
7 RD-RI59 59 THE DESIGN AND IMPLEMENTATION
OF A RELATIONAL INTERFACE

L/2
FOR THE MULTI-LINGUAL DATABASE SYSTEM(U) NAVAL

POSTGRADUATE SCHOOL MONTEREY CA G R KLOEPPING ET AL.

UNCLASSIFIED JUN 85 F/G 9/2 LEEE hEhhE

111.0 1,

11111=L1

11111- .4i 1111.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Gfr STANDAROS-963A

- w w __ __

o

In

NAVAL POSTORADUATESCHOOL
I Monterey, California

SEP 2 4 1985

THESIS A

THE DESIGN AND IMPLEMENTATION OF
A RELATIONAL INTERFACE FOR

THE MULTI-LINGUAL DATABASE SYSTEM

by
Gary R. Kloepping

and
John F. Mack

L,,
June 1985

Thesis Advisor: David K. Hsiao

Approved for public release; distribution is unlimited

85 9 24 (.9,

SECURITY CLASSIFICATION OF TIlS 1114 PGtkm beta Ea..n_ __o

REPORT DOCUMENTATION PAGE BEFORA CST FORM
,. O NUMER 2. a VT A ION NO BRECIPINTS CATALOG-TNUM FR

4. TITLE (mand Subtitle) S. TypE OF REPORT a PERIOD COVERED

The Design and Implementation Master's Thesis
of A Relational Interface For the Multi- .Tune 1985
Lingual Database System S. PERFORMING ORG. REPORT NUMBER

7. AuTOR(o) S. CONTRACT OR GRANT NUMIFR(#)

Gary R. Kloepping and
John F. Mack

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA A WORK UNIT NUMBERS

Naval Postgraduate School
Monterey, CA 93943

II. CON"OLLING OFFICE NAME AND ADDRESS 12. REPORT OATZ
- June 1985

Naval Postgraduate School 13.NUMBEROFAGES

Monterey, CA 93943
14. MONITORING AGENCY NAME & AOORESS(I different frm Conurolllng Office) IS. SECURITY CLASS. (of tale report)

Unclassified
S. OECLASSIPrICATION/ OOWNGRAOING

SCH IEOUE

14. OSTRIBUTION STATEMENT (of thi Report)

" Approved for public release; distribution is unlimited

17. OISTRIBUTION STATEMENT (of the abstract entered In Block 20, if dlffermnt tea Report)

1. SUPPLEMENTARY NOTES

19. IEY WOROS (Continue on reverse side If neceesry aid Identify by block nmber)

Multi-Lingual Database System; Multi-Backend Data Base System;
Relational Database; Relational/SQL Interface

20. ABSTRACT (Continue an reverse side II neceeeary and Identify by block mm)ber)

Traditionally, the design and implementation of a conventional
database system begins with the choice of a data model followed
by the specification of a model-based data language. Thus, the
database system is restricted to a single data model and a
specific data language. An alternative to this traditional
approach to database-system development is the multi-lingual data-

*.. base system (MLDS). This alternative approach enables the user
(Continued)

DO ,' 1473 E.D.TI ON OP IN 5 OOSOLETE
N .4 1473t-0.-60

S N 0102. LF- 014- 6601 SECURITY CLASSIFICATION OF THIS PAGE (Wlo Data 8ntere')

1

- * - . . .' .* -. l. . i
"

' ' . . .

SaUiMIV CLAM ICAI@U OF T"14 PAGE M60 DUO eb

ABSTRACT (Continued)

to access and manage a large collection of databases via:
several data models and their corresponding data language with-
out the iforementioned restriction.

In this thesis, we present the specification and implementation
of a relational/SQL language calls into attribute-based date
language (ABDL) requests. We describe the software engineering

* aspects of our implementation and an overview of the four
modules which comprise our relational/SQL language interface.

*~ 5~ 102- LF- 014- 6601

SECURITY CLASSPICATIOW OF ThIS PAGEWben Dat0 Entered)

2

-. *

" -. -. ' . .. ,. . - ,rx .r - - u r-.- w- :, - . .7.

Approved for Public Release, Distribution Unlimited.

The Design and Implementation of a
Relational Interface for the
Multi-Lingual Database System

by

Gary R. Kloapping
Captain, United States Army o

B.S., United States Military Academy, 1976 cop

and

John :F. Mack -

Captain, United States Army
B.S., United States Military Aqademy, 1978 -Z

Submitted in partial fulfillment of the Li . J . t U
requirements for the degree of

. .-o..

MASTV.R:OF SCIENCE IN COMPUTER SCIENCE ,y

from the ..from h viiabiity Codes

NAVAL POSTGRADUATE SCHOOL j a;v:i~dor
June 1985 ''pccial

Authors: - __

kGary R. Kdp

John F. Mack

Approved by:------- zTesi
SK. Hsiao, Thesis Advisor

-1t A. De ii ape,2 Second Reader

B. J. MacLennan, Chairman,
Department of Computer Science

Kneala T. Ma 1
Dean of Information and Pol'icy ences

3

- - * * b~ b . * * . -

ABSTRACT

Traditionally, the design and implementation of a

conventional database system begins with the choice of a

data model followed by the specification of a model-based

data language. Thus, the database system is restricted to a

single data model and a specific data language. An

alternative to this traditional approach to database-system

development is the multi-lingual database system (MLDS).

This alternative approach enables the user to access aRd

manage a large collection of databases via several data

models and heir corresponding data languages without the

aforementioned restriction.

this thesis we pesen, the specification and

implementation of a relational/SQL language interface for

the MLDS. Specifically, ww present the specification and

implementation of an interface which translates SQL language

calls into attribute-based data language (ADDL) requests.

We describe the software engineering aspects of our

implementation and an overview of the four modules which

comprise our relational/SQL language interface.

.44

4

TABLE OF CONTENTS

I. INTRODUCTION 12

A. MOTIVATION 12

B. THE MULTI-LINGUAL DATABASE SYSTEM 15

C. THE KERNEL DATA MODEL AND LANGUAGE 17

D. THE MULTI-BACKEND DATABASE SYSTEM 18

E. THESIS OVERVIEW 20

II. SOFTWARE ENGINEERING OF A LANGUAGE

INTERFACE 22

A. DE$IGN IOALS u 22-

B. AN APPROACH TO THE DESIGN 23

1. The Implementation Strategy 23

2. Techniques for Software

Development 24

3. Characteristics of the Interface

Software 26

C. A CRITIQUE OF THE DESIGN 28

D.- THE DATA STRUCTURE 30

1. Data Shared by All Users 30

2. Data Specific to Each User 34

E. THE ORGANIZATION OF THE NEXT FOUR

CHAPTERS 37

III. THE LANGUAGE INTERFACE LAYER (LIL) 38

A. THE LIL PROCESS 39

1. Important Data Structures 39

5

,_ , ' ;'' ,; , . .- , •................

2. Procudures and Functions 41

A. Initialization 41

b. Creating the Transaction

List 42

C. Accessing the Transaction

List 43

(1) Sending Creates to the

-MS 44

(2) Sending Queeies to the

KMS 44

..d. .Calling the KC 45

0. Wrapping-up 45

B. SHORTCOMINGS 46

IV. THE KERNEL MAPPING SYSTEM (KMS) 47

A. AN OVERVIEW OF THE MAPPING PROCESS 47

1. The KMS Parser / Translator 47

2. The KMS Data Structures 49

B. FACILITIES PROVIDED BY THE

IMPLEMENTATION 52

1. Database Definitions 52

2. Database Manipulations 54

a. The SQL SELECT to the ABDL

RETRIEVE 55

b. The SOL INSERT to the ABDL

INSERT 58

6

.. ,..... d *.*t* ,

c. The SQL UPDATE to the ABDL

UPDATE f.... 59

d. From the SQL DELETE to the

ABDL DELETE: An Example 59

C. FACILITIES NOT PROVIDED BY THE

IPL.EMIENTATION 65

1. Interfacing Users 66

2. Updating Multiple Attributes 68

3. Retrieving Qualified groups 67

4. Retrieving Computed Values 67

5. .Eliminating Duplicates 68

6. Retrieval Using UNION 68

V. THE KERNEL CONTROLLER 69

A. AN OVERVIEW OF THE KC DATA

STRUCTURES 71

B. KC PROCEDURES AND FUNCTIONS 77

1. The Kernel-Controller 77

2. The Creation of a New Database 78

3. Insert, Delete, Update and

Retrieve-Common Requests 78

4. Retrieve Requests 79

a. The N conjunction

Procedure 82

b. The Procedures

Not_in_conjunction

and One-conjunction 85

7

- : . . - +

VI. THE KERNEL FORMATTING SYSTEM (KFS) 89

A. THE KFS PROCESS 98

1. Overview of the KFS Data

Structures 91

2. KFS Procedures and Functions 95

a. Initializing 95

b. Filling the Table Headings 95

co Creati'ng the Tagle in the

Output File ; 97

d. Displaying the Table 99

--e. Cleaning Up 99

B. A LIMITATION OF THE KFS 100

VII. CONCLUSION 101

APPENDIX A - SCHEMATIC OF THE DATA

STRUCTURES 104

APPENDIX B - THE LIL PROGRAM SPECIFICATIONS 122

APPENDIX C - THE KMS PROGRAM SPECIFICATIONS 129

APPENDIX D - THE KC PROGRAM SPECIFICATIONS 148

APPENDIX E - THE KFS PROGRAM SPECIFICATIONS 169

APPENDIX F - THE SQL USERS' MANUAL 176

A. OVERVIEW 176

B. USING THE SYSTEM 176

1. Processing Creates 178

2. Processing Queries 178

C. DATA FORMAT 180

D. RESULTS 181

8

LIST OF REFERENCES 18$2

INITIAL DISTRIBUTION LIST 184

9

. q oi = ",o'
=

9. " . "o ' •" q ° "• ,
° • °

• •
°

- •
• "

" q " , ".- .
-

.°° -, -° *% . • o

LIST OF FIGURES

Figure 1. The Multi-Lingual Database

System 16

Figure 2. The Multi-Backend Database

System 19

Figure 3. The dbid node Data Structure 31

Figure 4. The reldbid-node Data

Structure 31

-Figure 5. The rel-node Data Structure 32

Figure 6. The rattr-node Data Structure 3

Figure 7. .The user_intFo Data Structure 34

Figure 8. The liinfo Data Structure 35

Figure 9. The sqlinfo Data Structure 35

Figure 10. The traninfo Data Structure 39

Figure 11. The reljreqinfo Data

Structure 40

Figure 12. The relkmsinfo Data

Structure 50

Figure 13. Additional KMS Data Structures 51

Figure 14. The Relational Database Schema 54

Figure 15. The sqlinfo Data Structure 71

Figure 16. The traninfo Data Structure 72

Figure 17. The ab-reqinfo Data Structure 73

Figure 18. The kc-relinfo Data Structure 74

Figure 19. The ABDL Retrieve Generated by the

Procedure Nconjunction 5

10

Figure 28. The ABDL Retrieve Generated by the

Procedure Not in conjunction 87

Figure 21. The ABDL Retrieve Generated by the

Procedure One_conjunction 88

Figure 22. The kfsyrelinfo Data Structure 91

Figure 23. The table-headerinfo Data

Structure 93

Figure 24. The tableentry info bata

Structure I 94

Figure 25. The Relational Database Schema

Data Structures 106

Figure 26. The User Data Structures 109

11

Hence, the requirements specification is derived from the

above research.

We have developed the design of the system using

the above specification. A Systems Specification Language

(SSL) [Re4. 123 is used extensively during this phase. The

SSL has permitted us to approach the design from a very

high-level, abstract perspective by

(1) enhancing communications &mong progra- team
members,

(2) reducing dependence on any one individual, and

(3) producing complete and accurate documentation
of the design.

Furthermore, the SSL has allowed us to make an easy

transition from the design phase to the coding phase.

We have used the C programming language [Ref. 13) to

translate the design into executable code. Initially, we

were not conversant in the language. However, our

background in Pascal and the simple syntax of C have made it

easy for us to learn. The biggest advantage of using C is

the programming environment that it resides (i.e., the UNIX

operating system). This environment has permitted us to

partition the SQL interface and then manage these parts

in an effective and efficient manner. Perhaps, the only

disadvantage with using C is the poor error diagnostics,

having made debugging difficult. There is an on-line

debugger available for use with C in UNIX for debugging.

We have avoided this option and instead used

25

results. The "black box" is then decomposed into its

four modules (i.e., LIL, KMS, KC, and KFS). These

modules, in turn, are further decomposed into the

necessary functions and procedures to accomplish the

appropriate tasks.

2. Techniguj for Software Development

In order to achieve our design goals, it is

important to employ effective I software engineering

techniques during all phases of the: software development

life-cycle. These phases, as defin3d by Ledthrum [Ref. 11:

p. 273, are as follows:

(1) Requirements Specification - This phase involves
stating the purpose of the software: what is to be
done, not how it is to be done.

(2) Design - During this phase an algorithm is devised
to carry out the specification produced in the
previous phase. That is, how to implement the sys-
tem which is specified during this phase.

(3) Coding - During this phase the design is translated
into a programming language.

(4) Validation - During this phase it is ensured
that the developed system functions as originally
intended. That is, it is validated that the system
actually performs what it is supposed to do.

The first phase of the life-cycle has already

been performed. The research done by Demuriian and Hsiao

[Ref. 1) has described the motivation, goals, and

structure of the MLDS. The research conducted by Macy

[Ref. 2) and Rollins [Ref. 3) has extended this work to

describe in detail the purpose of the SQL interface.

24

In addition, we intend to make our interface

transparent to the user. For example, an employee in a

corporate environment with previous experience with SQL

could log into our system, issue an SQL request and

receive result data in a relational format, i.e., a

table. The employee requires no training in ABDL or MBDS

procedures prior to utilizing the system.

B. AN APPROACH TO THE DESIGN

1. The Implementation Strategy

There is a number of different strategies we could

have employed ::in the implementation of the SQL language

interface. For example, there are the build-it-twice

full-prototype approach, the level-by-level top-down

approach, the incremental development approach, and the

advancemanship approach [Ref. 10: pp. 41-463. We have

predicated our choice on minimizing the "software-crisis"

as explained by Boehm [Ref. 10: pp. 14-313.

The strategy we have decided upon is the level-by-

level top-down approach. Our choice is based on, first,

a time constraint. The interface has to be developed

within a specified time, specifically, by the time we

graduate. And second, this approach lends itself to the

natural evolution of the interface. The system is

initially thought of as a "black box" (see Figure 1) that

accepts SOL transactions and then returns the appropriate

23,

•"., . -. -. , ., . . - . ."-. -' . . .'. - • - - - - - - . '. ". -. . ".4.--. .

I I. ,EWIAR' gJNNgg_.NN QE a L_.Q BQg ITEjRFACE

In this chapter, we discuss the various software

engineering aspects of developing a language interface.

First, we describe our design goals. Second, we outline

the design approach that we took to implement the interface.

Included in this section are S discussions of our

imlilementation strategy, our :software development

techniques, and salient characteristics o5 the language

interface software. Then, we provide a critique of our

implementation. Fourth, we describe the data structures

used in the interface. And finally, we provide an

organizational description of the next four chapters.

A. DESIGN GOALS

We are motivated to implement an SQL interface for a

MLDS using MBDS as the kernel database system, the

attribute-based data model as the kernel data model, and

ABDL as the kernel data language. It is important to note

that we do not propose changes to the kernel database system

or language. Instead, our implementation resides entirely

in the host computer. All user transactions in SQL are

processed in the SQL interface. MBDS continues to

receive and process requests in the syntax and semantics of

ABDL.

22

Q-77~ ~~~ 7771 1.,1

Appendices B, C, D. and E, respectively. Appendix F is a

users' manual for the system. The specifications of the

source data language, -SQL, and of the target data

la nguage, AbDL, can be found in either [Ref. 93 or

CRe4. 33.

21

Performance gains are realized by increasing the number

of backends. If the size of the database and the size

of the responses to the transactions remain constant, then

MBDS produces a reciprocal decrease in the response

times for the user transactions when the number of

backends is increased. On the other hand, if the number of

backends is increased proportionally with the increase in

databases and responses, then MBVS produces .nvariant

response times for the same transactions. A more

detailed discussion of MBDS can be found in [Ref. B3.

E. THESIS OiERQ.EW

The organization of our thesis is as follows: In

Chapter 2, we discuss the software engineering aspects of

our implementation. This includes a discussion of our

design approach as well as a review of the gfobal data

structures used for the implementation. In Chapter 3, we

outline the functionality of the language interface

layer. In Chapter 4, we articulate the processes

constituting the kernel mapping system. In Chapter 5, we

provide an overview of the kernel controller. In Chapter

6, we describe the kernel formatting system. In Chapter

7, we conclude the thesis.

Appendix A covers the data structures diagrams for the

shared and local data. The detailed specifications of the

interface modules, i.e., LIL, KMS, KC, and KFS, are given in

20

'." ."". " "," ,. I
°

' - " ," ". - " ° - " o" " - " " ' - "' " - " " " , - " " -," " , " "- '-. "- "° °'." . .'-° °-° ." • " , , ' .. " ,. - ° -. - " ,
. " . .. ,- ... ° '..' , -. " ' .''...- . ..-. ...- -.-.-.'*'. .. ',.. '', - " ,. ." ,,.,.

fashion. These backends have identical hardware and

replicated software and their own disk systems. In a

multiple backend configuration, there is a backend

controller, which is responsible for supervising 'the

execution of database transactions and for interfacing

with the hosts and users. The backends perform the

database operations with the database stored on the disk

system of the bacIkends. The controIller and backends are

cofinected by a communication bus. Users access the system

through either the hosts or the controller directly (See

Figure 2).

I Backend Store I

.1 Backend Store2

K5Lackend
Prcessor 2

To I ~ 3ckoin~d
host Cotrollr

Backend StoreN

-,:Z(.ackcnu,
-. I'rnces'orMN

Cu mm unicat ion'
Bus

Figure 2. The Multi-Backend Database System.

19

supporting the required data-model transformations and

data-language translations for the language interfaces.

i The attribute-based data model proposed by Hsiao

"Ref. 43, extended by Wong CRef. 53, and studied by Rothnie

CRef. 63, along with the attribute-based data language

(ABDL), defined by Banerjee ERef. 73, have been shown to be

acceptable candidates for the kernel data model and kernel

data language, respectively.

I Why is the determination of a kqrnel data model and

kernel data language so important for a MLDS? No matter how

multi-lingual the MLDS may be, if the underlying database

system (i.e., KDS) is slow and inefficient, then the

interfaces may be rendered useless and untimely. Hence,

it is important that the kernel data model and kernel

language be supported by a high-performance and great-

capacity database system. Currently, only the

attribute-based data model and the attribute-based data

P language are supported by such a system. This system is

the multi-backend database system (MBDS) ERef. 13.

D. THE MULTI-BACKEND DATABASE SYSTEM

The multi-backend database system (MBDS) has been

designed to overcome the performance problems and upgrade

issues related to the traditional approach of database

system desigro. This goal is realized through the

utilization of multiple backends connected in a parallel

,.Is

I_. , . , . . - % . o . - . % " ° - o % • "% *"% -.-. . ° ".•% ° .°,. . "

modules are required for each other language interface of

the MLDS. For example, there are four sets of these

modules where one set is for the relational/SQL language

interface, one for the hierarchical/DL/I language

interface, one for the network/CODASYL language

interface, and the last one for the entity-

relationship/Daplex language interface. However, if the

user writes the transaction in the n#tive mode, i.e-- in KDL,

tho*re is no need of any interface.

In our implementation of the relational/SQL

language interface, we develop the code for the four

modules. However, we do not integrate these modules with the

KDS as shown in Figure 1. The Laboratory of Database

Systems Research at the Naval Postgraduate School is in the

process of procuring new computer equipment for the KDS.

When the equipment is installed, the KDS will be ported over

to the new equipment. The MLDS software will then be

integrated with the KDS. Although not a very difficult

undertaking, it may be time consuming.

C. THE KERNEL DATA MODEL AND LANGUAGE

The choice of a kernel data model and a kernel data

language is the key decision in the development of a

multi-lingual database system. The overriding question,

when making such a choice, is whether the kernel data

model and kernel data language is capable of

17

....

.

LIDL KCDMD

*D User Data Niodel
VDL User Data Language
LIL Language Interface Layer
KNIS Ke rnel Miapping S'stem
KC Kernel Controller
KFS Kernel Formatting System
KDNI Kernel Data Nludel.
KDL Kernel Data Langruage
KDS Kernel Databale System

Figuri 1.' Th* Multi-Lingual Database System.

the KDM database definition, it informs the KC. The KC

then notifies the user via the LIL that the database

definition has been processed and that the loading of the

database records may begin. In the second task, the I(MS

sends the KDL transactions to the KC. When the KC

receives the KDL transactions, it forwards them to the

FKDS for execution. Upon completion, the KDS sends the

results in KDM form back to the KC. The KC routes the

results to the kernel formatting systemT (KFS). The KFS

reformats the results from KDM form to UDM form. The KFS

then displays the results in the correct UDM form via the

The four modules, LIL, IMS, KC, and KFS, are

collectively known as the langyogq interface. Four similar

16,

[Ref. 33, who have showed the feasibility of this particular

interface in a MLDS.

B. THE MULTI-LINGUAL DATABASE SYSTEM

A detailed discussion of each of the components of a

MLDS is provided in subsequent chapters. In this section we

provide an overview of the organization of a MLDS. This

can assist the reader in understanding how the

different components of the MLDS are related.

Figure 1 shows the system structure of a multi-

lingual database system. The user interacts with the

system through the lagkg interface layer (LIL) using a

chosen user data model (UDM) to issue transactions written

in a corresponding model-based user data language (UDL).

The LIL routes the user transactions to the kernel

%Ming syaem (KMS). The KMS performs one of two

possible tasks. First, the KMS transforms a UDM-based

database definition to a database definition of the kernel

data model (KDM) when the user specifies that a new database

is to be created. When the user specifies that a UDL

transaction is to be executed, the KMS translates the UDL

transaction to a transaction in the kernel data languacg

(KDL). In the first task, the KMS forwards the KDM data

definition to the kernel controller (KC). The KC, in turn,

sends the KDM database definition to the kernel database

system (KDS). When the KDS is finished with processing

15

~~V- * -z

The MLDS provides the same results even if the data language

of the 'transaction is originated at a different database

system.

