AD-R159 589 THE DESIGN AND IHPLEHEHTHUOH OF A RELHTIOIRL INTERFACE 1/2
FOR_THE MULTI-LINGUAL DATABASE SYSTEM(U) NAVAI
POSTGRADUATE SCHOOL MONTEREY CA G R KLOEPPING ET AL.
UNCLASSIFIED JUN 85

~
[-]
("]
Y

o ﬂvmw;‘wynﬁ;way y e N L R T T TR T il SR Wi, S PR Ul L L L L A T N W ¥ v i A -]

| K
{
10 &l s
w S
1] ¥ e 20 .
[T —] . S -
o iR
= ! | o \

N
o
)

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

=1

" om .=

AD-A159 509

¢ e

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

-
LY

THESIS

THE DESIGN AND IMPLEMENTATION OF
A RELATIONAL INTERFACE FOR
THE MULTI-LINGUAL DATABASE SYSTEM

. by
Gary R. Kloepping
and
John F. Mack

June 1985

Thesis Advisor: David K. Hsiao

Approved for public release; distribution is unlimited

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEF e o IR DS TIONS M

': Y. REPOAT NUMBER : WWION NO.LQ. RECIPIENT'S CATALOG NUMSER

-7 3. TYPE OF REPORT & PERIOD COVERED
' The Design and Implementation ' .
- of A Relational Interface For the Multi- Aﬁﬁiger §5Th6515
Lingual Database Systenm . PERFORMING ORG. REPORT NUMBER

4. TITLE (and Subtitte)

. 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(S)

Gary R. Kloepping and
John F. Mack

e ———— e ————
. » T AME AND A 0. PROGRAM ELEMENT, PROJECT, TASK
ERFORMING ORGANIZATION N N OORESS TR Ay TR R I

Naval Postgraduate School

Monterey, CA 93943 : ?
- J11. CONTROLLING OF FICE NAME AND ADDRESS . 12. REPORT DATE N
) June 1985
- Naval Postgraduate School NN SF S o
g Monterey, CA 93943 124

- T2, MONITORING AGENCY NAME & ADORESS(I! different from Controlling Otfice) 1. SECURITY _,CLASS. (of thia report)

-
- -

Unclassified
Sa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

P ————
~ 16. OISTRISUTION STATEMENT (of this Raport)

Approved for public release; distribution is unlimited

17. DISTRIBUTION STATEMENT (of the sbetract entered in Block 20, If dilferent from Report)

18. SUPPLEMENTAAY NOTES

19. KEY WORDS (Continue on reverse eide I necessary and {dentily by dlock number)

: Multi-Lingual Database System; Multi-Backend Data Base System;
- Relational Database; Relational/SQL Interface '

- 20. AGSTRACT (Continue on reverse side If necessary and identify by block number)
’ Traditionally, the design and implementation of a conventional
database system begins with the choice of a data model followed
by the specification of a model-based data language. Thus, the
database system is restricted to a single data model and a
specific data language. An alternative to this traditional
approach to database-system development is the multi-lingual data-
base system (MLDS). This alternative approach enables the user
(Continued)

i
Tatofe e

L}
DD ,"5n", 1473 eoimion oF 1 MOV €813 OBsoLETR
$ N 0102- LF- 014- 6601

SECUMTY CLASSIFICATION OF THIS PAGE (When Dats Entered)

3

g 8 5 ¢ ¢

SECUNTY CLASSIFICATION OF TWIS PAGE (When Date Entered)

[ABSTRACT (Continued)

to access and manage a large collection of databases via-
several data models and their corresponding data language with-
out the aforementioned restriction.

In this thesis, we present the specification and implementation
of a relational/SQL language calls into attribute-based date
language (ABDL) requests. We describe the software engineering
aspects of our implementation and an overview of the four
mogules which comprise our relational/SQL language interface.

SN 0102 LF-014- 6601

SECURITY CLASSIFICATION OF THIS PAGE(Phen Dats Entered)

’,

L Y v L e " b . e L " o C By 4 ey "l ——y
2 YA R R S Rna A progus ARl St i i A CEB AT A AT CIRSC IR BRI ST s RS R iRt S S It i S G s A

..........

ey
.l..:-t.z...i.’— PR

S T ——

Approved for Public Release, Distribution Unlimited.

The Design and Implementation of a
Relational Interface for the
Multi-Lingual Database System

by
Gary R. Kloepping

Captain, United States Army
B.S5., United States Military Acadenmy,

1976
’ and
John ‘F. Mack 3
. Captain, United States Army
= B.S., United States Military Agademy, 1978

Submitted in partial fulfillment of the
requirements for the degree of

MASTER:OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
June 1965

D1 b tion [

DO el |

72

|/
4
0

J
a

Avaijiability Codes

| Avail ardor

Special

|

Authors:

ﬁﬁ Moo o

ary R. Kideppdihg

7 Fat

John F. Mack

Approved by:

f"A_/ e [Mo Al

‘:Zz::%djs. Hsiao, Thesis Advisor
C Do

“Steysn A. De ji;pc’Second Reader
/4
7 ;;
J. MaciLennan, C;airman,

/ Department of Computer Science

Dean of Information and Policy

(7]

.............

ﬁﬁaabja:zz_jt&°*~AL=XBx

Kneale T. Ma 11,
. / iences

a -
.......

PRI T
e e

ABSTRACT

:> Traditinnally, the design and implementation of a
‘ conventional database system bagins with the choice of a
data model followed by the specification of a madel-based

v

data language. Thus, the database system is restricted to a

“s AR S. 5.

single daté model and a specific data language. An

alternative to this traditional approach to database—system

:

development is the multi-lingual database system (MLDS).

This alternative approach enables “the user to access and

manage a large collection of databases via several data

E models and 3their corresponding data languages without the
aforementioned regstriction.
— T
< this thesis” we presentrﬂthe specification and
r—

implementation of a re;ational/SQL langquage interface for
| ,
- the MLDS. Specifically, we present the specification and

Y

implementation of an interface which translates SQEL language

//\

i calls into attribute—-based data lanquage (ABDL) requests.

We describe the goftware engineering aspects of our

implementation and an overview of the four modules which

; comprise our relational/S@L language interface.

LI D T

R AN

.....
..................

.............
.....
........

INTRODUCTIDN ® 2 A "0 0808 008 PAacaseesEsesnssses

SOFTWARE ENGINEERING OF A LANGUAGE

INTERFACE ..l.....l.l..l.l'.'.'...‘.lll.l....

A.

TABLE OF CONTENTS

MOTIVATION ..ccccecccucennssccncnsaannas
. THE MULTI-LINGUAL DATABASE SYSTEM
THE KERNEL DATA MODEL AND LANGUAGE
THE MULTI-BACKEND DATABASE SYSTEM

.THESIS OVERVIE.W l.l....‘llllIl.l...ll.l.‘ll

DESIGN GOALSccceiencasscanenssnnans
AN APPROACH TO THE DESIGNcccccsaces
The Implementation Strategy ..ccc..-..
Techniques for Software

Davelopmentcccccacsccacencnses
Characteristics of the Interface
Softwareccccccscccnascancasansas
A CRITIGUE OF THE DESIGNccccccavneas
DATA STRUCTUREcccconcescncnacas
Data Sgared by All Usersc.ccoseas
Data Specific to Each User
ORGANIZATION OF THE NEXT FOUR
CHAPTERSccovvsecscenannnnoncnnnansna
LANGUAGE INTERFACE LAYER (LIL)

THE LIL PROCESS ® @ & & 2 & & ® 5 a8 " S 08" 08 eSS

Important Data Structures¢...

12

12

1S

17

i8

29

2y

e L e T e W

2. Procedures and Functionsccc.. 41
. a. Initialization ...cccccacccccess 41
b. Creating the Transaction
List cocceccccvoncntsauncancscnnena 42
€. Accessing the Transaction
List c.ccecavanccovencsanvacannas 43
(1) S;nding Creates to the
KMS veeveusuacccasnancncacs 44
(2) Sending Gueries to the
KMS;.................. 44
. ..de L£alling the K€ .ceceecccancncens 45
@, Wrapping=uUpP <cecccccscsnancssssse 45
B. SHORTCOMINGS ..ccccecencccsavensnasnancs 44
Iv. THE KERNEL MAPPING SYSTEM (KMS) .;.......,.. 47
A. AN OVERVIEW OF THE MAPPING PROCESS 47
1. The KMS Parser / Translator 47
2. The KMS Data Structures- 49
B. FACILITIES PROVIDED BY THE
IMPLEMENTATIONccccevcnasncasncnanns S2
1. Database Definitionscccecceceen S2
2. Database Manipulationscccce-- 54
a. The SQL SELECT to the ABDL

RETRIEVE ® @« » 8 % 98 20 8 a8 e sV e uens e 55

b. The SEBL INSERT to the ABDL

INSERT ® @ @ 0% 02 00 s8N eeeOseE RS BeSN SB

T T T I I _——_——w——w T A g Y S e A Ak g

c. The SQL UPDATE to the ABDL
UPDATE c.ccececvcccscncncnscenanss .59
d. From the SUL DELETE to the
ABDL. DELETE: An Example 59
C. FACILITIES NOT PROVIDED BY THE
IMPLEMENTATION c.cceccccccncacacsnnnscas 65
1. Interfacing Users ...cccceceesaccncas 1)

2. Updating Miltiple Attributes 66

(¥

£,

3. Retrieving @Qualified Groups ...cccc.. &7
4, Retrieving Computed Valuescc.. &7
5. _Eliminating Duplicates A &8 -
6. Retrieval Using UNIONccccvcceee 68
V. THE KERNEL CONTROLLER ¢.:ccccenansacanancoas &9
A. AN OVERVIEW OF THE KC DATA
STRUCTURESccccccecscccnnacanancnsns 71
B. K€ PRDCEDQRES AND FUNCTIONSccccesse 77
1. The Kernel _Controllerc.cc.0.0 77
2. The Creation of a New Database 78
3. Insert, Delete, Update and
Retrieve—-Common Requestsc.cc.. 78

4, Retrieve Requests:.ccecevcennnes 79

a. The N_conjunction

(3]

Procedure®cccecccacsenscsacacs 8
b. The Procedures

Not_in_conjunction

and One_conjunction ...ccccccee. 85

....... A G At Brn e b i b B vell svede der s aeull st erl aoei a —r————
........... . Al AR AR S M R M D PRI aril R Y

vI. THE KERNEL FORMATTING SYSTEM (KFS) .cceccoa. 89

A- T"EKFS PROCESS 8 ® 9 8000 eEGEseEsSYeEsSERORSSS 9B

1. Overview of the KFS Data
Structuresccccsccascsscancsacsen ?1

2. KFS Procedures and Functions 95
a. Initializing cccececoevecsanncans 29
b. Filling the Table Headings 95
C. Creatihg the Table in the

3 OUtput Fil® ccvedececeennacenans 97 3

d. Displaying the Table 99

. ..e. [Cleaning Up Ceeecececeaeanesaans 99 -

B. A LIMITATION OF THE KFS ...ccaceesssca-. 108

VII. CONCLUSIDN & 4 & @ 9 % F o 28 9 5 9 & 8 6 5 8 ¢ A S a9 s S s 0 e A s s 101

APPENDIX A - SCHEMATIC OF THE DATA

STRUCTURES ..ccccvececasccnsasasanaass 104
APPENDIX B - THE LIL PROGRAM SPECIFICATIONS 122
APPENDIX C - THE KMS PROGRAM SPECIFICATIONS 129
APPENDIX D - THE KC PROGRAM SPECIFICATIONS 148
AFPENDIX E - THE KFS PROGRAM SPECIFICATIONS 169
APPENDIX F - THE SBL USERS’ MANUAL ..ccccccceceeces 176

A, OVERVIEW ...cccescanccnscascnncscnccnnsnnns 176
B. USING THE SYSTEM suuvveceenenannneeaneas 176
1. Processing Createscccccxe0... 178
2. Processing Queriesccc0c00.... 178
C. DATA FORMATcccecccscccncnssscnnnas 180

D. RESULTS c.vierccennscncscansncnacanncnsaes 181

.....

PRI A I S o RN AR AR I A A A R ANA AR A e e R ie telh i i A W S S Sl A A A

LIST DF REFE‘RENCES ® 8 ® "9 0 ¢ e w800 CENEsNGESCResSCEEBen 182

INITIAL DISTRIBUTION LIST ..ccccecncecacaccnnsnses 184

"

LIST OF FIGURES
Fidure i. The Multi-Linqual Database
OSYStEM coccecencnvanncavanocssesacaannas 16
Figure 2. The Multi-Backend Database
SYyStEem .cevecccncnaccasvnccnonrcnvanses 19
Figure 3. The dbid_ncde Data Structure 31
Figure 4. The rel_dbid_node Data

. ° '~
Stl"\-lﬁture eeseconusossosbensesssecoessenvcsoasa ~

wu

:%igurn S. The rel_node Data Structure
Figure &. The rattr_node Data Structure 3
Figure 7. . The usar_info Data Structure 3
Figure 8. Thé 1i_info Data Struéture tecessancnas 3
Figure 9. The sql_info Data Structure 35
Figure 18. The tran_info Data Structure 39
Figure 11. The rel_req_info Data

Structureccececcaccnccccsannnaas 4Q
Figure 12. The rel_kms_info Data

Structureccveencaccacccsaccsancas S0
Figure 13. Additional KMS Data Structures 51
Figure 14. The Relational Database Schema 54
Figure 15. The sgl_info Data Structure 71
Figure 16. The tran_info Data Structure 7

Figure 17. The ab_req_info Data Structure 73

Figure 18. The kc_rel_info Data Structure 74
Figure 19. The ABDL Retrieve Generated by the

Procedure N_conjunctionccceaceen B85

1@

ST T .-'.._'-..‘.‘. RS
FRURE WA N PR SRS o AT U R W o

E pt *.A‘T.'._'e-_,r‘-f‘,r—_g-c.-_-.-v_‘.kw‘s-v.-_-vr-~q’rwv’:7-vr

F?gure-ZE. The ABDL Retrieve Generated by the
- Procedure Not_in_conjunction 87
Fiqure 21, The ABDL Retrieve Generated by the
Procedure One_conjunction 88
Figure 22. The kfs_rel_info Data Structure 91
Figure 23. The table_header_info Data
Structurecccecvesccnccscancanenascs ?3

Figure 24. The table_entry_info Data

N
2

Structure® ...ccecccvecacdecacecscacnannacs 94
Figure 25. The Relational Database Schema
. Data Structures S 1~ 1"

Figure 26. The User Data Structurescccs. 129

11

.........

e T e v ettt -
P I P Py Pruiy S e

PRS- At ek Al Aedic B STtk i B A

. Hence, the requirements sp
above research.
We have developed

the above specification.

(SSL) [Ref. 12] is used ext

SSL has permitted us to

high-level, abstract persp

(1) enhancing communi

members,

Py
2

(2) reducing dependence

(3) producing complete

of the desigq.

Furthermore, the SSL has

transition from the design

We have used the C

translate the design int

were not conversant in

background in Pascal and th

easy for us to learn. The

the programming environment

operating system). This e

partition the SEBL inte

in an gffective and effic

disadvantage with using

having made debugging dif

debugger available for u

We have avoided this

e I I T
PP, Sy, .

......... -
P,

TrE A

T R W W W T I T S L r S S a WU T T TR YW T el YT W T e e e o

ecification is derived from the

the design of the system using

A Systems Specification Language

ensively during this phase. The

approach the design from a very

ective by

cations #mong program team

2

on any one individual, and

and accurate documentation

allowed us to make an easy

phase to the coding phase.

programming language [Ref. 131 to

o executable code. Initially, we

the language. However , our

e simple syntax of C have made it

biggest advantage of using C 1is
that it resides (i.e., the UNIX
nvironment has permitted us to

rface and then manage these parts

ient manner. Perhaps, the only

C is the poor error diagnostics,

ficult. There 1is an on-line

se with C in UNIX for debugging.

option and instead used

25

I P T
.........
an

SRR AT LT e
PRI RN, LG PP G, V.

L e e S e,
.L'.A_‘\'_'-';_'-'l_l

e St S adins

results. The_ “black box" is then decomposed into its
four modules (i.e., LIL, kMS,' KCy and KFS) . fhese
modules, in turn, are further decomposed into the
necessary functions and procedures to accomplish the
appropriate tasks.
2. Technigues for Software Development

In order to achieve our design goals, it is
important to employ effective | software engineering
teéhniques during all phases of the: software development
life-cycle. These phases, as defin=d by Ledthrum [Ref. 11:

p. 271, are as folloqs:
(1) Requirements Specification - This phase involves

stating the purpose of the software: what is to be
done, not how it is to be done.

(2) Design - During this phase an algorithm is devised
to carry out the specification produced in the
previous phase. That is, how to implement the sys-—
tem which is specified during this phase.

(3) Coding - During this phase the design is translated
into a programming language.

(4) Validation - During this phase it is ensured
that the developed system functions as originally
intended. That is, it is validated that the system
actually performs what it 1is supposed to do.

The +first phase of the life-cycle has already

been performed. The research done by Demurjian and Hsiao

(Ref. 11 has described the motivation, goals, and
structure of the MLDS. The research conducted by Macy
{Ref. 21 and Rollins [Ref. 3] has extended this work to

describe in detail the purpose of the SEL interface.

Tt et et Mt e N i Y ettt -
A X o

I
. e e s e L

TSI R [P S TR . A R R S

RS AL AV, VAT Y UYL Y S T TR TR ISR

,a

T Ty R TTTTTTTTTT— . ™ ARSI i et il e sedin Sungl dante it Medl Deni Artafl Seail il it i Wil Sl il Jtadh il Simat

In addition, we _infend to make our interface
transparent to the user. For exampie, an employee;in é
.corporate environment with previous experience with S@L
could 1log into our system,' issue an S@L request and
receive result data in a relational farmat, i.e., a
table. The employee requires no training in ABDL or MBDS

procedures prior to utilizing the system.

. . :
B. AN APPROACH TO THE DESIGN
1. The Implementation Strategy
There is a number of different strategies we could

have employeﬁ in ‘the implementation of the éQL 1l anguage
interface. For example, there are the build-it-twice
full-prototype approach, the level -by~level top—down
approach, the incremental &evelopment approach, and the
advancemanship approach [Ref. 10: pp. 41-461. We have
predicated our choice on minimizing the "software—érisis”
as explained by Boehm [Ref. 1@: pp. 14-311.

The strategy we have decided upon is the level-by-
level top-down approach. Our choice is based on, first,

3 time constraint. The interface has to be developed

within a specified time, specifically, by the time we
graduate. And second, this approach lends itsel+f to the
natural evolution of the interface. The system 1is

initially thought of as a "black box" (see Figure 1) that

accepts SOL transactions and then returns the appropriate

L B e e e e e g gy I T I T e ey T il s M-t - aiul e amiic et Jatle A et DA AR Nl avbi o Ty YL TLv." TTTIW LTI T AT T T
AT LY. NS - . P P A N RN DA A L. . AN o NN R

In this chapter, we discuss the various software
engineering aspects of develogping a language interface.
First, we describe our design goals. Second, we outline
the design approach that we toock to implement the interface.
Included in this section are ¢ discussions - of our
imﬁiementation strategy, our 'software devel opment .
technigques, and salient characteristics of the language
interface softqgre.‘ Then, we provide a critique of our
implementation.-.Fourth, we describe the data structures

used in the interface. And finally, we provide an

organizational description of the next four chapters.

A. DEéIBN GOALS

We are motivated to implement an SQL interface for a
MLDS wusing MBDS as the kernel database system, the
attribute-based data model as the kernel data model, and
ABDL as the kernel data language. It is important to note
that we do not propose changes to the kernel database system
or language. Instead, our implementation resides entirely
in the host coﬁputer. All wuser transactions in SEL are
processed in the SRAL interface. MBDS continues to
receive and process requests in the syntax and semantics of

ABDL.

T T L P S T I
- . . - . - - e, - - .

e T N T T T T e e e e L R SRR
PRGN SIC PR PP PSPPI P AR P PU T L o I P P RS P I S S R

AP IR N N Vel W Pl Vg, S/ PN TR) DI AN el MR A it RS AR il A SRS A i SAR R R R R

Appendices B, C, D, and E, respectively. Appendix F is a
users’ manual for the systeam. The specifications of the
source data 1language, - SGQL, and of the target data

1anguage, ABDL, can be found in either ([Ref. 91 or

CRef. 31.

~
P . Q
- -
- 2
.
R e e ARy T NN T T T e e e e Tt e T L T e LT T S T T e T
. T } A .._-'__. _-.'. _'- ,.‘ & _h..n PRl S] '-‘ KR _.- CYRC T S/t Tt * "ot .~‘.. .-‘ & e "._- _.. _-. _.....‘.' ’- ... JCIR . . ,
B o “ /) - FRETS Y Y T N IR TR YA Y TR DO

.....
. “® .t ..
o

Performance gains are realized by increasing the number

of backends. If the size of the database and the size
éf the responses to the transactions remain constant, then
MBDS produces a reciprocal ‘decrease in the response
times for the user transactions when the number of
backends is increased. On the other hand, if the number of
backends is increased proportionally with the increase. in
databases and responsas, then EBOS produces .invariant
response times for the same transactions. A more

detailed discussion of MBDS can be found in [Ref. 81.

E. THESIS OVERVIEW

The organization of our thesis is as <follows: In
Chapter é, we discuss the software engineering aspects of
our implementation. This includes a discussion of our
design approach as well as a review of the global data
structures used for the implementation. In Chapter 3, we
outline the functionality of the . language interface
layer. In Chapter 4, we articulate the processes
constituting the kernel mapping system. In Chapter S, we
provide an overview of the kernel controller. In Chapter
6, we deacribe the kernel formatting system. In Chapter
7, we conclude the thesis.

Appendix A covers the data structures diagrams for the
shared and local data. The detailed specifications of the

interface modules, i.e., LIL, KMS, KC, and KFS5, are given in

2.

.....................................

-

.............

fashion. These backends have idéntical hardware and

replicated software and their own disk systems. ‘-In a
multiple. backend configuration, there is a backend
controller, which is responsible for supervising the
execution of database transactions and for interfacing
with ﬁhe hosts and users. The backends perform the
database operations with the database stored on the disk
system of the backends. The controller and backends are
cofmected by a communication bus. Users access the system
through either the hosts or the controller directly (See

Figure 2).

1t Backend Store 1

. Backend Store 2

jackend
Processor 2

To a K
Host :

Cummunications

Bus

Figure Z. The Multi-Backend Database System.

19

rryl

e il o vk S/l A Sulh A SR B St A A S e AP R AT

supporting the required data-model transformations and

g
)

L]
X
)}
n
.
..
A
-

data-language translations for the language interfaces.

“The attribute-based data model proposed by Hsiao

. Y .

[Ref. 4], extended by Wong [Ref. 5], and studied by Rothnie
(Ref. 4], along with the attribute-based data 1language

(ABDL) , defined by Banerjee [Ref. 7], have been shown to be

ER IR

acceptable candidates for the kernel data model and kernel

data languagé, respectively. 3
I ‘ Why is the determination of a kernel data model and .
kernel data lanquage so important for a MLDS? No matter how
multi-lingual the MLDS may be, if the underlying database -
system (i.e., kDS) is slow and inefficient, then the
interfaces may be rendered useless and untimely. Hence,

it is important that the kernel data model and kernel

) R ,. .
[B J 0 ¢
.’-'-'u'.'lJ_AJ-F.I"v'. e e e

lanquage be supported by a high-performance and great-
capacity database system. Currently, only the
attribute-based data model and the attribute-based data

langquage are supported by such a system. This system is

ey, LT T
RAPLRN N B

the multi-backend database system (MBDS) [Ref. 11.

-

I S

D. THE MULTI-BACKEND DATABASE SYSTEM

{ The multi-backend database system (MBDS) has been
; designed to overcome the performance problems and upgrade
; issues related to the traditional approach of database
; system desigr.. This goal is realized through the
§ utili;ation of multiple backends connected in a parallel
:

18

e e

STl

modules are required for each other language interface of
the MLDS. For example, there are four sets of Ehese

modules where one set is for the relational/S@L language

interface, one for the hierarchical/DL/1 language
interface, one for the network/CODASYL language
interface, and the last = one far the entity-
relationship/Daplex language interface. However, if the

user writes the transaction in the netive mode, i.e. in KDL,
there is no need of any interface.
In our implementation of the relational /7SGL

language interface, we develop the code for the four

modules. Howeve;; we do not integrate these modules with the
DS as shown in Figure 1. The Laboratory of Database
.Systems Research at the Naval Postgraduate School is in the
process of procuring new computer equipment for the KDS.
Wheﬁ the equipment is installed, the KDS will be ported aver
to the new equipment. The MLDS software will then be
integrated with the KDS. Although not a very difficult

undertaking, it may be time consuming.

C. THE KERNEL DATA MODEL AND LANGUAGE

The choice of a kernel data model and a kernel data
language i3 the key decision in the development of a
multi-lingual database system. The overriding question,
when making such a chaice, is whether the kernel data

modeil and kernel data . language is capable of

17

2

Y

KMS

KC KDS K

:, LIL

.

N/

KFS

»

P
.\ /g
, .

b}

UDM : User Data Model
UDL : User Data Language

- LIL . Language Interface Layer
o KMS : Kernel Mapping System
> KC : Kernel Controller

- KFS : Kernel Formatting System

”

KDM : Kernel Data Model ™
KDL : Kernel Data Language

KDS = : Kernel Database System
'; Figuré 13 The Multi-Lingual Database System.
5 the KDM database definition, it informs the KC. The KC

then notifies the user via the LIL that the database
‘"definition has been processed and that the 1loading aof the

database records may begin. In the second task, the KMS

? sends the kKDL transactions to the KC. When the ¥.C
g receives the KDL transactions, it forwards them to the
KDS for execution. Upon completion, the KDS sends the

results in KDM form back to the KC. The kC routes the
- results to the kernel formatting system (KES). The KFS
reformats the results from‘KDH form to UDM form. The KFS
then displays the results in the correct UDM form via the

i-IL.

