle transm1551on is occurring.
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2. Model 1l: Poisson Message Source, Single Facility

Permit messages to arrive at a single facility (e.g., bus or
satellite link) in Poisson manner with rate A. Service times are
IIDExp(u). When a message arrives it either: (i) encounters a
free facility and immediately begins transmission, or (ii) inter-
rupts ("collides with," "destroys”) a message in progress; the
result is that both messages are affected, and some retransmis-
sion becomes necessary.

In what follows we investigate a scheme to allow the messages
to retransmit following interruption or collision. It can be

called a stochastic stacking procedure. 1In a general sense it

is patterned after the algorithm analyzed by FFH.

2.1 Stochastic Stacking Model; A Single Limbo State

Introduce this procedure: whenever a collision occurs, each
message source seiects : delay time for retransmission indepen-
dently from the distribution Exp(v). While any message experi-

ences the latter delay 1t will be said to occupy a limbo state;

the number of messages occupying the limbo state at time t will

be denoted by X(t). Furthermore, let A(t) denote the state of
. the facility at t: A(t) =1 if the facility is occupied with a
message transmission, while A(t) = 0 if the facility is idle at

time t. The idea of the delay time here qualitatively resembles'
the randomization scheme studied by FFH.

Apparently {A(t), X(t); 0 > t} is a Markov chain in continu-
ous time. The forward Kolmogorov equations for the process

can be written in terms of:

............
. . . N
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qj(t) P{X(t) =j,A(t) =1} , (2.1a)

pj(t) P{X(t) =3j,A(t) =0} , (2.1b)

The probabilities in gquestion actually depend upon initial condi-
tions, i.e., values of X(0) and A(0), but these will be left

implicit. Consider the evolution of the probabilities as

follows:
pj(t+dt) = pj(t) [l-,‘\dt-jvdt]+qj__2(t)Adt+qj_1(t)v(j-l)dt

+ qj(t)udt + o(dt) (2.2a)
qj(t+dt) = qj(t)[1—Adt-jvdt—udt]+pj(t)Adt

+ pj+l(t)v(j+l)dt + o(dt) . (2.2b)

Now subtract pj(t) (qj(t)) from both sides of (2.2a) (2.2b),
divide by dt and let dt -0 to obtain the formal Kolmogorov

eguations:

&

= =04V py (8 Hhay () +v (31 (8) +ug, (L) (2.32)

[o7)
(a4

&

= —(A+vj+p)qj(t)+}pj(t)+v(j+l)pj+1(t) (2.3b)

[o})
s

A few words of explanation: in order for the system to be in

state (j,0) at time t+dt it must have either: (1) been in that
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state at t, i.e., a moment before, and have experienced no

change, or (2) been in state (j-2,1) a moment before, and
experienced an exogenous ()-rate) arrival; the latter collid~s
with the mesSsage on the facility, and both enter the limbo state,
so the state changes to (j,0), or (3) been in state (j-1,1) a
moment before and experienced an endogenous (from limbo state)
arrival, or (4) been in state (j,l) and experienced departure
of the message on the channel. This explains equation (2.2a);
otherwise, in order that the system be in state (j-1,1) at time
t+dt it must have either (5) been in that state at t, i.e., a
moment before and thus experienced no change, or (6) been in
state (j,0) and experienced an exogenous arrival which begins
service on the channel, or (7) been in state (j+1,0) a moment
before and experienced an endcgenous arrival, from a message
that leaves the limbo state and entered the idle facility. This

explains expression (2.2b).

2.2 Long-Run or Steady State Conditions and Distributions

To look for the conditions allowing a stable long-run
distribution of {X(t),A(t)} set the time-derivatives to zero
in (2.3a and b) and introduce generating functions for the limit-

ing probabilities; by definition

P(z) = 1lim J p.(t)zd = § p.z3 , (2.4a)
t-ex J:O J J:O J

Q(z) = 1lim [ p.(t)z? = q.z7 , (2.4b)
teo j=0 I j=0
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where the latter limits are assumed to exist at least when

|z] < 1. Performing the summations leads to these equations

for the generating functions:
AP(z) + vzP'(z) = [Az2+ula(z) + vz2Q'(z) (2.5a)

AP(z) + VvP'(2) = [A+u)Q(2) + vzQ'(2) (2.5b)

