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ABSTRACT g @

Because of the desire to improve operational readiness
and to simultaneously reduce support costs, there is a
great deal of interest in . the military services in imple-
menting multi-echelon models for detfermination of aéequate

but economical stocking levels for spare parts. TwoAmodels
presently used--METRIC and MOD-METRIG--are inefficient and
require excessive time for computation. In an attempt to

solve these deficiencies a heuristic model was developed at
the Naval Postgraduate School. The main purpose of this
thesis is to compare the characteristics and performance of
the simple heuristic model with the MTERIC solution.
Comparisons with METRIC revealed that the heuristic

model was much more efficiint computationally, but the solu-
tion was frequently far inferior to that obtained by METRIC.
The comparison indicate strongly that base(shipboard) stock
levels as determined by existing allowance models are larger
than are needed in an integrated system. jZ;QbQ;@L/ Ofwrx/p )
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I. INTRODUCTION

A. BACKGROUND

"No matter how large our forces or how modern our mili-
tary equipment, if our forces are not ready to fight, or if
they cannot be sustained once engaged, we have no real
combat capability" [Ref. 1]. These words were used in the
Secretary of Defense's annual report'to Congress (FY83) to
promote the idea that a balance must be maintained force
modernization and support of existing forces [Ref. 2]. The
support of existing forces is an issue of high interest to
military managers. Continually they try to find the most
efficient way to allocate the budget that is assigned for
spare parts. Many inventory models have been built to help
determine the proper stockage levels for recoverable items
which maximize performance subject to a given spares invest-
ment. One of these models is METRIC(Multi-Echelon Technique
for Recoverable Items Control). '

METRIC is a mathematical model translated into a
computer program, capable of determining base and depot
stock 1levels for a .group of recoverable items. Its
governing purpose is to optimize system performance for
specified levels of system investment. METRIC is designed
for application at the weapon system level, where a partic-
ular line item may be demanded at several bases and the
bases are supported by one central depot [Ref. 3: p. 123].

Another model for spare parts allocation is MOD-METRIC

which is a model for a multi-item, two-echelon two-indenture

inventory system. MOD-METRIC is an extension of METRIC,

which permits the explicit consideration of a hierarchical

parts structure. The hierarchical parts structure means
9
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that the recoverable items themselves contain recoverable
items.

The objectives of the MOD-METRIC model are to describe
the logistic relationship between the components and the
final assembly, and to compute base and depot spare stock
levels for all items with explicit consideration of this
logistics relationship [Ref. 4: p. 472]. The difference
between the METRIC and MOD-METRIC models is the manner in
which the average resupply time is expressed. Chapter II of
this paper provides a detailed review,0f these two models.

Both models are excellent tools for finding efficient
spare parts stockage solutions for small-sized problems.
However, because they use a recursive solution technique,
eac™ run takes much computation time, making the models
infeasible to " use for large-sized problems. Tc overcome
these computational difficulties, and to provide a workable
solution for practical problems an heuristic stockage model
has been developed at the Naval Postgraduate School
[Ref. 5].

B. PURPOSE

The main purpose of this paper is to compare the solu-
tions given by the simple heuristic N.P.S. model to the
optimal solutions given by the METRIC. The comparison of
the models will look at both efficiency in terms of computa-

tional time and an the quality of the solutions obtained.

C. PREVIEW

Chapter II of this paper provides a detailed review of
the METRIC and MOD-METRIC models. Included in that chapter
are the assumptions of the models and the solution tech-

niques used for each.

10
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Chapter III addresses the problem of making the METRIC
and the N.P.S. models more efficient by approximating the
expressions for base backorder days and by estimating base
stock 1levels wusing simple multiple regression equation
instead of the recursive computations required for the exact
solutions. The regression equations use as inputs only the
ready rate, and the demand rate.

Chapter IV describes the assumptions and solution proce-
dure of the heuristic N.P.S. model for solving the same
stockage allocation problem.. .

Chapter V presents the results of example computer runs
whiéh illustrate how close the approximate solutions cf the
heuristic N.P.S. model are to the optimal METRIC solution.
The comparisons include a modification of the N.P.S. solu-
tion using marginal analysis to incorporate unit costs.

Chapter VI summarizes the thesis and presents,

T ere———eree—

oo S
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If we <can find the expected base resupply time of
the end item at base j, then we can use equation 2.1 for
the base backorders of the end item. An expression for T
is as follows;

T . r R+ (A + expected depot delay time).
0j 0j 03 0j

When the depot has S00 , the expected depot delay
time per demand is very similar to equation 2.3 . Let

§(S_ )

D = Expected depot dela r demand.
00’00 Xp P elay pe

Then,

[#2]
8(S D = --- - 5 A D : 2.14
(60700 = % xZ=S BT SgdPrI Do) (ean )

where = > (1-r_)A__ 1is the expected depot demand.
00 j=1 0j 0j

Average base repair time for end item at base j, Rop
is equal to the average remove and replace time, given the
necessary module is available, plus the expected delay due

to the wunavailability of the module which is required to

repair the engine. Therefore R°3 = Boy * dy; where
BO‘ = the average repair time at base i if modules are
J
available;
AO‘ = the average delay in base engine repair due to
J

the unavailability of a needed module.

Let the expected delay in engine base repair time due to a
backorder on module i at base j be represented by %3
Then

o)
A= eme 2 (x,, -8 ) p(x  [Aa T ) (eqn 2.15)
ij A X=5  +1 ij ij ij ij 1ij

25
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R, .= Average base repair time for module i at base j;

ij
A = Average order and ship time for module i at base j

+ to the depot;
Di0= Average depot repair time of module i;
Ci = Cost of module i (CO means cost of engine);
Sij= Stock level for module i at location j, j = 0,1,..,n;
Tij= Average resupply time for module i at base j.

' : .

3. Assumptions

The assumptions stated in METRIC are also applicable
to MOD-METRIC except 1 and 8. Instead of compound Poisson
demand in METRIC, MOD-METRIC assumes that the demand process
is the simple Poisson process. METRIC assumes that each
item has the same military essentiality. In MOD-METRIC the
essentialities of end items and modules are explicitly
expressed through the equation that represents each item's
contribution to the end item's resupply Eime. Furthermore,
MOD-METRIC assumes that if an engine requires repair and
that repair is made at the base level, the probability that

more than one module requires repair is zero.

4. Objective Function

As in METRIC, the objective is to minimize the total
expected engine's (or end item) base backorder days summed
over all bases. As before, the minimization is subject to a
budget constraint. In deriving the objective function only

one end item and its modules are considered.

24
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Figure 2.2 MOD-METRIC Repair Process.

2. Data Requirements and Notation

The data items required by MOD-METRIC are listed

below.

m = Number of
subscript
end item;

n = Number of

modules associate with the end item. The

i will index modules, i = 0 represents the

bases. The subscript j will index bases,

j = 0 represents the depot;

A =Average number of daily removals of module i at base j;

1]

r = Probability a failure of module i at base j requires

1]

base repair;
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s which are discussed in Chapter V suggests that S;3 need
™ .

:H never be larger than the greatest integer less than A D to
X

accomplish mean supply response time goals in the neighbor-
hood of 5 days.

4
I

The minimum should be taken to be 0, and the search
conducted over the values 0,1,2,...,(AipDj) to find the
METRIC solution.

a s PPN
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« s e tady
R . eoal e

. B. MOD-METRIC ' '

1. Maintenance System Structure

Consider a maintenance system consisting of two
echelons--depot _and bases. Assume that an end item 1is
i: divided into several repair modules. For example, if an end
- item is an aircraft engine it may have, modules for intake,
combustion and exhaust. If an engine fails at a base, it is
replaced by a serviceable engine from base stock. The
ll failed engine then goes immediatly to either base repair or -
- is shipped to the depot and a resupply request is sent from
< the baseto the depot.

ﬁ% When the engine is repaired at the base, it 1is
n' assumed that one of the modules is faulty. A serviceable
2‘ module from the base stock, if available, will replace the
%j failed module, and the repaired engine is placed in base
- engine stock. The failed module that is removed from the
iq engine at a base 1is repaired at the base or 1is sent to the
I% depot and a resupply request is submitted to the depot.

This entire repair process is shown in figure 2.2

Now, there are several different stock levels which

i
A

affect system performance. Since engine and modules have
different functions in the repair process, each stock level

affects the system performance differently.

