
RD-8159 476 DESIGN ANALYSIS AND IMPLEMENTATION OF THE PRIMARY 1//2
OPERATION RETRIEVE-COMM (U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA H L TUNG JUN 85 M

UNCLASSIFIED PiG 9/2 NllIlhEEEEEllEE
IIIhhlhElhlEEE
IflllllllfIlf
ElllEEElhh~llE
IIIIIIIIIIIIII
Slfllflflllflflflflfl

EElllEllEllEIIE



11.

1,

UN.

iiiiIi
I,

111I25 11111"[4 111.6
11.

MICROCOPY RESOLUTION TEST CI4*T

NATIONAL BjR i&-OF STANODOt-1963-A

JI

.-- p

,o.5



NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC

ELECTE
* SEP 3 0O185j

THESIS
DESIGN, ANALYSIS AND IMPLEMENTATION

OF THE PRIMARY OPERATION, RETRIEVE-COMMON,
OF THE MULTI-BACKEND DATABASE SYSTEM (MBDS)

by

~i. Hsiang-Lung Tung

June 1985

Thesis Advisor: David K. Hsiao -'-"

Approved for public release; distribution is unlimited

P- A-.* a



SECURITY CLASSIFICATION OF THIS PAGE (lhlin Date Bgtrsd__________________
REOTDCMNAINPG READ INSTRUCTIONS

REPOT DCUMETATON PGEBEFQRE COMPLETING FORM

4. TTLE and ubtile)S. TYPE OF REPORT A PERIOD COVERED

w Design, Analysis and Implementation of the Master's Thesis

Primary Operation, Retrieve-Common, of the Jue18

Multi-Backend Database System (MBDS) 6 EFRIGOG EOTNME

7. AUTHOR(a) S. CONTRACT OR GRANT NUMBER(*)

Hs~~~- iag-u1Tn

9. PERFORMING ORGANIZATION NAME AND ADDRESS IC PROGRAM ELEMENT. PROJECT, TASK
AREA A WORK UNIT NUMIERS

Naval Postgraduate School
Monterey, CA 93943-5100

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School June 1985
Monterey, CA 93943-5100 _iS. NUMBER OF PAGES

148
14. MONITORING AGENCY NAME & ADORESS(iI different fromn Conltrollng Office) 1S. SECURITY CLASS. (of this report)

UNCLASSIFIED
IS&. OECL ASSIFPIC ATION/ DOWNGRADING

SCHEDULEa

16. DISTRIBUTION STATEMENT (of this. Report)%

6 Approved for public release; distribution is unlimited

17. DISTRIGUTION STATEMENT (of the abstract entered In Block 20, It different train Report)

III. SUPPLEMENTARY NOTES

* 9~I. KEY WORDS (Continue on reverse side It necessary and Identify' by block number) * -

Database System ~*--

20. ABSTRACT (Continue on reverse side It necessary and Identify by block number) -

The multi-backend database system (MBDS) in the Laboratory for
Database System Research at the Naval Postgraduate School is ~.
designed to overcome the performance-gain and capacity-growth

problems of either the traditional database system or the single-
bakend-software database system. The original MBDS supported four
primary operations, namely, RETRIEVE, DELETE, UPDATE and INSERT.

(Continued)

DD I JAR4 1473 EDITION OF I NOV 65 IS OBSOLETE

S N 0102- LF. 014- 6601 1 SECURITY CLASSIFICATION OF THIS PAGE (When Data Enteread!)

.0. .



SIRCURITY CLASSIFICATION OF THIS PAGE (WHO. fla amt

-. ABSTRACT (Continued)

primary operation, the RETRIEVE-COMMON operation. The retrieve-

common operation is used to merge two files by their common
attribute values. First, the overall design and implementation of

:-. 4MBDS is reviewed. Then, several alternatives are compared and
analyzed to select the best one as our design and implementation

* approach. Finally, we describe the detailed design and the im-
plmentation. Our goal is to maximize the utilization and minimize
the effects to the existing system.
For integrating our design into MBDS, several modifications are
made. The algorithms for the modifications and their program
specifications are also provided in Chapter IV, V and Appendices.

A c , t. n F o r

"i '_ i 1 C] I:

,N 0102- LF- 014.6601L 2 59CUN lY CLASSIFICATION OF T1418 PAG9MOR
4 

DOWa ERo6090

n.........................................................................



Approved for public release; distribution is unlimitel.

Desi n. Analysis and Implementation

of the grimazy operation Retriee-Coamon
of the Rulti-BAckbnd Datafase System (MBDS

by

Hsiang-Lung Tung
Commander, Republic Of China Navy
B.S., Chinese Naval Academy, 19/L

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAl POSTGRADUATE SCHOOL
June 1985

Author:

Approved by:--aA.k9' 1.46
D-- pavia K. YR-1.o.5-,-Tn MERU

O.J ZMclena

Department of Computer Science

Dean of Information and ciences

3. ."



ABSTRACT

The multi-backend database system (MBDS) in the

Laboratory for Datatase System Research at the Naval

Postgraduate School is designed to overcome the

performance-gain and capacity-growth problems of either the

traditional database system or the single-backend-software

database system. The original MBDS supported four primary

operations, namely, RETRIEVE, DELETE, UP-)ATE and INSERT.

This thesis presents the design and implementation of

the fifth primary operation, the RETRIEVE-COMMON operation.

The retrieve-common operation is used to merge two files by

their common attribute values. First, the overall design

and iaplementation of MBDS is reviewed. Then, several

alternatives are compared and analyzed to select the best

one as our design and implementation approach. Finally, we

describe the detailed design and the implementation. Our

goal is to maximize the utilization and minimize the effects

to the existing system.
For integrating our design into MBDS, several

modifications are made. The algorithms for the

modifications and their program specifications are also

4.4

provided in Chapter IV, V and Appendices.

p\

- .°°°~

• ~~~~~~~~~~~~~....."."." ........... "...'. "."". .". ... . ........ .'."" ... . ..... .,..... '



7ABLE OF CONTENTS

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . 9

A. THE SCOPE OF THE THESIS ........... 9
B. THE ORGANIZATION OF THE THESIS . . . . . . . . 12

II. THE MULTI-BACEND DATABASE SYSTEM (MBDS) ..... 13

A. THE SYSTEM GOALS ............... 13

1. Design Requirements . . . . . . . . . . . 13

2. Design Issues .............. 14

B. THE UNDERLYING AND INTENDED HARDWARE ..... 15

C. THE DATA MCDEL AND THE DATA LANGUAGE . . ... 17

1. The Attribute-based Data Model . . . . . . 18

2. The Attribute-based Data Language .... 19

D. THE PROCESS STRUCTURE ............ 21

1. The Ccmmunication Processes . . . . . . . 21

2. The Test Interface Process ........ 23

3. The Prccesses of the Controller ..... 23
4. The Processes of Each Backend ...... 24

III. DESIGN AND ANAIYSIS OF THE RETRIEVE-CO.MON

REQUEST . . . . . . . . . . . . . . . . . . . . . 26

A. THE INTENDED OPERATION. . . . . . . . . . . .26

1. An Operation On Two Files . . . . . . . . 26

2. The Syntax Of Retrieve-Common Request . . 28

B. AN ANALYSIS OF DIFFERENT DESIGNS ....... 29

1. The Ccntroller Does All the Merge

Operation . . . . . . . . . . . . . . . . 30
2. The Ccntroller And The Backends Share