A second advantage deal s with the economy and

effectiveness of hardware upgrade. Frequently, the

hardware supporting the database system is upgraded

because of technological advancements or system

demand. With the tradiItional approach, this type of

hardware upgrade has to be provided for all of the different

database systems in use, so that all of the users can

experience system Rerformance improvements. :This is not

the case in MLDS, where only the upgrade of a single

system is necessary. In a MLDS, the benefits of a hardware

upgrade are uniformly distributed across all users, despite

their use of different models and data languages.

Thirdly, a multi-lingual database system allows users

to explore the desirable features of the different data

models and then use these to better support their

applications. This is possible because MLDS supports a

variety of databases structured in any of the well-known

data models.

It is apparent that there exists ample motivation to

develop a multi-lingual database system with many data

model/data language interf&ces. In this thesis, we are

developing a relational/SQL languaca interface for the MLDS.

We are extending the work of Macy CRef. 2) and Rollins

14

., , * . .-.: ,........*.,. ...*. : .

which supports the relational model and the relational-

model -based data language, Structured English Query

Language (SQL). The result of this traditional approach

to database system development is a homogeneous database

system that restricts the user to a single data model and a

specific model-based data language.

An ,unconventional approach to database system

development,: referred to: as thel Multi-linouald: atabase

ay'fem (MLDS) CRef. 13, alleviates: the aforementioned

restriction. This new system affords the user the ability

to access and manage a large collection of databases via

several data models and their corresponding data languages.

The design goals of MLDS involve developing a system

that is accessible via a relational/SQL interface, an

hierarchical/DL/I interface, a network/CODASYL

interface, and an entity-relationship/Daplex interface.

There is a number of advantages in developing such a

system. Perhaps the most practical of these involves the

reusability of database transactions developed on an

existing database system. In MLDS, there is no need

for the user to convert a transaction from one data

language to another data language. The MLDS permits the

running of database transactions written in different data

languages. Hence, the user does not have to perform

either a manual or automated translation of an existing

transaction in order to execute the transaction in MLDS.

I1

-. .' L- -'- - -**" .- w .. ' *-*. * -. --. . * -'*- _ ' -.- o -W -h -. o- ' . , -- -

I

I. INTRDUCTIOQN

A. MOTIVATION

During the past twenty years database systems have been

designed and implemented using what we refer to as

the traditional approach. :The first~step in the traditional

approach involves choosing a data ,model. Candidate data

.models include the relational data model, the hierarchical

data model, the network data model, the entity-relationship

data model, or the attribute-based data model to name a few.

The second step specifies a model-based data language, e.g.,

SQL or QUEL for the relational data model, or Daplex for the

entity-relationship data model.

A number of database systems have been developed using

* this methodology. For example, there is IBM's

Information Management System (IMS) since the sixties,

which supports the hierarchical data model and the

hierarchical-model-based data language, Data Language I

(DL/I). Sperry Univac has introduced the DMS-1100 in the

early seventies, which supports.the network data model and

the network-model-based data language, CODASYL Data

Manipulation Language (CODASYL-DML). And more recently,

there has been IBM's introduction of the SQL/Data System

12

conditional compilation and diagnostic print statements

to aid in the debugging process. To validate our

system we have used a traditional testing technique,

i.e., path testing [Ref. 143. We have checked boundary

cases such as the nested select and the single select.

And we have tested those cases considered "normal". It

is noteworthy to mention that testing, as we have done it,

does not prove the system correct, But can only -indicate

the absence of problems with the- cases that have been

tested.

3. Characteristics of the Interface Software

In order for the SQL interface to be successful, we

have realized that it must be well designed and well

structured. Hence, we are cognizant of certain

characteristics that the interface must possess.

Specifically, it must be simple. In other words, it must be

easy to read and comprehend. The C code we have written

has this characteristic. For instance, we often write the

code with extra lines to avoid shorthand notations

available in C. These extra lines have made the

difference between comprehensible code and cryptic

notations.

The interface software also must be understandable.

This must be true to the extent that a maintenance

programmer, for example, can easily grasp the

functionality of the interface and the relation between it

26

-------------------------------"

and the other pieces of the system. Our software

possesses this characteristic, and does not have any hidden

side-effects that could pose problems months or years from

now. As a matter of fact, we have intentionally

minimized the interaction between procedures to alleviate

this problem.

The interface must also be mainiainable. This is

important iri light of the fact tAat almost 70% bf all of

th software life-cycle costs are incurred after the

software becomes operational, i.e., in the maintenance

phase. There are software engineering techniques we

employed that have given the SQL interface this

characteristic. For example, we require programmers to

document changes to the interface code when the change is

made. Hence, maintenance programmers have current

documentation at all times. The problem of trying to

figure out the functionality of a program with dated

documentation is alleviated. We also required the

programmers to update their SSL specification as the code is

being changed. Thus, the SSL specification consistently

corresponds to the actual code. In addition, the data

structures are designed to be general. Thus, it is an easy

task to modify or rectify these structures to meet the

demands of an evolving system.

The research conducted by Demurjian and Hsiao

CRef. 1] provides a high-level specification of the MLDS.

27

o~. t. .°."-. • " ' " . . .-X- '" ".",' -".'. " .' .".-.- ' : , v)."--"''''...-,'. .'. 'v "'- '

The theses written by Macy [Ref. 23 and Rollins [Ref. 33

extend the above work and provide a more detailed

specification of an SQL language interface. This

thesis outlines the actual implementation of an SQL

interface. The appendices provide the specification SSL

for this implementation.

A final characteristic'that an SQL interface should

have is extensibility. A software Aroduct must be designed

in-a manner that permits the easy mooification and addition

of code. In this light, we have placed "stubs" in the

correct locations of the KFS to permit the easy

insertion of the code needed to handle multiple

horizontal screens of output. In addition, we have

designed our data structures in a- manner that will

permit subsequent programmers to easily extend them to

handle not only multiple users, but also other language

interfaces.

C. A CRITIQUE OF THE DESIGN

Our implementation of the SQL interface possesses all of

the elements of a successful software product. As noted

previously, it is simple, understandable, maintainable, and

extensible. Our constant employment of modern software

techniques have ensured the success.

However, there are two techniques that are especially

worthy of critiques. The first of these is the use

28

. S7.

of the SSL. Initially, we have felt that the

implementation language may also serve as the language to

specify program algorithms. However, in doing so, we have

stifled our creativity. This is because we are

concentrating not only on what the algorithm does, but

also on what the constructs (data structures) of the

algorithm are. The use of the SSL has permitted us to

concentrate on the functionality of~the algorithm Without a

heavy concentration on its particular ,constructs. This has

allowed us to view the algorithm in a detached manner so

that the most efficient implementation' for the

constructs can be used. Although we have initially felt

that the development of the program with the SSL may be too

time-consuming, our opinions are changed when we have

realized the advantages of the SSL and the overall

complexity of the SQL language interface.

The way in which the data structures are designed is

the other noteworthy software engineering technique.

Being relatively inexperienced programmers, we are

inclined to use static structures. Hence, we have made

extensive use of structures which are bound at compile time.

We soun realize that in doing so, the computing resources

(e.g., data space) of the system are being depleted quite

rapidly. Therefore, it is necessary for us to design the

data structures in a way that they can be managed in a

dynamic fashion. Most of the data structures of the

29

...

SQL interface are linked lists. This design affords us

the most convenient way to efficiently utilize the

resources of the system. It is an easy task to use the C

language's malloc (memory allocate) function to

dynamically create the elements of a list as we have needed

them. In addition, the free command is useful in

releasing these same elements to be used again.

D. THE DATA STRUCTURE

The SQL language interface has been developed as a

single user system that at some point will be updated to a

multi-user system. 'Two different concepts of the data are

used in the language interface

1. Data shared by all users.

2. Data specific to each user.

The reader must realize that the data structures used

in our interface and described below have been

deliberately made generic. Hence, these same structures

support not only our SQL interface, but the other language

interfaces as well, i.e., DL/I, CODASYL-DML, and Daplex.

1. Data Shared by All Users

The data structures that are shared by all users

are the database schemas defined by the users thus far.

In our case, these are relational schemas, consisting

of relations and attributes. These are not only shared

by all users, but also shared by the four modules of the

30

' ,, F.. ,,,.. . .. 9 , -

MLDS, i.e., LIL, KMS, KC, and KFS. Figure 3 depicts the

first data structure used to maintain data. It is

important to note that this structure is represented as

union. Hence, it is generic in the sense that a user can

utilize this structure to support SQL, DL/I, CODASYL-DML,

or Daplex needs. However, we will concentrate only on

the relational model. In this regard, the first field of

this structure points to a retord that :contains

information about a relational: database. Figure 4

illustrates this record. The first field is just a

character array containing the name of the: relational

database. The next field contains an integer value

union dbid node
{

struct rel _dbidnode *rel ;
struct hie dbid node *hie;
struct net dbid node *net;
struct ent-dbid node *ent;

Figure 3. The dbid-node Data Structure.

struct reldbid_node

char name[DBNLength + 1];
int numrel;
struct rel node *firstrel;
struct rel node *curr_rel;
struct rel dbid node *nextdb;

Figure 4. The rel-dbid node Data Structure.

31

................... ".. -- •--..........--. -. "-. . -"".- .. " ".-'- '-

* representing the number of relations in the database. The

third and fourth fields are pointers to other records

containing information about each relation in the database.

Specifically, the third field points to the first relation

in the database while the fourth field points to the

current relation being accessed. The final field is just a

pointer to the next relational database.

The record rel node containslinformation about each

reltion in the database. (See Figure 5.) This structure

is organized in much the same fashion that the reldbidnode

is organized. The first field of the record holds the name

of the relation. The next field contains the number of

attributes in this relation. The third and fourth fields

point to other records which contain data on the first

and current attribute of this relation. And finally,

the last field is a pointer to the next relation in this

database.

struct rel node
{

char name[RNLength + 1];
int num_attr;
struct rattr node *first-attr;
struct rattr node *curr_attr;
struct rel _node *next-rel;

j

Figure 5. The relnode Data Structure.

32

.

Figure 6 shows the structure of the final record

type used to support the definition of the relational

database schema. The first field is also an array,

holding, in this case, the name of the attribute. The

second field serves as a flag to indicate the attribute

type. For instance, an attribute can either be an integer,

a floating point number, or a string. The characters

"i", "f", and "S" are- used, respectively. The third

fidId indicates the maximum length that a value of this

attribute type may possibly have. For example, if this

field is set to ten and the type of this attribute is a

string, then the maximum number of characters that a

value of this attribute type may have is ten. The fourth

field is also a flag used to indicate whether or not

this particular attribute is a key. The last attribute

just points to the next attribute in this relation. The

reader may refer to Appendices B through E to examine how

these data structures are used in the SSL.

struct rattr node
{

char name[ANLength + 13;
char type;
int length;
int keyflag;
struct rattrnode *next;

I

Figure 6. The rattr-node Data Structure.

-- .+ .* . . .+ . + . .j . +. .+ . .+ -. .. " " " o + , . " . ' . • . . -. o . , . o + " - '

% 1 % m % % 22 -'P %%

2. 24t arS~-_.~ t2 -.c .

This category of data represents information

needed to support each user's particular interface

needs. The data structures used to accomplish this can

be thought of as forming a hierarchy. At the root of this

hierarchy is the record type userinfo that maintains

information on all of the current users of a particular

language interface. (See Figure 7.)4 The user-info record

hofds the ID of the user, a union that describes a

particular interface, and a pointer to the next user. The

union field is of particular interest to us. As noted

earlier, a union serves as a generic data structure. In

this case, the union can hold the data for a user accessing

either an SQL language interface, a DL/I LIL, a CODASYL-

DML LIL, or a Daplex LIL. The li-info union is shown in

Figure B.

We are only interested in the data structures

containing information for each user that pertains to the

SQL language interface. This structure is referred to as

struct user-info

char uidiUrDLength + 13;
union li info li..type;
struct user-info *next-user;

I

Figure 7. The user-info Data Structure.

34

.°o % O O' .° ., , " ° - . .' - .. - o- -' ' ' ' - -- . ' .- - , . . - - ',o. -, °. *.' o- '- " o

union li-info

struct sqlinfo sql;
struct dli info dli;
struct dml info dml;
struct dap-info dap;

}

Figure a. The liirfo Data Structure.

sqlinfo and is depicted in Figure 9. The first field of

this structure, currdb_i:nfo, isl itself a record and

coktains currency information on the qatabase being accessed

by a user. The second field, file, is also a record. The

file record contains the file descriptor and file identifier

of a file of SQL transactions, i.e., either queries or

creates. The next field, sqltran, is also a record, and

holds information that describes the SQL transactions

to be processed. This includes the number of requests to

be processed, the first request to be processed., and the

struct sqlinfo

struct curr dbinfo currdb;
struct file info file;
struct traninfo sql_tran;
int operation;
struct ddl _info *ddl files;
struct tran info *abdltran;
union kmsinfo kms data;
union kfs info kfsdata;
union kcinfo kc-data:
int error;

Figure 9. The sqlinfo Data Structure.

35

current request being processed. The fourth field of the

sqlinfo record, operation, is a flag that indicates the

operation to be performed. This can be either the loading

of a new database or the execution of a request

against an existing database. When this field represents

the execution of a request, it is encoded with the ABDL

request type to be executed. The next field, ddlfiles,

is a pointer to a structure describing the descriptor file

an& template file. These files cont4in information about

the ABDL schema corresponding to the current relational

database being processed, i.e. the ABDL schema

information for a newly defined relational database. The

sixth field, abdl-tran, is a pointer to a record that

describes the ABDL equivalents to the transactions written

in SQL i.e., the translated SQL requests.

Specifically, this is the first ABDL request, the current

ABDL request, and the number of ABDL requests to be

processed. This data is provided by the KMS and used by

the KC. The next three fields, kms_data, kcdata, and

kfs-data, are unions that contain information that is

required by the KMS, KC, and KFS. These will be described

in more detail in the next four chapters. The last

field, error, is an integer value representing a specific

error type.

36

.- ". .o °o .- ". . °" o ° °" - - . " - '" .' " - "" . ° °' " 'O " o " - " " h
°

.' - " , " -' '- o " • - " . ° °" ~ " " ' b b~ , " °

E. THE ORGANIZATION OF THE NEXT FOUR CHAPTERS

The following four chapters are meant to provide the

user with a more detailed analysis of the modules

constituting the MLDS. Each chapter will begin with an

overview of what each particular module does and how it

relates to the other modules. The actual processes

performed by each module are then discussed. This includes a

description of the actual: data structures used- by the

modules. Each chapter concludes :with a discussion of

module shortcomings.

37

.---..-.. ...--.-- -..-..-..- -,....-..'................-...•.'-... ..',..,..."..:... -...... ,.

The LIL is the first module in the SQL mapping process,

and is used to control the order in which the other

modules are called. The LIL allows the user to input

transactions from either a file or the terminal. A

transaction can take the form of either creates for a new

database or queries against an existing database. The

mapping process takes place when the LIL sends a single

transaction o. the. KMS. After the transaction has been

received by the KMS, the KC is called to process the

transaction. Control always returns to the LIL, where the

user can close the session by exiting to the operating

system.

The LIL is menu-driven. When the transactions are read

from either a file or the terminal they are stored in a data

structure called rel.reqinfo. If the transactions are

creates they are sent to the KMS in sequential order. If

the transactions are queries the user will be prompted by

another menu to selectively pick an individual query to be

processed. The menus provide an easy and efficient way to

allow the user to see and select the methods in which to

perform the mapping functions. Each menu is tied to its

predecessor so that by exiting each menu the user is being

38

-. ' 5 **- " **.** " ;" " .
'

'
'

.- . ." .-.
" "

." " "' '""

- _ . '- - . < - i - 2 " .] - , ." * " U :r b. -- r. ' --i . - - m - " . - - ,/

moved up the menu "tree". This allows the user to perform

multiple tasks in one session.

A. THE LIL PROCESS

In this section we discuss the processes and actions

performed by the LIL. These processes are presented in

the order in which they are encountered during a

typical session. The data structures used heavily by

the LIL are discussed first.

1. Imgoortant Data Structures

The LIL uses two data structures to store the

user's transaktions :and to control which transaction is to

be sent to the KMS. It is important to note here that

these data structures are shared by both the LIL and the

KMS.

The first structure is named tran info and is shown

in Figure 10. The first field of this record, first req,

contains the address of the first transaction of the

transaction list that was read from a file or the

terminal. The second field, currreq, contains the

struct traninfo

struct relreqinfo *first_req;
struct relreqinfo *currreq;
int noreq

Figure 10. The traninfo Data Structure.

39

- ffJ *A

user. The LIL then sends the KMS one database definition at

a time, which takes the form of an SOL CREATE TABLE request

as follows:

CREATE TABLE tablename

fieldname_1 (type(length) 1, NONULL]),
fieldname_2 (type(length) E, NONULL]),

fieldnamen (typk(length) E, NONULL]

For each CREATE TABLE request, an additional relation node

(rel node shown in Figure 5) is added to the database schema

under construction. It should be apparent from the

preceding CREATE TABLE example that for each relation node,

we must also add a list of attribute nodes (rattrnode shown

in Figure 6) to the schema. The database identification

node holds the number of relations in the schema and the

database name, each relation node holds the number of

attributes in that relation and the relation name, and each

attribute node holds the attribute name, type, length, and

primary key information.

When the LIL has forwarded all database definitions

entered by the user, the result is a completed database

schema,-as shown in Figure 14. The relational database

schema, when completed, serves two purposes. First, when

creating a new database, it facilitates the construction of

the MBDS template and descriptor files. Secondly. when

5 3

attribute values in the database is limited only by the

constraint placed on them by the user in the original

database definition, and as such they may be of varying

lengths.

At the end of the mapping process, before control is

surrendered to the LIL, all data structures that are unique

to KMS which have been allocated during the mapping process

are returned:to the free li-st.

B. FACILITIES PROVIDED BY THE IMPLEMENTATION

In this section, we discuss those SQL facilities that

are provided :by our implementation of the relational

interface. We do not discuss the SQL to ABDL translation in

detail. Rather, we provide an overview of the salient

features of the KMS, accompanied by one illustrative example

of the mapping process. User-issued requests may take-two

forms, SQL database definitions, or SQL database

manipulations. Appendix C contains the design of our

implementation, written in a system specification language.

1. Database Definitions

When the user informs the LIL that the user wishes

to create a new database, the job of the KMS is to build a

relational database schema that corresponds to the database

definitions input by the user. The LIL initially allocates

a new database identification node (rel dbidnode shown in

Figure 4) with the name of the new database, as input by the

52

we require a list of rel-kms info structures, one

cqrresponding to each level of the nested SELECT query.

The remaining three data structures, shown in Figure

13, are records that are pointed to by the relkmsinfo

record, as just described. Respectively, they represent a

list of attribute names (the target list), a record of

relation names (the templates), and a list of attribute

values (the insert list:). ANLeAgth and RNLength are

constants defining the maximum lengths of attribute and

relation names, respectively. It should be noted that the

value field in the insertlistinfo record is a pointer to a

variable length character string. Although attribute-names

have a constant maximum length constraint, the length of

struct target_listinfo

char name[ANLength + 13:
char tgtrel[RNLength + 1];
struct target_list info *next-attr;
J

struct templatesinfo
C
char namel[RNLength + 1];
char name2[RNLength + 1);
J

struct insertlist info
f

char *value;
struct insertlist info *next val;
F

Figure 13. Additional KMS Data Structures.

51

.. " * " %
4

" ". "." . -, .- .- ' -....-. ', , -.---.- ,' .- - . , ,.. ...- " " '....

struct rel-kms info

struct targetlistinfo *first tgt;
struct templatesinfo templates;
struct insert list info *firstval;
char *temp-str;
char *join-str;
struct rel-kms info *next-nest;
)

Figure 12. The rel.kms_info Data Structure.

operations, two relation names may be kept in this record.

The third field, firstval, is a pointer to the head of a

list of values. These are the values that an INSERT request

desires insertdd into the database. The fourth field,

tempstr, is a pointer to a variable-length character

string. The character-string length is a function of the

input request length, and is allocated, when required, to

accumulate intermediate translation results while parsing

the WHERE boolean-clause of a user request. The fifth

field, joinstr, is also a pointer to a variable length

character string. The character-string length is again a

function of the input request length, and it is allocated to

accumulate the translation for the second ABOL RETRIEVE

request that is generated in response to a join operation.

The sixth field, nextnest, is a pointer to another record

of the same type. The next-nest field is used only during

the translation of a nested SELECT statement, in which case

50

-.'-.'-,.-, -. ," , ,.'-.".t ,.-. '..'.-'.-..- .-,.. ., .. ,.'.- .' -. '.." - ...,.,-.. ,-,.- - - -,. .,',..-,.- , , . , ' -7.

lower-level grammar rules have been satisfied and control

has ascended to the highest-level rule, the parsing and

translation processes, and, therefore, the mapping process,

is complete. In Section B, we give an illustrative example

of these processes.

2. The KMS Data S£rctu

The KMS utilizes, for the most part, just four

structures :defined in :the intetface. It, naturally,

re4iires access to the SQL input req4est and ABDL output

request structures discussed in Chapter II, the relreq info

and ab req info structures, respectively. However, the four

data structures to be discussed here are only those unique

to the KMS.

The first of these, shown in Figure 12, is a record

that contains information accumulated by the KMS during the

grammar-driven parse that is not of immediate use. This

record allows the information to be saved until a point in

the parsing process where it can be utilized in the

appropriate portion of the translation process. The first

field in this record, firsttgt, is a pointer to the head of

a list of attribute names. These are the attribute names

specified by the user request to retrieve information from,

or insert information into, the database. This list is only

utilized during SELECT or INSERT operations. The second

field, templates, is also a record and holds the relation

name(s) referenced in the user query. During join

49

invoked when such structures are recognized, and a low-level

input routine, YACC generates a program that syntactically

recognizes the input language and allows invocation of the

user's code throughout this recognition process. The class

of specifications accepted is a very general one: LALR(1)

grammars. It is important to note that the user's code we

speak of. here is our mapping code that is going to perform

the SQL-to-ABDL translation. As 4the low-level input

rotutine, we have utilized a Lexical Aroalyzer Generator (LEX)

ERef. 163. LEX is a program generator designed for lexical

processing of input character streams. Given a regular-

expression description of the input strings, LEX generates a

program that partitions the input stream into tokens and

communicates these tokens to the parser.

