
AD-Ri59 496 A MIXED-INTEGER LINEAR PROGRAMMING PROBLEM WHICH IS i/
EFFICIENTLY SOLVABLE (U) MASSACHUSETTS INST OF TECH

AS I

CAMBRIDGE LAB FOR COMPUTER SCIENCEI7 NCLASSI1FIED C E LEISERSON ET AL JUL 85 MIT/LCS/TM-284 F/G 12/1 NUNhChEhhE



.1*

pi

11111=8 11.53
-~ 11111- E i

au 11.6

*l1.25 1 11 .66L!

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

A



LABORATORY FOR MAssAcHUsETTs
COMPUTER SCIENCE TECHNOLOGY

1" MIT/LCS/TM-.284 i I

tk L
0

A MIXED-INTEGER LINEAR PROGRAMMING
PROBLEM WHICH IS EFFICIENTLY SOLVABLE

Charles E. Leiserson

James B. Saxe

DTIC
S ELECTE

SEP 2 7 1985

C B
III July 1985._ .iLDITWION STEMENTf it

Distuibufif U&Iimited

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

85 9 27 00
-" -I ,J.- -



'Inc]f fl as jfja

SECURITY CLASSIFICATION OF THIS PAGE Oftein Daoes nter.4)

REPOR DOCMENTAION AGEEAD INSTRUCTIONS
REPORT___________________PAGE_ BEFORE COMPLETING FORM

I. REPORT NUMBER 12. GOVT ACCESSION NO. S. RECIPIENT'S CATALOG NUMBER

MIT/LCS/TM-284 1q ibI ______ ______

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

A Mixed-Integer Linear Programming Problem Interim research
Which is Efficiently Solvable July_________985___

S. PERFORMING ORG. REPORT NUM§E9n .

7. AUTHOR(a) II. CONTRACT OR GRANT NUMNUER(&) ,

Charles E. Leiserson and James B. Saxe DARPA/DOD
N00014-80-C-0622

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELENT PR.ET TASK

MIT Laboratory for Computer Science ARA-WRNUI UBR
545 Technology Square
Cambridge, MA 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
DARPA/DOD July 1985
1400 Wilson Blvd. 13. NUMBER OF PAGES
Arlington, VA 22209 11
14. MONITORING AGENCY NAME & ADDRESSQif different fromt Contolling office) 15. SECURITY CLASS. (of this report)

ONR/Department of the Navy UcasfeInformation Systems Program Una. Ekssi fidI1DWGRDN
Arlington, VA 22217 LE.~&CAINDWNRON

1S. DISTRIBUTION STATEMENT (of this Report)
Approved for Public Release, distribution is unlimited.

17. Of TRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Rpo"t)
Unilimi ted

10. SUPPLEMENTARY NO-,S

1S. KEY WORDS (Continue on reveree side if neessary and Identify by block ncombor)j Algorithms, linear programming, mathematical programming, graph theory,
shortest paths, combinatorial optimization.

20. ABSTRACT (Coneinuoa. n reverse aide fineceeeiny and Identify by block number)

Abstract I'llicierIL algorithl~i are known ror Lie sinmple linear jprograTiiig problemi where
each in~equaldity is or theC rorii xj -. Ti : ai. F'urtllertnore, these techniqjues extend to the integer ~ '

linear prograrntving variantL or til problein. Tisi paiper gives ait efficient soltition to the mixed-
integer linear prograinining varianit where somne, butL not necessarily all, or the unknowns are

rnsrili ye adt l
required io lie int egers. 'itt algorithmn we, develop is bsed on a graph representation of the

systni nd unsill 0(j11 + 11,1 Ig ItI) Lime. It. ias several applications including

DD ' 1473 EDITION 0OP 1 NOV 65 IS OBSOLETEOFTIPAE(enICatr)
S/N 0102-014-601 1 ~ ________. ___SCUIY___F1ATmO HI AE(We ae oos

,. ...



int1 ai fiP-
.,LLURITY CLASSIFICATION OF THIS PAGE(Whm Data Entem.)

OpLimal retniig or syIchroI.ous circuitry, VLSI layout compaction in the presence or power and
ground buses, and PERT scheduling with periodic constraints.

Accession 1For

DTTAB

D1Atil t~o r .

Dit Spec ial

!l

,-

Uncl assitfied

ft -. ' s. s *By*4..... .S..