The Merge Operation . . . . . . . . . . . 30

, 3. The Backends Do All the Merge

Operation ................ 30

5



4. An Analysis of the Design Approaches • . . 31

C. AN ANALYSIS OF DIFFERENT IMPLEMENTATIONS . . . 32

1. The Straightforward Implementation . . . . 32

2. The Implementation Based on Sorting
and Matching . . . . . . . . . . . . . . . 33

3. The Implementation Based on

Bucket-Hashing . . . . . . . . . . . . . . 34

4. A Comrarison Of The Three

Implementation Approaches . . . . . . . . 36

IV. DETAILED DESIGN FOR IMPLEMENTING

RETRIEVE-COMMON OPERATION INTO MBDS ....... 45

A. THE HASHING MODULE .............. 46

1. Alternatives for Implementing the

Hashing Module . . . . . . . . . . . . . . 46

2. The Hashing Procedure . . . . . . . . . . 50

3. The Bucket-Block Tracking Procedure . . . 54

4. The Merging Procedure . . . . . . . . . . 59

B. THE OPERAIONS OF THE FOUR PHASES . . . . . . 60

1. The Rejuest-preprocessing Phase ..... 60

2. The Record-retrieving Phase ....... 61

3. The Hashing-and-storing Phase ...... 62

4. The Merging Phase . . . . . . . . . . . . 63

V. ThE IMPLEMENTATION . . . . . . . . . . . . . . . . 65

A. THE MODIFIED PROCESSES OF THE CONTROLLER . . . 65

1. The Reguest Preparation Process (REQP) . . 65

2. The Post Processing Process (PP) ..... 67
B. THE MODIFICATION OF THE BACKEND PROCESSES . . 68

1. The Directory Management Process (DM) . . 68
2. The Record Processing Process (RECP) . . . 70

C. THE MODIFIED 3ESSAGE-PASSING FACILITIES . . . 75

D. EXECUTION OF A RETRIEVE-COMMON

REQUEST--VIEWED VIA MESSAGE-PASSING . . . . . 75

6



VI. CCNCLUSION ............. . .. 79

A. REVIEW AND SUMMARY . . . . . . . . . . . . . . 79

B. FUTURE WORK . . . ............ . . . . 81

APPENDIX A: THE MODIFIED REQUEST PREPARATION PROGRAM

SPECIFICATIONS ...... . . . . . . . . .82

A. THE LEX MODIFICATIONS . . . . . . . . . . . . 82

B. THE YACC MCDIFICATIONS . . . . . . . . . . . . 83

APPENDIX B: THZ MODIFIED DIRECTORY MANAGEMENT

PROGRAM SPECIFICATIONS o 91

APPENDIX C: THE MODIFIED RECORD PROCESSING PROGRAM

SPECIFICATIONS . . . . . o . . . . . . . . . 95

APPENrIX D: THE HASHING PROCEDURE PROGRAM

SPECIFICATIONS . . . . . . . . . . . o 108

APPENDIX E: THE BUCKET-BLOCK-TRACKING PROCEDURE

PROGRAM SPECIFICATIONS o . . . . . . . . . 124

APPENDIX F: THE MERGING PROCEDURE PROGRAM

SPECIFICATIONS . . ............ 138

APPENDIX G: THE HASHING MODULE DATA STRUCTURE

DEFINITICNS . . . . . . . . . . . . .. . 143

LIST CE REFERENCES .................. 146

INITIAL DISTRIBUTION lIST ............... 148

a 7



LIST OF FIGURES

1.1 The Multi-Backend Database System (MBDS) ..... 10

1.2 The Functions of the Current MBDS Database
Operations . .. .. .. .. .. .. .. .. . .. 11

2.1 The MBDS Hardware Organization . . . . . . . . . . 16

2.2 The MBDS Process Structure . . . . . . . . . . . . 22

2.3 The General Format of MBDS Messages . . . . . . . . 23

2.4 The MBDS !essaSe Types . . . . . . . . . . . . . . 25

3.1 The lest-loop Merge Procedure ........... 33

3.2 The Hashingmerge Procedure . . . . . . . . . . . . 37

3.3 The Time Complexities of the Bucket-Hashing

Implementations. . . . . . . . . . . . . . . . . . 43

3.4 Time Complexity of Different Implementation . . . 44
4.1 Hashing Module As a Separate Process . . . . . . . 47

4.2 Hasing Module as Part of RECP ....... ... 48

4.3 The structures of Block and Its Header ..... 55

4.4 The Structure of a Bucket-entry ......... 56
4.5 The Structure of the Global Table ...... . . 57

5.1 The New MBDS Message-Types . . . . . . . . . . . . 76

5.2 The Sequence of Messages for Executing a

Retrieve-common Request . . . . . . . . . . . . . . 77

8

e-: - '



1. INTRODUTION

A. TEE SCOPE OF THE SHESIS

A database, is a collection of stored operational ,data;

and a database system is a computer-based system whcse

overall purpose is tc record and maintain information (data)

[Ref. 1]. The traditional approach to manage the database
system is to run the database system software as an

application program in a mainframe computer system. Ihe
database system must share the use and the control of the

mainframe computer resources with all of the other

applications of the computer system. The performance of

this approach suffers whenever there is an increase from

either the usage of the computer system or the database

applications.

One solution to this problem is to offload the database

system from the mainframe to a single, dedicated backend

computer. The backend computer has its own disk storage and

used to perform database operations exclusively.

[Refs. 2,3]. This aEproach is known as the single so wq

lackend approach. Database systems based on this approach

are referred to as software juqlge backend database s~ystems.

However, this approach still has the disadvantage, that is,

performance upgrades will require the replacement of the

tackend and this may entail software modifications and

hardware disruption [Bef. 4 : p. 4].

A second approach to solve the database performance
problem is to develop a special-purpose database machine

with specially designed hardware. However, the

cost-effectiveness of this approach, known as the hardware
lackend Approach, has not yet been demonstrated [Ref. 5].

9



In orier to overcome ttne periormance-gain and

caJpdcity-growth problems af citI~er the traditional database

system or the single tackend software system, a research ot

a multi-lackend datalase system, known as MBDS, is conductel

in the Laboratory for DataLase Systems Restarch, at the

Ndval Pcstgraduate School. Instead of a single backend

computer, 31BDS uses several identical (both ii hardware and

in software) miniccm-)uters as its bdckcnrd cimputers in a

rarallel fashion in ord,!r to gain perforaance gjain and
capacity growth. These backends with their respective disk

systems are connected with another minicodiputer, called the

Lackend ccntroller. The controller is resjionsitle for

supervising t) .a execution of parallel database operations on

the tacke..s and Aior interfacing with the hosts and the

user. Users access the system either by way of the host or

* through the controller directly (as shown in Figure 1.1).

Figure1.1 'he fllti-Bakend atabae Sysem d ES)

V,

Dis

.. ... ... .... ... ... .... ... .... ... ... . . .. . .. . .
.. . . . .. . . . . . . . . . . . ..2

Hos I . .sa.t.o



The attribute-based data language (ABDL) (Ref. 6] is

used as the basis of the data language of MBDS. Currently,

ABDL supports four primary database operations, RETRIEVE,

DELETE, UPDATE and INSERT. The functions of these four

database operations are shown in Figure 1.2.

Ioperation IFunction
RETRBIEVE fRetrieve records from the databaseJ

(DELETE f elete records from the database I
uprATE jMI!odify records of the database )

IINSERT fInsert records into the database

Figure 1.2 The Functions of the

Current IBDS Database Operations.

In order to make MBDS a more complete database system,

the fifth operation, the RETRIEVE-COMMON operation which is

used to merge two files by common attribute values, has been

proposed [Ref. 7]. 'bis thesis will focus on the design and

implementation of the RETRIEVE-COM3ON operation of MBDS. We

will propose several alternatives of the design and

implementation strategies, then evaluate and analyze these

alternatives based on the time complexities, the affects to

the existing system and the design-goals of MBDS. According

the results of the analysis, we will choose the best

alternative to design and implement the fifth operation.

11

. .

