
RD-A±59 489 SSNS - A SECURE SOFTNARE MNNAENENT SYSTEN(U NYAL /
SIGNALS AND RADAR ESTABLISHMENT MALVERN C(ENLAD
G D WNITAKER NOY 84 RSRE-NO-3777 DRIC-BR-96554)

UNCLASSIFIED F/O 9/2 M

sEEE

115111411.

maR~p RSLTO TS HR
NAIO AL SUEuO SAO.D0 93

%111.

VNUMM

RSRE
MEMORANDUM No. 3777

ROYAL SIGNALS & RADAR
ESTABLISHMENT

00

In

Ol SSWS - A SECURE SOFTWARE MANAGEMENT SYSTEM

Author: G D Whitake

o PROCUREMENT EXECUTIVES
MINISTRY OF DEFENCE,

* U RSRE MALVERN,
WORCS.

z

0 ~MECTE

ED) FD

. .4

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 3777

TITLE: SSMS - A SECURE SOFTWARE MANAGEMENT SYSTEM :r

AUTHOR: G D Whitaker

DATE: November 1984

This me"w"b"dtsm-describes a system for managing computer software,
documentation etc in a secure manner. The system relies on a
central database, a diary of system updates and a number of utility
programs. These are all described in the text together with a
method of running the system which protects the integrity of the
software being managed. c

Accession For

NTIS GRA&I
KEYWORDS DTIC 7'3

U:annou,-ced " 3
Software management Juztiflcfitio
security
database By
ADAM Distritn/

Avnil2. iit.y Codes

Dist Special

frr

Copyright

C
Controllet HMSO London

1985I
Ni

SSMS - A SECURE SOFTWARE MANAGEMENT SYSTEM

G D Whitaker

List Of Contents

1 Introduction
2 The Old Method
3 The New System
4The System Diary
5 The System Index
6 Programming For The System Index
7 Utility Programs
8 Conclusions
9 Acknowledgements
10 References

1 Introduction

The Central Computing Facility at RSRE is currently provided primarily
by an ICL 1906S mainframe computer running under the George 3 operating
system. A 1900 series machine has been in use since 1971 and the
software supporting the central service has been developed and improved
continually ever since. A number of changes within Computing Service
made it prudent to reconsider how this software was managed.

The most obvious reason for change was that after ten years of development,
the system was becoming too extensive for an individual to be aware of all
the facilities available. This was aggravated by the loss of several key
staff who had been involved with the design and growth of the software
for many years. Experience and knowledge on this scale is very difficult
to pass on, even if new staff had been available to cover the gaps.
Reductions in staffing levels in "support" areas made the situation even
more critical especially when large numbers of users were requesting
an increase in technical support which left little time for the remaining
staff to become familiar with the system.

The 1906S will be replaced before the spring of 1987. A new system will
be installed and will come with some support software. It will be
important to determine, as soon as possible, how this software compares
with the existing facilities. In particular, are there any gaps in the
new facilities which will require new software to be purchased or
developed? This assessment will require a complete knowledge of the
existing facilities to be available.

The two factors outlined above indicated a requirement for a directory of
the existing software. This directory would be required to contain, as
a minimum, the name of the item, the type of the item (eg macro,
segment, documentation etc), the purpose of the item and its
relationship with other items. As there is a small, but nevertheless
significant, amount of continued development and modification of the
existing facilities, it would be vital to keep this directory up to
date. In addition, it would be useful to automate the current manual
method of making and recording changes made to system software.

'

The final factor Influencing this change of approach was the advent of a
Multi-Level Secure Service on the 1906S. Before this increase in security
it was just about acceptable to update system software in an ad hoc
manner. This ad hoc method would not be good enough to form part of
the new Secure Operating Procedures.

2 The Old Method

The manual method of curing a fault or improving system software was to:

1) Find the source text
2) Make the modification and test in a development username
3) Ask the operations manager to update the live software
4I) Make a note of the change in the software log

This non-automatic, informal method of working was fraught with
possibilities for deliberate or accidental sabotage. Fortunately, only

* a few people were involved and they were fairly conscientious in
following some rough guidelines. Also, no person, as far as we are aware,

" had the inclination, knowledge and opportunity to inflict deliberate
damage on the central system. We could not rely on this always being
the case.

