AD-R159 496 L] HIXED INTEGER LINEFIR PRDGRRMMING PROBLEM HHICH IS
EFFICIENTLY SOLVABLE _<(U) MASSACHUSETTS INST OF TECH
CAMBRIDGE LAB FOR COMPUTER SCIENCE

UNCLASSIFIED C E LEISERSON ET AL JUL 85 MIT/LCS/TH-284 F/G 12/1 NL

‘FEEE
et

Ln—hu._mmu

Idl‘n

Il

L2 i

l
I

e ——
e —
| . |
v ——
e ———
——
———
e —

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

2 18N

.-n.p.-.._

LR

ORRRIORAL"

ad o

133

T7Ie FILE COPY

b MASSACHUSETTS
| INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

MIT/LCS/TM-284

AD-A159 496

A MIXED-INTEGER LINEAR PROGRAMMING
PROBLEM WHICH IS EFFICIENTLY SOLVABLE

Charles E. Leiserson

James B, Saxe

"
!

»
p s
4,

July 1985

TFROLT S
ey
'y

Approved foxr public release

DISTRIBUTION STATEMENT A
L Distribution Unlimited

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

gs o 27 003

- La . LRI RIS TN CRARTRRRA AT LY O e
2 .:._“_3.1.’ '~ f" -(\ -.-‘...-.‘. "-'-.- ‘-- 1-. LI '_.-. .}.:- : "). ..m‘, RNy

T L e b e e e e e R R

o T W WTR TRy
- TR TTIRITRY baiian it i et e e has in £ia Bon bt 2 a rom g -n

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE Bs,gignggsgr_gggg":m
T, REPORT NUMBER 2. GOVT ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER
MIT/LCS/TM-284 D-A159 Y96
4. TITLE (end Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
A Mixed-Integer Linear Programming Problem Interim research
Which is Efficiently Solvable July 1985
8. PERFORMING ORG., REPORT NUMBER
‘ MIT/LCS/TM-284
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Charles E. Leiserson and James B. Saxe DARPA/DOD
N00014-80-C-0622 o
9. PERFORMING ORGANTZATION NAME AND ADDRESS 7o, PROCRAM ELEMENT. PROJECT TASK | i;" 3 i’
MIT Laboratory for Computer Science e
545 Technology Square "
Cambridge, MA 02139
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
DARPA/DOD July 1985
1400 Wilson Blvd. 13. NUMBER OF PAGES

Arlington, VA 22209 11
. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 18. SECURITY CLASS. (of thie report)
ONR/Department of the Navy

Information Systems Program Unclassified
Arlington, VA 22217 o QSRR CATION/COWNGRADING]

|76 DISTRIBUTION STATEMENT (of this Report)
Approved for Public Release, distribution is unlimited.

17. DI.ST.RIUUTDON STATEMENT (of the abetract entered In Block 20, if ditferent from Report)
Unlimited

18. SUPPLEMENTARY NO™.§

19. KEY WORDS (Continue on reverse aide if neceasary and identify by block number)

Algorithms, linear programming, mathematical programming, graph theory,
shortest paths, combinatorial optimization.

20. ABSTRACT (Continue on reverse eide If necessary and Identity by block mumber)

Abstract illicient algorithms are known for the simple lincar programming problem where
cach inequality is of the form z; = 7y < ayy. Furthermore, these techniques extend Lo the integer
linear programming variant of the problem. This paper gives an cfficient solution to the mixed-
integer linear progeamming variant where some, but not necessarily all, of the unknowns are
required to be integers. The algorithim we develop is based on a graph representation of the
constraint system and runs in O(|V||E] + [V{* 1g|V]) time. It has several applications including

DD, 55", 1473 EoiTion oF 1 wov 6813 oRsOLETE

$/N 0102-014- 6601 | Un.dasu.f.x.eg_______——— i
/ SECURITY CLASSIPICATION OF THIS PAGE (When Data Bntered)

". -'."..'..-'A b ’_..'_‘.4'_(..'.'-.!';' I R Y VUL N RN R S
. ot e e e e _*,..\";"-u‘{"»'-.“\'-\. ‘.‘f !

T S AR (R S oy

Falil ol W Wl

- o

e S

s
AL AT

>

' x s n_,‘v\',‘ s a

REE S

r.e

LLLURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

optimal retiming of synchronous circuitry, VLSI layoutl compaction in the presence of power and
ground buses, and PERT scheduling with periodic constraints.

R N

! Accession For ’
[¥115 graar B
| DTIC TAB g |
| Unannounced 0 i

Justificatio&.._._.__._._,J

B ——
;
———

Diatribution/

By

Avallability Codes |
|Avatl and/er e
Dist Special !

Al

LIRS Tt S g d

N

ST =

ot

igd Noriin

ey Ll oY Y s e

e

P

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Bntere®)

LT N Y

'n. A

TR PR A R e A LN R L g s Tt s

N wt
"

-]
-
<
4

Teeg, X A

R
A Mixed-Integer Linear Programming Problem A
Which Is Efficiently Solvable k

Charles 19, Leiserson]
Laboratory for Computer Science & 'z
Massachusetts Institute of Technology t
Y

{

Cambridge, Massachusetls 02139 S
James B. Saxe '
Department of Computer Scicnce %

-

Carnegie-Mellon University
Pitlsburgh, Pennsylvania 15213

Abstract- Ellicient algorithms are known for Lhe simple lincar programming problem where :;;
cach inequality is of the form z; —z; < a,;. Furthermore, these techniques extend to the integer AN
lincar programming variant of the problem. This paper gives an eflicient solution to the mixed- ‘::.,',
integer lincar programming variant where some, bul not nceessarily all, of the unknowns are -
required to be integers. The algorithm we develop is based on a graph representation of the il
constraint system and runs in O(|V||E] + |V|* 1g]V|) time. It has several applications including _‘*: s
optimal retiming of synchronous circuitry, VLSI layout compaction in Lthe presence of power and ’:";

ground buses, and PERT scheduling with periodic constraints.

