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/ I. INTRODUCTION

Understanding cathode behavior is one of the most crucial areas con-
A.' fronting manufacturers of travelling wave tube (TWT) amplifiers. The need for

long lifetime, high emission current, and high reliability for potential space

applications means that more stringent testing and evaluation procedures are

needed to help select suitable devices. Here we address one such crucial

area, that of the expected cathode emission current. The net emission current

under given specific conditions is the single most used criterion for

evaluating cathode performance. Until recently, full understanding of the

cathode I-V and I-T characteristics for even a uniform work function surface

was not yet developed. Expressions were known in the limit of low applied

voltage or high temperature, and in the limit of high applied voltage or low

operating temperature.

A full solution to the uniform work function planar diode requires both

the effects of space-charge and Schottky barrier-lowering to be included, if

one is to cover the entire spectrum from space-charge limited (SCL) to temper-

ature-limited (TL) emission. Our work builds on the historical work of

Richardson,1 Dushman,2 Child, Languuir,4 and Schottky,5 and it addresses the

problem of extending and combin the Langmuir-Child (SCL) curzents with the

Richardson-Schottky (TL) currents It is similar in spirit to the work of

Nottingham,6 Van der Zeil,7 Crowe, 8 Rittner 9 tly, Longo10

Scott1l , and Hasker.
12

We use the same basic derivation method as Langmuir4 for the space-charge

effects, but we outline a new technique for approximating the solution to the

difficult equations when Schottky barrier lowering is added. Here, an

approximate potential is used to help decouple the nonlinearity of Poisson's

equation, which arises due to space-charge effects. We call this method an

"effective potential" approximation, since it replaces the true potential with

an "effective" potential in one step of the calculation.

The effective potential approximation sacrifices the exactness of a

numerical solution in order to gain an easier applicability to understanding

7
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emission data. In addition, an approximate analytical answer can be used to

help make the underlying physical processes affecting the emission current

more transparent, and to qualitatively predict trends as a particular

parameter is varied.

In Sec. II of this report, we outline some of the physical assumptions

made in the present solution. In Sec. III we construct the approximate

solution to the nonlinear Poisson's equation. Here particular attention is

given to how the boundary conditions should be handled. Indeed, much of the

simplicity of our final answer results from carefully preserving both the

boundary conditions and conserved parameters.

In Sec. IV, the case of the unifoTA work function surface is considered

in detail, using this method. We analyze how the present technique reproduces

the Child's Law current at low applied fields, and how it converges to the

Schottky barrier-lowering effect in very high applied fields.

The major result of this report is then derived. A simple closed form

solution is presented for approximating the net emission current, which goes

smoothly from space-charge limited (SCL) to temperature-limited (TL) opera- -

tion. This new solution primarily corrects the Schottky barrier lowering

effect, to include the persistence of space-charge effects, even at high

fields. This result also shows that the SCL-to-TL transition point is the

Richardson's current, and it specifies the "roundedness" of the knee near the

SCL-to-TL transition region.

8



II, THE PHYSICAL BASIS OF CATHODE I-V AND I-T CURVES

A. POISSON'S EQUATION

The effects of a space-charge cloud on cathode current-voltage (I-V) and

current-temperature (I-T) characteristics are usually examined by using

Poisson's equation:

V -2 v- 0 . (1)

This equation relates the local net charge density, p, in the space-charge

cloud, to the electrostatic potential, V, where e is the permittivity of free

space. The electrostatic potential can be converted to electrostatic poten-

tial energy, Bi, by 8 - qi V, where qj is the charge of the particle under

the influence of V. Also, p(r) for the surrounding medium can be written as:

p(+) - qj ) (2)

where n() is the positive number density of particles in the medium, and qj

is .their individual charge. For electrons interacting with an electron space-

charge cloud, Poisson's equation becomes:

V2 8( ) - -e2 n(r)/Eof (3)

where e - +1.602 x 10-19 coulombs.

When image force effects are included, n(r) will contain both a bulk

term n( ), describing the average properties of the space-charge cloud, and a

singular term 6(r), which is a Dirac delta-function term describing the

electrode reaction to an individual discrete electron.

An equivalent formulation is to first solve Poisson's equation in the

zero current case for eext, where:
V2xext

V8 (r) =+ep ext(r)/o, (4)

9 .



and where pext(r) contains all the singular aspects of the charge distribu-

tion. The monopole contiibution to pext(r) is due to image forces on an

individual electron, and to charges on the plates from placing an external

applied voltage between the electrodes. The dipole contribution to pext ) is

due to the surface work function (#), or work function distribution on the

electrodes.

When there is a net current flow between the plates, one can then solve:

V2 [8(+r) - 6ex t (r)] - -e2 n(+)/ o, (

where 0(r) is the total electron potential energy at any point r between the

electrodes, and n(+) is the local bulk space-charge density at that point,

which is non-singular. Using the ext(r) function assures convergence to the

proper solution when the bulk space-charge density n(o) vanishes. The n(r)

bulk charge density would vanish, for example, when the cathode temperature is

lowered under constant applied field conditions, as in a dip test.

We next simplify the problem to one rectilinear dimension, x, which is

the planar diode configuration, resulting in:

d2 2
2[(x) - e (x)] - -e2 n(x)/ o  (6)

dxext 0

Often, there is only one direction of interest, defined by the average net

current flow direction, but in many applications the electrodes may contain

curved surfaces. However, since much of the net current determination

involves what happens within microns of the cathode surface, using an "effec-

tive distance" parameter in Eq. (6) may help the planar diode solution to be

applied to these curved geometries.

B. APPROXIMATIONS USED IN DERIVING THE SOLUTION

What makes the solution to Eq. (6) difficult is that the local charge

density between the plates, n(x), is determined by the amount of current

flowing, which in turn is determined by various aspects of the 9(x) curve

10



itself. This effect changes n(x) into n(O(x)), making Eq. (6) inherently

nonlinear. In the effective potential approximation technique, this

nonlinearity is circumvented by replacing the 6(x) function in the n(O(x))

term with an effective potential function which retains the most important

characteristics of the true O(x) function. This technique is much like

replacing a known non-elementary function by a polynominal fit to that

function.

A second difficulty in Eq. (6) is that the O(x) function necessarily has

a maximum in it, at some point xc between the electrode plates. The maximum

point in O(x), denoted

mx [O(x)] =_ ONxc )  E Eco (7)

then represents a potential energy barrier which electrons must overcome in

order to be registered as collected current. Electrons emitted with an energy

lower than this barrier height Ec will be reflected back into the cathode.

The reflected electrons do not contribute to the collected current, but they

can alter the local n(x) net electron density, forming a "trapped cloud" in

the near cathode region.

