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EXECUTIVE SUMMARY

Analysis of procedures for allocating channels to randomly
arriving message traffic by mathematical methods aids in making
decisions. This paper provides an example. First, we provide
some background.

4.

4. There are situations in which many different message sources
independently compete for'servic at one, or a finite number of.
channels or other facilities. If one message is on the channel,
and another applies, a conflict occurs, and both are destroyed,
meaning that they go into a re-try or limbo state, from which they
independently attempt to access the channel at random (exponentially
distributed) intervals; of course retries can also collide and be
destroyed, but the process continues indefinitely.

The usual formulation assumes that messages appear in discrete
packets; then, assuming an infinite message source, and that
interrupted packets must re-start, the number in limbo will eventually
increase indefinitely -- the process is unstable, with delays
increasingly to infinity. Only by allowing for takedown or defection
in the model can stability be reached.

This report generalizes the classical model slightly to consider
a long stream of very small packets. Interruption is still possible,
but re-start is not required. It is shown that for this setup
stability may be achieved provided demand rate is less than a critical
value. The probability distribution of limbo state takes on a simple

-. form, as do the low moments (mean and variance).
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A RESOURCE CONFLICT RESOLUTION PROBLEM
FORMULATED IN CONTINUOUS TIME

D.P. Gaver

G. Fayolle

/ 1. Introduction

In many situations involving data transmission from diverse

sources there can be conflict for a limited number of channels

or other facilities. Uncoordinated attempts by several sources

to use a single facility can result in Wcollision,wthe

destruction of all participants in the collision, meaning the

loss of the transmission, and hence the need for re-transmission.

An important problem concerns the development of workable proce-

dures for alleviating the conflict and corresponding message

delay problems.

Often such problems are viewed as occurring in discrete time:

slots of equal length occur in temporal succession, and each slot

can handle just one packet of data at a time, if two or more

packets try to use the same slot simultaneously, a collision

occurs that somehow must be resolved. A recent paperby Fayolle,

Flagolet, and Hofri (1983), hereafter FFH, analyzeha stack

protocol for handling such a situation, but there are many other

proposals.

This report is concerned with some simple models for conten-

tion for a single facility (channel), and for contention or

conflict resolution. The models are formulated in a continuous-

time manner: messages, or numbers of packets constituting

messages, are Olong,w meaning that they occupy many consecutive

slots on the average if a single transmission is occurring.
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2. Model 1: Poisson Message Source, Single Facility

Permit messages to arrive at a single facility (e.g., bus or

satellite link) in Poisson manner with rate X. Service times are

IIDExp(U). When a message arrives it either: (i) encounters a

free facility and immediately begins transmission, or (ii) inter-

rupts ("collides with," "destroys") a message in progress; the

result is that both messages are affected, and some retransmis-

sion becomes necessary.

In what follows we investigate a scheme to allow the messages

to retransmit following interruption or collision. It can be

called a stochastic stacking procedure. In a general sense it

is patterned after the algorithm analyzed by FF11.

2.1 Stochastic Stacking Model; A Single Limbo State

Introduce this procedure: whenever a collision occurs, each

message source selectb 1 delay time for retransmission indepen-

dently from the distribution Exp(). While any message experi-

• ences the latter delay it will be said to occupy a limbo state;

the number of messages occupying the limbo state at time t will

*[ be denoted by X(t). Furthermore, let A(t) denote the state of

the facility at t: A(t) = 1 if the facility is occupied with a

message transmission, while A(t) = 0 if the facility is idle at

time t. The idea of the delay time here qualitatively resembles

the randomization scheme studied by FFH.