35540
o,

o

K B

Keywords: Algorithms, lincar programming, mathcematical programming, graph theory,
shortest paths, combinatorial oplimization.

= P | S
()R

)

-

>
o

et
o b
PR s e

o
"l

" ..::&;" ,‘?'. -

pria)

e
o AN

L

h%

This rescarch was supported in part by the Defense Advanced Research Projecls Agency under Contract NOOO14- -z
80-C-0622 and by the Oflice of Naval Rescarch under Contract NO0014-76-C-0370. r.
P:A‘P :

oty

o

N

Nt

; .%

. - o AN
% gl A R Wk A %‘,4

2y "a" ;~;‘x'u‘_\iﬁ.f¢ Ko I a'-“(.':‘m. :}fi‘-

ey

or - sub)
(" a. 'JI, ,

16) el Lo oswbo

f

1. Introduction _ , ;.

wrlest paths in graphs//It is well
ingle-sgtirce shortest-phths problem

"~ Much rescarch has gefitered on the problem of finding s

known that there is & direel correspondence between éthu

and the lollowing sighple lincar programming problem. /
, . . -v.-" IR j'"f- /

Let S be a spt of linear inequalities of the form z5 — x4 @wherc the z/ are unknowns

are given real constants. Determine a set of values for the z; such that the]

tnequalities sn S are salisfied, or determine that no such values ezist.

This paper considers the mized-integer lincar programming variant of Lhis problem in which some
(but not necessarily all) of the x; :Lr;H«guimd lo be integers. The problem arises in the context
of synchronous circuil optimization {9], but it has applications to PERT scheduling and VLS
layout compaction as well. (——
Before formally delining the mixed-integer programming problem, we restate the linear pro-
gramming problem above in another form,
Problem L. Let G = (V,I5,a) be an edge-weighted, directed graph, where V = {1,2,...,
[V} is the vertez set, the set I5 of edges is a subset of V X V, and for each edge (i, 5) € I the
edge weight a;; 15 a real number. Find a vector z = (z),23,...,Zjv|) satisfying the constraint
that:

Rl Xy

z; — 2. < Gij
Jor all(i,7) € E, or determine that no feasible vector ezists.

The graph G is called a constraint graph for the lincar programming problem. There are
three advantages in adopting a graph representation of the problem. First, an adjacency-list
representation [1, p. 200] of the constraint graph G is more cconomical than, for example, a
linear programining tableau or, when the graph has relatively few cdges, a matrix of the ay;.
Sccond, Problem L frequently ariscs in situations that are naturally described by a graph. Finally,
the graph-theoretic formulation helps in understanding the algorithms that solve this kind of
problem.

A method for solving Problem L was discovered in the late 1950’s by Ford and Bellman [8, p.
74]. Yen [13] gave some improvements Lo the Bellman-Ford algorithm as well as a cogent analysis
showing that its running time is O(|V®). This bound is casily improved to O(|V||[]) by using
an adjacency-list representation for the constraint graph.

The Bellman-Ford algorithm can also be used Lo solve Lthe integer lincar programming variant
of Problem L, in which all the z; are required to be integers. If the edge weights a5 all happen to
be integers, the Bellman-Ford algorithm will produce integer values for the z,. If the a;; are not
integers, however, but the z; are required to be integers, each edge weight a,; may be replaced
by |a.;] without allecling the salisfiablity of the incqualities.

The focus of this paper is the mized-integer variant of Problem L.

Problem MI. Let G = (V,V;,E,a) be a edge-weighted, directed graph, where V = ' h
{1,2,...,]V|} is the vertez set, the set V; is a subset of V, the set I of edges is a subset !

of V X V, and for each edge (i,7) € I the edge weight a,; 1s a real number. Find a vector
z = (z1,22,...,Z)v|) satisfying the constraints that

zj — z; < i

Jor all (1,5) € I and that z; € T for alli € V}, or determine that no feasible vector ezists. ,
| :

s 5 S ‘S Ra AN Sa & BAtE A ib M o Sedh Sl i gt e i un Al Bval g e il ol Al i
y

o+ >

iy

The vector z = (£, T3, ..., 7v}) is called a solution Lo graph G, and if graph G has a solution,
we say Lhat G is satisfiable. When it is clear from context, we use the same terminology for
P’roblem L.

In addition, we shall refer Lo Lhe vertices in Vy as the infeger vertices of G and the vertices in
Ve = V =V} as the real vertices of (. We also parlilion the sct of edges into two scls depending
on whether the vertex at the head of the edge is integer or real:

MPRVASI N 1

ARG P, T

;\ E[={(i,J)EE|J€VI},

Er={li,j)€ ¥ |j€VR}.
i;'_-. This paper presents two algorithms Lo solve I’roblem MI. The first, which runs in O(|V||V;]|£])
S:: time, is a straightforward extension of the Bellman-Ford algorithm. The second is more sophis-
"L ticated and has a running time of O(|V||E] + |V||Vi|1g|V]). We conjecture that the O(|V||£])

running time achieved by the Bellman-Ford algorithin for the pure lincar programming and pure , 7
integer programming versions ol the problem is not achievable in general for sparse instances of
I’roblem Ml.
The remainder of this paper is organized as follows. Section 2 reviews the Bellman-Ford
algorithm. Section 3 presents a simple relaxation algorithin for solving ’roblem MI. Section 4
discusses Lhree techniques - Dijkstra’s algorithin, rewcighting, and Fibonacei heaps —which are
uscd in Scction 5 Lo construcl an asymplotically cfficient algorithm for ’roblem MI. We discuss
applicalions and present some concluding remarks in Section 6.