The four modules, LIL, KMS, kKC, and KFS, are

oo ‘.. ". ". ". '.- o

collectively known as the language interface. Four similar

16

M DRI M Sl Sed il Sl tnd tph vnd Wl Adk b S D AU Fra A ANt i

[Rcf. 31, who have showed the feasibility of this particular

infnrface‘in a MLDS.

B. THE MULTI-LINGUAL DATABASE SYSTEM

A detailed discussion of each of the components of a
MLDS is provided in subsequent chapters. In this section we
provide an overview of the organization of a MLDS. This
can assist the reader in understanding how the

: . 3
different components of the MLDS are related.

-~
-

r]

_Figure 1 shows the 575tem 5trdctura of a multi-
lingual database system. The user interacts with the

system through the lanquage interface laver (;ig) using 'a

chosen user data model (UDM) to issue transactions written

in a corresponding model-based user data language (UDL).

e e o —— — s e e il o e

The LIL routes the uséer transactions to the kernef

mapping system (KMS). The KMS performs one of two

possible tasks. First, the KMS transforms a UDM-based

database definition to a database definition of the kernel

data model (KDM) when the user specifies that a new database

is to be created. When the user specifies that a ubL
transaction is to be executed, the KMS translates the UDL
transaction to a transaction in the kernel data language
(kDL). In the first task, the KMS forwards the DM data
definition to the kernel contrpoller (KC). The KC, in turn,

sends the KDM database definition to the kernel database

system (KDS) . When the KDS is finished with processing

T N T T T Ty oY T LY SN X T T P v %

................. -

The MLDS provides the same results even if the data language
of the ' transaction is originatn& at ‘a different dat;base
system.

A second advantage deals with the economy and
effectiveness of hardware upgrade. Frequently, the
hardwara supporting the database system is upgra&ed
because of technological advancements or system
demand. With the traditional approach, this ~type of
ha?ﬁuare upgrade has to be provided for all of the different
database systems in use, so that all of the users can
experience 5ysggm Rerformance improvements. ‘This is not
the case in MLDS, where only the upgrade of a single
system is necessary. In a MLDS, the benefits of a hardware
upgrade are uniformly distributed across all users, despite
their use of different models and data lahguages.

Thirdly, a multi-lingual database system allows users
to explore the desirable features of the different data

models and then use these to better support their

applications. This is possible because MLDS supports a
variety of databases structured in any of the well-known
data models. .

It ig apparent that there exists ample motivation to
develop a mul ti-1lingual database system with many data
model /data language interfaces. In this thesis, we are
developing a relational/S@L language interface for the MLDS.

We are extending the work of Macy C[(Ref. 2] and Rollins

14

f‘{-l'.:i.." . _'.-_ c ...-.-_‘.-_'.._ ca- e e e
£ L

......................................

e W P g s, 5 Wil iy 5y il Ul g Sk

which supparts the relatibnal maodel and the relational-
madel -based data language, Structured English buery
Lanéuage (SGQL). The result of this traditional approach
to database system development is a homogeneous database
system that restricts the user to a single data model and a
specific model-based data language.

An unconventional approach to database system

development, referred to ' as the? Multi-lingual- database

2

system (MLDS) [Ref. 11, alleviates: the aforementioned
restriction. This new system affords the user the ability
to access and manage a large collection of databases via -
several data models and their corresponding data languages.
The design goals of MLDS involve developing a system
that is accessible via a ﬁelationaIISQL interface, an
hierarchical/DL/1 interface, a network/CODASYL
interface, and an entity-relationship/Daplex interface.
There is a number of advantages in developing such a
system. Perhaps the most practical of these involves the
reusability of database transactions developed on an
existing database system. In MLDS, there is no need
for the user to convert a transaction from one. data
4 language to ancther data language. The MLDS permits the
running of database transactions written in different data
languages. Hence, the user does not h;ve to perform
either a manual or automated translation of an existing

transaction in order to execute the transaction in MLDS.

-

13

AL B AT B LG dA PR A SR AbeeC O A e ok SLER AN Sl SR R i et S MU B S & T b L Ia i i v DAL "Rl R el Sy By satse b cadh Tadh SV Tl S VR FS

” A. MOTIVATION
During the past twenty years database systems have been
8 designed and implemented using what we refer to as

the traditional approach. The first,step in the traditional

4,

approach involves choosing a data model. Candidate data
.models include the relational data model, the hierarchical

- data model, the network data model, the entity—-relationship

- -
P

data model, or éﬁe aétribute—based data model to name a few.
The second step specifies a model-~based data language, e.g.,
SAL or RQUEL for the relational data model, or Daplex for the
-~ entity-relationship data model.
o A number of database systems have been developed using -
2 this methodol ogy. For example, there is IBM's
Information Management System ({IMS) since the sixties,
which suppaorts the hierarchical data model and the
. hierarchical ~model -based data 1anguage, Data Language I
(DL/I). Sperry Univac has introduced the DMS-110Q2 in the
early seventies, which supports.the network data mocdel and
'E the network-madel -based data language, CODASYL Data
Manipulation Language (CODASYL-DML). And more recently,

there has been IBM’'s introduction of the S@L/Data System

v 50
P

'l .
e

AT IR PP P e’y A" e \- A TR . . . - [. ..
(PSP L i YRR AT v e s e e T S
- _.- PO S R N i 4 P '.4 .'-‘ Al f_ > A RS R I

»

A SR A A I A S R . Rt e St i s e ey T e e A N N T TR AT Ta T e

conditional compilation and diagnostic print.statements

to aid in the debugging process. ‘To validat;~ our

system we have used a traditional testing technique, -
i.e., path testing [Ref. 141, We have checked boundary
cases such as the nested select and the single select.
And we have tested those cases considered "normal®. It
is noteworthy to mention that testing, as we have done it,
does not pro§e the system correct, But can only "~ indicate
thé absence of problems with the- cases that have been
tested.

-

3. Characteristics of the Interface Software
In order for the SQL interface to be successful, we
have realized that it must be well designed and well
structured. Hence, we are cognizant of certain
characteristics that - the interface must possess.
Specifically, it must be simple. In other words, it must be
easy to read and comprehend. The C code we have written
has this characteristic. For instance, we often write the
code with extra 1lines to awvoid shorthand notations
available in C. These extra lines have made the
difference between comprehensible code and cryptic
notations.
The interface software also must be understandable.
This must be true to the extent that a maintenance
programmer, far example, can easily grasp the

functionality of the interface and the relation between it

26

Pt I ’ AR ECRA R I RASRL AL, Sl Ank el gk R b od fnd

and the other pieces of the system. Our software
possesses this characteristic. and does not have any h;dden
side-effects that could p;se probiems months or years from
now. As a matter of fact, we have intentionally
minimized the interaction between procedures to alleviate
this problem.

The interface must also be maintainable. This 1is

important in light of the fact that almost 70% of all of

thé software life~cycle costs are incurred after the 3
software becomes operational, i.e., in the maintenance
phase. There are software engineering techniques we -

employed that have given the SEL interface this

characteristic. For example, we require programmers to
document changes to the interface code when the change is
made. Hence, maintenance programmers have current

documentation at all times. The prablem of trying to
figure out the functional.ty of a program with dated
documentation is alleviated. We also required the

programmers to update their SSL specification as the code is

being changed. Thus, the GSL specification consistently
corresponds to the actual code. In addition, the data
structures are designed to be general. Thus, it is an easy

task to modify or rectify these structures to meet the
demands of an evolving system.
The research conducted by Demurjian and Hsiao

[Ref. 1] provides a high-level specification of the MLDS.

27

o

The thlSQ; written by Macy [(Ref. 2] and Rﬁllins CRef. 31
ext-n& the above wark and provide a more def;iled
specification ;f an . SEBL language interface. This
thesis outlines the actual implementation of an SQL
interface. The appendices provide the specification 8SL
for this implementation.

A final characteristic that an SGL interface should

have is extensibility. A software product must be designed

in“a manner that permits the easy modification and addition

of code. In this 1light, we have placed "stubs" in the

correct lncapiqns of the KFS to permit ‘the easy
insertion of .the' code needed to handle multiple
horizontal screens of output. In addition, we have
designed our data structures in a manner that will
permit subsequent programmers to easily extend them to

handle not only multiple users, but alsc other langquage

interfaces.

€C. A CRITIQUE OF THE DESIGN

Our implementation of the S@L interface possesses all of
the elements of a successful software product. As noted
previously, it is simple, understandable, maintainable, and
extensible. Our constant employment of modern software
techniques have ensured the success.

However, there are two techniques that are especially

waorthy of critiques. The first of these is the use

28

)

ST -t A e o 1 Bl el s

of ' the SSL. Initially, we have felt that the
implem;ntation ianguage may also serve as the languaée to
specify program algorithms. However, in doing so, we have
stifled our creativity. This is because we are

concentrating not only on what the algorithm doces, but

also on what the constructs (data structures) of the

algorithm are. The use of the SSL has permitted us to
concentrate on the functionality of‘the algorithm without a

heé@y concentration on its particular .constructs. This has

allowed us to view the algorithm in a detached manner so

that the QQ§F F*ficient implementation® for the
constructs can be used. Although we have initially felt
that the development of the program with the SSL may be too
time-consuming, our opinions are changed when we have
realized the advantages of the SSL and the overall
"complexity of the SGL language interface.

The way 1in which the data structures are designed 1is

the other noteworthy software engineering technique.
Being relatively inexperienced programmers, we are
inclined to use static structures. Hence, we have made

extensive use of structures which are bound at compile time.
We soun realize that in doing so0o, the computing resources
(e.g., data space) of the system are being depleted gquite
rapidly. Therefore, it is necessary for us to design the
data structures in a way that they can be managed in a

dynamic fashion. Most of the data structures of the

29

.....

AT S S i MASC s st avfe et bR SIS Shgt Bl i el b e e e - R e e v BRI 1t e Bt i e e MU Al ol bad ael

8L interface are linked lists. This design affords us

the most convenient way to efficiently utilize the
resources of the system. It is an easy task to use the C
language’s malloc (memory allocate) functian to

dynamically create the elements of a list as we have needed
them. In addition, the free command is useful in

releasing these same elements to be used again.

)

D.c THE DATA STRUCTURE)
The SGL language interface has 'been developed as a

single user system that at some point will be updated to a

mul ti-user sy%téh. “Two different concepts of tﬁe data are

used in the language interface

1. Data shared by all users.

2. Data specific to each use?.

The reader must realize that the data structures used
in our interface and described below have been
deliberately made generic. Hence, these same structures

support not only our SGL interface, but the other 1langquage
interfaces as well, i.e., DL/I, CODASYL-DML, and Daplex.
1. Data Shared by All Users
The data structures that are shared by all users
are the database schemas defined by the users thus far.

In our case, these are relational schemas, consisting

of relations and attributes. These are not only shared

by all users, but also shared by the four modules of the

MLDS, i.e., LIL, KMS, KC, and KFS. Figure 3 depicts the
first data structure used to maintain data. It] is
impartant to note that this structure is represented as
union. Hence, it is generic in the sense that a user can

utilize this structure to support SGL, DL/I1, CODASYL-DML,

or Dapiex needs, However, we will concentrate only on
the relational madel. In this regard, the first field of
this structure points to a retofd that T contains
information about a relational ; database. Figure 4

illustrates this record. The first field is just a
character array containing the name of the' relational
database. The next field contains an integer value

union dbid_node

{
struct rel _dbid_node *rel;
struct hie_dbid_node *hie;
struct net_dbid_node *net
struct ' ent_dbid_node *ent;
)

Figure 3. The dbid_node Data Structure.

struct rel_dbid_node

{
char namelDBNLength + 11;
int num_rel;
struct rel _node #first_rel;
struct rel _node *curr_rel;
struct rel _dbid_node #*next_db;
3

Figure 4. The rel_dbid_node Data Structure.

31

L7

DAY A S AU A A Ao Sl Y S e 0 e e i U il e - e 90 e 0 a0 i Mkt A i N Al Sl Sedi ALK Anitedt Sudt Rt et Ai-Bidt di A i Sl AN v__-T

representing the number of relations in the database. The

RN R RN,) PR

third and fourth fields are pointers to other records

-

containing information about each relation in the database.
Specifically, the third field points to the first relation
in the database while the fourth field points to the

current relation béinq accessed. The final field is Jjust a

"1_._{,.’.(".(.(’"“

pointer to the next relational database.

7 v .

The record rel_node containslinformation about each

7

s

! refation in the database. (See Figure S5S.) This structure
' is organized in much the same fashion that the rel_dbid_node
is organized._ Tbe first field of the record holds the name
of the relatiéﬁ. The next field contains the number of
attributes in this relation. The third and fourth fields
point to other records which contain data on the first
and current .attribute of this relation. And finally,

the 1last field is a pointer to the next relation in this

database.

struct rel_node

{
b-. char namelRNLength + 11;
!_ int num_attr;
' struct rattr_node *first_attr;
. struct rattr_node *curr_attr;
. struct rel _node #next_rel;

>

Figure S. The rel_node Data Structure.

32

USRI I B e Tttt et e e T T T T e e e T
.......... S B T A JRT . .

..... - RS P T U
2 e PRALUA W, YR A T PURTURIA VAR P Ty

.........

. -
e

& penl ant ey 2t et S 4 TP
o e e . PECAARL Y

Figure é shaws the structure of the final record
type usad to support the definition of the relat;onal
database schema. The' first field is also an array,
holding, in this case, the name of the attribute. The

second field serves as a flag to indicate the attribute

type. For instance, an attribute can either be an integer,
a floating paint number, or a string. The characters
i, "f", and "s" are ' used, respectively. The third

fiéld indicates the maximum length that a value of this
attribute type may possibly have. For example, if this
field is set yo.gen qnd the type of this attribute is a
string, then "the maximum number of characters that a
value of this attribute type may have is ten. The fourth
field is also a flag used to indicate whether or not
this particular attribute is a key. The last attribute
just points to the next attribute in this relation. The

reader may refer to Appendices B through E to examine how

these data structures are used in the SSL.

struct rattr_node

{
char namelANLength + 11:
char types;
int length;
int key_flag:;
struct rattr_node *next;
3

Figure 6. The rattr_node Data Structure.

g

g H’_"QT_'J’_T_ L ot Rl aiel abel ROGE ogh Jbuh SRR SEAE Sie SEu e ave gy o 4

2. Data Spegific to Each User

This category of data represents informﬁtion

needed to support each user’'s particular interface .
needs. The data structures used to accomplish this can
be thought of as forming a hierarchy. At the root of this
hierarcﬁy is the record ‘type user_info that maintains
information on all of the current users of a particular
language interface. (See Figure 7.)% The wuser_info record
hoFds the ID of the user, a union that describes a *
particular interface, and a pointer to the next user. The
union field i? qf paﬁti:ular interest to us. ° As noted -
earlier, a union serves as a generic data structure. In
this case, the union can hold the data for a user accessing
either an SAL language interface, a DL/I LIL, a CODASYL-
DML LIL, or a Daplex LIL. The li_info union is shown in
Figure 8.

We are only interested in the data structures
containing information for each user that pertains to the

SQL language interface. This structure is referred to as

struct user_info

{
char uidCUIDLength + 11;
union li_info l1i _types
struct user _info #next_user;

7

Figure 7. The user_info Data Structure.

34

union li_info

<
struct sql _info sql;
struct dli_info dlis
struct dml_info dml;
struct dap_info dap;
>

Figure 8. The li_irfo Data Structure.

agl _info and is depicted in Figure 9. The first field of
this structure, curr_db_info, is? itself a record and
coRtains currency information on the gatabase being accessed
by a user. The secand field, file, is also a record. The
file record cpnggins'the file descriptor and filée identifier
of a file of .SQL transactions, i.e., either queries or
creates. The next field, sql_tran, 1is also a record, and
holds information that dgscribes the SGL transactions
to be processed. This includes the number of requests to

be processed, the first request to be processed, and the

struct sql_info

.

struct curr_db_info curr_db;
struct file_info files
struct tran_info sql _tran;
int operation;
struct ddl_info »#ddl _files;
struct tran_info *abdl _tran;
union kms_info kms_data;
unian kfs_info kfs_dataj;
union kc_info kc_data:
int .errors

b2
4

Figure 9. The sql_info Data Structure.

L4

current request being processed. The fourth field of the
sql_info record, operation, is a #lag' that indicates; the
operation to be perfofmed. This can be either the loading
of a new database | or the execution of a request
against an existing database. When this field represents
the execution of a request, it is encoded with the ABDL
request type to be executed. The next field, ddl_files,
is a pointer to a structure descriding the descriptor file
and:template file. These files contain information about
the ABDL séhema corresponding to the current relational
database beipg_. processed, i.e. the ABDL schema
information for-'a newly defined relational database. The
sixth field, abdl_tran, is a poaointer to a record that
describes the ABDL equ}valents to the transactions written

in saL i.a., the translated SeL requests.

Specifically, this is the first ABDL request, the current

ABDL request, and the number of ABDL requests to be
processed. This data is provided by the KMS and used by
the KC. The next three fields, kms_data, kc_data, and
kfs_data, are unions that contain information that is
required by the KMS, KC, and KFS. These will be described
in more detail 1in the next four chapters. The last

field, error, is an integer Qalue representing a specific

error type.

A0 M A i

LZ]

Pl

' E. THE ORGANIZATION OF THE NEXT FOUR CHAPTERS

The following four chapters are meant to provide: the
user with ; more detailed analysis of the modules
constituting the MLDS. Each chapter will begin with an
overview of what each particular module does and how it
relates to the other modules. The actual processes
performed by each module are then discussed. This includes a
des&ription of the actual data structures used” by the

modul es. Each chapter concludes .with a discussion of

module shortcomings.

k7

e e
PR SCLs
DS

III. THE LANGUAGE INTERFACE LAYER (LIL)

S — s, i s i s i e e

The LIL is the first module in the SQL mapping process,
and is used to control the order in which the other
modules are called. The LIL allows the user to input
transactions from either a file or the terminal. A
transaction éan take the form of either creates for a new
daggbase or queries against an existing database. The
mapping process takes place when the LIL sends a single
transaction }o:,the: KMS. After the transaction has been
received by the KMS, the KC is called to process the
transaction. Control always returns to the LIL, where the
user can close the session by exiting to the operating
system.

The LIL is menu-driven. When the transactions are read
. from either a file or the terminal they are stored in a data
structure called rel_req_info. If the transactions are
creates they are sent to the KMS in sequential order. If
the transactions are queries the user will be prompted by
ancther menu to selectively pick an individual query to be
processed. The menus provide an easy and efficient way to

allow the user to see and select the methods in which to

perform the mapping functions. Each menu is tied ¢to its

predecessor so that by exiting each menu the user 1is being

moved up the menu “tree", .This allows the user to perform

multiple tasks in one session.

A. THE LIL PROCESS

In this section we discuss the processes and actions

per formed by the LIL. These processes are presented in

the order in which they are encountered during a

typical sessian. The data structures used heavily by
. . Q z

the LIL are discussed first.

1. Important Data Structures

The LIL wuses two data structures to store the
user ‘s transattions ‘and to control which transéction is to
be sent to the KMS. It is important to note here that
these data structures are shared by both the LIL and the
KMS.

The first structure is named tran_info énd is shown
in Figure 18. The first field of this record, first_réq,
contains the address of the first transaction of the
transaction list that was read from a file or the
terminal. The second field, curr_req, contains the

struct tran_info
¢ struct rel_req_info #*first_req:

struct rel_req_info #*curr_req;

int nao_req:;
b3
P

Figure 1@8. The tran_info Data Structure.

T p—

A

N

user. The LIL then sends the KMS one database definition at
a time, which takes the form of an S@L CREATE TABLE request

as follows:

CREATE TABLE table_name :

field_name_1 (type(length) [, NONULLI]),
field_name_2 (type(length) [, NONULLI1),

field_name_n (typ@(length) [, NONULLI)

For each CREATE TABLE request, an additional relation node
(rel_node shown in Figure 5) is added to the database schema
under construction. It should be apparent from the

preceding CREATE TABLE example that for each relation node,

we must also add a list of attribute nodes (rattr_node shown .

in Figure 6) +to the schema. The database identification
node holds the number of relations in the schema and the
database name, each relation node holds the number of
attributes in that relation and the relation name, and each
attribute node holds the attribute name, type, length, and
primary key information.

When the LIL has forwarded all database definitions
entered by the user, the result is a completed database
schema, -as shown in Figure 14. The relational database
schema, when completed, serves twa purposes. First, when
creating a new database, it facilitates the construction of

the MBDS template and descriptor files. Secondly, when

53

..................

s

attribute values in the database is limited only by the
constraint piaced on them by the user in the oriéinal
database definition, and és such they may be of varying
lengths.

At the end of the mapping process, before control is
surrendered to the LIL, all data structures that are unique
to KMS which have been allocated during the mapping process

are returned to the free list. b

-
‘.
-

B. FACILITIES PROVIDED BY THE IMPLEMéNTATIDN

In this section, we discuss those SEL facilities that
are provideﬁ ‘by our implementation of the- relational
interface. We do not discuss the SGBL to ABDL translation in
detail. Rather, we provide an overview of the salient
features of the KMS, accompanied by one illustrative example
of the mapping process. User-issued réquests may take: two
forms, SeL database defiﬁitions, or seL database
manipul ations. Appendix C contains the design of our
implementation, written in a system specification language.

1. Database Definitions

When the user informs the LIL that the user wishes

to create a new database, the job of the KMS is to build a
relational database schema that corresponds to thé database
definitions input by the user. The LIL initially allocates
a new database identification node (rel_dbid_node shown in

Figure 4) with the name of the new database, as input by the

........

Pat A Ml il Sl el Sadiiad Sul Sk Sk Sk Tl Al idis

require a liat of rel_kms_info structures, one

corresponding to each level of the nested SELECT query.

The remaining three data structures, shown in Figure

are records that are pointed to by thé rel _kms_info

record, as just described. Respectively, they represent a

of attribute names (the target 1list), a record of

relation names (the templates), and a 1list of attribute

values (the insert 1list). ANLeAgth and RNLehgth are

coﬁEtants defining the maximum 1lengths of attribute and

~m”

relation names, respectively. It should be noted that the

value field in the insert_list_info record is a pointer to a g

variable 1length character string. Although attribute-names

have a constant maximum length constraint, the 1length of

struct target_list_info

< .
char namelANLength + 11;:
char tgt_rel{RNLength + 11;

atruct target_list_info +*next_attr;

b
]

struct templates_info
{
char namel (RNLength + 11];
char name2lRNLength + 11;

3

struct insert_list_info

{

char *values
struct insert_list_info #next_val;

9
4

Figure 13. Additional KMS Data Structures.

struct rel_kms_info

{

struct target_list_info #first_tgt:
astruct templates_info templates:;
struct insert_list_info #first_val;
char *temp-str;
char *join_str;
struct rel_kms_info #next_nest;
} .

Figure 12. The rel_kms_info Data Structure.

; , ¢ .
operations, two relation names may be kept in this record.
£

The third field, first_val, is a péinter,to the head of a
list of values, These are the values that an INSERT request
desires inserteéd into the database. The fﬁurth field,
temp_str, is a pointer to a variable-length character
string. The character—-string 1length is a function of the
input request length, and is allocated, when required, to
accumul ate intermgdiate translation results while parsing
the WHERE boolean-clause of a user request. The fifth
field, join_str, is also a pointer to a variable length
character string. The character-string length is again a
function of the input request length, and it is allocated to
accumul ate the translation for the second ABDL RETRIEVE
request that is generated in response to a join operation.
The sixth field, next_nest, is a pointer to another record
of the same type. The next_nest field is used only during

the translation of a nested SELECT statement, in which case

1"

&

lower—-level grammar rules have been satisfied and control
has ascended to the h%ghest-level rule, the parsiné and
translation processes, and, therefore, the mapping process,
is complete. In Section B, we give an illustrative example
of these processes.

2. The KMS Data Structures

The KMS utilizes, for the most part, just four
structures ‘defined in ‘the intetface. it, naturally,
reduires access to the S@L input request and ABDL output
request structures discussed in Chapter II, the rel_req_info
and ab_req_info_gtruqtures, respectively. However, the four
data structure;. to be discussed here are only thase unique
to the KMS.