SCRT DS A OF rI bu' *'

Avallbllly C';I ,



A Mixed-Integer Linear Programming Problem
Which Is Efficiently Solvable

Charles IE. l1eiseron
Laboratory for Computer Science

Massachusetts Institute or Technology
Cambridge, Massachusetts 02139

James II. Saxe
)epartment of Computer Science

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Abstract- Eflicient algorithms are known ror Lhe simple linear programming problem where
each inequality is of the formi zi - zi _< a. Furthcrnorc, these techniques extend to the integer .01

linear programming variant or the problem. This paper gives an elicient solution to the mixed-
integer linear programming variant where some, but not necessarily all, of the unknowns are
required to be integers. The algorithm we develop is based on a graph representation of the
constraint system and runs in O(IVIIEI + IV12 Ig IVI) time. It has several applications including
optimal retiming or synchronous circuitry, VLSI layout compaction in the presence or power and
ground buses, and PERT scheduling with periodic constraints.

Keywords: Algorithms, linear programming, mathematical programming, graph theory,
shortest paths, combinatorial optimization.

This research was supported in part by Lhe Deren Advanced Research Projects Agency under Contract N00014-
RO-C-0622 and by the Ollice of Naval Research under Contract N00014-76-C-0370.

I...



5'Ji •

/j

1. Introductlon ,, 1

>.) Much research has c"' tered on the probleri, or iii(lirg iortest tis in grapl It is well
known that there is 'tirect correspondence between tile ngle-s rce shortest-p s problem
and the following si iple linear programming probig .;: I '//

Let h be a are of linear nequantes of the form i - t where the i 'are unknowns
and the a-/ are given real. constants. Determine a set of values for the xi such that the
inequalities in S are satisfied, or determine that no such values exist.

This paper considers the mixed-integer linear programming variant or this problem in which some
(but not necessarily all) or the ;, arp-r juired to be integers. The problem arises in tie context
or synchronous circuit optimization [], but it has applications to PE T scheduling and VISI
layout compaction as well. (-

Before formally defining the mixed-integer programming problem, we restate the linear pro-
grauinnig problem above in another for .

Problem L. Let (7 = (V, E, a) be an edge-weighted, directed graph, where V = (1,2,...,
IVI} is the vertex set, the aet_l of edges is a subset of V X V, and for each edge (i,j) E 1, the
edge weight aij is a real number. Find a vector.z = (zrlz,...,ZjVl) satisfying the constraint
that

xi - xj. < a i

for all (i, j) E E, or determine that no feasible vector exists.

The graph G is called a constraint graph for tire linear programming problem. There are
three advantages in adopting a graph representation of the problem. First, an adjacency-list
representation [I, p. 200] or the constraint graph G is more economical than, for example, a
linear programming tableau or, when tile graph Iras relatively few edges, a matrix of the ajj.
Second, Problem 1, frequently arises in situations that are naturally described by a graph. Finally,
the graph-theoretic formulation helps in understanding tile algorithms that solve this kind of
problem.

A method for solving Problem 1, was discovered in the late 1950's by Ford and Bellman [8, p.
74]. Yen [13] gave some improvements to the lellhnan-Ford algorithm as well as a cogent analysis
showing that its running tine is O(IV13). This bound is easily improved to O(IVI.IE) by using
an adjacency-list representation for tire constraint graph.

The Bellman-lFord algorithm can also be used to solve tile integer linear programming variant
or Problem I,, in which all the xi are required to be integers. If the edge weights a~i all happen to
be integers, the Bellnan-Ford algorithm will produce integer values for the z,. If the aii are not
integers, however, but the xi are required to be integers, each edge weight ait may be replaced
by LaiiJ without affecting the satisfiablity of the inequalities.

The focus or this paper is the mixed-integer variant of Problem L.

Problem MI. Let G = (V, V1, E, a) be a edge-weighted, directed graph, where V -
(1,2,..., IVj} is the vertex set, the set V1 is a subset of V, the set E of edges is a subset
of V X V, and for each edge (i,j) E E the edge weight ai is a real number. Find a vector
z = (t,z2,..., 1 Vl) satisfying the constraints that

x - j < a3

for all (i,j) E I and that z, E Z for all i E Vi, or determine that no feasible vector exists.
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The vector z (x1, z 2, . 97IV I) is called a Solution to graph G, and ir graph has a solution,
we say that G is satisfiable. When it is clear from context, we use the sane terminology for
Problem L.