2. Shortest paths and the Bellman-Ford algorithm

This section reviews how the Bellman-Ford algorithm solves Problein L. Although the results
of this scction are well known and can be found in most Lextbooks on combinatorial optimization
(sce, for cxample, [8, p. 74]), we repeat the material here for the reader’s convenicnce.

There is a natural correspondence between Problem I, and the graph-Lheoretic single-source
shortest-paths problem. Let G = ([2,V,a) be an instance of Problem L. Suppose that for cach
vertex 1 € V, there is a path to ¢ from vertex 1, and let d; be the weight of shortest (least-weight)
path from vertex 1 to vertex ¢. (At the end of the section, we shall discuss the case in which some
vertices are not reachable from verlex 1.) Then for any edge (2, 7) € F, we have d;j — d; < ayy
since the edge (7,7) can be appended Lo a shortest path from vertex | to vertex ¢ to produce a
path from vertex 1 to verlex j of weight d; + a,;. Thus the shortest-path weights d are a solution
to G.

Whenever G is satisiable, there are infinite nuinber of solutions. For example, if z is a solution
to G, then uniformly adding any constant k o cach z; yiclds another solution y, where y; = z,4+ k&
for each ¢ € V. The assignment z; — d; gives cach z; its largest possible value subject to the
constraint that z; == 0. To sce this, consider any path p of weight d; fromn vertex 1 to vertex 1.
If the inequalities associated with the cdges of p are summmed, the unknowns associated with the
intermediale vertices cancel and the result is the incquality z; — 2y < d;.

Whenever the graph G contains some cycle ¢ whose weight is negalive, the shortest path
weight from vertex 1 Lo any vertex ¢ on cycle ¢ is undefined because the weight of any path
to vertex ¢ can be diminished by appending a traversal of ¢. In this case the graph G is not
satisfiable. If the incqualities associated with the cdges of ¢ are sumnmed, all the unknowns z,
cancel, and the resulling incquality asserts that 0 is less than or equal to the weight of ¢, which
is false.

1§

L. s'n.'.!“:’tkl..ﬁ AR

AN

Sl AS

- .
AN

WA

. L]
DRI

L. "

o O\.Yyh

ot

A

e

The Bellman-Ford algorithm, which is given below, solves Problem 1. by finding the weight
of the shorlest path to each vertex from vertex L. Should the graph contain a negative-weight
eycle, Lthe algorithm reports that the graph is unsatisliable by calling the procedure Fail, whose
semantics we leave unspecified.

Algorithm BF (Bellman-Ford algorithm).
BFL. 2y «0;

BIF2. for i« 2 to |V| do z; + oo;
BIF3. for ind — 1 to |V| -1 do

B4, foreach (i,5) € £ do

BI°5. z; « min(z;,z; + a;;);
BI6. foreach (i,5) € IV do

BT, if z; > z,; + a;; then Fail;

For cach vertex j € V, the Bellman-Ford algorithm iteratively updates the weight z, of a
tentalive shortest path from vertex 1 to vertex 3. After initializalion, Lhe algorithm makes [V|—1
passes through the edges in /2-and relazes cach edge (4, 5) by computing z; « min(z;, z; + a;5).

A simple analysis due to Yen [13] indicates why the Bellman-Ford algorithm works. The
weighl z; converges to the weight dj of a shortest path from vertex 1 Lo vertex j if the edges on
the path are relaxed in order along the path. The sequence of edges relaxed by the Bellman-Ford
algorithm consists of |V| — 1 copics of some ordering of E, and therefore contains every vertex-
disjoint path as a subsequence. If there are no negative-weight cycles in G, then cvery shortest
path is vertex disjoint, so cach z; converges to Lhe shortest-path weight d;. Ou the other hand,
il there is a negative-weight cycle in the graph, the algorithm detects this condition by iterating
once more through all edges to sce whether any of the incqualitics remain unsatisfied.

The Bellman-Ford algorithm as given above determines the weight. of the shortest path fromn
vertex 1 to each vertex, and thercfore solves Problem 1. whenever all vertices of G are reachable
from vertex 1. The code can be adapted to solve Problem I, on arbitrary graphs by simply
changing the inilialization step (lines Bt BF2). In particular, if cach z; is assigned a finite
initial value u;, the relaxation in lines BIF3 -BIF5 sets cach z; to its maximuin value subject to the
constraints that z; — z; < a,; for each edge (1,5) € F and that z; < u; for cach vertex i € V.
Notice that whenever the constraint graph G is satisliable, it is salisfiable subject to the additional
constraints z; < u;. Should the incqualities be inconsistent because there is a negative-weight
cycles in the graph, the relaxation will not converge to a solution, and the inconsistency will be
detected by the test in lines BF6 - BE7.