The first of these, shown in Figure {2‘ is a record
that contains information accumulated by the KMS during the
grammar-driven parse that is not of immediate use. This
record allows the information to be saved until a point in
the parsing process where it can be wutilized in the
appropriate portion of the translation process. The +first
field in this record, first_tgt, is a pointer to the head of
a list of attribute names. These are the attribute names
specified by the user request to retrieve information from,
or insert informétion into, the database. This list is only
utilized during SELECT or INSERT operations. The secona
field, templates, is also a record and holds the relation

name (s) referenced in the user query. During join

49

L2

invoked when such structures are recognized, and a low-level

input routine, YACC generates a program that syntacti;ally
recognizes the ‘input language and allows invocation of the
user ‘s code throughout this Eecognitinn process. The class
of specifications accepted is a very general one: LALR(1)
grammars. It is important to note tﬁat the user's code 'ue
speak of . here is our mapping code th;t is going to perform

the SOL-to-ABDL translation. As 3the low-level input

L]

roéiine, we have utilized a Lexical Analyzer Generator (LEX)
[(Ref. 161. LEX is a program generator designed for lexical
processing of ‘§npug character streams. Given a regular- -
expression descéiptinn of the input strings, LEX generates a
program that partitions the input stream into tokens and
communicates these tokens to the parser,

The parser pﬁoduced by YACC consists of a finite-—
state automaton with a stack and performs a top—-down parse,
with left-to-right scan and one token 1look-—-ahead. Control
of the parser begins initially with the highest-level
grammar rule. Cantrol descends through the grammar
hierarchy, calling lower and lower-level grammar rules which
search for appropriate' tokens in the input. As the
appropriate tokens are ‘recognized, some portions af the
mapping code may be invoked directly. In other cases, these
tokens are propagated back up the grammar hierarchy until a
higher—~level rule has been satisfied, at which time further

translation is accomplished. When all of the necessary

ag

.‘ . .‘.-'.-.’-'.'-.<- DR R A T D L ’-'-'." .‘_.-_--._-__-. R O
‘\ N .) ata S e e e NI SN ,._--_.-'_~ AR TR

AR e N ™ e e et et - <L LI . - o - e ™a
o™ -')‘.b‘)'.b' .n -.'_L ot \ \J-\.L_LA_. NI J-“~-_A~"x PR S 1\.\Ls Y '-JL'; e ettt &{L'_&'

IV. THE KERNEL MAPPING SYSTEM (KMS)

The KMS is the second module in the SEL mapping
interface and is called from the language interface layer
(LIL) when the LIL has received SGL input req;ests from the
user. The function of the KMS is to: (1) parse the request
to validate the user’'s SQL syntax, %nd (2) translate, or
mag, the request to an equivalent ABDL request. Dnce an
appropriate ABDL request, or set of krequests, has been
formed, it }s:pade:eyailable to the kernel controller (KC)
which then”prmcééé;; the request for execution by MBDS. The

KC is to be discussed in Chapter V.

A. AN DOVERVIEW OF THE MAPPING PROCESS

From the description of the KMS functions above we
immediately see the requirement for a parser as a part of
the KMS. This parser validates the SOL syntax of the input
request. It is the driving force behind the entire mapping
system.

1. The kKMS Parser / Iranslatoer

The KMS parser has been constructed by util;:ing

Yet-Another-Compiler Compiler (YACC) CRef. 1S]. YACC is a
program generator designed for syntactic processing ot token

input streams. Given a specification of the input language

structure (a set of grammar rules), the user’'s code to be

47

Pt il M~ A

i)

-
.
»
v
»
0
.
.

I SEISADTN

1 e

[EVRYL AL

e

T 4w

memory occupied by the user data structure is freed up and

returned to the operating system. Since all of the user
structures reside in a list, the exiting user’'s node must

be removed from the list.

B. SHORTCOMINGS
As used in this chapter, a transaction consists of a
single request on a databa;e. A transaction would normally

)
be \allowcd to contain multiple requests, such as an

1]
insert, a query, and then a modify on some portion of a
database. This feature is not incorporated into the

present systim;” but' it could be sasily integrated at some

later date.

44

chk the number or letter of the action desired
"({num) -~ execute one of the preceding queries
(d) - redisplay the list of queries
(x) -~ return to the previous menu

ACTION ——=> _

Since gueries are independent items, the order in which
they are processed 'does not matter. The user has the
choice of executing any number of queries. A loop causes

the query listing and ‘menu to be redisplayed after any
qué?y has been executed so that further choices may made.

d. Calling the KC

As mentioned before, the LIL aets as the
control module for the entire system. When the KMS has
completed its mapping process, the transformed

transactions must be sent to the KC to interface to the
kernel database system. For creates the KC is called
after all creates on the tramsaction list have been sent
to the KMS. The mapped creates reside 1in another list
that the KC 1is going to access. Since queries are
independent items, the user should wait for the results from
one query before issuing another query. Therefore, after
each query has been sent to the KMS, the KC is immediately
called. The single mapped query resides on the same second
list for the creates which the KC can access easily.

e. Wrapping—-up

Before exiting the system, the user data
structure described in Chapter II must be deallocated. The
45
e NN B T L e e e

L/

SALANE AP ANL AN AN WA g o S T A A LA A e S i i i S PO S i 2 S i o e v Sl S R St Svon Al bl St B “Bbe Sl "R SRR 8 2,

poiﬁtld to by the request pointer, curr_req, of the data
structure, tran_info. (Se-.Figure 1@ again.) Th-r-for;, it
is the jéb of the LIL to set this pointer to the .
correct transaction before calling the KMS.

(1) Sending Creates to the KMS. When the user
has specified the filename of creates (if the input is from

a file) or typed in a set of creates (if the input is from

the terminal), any further use® intervention: is not

Ly

reéhired. To produce a new database, it does not make sense

to process only a single create out of a set of creates,

since they all must be processed in a specific order.
Therefore, th;' transaction list of creates is sent to the

- KMS in its entirety. A program loop traverses the
transaction list, calling the KMS for each create in the
list.

(2) Sending Quegies to the KMS. In . this
case, after the user has specified his mode of input,
he conducts an interactive session with the system. First,

:; all queries are listed on the screen. As the queries are
listed from the transaction list, a number is assigned to
each query in ascending order, starting with the number one.
The number is " printed on the screen to the 1left of the

first line of each Query. Next, an access menu 1is

displayed which loocks like the following:

This input may come from a data file or interactively from

the terminal. The generic menu looks like the *ollowiﬁg:

Enter mode of input desired
(f) - read in a group of transactions from a file
(t) - read in transactions from the terminal
(x) = return to the previous menu

ACTION ———>

CRlE e 2t S Sty

Again, each mode of input picked corresponds to a
N N ‘ Py
different procedure to be performed. The transaction list

L

; is created by rmading from the. file or terminal

looking for an end-of-transaction marker or an end-of-

file marker. ° These ‘flags tell the system when one

transaction has ended and when the next transaction
begins. When the list is being created, the pointers to
access the list must be initialized. These pointers,

first_req and curr_req, have been described earlier in the
data structure’ section. Both pointers are set to the
first transaction read, in other words, the head of the
transaction list.
C. Accessing the Transéctinn List
Since the transaction list stores both creates
and queries, two different access methods must be

employed to send the two types of transactions to the

KMS. We discuss the two methods separately. In bath
cases the KMS accesses a single transaction from the

transaction list. It does this by reading the transaction

Sl S Bt I i dia it i i, St e ¥ S Jgis I i B it St St S o AN S R A i it paE Rl W S S APELE S A SR PR S R A 4

control for each user of the system. When a user logs onto

the aystem, a user data structure is allocated and
initialized. The user ID becomes the distinguishing
feature ta 1locate and iqentify different users. The

user data structures for all users are stored on a linked
list s0 that when a new user enters the system, their
initialized user data structure is appended to the end of
the list. In our current environmend there is only a single
elément on the user list. In a future environment, when)
there are multiple users, we simply adopt the append
operation menpigped qbnve. . g -
b. Crea£ing the Transaction List
There are twa operations the user can
perform on the database schemas. A user can create a -
new database ar process queries against an .existing
database. The first menu that is displayed prompts the
.user for which function to perform. E;ch function
represents a separate procedure to handle the specific
circumstances. This menu looks like the following:
Enter type of operation desired
{l1) - load a new database
(p) - process old database
{(x) = return to the operating system

ACTION —-———1

For either choice (i.e., 1 or p), another menu

is displayed to the user asking for the mode of input.

42

. . e e e . e B - Nt st - LIRS B
D - . . T . A R el . Dt . -
., . .. LT - W . N AT e AT N et e e, - .

o '— ™
-.“C"‘," P

MR NCY A A LGRS PR NI R A AT IR S I A e o A Rncib st “i M Re St S5 SRl S Sl) 2 4

accupies. It is used to allocate the correct and
minimal amount of memory Qpace for the transaction.) The.
last field, next_req, is a pointer to the next trans;;tion
structure rel_req_info, in the transaction list.
2. Procedures and Functions

The LIL makes use of a number of procedures and
functions in order to create the transaction list, pass
slements of the list to the KMS, aAd maintain the database
scemas. Each of these procedures :and functions will not
be described in detail, but a general description of the
LIL process w}l{'be Qiscussed.

a. Init%alization

The MLDS is designed to be able to accommodate

multiple users, but is implemented to support only a single
user. To facilitate the ¢transition from a single—user.
system to a multiple user system, each user possesses his
own :opy.of a user data structure when entering' the
system. This user data structure stores all of the

relevant data that the user may need during their session.

All four modules of the mapping process make use of this

structure. The maodules use many temporary storage
variables in performing their tasks or for passing data
between modules. The transactions, in user data

language and mapped kernel data language form, are also
stored in each user data structure. It is easy to see

that the user structure provides consolidated, centralized

a1

Pals o a0t

)
SF

ejddress of fh- tr;ﬁsactian currently being processed.
The LIL sets this pointer to the transaction that th; KMS
will next process, and then calls KMS. The third field,
no_req, contains the pumber of transactions currently in
the transaction 1list. This number is used for loop
control when printing the transaction list to the screen or
when séar:hing the list for a transaction to be executed.
The second data structure @ased by LIL is named
rel_req_info. Each copy of this . structure represents a
user transaction and thus, is an element of the
transaction 1}5?. The rel_req_info is given in Figure 11.
The first fiéid.éf tgis record, req, 1is a character string
that contains the actual SGL transaction. The second

field, in_req, is a pointer to a list of character arrays

that each contain a single line of one transaction.

After all 1lines of a transaction have been read, the
line list is concatenated to faorm the actual
transaction, req. The third field of this structure,

req_len, contains the number of characters the transaction

struct rel_req_info

{
char »reqs;
struct temp_str_info #*in_req;
int req_len;
struct rel_req_info *»next_reqs;

M

Figure 11. The rel_req_info Data Structure.

4@

BRI (A DA el ek Sl Nl cad Vi Ml A

+ + + + + + pm—————— +

! REL_1 {-=> { ATTR_1 {——> { ATTR_2 i~—> ... =——>! ATTR_i !

+ + + + + + ———————
v

+ + + + + + e m——— +

i REL_2 {—> | ATTR_1 i—-=> | ATTR_2 (-=> ... —>! ATTR_j |

+ + + + + >+ ——————— +

RV <

v .

+ + e + + + p———————

! REL_n i{-=> ! ATTR_1 {——=> ! ATTR_2 !==> ... —=>! ATTR_k |

+ + + + + + t——————— +

Figure 14. The Relational Database Schema.

processing requests against an existing database, it allows
a validity check of the relation and attribute names. It
also serves as a source of information for the type
checking.

—

2. Database Manipulations

When the user wishes the LIL to process requests
against an existing database, the job of the KMS is to map
the user's SGL request to an equivalent ABDL request.
Throughout this subsection, we only provide examples of the
translated constructs of our implementation where they

differ in some respect from thase given in the work aof Macy

[Ref. 2] and Rollins [(Ref. 1.

. .. - - .- .

R L IR e P L -

o PR T . e et e e

PR P D L N ISR I L IR

e e e e e T e et T e LT N T e N T e s e
A LW WO A Lo atantamdh e deind ol ol s o s ~

) Bl ."'.">:"."_.‘_'.' K a4 i U~ il oM et i ML A N M A et

a. The SOL SELECT to the ABDL RETRIEVE
A simple SGL SELECT construct is mapped io a
single ABDL RETRIEQE construct. A simple SELECT is
characterized as a SELECT-FROM-WHERE block, in which access
is limited to the information contained in a single relation
of the database. The SELECT-clause may contain attribute
names alone, or fhe aggregate functions (COUNT, SUM, AVG,

MAX, and MIN) may be applied to any &f the attributes where

22

it ‘makes sense to do so. The SELECT-glause may also contain
an asterisk (#), which signifies that all attrithes in the
relation shoplq. be_ retrieved, in 1lieu of anAexhaustive :
ligsting. As a ;inal option, the attribute names may be
prefixed with the relation name (rel_name.attr_name), even
though only a single relation is being accessed. The FROM-
clause contains this single relation name. The WHERE—-clause
may contain any number of predicates connected together by
the boaolean operators (AND and OR). Each predicate may
utilize the six standard relational operators (=, /=, >, >=,
44 and <=f to separate the attribute name and value, or the
set membership operators (IN, NOT IN, /=ANY, <«<=ANY, <ANY,
*ANY, »=ANY, <=ALL, <ALL, >ALL, »=ALL) may be used to
separate the attribute name from an enumerated set of
values. Finally, the SELECT-FROM-WHERE block may be
optionally followed by either a GROUP BY-clause, or an ORDER
BY-clause, whereby retrieved attributes may be either

grouped or sorted.

..............

s . .

A nesfed SQL_éELEDT construct is mapped to a
series of ABDL RETRIEVE constructs. A nested SELEbT ig
characterized‘as a SELECT-FROM—WHERE block, in which the
WHERE-clause utilizes one of the set membhership operators.’
In this instance, however, the operator is followed by
another complete SELECT-FROM-WHERE block instead of an
enumerated.set of values. Such constructs can be nested to
any depth. ~ This allows multiple rélations to be accessed,
and’" their attribute—-values compared, while the values
- returned to the user are taken from only a single relation.
This is analogogs to an implicit join operation.’' An example
of such a query is as follows: Note that the parentheses are

optional and need not be included.

SELECT name, age
FROM student
WHERE name IN
(SELECT name
FROM faculty)

This query would find the name and age of all students who
are alsoc a member of the faculty. It's ABDL counterparts

would be as follaows:

{ RETRIEVE (TEMPLATE = FACULTY) (NAME) 1

[RETRIEVE ((TEMPLATE = STUDENT) and
(NAME = #xxxaexxxet)) (NAME, AGE) 1

.

S6

......

L]

Notice that the firast ABDL request corresponds to the last
{or innermost) S@L request. This is because the ihne;most
S@L request is the only one that represents a completef&
specified simple SELECT. The results of the first RETRIEVE
are names which are used by the KC to fill in the place
holders marked with asterisks in the second RETRIEVE (the
number of asterisks equals the maximum length of the NAME
attribute-value). From a single ?nested SELECT, the KMS
gefierates a series of ABDL RETRIEVEs. before relinquishing
control to the KC, for subsequent execution of the ABDL
requests. .

A join SAL SELECT construct is mapped to a
single ABDL RETRIEVE-COMMON construct. A join SELECT is
characterized as a SELECT-FROM-WHERE block, in which the
FROM=-clause contains two relation names. We have already
seen'how the nesﬁed SELECT query specifies an impiicit Join.
Here we are concerned with explicit joins, where multiple
tables are accessed, and their attribute values compared,
with the values returned to the user being taken from two
different relations. In this instance, the SELECT-clause
normally contains attribute—names that are prefixed with the
appropriate relation name (rel_name.attr_name). This

eliminates any ambiguity that might otherwise exist. The

prefixed attribute-names are a required convention in the

WHERE-clause. An example of such a query is as follows:

57

st « et R
et . Lla LN Lt S0 e et N Lt ..

- - - . " '-’....- -t -
,‘_-_-- e e RS I S S e T e
RN AR VALY 'z -.th LA WYL PLITR Y

SELECT student.name, faculty.name
FROM student, faculty
WHERE student.class = faculty.class

Assuming each class was only taught by one member of the

faculty, this query would return a class roster for all

members of the faculty. It’'s ABDL counterpart would be as

follows:

p.” .
.‘-

[RETRIEVE (TEMPLATE = STUDENT) (NAME)
) COMMON (CLASS = CLASS)
- RETRIEVE (TEMPLATE = FACULTY) (NAME) 3

- -
-

Notice the placement of the square brackets arcund the ABDL

.. request. This represents a single ABDL request, and is

forﬁarded to MBDS for execution as a single transaction.

The use of prefixed attribute names in the SELECT-clause is

N not a necessity, providing that the attribute-names used are

valid 1in both relations. Thus, the last S@L example may be

.. entered as shown below to obtain the same results.

SELECT name
FROM student, faculty
WHERE student.class = faculty.class

b. The S@L INSERT toc the ABDL INSERT

The SGEL INSERT construct is mapped to a single

n ABDL INSERT construct. If values are to be inserted for

Pl 2l Y

s A 8 5 2

MR A At An v S ol 2 Ae- A ARERNANC MR AN i e T

each attribute in the rllation,'therq is na requirement to
list the attribute names. 0Only the att;ibute values neéd be
listed; howevér, they must appear in the correct order (as
listed in the schema which has been determined during the
original dafabase definition of the relation). If wvalues
are not inserted for each attribute in the relation,
corresponding attribute names of those attribute values +to
be'inserted must also be included in?the request.

s c. The SGUL UPDATE to the ABDL UPDATE

The SGL UPDATE construct is mapped to a single

ABDL UPDATE cqnstrgct. ABDL does not provide a single-
regquest cnnstru;£ which updétes more than one attribute in a
record. Thus, we only allow one predicate in the SET-clause
of the SGQL UPDATE query. However, the attribute value 1in
this predicate may be a constant, or an arithmetic

expression based on the original value of the attribute.

. d. From the S@QL DELETE to the ABDL DELETE: An
Example

The SOL DELETE construct is mapped to a single
ABDL DELETE construct. The S50QL DELETE may have an optional
WHERE-clause, so that all records for the particular
relation may be deleted when the WHERE-clause is empty, or
only those records satisfying a specific condition may be
deleted when the WHERE-clause is included. In this
subsection we will present an illustrative example of the

mapping process for a simple SEL DELETE request. We begin

S9

L

B oo A

S A e

WO RV B

[N o

LA P

.
a 4 v

1

d A a .

Gy wew e -
.

by showing the grammar-for thg'delete-portion of the KMS.
We then step through the g}ammar and show approp}iate
portions of our design in System Specification Language
(SSL) . The entire design is shown in Appendix C. The

relevant grammar is as follows:

deletion : DELETE table_name E;

table_name : IDENTIFIER;® -

WHERE boolean;

The source SOL request we will utilize for our example will

be the following:
DELE*E student
It's ABDL translation will be as follows:
L DELETE (TEMPLATE = STUDENT) 1
To begin our discussion, let us first
synchronize the reader. At the beginning of a mapping

Process, the parse descends the grammar hierarchy searching

for appropriate tokens in the source that may satisfy one of

&0

A N L L W R T R M R g . ey x vy o~ (AEaL UMA aEne e wadk-ail B it 4
[Pt Sl Sl I S - BT AL AT R T Ta T Tty e e, . &

Paeab N e A A M N N S N S e A AN S M Bl it e o ol Al st b AY A s St Al el A Ml AR S Sy i i

the grammar rules. Thus, the parser descends through the
rules for SELECTs, INSERTs, etc. After finding no matching
tokens for those rules, the parser eventually descends on
the DELETE rules. |

First, when the deletion rule is called, the
DELETE-token will be recognized. In an attempt to satisfy
the deletion rule, the table_name rule is then called. The

table_name rule recognizes the IDENTIFIER-token, as the

[/

STUDENT-token (student converted to upper—case upon input).
At this time, the table_name~rule is completely satisfied,

and the following SSL is invoked: : -

table_name : IDENTIFIER

<
if (! creating)
if (! valid_table('table_name’))
print ("Error - rel_name not valid")
perform yyerror () '
return
end_if
end_if

33
If we are not creating a new database (as in this case), a
call is made to the valid_table() function, which checks the
validity of the IDENTIFIER table_name in the relational
database schema. If STUDENT is not a valid relation name,
then an error message is printed, and an error routine is
called. Then we simply return from the mapping process. If

STUDENT is a valid relation name, there is no code here for

&1

T Tr—r—— ”

trapslation; however, control returns to the rule that
called the table_nrame rule (i.e., the. deletion rule). .
Next, even though .the deletion rule is not
completely satisfied, we need to perform Qnme translation.
The following SSL is invoked, before the call is made to the

E-rule:

deletion ': DELETE table_name < -

(.
X copy "C DELETE (" . to abdl_string
copy ‘table_name®’ to templates
}
E;

The abdl_string begins to be built, as we initially copy

[DELETE ("

into the abdl _string. The value of the table_name (STUDENT)
is then copied to the templates data structure, because, at
this point, we are not certain that it is of immediate use.
The reader should note the trailing blank that we placed in
the abdl_string. Without going into great detail, which is
beyond the scope of this example, it suffices to say that
this blank is for an additional left parenthesis that we may
later determine to be required at the beginning of the AERDL

request, i.e., when OR is used to connect WHERE-clause

predicates.

-

M " S e

The next step in the parse is for the deletion
rule to call the E-rule. The E-rule recognizes the émpty
rule, because the source is now void of additional tokens.
The E-rule is now completely satisfied and the following SSL

is invoked:

E : empty
{
delete_all = JRUE
¥

*,

i WHERE booleans;

22

This sets the delete_all boolean variable equal to true. <

Control now reverts to the deletion rule, which is of course

completely satisfied. Thus, the following SSL is invoked:

deletion : DELETE table_name
E
{ .
if (delete_all)
concat "TEMPLATE = "table_name’"
to abdl_string
end_if
concat ")" to abdl_string

2
+3

Since we know that the delete_all variable has previously

been set to true, we now concatenate
"TEMPLATE = STUDENT"

to the abdl_string. Finally, we concatenate the trailing

&3

........

right parenthesis to the abdl_string. The trailing right
bracket (1) is concatenated to the abdl _string After
recognition of a higher-level grammar rule (one that called
the deletion-rule), and the mapping process is now complete.

Let us continue with an extension of this
example. Had the original SGL saurcé request included =
WHERE boolean—clause, such as the following, what would have

happened? : ; Q

-
S
-

DELETE student
WHERE name = ‘'Jones’

Its ABDL equivalent is as follows:
L DELETE ((TEMPLATE = STUDENT) and (NAME = Jones)) 1

In this instance, when the E rule is called, the WHERE-token
would have been recognized, and thus the boolean rule would
have been called. The booclean rule would have called other
rules and continued to read the /remainder of the input
(source) tokens. BRefore the boolean rule was called, the
abdl_string contained the following:

"L DELETE ¢ "

When control returns to the E-rule, from the boolean rule,

64

the abdl_string will contain the following:

"t DELETE ((TEMPLATE = STUDENT) and (NAME = Jones)"

Then control would revert from the E-rule to the deletion
rule. But this time, since the delete_ali variable is not
gset to true in the E-rule, the deletion rule merely
completes this portion of the tranélation by :oncatenating
anéither right parenthesis to the abd}_string shown above.
Again, the +trailing right bracket is added at a higher

level, and the mapping process is complete.

C. FACILITIES NOT PROVIDED BY THE IMPLEMENTATION

OQur original intent has been to demonstrate that the
relational interface could indeed be developed and
implemented. As a demonstration, there are some facilities
that ere not included in our implementation. Some of these
facilities have more to do with providing a user—friendly
environment, than with supporting a germane relational
interface. For others, the programming time and effort
required to incorporate them would be too costly for the
benefits derived. However, this is not to imply that such
facilities would not be useful. This section is devoted to
describing the most prominent features of SGL that are not

supported by the language interface.

65

Aa

1. 1In

terfacing Users
) In our relat#onal iﬁterface, there is no :oncepf of
a user view. A view may be thought of as a virtual relation
that has no existence in its own right, but is derived from
one or more existing relations. Under our implementation,
the logical database and the physical database are one in
the same. Thus, our interface is limited to data definition
language (DDL) and data manipulation langﬁage (DML)
stifements, and provides no data-control facilities such as
the GRANT and REVOKE options. Also, all CREATE TABLE
requests are.cqpsidgred PERMANENT and SHARED. As mentioned
in Chapter 1I, égr iéterface data structures are constructed
to facilitate future use by multiple users. This would
allow the view concept to be supported by incorporating the
relational database schemas into the wuser_information
structure (user_info shown in Figure 7). These schemas
would be virtual and user-specific with respect to the
entire list of database schemas that are still global.
2. Updating Multiple Attributes

ABDL does not provide a single-request construct
which updates more than one attribute in a record. The work
of Rollins [Ref. 3: pp. 285-27] has showed that the SQL
UPDATE may be translated inéo multiple ABDL requests. As a
result, it may be necessary to generate either several

independent ABDL UPDATEs, a transaction of ABDL UPDATEs

(apecifying the order in which a series of requests must be

b6

B T IR e L P I . TN A
X . R T T T T it TR PSRN, RIS A
........

IR o~ PR P Y I R T A T T AR
PRI PP P LA LIP30 TP, PR ANEAP LIPS IS AP W P LT VS I DL W R W P W S . N L p W S WA W WK W R W W gy

processed), or an ABDL RETRIEVE, DELETE, and INSERT

sequence, to accomplish the requested update of mulfiple
attributes. We have felt the programming effort involved to
provide such a facility, although not complex, 1s time-
consuming.

3. Retrieving Qualified Groups

ABDL provides an option whereby retrieved attributes

may be sorted (the by—attribute_name option). SGL- provides

4

a further option whereby those records not satisfying a
specified condition can then be eliminated (the HAVING-
condition opt}oq). QBDL does not provide a facility for N
checking this .gpecified condition. It could have been
implemented in the KC; however, we have felt the programming
effort is too great for the benefits derived.
4. Retrieving Computed Values
This option éupports the inclusion of arithmetic

expressions involving attribute names in the SELECT-clause

of SCL requests. An example of this option is as follows:

SELECT name, weight * 4354
FROM student

This query would retrieve the name and weight of all
students. However, the value of the attribute weight would
be returned to the user in grams (found in the student

relation in pounds). ABDL daoes not support the retrieval of

67

RS e te te T et B L S R S R A L DT ENL PER P P I S I
........ et WL T T . .