In addition, we Shall rerer to the vertices in V, as the integer vertices of G and the vertices in
VR = V - V1 as the real vertices or (7. We also partition the set of edges into two sets depending
on whether the vertex at the head of the edge is integer or real:

Ei = {(i,j) E I JEV},

= {(i,j) E EI E VR

This paper presents two algorithms to solve IProblem MI. The first, which runs in O(lVllVsllIl)
time, is a straighltforward extension of the llellhnan-Iord algorithm. The se.cond is more sophis-
ticated and has a running time or o(IvIIEI + IVllVl Ig IVI). We conjecture that the O(IVlIIEl)
running Iime achieved by the Iehlman-l'ord algorithm for the pure linear programming and pure

integer programming versions or tie problem is not achievable in general for sparse instances of

Problem Mi.
The remainder of this paper is organized as follows. Section 2 reviews the Blelinan-Ford

algorithn. Section 3 presents a simple relaxation algorithm for solving Problem Mi. Section 4

discusses three techniques I)ijkstra's algorithm, reweighting, and libonacci heaps -which are
used in Section 5 to construct an asymptotically efficient algorithm for Problem Mi. We discuss
applications and present some concluding remarks in Section 6.

2. Shortest paths and the Bellman-Ford algorithm

This section reviews how the Bellman-Ford algorithm solves Problem L. Although the results
oF this section are well known and can be round in most textbooks on combinatorial optimization
(see, for example, 18, p. 741), we repeat the material here for the reader's convenience.

There is a natural correspondence between Problem 1, and the graph-theoretic single-source
shortest-paths problem. Let G = (E,V,a) be an instance of Problem L. Suppose that for each
vertex i E V, there is a path to i from vertex I, and let di be the weight of shortest (least-weight)
path from vertex I to vertex i. (At the end or the section, we shall discuss the case in which some
vertices are not reachable from vertex 1.) Then for any edge (i,j) E E, we have di - di < ai3
since the edge (i,j) can be appended to a shortest path from vertex I to vertex i to produce a
path Fron vertex I to vertex j of weight di + ai. Thus the shortest-path weights d are a solution
to G.

Whenever G is satisfiable, there are infinite number of solutions. For example, if z is a solution
to G, then uniformly adding any constant k to each zi yields another solution y, where yi = zj+k
for each i E V. The assignment zi - di gives each xi its largest possible value subject to the
constraint that xi = 0. To see this, consider any path p oF weight di from vertex I to vertex i.
If the inequalities associated with the edges of p are summed, the unknowns associated with the
intermediate vertices cancel and the result is the inequality xi - xi :< di.

Whenever the graph G contains some cycle c whose weight is negative, the shortest path
weight Irom vertex I to any vertex i on cycle c is undefined because the weight of any path
to vertex i can be diminished by appending a traversal of c. In this case the graph G is not
satisfiable. If the inequalities associated with the edges of c are summed, all the unknowns zi
cancel, and the resulting inequality asserts that 0 is less than or equal to the weight or c, which
is false.
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in I, llelhnan-F~ord algoritin, which is givenl below, solves Pr~oblem 1, by findling the weight
or tine shortest path to cacin vertex fromn vertex 1. Should Line graph contain ai negative-weight
cycle, tihe algoritin reports that tine graph is unisatisliablc by calling tine procedIure Fail, whnose
semantics we leave unspecified.

V Algorithm BF (Belltiian-Ford algorithm).

j W2. for i+.-2 to IV I do xi +- o
1W3. for ind - I to IVj - I do
lW4. foreach (ij) E E do

III'. 4- ni (z,, xi + a,,);
BW6. foreach (0~) E E~ do
BW7. if z1 > xi + a13 then Fail;

F~or each vertex j E V, tine llehlinai-l.ord algorithm iteratively updates tine weight zi of a
teintative shortest path rrorn vertex I to vertex j. After initialization, thc algorithin makes IVI- I
passes tinrou gh th e ed ges i n E and lrelzej e I i ed ge .(i, j) by co in p uting zi - mi n(zi, xi + aii).