3. Simple relaxation algorithms for Problem MI

As was mentioned in the introduclion, ’roblem MI can be solved dircctly by the Belliman-
Ford algorithm when all unknowns are real (Problein L) and when all unknowns are integer.
The combination of integer and real unknowns, however, scems to make the problemn harder.
In this section, we gain some intuition about the structure of I’roblem Ml by introducing two
algorithms that solve it in O(|V||V/]}]) time much the same way as the Bellman-Ford algorithm
solves I’roblem L. The asymptotically ellicient algorithm in Scction 4 is derived from the second
of these algorithms.

A natural approach to solving Problern MI is to sce whether the Bellman-Ford relaxation
approach can be made to work. Since we have both integer and real vertices in the graph,

3

LR)

X R P
o L‘v\.ﬁ#l, S

Y0

TGP [N e

T Tk s

LY N

- -

AUNCAAR

~

at 004 o. 4 o. ,

i

< /
5 4

og 0.2 -0.3 0.4

2,

|9

-

S Figure 1. An instance of Problem M. Integer vertices (Vi = {1,4}) are
-+ shown as squarcs and real vertices as circles.
5N
L”
M however, we must modify the relaxation step BFS in the Bellman-Ford algorithm to preduce an

integer value whenever 7 is an integer vertex (line R6). This approach docs in fact work, but
it requires more iterations than the simple Bellman-Ford algorithm. The next algorithm solves
- Problem ML The number of iterations n in line R2 will be determined in the analysis following
the algorithm.

Algorithm R (Relazation).

A ." A a, ‘\' 'A,

c, PP

_ Rl. foreachi€ V do z; + 0;

'-:.. R2. for ind+— 1 to n do

- R3. foreach (i,j) € E do

o R4. begin

i RS. z; +— min(z;, z; + ay;);

! R6. if j € Vr then z; + |z;);

: . R7. end;

D¢ R8. foreach (i,5) € F do
};: R9. if z; > z; + a,; then Fail;

R In order Lo determine a value of n such that Algorithim R works, we introduce the notion of
vea a reducing path. Lt p be a path starting at some vertex k, and suppose that z, is initially sct to

:‘;: 0 and that all the remaining z; are initialized to co. Suppose the cdges in path p are traversed
1 :’. in order starting from k, and cach edge (i, 7) along the path is relaxed as in statements R5-R6.
,,::' If cach relaxation of an edge (i, 5) reduces the value z;, the path p is called a reducing path.

A Whenever a sequence of edges contains all reducing paths as subscquences, the rclaxation of
| cach cdge in the sequence in order yiclds a solution. (The proof is analogous to Yen's analysis
Ng [13] of the Bellman-Ford algorithm.) The Bellman-Ford algorithm solves P’roblem L because in a
- satisfiable graph with only real vertices, each vertex occurs at most once on any single reducing
ok path. (And in fact, every shortest path is a reducing path.)

T When some unknowns are integer and some are real, however, it is possible for a reducing
‘i path to visit the same vertex more than once, even if the graph is satisfiable. For example, in the
¥ graph shown in IMigure 1, the reducing path p = 342 —1—+2—3—+4—3—2 visits vertices
:: 2 and 3 three times each. If all the z; are initially set to 0, the edges of p must be relaxed in
4., their order along the path to achicve convergence. Morcover, relaxing the entire edge sct in some
My arbitrary order only 3 = |[V|— 1 times might not achieve convergence. Since the value of n in
' line R2 must be at least the maximum number of cdges in any reducing path, the value [V{ -1,
:{-: which was used in Algorithm BF, will not suffice.

5 4

<o

}Q

(l

WAL TN N
i

e e TR TR T AT mm»'1ﬁﬂm

Fortunately, reducing paths are never very long in satisfiable graphs beeause of the following
lemma. '
Lemma 1. Suppose G = (V, ¥, I, a) is satisfiable. If p is a reducing path in G, then
1. p visits no integer vertez more than once, and
2. p never visits the same real verlezr twice without visiting some integer verter in
between.

Proof. If cither condition is violated, then the reducing path p can be extended indcfinitely by
repeating the eycle that causes violation. §

Lemma t allows us to delermine a value for n in line R2 of Algoritim R such that the z
converges to a solution whenever G is satisliable. Any reducing path contains each inleger vertex
at most once and cach real vertex at most Vi + 1 times. Since the number of edges in a path is
one less than the number of vertices, any reducing path for a satisfiable graph can have no more
than |Vi| + (IVil + DIVR| — 1 = |Vi||VR] + [V]| — 1 cdges. Thus the fimit n of the outer loop in
Algorithm R should be st to [Vi|[Vg|+ |V |~ L. The overall running time of Algorithm R is thus
OV |IVill)). | | |

This analysis suggests the following algorithm which is slightly more efficient than Algorithm
R, and which forms the basis of the asymptotically cflicient algorithm presented in the next
scction.

Algorithm M (Modified relazation).