Apparently {A(t), X(t); 0 > tj is a Markov chain in continu-

ous time. The forward Kolmogorov equations for the process

can be written in terms of:

. . .o4 o . . . , o ° - . - o - . - . . . % - . . . - - • ° ° - ° - . . - ° - o . "



qj(t) = P{X(t) =j,A(t) =i) , (2.1a)

pj(t) = P{X(t) =j,A(t) =0 , (2.1b)

The probabilities in question actually depend upon initial condi-

tions, i.e., values of X(O) and A(0), but these will be left

implicit. Consider the evolution of the probabilities as

follows:

pj(t+dt) = p.(t)[l-.Ndt-jvdtl+qj -2(t) Xdt+qj_ (t)v(j-l)dt

+ qj(t)wdt + o(dt) (2.2a)

qj(t+dt) = qj(t) [l-Xdt-jvdt-pdtl+pj(t)Xdt

+ pj+l(t)v(j+l)dt + o(dt) . (2.2b)

Now subtract p I(t) (qj(t)) from both sides of (2.2a) (2.2b),

divide by dt and let dt-+0 to obtain the formal Kolmogorov

equations:

dp.
dt = -(>.+ j)p (t)+ qj- (t)+v(j q i(t)+ qj (t) (2.3a)

dq. dq = _(),+vJ+p)qJ(t)+")PJ (t)+\.)(j+l) Pj (t) (2.3b)

" dt j+l

A few words of explanation: in order for the system to be in

state (j,O) at time t+dt it must have either: (1) been in that



state at t, i.e., a moment before, and have experienced no

change, or (2) been in state (j-2,l) a moment before, and

experienced an exogenous (A-rate) arrival; the latter collid-,s

with the message on the facility, and both enter the limbo state,

so the state changes to (j,O), or (3) been in state (j-l,l) a

moment before and experienced an endogenous (from limbo state)

* arrival, or (4) been in state (jl) and experienced departure

of the message on the channel. This explains equation (2.2a);

otherwise, in order that the system be in state (j-l,l) at time

t+dt it must have either (5) been in that state at t, i.e., a

moment before and thus experienced no change, or (6) been in

state (j,O) and experienced an exogenous arrival which begins

service on the channel, or (7) been in state (j+l,0) a moment

before and experienced an endogenous arrival, from a message

that leaves the limbo state and entered the idle facility. This

explains expression (2.2b).

2.2 Long-Run or Steady State Conditions and Distributions

To look for the conditions allowing a stable long-run

'* distribution of {X(t),A(t)} set the time-derivatives to zero

in (2.3a and b) and introduce generating functions for the limit-

ing probabilities; by definition

•.-

P(z) = lim 7 pj(t)z j  = Y p.zj  , (2.4a)
t -t j=0 j=0 3

fS.

Qlz) = lim p.(tlz j = W q.z), (2.4b)
j= t 9=0 j=0

S.

-o



where the latter limits are assumed to exist at least when

jzi 1. Performing the summations leads to these equations

* for the generating functions:

APW zz)) A +Ld)Q(z) + z2Q (z) (2.5a)

* )PWz + vP'(z) = f)+jiJjQ(z) + VzQ'(z) (2. 5b)

Now multiply (2.5b) through by z, subtract from (2.5a), and divide

by (l-z) to obtain

)P(z) =(1j-Az)Q(z) .(2.6)

If we put z = 1, this expression results in

A(P(l) +Q(1)] = j.Q(l)

but since we assume an honest limiting probability exists,

i.e., that

* P(l) + 0(l) I [P{X=j,A=O1 + P{X=j,A=.l)]
j=O

it follows that

0q. Q(l) =p (0 < p < 1) . (2.7a)



and that

pj = P(1) = 1-p (2.7b)
j=O

Further information results by differentiating (2.6) and substi-

tuting into (2.5b); the result is the simple differential

equation

Q'(z) A(l +z) +v = A(i+z) +V]
Q(ZT- v(L-2z) v p-2Xz

S+-A A +V 1Rz (2.8)
V- + 2 +v + )

which can easily be integrated to yield

* Q(z)I = A -L (X + v + R)n -2 X£Q T 2v-z 2v 2 2A

or, utilizing the value of Q(1),

ALIz A+v+vt/ 2Q~z} p~e(l-z) 1- 2p ) u22

Q(z)= p[e - 2pz 2 (2.9)

so the ergodicity condition immediately appears to be 0 <

It then follows from (2.6) that

P(z) = (I- z)Q(z) , (2.10)
p



and hence the generating function of total system occupancy

(server plus limbo) is

H(z) = E [ZX+A]

A _______~p/

eV(l-z) 1-_2P] 2v=P(z) +zO(z) = (e -2Az "  ;(2.11)

0 < 2p < 1

Differentiation of H(z) at z = 1 ge%.rates cumulant-like

objects that can be converted to moments. These result in:

EIX +A] = (1 +2p L) ; (2.12)

VVar[X +A] = 2 0 < 2p < 1 (2.13)(1 - 2P)

Apparently both the mean and variance of total system occupancy

decrease monotonically with a decrease in v , the mean delay

time selected by (or for) any colliding message. This suggests

that the best control policy is to insist that interrupted

or destroyed messages should immediately try again for trans-

mission, if one is guided by an assessment of mean system delay

time by Little's Formula.