The parser produced by YACC consists of a finite-

state automaton with a stack and performs a top-down parse,

with left-to-right scan and one token look-ahead. Control

of the parser begins initially with the highest-level

grammar rule. Control descends through the grammar

hierarchy, calling lower and lower-level grammar rules which

search for appropriate tokens in the input. As the

appropriate tokens are recognized, some portions of the

mapping code may be invoked directly. In other cases, these

tokens are propagated back up the grammar hierarchy until a

higher-level rule has been satisfied, at which time further

translation is accomplished. When all of the necessary

4e

IV. THE KRNEL MAPPING SYSTEM (KMS)

The KMS is the second module in the SQL mapping

interface and is called from the language interface layer

(LIL) when the LIL has received SQL input requests from the

user. The function of the KMS is to: (1) parse the request

to validate the user s SQL'syntax, And (2) transiate, or

map, the request to an equivalent.*ABDL request. Once an

appropriate ABDL request, or set of requests, has been

formed, it isrmade available to the kernel controller (KC)

which then processes the request for execution by MBDS. The

KC is to be discussed in Chapter V.

A. AN OVERVIEW OF THE MAPPING PROCESS

From the description of the KMS functions above we

immediately see the requirement for a parser as a part of

the KMS. This parser validates the SQL syntax of the input

request. It is the driving force behind the entire mapping

system.

1. The KMS Parser / Translator

The KMS parser has been constructed by utilizing

Yet-Another-Compiler Compiler (YACC) [Ref. 153. YACC is a

program generator designed for syntactic processing of token

input streams. Given a specification of the input language

structure (a set of grammar rules), the user's code to be

47

,''.. *. *. ." ;. IJ .", - ' " * ."". ."*. ". -"" .*". "" " ,*,.""*,*. "'".,' " .". """..""..". "" "* . 'z '*.

memory occupied by the user data structur-e is freed up and

returned to the operating system. Since all of the user

I structures reside in a list, the exiting user's nods must

be removed from the list.

I B. SHORTCOMINGS

As used in this chapter, a transaction consists of a

single request on a database. A transaction would normally

be ;,allowed to contain multiple requests, such as an

insert, a query, and then a modify on some portion of a

database. This feature is not incorporated into the

j present systaem;, bute it could be easily integrated at some

later date.

A4

..

Pick the number or letter of the action desired
(hum) - execute one of the preceding queries
(d) - redisplay the list of queries
(x) - return to the previous menu

ACTION -- >

Since queries are independent items, the order in which

they are processed does not matter. The user has the

choice of executing any number of queries. A loop causes

the query listing and menu to be redisplayed -After any

query has been executed so that further choices may made.

d. Calling the KC

As mentioned before, the LIL acts as the

control module for the entire system. When the KMS has

completed its mapping process, the transformed

transactions must be sent to the KC to interface to the

kernel database system. For creates the KC is called

after all creates on the transaction list have been sent

to the KMS. The mapped creates reside in another list

that the KC is going to access. Since queries are

independent items, the user should wait for the results from

one query before issuing another query. Therefore, after

each query has been sent to the KMS, the KC is immediately

called. The single mapped query resides on the same second

list for the creates which the KC can access easily.

e. Wrapping-up

Before exiting the system, the user data

structure described in Chapter II must be deallocated. The

45

.............. ._..o...-.-.,.- --.......... ,.....,..,...............,....-............... -€..

pointed to by the request pointer, currreq, of the data

structure, tran_info. (See Figure 10 again.) Therefore, it

is the job of the LIL to set this pointer to the

correct transaction before calling the KMS.

(1) PgdiDng reas t2 tb 0- When the user

has specified the filename of creates (if the input is from

a file) or typed in a set of creates (if the input is from

the terminal), any further use* intervention: is not

required. To produce a new database, it does not make sense

to process only a single create out of a set of creates,

since they all must be processed in a specific order.

Therefore, the transaction list of creates is sent to the

KMS in its entirety. A program loop traverses the

transaction list, calling the KMS for each create in the

lisat.

(2) gOfning Queries to the KMS. In this

case, after the user has specified his mode of input,

he conducts an interactive session with the system. First,

all queries are listed on the screen. As the queries are

listed from the transaction list, a number is assigned to

each query in ascending order, starting with the number one.

The number is printed on the screen to the left of the

first line of each query. Next, an access menu is

displayed which looks like the following:

44

• " " " . - " . Xm -- {: i - "--... " , 'Y Y ', - r '' ' , ,Y ', . . .- . ', . ''- . "

.. . .• -.'. , _ o --. o - r... o o. - - - _ . j .j

This input may come from a data file or interactively from

the terminal. The generic menu looks like the following:

Enter mode of input desired
(f) - read in a group of transactions from a file
(t) - read in transactions from the terminal
(x) - return to the previous menu

ACTION ->

Again, each mode of input picked corresponds to a

different procedure to be performed. The transaction list

is created by reading from the file or terminal

looking for an end-of-transaction marker or an end-of-

file marker. : These :flags tell the system when one

transaction has ended and when the next transaction

begins. When the list is being created, the pointers to

access the list must be initialized. These pointers,

firstreq and currreq, have been described earlier in the

data structure section. Both pointers are set to the

first transaction read, in other words, the head of the

transaction list.

c. Accessing the Transaction List

Since the transaction list stores both creates

and queries, two different access methods must be

employed to send the two types of transactions to the

KMS. We discuss the two methods separately. In both

cases the KMS accesses a single transaction from the

transaction list. It does this by reading the transaction

43

control for each user of the system. When a user logs onto

the system, a user data structure is allocated and

initialized. The user ID becomes the distinguishing

feature to locate and identify different users. The

user data structures for all users are stored on a linked

list so that when a new user enters the system, their

initialized user data structure is appended to the end of"

the list. In our current environment there is only a single

element on the user list. In a future environment, when

there are multiple users, we simply adopt the append

operation mentioned above.

*b. Creating the Transaction List

There are two operations the user can

perform on the database schemas. A user can create a

new database or process queries against an existing

database. The first menu that is displayed prompts the

user for which function to perform. Each function

represents a separate procedure to handle the specific

circumstances. This menu looks like the following:

Enter type of operation desired
(1) - load a new database
(p) - process old database
(x) - return to the operating system

ACTION

For either choice ti.e., 1 or p), another menu

is displayed to the user asking for the mode of input.

42

...

.t -° L' - - - " -. o - . - , - "- -_' - * - .' . -' - o. .- ;. '. I,' i ' . ° "-,

occupies. It is used to allocate the correct and

minimal amount of memory space for the transaction. The.

last field, next_req, is a pointer to the next transaction

structure relreqinfo, in the transaction list.

2. Ptodures and Functigoa

The LIL makes use of a number of procedures and

functions in order to create the transaction list, pass

elements of the list to the KMS, aAd maintain the database

sciiemas. Each of these procedures :and functions will not

be described in detail, but a general description of the

LIL process will be discussed.

a. Initialization

The MLDS is designed to be able to accommodate

multiple users, but is implemented to support only a single

user. To facilitate the transition from a single-user.

system to a multiple user system, each user possesses his

own copy of a user data structure when entering the

system. This user data structure stores all of the

relevant data that the user may need during their session.

All four modules of the mapping process make use of this

structure. The modules use many temporary storage

variables in performing their tasks or for passing data

between modules. The transactions, in user data

language and mapped kernel data language form, are also

stored in each user data structure. It is easy to see

that the user structure provides consolidated, centralized

41

* .

• , o • , ~..• ,' •4 . . • . . . • - • ° - o - • , o,. . . ., .- ; ,. .. ., . . W UC. - - -. , , . .,,.--.. ,. .

aldress of the transaction currently being processed.

The LIL sets this pointer to the transaction that the KMS

will next process, and then calls KMS. The third field,

no req, contains the number of transactions currently in

the transaction list. This number is used for loop

control when printing the transaction list to the screen or

when searching the list for a transaction to be executed.

The second data structure *sed by LIL is named

refreq_info. Each copy of this:structure represents a

user transaction and thus, is an element of the

transaction list. The rel reqinfo is given in .Figure 11.

The first field of this record, req, is a character string

that contains the actual SQL transaction. The second

field, inreq, is a pointer to a list of character arrays

that each contain a single line o4 one transaction.

After all lines of a transaction have been read, the

line list is concatenated to form the actual

transaction, req. The third field of this structure,

reqlen, contains the number of characters the transaction

struct rel-reqinfo

char *req;
struct tempstrinfo *in req;
int req_l en;
struct rel _req_info *next-req;

LJ

Figure 11. The relreqinfo Data Structure.

40

.-.- .-"-. - - -

+I
+ + --------~T -

" I DDID I

REL_1 1--> 1 ATTR 1 1--> 1ATTR2 1--> ATTR_i4----------- +---------------- + +TT _ +-----------------+

V

4---------------

v

1 RELn 2 -- ATTR 1 :--> 1ATTR_2 1--> .. -1ATTR-j
* . g g .. 4-+---------

------ -------- ----------- ------
SRELn I--> ATTR_ 1 -- > I ATTR_2 1-->... -- >1 ATTR k

+------- - 4------ -------f - +-----------

Figure 14. The Relational Database Schema.

processing requests against an existing database, it allows

a validity check of the relation and attribute names. It

also serves as a source of information for the type

checking.

2. Database Manipulations

When the user wishes the LIL to process requests

against an existing database, the job of the KMS is to map

the user's SQL request to an equivalent ABDL request.

Throughout this subsection, we only provide examples of the

translated constructs of our implementation where they

differ in some respect from those given in the work of Macy

-Ref. 2) and Rollins ERef. 3).

54

--. . . ' ',".*"..*. . .;. "°

a. The SQL SELECT to the ABDL RETRIEVE

A simple SQL SELECT construct is mapped to a

single ABDL RETRIEVE construct. A simple SELECT is

characterized as a SELECT-FROM-WHERE block, in which access

is limited to the information contained in a single relation

of the database. The SELECT-clause may contain attribute

names alone, or the aggregate functions (COUNT, SUM, AVG,

MAX, and MINY may be applied to any 6f the attributes where

it:makes sense to do so. The SELECT-qlause may also contain

an asterisk (*), which signifies that all attributes in the

relation should be retrieved, in lieu of an exhaustive

listing. As a final option, the attribute names may be

prefixed with the relation name (rel-name.attr-name), even

though only a single relation is being accessed. The FROM-

clause contains this single relation name. The WHERE-clause

may contain any number of predicates connected together by

the boolean operators (AND and OR). Each predicate may

utilize the six standard relational operators (=, /=, >, >

:, and <=) to separate the attribute name and value, or the

set membership operators (IN, NOT IN, /=ANY, (=ANY, <ANY,

>ANY, >=ANY, <=ALL, <ALL, >ALL, >=ALL) may be used to

separate the attribute name from an enumerated set of

values. Finally, the SELECT-FROM-WHERE block may be

optionally followed by either a GROUP BY-clause, or an ORDER

BY-clause, whereby retrieved attributes may be either

grouped or sorted.

55

ow7"

A nested SQL SELECT construct is mapped to a

series of ABDL RETRIEVE constructs. A nested SELECT is

characterized as a SELECT-FROM-WHERE block, in which the

WHERE-clause utilizes one of the set membership operators.

In this instance, however, the operator is followed by

another complete SELECT-FROM-WHERE block instead of an

enumerated set of values. Such constructs can be nested to

any depth. This allows multiple rilations to be accessed,

and' their attribute-values compared, while the values

returned to the user are taken from only a single relation.

This is analogous to an implicit join operation.: An example

of such a query is as follows: Note that the parentheses are

optional and need not be included.

SELECT name, age
FROM student
WHERE name IN

(SELECT name
FROM faculty)

This query would find the name and age of all students who

are also a member of the faculty. It's ABDL counterparts

would be as follows:

[RETRIEVE (TEMPLATE = FACULTY) (NAME) 3

E RETRIEVE ((TEMPLATE = STUDENT) and
(NAME = ***********)) (NAME, AGE) I

56

.

Notice that the first ABDL request corresponds to the last

(or innermost) SQL request. This is because the innermost

SQL request is the only one that represents a completely

specified simple SELECT. The results of the first RETRIEVE

are names which are used by the KC to fill in the place

holders marked with asterisks in the second RETRIEVE (the

number of asterisks equals the maximum length of the NAME

attribute-value). From a single Onested SELECT, the KMS

generates a series of ABDL RETRIEVEs. before relinquishing

control to the KC, for subsequent execution of the ABDL

requests.

A join SQL SELECT construct is mapped to a

single ABDL RETRIEVE-COMMON construct. A join SELECT is

characterized as a SELECT-FROM-WHERE block, in which the

FROM-clause contains two relation names. We have already

seen how the nested SELECT query specifies an implicit join.

Here we are concerned with explicit joins, where multiple

tables are accessed, and their attribute values compared,

with the values returned to the user being taken from two

different relations. In this instance, the SELECT-clause

normally contains attribute-names that are prefixed with the

appropriate relation name (relname.attrname). This

eliminates any ambiguity that might otherwise exist. The

prefixed attribute-names are a required convention in the

WHERE-clause. An example of such a query is as follows:

57

.

SELECT student.name, faculty.name
FROM student, faculty
WHERE student.class - faculty.class

Assuming each class was only taught by one member of the

faculty, this query would return a class roster for all

members of the faculty. It's ABDL counterpart would be as

fol lows:

- RETRIEVE (TEMPLATE - STUDENT) (NAME)
COMMON (CLASS = CLASS)
RETRIEVE (TEMPLATE - FACULTY) (NAME) 3

Notice the placement of the square brackets around the ABDL

request. This represents a single ABDL request, and is

forwarded to MBDS for execution as a single transaction.

The use of prefixed attribute names in the SELECT-clause is

not a necessity, providing that the attribute-names used are

valid in both relations. Thus, the last SQL example may be

entered as shown below to obtain the same results.

SELECT name
FROM student, faculty
WHERE student.class = faculty.class

b. The SQL INSERT to the ABDL INSERT

The SQL INSERT construct is mapped to a single

ABDL INSERT construct. If values are to be inserted for

58

%.
"S................% **S*. *>********

each attribute in the relation, there is no requirement to

list the attribute names. Only the attribute values need be

listed; however, they must appear in the correct order (as

listed in the schema which has been determined during the

original database definition of the relation). If values

are not inserted for each attribute in the relation,

corresponding attribute names of those attribute values to

be inserted must also be included in~the request.

c. The SQL UPDATE to the ABD, UPDATE

The SQL UPDATE construct is mapped to a single

ABDL UPDATE construct. ABDL does not provide a single-

request construct which updates more than one attribute in a

record. Thus, we only allow one predicate in the SET-clause

of the SQL UPDATE query. However, the attribute value in

this predicate may be a constant, or an arithmetic

expression based on the original value of the attribute.

d. From the SQL DELETE to the ABDL DELETE: An
Example

The SQL DELETE construct is mapped to a single

ABDL DELETE construct. The SQL DELETE may have an optional

WHERE-clause, so that all records for the particular

relation may be deleted when the WHERE-clause is empty, or

only those records satisfying a specific condition may be

deleted when the WHERE-clause is included. In this

subsection we will present an illustrative example of the

mapping process for a simple SQL DELETE request. We begin

59

by showing the grammar for the delete-portion of the KMS.

We then step through the grammar and show appropriate

portions of our design in System Specification Language

(SSL). The entire design is shown in Appendix C. The

relevant grammar is as follows:

deletion : DELETE table-name E;

tible name : IDENTIFIER;*

E: empty

1 WHERE boolean;

empty : ;

boolAn :

The source SQL request we will utilize for our example will

be the following:

DELETE student

It's ABDL translation will be as follows:

I DELETE (TEMPLATE = STUDENT) 3

To begin our discussion, let us first

" synchronize the reader. At the beginning of a mapping

process, the parse descends the grammar hierarchy searching

for appropriate tokens in the source that may satisfy one of

60

I

the grammar rules. Thus, the parser descends through the

rules for SELECTs, INSERTs, etc. After finding no matching

tokens for those rules, the parser eventually descends on

the DELETE rules.

First, when the deletion rule is called, the

DELETE-token will be recognized. In an attempt to satisfy

the deletion rule, the table-name rule is then called. The

table-name rule recognizes the IDENTIFIER-tokew, as the

STIbENT-token (student converted to upper-case upon input).

At this time, the table name-rule is completely satisfied,

and the following SSL is invoked:

tablename : IDENTIFIER

if (creating)
if (! valid table('tablename')

print ("Error - rel name not valid")
perform yyerror()
return

end if
end if

If we are not creating a new database (as in this case), a

call is made to the validtable() function, which checks the

validity of the IDENTIFIER tablename in the relational

database schema. If STUDENT is not a valid relation name.

then an error message is printed, and an error routine is

called. Then we simply return from the mapping process. If

STUDENT is a valid relation name, there is no code here for

61

translation; however, control returns to the rule that

called the table name rule (i.e., the deletion rule).

Next, even though the deletion rule is not

completely satisfied, we need to perform some translation.

The following SSL is invoked, before the call is made to the

E-rul e:

deletion:: DELETE table-name s'

C
copy "E DELETE (".. to abdl string
copy "tablename" to templates

E;

The abdlstring begins to be built, as we initially copy

"[DELETE (

into the abdl string. The value of the tablename (STUDENT)

is then copied to the templates data structure, because, at

this point, we are not certain that it is of immediate use.

The reader should note the trailing blank that we placed in

the abdl-string. Without going into great detail, which is

beyond the scope of this example, it suffices to say that

this blank i's for an additional left parenthesis that we may

later determine to be required at the beginning of the ABDL

request, i.e., when OR is used to connect WHERE-clause

predicates.

62

-~~~~~~~~~~~~~~~~~.---. ..-..,; .,.,v--.-.,..-,-...-.,,,> ..--......--....... ,..-........--...................--

The next step in the parse is for the deletion

rule to call the E-rule. The E-rule recognizes the empty

rule, because the source is now void of additional tokens.

The E-rule is now completely satisfied and the following SSL

is invoked:

E : empty
{

delete all = TRUE

- WHERE boolean;

This sets the delete all boolean variable equal to true.

Control now reverts to the deletion rule, which is of course

completely satisfied. Thus, the following SSL is invoked:

deletion DELETE tablename
E

{

if (delete alI)
concat "TEMPLATE = 'table name'

to abdlstring
end-if
concat ") " to abdl string

Since we know that the deleteall variable has previously

been set to true, we now concatenate

"TEMPLATE = STUDENT"

to the abdl string. Finally, we concatenate the trailing

63

right parenthesis to the abdlstring. The trailing right

bracket (]) is concatenated to the abdl-string after

recognition of a higher-level grammar rule (one that called

the deletion-rule), and the mapping process is now complete.

Let us continue with an extension of this

example. Had the original SQL source request included a

WHERE boolean-clause, such as the following, what would have

happened?

DELETE student

WHERE name = 'Jones'

Its ABDL equivalent is as follows:

I DELETE ((TEMPLATE = STUDENT) and (NAME = Jones))]

In this instance, when the E rule is called, the WHERE-token

would have been recognized, and thus the boolean rule would

have been called. The boolean rule would have called other

rules and continued to read the remainder of the input

(source) tokens. Before the boolean rule was called, the

abdl string contained the following:

"I DELETE (

When control returns to the E-rule, from the boolean rule,

64

the abdl_string will contain the following:

"E DELETE C (TEMPLATE = STUDENT) and (NAME = Jones)"

Then control would revert from the E-rule to the deletion

rule. But this time, since the deleteall variable is not

set to true in the E-rule, the deletion rule merely

completes this portion of the tranSlation by concatenating

anether right parenthesis to the abd4_string shown above.

Again, the trailing right bracket is added at a higher

level, and the mapping process is complete.

C. FACILITIES NOT PROVIDED BY THE IMPLEMENTATION

Our original intent has been to demonstrate that the

relational interface could indeed be developed and

implemented. As a demonstration, there are some facilities

that are not included in our implementation. Some of these

facilities have more to do with providing a user-friendly

environment, than with supporting a germane relational

interface. For others, the programming time and effort

required to incorporate them would be too costly for the

benefits derived. However, this is not to imply that such

facilities would not be useful. This section is devoted to

describing the most prominent features of SQL that are not

supported by the language interface.

65

.......... .."-...-.-...'-.. >-L-i- <>..'-" > -'' i>
.

w " -. w v- r-.. x--.or r _ 'v -W r .r.- -' . -7- - ., - .- -o - . _

1. In erai WsVE.i

In our relational interface, there is no concept of

a user view. A view may be thought of as a virtual relation

that has no existence in its own right, but is derived from

one or more existing relations. Under our implementation,

the logical database and the physical database are one in

the same. Thus, our interface is limited to data definition

language (DDL) and data manipulAtion language (DML)

statements, and provides no data-control facilities such as

the GRANT and REVOKE options. Also, all CREATE TABLE

requests are considered PERMANENT and SHARED. As mentioned

in Chapter II, our interface data structures are constructed

to facilitate future use by multiple users. This would

allow the view concept to be supported by incorporating the

relational database schemas into the userinformation

structure (userinfo shown in Figure 7). These schemas

would be virtual and user-specific with respect to the

entire list of database schemas that are still global.

2. Uqating Multiple Attributes

ABDL does not provide a single-request construct

which updates more than one attribute in a record. The work

of Rollins ERef. 3: pp. 25-27] has showed that the SQL

UPDATE may be translated into multiple ABDL requests. As a

result, it may be necessary to generate either several

independent ABDL UPDATEs, a transaction of ABDL UPDATEs

(specifying the order in which a series of requests must be

66

7 . 7.,

processed), or an ABDL RETRIEVE, DELETE, and INSERT

sequence, to accomplish the requested update of multiple

attributes. We have felt the programming effort involved to

provide such a facility, although not complex, is time-

consuming.

