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ABSTRACT

Because of the desire to improve operational readiness

and to simultaneously reduce support costs, there is a

great deal of interest in the military services in imple-

menting multi-echelon models for defermination of adequate

but economical stocking levels for spare parts. TwoAmodels

presently used--METRIC and MOD-METRIQ--are inefficient and

require excessive time for computation. In an attempt to

solve these deficiencies a heuristic niodel was developed at

the Naval Postgraduate School. The main purpose of this

thesis is to compare the characteristics and performance of

the simple heuristic model with the MTERIC solution.

Comparisons with METRIC revealed that the heuristic

model was much more efficient computationally, but the solu-

tion was frequently far inferior to that obtained by METRIC.

The comparison indicate strongly that base(shipboard) stock

levels as determined by existing allowance models are larger

than are needed in an integrated system. jI i ,-
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I. INTRODUCTION

A. BACKGROUND

"No matter how large our forces or how modern our mili-

tary equipment, if our forces are not ready to fight, or if

they cannot be sustained once engaged, we have no real

combat capability" [Ref. 1]. These words were used in the

Secretary of Defense's annual report'to Congress(FY83) to

promote the idea that a balance must be maintained force

modernization and support of existing forces [Ref. 2]. The

support of existing forces is an issue of high interest to

military managerq, Continually they try to find the most

efficient way to allocate the budget that is assigned for

spare parts. Many inventory models have been built to help

determine the proper stockage levels for recoverable items

which maximize performance subject to a given spares invest-

ment. One of these models is METRIC(Multi-Echelon Technique

for Recoverable Items Control).

METRIC is a mathematical model translated into a

computer program, capable of determining base and depot

stock levels for a .group of recoverable items. Its

governing purpose is to optimize system performance for

specified levels of system investment. METRIC is designed

for application at the weapon system level, where a partic-

ular line item may be demanded at several bases and the

bases are supported by one central depot [Ref. 3: p. 123].

Another model for spare parts allocation is MOD-METRIC

which is a model for a multi-item, two-echelon two-indenture

inventory system. MOD-METRIC is an extension of METRIC,

which permits the explicit consideration of a hierarchical

parts structure. The hierarchical parts structure means

9



that the recoverable items themselves contain recoverable

items.

The objectives of the MOD-METRIC model are to describe

the logistic relationship between the components and the

final assembly, and to compute base and depot spare stock

levels for all items with explicit consideration of this

logistics relationship [Ref. 4: p. 472]. The difference

between the METRIC and MOD-METRIC models is the manner in

which the average resupply time is expressed. Chapter II of

this paper provides a detailed review,of these two models.

.Both models are excellent tools for finding efficient

spare parts stockage solutions for small-sized problems.

However, because they use a recursive solution technique,

eac"- run takes much computation time, making the models

infeasible to use for large-sized problems. Tc overcome

these computational difficulties, and to provide a workable

solution for practical problems an heuristic stockage model

has been developed at the Naval Postgraduate School

[Ref. 5].

B. PURPOSE

The main purpose of this paper is to compare the solu-

tions given by the simple heuristic N.P.S. model to the

optimal solutions given by the METRIC. The comparison of

the models will look at both efficiency in terms of computa-

tional time and an the quality of the solutions obtained.

C. PREVIEW

Chapter II of this paper provides a detailed review of

the METRIC and MOD-METRIC models. Included in that chapter

are the assumptions of the models and the solution tech-

niques used for each.

10



Chapter III addresses the problem of making the METRIC

and the N.P.S. models more efficient by approximating the

expressions for base backorder days and by estimating base

stock levels using simple multiple regression equation

instead of the recursive computations required for the exact

solutions. The regression equations use as inputs only the

ready rate, and the demand rate.

Chapter IV describes the assumptions and solution proce-

dure of the heuristic N.P.S. model for solving the same

stockage allocation problem. I

Chapter V presents the results of example computer runs

which illustrate how close the approximate solutions cf the

heuristic N.P.S. model are to the optimal METRIC solution.

The comparisons include a modification of the N.P.S. solu-

tion using margiial analysis to incorporate unit costs.

Chapter VI summarizes the thesis and presents.

11



If we can find the expected base resupply time of

the end item at base j, then we can use equation 2.1 for

the base backorders of the end item. An expression for T

is as follows;

TOj rOj R Oj+ (A0 j + expected depot delay time).

When the depot has SO0 , the expected depot delay

time per demand is very similar to equation 2.3 Let

8(S0 )D = Expected depot delay per demand.

Then,

S(5 )D T- (x - S )p(xlX D ): (eqn 2.14)
00 00 A x=S +1 00 00 00

00 00

,

where -= (l-r )A is the expected depot demand.
00 j=l 0j Oj

Average base repair time for end item at base j, Roj,

is equal to the average remove and replace time, given the

necessary module is available, plus the expected delay due

to the unavailability of the module which is required to

repair the engine. Therefore Ro0  = Bo + 10 where

B = the average repair time at base i if modules are0j
available;

A O= the average delay in base engine repair due to

the unavailability of a needed module.

Let the expected delay in engine base repair time due to a

backorder on module i at base j be represented by a

Then

z-- Z (x - S.) p(x A. .T.) (eqn 2.15)
ij A x=S +1 ii ii ij ij ij

ij i2

25



R. Average base repair time for module i at base j;

A = Average order and ship time for module i at base j

to the depot;

D = Average depot repair time of module i;i0

Ci = Cost of module i (C means cost of engine);

S = Stock level for module i at location j, j 0,1,..,n-

T= Average resupply time for module i at base j.
ij

3. Assumptions

The assumptions stated in METRIC are also applicable

to MOD-METRIC 'except I and 8. Instead of compound Poisson

demand in METRIC, MOD-METRIC assumes that the demand process

is the simple Poisson process. METRIC assumes that each

item has the same military essentiality. In MOD-METRIC the

essentialities of end items and modules are explicitly

expressed through the equation that represents each item's

contribution to the end item's resupply time. Furthermore,

MOD-METRIC assumes that if an engine requires repair and

that repair is made at the base level, the probability that

more than one module requires repair is zero.

4. Objective Function

As in METRIC, the objective is to minimize the total

expected engine's (or end item) base backorder days summed

over all bases. As before, the minimization is subject to a

budget constraint. In deriving the objective function only

one end item and its modules are considered.

24
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Stoci

Base Engine Re- Base Base
pair, Remove& ---- Module - Module
Replace Module Repair Stock

Dep~t DegotDepot lEngine -- odule - Module
Repair Repair Stock

Depot Engine
Stock

Leen Failed Engine

Repaired Engine
------- Failed Module

Repaired Module

Figure 2.2 MOD-METRIC Repair Process.

2. Data Requirements and Notation

The data items required by MOD-METRIC are listed

below.

m = Number of modules associate with the end item. The

subscript i will index modules, i = 0 represents the

end item;

n = Number of bases. The subscript j will index bases,

j = 0 represents the depot;

A =Average number of daily removals of module i at base j;
ii

r.= Probability a failure of module i at base j requires
base repair;

23
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which are discussed in Chapter V suggests that Si0 need

never be larger than the greatest integer less than A 0D- to

accomplish mean supply response time goals in the neighbor-

hood of 5 days.

The minimum should be taken to be 0, and the search

conducted over the values 0,l,2,...,(Ai0 Di) to find the

METRIC solution.

B. MOD-METRIC

1. Maintenance System Structure

Consider a maintenance system consisting of two

echelons--depot and bases. Assume that an end item is

divided into several repair modules. For example, if an end

item is an aircraft engine it may have, modules for intake,

combustion and exhaust. If an engine fails at a base, it is

replaced by a serviceable engine from base stock. The

failed engine then goes immediatly to either base repair or

is shipped to the depot and a resupply request is sent from

the baseto the depot.

When the engine is repaired at the base, it is

assumed that one of the modules is faulty. A serviceable

module from the base stock, if available, will replace the

failed module, and the repaired engine is placed in base

engine stock. The failed module that is removed from the

engine at a base is repaired at the base or is sent to the

depot and a resupply request is submitted to the depot.

This entire repair process is shown in figure 2.2

Now, there are several different stock levels which

affect system performance. Since engine and modules have

different functions in the repair process, each stock level

affects the system performance differently.