22
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6. Choice of a Multiplier and Depot Stock Level Range

Substitutuon of equation 2.5 into equation 2.11
gives

> (x- (s, + 1) p(x|AT(5. )
ij i0

x=S
1]
[- -]
- {(x - S x| AT(S } 2 6 C,
:f::s,.( 1) PXIAT(S, ) i
13
Which reduce to .
AT(S 2 4 C
gis__p(x' (507 % %S
1]
Add 1.0 to each side gives
® . .
1.0 - 2 p{(x|AT(S )} =2 1.0 + ¢ C,
g PUxIATES, ) ki
1]
Finally, we rewrite the left side:
S£
x| AT(S 2 1.0 + 8 C . n 2.13
x=0P{ | AT ( iO)} ki (eq )

If we define the "ready rate" to be probability that
the quantity of an item demanded during a resupply time is
less than or equal to the stock level Stj » we see from equa-
tion 2.13 that the METRIC solution forces the ready rate for
each item to be at least as large as 1.0 + 6,C;. Therefore,
if we choose a minimum ready rate, a lower bound on §, can
be estimated from inequality 2.13 . This minimum value of
can be used as the starting Lagrange multiplier in step 1 of
the solution technique.

We also need to establish a range of values for

depot stock 1level S;p . Because the depot demand rate is
and repair time is D;y , the average number of units of items
in depot resupply is 3,,D;. Empirical evidence in the runs

21
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B (S, ,S. ) is discretely convex for a given Sjo
ij ij 10 _

- (see [Ref. 9: p. 260] ):

B (S ,S )-6Cs, < B,.(S..+1,S.O) -9C (s, . +1).

ij 10 kidij ij 1] i ki ij
or
B (s, +1,8 ) -B_ (S8 ,8 )72 ¢C.. (eqn 2.11)
ij 1ij io0 ij ij 1o ki

To -find the optimum stock levei for each base,
given depot stock Sy and 6 , increase S from
0 to the smallest integer which satlsflesJ
inequality 2.11
Step 4. Increase depot stock Sio by one unit, and return
to step 3. Continue increasing depot stock until
it reaches the upper bound established in step 2.
Step 5. Choose optimal S, _ for each item. The optimum
S _and its corrésponding base stock levels are

i
those values which minimize problem 2.12 . .

n
Mi B s ,S - C.S - 9.C.S . eqn 2.12
n %—1( 1355575507 7 685y T 6850 (ed )

Step 6. Change the item and go to step 2.

Step 7. Compute the required total cost for buying all

S _ for a given 4 . If total cost is less than
|zf (where ¢ is a% acceptable prespecified dif-
ference total cost and budget), then stop. The
current Lagrange multiplier gives optimal
solution for those resources actually required by
the solution S . Otherwise choose a new 4§ and
go tostep 3. kaisection search procedure should

be used to determine a new value for ¢




If an x can be found which maximizes equation 2.8, then this
§ %s‘also the solution for the constrained problem, equation

Everett's Theorem is useful for solving the METRIC

problem. According to Everett's Theorem we can express our

original problem, equation 2.6 as follows;
n
Min B 2B (s, )- 02 .‘%C.s.. (eqn 2.9)
i=1 j=11ij 1ij 10 i=1 j=0 i ij

where 6< 0.0 . .

A\ ]

Different choices of # lead to different resource levels, N
and it 1is necessary to adjust them by trial and error to
achieve a given constraint. Therefore we need to solve
problem 2.9 for several values of the multiplier 4. That
value which provides the resource level that is closest to

the budget constraint will be chosen.

Since our problem is separable in the items, problem
2.9 can be solved for each item separately. That is, we can
solve the m subproblems,

n
Min2. (B, (S, ,S ) - CS - C.S. ). (eqn 2.10)
j=1 ij 4ij  io0 i ij i io

The solution technique is outlined below:

Step 1. In the description 4 refers to the trial value
for the Lagrange multiplier at step k.
Select a starting value 00 for the multiplier;
where 4 < 0. A reasonable choice for g will
be presented later.

Step 2. Establish an upper bound on S, _. This will be

i0
presented later also.

Step 3. Given S, _and ¢ , determine the base stock level
i
for each base(S_O may start at zero). Since
i

19
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As mentioned above, the objective of METRIC 1is to
minimize the sum of backorders for all items i and for all

bases j within a budget constraint. The METRIC problems is
then to find S is greater than or equal to zero for all i
and j which

Minimize gt é&kB_,(S’.,S_ ) (eqn 2.6)
i=1l j=1 ij ij io0

Subject to 21 ﬁo C S  <B *
. i1 350 i 1ij

where B is the available budget.

5. Solution Technique

The METRIC problem can be solved by using either
marginal allocation or the generalized Lagrangian Multiplier
method [Ref. 3: p. 133]. We describe the generalized
Lagrange multiplier method since that is what 1is suggested
by the authors of METRIC. First, we state the theorem by
Everett which is the basis for the generalized Lagrange
multiplier method.

Everett theorem [Ref. 8]:

.Let S be a set(comgletel rbitrarK) of possible
ategies or actions and let H%x? be the gay off (or
lity which accrues from.employln% the stra e§y x €_S.
C(x) be the resource required by s rateg{ X € 5, and let

the maximum amount of the resource available. We want

Maximize H(x): for all x € S (eqn 2.7)
Subject to C(x) < C.

This problem can be expressed as an _unconstrained problem
for a given Lagrangian multiplier 6> 0 as follows:

Maximize H(x) - 8C(x). (eqn 2.8)

18
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T =r *R_ + (1 - r )*(A, + expected depot delay time).
ij ij ij 1] 1j

Except for the expected depot delay time all the

variables are assumed known. The depot delay time is zero
if the depot has infinite stock. If the depot has no stock,
the time is D(depot repair time). I1f the depot has finite

stock S then the expected depot backorders is

(x - 5, Jp(x|a D) (eqn 2.2)
- 10 i0 i )

x=S_ +1 0

i0

where A= i;.(l -r ) X . ’ )
i0 3= 1J 1)

Equation 2.2 can be interpreted as depot backorder
days per day [Ref. 7]." Thus , when we divide this number by
depot demand per day(ii, ) we get the expected depot back-

order days per demand:

1 o (eqn 2.3
- - 2 (x-S )p(x} A D). q )

A, x=S5_ +1 i0 i0 i

10 i0

Sherbrooke argues that this average delay will be some
fraction of the depot repair time D and uses the notation
8(See )D for this expression to emphasize this fact. And
so the resupply time can be expressed as follows;

T (5. )=1r R _+ (l-r )(A _+ 5 (5. )D ). (eqn 2.4)
ij io i1j 1] ij 1j i 10" i

Now we can write the equation for the expected
number of backorders for item i at base j when the depot has

S, and the base has §;; stoclk levels;

S

o
&

B, (5, ,5 )=2_ (x-S ) p(xla, T (S, )). (ean 2.5)
ij 4ij 1o x=Sﬁ ij ij ij 10

17
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=
&; : value. The actual resupplj time distribution is not
- required. ' '
:;’ Feeney and Sherbrooke —[Ref. 6] extended Palm's
;é Theorem for the case where demands are compound Poisson
Si distributed under the assumption that all demands placed by
:? a given customer have the same resupply time. They show, in
e this case, that the resulting distribution of the number of
Zx. units in resupply is compound Poisson with parameter AT.
\jﬁ In addition, Feeney and Sherbrooke looked at the
j% special case in which the demands per,customer are logarith-
- micglly distributed with variance-to-mean ratio q. They
- showed that for this special case the resulting distribution )
o for the number of units in resupply is negative binomial
with parameters q and k = AT/1ln q; i.e.
& p(x units in resupply) =
- - 1 -
G 5 oot a0
. Using the result given by Palm's Theorem, we can
e then compute easily the expression for the steady state
?; expected number of backorders. Let S be the number of units
oi? of stock allocated to a base and let T be the mean resupply
= time for the base. The number of backorders at a given time
5‘ will then be zero if the demand during the resupply time is
’il less than or equal to S and the number of backorders will be
:5 (x-S) if the demand is larger than S. The expected number
’T; of backorders at any given time, denoted B(S,T), is then
1¥ given by;
o o
X B(S,T) = 2_ (x-S)p(x|AT) (eqn 2.1)
i~ x=s+1
ig Since the value of Ay for a base is assumed known,
:f we need to compute only the mean resupply time Tj; for item
ii i at base j.
g

G,
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.7,- The level at which repair is performed depends only

e Y

on the complexity of the repair.