A simple analysis due to Ycmn 1131 indicates winy tine lleihnan-l~ord algorithnm works. The
weight zi converges to tine weight d, or., shortest path from vertcx I to vertex j ir tine edges on
the path are relaxed in order along the path. ie sequemnce or' edges relaxed by the Ilellman- Ford
algorithmn consists of' IVI - I copies or somne ordering of E, aind thneref'ore contairns every vertex-
dlisjoint p)atn as a sLIIseqinence. If' there are no negative-weight cycles in G, then every shnortest
pa-tli is vertex disjoint, so each xi converges to thc shortest-path weight di. Onl the other hand,
ir there is a inegative-weight cycle in the graphn, tine algorithm detects this condition by iterating
once mnore through all edlges to see whethncr any or' tine inequalities remain unsatisfied.

The Ilcllmann-F'ord algoritn as given above determTines tine weight. of the shortest path from
vertex I to eachn vertex, and thneref'ore solves P'roblem 1, whnenever all vertices or' G are reachable
from vertex 1. The code can be adapted t~o solve Problem 1, on arbitrary graphs by simply
changing the initialization step (lines 1111 IIF2). In particuilar, ir each xi is assigned a finite
initial value ui, tine relaxation in lines B3F3-1315 sets each xj to its maximuin value suibject to the
constraints that xj - xi 5 ai3 rbr each edge (i0) E E~ and that zi _ u_ for each vertex i E V.
Notice that whenever tine constraint graphn C is satisfiable, it is satisfiable subject to the additional
constraints xi ! ui. Shounld tine inequalities be inconsistent because there is a negative-weight
cycles in the graph, tine relaxation will not converge to a solution, amnd tine inconsistency will be
detected by the test in lines BF6 11F7.

3. Simple relaxation algorithms for Problem MI

As was mentioned in the introduction, Problem vfl can be solved directly by tine Bellman-
Ford algorithm winen all unknowns are real (Problem L) amid when all unknowns are integer.
Tine combination or integer and real unknowns;, however, seems to make the problem harder.

__ In this section, we gain some intuition about the structure of Problem MI by introducing two
algorithms that solve it in O(IVIIViIIEl) time mnuchn tine same way as tine liellnnan-i'ord algorithm
solves Problem L. Tine asymptotically efficient algorithm in Section 4 is derived fromn the second
ohr thnese algorithms.

A natural approach to solving Problem MI is to see whether tine B'ellman-Ford relaxation
approach cain be made to work. Since we hnave both integer and real vertices in the graph,

3
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Figure 1. An initaice or Problei MI. Integer vertices (Vi = {,4}) arc
shown Lq squares and real vertices as circles.

however, we tiust modify the relaxation step Il15 in the ellnan-lord algorithm to produce an

integer value whenever j is an integer vertex (line IM). This approach does in frict work, but

it requires more iterations than the simple llellinan-leord algorithm. The next algorithm solves

Problem Mi. The number or iterations n in line R2 will be determined in the analysis following

the algorithm.

Algorithm R (Relaxation).

I1. foreach i E V do zi 4- 0;

R!2. forind- ltondo
113. foreach (i, j) E E do

R4. begin
R5. xi - in(x, zi + ai);
R6. if j E V1 then zy - [xiJ;

R7. end;
R8. foreach (i,j) E E do

R9. if zx > xi + a1 " then Fail;

In order to determine a value of n such that Algorithm It works, we introduce the notion of

a reducing path. Let p be a path starting at some vertex k, and suppose that zx is initially set to

0 and that all the remaining xi are initialized to oo. Suppose the edges in path p are traversed

in order starting from k, and each edge (ij) along the path is relaxed as in statements R5-116.

If each relaxation or an edge (i,j) reduces the value xi, the path p is called a reducing pat.

Whenever a sequence or edges contains all reducing paths as subsequences, the relaxation of

each edge in the sequence in order yields a solution. (The proof is analogous to Yen's analysis

[131 or the Bellman-Ford algorithm.) The Bellman-Ford algorithm solves Problem L because in a

satisfiable graph with only real vertices, each vertex occurs at most once on any single reducing

path. (And in fact, every shortest path is a reducing path.)
When some unknowns are integer and some are real, however, it is possible for a reducing

path to visit the same vertex more than once, even if the graph is satisfiable. For example, in the

graph shown in Figure 1, the reducing path p = 3--42--+ 1 -+2--+3-,4-*-3--2 visits vertices

2 and 3 three times each. If all the zi are initially set to 0, the edges of p must be relaxed in

their order along the path to achieve convergence. Moreover, relaxing the entire edge set in some

arbitrary order only 3 = IVI - 1 times might not achieve convergence. Since the value of n in
line 112 must be at least the maximun number or edges in any reducing path, the value IVI - 1,
which was used in Algorithm BF, will not suffice.