In much of this work, we neglect the contribution to n(x) due to elec-

trons in the trapped cloud. It is equivalent to assuming that only electrons

with enough energy to surmount the barrier are emitted. We shall see later

that at low voltages the present calculation for xc and Ec can give xc values
which can be a significant fraction of the total anode-to-cathode distance

d. Such a wide extent for the barrier position means that if the calculation

included the effect of a few electrons forming a trapped cloud with energies

near Ec, they would not change the barrier height by much. However, by inter-

acting among themselves, they could alter the barrier position signifi-

cantly. Thus, by neglecting these electrons forming a trapped cloud, we

expect to overestimate the barrier position xc by a fair margin, especially in

the space-charge limited region, but the net barrier height Ec may not be

affected as much.

11



1II. CONSTRUCTION OF THE APPROXIMATE SOLUTION

A. THE ELECTRON DENSITY IN THE SPACE-CHARGE CLOUD

Figure I shows the potential energy diagram for electrons between the two

electrodes. The zero of potential energy, E-0, is referenced to the vacuum

level, i.e., the potential energy at large distances, extrapolated to zero net

field between the electrodes. The x-O point is the cathode emitter plate, and

x-d is the anode collector plate. The net barrier height and the barrier

position are labelled Ec and xc , respectively. We next develop the approxima-

tion techniques to estimate both Ec and xc, given a set of conditions, such as

emitter work function #el temperature T, applied voltage VA, and anode-cathode

distance d.

Poisson's equation [Eq. (6)], must be solved in the presence of two

conserved quantities:

a) Conserved total electron energy:

m v(x)2 + O(x)E, (8a)

v(x,E) - {2[E-O(x)]/m}1 / 2 , E ) 0 (x). (8b)

b) Conserved forward current, independent of position:

dJ + - (A0 /k) T exp [-(E4#e )/kT] dE, (9a)

4wuek2
A m - 119.58 amps/(cm2 K2), (9b)

where Ao is Richardson's constant and k is Boltzmann's constant. The net

current is derived from Eq. (9a) by summing all the current contributions from

E - (Ec, i).

13
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e -FINITE CURRENT CASE
f .WITH SPACE-CHARGE

x 0 eVA  ZERO CURRENTEFET

X=Od

EMITTER CASE_

0C C

COLLECTOR

Fig. 1: Schematic of the inter-electrode potential energy vs. distance, zero-
current, and finite current cases. The emitter.and collector work
functions (0 and 4 ) and their Fermi levels (E , Ec) are shown,
along with tffe applfed voltage VA. The space-farge associated with
a finite emitter-to-collector current causes an electron barrier to
develop, denoted Ec, which can be several microns away from the
cathode, at a position labelled xce Only electrons emitted with
energies greater than Ec are collected as the emitted current
density.
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In Poisson's equation, the local number density of electrons n(x) can be

written as:

n(x) - f n(x,E) dE. (10)
(all E)

The n(x,E) term includes all electrons with an energy greater than Ec, which

become part of the collected current, as well as those electrons with energies

less than Ec, which could form a trapped cloud near the emitter. Neglecting

the contribution to n(x) due to electrons with energies E < Ec constitutes the

"empty cloud" approximation used here* Equation (10) then becomes:

W
n(x) - f n (x,E) dE, (Ila)

Em Ec

n n (x,E) e v(x,E) dE dJ+
n (xE) dE = e v(xE) a •v(x-, (lib)

Direct substitution of Eqs. (8) and (9) into Eqs. (lla)-(llb) yields:

x C '2 ,2 T2  .€21T/2

2A ' 2/

n ,x j5.)C--)  f(yc 2 ) exp [-(Ec + +e )kT], (12a)

f(y 2) (4/v)1 / 2 exp (+ y 2 ) ., dy exp _y2) (12b)

y=Yc

" exp (+ yc 2 ) erfc (y

y 2(x) - [E--O(x)]/kT, (12c)
c Lc(XJku

Defining:
SAoT 2  rm21 I/2

no -[ A T -. -- / exp [-(E )/kTJ, (13)

15



it then corresponds to the density of electrons at the barrier maximum, with c

being the speed of light. Equation (13) also shows that this electron density

is proportional to the net collected current. Poisson's equation, using Eq.

(Ila), then becomes:

d (x) - W x)] - 1 f[y 2(x)1. (14)
I ext Qdx0

The approximate solution to this equation is developed next.

B. SOLUTION TO POISSON'S EQUATION ANl) BOUNDARY CONDITIONS

The solution to Eq. (14) can be formally be written as:

O(x) -" (x)- K + -eext(X o Bo

2
0 1 x1ledx dx2  f[yc2 (2 (15)

- 2

where K. and Bo are constants. The double integral can be transformed into a

single integral 13:

S(x)- e (x) -nKx+B. ext 0 0

2
en o x ty2z

0 f (x-z) dz f(Y c ). (16)

o z-O

The Kox and Bo terms in Eq. (16) give the electrode reaction to the presence

of the space-charge cloud between the plates.

The boundary conditions at the electrode plates are next applied. To
preserve (x-O0) - eext(x-O), one must set Bo=O. To preserve 8(x-d)

Se ext(X-d), requires that:
2en d2

K d 0 f (d-z) dz fry 2 ])1, (17)

determining the value for Ko .

16



Next, define two helping functions:

g(x) - f[yc2(z)] dz, (18a)
z=0

h(x) f f f[yc 2 (z) z dz, (18b)
z-O

and one can derive the following expressions for O(x) and do(x)/dx:

+e2 n

OWx - 0ext(X) dC {x d [g(d)-g(x)] + h(x) d - h(d) 1 , (19a)
0

de(x) dO ext(X) +e2 n

d d [g(d) - g(x)] - h(d)}. (19b)
dx dx rod

From these two equations, two other combinations can be constructed. The

first combination is:

dO Oext e2n°[x),(0dee2

[O(x) - ex(x)] - x(d' -- dx [h(x)J, (20)
dx C0

and it involves the nonlinear part of Poisson's equation only in the region

between x-O and the present value of x, through the h(x) function. The second

combination is:

[e(x) - e x)] + (d-x) -O *xt -

+e2 n

co {d [g(d)-g(x)] - [h(d)-h(x)]I, (21)Co

and this involves the nonlinear part, through the g(x) and h(x) functions,

only in the region between the present value of x and the collector at x-d.

The general shape of 6(x), as shown in Fig. 1, has a single maximum

within the range x-(0,d), occurring at x - xc, with max[B(x)] E Ec. Since

Eqs. (20) and (21) are valid for all x, it is more convenient to use Eq. (20)

17



for describing the region of x.(O,xc), and to use Eq. (21) for describing the

region x - (xc,d). By deriving equations which separate the region x=(O,xc )

from the region x=(xcd), one can easily apply the condition which requires

xixc to correspond to the maximum point In O(x).