The system relied on human intervention at all levels and could easily
fall down If one job was forgotten or run in the wrong order. It also
failed to keep everyone concerned in running system software informed of
changes and relied heavily on a hand written entry in the software log.
This entry could easily be forgotten or could be so cryptic that not even
the originator could remember the significance of some notes. The date and
time were put in manually and so could be considerably different from

- the actual time the change took place. It was too easy to delay an
-. [entry because "I will do it as soon as I have done " or "I will
'. put the entry in when all these quick changes have finished and the
°*.system is stable again.".

System software is used from a number of system usernames. Some of this
software (eg George macro-commands) is stored and used in a readable

- form and so modifications can be based on the current 'live' software.
". Other items (eg program segments) cannot be interpreted from their live
.- form and it is necessary to return to the original source text. This
* source text was not stored in any formal manner and it was left to the
.- originator to safeguard the text.

* The people concerned with modifying system software usually stored
. the text in one of a number of system development usernames or on

a magnetic tape owned by those usernames. There was no guarantee,
however, that the stored text was consistent with the live software or
even that the source text could still be found! It was also possible
for two people to work on the same item of software independently. Each
would believe that their version of the source text was the most recent.
Thus, bugs which had been cured by one programmer could be reintroduced
when another bug was cured or the software improved by another.

All too often software is updated on other computers without any
records being kept of the changes and no checking that modifications
are legitimate. Also, it is rare for source text to be stored
centrally. These other machines are generally run by a number of
individuals rather than one section and so coordination is even more
difficult to achieve.

S°

The system development usernumes were not regarded as secure. It is
true that very little system software is classified but, since much of

it is relied upon by secure users, it is vital that this software is not
modified except by authorised people in an authorised and monitored
manner. The live software is afforded this level of protection but the P
development software, including the source text of system software, was
not similarly protected.

A major limitation of this manual system was that it did not provide any I
feasible method by which the operations manager could check that the
system was correct. It was possible to carry out 'spot checks' on
particular files but the effort required to confirm that, for instance,
there were no extra files in the system, no files missing from the
system and that all the files had the correct security levels and access
rights, was too daunting. This was assuming that the 'correct' levels
etc. could always be remembered.

3 The New System

The new system is largely automatic, easy to use and difficult to get
wrong. Central to this system are two data files which are stored in a
secure system username. One file, "sysdiary", is a character file which
contains an entry for every change made to system software. The second
file, "sysindex", is a binary (random access) file which contains an
entry for each item of system software, system documentation, data files
etc. These two files will be described in more detail later.

It is only possible to append information to the end of sysdiary and
this is only permitted from certain secure usernames. Thus, sysdiary
provides a secure and complete record of system changes as and when they
occur and, because it is updated automatically, there is no opportunity
for forgetfulness.

There is only one utility which can write to sysindex. This utility is
called "syschange" and may be run only from the same secure usernames.

The username which owns sysindex and syadiary is used to store copies
of the source text of all system software. A utility, "syadump",
has been developed which ensures that all new or modified files in that
username are also archived on magnetic tape. This archive utility
is in addition to the standard George dumping mechanism.

All system development work is carried out in one username. Read
access to all system source text has been granted to this username but
no modifications are permitted. In addition, this username has had its
security level raised for increased protection of the software during
development (but not to the same level as that of the software storage
username because it Was felt that that level was too restrictive for
large scale program development).

A utility is provided which can be used to check that the sysindex
('correct') view of the system is matched by the actual files in
the filestore. This utility identifies any extra or missing files
and also highlights any discrepancies in security levels or access
rights etc.

Ip

d f

d . mn n m e0 e~ll l I H mlNm O

The sequence of events for updating an item of system software is as
follows:

1) The current source text is copied from the software storage username
to the system development username. It would be useful to use a
utility for this operation which could quiz sysindex to find the name
of the file, make a note that the copy has taken place and prevent
two people from working on the same software independently.