Now multiply (2.5b) through by z, subtract from (2.5a), and divide
by (1-2) to obtain

MP(z) = (u=-rz)Q(2) . (2.6)
If we put z = 1, this expression results in
A[P(1) +Q(1)] = wQ(l) ,

but since we assume an honest limiting probability exists,

i.e., that
P(1) + Q(1) = jzo[P{X=j,A=0}+P{X=j,A=.1}] = 1,
it follows that
jzo a; = Q) = % = p (0<p <) . (2.7a)
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P(1) 1l-p (2.7b)
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Further information results by differentiating (2.6) and substi-
tuting into (2.5b); the result is the simple differential

equation

Q'(z) _ A(l+2z) +v _ l”(l+z)+v]
i s - Ty . . T U -2\2
Q(z v(%--Zz) v ou Az

= -2 LA ey — L1
= 3y Y oA+ +2)u ¥ (2.8)

which can easily be integrated to yield

Q(2) = Ao 1 Y u-= 22
lnlaﬁ—)-] = 2\)(1 z) +2V()‘ +V +2)2.n(h_2Az)
or, utilizing the value of Q(1),
A A+v+u/2
5—~(1-2) _ (———)
o(z) = ple? (222 & Ty, (2.9)

i - :202

so the ergodicity condition immediately appears to be 0 < o < %.

It then follows from (2.6) that

P(z) = (%-z)o(z). (2.10)
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and hence the generating function of total system occupancy

(server plus limbo) is

H(z) = E[2*R)
A A+v+p/2
(1-2) , _
= P(z) +2Q(z) = (eE (Tl_—zzxp;)J 2v H (2.11)
0 < 2p < 1.

Differentiation of H(z) at z = 1 ge“~rates cumulant-like

objects that can be converted to moments. These result in:

E[X +A) = 1—_°—2-5(1 +2p 5) . (2.12)

P(Ll+p(3-p)5)
var[X +Aa] = >~ ¢+ 0 <20 <1 (2.13)
(1 ~-2p)

Apparently both the mean and variance of total system occupancy
decrease monotonically with a decrease in v_l, the mean delay
time selected by (or for) any colliding message. This suggests
that the best control policy is to insist that interrupted

or destroyed messages should immediately try again for trans-

mission, if one is guided by an assessment of mean system delay

time by Little's Formula.
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2.3 Inversion of H(z) When Limbo Delays Are Short

Suppose v + = in (2.11), signifying retransmission after
a negligible delay in the limbo state. Then H(z) approaches

1-2p 172

HO(Z) = (m) H 0 < 2p <1 .

(2.14)

The latter resembles the ordinary M/M/1 queue generating function,
but the power 1/2 instead of 1 is noticeably different. Recog-
nition that the generating function is that of a particular nega-

tive binomial distribution yields the explicit formula

1

I‘(j+ 1/2 ;
P{X+A =3} = ———f—u-zp) / (20)> ; 3 =0,1,2,... (2.15)
j! F(i)

Suppose for one moment that perfect information were available,
and that arriving messages could be queued before transmission
on the system; no collisions can occur. Then the probability
distribution of the total number in the system is well-known to

be geometric,
P{X+A=3} = (1-p) pd , 0<p<1l (2.16)
and

E[X +A]) = —P— (2.17)

It then appears from Little's formula that the ratio of long-run

expected total delays in the collision-prone but stacked, and the
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queued systems is at best

= 0<o<1/2
E[Delay Stacked] _ e (2.18)
E[Delay Queued] )

P 1+/0+2/2+o>o3) as p >+ 0 .

which clearly reveals the advantage obtainable if information

can somehow reduce or remove collision frequency.
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4 3. The Busy Signal Problem.

Consider the following classical problem, historically pre-
ceding the conflict problem previously discussed, but of interest
in its own right., A telephone line serves a number of customers.
At moments of a Poisson process of rate A customers attempt to
initiate calls on the line; if the line is free it is captured by

- a caller for an exponentially distributed time, mean u_l. If a
; call is in progress when another call arrives the newcomer hears
a busy signal, hangs up and tries again (retries) after an exponen-

tially distributed time, mean v-l; he continues to re-try, along

with others who have experienced busy signals, in such a manner,

i.e. at independent exponential (v) intervals until he accesses

the line and can initiate, and eventually complete, his call.