4
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Fortunately, reducing paths are never very long in satisfiable graphs because or the following
lemnma.

Lemma 1. Suppose C = (V, I7 E,a) is satisfiable. If p is a reducing path in G ten

I. p visits no integer vertex more than once, and

2. p never visiti the same real vertex twice without visiting some integer vertex in
between.

Proof. If either condition is violated, then the reducing path p can be extended indefinitely by
repeating the cycle that causes violation. 3

Lemma I allows us to determine a. value for n in line R2 or Algorithm It such that the x
converges to a solution whenever C is satisfiable. Any reducing path contains each integer vertex
at most once and each real vertex at most IVII + I times. Since the number of edges in a path is
one less than the number of vertiCes, any reducing path for a satisfiable graph can have no more
than IV1I + (IV1I + I)IVRI - I = IVIIVRI + IVi - I edges. Thus the. limiL n of the outer loop in
Algorithm It should be set, to ]VIIIVRI + IVI'- i. The overall running time of' Algorilhm It is thus
.O(IvlVIIIII).

This analysis suggests the following algorithm which is slightly more efficient than Algorithm
- . R, and which forms the basis of the asymptotically efficient algorithm presented in the next

section.

Algorithm M (Modified relaxation).

M 1. foreach i E V do xi -- 0;
M2. for ind - I to IVRI do
M3. foreach (i,j) E KR do
M4. x +- min(xj, zi + asi);
M5. for ind2 - to IV1 I do
M6. begin
M7. foreach (i, j) E El doSM8. xj. min(xj, Lx, + aiJ);

M9. for ind - to IVnI do
MI0. foreach (i,j) E ER do
MI 1. x14-- min (xi, xi + aq.);

M12. end;

M13. foreach (i,j) E E do
MI. if xj > xi + aq then Fail;

The only difference between this algorithm and Algorithm R is that it treats the edges in E,
separately from the edges in 'R. In lines M7- M8 of Algorithmi M, each edge in El is relaxed once.
There are IVI such passes over El which are preceded, followed, and separated by exhaustive

relaxations of the edges in ER (lines M2 M4 and M MI1). In each exhaustive relaxation of EiR,

edges are relaxed until no further changes in the values of xj are possible for j E VE . (Actually,
the relaxations in lines M2 M, and MO Mt I are only guaranteed to be exhaustive if there are
no negative-weight cycles in E. If there are cycles of negative weight, however, this condition

is detected at the end by the convergence test in lines M13 MI4.)

5
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4. Dijkstra's algorithm and reweighting

Section 5-gives a more ellicieni, algorilhii to solve Problem MI than either Algorithm Ii or

Algoritht M. Three ittpiorL:ut techniques are used in Lhe algorithm. The first, is ffijkstra's

algorithm, which linds shortest paths in a graph rroii a single source in 1,he case when all the edge

weights are nonnegative. The second is reweighting, which is a technique (duie to EdIlmonds and
Karl ) 1:] and used by Johnson 171 in his ellicient algorithm ror solving the all-pairs shortest-paths

problem. The third is the Fibonacci heap data structure due to I,'redman and Tarjan [41, which
is an improved priority queue that makes l)ijkstra's algorithin run in time O(jIEI + IVl Ig IVI).

Given a graph G = (V,E,a) such that all edge weights aij are nonnegative, l)ijkstra's

algorithm computes or each vertex i, the weight di of the shortest path froai vertex I. Because
each edge is relaxed exactly once, this algorithm is laster than the Iell man-lord algorithm which
solves the same prol)lem for arbitrary edge weights. l)ijkst~ra's algorithin derives its efficiency from
the observation that, along any shortest path rrori vertex I, the shortest-path weights di form a
tiondecreasing sequence it' all the edge weights are nonnegative. Thus, a sequence consisting or all
edges (i,j) E /, in nondecreasing order or the distances di contains as subsequences shortest paths
rorn vertex I to all vertices in V. Furthermore, such a sequence of edges can be computed on

the fly using a priority queue. (The textbook 1I) gives a proof of correctness ror this algorithm.)