2) The software is modified in the medium security system development
username.

3) When the modifications are complete and have been tested, the
operations manager runs a utility to
a) copy the source text from the development username into the storage

username
b) update the live software
c) produce two line printer listings of the software (one for the

programmer and one for the master listings held by the operations
manager)

d) note the update in sysdiary
e) note the update in sysindex

4) The development software is erased leaving the only copy of the
source text in the secure software storage username.

4i The System Diary

This file is an automatic software log. The diary contains an entry
for every change made to system software together with the date and time
of that change. All this Information is appended to the end of the file
automatically and so provides a precise account of all system changes. In
general it is simpler and more reliable to consult the system diary to
discover what changes have been made rather than rely on a manual search

.- through the handwritten log. In theory, it would be possible to dispense
with the old log. In practice, it is useful to maintain the old software

* log (by hand) in parallel with the the system diary. The handwritten
log is always available even when the computer itself is not and it
contains a good approximation to the actual changes made to the system.

The system diary is a character file and so may be listed using standard
George commands. It is rare for the system diary to be listed in its
entirety. More frequently it is only changes made to a certain item
of software that are required or maybe changes made between two dates
or times. Consequently it is usual to interrogate the system diary
by means of a special utility, "diaryprint".

The diaryprint utility prompts for the fields the user is interested
in. The possible fields currently include the name of the item, the
type of the item (eg macro, documentation etc) or the dates delimiting
the days required. Output from diaryprint can be to the terminal, to a
file or to the line printer and includes the entries in the diary which
match the fields specified. This means that it is possible to identify
all changes made to a given item or to list all macros which have been
changed during the first two weeks in September 1984 etc.

5 The System Index

This file is a complete index of all system software and includes George
macro-commands, program segments, data files, magnetic tapes and
documentation. The list of entry types is not exhaustive and it is
possible to introduce new types. All items in the index consist of a
number of fields. Some of these fields, such as the name of the entry,
are simply strings of characters, others, such as entry type, are

*; stored internally as integers (although a user of any of the utilities
* accessing the index will not be aware of this) and others, such as 'other

items which this entry uses', are references to other items.

A binary (direct access) file is more appropriate than a character 4

file for this sort of application. The only advantage of a character
file would be the availability of standard George editors and listing
commands to manipulate and read the data stored in the index. Against
that, forcing access to the index to be by means of specially written
utilities provides more flexibility and greater security.

The security is increased because any potential attacker would have to
write suitable software and could not simply take advantage of editors
and the like. Even if a would be attacker were capable of writing such
a program and could find out the internal format, the effort involved
might deter an opportunist attack. Also, authorised users are unlikely to
be tempted to by-pass the standard utilities in order to effect a quick
patch and so there is less possibility of making a mistake such as not
matching a cross-reference.

The flexibility comes from the ease of maintaining cross-references and the
ability to hide implementation details such as 'entry types are stored as
integers'. Since a program has to be run to write to or modify an entry,
and a program run to list the entries, these programs can hide such
details of implementation as they see fit. Thus users are presented
only with information which is meaningful to them but the program (there
is only one which writes to the index) can ensure that the data is
internally consistent and stored efficiently.

6 Programming For The System Index

It can be a tedious job to write the software necessary for manipulating
a database such as sysindex, but fortunately such software was being
developed elsewhere. Although at that time it was still experimental
and only provided basic functions, the ADAM [1] package appeared
to offer some very useful facilities. This package was acquired
at an early stage and both ADAM and SSMS developed in parallel.
Consequently some of the features which were written as part of the
SSMS system were of more general appeal and are now available in ADAM.

ADAM takes care of the intricacies involved in handling binary files
and provides the programmer with a safe, yet versatile, method of storing
data. Used in this way, a programmer is free to concentrate on the data
itself rather than on the data handling aspects. The philosophy is that
data is presented to an ADAM procedure for safe keeping and the program
is given a capability (Capability: an ability to do something - in this
case, retrieve the data) for the later retrieval of that data. It is not
possible to forge such a capability but they may themselves be stored
within an ADAM type file. ADAM also takes care to safeguard the data
in the event of a computer failure during updating.