3. Retrieving Qualified Groups

ABDL provides an option whereby retrieved attributes

may be sorted (the by-attributename option). SQL provides

a further option whereby those records not satisfying a

specified condition can then be eliminated (the HAVING-

condition option). ABDL does not provide a facility for

checking this specified condition. It could have been

implemented in the KC; however, we have felt the programming

effort is too great for the benefits derived.

4. Retrieing 92 jed Values

This option supports the inclusion of arithmetic

expressions involving attribute names in the SELECT-clause

of SOL requests. An example o+ this option is as follows:

SELECT name, weight * 454
FROM student

This query would retrieve the name and weight of all

students. However, the value of the attribute weight would

be returned to the user in grams (found in the student

relation in pounds). ABDL does not support the retrieval of

67

o- • -,=* %-%- %° ° %o. ,° .o . o % ,.* .• %, .• ,= o- , -. =.=..-.".-.............°o, o .-

been determined when the values are loaded into the file) is

obtained for use in the procedure. After sc.e

initialization steps are executed an inner loop is

encountered. This inner loop controls the actual building

and executing of the current ABDL request template which

corresponds to one of the outer-level SQL selects.

The inner loop calls the procedure build-request to

produce the: next fully-+ormed ABOL retrieve. Control in

this procedure is branched based upon:which of the eleven

possible SQL operators is in the current request. These

eleven possible SQL operators result in four possible

situations. For the operators <=ANY, <ANY, ".=ALL and .ALL

the procedure oneconjunction is called with the maximum

value of the results in the current results file passed as a

parameter. (The maximum and minimum values were calculated

by the procedure filefutureresults when the values were

loaded into the future-results file.) For the operators

>=ANY, >ANY, <=ALL and <ALL the procedure oneconjunction is

also called, this time with the minimum value of the results

in the current-results file passed as a parameter. For the

IN and '=ANY operators the procedure n_conjunction is

called. For the NOT IN operator the procedure

notinconjunction is called. These three conjunction

procedures all produce one or more fully-formed ABDL

retrieves using the request template. The inner loop then

calls sqlexecute to process the ABDL retrieve. The inner

81

...

requests. If a simple SQL select is being processed, then

only one ABDL retrieve is generated by the KMS. If an SQL

nested-select is being processed, then two or more ABDL

retrieve requests are generated by the KMS. Only the first

ABDL retrieve for an SQL nested-select is a complete ABDL

retrieve. The remaining ABDL retrieves are actually ABDL

request templates. An ABDL request template and the results

of the previdus retrieve are combined by the KC to build the

fuflly--formed ABDL request. , The procedure

select requests handler manages both possible situations.

First, the procedure sql-execute is called to process the

initial fully-formed ABDL retrieve request. If this request

is not an SQL nested-select, no other ABDL request templates

remain. If ABDL request templates are left to process, then

a loop is entered to process these retrieves. This loop is

repeatedly executed until all ABDL request templates have

been processed.

An overview of the activities controlled by this

loop is necessary to understand how the KC handles the SOL

nested-select. One of the initial steps in the loop is a

call to the procedure swapfiles. This procedure obtains

the results generated by the previous ABDL request (which

are stored in the future-results file by the procedure

file-future-results) and puts them into the current-results

file, where they are used to build the next ABDL retrieve.

The number of values in the current-results file (which has

80

• ,. . , ',. . .,. - . °. .. '..'. '.-• -- . *. *. -

of requests by calling the procedure rest_requestshandler

which calls the procedure sqlexecute. The procedure

sqlexecute controls the submission of ABDL requests to the

KDS. To control the submission process the procedure

sqlexecute uses two TI procedures and the procedure

sql chkresponses left. In general, the procedure

sql_execute sends the ABDL request to the KDS, waits for the

last response to be returned from the KDS and then takes

act'ion appropriate for the type of request submitted and the

response received. For any of the request types sent to the

KDS an error response might be received back. In this

situation, an error message is sent to the user. If an

error response was not received, then the ABDL request was

correctly processed. For insert, delete and update

requests, the user is-sent a message informing him that the

operation has been successfully executed. For a retrieve-

common request, the results returned by the KDS are sent to

the KFS for formatting. Control then returns upward through

the various procedures until it reaches the LIL.

4. Retrieve Reguests

ABDL retrieve requests are the other category

of requests that the KC processes. The processing of

retrieve requests is more complex than the other types of

requests, since multiple retrieves (which correspond to SQL

nested-selects) may need to be processed. The procedure

select-requests handler is called to process ABDL retrieve

79

• ... " '-....-..- . .-.. -..-......-.-.-. , -.---... ,.........-...-.-..-.-.............-.................-....,........-....- .

an update request, the procedure restrequest-handler

is called. If -the transaction is a retrieve

request, then the procedure selectrequests-handler is

called. If the transaction is none of the above, there

is an error. An error message is generated and control is

returned to the LIL.

2. The Creation of a New Dajbaje

The : creation of: a new database is the least

dif ficult transaction that the KC handles. The procedure

loadtables is called by the KC and performs two functions.

First, the test interface (TI) procedure dbltemplate is

called. This procedure is used to load the database-

template file created by the KMS. Next the TI procedure

dbldirtbls is called. This procedure loads the

database-descriptor file. These two files represent the

attribute-based metadata that is loaded into the KDS, i.e.,

MBDS. After execution of these two procedures, loadtables

returns control back to the kernelcontroller which in turn

returns control back to the LIL.

3. Insert, Delete, U2date and Retrieve-Common Reguests

Insert, delete, update and retrieve-common requests

are all handled in a similar fashion. For any of these four

types of requests, the KMS sends the translated ABDL request

to the KC for processing. The main task of the KC for these

four categories of requests is to send the ABDL request to

the KDS (MBDS) for processing. The KC handles these types

78

type is subreq_stat. This integer-valued variable is a flag

used when the .KC is handling a nested select. The flag

is set to indicate either that the last subrequest is

being processed or an intermediate subrequest is being

processed.

B. KC PROCEDURES AND FUNCTIONS

The KC makes use of a number of different procedures

and functions to manage the transmission of the

translated SQL queries (i.e.,ABDL requests) to the KDS. Not

all of these procedures and functions will be discussed in

detail. Instead, we hope to provide the reader with an

overview of how the KC controls the submission of the

various types of ABDL transactions to MBDS.

1. The Kernel Controller

The procedure KernelController is called whenever

the LIL has an ABDL transaction for the KC to process.

This procedure provides the master control over all

other procedures used in the KC. The first portion of

this procedure initializes global pointers that are

used throughout the KC. The other portion of the procedure

is a case statement which calls different procedures based

upon the type of ABDL transaction that is being processed.

If a new database is being created, the procedure

loadtables is called. If the transaction is a retrieve-

common request, an insert request, a delete request or

77

..... " ,'" ' "" ' " ' , ", " " "- , "." " . . " . ." " ". • Z ! " • " -

be stored back into the *req field of abreq info. The

beg_conj, endconj, begasterisk and end-asterisk are

integer fields which store the positions they describe in

the request template, i.e., (unfin-ret). The conjunction is

that portion of the request template which must be repeated

as many times as necessary to hold the values returned

from the previous inner-leVel request. The asterisks

indicate where in that reqUest the attribute-values must be

pliced. The field req_len holds the value of the maximum

size in bytes of the fully-formed ABDL request that the KC

builds and sends to the KDS. The req-len is calculated by

the KC and is used for allocating storage for the fully-

formed ABDL request which is constructed from the request

template.

The req-status is a flag used to indicate whether we

are processing the first request or subsequent requests.

Currpos is an integer-valued variable that is used to

indicate our current position in the current-request file

and that marks which attribute-value is the next one to be

inserted into the request being constructed. The reslen

is the last field in the record of type kcreljinfo and is

an integer-valued variable which contains the length of the

response buffer returned by the MBDS. This value is used to

indicate when we have completed our movement through the

response buffer.

The final field used by the KC in the sql info record

76

. o .o . . % ° . ~. -. i . .oo7

handle SQL nested selects. The future-results file holds

results from the current retrieve being processed by MBDS,

while the current-results file holds the results from the

previous retrieve request, which are used to build the

current retrieve request. The records maxinfo and

min-info are identical data structures. Both structures

allow for the storage of a character -which indicates the

data type of the attribute-values, A.e., integers, floating

potnt numbers or strings. Both structures also contain a

variant record which is used for the storage of the

respective maximum or minimum value encountered in the

resultant records. The num values ffile and numvalues-cfile

indicate the number of values stored in the future or

current results file, respectively. The record type of files

is nsel res info. The file field contains two identical

records of type file info. This record stores a file

name and a file descriptor used for file manipulation in

the C programming language. One record is for the

current-results file and the other is for the future-

results file.

The *unfinret is a character array used to store the

request template sent to the KC by the KMS. The request

template that is stored in the first field of the

ab-req info record type is loaded into unfinret. This

transfer of the request template is necessary so that the

fully-formed ABDL request that is constructed by the KC can

75

""- , .- , • - , ,

formated. This storage buffer is only used when we are

processing SQL selects which have been mapped to ABDL

retrieves. The results of the ABDL retrievals are

loaded into the storage buffer. When the buffer is

filled the KFS is called. The process of filling the

buffer and calling KFS is repeated by the KC until all

results from the retrieval have been processed.

The next field used by the Kf from the sql _info

redord type is kcdata. This field is a variant record

which contains the record type kcrel-info. This record

type holds all of the information that is unique to the KC.

This data structure is shown in Figure 18. The field

filestatus is a flag used to indicate the status of the

current and future result files. Two files are necessary to

struct kcrel info

int file_status;
struct max-info max;
struct mininfo min;
i nt num_values ffile;
int numvalues cfile;
struct nsel res info files;
char *unfin_ret;
int begconj;
int end_conj;
int begasteri sk;
int endasterisk;
int reqjlen;
nt reqstatus;
int currpos;
nt res_len;

Figure 18. The kc-relinfo Data Structure.

74

.9.

.9

,*.-- .. ,.,,.,;,.. -".,-",-,...,..-. ..,. r''- . ."- . .'.' '""; . "" "' " ' - "' "" -".

struct abreq_info

char *req;
int rel op;
struct ab-rel-info *next-req;

}

Figure 17. The ab-reqinfo Data Structure.

The noreq tells the KC how many requests are in the linked

list of the abreqinfo structure. There will normally only

be one request in this list, uAless an SQL nested

sefect is being processed. In that case, the noreq will

correspond to the number of levels that there are in the

nested select. The first request will always:be a fully-

formed ABDL request, while any additional requests will be

ABDL request templates. The requests or request templates

are stored.in the abreq_info record. The *req is a

pointer to a character string which contains either the

request or the request template. The relop field

informs the KC which type of relational operator is

contained in the corresponding request or request

template. The eleven possible operators are IN, NOT IN,

'=ANY, <=ANY, >=ANY, <ANY, >ANY, <=ALL, >=ALL, <ALL and

>ALL. The *nextreq is a pointer which directs the -C to

the next ABDL request.

The next field of sqlinfo that the KC uses is k+s_data,

which is a variant record into which the responses

received from MBDS are stored. From this storage buffer

the KFS extracts the data returned from the KDS to be

73

., , .-. -.. :1 " - ' -L °. "., - "......................Y : '.' r . . ' ":

I_.;'- SV *........ - % .A.. RT_ 7-7 N7 -M. .

interacting with MBDS. When the KC %ends an ABDL

transaction to MBDS for execution, the current database

name must be sent with the request. The current database

name is stored in the curr db record.

The next field of the sql_info record type which the KC

uses is operation. This fourth field of sqlinfo contains

an integer that tells the KC what type of operation is to be

performed. :There are si:x possiblV types of operations

whtlzh correspond to the six operations supported by the KC.

These operations are a database creation request, a retrieve

request, a retrieve-common request, a delete request, an

insert request and an update request.

The next field used by the KC is abdl-tran, which is a

record of type tran_info, and is shown in Figure 16. The

first two fields of tran info are variant records which

store information on ABDL requests. The ABDL requests are

stored in a record of type abreqinfo, shown in Figure 17.

Both first req and curr_req initially contain the first ABDL

request which is loaded into the data structure by the KMS.

struct tran info
{

union req_info +irst req;
union req info currreq;
int no_req;

Figure 16. The tran info Data Structure.

72

-- .. *• .- K •. &Z & <-> K :K : li - '-~ . .:.....> |]

the KC. This discussion is in two parts. First we

examine the data structires relevant to the KC, which is

followed by an examination of the procedures and functions

found in the KC. Appendix D contains the design of

our KC implementation, written in a system specification

1anguage.

A. AN OVERVIEW OF THE KC DATA STRUCTURES

In this section we will review the data structures

mentioned in chapter 2, focusing on those structures that

are accessed and used by the KC. The first data structure

that is impbrtant :to the KC is the record type sqlinfo

shown in Figure 15. The fields of sql info contain all

of the data structures relevant to the KC, but the KC

only uses several of the fields. The first'field of this

record, currdb, is a record which is used by the KC when

struct sql info

struct currdbinfo curr-db;
struct file-info file;
struct traninfo sqltran;
int operation;
struct tran info *abdl tran;
int answer;
union kms info kmsdata;
union kfsinfo kfs_data;
union kc info kc-data;
int error;
int subreq stat;

Figure 15. The sqlinfo Data Structure.

71

Only the first ABDL retrieve (which corresponds, to the

innermost select) is a fully-formed request. All other

ABDL retrieves which correspond to the outer-level selects

are sent to the KC by the KMS as request templates. A

grequest teljlt is an ABDL retrieve request with one

unspecified attribute value. The KC must use the results

obtained from the previous ABDL retrieve request (i.e.,

attribute varues) and the request template to build- the

net ABDL request, i.e., the KC suostitutes the retrieved

attribute values for the unspecified attribute value in the

request template. The processing of nested selects is

managed by the KC.

The procedures that make up the interface to the KDS

(i.e., MBDS) are contained in the test interface (TI)

[Ref. 83. To fully integrate the KC with the KDS (i.e.,

MBDS), the KC calls procedures which are defined in the TI.

Due to upcoming hardware changes in the MBDS, we decide

not to test the KC on-line with the TI. Our solution

to this problem is to design the system exactly as if it

is interfacing with the TI. However, for each call to a

TI procedure we create a procedure stub that performs the

same function as the actual TI procedure. The reader

should realize that all interactions with the TI procedures

described in the KC are actually made with these procedure

stubs, rather than with the on-line TI procedures.
1

In this section we discuss the processes performed by

70

..

*- ..

V. THE KERNEL CONTROLLER

The kernel controller (KC) is the third module in the

SOL language interface and is called by the language

interface layer (LIL) when a new database is being created

or when an existing database is being manipulated. In

either situation the LIL :first calts the kernel: mapping

syitem (KMS) which performs the necessary SQL to ABDL

translations. Then the KC is called to perform the task of

controlling the submission of the ABDL transaction(s) to the

multi-backend database system (MBDS) for processing. If the

transaction involves creating a new database or

inserting, deleting or updating information in an existing

database, control is returned to the LIL after MBDS

processes the transaction. If the transaction involves a

retrieval request, the KC sends the translated ABDL request

to MBDS, receives the results back from MBDS, loads the

results into a buffer and calls the kernel formatting system

(KFS) to format the results a buffer at a time. After the

last buffer is processed by the KFS the resulting table is

displayed and control then returns to the LIL.

One situation worth noting is the processing of an SQL

nested-select request. An n-level SQL nested-select is

mapped to n corresponding ABDL retrieve requests.

69

.2.

computed values; however, this could easily have been

implemented in the KFS module. We have chosen not to

implement, since it does not represent a feature of SQL that

is inherently relational.

5. Eliminatina Duolicates

The results of a SELECT query may contain

duplicates. The eliminati-n of duplicates is normally a

high-cost operation and often un~arranted. We- do not

provide such an option. SQL supports the elimination of

duplicates through the use of the UNIQUE operator in the

SELECT-clause. Thus, our implementation does:not support

the SQL UNIQUE operator.

6. Retrieval UsinQ UNION

The work of Rollins [Ref. 3: pp 82-833 has described

the use of the SQL UNION operator in a query comprised of

multiple SELECT constructs. Each SELECT construct

translated to an equivalent ABDL RETRIEVE construct, and all

are then processed by MBDS concurrently. Rollins has

assumed the capability to eliminate duplicates in the

interface. In as much as such a facility is not provided by

our implementation, we are not supporting the SQL UNION

operator.

68

..0o .. .

loop concludes with some steps that prepare for the next

retrieve. The inner loop repeats as long as there are values

left in the current-results file and the procedure

oneconjunction has not been called. The outer loop then

sets up for the next ABDL retrieve and concludes. A more

detailed example of how the procedures n_conjunction,

not in conjunction, and one'conjunction work will be covered

in the following two sections.

* a. The N-conjunction Procedure

The procedure n conjunction uses the ABDL

request template and the values from the previous ABDL

retrieve stored in the current-results file to build a

fully-formed ABDL retrieve. The ABDL request template

contains a portion of the ABDL request which we have labeled

the conjunction. This conjunction portion of the request

template i% bounded by the first set o+ outermost

parenthesis in those requests handled by the procedure

n_conjunction. This conjunction contains a number of

predicates that are "and'ed" together. A predicate is a

triple consisting of an attribute name, followed by a

relational operator (i.e., ., >=, ...) followed by an

attribute value. Recall that in an earlier discussion we

stated that the request template contains an unspecified

attribute-value. In our current terminology, this means

that a predicate in the conjunction of the request template

has an unspecified-attribute value. To mark this value

82

., .

within the request template character string, we use a

series of asterisks, where the number of asterisks

corresponds to the maximum attribute-value length. The

procedure nconjunction uses the conjunction portion

repeatedly with each conjunction having a different value

from the results file inserted in place of the asterisks.

The conjunctions are then "or ed" together to form the

• fully-formed'ABDL retrieve.-

We have chosen not t9 allow an unlimited

number of conjunctions to be joined together into one ABDL

request. Rather we have created an upper limit on the

maximum number of conjunctions that may be joined together

into a single ABDL retrieve. We call this constant

NUMCONJ. Thus, assuming we have NUM_CONJ set to ten,

only ten conjunctions can be linked together in one ABDL

retrieve. This means only ten values from the current-

results file can be loaded into the retrieve, one per

conjunction. If there are more than ten results in the

current-results file, then more than one ABDL retrieve

must be built. This situation necessitates the inner

loop discussed in the procedure select_requestshandler.

We now look at an example, to fully understand

the'operation of the procedure nconjunction. We will build

the outer ABDL retrieve for the nested select presented

presented in Chapter IV. The SQL nested select is as

follows:

-63

-.......................... 3

SELECT name, age
FROM student
WHERE name IN

(SELECT name
FROM faculty-)

This query would find the name and age of all students who

are also a member of the faculty. The KMS maps the SQL

nested-select to the following two ABDL retrieves.

I RETRIEVE (TEMPLATE = FACULTY) (NAME) 3

I RETRIEVE ((TEMPLATE = STUDENT) and
(NAME= ***********)) (NAME, AGE) I

The first ABDL retrieve which corresponds to the innermost

SQL request is executed by the procedure sql-execute. The

results of this retrieve will be names of personnel on the

faculty are stored in the current-results file. We assume

that there are three names returned and that they are

Demurjian, Mack and Kloepping.

The procedure nconjunction marks several

locations in the request template the first time it is

called for a particular SQL request. The procedure stores

the location of the beginning and the end of the conjunction

and the location of the first and last asterisk which

delineates the unspecified attribute-value. In the previous

example the conjunction is as follows:

84

.**

. .. . * . . .

((TEMPLATE - STUDENT) and (NAME =

This conjunction is to be used three times to construct the

fully-formed ABDL retrieve. The ABDL retrieve built by the

procedure nconjunction is shown in Figure 19.

If there had been more than NUMCONJ names in

the current-results file, then more than one fully-formed

ABDL retrieve would have to be generated for the

corresponding SQL select. The first NUMCONJ names would

have to be inserted into predicates that are "or'ed"

together. Ahother *ABDL retrieve would then be built using

the next NUMCONJ names from the current-results file. ABDL

retrieves would continue to be built until all names in the

current-results file have been exhausted.

b. The Procedures Not-in-conjunction and
One conjunction

The procedure notin_conjunction operates in a

similar fashion to the procedure n_conjunction. The major

difference is that the conjunction portion of the request

I RETRIEVE (((TEMPLATE = STUDENT) and (NAME = DEMURJIAN)) or
((TEMPLATE = STUDENT) and (NAME = MACK)) or
((TEMPLATE = STUDENT) and (NAME = KLOEPPING)))

(NAME, AGE) I

Figure 19. The ABDL Retrieve Generated by the
Procedure N-conjunction.

85

".. .. -" '. .. . , °, .'. ., -°. .- -. -.. -. • .-. - .- - . - . ,. . °- - -.. , ,. . ,-V,

template is smaller and the conjunctions arc "and'ed"

together rather than "or'ed" together. Suppose that we

replace the IN operator in the previous SQL nested-select

query with the NOT IN operator. The resulting SQL query

would find the name and ages of all students who are not

members of the faculty. The first ABDL retrieve would be

identical to the first ABDL retrieve in the last example.

The second ABDL retrieve would now be as follows:

[RETRIEVE ((TEMPLATE = STUDENT) and
(NAME = ***********) (NAME, AGE) 3

The conjunction portion for the procedure not_in_conjunction

would be as follows:

((TEMPLATE= STUDENT) and (NAME '= ***********)

The procedure notin_conjunction inserts the names from the

current-results file into this conjunction and "ands" the

conjunctions together. The fully-formed ABDL retrieve is

shown in Figure 20.

86

o-,- , -. .. . < - , . -o,... . .:... . .,. . . , .. .

C RETRIEVE ((TEMPLATE- STUDENT) and (NAME = DEMURJIAN)
and (NAME MACK) and (NAME = KLOEPPING))

(NAME, AGE) 3

Figure 20. The ABDL Retrieve Generated by the
Procedure Not in conjunction.

If there are more than NUMCONJ names in the current-results

file, then, as before, additional ABDL retrieves would be

generated. The multiple ABDL retrieves to be generated are

hapdled identically as they *re in the -procedure

nConjunction.

The procedure oneconjunction manages a simpler

situation. For the procedure one_conjunction we are also

sent an ABDL request template by the KMS. In these type

situations all that must be done is to replace the asterisks

with the minimum or maximum value that has been passed into

the procedure as a parameter. Thus, the procedure

one_conjunction simply removes the asterisks and inserts the

passed in value in its place. It is only necessary for this

single ABDL retrieve to be generated once. For example,

suppose we are processing the following SQL nested-select.