8. Items and bases may have different military essen-
tialities; however, items are normally considered to
be equally essential. [Ref. &4: p. 474]

4, Objective Function

The objective function used by METRIC is to minimize
the sum of expected backorder days on all recoverable items
at all bases pertinent to a specific yeapon system. . A base
backorder for an item exists any time there is an unsatis-
fied demand for that item at the base ' level. Depot back-
orders are of interest only insofar as they affect base
backorders. :

To derivé the ‘expression for expected backorder days
the following mathematical background is needed.

A key result for both METRIC and MOD-METRIC concerns
the probability distribution of the number of wunits in
resupply. For the case where demands are Poisson distrib-
uted, Palm's Theorem gives this distribution under the
assumptions stated for the METRIC. and MOD-METRIC model.

Palm's theorem(stated in the context of the stockage
problem);

Let s be the spare stock for an item where demands are
Poisson distributed with customer arrival rate A, Let
K;E be the probability distribution of resupply time

ith mean T. Then, 1n the backorder case, _with and
YS-l,S) "stockage policy_the steady-state probability of
xtunlﬁ% in resupply is Poisson distributed with param-
eter ; l.e.

AT) exp(-AT
h(x) = p(x units in resupply) = S__f___?f___z__

x=0,1, 2,....

Thus, the distribution of the number of units in
resupply depends on the resupply time only through its mean

P B ATy
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probability that item i cannot be repaired at base j.
Expected order and ship time for item i from
base j to the depot(days).

R = Expected base repair time of item i at base j(days).

1)

D = Expected depot repair time of item i(days).

i

A, .= Expected number of demands for item i at location

ij .
j(demand/day) j = 0,1,2,...n.

S .= Stock level for item i at location j;

ij
j =20, 1 2,....n. *

<~ = Expected resupply time for item i at base j.

1]

B = Backorders for item i at location j ; j = 0,1,2,

1]

Note; subscript i is used to index the items and subscript
J refers to the different bases. The subscript j=0
refers to the depot.

3. Assumptions

1. A stationary compound Poisson probability distribu-
tion describes the demand process for each item(for
our comparisoﬁs later we consider only the case in
which demands are standard Poisson distributed).

2. There is no lateral resupply between bases.

3. There are no condemnations(all failed parts are
repaired).

4. A failure of one type of item is statistically inde-
pendent of those that occur for any other type of
item.

5. Repair times are statistically independent.

6. There 1is no waiting or batching of items before
repair is started on an item(infinite channel queuing
assumption).

14
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a repair is accompiished. This process is shown in figure
2.1

|
Base Base
- ~--) compnnent Component
Failed ! Rep.ir Inventory
Component |__.
Remove ‘
Repair ! . .
.. Depot Depot
Component Component
Repair . Inventory

........ Failed Component
-~ Serviceable Component

Figure 2.1 METRIC Repair Process.

The depot and base stock level of an item will
affect the performance of the system. As stock levels
increase the average resupply time of the failed item will
decrease. The objective of the METRIC model is to determine
the base and depot stock levels of every item for a given
budget constraint such that the total backorder delay at the
bases is minimized.

2. Data Requirements and Notations

The METRIC model requires several input data items
for implementation. The required data are listed below;
The number of recoverable items.

3
"

n = Number of bases.

(@]
n

The cost of item i.

r = Probability that a failure of item i at base j can

be repaired by base; it follows that 1 - rﬁ is

13




!, ) ITI. DISCUSSION OF METRIC AND MOD-METRIC

[y

Eﬁ; This chapter describes the METRIC and MOD-METRIC inven-

%Q tory models. For each model the following subjects are *
by discussed: maintenance system structure, assumptions, data

requirements and notation, the objective function and solu-
tion techniques. METRIC is more fully described by
Sherbrooke [Ref. 3], and MOD-METRIC by Muckstadt [Ref. 4].

A. METRIC

1. Maintenance System Structure

‘f> Consider "the multi-echelon maintenance structure as
used in the METRIC model. In a multi-echelon structure
stocking/maintenance facilities are organized in a hierarch-
ical structure according to supply/maintenance flows which
are represented as an arborescent network.

When a unit fails at base level there is a prob-
ability r that it can be repaired at the base, and a prob-
L ability 1l-r that it must be returned to the depot. Because
-5' " of the typical high costs and low demand for items, the
inventory stockage policy is (S-1,S), which means that items
are not batched for repair or resupply request. If there is
inventory available at the base, a serviceable item replaces
the failed item. If no inventory is available, the equip-
ment will be inoperable until an item 1is repaired. In
either case, the failed item immediately begins base repair;
or is sent to the depot. When the failed item is sent to
the depot a resupply request to the depot is issued. If the
depot has a serviceable part, it will send the item to the
base immediately. If the depot does not have the item
available, it will send a serviceable unit to the base after

12
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where
T .=t R +(1-1 )(A -+ (eqn 2.16)
1] ij ij ij ij
1
-=-- X - S x| A, D
N g e o) PO 0D.0)
io0 i0
and
n .
A = 1 -r A
i0 jza‘ ij) ij
' .
- The -expected delay in engine repair at base j due to modules .
- is;
p. -
= 1 m
O it L2 A A (éqn 2.17)
® i0 T .oa_. 121 ij 1ij
0j 0j )

Thus we have shown that the average resupply time for an
- engine, qu,‘can be expressed as:

2 T = B + A 2.18
'j:.;:; 0j r0j ( 0] 0j ) (eqn )
1 - A + §(S .
( rOj)( 03 ( 00) )

D
00

Now, the problem of MOD-METRIC is to find Su 2 0 shich can
be expressed mathematically.

> 2
Minimize . 2 (x - S_)P(x|A_.T_ )) (eqn 2.19)
1 . 0j 0]

26
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5. Solution Technique

The solution technique suggested by Muckstadt
[Ref. 4] is outlined in this section.

Problem 2.19 is not separable because TQi is a
complex function of the SU . The approach taken by
Muckstadt was to partition the problem into two
subproblems--the module subproblem and the end item
subproblem. The solution algorithm is as follows;

Step 1. Set up minimum investment lgvels for modules and
end items. Let those be g and £, respectively.
Let z be the total expected backorders for the
end item when the base stock levels for the end
item are S_ . Set a budget increment far modules,
b. Lét'g’bejh trial value for total system modules

investment and let z’ = o ,

Step 2. Solve the module subproblem given the minimum
budget g = g. That is, find S5 2 0 which

m.

Minimize f x-S P(xja T S

j= Egi EES‘.( ij) (x| ij ij( iO))
1]

m .
Subject to > 20 C. S < g.
i=1 j= i ij &

Step 3. Solve the end item subproblem. Find SO‘Z 0 as
in the METRIC solution which )

[+ 2]
Minimiz -5 = -8 A T (S
imize z =& x:SO_(x 037 *1%05T05 500
J

Subject to <B - g’

cCs .
Jj= 0 0j

27
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where T_  is calculated using the module stock levels
determin%d in step 2 and given S . Compute also the
value of z, the value of z associated with this opti-
mal solution.

Step 4. If z > Z, go directly to step 5.

Otherwise let z' = z and retain the corresponding
stock levels as the incumbent stock levels. Then
go to step 5. '

" .

Step 5. Increase g' by b. If B - g’< £, then terminate.
Otherwise return to step 2. If the algorithm stops
on this step, the optimal stock levels and the
associated minimum expected backorders will be
those saved from step 4. In step 2 an optimization
problem in solved in which a portion of the budget
g , is allocated among the modules to determine
depot and base module stock levels. The objective
of this subproblem is to determine that division
of gfwhich minimize the sum of the expected delay
function. The optimal value of S is found by
trial and error by searching through the
integers.

Note that the form of the suboptimization problem in
step 2 1is exactly the same as the METRIC problem. Thus,
step 2 can be solved using the techniques that were used in
METRIC.

The engine delay time due to unavailable modules at
a base(Aoj) is fixed by solving step 2 for a trial module
budget. This means that the expected engine repair time at
a base 1is fixed in problem 2.18 . Thus step 3 1is also
exactly same as the METRIC problem for only one item.
Consequently, the METRIC solution technique can be used in
step 3 again.

28
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ITITI. REGRESSION TECHNIQUE

As observed in the METRIC and MOD-METRIC solution tech-
niques, a lot of calculations are required to compute B (Sﬁ
,Sm ) and to find Sij (i =1,2,...m, j =0,1,2...n). Because
of the computation time it is difficult to determine the
spares allocation for thousands of items. It would be much

faster if the computationally heavy . recursive calculations
could be replaced by a non-recursive procedure. This
chapter presents results of an effort to approximate the

exact computations using multiple regression equations.