Algorithm D (Dijkstra's algorithm).

I)1. zr - 0;
12. for i +- 2 to IVI do z- oo;
)3. Q - V;

D4. while Q 3 0 do
D5. begin
D6. Choose i E Q such that xi = min.EQ; C;

D7. Q - Q - {i};
D8. foreach j E Vn such that (i,j) E ER do
D9. Xj + min(x 3,zi + asi);
D 10. end;

Ir the set Q in the algorithm is implemented as a standard priority queue, each extraction
(lines I)6 )7) and update (line D9) costs O(IgIQI) = O(IgIVI) time. Thus the total running
time or l)ijkstra's algorithm is O(IEI Ig tVI). Frednian and Tarjan [I] describe a data structure
called Iibonacci heaps that supports arbitrary deletion in O(Ign) amortized time and all other
stanlard priority qucue operations (including update) in constant amortized time. ly using a
Fibonacci iap in Dijkstra's algorithm, they show that the performance can be improved to
O(",'1 + IVI Ig IVI).

Since I)ijkstra's algorithm is equivalent to the Iellman-Ford algorithm on graphs with non-
negative edge weights, it can be used to solve Problem 1, on such graphs. This is not very

interesting in itself, since any graph C = (V,E,a) in which all edge weights are nonnegative
can he trivially satisfied by setting xi to 0 ror each i E V. Our interest in l)ijkstra's algorithm
comes from a stronger property of the solutions it finds. Suppose the initialization step (lines

i)1 )2) is changed so that each variable zi is initialized to a linite value u.. Then the relaxation
procedure in lines )3 DI0 will set each xA to its largest possible value consistent with the con-
straints that 2- - zi < aij for each edge (0) E E and that Ti u ui for each vertex i F V. In
other words, lines I)3 1)10 or l)ijkstra's algorithm are runctionally equivalent to lines 111F3 I1F5

6



of the I Jell luan- lord algorii rn p~rovidled that all the edlge weights ai are nonntegati ye. Since a
graph with only non negative edge weights can never conitaini a negative-weight cycle, no test for

converge'nce is ne(cess5ary' in this case.
PTe elf icient algori thmn we shall presenit to sol ve I roblein MI is a mnodification of A Igorithin

M. Notie that lines MO X1 I I of' Algorithin M exhaustively re lax the e!dges iii ER'in a manner
similar to lilies I Jl3 I Jl5 of' the I ell luan-Vlor(1 algoritlhmi. lII A lgori thmn M, however, this code is

- ~executed triany timries. Tit. efficient algorith in to solve I 'rolilcirt MI uses a trick to replace this
* ~code with code based on dhe more efficient relaxation procedure iii lines 1)3-I)IC of lDijkstra's

.ilgorithin. TIhis trick is the trehniue or reweighting (Inc to E~dmond~s aind Karp [3].

Lemma 2. Let G (17, E, ai) be an edge-weighted graph, for each i E V let ri be a real
number, and let 11 V, , b) where b1, = ai + ri - r3 for each edge (i, A E E. For each
vertez i E V let xi be a real number and let ljj = xi - r. Then xi - ri :5a for all (i,j') E E
if and onlyr if yj - yj < bi for all (i, j) E E (that is, x is a solution to G if and only if y is
a solution to /I.)

Proof. Trivial.3

We call the vector r =(7, r2,.. ,rjV) a reweighting of thic graph G.

5. An asymptotically efficient algorithm for solving Problem MI

This section shows how IDijkstra's algorithin and reweighting can be incorporated into Algo-
rithin M to yield a faster algorithm for solving Problem Mi. Given a graph G = (V, V1, E~,4), the
idea is to find a reweighting r such that the reweighted graph 11 = (V', V,, E~, b) has edge weights

bj= a,, + r, - rj ! 0 for all edges (i,j) E E~R. Lernina 2 guarantees that G is satisfiable if and
only if 11lis satisfiable and also that a solution y to If can be converted inito a solution z to C by
setting xi == V + ri for each i E V. The advantage gained by tranisfortning the problem on G to
a problemn on 11 is that the relaxation portion of lDijkstra's algorithmn (lines D3 110) can replace
the lBellman-F'ord relaxation (linres M9- Mi 1), which is the miost expensive part of Algorithm M.