Conceptually, the system index consists of one capability - a root to
the whole database. This may be obtained by calling a suitable ADAM ,6
procedure. The format of the database is then at the discretion of the

* programs which access It. It is a reasonably simple job to restructure
* the database completely although, so far, this has not been necessary.

The point to note though is that it is possible to add new structures
to the database or modify the structures already present with relatively
little effort and without a user of the SSMS system being aware of the

,. change. What follows, therefore, is merely a description of the index
as it presently stands. The methods employed highlight the concepts

*involved and will serve to illustrate the technique.

-. The root capability may be used to read an array of capabilities. Each
element of this array is a capability (called a disc pointer by ADAM)

. to access one entry in the index. Each entry contains some, but not
necessarily all, of the fields listed below. An entry need not contain

"* all the fields for two reasons. Firstly, a field may not be applicable
to an entry or the information forming that field may not be known for
the entry. Secondly, new fields may be introduced without the necessity
to enter that field in all the entries already typed in. The mechanism

o- by which this works will be described later.

The fields forming an entry in the index include:

Name (by which the software is commonly known)
Type (an integer specifying whether macro, documentation etc)
Source (name of file containing the source text)
Location (of the actual item)
Purpose (one line description)
Date (of last modification)} These can be cross-referenced
Time (of last modification) } in the system diary
Used by (other entries which rely on this item)
Uses (other entities which this item relies on)
Owner (last person known to be responsible for this item)
Traps (giving the access rights - traps - of George users)
Comment (any special comment)
Classification (level required to read the file)
Integrity (level required to modify the file)
Reason (for the last modification - same as in system diary)
Log access (whether or not access to the file is logged)
Archive tape (magnetic tape containing the archived copy)

* The ADAM package recognises arrays of characters, arrays of integers,
and arrays of disc pointers. It is also possible to have arrays
containing a mix of these modes. A glance at the above fields indicates
that it should be possible to store all the required information using
these modes provided a translation facility is written to convert, for
example, a type into an integer for storage in the file and the integer
back into a type for displaying to a user. This was the initial approach
adopted but soon had to be abandoned when it was realised that for every

,- field presented to the ADAM interface, a new block was taken in the file.
Most fields only required a small number of words for storage and so a large
proportion of the available space was being wasted. This could not be

"" tolerated for the large number (many hundreds) of entries stored in the
". index.

p

The solution adopted to make better use of the file is now the
approach recommended in the ADAM report. A simple code 1s employed
which enables the fields to be concatenated. This method has been
taken to the extreme and all the fields described above are concatenated
into one, coded string. Low level procedures are provided in the software
to add fields of various types into an entry. This makes it a relatively
simple task to introduce a new field into the database.

A field is comprised of three parts, a unique field sort number, the size
* of the data and the data itself. Since all programs which access the

system index do so by means of the same central module, there is no
scope for inconsistencies in the unique field sort number. To construct
one string of characters containing all three parts, a certain amount
of translation is necessary. This translation is carried out at a very
low level within the common module.

A field sort number is simply the character representation of that
number. This provides scope for 64 different sorts which, considering
only 17 have been required so far, should be ample for this application.
The size of the data is stored as the four character decimal representation
of the size, in characters, of that data. Although by no means an optimum
packing mechanism, this permits field data containing 9999 characters
which is in excess of anything yet required and only occupies four
characters of space.

The SSMS requires to store arrays of characters, integers and references
in sysindex and these can be made into complete fields as follows:

Arrays of characters simply have the field type and data size added
to compose the complete field.

Integers (which only occur as the representation of a limited set
such as type or classification etc) are converted into the four
character decimal representation of that number using the same
procedure as that used for the size of data component above.

References to other items are stored in the same way as integers!
The integer is the position, within the array of entries, holding the
item to which this field refers. Current estimates indicate that the
file will become full long before 9999 items are entered. It is
unlikely that this application will overflow the file but the
situation is being monitored. Should further files be required, then
the most significant digit could be used to identify which file is
being referenced. Alternatively, ADAM now permits 'slave files'
and this may be worth pursuing.