For estimation of the regression equations the following
procedure was used( the i,j subscripts are suppressed since
the results apply to each base and item separately):

1. Select »= AT(S). )
2. Vary the base stock level over the integers; S=0 1,2,..
3. For each value of S, find the true ready rate,

RR(s) = (xsS|#), and backorder function

;f, (x-8)p(x|#).

=0

4, Select those values of S for which the ready rate is in
a predetermined interval like, say 80% to 95%.

5. Repeat steps 1l-4 a range of values of u.

The set of values selected at step 4 constituted the regre-
ssion data base for the predetermined ready rate subinter-
val . Now, with this data base, MINITAB was used for two
separate regression analyses.

1). Base stock, S, was regressed on pu and ready rate RR.

2). Base backorders, B, was regressed on u, 2, S, s,
and RR.
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Tables I and II show the regression output from MINITAB.
They show how each variable contributes to the prediction of

S and B.
TABLE 1
: Regression Equation for 'Bagse Stock
. (5.0<p<7.5, .85<RR<.9
THE REGRESSION EQUATION IS .
Y=- 11.3 + 1.23 X1 + 14.1 X2
* Y is a expected base stock
ST. DEV. N
COEFFICIENT OF COEF.
INTERCEPT -11.31897 0.09860
Xl?# 3 1.22801 0.00222
X2 (RR 14.0667 0.1138
WITH (72~ 33 = 69 DEGREES OF FREEDOM
R-SQUARED =100.0 PERCENT

o Separate equations were estimated for arbitary selected
N subintervals for pand RR. We selected 5 subintervals forg

and 5 subintervals for RR giving a total of 25 possible sets
of equations.

NN

AN Table III shows how accurately the regression equations
,; estimate the actual S and B (S,#,RR ) for a given & , and
o RR.?

Table III reads as follows; if a base has 7 spare parts
and its u is 5.15, then its ready rate is 85% and backorder

% days are 0.2927. A regression equation is also wused to
ﬂf estimate the base stock and backorder days assuming an 857
" ready rate and the u from the first column of Table III

o '!Table _III uses the equation that appeared at table I
(' and table IIT .
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Table III shows that the regression equation gives very good
estimates of the values for both the base stock and the
backorder days. Thus, if we are able to use such equations
in solving multi echelon inventory problems, we can reduce
the computation time very much. The N.P.S. model does use
these equations and which will be presented at the next

chapter.
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IV. HEURISTIC MODEL

A. BACKGROUND

As we have seen in the chapter II and III, the METRIC
and MOD-METRIC solutions require extensive recursive compu-
tation. For example, the first recursive process involves a
search for the optimal base stock level given the depot
stock level and a value for the Lagrangian multiplier. This
process is repeated every time the depaot stock is changed--a
second recursion. Furthermore, the above two recursive
processes are repeated for each item and each +value of the
Lagrangian multiplier., Because of these recursions, much
computational time is required, and it could be difficult to
find the optimal solution for a system having thousands of
items(the typical aircraft has about 2,000 work unit coded
repairable item [Ref. 10] ).

Recall that in the METRIC model it was shown that the
optimal base stock level was the smallest integer value of §j

. which satisfies

P(x, €S . )=21+g4C,_.
1] 1] i

If we ignore the integrality of demand we can interpret this
inequality as providing the same ready rate for each base.
Now, this has the altinative interpretation that given a
value of the Lagrange multiplier and a fixed depot stock
level, the METRIC solution corresponds to the determination
of the largest ready rate which is budget feasible.

Now, aside from minimizing base backorder days, it is
frequently the case that a base may wish to achieve a speci-
fied ready rate assuming no support from a higher
echelon(depot). Such is the case, for example, with ship-
board(base) allowance list models which stock to provide a

90% ready rate for a 90 day period of time.

33
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The N.P.S. stockage model incorporates this notion of a

specified base ready rate and attempts to determine the
depot stock level Sg required to achieve a mean supply
response time (MSRT) goal. For our study, the goal was
selected arbitrarily to be 125 hours(5.2 days).

B. SOLUTION TECHNIQUE

The base ready rate is a function of the amount of depot
stock(the depot stock determines the Ty ) and the amount of
base stock. Also the optimal base Stock is a function of
the-ready rate and depot stock. Furthermore, as shown in
equation 2.4, the base backorder is a function of Sij and
nﬁ“(sw ). Therefore, the first step of the heuristic model
is to determine the base stock as a function of fixed depot
stock and ready rate. The second step is to determine the
value of the base backorder days as a function of the fixed
depot stock and the base stock which was found in the first

" step.

The necessary values can be found recursively using the
same expressions used in METRIC or they can be approximated
very accurately and rapidly using regression functions. The
N.P.S. model saves much computation time when solving for
the optimal base stock levels and base backorders by using
the regression equations described in the previous Chapter.

The depot stock leves for a given item by beginning at 0
and incrementing depot stock by one unit until the average
base MSRT first reaches the specified MSRT goal. Thus Sg is
the smallest integer such that

B S s S < MSRT .
j% 155057500 1 Ty g

Where B, (S "SOO) is th total expected base backorder days
ij oj _
for item i at base j when base j ha S, units and the depot

i
has S_0 units of stock. MSRT is the gpecified MSRT goal.
i g
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This procedure is repeated for each item one-by-one.

The big difference between the METRIC and N.P.S. models
is that METRIC minimizing the expected number of base back-
order days for a fixed budget, whereas the N.P.S. model
attempts to find the minimum depot stock levels required to
achieve a desired supply response time goal for each item.
A comparison of the METRIC and N.P.S. models is presented in

chapter 5.

C. ALGORITHM.

A}

-Below is an outline of the solution technique wused by
the N.P.&. model. Since no preference is given to any item
by the N.P.S. model and since there is no budget constraint,
no consideration need be given to the unit cost. ' Therefore

the same solution procedure is repeated for each item.

Step 1. Find the smallest non-negative integers S _,
1]
j=1,2,...,n, such that
P(x(T) <s_) 2 0.9
i
where T = 90 days. %he regression equations
described in chapter III can be used for this
step. Set the depot stock S equal to O.

Step 2. Determine T (S_ ) and B (S ,S_ ) for j = 1,2,...,n.
(The regresgiog equatignchag be used to approxi-
mate the backorder functions required by this
step).

Step 3. Compute the demand-weighted average MSRT across
the n bases.

35




; If MSRT is less than 125 hours then stop. The cur-
E rent S_ is the desired solution. If MSRT greater
I than 125 hours, increase S0 by one unit and go to
: step 2.
. Step 4. Repeat for each item.
l
N

.
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V. COMPARISON OF THE MODELS

PRt~ el DAL P

In order to evaluate the heuristic, non-optimal, N.P.S.

model we selected several sample data sets and computed the

i N.P.S. solution for each. We theun repeated the computations
using the METRIC solution procedure. Since the METRIC solu-
tion is optimal, we can evaluate the quality of the N.P.S.

‘ solution by comparing its performance, to that of the METRIC
l model. The results of several comparisons are contained in
this chapter. '

Example problems consist of three items which are to be
stocked at one depot and three bases. For the purpose of
illustration, ~ four data sets are constructed. First the

) N.P.S. model solves the problem and computes the associate
budget, then this budget is used as a constraint in the
METRIC model.

A. DATA SET 1: LONG ORDER-SHIP TIME AND LOW PROBABILIT& OF
BASE REPAIR

i Table IV gives the complete input data for the first
data set. The first example considers long order-ship times

and zero probability of base repair. Thus, all repairs must

take place at the depot. 1Item 1 has a low demand rate, item

2 has a medium demand rate and item 3 has a high demand

rate. The demand rates are consistent through the four

sample data sets.

Recall from chapter II the following notations;

r = probability that item i can be repaired at base j,
1)
R, = the expected repair time in days for item i at base j,
1]
N A = the average order and ship time in days from base j
, ij

to the depot for item i,
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TABLE IV
INPUT DATA 1
_Ttem  Base Aj/day Ty . Ry___ 4 Di____Cost _
1 0.044 0.0 0.0 90.0
1 2 0.056 0.0 0.0 90.0 20.0 $200.0
3 0.067 0.0 0.0 90.0
1 0.111 0.0 0.0 90.0
2 2 0.133 0.0 0.0 90.0 25.0 750.0
3 0.167 0.00 0.0 90.0
1. 0.222 0.0 0.0 , 90.0 ,
3 2 0.244 0.0 0.0 90.0 30.0 1500.0
3 0.278 0.0 0.0 90.0
D = the average depot repair time in days for item i,
i
A = the failure rate(failures per day) of item i at
HJ base j.