- The above familiar setup is very similgr to the conflict

: resolution problem just addressed, but has no "collision" or

"destruction" features. Note, however, that certain proprietary

- telephone systems do have a destruction feature for low priority
calls. Thus the U.S. Dept. of Defense AUTOVON system allows high

? priority calls to displace ones of low priority. It seems reason-

able to model this latter situation using a limbo or retry state

much as we did the previous conflict problem. The present discus-

sion models only the single-priority setup.

3.1 Probabilities for A Single Limbo or Retry State.

Again consider the vector Markov chain {A(t),X(t),t >0}, where

y A(t) = 1 if the line is occupied, and = 0 if the line is free,
’

while X(t) is the number in the limbo/retry state. Again
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P{X(t) =j,A(t) =1} (3.1,a)

qj(t)

Pj(t) P{x(t) =3j,Aa(t) =0} ; (3.1,b)

we will write formal Kolmogorov equations to describe the

evolution of the probabilities:

pj(t+dt) pj(t)ll-vjdt-kdt] + qj(t)udt + o(dt) (3.2,a)

qj(t+dt) qj(t)ll-vjdt-kdt-udt] + qj_l(t)Adt

+ pj+1(t)v(j+1)dt + pj(t)Adt + qj(t)vjdt . (3.2,b)

The usual steps yield the differential equations

dp. ‘

‘51‘:1 = -~ +vi)py(t) = ugy(t) (3.3,a)
dq.

75} = -(A+u)qj(t) + qu_l(t) + v(j+1)pj+l(t) +Apj(t) . (3.3,b)

Notice that the effect of one possible change, i.e. that in which
a retry population number retries and again gets a busy signal,

can be removed, for there is no net change in state.

3.2 The Long-Run Distribution.

Assume now that a long-run distribution occurs, and search
for the necessary conditions and the distributional form. We
must solve the balance equations obtained by zeroing the

derivatives in (3.3):
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A+vi)p. = R 3.4
( vJ)pJ Hay (3.4,a)
(A+u)qj = qu-l + v(j+1)pj+1 + Apj . (3.4,b)
Introduce generating functions
J [ -] . 00 .
P(z) = J 2¥p., oQ(z) = T z2lq.. (3.5)
i j=0 J §=0 3
3
With a little calculation it can be shown that
AP(z) + vzP'(2) = uQ(z) (3.6,a)
(A+up)Q(z) = 2azQ(z) + VvP'(2) + AP(2) (3.6,b)

by multiplying (3.4,a) and (3.4,b) through by zj and summing,
as before; the primes denote z-differentiation. To solve,

multiply (3.6,b) by z and subtract from (3.6,a) to obtain
AlP(z) + 2Q(z)] = wuQ(z) (3.7)
after division by 1-z; whence

AlP(1) + Q(1)) A

uQ(l)

-1 o)

------------------------------
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lim P{A(t) =1} = Q(1) =

t-+

’ (3.8)

>
m
©

the probability of a busy line in the long run (p < 1l). Next

rewrite (3.7) as

P(z) = (1/p = z)Q(2) (3.9)
and differentiate,

P'(z) = (1l/p - 2)Q'(2) - Q(2) : (3.10)

finally substitute for P and P' from (3.9) and (3.10) into (3.6,a)

to obtain the differential equation
_ 1+ A/v
Q'(z) = 5= Q(z) (3.11)

which is immediately solved to yield

1-p 1+2/v
Q(z) = 0(1—_-—‘);) (3.12)

an expression for P(z) comes from (3.9), and finally

x(t)+A(t)] 1l- p)l+A/v

=2 . (3.13)

g lim E[z

t>o

= P(z) + 2Q(z) = (

It follows by inspection that the stationary distribution of

system occupancy, including the channel occupant and retry

population, is now negative binomial:




KX B - At Do b -ath S ety o o AR e tug xve iy Iy "Rl TNk ‘Rl ') LI "R o e it iag A aE Lot e SIS e A

\

", . »

N lim P{X(t)+A(t) =3} = FLAALNHG) 5 ;) 180y (3.14)
i oo JIT(1+A/v

‘% Note that if v + = the generating function of (3.13) tends to

4

S (1-p)/(1-pz), that of the geometric distributionof occupancy

»

of the M/M/1 system that permits queueing. This is quite

& intuitive, for infinitely frequent retries look to the system--
f if not the customer--exactly as if arrivals are queued. There
) is a decided difference between (3.13), or even (3.13) with

i v » «, and the corresponding collision-destruction model, with
‘i generating function (2.11) or (2.1 ).
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SOME COMMENTS ON A “RESOURCE CONFLICT RESOLUTION
PROBLEM FORMULATED IN CONTINUOUS TIME”