Mt. foreachi €V do z; < 0;
M2. for ind «~ 1 to |Vg| do

M3. foreach (i,j) € Eg do

MA4. z; « min(z;,z; + €;);
M5. for ind2 « 1 to |V| do

Mé. begin

M7. foreach (¢, j) € Er do

MS. z; « min(z;, |z + aiz]);
M9. for ind ~ 1 to |Vg| do
M10. foreach (i,j) € Er do
Ml11. z; «— min(zj, z; + a45);
M12. end;

M13. foreach (i,j) € £ do

Mid. if z; > z; + a,; then Fail;

The only difference between this algorithm and Algorithm R is that it treats the edges in Ej
scparalely from the edges in Eg. In lines M7- M8 of Algorithm M, cach edge in I is relaxed once.
There are |Vy| such passes over 5 which are preceded, followed, and separated by ezhaustive
relazations of Lhe cdges in I2g (lines M2 M4 and M9 M11). In cach exhaustive relaxation of Eg,
edges are relaxed until no further changes in the values of z; are possible for j € Vg. (Actually,
the relaxations in lines M2 M4 and M9 M11 are only guaranteed to be exhaustive if there are
no negative-weight cycles in Eg. If there are cycles of negative weight, however, this condition
is detected at the end by Lhe convergence test in lines M13 M14.)

o .rr R e

Li‘g -y -y
!T!IA 3 J..h_.‘f.'p‘ % A‘!’A"a‘la’!‘q’ Jlb e Lot 3 LD it

TR T . b Sith ahe a0 s aa shii e oa amesagd sk s nine it St i aiib Al anh st atA i WU T VW Wy W s m v m e e s = ==~ — =
g ilal adatal = =T

~

-

Aengtet LN

= 4. Dijkstra’s algorithm and reweighting

Seetion H-gives a more ellicient algorithin Lo solve Problem MI than cither Algorithm R or
Algacithin M. Three important techniques are used in the algorithm. The first is Dijkstra’s
algorithm which finds shortest paths in a graph from a single source in the ease when all the edge
weights are nonnegative. The second is reweighting, which is a technique due to Edmonds and
Karp [3] and used by Johnson [7] in his cllicient algorithm for solving the all-pairs shortest-paths
problem. The third is the Fibonacei heap data structure due to Fredman and Tarjan [4], which
is an improved priority queue that makes Dijkstra’s algorithm run in time O(|£] + |V [Ig |V]).

Given a graph G = (V, [, a) such that all edge weights a,; are nonncgative, Dijkstra’s
algorithm computes for each verbex ¢, the weight d; of the shortest path from vertex 1. Because
cach edge is relaxed exactly once, this algorithm is laster than the Bellnan-Ford algorithm which
solves the same problem lor arbitrary edge weights. Dijkstra's algorithm derives its elliciency from
the observation that along any shortest path from vertex 1, the shortest-path weights d; form a
nondecreasing sequence if all the edge weights are nonnegative. Thus, a sequenee consisting of all
edges (7, 7) € 12 in nondecreasing order of the distances d; contains as subscquences shortest paths
from vertex | to all vertices in V. Purthermore, such a sequence of edges can be computed on
the fly using a priority queuce. {The textbook [1) gives a prool of correctness for this algorithm.)

Algorithm D (Dijkstra’s algorithm).

DI, z; + 0;
D2. forie«— 2to |V|do z; + oo;

D3. Q—V;

D1. while Q # 0 do

D5. begin

D86. Choose i € @@ such that z;, = minjeQ z,;
D7. Q— Q- {i};

DS. foreach j € Vg such that (i,) € Er do
DI. Z; « min(z,-,z,- + a;,-);

D10. end;

If the set @ in the algorithm is implemented as a standard priority queue, each extraction
(lines D6 D7) and update (line D9) costs O(lg|Q) = O(lg|V|) time. Thus the total running
time of Dijkstra’s algorithm is O(JE]1g|V]). Fredman and Tarjan [4] describe a data structure
called Fibonacei heaps that supports arbitrary deletion in O(lgn) amortized time and all other
standard priority queuc operations (including update) in constant amortized time. By using a
I'ibonacei heap in Dijkstra’s algorithm, they show that the performance can be improved to
O] + V] Ig V).

Since Dijkstra’s algorithm is equivalent to the Belliman-Ford algorithm on graphs with non-
negative edge weights, it can be used to solve Problem L on such graphs. This is not very
interesting in itsclf, since any graph G = (V, [, a) in which ail edge weights arc nonncgative
can be trivially satisfied by setting z; to 0 for each ¢ € V. Our interest in Dijkstra’s algorithm
comes from a stronger property of the solutions it finds. Suppose the initialization step (lines

.

L 2% am 2t
e

v - "
T TN
LR o Lo R N

.- D1 D2) is changed so that cach variable z, is initialized to a finite value u;. Then the relaxation

::?,: procedure in lines D3 -D10 will set cach z; to its largest possible value consistent with the con-

fﬁ straints that z; — z; < a5 for cach edge (1,5) € IS and that z; < u; for each vertex 1 € V. In "

= other words, lines 123 D10 of Dijkstea’s algorithm are functionally equivalent to lines BIF3 BFS 1

o J

. '

p .

X

f-..‘ f
3
N\

4‘.
.

=7 r:‘{:(,;; ;‘;g';i.‘r}r <+ ;;.h_:,’n : 2

ca

T T T TR T WS Y TR L~ e i - aate” Aite Bl T P T T R e o T TR T T TR T TR TR T
"

T
v

T
.

Nk

Tl " 'I
e

(AN

of the Bellman-Ford algorithm provided that all the edge weights a,; are nonnegative. Since a
graph with only nonnegative edge weights can never contain a negative-weight eyele, no test for
convergence is necessary in this ease,

The elficient algorithm we shall present Lo solve Problem Ml is a modification of Algorithm
M. Notice that lines M9 Mt 1 of Algorithm M exhauslively relax the edges in g in a manner
similar to lines BF3 BI'S of the Bellman-lord algorithm. In Algorithm M, however, this code is
exceuted many times. The cllieient algorithm Lo solve Problem MI uses a trick to replace this
code with code based on the more cflicient relaxation procedure in lines D3-D10 of Dijkstra’s
algorithin. This trick is the teehnique of reweighting due to Edmonds and Karp {3].