......... ... ... .. .. .. .. . ................. . . . . . . . . .



THE CIGAINIZATION OF THE THESIS

The rest of this thesis is organized as follows. In

chapter II we give an overview of the architecture of the
MBDS. We will describe the design goals, the underlying and

intended hardware, tke process structure, the data model and

the data language of MBDS. In chapter III, we first

define the intended operation and the syntax of

RETRIEVECOMMON operation, and then evaluate and analyze the

alternatives for the design and implementation. According

to the analysis, we will select the best alternative to add

the retrieve-common operation into the MBDS. In chapter IV,

we present the details of the design for the selected

approach. We also consider the possible effects of this

approach to the existing system. In chapter V, we describe

how to incorporate our design into MBDS. Our goal is to

minimize the effects of the implementation. Finally, this

thesis is summarized and concluded in chapter VI. It is

hoped that this thesis will provide a definite help to the

future wcrk on MBDS.

12
.';



n. M lauL2 IDZi2Ii AZAD.A.U in~ (AMDkS)

In this chapter we will briefly review the configuration

and the theory of operations of the MBDS. Most of the

information provided in this chapter has been extracted from

[Refs. 4,7 : pp. 1-68, 7-20]. The interested readers are

encouraged to refer to the references.

A. THE SISTER GOALS

As mentioned in chapter I, MBDS is designed to overcome

the performance prcbleas and upgrade issues of the

traditional mainframe-based or the software single-backend

database system. In cther words, the overall goal for MBDS

is to prove that:

(1) the system is easily extensible; and

(2) the performance gain and improvement should be

proportional to the multiplicity of processing and
storage elements [Ref. 4 : pp.1-5].

In order to achieve the aforementioned goal, the design

requirements and their correlated design issues for

designing and implementing MBDS have been defined in [Ref. 7

: pp. 7-10].

1. Desjs Requirements

There are three main design requirements for 3BDS.

(1) The system must be expandable.

(2) Both the hardware and software are generic.

(3) The database is evenly distributed across the disk

systems of the tackends, and, for operation, there are

parallel and concurrent processing of transactions by

the tackends.

13

, - . .% . N ;' P * * * ' '-** ,

-



The first two design requirements can support the

additicn of backends for performance enhancement and

capacity growth by adding new backends of the same type and

by using existing system software. With the third

requirement, performance gain (in terms of response-time

reduction) and capacity growth (in terms of response-time

invariance) of the system are likely to be in proportion to

the number of backends of the system.

2. Design Issues

.heL- are several issues which must be resolved in

order to mee.- the design requirements of MBDS. The first

issue concerns the backend controller. As shown in Figure

1. 1, the controller may become a primary bottleneck of the

system. In order to avoid this problem, the functions of

the ccntroller should be minimized and reduced to the

pre-processing of the user transactions, the post-processing

of the transaction results, the sending and receiving data

between the backends and the host, and the arbitration of

data insertion into tle database.

The second design issue addresses the

characteristics and functionality of the communication bus

- etween the controller and the backends. The bus should be

cost-effective and efficient for both backend communication

and lackend addition.

The third class of issues involves the backends of

the system. The backends must have identical software to

allow replication of the software on a new backend.

Additionally, the tackends must have complete software to

perfort all of the database management functions. These

functions include directory management, concurrency control,

- record processing and communication.

The fourth design issue concerns the database. She

database should be evenly distributed across all the disk

systems of the backends.

14

• . .- . -. -" .'.. . " , ." .- . ". " .. " °. . '. -' " ... • * - - -. ' . - .- * .. . , ..- .. . . - . . . .. '- . .



The fifth design issue is on the choice of a data

model and data language. The data model should easily
support the required data distribution and the data

placement of the database. The data language for the system
is of course Lased on the chosen data model. It must

capture all of the primary operations of the database
system. The chosen data model is the attribute-based data

model and the data language is the attribute-based data

language.

The sixth design issue focuses on minimizing the

communications traffic of the system. The controller should
only communicate with the backends for sending the
pre-processed user transaction, for arbitrating the data

placement, and for receiving results. The backends should

only ccmmunicate with the controller for sending the results
of the user transactions. Communication among backends
should be held to a sinimum.

The seventh issue deals with the directory placement

strategies. In order to enable each backend to perform all
the database management functions and minimize the

communication among backends, the directory data are

duplicated at each backend.

B. SEP UNDEELYING AID INTENDED HARDVARE

An overview of MEDS hardware organization is shown in
Figure 2.1 User access is accomplished through a host

computer which in turn communicates with the controller.

When a transaction (either a request or a set of requests)

is received, the controller will broadcast the transaction

to all the lackends, Since the lata of all data files are

evenly distributed across all the backends, all backends can

now execute the same request in parallel. A queue of

requests is maintained in each backend. When a backend

15

%V'



oTnc or more

.-. 3 t~h i  b3aCKend 2

r.o.t C_/ or.trc2ler -

-~~~tn or~ e OT O ore

dlsk czrives

one or more

Figure 2.1 The MBDS Hardware Organization.

16

% %-



finishes executing one request it will send the results of

that request to tte controller and be able to start

executing the next request independent to the other tackend.

Originally, MBDS is designed to be configured with a

number of microprocessor-basel processing units and their

disk subsystems and be connected by a broadcast-based

communications line. When the implementation of MBDS began,

neither the microprocessor-based computers nor the

broadcast-based communications devices were available. The

present NBDS is configured with a VAI-11/780 (VMS OS) as

both the host and the controller and two PDP-11/,4s (RSX-11M

OS) and their disk systems as the backends. Communication

between computers is accomplished by

time-division-multiplexed buses, knowns as parallel

communication links (PCLs). The broadcasting bus is

simulated by the PCL.

Currently, MBDS is being down-loaded to an initial

configuration of eight microprocessor-based,

broadcast-bus-connected, and W inchester-dri ye-supported

workstations, with cne of the eight being used as the

contrcller and the others as the backends. This workstation

(Sun-2/170, 4.2 BSD UNIX OS) has the Motorola MC68010 as the

CPU with 16 mbytes of virtual space per process and uses

Ethernet as the broadcast bus among workstations. The disk

drives on the backends are Fujitsu Eagle Winchester-type

drives, with a formated capacity of 380 mbytes per drive.

C. THE DATA KODEL AID THE DATA LANGUAGE

In this section we will first introduce the concept and

terminology of the attribute-based data model which is the

data model used in MBrS, then describe the data language in

which users may issue request to MBDS.

17 U.-

,:~ %:



1. The Attribute-based Data Model

MBDS chooses the attribute-based data model to be

its data model. In the attribute-based data model, data is

modeled with the ccnstructs: database, file, record,

attribute-value pair (keyword), directory keyword,

directory, record bcdy, keyword predicate, and query.

informally, a database is a collection of files, each file

contains a groups of records which are characterized by a

"-2 unique set of directory keywords. A record is composed of

two parts. The first part is a collection of

- attritute-value pairs or keywords. An _tribute-value Pair

is a member of the Cartesian product of the attribute name

and the value domain of the attribute. As an example,

<SALARY, 30000> is an attribute-value pair having 30000 as

the value for the attribute SALARY. All the attributes in a

records are required to be distinct. Certain

attribute-value pairs of a record (or a file) are called the

directory keyword of that record (file), because either the

attribute-value pairs or the ranges of their attribute

values are kept in the directory for addressing the record

(file). The rest of the record is textual information which

is referred to as the reorq4 boa.

The angle brackets, <, >, enclose an attribute-value

pair. The curly brackets, ,include the record body.