22
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6. Choice of a Multiplier and Depot Stock Level Range

Substitutuon of equation 2.5 into equation 2.11

gives

2... (x - (S.+ 1) p(xlkT(Si ))
X=S 13iij

0

K {(x - S ) p(xlxT(S )} 0 C.
iS 0 k iii

Which reduce to

p(xXT(S ) C= " kiiX

Add 1.0 to each side gives

1.0 - p(xlIxT(Si)_ 2 1.0 + 0 C.
S jo kiii

Finally, we rewrite the left side:

-p(xXT(Si )}2 1.0 + 0 C (eqn 2.13)
,c0 iO k i.(q .3

If we define the "ready rate" to be probability that

the quantity of an item demanded during a resupply time is

less than or equal to the stock level S11 , we see from equa-

tion 2.13 that the METRIC solution forces the ready rate for

each item to be at least as large as 1.0 + OKC1. Therefore,

if we choose a minimum ready rate, a lower bound on OK can

be estimated from inequality 2.13 This minimum value of

can be used as the starting Lagrange multiplier in step 1 of

the solution technique.

We also need to establish a range of values for

depot stock level S0 . Because the depot demand rate is

and repair time is DI , the average number of units of items

in depot resupply is A10D;. Empirical evidence in the runs

21
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B (S S) is discretely convex for a given Sjo
ij ij iO

(see [Ref. 9: p. 260] ):

B (S,S ) CS <B.(S +1,S ) -C (S. +1).
ij jo k ii ij ij io ki ij

or

B. (S..+ ,S ) - B (S ,S " 0kC.. (eqn 2.11)
2j ij io ij ij io

To find the optimum stock level for each base,

given depot stock Sig and 0k, increase S.. from

0 to the smallest integer which satisfies

inequality 2.11

Step 4. Increase depot stock S by one unit, and return
io

to step 3. Continue increasing depot stock until

it reaches the upper bound established in step 2.

Step 5. Choose optimal S for each item. The optimum

S and its corresponding base stock levels are
io

those values which minimize problem 2.12

MS kCiS - 9RC S ). (eqn 2.12)
i ki j i0 ) -kiO

Step 6. Change the item and go to step 2.

Step 7. Compute the required total cost for buying all

S.. for a given 0. If total cost is less than
2.3 k

I-1 (where r is an acceptable prespecified dif-

ference total cost and budget), then stop. The

current Lagrange multiplier gives optimal

solution for those resources actually required by

the solution S.. Otherwise choose a new 0 and
ii k

go tostep 3. A bisection search procedure should

be used to determine a new value for 9
k

20



If an x can be found which maximizes equation 2.8, then this
x is also the solution for the constrained problem, equation
2.7

Everett's Theorem is useful for solving the METRIC

problem. According to Everett's Theorem we can express our

original problem, equation 2.6 as follows;

Min 2-- B (S )- 0 C S (eqn 2.9)
i=l 3=1 ij ij io i = =O i ij

where 0:5 0.0

Different choices of 0 lead to differ~ent resource levels,

and it is necessary to adjust them by trial and error to

achieve a given constraint. Therefore we need to solve

problem 2.9 for several values of the multiplier 0. That

value which provides the resource level that is closest to

the budget constraint will be chosen.

Since our problem is separable in the items, problem

2.9 can be solved for each item separately. That is, we can

solve the m subproblems,

A

Mint-- (B .(S.,S) - C S - C S (eqn 2.10)
j=1 ii ii iO i ij i io

The solution technique is outlined below:

Step 1. In the description a refers to the trial value
k

for the Lagrange multiplier at step k.

Select a starting value 0 for the multiplier;

where 0 < 0. A reasonable choice for 0 will
0 0

be presented later.

Step 2. Establish an upper bound on S . This will be

presented later also.

Step 3. Given S and ok, determine the base stock level

for each base(S may start at zero). Since

19
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As mentioned above, the objective of METRIC is to

minimize the sum of backorders for all items i and for all

bases j within a budget constraint. The METRIC problems is

then to find S is greater than or equal to zero for all i

and j which

Minimize i 1 B..(S .,S (eqn 2.6)i=l j=1 ii ii i0

Subject to C S i B

where B is the available budget.

5. Solution'Technique

The METRIC problem can be solved by using either

marginal allocation or the generalized Lagrangian Multiplier

method [Ref. 3: p. 133]. We describe the generalized

Lagrange multiplier method since that is what is suggested

by the authors of METRIC. First, we state the theorem by

Everett which is the basis for the generalized Lagrange

multiplier method.

Everett theorem [Ref. 8]:

Let S be a set(completely arbitrary) of possible
strateg es or actions and let H(x) be the pay off (or
utility) which accrues from employint the strategy x S.
Let C(x) be the resource requirea by s rategy x F 5, and let
C be the maximum amount of the resource aval able. We want
to

Maximize H(x): for all x e S (eqn 2.7)

Subject to C(x) S C.

This problem can be expressed as an unconstrained problem
for a given Lagrangian multiplier O> 0 as follows:

Maximize H(x) - OC(x). (eqn 2.8)

18



T = r • R + (1 - r..)-(A.. expected depot delay time).
ii ij ii iJ Ij

Except for the expected depot delay time all the

variables are assumed known. Th. depot delay time is zero

if the depot has infinite stock. If the depot has no stock,
the time is D(depot repair time). If the depot has finite

stock S then the expected depot backorders is

IO i(x S 0 )p(xI ki0Di) (eqn 2.2)

o

where X - _ (1 - r )
io ij ij

Equation 2.2 can be interpreted as depot backorder

days per day [Ref' 7]." Thus , when we divide this number by

depot demand per day(A 0 ) we get the expected depot back-

order days per demand:

1 Go eq'n2.3)
--- F (x-S )p(xj )L D). (cn23
i x=Si +1 io 10i

Sherbrooke argues that this average delay will be some

fraction of the depot repair time D and uses the notation

8(So )D for this expression to emphasize this fact. And

so the resupply time can be expressed as follows;

T i(S ) = r R + (l-r )(A + i (S i)Di). (eqn 2.4)" j iO ij ij i ij 13 i i "

Now we can write the equation for the expected

number of backorders for item i at base j when the depot has

S. and the base has Sil stocl levels;

B (S =S . (x-S ) p(xl k. T (S)). (eqn 2.5)

ij i Si0 x=S11  ij 1j ij i0

17



value. The actual resupply time distribution is not

required.

Feeney and Sherbrooke [Ref. 6] extended Palm's

Theorem for the case where demands are compound Poisson

distributed under the assumption that all demands placed by

a given customer have the same resupply time. They show, in

this case, that the resulting distribution of the number of

units in resupply is compound Poisson with parameter AT.

In addition, Feeney and Sherbrooke looked at the

special case in which the demands per,customer are logarith-

mically distributed with variance-to-mean ratio q. They
showed that for this special case the resulting distribution

for the number of units in resupply is negative binomial

with parameters q and k AT/ln q; i.e.

p(x units in resupply) =
(k+x-l) ! (q-lf
(k-l)! q- ; (x = 0,1,2.., q > 1, k > 0).

(k-i)! x! qd

Using the result given by Palm's Theorem, we can

then compute easily the expression for the steady state

expected number of backorders. Let S be the number of units

of stock allocated to a base and let T be the mean resupply

time for the base. The number of backorders at a given time

will then be zero if the demand during the resupply time is

less than or equal to S and the number of backorders will be

(x-S) if the demand is larger than S. The expected number

of backorders at any given time, denoted B(S,T), is then

given by;

GO
B(S,T) = (x-S)p(xIAT) (eqn 2.1)

x=s+l

Since the value of A- for a base is assumed known,

we need to compute only the mean resupply time Tq for item

i at base j.

16



.7. The level at which repair is performed depends only

on the complexity of the repair.

8. Items and bases may have different military essen-

tialities; however, items are normally considered to

be equally essential. [Ref. 4: p. 474]

4. Objective Function

The objective function used 5y METRIC is to minimize

* the sum of expected backorder days on all recoverable items

at all bases pertinent to a specific weapon system. - A base

backorder for an item exists any time there is an unsatis-
fied demand for that item at the base level. Depot back-

orders are of interest only insofar as they affect base

backorders.

To derive the "expression for expected backorder days

the following mathematical background is needed.