The separation into x<xC and x>xc regions also allows the solution to be

expressed in terms of scaled distance variables. It makes the evaluation of

expressions in the critical x - xc region easier. We use the following scaled

variables:

y - x/d, yo = xc/d, (22a,b)

U - (x/x) - 1, (22c)

W - [(x-xc)/(d-x )], (22d)

so that U - (-1, 0) when x - (0, xc), and V - (0, +1) when x - (xcd). The

terms in Eqs. (20) and (21) involving the nonlinear functions, g(x) and h(x),

can then be expressed in terms of the following functions:

UcIU.--x 1 --i fu)d, 2

x U--

HI(U ..-- 1) - f f(u] u du, (23b)

x-xc  1

G x2(W - -) f f[w] dw, (23c)
c ,-

i-i c  1

H2( "m---E) - f f[w w dw, (23d)
2( xc W-W

By using these scaled-variable functions, Eqs. (20) and (21) become:

18
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d de ext[O(x) - Wet x] - Y d (do d- C Xt)

e )1 o2 [G (U) + Hm(U)] (24a)
( 0 0 12

[O(x) 0 x) ] + (I - y) d (dex dO ext

ext dx dx

. 0 d
2  (1 - )2 [Gcw) - H2(w)]. (24b)

The last boundary condition can now be easily applied. It requires that

at x - xc , both the following conditions must be satisfied:

de) O(at x x), (25a)
dx c

(x) E c (at x - x). (25b)

Applying these conditions to Eqs. (24a) and (24b) then results in the follow-

ing two algebraic equations, for the two unknowns, Ec, and xc:

[Ec-Oext (xc)]- yTo (-d deext ix)
C

0 d
2

en ) [Gl(O) + H (O)] (26a)
0

dO
[EC-ext (xc)] + (1 - o) ( dxext 1x

c

e2n d
2

C - (10 -Yr)
2 [G2(O) - H2(o)]. (26b)

19



This method has manipulated the nonlinear Poisson's equation to emphasize

the two parameters of interest: the net barrier height Ec, and the barrier

position xc. It also shows what part of the full solution to the differential
Pb!

equation couples into the Ec and xc determination. Equations (26a) and (26b)

show that the nonlinearities involve only the [GI(O) + HI(O)J and [G2(O) -

H2(O)] terms, both of which are independent of yo W xc/d. What we have done

is to preserve the boundary conditions and symmetries inherent in the original

problem, while seeking out Ec and xc.

C. THE EFFECTIVE POTENTIAL APPROXIMATION

Equations (26a) and (26b) are now in a suitable form for using an effec-

tive potential approximation. Since the nonlinear terms (G1 , G2, HIH 2)

contain only Ec and integrals over whole portions of the 8(x) function, the

evaluation of GI(O), HI(O), G2(O), and H2(O) in Eqs. (26a) and (26b) is less

sensitive to the exact details of the 6(x) function than if these terms con-

tained terms involving 8(x) directly or derivatives of O(x). The potential

energy curve O(x) enters into the nonlinear terms through the definition of

Yc:

y 2(z) - [Ec - O(z)]/kT, (27)

where z is the integrand variable in each non-linear function.

To evaluate the nonlinear terms in Eqs. (23a)-(23d), we approximate the

true e(z) function in these integrals by a polynomial in z, or by a power-law

function in z. This replacement of the true e(z), which is a difficult tran-

scendental function, by an approximating elementary function, is equivalent to

substituting an effective potential in for 8(x). The choices available for

the effective potential function can be narrowed by requiring the function to

obey known critical properties of the true 8(z) function.

For the region x - (0, xc) three boundary conditions on 8(x) must be

satisfied by the effective potential:

20



e(x=O) = +e' (28a)

e(x-x c ) c, (28b)

d(x) I O. (28c)
xC

The simplest polynominal function in x, which obeys these three conditions, is

.the parabola:

O(x) - - ( E + E0) [1 - (x/c)] 2 + E. (29)

The parabola is also special, because it corresponds to an approximately

uniform net charge density near the cathode, making the near-cathode region

much like a "virtual cathode" from which emission current can be drawn. This

parabolic approximation then gives:

y(z) -(Z) (z/x ) 2(*c + E c)/kT. 30a)

YCu ] = U2 (# e + Ec)/kT (30b)

Equation (30b) can then be substituted into the G, and H1 integrals [Eqs.
(23a)-(23b)].

4!

For the region x - (xc,d), the following boundary conditions need to be

satisfied by the effective potential:

O(x-x ) = Ec, (31a)

de(x) I a 0, (31b)
dx xc

O(x-d) - - (eVA + 'e - fc ) ' (31c)
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where VA is the applied external voltage, and *is the collector or anode

work function. Here, we could also use a polynomial to approximate the e8(x)

function for the x a (xc,d) region. However, an additional piece of informa-

tion is available from Child's Law, which says that for large x, away from the

* emitter:

4/3O(x - (const.) x .(32)

We thus choose the following, as the simplest effective potential for the x -

(x,,d) region, and one which satisfies Eqs. (31a,b,c) and (32):

OW) Ec -e E + Ec) t(x-x)/ (d-x) d . (33).

This choice then gives:

24/yC (Z) -[(z-xc )/(d-x d)]/ (08 + E c)/kT, (34a)

y [w) - w41  (0 + E )/kT. (34b)
c E c

Equation (34b) can then be substituted into the G2 and H2 integrals [Eqs.

(23c)-(23d)] .

Grouping the nonlinear terms together in the main equations [Eqs. (26a)-

(26b)J, and defining new functions, fk andf

f G (0) + H (0)], (35a)

fy [G2(0) - 112(0)1. (35b)

gives the following for the function fk:

f k[A (e E ckTI f' (1+u) du f (y2  -Au) (36)
u-I
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and it gives for fy:

f[A -(e + E )/kT] f 1 (1-w) dw f(Y 2 Aw4/ 3)* (37)
., . w-0

Finally, the function f(yc2 ) in the integrand [see Eq. (12b)] can also be

approximated by algebraic functions.

Abramowitz and Stegun 14 place bounds on the f(yc 2) function:

(4/w)1/2 (4/)1/2

y + (Y 2 + 2)1/2 < f(y 2) + (y 2 + (4/w)) 1/2 f(yc2)" (38)
c c ~c c

The upper bound in Eq. (38) at yc 0 corresponds to the point e(x) - Ec. We... fy 2 ) fntodntdfo(Yc 2 )

use this upper bound to the f(y function, denoted 0  ) here because it

overestimates both the density of charges and the magnitude of space-charge

effects. It compensates in part for not explicitly considering electrons

forming a trapped cloud near the cathode [see Eqs. (10)-(11)], which

underestimated the space-charge cloud effects.