The parenthesis, G, ), form a record. The first

attribute-value of all records of a file is the same. In

particular, the attribute is FILE and the value is the file

name. An example cf a record of employee file is shown

.elow:

(<FILE, Employee>, <JCB, Mgr>, <DEPT,Toy>, <SALARY, 30000>

-0 (Employee Description)

18

S-'

*4 "'*4

4.',

41 - * ,* 4--.I-- * 4*~74~



"ki

The record has four keywords and a record body of employee
description.

A keyword p., or simply predicat, is of the

form

(attribute, relational operator, value).

Without confusion, we also use parenthesis to enclose a

predicate. A relati-cnal operator can be one of ( =, !=, ,

=, >=). For example, (SALARY > 20000) is a predicate. A

keyword K is said to satisfy a predicate T if the attribute
of K is identical to the attribute in T and the relation

specified by the relational operator of T holds between the

value of K and the value in T. For example, the keyword

<SALARY, 30030> satisfies the predicate (SALARY > 20000).

A query consists of several keyword predicates in

disjunctive normal form. An example of a query is:

((DEPT=Toy) and ((SALARY<30000) or (SALARY>20000))).

2. D Attribute-hAed 2 at]_a nuage

The data manipulation language for MBDS, the

attribute-based data language (ABDL) is a non-procedural

language which originally supports four primary database

operations: RETRIEVE, INSERT, DELETE and UPDATE. it is the

purpose of this thesis to design and implement the fifth

primary database operation, the RETRIEVE-COMMON operation.

The R3TRIEVE request is used to retrieve records of

the datalase. The syntax of a RETRIEVE request is shown as

below:

RETRIEVE Query (Target-List) [BY Attribute] (WITH Pointer]

The query specifies which records are to be retrieved. The

taret-list is a list of output attributes. It may also

consist of an aggregate operators on one or more output

19



attributes. MBDS supports five aggregation operators, they

are: AVG, COUNT, SUM, MIN and MAX. The BY-clause and the

WITH-clause are optional. The BY-clause may be used to group

records when an aggregate operation is specified. The

WITH-clause may be used to specify whether pointers to the

retrieved records must be returned to the user or user

program for later use in an update request. Some examples of

retrieve request are shown in below.

Example 1. Retrieve the names of all employees who work in

the Toy department.

RETRIEVE ((FILF=Em .oyee) and (DEPT=Toy)) (NAME)

Example 2. List the average salary of all departments.

RETRIEVE (FILE=Employee) (AVG(SALARY)) BY DEPT.

The INSERT request is used to insert a record into

the database. The syntax of as INSERT request is:

INSERT Becord

The following example will insert a record into the Employee

file.

INSERT (<?ILE,Employee>, <SALARY,30000>, <DEPT, Toy>)

The syntax of a DELETE request is:

DELETE Query

where the query specifies the record(s) to be removed from

the datalase. The following example will delete records from

the Ezplcyee file.

DELETE ((FILE=Employee) and (SLARY=30000) and (DEPT= Toy)).

20



7he UPDATE request is used to modify records of the

database. The syntax cf the UPDATE request is:

UPrATE Query <Modifier>

where the query specifies the particular records to be
updated from the database and the modifier specifies the

kinds of modification that need to be done on records that

satisfy the uery. The following example will give a $1000

raise to all employees.

UPDATE (FILE=Employee) <SALARY=SALARY+1000>

The RETRIEVE-COMMON request is used to merge two

files by common attributes. It will be detailly discussed

in the later chapters.

D. TEE PROCESS STRUCIURE

MBDS is a message-oriented system. In a

message-oriented system, each process corresponds to one

system function. These processes communicate among

themselves by passing messages. The processes are created at

system start time and exist until the system is stopped.

Figure 2.2 provides an overview of MBDS process structure.

1. 7he Comunication Prgcesses

Communication between computers in MBDS is achieved

by using the PCL. HEDS provides a software abstraction to

this tus for each computer in order to emulate broadcast

capabilities. The abstraction consists of two complimentary

processes. The first process, get-pcl, gets message from

other computers off the PCL. The second process, put-pcl,

puts messages on the bus to be broadcasted to other

computers. Every computer, whether it is the controller or a

tackend, has its own get-pcl and put-pcl.

21

,,'-% %



7r '

The Controller

Post lrzt iforMation Request
Procssin Genrat'011Preparatiot

lirgoidcacq Bus

Figro.2 TheBssPocsiSrutue

22



There are 31 message types and one general message

format used in the MBDS message-passing facilities. The

format (shown in Figure 2.3) is used for each of the three

message-passing facilities, namely, messages within the

contrcller, messages within the backends, and messages

between computers.

S A Message IData Type 1
Message Type a numeric code

Message Sender a numeric code
Message Receiver a numeric code

Message Text an alphanumeric field terminated

by an end of message marker

Figure 2.3 The General Format of MBDS Messages.

Messages between computers are divided into two classes:

messages between tackends and messages between the

controller and the backends. Figure 2.4 describes each of

MBDS message types.

2. The Test Interface Process

[ The test interface process allows the user to

interact with the MBES directly. Since MBDS does not use a
host computer, the test interface process is contained in

the ccntroller.

3. US Processes of the Controller

In addition to the communications and test-interface

processes, the controller consists of three additional

processes: Request Preparation (RP), Insert Information

Generation (IIG) and Post processing (PP). RP receives,

23

ti

* i-'' .-. , - . . .,,- .-. . - - -' .. ," -- '."'..-- . .--. .'..,----<.-'. - " .. ,"-." .-. ' . -" .'," . -",". -" --- " .i.



parses and formates a request (transaction) before sending

the formated request (transaction) to the

directory-management process in each backend. IIG is used

to provide additional information to the backends when an

insert request is received. PP is used to collect all the

results cf a request (transaction) and forward the results

to the user.

4. _he Processes of Each Eackend

In addition to the communication processes, each

tackend also consists of three other processes: Record

Processing (RP), Directory Management (DM) and Concurrency

Contrcl (CC).
DM controls the execution of a request at a backend

and accesses the secondary-storage-based directory tables.

It determines the disk addresses where the relevant data of

a particular request are stored and then sends those disk

addresses to RP.
CC is used to insure the consistency of the database

while allowing concurrent execution of multiple requests.

EP performs the disk I/O operations and other

operations specified by the request. It receives the
secondary-addresses from DM, which processes the request.

The results are then forwarded to the controller.

24



MESSAGE-TYPE NUMBER AND NAME I SRC I DEST I PATH

1 TAFFIC UNIT OOP
REUEST RESULTS PP C H
NUMBER OF REQUESTS IN A TRANSACTION REP PP
AGGREGATE OPERATORS OP Pp c5 REQUESTS WITH ERRORS REQP P C
PARlSED TRAFFIC UNIT P
NEW DESCRIPTOR ID II DM CB
BACKEND NUMBER IIG DMCB
CLUSTER ID DM ihG BC10 REQUEST FOR NEW DESCRIPTOR ID 1 DM I hG 1 1
BACKEND RESULTS FOR A REQUEST RECP PP BC
BACKEND AGGREGATE OPERATOR RESULTS RECP PP BCRECORD THAT -AS CHANGED CLUSTER RECP REOP BC

CAUSERD Y ATIPATRESULTS OF A RETRIEVE OR FETCH RECP REOP BCCAUSED BY AN4 UPDATE
15 DESCRIPTOR IDS 15 DM 15 DMs 15 BB 15

REQUEST AND DISK ADDRESSES 1Dm RCP B
CHANGED CLUSTER RESPONSE DM RECP S
FETH DM RECP B
OLD AND NEW VALUES OF ATTRIBUTE RCP BBEING MODIFIED C ID4a

20 TYPE-C A7rRIBUTES FOR A TRAFFIC UNIT 20 DM 2 CC 2 8
DESC-ID GROUPS FOR A TPAFFIC UNIT OM CC B
CLUSTER IDS FOR A TRAFFIC UNIT DM CC B
RELEASE AlTRIBlUTE DM CC B
RELEASE ALL ATTRIBUTE.Z FOR AN INSERT DM CC B