To introduce a new field type it is necessary to modify one segment
which is central to all the programs accessing the index. The new type
is allocated a number not used by any other type. The form the data is
to take (array of characters, integer etc) is established and the user
interface written. It is not necessary to add this field to all the

entries already in the index.

BJ

The whole system relies on the fact that every entry is unique. If this
were not so then it would be possible to update the first of two identical
entries but to access the second when looking for that entry. The system
insists that all name, type combinations are unique. Thus by specifying
a name and a type the system can locate the unique entry or alternatively
know that the entry is not in the index. It is not possible to make an
entry in the index without specifying a name and a type as a minimum. In
addition to this a date and time will be entered automatically and there is
no method of avoiding this.

7 Utility Programs

There are a number of utility programs providing the overall Secure
Software Management System. The diaryprint utility has already been
described for listing entries from the system diary. Several utilities
dealing with the system index are described below.

The indexprint utility is similar to diaryprint in that it invites the
user to select which fields are to be matched and then lists the matching
entries. Possible fields for matching purposes are the name, type and
owner fields. The utility then proceeds to enquire about the form the
output is to take. In particular, the user is given a choice as to which
fields are to be printed and whether the list should be ordered
alphabetically.

The indexprint program actually uses a lower level "indexlist" segment.
This segment deals with access to sysindex and with sorting the entries

- but allows the driving program Cindexprint) to select the entries for
listing, to determine the algorithm for sorting and to print the entries
as it sees fit. It is a relatively simple task to write an alternative
indexprint (or modify indexprint itself) if, for instance, it was desirable
to print the entries in alphabetical order of owners or other similar
variations on the theme.

The system index should be an accurate picture of the state of the
system files within the filestore. To guarantee that this is in fact

* the case, a utility, "syscheck", is provided to compare the actual
• state of the filestore with the sysindex view of the situation. This

uitility not only checks for files which have no entry (and entries
with no corresponding file), but also checks that some of the fields
within sysindex are also correct. In particular, the classification,
integrity and traps fields are currently checked. All inconsistencies
are noted and listed for manual investigation.

The "syscheck" utility also proved useful when the index was first
being set up. At that time it was reasonable to assume that the
filestore was likely to be a more accurate picture of the 'correct'
situation than the index and so it was a fairly automatic process to
update the index to match the filestore and later carry out a manual
check that this was indeed the 'correct' situation. A number of files

V. were found to have incorrect trap settings which were only present for
historical reasons. These loopholes into the system were soon closed.

The George operating system provides a very safe filestore. All files
are well protected by a regular dumping system and it would be possible
to keep all system files in the George filestore. This could lead to
a very large number of previous versions of software in the filestore
which would probably never be required again. In such situations it is
good practice to archive the files on private magnetic tapes. The
utility "sysdump" arranges for any files modified within a particular
month to be archived. Ideally, this utility should be run every month
to archive any files created or modified during the previous month. Any
file which has been superseded may then be erased from the filestore. In
practice files would only be erased after a sufficiently long period had
elapsed to be confident that the new software was an improvement over
the old. As an extra safety measure a copy of the archive tapes is also
maintained.

The sysdump utility also serves as an extra security check. A list

of the files being archived is produced. This list contains the names
of all files which were created or modified dvt.'kng the month in question.
This is then compared with both the diary and the index to confirm that
an entry corresponding to that file has been nade. Runs of sysdump and
syscheck are also carried out at irregular times thus catching any file
created and erased between the regular runs. This is in addition to the
George logging mechanisms.

8 Conclusions

The initial version of the Secure Software Management System was installed
in the summer of 1983. This primitive version handled all changes
to system software for the next 9 months until the current version
(described here) took over. It took several months to identify and
enter most of the existing software but by the spring of 1984 there was
an entry for every item of system software.

During the summer of 1984, the system was completed. Several utilities
were improved (mainly as a result of feedback from users of the system
during the year) and the remaining utilities written. Since then the
new system has been responsible for all the system software relied upon
by the Central Computing Service at RSRE.