Alon Weiss

AT&T Bell Laborstones
Murmay Hill, New Jeney 07974

ltis‘enhnunthtlbmdAbhaclrmmmmg)ymsn.blewt:numemminﬁme

" mumber of sourcea. Yet Gaver and Faydlle {G-F], in the paper referred ©o i the title, find that, for

" 2p< 1, s contnuous time Aloba scheme i stable. In this note we try to explain this discrepancy

via sane elementary calaulations which illuminate the structure of the made! amalyzed in [G-F).
‘ We wse the noation of [G-F).

Consider X (r) = A(t), the total mumber of messages in the system at time ¢. We shall see that

this process s approximately s birth-death process with birth mate A and death mate W2 when

X(¢) = A(t) s large. Furthermore, we will show that A(r) = 1 abot half the time whea X ~ A

is larg=, and we will develop some further consequences of our viewpaint.
To begin with, suppse that X(0) » X s large and that A(0) = 0. After a time which is

1.1 .
kv Ky cdther a8 message poss from hmbo to

A

distributed exponemtially with mean

Kv
A~-Kv

rasmission (with probability =1 -ﬁ) o & mew message arrives (probebility

.
A=-Kv

=-ﬁ). Obviasly, the mxst likely event s that a message goess from limbo to

trarsraission. In that cmse, after amother aponemtially distributed time with mean

1 = -1 ditter another message from limbo collides with the first (probability
A-(K-1)v-np Kv

- (K -1y ~q_B*) - -
"~ K —v-p 1-5—"), the fint mesage completes trammission (probability

T ~ B . . . .
"~ K -v-p =), o & pew message wrives and collides with the fint (probubility

- A = A . .
‘ | "~k -1)v-n Kv).lnmyusemsecthtma(shm)m

. 2
~~Kv

we have 8 new arrival with probability




p(m)'%'w.

a successfu) trammission with probebility

Lo By
P (wooms) = o= 34

and a return 1 the initial condition X = K, A = 0 with probability

| plewm)=1-2 -2 4.

That is, the process is approximately birth-death with birth rate A and death mte /2. hmlnme
the channel is idle for times of length = 1~ and s busy for times of length = 3, 80 that balf
the time is spent busy (this is another way of seying that the death mte is f). This dearly shows
httbmbiﬁtywuithi%-29< 1. While the proceding argument is nct rigoraus, it is not
bard to tighten up, but in light of [G-F] there seems to be 0o point in daing so.

Let us carry our reasoning a bit further, We have (X (¢) + A(¢)) is approximately a constant-
coefficient birth-death process for large values of X + A; hence in steady state, we should hewve as X

A bamehtp,

.......

P(X(t) + A(r) =K) = C(2p)*
for some C > 0. Using the notation in [G-F) this is

P +qea=C2). )
Also, since the process spends sabout the same amount of time in state (X =X, A =0) as ip
(X =K -1, A =1), weshould have

[ Sl [ EW )
Together these two equations imply that
Mg = mz = Me-1
which is the key equation (26) in [G-F]). Furthermare, equation (1) is the same as their equation
246uumcw%ﬁ
L4 1.‘f-’ D o ; - ; - -:\-: .-‘.\:"‘c;.-.:--' '..:'-.'. -.' :.:.. K .." RN ..’.. A ..F ......... A .' R .“;‘

. e
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Now cur reasoning was walid as long as X'vwas large. Imstead of assuming that X wes large, we
could as well bave supposed that v was large. In this case we heve

1,1 x-1
M=t & -y T EF -1

P (successes) = (‘21)"-2_“1 A .

The birth rate, of course, remains A. Then by & basic formula of birth-death processes

g
P(state =X) =C |} L} forsoame C > 0

AL

we hawe
PX(@)+A() =K)=px +qg
- s -k- --l— - & u
c,’l»[’ ,] b ey
z'r[x + %] r[x + -;-]
=Cpt ; -C —FE (20)*
r(3)

which is the equation (2.15) in [G-F) for the choice € = Vi = 2p.