Using the fo(y 2)-function then gives:
0 (4/)1/2

fk[A - e+ Ec)/kT] - f (1 + u) du 21 2

u -(Au2 +"[An 2 + (4/7r)]39a)

(47 1 /2

fy[A - (0E + Ec)IkT] - f (1-w) dw(4)
w- 0 (A w4/) /  + [Aw 4 /  + (4/w) 1 2

(39b)

as explicit integrals for approximating the nonlinear terms in Poisson's

equation. These integrals are worked out in the appendix.
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D. DETERMINING THE BARRIER HEIGHT AND BARRIER POSITION

In Eqs. (39a) and (39b) both fy and fk are functions of the net barrier

height Ec, but not of the barrier position xc. Thef fy and fk functions

contain all the effects of the nonlinearity of the original Poisson's equa-

tion. In addition, the fy and fk functions naturally separate the solution

into a cathode work function term, fk(EC, e ), and an applied field term,

fy(Ec' 8E). If one were to use a different effective potential function than

those chosen here [see Eqs. (29) and (33)], the fy and fk functions would

still be of the general form:

f (A) - (const.)/A1/ 2, (40a)
- y

k(A) - (const,)/A (40b)

Additional properties of Eqs. (26a) and (26b) can be used to help make

the determination of the roots Ec and xc easier. Using the following

definitions:

ao -E - (ext(x), (41a)

0(x -d dx (41b)
C

e2 d2

m°  n, (41c)o

then allows Eqs. (26a) and (26b) to be rewritten as:

2 2
0 /mo - [(-yo )2 fy (Ec) Yo fk(Ed)], (42a)

a- Yoo - m Yo2 fk(Ec) (42b)
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The mo term is a strong function of Ec , and it is independent of position:

m° - mR exp [- Ec/kTI, (43a)

Ao mc2  22
-)(r- 2 1/ (e 2d 2exp (s/kT). (43b)

R  eC )C- ) e d

0

The co term is an implicit function of both xc and Ec , and it represents the

net barrier height increase caused by the presence of the space-charge

cloud. For accelerating field conditions (0E > 0), Bo is positive, resulting

in the following inequality:

(f )1/2 x
1/ 1/2" Yo =  "(44)

(f y)I/ + (f k)I/

This inequality can be used to help narrow the range of possible x-values to

. regions much smaller than x-(O,d), when seeking the roots of Eqs. (42a) and

(42b). Equation (44) also shows how the presence of the space-charge cloud

has naturally placed an upper bound on how far xc can wander away from the

cathode.

Solving for mo and ai n Eqs. (42a) and (42b), then gives:

In ( R) + An [C1io)2 fy -- o2 f:] -

(1-yo)zf -o

-An 00 )+A ((- 0  y o k(4b

Equation (45a) is a transcendental equation which can determine xc * It has a

weak dependence on Ec, due to the nonlinear space-charge functions, fy and

fk" For a given value of xc, Eq. (45b) then gives the barrier height Ec. The

true roots of Eqs. (45a) and (45b), Ec and xc can now be easily determined

using the following procedure.
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Begin with eext (x), and determine the intrinsic barrier maximum, in the

absence of any space-charge effects:

% max [eext(x)] _ EcO. (46)

Using Ec0 as an initial value, fy(EcO) and fk(EcO) are evaluated using Eqs.

41 (39a)-(39b). Equation (45a) then determines the xc position based on the

properties of the original 0ext() function and its first derivative (through
the $ term). This xc value can then be substituted into Eq. (45b), along

with the fy(EcO) and fk(EcO ) values, to determine a modified barrier height

'A. value, Ec1. The EcI can now be used in place of Ec 0 , and the process

repeated. After a few iterations, this procedure converges to the values E

and x *.which are the real roots of Eqs. (45a) and (45b).

E. RELATIONSHIP OF BARRIER HEIGHT TO EMISSION CURRENT

Equations (39a)-(39b) and (45a)-(45b) represent one major result of this

report. The values Ec* and xc* for the barrier height and position are

determined using the particular effective potential approximation which is

contained in the fy and fk terms. To change the effective potential only

alters the fy and fk integrals, the rest of the procedure remaining the

same. In this manner, the original nonlinear Poisson's equation is reduced to

root-finding. The collected current density, which is determined by the total

amount of electrons which can surmount the barrier, is then given by:

Snet w AT 2 exp [-(E C* + #e)]/kT, (47)

V. where Aoo is Richardson's constant, and # is the emitter work function. From

Ec and Eq. (47), approximate current-voltage (I-V) and current-temperature

(I-T) characteristics can be constructed.
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IV. THE UNIFORM WORK FUNCTION CASE

A. THE SPACE-CHARGE AND TEMPERATURE-LIMITED CURRENTS

In this section, the effective potential method for generating approx-

imate I-V and I-T curves is applied to the uniform work function emitter, with

both Schottky barrier lowering and space-charge effects included. We first

define a Richardson's Current JR by:

R R " Ao T2 exp [- e/kT], (48)

and we also define a Child's Law Current JC by:

4 o 21/2 3/2 K (0E/e)3/2

2c - - () E /e2e) (49)C d 2  d2

where K is 2.33525 x 106 amps/volt3 /2, and where 0 is:
E

8
E = e VA + e - c' (50)

VA is the applied external potential, and #e and # c are the emitter and

collector work functions. The JR and JC currents help organize the parameters

in the effective potential approximation to more clearly exhibit the transi-

tion from space-charge limited (SCL) to temperature-limited (TL) behaviors.

The effective potential method begins with specifying the potential

energy function for an individual electron in the limit of no net current,

e ext(x). For a uniform applied field with a near-cathode image-force

potential, e ext() can be written as:

0 ext (x) -- (x/d) E - e2/[16v 0(x+a)], (51)
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where xa is an "added distance" which prevents the image force potential from

being singular at the cathode (x-0). The boundary condition at the cathode

sets the value of xa via:

e2/[16 weo Xal - 4e- (52)

For a work function of #e a 2 eV, xa- 1.8 A. An additional image force for

the near-collector region can also be included in Eq. (51) for increased

accuracy at near-retarding field voltages.

The effective potential method presents two algebraic equations, Eqs.

(42a)-(42b) or Eqs. (45a)-(45b), whose roots, Ec and xc, represent the

approximate barrier height and barrier position, in the presence of space-

charge effects. The critical parameters from the external applied

potential, ext(x), are its value at xc and its derivative at xce For the

potential of Eq. (51), the derivative term is:

- d ext e 2 d (

0  - dx xc E 16 we0 (xc + X)2

The nonlinear coupling, i.e., how the space-charge affects the current

between the cathode and the anode, was expressed in terms of two additional

functions, labelled fy and fk, which both depend on the barrier height Ec, but

not the barrier distance.