A system such as this can only achieve its aim - to provide a secure
system - if it is simple and convenient to use. If it is difficult
to understand or unreliable or in any other way inconvenient, then
means will be found of bypassing the system. The operations staff at
RSRE have taken to the system with enthusiasm (after the tedious job
of entering the backlog in the first few months). I think this, more
than any description of the software itself, indicates the simplicity
of the user interface and the convenience of the overall system.

If effort were still available, there are several areas which might
be improved. The weakest link in the system is the connection between
the update of the software and the entry in the system index which
still behaves as two separate activities and requires some information
to be supplied twice. With extra thought and effort, a much better

7. tie up could be achieved.

The user interface was restricted by the necessity to be able to call the

update utility from a teleprinter for security reasons. If a secure video
terminal were available then all the benefits of interacting with a video
screen could be obtained. This would, of course, require some work on

software to manage video terminals. If this software were available now,
then it would be possible to improve the user interface for those
applications which are permitted to access the database from a video terminal.

Perhaps the greatest return for effort invested would be to separate out
the implementation independent parts from those parts specific to the SSMS.
For instance, procedures which provide a level above ADAM for this type
of application and procedures which interact with the user could be
identified and be made into distinct packages. These could then be
useful to others wishing to use such techniques in other areas.

One of the major strengths of ADAM is its portability. ADAM has already
been implemented on the VAX computer. The SSMS software has been written
in Algol68 which is now available on a number machines (including
the VAX computer) and will be the common language available on most
computers at RSRE. It should, therefore, be a simple task to install
SSMS on a VAX, or any other computer supporting Algol 68, and thus provide
a secure software management system. SSMS could also be implemented on the
ICL 1906S replacement computer(s).

9 Acknowledgements

Acknowledgement is due to Malcolm Hopper who has been involved in all
stages of this project, from initial discussions, through programming
and user feedback to final implementation. I would also like to thank
Paulette Cody (currently a student at University College, Cardiff) who
worked hard on the programming during her summer vacations, contributed
many useful comments and who provided the final impetus to complete the
project.

The work of Nancy Davis and the Operations staff in the task of entering
the considerable quantities of data and the continued running of the
system also deserves recognition.

I would also like to thank Bob Bateman and Susan Bond for reading draft
versions of this memorandum and making some useful comments.

10 References

- 1. ADAM: AN ABSTRACT DATABASE MACHINE - RSRE Report 84007
N E Peeling, J D Morison, E V Whiting

'.k

1 ° °.

T(I

M°BoA~

.%. ',k7

DOCUlNET CONTROL SHEET

UNCLASSIFIED
Overall security classification of sheet

(As far as possible this sheet should contain only unclassified information. If it is necessary to enter
classified information, the box concerned must be marked to indicate the classification eq (R) (C) or (S)

1. ORIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security

__ __ __ __ _ MEMORANDUM 3777 Ib -A 15 I I WNL~YVj:r

5. Originator's Code (if 6. Originator (Corporate Author) Name and Location
known)

ROYAL SIGNALS AND RADAR ESTABLISHMENT

* 5a. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and Location

Code (if known)

* 7. Title

SSMS - A SECURE SOFTWARE MANAGEMENT SYSTEM

7a. Title in Foreign Language (in the case of translations)

7b. Presented at (for conference napers) Title, place and date of conference

I.3

B. Author 1 Surname, initials 9(a) Author 2 9(b) Authors 3,4... 10. Date P. ref.
WHITAKER, G I

* 11. Contract lumber 12. Period 13. Project 14. Other Reference

* 15. Distribution statement

UNLIMITED

Descriptors (or keywords)

*- SOFTWARE MANAGEMENT
SECURITY
DATABASE

£ ADAM
continue on separate piece of paper

* Abbtract

This memorandum describes a system for managing computer software,

documentation etc in a secure manner. The system relies on a central
database, a diary of system updates and a number of utility programs.
These are all described in the text together with a method of running
the system which protects the Integrity of the software being managed.

S80/48

4C.

hft

p"

°.

4'

C -

as•

a

.o
o .,

%,'1

FILMED

11-85

DTIC