Lemma 2. Let G = (V,E,a) be an edge-weighted graph, for each i € V let r; be a real
number, and let 1 = (V',I,b) where b;; = a;; + r; —r; for each edge (,7) € I:. For each
vertez 1 € V let z; be a real number and let y; == z;—r;. Thenz;—r; < ay; for all(i,j) € L
if end only if y; — yi < bij for all (i, 5) € IV (that is, x is a solution to (if and only f y is
a solution to 11.)

Proof. Trivial. |}

We call the vector r = (74, 79,... ,r|V|) a reweighting of the graph G.

5. An asymptotically efficient algorithm for solving Problem MI

This scction shows how Dijkstra’s algorithin and rewcighling can be incorporaled into Algo-
rithin M to yield a faster algorithm for solving I’roblem MI. Given a graph G = (V, V;, I, a), the
idea is Lo find a reweighting r such that the rewcighted graph Il = (V, Vy, I, b) has edge weights
bi; = a;j +7; —r; > 0 for all edges (¢, 7) € £2g. Lemma 2 guarantees that G is satisfiable if and
only if // is satisfiable and also that a solution y to // can be converted inlo a solution z to G by
selling z; == y; + r; for cach i € V. The advantage gained by transforming the problem on G to
a problem on [{ is that the relaxation portion of Dijkstra’s algorithm (lines D3 D10) can replace
the Bellman-Ford relaxation (lines M9-MI1), which is the most expensive part of Algorithm M.

The first stage of the algorithm is to determine the reweighting values 7, for all ¢ € V and
the new cdge weights b;; = a; + r; — r; for all (4,5) € £. We must choose the values r; such
that b;; > 0 for all (i,5) € Ig. Since this is cquivalent to requiring that ry — 7y < ay; for all
(t,7) € ERg, values for the 7; can be found by applying the Bellman-Ford algorithm to the graph
(V, ER,a). The first few lines of the algorithmn are:

Algorithm T (Efficient algorithm).

Ti. fori€V dor; «~ 0;
T2. for ind — 1 to |Vg| do

T3. for (1,5} € g do

T4. rj « min(rj, r; + ay5);
T5. for (i,7) € Er do

T6. if r; > r; + a;; then Fail
T7. for (i,7) € E do

TS. bij — ai; + 1y — 155

If the algorithin Tails in line T6, then there is a cycle of negative weight among the edges in
IR, and henee graph € is unsatisliable cven in the absense of integer constraints. Otherwise, the
values b,; compuled in fine T8 are nonnegative for all (¢,5) € Eg.

17

CAA R S0 R A R b v 4

- -

.
R Sl 0)

PRFEPRS |.ul) IS

AAAAARA s

4

S hOSAEOES L

0 Al S Sl B A B G A ar S i b Aol Andd i) T

The next stage of Algorithm T is to solve the mixed-integer problem on the graph Il =
(V,Vy, I£,b). The algorithm alternately performs single relaxation passes on the edges in /5 and
exhaustive relaxations of the edges in K g, as in Algorithm M. We begin by initializing the values
¥, which will converge to a solulion to /1 il I] is satisfiable.

T9. fort€V doy, + 0

This initialization has the added fortunc of subsuming the first exhaustive relaxation of Fg (lines
M2 M4 in Algorithm M). After the exeeution of line T9 we have y; — y; = 0~ 0 < b; lor all
(¢,7) € IR, which means that the edges in I'g are already exhaustively relaxed.

The next portion of Algorithi T parallels lines M5-M12 of Algorithm M and is where most
of the computing gets done.

T10. for ind — | to |V;| do

Ti1. begin

T12. for (¢,7) € I} do

T13. y; +— min(y;, lyi + bizl);

T14. Q~V;

T15. while Q # 0 do

T16. begin

T17. Choose t € () such that y; = min eq ¥5;
T18. Q Q- {i}

T19. for j € Vg such that (t,5) € Eg do
T20. yj « min(y;, ¥; + bi;);

T21. end;

T22. end;

This code solves the problem on graph Il in almost cxactly the same way that Algorithm M
would. The only difference is the method by which the edges of Er are exhaustively relaxed.
Whereas lines M9 Mt of Algorithm M perform the exhaustive relaxation using the Bellman-
Ford algorithm, lines T14 T21 of Algorithm T take advantage of the nonnegativily of the b;; for
(2,7) € I’g and use Dijkstra’s algorithm.

The final part of Algorithm T is to check the convergence of the y and Lo apply Lemma 2 to
produce a satislying assignment z for the original graph G.

T23. for (i,7) € £r do

T21. if y; > ¥, + by; then Fail;
T25. for (1,j) € E do
T26. Ty — Y +ri;

Lines T23 T24 check the convergence of y by testing the inequalitics associated with the edges
in .. The inequalities resulting from edges in g need not be checked because the relaxation
in lines T'14 T22 is guaranteed to be exhaustive. (If there were negative-weight cycles in Eg, we
wonld have detected this in lines T5-T6.)

Lines 'T'25 T26 converl the solution y to graph /7 into a solution z to graph G. Lemma 2
ensures that the inequalitics z; — z; < ay5 are satisfied, but we must also show that the z; are
integers for all 1 € V;. For cach 7 € V; the value y; is an integer, however, and furthermore, the
values of the 7, produced in lines T1-T4 are zero for all £ € V7. Thus for all the integer vertices,
the z; are integers.