25 RELEASE DESCRIPTOR-ID GROUPS 25DM 25 CC 2 B
A77RIB'T. LOCKED CC DM B
DESCRIPTOR-ID GROUPS IJYKET C DM B
CLUSTER IDS LOCK E DM B29 N:) MORr m=,- , RV .C REQP B

29 NO M.ORE NERAT .. 35R7 REQP Dm CB29 11" MOR 3E,,,RAT .... D" RECP BC30 REQUES. ID OF A FIt, ISED REOUES-r 30 RECP 3 CC 3 B 3
29 C IR GEE %TE IEOUT 36RCP B

3 1 AN UPDATE REQUEST HAF FINISHE') RECP DM a
31 AN UPDATE REQUEST HAS FINISH DM CC B

SOURCE OR DESTINATIOFj DES'GNATION PATH DESIGNATION

HOST : HOST MACHINE (TEST-INT) H : HOST
: PFZJEcT PREPARATION C : ONTROLLER

ROII,-, : 1RSERT IGFOP!,ATION GENERATION C : CONTROLLER
PP : PO- PRES-ING C : COTROLLER

DIRET=-OR v2AEME1r B : A BACKEND
RECP : PCOR: PR ' B : A BACKEND

CO R C. B : A BACKEND

Figure 2.4 The MBDS Message Types.

25

• °,,..' .5

. . . .. ..-., . .. ...... .-,-. .-.-.-..--. -,-..--. .--.. . . . . .-.. . .-..". . ..,.--:--.-.--.. .-.. . ... ".. .-.-.-. .-. .. "-.. . . .-.-.. ... ,'.-.



I. L9N,. A NA.S__ j _Z O E_ UTRIE!g-COO! jEgST

2 In this chapter, we introduce the terminology and

notaticns of the "Retrieve-Common" request, investigate and

analyze several pcssible design and implementation

approaches, and then select the best one to design and

implement the Retrieve-Common operation for IBDS. The

selection of an approach is based on the design

requirements and the design issues of MBDS.

A. THE INTENDED OPERATION

1. An Operation Cn Two Files

The RETRIEV!-COMMON request is used to merge two

files by common attribute values. The common attribute

values are the attribute values which belong to the records

of both files. For example, suppose there are two files:

file A and file B. File A contains the records of the

street names of San Jcse city:

(<FILE, A>, <STREET, MONTEREY>, <CITY, SAN JOSE>'

(<FILE, A>, <STREET, SECOND>, <CITY, SAN JOSE>)

File B consists the records of city names of the Monterey

county:

(<FILE, B>, <CITY, MONTEREY>, <COUNTY, MONTEREY>)

(<FILE, B>, <CITY, SEASIDE>, <COUNTY, MONTEREY>)

26



The RETRIEVE-COMMON request can provide us a third file,

say, file C, with the information such as: "All the records

of both files A and P, where the street name of the records

in file A is identical to the city name of the records in

file B. One of the records in file C which satisfy the

request would be

(<FILE, C>, <FILE, A>, <STREET, MONTEREY>, <CITY, SAN JCSE>,

<FILE, E>, <CITY, MCNTEREY), <COUNTY, MONTEREY>).

logically, the retrieve-common request involves two

retrieval operations. We define the first retrieval

operation as the sou/_e retrin and the second retrieval

operation as the target ejqve. The set of all the

records that belong to the result of the source retrieve is

called the source record set. The set of all the records

that belong to the result of the target retrieve is called

the taret re!gord fset. A source (tar ) Ktcorj is the

record that belongs to the source (target) record set.

Similarly, those attributes will be refered as sourc

attributes and taI S attibute. The merged source and

target records are termed the &esal &e.ord set. The

aforementioned file C is a result record set.

ie term the source and target attribute names that

participate in the retrieve-common operation the join

attribute names or briefly ji aie However, their

values are termed _ values, or simply common

raSges. The retrieve-common operation requires that the

join attribute which is specified in the source record set

must have the same dcmain as that of the join attribute in

the target record set, although they need not have the same

attribute name.

Consider another example, suppose the source records

are characterized by the attributes, Employee name, Wages,

and the target records are characterized by Rank, Wages.

27

;: 24."



F -ther, let the domain of the Employee name be the I
character string and the domain of both Rank and Wages be

the integer. A retrieve-common operation may be performed

by merging on the attribute values of the wage of the

respective source record and the target record. A

retrieve-common operation may also be performed by merging

on the wages of the source record and the ranks of the

target record. Since their value domains are the same.

However, a merge between the employee names and the ranks

would not be permitted, since their domains are different.

The logical operation for the retrieve-cmmon

request can be described as follows.

(1) All records satisfying the source retrieve are

collected.

(2) All records satisfying the target retrieve are

collected.

(3) The records of the two collections are pairwise merged

on the common (source and therefore target) attribute

values.

2. j Syntaf1 Q.L iev -Common Reqest

When developing the syntax of the retrieve-common

request, we must attempt to design a data language construct

that is similar, syntactically, to the other primary

operations of ABDI. In particular, the syntax of

retrieve-common operation should resemble the syntax of the

ABDL retrieve operation given below:

RETRIEVE Query (Target-list) [BY Attribute] [WITH Pointer]

Using the above syntax as a guideline, we define the syntax

for the retrieve-comucn request as follows.

RETRIEVE Query-1 (Target-list-1)[BY Attribute][ WITH Pointer]

COUNON (Ittribute-1, Attribute-2)

28



RETRIEVE Query-2 (Target-list-2) [BY Attribute ][ITH Pointer]

The retrieve-common request consists of three parts.

retrieve request, which retrieves the source record set.

The second part is the specification of the join attributes,
4.

where Attribute-1 belongs to the source record and
Attribtute-2 belongs o the target record. Although the

values of these two attributes must be the same in order to

satisfy the condition for merging the respective records,

their attribute names need not be identical. The third part

is what has been refered to as the target retrieve request,

which retrieves the target record set.

B. IN ANALYSIS OF DIFFERENT DESIGNS

In order to make this thesis self-contained, several

possible design aEroaches described in [ Ref. 8] are

reviewed in this section.
The main issue when considering alternative strategies

for implementing the retrieve-common reguest is where the

merge of the source and the target records should be

performed.

There are three lajor alternatives for distributing the

worklcad of the retrieve-common request.

(1) The controller does all of the merge operation.

(2) The backends do all of the merge operation.

(3) The controller and the backends share the workload of

the merge.

Each of these alternatives will be analyzed and judged using

the design requirements and design issues of MBDS.

In order to simplify the analysis of design (or

implementation) strategies, we make the following

assumrticns.

29

................ "- ,' 4. . P. .*.*



(1) The records of the source record set and the records

of the target record set are distributed evenly across

the tackends.

(2) The operation of the retrieve-common is performed as

described in the previous section.

1. The Co~trolle_ Does All the Merge Operatin

In this alternative, each backend only performs

these two retrieval operations and then sends the records of

source record set and records of the target record set to

the ccntroller. Upon receiving all the source records and

target records from all the backends, the controller

performs the merging operation and sends the results to the

host computer.

2. The Contjroll And The Bac.ends SSE.e The Here
Cperatio~n

Each backend performs the merge operation over its

source records and target records. The merged records, along
with the source and target record sets are then sent to the

contrcller. The ccntroller performs the merge operation

over the source and target record sets coming frcm different
lackends and then sends the results togeth : with the

previcusly merged records (done by individule backends) to

the hcst.

3. The Backends to All the NVE1.2 Operation

his alternative may be further broken into two

subalternatives.

(a) The backends share the merge operation.