. . . . . . . . . . . .... . ..o" ." -". o. . .* t .*. . . °-.-, " ' "
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2.3 Inversion of H(z) When Limbo Delays Are Short

Suppose v - - in (2.11), signifying retransmission after

a negligible delay in the limbo state. Then H(z) approaches

12p1/2

H0(Z) 1- 2p ) ; 0 < 2p < 1 . (2.14)

The latter resembles the ordinary M/M/l queue generating function,

but the power 1/2 instead of 1 is noticeably different. Recog-

nition that the generating function is that of a particular nega-

tive binomial distribution yields the explicit formula

N(j + 1/2 j
P{X +A =j} (1 -2p) (2p) ; j = 0,1,2,... (2.15)

Suppose for one moment that perfect information were available,

and that arriving messages could be queued before transmission

on the system; no collisions can occur. Then the probability

distribution of the total number in the system is well-known to

be geometric,

P{X +A=j} = (I-p) p3 , 0 < p < 1 (2.16)

* and

E[X +A] P (2.17)1-p

It then appears from Little's formula that the ratio of long-run

expected total delays in the collision-prone but stacked, and the

-:: :,._. . . -..-. . . "-. .. .... , ', .'... .'- . , " %*5' - . - " . ."
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queued systems is at best

1- 1 p 0 < p < 1/2 (.8

ETDe-l y ueu d]1 1+/0+ 2 2+o e 3) as p- 0

which clearly reveals the advantage obtainable if information

* can somehow reduce or remove collision frequency.



3. The Busy Signal Problem.

Consider the following classical problem, historically pre-

ceding the conflict problem previously discussed, but of interest

*- in its own right. A telephone line serves a number of customers.

At moments of a Poisson process of rate A customers attempt to

initiate calls on the line; if the line is free it is captured by

caller for an exponentially distributed time, mean V1 . If a

call is in progress when another call arrives the newcomer hears

a busy signal, hangs up and tries again (retries) after an exponen-
-l

tially distributed time, mean v ; he continues to re-try, along

with others who have experienced busy signals, in such a manner,

i.e. at independent exponential (v) intervals until he accesses

the line and can initiate, and eventually complete, his call.

The above familiar setup is very simil~r to the conflict

resolution problem just addressed, but has no "collision" or

"destruction" features. Note, however, that certain proprietary

telephone systems do have a destruction feature for low priority

calls. Thus the U.S. Dept. of Defense AUTOVON system allows high

priority calls to displace ones of low priority. It seems reason-

. able to model this latter situation using a limbo or retry state

much as we did the previous conflict problem. The present discus-

sion models only the single-priority setup.

3.1 Probabilities for A Single Limbo or Retry State.

Again consider the vector Markov chain {A(t),X(t),t >01, where

A(t) = 1 if the line is occupied, and = 0 if the line is free,

while X(t) is the number in the limbo/retry state. Again

........ ... .. '.* . " "..
* * 

'
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qj(t) = P{X(t) =j,A(t) =1} (3.l,a)

pj(t) = P{X(t) =j,A(t) =01 ; (3.1,b)

we will write formal Kolmogorov equations to describe the

evolution of the probabilities:

pj(t+dt) = pj(t)[l-vjdt-Xdt] + qj(t)udt + o(dt) (3.2,a)

qj(t+dt) = qj(t)[l-vjdt-dt-dt] + qj_l(t)Adt

+ Pj+l(t)v(j+l)dt + pj(t)Adt + qj(t)vjdt (3.2,b)

The usual steps yield the differential equations

= -(A +vj)pj(t) = pqj(t) (3.3,a)

dq" = -(A+p)qj(t) + t) + V(j+l)pj+l(t) +Apj(t) . (3.3,b)

* dtj

Notice that the effect of one possible change, i.e. that in which

a retry population number retries and again gets a busy signal,

can be removed, for there is no net change in state.