SELECT name, age
FROM student
WHERE agc <ALL

(SELECT age
FROM faculty)

This SQL query will retrieve the names and ages of all

students that have an age less than all the faculty ages.

87

In other words, this request finds the names and ages of all

students who have an age less than that of the youngest
.4

faculty member. The KMS maps the SOL nested-select to the

following two ABDL retrieves.

E RETRIEVE (TEMPLATE - FACULTY) (AGE) 3

C RETRIEVE ((TEMPLATE - STUDENT) and
(AGE <= ***)) (NAME, AGE) 3

Assume the first retrieve results in the ages of 54, 43, 37

and 39 being returned. Since the SQL operator is <ALL, the

minimum age is passed to the procedure oneconjunction. The

fully-formed ABDL retrieve that the procedure

oneconjunction generates is shown in Figure 21.

C RETRIEVE (TEMPLATE = FACULTY) (AGE) 3

C RETRIEVE ((TEMPLATE = STUDENT) and
(AGE <= ***)) (NAME, AGE) 3

Figure 21. The ABDL Retrieve Generated by the
Procedure One-conjunction.

8s

,- -....''-,, , -- ".,".. '.... . .. '...'"..".... ' . '' ".,. ... ,,.., ' ,- .

_a R7 W-7.____

VI. TH KE& FORMATTING SyaStE (KFg)

The KFS is the fourth module in the SQL language

interface and is called from the kernel controller (KC)

when the KC has obtained the final results from MBDS.

The results are passed to the KFS in one or more character

buffers, called response buffers. Ifthere is more -than one

response buffer, the KC calls the KFS again for each

buffer. The KFS manipulates the contents of these

buffer(s) to create an image of an SQL results table. This

table is formated in a file on each call to the KFS.

Hence, this allows the user to v-w the results of his

queries as if he is working with an SQL-type database

system. The following example. illustrates this process:

1. The user issues a query:

SELECT NAME,AGE
FROM EMPLOYEE
WHERE AGE < 30

2. The query is processed by all modules of the
interface. Eventually, the KC receives the final re-
sults.

3. The KC calls the KFS for each response buffer.

4. The KFS uses the response buffer to create the output
table. For illustrative purposes, suppose that the
response buffer contains the following data:

NAME JOHN AGE 29 NAME STEVE AGE 26

5. The KFS displays the appropriate SQL output table:

89

EMPLOYEE

INAME I AGE I

IJOHN 29
ISTEVE 1 26 I

It is important for the reader to note that the table

actually consists of two parts. The first part is the

table heading and column headings. #In the example above

thfs is the attribute called NAME followed by the

attribute AGE. These are column headings. The table

heading consists of the name of the relation, EMPLOYEE. The

second part is instances of these attribute names or

results, i.e., attribute values. In our example, JOHN and

STEVE are results pertaining to the attribute NAME; while

29 and 26 are the results pertaining to the attribute AGE.

A. THE KFS PROCESS

In this section we discuss the processes that the KFS

uses to create an SQL output table. We present these

processes in the same sequence as they are performed by

the KFS. We begin this discussion, however, with an

overview of those data structures unique to the KFS. This

overview can facilitate our understanding of the C code that

constitutes this module.

90

1. Overvjif of the KFS Data Structures

The KFS utilizes, for the most part., just three of

the structures defined in the language interface. The first

of these, shown in Figure 22, is a record that contains

information needed by the KFS to process the results.

The first field in this record, response, contains the

result from MBDS which is loaded by the KC just prior to

calling the KFS. The second fiele, currpos, tells the

KFf where it is in the response buffev. This helps the KFS

maintain a correct orientation in the response buffer. The

next field, res len, indicates the length of the

response buffer. This value is mostly used as a

halting condition. For instance, the KFS continues to

pull characters out of the buffer while some index is less

than or equal to the reslen. The next field, form data, is

a record and contains information about the output table

heading. This record will be discussed in the following

struct kfs rel info

char *response;
int currpos;
int res_len;
struct tableheaderinfo form data;
struct fileinfo O file;
int status;
struct rattr node *first rel;
struct rattrnode *secrel;

Figure 22. The kfs rel-info Data Structure.

91

o - o O , - . o - o ~ o , • . , . . . o % %o ° .o . - .- °. . - o-. - , ° . - . . ° ., ° .° o ...

paragraph. The fifth field, ofile, is also a record. The

o0file record contains the file name and the file

identifier of the file that the KFS is building the

output table in. This is needed by the C language to open

the output file for read, write, or append access. The

next field, status, acts as a flag. If this is the first

time the KFS is entered for a particular set of response

buffers and, therefore, a- particul&r user, then this field

coriains a value of FIRSTIME. This tells the KFS that it

needs to initialize values and set various structures for

subsequent processing. The status is changed :after this

is completed so that this initialization is not to be

repeated for subsequent calls to the KFS for the same set

of responses. The seventh field, first_rel, is a pointer

to a list of attributes for the relation being currently

processed. The data pertaining to this list can be

considered the schema of the current relation. The

specific data that is needed from the schema is the

maximum size (in terms of the maximum attribute length)

that the attribute named in this structure can possibly

take on. This information is needed so that the correct

column width for each attribute can be built into the output

table. The final field is used for the same reasons

discussed above, but is needed to implement the JOIN

command.

92

* !

-~~1 .r lit. r

The second structure the KFS uses extensively is

also a record and is called table-headerinfo and is

depicted in Figure 23. The purpose of this record is to

provide information about the heading of the output table.

The first field, table_width, is an integer value

containing the width of the output table. This

information tells us whether or not the table can fit

within one horizontal screen width. This serves as the

basis for some of our logic in the KFS and is discussed in

detail in the next section. The next field, firstent,

points to another record that contains information about

the first attribute name in the heading of the output

table. The last field is the same as the previous one

except that it points tb the the current table_entryjinfo

record that the KFS is now working with.

The third data structure, like the previous two,

is also a record. This record maintains all of the

information needed to correctly position attribute names

in the heading of the output table. It also contains

struct table headerinfo

int tablewidth;
struct table entryinfo *firstent;
struct table entry_info *current;

Figure 23. The table-header info Data Structure.

93

the information needed to correctly position the results

under the appropriate headings. The first field, shown

in Figure 24, is a character array containing the name of

an attribute that is used as part of the output table

heading. The second field is an integer value containing

the length of the stored attribute name. This value is

compared with the next field to determine the actual

width of the column for thit particular attribute.

Thi next field, vallen, contains ean integer value that

is the maximum size a result of this attribute type can

possibly take on. The fourth. field, col_len, holds the

maximum of the two previous fields and is the actual

width of a column for a particular attribute in the output

table. The last field, next, id just a pointer to the

next record of this type. Using this field the KFS can

move from one record to another record and create the

correct heading until it hits a NULL record.

struct table-entryinfo

char attr[ANlength + 1]
int namelen;
int val len ;
int col _len;
struct table_entry_inf o *next;

Figure 24. The tableentry info Data Structure.

94

information is used by the KFS to create the header part of

the output table.

This routine begins by reading the first

attribute from the response buffer. The string length

of this attribute is determined next; followed by a

trace through the list of attributes in the schema of

the current relation. The trace is completed when this

attribute is'found in the schema. Atothis point, the maximum

size that a value of this attribute type may take on can be

determined. This information is stored in vallen. The

maximum of vallen and the string length of the attribute

is then calculated and placed in coljlen. This value

represents the actual column width this attribute will

have in the output table. The-unwary reader may miss the

importance of this step. It is easy to assume that the

only value needed is vallen. However, let's assume

there is an attribute called ZIP-CODE. The maximum number

of characters this attribute may have is five digits. If

we do not consider the string lenqth of this attribute

name, then the column size would be just five characters

wide and ZIP-CODE would appear as ZIPC in the heading.

This process of reading the next attribute is

iterated until either it has cycled through a series of

unique attribute names or it has processed all the

attributes in the response buffer.

96

D-IS569 THE DESIGN AND IMPLEMENTATION OF A RELATIONAL INTERFACE V
FOR THE MULTI-LINGUAL DATABASE SYSTEM(U) NAVAL
POSTGRRDUATE SCHOOL MONTEREY CA G R KLOEPPING ET AL.

UNLSIIDJUN 85 F/G 9/2 N

monsEoon hEE

1.0 to

mam A 40 112.0

11111 25 .4 111111.6

MICROCOPY RESOLUTION TEST CHART
NdATIONdAL BUREAU OF STANDAfOS-963-A

%*

"o:

information is used by the KFS to create the header part of

the output table.

This routine begins by reading the first

attribute from the response buffer. The string length

of this attribute is determined next; followed by a

trace through the list of attributes in the schema of

the current relation. The trace is completed when this

attribute is'found in the schema. Atothis point, the maximum

sie that a value of this attribute type may take on can be

determined. This information is stored in vallen. The

maximum of vallen and the string length of the attribute

is then calculated and placed in col len. This value

represents the actual column width this attribute will

have in the output table. The-unwary reader may miss the

importance of this step. It is easy to assume that the

only value needed is val fen. However,. let's assume

there is an attribute called ZIP-CODE. The maximum number

of characters this attribute may have is five digits. If

we do not consider the string length of this attribute

name, then the column size would be just five characters

wide and ZIPCODE would appear as ZIP_C in the heading.

This process of reading the next attribute is

iterated until either it has cycled through a series of

unique attribute names or it has processed all the

attributes in the response buffer.

96

c. Creating the Table in the Output File

This part of the KFS can be considered the

workhorse of the module. The previous two processes

are instrumental in manipulating data structures and

setting variable values so that this process may fulfill the

intended mission of the KFS. Therefore, we discuss some

of the issues we have struggled with while designing this

part of the KFS. The two most important issues aret

. How should the table appear to the user?

2. How should the table be stored internally, i.e.,
should it be in a file, a character array, or dis-
played immediately to the user?

Our problem has been that we have had no

concrete examples of what an SQL table should look like.

Should the headings be centered within the columns,

with the results centered under these headings? We

didn't know. We finally decided upon a convention that

would facilitate programming. Hence, we left-justified both

the headings and the results with blanks added at the end of

each to insure proper spacing within the columns. As it

turned out, this is also the way Date [Ref. 17: pp. 117-1423

presents his examples.

The second issue has posed a problem. Our

initial design has called for building the table in a

character array. The only other alternative considered at

this time has been to immediately put the table on the

screen as results are being passed to the KFS. This idea

97

Mr 7; T. 7- - .P

is dismissed, however, when we have realized the

difficulties of trying to build a table on the fly. In a

similar fashion, • the idea of building the table in a

character array is also dismissed. There is no way for

us to predetermine the size of this array. We have

thought that it is uneconomical to allocate a huge array

to cover all possible table sizes. There is also the

problem of moving around in the &rray. This -indexing

pr6blem created a preponderance of C aode.

Our only other alternative is to build the table

in a file. This method has proved very easy to do. The

operating system maintains position within the file, so,

there is no indexing problem. In addition, there is more

economical use of the computer's resources, since the file

is only as big as necessary. Hence, we have opted to build

the table in a file.

With these issues resolved, the

implementation of this process has been straightforward.

First, the headings are built in the output file. This

is done only the first time the KFS is called. Next, the

attribute values are pulled from the response buffer and

placed left-justified under the corresponding

attribute. Then, the process is iterated until the

98

response buffer is exhausted. Subsequent calls to the KFS

for the same set of queries cause results to be appended

to the table in the file.

d. Displaying the Table

The KFS displays the OGL table to the user when

all response buffers have been processed. This occurs

when a special signal is detected in the last buffer in

conjunction with the setting ofaa status signifying the

lait sub-request of a nested select.; An initial problem we

have had with this process has been how to display a

table more than twenty-four lines long. A unique.

procedure, patterned after the more' facility in UNIX

[Ref. 183, is developed. This function, when first

called, displays the first twenty-two lines of the SOL

table and then prompts the user. The user can choose from

a number of options. For instance, the user can have

another screen-full of results displayed, or the user can

display some number of lines less than twenty-two, or the

user can even terminate the current menu of the language

interface. Our intent is to make viewing the results as

convenient as possible to the user.

e. Cleaning Up

Before leaving the KFS, the data structures

used to create the SOL table are freed. This ensures that

the resources are available to process other queries.

Additionally, the status field is updated to FIRSTIME. This

99

.....................................-. '

S.

places the KFS in the correct state to process subsequent
U.

queries correctly.

B. A LIMITATION OF THE KFS

Although we have tried to make the KFS as general

as possible with regard to creating and displaying SQL

tables, there is one facility we have deliberately

neglected to incorporate. This is the ability to display

tables with widths greater than eighty columns. Since

our intent is to only show that the interface could

indeed be developed, we have decided that the programming

effort required-to provide this facility is too costly for

the benefits derived. However, this is not to imply that

this facility is not useful or needed. As a matter of

fact, we have intentionally designed the KFS for the easy

insertion of this code when it is developed.

100

VII. CONCLUSION

In this thesis, we have presented the specification

and implementation of a SQL language interface. This is

one of four language interfaces that the multi-lingual

database system will support. In other words, the multi-

lingual database system will be ablelto execute transactions

written in four well-known and important data languages,

namely, SQL, DL/I, Daplex, and CODASYL. SQL is of course

the well-known relational data language provided by, for

example, IBM SQL/Data System. In our case, we support SQL

transactions with our language interface by way of LIL, KC,

KMS, and KFS in place of SQL/Data System. A related thesis

by Benson and Wentz [Ref. 19] examines the specification

and implementation of the DL/I language interface. Two

other theses on CODASYL and Daplex respectively are under

way. This work is part of ongoing research being

conducted at the Laboratory of Database Systems Research,

Naval Postgraduate School, Monterey, California.

The need to provide an alternative to the development

of separate stand-alone database systems for specific data

language models has been the motivation for this research.

In this regard, we have first demonstrated the feasibility

of a multi-lingual database system (MLDS) by showing how a

101

software SOL language interface can be constructed.

Specific contributions of this thesis include the

development of useful algorithms and the implementation

of S L operations such as: nested retrieval, join

operations, retrieval of grouped attributes, and updating

multiple fields. In addition, we have developed a LIL that

is virtually reusable. With minor modifications the LIL can

be'used with the other language intekfaces. As a matter of

fa~t, it has been recently modifie4 for the DL/I language

interface. Our design of the generic data structures is

also noteworthy. Because of our extensive utilization of

unions (i.e., variant records), the other language

interfaces can use our generic data structures. We have

extended the work of Macy [Ref. 23 and Rollins [Ref. 3) by

specifying and implementing the algorithms for the language

interface. In addition, we have also provided a general

organizational description of a MLDS.

A major goal has been to design a SQL-to-MBDS interface

without requiring any change be made to MBDS or ABDL. Our

implementation may be completely resident on a host

computer or the controller. All SQL transactions are

performed in the SQL interface. MBDS continues to

receive and process transactions written in the unaltered

syntax of ABDL. In addition, our implementation has not

required any change to the syntax of SQL. The interface is

102

%> -°'° ° --. ' . °... .. '......x ° . -.-...> ..

completely transparent to the SQL user as well as to the

MBDL.

In retrospect, our level-by-level, top-down

approach to the design of the interface has been a good

choice. This implementation methodology has been the most

familiar to us and proved to be relatively efficient in

time. In addition, this approach permits follow-on

programmers :to easily maintain and 4 modify (when necessary)

the code. Subsequently, they will know exactly where we

have stopped and where they should begin because we have

included many of the lower-level stubs. Hence, it is an

easy task of filling in these stubs with code.

We have shown that a SQL interface can be implemented

as part of a MLDS. We have provided a software

structure to facilitate this interface, and we have

developed the actual code for implementation. The next

step is to implement the other interfaces. When these

are complete, the system needs to be tested as a whole to

determine how efficient, effective, and responsive it is

to users' needs. The results may be the impetus for a new

direction in database system research and development.

103

APPENDIX A -SHEMATIC OF THE DATA STRUCTURES

The purpose of this appendix is to present a pictorial

of data structures used in the SQL language interface.

Since the code used for the thesis was the C programming

language, the diagram makes use of its constructs just

as the code does. Groups of related items are known as

structures in C, and it is easy to see from the diagram

that the structures break down into~more detailed,: workable

stil' ctures. There are two major parts of this appendix. In

Figure 25 we present the relational database schema data

structures that were discussed in Chapter 2. In Figure

26 we present the user data structures.

In the diagrams an arrow indicates that the field

is a pointer to a structure. Each of the fields of such

a structure is preceded by a small arrow to indicate that

indeed a pointer from another structure is referencing

the field. An example of this is the field siddlfiles

o-F the SQL_INFO structure in Figure 26 on page 113. The

field siddlfiles points to a structure of type DDL_INFO.

This is especially useful when writing or tracing long paths

through the user data structure.

On the other hand, bracket lines are used to indicate

when a field of a structure is also a structure. The

bracket lines are drawn from the "parent" field to the

"child" structure. A period is placed in front of the

bracketed structure's fields to indicate this fact. An

104

example of this is the si_sqltran field of the SQL_INFO

structure in Figure 26 on page 112. The field sisqltran

is a structure of type TRAN INFO. The bracket lines and the

periods indicate this.

We note that the diagram has a few instances of UNIONS.

A union is a construct that allows the user to connect

different structure types, specified by the union

structure, to a common structure,% i.e., unions are also

refered to as variant records. Since the multi-lingual

database system is to support the mapping of multiple

languages, many portions of the user structure Will be the

same for any language used. However, the union construct

allows for the parts that must change between language

interfaces so that the common data structures can be adapted

to be useful to all of the language interfaces.

105

- - -;-77--7- -

00 --

4-.

IJ;

--

-1o

1o6

0)0

2+ 0)

~' Li ~ 107

-- J
0 j,

I°

L. I1
. l

0 ,

, I
.3

Il/ L

""- - -I' -

all

22

J I

.72C

.-- --"-. . . . --- . . ._-. . .- --- .- .-. . .•- . .--- . : . . -- . --." .". .- : -. i -

4j4

- - - - - -

I C
A- --1 -Cl 4

i .) ~ co
1m l LL~~

4:;
lei2-

0 4I~
.'~ ICb)

: ~LJ1+01

~ 1117

-- ~-w-w-u-w-.-r~. - ~j-.-*---

- - - -~ - -- --- -- - a -

.4-. 67

_ a I I,'3 F~ -~ .1

w
I I I I I I I I j

A. ~ ~ ~ 3' L.
~Ii

- - - A. * * . a * 0 0 * * 0

o

- I
2 .~

*

C

N

CL

tI~ -~

2

~~2

* 0

116

...........................
.-.-.. *...:~'.-.-.-

- - --- - -

I i

-4;

" " ,, ".'"." o " "-" 2¢ ,.",I-' - I"' " "' ".-" ".""" ,,' ""' . "" """. ' """-"" "." ' " - -- a-.-"-' ""- . . ,"j"""'

E--. I

I

F.d ~ I.' . ,

114

:: o

gZ -z~L

., .. -,- .: ., . . , ,. . , -, - -.. '..-.'.... ...

t i. C

•6" .. G G < 4.d

.3 . - . n.

r'.1

.€..

0~i

S - Ma - -. - .. K.-. .- * -

fl - - - -

£ C ~b

I 5

3 I i I ~
.3

Si *) I~r ~.
L ~

.5

o ~
*.1

'. ,
I

-~ a -
.~ II. *)
L. Z S-

IA'
* 3

L.o hiS I
IL

-)~ .~ , 0
C

S C'-'.~ CLi.:
.3 .. J

..1
fri

S

112

.i..

- - ..-.-..-.----- ~ -

-- c-~ -~ -~ ~ ***~ ~ -~ I -~ - - -. -' - - ~ ~

Z 2
2

'I.

2 ~
U, - is) L
0 ,~ a-
~ ~

I LI I Io .~ ~Ii ~
- .-. ~

o * *

/

o -Ij. .4 E
2 0~

- J

C

o ~.