We can also analyze the effects of changing the model. In [G-F], any trammission, no matter
bow shart, reduces the remaining length of a message. In fact, we saw that when X (¢) is large, the
system takes very small ‘bites” very quickly. Now a realistic system may bave some overhead, say
a time 8, which must pass before a new trammission may start. Or there may be some basic unit to
hemmmimdsudnsopckachgth&nndi!themnninionhiﬂeuwinﬂeﬁddled.l
packet then the entire packet must be retammitted. Or there may be a time delay 8 through the
system so that when an interruption takes place, the last 3 of the message nmst be retrammutted t0
sssure its safe delivery. We model any of these cases by assuming that tramsmissions which are
shorter than a fixed time 3 are ineffective.

We shall now demonstrate that this system is strongly unstable; that is

...............
.................
.................................................
..............

...........

LY
................
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P(.E X(t)w»)=],
Furthermxre we shall show that
P (tota) sumber of successful trammissions is finite) = 1;

that is, we will show that, with probability 1, there is & random finite time 7 such that 20 successful
tammisions take place after time 7. To this end, comider the probability that at least e

message which attempts to tramsmit during & time when X(¢) + A(t) = K fid no uninterrupted
interval of length at lemst & This is bounded by the probebility thet in a time interval of
exponentially distributed (A) length, a Poisson process with rate X'v bas oo comsecutive events mxve

than 8 apart; that is,
< A ! A
isai LYY [
P (oo trammission) z"-}; (1 -9 [1 ‘v_H] Toon
A 1
- (1 -e*)
Xv+a 1-(1 -e*(1 - —2—)

Kv+)

=] -Kw* + 0"

- Thatis,

P (trammission) < Kw %" + 0(e %)
Hence by s Borel-Cantelli argument we may conclude thet

P (infinite mumber of trammissions) = 0

.2 Ew +0(e*%)< »
o

for all positive values of N, K and &

Suppse mow thet the overbead 8 is a mndom wariable imtead of & comtamt. Then if
P (8 =0) =0, the queus is strangly unstable, although for some distributions of 8 an infinite munber
of messages may get through. This can be scen as follows: work is done cn @ message anly after




overhead is completely serviced. If the overhead distribution has a continuows demsity f(X) near

X =0, then successful completion o overhead accurs appraximately as a Poisson process with rate
J(0)/2. After each successful overhead completion, a message gets about 1/uX (¢) time to transmit.
Now X(r) will clearly be on the arder of & for large ¢, 30 successful message trammissions will
occur at a rate of about £(0)/2\ v for large ¢. The analysis of other types of overhead distributions
s straightforward and is not defined here.

Let w now suppase that message lengths are not exponentially distributed, but have instead 8
distribution function F(X). Then it is not hard to see that if the failure rate of F(X) (namely

1{'13‘?)‘){)) remains above 8 level u where 2Vp < 1, then the system is stable. This follows

directly from our cariginal analysis. As our final model, consider the differences between Gaver calls
‘“resume,” “restart,” and ‘“pew’’ disciplines. ‘Resume” i the original model, where each
tramsmission, no matter how short, reduces the remaining length of a message. “Restart” is an all-
ar-nothing situation. Either the entire message gets transmitted, or if interrupted it mmust be entirely
redme. “New” is where each message picks a fresh length at the start of each tramsmission,
independently from a distribution F(X). That is, each message length is a new iid. random
variable in each transmission attempt. This might arise, for instance, in a simulation where the
programmer does not keep track of each message length separately, but instead picks a new length
each time. The first case (resume) has already been discussed. “Restart” is easily seen to be
strangly umstable by the same sort of reasoning we wsed for amalyzing overhead, and the reader is
invited to fill in the details. We shall now show that when F(X) bas a continuous density f(X)
near 0, “new” is stable if and only if 2/ (0) < 1. That is, the three cases are quite different, and
30 simulations mst be done quite carefully. The analysis is nearly identical to the “resume”™ case:
in each time interval of length & = 2/K'v, we have a probability of abut £(0)As/2 of a successful
tammission. In fact the probability of a successful tramsmission is balf the probability that a
nxiom warisble with distribution function F(X) B less than an independent exponentially
distributed variable with mean 1/K'v, 50

...........
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P(succene) = %f: e %% f(s)ds

= f(0)/2Kv.
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