Tables V and VI give the N.P.S. and METRIC results.
Observe that there are significant differences in the

stockage allocations between the two models. However, the
difference in performance(MSRT) 1is not so large. Notice
also the large difference in computational times; 0.27

seconds for N.P.S. solution and over 20 times as long(5.87
seconds) for the METRIC solution.

B. DATA SET 2: LONG ORDER-SHIP TIME AND HIGH PROBABILITY OF
BASE REPAIR

Table VII gives the data for the second test data set.
Characteristics of this data set are long ordering and ship-
ping times and a high probability of base repair. Thus, the
bases will rarely need to rely on the depot for support.
Intuitively, very little stock will be needed at the depot

level.




TABLE V
Results of N.P.S. Model for Data 1
Depot Base 1 Base 2 Base 3
Stock S RR S RR S RR MSRT
_______ L Ty U UGS S R U U I oo
Item 1 1 7 0.906 8 0.863 9 0.832 4.8467
Item 2 4 14 0.799 16 0.755 20 0.763 4.9172
Item 3 9 26 0.707 28 0.673 32 0.684 5.1011
——————— e e e m m e e e E e m e e e e e e e o e e e T M e e o e e e o e e
Total Cost : $188000.0
System Average MSRT : 5.01178 days
Time for Computer Run : 0.27 seconds
TABLE VI

Results of METRIC Model for Data 1

Depot Base 1 Base 2 Base 3
Stock ST RR. ST. RR. ST. RR MSRT
______ e e e e m e e e et r et e et et e e et et m e R e m e, Em——, e m = .. —— - - -
Item 1 2 8 0.966 10 0.973 11 0.961 1.0455
Item 2 7 14 0.859 16 0.828 20 0.842 3.0891
Item 3| 16 23 0.644 25 0.625 29 0.663 5.8286
...... B Uty S UG U
Total Cost : $188450.0
System Average MSRT : 4.,37275 days
Time for Computer Run : 5.87 seconds

As expected, both solutions place little stock at the
depot. The N.P.S. model puts zero stock there for each
item. Observe also that the system average MSRT values are
much lower than the response time goal of 5.2 days(125
hours). This is because of the self-supporting capability
of the bases. As before, the N.P.S. solution required a
small fraction of the time required by the METRIC solution.
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DO WHILE (ABS(BUDGET -SUMCOST)>749.0);
LAM (LAMBDA) =QK;

PUT SKIP EDIT(QK)(X(1),F(11,8));
SUMCOSTL =0.0;
SUMCOST =0.0;
TOTAL_DEMAND =0.0;
TOTAL_MSRT = 0.0;
SUM_DEMAND =0.0;
DO HAN =1 TO ID; \ .
TOTAL_DEMAND = 0.0;
DDEM =0;
DO J = 1 TO BASE;
PP =BDEM(HAN,J,3) * (1-BPROB(HAN,J,5));
DDEM = DDEM +PP;
TOTAL DEMAND = TOTAL_DEMAND + BDEM(HAN,J,3);
END;
U =DDEM *DREP(HAN,1,6);

I

SPACELl = 1000.0;

DO WHILE (SIO <18);
PX = EXP(-U);
SUM2 = U - SIO;
IF SI0 > O
THEN DO;
DO X = 0 TO SIO-1;
SUM2 =SUM2 +(SIO - X) * PX;
PX = U * PX / (X+1);
END;
END;

DDELY =SUM2 /DDEM;

SUM3 =0.0;
SUM4=0.0;
SUM5 = 0.0;
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APPENDIX A
COMPUTER PROGRAM FOR METRIC MODEL BY PL/I

*PL/C ATR SOURCE L=9000 P=150 T=(1,30)XREF
BBO:PROCEDURE OPTIONS (MAIN);
pcL(cosT(15,10,1),BREP(10,10,2),BDEM(10,10,3),bbod(20),
bord(10,10,4),bPROB(10,10,5),DREP(10,10,6) )FLOAT;
DCL (DDEM,UB(20),RS,LS,QK,P(70),SPACE(20),BRST(20) ,DDELY,
" SUMCOST,BODD,RR(30,6,45,3),MSRT )FLOAT; .
DCL(PP,PPP,M,WIJ(30, 6,45, 3),U,KO,LAM(70),PX,POISSON,
BUDGET,QK1,SUM5,BOD1, SUM6 ,READY_ RATE(15) )FLOAT;
DCL(Y3,SUM1,SUM2,MU(20),BODZ,QKZ,TOTAL_DEMAND)FLOAT
initial(0.0);
pcL(1,J,k,L,X,Y,Z,V,F,HAN,LAMBDA,NUMBER)FIXED;
DCL(SI10,SIJ,ID,BASE)FIXED INIT(0);
DCL (SUMCOST1,SUMCOST2(40),SPACE1l,SUM3,SUM4,BOD,W1,W(40))
flost; .
DCL (MMSRT,TOTAL_AVG_MSRT,TOTAL_MSRT,SUM_DEMAND )FLOAT;

LAMBDA = 1;

QK = (0.6-1.0)/ 200;
ID =3;

BASE =3;

GET LIST (BUDGET);

DO I =1 TO ID;
DO J= 1 TO BASE;
K = 1;

GET LIST(cCOST(1,J,K),BREP(I,J,K+1),BDEM(I,J,K+2),
BORD(I,J,K+3), BPROB(I,J,K+4),DREP(I,J,K+5));
END;
END;
SUMCOST = 0.0;
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consequences on présently used allowance list models used by
the military services.

An evaluation of the computation times required for
determining the N.P.S. and METRIC solutions showed the times
for the METRIC solution to be as much as 20 times as great
as those required for the N.P.S. solution. Thus, the
N.P.S. solution does hold promise for implementation in the
real world with large weapon systems.

In general, the performance of the N.P.S. model was
somewhat disappointing in comparison o the METRIC solution.
The results of this thesis indicate that the N.P.S. model

requires additional work in the areas mentioned above.
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the mean demand, the stockage level, and the ready rate.
Regression equation were also developed for estimation of
the base stock levels, as a function of the mean demand and
the ready rate. The accuracy of both sets of equations was
very high. This suggests that significant reductions in
computer time in the METRIC model(or others)could be
achieved by replacing the exact recursive computations with
the approximate regression equations.

In order to accomplish the third objective, several

sample data sets were created for usg in testing the METRIC

and N.P.S. models. Four of the data sets are described in
Chapter V. Analysis of the results of the sample data sets
revealed some shortcomings of the proposed N.P.S. model.

One of those shortcomings, complete disregard for item costs
was corrected by modifying the N.P.S. model to include costs
in a marginal analysis procedure for determining depot stock
allocations. This modification achieved only minor improve-
ment but since it was restricted to the depot stock deci-
sions it requires additional study. Analysis also revealed
that the base stock levels are consistently too high in the
N.P.S. model. Significant reductions in the base ready rate
from 90% to 70% and less were made with the support system
still able to achieve specified mean supply response time
goals at significantly reduced costs. We also observed that
the ready rate protect on period, nominally stated as 90
days seems 1longer than necessary with the types of values
used for order and ship times and repair times in our exam-
ples. Clearly, both the ready rate and the length of the
protection period should be a function of the other input
parameters of the model, 1like order and ship times, base
repair probability, and base and depot repair times.
Selection of a wuniform "907% protection for 90 days'" policy
for determining shipboard stock will sometimes over protect

or under protect significantly. This might have dramatic
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VI. CONCLUSIONS

There were basically three major objectives of this
thesis. The first was to review the 1literature and to
understand the existing models for controlling the stockage
decisions in multi-item, multi-echelon inventory system for
repairable items. The second objective was to develop the
computer programs needed to implement , the most promising of
the existing algorithms. The last objective was to evaluate
the‘heuristic N.P.S. model by comparing it to the baseline
solution given by the existing algorithm.