A key result for both METRIC and MOD-METRIC concerns

the probability distribution of the number of units in

resupply. For the case where demands are Poisson distrib-

uted, Palm's Theorem gives this distribution under the

assumptions stated for the METRIC. and MOD-METRIC model.

Palm's theorem(stated in the context of the stockage

problem);

Let s be the spare stock for an item where demands are
Poisson distributed with customer arrival rate A. Let
0(t be the probability distribution of resupply time
with mean T. Then in the backorder case, with and
(S-l,S) stockage policy the steady-state probability of
x units in resupply is Poisson distributed with param-
eter AT; i.e.

(ATf exp(-,kT)
h(x) = p(x units in resupply) =-T-- - T-

X!
x 0, 1, 2,....

Thus, the distribution of the number of units in

resupply depends on the resupply time only through its mean

15



probability that item i cannot be repaired at base j.

A.= Expected order and ship time for item i from

base j to the depot(days).

R.= Expected base repair time of item i at base j(days).

D = Expected depot repair time of item i(days).

A = Expected number of demands for item i at locationo ij j(demand/day) j = 0,1,2,.. .n.

S = Stock level for item i at location j;

j = 0, 1,2,....n.

T'= Expected resupply time for item,.i at base j.ij

B = Backorders for item i at location j ; j = 0,1,2,.. .n.
ij

Note; subscript i is sed to index the items and subscript

j refers to the different bases. The subscript j=0

refers to the depot.

3. Assumptions

1. A stationary compound Poisson probability distribu-

tion describes the demand process for each item(for

our comparisons later we consider only the case in

which demands are standard Poisson distributed).

2. There is no lateral resupply between bases.

3. There are no condemnations(all failed parts are

repaired).

4. A failure of one type of item is statistically inde-

pendent of those that occur for any other type of

item.

5. Repair times are statistically independent.

6. There is no waiting or batching of items before

repair is started on an item(infinite channel queuing

assumption).
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01



a repair is accomplished. This process is shown in figure

2.1

Base Base

component Component

Failed Repar Inventory
S vepon 

en table 
.emove&

RepairgR
Depot a DepotComponent Component

• R epair Inventory

Legend
---- Failed Component

Serviceable.Component

Figure 2.1 METRIC Repair Process.

The depot and base stock level of an item will

affect the performance of the system. As stock levels

increase the average resupply time of the failed item will

decrease. The objective of the METRIC model is to determine

the base and depot stock levels of every item for a given

budget constraint such that the total backorder delay at the

bases is minimized.

2. Data Requirements and Notations

The METRIC model requires several input data items

for implementation. The required data are listed below;

m = The number of recoverable items.

n = Number of bases.

C = The cost of item i.
i

r Probability that a failure of item i at base j canij be repaired by base; it follows that 1- rl is

13
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II. DISCUSSION OF METRIC AND MOD-METRIC

This chapter describes the METRIC and MOD-METRIC inven-

tory models. For each model the following subjects are

discussed: maintenance system structure, assumptions, data

requirements and notation, the objedtive function and solu-

tion techniques. METRIC is more fully described by

Sherbrooke [Ref. 3], and MOD-METRIC b3 Muckstadt [Ref. 4].

A. METRIC

." 1. Maintenance System Structure

Consider-the niulti-echelon maintenance structure as

used in the METRIC model. In a multi-echelon structure

stocking/maintenance facilities are organized in a hierarch-

- -ical structure according to supply/maintenance flows which

are represented as an arborescent network.

When a Unit fails at base level there is a prob-

ability r that it can be repaired at the base, and a proh-

ability l-r that it must be returned to the depot. Because

of the typical high costs and low demand for items, the

inventory stockage pol'cy is (S-1,S), which means that items

are not batched for repair or resupply request. If there is

inventory available at the base, a serviceable item replaces

the failed item. If no inventory is available, the equip-

ment will be inoperable until an item is repaired. In

either case, the failed item immediately begins base repair;

or is sent to the depot. When the failed item is sent to

the depot a resupply request to the depot is issued. If the

depot has a serviceable part, it will send the item to the

- base immediately. If the depot does not have the item

available, it will send a serviceable unit to the base after

12
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- "-" where

T = r R (1 - r)(A. (eqn 2.16)

1 -
S+ (x S ) p(xlx D )

/"iO iO

and

n%jZ A = X(l -r) )*
,-.i0 j ij ij

The-expected delay in engine repair at .base j due to modules

is;

k i---- - (eqn 2.17)

Thus we have shown that the average resupply time for an

engine, Toj , can be expressed as:

T =r (B +A ) (eqn 2.18)
01 0j 0j 0j

(1i- r )(A + (S0)D0).
01 01 00 )D00

Now, the problem of MOD-METRIC is to find S - 0 shich can

be expressed mathematically.

Minimize (x- S )P(xIA T ) (eqn 2.19)j=-'1 inmz X=So0 0 0

Oj 0 jO

- Subject to - - C S <_ B
i=0 j=0 i ii

26
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5. Solution Technique

The solution technique suggested by Muckstadt

[Ref. 4] is outlined in this section.

Problem 2.19 is not separable because TOj is a

complex function of the Si The approach taken by

Muckstadt was to partition the problem into two

subproblems-- the module subproblem and the end item

subproblem. The solution algorithm is as follows;

Step 1. Set up minimum investment lqvels for modules and

end items. Let those be g and f, respectively.

Let z be the total expected b6ackorders for the

end item when the base stock levels for the end

item are S. Set a budget increment for modules,

b. Liet'be a trial value for total system modules

investment and let z' =

Step 2. Solve the module subproblem given the minimum

budget g = '. That is, find S13 a 0 which

Minimize - Z- - (x-S.) P(x A. T (S ))

Subject to mC S - g

i ij

Step 3. Solve the end item subproblem. Find S _> 0 as

in the METRIC solution which

Minimize z = Z (x - S )(xIA T ))
j= x=S Oj Oj Oj 00

0j

Subject to CoS o B-g

r2
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where T is calculated using the module stock levels
0j

determined in step 2 and given S Compute also the
00

value of z, the value of z associated with this opti-
-.'. mal solution.

Step 4. If z > 1, go directly to step 5.
Otherwise let z= z and retain the corresponding

stock levels as the incumbent stock levels. Then

go to step 5.

Step 5. Increase g'by b. If B - g'< f, then terminate.

Otherwise return to step 2. ff the algorithm stops

on this step, the optimal stock levels and the

associated minimum expected backorders will be

those saved "from step 4. In step 2 an optimization

problem in solved in which a portion of the budget

is allocated among the modules to determine

depot and base module stock levels. The objective

of this subproblem is to determine that division
of g'which minimize the sum of the expected delay

function. The optimal value of S is found by-. - 00
trial and error by searching through the

integers.

Note that the form of the suboptimization problem in
step 2 is exactly the same as the METRIC problem. Thus,

step 2 can be solved using the techniques that were used in

METRIC.

The engine delay time due to unavailable modules at

a base(aoj) is fixed by solving step 2 for a trial module

budget. This means that the expected engine repair time at

a base is fixed in problem 2.18 Thus step 3 is also

exactly same as the METRIC problem for only one item.

Consequently, the METRIC solution technique can be used in

step 3 again.
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III. REGRESSION TECHNIQUE

As observed in the METRIC and MOD-METRIC solution tech-

niques, a lot of calculations are required to compute B (Sil

,S0 ) and to find Sij (i =l,2,... m, j =0,1,2... n). Because

of the computation time it is difficult to determine the

spares allocation for thousands of items. It would be much

faster if the computationally heavy ,recursive calculations

could be replaced by a non-recursive procedure. This

chapter presents results of an effort to approximate the

exact computations using multiple regression equations.

For estimapion of .the regression equations the following

procedure was used( the ij subscripts are suppressed since

the results apply to each base and item separately):

1. Select ,±= AT(S).

2. Vary the base stock level over the integers; S=0 1,2,..

3. For each value of S, find the true ready rate,

RR(s) = (x5Sju.), and backorder function
x (x-S)p(XIIA).

X=S

4. Select those values of S for which the ready rate is in

a predetermined interval like, say 80% to 95%.

5. Repeat steps 1-4 a range of values of A.

The set of values selected at step 4 constituted the regre-

ssion data base for the predetermined ready rate subinter-

val Now, with this data base, MINITAB was used for two

separate regression analyses.