The function fk is only a function of the combined parameter A - (Ec +

*e)/kT, and as we show later, the essential transition from SCL to TL opera-

tion does not critically depend on fk" The function fk turns out to be more

critical in the very low field regime, where there is another transition from

SCL operation to what we will call almost-retarding-field (ARF) operation.

This ARF regime is characterized by significant deviations from a Child's Law

type behavior.
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The function fy is only a function of the combined parameter A =

(Ec+ aE)/kT. For applied voltages greater than a few volts (i.e., outside

ARF, but allowing either SCL or TL regimes), one will automatically be in the

large A limit of fy. As shown in the appendix (Eq. (A-14)), for large A:

f(A 3 O-3(4

fy( - 29 0 + [Order (R-3 (54)

where R2 a (wA/4).

In Eq. (54), the parameter CO is an integration constant which depends on

the details of the entire inter-electrode potential. The effective potential

method, by using an approximate function for the inter-electrode potential,

can result in an error in the determination of Co . As such, Eq. (54) may only

be accurate to the first term. However, we show next that the leading term in

f :
fy:

9 (6E + E 1/

f -9/8R- ' ( E (55)

is sufficient to generate a SCL to TL transition.

The transition from SCL to TL behavior can be shown most easily using

Eqs. (42a)-(42b). Both those equations are expressed in terms of a scaled

distance, yon x /d, where xc is the distance to the barrier maximum, and d is

the anode-cathode separation. For conditions that are not ARF, yo is expected

to be small. Neglecting terms of order y 02 in Eq. (42a) gives:

1o w mo - 2 Yo ) fy (56a)

m° = mR exp (-E c/kT). (56b)

The parameter mR [see Eq. (43b)] can be expressed in terms of the currents JR

and Jc as follows:
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JR : e3 1/2

R!8 R(E) (57)

Substituting Eqs. (53), (55), (56b), and (57) into Eq. (56a), and neglecting

Xa as small compared to xc , then gives:

• 2 d6E- 2
E 16we xc

0 C

JR 8E 1/2 2 x c
E +J ( E d) (i d ) ep [-Ec/kT]. (58)

C E c

The near unity terms in Eq. (58) can be further approximated by unity for

examining the SCL to TL transition, giving:

JR exp (-EEc/kT) 2 Jnet * (59)

J C e•2 d

KOE 16, v X 2

Equation (59), by itself, embodies a SCL-to-TL transition. When the

barrier position wanders on the order of 1-pm away from the cathode, for d-

1-cm, the xc correction term in Eq. (59) is small (a 3.6 eV). Under these

conditions, Eq. (59) shows that Jnet - JC, which is SCL operation. For higher

applied fields, the barrier maximum moves closer to the cathode, and the xc

correction term in Eq. (59) then becomes a significant fraction of 8Ee The

net resulting current is then less than Child's Law would have predicted at

those applied voltages, and one is in TL operation.

Examining the other equation involving xc and E. [Eq. (42b)], it has a

term in it which is solely a function of the external applied poten-

tial, e ext(). For the ext(x) function here [Eq. (51)], the terms in Eq.

(42b) can be combined as follows:

eext (x ) + Y 0 o- 2e2 /(16 w c0 Xc) (60)
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which gives for Eq. (42b):

E - - [2e2/(16 v eo xc +) R (x/d) 2 fk exp (-E c/kT). (61)

The contribution to the net barrier height Ec in Eq. (61) from Eq. (60) is

necessarily negative, since it corresponds to Schottky barrier lowering. The

contribution to Ec involving fk is necessarily positive, and corresponds to

raising of the electron barrier, due to space-charge effects. Similar to how

Eq. (59) changes with xc value, one sees that large xc values give a large

space-charge term and a small Schottky barrier term. This makes Ec tend to be

positive giving rise to SCL emission. Conversely, small xc values are asso-

ciated with a small space-charge term and a large Schottky barrier term, cor-

responding to TL emission.

For SCL emission, Ec can be positive. Equation (61) then shows that the

fk-term has a central role in allowing Ec to be positive. In contrast, Eq.

(59), and its "parent" equation, Eq. (42a), have only a weak or no dependence

on fk" Thus, when Eq. (59) reduces to Jnet 0 JC in the SCL regime, it means

that Eq. (59) is practically determining Ec by itself, since Jnet contains

Ec. With Ec almost exactly specified in SCL emission by Eq. (60), the role of

Eq. (61) and thus the role of the fk-function in SCL-emission is then changed

into primarily determining barrier position.

For TL emission, where Eq. (61) does help determine Ec,.the effect of the

fk-function term is again only a small perturbation because xc is then.
small. Thus, the fk function is never critically involved in the emission

current determination, anywhere from the SCL emission regime through to TL

emission. This verifies what was mentioned earlier, that value of fk is not

essential to generate an SCL-to-TL transition.

We thus have shown that it is the f function which critically determines

y
the emission current, while fk primarily affects the final determination of

barrier position. We note that this separation of roles derives from the

algebraic structure of Eqs. (42a)-(42b). It is this same algebraic structure

of these equations that gives rise to the SCL-to-TL transition, rather than

31

. , .- - - ,o . . . , . . , o . % . , . . % % % * ° . , . " " ° . - ' ? .. , - ,, , , , * . • m



the SCL-to-TL transition being embodied within the explicit functional form of

the fy and fk functions. The same function for fy [Eq. (55)] carries over

into both SCL and TL regimes. And in both regimes, fk does not significantly

affect the emission current. These are some of the reasons why the effective

potential method, as outlined in this report, can give good approximations to

* cathode I-V and I-T curves, using just a simple power-law approximation for

the nonlinear part of the original Poisson's equation (from where fy and fk

derive).

B. A MODIFICATION TO SCHOTTKY BARRIER LOWERING

The SCL emission current was found to approximately be given by Jnet JC

(Child's Law Current). We next derive an expression for Jnet in TL emission

limit.

For the TL emission limit, it is convenient to rewrite Eq. (59) as:

e". " 2 d x2 Jnet
"-- xc2  -j---. (62)

16 o eE JC (6•

Substituting this into Eq. (61) and ignoring the fk term as being small for TL

operation, then gives:

e2 0E  Jnet 1/2

Ec -4 e d( - ] (63)
0 Jc

for the Schottky barrier lowering in TL emission, where Jnet < JC. Equation

(63) agrees with the standard value of the Schottky barrier lowering, with a

new correction term of order (Jnet/JC). This new correction term makes the

collected current less, due to a persistence of some residual space-charge

effects, at high applied fields.