The tackends send either source or target records to
each other. let's assume that the target records are

sent. Each backend will have a portion of the source

record set and a whole set of target records. Then,

30

%



the backends perform the merge operation over its own

source records and all of the target records, and

sends the results to the controller.

(b) One designated tackend performs the merge operation.

All records of both the source record set and the

target record set are sent to the designated backend

from all of the other backends. The designated

tackend performs the entire merge operation and sends

the results to the controller.

4. An nJlysij Sf he 2esign ji~roaches

Four alternatives of distributing the workload of

the merge operation among the controller and the tackends

have been discussed in previous subsection. We now examine

these alternatives with the design goals of [BDS.

Alternative 1, where the controller performs the

entire merge operation will increase the workload of the

contrcller. Recall that in chapter II we have stressed that

in order to reduce the chance of the controller being the

bottleneck of the system, we minimize the work of the

controller. Alternative 1 violates this design requirement

Therefore, it will not be considered further.

Alternative 2 will increase the communications load

and increase the workload of the controller. This

alternative complicates the first and the sixth design

issues of MBDS. Therefore, it will also be eliminated from

* the design consideration.

Alternative 3a meets the design issue of minimizing
the ccntroller function and distributing the workload to

each tackend evenly. Alternative 3b does not increase the

workload of the controller; nor does it distribute the

worklcad to each backend. Furthermore, transmitting all the

records of both the source record set and target record set

31

J - - . -., , •"~/ .. ,i.w. - " 'W'. " . ' - ' ' ' . ' - v ' ' " 5 , .' "
. ... .", . ,"- ' " -" • " - " . .



will. iflcredse the cczmuniLcations overhead. III aJ1i tion,

perf orming the entire merlje upration in onc tackcnd will

uiibalance the worklodd, tkierteLy reducia'; the pralie-is~j Oi

tlhe backends, i.e., by haviny i sinjio-Lackend tc dc the

*merje dfll all other hackends to idle. Th.Ls compic.tt-3s atA

OZ the third and sixth dezign issues, so t~iis alternative is

also eiiil.ttcl.

it;this anaivzis we choose thlc dlterrative 1i as

our desig.n tpjruoach. rha t is, eachl bcgkend performs a

ka-K.114 A-19 Mil ofAP- R2 source records and all

targq je~ords. Ind then, sends its result to the

gg~jjj '"ht rgollj 92jKj :t !Lin result to the
host comj.9er.

C. AN ANALYSIS OF DIEFERENT INPLEMEITAIIONS

TIhree different implemeztatiuis for merjing thc scurce

and the tarjet record sets are consilered.

(1) A strdightforwar1 implementation.
(2) An ism-.ementaticn Lase.] on sortiay and matching.

(3) An im.klouentatica based or rucket-hashing.

1.* The Straihtiorward 1c;)leine~tation

The,- CORC~jt Of this tlternatiVu- i3 Vcry si.ME U~d

the ierfglnyj operation is bascd or, the "lriest-lauL;" al1,orlthm

[Ref. 8 : p. 86] whicA is shown in FijuL-e 3.1.

Thiz alternative is .coiKd iL fivi '.]IIOIS:

(1) Each backL-ad determnines i ts ow I. su.ere:cords and

stores then intc a predefined &ortiun of thv secoiI.lary

storage area.

*(2) Ea c h back enld 'Je irA.ij3 1ts .:)w. tauc-t recorils itnI

stores them into the 're 1e:i I. d ortior cf t h

seElndry stordce area.

V



P.C_ DUI_ Nest loormerge

O_ each record in the source record set DO

FOR each record in the target record set 22
I]E the merging condition is satisfied

form a result record

END IF?
END FOR

INs.D OR

_ED PROCEDURE Nest-loopmerge

Pigure 3.1 The lest-loop merge Procedure.

(3) Each Lackend broadcasts its own local target records

to all of the other backends.

(4) Each tackend receives the broadcasted target records
from the other backends and stores them intc the

secondary storage together with its own target

records.

(5) Each lackend brings its own source records and the

entire target record set into the primary memory,

performs the "nest-loop" merging operation and then

send the merged results to the controller.

2. m letation Based M Sortinq Ind aAtW.q

The idea of this implementation is based on the

following inference.

Since the retrieve-common operation is simply a merging

operation on two files of records sets, if we can bave

these two files presorted by the values of their common

attributes then the merging operation may be efficiently

33

.. . .. '-' :-, -'. ''' I . ' , . w. -FZ i



performed by matching the values of the common

attributes of the records of these two files.

There are two possible alternatives to perform the

sort-match algorithm.

(a) The backends do all of the sorting and matching

operations.

(b) The backends and the controller share the sorting and

matching operations.

Alternative (t) will increase the workload of the
contrcller and contradict with the design goals of MBDS, and

is therefore eliminated from consideration. Only

alternative (a) will be examined. Alternative (a)

accomplishes the retrieve-common operation in four phases.

(1) Each backend retrieve, sorts and stores i s own source

records and target records separately, and then

broadcasts either set of records to the ctber

backends. (Let's assume that the target records are

transmitte d.)

N (2) Each backend receives and merges the inccming

ncn-local target records into its own local target

records.

* (3) Each tackend performs the matching operation over its

own portion of source records and the entire set of

target records (from all the backends).

(4) The backends send the results to the controller.

3. IhS ;Ieetation Based o. Bucket-Hashinq

This implementation strategy attempts to speed up

the comparison and merge by hashing records into small

groups (the buckets of the hashing table) which contain

records with common attribute values, so that the time

complexity of the merging operation may be reduced.

34



A hashing function applied to the common attribute

values is used to hash records into buckets. The bucket
numbers are consecutive integers. Instead of using primary
and overflow areas, the buckets use one or more fix-sized

blocks to store records. The numbers of blocks may vary

among bckets. Details of the hashing table, the buckets

and the the blocks will be described in the next chapter.

Those source record.F and target records within the

same bucket will be examined and merged if the merging

condition is matched. This alternative can also be broken

to two sulalternatives.

(a) one common hashing table is used for both source and

target record sets.
(b) Twc separate tatles are used, one for each record set.

a. One Common Hashing Table

This alternative is accomplished by each backend

in four ;hases:

(1) All local source records will be hashed and stored

into blocks according to their hashed values. These

blocks (therefore buckets) are termed source blocks
(_ _Mckets).

(2) After all the local source records have been hashed,

the local target records are hashed one at a time and
buffered. If the target record is hashed into an

empty source bucket, then it is buffered fcr

transmitting to other backends. Otherwise, all the

records in the source bucket will be retrieved and

merged with that target record only if the merging

condition is satisfied. The results are first

buffered and then sent to the controller.

(3) Since the non-local target records may arrive at a

backend while the backeni is processing some cther

records, each backend will place these inccming

records on a predefined secondary storage area.

35

V p.!



Ai

(4) Each backend retrieves the non-local target records

from the secondary storage area and processes them in

the same way as the the backend does on its local
target records.

b. Separate Hashing Tables

This alternative is accomplished in three

phases.

(1) The backends will hash and store their own source
records and target records into two separate hashing

tables by a common hashing function. After all of the

tar-et records have been hashed and stored, each

backend will broadcast the hashed results of their

target records (i.e., the bucket number and the

records associated with that bucket number) to all of

the other back ends.

(2) Upon receiving all of the target information from the

other backends, each tackend stores those target

records into appropriate buckets according to their

bucket numbers.

(3) The backends perform the merge operation on the local
source records and the entire set of target records

and send the results to the controller. The procedure

is shown in Figure 3.2.