1). Base stock, S, was regressed on j and ready rate RR.

2). Base backorders, B, was regressed on ,I A, S, ,

and RR.
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Tables I and II show the regression output from MINITAB.

They show how each variable contributes to the prediction of

S and B.

TABLE I

Regression Equation for'Base Stock
4(.0<P<7.5, .85<RR<.9)

THE REGRESSION EQUATION IS X
Y= - 11.3 + 1.23 Xl + 14.1 X2

* Y is a expected base stock
ST. .DEV.

COEFFICIENT OF COEF.
INTERCEPT -11.31897 0.09860
Xl( 1 1.22801 0.00222
X2(RR) 14.0667 0.1138

WITH ( 72: 3 69 DEGREES OF FREEDOM
R-SQUARED =10L0.0 ERCENT

Separate equations were estimated for arbitary selected

subintervals for pand RR. We selected 5 subintervals forg

and 5 subintervals for RR giving a total of 25 possible sets

of equations.

Table III shows how accurately the regression equations

estimate the actual S and B (Si/ARR ) for a given u , and

RR.1

Table III reads as follows; if a base has 7 spare parts
and its * is 5.15, then its ready rate is 85% and backorder

days are 0.2927. A regression equation is also used to

estimate the base stock and backorder days assuming an 85%

ready rate and the P from the first column of Table III

'Table III uses the equation that appeared at table I
and table III

30
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TABLE II

Regression Equation for Bac~corders
(5.0<P<7.5, .85<RR<.9)

THE REGRES SION EQUATION IS
Y= 2.74 -0 .156 X1 +0.0076 X2

* + 0.147 X3 -0.0051 X4 - 3.09 X5

*Y is a expected backorders(B).

ST. DEV.
COEFFICIENT OF COEF.

IN ERCEPT 2.73925 0.02929
Xl M-0.155809 .005349

X2 #00075982 0.0001835
AR 0 .147205 0004226

S,-0.0050734 0.0001005
X5R -3.08886 0.'03673

WITH (72- 6) =66 DEGREES OF FREEDOM

R-SQUARED =100.0 PERCENT

TABLE III

Estimates of S ,B by Regression Equations

Actual I Regression
Data I Estimation

-------------------------------------------------------------------
S B RR I S B-------------------------------------- +-----------------------------

5.150 7. 0.2927 0.8505 7.0265 0.2892
5.600 8. 0.2223 0.8856 8.0761 0.2175
5.775 8. 0.2598 0.8695 8.0643 0.2551
5.950 8. 0.3013 0.8523 8.0368 0.2966
6.375 9. 0.2260 0.8878 9.0599 0.2208
6.550 9. 0.2617 0.8730 9.0665 0.2564
6.725 9. 0.3011 0.8572 9.0590 0.2956
7.100 10. 0.2187 0.8942 10.0416 0.2123
7.275 10. 0.2518 0.8808 10.0678 0.2456
7.450 10. 0.2882 0.8664 10.0810 0.2821

U-------------------------------+-----------------------------------

I3
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Table III shows that the regression equation gives very good

estimates of the values for both the base stock and the

backorder days. Thus, if we are able to use such equations

in solving multi echelon inventory problems, we can reduce

the computation time very much. The N.P.S. model does use

these equations and which will be presented at the next

chapter.

32
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IV. HEURISTIC MODEL

A. BACKGROUND

As we have seen in the chapter II and III, the METRIC

and MOD-METRIC solutions require extensive recursive compu-

tation. For example, the first recursive process involves a

search for the optimal base stock level given the depot

stock level and a value for the Lagra'gian multiplier. This

process is repeated every time the depqt stock is changed--a

second recursion. Furthermore, the above two recursive

processes are repeated for each item and each value of the

Lagrangian mulpiplier.. Because of these recursions, much

computational time is required, and it could be difficult to

find the optimal solution for a system having thousands of

items(the typical aircraft has about 2,000 work unit coded

repairable item [Ref. 10] ).

Recall that in the METRIC model it was shown that the

optimal base stock level was the smallest integer value of Sj

which satisfies

P(x. S ) 1 1 + 0C .
ij ij i

If we ignore the integrality of demand we can interpret this

inequality as providing the same ready rate for each base.

Now, this has the altinative interpretation that given a

value of the Lagrange multiplier and a fixed depot stock

level, the METRIC solution corresponds to the determination

of the largest ready rate which is budget feasible.

Now, aside from minimizing base backorder days, it is
frequently the case that a base may wish to achieve a speci-

fied ready rate assuming no support from a higher

echelon(depot). Such is the case, for example, with ship-

board(base) allowance list models which stock to provide a

90% ready rate for a 90 day period of time.
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The N.P.S. stockage model incorporates this notion of a

specified base ready rate and attempts to determine the

depot stock level So  required to achieve a mean supply

. response time(MSRT) goal. For our study, the goal was

selected arbitrarily to be 125 hours(5.2 days).

B. SOLUTION TECHNIQUE

The base ready rate is a function of the amount of depot

stock(the depot stock determines the T1j ) and the amount of
base stock. Also the optimal base 9tock is a function of

the-ready rate and depot stock. Furthermore, as shown in

equation 2.4, the base backorder is a function of Sij and

TqAij(Si0 ). Therefore, the first step of the heuristic model

is to determine the base stock as a function of fixed depot

stock and ready rate. The second step is to determine the

value of the base backorder days as a function of the fixed

depot stock and the base stock which was found in the first

step.

The necessary values can be found recursively using the

same expressions used in METRIC or they can be approximated

very accurately and rapidly using regression functions. The

*; N.P.S. model saves much computation time when solving for

the optimal base stock levels and base backorders by using

the regression equations described in the previous Chapter.

The depot stock leves for a given item by beginning at 0

and incrementing depot stock by one unit until the average

base MSRT first reaches the specified MSRT goal. Thus Sc is

the smallest integer such that

B (S ,S0) / -xi . MSRT
ii Qi 00 g

Where B (S *,S ) is th total expected base backorder daysii oj 00
for item i at base j when base j ha S units and the depot

has S units of stock. MSRT is thi specified MSRT goal.i0 g

34
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This procedure is repeated for each item one-by-one.

The big difference between the METRIC and N.P.S. models

is that METRIC minimizing the expected number of base back-

order days for a fixed budget, whereas the N.P.S. model

attempts to find the minimum depot stock levels required to

achieve a desired supply response time goal for each item.

A comparison of the METRIC and N.P.S. models is presented in

chapter 5.

C. ALGORITHM

.-Below is an outline of the solution technique used by

the N.P.S. model. Since no preference is given to any item

by the N.P.S. model and since there is no budget constraint,

no consideration need be given to the unit cost. Therefore

the same solution procedure is repeated for each item.

Step 1. Find the smallest non-negative integers S..,

j=l,2,...,n, such that 
ij

P(x(T) S..) 2 0.9

where T = 90 days. lihe regression equations

described in chapter III can be used for this

step. Set the depot stock S equal to 0.

Step 2. Determine T (S ) and B (S ,S ) for j 1,2,...,n.
j.0 j j

(The regression equations can be used to approxi-

mate the backorder functions required by this

step).

Step 3. Compute the demand-weighted average MSRT across

the n bases.

AMSRT __ B(S,S')
MSRT -------------- - ----

A 
A
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If MSRT is less than 125 hours then stop. The cur-

rent S is the desired solution. If MSRT greater

00
than 125 hours, increase S 0by one unit and go to
step 2.

Step 4. Repeat for each item.

I
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V. COMPARISON OF THE MODELS

In order to evaluate the heuristic, non-optimal, N.P.S.

model we selected several sample data sets and computed the

N.P.S. solution for each. We then repeated the computations

using the METRIC solution procedure. Since the METRIC solu-

tion is optimal, we can evaluate the quality of the N.P.S.

solution by comparing its performance, to that of the METRIC

model. The results of several comparisons are contained in

this chapter.

Example problems consist of three items which are to be

stocked at one depot and three bases. For the purpose of

illustration, "fdur data sets are constructed. First the

N.P.S. model solves the problem and computes the associate

budget, then this budget is used as a constraint in the

METRIC model.