3.2 The Long-Run Distribution.

Assume now that a long-run distribution occurs, and search

for the necessary conditions and the distributional form. We

must solve the balance equations obtained by zeroing the

derivatives in (3.3):

•~~~ ~ ,4. o. ,-...? . e_ " .. ,' .. ,, ,'. .. V .,-, .., .- .-. .,:.... .v .:. ,1, " -. '



(A+vj)pj pqj (3.4,a)

(A+P)qj M Aqj + v(j+l)pj+l + Apj (3.4,b)

Introduce generating functions

P(z) = [ zip , Q(z) = . ziq) . (3.5)
j=0 j=0

With a little calculation it can be shown that

AP(z) + vzP'(z) = Q(z) (3.6,a)

(A+=)Q(z) AzQ(z) + vP'(z) + AP(z) (3.6,b)

by multiplying (3.4,a) and (3.4,b) through by zj and summing,

as before; the primes denote z-differentiation. To solve,

multiply (3.6,b) by z and subtract from (3.6,a) to obtain

A[P(z) + zQ(z)] = VQ(z) (3.7)

after division by l-z; whence

A[P(l) + Q(l)) - = PQ(l)

so

.. . . -..... .. . . . .-.-............ : .* ".:: : : * **J.: ** : : : :

*.. .' , .. , a= t. * . *.* . . ' , ,' ,' S .".'',. *" " ' ' " . . "



Ur P{A(t) -I} = 0(l) p - , (3.8)

the probability of a busy line in the long run (p < 1). Next

rewrite (3.7) as

P(z) = (i/p - z)Q(z) (3.9)

and differentiate,

P'(z) = (1/p - z)Q'(z) - Q(z) (3.10)

finally substitute for P and P' from (3.9) and (3.10) into (3.6,a)

to obtain the differential equation

Q'(z) 1 + M/ Q(z) (3.11)i/p - z

which is immediately solved to yield

l+X/V

Q(z) = (01 ) (3.12)

an expression for P(z) comes from (3.9), and finally

X~t)+A~)1 - p l+X/V

lim E[zX(t)+A(t) ] = P(z) + zQ(z) = (1-

It follows by inspection that the stationary distribution of

system occupancy, including the channel occupant and retry

population, is now negative binomial:



• m • , . -+ 4- ". . +. - i, : - > a J " - " ' , - --.' . - .. , - .

lir P{X(t)+A(t) =j) r LL +1 /+) Pj(1-) +A/V (3.14)
ti r (+A/• 1

Note that if v - o the generating function of (3.13) tends to

(l-p)/(l-pz), that of the geometric distributionof occupancy

of the M/M/1 system that permits queueing. This is quite

.1 intuitive, for infinitely frequent retries look to the system--

" if not the customer--exactly as if arrivals are queued. There

is a decided difference between (3.13), or even (3.13) with

V , and the corresponding collision-destruction model, with

*- generating function (2.11) or (2.1 )

.22

-'

U,

"U', - ' , '" , ". " -:"""2"" "' - ." . "€ "."-"."-". "- -"- ' ' ". ' ' -.- ,-.,.-.



* REFERENCES

Neuts, M. F., and Ramalhoto, M. F. (1984), "A service model in

which the server is required to search for customers", J. Appl.

Probability, 21, pp. 157-166.

Fayolle, G., Flagolet, P., and Hofri, M. (1984), "On a functional

equation arising in the analysis of a protocol for a multi-

access channel", I.N.R.A. Report No. 131, April 1982.

Keilson, J., Cozzolino, J., and Young, M. (1968), "A service

system with unfulfilled requests repeated", Operations Research,

16, pp. 1126-1137.

. . . . . . SSo.S.S**~S



SOMOE COMMENTS ON A "RESOURCE CONFLICT RESOLUTON
PROBLEM FORMULATED IN CONTINUOUS TIME"

Man Weis
AT&T Bell Laborstone

Murray Hill. New Jeracy 07974

It is %C3 kzvoa that inlottd Aloha achen are strcuigly unstable when them. am an inifinite

uaik of smuizs. Yet Gomm azzS Faycle (G-F), an the paper idand to in the title. fin that. for

2p < 1, a coaimcuz timm Aloha schate is stable. In this nte se try to explain this discwjmncy

mia sane eleuentary caiwlatiom Maich illuminte the strutue of the *mdl mlylvd mn [0.'].