The review of the literature revealed that basically all
of the existing models are derived from the METRIC family
developed at RAND in 1968. Therefore, the METRIC model was
selected as our baseline. That algorithm was programmed and
is operational on the N.P.S. 1IBM 370 model 3033 computer.
Appendix A of this thesis contains a 1listing of the PL/I
source code for that program. The N.P.S. model proposed by
Apple [Ref. 5] was also programmed in PL/I on the N.P.S.
computer system and is included in this thesis as Appendix
B.

Execution of the METRIC and N.P.S. models revealed
extensive recursion in the computations of stockage levels
and the backorder expression. Since it is well known that
one of the major problems preventing widespread acceptance
of the METRIC family of models is the extensive computa-
tional time required to solve for the optimal solution for
reasonably-sized weapon systems, we sought to determine if
accurate approximations could be used in place of much of
the recursion.

Multiple regression equations were developed for estima-

tion of the expected base backorder days as a function of
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TABLE XV1
Results of the Marginal Analysis
Depot Base 1 Base 2 Base 3
Stock S RR S RR S RR MSRT
....... U U MU M A MARGE
Item ] 4 7 0.944 8 0.919 9 0.901 2.6312
Item 2 6 14 0.841 16 0.807 20 0.819 3.6043
Item 3 7 26 0.663 28 0.626 32 0.634 6.1941
_______ S
Total Cost : $187100.0
System Average MSRT : 4.,93885 days
.Time for Computer Run : 0.58 seconds
*N.P.S. model : MSRT = 5.011 Total Cost = 2188200.0
*METRIC MODEL : MSRT = 4.373 Total Cost = $188450.0
As may seen‘, from this Table, the marginal analysis

modification provided only a small improvement over the
N.P.S. model(MSRT decreased from 5.01l1l days to 4.939 days
and costs were reduced by $900) and performance still falls
significantly short of the METRIC solution. Observe also,
as expected, that the marginal analysis solution did
increase the stockage levels of the less expensive items and
decreased the stockage level of the most expensive item.
This is evident from the item MSRT values. While it is
clear that any solution for which budgets and unit costs are
considered should improve overall effectiveness in a budget
constrained environment, it may not be desirable to allow
the more expensive items to suffer in terms of stockage
support. Incorporation of a workable essentiality coding
policy could be used to override the impact observed above.
While the increased performance obtained by using
the marginal analysis modification was not significant, keep
in mind that the marginal allocation was applied only to the
depot stock levels. It is reasonable to assume that addi-
tional improvement could be obtained with similar modifica-

tion to the base stock allocation procedure.
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the depot per unit time for item i; D; is the average depot
repair time for item i; and AH is the order and ship time
from the depot to base j.

Define AB (d ) = B (d,) - B (d +1)
i i i i i i

to be the reduction in total base backorder delay for item i
if the depot stock level is increased from d wunits to d;+1
units. Because the impact of a change in depot stock on the
total base bgckorders is felt only indirectly through a

reduction in TU (di), no useful analyéical simplification of

B €d;) could be determined. Nevertheless, it can be .
computed easily directly. - _

Finally, let A= E g“j be the total expected
demand over all items and bases. We are now ready to

describe the marginal analytic procedure.

Step 1. Determine the btase stock levels S as before
1) s

from ready rate considerations. Set the initial
depot stockage vector to be (0,0,...,0); i.e.

d =0 fori=1,2,...m.
i

Step 2. Compute T (d +1) .for i=1,2,..,m and j=1,2,..,n
ij i

Step 3. Compute B (d )/C for i=1,2,..,m and let k be
i i i
that index for which this ratio is maximum.

Step 4. Let d =d + 1.
k k

m
Step 5. Compute MSRT = (;E: B (d ))/a -
i=1l i i

&f : Step 6. If MSRT < Goal, stop. Otherwise go to step 2.
[
L] 3. Example of the Marginal Analysis Procedure

The marginal analysis modification was applied to
the data set 1 examined in the previous section. The
. resulting allocation are presented in Table XVI
3
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for multiple items an iterative process was used to select
sequentially that item at each step which provides the
greatest reduction in total base backorder days per dollar

invested. The necessary dollars are allocated to purchase
one unit of the selected item and the process 1is repeated
until the overall MSRT objective was achieved.

2. Mathematical Description

Let (d,,d; ,...,dq)be the dgpot stock levels for
items 1,2,...n, respectively. (Note: This is a change in
the‘ notation used previously to emphasize that the only
decision variables incorporated in the marginal analytic
solution are the depot stock levels for the n items). Let
B; (d;) be the total base backorder days for item i when d
units are stocked at the depot. Recall that the depot stock
level influences the base backorder expression only through
the depot resupply time Ty - To emphasize this, we express
the depot resupply time for item i and base j as TU (d;).
The total expected base backorder days for item i can then
be written as:

> £
B (d ) = . (x-5_ )P (x|a, T,
i i j=1 x=s_ _ . ij 1ij ij i
1]

(d)). (eqn 5.1)
Jjg i

Now, we have seen previously that the average depot
delay per demand in satisfying base j when the depot has dj
units of stock is given by:

T (d) =4A, + {> (x-d) P(xIrx.D)} / r.;
ij i x=d i ii i

» I A
Il ’ T, e

v ij
i i

1

§ n

[- where A = _za.(l-r__) A . is the total expected demand at
= 1 1= 1] 1]

g

-

-

b .

-

v

- 46

b,* -

-

»

L

- P T S R
I SR YL ST WP SN FENEIPU AP GNP, T SN S S %

. L oo © e e
-, e R N T T . . . .
P A AT R LA .




Loaina’ AlS e il e A et < auh - ol A" utl " oM ai A e i~ - addl -l - M~ M A -l Rl - et~y o ‘il - ot adirpi - el ~ - ol - et - ~ = asi -t i it i o= Calinrdiie At o gl = o e il |

Observe in the METRIC solution that the base stock allo-
cations for item 1 are identical to those in the N.P.S.
solution. Since the METRIC Lagrange multiplier solution
gives each base the same ready rate for a given item it is
clear that the ready rate selected by METRIC for item 1 is
70%, the same as that used by the N.P.S. model for each
item. However, METRIC selected ready rates for items 2 and
3 which were smaller than 70%(the bdse stockage levels for
items 2 and 3 are smaller than those given by the N.P.S.
solution). These smaller ready ratges are a reflection of
the higher costs for items 2 and 3. Thus, the METRIC solu-
tion illustrates that the ready rates selected for the base
stock levels in the N.P.S. model should not necessarily be
the same for each item, but should be a function of the unit
costs. The cheaper items should get higher ready rates than
the more expensive items.

E. MODIFIED N.P.S. MODEL

. 1. Marginal Analytic Solution

The sample analyses discussed in the previous
section suggested that the N.P.S. heuristic model could
perhaps be improved if the item mean supply times were
allowed to vary depending on unit costs. Thus, it might be
better to provide greater protection for the less expensive
items and less protection for the more expensive items. The

METRIC solution does discriminate in this fashion,

- attempting to provide the greatest performance per dollar

:5 invested. Therefore, in an effort to improve the efficiency

:? of the N.P.S. model and to incorporate consideration of the

h‘.' . 3 0] . .

-i unit costs, the N.P.S. model was modified by using marginal

= analysis to determine the depot stockage levels.

fﬁ The modified model determined the base stock levels

;f just as before. Then, ¢to determine the depot stock levels
R |
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TABLE XIV
Results of N.P.S. Model for Data 4

Item 1 2 5 0.892 2 0.875 7 0.882 3.7507
Item 2 12 0.793 1 0.777 17 0.749 4 7221
Item 9 22 0.670 24 0.668 28 0.702 9468
______ o e e e e e e = e e e o s e e e e == = = =
Total Cost : $162250.0
System Average MSRT : 4.72896 days
Time for Computer Run : 0.34 seconds
’ )
TABLE XV
Results of METRIC Model for Data 4
Depot Base 1 Base 2 Base 3
+Stock S RR ) RR S RR MSRT
Item 1 6 5 0.968 6 0.967 7 0.971 84274
Item 17 8 0.837 10 0.879 1% 0.863 2.21882
Item 3| 17 19 0.630 21 0.640 2 0.647 5.51025
______ U o U g
Total Cost : $161550.0
System Average MSRT : 3.89729 days
Time for Computer Run : 1.75 seconds
stock levels are too high. Even with the reduction in base

ready rate to 70%, the solutions above show that the METRIC
solution puts less stock at the bases and more at the depot
than does the N.P.S. solution. The solution obtained by
METRIC is nearly 207% better than the N.P.S. solution.
Thus, additional modification of the N.P.S. model to reduce

base stock even more should be considered.
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bases to be justified by an MSRT goal of 125 hours.? As a
result of the above observations, the N.P.S. model was modi-

fied for the last data test case by reducing the base ready
rate from 907 to 70%.