A. DATA SET 1: LONG ORDER-SHIP TIME AND LOW PROBABILITY OF

BASE REPAIR

Table IV gives the complete input data for the first

n data set. The first example considers long order-ship times

and zero probability of base repair. Thus, all repairs must

take place at the depot. Item 1 has a low demand rate, item

2 has a medium demand rate and item 3 has a high demand

rate. The demand rates are consistent through the four

sample data sets.

Recall from chapter II the following notations;

r probability that item i can be repaired at base j,
ii

R the expected repair time in days for item i at base j,ii

A =.the average order and ship time in days from base j
ij

to the depot for item i,
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TABLE IV

INPUT DATA 1

Item Base A'Ij/day r i_ R Ri Ai; Di  Cost

1 0.044 0.0 0.0 90.0
1 2 0.056 0.0 0.0 90.0 20.0 $200.0

3 0.067 0.0 0.0 90.0

1 0.111 0.0 0.0 90.0
2 2 0.133 0.0 0.0 90.0 25.0 750.0

3 0.167 0.00 0.0 90.0

1 0.222 0.0 0.0 , 90.0
3 2 0.244 0.0 0.0 90.0 30.0 1500.0

3 0.278 0.0 0.0 90.0

D the average depot repair time in days for item i,i

.. the failure rate(failures per day) of item i at
base j.

Tables V and VI give the N.P.S. and METRIC results.

Observe that there are significant differences in the

stockage allocations between the two models. However, the

difference in performance(MSRT) is not so large. Notice

also the large difference in computational times; 0.27

seconds for N.P.S. solution and over 20 times as long(5.87

seconds) for the METRIC solution.

B. DATA SET 2: LONG ORDER-SHIP TIME AND HIGH PROBABILITY OF

BASE REPAIR

Table VII gives the data for the second test data set.

Characteristics of this data set are long ordering and ship-

ping times and a high probability of base repair. Thus, the

bases will rarely need to rely on the depot for support.

Intuitively, very little stock will be needed at the depot

level.
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TABLE V

Results of N.P.S. Model for Data 1

Depot Base 1 Base 2 Base 3
Stock S RR S RR S RR MSRT

-+----------------------------
Item 11 1 7 0.906 8 0.863 9 0.832 4.8467
Item 2 4 14 0.799 16 0.755 20 0.763 4.9172
Item 3 9 26 0.707 28 0.673 32 0.684 5.1011

-----------------------------

Total Cost : $188000.0
System Average MSRT 5.01178 days
Time for Computer Run 0.27 seconds

TABLE VI

Results of METRIC Model for Data 1

Depot Base 1 Base 2 Base 3
Stock ST. RR. ST. RR. ST. RR. MSRT

-+-+--------------------------
Item 1 2 8 0.966 10 0.973 11 0.961 1.0455
Item 2 7 14 0.859 16 0.828 20 0.842 3.0891
Item 3 16 23 0.644 25 0.625 29 0.663 5.8286

-------------------------------

Total Cost : $188450.0
System Average MSRT 4.37275 days
Time for Computer Run 5.87 seconds

As expected, both solutions place little stock at the

depot. The N.P.S. model puts zero stock there for each

item. Observe also that the system average MSRT values are

much lower than the response time goal of 5.2 days(125

hours). This is because of the self-supporting capability

of the bases. As before, the N.P.S. solution required a

small fraction of the time required by the METRIC solution.
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DO WHILE (ABs(BUDGET -SUMCOST)>749.0);

LAM (LAMBDA) =QK;

PUT SKIP EDIT(QK)(X(1),F(11,8));

SUMCOST1 =0.0;

SUIICOST =0.0;

TOTALDEMAND =0.0;

TOTALMSRT = 0.0;

SUMDEMAND =0.0;

DO HAN = 1 TO ID;

TOTALDEMAND = 0.0;

DDEM =0;

DO J = 1 TO BASE;

PP =BDEM(HAN,J,3) *(1-BPROB(HAN,J,5));

DDEM =* DDEM 4PP;

TOTALDEMAND = TOTALDEMAND + BDEM(HAN,J,3);

END;

U =DDEM *DREP(HAN,1,6);

SPACE1 1000.0;

DO WHILE (SIO <18);

PX = EXP(-U);

SUM2 =U - SIO;

IF SIO > 0

THEN DO;

DO X = 0 TO SI0-1;

SUM2 =SUM2 +(SI0 - X) PX;

PX = U *PX / (X+1);

END;

END;

DDELY =SUM2 /DDEM;

SUM3 =0.0;

SUM4=0 .0;

SUM5 =0.0;
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APPEN DIX A

COMPUTER PROGRAM FOR METRIC MODEL BY PL/I

*PL/C ATR SOURCE L=9000 P=150 T=(1,30)XREF

BBO:PROCEDURE OPTIONS (MAIN);

DCL(COST(15,1O,1),BREP(1O,10,2) ,BDEM(1O,1O,3) ,bbod(20),

bord(1O,1O,4) ,bPROB(1O,1O,5),DREP(10,1O,6))FLOAT;

DCL(DDEM,UB(20),RS,LS,QK,P(70),SPACE(20),BRST(20),DDELY,

SUMCOST,BODD,RR(30,6,45,3) ,MSRT).FLOAT;

DCL(PP,PPP,M,WIJ(30, 6,45, 3) ,U,KO,LAM(70) ,PX,POISSON,

BUDGET,QK1,SUM5,BOD1,SUM6,READY_RATE(15))FLOAT;

DCL(Y3,SUM1.,SUM2,MU(20) ,BOD2,QK2,TOTAL_DEMAND)FLOAT

initial(O.O);

DCL(I ,J,K,L,X,Y,Z ,V,F,HAN,LAMBDA,NUMBER)FIXED;

DCL(SIO,SIJID,BASE)FIXED INIT(O);

DCL(SUMCOST1,SUMCOST2(40) ,SPACE1,SUM3,SUM4,BOD,W1,W(40))

flost;

DCL (MNSRT,TOTALAVGMSRT,TOTALMSRT,SUM_DEMAND)FLOAT;

LAMBDA = 1;

QK =(0.6-1.0)/ 200;

ID =3;

BASE =3;

GET LIST (BUDGET);

DO I =1 TO ID;

DO J= 1 TO BASE;

K = 1;

GET LIST(COST(I,J,K) ,BREP(I,J,K+1) ,BDEM(I,J,K+2),

BORD(I,J,K+3), BPROB(I,J,K+4),DREP(I,J,K+5));

END;

END;

SUMCOST =0.0;
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consequences on presently used allowance list models used by

the military services.

An evaluation of the computation times required for

determining the N.P.S. and METRIC solutions showed the times

for the METRIC solution to be as much as 20 times as great

as those required for the N.P.S. solution. Thus, the

N.P.S. solution does hold promise for implementation in the

real world with large weapon systems.

In general, the performance of the N.P.S. model was

somewhat disappointing in comparison o the METRIC solution.

The results of this thesis indicate that the N.P.S. model

requires additional work in the areas mentioned above.
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the mean demand, the stockage level, and the ready rate.

Regression equation were also developed for estimation of

the base stock levels, as a function of the mean demand and

the ready rate. The accuracy of both sets of equations was

very high. This suggests that significant reductions in

computer time in the METRIC model(or others)could be

achieved by replacing the exact recursive computations with

the approximate regression equations:

In order to accomplish the third objective, several

sample data sets were created for usq in testing the METRIC

and N.P.S. models. Four of the data sets are described in

Chapter V. Analysis of the results of the sample data sets

revealed some shortcomings of the proposed N.P.S. model.

One of those shortcomings, complete disregard for item costs

was corrected by-modifying the N.P.S. model to include costs

in a marginal analysis procedure for determining depot stock

allocations. This modification achieved only minor improve-

ment but since it was restricted to the depot stock deci-

sions it requires additional study. Analysis also revealed

that the base stock levels are consistently too high in the

N.P.S. model. Significant reductions in the base ready rate

from 90% to 70% and less were made with the support system

still able to achieve specified mean supply response time

goals at significantly'reduced costs. We also observed that

the ready rate protect'on period, nominally stated as 90

days seems longer than necessary with the types of values

used for order and ship times and repair times in our exam-

ples. Clearly, both the ready rate and the length of the

protection period should be a function of the other input

parameters of the model, like order and ship times, base

repair probability, and base and depot repair times.