In summary, we have proved the following theorem,

8

' R t .~_...‘~‘\
.'l,'l ‘.—‘. “'!vl|ij

Tt
WORAY

. \‘\\ Ch
RS
NCRTE oM

P T T O YT

N |
3:-: Theorem 3. Algorithm T solves Problem MI. \
", . J
- The running time of Algorithm T is O(|V]|I2] + |V ||Vi}1g|V), if the priority queue is imple-

mented using a Fibonaeri heap.

~
AR . “
N 6. Applications, extensions, and conclusions u

~ 4
T The soluiion to Problem M was demanded by a problem concerning optimization of sychronous

circuitry by retiming [9). This section brielly describes two other problems - compaction of
. VLSI circuits in the presence of power and ground buses and PERT scheduling with periodic
constraints - which can be reduced to Problem MI. We also ‘consider an extension of Problem MI
where multiple classes of periodic constraints must be salislied. (For example, some of the z; are
required Lo be integers, and others to be exact multiples of an integer constant ¢.)

Circuit compaction
e Optimal (one-dimensional) compaction of VLSI circuit layouts [5] is another application of the
Bellman-Ford algorithm. Each layout feature is given a variable representing an z-coordinate,
and the design rules are enforced using constraints of the form z; —z; < a;;. It inay be desirable,
= however, to allow feature 1 to be Lo the left of feature 7 or vice versa, but not to allow them
: to occupy the same position. Unfortunately, if one wishes to allow this kind of transposition of
layout leatures, cither optimalily or performance must be sacriliced beeause the problem becomes

NN

- NP-complete [10]. But for certain compaction problems arising in practice, transposition of layout
-\ fealures can be allowed.
Lo Some design methodologics enlorce the placement of power, ground, and clock to be at regular

intervals. For example, onc signal processing system [H] requires that these wires be repeated
cvery 200%, and that the width of all cells in the systemn be inleger mulliples of this distance.

-; The designer is then constrained to build a new cell so that the layoul fealurcs are tightly packed
:_': among the global wires. In this context, where somne layoul features may go on one side or the

: X other of some global wirc but may not overlap, the compaction problem can be formulated as
Ly Problem MI.

, d PERT scheduling

‘o Suppose we have a constraint graph with vertices representing milestones in a projeet, and
-~::: cdge-weights indicaling the Liming constraints between milestones. Generally, the Bellman-Ford
:‘_ algorithm can be used to provide an optimal scheduling of the milestones. If a work day is from
e 9:00 a.m. to 5:00 p.m., however, we may not wish to schedule a onc-hour job Lo start at 4:30
2 p.m. Advancing the job to the next day may cause an earlier job to be advanced as well if the

£ two jobs arc constrained to fall near each other. The problem of PERT scheduling with periodic
“: constraints can be cast as Problem MI.

'_f: Intuitively, the mixed-integer formulation allows one to include for each job (1) a real variable
p e representing the starting time of the job, and (2) an integer variable representing, say, noon on
) the day the job occurs. Thus one can include constraints which say, for example, “This job must

r.'f: start before 4:00 p.in. on the day it occurs.”

; Multiple periodic constraints _

- Suppose that in the PERT scheduling application mentioned above, we also wish to take into
k. : consideration conslraints involving weekends. To do this, we would associate with each job a
.' third variable representing, say, Sunday noon of the weck during which the job occurs. We
1 9

) i
(S

3, "+

TN T AT T A ek TN TR ety ® P AN R WO s W LT O L g e g o L Ly 0 CAL! ! % 3%
N e R S S o e 2 L T YIS SR O P SRR O P b Y i T SRARENY .

2

- - MR "'-.,"'- o7 - X
'\.v} J" - -\. -'.)",,\‘) ".. .. "L le"' T (8. s _"‘;35’

are Lhen required to solve a variant of ’roblem M1 in which there are two classes of periodic
constraints some variables are required to be exacl integers and others Lo be exact multiples of
7 while the remainder .may have arbitrary real values,
The solution Lo this problem is based on the following algorithimn for solving Problem MI. (We
assume without loss of generality that G = (V, V;, I2, @) is strongly connected).
Algorithm U
Ul. if (V, E,a) contains a negative-weight cycle then Fail
else foreach (i,7) € VI X V| do
i+ [the least path weight from 1 to j in (V, F, d)];
U2. if (Vi, Vi X Vi, b) conlains a negative-weight eycle then Fasl
else lind an integer assignment z on Vy such that z; — z; < b;; for all 4,5 € V;
U3. Apply the Bellman-Ford algorithm to (V, IR, a) using the z; found in Step U2 as
initial values for the integer vertices and infinite initial values for the real vertices;

Step Ul produces a graph Il = (V;, V; X Vi, b) which is feasible if and only il G is [casible,
Step U2 solves H il H is [easible, and Step U3 extends the solution from the set V; of integer
vertices Lo the entire vertex set V. Step Ul ean be performed in O(|V]') time by the Floyd-
Warshall algorithm [8] or in O(|V||F5] + |V;||V]Ig|V|) time by Fredman and Tarjan's improved
version [4] of Johnson’ S algorithm [7}. Step U2 can be performed by the Bellman-Ford algorithm
and takes time O(|V;]*) because If is a complete graph. The cost of Step U1l dominates the cost
of Step U3, which takes only O(|V||[Eg]) time.