The first stage of the algorithm is to determnine the reweighting values ri for all i E V and
the new edge weights bi = a1 + ri - rj for all (ij) E E. We itrst choose the values ri such
that bi - 0 for all (ij) E ER. Sire this is equivalent to requiring that rj - ri ! aij for all
(i,j) E ER values for the ri can be found by applying the liellinan-Ford algorithmn to the graph
(V, E'R, a). The first few lines of the algorithin are:

Algorithm T (Efficient algorithm).

T1. for iE Vdo ri -O0;
T2. for ind - Ito I VRI do
T3. for (i, j) E Ej1 do
T4. r, +__ rnin(rj, ri + a,,);
T5. for (i, j) E ER do
T6. if Ti > t, + a13 then Fail
T7. for (i, j) E E do
T8. bj aj+r j

If the algorithin fails in line T6, then there is a cycle of negative weight among the edges in
ER?, -Ind hence graph G is unsatisliable even) ill the absense of integer constraints. Otherwise, the

4 values b,, computed in line rl8 are nonnegative for all (ij) E ER.

7



The next stage of Algorithm T" is to solve the mixed-integer problem on the graph ii
(V, V1 , E, b). The algorithm alternately performs single relaxation passes on the edges in E, and
exhaustive relaxations of the edges in ER, as in Algorithmr M. We begin by initializing the values
yi, which will converge to a solution to 11 if i is satisfiable.

To. foriEV doy,4-0;

This initialization has the added fortune or subsumning the first exhaustive relaxation of ER (lines
M2 M4 in Algorithm M). After the execution of line T" we have yj - yi -- 0 - 0 < biy ror all
i,j) E AR, which eICans that the edges in ER arc already exhaustively relaxed.

The next portion of Algorithm T parallels lines M5-M12 of Algorithm M and is where most
of the computing gets done.

n[0. for ind - I to IVI do
TI 1. begin
'1,12. for (i, j) E E, do
T13. yj - nin(y3 , [yi + bijj);
T14. Q - V;
''15. while Q 3 0 do
T16. begin
T17. Choose i E Q such that y = minEQ Yj;
T18. Q4-Q-{i};
T19. for j E VR such that (i,j) E ER do
T20. Yj *- in(yj, yt + b1i);

T21. end;
T22. end;

This code solves the problem on graph H1 in almost exactly the same way that Algorithm M
would. The only difference is the method by which the edges of ER are exhaustively relaxed.
Whereas lines M9 M II of Algorithm M perform the exhaustive relaxation using the Bellman-
IFord algorithm, lines TI 4 T21 of Algorithm T take advantage of the nonnegativity of the bij for
(i, j) E EnR and use Dijkstra's algorithm.

The final part of Algorithm T is to check the convergence of the y and to apply Lemma 2 to
produce a satisfying assignment z for the original graph G.

T23. for (i,3 ) E Et do
r24. if yj > y + bi, then Fail;
T25. for (i, j) E E do
T26. X, 4 Yj + rl;

Lines T23 T24 check the convergence of y by testing the inequalities associated with the edges
in I,. The inequalities resulting from edges in ER need not be checked because the relaxation
in lines T4 T22 is guaranteed to be exhaustive. (If there were negative-weight cycles in ER, we

would have detected this in lines T5-T6.)
Lines '1"25 T26 convert the solution y to graph II into a solution z to graph G. Lemma 2

ensures that the inequalities xi - zT < aij are satisfied, but we must also show that the zi are
integers for all i E Vi. For each i E Vi the value yj is an integer, however, and furthermore, the
values of the r, produced in lines TI-T4 are zero for all i E V1. Thus for all the integer vertices,

the x; are integers.i ~I litsummary, we have proved the following theorem.
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Theorem 3. Algorithm T solves Problem MI.

Tle running time or Algorithm r is O(IV IIrI +IV IIV I Ig IV l), ir the priority queue is inple-
,tlented using a IFibonaci heap.

6. Applications, extensions, and conclusions

rhe so.iLionr to Problem MI was demnaeded by a problcmI concerning optiniization or sycironous
circuitry by retiming [9]. This section brielly describes two other problems compaction or
VISI circuits in the pre ence or power and ground buses and I'RT scheduling with periodic
constraints which can be reduced to 'roblem MI. We also consider an extension of lProblem Mi
where multiple classs of periodic constraints rnrst be satisfied. (I'or example, some of the zi are
required to be integers, and others to be exact multiples or an integer constant c.)