The approximate solution to the effective potential method equations thus

shows that Jnet " Jc (Child's Law) is valid over much of the SCL-regime, but a

modification to Schottky barrier lowering is required for high-voltages, due,.-.

to residual space-charge effects (Eq. (63)]. The Child's Law limit is valid

for barrier heights Ec> 0, and Ec vanishes at Jnet = JR The two solutions

32

I? , . . ,. , . . . - . . .. .. . -. . . - . -. . . . . .. . , .

.. --, ,',-. . ,,-- , - ,o ,'.' .' ---.. ., , - .. . . . . ,.. - - .. - - -.,' ,,.- .-'- ..-.,.- . ,,



for low and high fields thus join together. In addition, the derivative also

can be shown to be continuous. This property allows the essential aspects of

a SCL-to-TL transition to be sumarized in a single equation:

JC' (J R> Jcd (64a)

" Jnet " JR9 (JR7Jc) (64b)

) 2+ e e0 Jet 1/2

JR exp [-od(- ] '(JR < JC (64c)

R 'kTL4Te d 7JJJ R C0 JC

to approximate the emission current with both Schottky barrier lowering and

space-charge effects included. Equation (64) is Child's Law with a modified

Schottky barrier lowering.

In Fig. 2, we examine how the approximate answer of Eq. (64) compares

with using the full transformation of Eqs. (42a)-(42b). The comparison of

Fig. 2 was generated using a work function of 2eV, 1050C temperature, and an

anode-cathode distance of 0.0256 cm.

Figure 2 shows that from SCL-emission near the Richardson current, up

through the entire TL-region, the approximate solution, Eq. (64), is

practically indistinguishable from the effective potential method calculation

using the full equations of Eqs. (42a)-(42b). The full equations do show a

difference in the deep SCL-region due to deviations from Child's Law in that

regime.

Equation (64) thus represents a major result of the effective potential

method. This method has analytically calculated the approximate emission

current expected with both Schottky-barrier lowering and space-charge effects

included, summarizing the difficult SCL-to-TL transition in terms of a single

modified Schottky-barrier lowering term.

In the next sections, we show how this effective potential method com-

pares to other results for I-V curves.
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Fig. 2: Predictions of the "effective potential" approximation. A closed-
form equation which approximates the current density vs. voltage
[open circles, Eq. (64) in text) is compared with the more complete
transformation equations of the effective potential method (solid
line). The closed form approximation is seen to be very accurate in
describing the predictions of the present method in the temperature-
limited (TL) regime. The deviations at low voltages are due to
Child's Law being inaccurate in the deep space-charge limited (SCL)
regime. A dashed line marks the Richardson current, which is the SCL
to TL transition point. The calculations were done using a work
function of € - 2.0 eV, a temperature of 1050C, and an anode-cathode
spacing of 0.0256 cm for all figures.
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C. COMPARISON TO SCHOTTKY AND CHILD'S LAW CURRENTS

In this section, approximate cathode I-V curves, generated by the effec-

tive potential method, are compared to Child's Law and the Schottky barrier

lowering currents. Here, the full transformations [Eqs. (42a)-(42b)] were

- used for Ec and xc. Also, Eq. (A-4), in the appendix, is used for the fk

. function, and the large argument form [Eq. (55)] is used for fy. The fy

* function critically determines the emission current, while fk primarily

affects the final determination of barrier position.

Figure 3 shows the results of a comparison of the effective potential

* method to Child's Law and the standard form of Schottky-barrier lowering.

Noteworthy is the fact that the effective-potential method predicts a net

current density that is significantly below the pure Schottky-line. As noted

earlier, this corresponds to residual space-charge effects even in the high

voltage limit. And, as was shown in Fig. 2, Eq. (64) is an excellent approxi-

mation to the results in this regime.

9" In Fig. 4, we plot the same results as Fig. 3, using logarithmic axes.

This plot emphasizes the str%,,ture of the I-V curve in deep SCL-emission.
Child's Law is a straight line of 3/2-slope on this. graph-, and Fig. 4 shows

that significant deviations from Child's Law occur in the very low voltage

regime. This effect is due to the Maxvellian distribution of electrons being

explicitly considered here, with some high energy electrons always capable of

surmounting the energy barrier.

In Fig. 5, we plot the predicted barrier position. As noted earlier, the

effective potential method is expected to give greater inaccuracies in barrier

position determination, while maintaining a small error in net emission

current determination. The barrier position inaccuracies should be greatest

in the SCL region, with less of an error in the transition and TL regions.

Figure 5 also shows a dramatic transition point, where large changes in the

barrier position occur over very small changes in applied voltage. This sharp

change reflects an inherent transition in the system from SCL-to-TL emission,

near the Richardson current point.

35



ENT

-

-

2C-

00 100 200 300 400 500 600 700
APPLIED VOLTAGE

Fig. 3: Comparison of the present method (J[NET]) to the Schottky (Jim]I) and
Child Law (J[SCL]) limits. The net current at low voltages is larger
than predicted on the basis of Child's Law alone. At high voltages,
the net current also remains a fraction below the Schottky line, due
to the persistence of space-charge effects, deep into the
temperature-limited regime.

36

-~~~~~~~~~~~~~~ L;~a.'.. . .~. l ~a~'~ ~~a~a



= - =-~.- . .- ------ _ -L ' -; - -- ,. --. - r ., - , , , i:

4:". J[SCL]/

3
2 - - J[TL]

-2
-3 J[NET]

-3 -2 1 0 1 2 3 4 5 6 7 8 9 10
fn IVoltagel

Fig. 4: A plot of current density vs. voltage on logarithmic axes. In this
plot, Child's Law is. a line of slope 3/2. The present method
predicts significant deviations from Child's Law at low voltages due
to the Maxwellian distribution in energy of the emitted electrons
being taken into account here.
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Fig. 5: Predictions for barrier position vs. voltage. There is a large
change in barrier position within a narrow range of voltage. This
point corresponds to the transition between SCL and TL emission.
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D, COMPARISON WITH OTHER APPROXIMATE METHODS

In this section, the approximate cathode I-V curves, generated by the

effective potential method, are compared to two prior methods, one by Scott,'
1

and which Hasker 12 has analytically approximated, one by Longo.I0

Historically, Langmuir4 modified the simple V3/2 power law of Child 3 for

emission current density. As a function of applied voltage, the Langmuir

solution begins in the almost-retarding-field (ARF) regile with significant

deviations from Child's law, followed by a range where Child's law is

approximately valid, then it abruptly bends over to the Richardson current

value, first reaching the Richardson current value at some critical voltage,

VL•

Schottky6 published his modification to the Richardson current the same

year, but adding Schottky barrier lowering to the Langmuir solution has been

slow to develop. Scott I1 attacked the problem by assuming the Langmuir

solution is entirely valid for voltages less than VL, even in the presence of

Schottky barrier lowering. For voltages greater than VL, he replaces the

applied field in the Schottky barrier lowering effect, with an "effective

field" derived from the local Langmuir potential. Using this technique, he

circumvents the inhomogeneous part of the nonlinear Poisson's equation. The

joining of solutions at VL was noted by Scott to give rise to a "kink" in the

solution, where the current vs. voltage goes from horizontal (zero slope) to a

substantial slope just after VL.