Selection of a uniform "90% protection for 90 days" policy

for determining shipboard stock will sometimes over protect

or under protect significantly. This might have dramatic
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VI. CONCLUSIONS

There were basically three major objectives of this

thesis. The first was to review the literature and to

understand the existing models for controlling the stockage

decisions in multi-item, multi-echelon inventory system for

repairable items. The second objective was to develop the

computer programs needed to implement, the most promising of

the existing algorithms. The last objective was to evaluate

the heuristic N.P.S. model by comparihg it to the baseline

solution given by the existing algorithm.

The review of the literature revealed that basically all

of the existihg-model's are derived from the METRIC family

developed at RAND in 1968. Therefore, the METRIC model was

selected as our baseline. That algorithm was programmed and

is operational on the N.P.S. IBM 370 model 3033 computer.

Appendix A of this thesis contains a listing of the PL/I

source code for that program. The N.P.S. model proposed by

Apple [Ref. 5] was also programmed in PL/I on the N.P.S.

computer system and is included in this thesis as Appendix

B.

Execution of the 'METRIC and N.P.S. models revealed

extensive recursion in the computations of stockage levels

and the backorder expression. Since it is well known that

one of the major problems preventing widespread acceptance

of the METRIC family of models is the extensive computa-

tional time required to solve for the optimal solution for

reasonably-sized weapon systems, we sought to determine if

accurate approximations could be used in place of much of

the recursion.

Multiple regression equations were developed for estima-

tion of the expected base backorder days as a function of
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TABLE XVI

Results of the Marginal Analysis

Depot Base 1 Base 2 Base 3
Stock S RR S RR S RR MSRT

+ ------------------------------------------------------

Item 1 4 7 0.944 8 0.919 9 0.901 2.6312
Item 2 6 14 0.841 16 0.807 20 0.819 3.6043
Item 3 7 26 0.663 28 0.626 32 0.634 6.1941

+ ------------------------------------------------------

Total Cost $187100.0
System Average MSRT 4.93885 days
Time for Computer Run 0.58 seconds

*N.P.S. model MSRT = 5.011 Total Cost = $188000.0
*METRIC MODEL MSRT = 4.373 Total Cost = 188450.0

As may seen, from this Table, the marginal analysis

modification provided only a small improvement over the

N.P.S. model(MSRT decreased from 5.011 days to 4.939 days

and costs were reduced by $900) and performance still falls

significantly short of the METRIC solution. Observe also,

as expected, that the marginal analysis solution did

increase the stockage levels of the less expensive items and

decreased the stockage level of the most expensive item.

This is evident from the item MSRT values. While it is

clear that any solution for which budgets and unit costs are

considered should improve overall effectiveness in a budget

constrained environment, it may not be desirable to allow

the more expensive items to suffer in terms of stockage

support. Incorporation of a workable essentiality coding

policy could be used to override the impact observed above.

While the increased performance obtained by using

the marginal analysis modification was not significant, keep

in mind that the marginal allocation was applied only to the

depot stock levels. It is reasonable to assume that addi-

tional improvement could be obtained with similar modifica-

tion to the base stock allocation procedure.
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the depot per unit time for item i; D1 is the average depot

K repair time for item i; and Ail is the order and ship time

from the depot to base j.

Define AB (d.) = B.(d.) - B.(d.+i)ji 1 2. 1 2.

to be the reduction in total base backorder delay for item i

if the depot stock level is increased from d units to di +1

units. Because the impact of a change in depot stock on the

total base backorders is felt only indirectly through a

reduction in Tj3 (di), no useful analytical simplification of

ZBi (di) could be determined. Nevertheless, it can be

computed easily directly.

Finally, let A = j be the total expected
iat t

demand over a11- itemS and bases. We are now ready to

describe the marginal analytic procedure.

Step 1. Determine the base stock levels S as before
ij

from ready rate considerations. Set the initial

depot stockage vector to be (0,0,..-.,0); i.e.

d 0 for i = 1,2,.. .m.i

Step 2. Compute T (d.+l).for i=1,2,..,m and j=1,2,..,n
Ij 1

Step 3. Compute B.(d.)/C for i=1,2,..,m and let k be

that index for which this ratio is maximum.

Step 4. Let d = d + 1.
k k

m

Step 5. Compute MSRT = (= B (d))/X

Step 6. If MSRT : Goal, stop. Otherwise go to step 2.

3. Example of the Marginal Analysis Procedure

The marginal analysis modification was applied to

the data set I examined in the previous section. The

resulting allocation are presented in Table XVI
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for multiple items an iterative process was used to select

sequentially that item at each step which provides the

greatest reduction in total base backorder days per dollar

invested. The necessary dollars are allocated to purchase

one unit of the selected item and the process is repeated

until the overall MSRT objective was achieved.

2. Mathematical Description

Let (d1 ,dz ,...,dA)be the dqpot stock levels for

items 1,2,...n, respectively. (Note: This is a change in

the notation used previously to emphasize that the only

decision variables incorporated in the marginal analytic

solution are the depot stock levels for the n items). Let

B- (di) be the total base backorder days for item i when d

units are stocked at the depot. Recall that the depot stock

level influences the base backorder expression only through

the depot resupply time Tli To emphasize this, we express

the depot resupply time for item i and base j as Tij (d;).

The total expected base backorder days for item i can then

be written as:

B(d.) = (x-S *)P..(xlx..T..(d.)). (eqn 5.1)
i I j= lx=S . ij iJ ij ij i

iJ

Now, we have seen previously that the average depot

delay per demand in satisfying base j when the depot has di

units of stock is given by:

T .(d) A. + { (x-d) P(xl.D)} / k.;
ij 1 x=d i I1 1i

n

where .i  (l-r.) A is the total expected demand at
J= I j ij
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Observe in the METRIC solution that the base stock allo-

cations for item 1 are identical to those in the N.P.S.

solution. Since the METRIC Lagrange multiplier solution

gives each base the same ready rate for a given item it is

clear that the ready rate selected by METRIC for item 1 is

70%, the same as that used by the N.P.S. model for each

item. However, METRIC selected ready rates for items 2 and

3 which were smaller than 70%(the bdse stockage levels for

items 2 and 3 are smaller than those given by the N.P.S.

solution). These smaller ready ratqs are a reflection of

the higher costs for items 2 and 3. Thus, the METRIC solu-

tion illustrates that the ready rates selected for the base

stock levels in the N.P.S. model should not necessarily be

the same for each item, but should be a function of the unit

costs. The cheaper items should get higher ready rates than

the more expensive items.

E. MODIFIED N.P.S. MODEL

1. Marginal Analytic Solution

The sample analyses discussed in the previous

section suggested that the N.P.S. heuristic model could

perhaps be improved if the item mean supply times were

allowed to vary depending on unit costs. Thus, it might be

better to provide greater protection for the less expensive

items and less protection for the more expensive items. The

METRIC solution does discriminate in this fashion,

attempting to provide the greatest performance per dollar

invested. Therefore, in an effort to improve the efficiency

of the N.P.S. model and to incorporate consideration of the

unit costs, the N.P.S. model was modified by using marginal

analysis to letermine the depot stockage levels.

The modified model determined the base stock levels

just as before. Then, to determine the depot stock levels
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TABLE XIV

Results of N.P.S. Model for Data 4

Depot Base 1 Base 2 Base 3
Stock S RR S RR S RR MSRT

Item 1 2 5 0.892 60.875 7 0.882 3.7507
Item 2 2 12 0.793 14 0.777 17 0.749 4.74 21
Item 31 9 22 0.670 24 0.668 28 0.702 4.9468
--- ------------------------------------------------------------------------

Total Cost $162250.0
System Average MSRT 4.72896 days
Time for Computer Run 0.34 seconds

TABLE XV

Results of METRIC Model for Data 4

Depot Base 1 Base 2 Base 3
Stock S RR S RR S RR MSRT

-------------4--------------------------------------------------------------------------

Item 1 6 5 0.968 6 0.967 7 0.971 0.84274
*Item 2 17 8 0.837 10 0.879 12 0.863 2.21882

Item 31 17 19 0.630 21 0.640 24 0.647 5.51025
-- -------------- -- - - - - - - -- - - - - - - -- - - - - - - -
Total Cost $161550.0
System Average MSRT 3.89729 days
Time for Computer Run 1.75 seconds

stock levels are too high. Even with the reduction in base

* ready rate to 70%, the solutions above show that the METRIC

solution puts less stock at the bases and more at the depot

than does the N.P.S. solution. The solution obtained by

METRIC is nearly 20% better than the N.P.S. solution.