- - - .- - RPN '.\-'-'.-
SR R IR W A TR IR I I T A DA AL - e te ty ft e et e

it qf.'.‘A'.'-'\'.'.'.'.“ LA o o el Al Baslh o

been determined when the values are loaded into the file) is
obtained for use in the procedure. After :scme
initialization steps are executed an inner loop 1is
encountered. This inner loop controls the actuwal building
and executing of the current ABDL request template which
corresponds to one of the outer—-level SGL selects.

The inner loop calls the procedure build_request to

produce the ' next fully-formed ABPL retrieve. Control in

L/

th#s procedure is branched based upon ,which of the eleven
possible S@QL operators is in the current request. These
eleven possiple SQH operators result in four possible =
situations. Foé‘ the operators <=ANY, <ANY, >=ALL and >ALL
the procedure one_conjunctiaon is called with the maximum
value of the results in the current results file passed as a
parameter. (The maximum and minimum values were calculated
by the procedufe file_future_results when the vélues were
loaded into the future-results file.) For the operators
>=ANY, >»ANY, <=ALL and <ALL the procedure one_conjunction is
also called, this time with the minimum value of the results
in the current-results file passed as a parameter. For the
IN and ~=ANY operators the procedure n_conjunction is
called. For the NOT IN operator the procedure
not_in_conjunction 1is Vcalled. These three conjunction
procedures all produce one or maore fully—formed AEDL
retrieves using the request template. The inner 1loop then

calls sqgl_execute to process the ABDL retrieve. The inner

81

- SoeT L. - T T e e e S . R T L e T SN T S
Sa it L T T T e T T T T T e e T T e e T e e LT N T O NN
= S o b L) = AP N S oA a0 @ Ll A a9 2 (A a A > 2 o 8 a ju— Y 'y s S Bae

LRI WA -

. -
PO A

requasts. If a simpie SQL. select is being processed, then

only aone ABDL retrieve is generated by the KMS. If aB SeL
nested-select is being processed, then two or more AEDL
retrieve requests are generated by the KMS. Only the first

ABDL retrieve for an SQL nested-select is a complete ABDL
retrieve. The remaining ABDL retrieves are actually ABDL
request templates. An ABDL request template and the results

of the previdus retrieve are combined by the KC to build the

fulrl y-formed ABDL request. . The procedure .
select_requests_handler manages both possible situations.
.First, the procedure‘sql execute is called to process the -
initial fully-formed ABDL retrieve request. If this request

is not an SEL nested-select, no other ABDL request templates
remain. 1f ABDL request templates are left to process, then

a loop is entered to prcﬁess these retrieves. This loop 1is
repeatedly executed until all ABDL reﬁuest templates have

been prgcessed.

An overview of the activities controlled by this
loop 1is necessary to understand how the KC handles the SOL
nested-select. One of the initial steps in the 1loop 1s a
call to the procedure swap_files. This procedure obtains
the results generated by the previcus ABDL reguest (which
are stored in the future-results filé by the procedure
file_future_results) and puts them into the current-results
file, where they are used to build the next ABDL retrieve.

The number of values in the current-results file (which has

80

.....

'_l\' \ “J"‘ A"A\J\A\ ."n ‘.‘A‘J‘ (A

R —r——~—

of requests by calling the érncedure rest_requests_handler
which calls the procedure sql_execute. The procédure
a8ql _execute controls the submission of ABDL requests to the
KDS. Ta control the submission process the procedure
8ql _execute uses two TI procedures and the procedure
sql _chk_responses_left. In general, " the procedure
sql _execute sends the ABDL request -to the KDS, waits for the
last response to be returned fros the KDS and then takes
action appropriate for the type of request submitted and the N
response received. For any of the request types sent to the
KDS an error response might be received back. In this
situation, ;; -érro; message is sent to the user. If an
error response was not received, then the ABDL request was
correctly processed. *For insert, delete and update
requests, the user is sent a messgge informing him that the
opefatian has been successfully executed. For a retrieve—
common request, éhe results returned by the KDS are sent to
the KFS for formatting. Control then returns upward through
the various procedures until it reaches the LIL.
4. Retrieve Reguests

ABDL retrieve requests are the other category
of requests that the KC processes. The processing of
retrieve requests is more complex than the other types of
requests, since multiple retrieves (which correspond to SOL
nested-selects) may need to be processed. The procedure

select_requests_handler is called to process AEDL retrieve

79

an update request, the procedure rest_request_handler

is called. If . the transaction is a retfieve

request, then the procedure select_requests_handler is
called. If the transaction is none of the above, there

is an error. An error message is generated and control is
returned to the LIL.
2. The Creatign of a New Database

The ' creation of ‘a new @atabase is the least
difficult transaction that the KC handles. The procedure
load_tables is called by the KC and performs two functions.
First, the }E§F iqterface (TI) procedure dbl: template is
called. This procedure is used to 1load the database-
template file created by the KMS. Next the TI procedure
dbl_dir_tbls is called. This procedure lpads the

database—descriptor file. These twao files represent the

attribute-based metadata that is loaded into the KDS, i.e.,

s TV WENTE AT

)

MBDS. After execution of these two procedures, load_tables

returns control back to the kernel_controller which in turn
returns control back to the LIL.

S. lInsert, Delete, Update and Retrieve-Common Requests

Insert, delete, update and retrieve—-common requesfs

are all handled in a similar fashion. For any of these four

types of requests, the KMS sends the translated ABDL request

to the KC for processing. The main task of the KC for these

four categories of requests is to send the ABDL request to

the KDS (MBDS) for processing. The KC handles these types

78

type is subreq_stat. This integer-valued variable is a flag

used when the KC is handling a nested seiect. The -flag

is set to iﬁdicate either that the last subrequest is
being processed or an intermediate subrequest is being

processed.

B. KC PROCEDURES AND FUNCTIONS

The KC makes use of a number of different procedures
H . Py -
and functions to manage the transmission of the

ol
s

translated SGL queries (i.e.,ABDL reqdests) to the KDS. Not

2

all of these procedures and functions will be discussed in

LN

detail. Instead, we hope to provide the reade? with én'
overview of how the KC controls the submission of the
various types of ABDL transactions to MBDS.

1. The Kernel Controlier

The procedure Kernel_Controller is called whenever

the LIL has an ABDL transaction'for the KC to process.

This procedure provides the master control over all
other procedures used in the KC. The first portion of
this procedure initializes global pointers that are

used throughout the KC. The other portion of the procedure
is a case statement which calls different procedures based

upon the type of ABDL transattion that is being processed.

If a new database is being created, the procedure
load_tables is called. If the transaction is a retrieve-—
common request, an insert request, a delete request or

77

be stored back into the.*req field of ab_req_info. The
bng_conj,i end_conj, . bed_astarisk - and end_asterisk‘ are
integer fields‘;hi:h sfare the positions they describe in
the request template, i.e., (unfin_ret). The conjunction is
that portion of the request template which must be repeated
as many times as necessary to hold the values reéurned
from the previous inner-level request. The asterisks
indicate where in that request the attribute-values mﬁst be
placed. The field req_len holds the value of the maximum
size in bytes of the fully—-formed ABDL request that the KC
builds and squs to Ehe KDS. The req_len is calculated by
the KC and 1is used for allocating storage for the fully-
formed ABDL request which is constructed from the request
template.

The req_status is a flag used to indicate whether we
are processing the first request or subsequent requests.
Curr_pos 1is an integer-valued variable that 1is used to
indicate our current position in the current-request file
and that marks which attribute-value is the next one to be
inserted into the request being constructed. The res_len
is the last field in the record of type kc_rel_info and is
an integer-valued variable which contains the length of the
response buffer returned by the MBDS. This value is used to
indicate when we have completed our movement through the
regponse buffer.

The final field used by the KC in the sqgl_info record

76

..........

-

T

ARSI S

. -
e a N

-
v e

handle SGL nested selects. The fgture-results file holds
results from thé'cgrrent retrievé being processed by-ﬁBDS,
while the current-results file holds the results from the
previous retrieve request, which are used to build the
current retrieve request. The records max_info and
min_info are identical data structures. Both structures
allow for the storage of a character -‘which indicates the
data type of the attribute-values, &é.e., integers, floating
poifnt numbers or strings. Both structures also contain a
variant record which is used for the storage of the

respective maximum or minimum value encountered in the

resultant records. The num_values_ffile and num_values_cfile
indicate the number of values stored in the future or
current results file, respectively. The record type of files
is nsel_res_info. The file field contains two identical
records of type file_infa. This record stores a file
name and a file descriptor used for file manipulation in
the C programming language. One record is for the
current-results file and the other is for the future-
results file.

The +*unfin_ret is a character array used to store the
request template sent to the KC by the KMS. The request
template that is stored. in the first field of the
ab_req_info record type is loaded into unfin_ret. This
transfer of the request template is necessary so that the

fully—-formed ABDL request that is constructed by the KC can

75

)

~ [
T

~

ARG AR AR RC AN ARG SO A T AR S A R A A et A L e e i i A I A A e Y i B
-

oL U s F v v .

e 8 SP=H4 o+ -

" AR ‘v

i -

S St RN

RN
@ ot

.:,
)
~
"=
“»
b
b}
™
Ind
-
)
<
s
. 3 >

e Saa SR T ATV TN - A NN I AR b

formated. This storage buffer is only used when we are
processing SQL seglects which have been-mapped ta*-ABDL.
retrieves. The -results of the ABDL retrievals are
loaded into the storage buffer. When the buffer is
filled the KFS is called. Tﬁe process of filling the
buffer and calling KFS is repeated by the KC until all
results from the retrieval have been processed.

The next field used by the Kg from the . sgl_info
record type is kc_data. This fielg is a variant record
which contains the record type kc_rel_info. This record

type holds all of the information that is unique to the KC.

This data structure is shown in Figure 18. "The field
file_status is a flag used to indicate the status of the

current and future result files. Two files are necessary to

struct kc_rel_info

£
.

int " file_statusg
struct max _info max;

struct min_info ming

int num_values_ffiles;
int num_values_cfiles
struct nsel _res_info files;

char *unfin_ret;

int beqg_conj;

int end_conj;

int beg_asterisk;

int end_asterisk;

int reg_len;

int req_status;

int curr_pos;

int : res_len;

Figure 18. The kc_rel_info Data Structure.

74

LA B e T —_—— el A St M Mty St Sn gy Bt
(SR N P P

Ll) . v - liowi i -

e
PP

struct ab_req_info

<
char ’ *req;
int : rel_op;
struct ab_rel_info #next_req;
3

Figure 17. The ab_req_info Data Structure.

The no_req tells the KC how many requests are in the linked
list of the ab_req_info structure. There will normally only
be one redues£ in this list, uhless an S@L nested
sefect is being processed. In that case, the no_req will
correspond to the number of levels that there are in the
nested seleq}.~. The <first request will always be a fully-
formed ABDL request, while any additional requests willibe
ABDL request templates. The requests or request templates
are stored in the ab_req_info record. The *req 1is a
pointer to a character string which contains either the
request or the request template. The rel_op field
informs the KC which type of relational operator is
contained in the corresponding request or request
templ ate. The eleven possibie operators are IN, NOT IN,
~=ANY, <=ANY, >=ANY, <ANY, >ANY, <=ALL, >=ALL, <ALL and
=ALL. The +*next_req 1is a pointer which directs the KEC to
the next ABDL request.

The next field of sq;_info that the KC uses is kfs_data,
which 1is a variant record into which the responses
received from MBDS are stored. From this storage buffer

the KFS extracts the data returned from the kKDS to be

73

L/

-
[4

rrLES

".l
e

v ¢ @
e

PR M)
A
.‘..- .

S e N
el xi.\l _\-’\w ..- -

interacting with MBDS. When the KC sends an ABDL
transaction to MBDS for execution, the current dat;basu
name must be sent with the request. The current database
name is stored in the curr_db record.

The next field of the sql_info record type which the KC
uses is operation. This fourth field of sgql_info contains
an integer that tells the KC what type of operation is to be
performed. ‘There are six possible types of operations
which correspond to the six operations supported by the KC.
These operations are a database creation request, a retrieve

request, a retrieve-common request, a delete request, an

insert request and a& update request.

The next field used by the KC is abdl_tran, which is a
record of type tran_info, and is shown in Figure 16. The
first two fields of tran_info are variant records which
store information on ABDL requests. The ABDL requests are
stored in a record of type ab_req_info, shown in Figure 17.
Both first_req and curr_req initially contain the first ABDL

request which is loaded into the data structure by the EMS.

struct tran_info

'S
union req_info first_req:
union req_info ‘ curr_req:
int na_reqs

3

Figure 146. The tran_info Data Structure.

..............
- .~

\-.- ---------
o«)"

R

Srvas s b au

s

the KC. This discussion is in two parts. First we

examine the data structures relevant to the KC, which is -

followed. by an examination of the procedures and functions

found in the KC. Appendix D contains the design of
our KC implementation, written in a system specification
language.

A. AN OVERVIEW OF THE KC DATA STRUCTURES
. R * .
In this section we will review the data structures

~
-
-

mentioned 1in chapter 2, focusing on:thase structures that
are accessed and used by the KC. The first data structure
that is important ‘to the KC is the record t?pe sql_info
shown in Figure 15. The fields of sql _info contain all
of the data structures relevant to the KC, but the KC

only uses several of the fields. The first field of this

'recnrd, curr_db, is a record which is used by the KC when

struct sql_info

{

struct curr_db_info curr_db:
struct file_info file;
struct tran_info sql _tran;
int operation;
struct tran_info *abdl _tran;
int answer ;
union kms_info kms_datas
union kfs_info kfs_data;
_union kc_info kc_data;
int ' error;

int subreq_stat;

Figure 15. The sql_info Data Structure.

Z»

------------- L AR T N A g Dt i i R A g

Only the first ABDL retrieve (which :nrrusﬁonds,@d the
innermost select) is a fully—-formed requgst. All Ether
ABDL retrieves which :nrréspond to the outer-level selects
are sent to the KC by the KMS as request templates. A
reguest template is an ABDL retrieve request with one
unspecified attribute value. The KC must use the results

obtained from the previous ABDL rutfieve request (i.e.,

attribute values) and the request 2emplate to build the

4,

next ABDL request, i.e., the KC substitutes the retrieved
attribute values for the unspecified attribute value in the
request temp}a@e. The processing of nested selects is
managed by the-kc.

The procedures that make up the interface to the KDS
(i.e., MBDS) are contained in the test interface (TI)
[Ref. 81. To fully integrate the KC with the KDS (i.e.,
MBDS), the KC calls procedures which are defined in the TI.
Due to upcoming hardware changes in the MBDS, we decide
not to test the KC on—-line with the TI. Our solution
to this problem is to design ihe system exactly as if it
is interfacing with the TI. However, for each call to a
Tl procedure we create a procedure stub that performs the
same function as the actual TI procedure. The reader
should realize thai all interactions with the TI procedures
described in the KC are actually made with these procedure

stubs, rather than with the on-line Tl procedures.

In this section we discuss the processes performed - by

7@

CASESAEC e S S i S St A A A A i M M et Ml Sl N

The kernel controller (KC) is the third module in the
SGL. language interface and is called by the language

interface layer (LIL) when a new database is being created

or when an existing database is being manipdlated. In
either situation the LIL first calls the kernel: mapping

. ' system (KMS) which performs the necessary SGL to ABDL

2,

8 translations. Then the KC is called to perform the task of
controlling tpe subm{ssion of the ABDL transaction(s) to the
multi—backena.d;£aba;e system (MBDS) for processing. If the
transaction involves creating a new database or
inserting, deleting or updating information in an existing
database, control is returned to the LIL after MEDS
processes the transaction. If the transaction involves a
retrieval request, the KL sends the translated ABDL request
to MBDS, receives the results back from MBDS, loads the
results into a buffer and calls the kernél formatting system
(KFS) to format the results a buffer at a time, After the

last buffer is processed by the KFS the resulting table is

displayed and control then returns to the LIL.

One situation worth notihg is the processing of an saL
nested—-select request. An n—-level SGL nested-select is
mapped to n corresponding ABDL retrieve requests.

computed values: however, this could easily have been
implemented in the KFS module. We have chosen nﬁt to
implement, since it does not represent a feature of SAQL that
is inherently relational.

S. Eliminating Duplicates

The results of a SELECT query may contain

- " duplicates. The eliminati~n of duplicates is normally a
:f high—-cost operation and often un@arranted. We do not
2

Li préovide such an option. SGL supports the elimination of

duplicates through the use of the UNIQUE operator in the

SELECT—clause: ‘Thuq, our implementation does not support
the S@QL UNIQUE éﬁeraéor.
6. Retrieval Using UNION

The work of Rollins [Ref. 3: pp 82-831 has described
the use af the SQL UNION operator in a query comprised of
multiple éELECT constructs. Each SELECT construct
translated to an equivalent ABDL RETRIEVE construct, and all
are then processed by MBDS concurrently. Rollins has
assumed the capability to eliminate duplicates in the
interface. In as much as such a facility is not provided by

‘our implementation, we are not supporting the SGL UNION

operator.

48

L]

loop concludes with some steps that prepare for the next
retrieve. The inner loop repeats as long as there are vélues
left in the current—-results file and the procedure
one_conjunction has not been called. The outer loop then
sets up for the next ABDL retrieve and concludes. A more
detailed example of how the procedures n_conjunction,
not_in_conjunction, and one_conjunction work will be covered

in the following two sections. ?

p a. The N_conjunction Procedure
.The procedure n_conjunction uses the ABDL

request template and the values from the previous ABDL

retrieve stored in éhe current-results file to build a
fully—formed ABDL retrieve. The ABDL request template
contains a portion of the AEDL request which we have labeled
the conjunction. This conjunction portion of the reguest
template. iz bounded by the first sét of cutermost
parenthesis in those requests handled by the procedure
n_conjunction. This conjunction contains a number ot
predicates that are "and'ed” together. A predicate is a

triple consisting of an attribute name, followed by a

g

rel=tional operator {1.e., iy s ses) followed by an
attribute value. Recall that in an earlier discussion we
stated that tﬁe request template contains an unspecified
acttribute-value. In our current terminology, this means

that a predicate in the conjunction of the request template

has an unspecified attribute value. To mark this value

82

*,

’

AABARRIL(MOt ARAS | ArrErEEe ———
B L e Tt e et R

within the request template character string, we use a
series of asterisks, where the number of asté?isks
corresponds to the maximum attribute—value length. The
procedure n_conjunction uses the conjunction | portion

repeatedly with each conjunction having a different value

'from the results fiie inserted in place of the asterisks.

The conjunctions are then "or‘ed"” together to form the
fully—formed ABDL retrieve. Y
- We have chaosen not to allow an unlimited
number of conjunctions to be joined together into one AEDL
request. Ré}her we have created an upper limit on the
maximum number of conjunctions that may be joined together
into a single ABDL retrieve. We call this constant
NUM_CONJ. Thus, assuming we have NUM_CONJ set to ten,
only ten conjunctions can be linked together in one ABDL
(etrieve. This means only ten values from the current-
results file can be loaded into the retrieve, one per
conjunction. If there are more than ten results in the
current-results file, then more than one ABDL retrieve
must be built. This situation necessitates the inner
loop discussed in the procedure select_requests_handler.
We now {ook at an example, to fully understand
the operation of the procedure n_conjunction. We will build
the outer AEBDL retrieve for the nested select presented

presented in Chapter 1IV. The SBEL nested select is as

follows:

g S Al NI, Vol Sl P Tl Sl I o e MO A i el i e

-

e T A T e

I
e e e 2 T

SELECT name, age
" FROM student
1 WHERE name IN
' : (SELECT name

FROM faculty)
This query would find the name and age of all students who
are alsoc é member of the faculty. The KMS maps the SGL
nested-select to the following two ABDL retrieves.

‘ -

* L RETRIEVE (TEMPLATE = FACULTY) (NAME) 1 hd

f RETRIEVE ((TEMFPLATE = STUDENT) and
(NAME' = #3%65%%6885%)) (NAME, AGE) 1

The first ABDL retrieve which correcsponds to the innermost

SQL request 1is execuﬁed by the procedure sql_execute. The

results of this retrieve will be names of personnel on the
E féculty are stored in the current-results file. We assume
- ' that there are three names returned and that they are
Demur jian, Mack and Kloepping. .

The procedure n_conjunction marks several
locaticns in the request template the first time it is
> called for a particular SGL request. The procedure stores
the location of the beginning and the end of the conjunction
and the location of the first and last asterisk which
delineates the unspecified attribute-value. In the previous

example the conjunction is as follows:

84

((TEMPLATE = STUDENT) and (NAME = ®##%#%%%%%%%))

This conjunction is to be gsed three times to construct the
fully—-formed ABDL retrieve. The ABDL retrieve built by the
procedure n_conjunction is shown in Figure 19.

If there had been more.than NUM_CONJ names in
the currentfresults file, then more than one fully-formed
ABDF retrie;e would havé to be‘ generated ;or the
co;responding Sl select. The fir;t NUM_CONJ names would)
have to be inserted into predicates that are "or ‘ed”
together. Another ‘ABDL retrieve would then be:built usiﬁg
the next NUM_CONJ names from the current-results file. ABDL
retrieves would continue to be built until all names in the

current-results file have been exhausted.

b. The Procedures Not_in_conjunction and
One_conjunction

The procedure not_in_conjunction operates in a
similar fashion to the procedure n_conjunction. The major

difference is that the conjunction portion of the request

[RETRIEVE (((TEMPLATE STUDENT) and (NAME
((TEMPLATE STUDENT) and (NAME
((TEMFLATE STUDENT) and (NAME

(NAME, AGE) 1

DEMURJIAN)) or
MACK)) or
KLOEPPING))

Figure 19. The AEDL Retrieve Generated by the
Procedure N_conjunction.

template is smaller and the conjunctions are "and ' ed"
together rather than “or‘ed" together. Suppose that we
replaée the IN operator in the previous SBL nested-select
query Awith the NOT IN operator. The resulting SGL query
would find the name and ages of all students who are not
members of the faculty. The first ABDL retrieve would be
identical to the first ABDL retrieve in the last example.

The second ABDL retrieve would now be as fallows:

-
»

-
-

C RETRIEVE ((TEMPLATE = STUDENT) and
(NAME ™= %%66%6%%56%%) (NAME, AGE) 1

- P -

The conjunction portion for the procedure not_in_conjunction

would be as follows:

((TEMPLATE = STUDENT) and (NAME = #%##%%%%%%%))
The procedure not_in_conjunction inserts the names from the
current-results file into this conjunction and "ands" the

conjunctions‘together. The fully—-formed ABDL retrieve is

shown in Figure 2@.

86

-t

N WAAAAOEY R iRiade . R TEERNLR N N R

+

4
L35S
P-.:
P

Pty B

hn W™

—d

e I W Stn 1 Shn I U Y W "W ", "R g™, T S TR R W i i i S et o B, "1 e SVl ™ it A i I)

T NTT e T

{ RETRIEVE ¢(TEMPLATE = STUDENT) and (NAME ~= DEMURJIAN)
and (NAME ~= MACK) -and (NAME ~= KLOEPPING))
(NAME, AGE) 1 '

Figure 20. The ABDL Retrieve Generated by the
Procedure Not_in_conjunction.

If there are maore than NUM_CONJ names in the current-results
file, then, as before, additional ABDL retrieves would be
generated. The multiple ABDL retrieves to be generated are
handl ed identically as ' they are in the -procedure
n_conjunction.

The procedure one_conjunction manages a simpler

gituation. For the procedure one_conjunction we are also

- - .
- -

sent an ABDL reqﬁest template by the KMS. In these type
situations all that must be done is to replace the asterisks
with the minimum or maximum value that has been passed into
the procedure as a parameter. Thus, the procedure
one_conjunction simply removes the asterisks and inserts the
passed in value in its place. It is only necessary for this
single ABDL retrieve to be generated once. For example,

suppose we are processing the following SOL nested-select.

SELECT name, age
FROM student
WHERE age <ALL
(SELECT age
FROM faculty)

This SQL gquery will retrieve the names and ages of all

students that have an age less than all the faculty ages.

87

In other waords, this request finds the names and ages of all

students who havai an age less than that‘of the yodngest
e
faculty member. The KMS maps the SQL nested-select to the

following two ABDL retrieves.

- L RETRIEVE (TEMPLATE = FACULTY) (AGE) 1

L RETRIEVE ((TEMPLATE = STUDENT) and
(AGE <= ###)) (NAME, AGE) 1]
. P

* -

Assume the first retrieve results in éhe ages of 54, 43, 37
and 3§ being returned. Since the SQL operator is <ALL, the
minimum age i's passed tp the procedure one_conjuﬁctinn. The
fully—-formed ABDL retrieve that the procedure

one_conjunction generates is shown in Figure 21.

C RETRIEVE (TEMPLATE = FACULTY) (AGE) 1

£ RETRIEVE ((TEMPLATE = STUDENT) and
(AGE <= #*#%)) (NAME, AGE) 1

Figure 21. The ABDL Retrieve Generated by the
Procedure One_conjunction.

|
i

Tm o, W e . et e e @ e P T .
e e e e e A e e s ISR RN

e e et e Ve e T e e L e et T ST .
I RIS I S N NP SR S AL S A

RIS A A SR D DS A el Sl Wl Sl Sl el gl b

RNEL FORMATTING SYSTEM (KFS)

VI. THE

The KFS is the fourth module in the SGL 1anguage
interface and is called from the kernel controller (KC)
when the KC has obtained the final results from MBDS.
The results are passed to the KFS in one or more character

buffers, called response buffers. Ifdthere is more than one

L7

reébonse buffer, the KC calls the KFS again for each
buffer. The KFS manipulates the contents of these
buffer(s) to create an image of an S@GL results table. This 3
table is forma;;d in a file on each call to the KFS.