Longo's method 10 is almost semi-empirical. He finds that some data on

actual cathodes seem to fit the equation:

Wined - ('/JC) + (1/J[TL]), (65)

where J[TL] is the standard temperature-limited value for current density with

Schottky barrier lowering included, and where JC is Child's law. The appeal

of Longo's equation is its simplicity.

In some sense, the present work is similar to both Scott and Longo. Like

Scott, we circumvent dealing with the full inhomogeneous nonlinear Poisson's
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equation, mking both Scott and this solution different approximate answers -to

the same problem. Scott uses the Langmuir equation for the nonlinearity part,

patching-In" Schottky barrier lowering using an effective field. Here, we
dealt explicitly with the inhomogeneous Poisson's equation which describes

Schottky barrier lowering, and we "patched-in" the nonlinearity by using an

effective potential.

However, like Longo, we sought to preserve as much simplicity as possible

in our approximate solution, by keeping our solution close to the domain of

elementary functions.- The hope, implicit in Longo's work, is to have a single

equation describing cathode behavior from the space-charge limited (SCL) to

the temperature-limited (TL) regime. That goal is realized, to a much greater

degree of accuracy than Longo's equation, by Eq. (64) of this work.

Figure 6 plots the current vs. voltage, using logarithmic axes, for the

same conditions as in Fig. 4: 1050*C, 2 eV work function, and an anode-cathode

distance of 0.0256 cm. It compares the result of this work (solid line) to

the prior work of both Scott and Longo (dotted lines).

At low voltages, Longo's equation asymptotically approaches Child's Law

from below, with the other methods giving more current than Child's Law due to

contributions from the high energy tail of thermally excited electrons in the

emitter. The present work overestimates the current in this low-voltage ARF

regime the most, mainly due to neglecting the explicit contribution of

electrons which can form a trapped-cloud near the emitter surface. Scott's

work uses Langmuir's solution at these lowest voltages, but even at eV values

comparable to kT, this work is accurate to within a factor of two.

On the broad scale of Fig. 6, covering more than four decades in both

voltage and current, Scott and this solution are similar. Longo's equation is

low by a fair margin, except in the deep temperature-limited region.

The critical transition or knee region between SCL and TL operation is

shown on an expanded scale in Fig. 7. In this transition region, the general

shape predicted by both Scott and this work is similar. Scott gives a net

emission current slightly higher by a few percent than this work, although an

exact numerical calculation is needed to determine which method is relatively

40



54- SCOTT AND LONGO

3
2-

E 1
0-

-THIS WORK

-2- saSCOTT LONGO-
-3
-4

-3- -2'- 0 1 2 3 4 5 6 7 8 9 10

fn (Voltage)

Fig. 6: Comparison of current density vs. voltage predictions among several
methods. The approximate methods of this work, Scott, and Longo are
compared over several orders of magnitude in both current and
voltage. The Longo equation is low by a fair margain except in the
deep temperature-limited region, with the other methods giving
similar results on this scale.

41

Ph3



JI2.5 L ' ' ' l u' 'l 1' ' ' ' ' 1 1 "1'1or l t 1 1 1
:' J[SCLI-y

2.0- J[TL]

1.5 SCOTT WORK. ,--

1.0- LONGO

~0 .5 1"  1 W e % ,a'" I , , t, , , ,
4.0 4.5 5.0 5.5 6.0

in (Voltage)

Fig. 7: Comparison as in Fig. 6, on an expanded scale, emphasizing the "knee"
or transition .region from SCL to TL operation. Child's Law and the
Schottky barrier lowering limit are also shown for comparison. This
work predicts values that are a few percent lower in the knee region
than the Scott approximation.
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more accurate here. Both break away from Child's Law, giving more SCL cur-

rent, with this work being more gradual than Scott. In the TL region, the

Scott result seems to approach the Schottky line faster than this work.

In Fig. 8, we plot the relative error among the several methods. This

work was chosen as the 0% baseline. The vertical axis is percent error in

emission current, spanning only 25Z net difference, while the horizontal axis

spans four orders of magnitude in voltage.

Figure 8 clearly shows that this work remains bounded away from the pure

temperature-limited line (J[TL]) of Schottky barrier lowering. [Equation (64]

is also plotted on Fig. 8. It is a one-line approximation to this work, and

it has the accuracy of Child's law in the SCL regime.

Examining the TL-region of the Scott solution and the Longo equation in

Fig. 8 shows that they both approach the J[TL] line too quickly. This effect

is due to both methods not taking into account the residual space-charge

effects in the TL-region.

The comparison of methods in Figs. 6-8 supports the usefulness and over-

all accuracy of this new method. In addition, the closed-form analytic cor-

rection to Schottky barrier lowering Eq. (64) retains practically all of the

essential features associated with knee-roundedness, and it can be used as a

simple approximation to the TL-emission region for uniform work function

emitters.
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Fig. 8: Comparison of relative percent-error among the different methods.
Both this work and Scott are similar although this work tends to be
smoother. The closed-form approximation of Eq. (64), which is a new
correction to Schottky barrier lowering, is also shown. Equation
(64) has the accuracy of Child's Law in the SCL regime, and virtually
the same accuracy as this work in the TL region. The high voltage
region also shows that the Scott and Longo methods approach the usual
Schottky barrier lowering current J[TL] too quickly.
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V. CONCLUSIONS

In this work, we have developed a new technique for approximating the
emission current from a planar thermionic emitter in a diode-type geometry.

In general, this procedure reduced the nonlinear Poisson's equation to finding

the roots of two algebraic equations. These two roots, labelled Ec and Xc,

correspond to the net barrier height for electron emission, and net barrier

distance from the cathode.

This method was then applied to the problem of a uniform work function

surface with both Schottky barrier lowering and space-charge effects

included. The equations for the roots E' and xc in this case were solved

using root-finding routines, and the net emission current was compared to

previously published approximations1 0'1 1 for the uniform work function case.

Scott's numerical method and this analytic one were found to quantitatively

agree on cathode emission current to within a 10% over a wide range of applied

voltage.