4. _ Co mjrion Cf The Three I.mlementation Approaches

In this section we compare and analyze these

implementation approaches. Since the backends work in

parallel, our analysis only focuses on how much time it
takes for one backend to do one particular strategy. There

are common operations that each backend performs, so that

the time complexities for these operations can be ignored

when comparing the implementation strategies. The times of

these common opera cns are:

36

.r W -F 'e

r%



PROCEDURE Hashingmerge
FOR the bucket value = in value to maxvalue DO

IF the buckets of both tables are not. empty

then

retrieve all the records from both buckets

perform merge operation based on

the straightforward algorithm
End IF

ED FOR

END EOCEDURE Hashingmerge

Figure 3.2 The Hashingaerge Procedure.

(1) the time to process the records for the source request

which involes determining which records of the

database satisfy the query, projecting the

attribute-value pairs of the target-list of the

satisfied records and forming a source record set;

(2) the time to Irocess the records for the target

request, which involes determining which records of

the database satisfy the query, projecting the

attribute-value pairs of the target-list of the

satisfied records and forming a target record set;

(3) the time to broadcast the local target records to the

other backends; and

(4) the time to send the merged results to the contrcller.

The following notions are introduced to simply the ensuing

analysis.

Cs : Cardinality of the source record set in one backend.

Ct : Cardinality of the target record set in one backend.
Cb : Average number of records in a bucket.

37

." ............ ....



W,

M : Number of Backends.

B : Number of Index Entries in the hashing table.

Ti : Average time tc read (write) a block of records from

(to) secondary storage.

Tb : Average time tc read (write) a record form (to) a

bucket.

Tc : Average time to compare the common attribute values

of two records.

Th : Average time tc hash a record.

Tm: Average time tc merge two records.

a. An Analysis for the Straightforward

Implementation

We recall that there are five phases in this

implementation as discussed in a previous section.

Phase 1: Since there are Cs local source

records in each backend, the time complexity for storing

them into the secondary storage is:

Ti* (Cs/Cb).

Phase 2: Since there are Ct local target

records in each backend, the time complexity for storing

them intc secondary storage is:

Ti* (Ct/Cb).

Phase 3: The time complexity for this phase is

ignored.

Phase 4: Since each backend receives (M-1) Ct

target records from the other backends, the time complexity

for storing them in the secondary is:
(21-1) * (Ct/Cb) *Ti.

Phase 5: Records are merged in this phase.

There are Cs source records and M*Ct target records in each

backend. Each block of the source records is compared and

merged with all of tie target records. It takes Ti to bring

one blcck of source records into the primary memory from the

38

':'" : ". " .. ", .... . " "'. ".. ."."."> " " .- " ." ..." '... . .-.''.. . . . ...... . .".,.-. .-.-. ,.v .. ."-.. . . . .. '-." S5-'*"-..5-"5



secondary storage and M*(Ct/Cb) *Ti for the entire target

record set.

It takes Cb*Tb to access one block of source

records and M*Ct*Tb to access all of the target records.

The time complexity for comparing one block of the source

records and all of the target records is

Cb*M*Ct*Tc.

We further assume that there are k fraction of target

records participating the merging operation. The time

complexity for merging one block of source records and all

of the target records becomes:

k* *Ct*Tm.

1he total time complexity for processing one block of souirce

records of this implementation is:

f Ti+M* (Ct/Cb) ]+ (Cb+l?*Ct*Cb) *Tb+ (Cb*.1*Ct*Tc) + (k*M*Ct*Tm)
There are Cs/Cb blocks of source records in each

backerd; therefore, the time complexity of this alternative

is:

(Cs/Cb) l f[ i+M* (Ct/Cb) J+ (Cb+yi*Ct*Cb) *Tb

+ (Cb*M*Ct*Tc) + (k*M*Ct*Tm)

or

(M*Cs*Ct) *r Ti+ (lb+k*Tm) /Cb+Tc ]+Ti* (Cs/Cb) +Cs*Tb

Because Cs may be equal to Ct and M is a small constant, the

time complexity may be further simplified to be

O(Cs*Ct) or

O (Cs2 ).

b. An Analysis for the Sort-Matching Implementation

We will analyze each phase of this

implementation approach.

Phase 1: Each backend sorts its tho record sets

and broadcasts the Ecrted target record set to the other

3I

........... ., .. =~~~~~~~.....................-...... ... ,................................ ..... ....... ...2 ..... .".::. :..



lackends. Due to the large size of records, the sorting

operation can not be done by using an internal sorting

algorithi. There are several external sorting algorithms

which can sort the lccal source records and the local target

records with the time complexities of O(Cs*(logCs)) and

O(Ct*(log Ct)), respectively. However, these algorithms all

have some limitaticns: either using special hardware

configuration or running different software among processors

[Refs. 9,10].

Because we do not want to put limitaticns on the

hardware configuraticn of 9BDS and to use different software

among the backends, this alternative is eliminated from our

consideration.

c. An Analysis for the Bucket-Hashing

Implementation

In order to further simplify our analysis, we

assume that the local source records and target records can

be evenly hashed across all the buckets of the hashing

tables and each bucket will contain only one block of local

source records or one block of local target records. First,

we analyze the alternative that uses only one hashing table.

Phase 1: Each source record needs to te hashed,

written into a bucket by its hashed value. This includes

getting the block of that bucket from the secondary storage

and writing the record into the block and returning the

block to the secondary storage. Therefore, the time

complexity for each kackend to hash and store the scurce
records is:

* Cs*(Th +Tb + 2Ti).

Phase 2: Every time a target record is hashed,

the bucket with that hashed value is checked. If the bucket

is not empty, then all the source records in that bucket

40

-



will ke retrieved into the primary memory, compared with the

target record and merged with it if their common attribute

values are equal. The time complexity for bring one bucket
(block) of source records into primary memory is Ti. The

time complexity for accessing those source records from the

block and comparing with that target record is:

Cb * (Tb + Tc).

Suppose that the probability of hashing a target record into

a non-empty bucket is p and the probability of satisfying

the merging condition is f, then the time complexity for

each lackend to process one local target records is:

Th + p * [Ti + Cb * (Tb + f * To) ].

Because we assume the source records are evenly hashed

across the buckets of the hashing table, p is equal to 1.

There are Ct local target records in each backend so that

the time complexity for each backend to process its local

target records is:

Ct* {Th +Ti+Cb* (Tb+Tc+f *Tm) ].

Phase 3: Each backend receives (M-1)*Ct target

records from other backends. The time complexity for

storing those records back to the secondary storage is:

{M-I1) * (Ct/Cb) *Ti.

Phase 4: It takes (-1)*(Ct/Cb) for each backend

to retrieve all tle non-local target records from the

secondary storage into the primary memory. The time

complexity for processing those records is:

(M-l) *Ct*(Th+[Ti+CbL*(Tb Tc+k*Tm) )).

The time complexity of this phase is:

(-i) * (Ct/Cb) *Ii+M*Ct Th+ Ti+Cb (Tb+Tc+f*Tm) ]).

41



The total time complexity of this alternative

for a backend is:

Cs (Th+1T+2Ti) +2 (M- 1) * (Ct/Cb) *Ti

+ M*Ct (Th+[ Ti 'Cb (Tb Tc+f*Tm) ]).

Now, we analyze the other alternative which uses

two separate hashing tables.

Phase 1: The source records and the target

records will be hashed, grouped into the buckets of separate

hashing tables and then placed onto the secondary storage.

The time complexity for each backend to process its local

records is:

(Cs+Ct) * (Th+Tb+2Ti).

Upon receiving the target records from the other

backends, each backend will insert those incoming records

into the hashing table of the target records and stored then

back to the secondary storage. Since those non-local target

records are grouped and sent by their bucket numbers, the

insertion time is so quick that it may be ignored. By using

an inverted list, the time complexity for each backend to

return those incoming target records to the secondary

storage is:

(M-1) * (Ct/Cb) *Ti.