Hence, this allows the user to viaw the results of his

queries as if he is working with an SGQL-type database

system. The following example. illustrates this process:

1. The user issues a query:
SELECT NAME ,AGE

FROM EMPLOYEE
WHERE AGE < 30

2. The query 1is processed by all modules of the
interface. Eventually, the KC receives the final re-
sults.

3. The KC calls the KFS for each response buffer.

4. The KFS uses the response buffer to create the output
table. For illustrative purposes, suppose that the
response buffer contains the following data:

NAME JOHN AGE 29 NAME STEVE AGE 26

S. The KFS displays the appropriate SEL output table:

89

EMPLOYEE

e oo an == 4

NAME ! ABE
{ JOHN i 29
{STEVE i 26

R o

It is important for the reader to note that the table
actually consists of two parts. The first part is the
table heading and column headings. *In the example above
thi's isg the attribute called NAME +followed by the
attribute AGE. These are c¢olumn headings. The table
heading conﬁjs@; ofﬂthe name of the relation, EMPLOYEE. The
second part is instances of these attribute names or
results, i.e., attribute values. In our example, JOHN and
STEVE are results pertaining to the attribute NAME:; while

29 and 26 are the results pertaining to the attribute AGE.

A. THE KFS PROCESS

In this section we discuss the processes that the KFS
uses to create an SGL output table. We present these
processes in the same sequence as they are performed by
the KFS. We begin this discussion, however, with an
_overview of those data structures unique to the KFS. This
overview can facilitate our understanding of the C cade that

constitutes this module.

4"

Y

T ——

1. Qverview of the KFS Data Structures

The KFS utilizes, for the most part, just théée of
the structures defined in the language\interfa&e. The first
of these, shown in Figure 22, is a record that centains
information needed by the KFS to process the results.
The first field in this record, response, contains the
result from MBDS which is loaded by the KC just prior to
calling theé KFS. The seécond fielfl, curr_pos, <tells the
KFS where it is in the response buffer. This helps the KFS
maintain a correct orientation in the response buffer. The
next field,x :res_gen, indicates the length of the
response buffer. This value is mostly used as a
halting condition. For instance, the KFS continues to
pull characters out of the buffer while some index is less
than or eqﬁal to the res_len. The next field, form_data, is

a record and contains information about the output table

heading. This record will be discussed in the following

struct kfs_real_info

{

char *response:;
int curr_pos;
int res_len;
struct table_header_info form_data;
struct file_info o_file;

int status;
struct rattr_node #first_rel;
struct rattr_node *sec_rel;

b3
4

Figure 22. The kfs_rel_info Data Structure.

?1

paragraph. The fifth field, o_file, is also a record. The
o_file record contains the file name and the »file
identifier of the file thef \;he KFS. is building the
output table in. This is needed by the C language to open
the output file for read, write, or append access. The
next field, status, acts as a flag. If this is the first
time the KFS is entered for a particular set of response
buffers and, therefore, a ' particuldr user, then this field
coritains a value of FIRSTIME. This tells the KFS that it
needs to initialize values and set various structures for
subsequent pr?cgssinq. The status is changed ‘after this
is completed S0 that this initialization is not to be
repeated for subsequent calls to the KFS for the same set
of responses. The seventh field, first_rel, is a pointer
to a list of attributes for the relation being currently
processed. The data pertaining to this 1ist can be
considered the schema of the current relation. The
specific data that 1is needed from the schema 1is the
maximum size (in terms aof the max imum attribute length)
that the attribute named in this structure can possibly
take on. This information is needed so that the correct
coclumn width for each attribute can be built into the output
table. The finalA field is used for the same reasons

discussed above, but is needed to implement the JOIN

command.

b Sk sl Mk bl Ad)

22

The second structure the KFS uses extensively is
also a record ;nd is called table_header_info é;d is
depicted in Figure 23. The purpose of this record is to
provide information about the heading of the ocutput table.
The first field, table_width, is an integer value
containing the width of the output table. This
information tells us whether or not the table can fit
within one "horizontal screen width. This serves as the
basis for some of our logic in the KRS and is discussed 1in
detail in the next section. The next field, first_ent,
points to ano}hgr reqord that contains infaormation about
the first attribute name in the heading of the output
table. The last field is the same as the previous one
except that it points tb the the current table_entry_info
record that the KFS is now working with.

The third d;ta structufe, like the previous two,
is also a record. This record maintains all of the
information needed to correctly position attribute names

in the heading of the output table. It also contains

struct table_header_info

£
-

int table_width;
struct table_entry_info *first_ent;
struct table_entryv_info *curr_ent;

b3
¥

Figure 23. The table_header_info Data Structure.

.

the information needed to correctly position the results
under the' appropriate headings. The first field, ;hown
in Figure 24, 1is a character array containing the name of
an attribute that is used as part of the output table
heading. The second field is an inteqger value containing
the length of the stored attribute name. This value is
compared with the next field to determine the actual
width of the <column ‘for thi& particular attribute.
Thé next field, wval_len, contains :an integer value that
is the maximum size a result of ﬁhis attribute type can
possibly take:oqr TQe fourth- field, col_len, ~ holds the
maximum of the two previous fields and is the actual
width of a column for a particular attribute in the output
table. The last field, next, ig just a pointer to the
next record of this type. Using this field the KFS can
move from one récﬁrd to .another record and creaté the

correct heading until it hits a NULL record.

struct table_entry_info

char attrfANlength + 1]
int name_len;

int val _len;

int col _len;

struct table_entry_info *next;

’
3

Figure 24. The table_entry_infao Data Structure.

94

RS Al 2l aad

-

L N T Ty,

information is used by the KFS to cfeate'thé header part of
the ocutput table. i
This -routine begins by reading the first
attribute from the response buffer. The string length
of this attribute is determined next; followed by a
trace through the 1list of attributes in the schema of
the current relation. The trace is completed when this
attribute is found in the schema. Atethis point, the maximum
size that a value of this attribute type may take on can be -
determined. This information is stored in val_len. The
maximum of vg}_len and the string length of the attribute

is then calculated and placed in col_len. This wvalue

represents the actual column width this attribute will

have in the output table. The unwary reader may miss the
importance of this step. It is easy to assume that the
only value needed is wval_len. However, 1let’'s assume

there is an attribute called ZIP_CODE. The maximum number
of characters this attribute may have is five digits. If
we do not consider the string 1length of this attribute
name, then the column size would be just five characters
wide and ZIP_CODE would appear as ZIP_C in the heading.
Thig process of reading the next attribute 1is
iterated until either it has cycled through a series of
unique attribute names or it has processed all the

attributes in the response buffer.

96

,nb-n1ss 5e9 THE DESIGN AND IMPLEMENTATION OF A RELRTIONH% IITERFRCE 2/2

~

FOR THE MULTI-LINGUAL DATABASE SVSTEH(U)
POSTGRRDURTE SCHOOL MONTEREY CA G R KLOEPPING ET fiL.
UNCLASSIFIED JUN 8 F/G 9/2

NL

i

{. T R AN T I O S B A 2 e B QA SR b o A B I ek R T B g i St Rl 4 Ko AP WP, DI FUN, TP ¥, VN n . A ~ ” " -
AL SRS EURARaA X

Al 3
]
4
2
d
/ 4
] {
<
-
Z
L]
L §28 I2.5
X | O ™) -
L] []
. _ E B2 | 2.2
9 e L2
T ﬂ"lo
] L] [Ty
! &
]
" 2s flis mie |)
. e _— —_— i
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A
i

<

SRR G o e r B F S X

L T T A)

information is used by the KFS to cfaate‘thi header part of
the output table. .
This . routine begins by reading the first
attribute from the response bhuffer. The string length
of this attribute is determined next; followed by a
trace through the 1list of attributes in the schema of
the current relation. The trace is completed when this
attfibufe is found in the schema. Atethis point, the maximum
size that a value of this attribute type may take on can be
determined. This information is stored in val_len. The
maximum of vg}_len aqd the string length of the attribute

is then calculated and placed in col_len. This value

represants the actual column width this attribute will

have in the ocutput table. The ‘unwary reader may miss the
importance of this step. It is easy to assume that the
only value needed is wval_len. However, let’'s assume

there is an attribute called ZIP_CODE. The maximum number
of characters this attribute may have is five digits. If
we do not consider.the string length of this attribute
name, then the column size would be just five characters
wide and ZIP_CODE would appear as ZIP_C in the heading.
This process of reading the next attribute 1is
iterated until either it has cycled through a series of
unique attribute names or it has processed all the

attributes in the response buffer.

6

-

e N e M L —— s Tt N R T T T

————

c. Creating the Table in the Output File

BRI

This part of the KFS can be consideredi the
workhorse of the module. The previous two processes

are instrumental in manipulating data structures and

L I A

setting variable values so that this process may fulfill the
intended mission of the KFS. Therefore, we discuss some
of the issues we have struggled with while designing this
part of the KFS. The two most important issues are:
#. How should the table appear to the user? 2
2. How should the table be stored internally, i.e.,
should it be in a file, a character array, or dis-
played jmmediately to the user? :

OQur problem has been that we have had no

s

concrete examples of what an SEL table should look like.

. -l
.’.‘a .

Should the headings be centered within the columns,
with the results centered under these headings? We

didn’'t know. We finally decided upon a convention that

e .
.

v ¥y
« o

would facilitate programming. Hence, we left-justified both
the headings and the results with blanks added at the end of
each to insure proper spacing within the columns. As it
turned out, this is also the way Date [Ref. 17: pp. 117-142]
presents his examples.

- The second issue has posed a problem. Qur
initial design has called for building the table in a
character array. The only other alternacive considered at
i this ¢time has been to immediately put the table on the

i screen as results are being passed to the KFS. This idea

@7

I s S Z ¥ WA L AN AL NN AL

Le e A T T Ta Te e L 8 LW LT

is dismissed, however, when we have realized the
difficulties of trying to build a fable on the +fly. }n a
sihilar fashion, . the idea of building the table in a
character array is also dismissed. There is no way for
us to predetermine the size of this array. We have
thought that it is uneconomical to allocate a huge array
to cover all possible table sizes. There is also the
problem of moving around ‘in the Array. This : indexing
préblem created a prepanderance of C aode.

Dur only other alternative is to build the table
in a file. 1TQ@5 Qgthod has proved very easy to do. The
operating system maintains position within the file, so,
there is no indexing problem. In addition, there is more
econamical use of the computer s resources, since the file
?s only as big as necessary. Hence, we have opted to build
the table in.a file. |

With these issues resolved, the
implementation of this process has been straightforward.
First, the headings are built in the output file. This

is done only the first time the KFS 1is called. Next, the

attribute values are pulled from the response buffer and
placed left-justified under the corresponding
attribute. Then, the process is iterated until the

98

L A A A]

P SRS

]
N R AR

response buffer is exhausted. Subsequent calls to the KFS
for the same set of queries cause resulés to be app;nded
to the table in the file.
d. Displaying the Table
Tﬁe KFS displays the SAL table to the user when

all response buffers have been processed. This occurs

when a special signal is detected in the last buffer in

conjunction uith the setting of'a status signifying the
last sub_request of a nested select.: An initial problem we

have had with this process has been how to display a

table more than twenty-four lines long. A unique.
procedure, patterned after the ‘more’ facility in UNIX
tRef. 181, 1is developed. This function, when tirst

called, displays the first twenty-two lines of the S0QOL

table and then prompts the user. The user can choose from
a number of options. For ' instance, the user can have
another screen—-full of results displayed, or the user can

display some number of lines less than twenty—-two, or the
user can even terminate the current menu of the 1language
interface. Our intent is to make viewing the results as
convenient as possible to the user.
e. Cleaning Up

Befaore leaving the KFS, the data structures
used to create the S@L table are freed. This ensures that
the resources are available to process other gueries.

Additionally, the status field is updated to FIRSTIME. This

99

Sl el Mt Wl Jauie vt et e g Juedi St i ekt sundt et ad i il el Jad el e

b d

S places the KFS in the correct state to proceés subsequent

queries correctly.

B. A LIMITATION OF THE KFS

Although we have tried to make the KFS as general

as possible with regard to creating and displaying SGL
tables, there is one facility we have deliberately
neglected to incorporate. : This is the ability to display

- 3
tables with widths greater than eighty columns. Since

s

our intent is to only show thaé the interface could
indeed be developed, we have decided <that the 'programming
effort requiréd:to p?pvide thig facility is too .coétly fdr
the benefits derived. However, this is not to imply that
this facility is not uséful or needed. As a matter of
fact, we have intentionally designed the KFS for the easy

insertion of this code when it is developed.

19 Nty Ny, g, M A o S0 W S Nl WA P A AN SO e S A n i S it o b Bt A 2 S i S AP R IR IR il Sl iied

VII. CONCLUSION

In this thesis, we have presented the specification
and implementation of a SGL language interface. This is
one of four language interfaces that the multi-lingual
database system will support. In other words, the multi-
lingual database system willl be ablezto execute transactions
written in four well-known and important data languages,
namely, SG@L, DL/I, Daplex, and CODASYL. SGL is of course

the well-known relational data 1anguage provided by, for

b -
- T

example, IBM SQL}Dat; System. In our case, we support SQL
transactions with our language interface by way of LIL, KC,
KMS, and KFS in place of SG@L/Data System. A related thesis
by Benson and Wentz [Ref. 191 examines the specification
and implementation of the DL/I language interface. Two
other theses on CODASYL and Daplex respectively are under
way. This wor k is part of ongoing research being
conducted at the Laboratory of Database Systems Research,
Naval Postgraduate School, Monterey, California.

The need to provide an alternative to the development

of separate stand-alone database systems for specific data

language models has been the motivation for this research.
In this regard, we have first demonstrated the feasibility

of a multi-lingual database system (MLDS) by showing how a

1a1

software SE@L language interface can be constructed.
Specific :nntribufiqns of this thesgs include ' the
dcvelopmeﬁt of useful algorithms and the implementation
of SabL oﬁerations suc as: ﬁested retrieval, join
operations, retrieval of grouped attributes, and updating
multiple fields. In addition, we have developed a LIL that
is virtually reusable. With minor modifications the LIL can
be used with the other language inteffaces. As a matter of
faét, it has been recently modified for the DL/I language
interface. Our design of the generic data structures is
also nutewor;hyr Because of our extensive utilization of
unions (i.e., .;ariant records) , the other 1anguage
interfaces can use our generic data structures. We have
extended the work of Macy [Ref. 21 and Rollins tLRef. 3] by
specifying and implementing the algorithms for the 1language
interface. In addition, we have also provided a general
organizational description of a MLDS.

A major goal has been to design a SQL-to—-MBDS interface

without requiring any change be made to MBEDS or ABDL. Our

implementation may be completely resident on a host
computer or the controller. All S@L transactions are
performed in the SRL interfacge. MBDS continues to

receive and proceés transactions written in the unaltered
syntax of ABDL. In addition, our implementation has not

required any change to the syntax of S0OL. The interface is

182

...........

Yzl

BN N S A S A L N R S A A N M NN O MO R R Pl AP SR R oA R w0 D i e BN |

tompletely transparent to the SQL user as well as to the
MBDL. o

In retrospect, our level-by-level, top-down
approach to the design of the interface has been a good
choice. This implementation methodology has been the most
familiar to us and proved ¢to be relatively efficiént in
time. In addition, this approach permits follow—on

programmers to easily maintain and®modify (when nmecessary)

3

thé code. Subsequently, they will know exactly where we
have stopped and where they should begin because we have
included many, qf the lower-level stubs. Hence, it is an -
easy task of filling in these stubs with code.

We have shown that a S@L interface can be implemented

as part of a MLDS. We have provided a software
structure to facilitate this interface, and we have
developed the actual code for implementation. The next
step is to implement the other interfaces. When these

are complete, the system needs to be tested as a whole to
determine how efficient, effective, and responsive it is
to users’ needs. The results may be the impetus for a new

direction in database system research and development.

183

APPENDIX A - SCHEMATIC OF THE DATA STRUCTURES

The purpose of this appendix is to present ; pictorial
of data structures used in the SGL language interface.
Since the code used for the thesis was the C programming
language, the diagram makes use of 1its constructs just
as the code does. Broubs of related items are known as
structures in C, and it is easy to see from the diagram
that the structures break down into‘more detailed,: workable
strfuctures. There are two major parts of this appendix. In
Figure 25 we present the relational database schema data
structures tpaE wehe discussed in Chapter 2.: In Figure
26 we present the user data structures.

In the diagrams an arrow indicates that the field
is a pointer to a structure. Each of the fields of such
a structure is preceded by a small arrow to indicate that
i ndeed a pointer from another structure is referencing
the field. An example of this is the field si_ddl_files
cf the SEL_INFO structure in Figure 26 on page 113. The
field si_ddl_files points to a structure of type DDL_INFOC.
This is especially useful when writing or tracing long paths
through the user data structure.

On the other hand, bracket lines are used to indicate

when a field of a structure is also a structure. The
bracket lines are drawn from the ‘“parent” field to the
"child" structure. A period is placed in front of the
bracketed structure’'s +fields to indicate this fact. An

104

PN A A I At A S Sl A e A Sl A S e gl S I S e
- e A N A A N T N N e]

example of this is the si_sql_tran field of the SGL_INFO
structure in Figure 26 on page 112. The field si_sql;tran
is a structure of type TRAN_INFO. The bracket lines and the

periods indicate this.

We note that the diagram has a few instances of UNIONS.

A union is a construct that allows the user to connect
different structure types, specified by the union
structure, ‘to a commoen structure,V i.e., unions- are also

refered to as variant records. Since the multi-lingual
database system is to support the mapping of multiple
Jlanguages, mfnghpargions of the user structure will be the
same for any language used. However, the union construct
allows for the parts that must change between 1anguage
interfaces so that the common data structures can be adapted

to be useful to all of the language interfaces.

105

w W W e et T e N T T

R AR o ol "":ﬁ- Pl

‘v

.,c%.:«o:..tﬁt. UG DN, oseed el [Ceo 3RO Y, TG s Ydus Ly

PP

Nv.s:t:u..(%&ﬂ\

(44

Uelﬂ.ﬂ.uv.}.%ﬁhﬂl

-+ n(..:(.»(wot_kl

DdDuaos I/.%C_ o«

A

SAVOIDOYAS W

3QON-qI9Q " VT

.

WIS

gd.. TAA0D nc.wb\.k..

T TR TpA

I_JL “satna ..(JP» -

gl(/ﬁ&kl .\ﬂlll\\\

e

d

KAl i M)

106

-~-'--_ ." -‘- -" N.’ -.' - -"--A‘ -7'--.‘.‘.'-".- h.‘-'."---.b.' ;"' .
AP e A A T e A N R AU G ST
b WP I T S Y W L U P e W . VW S Wy I, W S

Chllinia 3 -"—'-‘l

o r IAC A AN S e
A AN N

AL AL AT ang o o

4&&).«.{...(..(&.1

S0 TAA A b

SO TR v &

L4

L.uu.)o SAVYI VIR B

RAVAAOM T MA &

nwdoku:ﬁw W
JqonN ..z..dw¢

%ds..yug/.....tc. &

S#&r)o “SANDITAN

AP TPy

LJM.)OI/Z W "\ A &—

VT(:CM&:CﬁV

RNAOM TN L

.L? CRELE

L a7 0 i by

By ARSI B RN
JQoMN T QIgQ Y

107

Lnd el it Y Al

Py 3"

\V/»))D/b.w.l ..-W‘ *

TYIDYAS
oM T3 1A

Apoy oA

JIODTNANL S

¥yt

-d/;».d(..Yl.wW.Q

AR i S AR S A ——— "

IS
OanNi~3dMd

Y UDMYAS

o4t =Sy TSN

13T

B AN el ARN
o4NI " Ny~

121

R
SRt

Lo,

- - PR T N

. . . a te JTe 0 .
e a =", - e
el CAP N Wy waar'y

HYTAPT

M -Np e

Lu.n - J).«o L4

NOIvO
O3 T IWAT YAv]

ny0yt

yTanpe

&u.u ld)w& M

‘ N OIND
03N WA~ YAV

rad

Yon oM e

adhp= e

YOOOVLS
o4y TN

N T Ay e

Q.o)..J%Jo/I .

dd Ay o

. JAJOEJJL\JJ g

RO AS
O4N I TRYW

IV OTIAS
Ot =39 ™™ N

120

&u&-& - uu«c(.lé L

bro) - Awt = vea &

J.*.h(d:. ~\uode—

JL\,.TI MTOA g

A T NNaA ¢—

STYNIDOMILE
Qo ~ I

1 Lﬁd IJI*\U/) TNMQA &

Tary—Frg -~]

J*ﬁ:du|£¢£tl

)LF....LIL T

(e NSV AV R Ve R 25

kol tuoy)

AT

ﬁd.w:ﬂ.&. —\uan &

Ju..?.ug ~\oA &

Jny...z_,oL_ «

*yg SANJ1Y

WTM AN xﬂ\\\llll

nwda.rdzﬁ.n
EIVE otiin DAL 2

.Luu.dlux,oﬁ..cé -

. ndd w.\xdd TMO0A

P e e

2 2 A" Tk Vie J Yo

, q,.us eI Sl |

, gds |,+an N4y ¢

TV SNEIVEYPI

IYOPOYLS
oar! ~ VTN

11"

.

u.%.u(. - a.vu. m\

)My

Cdu - q)o) l..a‘vy.\ﬂl

) — PO VY &
: 7]

\ polid Ly vou)

g

P>

\VS/»W.I...Wc

&t..d - Jdu. Lo

nudZUDde,.
SN T NN TINYL

oM V)€

N R

) “TeA™ YD) &

YD) "W T TY, 4

FYNLYAS oAt~y A

y.(..u..dab‘v..).(_u.o

PRI

ITY TR

He TR

YOI YLS

o4V ~33Qw3H T 3INIL

— - []
21370

bep~ose3 201

OIS
O =y y ~SaA

118

ﬂ coe

.7.7.. Fou TN

TA)CATN D

S3YMOMIAS W

O34l T2V 1y

YA~ M TN &

\/

J«Jzo) l.u.d.u. . §

.

Cabi-ai ek AR ANL N NG PN
" ¥

¢

A d...uuﬁcc.l....gu.bn

™R e

MUV T N e

AYNIOAILS
O3t TAT\T "1d YL

AQYO T AT 1Y 4o

D

T TN

N LIS SN

q6>nu.wc.6..:..u_xbl

RACA 0 I Wy

[3wom = ..Jro

JFIDMYLS

NI TV WIRL

QJ Lid#l ™A &

B gy e

TYMONYAS
o3l ~ Syt T IY

117

NI AL DAL A A AN

(Jylgi....-.vu_o

naL “Jam =a>y*

nD«.)ou.hl\@._t —NATH hd

JStgse-pus T 240y ¢

Aoy - by

N> = e Tay ©

\uCoO - ﬁdJ —nady e

u.\v.slr..,w./sbl......du_ *

£ 132

) 130 = tonjopwma= sy 9|

R "k gt S Nt N M A A b i DM S R

T

/).CSIJr)QMO

Ko =AYy ¢

/-\dgl .h..v:s .IJ.»..UJ of’

(penutju0D)

oy Uy *

Tpers Ty Ay

TYOLDOMIAS
O4NI T3 ™

(NoIvOD
o4 TN

*92 aanitd

~oyvq -3 T 7"

AYNIDOMYAS
QaNI~ S

116

AJL-IGQUnIodLu—Q

PATPEEST AT

Seyels - aay®

e

(botia JuoD) t9Z Nty

;o.quo léov..‘l oy

DR

M) = TIA =2y o

Sod ~wam ety |

ASuod sIA-147y ¢

Ee 1o el p ARy
OarI =3 "SI

NoNO T

OJ¢I =S

)J.J%:wwu.tnna

Y NADMIAN
oA T VOF

11<

e e L S T S

R I P S TP S Y
. "‘..l..': .. s .

.
aala

T S

I3 al Tl AU S

i i e

SR SaC R v et

T L —T—

R e

-
™

e MR

-

"R

hay

R

f.‘»_. -

‘r

N ﬂ.w Wl plitg PR ST

.w..n\v‘.l .U.Jnd‘.l ...M... <+

e

sy &
R
¥ m?a.v: M4
FrF DA

7

S¥IYNIOYALS

03N = WA T 2 g
W S PR
aysef-mypae 7
nE-dem-mpys . 2
TeATYSI A | S~y -1 oFoP TS~y 725t “
Sy e NOINO .\.
PRI I O3 TSN TYOATILS m
- o4t ~ oS

A S e A s pd e e

O Y

Y

STy S W T

C huatl Suaty 4
DR]

{

AT paAMTNLY <

LQ Jqqls e W X oy

..F..UL \.J.Ld G

SIVOULS
o3MNI T OIY ~ IV

A o#xaﬁ.. /0 &

do “Y4 - Ae i

‘ﬁv.- = nave &

AN 0 ot o Sl e S W Sl A S Ol P

g g, T

WERTTY L) R R

.P..Ll...._d:.....;. ﬂ@.u.»..oCl...w.k.

T e

TN OANI — XY \’\dl) llhk:alnwdufgy‘lyj&lan

FIONDMCIAS
OaNI—NYYL

P>
J(CJO(W.IQW..

T

\u;e..éﬁw.l...w..