Thus, additional modification of the N.P.S. model to reduce

base stock even more should be considered.
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bases to be justified by an MSRT goal of 125 hours.2  As a

result of the above observations, the N.P.S. model was modi-

fied for the last data test case by reducing the base ready

rate from 90% to 70%.

D. DATA SET 4: ZERO BASE REPAIR AND LONG DEPOT REPAIR TIME

Table XIII gives the data for the fourth test data set.

Characteristics of this data set are short ordering and

shipping times, zero probability of base repair and long

depot repair time.

TABLE XIII

INPUT DATA 4

Item Base A/day r.- R.. Ai_ D; Cost

1 0.044 0.0 24.0 45.0
1 2 0.056 0.0 25.0 45.0 40.0 $200.0

3 0.067 0.0 23.0 45.0

1 0.111 0.0 29.0 45.0
2 2 0.133 0.0 27.0 45.0 50.0 750.0

3 0.167 0.0 28.0 45.0

1 0.222 0.0 33.0 45.0
3 2 0.244 0.0 35.0 45.0 60.0 1500.0

3 0.278 0.0 34.0 45.0

A comparison of the results above to those obtained for

data set 3 shows that the MSRT goal of 125 hours(5.2 days)

can be achieved even with longer depot repair times and

lower base ready rates(70% versus 90%) at a reduced invest-

ment cost. This supports the argument above that the base

'This comment is contingent on the validity of the
assumptions made by METRIC model. In particu ar, the
(S-I, S) ordering policy assumption and the Poisson demand
assumption.

43

. . ...

),, :. i;);./:i i:.i.i: ................................... :"..........."... 2 :J  .. " ,-.' 21 .
I-'-'-'' -.. .-. . . . . . . . . ... ..."- ". '-' .L'--'.. . -. " . " - - ".- . .. .. - . .,-. . . .. . . . . . . . . . . . . . . . . . . . . .. . . -. "-



TABLE XI

Results of N.P.S. Model for Data 3

Depot Base 1 Base 2 Base 3
Stock S RR S RR S RR MSRT

-------------------------------------------------------------------------------------
Item 1 0 7 0.991 8 0.987 9 0.986 0.3213
Item 2 0 14 0.986 16 0.985 20 0.991 0.1721
Item 31 0 26 0.988 28 0.987 32 0.991 0.1209
- - +--------------------------------------------------
Total Cost $171300.0
System Average MSRT 0.16212 days
Time for Computer Run 0.20 seconds

TABLE XII

Results of METRIC Model for Data 3

Depot Base 1 Base 2 Base 3
Stock S RR S RR S RR MSRT

-----------.-.----------------------------------------------------------------------
Item 1 3 10 1.000 9 0.999 10 0.999 0.01529
Item 2 9 16 0.998 14 0.996 17 0.998 0.03050
Item 3 20 24 0.996 21 0.994 23 0.993 0.04811
--- ------------------------------------------------------------------------

Total Cost $171750.0
System Average MSRT 0.03849 days
Time for Computer Run 6.64 seconds

The results from analyses of the last two data sets show

that the system mean supply response times can be made

significantly smaller than the 125 hour goal, even with zero

stock at the depot. This is because the stockage levels at

A the bases are very high. This example points out a short-

coming of the N.P.S. model(and perhaps of the current Navy

allowance list models); too much stock is positioned at the
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TABLE IX

Results of METRIC Model for Data 2

Depot Base 1 Base 2 Base 3
Stock S RR S RR S RR MSRT

-------------------------------------------------------
Item 1 0 9 1.000 10 1.000 11 1.000 0.0001
Item 2 1 15 1.000 17 1.000 18 1.000 0.0002
Item 3 4 24 1.000 28 1.000 29 1.000 0.0003

- ------------------------
Total Cost : &171750.0
System Average MSRT 0.00025 days
Time for Computer Run 13.57 seconds

TABLE X

INPUT DATA 3

Item Base cday r A-- D1 Cost

1 0.044 0.0 0.0 45.0
1 2 0.056 0.0 0.0 45.0 20.0 $200.0

3 0.067 0.0 0.0 45.0

1 0.111 0.0 0.0 45.0
2 2 0.133 0.0 0.0 45.0 25.0 750.0

3 0.167 0.0 0.0 45.0

1 0.22 0. .0 45.0
3 2i 8:8 0. 0.0 45.0 30.0 1500.0

3 0.278 0.0 0.0 45.0

As with the previous data-set we see that the N.P.S.

model gives zero stock at the depot. METRIC, on the other

hand, carries less stock at the bases and positive stock

levels at the depot. Both models easily satify the MSRT

goal of 125 hours.
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TABLE VII

INPUT DAIA 2

Iter, Base Xki/day ri -  R-_ A- D; Cost

1 0.044 0.85 24.0 90.0
1 2 0.056 0.90 25.0 90.0 20.0 $200.0

3 0.067 0.90 23.0 90.0

1 0.111 0.85 29.0' 90.0
2 2 0.133 0.80 27.0 90.0 25.0 750.0

3 0.167 0.90 28.0 90.0

1 0.222 0.80 33.0 90.0
3 2 0.244 0.75 35.0 90.0 30.0 1500.0

3 0.278 0.80 34.0 90.0

TABLE VIII

Results of N.P.S. Model for Data 2

Depot Base 1 Base 2 Base 3
Stock S RR S RR S RR MSRT

------------ --------------------------------------------------------------------------

Item 1 0 7 0.999 8 0.999 9 0.999 0.0037
Item 2 0 14 0.999 16 0.999 20 1.000 0.0009
Item 31 0 26 1.000 28 0.999 32 1.000 0.0006

- +------------------------------------------------
Total Cost : $171300.0
System Average MSRT 0.00112 days
Time for Computer Run : 0.20 seconds

C. DATA SET 3: SHORT ORDER-SHIP TIME AND ZERO PROBABILITY

OF BASE REPAIR

*I Table X gives the data for the third sample data set.

This set is characterized by short ordering and shipping

times and low probabilities of base repair. Table XI and

XII are the N.P.S. and METRIC model results.
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RS =QK *COST(HAN,1,1);

BOD=O .0.;

DO I = 1 TO BASE;

SPACE(I) =0.0;

END;

DO G = 1 TO BASE;

SIJ =0;

DO Y =1 TO BASE;

M =BREP(HANY,2) *BPROB(HAN,Y,5) +(1.0-

bprob(han,y,5) )*(B6RD(HAN,Y,4)+DDELY);

BRST(Y) =M;

END;

PUT SKIP(l) LIST('THE BASE MU');

DQ.Z = .1 TO BASE;

4UB(Z) BDEM(HAN,Z,3) *BRST(Z);

END;

SIJ = 0;

K =1;

Y3 =1.0;

POISSON =EXP(-UB(G));

PROBSUM POISSON;
RR(LAMBDA,HAN,SIO+1,G) =PROBSUM;

DO WHmILE (PROBSUM < 1.O+RS);
Y3 Y3 *UB(G) IK;

PROB = POISSON *Y3;

PROBSUM = PROBSUM +PROB;

K =K + 1;

SIJ SIJ +1;

END;

RR(LAMBDA,HAN,SIO+1,G) PROB_SUM;

WIJ(LAMBDA,HAN,SIO+1,G) =SIJ;

PX =EXP (-UB(G));

SPACE(G) =UB(G) -SIJ;
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IF SIJ > 0

THEN DO;

DO X=O TO S13 -1;

SPACE(O) =SPACE(G) (S13 X)*PX;

PX UB(G) *PX/(X+1);

END;

END;

SUM5 =SUM5 +SPACE(G);

BOD BOD+SPACE(G) -QK*COST(HAN,1,1)*SIJ;

END;

DO Z~1 TO BASE;

PUT EDIT(UB(Z)-)(X(2),F(9,5));

END;

PUT &]?IT(SjJM5)( X(1),F(11,5));

* MMSRT =SUM5 / TOTALDEMAND;
G =1;

BODD=BOD - QK*COST(HAN,1,I)*SIO;

PUT EDIT(MMSRT,BODD)(X(2) ,F(9,5) ,X(2) ,F(9,5));

IF BODD<SPACA.