I M I~I,

.. d C..
* . a 6 - I

. 0

~x.

q)

LI-

4-
I I

~I~7 '.7
S

111

-s-w

curr

S 111Lc -31 1

Fiue2. (Cniud

0
-

IL

- I *u*tj r

-dc

I07

.- j 109

-7a

- - - - CL

d . ~ . 00

CWC

108

7. 7 7- - -

APPENDIX B - THE LIL PROGRAM SPECIFICATIONS

module SQL-INTERFACE

db-list : list; /* list of existing relational schemas
head-db-list-ptr: ptr; /* ptr to head of the relational schema list */
current-ptr: ptr; /* ptr to the current db schema in the list */
follow-ptr: ptr; /* ptr to the previous db schema in the list *7
db-id : string; 7* string that identifies current db in use

proc LANG UAGE_-INTERFACE-LAYERO;
/* This proc allows the user to interface with the system. */
-.* Input and output: user SQL requests *1

stop : int; /* boolean flag */
answer: char; /* user answers to terminal prompts */

* perform SQL-INIT();
stop = 'false';
while (not stop) do
/* allow user choice of several processing operations */
print ("Enter type of operation desired");
print (" (1) - load new database");
print (" (p) - process existing database");
print (" (x) -return to the to operating system");
read (answer);

case (answer) of
'F': /* user desires to load a new database */

perform LOAD-NEWO;
'p': /* user desires to process an existing database */

. - perform PROCESS-OLDO;
'x': /* user desires to exit to the operating system */

/* database list must be saved back to a file */
store-free-db-list(head-db- list, db-list);
stop = 'true';
exitO;

default: /* user did not select a valid choice from the menu
print ("Error - invalid operation selected");
print ("Please pick again")'

end-case;

/* return to main menu */
end-while;

end-proc;

122

,, ,. .d ,4b; .,*,-.*.,d *.r, m~if.n,, S. . .. - ,- C. . •.- . ..

proc SQL-INITO;

end-proc;

proc LOAD-NEWO;
/* This proc accomplishes the following: *,

/* (1) determines if the new database name already exists.
/* (2) adds a new header node to the list of schemas,
/* (3) determines the user input mode (file/terminal),
/* (4) reads the user input and forwards it to the parser, and */

/* (5) calls the routine that builds the template/descriptor files */

answer: int; /* user answer to terminal prompts */
"more-input: int; /* boolean flag */
proceed: int; /* boolean flag */
stop : int; /* boolean flag */
db-list-ptr: ptr; /* pointer to the current database */
req-str: str; /* single create in SQL form */
ptr-abdl-list: ptr; /" ptr to'a list of ABDL queries (nil for this proc)*/
tfid, dfid: ptr; /* pointers to the template and descriptor files */

/* prompt user for name of new database */
print ("Enter name of database");
readstr (db-id);
db-list-ptr = head-db-list-ptr;

stop - 'false';
while (not stop) do

/* determine if new database name already exists */
/* by traversing list of relational db schemas */
if (db-list-ptr.db-id = existing db) then

print ("Error - db name already exists");
print ("Please reenter db name");
readstr (db-id);
db-list-ptr = head-db-list-ptr;

end-if;
else

if (db-list-ptr + 1 'nil') then
stop = 'true';

else
/* increment to next database *7
db-list-ptr - db-list-ptr - 1;

end-else;

end-while;

123

/* continue - user input a valid 'new' database name */
/* add new header node to the list of schemas and fill-in db nme
/* append new header node to db-list */
create-new-db(d b-id);

/* the KMS takes the SQL creates and builds a new list of relations */
/* for the new database. After all of the creates have been processed */
/* the template and descriptor files are constructed by traversing */
/* the new database definition (schema).

more-input - 'true';
while (more-input) do
/* determine user's mode of input */
print ("Enter mode of input desired");
print (" (f) - read in a group of creates from a file");
print (" (t) - read in a single create from the termiiial");
print (" (x) - return to the main menu");
read (answer);

case (answer) of "
'f': /* user input is from a file */

perform READ-TRANSACTION-FILE(;
perform CREATES-TO-KMSO;
perform FREE-REQUESTS 0;
perform BUILD-DDL-FILESO;
perform KERNEL-CONTROLLERO;

't': /* user input is from the terminal */
perform READ-TERMINALO;
perform CREATES-TO-KMSo;
perform FREE-REQUESTS(;
perform BUILD-DDL-FILESO;
perform KERNEL-CONTROLLERO;

'x': /* exit back to LIL */
more-input - 'false';

default: /* user did not select a valid choice from the menu
print ("Error - invalid input mode selected");
print ("Please pick again");

end-case;
end-while;

end proc;

124

p ".

proc PROCESS-OLDO;
/* This proc accomplishes the following:
/* (1) determines if the database name already exists, */

/* (2) determines the user input mode (file/terminal), */

/* .(3) reads the user input and forwards it to the parser */

answer: int; /* user answer to terminal prompts */
found: int; /* boolean flag to determine if db name is found */
more-input: int: /* boolean flag to return user to LIL */
proceed:' int; /* boolean flag to return user to mode menu
db-list-ptr: ptr; /* pointer to the current database */
req-str: str; /* single query in SQL form ,/
ptr-abdl-list: ptr; /* pointer to a list of queries in,4kBDL form */
tfid, dfid: ptr; /* pointers to the template and descriptor files */

/* prompt user for name of existing database */
print ("Enter name of database");
readstr (db-id);
db-list-ptr - head-db-list-ptr;"

found = 'false';
while (not found) do

/* determine if database name does exist */
/* by traversing list of relational schemas */
if (db-id = existing db) then

found 'true';
end-if;
else

db-list-ptr = db-list-ptr + 1;
/* error condition causes end of list('nil') to be reached */
if (db-list-ptr = 'nil') then

print ("Error - db name does not exist");
print ("Please reenter valid db name");
readstr (db-id);
db-list-ptr head-db-list-ptr;

end-if:

end-else;

end-while;

125

| * . * * * - - .

/* continue - user input a vahd existing database name
/* determine user's mode of input */

more-input - 'true';
while (more-input) do

print ("Enter mode of input desired"):
print (" (f) - read in a group of queries from a file");
print (" (t) - read in a single query from the terminal");
print (" (x) - return to the previous menu");
read (answer);

case (answer) of
'f': /* user input is from a file */

perform READ-TRANSACTION-FILEO;
perform QUERIES-TO-KMSO:
perform FREE-REQUESTS();

't': /* user input is from the terminal */
perform R.EAD-TERMINALo;
-perform QUERIES-TO-KMSO;
perform FREE-REQUESTS();

'x': /* user wishes to return to LIL menu
more-input = 'false';

default: /* user did not select a valid choice from the menu
print ("Error - invalid input mode selected");
print ("Please pick again");

end-case;

end-while;

end-proc;

126

•proc READ-TRANSACTION-FILEO;

/* This routine opens a create/query file and reads the requests */

/* into the request list. If open file fails, loop until valid *

/* file entered */

while (not open file) do
print ("Filename does not exist");
print ("Please reenter a valid filename");
readstr (file);

end-while;

READ-FILEO;

end-proc;

proc READ-FILE);
/* This routine reads transactions from either a file or the */
/* terminal into thq user's request list structure so that */
/* each request may be seni to the KERNEL-MAPPING-SYSTEM. */

end-proc;

proc READ-TERMINALO;
/* This routine substitutes the STDIN filename for the read */
/* command so that input may be intercepted from the terminal */

end-proc;

proc CREATES-TO-KMSO;
/* This routine sends the request list of creates one by one

/* to the KERNAL-MAPPING-SYSTEM */

while (more-creates) do
KERN AL-MAPPING-SYSTEMO;

end-while;

end-proc;

127

. S
5*

proc QUERIES-TO-KMSO;
/* This routine causes the queries to be listed to the screen. */
/* The selection menu is then displayed allowing any of the */
/* queries to be executed.

perform LIST-QUERIESO;
proceed = 'true';
while (proceed) do

print ("Pick the number or letter of the action desired");
print (" (num) - execute one of the preceding queries");
print (" (d) - redisplay the file of queries");
print (" (x). - return to the previous menu");
read (answer); .

case (answer) of
num': /* execute one of the queries */

traverse query list to correct query;
perform KERNAL-MAPPING-SYSTEMO;
perform KERN EL-CONTROLLERO;

V /* redisplay queries */
perform LIST-QUERIESO;

'x' /* exit to mode menu
proceed - 'false';

default :/* user did not select a valid choice from the menu
print (" Error - invalid option selected");
print (" Please pick again");

end-case;

end-while;

end-proc;

end-module;

128

APPENDIX C - THE KMS PROGRAM SPECIFICATIONS

module KMS 0

perform parser()

end-module KMS

proc yyparse ()

• * This proc accomplishes the following: */
/* (1) parses the SQL input requests and maps thehi to appropriate */

/* abdl requests, using LEX and YACC to build proc yyparse(. *7
/* (2) builds the relational schema, when loading a new database. */
/* (3) checks for validity of relation and attribute names within */.

/ * the given d& schema, when processing requests against an

/* existing database. *7

list: tgt-list /* list of attribute names */

list: templates /* relation name(s) */
list: insert-list /* list of values for insertion op */

string: temporary-str /* used for accumulation of query conjuncts */
string: abdl-str /* used for accumulation of abdl request */
string: join-str /* used for accumulation of join request */
boolean: nested //* signals a nested SELECT query */
boolean: creating /* signals a DbLoad - versus a DbQuery */
boolean: or-where /* signals an OR term in the WHERE clause*
boolean: and-where /* signals an AND term in the WHERE clause
boolean: set-member /* signals set membership op, vice nested SEL *
boolean: common-attr /* signals COmbN attr predicate of JOIN op*
boolean: rell /* signals cura predicate assoc'd w/st join oel
boolean: rel2 /* signals curr predicate assoc'd w/2nd join rel */
boolean: or-abdl-join /* OR in 1st join retrieve request /
boolean: or-kms-join /* OR in 2nd join retrieve request */
boolean: delete-all /* signals deletion of all records in relation
int: target-alist-len gt h
int: insert-list-length
int: no-templates
int: no-attributes
int: attr-len
char: attr-type
char: dblt
char: templatel
char: attributei;

129

' .. "...".'." .'-......................-....- . "........

% start statement

% token /* LIST ALL TOKENS FROM "LEX", and their TYPE, HERE *

statement: query

nested - FALSE
free all tgt/insert lists and temp-str (mailoc'd vars)
return

Idm-statement

cat End-Of-Request ("I") to end of abdl-str
free all tgt/insert lists and temp-str (malloccd-vars)
return

Iddl-statement

return

dm1-statement: insertion
deletion
update

query: query-expr

query-expr. query-block

cat End-Of-Request (])to end of abdl-str

130

query-block: selevt lause FROM from-list

for (ea attribute name in tgt-list)
if (! join)

if NOT valid-attribute(db, template, attribute, attr-len)
print ("Error - field name 'attribute-name' does not exist")

perform yyerror()
return

end-if
end-if
else

a join exists - check that tgt-rel(s) match at least
one.from-list relation
if (match neither)

print ("Error - 'attr' attr not in from-list relations")
perform yyerror()
return

end-if
end-else

end-for
cat "C" to abdl-str
if (join)

cat "("t to join-str

end-if
if (nested)

fill temporary-str w/'*'s marking the length of the tgt attr
end-if

A

cat ")" to abdl-str
if (! join)

cat " ('tgt- list')" to abdl-str
end-if
else

cat "'tgt-list')" to abdl/join-str, as appropriate
construct the rest of the abdl join request
(ie, cat COMMON-str to abdl-str; cat join-str to abdl-str)

end-else

B

....--.

A: empty

cat "FILE ='relation-name"' to abdl-str

IWHERE boolean

if (! join) && (or-where)
cat ")" to abdl-str

end-if
else if (or-abdi-join)

cat ")" to abdl-str
end-elseif
elseif (or-krns-join)

cat I)" to join-str
vend- elseif

B: empty
GROUP BY fiefd-sec- list

cat "BY 'attribute- name"' to abdl-str

select-clause: SELECT

if (nested)
allocate another set of tgt/insert lists, ternporary-str,
and abdi strings

end-if
copy "rRETRIEVE "to beginning of abdl-str

C

C: sel-expr-list
MULTOP

retrieval of "all" attribute values desired *

if (MU LTOP value /=1*
print ("Error - asterisk(*) operator expected")
perform yyerror()
return

end- if

132

sel-expr- list: sel-expr

copy first attribute name to tgt-list

isel-expr-list COMMA sel-expr

copy successive attribute name(s) to tgt-Iist

sel-expr: expr

insertion: INSERT INTO

copy "INSERT ("to beginning of abdl-str

receiver COLON insert-spec

cat 1)" td abdi-str

receiver: table-name

cat "<FILE, 'relation-name'>" to abdl-str

D

133

D: empty

/* inserting info for "all" attribute values */

copy all attribute names from schema to tgt-list
if (target-list-length < 1)

print ("Error - rel does not exist, or has no attr's")
perform yyerror()
return

end-if}
LPAR field-name-list RPAR

{
for (ea attribute name in tgt-list)

if NOT valid-attribute(db, template, attribute,4attr-len)
print ("Error - field name 'attribute-name' does not exist)
perform yyerroro
return

end-if
end-for

field-name-list: field-name{
target-list-lengt h----
copy first attribute name to tgt-list
I

field-name-list CONMA field-name
{
target-list-length-
copy successive attribute name(s) to tgt-list}

insert-spec: literal
{
if (length of tgt-list <> length of insert-list)

print ("Error - not enough or too many values inserted")
perform yyerror()
return

end-if
for (ea attribute in tgt-list ' ea value in insert-list)

perform type-checking of attrribute-value pairs
cat ". < 'attribute-name', insert-value'>" to abdl-str

end-for

134

deletion: DELETE table-name

copy"[DELETE (" to abdl-str
copy 'table-name' to templates

E

if (delete-all)
cat "1TEMIPLATE ='table-name"' to abdl-str

end-if
cat 1)" to abdl-str

delete-all TRU.E

WHERE boolean

if (or-where)
cat I)" to abdl-str

end- if

update: UPDATE table-name
f
copy "[UPDATE ("to beginning of abdl-str
copy relation-name to templates

set-clause-list F

cat ") 'set-clause-list"' to abdl-str

F: empty
WHERE boolean

if (or-where)
cat 'T" to abd)-str

end- if

135

...

proc load-tables(

/* This procedure accomplishes the following: */

/* (1) Calls dbl-template(which is a procedure
/* already defined in the Test Interface. It loads *7
/* the template file. *;!
/* (2) Calls dbl-dir-tbls 0 which is another procedure *7
7* already defined in the Test Interface. It loads *

/* the descriptor file. /

begin proc

do initialization; /* Initialize pointer *7

perform dbl-template (&template, ptr->ddli-temp.fi-fid);

perform dbl-dir-tbls(pcr- >ddli-desc.fi-fid);

end proc

proc rest-requests-han dler(

/* This procedure handles common retrieve requests, insert */
/* requests. delete requests and update requests by calling *7
/* sql-execute O . *7

begin proc

perform sql-executeo;

end proc

149

APPENDIX D - THE KC PROGRAM SPECIFICATIONS

module Kernel-Controller 0

/* This procedure accomplishes the following:
/* (1) Initialization pointers global to the Kernel Controller.
/* (2) Checks si-operation to determine whether we are creating a
/* database, retrieving information from the database, deleting */
/* information from the database, inserting information into the */
/* database, updating the database or if there are errors.
/* (3) Depending on the appropriate operation the corresponding

procedure is called.

begin module

sql-ptr - &(cuser-rel-ptr-> ui-li-type.li-sql);
kc-ptr = &(sql-ptr- >si-kc-data.kci-r-kc);
/* Initializes pointers global to the kernel controller */

/* look at the si-operation to determine what action to take =/
case si-operation

'Create a database':

perform load-tables 0;
break;

'Execute retrieve requests':

perform select-requests-handlero;
break;

'Execute retrieve common requests':
'Execute delete requests':
'Execute insert requests':
'Execute update requests':

perform rest-requests-handlero;
break;

'Otherwise': /* There are errors

print error message;

break;

end case

end module

148

proc yyerror (S)
char *s

if (creating)
set. CreateD B-error- flag
print ("Error rnsg - tell user which CREATE TABLE request was in error")
free current schema (malloc'd vars)

end-if
else

free all tgt/insert lists, tenip-str, and abdl-strs
end-else
reset all boolean and counter variables

end-proc yyerror

147

..

constant: QUOTE I QUOTE
I
literal-const - TRUE
perform type-checking

JINTEGER

perform type-checking

1: IDENTIFIER
VALUE

fieldname IDENIFIE

fae-name: IDENTIFIER

if (! creating)
if NOT valid-table(db, template)

print ("~Error - relation name 'table-name' does not exist")
perform yyerror()
return

end-if
end-if

endpro yyar}

eproc parsre

if (! creating)
allocate and initialize first tgt/insert lists, temporary-str, and abdl-str
,'* if an old abdl-str exists, free it first *

end-if
perform yyparse()
reset all boolean and counter variables

end-proc parser

146

field-spec: field-name
I table-name DOT field-name{

if (! valid-attribute(db, rel, attr, attr-len)
print ("Error - 'rel.attr' is invalid combination")
perform yyerroro
return

end-if
if (join)

if (! or-where)li ((or-where) && (! and-where)
if (table-name = rell)

rell =- TRUE
rel2 = FALSE

end-if
if (table-name =- rel2)

rell - FALSE
rel2 - TRUE

end-if
end-if

end-if}

set-fn: AVG I MAXI MIN SUM COUNT

from-list: table-name
{
copy first relation name to templates
if (tgt-list - null)

fill tgt-list with "all" attribute names in the relation
end-if
}

I from-list COMMA table-name
{
copy second relation name to templates
join - TRUE
allocate join-str}

empty:

145

* ,..r . .r-,--.,.,,r ,.,- * . ,, . - -. . . _. .

entry-list: entry{
/* copy first value to insert-list */
insert-list-length -+

if ('entry[Ol' - QUOTE)
strip quotes from entry
change entry to ALPHANUMFIRST

end-if
copy result, or original entry, to insert-list
}

entry-list COMMA entry
{
/* copy successive value(s) to insert-list */
insert-liSt-length++
if ('entry[O' = QUOTE)

strip quotes from entry
change entry to ALPHANUMFIRST

end-if
copy result, or original entry, to insert-list
} - -

entry: constant

expr: arith-term
I expr ADDOP arith-term

arith-term: arith-factor
arith-term MULT-OP arith-factor

arith-factor: H primary

H: empty
ADDOP

primary: field-spec
set-fn LPAR field-name RPAR

LPAR expr RPAR
constant

field-spec-list: field-spec

144

....................,.-.-. .-.-.. .-... .. -- .-.-,.,-..-.-.-.-.,.%. -- , .-.. -,- '"- --.-..,. -.-- -- --

literal: lit-tuple
ILPAR entry-list RPAR

set-member - TRUE
case (set-membership-op)

3,5.8.10 : 1* <-=ANY, <ANY, >=ALL, >ALL ~
cat 'max of value set' to temporary-str

4,6,7,9 : ',*~ >-ANY, >ANY, <-ALL, <ALL *
cat 'min of value set' to temporary-str

1: /* NOT IN */
cat first value to temporary-str
while (other values exist)

cat -") and ('attr-name' /-'value"' to %emporary-str
end-while

0,2: /* IN, /-ANY *
cat first value to temporary-str
if (more values exist)

abdl-strillj
or-where =TRUE

end-if-
while (other values exist)

cat ")) or ((TEMPLATE = 'rel-name') and ('attr-name"'
to temporary-str
if (rel-op =IN)

cat " - " to temporary-str
end-if
else

cat " ="to temporary-str
end-else
cat value to temporary-str

end-while
end-case

lit- tuple: entry
LWEDGE entry-list RWEDGE

143

table-spec: literal

if (! set-member)
if ('literal O1' - QUOTE)

I strip quotes from literal
change literal to ALPHANUIF IRST
literal-const = FALSE

end- if
cat result, or 'original literal, to temporary-stri if (nested)

set firt-ptr toa top of abdl-str list
end-if

end-if
else

set-member - FALSE
end-else

query-expr

increment p'tr to nest tgt/insert list, temp-str, and abdl-str

LPAR query-expr RPAR

increment ptr to next tgt/insert list, ternp-str, and abdl-str

expr

comxnon-attr =TRUE

142

comparison: camp-op

if (!join)
cat 'comp-,op' to temporary-str
if (nested)

copy type-op-code to abdl-str.rel-op
end- if

end-if

comp-op: EQ
M J

if (nested)
cat 'J' to 'M' and save

end-if

IL

nested =TRUE

J.- empty
K

nested =TRUE

K: ANY I ALL

L: IN INOT IN

M: NE IRWEDGE GE LWEDGE ILE

141

;-N.

boolean-prixnary: predicate

predicate: expr

if (!join)
if NOT valid-attribute (db, template, attribute, attr-len)

print ("Error.- field name 'attribute-name' does not exist")
perform yyerrorO
return

end-if
if (! and-where)

allocate new temporary-str
end-if
cat "('attribute-name' " to temporary-str
and-where -FALSE

end-if
else

save 'type'for later comparison during type-checking,
in case bhis- is the COMMON attribute predicate

end-else

comparison

if (nested)
save attr name in case nest is actually a set membership op

end-if

table-spec

if (! join)
cat "1" to temporary-str

end-if
else

if (common-attr)
save values of 'expr', 'comparison', & 'table-spec'
for the COMMON expr, and type-check the two attr's

end-if
if (! and-where) && (! or-where)

allocate initial temporary-str.
copy "(" to temporary-str

end-if
else

cat "C" to temporary-str
end-else
cat "'expr' 'comparison' 'table-spec')" to temporary-str

end-else

140

boolean-term: boolean-factor

if (join) && (! or-where)
determine rel that curr predicate is assoc'd with
if (rell) && (!cornron-attr)

cat "(FILE 'rel-narnel') and" to abdl-str
cat temporary-str to abdl-str
cat "1 FILE ='rel-name2"' to join-str

end-if
if (reI2) && (!common-attr)

cat "(FILE ='rel-name2') and" to join-str
cat temporary-str to join-str
cat." FILE = 'rel-namel "' to abdl-str~

end-if
if (common-attr)

cat "1 FILE = 'rel-naxnel/2" to abdl/joiri-str's
end-if

end-if

Iboolean-lerffv AND*

and-where =TRUE;
if (!join)

cat "and" to temporary-str
end- if

boolean-factor

if (join) && (! or-where) && (!comxnon-attr)
if (rell)

abdl-str[ll + 31 = (
cat "1) and" to abdl-str
cat temporary-str to abdl-str

end-if
if (rel2)

join-str[11 + 31=
cat I) and"f to join-str
cat temporary-str to join-str

end-if
copy empty-str to temporary-str
and-where = FALSE

end- if

boolean-factor. boolean-primary

139

boolean: boolean-term,

if (!join)
cat "-(FILE -'relation-name') and" to abdl-str
cat ternporary-str to abdl-str

end-if

Iboolean OR

or-where -TRUE
if (!join)

abdl-str[11]
cat "1) or ((FILE- 'relation-name') and" to abdl-str
copy empty-str to temporary-str

end-if

boolean-term

if (! join)
cat ternprprary.-str td abdl-str

end-if
else

if (current predicate assoc'd w/same rel as previous predicate)
abdl/join-str[11]
cat ")or ((FILE - 'rel-name') and" to abdl/join-str (as approp)
cat temporary-str to appropriate str (abdl/join-str)

end-if
else

abdl/join-str(as approp)[1-1 - 3=
cat "and" to appropriate str (abdl/join-str)
cat temporary-str to appropriate str (abdl/join-str)

end-else
copy empty str to temporary-str
or-where =FALSE

end-else

138

fleld-deffn: field-name LPAR type G RPAR

create new attribute block
enter 'attribute-name' in attribute block

G: empty
f
set key-flag to '0 in attribute block

COMMA NONULL

set key-flag to '1' in attribute block

type: CHAR LPAR INTEGER RPAR

enter attribute type and'length in attribute block

INT LPAR INTEGER RPAR

enter attribute type and length in attribute block

FLOAT LPAR INTEGER RPAR

enter attribute type and length in attribute block

137

set-clause-list: set-clause

set-clause: SET Ield-name EQ expr{
if NOT validattribute(db, template, attribute, attr-len)

print ("Error - field name 'attribute-name' does not exist")
perform yyerrorO
return

end-if
else

copy "<'field-name = expr'>" to abdl-str
end-else

ddl-statement: create-table

create-table: CREATEh
{
creating = TRUE
locate db-id schema header}

TABLE table-name COLON
{
no-templates ++
create new template block
enter 'relation-name' in template block
}

field-defn-list

field-defn-list: field-defn
{
no-attributes ++

field-defn-list COMMA field-defn
{
no-attributes

13
i13

o . - - --..