Circuit compaction
Optimal (one-ditrensional) compaction of VIS! circuit layouts [5] is another application or the

Bellman-Ford algorithm. IKaclh layout reature is given a variable representing an z-coordinate,
and the design rules are enforced using constraints of the form z -zi < a,'. It may be desirable,
however, to allow reature i to be to the left or feature j or vice versa, but not to allow them
to occupy the same position. Unfortunately, if one wishes to allow this kind or transposition of
layout features, either optimality or performance must be sacriliced because the problem becomes
Nl-complete [10]. But for certain compaction probleis arising in practice, transposition of layout
features can be allowed.

Some design methodologies enforce the placement of power, ground, and clock to be at regular
intervals. For example, one signal processing system [II] requires that these wires be repeated
every 20OIX, and that the width of all cells in the system be integer multiples or this distance.
The designer is then constrained to build a new cell so that the layout features are tightly packed
among the global wires. In this context, where some layout features may go on one side or the
other of some global wire but may not overlap, the compaction problem can be formulated as
Problem MI.

PERT scheduling
Suppose we have a constraint graph with vertices representing milestones in a project, and

edge-weights indicating the tining constraints between milestones. Generally, the Bellman-Ford
algorithm can be used to provide an optimal scheduling or the milestones. If a work day is rrom
0:00 a.m. to 5:00 p.m., however, we may not wish to schedule a one-hour job to start at 4:30
p.m. Advancing the job to the next day may cause an earlier job to be advanced as well if the
two jobs are constrained to fall near each other. The problem or nEltT scheduling with periodic
constraints can be cast as Problem NI.

Intuitively, the mixed-integer formulation allows one to include for each job (1) a real variable
representing the starting time or the job, and (2) an integer variable representing, say, noon on
the day the job occurs. Thus one can include constraints which say, for example, "This job must
start before 4:00 p.m. on the day it occurs."

Multiple periodic constraints
Suppose that in the PET scheduling application mentioned above, we also wish to take into

consideration constraints involving weekends. To do this, we would associate with each job a
third variable representing, say, Sunday noon of the week during which tihe job occurs. We
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are then required to solve a variant or I'roblern MI in which there are two classes of periodic
c. constraints some variables are required to be exact integers and others to be exact multiples or
7 while the rernainder.may have arbitrary real values.

The solution to this problem is based on the following algorithm ror solving Problen MI. (We
assume without loss of generality that G = (V, V1, E, a) is strongly connected).
Algorithm U

UI. if (V, E, a) contains a negative-weight cycle then Fail
else foreach (ij) E Vi X V1 do

... -- the least path weight front i to j in (V, E,a)J;
U2. if (VI, V1 X V1, b) conLains a negative-weight cycle then Fail

,-.';, else lid an integer assignment z on V1  such that. x i < bi, for alli,jE Vj;
WJ3. Apply the lellnan-lFord algorithm to (V, E, a) using the zi roun(d in Step 112 as

initial values for the integer vertices and infinite initial values for the real vertices;
Step IJI produces a graph II = (VI, V X V, b) which is feasille if and only ir G is feasible,

Step U2 solves If if i1 is reasible, and Step U3 extens the solution from the et V1 of integervertices to the entire vertex set V. Step UI can be perorme in O(Voi ) time by the Floyd-

Warshall algorithm [8] or in O(IvlIIE + jV llVl Ig IV) time by Fredman and Tarjan's improved- '-'" version [4] o1 Johnson's algorithm 17]. Step U)2 can be performed by the Jhellman-lFord algorithm
and takes time O(1V 113) because II is a complete graph. Tlhc cost of Stcp UI dominates the cost

of Step U3, which takes only O(IVjIERj) time.
Algorithm U extends naturally to the case in which there are multiple classes of periodic

- constraints, provided that each period (e.g., 1 week) is an exact multiple of the next smaller
period (e.g., I day). First, Step UI is applied (with an appropriate scaling of the edge weights)
to produce an equivalent problem in which the most loosely constrained class of vertices in the
original problem is eliminated from consideration. This new problem is then solved recursively
(or by direct application of Algorithm T if only two classes of vertices remain). Finally, the
solution is extended to the entire set of vertices, as in Step U3.
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