Algorithm U exiends natlurally lo the case in which there are mulliple classes of periodic
constraints, provided that each period (e.g., 1 week) is an exact mulliple of the next smaller
period (e.g., 1 day). Pirst, Step Ul is applied (with an appropriale scaling of the edge weights)
to produce an cquivalenl problem in which the most loosely constrained class of vertices in the
original problem is climinated from consideration. This new problem is then solved recursively
(or by dircct application of Algorithm T if only two classcs of vertices recmain). Finally, the
solulion is extended to the entire set of vertices, as in Step U3.

Acknowledgments

We would like to acknowledge the contributions by Flavio Rose of MIT when we first studied
this problem. The three of us originally produced Algorithm U, which is more thoroughly

described in Rose’s master’s thesis [12]. Thanks to Alex Ishii and Ron Rivest of MIT for reading-

drafls of the paper. Thanks also to Don Johnson of Penn State, Dick Karp of Berkeley, Gene
Lawler of Berkeley, and Nimrod Mcgiddo of CMU for helplul discussions.

References

{1} Alfred V. Aho, John E. Ioperoft, and Jeffrey D. Ullman, Data Structures and Algorithms,
Addison-Wesley, Reading, Massahusctts, 1983.

[2] L. W. Dijkstra, “A notc on two problems in conncxion with graphs,” Numerische Mathe-
matik, Vol. 1, 1959, pp. 269 -271.

[3] Jack Kidmonds and Richard M. Karp, “Theorctical improvements in algorithmic efliciency
for network flow problems,” Journal of the Association for Computing Machinery, Vol. 19,
No. 2, April 1972, pp. 248-264.

RSN INE
; Y
a .

T Y
h (R R e o 4
£ ‘71 ,~‘-.‘.7lé-7'li"‘"».r\ IR Ay i

ST e T N R Y e e R D L T i

" s & Ty h

o N

TR TN Riar

W TTW W W T TE LY L et a" e e = =

Ywrw>e
ke 4 e aits aunand ani sl ai aad atel arte ae fEl G Aol
L aldk aae -

L
|

T

A~ ,

;::‘:: [4] Michacl L. Fredman and Robert Endre Tarjan, “Fibonacei heaps and their uses in improved
R}_ network optimizalion algorithins,” Proceedings of the 25th Annual Symposium on Founda-
‘:.' tions of Computer Science, ILIIl Computer Socicty, October, 1984, pp: 338 -348.

ﬁ (5] Min-Yu lsuch, “Symbolic layout and compaction of integrated circuits,” Memorandum No.
24 UCB/ERL M79/80, University of Calilornia, Berkcley, December 1979,

::'_?_':'_ {6] Donald B. Johnson, “Priority queues with update and finding minimum spanning trees,”
E:.\‘ Information Processing Letters, Vol. 4, No. 3, December 1975, pp. 53-57.

5

: l
v

L] s
pires

[7] Donald B. Johnson, “Efficicnt algorithms for shortest paths in sparsc networks,” Journal of
the Association for Computing Machinery, Vol. 24, No. 1, pp. 1-13, January 1977.

[8] Eugene L. Lawler, Combinatorial Optimization: Networks and Matrozda, Holt, Rinchart and
Winston, New York, 1976.

[9] Charles E. Leiserson, Flavio M. Rose, and James B. Saxe, “Optimizing synchronous circuitry
by retiming,” Third Caltech Conference on Very Large Scale Integration, Randal Bryant, od.,
" Computer Science Press, Rockville, Maryland, March 1983, pp. 87-1186.

{10] Thomas Lengauer, “On the solution of incquality systems relevant to IC-layout,” Proceedings
of the 8th Conference on Graphtheoretic Concepts in Compuler Scuncc, Carl Ilanser Verlag,
Munich, West Germany, 1982,

(11] Richard F. Lyon, “A bit-serial VLSI nrclntectural mcthodology l'or slgnal processing,” VLSI
'81, John P. Gray, ed., Academic PPress, New York, 1981, pp. 131-140.

{t2] Flavio M. Rose, Models for VLSI Circusts, Masters Thesis, Department of Electrical En-
gincering and Computer Scicnce, Massachusetts Institute of Technology, March 1982. Also
available as MIT VLSI Memo No. 82-114. -

{13] Jin Y. Yen, “An algorithm for finding shortest routes from all source nodes to a given

destination in general networks,” Quarterly of Applied Mathematics, Vol. 27, No. 4, 1970,
pp- 526-530.

.
tety
ety

L1l

W

11

: ; . R e o '_:::-X"}
B A A A A A RS S e P iy el

T

OFFICIAL DISTRIBUTION LIST

1985

Director 2 Copies
Information Processing Techniques Office

Defense Advanced Research Projects Agency

1409 wWilson Boulevard

Arlington, VA 22209

Office of Naval Research 2 Copies
800 North Quincy Street

Arlington, VA 22217

Attn: Dr, R. Grafton, Code 433

Director, Code 2627 6 Copies
Naval Research Laboratory
washington, DC 20375

Defense Technical Information Center 12 Copies

Cameron Station
Alexandria, va 22314

National Science Founcdation 2 Cories
Office of Computing Activities

1800 G. Street, N.W.

washincton, DC 20550

Attn: Program Director

Dr. E.B. Royce, Code 38 1 Copy
Head, Research Department

Naval Weapons Center

China lLake, CA 93555

Dr. G. Hopper, USNR 1 Copy

» NV TAC-0OO0OH

'2- Department of the Navy .

v washington, DC 20374 !
{

prme i

e i -

1A N N

11-85

T

’

R T N L R R

v v e

SR AR,

ey s v e

A i i

DTIC

e 8 L, WO o e

X

e

'wll

AT IEAS A

e