proc select-requests-handler)

/* This procedure accomplishes the following:
/* (1) Determines if we have a series of requests which /
/ * corresponds to a nested select in SQL.
/* (2) If we do have a series of requests we process the first */

/* request because this is the only fully formed ABDL *
/* request. This is accomplished by calling sq]-executeo. */'
/* (3) If it is a nested select, we enter a loop to process the *

/* remaining requests. Note that it may be necessary to */
/* process sub-requests. This requires entering another *7
/* loop to process these. This occurs when the number of *7
/* responses to a request is larger than NU.M-CONJ. In this */
/* situation a request contains at most NL.M-CQ.NJ values. */
/*.. (4) If it is not a nested select, then only one request */
/*'" requires processing. This is accomplished by calling *7
/* sql-execute. *1

begin proc
curr-req = &(sq]-ptr..>si-abdl-tran->ti-curr-req);
/* Set curr-req equal to the first request to be processed */

num-reqs = &(sql-ptr-> si-abdl-tran-> ti-no-req);
/* Set num-reqs equal to the number of requests to be processed *7

kc-ptr->kcri-file-status = FIRSTTIME;
/* Set the file status to indicate it is the first time through */

k6-ptr-> kcri-req-status = FIRSTTME;
/* Set the request status to indicate it is the first time through */

kc-ptr->kcri-num-values-ffMle = 0;
/* Set the number of values in the file to zero

strcpy(kc-ptr-> kcri-files.nri-futr.fi-fname, CURRFName);
/* Assigns filename for the current file */

strcpy (kc-ptr-> kcri-files.nri-curr.fi-fname, FUTRFName);
/* Assigns filename for the future file */

* num-reqs = *num-reqs - 1; /* Decrement num-reqs *7
if (*num-reqs - 0) /* Its the last subrequest */

sql-ptr->si-subreq-stat = LASTSUBREQ;
else /* Its an intermediate subrequests */

sql-ptr- > si-subreq-stat = INTERSUBREQ;

perform sql-execute(; /* Handles the first request */

150

b.,..,,,.;,.,, .,.,. .,..,. ,y ""''''' "-"-, ... ,-", .,"-".% -".- -". -- ". .",'.' ".-< ,.- -%'

while (*num-reqs > 0) /* It is a nested select ~
begin while

* num-reqs = *num-reqs - 1; // Decrement num-reqs *
perform swap-.flleso; /* Swap current and future files *
kc-ptr-> kcri-numn-values-cfile = kc-ptr-> kcri-aum- values-ffile;

/* Set the number of values in the current file ~
kc-ptr->kcri-num-values-ffile = 0;

/* Reinitializes the number of values in the future file ~
kc-ptr->kcri-file-status - FIRSTTEME; /* Reintialize the status *
sql-ptr- >si-su breq-stat = INTERSU BREQ; / * Reinitialization, the status */
curr- req-> ri-ab-req - curr-req- >ri-ab-req-> ari-next-req;

/* Advance pointer so it points to the next request ~
kc-ptr-> kcri-unfin-ret - curr-req-> ri-ab-req-> ari-req;

/* Loads abdi request template into unfin-ret ~
curr-req->ri-ab-req-> an-req =NULL;

/* Sets ani-req to empty so that the completed riquest can
/* be built into an-req */

kc-ptr->kcri-req-status = FIRSTTMEE; /* Reinitialize request status *
one-conj-flag = FALSE;

/* Sets flag to indicate it is not a one conjunction type req *

while ((kc-ptr->kcri-num-values-cfile > 0) &&(!one-conj-flag)
/ * There are values left to insert into the request ~
begin while

perform build-request(&one-conj-flag)
,/* Builds the next request ~

perform sql-executeO;
/*Handles the request just built *

perform free(curr-req-> ni-ab-req-> ar-req)
/* Frees an-req ~

curr-req-> ri-ab-req- >ari-req = NULL,
/* Reinitializes an-req ~

end while

/* Sets up for the next request ~
curr- req-> ri-ab-req- >an-req = kc-ptr-> kcni-unfin-ret;

* Set ani-req equal to unfin-ret; ~
kc-ptr->kcri-unfin-ret = NULL;'

/* Reinitailize unfin-ret */
perform fclose(kc-ptr-> kcri-files.nri-curr.fi-fid);

,'* Close the current file !
end while

end proc

proc sql-executeO

.1 /* This procedure accomplishes the following:. */
/* (1) Sends the request to MBDS using TI-SSTrafUnit() *
/* which is defined in the Test Interface. */
/* (2) Calls sql-requests-left 0 to ensure that all requests */
/ * have been processed. */
/* (3) Calls TI-finish 0 for post operation processing. */

begin proc

perform TI-SSTrafU nit (sql-ptr- > si-curr-db.cdi-dbname,
"sql-ptr-> si-abdi-tran-> ti-curr-req.ri-ab-req-> ari-req);

/* Sends the request to MBDS */

perform sql-chk-responses-lefto;
/* Wait until all responses have been returned */

perform TI-finishO;
/* Routine to tidy-things up after processing is completed */

end proc

152

...-

proc sqi-chk-responses-left(

/* This procedure accomplishes the following:
•1* (1) Receives the message from MBDS by calling */
/* TI-RSMessage 0 which is defined in the Test Int. */
/* (2) Gets the message type by calling TI-R$Type. */

/* (3) If not all responses to the request have been
/* returned, a loop is entered. Within this loop a

case statement separates the responses received by */
/* message type. *
/* (4) If the response contained no errors, then procedure */
/* TI-RSReq-res0 is called to receive the response from */
/* MBDS. "1
/* (5) A check is then made to determine if this is ttie last */
/*-" response. If it is, then the results are returned o */
/* the calling routine. If it was not the last response */
/* then the results are filed in future-results-file.
/* (6) If the message contained an error then procedure */
/ * TI-RSErrorMessage is called to get the error message */

/* and then piocedure TI-ErrRes-output is called to */

/* output the error mesage. */

begin proc

num-reqs = &(sql-ptr->si-abdl-tran->ti-no-req);
/* Number of requests left, not counting the request */
/* currently being worked on.

response = sql-ptr->si-kfs-data.kfsi-rel.kri-response;

/* Initailize response */

done = FALSE; /" Initialize flag */

while (not done)
/* Not all responses for the current request have been received */

perform TI-R$Messageo; /* Receive message from MBDS */

msg-type = TI-R$Type0; /* Get the type of the received message */

153

..

case msg-type /* Is the response correct or are there errors? */

,. 'CH-ReqRes': / The response is correct */
done - chk-if-last-response0;

/* Set flag if its the last response */

case sq]-ptr- >si-operation

'Execute Retrieve Requests':
'Execute Retrieve Common Requests':

if (*num-reqs == 0)

/* If there are no requests left, send the results to */

/* the formatter. */
KfsO;

S. else
"" /*There are requests left the in nested seleci to process */

file-future-results0; 11* Save the results */
break;

'Execute Delete Requfsts':
print "Delete Query Done";
break;

'Execute Insert Requests':
print "Insert Query Done";
break;

'Execute Update Requests':
print "Modify Query Done";
break;

end case
break;

'Requests With Errors':
perform TI-R$ErrorMessage(request,err-msg);

/* Get the error message */
perform TI-Err Res-output (request,err-msg);

/* Output the error message */

done = TRUE; /* Set the flag */
break;

end case
end while

end proc

154

, %

proc build-request(one-conj-flag)

/* This procedure accomplishes the following:
/* (1) Builds the next ABDL request to be processed by

calling either N-Conjunction, Not-In-Conjunction or
" /* One-conjunction depending on the relational operator. */

/* (2) Sets one-conj-flag if procedure One-Conjunction is */
/* called.

begin proc

curr-abdl-req - &(sql-ptr- >si-abdl-tran-> ti-curr-req);
/* Gets the current ABDL request.*

c4se curr-abdl-req-> ri-ab-req-> ari-rel-op
/* Switches based upon the relational operator in the request */

'In Operator':
perform N-Conjunction0;
break :-- •

'Not In Operator':
perform Not-In-Conjunction();
break;

'Not Equal to Any Operator':

perform N-ConjunctionQ;
break;

'Less than or Equal to Any Operator':
perform One-Conjunction(kc-ptr-> kcri-max.maxi-val.dvi-int);
*one-conj-flag - TRUE;

break;

'Greater than of Equal to Any Operator':
perform One-Conjunction (kc-ptr-> kcri-min.mini-val.dvi-int);
*one-con j-flag = TRUE;

break;

'Less than Any Operator':
perform One-Conjunction(kc-ptr-> kcri-max.maxi-val.dvi-int);
•one-conj-flag TRUE;

break;

155

I

'Grrater than Any Operator':
perform One-Conjunction (kc-p tr- > kcri-min.mini-val.dvi-int);
*one-conj-flag - TRUE;

break;

'Less than or Equal to All Operator':
perform One-Conjunction(kc-ptr- > kcri-min.mini-val.dvi-int);
*one-conj-flag = TRUE;

break;

'Greater than or Equal to All Operator':
perform One-Conjunction(kc-ptr- > kcri-max.maxi-val.dvi-int);
*one-conj-flag -= TRUE;

break;

'Less than Al) Operator':
perfrom One-Conjunction(kc-ptr-> kcri-min.mini-val.dvi-int);
*one-conj-flag TRUE;

break;

'Greater than All Operator':
perform One-Conjunction(kc-ptr-> kcri-max.maxi-val.dvi-int);
*one-con j-flag TRUE;

break;

end case
end proc

156

- .T, -. .6 T .--

proc N-ConjunctionO

/* This procedure accomplishes the following:
/* (1) Builds an N conjunction ABDL request using a template */
/* (the unfinished return) provided by KIMS. */
/* (2) This is accomplished by loading in the action portion of */
/* the template, loading up to NUM-CONJ conjunctions into */
/* the request, 'oring' the conjunctions together and then */
/* adding the target list.
/* (3) The conjunction portion is formed by copying from the */
/* beginning of the conjunction to first asterik of the */
/* template into ari request. Then the next value from the */
/* the current file is inserted into the ari request4
/* followed by the remainder of the conjunction.i If this */
/*. is not the last conjunction of the :equest, then an or
/" V is inserted and the next conjunction is constructed using */
/ * the same process.

begin proc

abdl-ptr - sql-ptr.> si-abdl-tran-> ti-curr-req.ri-ab-req;
/* Set pointer to the current ABDL request */

if (kc-ptr->kcri-req-status -- FIRSTTIME)
,/* Calculates values that will be used on all calls to this procedure */
/* for a given request. Thus, these values are only calculated once.

begin if
for (i = 0; kc-ptr->kcri-unfin-rettil != LPARAN; i++)

kc-ptr-> kcri-beg-conj = i;/*Mark position where the conjunction begins*/
action-len = kc-ptr->kcri-beg-conj;/*does not include 1st LPARAN */
for (; kc-ptr->kcri-unfin-ret[i] !- ASTERIK; i++)

kc-ptr->kcri-beg-asterik = i;/*Mark position of the first asterik*/

157

1* Calculates the size of the template. ~
unfln-ret-Ien - strlen(kc-ptr-> krri-unfin-ret);
for (i - unfin-ret-len; kc-ptr-> kcri-unfin-ret(il ! ASTERIK; i-.)

kc-ptr->kcri-end-asterik =i;,!*MNark position of last asterik*/
for (;kc-ptr->kcri-unfIn-ret1iV! LP ARAN; i++~)

for (;kc-ptr->kcri-unfin-ret[i] RPARAN: i-)

kc-ptr->kcri-end-conj i;
/*Mark position of the end of the conjunction*/

target-len - unfin-ret-len - kc-ptr-> kcri-end-conj + 1;
conj-len = unfin-ret-len - target-len - action-len;

* Calculates the maximum length of the finished request. ~
kc-ptr->kcri-req-len = (action-len + (NUM-CONJ *conj-len) +

(NUM-CONJ * ORLen) + target-len);
kc-ptr-> kcri-files.nri-curr.fi-fid =

fopen(k c-ptr-> kcri-files.nri-curr.fi-fname, "r");
kc-ptr-> kcri. req-status =RESTTIME;

end if
else

begin else
/* Reset the length of the unfinished request ~
unfin-ret-len - strlen(kc-ptr-> kcri-unfin-ret);

end else

/* Allocates space for the finished request. *
abdl-ptr-> ar-req - var-str-alloc(kc-ptr- >ken-req-len);

/* load request with action portion and an (*1
for (i = 0; i != (kc-ptr->kcri-beg-conj + 1); i+~+)

abdl-ptn-> ari-req[il kc-ptn-> kcri-unfin- retti];
j~i

158

..

counter 1
while ((counter <- INUM.CQNJ) && (kc-ptr->kcri-nunfi-values-cfile !=0))

/*Keep building conjunctions, filling them with values -

& 'oring' them together*/

begin while
,/* loads template up to asterik *
for (i - kc-ptr->kcri-beg-conj; i !=kc-ptr->kcri-beg-asterik; i+s+)

begin for
abdl-ptr->ari-reqj kc-ptr->kcri-unfin-ret[i];

end for

/* loads in the next value ~
§for (i - 0; ((abdl-ptr->ai-req~j]

getc(kc-ptr-> kcri-files.nri-curr.fi-fid)) !'0); i++)

/* loads the a popriate number of) behind the conj ~
for (i - (kc-ptr->kcri-end-asterik + 1);

!- (kc-ptr->kcri-end-conj + 1); i++i)
begin for

abdl-ptr- >ari-req~jj- kc-ptr-> kcri-unfin-ret [i1;

end for

if ((counter != NUM-CONJ) && (kc-ptr->kcri-num-values-cfile 1)

/* It is not the last conjunction ~

begin if
/* loads " or " into the request to connect the conjs 5

abdl-ptr- >ari-req~j±+1 = BLANKS PACE;
abdl-ptr->ari-reqij++! =11
abdl-ptr->ari-req[j++] = ??
abdl-ptr-> ari-req[j+s- = BLANKS PACE;

end if

else /* It is the last conjunction */

begin else
/ * loads the target list one value oer line */

for (i = (kc-ptr->kcri-end-conj); i != (unfin-ret-len + 1); i- .

begin for
abdl-ptr- >ari-req j] = kc-ptr-> kcri-unfin-retii:;

end for

/* checks if there is only one value in this request. *1
/* if true then one set of parenthesis is replaced with blanks */
if (counter -- = 1)

begin if:
abdl-ptr->ari-req[kc-ptr->kcri-beg-conj = BLANKSPACE;
abdl-ptr->ari-reqfkc-ptr->kcri-end-conI = BLANKSPACE; Z

end if

end else

counter-t-+;
kc-ptr- > kcri-num-values-cfile--;

end while

if (kc-ptr- >kcri-num-values-cfile - 0)
/* Set the status to signify the last subrequest */
sql-ptr- > si-subreq-stat - LASTSUBREQ;

end proc

160

..................................- "

proc Not-In-Conjunction 0

/* This procedure accomplishes the following: */
/* (1) Builds a one conjunction ABDL request using a template "/
/* provided by KMS. */

/* (2) This is accomplished by loading in the action portion of */

I' the template, leading up to NUM-CONJ conjunctions into
/ * the request, 'anding' the conjunctions together and then */

/* adding the target list. *//
/* (3) The conjunction portion is formed by copying from the */
/* beginning of the conjunction to first asterik of the */
/2 template into ari request. Then the next value from the 2/

/* the current file is inserted into the ari request,
/2 followed by the remainder of the conjunction.' If this */
/*:," is not the last conjunction of the request, then .n and */
/ is inserted and the next conjunction is constructed */
/* using the same process. 2/

begin proc

abdl-ptr - sql-ptr-> si-abdl-tran-> ti-curr-req.ri-ab-req;
/* Set pointer to the current ABDL request 2/

if (kc-ptr->kcri-req-status -= FIRSTTIME)
/* Calculates values that will be used on all calls to this for a
/* given request. Thus, these values are only calculated once. */

begin if
for (i = 0; kc-ptr->kcri-unfin-ret[i] != ASTERIK; i++)

kc-ptr->kcri-beg-asterik = i;/*Mark position of first asterik*/
for (; kc-ptr->kcri-unfin-ret~il != LPARAN; i--)

kc-ptr->kcri-beg-conj = i;/*Mark position where conjunction begins*,/

/* Calculates the size of the template */
unfin-ret-len = strlen(kc-ptr-> kcri-unfin-ret);
for (i = unfin-ret-len; kc-ptr->kcri-unfin-retfii ! ASTERIK: i--)

kc-ptr->kcri-end-asterik = i;,/*Mark position of the last asterik '

for (; kc-ptr->kcri-unfin-reti] ! RPARAN; i.--)

kc-ptr->kcri-end-conj = i;
/* Mark position where the conjunction ends */

161

action-len - kc-ptr-> kcri-beg-conj;
target-len - unfln-ret-len - kc-ptr-> kcri-end-conj;
conj-len = unfin-ret-len - target-len - action-len;

/* Calculates the maximum length of the finished request. *

kc-ptr->kcri-req-len = (action-len + (NUTM-CONJ conj-len)
(NtJM-CONJ * ANDLen) + target-len);

kc-ptr-> kcri-files.nri-curr.fi-fld =
fopen(k c-ptr-> kcri-files.nri-curr. fi-fnarne, "r");

kc-ptr-> kcri-req-status = RESTTIME;
end if

else
begin else

/*Reset the length of the unfinished request
unfin-ret-len -strien (kc-ptr-> kcri-unfin-ret);

end else

/ * Allocates space for the finished request *
abdl-ptr->ari-reg = var-str-alloc(kc-ptr-> kcri-req-len);

/* load request with action portion and an (*
for (i = 0; i != (kc-ptr->kcri-beg-conj); i-++)

abdl-ptr-> ari-reqjil = kc-ptr-> kcri-unfin-ret [i];
j =i;

coun ter =I

while ((counter <= NUM-CONJ) && (kc-ptr->kcri-num-values-cfile !=0))
7 * Keeps building conjunctions, filling them with values and *
,/* 'anding' them together.

begin while
/ * loads template up to asterik *
for (i = kc-ptr->kcri-be--conj; i !=kc-ptr->kcri-beg-asterik; i-1-.--n)

begin for
abdl-ptr->ari-req~JJ kc-ptr-> kcri-unfin-retrij;

end for

162

/* loads in next value ~

for (i = 0; ((abdl-ptr->ari-reql =

,/* loads a) behind the conjunction *
abdl-ptr-> ari-req[jJ = kc-ptr-> kcri-unfin-ret [kc-ptr-> kcri-end-conj:
j-,. -;

if ((counter != NUM-CONJ) && (kc-ptr->kcri-num-values-cfile 1)
,/* It is not the last conjunction ~

begin if
/ * loads "and " into the request to connect he conjs ~
abdl-ptr->ari-req~j+] = BLANKSPACE;
abdl-ptr->ari-req[j++] = 'a';
abdl-ptr-> ari-req~j++] - n'
abdl-ptr-> ari-req[j-i+] = W
abdl-ptr-> ari-req[j+i- = BLANKSPACE;

end if

else /* It is the last conjunction *
begin else

/* loads the target list including a
for (i = (kc-ptr->kcri-end-conj + 1); i != (unfin-ret-len + 1); i++)

begin for
abdl-ptr- >ari-req fj] =kc-ptr-> kcri-unfin-retli];

end for
end else

counter++;
kc-ptr- > kcri-num-values-cfile-;

end while

if (kc-ptr->kcri-num-values-cfile == 0)
/"* Set the status to signify the last subrequest
sql-ptr-> si-subreq-stat =LASTSU BREQ;

end proc

163

Enter type of operation desired

(1) - load a new database
(p) - process old database
(x) - return to the operating system

ACTION ---- >

Upon selecting the desired operation, the user will

be prompted to enter the name of the database to be used.

For the case that the load operation was selected, the

database name provided. cannot' be presently used.

Likewise, for a process old operation the database name

provided must be in existence. In either case, if an

error occurs the user will be told to rekey a different

name. The session continues once a valid name has been

entered.

For either type of operation selected from MENUI, the

second menu is the same and asks for the mode of input.

This input may come from a data file or interactively

from the terminal. The generic menu, called MENU2, looks

like the following:

Enter mode of input desired
(f) - read in a group of transactions from a file
(t) - read in transactions from the terminal
(x) - return to the previous menu

ACTION

If the user wishes to read transactions from a file he

will be prompted to provide the name of the file that

contains those transactions. If the user wishes to enter

177

APPINDIX F - THE SQL jgSRS' MANUAL

A. Overview

The SQL language interface allows the user to

input transactions from either a file or the terminal. A

transaction can take the form of either creates of a new

database or queries against an existing database. The

SQL language interface is menu-driven. When the

transactions are read from either a file or the terminal

they are stored in the interface.* If the transactions

are creates they are executed automatically by the system.

If the transactions are queries the user will be

prompted by another menu to selectively pick an individual

query to be processed. The menus provide an easy and

efficient way to allow the user to see and select the

methods in which to perform the mapping functions. Each

menu is tied to its predecessor so that by exiting each

menu the user is moved back up the menu "tree". This

allows the user to perform multiple tasks in one session.

B. USING THE SYSTEM

There are two operations the user can perform on

the database schemas. The user can either create a new

database or process queries against an exist.ng database.