Mgag.rn Qarni ~ad

~ep PP]

SPTPT

A L

AYOIDVLS
oaNI—TQQ

Aynl>nyls
Qapni ~OS

113

LI

. T YR N
R T P e P ML R S
Al Bl 2 AN A A A A" o Al AR aThnaa

R ¢\ T L T e e
.';\ - e B ~ -

SN
LRI
A D "2 h

DI
DG
- BS

RIS

e

WAL S Sy

ey R

Y

BN AL MDA

o

LY

PRI A R g gien [y iuania e

P A nCh e

-nww"—-\—--
W et e e

.POL.. (.l.........ul

ca..-oasl,.rr?l

.ﬂv...}.w =N

,ﬁv... TSN

SIYNIDMYAS
o041 ~OY " VY

.m.DL.. YT MU

-

\—9;|£.....J,ET

...d.»....fa.k«

(BPIULIUG,)y 9dnsld

LTV VELVE *ra-ou-12°

§ seoivn 04—y / oy —aam=mye
by

.#J... JJ.. - ..JL d
. ;

Cd..w..»gx”n -ns *

: FVNDTYAS
03N I~ Nl

Eg fatielty AW
Qi —\®S

112

L+L.1L.fﬂo.>lcd *

NOINO QO —TYALY

(#NULULL) Yy aangd g

Py

ey Ty

IYNDONS oaviTIMNA

Py ist

111

Lr)OIJJO.v L

L._.L L YRIVIA

a?nn..Jo.v .

NotvN 3QoNV —JNTIO

4

NOINN 3QoN “Q1 99

PP
J,.Sof.mvo = .Jod .

TV NIPMILS
QY ~PQA" YYD

o e vy e .. L. . .
2 s . W FRIRANIGIAR JIR

nso 240D =15

B Al e sp MRy
O4NI YOS

n\'_‘--\-_.:_.-_.~_.-_-.-‘.-_.-..-_.-_.'.'.-.~.'.-.~.~.-.m'A-.~ B -
LA T R T IC R L ST e e e e e e e e e e e
: % D o I S I TN '.. B R LA R .‘.- . KN . : ey ‘.;‘

", 0

Ny

s

CIRMIMCIAIA S AC TS % S0 -Tate-ite WSt M At steth soat sl Aol Rad Reth Sedl maii i dr S S A dh 1 Jul v e DRt st g el)

...............

= SAL.INTFO STRUCTURE

s SQ— Qurr-a(L

» Sl' -(”Q.

«SU '.s‘{l [-'}'m

. sL_ ore.m;’ﬁ't.on
® SL-— 0(0“_{1 l(.s
"y ses abd l-tran

ryJ

"

o SL— ANSWEP

. Sf... KN -a{d"k
: o sU- k€S- data
»

° SL.. K(..- °{o.+a~

. SL_errar

. Se- sukrua-- :'f'o.+

Figure 26. (Continued)

110

N

R e
A

-

*SUNOLUYS eR-] J9S(] 8Y), 9z aand1y

g
E
g
b o
b e
: L
r, K -
2 K
a M -I.'
. i
i . [g
L ‘ -\
p ' .
& “
b’
2 '

ey

S WA

- %

109

.ﬁ.L - _dg ~A2380D :

= e " bl W

STV T I -45 —

Ralpt

~.~.n|:. R TSR] Tk o'

- .

oD . WM.S‘.Q.S €«
oant |7 - W
© 3YOARMYAS
Q4N " y3SsN

Tw
~

-
-
b

m g+L B B Ry i

-. .a.. ._.-n.L
0)
a””..
) N
s ® of

° ﬁ panu L juoyg,) i YdAlL Ly

.>nIuo - a..%d(. S unaa
ﬂd 13- \QJ —ro) &
Ju.ﬂ(.uq o G
“ \d.L \, &vl(..‘& ‘&
PO Y ~UOA Lﬂu@ lts\uva,v-v‘ékﬂ\ w
—~t
SAYPADTYAS W IYOIDAYAS
0o =~ ANy 3QoN—N3IY
S TR TNNaA e
o)y hmy e | E
J.wnt\J =\ & \ ..
KA
AWM B b s..
ty
te

...... AR i SO A O AL A o i A A, Tl i M Sl

‘APPENDIX B . THE LIL PROGRAM SPECIFICATIONS

module SQL-INTERFACE

Q
L3
o db-list : list; /* list of existing relational schemas */
r\ head-db-list-ptr: ptr; /* ptr to head of the relational schema list */
& current-ptr: pir; /* ptr to the current db schema in the list */
. follow-ptr: ptr; /* ptr to the previous db schema in the list */
& db-id : string; /* string that identifies current db in use */
2
E'f proc LANGUAGE-INTERFACE-LAYER(); - .
/* This proc allows the user to interface with the system. */
. -7* Input and output: user SQL requests */ ~
2 stop : int; /* boolean flag */
- answer: char; /* user answers to terminal prompts */

perform SQL-INIT(); ™
stop = ’false’;
while (not stop) do
/* allow user choice of several processing operations */
print ("Enter type of operation desired");
print (" (1) - load new database");
print (" (p) - process existing database”);
print (" (x) - return to the to operating system");
read (answer);
case (answer) of

I /* user desires to load a new database */
perform LOAD-NEW();

p’: /* user desires to process an existing database */
perform PROCESS-OLD():
’x’: /* user desires to exit to the operating system */

/* database list must be saved back to a file */

store-free-d b-list (head-db-list, db-list);

stop = ’'true’;

exit();

default: /* user did not select a valid choice from the menu *
print ("Error - invalid operation selected");
print ("Please pick again")’
end-case;

/* return to main menu */
end-while;

_end-proc;

122

et N . - -
B T G PR ARGREN AT T e
...... - '.v o, o \‘.. e T ‘-"\"~ AN PP L aat '.- "-' e

AR NG WATOR T WA TR A T T YR ALY p

------- o

proc SQL-INIT();

end-proc; -

proc LOAD-NEW();
/* This proc accomplishes the following:
/* (1) determines if the new database name already exists.
/* (2) adds a new header node to the list of schemas, */
/* (3) determines the user input mode (file/terminal), */
)
)

3 ;
/* (4
5

x /

/

reads the user input and forwards it to the parser, and */
/* (5) calls the routine that builds the template/descriptor files */

answer: int; /* user answer to terminal pron:pts */

. “more-input: int; /* boolean flag */ . A
- proceed: int; /* boolean flag */

stop : int; /* boolean flag */ :

. db-list-ptr: ptr; /* pointer to the current database */

: reg-str: str; _ /* single create in SQL form */ :

F ptr-abdl-list: ptr; /* ptr to'a list of ABDL queries (nil for this proc)*/

L tfid, dfid: ptr; /* pointers to the template and descriptor files */

) /* prompt user for name of new database */
print ("Enter name of database");
readstr (db-id);
i. db-list-ptr = head-db-list-ptr;
A
X stop = 'false’;
while (not stop) do
/* determine if new database name already exists */
/* by traversing list of relational db schemas */
if (db-list-ptr.db-id = existing db) then
print {("Error - db name already exists");
print ("Please reenter db name");
readstr (db-id);
db-list-ptr = head-db-list-ptr;
end-if;
else '
if (db-list-ptr + 1 = ’nil’) then
stop = ’true’;
else
/* increment to next database */
db-list-ptr = db-list-ptr — 1;
end-else;

end-while;

/* continue - user input a valid 'new’ database name */ .

/* add new header node to the list of schemas and fill-in db name */
/* append new header node to db-list */ -
create-new-db(db-id);

/* the KMS takes the SQL creates and builds a new list of relations */
/* for the new database. After all of the creates have been processed */
/* the template and descriptor files are constructed by traversing */
/* the new database definition (schema). */

more-input = ’true’; .
while (more-input) do

/* determine user’s mode of input */- s

print ("Enter mode of input desired");

print (" (f) - read in a group of creates from a file");

print (" (t) - read in a single create from the terminal");

print (" (x) - return to the main menu");

read (answer);

ryd

case (answer) of
f: /* user input is from a file */
perform READ-TRANSACTION-FILE();
perform CREATES-TO-KMS();
perform FREE-REQUESTS();
perform BUILD-DDL-FILES();
perform KERNEL-CONTROLLER();

t: /* user input is from the terminal */
perform READ-TERMINAL();
perform CREATES-TO-KMS();
perform FREE-REQUESTS();
perform BUILD-DDL-FILES();
perform KERNEL-CONTROLLER();

’x’: /* exit back to LIL */
more-input = ’false’;
default: /* user did not select a valid choice from the menu */
i print ("Error - invalid input mode selected");
- print ("Please pick again");
end-case;
end-while;

end proc;

124

e -
f r“-'. o e,

(i

DOENMOFAMT MO R

PSR A S N ol B - ~ > Pa Sy ek el ——t A

proc PROCESS-OLD(); .
/* This proc accomplishes the following: - ¥
/* (1) determines if the database name already exists, */
/* (2) determines the user input mode (file/terminal), */
/* -(3) reads the user input and forwards it to the parser */

answer: int; /* user answer to terminal prompts */

found: int; /* boolean flag to determine if db name is found */
more-input: int: /* boolean flag to return user to LIL */

proceed: int; /* boolean flag to return user to mode menu */

db-list-ptr: ptr; /* pointer to the current database */

req-str: str; /* single query in SQL form *,

ptr-abdl-list: ptr; /* pointer to a list of queries iniABDL form */
tfid, dfid: ptr; /* pointers to the template and descriptor files */

/* prompt user for name of existing database */
print ("Enter name of database");

readstr (db-id); . .

db-list-ptr = head-db-list-ptr;”

found = ’false’;
while (not found) do
/* determine if database name does exist */
/* by traversing list of relational schemas */
if (db-id = existing db) then
found = ’true’;
end-ifj
else
db-list-ptr = db-list-ptr + 1;
/* error condition causes end of list(’nil’) to be reached */
if (db-list-ptr = ’nil’) then
print ("Error - db name does not exist");
print ("Please reenter valid db name");
readstr (db-id);
db-list-ptr = head-db-list-ptr;
end-if;

end-else;

end-while;

125

MRS IAC I AR ALt Rl R

/* continue - user input a valid existing database name */
/* determine user’s mode of input */

more-input = ’true’;

while (more-input) do
print ("Enter mode of input desired"):
print (" (f) - read in a group of queries from a file");
print (" (t) - read in a single query from the terminal);
print (" (x) - return to the previous menu");
read (answer); '

case (answer) of
f: /* user input is from a file */ .
. perform READ-TRANSACTION-FILE();
- perform QUERIES-TO-KMS():
perform FREE-REQUESTS();

o®

't’: /* user input is from the terminal */
perform READ-TERMINAL();
perform QUERIES-TO-KMS();
perform FREE-REQUESTS();

: /* user wishes to return to LIL menu */
more-input = ’false’;

default: /* user did not select a valid choice from the menu
print ("Error - invalid input mode selected");
print ("Please pick again");
end-case;

end-while;

end-proc;

.......
.............

x4

‘proc READ-TRANSACTION-FILE();
/* This routine opens a create/query file and reads the requests */

/* into the request list. If open file fails, loop until valid */
/* file entered */

while (not open file) do
print ("Filename does not exist");
print ("Please reenter a valid filename");

readstr (file);
end-while;

READ-FILE();

ad

end-proc;

proc READ-FILE(); :
/* This routine reads transactions from either a file or the */
/* terminal inta the user’s request list structure so that */ -
/* each request may be sent to the KERNEL-MAPPING-SYSTEM. */

end-proc;

proc READ-TERMINAL(); _
/* This routine substitutes the STDIN filename for the read */
/* command so that input may be intercepted from the terminal */

end-proc;

proc CREATES-TO-KMS();
/* This routine sends the request list of creates one by one */
/* to the KERNAL-MAPPING-SYSTEM */

while (more-creates) do
KERNAL-MAPPING-SYSTEM();

end-while;

end-proc;

127

ar

TeT. TR . . a1 e

T.T.EEETE Y WY b

proc QUERIES-TO-KMS();
/* This routine causes the queries to be listed to the screen. */
/* The selection menu is then displayed allowing any of the */
/* queries to be executed. */

perform LIST-QUERIES();

proceed = ’true’;

while (proceed) do
print ("Pick the number or letter of the action desired");
print (" (num) - execute one of the preceding queries");
print (" (d) - redisplay the file of queries");
print (" (x). - return to the previous menu");
read (answer); - S T

case (answer) of
‘num’ : /* execute one of the queries */
traverse query list to correct query;
perform KERNAL-MAPPING-SYSTEM();
perform KERNEL-CONTROLLER();

'd’ : /* redisplay queries */
perform LIST-QUERIES();

x’ i /* exit to mode menu */
proceed = 'false’;

default : /* user did not select a valid choice from the menu */
print (" Error - invalid option selected");
print (" Please pick again");
end-case;
end-while;

end-proc;

end-module;

128

BN A e A

Maile Saa st Janh . Sads Joadh Sed etk -k b

APPENDIX C - THE KMS PROGRAM SPECIFICATIONS

module KMS ()

perform parser()

end-module KMS

proc yyparse () - : .

%q

%}

-/* This proc accomplishes the following : */

/* (1) parses the SQL input requests and maps them to appropriate */
/* abdl requests, using LEX and YACC to build proc yyparse(). */
/* (2) builds the relational schema, when loading a new database. */
/* (8) checks for validity of relation and attribute names within */.

/* the g]ven db schema, when processing requests against an */

/* existing database. */

list: tgt-list /* list of attribute names */

list: templates /* relation name(s) */

list: insert-list /* list of values for insertion op */

string: temporary-str /™ used for accumulation of query conjuncts */
string: abdl-str /* used for accumuliation of abdl request */

string: join-str /* used for accumulation of join request */

boolean: nested /* signals a nested SELECT query */

boolean: creating /* signals a DbLoad - versus a DbQuery */
boolean: or-where /* signals an OR term in the WHERE clause */
boolean: and-where /* signals an AND term in the WHERE clause */
boolean: set-member /* signals set membership op, vice nested SEL */
boolean: common-attr /* signals COMMON attr predicate of JOIN op */
boolean: rell /* signals curr predicate assoc’d w/1st join rel */
boolean: rel2 /* signals curr predicate assoc’d w/2nd join rel *;
boolean: or-abdl-join /* OR in lst join retrieve request *

boolean: or-kms-join /* OR in 2nd join retrieve request */

boolean: delete-all /* signals deletion of all records in relation *-

int: target-list-length
int: insert-list-length
int: no-templates
int: no-attributes
int: attr-len

char: attr-type

char: db|!

char: template|]
char: attribute|]

129

% start statement

% token /* LIST ALL TOKENS FROM "LEX", and their TYPE, HERE */

%%
statement: query

{

nested = FALSE .

free all tgt/insert lists and temp-str (malloc’d vars)
return '

}

| dmil-statement
' \

- cat End-Of-Request ("]") to end of abdl-str
free all tgt/insert lists and temp-str (malloc’d vars)

return :
}
| ddl-statement
{ -
return

}

.
’

dml-statement: insertion
i deletion

update

query: query-expr

query-expr: query-block

cat End-Of-Request ("]") to end of abdl-str
}

]

130

rzs

query-block: selec: :lause FROM from-list
{
for (ea attribute name in tgt-list)
if (! join)
if NOT valid-attribute(db, template, attribute, attr-len)
print ("Error - field name ’attribute-name’ does not exist")
perform yyerror()
return
end-if
end-if
else
a join exists - check that tgt-rel(s) match at least
one.from-list relation .
if (match neither) ' *
print ("Error - "attr’ attr not in from-list relations")
perform yyerror())
return
end-if
end-else
end-for~ -
cat "(" to abdl-str
if (join)
cat "(" to join-str
end-if
if (nested)
fill temporary-str w/’*’s marking the length of the tgt attr
end-if

}
A

cat ")" to abdl-str
if (! join)
cat "(’tgt-list’)" to abdl-str
end-if
else
cat "(’tgt-list’)" to abdl/join-str, as appropriate
construct the rest of the abdl join request
(ie, cat COMMONS-str to abdl-str; cat join-str to abdl-str)
end-else

}
B

k)

131

red

T N L N T o e e e T T - P S S st > T— o e |
A: empty
cat "FILE = ’relation-name’" to abdl-str
} .
| WHERE boolean
if (! join) && (or-where)
cat ")" to abdl-str
- end-if
else if (or-abdl-join)
cat ")" to abdl-str
end-elseif
elseif (or-kms-join) N
cat ")" to join-str
~end-elseif N
}
B: empty .) :
| GROUP BY field-spec-list *
{
cat "BY ’attribute-name’ to abdl-str
}
select-clause: SELECT
{
if (nested)
allocate another set of tgt/insert lists, temporary-str,
and abd] strings
end-if
copy " RETRIEVE " to beginning of abdl-str
} .
C
C: sel-expr-list
MULTOP
{
/* retrieval of "all" attribute values desired */
if (MULTOP value /= "*)
print ("Error - asterisk(*) operator expected")
perform yyerror()
return
end-if
}
132
e e e e e T S T e e D]

v v TN P B T N R R TR e > i B - . v O e,

sel-expr-list: sel-expr

{

copy first attribute name to tgt-list

}
i sel-expr-list COMMA sel-expr
{

copy successive attribute name(s) to tgt-list

}

b

sel-expr: expr

1

insertion: INSERT INTO

rEd

{
copy "| INSERT (" to beginning of abdl-str
receiver COLON insert-spec

cat ")" t6 abdl-str
}

)
receiver: table-name

cat "<FILE, ’relation-name’>" to abdl-str

}
D

.
'

133

T U S S S S L R R e L te e et T .
e e e e N A A e A e T e N e e e e e e T T T e
P P A AP P PO I A EIOACIT AP AEIERE I PO SN AP IS PP WINPT NP PORFRIE

D: empty

{

/* inserting info for "all" attribute values */

copy all attribute names from schema to tgt-list

if (target-list-length < 1)
print ("Error - rel does not exist, or has no attr’s")
perform yyerror()
return

end-if

}
LPAR field-name-list RPAR
{
for (ea attribute name in tgt-list)
if NOT valid-attribute(db, template, attribute,dattr-len)
print ("Error - field name ’attribute-name’ does not exist)
* perform yyerror() :
return
end-if
end-for
} :

ki

field-name-list: field-name
{
target-list-length++
copy first attribute name to tgt-list
} .-
field-name-list COMMA field-name
{ K
target-list-length++
copy successive attribute name(s) to tgt-list

}

insert-spec: literal

if (length of tgt-list <> length of insert-list)
print ("Error - not enough or too many values inserted")
perform yyerror()
return
end-if K
for (ea attribute in tgt-list " ea value in insert-list)
perform type-checking of attrribute-value pairs
cat ".<'attribute-name’, ‘insert-value’>" to abdl-str
end-for

}

134

4

T Dade g A iR el il it Aeaidnd |

RN S AN s et et v e argt et ralh Sbant M it SN AU bl P i A Al A A i At

deletion: DELETE table-name

{ ,
copy "| DELETE (" to abdl-str
copy 'table-name’ to templates

}
E

{
if (delete-all)
cat "TEMPLATE = ’table-name’" to abdl-str

end-if
cat ")" to abdl-str

}

1

Lr)

L

E: empty

{
delete-all = TRUE

}
| WHERE boolean

|

if (or-where)

cat ")" to abdl-str
end-if
}

update: UPDATE table-name

{
copy " UPDATE (" to beginning of abdl-str
copy relation-name to templates

}

set-clause-list F

cat ") ’set-clause-list’ to abdl-str

.}

F: empty
WHERE boolean
{

if (or-where)

cat ")" to abdl-str
end-if
}

1

135

- Ll T e T T T T e e e e Ty e T T T T e T T T T e S e T TR S
e TN e e e T T e e T T e e e T e e T o e T TR e A e
. - O T P IV I e O S SR S R S S Mt et mT ettt et T AP e

proc load-tables()

/* This procedure accomplishes the following: */
/* (1) Calls dbl-template() which is a procedure */
/* already defined in the Test Interface. It loads */
/* the template file. */

/* (2) Calls dbi-dir-tbls() which is another procedure */
/* already defined in the Test Interface. It loads */
/* the descriptor file. */
begin proc
do initialization; /* Initialize pointer */
: L]
perform dbl-template(&template, ptr->ddli-temp.fi-fid);
perform dbl-dir-tbls(ptr- >ddli-desc.fi-fid);

end proc

proc rest-requests-handler()

/* This procedure handles common retrieve requests, insert */
/* requests. delete requests and update requests by calling */
/* sql-execute(). */

begin proc

perform sql-execute();

end proc

149

B T N R N T R R R R R T T T N R R D T e o S T

APPENDIX D - THE KC PROGRAM SPECIFICATIONS

module Kernel-Controller()

/* This procedure accomplishes the following: */

/* (1) Initialization pointers global to the Kernel Controller. */

/* (2) Checks si-operation to determine whether we are creating a */

/* database, retrieving information from the database, deleting */

/* information from the database, inserting information into the */

/* database, updating the database or if there are errors. */

/* (3) Depending on the appropriate operation the corresponding */ :

/* procedure is called. 3y

L
®

begin module

2

sql-ptr = &(cuser-rel-ptr-> ui-li-type.li-sql);
ke-ptr = &(sql-ptr->si-kc-data.kci-r-ke);
/* Initializes pointers global' to the kernel controller */

/* look at the si-operation to determine what action to take ™/
case si-operation

’Create a database’:

perform load-tables();
break;

'Execute retrieve requests’:

perform select-requests-handler();
break;

’Execute retrieve common requests’:
’Execute delete requests’:
"Execute insert requests’:

’Execute update requests’:

perform rest-requests-handier();
break;

'Otherwise’: /* There are errors *,

print error message;
break;

end case

end module

148

proc yyerror (s)
char *s

if (creating)
set CreateDB-error-flag
print ("Error msg - tell user which CREATE TABLE request was in error")
free current schema (malloc’d vars)
end-if
else
free all tgt/insert lists, temp-str, and abdl-strs
end-else
reset all boolean and counter variables
} ; : .
end-proc yyerror ‘ *

r

147

constant: QUOTE 1 QUOTE
{
literal-const = TRUE
perform type-checking

}
| INTEGER

{
perform type-checking

}

1

I. IDENTIFIER
i VALUE) .

)

~
-

field-name: IDENTIFIER

1

table-name: IDENTIFIER
{ -
if (! creating)
if NOT valid-table(db, template)
print ("Error - relation name ’table-name’ does not exist")
perform yyerror()
return
end-if
end-if
}

;
%%

end-proc yyparse

proc parser ()

if (! creating) _
allocate and initialize first tgt/insert lists, temporary-str, and abdl-str
/* if an old abdl-str exists, free it first */

end-if

perform yyparse()

reset all boolean and counter variables

}

end-proc parser

146

PRl Rl i e . S g .’

field-spec: field-name
| table-name DOT field-name

if (! valid-attribute(db, rel, attr, attr-len)
print ("Error - 'rel.attr’ is invalid combination")
perform yyerror()
return
end-if
if (join) .
if (! or-where) || ((or-where) && (! and-where))
if (table-name = rell) :
rell = TRUE
rel2 = FALSE.
end-if
- if (table-name = rel2)
rell = FALSE
rel2 = TRUE
end-if
end-if
end-if -,
}

.
1

s®

set-fn: AVG | MAX | MIN | SUM | COUNT

1

from-list: table-name
{
copy first relation name to templates
if (tgt-list = null)
fill tgt-list with "all" attribute names in the relation

end-if
}
| from-list COMMA table-name
{
copy second relation name to templates
join = TRUE
allocate join-str

}

empty:

145

W —w——y

entry-list: entry

/* copy first value to insert-list */
insert-list-length+—+
if ("entry[0)’ = QUOTE)

strip quotes from entry

change entry to ALPHANUMFIRST
end-if
copy result, or original entry, to insert-list

i entry-list COMMA entry

{
/* copy. successive value(s) to insert-list * /‘
insert-list-length++ : .

- if (entry[0]’ = QUOTE)
- strip quotes from entry
change entry to ALPHANUMFIRST
end-if
copy result, or original entry, to insert-list
} : - .

.
1

entry: constant

9

expr: arith-term
| expr ADDOP arith-term

b

arith-term: arith-factor
| arith-term MULT-OP arith-factor

!

arith-factor: H primary

1

H: empty
i ADDOP

v

primary: field-spec
. set-fn LPAR field-name RPAR
, LPAR expr RPAR
| constant

1

field-spec-list: field-spec

1]

144

F 4

literal: lit-tuple
| LPAR entry-list RPAR

{
set-member = TRUE

case (set-membership-op)

3,5.8.10: /* <=ANY, <ANY, >=ALL, >ALL */
cat ‘'max of value set’ to temporary-str

46,79 : /* >=ANY, >ANY, <=ALL, <ALL ¥/

temporary-str

cat 'min of value set’ to
1: /* NOT IN

cat first value to temporary-

while (other values exist)

cat ") and (‘attr-name’ /= 'value’" to temporary-str
! A]

end-while

0,2 : /* IN, /=ANY */

*/

str

cat first value to temporary-str

if (more values exist)
abdl-str{11] = ("
or-where = TRU

end-if* -- :

while (other values exist)

cat ")) or ((TEMPLATE = 'rel-name’) and (’attr-name’™

to temporary-str
if (rel-op =IN)

cat " = " to temporary-str

end-if

else

cat " /=" to temporary-str

end-else
cat value to temporary-str
end-while
end-case

’

lit-tuple: entry
' LWEDGE entry-list RWEDGE

1

143

o N, oW . hd - . -~
AN A DA R P e . Py L — Tre o s . Lo T = CACEIaER i S v S ' i Chan vy)

table-spec: literal

1
. if (! set-member)
'l if (’literal{0]’ = QUOTE)
strip quotes from literal

change literal to ALPHANUMFIRST
literal-const = FALSE
end-if
" cat result, or original literal, to temporary-str
| if (nested)
set first-ptr to top of abdl-str list
end-if
end-if
. else '
v - set-member = FALSE
! - end-else
}

| query-expr

FY)

increment ptr to next tgt/insert list, temp-str, and abdl-str

}
! LPAR query-expr RPAR

{

increment ptr to next tgt/insert list, temp-str, and abdl-str
: } .
i | expr

common-attr = TRUE

}

.
b

B S

PR

AT % e

D
PRI RPN P ROPEPEADPE . P PO PG LSS R R A G G N R S S AP R A SRS

rr

comparison: comp-op

{
if (! join)
cat ‘comp-op’ to temporary-str

copy type-op-code to abdl-str.rel-op

- if (nested)
end-if
end-if
}
comp-op: EQ
| M J

{

if (nested)
cat 'J’ to "M’ and save

end-if
}
| L
{ v
nested = TRUE
}
J: empty
I K
{
nested = TRUE
} .