We use the mnotton of fG.F].

Caisider X (r) - A (t), the toml munme of tesages in the rnstn at ame 1. We shall we~ dat

this process is appraximately a birth-death pocs with birth rate x andx death nat P- Utica

X () - A (r) is lap. Furthme, vw& &haow that A (r) -1I ab=~ half the tam when X A

is large, uaxd %e %ill develop socor further coseqecs of air viewpoint.

To begin %Mi, supe that X (0) A is lag uand that A (0) - 0. After a tam Mtich is

- - I

tmramssion (-*itb probability Kv = I ) r a new mesage arives (probablity

- -- )Obvimmily, the rmt hmIy event is that a map gom frorn limbo to

trainmiion. Ini tat cue, after another eponentioDy dstibified firme with mn

I = Leihr aivihr mmiage btmm limbo collides Ikid the fit (prtility
X K -I)v- IL Kv'

(Klh 1- DV the fint mmage conptes transmission (Probaiity

&L -s-, a nw rmage arrivs mnd wflides 'aid the fit (probability
?~(K -lv -&p Kv

In a)ny case we seedtatnma(shrt)m

At 2
XV

we hemv a rew arria) with probability



02-

p (rw)~ -asLa Mr

a uacinufu ammim SOa puuheb3

Kv 2

odaI wn o heIithi inX - X.A 0 Otifobmfty

2

Tht is, tdo ;u r6 -i appumW4R brth~loth uft birth sais x~ ad death tate pIZ. Frmmu

tdo time is spen busy (th is awther umy di .yig doat the dth sat. . 7bu deary don

dti the stabiit owition is - 2p < 1. Whie tohe arpmmm u is~ no t ugw, it is t

leard ghy, butin it f[G-Fjda'u.mtbe opointa i dgo

Let ta amy our muacag a tit furuw. We he (XQt) + A(t)) is apptxiuey a x - a.

coeffiient birth-dooth Fuu for larp wham ct X + A; heme in steady otot, a shmald how a

booms tarps

P(XQI) + AQr) mg) wx C(2p)'

forucnC >O. 1dmh[Gm 1-] tis i

ft +qff.., COWf.(1

Abo, obw e C 3jU spenc thes*aam - mm ofn Si bmt alee (X 9, A 0n) a ip

*( wX (m-1, A m),mohmaldow

ft asqf- (2)

Tqla thus two .quatkum W*i tbat

W"c is the key qmadm (26) Is [W)F. Nihumre squadom (1) b t mams them* quatam

2i6I~muaseb7 jP2

236...............................................

is ~~' *5 * ** ..- 5...- . . . 5....5. 55A;~*



.3.

Now our aaf vow wlid a keS a Krvm large Iaumd Of umwmq tatf ju hrgew, as

w n wan lmme U-Muthat us larg. in t cmgo bew

At=1L 1 29-1

2-i
7be birth =we, di auu, ummL 71m by a luic Aranda d i rth-dath pwmw

p(ste - ) M C ±2 for mC> 0

P(X(t) + A(t) -r) - p + qg..

,~l 12- 1] .. Ce n 2 1

lot~i lot~i

______r r z9j+

whic i the equatica (215) in [G-FJ for t dma C -4-p

We con abo analyn t dO L dWiAi the sna. In P[G. any tramaionc, no Matter

b~w slut, zeduc ticm zeinfing kqtb Li a unuag. In bet, va mw that wbes X (t) is large, the

qs=~ tW=m %WY SUND 'bies MvY qui . NOw a uwalistic Stm my baw o awfloumd, my

a tin. B widamust pus bfm a ne tamnuimmion my sunr. Or them my be amm besic unit to

be taazdtted audi w a pdca or Imgth B an if the tmuznm is Ineruqm in the niddfe Li a

Icg then t h n tlas pa = be ustzmztted. Or thmz my be a tin Maey &theaagla to

mystan so that %ten an incearutuon au place, the laot W do ah nse =t behanute to

sm in We deimay. We IOW ANY Li them am by uassuing that buwduimm ulia am

* ~ahater then a And dow &ane izntiw.