THEN DO;

DO I = 1 TO BASE;

READY_RATE (I)

.RR(LAMBDA,HAN,SIO+1,I);

END;

BOD1 = SUM5;

SPACEl =BODD;

DO I =1 TO BASE;

BBOD(I) =SPACE(I);

END;

WI. =510;

NUMBER =0.0;

DO I1 1 TO BASE

W(I)=WIJ(LAMBDA,HAN,SIO+1,I);

NUMBER=W(I )+NIJNBER;
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END;S ~ '

END;

SIO =SI0 1;

END;

SUMCOST1=COST(HAN,1,1)*(NUMBER+W1);

BOD2 = BOD2 + BODi;

PUT SKIP EDIT(HAN,W1)(X(10),F(2),X(2),F(2));

DO I1 1 TO BASE;

PUT EDIT(W(I),READYRATE(I))

END;

MSRT =BODl/TOTALDEMAND;

PUT EDIT (MSRT, SUMCOSTi)

SUMCOST =SUMCOST + SUMCOST1;

SIO =0.0;

SUMDEMAND = SUMDEMAND + TOTALDEMAND;

TOTALMSRT = TOTALMSRT + MSRT *TOTAL_DEMAND;

END;

PUT EDIT (SUMCOST)(X(7),F(9));

TOTALAVGMSRT = TOTAL_MSRT /SUM_DEMAND;
SUMCOST2 (LAMBDA) = SUMCOST;

BOD2=O .0;

LAMBDA = LAMBDA +1;

IF SUMCOST <BUDGET

THEN DO;

QK1 = QK;

QK =O.5*(QKI +QK2);

END;

ELSE DO;

QK2 =QK;

QK =0.5*(QK1 QK2);

END;
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END;

PUT SKIP EDIT('TOTAL AVERAGE MSRT IS',

totalavgmsrt)(a(23),x(2),F(1O,5));

END BBO; *DATA
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APPENDIX B

COMPUTER PROGRAM FOR N.P.S. MODEL BY PL/I

*PL/C ATR SOURCE L=4000 P=70 T=(3,30) XREF

OPTIMAL :PROCEDURE OPTIONS(MAIN);

DCL (ITEM, ITEMS, BASE, BASES, I, X, K, BASE_STOCK(6,5),

depot stock,OPTIDEPOT_7STOCK(6) , SUM,TOTAL_STOCK)FIXED;

DCL (COST(9,9,6),BASE_-REP_-TIME(9,9,9),BASEDEMAND(9,9,6),

- ORDERTIME(9,15,6),dEPOTREPTIME(9,15,6),

READYRATE(5),TIJ,NEW_-PROB,baseprob(9,15,6))FLOAT;

DCL (DEPOT_DEMAND,SUMDEMAND,MU,Y3,PX,POISSON,PROB_SUM,

msrt ,SUII9 SUWlO.,BASEMU, SUMBACKORDER,BASEBACKORDER,

0 TOTALCOST,LAMBDAT,EXPECTEDBACKORDER)FLOAT;

DCL (TOTAL_DEMAND, TOTALMSRT,TOTALAVGMSRT,item-cost,

base-res_time(7))float;

ITEMS = 3;

BASES = 3;

TOTALCOST =0.0;

DO I =1 TO ITEMS;

DO J 1 TO BASES;

K =1;

GET LIST(COST(I,J,K),BASEREPTIME(I,J,K+1),

BASEDEMAND(I,J,K+2),ORDERTIME(I,J,K+3),

BASEPROB(I,J,K+4),DEPOTREPTIME(I,J,K+5));

END;

END;

TOTALDEMAND =0.0;

TOTALMSRT =0.0;

* DO ITEM =I TO ITEMS;

SUMO0;

DEPOTDEMAND =0.0;

SUMDEMAND 0.0;
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DO BASE =1 TO BASES;

TIJ =(1.O-BASE_-PROB(ITEM,BASE,5))*90. +

BASEPROB(ITEM,BASE,5)*BASE_REP_TIME(ITEM,BASE,2);

MU =T1J*BASEDEMAND(ITEM,BASE,3);

PUT SKIP LIST('TIJ IS ',TIJ);

PUT SKIP LIST('BASE MU WHEN TIJ DAYS" ,MU);

NEWPROB = .74;

*PUT SKIP LIST('NEW PROBILITY IS',NEWPROB);

-. K= 1;

Y3 1.0

POISSON = EXP(-MU);

PROBSUM POISSON;

DO WHILE (PROBSUM <= NEW PROB);

Y3 Y3 * t-U/K;

PROB =POISSON * Y3;

PROBSUM =PROBSUM + PROB;

K = K+ 1;

END;

*BASEST.OCK(ITEM,BASE) =K -1;

SUM =SUM + BASESTOCK(ITEM,BASE);

DEPOTDEMAND = DEPOTDEMAND + BASEDEMAND

(item,base,3)*(1.O -BASE_PROB(ITEM,BASE,5));

SUMDEMAND =SUMDEMAND + BASEDEMAND(ITEM,BASE,3);

END;

DEPOTSTOCK =0;

MSRT =5.5;

DO WHILE (MSRT >= 5.2);

LAMBDAT =DEPOTDEMAND *DEPOTREPTIME

(item,bases ,6);

PX EXP(-LAMBDAT);

SUM10 = LAMBDAT - DEPOTSTOCK;

IF DEPOTSTOCK > 0
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THEN DO;

DO X = 0 TO DEPOT STOCK-i;

SUM10 = SUM10 + (DEPOTSTOCK- X) * PX;

PX LAMBDAT * PX /(X+1);

END;

END;

EXPECTEDBACKORDER SUMI0;

DEPOTDELAY =EXPECTEDBACKORDER / DEPOTDEMAND;

SUMBACKORDER = 0.0;

DO BASE iTO BASES;

READY_RATE(BASE)=0.0;

BASERESTIME(BASE) =BASEREP_TIME(ITEM,BASE,2)*

..BASE,_PROB(ITEM,BASE,5) + (I -

BASEPROB(ITEM,BASE,5))*(ORDERTIME(ITEM,

BASE,4)+DEPOTDELAY);

BASEMU BASERESTIME(BASE) * BASEDEMAND

(item,base,3);

PUT SKIP LIST('BASE MU IS',BASEMU);

PX = EXP(-BASEMU);

SUM9 =BASEMU - BASESTOCK(ITEM,BASE);

IF BASESTOCK(ITEM,BASE)>O

THEN DO;

DO X =0 TO BASESTOCK(ITEM,BASE);

SUM9 = SUM9 +(BASESTOCK(ITEM,BASE) - X) *

px;

READY_RATE(BASE) = READYRATE(BASE)+PX;

PX BASEMU * PX /(X+1);

END;

END;

BASEBACKORDER SUM9;

SUMBACKORDER = SUMBACKORDER + BASEBACKORDER;

END;

MSRT =SUMBACKORDER /SUMDEMAND;
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PUT SKIP LIST('MSRT IS',MSRT);

DEPOTSTOCK = DEPOT STOCK +1;

I • END;

TOTALDEMAND = TOTALDEMAND + SUMDEMAND;

TOTAL MSRT = TOTAL MSRT + MSRT*SUM DEMAND;

OPTI DEPOTSTOCK(ITEM) = DEPOTSTOCK -1;

TOTALSTOCK = SUM +OPTIDEPOTSTOCK(ITEM);

ITEMCOST = TOTALSTOCK * COST(ITEM,BASES,1);

PUT SKIP EDIT(OPTIDEPOTSTOCK(I EM))(X(2),F(6));

,DO BASE = 1 TO BASES;

PUT EDIT(BASE_STOCK(ITEM,BASE),READYRATE(BASE))

(X(2),F(6),X(2),F(6,4));

END;

PUT EDIT (MSRT)()C(2),F(9,4));

PUT SKIP(3);

TOTALCOST = TOTALCOST + ITEMCOST;

END;

PUT SKIP EDIT('TOTAL COST IS',TOTAL_COST)(X(3),A(14),
f(9,2));

TOTAL AVG MSRT = TOTAL MSRT / TOTAL DEMAND;

PUT SKIP EDIT('TOTAL AVERAGE MSRT IS',TOTAL_AVGMSRT)

(X(3),A(20),X(2),F(9,5));

END OPTIMAL; *DATA
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