K: ANY | ALL

1

L: IN | NOT IN

'

M: NE ! RWEDGE | GE | LWEDGE | LE

1

Y d

s’

T TN IERT T LR Y angeLe

boolean-primary: predicate

b}

predicate: expr

{
if (! join)
if NOT valid-attribute(db, template, attribute, attr-len)

print ("Error - field name 'attribute-name’ does not exist")
perform yyerror()

return
end-if
if (! and-where)

allocate new temporary-str .
end-if *

cat "(’attribute-name’ " to temporary-str
and-where = FALSE
end-if
else
save 'type’ for later comparison during type-checking,

in case this is the COMMON attribute predicate
end-else

}

comparison

{
if (nested)
save attr name in case nest is actually a set membership op
end-if
}
table-spec
{
if (! join)
cat ")" to temporary-str
end-if
else
if (common-attr)
save values of ’expr’, 'comparison’, & table-spec’
for the COMMON expr, and type-check the two attr’s
end-if
if (! and-where) && (! or-where)
allocate initial temporary-str.
copy "(" to temporary-str
end-if
else
cat "(" to temporary-str
end-else

cat "expr’ ’comparison’ ’table-spec’)" to temporary-str
end-else

}

.
'

= Padintadate T TR TR T TN Y
..................

boolean-term: boolean-factor

{
if (join) && (! or-where)
determine rel that curr predicate is assoc’d with
if (rell) && (! common-attr)
cat "(FILE = 'rel-namel’) and" to abdl-str
cat temporary-str to abdl-str
cat " FILE = 'rel-name2’" to join-str
end-if
if (rel2) && (! common-attr)
cat "(FILE = ’rel-name2’) and" to join-str
cat temporary-str to join-str
cat.”" FILE = ’'rel-namel’ to abdl-str
end-if *
if (common-attr) .
cat " FILE = 'rel-namel/2" to abdl/join-str’s
end-if :
end-if

‘ | .
F | boolean-termh: AND’

5 and-where = TRUE;

- if (! join)

S cat "and" to temporary-str
' end-if

boolean-factor
{
if (join) && (! or-where) && (! common-attr)
if (rell)
abdl-str11 + 3] ="(
cat ") and" to abdl-str
cat temporary-str to abdl-str
end-if
if (rel2)
join-str(11 + 3| =(’
cat ") and" to join-str
cat temporary-str to join-str
end-if '
copy empty-str to temporary-str
and-where = FALSE
end-if
}

1
boolean-factor: boolean-primary

1

139

T TR YT YT YT
o e

T TR TE TR LT L TR IR LT T T TN

2P

boolean: boolean-term
{
if (! join) i
cat "-(FILE = ’relation-name’) and" to abdl-str

cat temporary-str to abdl-str
end-if

}
| boolean OR
{
or-where = TRUE
if (! join)
abdl-str(11l] = ’(’
cat ") or ((FILE = ’relation-name’) and") abdl-str

copy empty-str to temporary-str .

- end-if
)
boolean-term

if (! join)

cat tempprary-str to, abdl-str
end-if
else

if (current predicate assoc’d w/same rel as previous predicate)
abdl/join-str{l1] = '(’

cat temporary-str to appropriate str (abdl/join-str)
end-if . ‘

else
abdl/join-str(as approp)(11 + 3| = ’(’
cat "and" to appropriate str (abdl/join-str)
cat temporary-str to appropriate str (abdl/join-str)
end-else
copy empty str to temporary-str
or-where = FALSE
end-else

}

t

v S,

wyrvwwe

‘rrw'ﬁ"'w -—w
P S PRI UL e e
LINL IR LI "

A A AR A A A A T e

cat ") or ((FILE = 'rel-name’) and"” to abdl/join-str (as approp)

[ACARCERRGCER as |

vy

............................

field-defn: field-name LPAR type G RPAR
{

create new attribute block
enter 'attribute-name’ in attribute block

}

)

G: empty
{

set key-flag to '0’ in attribute block

)
, COMMA NONULL

set key-flag to "1’ in attribute block
3

'

type: CHAR LPAR INTEGER RPAR
{ .

enter attribute t.y'pe and'length in attribute block

}
INT LPAR INTEGER RPAR
{

enter attribute type and length in attribute block

FLOAT LPAR INTEGER RPAR
{ .

enter attribute type and length in attribute block

}

.
1

137

...............................
.........

......................

.........
.........

'I

LYY

-

........

set-clause-list: set-clause

set-clause: SET feld-name EQ expr

if NO'T validattribute(db, template, attribute, attr-len)
print ("Error - field name ’attribute-name’ does not exist")
perform yyerrot()
return

end-if

else
copy "<’field-name = expr’>" to abdl-str

end-else

ddl-statement: create-table

create-table: CREATE " ' . -

creating = TRUE
locate db-id schema header

Pl N AL A0 A A 0 n Lan 4
PRI Lte

}
TABLE table-name COLON
{
no-templates ++
create new template block
enter 'relation-name’ in template block

field-defn-list

1

field-defn-list: field-defn
{

no-attributes ++

)
| field-defn-list COMMA field-defn
{

no-attributes ++

)

136

........

proc select-requests-handler()

/* This procedure accomplishes the following: */
/* (1) Determines if we have a series of requests which */
/* corresponds to a nested select in SQL. */

/* (2) If we do have a series of requests we process the first */
/* request because this is the only fully formed ABDL *;

/* request. This is accomplished by calling sql-execute().

/* (3) If it is a nested select, we enter a loop to process the */

/* remaining requests. Note that it may be necessary to */
/* process sub-requests. This requires entering another */

/* loop to process these. This occurs when the number of */
/* responses to a request is larger than NUM-CONJ. In this */
/* situation a'request contains at most NUM-CQNJ values. */

/*.-(4) I it is not a nested select, then only one request */
/ * requires processing. This is accomplished by calling */
/* sgl-execute. */

begin proc

curr-req = &(sqhptr->si-abdl-tran-> ti-curr-req);

/* Set curr-req equal to the first request to be processed */
num-reqs = &(sql-ptr->si-abdl-tran-> ti-no-req);

/* Set num-regs equal to the number of requests to be processed */
ke-ptr->keri-file-status = FIRSTTIME;

/* Set the file status to indicate it is the first time through */
ké-ptr->keri-req-status = FIRSTTIME;

/* Set the request status to indicate it is the first time through */
ke-ptr->keri-num-values-ffile = 0;

/* Set the number of values in the file to zero */
strepy (ke-ptr-> keri-files.nri-futr.fi-fname, CURRFName); |

/* Assigns filename for the current file */
strepy (ke-ptr-> keri-files.nri-curr.fi-fname, FUTRF Name);

/* Assigns filename for the future file */

*num-reqs = *num-reqs - 1; /* Decrement num-reqs */

if (*num-reqs == Q) /* Its the last subrequest */
sql-ptr->si-subreqg-stat = LASTSUBREQ;

else /* Its an intermediate subrequests */
sql-ptr->si-subreq-stat = INTERSUBREQ;

perform sql-execute(); /* Handles the first request */

150

P R A g &

L4

while (*num-reqs > 0) /* It is a nested select */
begin while
*num-reqs = *num-reqs - 1; /* Decrement num-reqgs */ .
perform swap-files(); /* Swap current and future files */
ke-ptr->keri-num-values-cfile = ke-ptr-> kcri-num-values-ffile;

/* Set the number of values in the current file *’
ke-ptr->keri-num-values-ffile = 0;

/* Reinitializes the number of values in the future file */
ke-ptr->kcri-file-status = FIRSTTIME; /* Reintialize the status */
sql-ptr- >si-subreq-stat = INTERSUBREQ; /* Reinitialization the status*/

g curr-req->ri-ab-req = curr-req->ri-ab-req-> ari-next-req;
- /* Advance pointer so it points to the next request */
- ' ke-ptr->keri-unfin-ret = curr-req->ri-ab-req-> ari-req;
- /* Loads abdl request template into unfin-ret 3/
.- curr-req->ri-ab-req->ari-req = NULL;
<* /* Sets ari-req to empty so that the completed request can */ .
/* be built into ari-req */
ke-ptr->keri-req-status = FIRSTTIME; /* Reinitialize request status */
one-conj-flag = FALSE; .
/* Sets flag to indicate it is not a one conjunction type req */

2 s A 4 2 4

. while ((kc-ptr->keri-num-values-cfile > 0) && (!one-conj-flag))
/* There are values left to insert into the request */
begin while
perform build-request(&one-conj-flag); , '
/* Builds the next request */
perform sql-execute();
/* Handles the request just built */ -
perform free(curr-req->ri-ab-req-> ari-req);
/* Frees ari-req */
curr-reg->ri-ab-req->ari-req = NULL;
/* Reinitializes ari-req */
3 end while

P S R i T)

/* Sets up for the next request */
curr-reg->ri-ab-req- >ari-req = ke-ptr->keri-unfin-ret;
: /* Set ari-req equal to unfin-ret; */
< ke-ptr->keri-unfin-ret = NULL;’

/* Reinitailize unfin-ret */
perform fclose(kc-ptr->keri-files.nri-curr.fi-fid);
/* Close the current file */
end while
end proc

151

S W T ITT—————— 1,*‘-

proc s«il-execute()

/* This procedure accomplishes the following: . */
/* (1) Sends the request to MBDS using TI-S$TrafUnit() */
/* which is defined in the Test Interface. */

/* (2) Calls sql-requests-left() to ensure that all requests */
/* have been processed. */

/* (3) Calls TI-finish() for post operation processing. */
begin proc
perform T1-S8TrafUnit(sql-ptr-> si-curr-db.édi-dbname,

-sql-ptr->si-abdl-tran-> ti-curr-req.ri-ab-req-> ari-req);
/* Sends the request to MBDS */ - :

Ly

p;‘érform sql-chk-responses-left();
/* Wait until all responses have been returned */

perform Tl-finish();
/* Routine to tidy-things up after processing is completed */

end proc

152

SN g I Sl A Sl SR S Sl DNl DA S A Y A AP A it Sret e A A SN St g

proc sql-chk-responses-left()

/* This procedure accomplishes the following: *x/
/* (1) Receives the message from MBDS by calling */
/* TI-R8Message() which is defined in the Test Int. */
/* (2) Gets the message type by calling TI-R§Type. */
/* (3) If not all responses to the request have been */

/* returned, a loop is entered. Within this loop a */

/* case statement separates the responses received by */
/* message type. */

/* (4) If the response contained no errors, then procedure */
/* T1-R8Req-res() is called to receive the response from */

/* MBDS. - : */

/* (5) A check is then made to determiine if this is the last */

/*. response. If it is, then the results are returned to */

/*" the calling routine. If it was not the last response */

/* then the results are filed in future-results-file. */

/* (6) If the message contained an error then procedure */
/* TI-R$ErrorMessage is called to get the error message */
/* and then procedure TI-ErrRes-output is called to */
/¥ output the error mesage. */

begin proc
num-reqs = &(sql-ptr->si-abdl-tran->ti-no-req);
/* Number of requests left, not counting the request */

/* currently being worked on. */

response = sql-ptr->si-kfs-data.kfsi-rel.kri-response;
/* Initailize response */

done = FALSE; /* Initialize flag */

while (not done)
/* Not all responses for the current request have been received */

perform TI-R$Message(); /* Receive message from MBDS */

msg-type = TI-R$Type(); /* Get the type of the received message */

153

..

........

............
..........................
.......................

o a .,
-

I g €_2 2.3 4_MN

SR IO NS SIS AR S A S P D00 e i ‘0t vl M A e AT I N At N S S i A I e S A T T ".'*’

case msg-type /* Is the response correct or are there errors? */

"CH-ReqRes’: /* The response is correct */
done = chk-if-last-response();
/* Set flag if its the last response */

case sql-ptr- >si-operation

'Execute Retrieve Requests’:
'Execute Retrieve Common Requests’:
if (*num-reqs == 0)
. /* If there are no requests left, send the results to */
/* the formatter. */ '
Kis(); - : .
- else .
: /*There are requests left the in nested selec{ to process */ .
file-future-results(); /* Save the results */
break;

"Execute Delete Requésts’:
print "Delete Query Done";
break;

'Execute Insert Requests’:
print "Insert Query Done";
break;

"Execute Update Requests’:
print "Modify Query Done”;
break;

end case
break;

'Requests With Errors’:
perform TI-R$ErrorMessage(request, err-msg);
/* Get the error message */
perform TI-ErrRes-output(request,err-msg);
/* Output the error message */
done = TRUE; /* Set the flag */
break;

end case

end while
end proc

154

NI NI 0 Ot i o i et RGO SN sl as SR vl MR sl ik sies BrNe arde e Menih gl v e g PR e ares o (IS Sl S Ednad el Mbe® Mgl gl Aot A rv'—v-"*

...........

proc build-request(one-conj-flag)

. /* This procedure accomplishes the following: */

I) /* (1) Builds the next ABDL request to be processed by */
. /* calling either N-Conjunction, Not-In-Conjunction or */
. /* One-conjunction depending on the relational operator. */
. /* (2) Sets one-conj-flag if procedure One-Conjunction is */

; /* called. */

! begin proc

w

curr-abdl-req = &(sql-ptr- >si-abdl-tran-> ti-curr-req);

) /* Gets the current ABDL request . */ .

. . ; : 2

I cise curr-abdl-req-> ri-ab-req-> ari-rel-op N

X "/* Switches based upon the relational operator in the request */

'In Operator’:
perform N-Conjunction(); . "
break: - - .

"Not In Operator’:
perform Not-In-Conjunction();
break;

'Not Equal to Any Operator’:
perform N-Conjunction();
break;

"Less than or Equal to Any Operator’:
perform One-Conjunction(kc-ptr-> keri-max.maxi-val.dvi-int);
*one-conj-flag = TRUE;
break;

'Greater than of Equal to Any Operator’:
perform One-Conjunction(kc-ptr->kcri-min.mini-val.dvi-int);
*one-conj-flag = TRUE;
break;

@
s

v.

’Less than Any Operator’:
perform One-Conjunction(kc-ptr->keri-max.maxi-val.dvi-int);
*one-conj-flag = TRUE;
break;

B AN

TR Y

155

SR N A Nt i Gath g G hadl el A Beadt St sl deaioui e S S AICt G S I et - P Py

'Greater than Any Operator’:
perform One-Conjunction(kc-ptr->keri-min.mini-val.dvi-int);
*one-conj-flag = TRUE;
break;

'Less than or Equal to All Operator’:
perform One-Conjunction(kc-ptr->keri-min.mini-val.dvi-int);
*one-conj-flag = TRUE;
break;

’Greater than or Equal to All Operator’:
perform One-Conjunction(kc-ptr-> kcri-max.maxi-val.dvi-int);
*one-conj-flag = TRUE; : .
break; *

~
-

’Less than All Operator’:
perfrom One-Conjunction(kc-ptr->keri-min.mini-val.dvi-int);
*one-conj-flag = TRUE;
break; .

’Greater than All Operator’:
perform One-Conjunction(kc-ptr->kcri-max.maxi-val.dvi-int);
*one-conj-flag = TRUE;
break;

end case
end proc

156

''''''''''''''''

. N W T g T am—

B

.

LA A il S S AN R AR AT VIS ORI S i AN AR R DA ARG RS Tt Ul 1A A S

Pl) NG e e SR DA sl A S A A Ml el e

proc N-Conjunction()

~/* This procedure accomplishes the following: */
/* (1) Builds an N conjunction ABDL request using a template */
/* (the unfinished return) provided by KMS. */

/* (2) This is accomplished by loading in the action portion of */
/* the template, loading up to NUM-CONJ conjunctions into */
/* the request, ’oring’ the conjunctions together and then */

/* adding the target list. */

/* (3) The conjunction portion is formed by copying from the */ .
/* beginning of the conjunction to first asterik of the */

/* template into ari request. Then the next value from the */
/* the current file is inserted into the ari request, */

/* followed by the remainder of the conjunctions If this */

/*.= is not the last conjunction of the -equest, then an or */

/¥ is inserted and the next conjunction is constructed using */

/* the same process. */

begin proc
abdl-ptr = sql-ptr-> si-abdl-tr;m->ti-curr-req.ri-ab-req;
/* Set pointer to the current ABDL request */

if (kc-ptr->keri-req-status == FIRSTTIME)
/* Calculates values that will be used on all calls to this procedure */
/* for a given request. Thus, these values are only calculated once. */

begin if : .
for (i = 0: ke-ptr->keri-unfin-ret{i] != LPARAN; i++)
kc-ptr-> keri-beg-conj = i;/*Mark position where the conjunction begins*/
action-len = kc-ptr->kcri-beg-conj;/*does not include 1st LPARAN */
for (; ke-ptr->keri-unfin-ret[i] != ASTERIK; i++)

kc-ptr->keri-beg-asterik = i;/*Mark position of the first asterik*/

157

L]

/* Calculates the size of the template. */
unfin-ret-len = strlen{kc-ptr->keri-unfin-ret);
for (i = unfin-ret-len; kc-ptr->keri-unfin-ret{i] != ASTERIK; i--)

1
ke-ptr->keri-end-asterik = i;,/ *Mark position of last asterik*/
for (; ke-ptr->keri-unfin-retfi! = LPARAN; i++)

for (; ke-ptr->keri-unfin-retfi] != RPARAN; i)
ke-ptr->kcri-end-conj = i;
/*Mark position of the end of the conjunction*/
target-len = unfin-ret-len - kc-ptr->kcri-end-conj + 1;
conj-len = unfin-ret-len - target-len - action-len;
' e
. /* Calculates the maximum length of the ﬁnish;d request. */
- ke-ptr->keri-req-len = (action-len + (NUM-CONJ * conj-len) +
(NUM-CONJ * ORLen) + target-len);
ke-ptr->keri-files.nri-curr.fi-fid =
fopen(kc-ptr-> kcri-files.nri-curr.fi-fname, "r");
kc-ptr->keri-reg-status = RESTTIME;

end if
else
begin else
/* Reset the length of the unfinished request */
unfin-ret-len = strlen(kc-ptr->keri-unfin-ret);
end else

/* Allocates space for the finished request. */
abdl-ptr->ari-req = var-str-alloc(kc-ptr->keri-req-len);

/* load request with action portion and an (*/
for (i = 0; i != (kc-ptr->keri-beg-conj + 1); i++)
abdl-ptr->ari-req(i| = kc-ptr->keri-unfin-retli];

i=i

158

T T

i el S el A gl g

. - - .t S tet et
..... ot
RO
T NN

counter = 1;
while ((counter <= NUM-CONJ) && (kc-ptr->kcri-num-values-cfile != 0))
/*Keep building conjunctions, filling them with values -

& ’oring’ them together*/

begin while
/* loads template up to asterik */
for (i = kc-ptr->kecri-beg-conj; 1 != ke-ptr->keri-beg-asterik; i++)
begin for
abdl-ptr->ari-req|j. = kc-ptr->keri-unfin-ret|i];
i+
end for

L)

/* loads in the next value */
= for (i = 0; ((abdl-ptr->ari-req|j| = .
getc(ke-ptr->keri-files.nri-curr.fi-fid)) != '0); i++)
it

/* loads the appropriate number of) behind the conj */
for (i = (kc-ptr->keri-end-asterik + 1);
i != (kc-ptr->kcri-end-conj + 1); i++)
begin for
abdl-ptr->ari-req(j] = kc-ptr->keri-unfin-ret[ij;
J++;
end for

if ((counter != NUM-CONJ) && (kc-ptr->kcri-num-values-cfile != 1))
/* It is not the last conjunction */

begin if
/* loads " or " into the request to connect the conjs */
abdl-ptr->ari-req|j++| = BLANKSPACE;
abdl-ptr->ari-req[j+-+] = 'o’;
abdl-ptr->ari-req(j++] = 'r’;
abdl-ptr->ari-req(j++] = BLANKSPACE;

end if

159

.....

»

LRl M, N, eyl M wa i - e iorn 4 B ST Sbr i St et BAE 2kl oun ‘Rhlirs

PCAAR NI A I A i e i o Bt R Dity Anlhy =il Al

else /* It is the last conjunction */
\
begin else
/* loads the target list one value oer line *,

for (i = (kc-ptr->kecri-end-conj); i = (unfin-ret-len + 1); i++)

begin for

abdl-ptr->ari-req{j] = ke-ptr->keri-unfin-retii:;

s
end for

/* checks if there is only one value in this request.
/* if true then one set of parenthesis is replaced with blanks */

if (counter == 1) -

begin if - : ?
. abdl-ptr->ari-req[kc-ptr-> keri-beg-conj] = BLANKSPACE;
- abdl-ptr- >ari-req|kc-ptr->kcri-end-conj] = BLANKSPACE;

end if

end else

-
-

counter-+-+;
ke-ptr-> keri-num-values-cfile--;

end while

if (ke-ptr->keri-num-values-cfile == 0)
/* Set the status to signify the last subrequest */
sql-ptr->si-subreq-stat = LASTSUBREQ;

end proc

160

M W \—'“‘F

‘s,

P S S A S, e e A S Sl St P R S e f et o A b e A S LA S Y

proc Not-In-Conjunction()

/* This procedure accomplishes the following: */
/* (1) Builds a one conjunction ABDL request using a template */
/* provided by KMS. | */

/* (2) This is accomplished by loading in the action portion of */
/* the template, lcading up to NUM-CONJ conjunctions into */

/* the request, 'anding’ the conjunctions together and then */
/* adding the target list. */ .

/* (3) The conjunction portion is formed by copying from the */
/* beginning of the conjunction to first asterik of the */

/* template into ari request. Then the next value from the */
/* the current file is inserted into the ari request, */

/* followed by the remainder of the conjunction.® If this */
/*: is not the last conjunction of the request, then an and */

/* is inserted and the next conjunction is constructed */
/* using the same process. */
begin proc

abdl-ptr = sql-ptr->si-abdl-tran->ti-curr-req.ri-ab-req;
/* Set pointer to the current ABDL request */

if (ke-ptr->kcri-req-status == FIRSTTIME)
/* Calculates values that will be used on all calls to this for a */
/* given request. Thus, these values are only calculated once. */

begin if
for (i = 0; kc-ptr->kcri-unfin-ret{i] != ASTERIK; i++)

kc-ptr->keri-beg-asterik = i;/*Mark position of first asterik™*/
for (; ke-ptr->keri-unfin-ret[i} != LPARAN; i--)
kc-ptr->keri-beg-conj = i;/*Mark position where conjunction begins*/

/* Calculates the size of the template */
unfin-ret-len = strlen{kc-ptr->kcri-unfin-ret);
for (i = unfin-ret-len; kc-ptr->keri-unfin-retfij '= ASTERIK: i--)

kc-ptr->keri-end-asterik = i;/*Mark position of the last asterik™ .
for (: kc-ptr->keri-unfin-retii] != RPARAN; i~~)

kc-ptr->keri-end-conj = i;
/* Mark position where the conjunction ends */

161

s,

W T T W N T T T e e wew
..... T T T, T T g

action-len = kc-ptr->kcri-beg-conj;
target-len = unfin-ret-len - kc-ptr->kcri-end-conj;
conj-len = unfin-ret-len - target-len - action-len;

/* Calculates the maximum length of the finished request. *;
kc-ptr->keri-req-len = (action-len + (NUM-CONJ * conj-len) +
(NUM-CONJ * ANDLen) + target-len);
kc-ptr->keri-files.nri-curr.fi-fid =
fopen(kc-ptr-> keri-files.nri-curr.fi-fname, "r");
ke-ptr->kcri-reg-status = RESTTIME;
end if
else
begin eise : : .
/* Reset the length of the unfinished request */°*
: unfin-ret-len = strlen(kc-ptr->kcri-unfin-ret);
end else

rl

/* Allocates space for the finished request */
abdl-ptr-> ari-req = var-str-alloc(kc-ptr->kcri-req-len); . :

/* load request with action portion and an (*/
for (i = 0; i != (kc-ptr->kcri-beg-conj); i++)

abdl-ptr->ari-req(i] = ke-ptr->keri-unfin-retij;
i=5

counter = 1;

while ((counter <= NUM-CONJ) && (kc-ptr->keri-num-values-cfile != 0))
/* Keeps building conjunctions, filling them with values and */
/* 'anding’ them together. */

begin while
/* loads template up to asterik */
for (i = ke-ptr->keri-beg-conj; i !'= ke-ptr->kcri-beg-asterik; i+~—+n)
begin for
abdl-ptr->ari-reqij] = kc-ptr->keri-unfin-ret|ij;
+=+:
end for

162

.......