We SMham 6wMua08 that dii sysm isstrcagy instale; that is

IL ~ *l - .



.4.

F~.hinmso " ahdew dot

P (Im rizor d mucmfR Ia.o b Ada) w 1;

lbt b, ull vuB lb dt, wih ifobbft 1, ftm.il a muo i ~dm b mdst wb mwmfM

Imudsom UM Om aft dw 7. To dbad amd do pbili tbt at ban cm

ample wlida a~ to summit dulq a Urn ubmn XQ) + AQt) -9 &xh w anarmpa

imemi of boo at bat L U Th bmudd by do pmbblfy dot in a do inmml of

Bc3~ay ctibuid (X) kbgh, a Pbimn jinum wfth ato Lw ba w wmaw~ ti mw 

dona Sapt; dout is,

p (w tambiw)> :' (1 UJL - v+kJ Ii+k
J-1

m A6(I -4" I -

l -v4"+O(84")

Mtb b,

P(tzMMM"io) .5 ALw 4 +O00-461

Jhby a Bard.Cag.Ii argum v my amu~ dot

P (ifsif nua d tannmm) -0

S~cap

i AD piiw mus d N. ad L

Sup. now lbt tie imd & b a an&= wiW. lasd dt a ommmn. Them Nf

P(b - 0) - 0, lb ymi b soar* ft.h adsba* fw s= disbm d & am bidss wzAbw

d mugsp -y pt dcm~. Mba m b msma AMm: wwk b dm ca a maags my aftr
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mceld is cm ely smicd. If the £Muld disibtio 10 C uou da.mitY (X) --r

X -0, then mucaful lebtim Cf mhvamd oews appmzimely a a Pcwsm ppoo with rate

f (0)/2. Afte each m ssfl mhmd c tim, a mesage VUa about 1IiX() time to trnsmit.

Now X (r) wil dealy be m tk ondr of a be brge so usz ul ag tmmion m w,2

cir at a ue f abot f (0)/2u vu for lip t. The mly of othe types of ouhad distrbutiom

i str laud and is nt dCeied hem.

La s now suppmoe tat msage lgths are not extntially distributed, but have imtmd a

distribution function F(X). Than it is not ard to ee that if the faum rate of F(X) (famely

-F(X) ) m ins above a level IL hem 2X/pL < 1, then the system is stable. This follow
I - F(X)

directly bm ur =ig=l amlysis. As our fial mxe, cmid theft diffaezes Wtwnm Ca mall

"rmwe," "mart," and "new" discipline. Mesnt=" is the original mol, where each

trma ission, no matter how short, ducim the emauiang lmgth of a mesage. "Restart" is an a-

-.-nothing situati. Either the entie miamge pts tammuitted, or if imerrupted it must be metinly

redae. "New" i v/mm eich maage apcks a faeh lngth at the start of ach tramms ,

indeqpndemly from a distribution F(X). "tit it, each mage imgth i a nw ii4. mnom

variable in mch tansmission attempt. Ts might arise, for iintanc, in a simulatin where the

pogrmain r does nt kep trac of each meap length separately, but imtead picks a ww length

each time. The fist case (iune) Is akmdy been discussed. "Restart" is easily m to he

strongly umtable by the um sort of masoning -wused for anlyzing overhued, and the mader is

imited to fill in the details. We shall no show that whm F(X) has a cmtinumas density 1(X)

near 0, "13w" is stable if and only if 2Wf (0) < 1. Tint is, the three cases are quite diffeuzt, and

so inumlatiom -nt be done qute camfly. The amlysis is neary idmtical to the "esume" cse:

in each time interval of lgth t 2fw, ve hav a proability abut f(0)t/2 of a succiul

-uammiio. In fact the putability of a winfad iammission is htlf d probability that a

andom aulge with distnbwi fuzmimc F(X) i les then an iind ent eaxzztially

dislrbuted wabb vith Ima llft, so



mf(O)rmk,.

I emW Wo to dowk Dma Cow kv iuahf -I* db imilsing pI'sm, and ki so

w AinWy&UWizt it.
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