In addition, the analytic formalism, although approximate, allowed us to

derive a new closed form, representing a first correction to Schottky barrier

lowering, due to space-charge effects being included. Physically, this new

correction term, not included in any previous approximation, corresponds to a

persistence of space-charge effects deep into the temperature-limited

regime. This closed form specifies the roundedness of the knee-region between

space-charge limited (SCL) and temperature-limited (TL) emission for the

uniform work function case. It determines the SCL-to-TL transition point as

being the Richardson's current. The closed form, approximating the emission

current density for a uniform work function surface, was found to be:

Jnet 0 JC, for JC < JR' and (66a)

= J exp + [At (1 - Jn/J)I'2/kT, for JC > JR* (66b)
net R o net C
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In this equation, Jnet is the total emission current density, JR and JCare

the Richardson and Child Law current densities, and 600is the usual value for
Schottky barrier lowering. This simple approximation for Jnet is also contin-

uous at iR' with a continuous first derivitive.
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APPENDIX: THE fy AND fk FUNCTIONS

In this appendix, we solve the two integrals, Eqs. (39a) and (39b), which

determine the nonlinear fy and fk terms.

A. THE fk- FUNCTION

The integral representing the fk- term is:

fk(A) -O (I + u) du (4/)1/2(A-)
k u--I [Au 2] 1/2 + [Au 2 + (4/)] 1/2A

Defining:

R2 - wA14, (A-2)

The fk-function can then be written as:

fk(A).- (I ) dr/[(r2 + 1)1/2 +r]. (A-3)
r-O

These integrals can be done exactly, resulting in:

f In [R + (R2 +1)1/2]- (A-4)
k 2R2

(3R 2-4R)

6(R3-2) + 6(R2-2) (R
2 +1)1/2

for the fk function.

B. THE f -FUNCTION

The integral representing the fy-term is:
ay

I (4/w)1/2

f y(A) - f (1 - w) dw .A4 1/2 + 4/3 1/2 (A-5)
WO (Aw 2 + [AW + (4/w)]
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Using the substitution:

- (A/4) 3  R2w 4/3  (A-6)

the fy function can then be written as:
S.'

my

(A) 312 I [1-(-i )3/2] r' 2 dr/[(r 2 + 1)1/2 + r]. (A-7)• fy() = r-0

4-,

The term:
f~R r1/2d

E(R) af r 2 dr - (A-8)
r-0 r + [r

2 +1]1
/ 2

is an elliptical integral, the other term being an elementary function.

Since R2 u (eVA/kT), where VA is the applied accelerating voltage, one is

generally interested in the large R limit for the fy function. A large R

expansion for the elliptical integral, E(R), is:

E(R) al R1/2_ Co + (12R3/
2 )- 1 + [Order (R77/ 2)] (A-9)

where CO is an integration constant.

The particular value of Co, specified by choosing the lower limit of Eq.

(A-8) to be r-0, is:

C u 0.677771, (A-10)

determined numerically. It is important to note that Co is a parameter in the

large R expansion of E(R) which is sensitive to the behavior at small R. Thus

CO is sensitive to details of the effective potential which was chosen.
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The other integral appearing in the f function:
* y

r2dr
F(R) - f (A-lI)

r-O r + (r + 1)

can be done exactly using the substitution r - sinh(z). The large R expansion

for F(R) is:

F(R) - R 24 - [ln(R) + C1 1/8 - (32 R2) - 1 + [Order (R74)]. (A-12)

C1 is another constant of integration in the large R expansion which is sensi-

tive to the details of the effective potential, similar to Co . The particular

value of C1 for Eq. (A-10) is:

C1 - (ln2- 1/4) o 0.443147. (A-13)

This gives the following large R expansion for the function f

9 3 C [31n(R) + 3C I + 2] 5
f y o + [Order (R (A-14)

8R 2 R 16 R(

where:

R - (wA/4) (A-15)

The important conclusion for the fy function is that in the region of interest

(large R), fy has an expansion whose leading term is (9/8R). Also, via Co, it

has a first correction term whose magnitude depends on the details of the

potential between the electrodes, from the collector all the way back to the

near cathode region.
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LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporation is conducting

."experimental and theoretical investigations necessary for the evaluation and

*application of scientific advances to new military space systems. Versatility

and flexibility have been developed to a high degree by the laboratory person-

nel in dealing with the many problems encountered in the nation's rapidly
"" developing space systems. Expertise in the latest scientific developments is

'- vital to the accomplishment of tasks related to these problems. The labora-

tories that contribute to this research are:

Aerophysics Laboratory: Launch vehicle and reentry fluid mechanics, heat

transfer and flight dynamics; chemical and electric propulsion, propellant
chemistry, environmental hazards, trace detection; spacecraft structural
mechanics, contamination, thermal and structural control; high temperature
thermomechanics, gas kinetics and radiation; cw and pulsed laser development
including chemical kinetics, spectroscopy, optical resonators, beam control,
atmospheric propagation, laser effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric chemical reactions, atmo-
spheric optics, light scattering, state-specific chemical reactions and radia-
tion transport in rocket plumes, applied laser spectroscopy, laser chemistry,
laser optoelectronics, solar cell physics, battery electrochemistry, space
vacuum and radiation effects on materials, lubrication and surface phenomena,
thermionic emission, photosensitive materials and detectors, atomic frequency
standards, and environmental chemistry.

Computer Science Laboratory: Program verification, program translation,

performance-sensitive system design, distributed architectures for spaceborne
computers, fault-tolerant computer systems, artificial intelligence and
microelectronics applications.

Electronics Research Laboratory: Microelectronics, GaAs low noise and
power devices, semiconductor lasers, electromagnetic and optical propagation

-_ ,-phenomena, quantum electronics, laser communications, lidar, and electro-
optics; communication sciences, applied electronics, semiconductor crystal and
device physics, radiometric imaging; millimeter wave, microwave technology,
and RP systems research.

Materials Sciences Laboratory: Development of new materials: metal
matrix composites, polymers, and new forms of carbon; nondestructive evalua-
tion, component failure analysis and reliability; fracture mechanics and
stress corrosion; analysis and evaluation of materials at cryogenic and
elevated temperatures as well as In space and enemy-induced environments.

Space Sciences Laboratory: Magnetospheric, auroral and cosmic ray phys-
ics, wave-particle interactions, magnetospheric plasma waves; atmospheric and
ionospheric physics, density and composition of the upper atmosphere, remote
sensing using atmospheric radiation; solar physics, infrared astronomy,
infrared signature analysis; effects of solar activity, magnetic storms and
nuclear explosions on the earth's atmosphere, ionosphere and magnetosphere;
effects of electromagnetic and particulate radiations on space systems; space

instrumentation.
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