........ P T e —— T T T Ty rrwrwy

/* loads in next value */
for (i = 0; ((abdl-ptr->ari-reqjj] =
getc(ke-ptr->keri-files.nri-curr.fi-fid)) !="0); i+~+)
I+

/* loads a) behind the conjunction */
abdl-ptr->ari-req[j] = kc-ptr->keri-unfin-ret|ke-ptr-> kcri-end-conji;
j+ F:

if ((counter != NUM-CONJ) && (kc-pir->kcri-num-values-cfile != 1))
/* It is not the last conjunction */ :
begin if
/* loads " and " into the request to connect jhe conjs */
abdl-ptr->ari-req(j++| = BLANKSPACE; *
abdl-ptr->ari-req[j+-+] = ’a’;) .
abdl-ptr->ari-req{j++| = 'n’ .
abdl-ptr->ari-req{j++| = ’d’;
abdl-ptr->ari-req(j++| = BLANKSPACE;
end if
else /* It is the last conjunction */
begin else
/* loads the target list including a */
for (i = (kc-ptr->keri-end-conj + 1); i != (unfin-ret-len + 1); i++)
begin for :
abdl-ptr->ari-req[j| = kc-ptr->keri-unfin-reti};
j++; ‘
end for
end else
counter++;
kc-ptr- >keri-num-values-cfile--;
end while

if (kc-ptr->kcri-num-values-cfile == 0)
/™ Set the status to signify the last subrequest */
sql-ptr-> si-subreg-stat = LASTSUBREQ;

end proc

163

R e Bin Saabi uie e Sagh Jhate date s dasbe Jan- Jamre

Enter type of operation desired
(1) - load a new database
(p) - process old database
(x) — return to the coperating system

ACTION ——-—=>

Upon selecting the desired operation, the user will
be prompted to enter the name of the database to be used.
For the case that the load operation was selected, the

database name provided cannot] be presently used.

»

Liiéwise, for a process old operatinq the database name
provided must be in existence. < In either case, 1if an
error occurs ;hg'use(will bg told to rekey a different
name. The ;eégion .continues once a valid name has been
entered.

For either type of operation selected from MENUL, the
second menu is the same and asks for the mode ofAinput.
This input may come +from a data file or interactively

from the terminal. The generic ménu, called MENUZ2, looks

like the following:

Enter mode of input desired

(f) - read in a group of transactions from a file
(t) - read in transactions from the terminal
(x) - return to the previous menu

ACTION —-———>

I+ the user wishes to read transactions from a file he
will be prompted to provide the name of the file that

contains those transactions. If the user wishes to enter

177

A. - Overview

The SGL. language interface allows the user to
input transactions from either a file or the terminal. A
transaction can take the form of either creates of a new
database or queries against an existing database. The
S@Al. language interface is menu:driven. When the
transactians. are read from either a file or the terminal
thé; are stored in the interface.: I+ the transactions
are creates they are executed automatically by .the system.
I1f the transactions are queries the |wuser will be
prompted by another menu to selectively pick an individual
query to be processed. The menus provide an easy and
efficient way to allow the user to see and select the
methods in which to perform the mapping functions. Each
menu is tied to its predecessor so that by exiting each

menu the user is moved back up the menu "tree". This

allows the user to perform multiple tasks in one session.

B. USING THE SYSTEM

There are two operations the user can perform on
the database schemas. The user can either create a new
database ar process queries against an exist.ng database.
The first menu displayed prompts the user for which
function to perform. This menu, hereafter named MENUL,

looks like the following:

176

- —- - .‘\
N e T l.'l"

......

Y S N o ey,

proc finish()

/* This procedure frees any structure space that may have been created */
/* during the creation of the ouput table */

begin proc
tbl-ptr = current relational database;
tbl-ent-ptr = tbl-ptr->thi-first-ent;/* Set tbl-ent-ptr to the first
table entry /*
while (tbl-ent-ptr <> NULL)
begin
tbl-ptr-> thl-first.-ent tbl-ent-ptr->tei-next;
/* Get the next table entry */ .

tbi-ent-ptr->tei-next = NULL; -]
.- free(tabl-ent-ptr); . .
tbl-ent-ptr = tbl-ptr-> thi-first-ent; : ' *
end while
end proc

175

proc more()

/* This procedure is just like the more facility offered in Unix */ -
/* Tt is not as sophisticated, however. */

begin proc
open kfs-r-ptr->kri-o-file.fi-fname for "read" status;
get a char from opened file;
while (NOT EOF)
begin
counter = 0; /* counter is used to keep track of how many lines
have been printed on the screen */
while ((counter <= screen-heigth} AND (NOT EOF))
begin *
print the char;
if (¢ == carriage return)
counter = counter + 1;
get a char from opened file;
end while | . . -
if (counter > “screen-heigth)
begin
print the word "--more--";
determine if user wants to quit or advance 1 to screen-heigth lines
in the opened file;
end if
end while
end proc

*a

proc skipnameorval()

/* This procedure skips over either an attribute name or attribute value */

/* depending where kri-curr-pos is currently located. This is necessary */

/* because results are coming back as: ATTR-NAME ATTR-VALUE. In some */

/* situations we want just the NAME and in others we want just the VALUE */
begin proc

update kri-curr-pos to skip over the the attr name or value
that it is currently positioned at;

end proc

174

S e N Sad i, "I AR, 5

proc load-titles() .

/* This procedure loads the heading of a SQL results table into the */ .
/* output file */

begin proc
tbl-ptr = kfs-r-ptr-> kri-form-data.thi-first-ent;
/* Get the first table entry so that you can work from here */
while (tbl-ptr <> NULL)
begin
column-difference = tbl-ptr->tei-col-len - tbl-ptr->tei-name-len;
/* column-difference indicates the difference between the
actual column length and the length of tke attr value to
be output. We need this to determine hdw many spaces are
- needed to keep our results left-justified */ | .
" print the attr name; .
print a series of blank spaces equal to the column-difference;

print a "|";
tbl-ptr = tbl-_pt,r-> tei-next; .
end while -

print a carriage return;
print a series of "-" equal to the width of the table;
end proc

proc get-size(x)

/* This procedure obtains the maximum size that a pa.mcular attnbute */
/* value may take on */

char x;
begin proc
traverse the table entry list until you find the attr name equal to x;

return(the length of this attr name);
end proc

173

e e mL s wm s R

proc one-hscreen-results()

/* This procedure ohtimts the results in SQL table form if this table */

/* can fit within the width of one screen */
begin proc
if (FIRSTBUF == TRUE)
begin

proc load-titles(); /* Output the headings of the table */
kfs-r-ptr->kri-status = RESTBUFS; /* Change status to indicate
that titles/headings no
longer have to be output */
end if
while (kfs-r-ptr->kri-curr-pos < kfs-riptr- >kri-res-ldn)
begin
" tbl-ptr = kfs-r-ptr- >kri-form-data.thi-first-ent;
/* Get the first table entry so that you can work from here */
while (tbl-ptr <> NULL)
begin
proc skipngmeorval();;
column-difference = tbl-ptr->tei-col-len - proc get-val-len();
/* column-difference indicates the difference between the
actual column length and the length of the attr value to
be output. We need this to determine how many spaces are
needed to keep our results left-justified */
print the attr value;
print a series of blank spaces equal to the column-difference;
print a "|";
tbl-ptr = tbl-ptr->tei-next; /* Get the next table entry */
’ end while '
print a carriage return;
end while
close Output File;
end proc

-
-

172

UL S O N L
- s o o " « -
PLSER DR T CAL N GO

N
Jaa

4y

L,

— e e——-
T mT————

proc fill-table-headings()

/* This procedure accomplishes the following: */

/* (1) Fills different fields in various structures so that an */

/* output table similiar to one created in SQL can be made */
/* to show results coming from MBDS */

begin proc
curr-pos = kfs-r-ptr->kri-curr-pos; /* curr-pos used to hold actual
current position in the results
buffer so that kri-curr-pos can
be set back to this value when we
- exit this procedure */, .
allocate a new table-entry-info node; * :
read the attribute name from the response buffer;
determine the length of this name and store in new-tei-ptr->tei-name-len;
new-tei-ptr->tei-val-len = proc get-size(new-tei-ptr->tei-attr);
/* Get the max size that this attr can possibly take on */
new-tei-ptr->tei-col-len = proc max(new-tei-ptr-> tei-name-len,
- new-tei-ptr->tei-val-len);
/* Determine the actual column size in the output table */
thi-first-ent = new-tei-ptr; /* First entry for output table is equal
to the results we just obtained */
thi-curr-ent = new-tei-ptr; /* The current entry is also equal to these
: . resuits */
proc skipnameorval(); /* Skip over the attr value in response buffer
until the next attr name is hit */
temp-attr = next attr name in response buffer;
while (temp-attr <> thi-first-ent-> attr-name)
begin
allocate a new table-entry-info node; /*i.e., new-tei-ptr */
new-tei-ptr->tei-attr = temp-attr;
determine the length of this name and store

in new-tei-ptr-> tei-name-len;
new-tei-ptr->tei-val-len = proc get-size(new-tei-ptr->tei-attr);

/* Get the max size that this attr can possibly take on */
new-tei-ptr->tei-col-len = proc max(new-tei-ptr->tei-name-len,

new-tei-ptr->tei-val-len);

/* Determine the actual column size in the output table */
tbl-ptr->thi-curr-ent- > tei-next = new-tei-ptr;
tbl-ptr->thi-curr-ent = new-tei-ptr;
proc skipnameorval(); - _
temp-attr = next aitr name in response buffer;

end while
kfs-r-ptr->kri-curr-pos = curr-pos; /* Restore current position */
end proc :

171

G N A A N N N W W Ty
e . LR R A PN

o R atvl aARERE aith st atdE A e ek o

proc initialize()

/* This procedure accomplishes the following: */
/* (1) Sets kfs-r-ptr to the address of the current relational */
/* database */
/* (2) Sets kri-curr-pos to 1, the starting point in the response */
/* buffer */
/* (3) I this is the first time for a particular set of responses */
/* then an Output File is opened for write status; otherwise */
/* the Output File is opened for append status */
begin proc
set kfs-r-ptr to the address of the current relatxona? database;
kfs-r-ptr->kri-curr-pos = 1; /* Sets a pointer in the response array to N
the beginning of the array */ *

if (kfs-r-ptr->kri-status == FIRSTIME) /* If this is the first time
that this procedure has been
. called for this particular
- L . response.....then..... */
begin
open Output File for "write" status;
kfs-r-ptr->kri-status = FIRSTBUF; /* Change status to indicate that
the FIRST BUFFER is being

handled */
end if
else .

open Output File for "append" status; /* This is not the first time .
thru this procedure so we
need to append the results
to the results already in the
Output File */

end proc

170

Y
.

APPENDIX E - THE KFS PROGRAM SPECIFICATIONS

modaule kfs ()

/* This procedure accomplishes the following: */
/* (1) Calls initialize() */

/* (2) Calls fill-table-headings() */

/* (3) Calls one-hscreen-results() if the width of the */
/* output table is less than the width of the screen */
/* (4) Calls more() to output the results file if the last */

/* response buffer has been received */
/* (5) Calls finish() to free used memory after the la * /
/* . response buffer has been received */ .

”

begin module

proc initialize(); /* Set up structures and vanables for processmg */
proc fill-table-headings(); /* Get headings for relational output */ -
if (table-width <= OutputCols) /* If table size <= screen width */

proc one-hscreen-results();
else

proc all-hscreen-results(); /* This procedure has not been written */
if (last response buffer)

begin

proc more(); /* Output relational output file to screen */

proc finish(); /* Close out sturctures and variables and free space */
end if

end module

169

proc swap-files() ' -

/* This procedure swaps the contents of the future file with the */
/* contents of the current file. */
begin proc

curr-fp = &(k<-ptr->keri-files.nri-curr);
fut-fp = &(kc-ptr->kcri-files.nri-futr);
temp.fi-fid = curr-fp- >fi-fid;

strcpy (temp.fi-fname, curr-fp-> fi-fname);
curr-fp->fi-fid = fut-fp- >fi-fid;

strepy (curr-fp- >fi-fname, fut-fp->fi-fname); "

fut-fp->fi-fid = temp.fi-fid; *

gtrepy (fut-fp->fi-fname, temp.fi-fname); . N

end proc
-
=
-
-
g
168
e T e e e e e e s

while (ke-ptr->keri-curr-pos < (ke-ptr->keri-res-len) - 2)

begin while '
for (;responselkc-ptr->keri-curr-pos| != EMARK ;ke-ptr-> keri-curr-pos++)
; /* Skip the attribute name */
(kc-ptr->keri-curr-pos)++;
. for (val-len = O;response[kc-ptr->keri-curr-pos + val- 1en] '= EMARK;
- val-len ++)
i ; /* Find out how long the attribute value is */

/* Allocate storage space for the value */
temp-str = va.r-str-alloc(val-len + 1);
i=0 : : .

s

:. for (;response(kc-ptr->kcri-curr-pos| != EMARK;kc-ptr-> keri-curr-pos++)

begin for
/* Load the value into the future file */
putc(response|ke-ptr-> keri-curr-pos|, f-ptr- >ari-futr.fi-fid);
/* Load the value into the temp string *

2 temp-str{j++| = responselkc-ptr-> kcn-curr-pos];

a2 end for

. (kc-ptr->keri-curr-pos)++;

- putc(’0, f-ptr-> nri-futr.fi-fid);

temp-str{j| =

*num-values = *num-values + 1; /* Count the number of values */

/* Calculates the maximum value of those values returned so far */
max-ptr->maxi-val.dvi-int =
max(max-ptr->maxi-val.dvi-int, str-to-num(temp-str)};

- /* Calculates the minimum value of those values returned so far */
min-ptr->mini-val.dvi-int =

: min(min-ptr->mini-val.dvi-int, str-to-num(temp-str));

. free(temp-str);

y end while

fclose(f-ptr-> nri-futr.fi-fid); |

end proc

167

T r——— T T T T W e e

proc file-future-results()

/* This procedure accomplishes the following: */

/* (1) Removes the attribute names from the response. */
/* (2) Places the remaining attribute values into the */)
/* future-results-file. */

/* (3) Keeps track of how many sub-requests there are. */

/* (4) Calculates and stores max and min values. */
begin proc

max-ptr = &(kc-ptr->keri-max); /* Initialize pointer */
min-ptr = &(kc:ptr->kcri-min); /* Initialize pointer */
f-ptr = &(kc-ptr->keri-files); /* Initialize pointer */

if (kc-ptr- >keri-file-status == FIRSTTIME)
/* Do the following initialization */

begin if .. .
max-ptr->maxi-val.dvi-int = MINVAL:
min-ptr->mini-val.dvi-int = MAXVAL;
f-ptr- >nri-futr.fi-fid = fopen(f-ptr->nri-futr.fi-fname, "w");
ke-ptr->keri-file-status = RESTTIME;

end if

else
f-ptr- > nri-futr.fi-fid = fopen(f-ptr-> nri-futr.fi-fname, "a");

ke-ptr->keri-curr-pos = 1;
response = sql-ptr-> si-kfs-data.kfsi-rel.kri-response;
kc-ptr->keri-res-len = strlen(response);

/* Number of values in the returned result of the request */
num-values = &(kec-ptr->keri-num-values-ffile);

 pm
‘. 'l 'l s

166

/* loads the remainder of the request including the target list */
for (i = (kc-ptr->kcri-end-asterik + 1);
i != strlen(kc-ptr->keri-unfin-ret) +1; i++)
begin for
abdl-ptr-> ari-req(j| = kc-ptr->keri-unfin-ret[i};
I+
end for
abdl-ptr-> ari-req|j] =’ %
sql-ptr->si-subreg-stat = LASTSUBREQ;

.end proc

proc chk-if-last-response()

-
-

/ * This procedure accomplishes the following: : */

/* (1) Determines the length of the response. */

/* (2) Determines if this is the last response to a given request and */
/* returns a boolean indicating such. *
begin proc

/* Calculates response length */

for (response-length = 0;
sql-ptr->si-kfs-data.kfsi-rel.kri-response|response-length| != EOResult;
response-length++);
++response-length;

/* Checks if this is the last response */
if (sql-ptr->si-kfs-data.kfsi-rel.kri-response{response-length - 3|
== CSignal)
return(TRUE);
else /* It is not the last response */
return(FALSE);

end proc

3 165

rd

. Lt T,
2 P R P P

proc One-Conjunction (value)

/* This procedure accomplishes the following: */

/* (1) Builds a one conjunction ABDL request using a template */
/* provided by KMS. */

/* (2) This is accomplished by loading in the unfinished return */
/* up to the first asterik, loading in the value passed to */

/* the procedure and then loading in the remainder of the */
/* of the unfinished return. */

begin proc A '

abdl-ptr = sql-ptr->si-abdl-tran->ti-curr-req.ri-ab-req;
/* Set pointer to the current ABDL request */ :

for (i = 0; ke-ptr->keri-unfin-ret(i} = ASTERIK; i-++)
~ kc-ptr-> keri-beg-asterik = i; /* Mark postion of the first asterik */

/* Calculate the.maximum length of the finished request. */
kc-ptr->kcri-req-len = (strien(kc-ptr->kcri-unfin-ret) + INTSIZE);
for (i = kc-ptr->kcri-req-len; ke-ptr-> keri-unfin-retfi} != ASTERIK; i--)

kc-ptr->kcri-end-asterik = i; /* Mark the position of the last asterik. */
ke-ptr->kcri-files.nri-curr.fi-fid =
fopen(kc-ptr->kcri-files.nri-curr.fi-fname, "r");

/* Allocate space for the finished result. */
abdl-ptr->ari-req = var-str-alloc(kc-ptr->keri-reg-len);

/* load request up to the first asterik */

for (i = 0; i != kc-ptr->keri-beg-asterik; i++)
abdl-ptr->ari-req(i] = ke-ptr->keri-unfin-ret|i);

i=i

/* loads in the min or max value */
num-to-str (value, value-str);
for (k = 0; k != strlen(value-str); k++)
begin for
abdl-ptr->ari-req|j; = value-str(kl;
J—=

end for

164

LALEAAR el ansh e

transactions directly from the terminal a message will be

displayed reminding him of the correct format and
special characters that must be used. Since the
transaction list stores both creates and queries, two
different access methads must be employed to send the two
types of transactions to the KMS. Therefore, = our

discussion branches to handle the two processes the user

L]

will encounter. :

1. Processing Creates

When the user has specified the filename of creates
(if the input ~;s fqnm a file) or typed in a set of creates
(if the inp;t~‘is krom the terminaly, further user
intervention 1is not required. It does not make sense to
process only a single create out of .a set of creates that
produce’ a new database since they all must be processed at
once and 1in a specific order. Therefore, the
transaction 1list of creafes is automatically executed by
the system. Since all the creates must be sent at once to
form a new database, control should not return to MENU2
where further transactions can be input. Instead,
control returns to MENU1l where the user can pick a new

operation or new database.

2. FErocessing GQueries
In this case, after the user has specified his

mode of input, he will conduct an interactive session

with the system. First, all queries will be listed to the

178

screaen. As the queries are listed from the transaction

list, a number is assigned to each query in ascending
‘order starting with the number one. The number is
printed on the screen beside the first line of each query.
Next, an access menu, called MENU3, is displayed which

looks like the following:

Pick the number or letter of the action desired
{num) - execute one of the preceding queries
(d) - redisplay the list of queries
-~ (x) - return to the previogs menu

ACTION ———=>

Since the displayed queries might éxceed tﬁe
vertical height of the screen, only a screen full of
queries will be displayed at one time. I+ the desired
query 1is not on the current page, the user can hit the
'"RETURN key to display the next page of queries. If the user
only wishes to pr;nt a certain number of lines, then after
the first page is displayed the user can enter a number and

only that many lines of queries will be displayed. If the

user is only looking for certain queries, once he has
found them he does not have to page through the entire
transaction list. By hitting the g key, control will

break from 1listing queries and MENU3 will be displayed.
Under normal conditions when the end of the transaction list

has been viewed, MENUZ will appear.

179

SRR ptaliie Sy Mpde Sty Mt e/ At Dl M uuE A S A A S MO ML A VS S R R S T TR R T R TR e e

Since queries are independent items, the order in
which they are processed does not matter. The use; has
the choice of executing however many queries he desires.
A loop causes the query listing and MENUZ to be
redisplayed after any query has been executed so that
further choices may made. Unlike processing creates,
control returns to MENU2 because the user may have more than
one file of queries against a pariicular database or he
ma¢ wish to input some extra queries ; directly from the .
terminal. Once he has finished processing on this

particular database, he can exit back to MENU1.' to either n

change operations or exit to the operating system.

C. DATA FORMAT

When reading transactions from a file or the terminal,
there must be some way of distinguishing when one
transactioﬁ ends and the next begins. Transactions are

allowed to span multiple 1lines as evidenced by a typical

nested S0OL select. Since the system is reading the input
line by 1line, an end-of-transaction flag is needed. In
our system this flag is the "@" character. Likewise, the

system needs to know when the end of the input stream bhas
been reached. In our system the end-of-file flag is
represented by the "#%" character. The following is an
example of an input stream with the necessary flags that

must be included when multiple transactions are entered:

182

L

ASAW ?‘. (A DAL AL 1) te 2 tp 00 N TR AR M M A Sl VI A, At St andt il AE G A A N A R A S T i - -
TRANSACTION #1
@
TRANSACTION #2
@
I3 *
) Q
‘ . TRANSACTION #n
’ %
D. RESULTS & : e
X When the results of the executed:transactions are sent o
back to the user’'s screen, they will be displayed exactly
the same way gugries_ are displayed (See section B-2). N

- -

The following consolidates the user 's options:

: KEY : FUNCTION :
? return : displays next screenful of autput :
3 {number) ; displays only (number) lines of ocutput ;
; q ; stops ocutput, MENUl1l is then redisplayéd ;
+ —_——

181

...............
..............

. L P T F T T . e e, et .- . e
P R TR S -, o DRIV BV B e . PR - LR Y
. o . - oL te T P L e Tt v e e T e, st S
D - N e I N <. .

o Te T T e gt gy TV LT b S LAV NWLUEUN

LN S A R sk e it S Wil Sl vind il Al Dl A SR M A ~Slir-ah A ol SN A ol SO PR gl Sunaaii g

a

T,T IR VL

LIST OF REFERENCES

(1) Demurjian, S. A. and Hsiao, D. K., "New Directions in
Database—-Systems Research and Development," 'in the
Proceedings of the New Directions in Computing
Conference, Trondheim, Norway, August, 1985; also in

Technical Report, NPS-52-85-001, Naval Postgraduate
Schoel, Maonterey, California, February 198S.

[N LR

(2) Macy, G., Design and Analysis of an SGL Interface for a

Multi-Backend Database System, M. S. Thesis, Naval

Postgraduate School, Meonterey, California, March 1984.

RALPRE TAL LAY Aty

(3) Rollins, R., Design and Analysis of a Complete

——— -——ay S

Relational Interface for a ‘Multi-Backend ~Database

System, M. S. Thesis, Naval Postgraduate School,
. Monterey, California, June 1984, -

(4) Hsiao, D. K., and Harary, F., "A Formal System for
Information Retrieval from Files,” Communications of

the ACM, Vol. 13, No. 2, February 1978, also in
Carrigenda, Vol .13., No. 4, April 1970.

(3} Wong, E., and Chiang, T. C., "Canonical Structure in
Attribute Based File Organization,"” Communications uf
the ACM, September 1971.

AADE: S AOREA AL

T

- o
L
.

(6) Rothnie, J. B. Jr., "Attribute Based File 0Organization
in a Faged Memory Environment," Communications of the

ACM, Vol. 17, No. 2, February 1974.

",-
-‘0'.)

(7) The Ohio State University, Columbus, 0Ohio, Technical
Report No. OSU-CISRC-TR-77-7, DBC Saftware Requirements

-——) - e e e — e e T e s S aemmE=Ees

D. K. Hsiao, November 1977.

(8) Naval Postgraduate Schaol, Manterey, California,
Technical Report, NFPSS52-85-@@2, A Multi-Backend

s e e e o e e e i i e e v e s e s . i . . e S e i ey e e S

and Hardware Gains, by S. A. Demurjian, D. K. Hsiao and

enin e e s em e SR em I

J. Menon, February 198S.

(9) Astrahan, M. M., et al., "System R: Relational
Approach to Database Management," ACM Transactions on

Database Systems, Vol. 1, No. 2, June 197&.

(19) Boehm, B. W., Software Engineering Economics.,

Prentice-Hall, 1981.

- (11) Naval Fostgraduate School , Monterey, California,
. Technical Report, NPSS52-84-012, Software Engineering

182

- “w ~a -
» » -
S

- A4 -

(12)

(17)

(18)

(19

Jechniques for Large-Scale Database Systems as Applied
a M

to the Implementation of Multi-Backend Database
System, by Ali 0Orooji, Douglas Kerr and Daivid K.

Hsiao, August 1984,

The Ghio State University, Columbus, Ohio, fechnical
Report No. O0SU-CISRC-TR-82-1, The Implementation cf a

e e s s e e A A A e A

MDBS, by D. S. Kerr et al, January 1982.

Kernighan, B. W., and Ritchie, D. M., The C Programming
Language, Prentice-Hall, 1978.

Howden, W. E., “Reliability of the Path Analysis and
Testing Strategy,"” IEEE Transactions on Software

——— e - — el e s o D

Generator, Bell Labaoratories, Murray Hill, New Jersey,

— e iy

July 1978.

Date, C. J., An Introduction to Database Systems, 3d

ed., Addison Wesley, 1982.

Shienbrood, E., More - A File Persual Filter for CRT

Viewing, Bell Laboratories, Murray Hill, New Jersey,

July 1978.

Benson, T. P. and Wentz, G. L., The Design

an
Implementation of a Hierarchia Interface for th

Multi~-Lingual Database System M. S. Thesis, Naval

Postgraduate School, Monterey, California, June 198S.

183

T O RTETRNT .

e® Lt Y on " ~
N R A A WA e