D. DATA SET 4: ZERO BASE REPAIR AND LONG DEPOT REPAIR TIME

Table XIII gives the data for the fourth test data set.
Characteristics of this data set are short ordering and
shipping times, zero probability of base repair and long

depot repair time. *

TABLE XIII
INPUT DATA 4

_Item Base Nj/day _my R &y Dy Cost
1 0.044 0.0 24.0 45.0
1 2 0.056 0.0 25.0 45.0 40.0 $200.0
3 0.067 0.0 23.0 45.0
1 0.111 0.0 29.0 45.0
2 2 0.133 0.0 27.0 45.0 50.0 750.0
3 0.167 0.0 -28.0 45.0
1 Q.222 Q.0 33.0  45.0
3 2 0.244 0.0 35.0 45.0 60.0 1500.0
3 0.278 0.0 3.0 45.0

A comparison of the results above to those obtained for
data set 3 shows that the MSRT goal of 125 hours(5.2 days)
can be achieved even with 1longer depot repair times and
lower base ready rates(707% versus 907%) at a reduced invest-

ment cost. This supports the argument above that the base

2This comment is contingent _on the validit of the
assumgtlons made by _METRIC “model. In particular, the
(S-1,5) ordering policy assumption and the Poisson demand
assumption.
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TABLE XI
Results of N.P.S. Model for Data 3
Depot  Base 1 Base 2 Base 3
Stock S RR S RR ] RR MSRT
______ gy o g iU U U
Item 1 0 7 0.991 8§ 0.987 9 0.986 0.3213
Item 2 0 14 0.986 16 0.985 20 0.991 0.1721
Item 3 0] 26 0.988 28 0.987 32 0.991 1209
______ g0 Ui I G
Total Cost : $171300.0
System Average MSRT : 0.16212 days
Time for Computer Run : 0.20 seconds
TABLE XII

Results of METRIC Model for Data 3

Item 1 3 10 1.000 9 0.999 10 0.999 0.01529
Item 2 9 16 0.998 14 0.996 17 0.998 0.03050
Item 3| 20 24 0.996 21 0.994 23 0.993 0.04811
______ T

Tocal Cost : $171750.0

System Average MSRT : 0.03849 days

Time for Computer Run : 6.64 seconds

The results from analyses of the last two data sets show
that the system mean supply response times can be made
significantly smaller than the 125 hour goal, even with zero
stock at the depot. This is because the stockage levels at
the bases are very high. This example points out a short-
coming of the N.P.S. model(and perhaps of the current Navy

allowance list models); too much stock is positioned at the
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TABLE IX
Results of METRIC Model for Data 2

Depot Base 1 Base 2 Base 3
Stock S RR S RR S RR MSRT
...... B e e e — = e e m e e e m om = =
Item 1 0 9 1.000 10 1.000 11 1.000 0.0001
Item 2 1 15 1.000 17 1.000 18 1.000 0.0002
Item 3 4 24 1.000 28 1.000 29 1.000 0.0003
______ g MU
Total Cost : &171750.0
System Average MSRT : 0.00025 days
Time for Computer Run : 13.57 seconds

]

TABLE X
INPUT DATA 3

_Ttem Base Myfday my R Ay Di_ . Cest.
1 0.044 0.0 0.0 45.0
1 2 0.056 0.0 0.0 45.0 20.0 $200.0
3 0.067 0.0 0.0 45.0
1 0.111 0.0 0.0 45.0
2 2 0.133 0.0 0.0 45.0 25.0 750.0
3 0.1e67 0.0 0.0 45.0
1 0.22% 0.0 0.0 45.0
3 2 Q.24 0.0 0.0 45.0 30.0 1500.0
3 0.278 0.0 0.0 45.0

As with the previous data:set we see that the N.P.S.

model gives zero stock at the depot. METRIC, on the other
hand, carries 1less stock at the bases and positive stock
levels at the depot. ' Both models easily satify the MSRT

goal of 125 hours.
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TABLE VII
INPUT DATA 2
Item  Base Myday | m; Ry Ay Di_ Cost
1 0.044 0.85 24.0 90.0
1 2 0.056 0.90 25.0 90.0 20.0 $200.0
3 0.067 0.90 23.0 90.0
1 0.111 0.85 29.0° 90.0
2 2 0.133 0.80 27.0 90.0 25.0 750.0
3 0.167 0.90 28.0 90.0
1. 0.222 0.80 33.0 , 90.0
3 2 0.244 Q.75 35.0 90.0 30.0 1500.0
3 0.278 0.80 34.0 90.0
TABLE VIII
Results of N.P.S. Model for Data 2
Depot Base 1 Base 2 Base 3
Stock S RR S RR S RR MSRT
______ o = = e = e A e e M M e = =
Item 1 0 7 0.999 8 0.999 9 0.999 0.0037
Item 2 0 14 0.999 16 0.999 20 1.000 0.0009
Item 3 0 26 1.000 28 0.999 32 1.000 0.0006
Total Cost : $171300.0
System Average MSRT : 0.00112 days
Time for Computer Run : 0.20 seconds

C. DATA SET 3: SHORT ORDER-SHIP TIME AND ZERO PROBABILITY
OF BASE REPAIR

Table X gives the data for the third sample data set.
This set 1is characterized by short ordering and shipping
times and low probabilities of base repair. Table XI and
XII are the N.P.S. and METRIC model results.
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9
E RS = QK * COST(HAN,1,1);
- BOD=0.0;

DO I = 1 TO BASE;
SPACE(I) =0.0;
END;

8 DO G = 1 TO BASE;
2 SIJ =0;

4 . DO Y =1 TO BASE;
Ei

2

M =BREP(HAN,Y,2) *BPROB(HAN,Y,5) + (1.0-
bprob(han,y,5))*(BORD (HAN,Y,4)+DDELY) ;

BRST(Y) = M; . .

END; Z

PUT SKIP(L) LIST('THE BASE MU'); :
‘ .DQ.Z = 1 TO BASE; :
( UB(Z) = BDEM(HAN,Z,3) *BRST(Z); l
; END; :
- SIJ = 0; ‘
! K =1;
Y Y3 =1.0; Co
X POISSON = EXP(-UB(G));

PROB_SUM = POISSON;
RR(LAMBDA ,HAN,SI0+1,G) = PROB_SUM;
_ DO WHILE (PROB_SUM < 1.0+RS);
N Y3 = Y3 *UB(G) / K;
PROB = POISSON *Y3;
PROB_SUM = PROB_SUM + PROB;
K = K + 1;
SIJ = SIJ +1;
END;
RR(LAMBDA ,HAN,SI0+1,G) = PROB_SUM;

.

. e

P

WIJ(LAMBDA,HAN,SI0+1,G) = SIJ;
PX = EXP (-UB(G));
SPACE(G) = UB(G) -SIJ; '
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IF SIJ > 0
THEN DO;
. ' DO X=0 TO SIJ -1;
SPACE(G) =SPACE(G) + (SIJ - X)¥*PX;
PX = UB(G) * PX/(X+1); ‘
END;
END;

SUM5 =SUMS5 + SPACE(G);
N BOD = BOD+SPACE(G) -QK*COST(HAN,1,1)%SIJ;
o END; ‘ * '
DO Z=1 TO BASE; . .
PUT EDIT(UB(%))(X(2),F(9,5));
END;
PUT EDIT(SUMS)( X(1),F(11,5));
MMSRT = SUMS / TOTAL_DEMAND;
G =1;
BODD=BOD - QK*COST(HAN,1,1)*SIO;
PUT EDIT(MMSRT,BODD)(X(2),F(9,5),X(2),F(9,5)); J
. IF BODD<SPACEl
THEN DO;
DO I = 1 TO BASE;
READY RATE (I) =
RR(LAMBDA ,HAN,SI0+1,I);
END;
BOD1 = SUMS;
SPACE1 =BODD;
DO I = 1 TO BASE;
- BBOD(I) =SPACE(I);
END;
Wl =SIO0;
Y NUMBER =0.0;
DO I = 1 TO BASE ;
| W(I)=WIJ(LAMBDA,HAN,SI0+1,I);
e NUMBER=W(I)+NUMBER;

NP RSV
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END;

END;
SI0O =SI0 + 1;
END;

SUMCOST1=COST(HAN,1,1)*(NUMBER+Wl);
BOD2 = BOD2 + BOD1;
PUT SKIP EDIT(HAN,W1l)(X(10),F(2),X(2),F(2));
DO I = 1 TO BASE;
PUT EDIT(W(I),READY_RATE(I))
’ (X(2),F(2),X(2),F{5,3));
END; . -
MSRT = BODl/TOTAL_DEMAND;
PUT EDIT(MSRT,SUMCOSTL1)
(X(2),F(9,5),X(3),F(9));
SUMCOST =SUMCOST + SUMCOST1;
SI0 =0.0;

SN -

SUM_DEMAND = SUM_DEMAND + TOTAL_DEMAND;
TOTAL_MSRT = TOTAL_MSRT + MSRT * TOTAL_DEMAND;
END;

PUT EDIT (SUMCOST)(X(7),F(9));
TOTAL_AVG_MSRT = TOTAL_MSRT / SUM_DEMAND; ,
SUMCOST2 (LAMBDA) =SUMCOST;

BOD2=0.0;
LAMBDA = LAMBDA +1;

IF SUMCOST <BUDGET

THEN DO;
QK1 = QK; :

QK =0.5%(QK1l +QK2); f

END; ]

ELSE DO; !