The first menu displayed prompts the user for which

function to perform. This menu, hereafter named MENU1,

looks like the following:

176

proc finish()

/* This procedure frees any structure space that may have been created */
•/* during the creation of the ouput table */

begin proc
tbl-ptr - current relational database;
tbl-ent-ptr - tbl-ptr-> thi-first-ent;/* Set tbl-ent-ptr to the first

table entry /*
while (tbl-ent-ptr <> NULL)

begin
tbt-ptr-> thi-first-ent = tbl-ent- ptr-> tei-next;

/* Get the next table entry */
tbl-ent-ptr->tei-next = NULL;
free(tabl-ent-ptr);
tbl-ent-ptr = tbl-ptr->thi-first-ent;

end while
end proc

175

7 , ,

proc more()

/* This procedure is just like the more facility offered in Unix */

/* It is not as sophisticated, however. */

begin proc
open kfs-r-ptr->kri-o-file.fi-fname for "read" status;
get a char from opened file;
while (NOT EOF)

begin
counter - 0; /* counter is used to keep track of how many lines

have been printed on the screen */
while ((counter <= screen-heigth} AND (NOT EOF))

begin
print the char;

if (c -- carriage return)
counter - counter + 1;

get a char from opened file;
end while

if (counter > 'screen- heigth)
begin

print the word "-more- ";

determine if user wants to quit or advance 1 to screen-heigth lines
in the opened file;

end if
end while

end proc

proc skipnameorval()

/* This procedure skips over either an attribute name or attribute value /
/* depending where kri-curr-pos is currently located. This is necessary */

/* because results are coming back as: ATTR-NAME ATTR-VALUE. In some
/* situations we want just the NAME and in others we want just the VALUE */

begin proc

update kri-curr-pos to skip over the the attr name or value
that it is currently positioned at;

end proc

174

-I ", .:I ".,*,'' . ,.,_e.' -% --':-% -"."..',,'- ,'.-. ' .'- -.. -. . .'*.'.-. .- . -. -. .. " .." .. . " "-"-"

proc load-titles()

/* This procedure loads the heading of a SQL results table into the */
/* output file */

begin proc
tbl-ptr = kfs-r-ptr-> kri-form-data.thi-first-ent;

/* Get the first table entry so that you can work from here */
while (tbl-ptr <> NULL)

begin
column-difference - tbl-ptr- >tei-col-len - tbl-ptr-> tei-name-len;

/* column-difference indicates the difference between the
actual column length and the length of the attr value to
be output. We need this to determine h6w many spaces are
needed to keep our results left-justified */

print the attr name;
print a series of blank spaces equal to the column-difference;
print a "I ";
tbl-ptr = tbl-ptr-> tei-next;

end while -

print a carriage return;
print a series of "-" equal to the width of the table;

end proc

proc get-size(x)

/* This procedure obtains the maximum size that a particular attribute */
/* value may take on

char x;

begin proc

traverse the table entry list until you find the attr name equal to x;
return(the length of this attr name);

end proc

173

•~4 .-- 4 deo , ,/ ° .o "- " ,' -" . ° P . * . " " - " . " " ' ' ' ' , ' -' -. ; .' ." ' ' q

proc one-hscreen-results()

/* This procedure outputs the results in SQL table form if this table */

/* can fit within the width of one screen */

begin proc
if (FIRSTBUF =- TRUE)

begin
proc load-titleso; /* Output the headings of the table */
kfs-r-ptr->kri-status - RESTBUFS; /* Change status to indicate

that titles/headings no
longer have to be output */

end if
while (kfs-r-ptr-*>kri-curr-pos < kfs-r~ptr->kri-res-lin)

begin
tbl-ptr - kfs-r-ptr->kri-form-data.thi-irirst-ent;

/* Get the first table entry so that you can work from here */
while (tbl-ptr <> NULL)

begin
proc skipnimeorval();
column-difference - tbl-ptr->tei-col-len - proc get-val-ltnO;

/* column-difference indicates the difference between the
actual column length and the length of the attr value to
be output. We need this to determine how many spaces are
needed to keep our results left-justified */

print the attr value;
print a series of blank spaces equal to the column-difference;
print a "I ";
tbl-ptr - tbl-ptr->tei-next; Get the next table entry */

end while
print a carriage return;

end while
close Output File;

end proc

172

:- . - / / .-- " - --'.'-*.-'. '-.-"'-. Y ... ' .. -.. Y -' "-.-. .L-' - .. '-. .'- - . . -. ,.'--A- . -.I.Z ,- -" "

proc flU-table-headings()

/* This procedure accomplishes the following: *
/* (1) Fills different fields in various structures so that an

output table similiar to one created in SQL can be made '~

/~to show results coming from MB3DS

begin proc
curr-pos - kfs-r-ptr->kri-curr-pos; /~curr-pos used to hold actual

current position in the results
buffer so that kri-curr-pos can
be set back to this value when we
exit this procedure */

allocate a new table-entry -info node;
rehd the attribute name from the response buffer;
determine the length of this name and store in new-tei-ptr-> tei-name-len;
new-tei-ptr-> tei-val-len -proc get-size(new-tei-ptr-> tei-attr);

/* Get the max size that this attr can possibly take on
new-tei-ptr-> tei-col-len - propc max (new-tei-ptr- > tei- name-len,

new-tei-ptr-> tei-val-len);
/*Determine the actual column size in the output table ~

thi-first-ent = new-tei-ptr; /* First entry for output table is equal
to the results we just obtained */

thi-curr-ent = new-tei-ptr; /* The current entry is also equal to these
results */

proc skipnameorval(); /* Skip over the attr value in response buffer
until the next attr name is hit ~

temp-attr = next attr name in response buffer;
while (temp-attr <> thi-first-ent->attr-name)

begin
allocate a new table-entry-info node; /*I.e., new-tei-ptr ~
new- tei-ptr- > tei-attr -temp-attr;
determine the length of this name and store

in new-tei-ptr-> tei-narne-len;
new- tei-ptr- > tei-val-len = proc get-size(new-tei-ptr-> tei-attr);

/* Get the max size that this attr can possibly take on *
new- tei-ptr- > tei-col-len = proc max (new-tei-ptr- > tei-name-len,

new- tei-ptr-> tel-val-len);
/* Determine the actual column size in the output table *

tbl-ptr- >th i-curr-ent-> tei-next = new- tei-ptr;,
tbl-ptr- >thi-curr-ent = new-tei-ptr;
proc skipnarneorval();
temp-attr = next attr name in response buffer;

end while
kfs-r-ptr->kri-curr-pos =curr-pos; /* Restore current position *

end proc

171

proc initialize(

/* This procedure accomplishes the following:
/* (1) Sets kfs-r-ptr to the address of the current relational */
/* database
/* (2) Sets kri-curr-pos to 1, the starting point in the response */
/* buffer
/* (3) If this is the first time for a particular set of responses */
/* then an Output File is opened for write status; otherwise */
/* the Output File is opened for append status *1

begin proc
set kfs-r-ptr to the address of the current relationa? database;
kr-ptr->kri-curr.pos - 1; /* Sets a pointer in the response array to

the beginning of the array */

if (kfs-r-ptr->kri-status == FIRSTIME) /* If this is the first time
that this procedure has been
called for this particular

.. response.....then
begin

open Output File for "write" status;
kfs-r-ptr->kri-status - FIRSTBUF; /* Change status to indicate that

the FIRST BUFFER is being
handled */

end if
else

open Output File for "append" status; /* This is not the first time
thru this procedure so we
need to append the results
to the results already in the
Output File */

end proc

170

" -d . . - - . ,- .- - . • • • . . , . .- .- .• - - - . . - - - -. . .Y. . , . r-. .. °. -

APPENDIX E - THE KFS PROGRAM SPECIFICATIONS

module kfs0

/* This procedure accomplishes the following:
/* (1) Calls initialize()
/* (2) Calls fill-table- headings() *
/* (3) Calls one-hscreen-results() if the width of the *

/~output table is less than the width of the screen
1* (4) Calls more0 to output the results file if the last *
/ * response buffer has been received. I ,

/* (5) Calls fmnish() to free used memory after the laA *
response buffer has been received

begin module
proc initializeo; /* Set up structures and variables for processing ~
proc fill-table-headingso; /* Get headings for relational output */
if (table-width Z~= OutputCols) /* If table size <- screen width ~

proc one-hscreen-results0;
else

proc all-hscreen-resultso; /* This procedure has not been written *
if (last response buffer)

begin
proc more(); /* Output relational output file to screen
proc finisho; /~Close out sturctures and variables and free space ~

end if
end module

16g

.-- 7

m 7- -L 4 w7

proc swap -flles()

/* This procedure swaps the contents of the future file with the ,

/* contents of the current file.

begin proc

curr-fp - &(kc-ptr-> kcri-flles.nri-curr);
fut-fp - &(kc-ptr- >kcri-files.nri-futr);

* temp.fl-fid = curr-fp'->f-fid;
strcpy (temp.fi-fname, curr-fp-> fi-fname);
curr-fp->fi-fid - fut-fp->fi-fid;
strcpy (curr-fp-:>fi-fname, fut-fp-> fi-fname);
fut-fp->Ifi-fid = temp.fi-fid;
0rcpy (fut-fp-> fi-fname, temp.fi-fname);

end proc

168

while (kc-ptr->kcri-curr-pos < (kc-ptr->kcri-res-len) - 2)

begin while
for (;response [kc-ptr- > kcri-curr-pos] !- EMARK;kc-ptr-> kcri-curr-pos-- -+)

/* Skip the attribute name
(kc-ptr-> kcri-curr-pos)+s;
for (val-len - O;response[kc-ptr->kcri-curr-pos -t- val-len) ! EMARK;

val. len ++)
/* Find out how long the attribute value is *

/ * Allocate storage space for the value ~
temp-str - var-str-alloc(val-len +. 1);

for (;response~kc-ptr-> kcri-curr-posj ! EMIARKjcc-ptr-> kcri-curr-pos-i-+)

begin for
/* Load the value into the future file *
putc(responsejkc-ptr- > kcri-curr-pos], f-ptr- > nri-futr.fi-fid);
/* Load the val:ue into the temp string ~
temp-strj,-+= response Ik c- ptr- > kcri-cu rr-posj;

end for

(kc-ptrw> kcri-curr-pos)+4;
putc('O, f-ptr-> nri-futr.fI-fid);
temp-strtj] = ,';
*num-values = *num-values +i 1; /* Count the number of values *

/*Calculates the maximum value of those values returned so far ~
znax-ptr->maxi-val.dvi-int

max(max-ptr- >maxi-val.dvi-int, str-to-nurn(temp-str));

/ * Calculates the minimum value of those val'ues returned so far *
min-ptr-> mini-val.dvi-int

min(min-ptr->mini-val.dvi-int, str-to-num(temp-str)):
free(temp-str);

end while

fclose(f-ptr-> nri-futr.fi-fid);,

end proc

167

* *. .. ' . ~ -.-- T-...- W.---..- -. .- .-. -. . -.-- ~ 7

proc flle-future-resUlt3()

/* This procedure accomplishes the following:*/
/'* (1) Removes the attribute names from the response.
/* (2) Places the remaining attribute values into the *
/* future-results-file. *
/* (3) Keeps track of how many sub-requests there are.

,/* (4) Calculates and stores max and min values.

begin proc

max-ptr -&(kc-ptr->kcri-max); /* Initialize pointer *
min-ptr - &(kc~ptr->kcri-min); /* Initialize pointor *
f-ptr - &(kc-ptr->kcri-files); /* Initialize pointer**,

if (kc-ptr- >kcri-file-status -- FIRSTTIME)
/* Do the following initialization *

begin if
max-ptr-> maxi-val-dvi-int MINVAL;
min-ptr->mini-val.dvi-int = MAX VAL;
f-ptr- >nri-futr.fi-fid = fopen(f-ptr-> nri-futr.fi-fname, "w");
kc-ptr->kcri-file-status =RESTTLME;

end if

else
f-ptr->nri-futr.f1-fid = fopen(f-ptr-> nri-futr.fi-fname, "a");

kc-ptr->kcri-curr-pos - 1;
response = sql- ptr- > si- kfs-data.kfsi-relkri- response;
kc-ptr->kcri-res-len =strien (response);

/ * Number of values in the returned result of the request *
num-values =&(kc-ptr-> kcri-numn-values-ffile);

166

/* loads the remainder of the request including the target list */
for(i = (kc-ptr->kcri-end-asterik + 1);

-' ,i !-f str~en(kc-ptr->kcri-unfin-ret) +1; i++)

begin for
abdl-ptr->ari-reqj] - kc-ptr->kcri-unfin-ret[i];

end for
abdl-ptr-> ari-req[j] = ':
sql-ptr->si-subreq-stat = LASTSUBREQ;

.end proc

proc chk-if-last-response()

/*'This procedure accomplishes the following:

/* (1) Determines the length of the response. */
1/* (2) Determines if this is the last response to a given request and */
/ * returns a boolean indicating such.

begin proc

/* Calculates response length */

for (response-length = 0;
sql-ptr->si-kfs-data.kfsi-rel.kri-response response-length ._- EOResult;
response-length++);
4--response-length;

/* Checks if this is the last response */
if (sql-ptr-> si-kfs-data.kfsi-rel.kri-responsetresponse-length - 3]

- CSignal)
return(TRUE);

else /* It is not the last response */
return(FALSE);

end proc

165

'Wt " ° O . o*-'*.e'Q. -m ' • o .% "-4 . ,o* °.", o • .-. " o*. *-..- . ," ,: ,"
. . • • . ~~.* • .* • - 4 -- • o • -o * .4 o . 4. .* * .~* . o. ° " o . " • o

. - --

proc One-Conjunction (value)

/* This procedure accomplishes the following:
1* (1) Builds a one Conjunction ABDL request using a template *

/~provided by KIM&.*
/*(2) This is accomplished by loading in the unfinished return *
/~ up to the first asterilc, loading in the value passed to *
/~the procedure and then loading in the remainder of the ~
/~of the unfinished return. *

begin proc

abdl-ptr = sql-ptr-> si-abdi-tran-> ti-curr-req.ri-ab-req;
/* Set pointer' to the current ABDL request ~

fr~ (i - 0; kc-ptr->kcri-unfin-retlil != ASTERIK; i++)

kc-ptr->kcri-be-5-asterik - i; ,/* Mark postion of the first asterik *

/* Calculate the..maximum length of the finished request. ~
kc-ptr-> kcri-req-Ilen =6 (strl6n (kcoptr-> kcri-unfin-ret) + INTS IZE);
for (i = kc-ptr->kcri-req-len; kc-ptr->kcri-unfin-ret[i != ASTERIK; i--)

kc-ptr->kcri-end-asterik = i; /* Mark the position of the last asterik. *
kc-ptr-> kcri-files.nri-curr.fi-fid=

fopen (kc-ptr-> kcri-files.nri-curr.fi-fnaxne, "r");

/* Allocate space for the finished result. ~
abdl-ptr-> an-req = var-str-alloc(kc-ptr-> kcni-req-len);

/* load request up to the first asterik *
for (i = 0; i != kc-ptr->kcri-beg-astenik; i±++)

abdl-ptr-> ari-reqjil = kc-ptr-> kcri-unfin-ret [i];

/* loads in the min or max value *
num-to-str (value, value-str);
for (k = 0; k != strlen(value-str); k+-i)

begin for
abdl-ptr->ai-req~iJ1 value-striki;

end for

164

.-..-.

transactions directly from the terminal a message will be

displayed reminding him of the correct format and

special characters that must be used. Since the

transaction list stores both creates and queries, two

different access methods must be employed to send the two

types of transactions to the KMS. Therefore, our

discussion branches to handle the two processes the user

will encounter.

o-1. Processing Creates

When the user has specified the filename of creates

(if the input is from a file) or typed in a set of creates

(if the input is from the terminal), further user

intervention is not required. It does not make sense to

process only a single create out of .a set of creates that

produce' a new database since they all must be processed at

once and in a specific order. Therefore, the

transaction list of creates is automatically executed by

the system. Since all the creates must be sent at once to

form a new database, control should not return to MENU2

where further transactions can be input. Instead,

control returns to MENU1 where the user can pick a new

operation or new database.

2. Processing Queries

In this case, after the user has specified his

mode of input, he will conduct an interactive session

with the system. First, all queries will be listed to the

178

. . .

screen. As the queries are listed from the transaction

list, a number is assigned to each query in ascending

order starting with the number one. The number is

printed on the screen beside the first line of each query.

Next, an access menu, called MENU3, is displayed which

looks like the following:

Pick the number or letter of the action desired
(num) - execute one of the preceding queries
(d) - redisplay the list of queries
(x) - return to the previous menu

ACTION ---- >

Since the displayed queries might exceed the

vertical height of the screen, only a screen full of

queries will be displayed at one time. If the desired

query is not on the current page, the user can hit the

RETURN key to display the next page of queries. If the user

S. only wishes to print a certain number of lines, then after

the first page is displayed the user can enter a number and

only that many lines of queries will be displayed. If the

user is only looking for certain queries, once he has

found them he does not have to page through the entire

transaction list. By hitting the q key, control will

break from listing queries and MENU3 will be displayed.

Under normal conditions when the end of the transaction list

has been viewed, MENUZ will appear.

179

•. - .'. . -. .- -. . .- , -,--. .-. '.-..'.... . .. ,...-. -. ,,-'
.° . o ° ° o.. •. -° °. -.. o -. ,°. -,.. o°. .o .o.. . , , .

Since queries are independent items, the order in

which they are processed does not matter. The user has

the choice of executing however many queries he desires.

A loop causes the query listing and MENU3 to be

redisplayed after any query has been executed so that

further choices may made. Unlike processing creates,

control returns to MENU2 because the user may have more than

one file of queries against a particular database or he

may wish to input some extra queries directly from the

terminal. Once he has finished processing on this

particular database, he can exit back to MENU1: to either

change operations or exit to the operating system.

C. DATA FORMAT

When reading transactions from a file or the terminal,

there must be some way of distinguishing when one

transaction ends and the next begins. Transactions are

allowed to span multiple lines as evidenced by a typical

nested SQL select. Since the system is reading the input

line by line, an end-of-transaction flag is needed. In

our system this flag is the "@" character. Likewise, the

system needs to know when the end of the input stream has

been reached. In our system the end-of-file flag is

represented by the "$" character. The following is an

example of an input stream with the necessary flags that

must be included when multiple transactions are entered:

180

. .

TRANSACTION #1
;40

TRANSACTION #2
a

Ia

TRANSACTION #n
$

D. RESULTS

..When the results of the executed-transactions are sent

back to the user's screen, they will be displayed exactly

the same way queries are displayed (See section B-2).

The following consolidates the user's options:

-4---I

KEY FUNCTION
.4---4

return displays next screenful of output

(number) displays only (number) lines of output I
* . .

q I stops output, MENU1 is then redisplayed
4--

1 1

LIST OF REFERENCES

(1) Demurlian, S. A. and Hsiao, D. K., "New Directions in
Database-Systems Research and Development," in the
Et2922di 2i th e Directions in Computing
QgnESerenc, Trondheim, Norway, August, 1985; also in
Technical Report, NPS-52-85-001, Naval Postgraduate
School, Monterey, California, February 1985.

(2) Macy, G., Design and Analysis of an SQL Interface for a

Mkll-Backend Database SysJem, M. S. Thesis, Naval
Postgraduate School, Monterey, California, March 1984.

(3) Rollins, R., D gg ad Anal - a *gf m_

Reaatgnal Intejatr aMulti-Backend °
-Database

System, M. S. Thesis, Naval Postgraduate School,
Monterey, California, June 1984...

(4) Hsiao, D. K., and Harary, F., "A Formal System for
Information Retrieval from Files," Communications of
the ACM, Vol. 13, No. 2, February 1970, also in
Corrigen a,.*Vol 13., No. 4, April 1970.

(5) Wong, E., and Chiang, T. C., "Canonical Structure in
Attribute Based File Organization," gommunications uf
the ACM. September 1971.

(6) Rothnie, J. B. Jr., "Attribute Based File Organization
in a Paged Memory Environment," Communications of the
ACM, Vol. 17, No. 2, February 1974.

(7) The Ohio State University, Columbus, Ohio, Technical
Report No. OSU-CISRC-TR-77-7, DBC Software- Requirements
for Supmortinq Relational Databases, by 3. Banerjee and
D. K. Hsiao, November 1977.

(8) Naval Postgraduate School, Monterey, California,
Technical Report, NPS52-85-002, A Multi-Backend
Database System fg Performance Gains, Ca acity Growth
agdHardare Gains, by S. A. Demuriian, D. K. Hsiao and
3. Menon, February 1985.

(9) Astrahan, M. M., et al., "System R: Relational
Approach to Database Management," ACM Transactions on
Database Systems, Vol. 1, No. 2, June 1976.

(10) Boehm, B. W., Software Engineering Economics.
Prentice-Hall, 1981.

(11) Naval Postgraduate School, Monterey, California,
Technical Report, NPS52-84-012, Software Engineering

182

4[. * ,". . . -

* - ,,. - r r -

T-,Dl1D1h., f±r LCgge-Scale Database Systems as Aggiied

g 2kbE . ~e!mentation of a Multi-Backend Database
_ytm, by Ali Orooji, Douglas Kerr and Daivid K.
Hsiao, August 1984.

(12) The Ohio State University, Columbus, Ohio, Technical
Report No. OSU-CISRC-TR-82-1, The jmpjementation of a
Multi Backend Databas2 Systen (MDBS): Part I - Software

gag~uuggEg StCate !e and Efforts Towards a Prototype
MpBS, by D. S. Kerr et al, January 1982.

(13) Kernighan, B. W., and Ritchie, D. M., The C Programming
tdgagef, Prentice-Hall, 1978.

(14) Howden, W. E., "Reliability of the ,Path Analysis and
Testing Strategy," IEEE Transactions on Software
gQgL2iCin, Vol. SE-2, September 1976.

(15) Johnson, S. C., Yacg: Yet Another Comiler-Comoiler,
Bell Laboratories, Murray Hill, New Jersey, July 1978.

(16) Lesk, M. E. jnd.Schmidt, E., Lex - a L lical Analyzer
gnerrgE, Bell Laboratories, Murray Hill, New Jersey,
July 1979.

(17) Date, C. J., An Introduction to Database Systems, 3d
ed., Addison Wesley, 1962.

(18) Shienbrood, E., re - A File Persual Filter for CRT
Viewing, Bell Laboratories, Murray Hill, New Jersey,
July 1978.

(19) Benson, T. P. and Wentz, G. L., he Deg and
um!RIementation of a Hierarchial Interface for the

Multi-Lingual Database System M. S. Thesis, Naval
Postgraduate School, Monterey, California, June 1985.

183

,-.

FILMED

11-85

DTIC
2I L A t 0,