QK2 = QK; 3

QK =0.5%(QKl + QK2); )

END; ~
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END;
PUT.SKIP'EDIT('TOTAL AVERAGE MSRT IS',
total avg_msrt)(a(23),x(2),F(10,5));

END BBO; *DATA
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Es APPENDIX B .
COMPUTER PROGRAM FOR N.P.S. MODEL BY PL/I

*PL/C ATR SOURCE L=4000 P=70 T=(3,30) XREF
OPTIMAL : PROCEDURE OPTIONS(MAIN);
DCL (ITEM, ITEMS, BASE, BASES, I, X, K, BASE_STOCK(6,5),

depot_stock,O0PTI_DEPOT_STOCK(6),SUM,TOTAL_STOCK)FIXED;
DCL (COST(9,9,6),BASE_REP_TIME(9,9,8),BASE_DEMAND(9,9,6),

ORDER_TIME(9,15,6),dEPOT_REP_TIME(9,15,6), .

READY RATE(5),TIJ,NEW_PROB,base_prob(9,15,6))FLOAT;
DCL (DEPOT_DEMAND,SUM_DEMAND,MU,Y3,PX,POISSON,PROB_SUM,
- msrt,SUM9,SUM10,BASE_MU,SUM_BACKORDER,BASE_BACKORDER,
j@ TOTAL_COST,LAMBDA_T,EXPECTED BACKORDER)FLOAT;
: DCL (TOTAL DEMAND, TOTAL_MSRT,TOTAL AVG MSRT,item_cost,

base _res_time(7))float;
ITEMS = 3;
BASES = 3; v
i TOTAL_COST =0.0;
DO I =1 TO ITEMS;
DO J 1 TO BASES;
K = 1;
GET LIST(COST(I,J,K),BASE_REP_TIME(I,J,K+1),
BASE_DEMAND(I,J,K+2),0RDER_TIME(I,J,K+3),
BASE_PROB(I,J,K+4),DEPOT_REP_TIME(I,J,K+5));

s

Y,
»‘n.l
.

) END;

:,-‘ END;

o TOTAL_DEMAND = 0.0;

= TOTAL_MSRT = 0.0;

» DO ITEM = 1 TO ITEMS;
v SUM = 0;

- DEPOT_DEMAND = 0.0;
b SUM_DEMAND = 0.0;
L
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DO BASE =1 TO BASES;
TIJ =(1.0-BASE_PROB(ITEM,BASE,5))%*90 +
BASE_PROB (ITEM,BASE,5)*BASE_REP_TIME(ITEM,BASE,2);
MU =TIJ*BASE_DEMAND(ITEM,BASE,3);
PUT SKIP LIST('TIJ IS ',TIJ);
PUT SKIP LIST('BASE MU WHEN TIJ DAYS',MU);
NEW_PROB = .74;

PUT SKIP LIST('NEW PROBILITY IS',NEW _PROB);
K= 1; : .
Y3 = 1.0;
POISSON = EXP(-MU);
PROB_SUM = POISSON;
DO WHILE (PROB_SUM <= NEW_PROB);
Y3 = Y3 * MU/K;
PROB = POISSON * Y3;
PROB_SUM = PROB_SUM + PROB;
K=K+ 1;
END;
BASE_STOCK(ITEM,BASE) = K -1;

SUM = SUM + BASE_STOCK(ITEM,BASE);
DFPOT_DEMAND =DEPOT_DEMAND + BASE_DEMAND
(item,base,3)*(1.0 -BASE_PROB(ITEM,BASE,5));
SUM_DEMAND = SUM_DEMAND + BASE_DEMAND(ITEM,BASE,3);
END;

DEPOT_STOCK =0;
MSRT = 5.5;
DO WHILE (MSRT >= 5.2);
LAMBDA_T = DEPOT_DEMAND * DEPOT_REP_TIME
(item,bases,6);
PX = EXP(-LAMBDA T);
SUM10 = LAMBDA T - DEPOT_STOCK;
IF DEPOT_STOCK > O
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3 THEN DO;
DO X = 0 TO DEPOT_STOCK-1;
SUM10 = SUM10 + (DEPOT_STOCK - X) * PX; .
PX = LAMBDA_T * PX /(X+1);
END;
END;
EXPECTED_BACKORDER = SUM10;
DEPOT_DELAY =EXPECTED BACKORDER / DEPOT_DEMAND;
SUM_BACKORDER = 0.0; '

DO BASE = 1 TO BASES; . .
READY_ RATE (BASE)=0.0;
BASE_RES_TIME(BASE) =BASE _REP_TIME(ITEM,BASE,2)*
..BASE_PROB(ITEM,BASE,5) + (1 -
BASE_PROB (ITEM,BASE,5))*(ORDER_TIME (ITEM,
BASE,4)+DEPOT_DELAY);
BASE_MU = BASE_RES_TIME(BASE) * BASE_DEMAND
' (item,base,3);
PUT SKIP LIST('BASE MU IS',BASE MU); ,
PX = EXP(-BASE MU);
SUM9 =BASE_MU - BASE_STOCK(ITEM,BASE);

IF BASE_STOCK (ITEM,BASE)>0
THEN DO;
DO X =0 TO BASE_STOCK(ITEM,BASE);
SUM9 = SUM9 +(BASE_STOCK(ITEM,BASE) - X) *

T, T T T T T )
p P
L

PX;

B READY RATE(BASE) = READY RATE (BASE)+PX;
s PX = BASE MU * PX /(X+1);

R END;

" END;

BASE_BACKORDER = SUM9;
SUM_BACKORDER = SUM_BACKORDER + BASE BACKORDER;

PN

Yy

. END; .
A MSRT =SUM_BACKORDER /SUM_DEMAND;
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PUT SKIP LIST('MSRT IS',MSRT);
DEPOT_STOCK = DEPOT_STOCK +1;
END;
TOTAL_DEMAND = TOTAL_DEMAND + SUM_DEMAND;
TOTAL_MSRT = TOTAL_MSRT + MSRT*SUM_DEMAND;

AL A BRI,

..
-

. OPTI_DEPOT_STOCK(ITEM) = DEPOT_STOCK -1;
I TOTAL_STOCK = SUM +OPTI_DEPOT_STOCK(ITEM);
ITEM_COST = TOTAL_STOCK * COST(ITEM,BASES,1);

PUT SKIP -EDIT(OPTI_DEPOT_ STOCK(ITEM))(X(2),F(6));
_DO BASE = 1 TO BASES;
" PUT EDIT(BASE_STOCK(ITEM,BASE),READY RATE(BASE))
(X(2),F(6),X(2),F(6,4));
| END;
i PUT EDIT (MSRT)(X(2),F(9,4));
PUT SKIP(3);
TOTAL_COST = TOTAL_COST + ITEM COST;

- END; .
i ‘ PUT SKIP EDIT('TOTAL COST IS',TOTAL COST)(X(3),A(14),
- £(9,2));

: TOTAL_AVG_MSRT = TOTAL_MSRT / TOTAL_DEMAND;

N PUT SKIP EDIT('TOTAL AVERAGE MSRT IS',TOTAL_AVG_MSRT)
i (X(3),A(20),X(2),F(9,5));

- END OPTIMAL; *DATA

;

!
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