Phase 2: Records of these two hashing tables

will be processed one bucket at a time. For any bucket

number (i.e., a table entry), if the buckets of both hashing

tables are not empty, then all blocks of the records of both

buckets will be read into the primary memory for the merging

operation. It takes Ti for bringing one bucket of scurce

records (in this case, one block) into the primary memory

and M*Ti for one bucket of target recc-As (M blocks). The

time ccmlexity for accessing, comparing and possibly

42



merging one bucket cf source records with one bucket (m

blocks) of target records (not including the disk I/O time)

vill be:

Cb*l[b+',iCb*(7b+Tc+f*Tm) ].

The expected time complexity for all buckets will be:

(Cs/Cb) *Cb*[TbMf*Cb*(Tb Tc~f*Tm) ]

Therefore, the total time complexity for this alternative

is:

(Cs Ct) (lh+b+2Ti) + (M-i) * (Ct/Cb) *Ti

+ (Cs/Cb) *Cb*[Tb+M*Cb*(Tb Tc+f*Tm) ]

I One Common Table Two Separate Table

Th Cs+M1*Ct (Cs+ Ct)

Tb j Cs+Ct*Hi*Cb (fl+2)*sC

Tc M*Ct*Cb ICs**Cb

Ti 2Cs.M*Ct+2(H-1)*(Ct/Cb) (Cs+Ct) + (M-1) *Ct/Cb

Tm M *Ct *C b*f Cs*M*Cb*f

Figure 3.3 The Time Complexities of the

Bucket-Bashing implementations.

A summary of the time complexity in terms of Th,
Ti, 1b, and Tc for these two subalternatives is shcwn in

Figure 3.3. As shown in Figure 3.3, alternative which uses

two separate tables is better than the other one which

43

ly~r I"
b.



employs only one table. Since Cb and M are constants, f is

smaller than 1 and Ct may be equal to Cs, we ca.L further

simplify the the time complexity of the two-separate-tables

subalternative to be:

O(Cs+Ct) or

0 (Cs)

d. The Conclusion for Our Implementation Ap4roach

A summary of the analysis for those

implementation approaches in terms of time complexity are

shown in Figure 3.4. Clearly, the one based on

Bucket-Hashing with two separate hashing tables is the best

approach. Therefore, our implementation will be based on

that approach. The details of design and implementation

will be discussed in the next chapter.

Straightforward 0 (Cs2)

Sort ing-Ha tchi ng Not considered

Bucket Hashing I O(Cs)

Figure 3.4 Time Ccoplexity of Different Implementation.

S44

.'



q..:

q

IT. D)IT1 ]D DESIG FO ISf._AMEN.._TIN. gZTRIEVZ-CBHfOl

OPERA-1011 INTO NBDS

In the previous chapter, a bucket-hashing Lased

implementation approach has been selected for implementing

the retrieve-common operation into MB3S. In this chapter, we

focus on specifying the details of that approach and discuss

any of the existing MPDS software which will be affected by

this ixplementation. Our primary goal is to use the

existing software as much as possible and to minimize the

effects which may be caused by the implementation.

The operations cf the retrieve-common request may be

described in four phases. First, the user's request must be

preprocessed so that all backends can be informed by an

appropriate message. This is the reqzuest r oessing

phase. Second, the records of both the source and the

target record sets are retrieved before the merging

operation. This is the reC2or-_ trjevin. hall. Third,

those retrieved records are hashed on the values of their

join attributes and stored into a hashing table according to

their hashed values (i.e., the bucket numbers). We recall

that there are two hashing tables, one for the scurce

records and one for target records. Further, the hashed

local target records are broadcasted to the other backends.

This is the hins1Ljand-storinA phase. Lastly, hashed

records of source luckets and hashed records of target

buckets are compared and merged bucket-by-bucket,

respectively. The merged results are sent to the contrcller

from all of the backends. This is the mering has. The

controller then forwards those results to the host computer.

The operations of the first and second phases can be

done by the existing system software with minor

45



a

modif ications. However, in order to accomplish the

operaticns of the last two phases, we must design a new set

of procedures, which we have referred to as the hashinq

module. In the remainder of this chapter, we first describe

the hashing module, and then the operations of those four
i phases.

A. TiAE EASHING NODUIE

This module is designed to accomplish the operaticns of

the last two phases cf the retrieve-common request. There

are three procedures within this module. They are: the

hashing procedure, the bucket-block tracking procedure and

the merging procedure. In this section, we first discuss

the two different alternatives for implementing this

module. After choosing the better alternative, we then

describe the three prccedures of the hashing module.

1. Alternatives for Implementinj the Hashing Modu e

There are two alternatives that may be used for

implementing the hashing module. In the first alternative,

the hashing module is implemented as a separate process of

the lackend. This alternatives modifies the existing

process structure of a backend by introducing a sixth

process and its associated communication paths irto each

lackend. In the seccnd alternative, the hashing module is

implemented as part of the existing record processing

process (RECP). This alternative leaves the existing backend

process structure unchanged.

a. As a Separate Process

In this alternative, the hashing module is

designed as a separate process of the backend. The inputs

to the hashing module are either the local source or target

46

. . . .I . - . . " ,. ..



records from the local RECP or the other target records from

the RECFs of the other backenils. The outputs from the

hashing module are thk merged results, which are sent to the

contrcller. The transfer of records Letkeen Frocesses

(i.e., non-local tarjet recor3s irom "Put PcI" to the

hashing module or the local source records or the local

target records from the local RFCP to the hashing module) is

accomplished using tle interiLccets message capabilities of

each lackend. The new rocess structure of each LaLkiLr
with the additional ccmwunicdtion paths is shown as Fig 4.1.

Since the hashing mcdulo is an indeper.dent process, the

effects of this implementaticn on the other processes of

MEDS may he minimized.

J Each Backeni I

Processing Control Ga aje ment

!f ... .. .-- - T ---

Pigure 4.1 Hashing Nodule As a Separate Process.

Processing Control- I I., I.. - . -. • .

-- - - -- - - ---.- -- - -- --.- -



L. As a Procedure within Recard Processing

In this alternative, the hashing module is

designed as a group cf Frocedures that are added to FECP.
In Figure 4.2 we show ti.% StLucture of the hashing module

with EECF. The local records (both the source records and

the target records) are retrieved by the physical data

operation of RECP of each lackend. Once the records are

retrieved, they are sent to the hashing module. The

non-local target records are received by RECP from the cther

lackends and then passed to the hashinj module. T1he merged

results are then sent to the controller. With modularized

programming, the hashing module may te independently

implemented with a siniwal effect on the original RECP

software.

FECP of Each Backend

---------------- --------------------

Aggregate Physical
Operation Data

Operation

Retrieved
Local Records

I flashing Module

Figure 4.2 Hasing Module as Part of RECP.

48

, . R , . -' . . .,_._% " . . " .. " ," . " . " . . - . .,- . . - . • •. % . .' .', ,,". -. ,, ,". , .%N,



-: . . . . ... . . ..... .... . . ... .. . ... .. . . .. . -,.. .

c. Comparison of These Two Alternatives

Both alternatives can be easily implemented with

minimal effect on the existing system. The difference

between these two alternatives is the way that the local

records are passed frcm the "physical data operation" to the

hashing module. In alternative (a), the records are passed

as an interprocess message. In alternative (b), the records

are passed as a parazeter of a procedure call. We choose

alternative (b) for three reasons.

(1) The message-passing between two processes within a

backend is slower than the parameter-passing. In

message-passing, both processes have to access a

common memory tc put (or get) message. The accessing

time coupled with the time resuired to place a

message in the common memory by the sender and fetch

the message frcm the common memory by the receiver is

considerable. In parameter-passing, only the logical

address of the record buffer is passed between the

procedures, which is much simpler and faster.

(2) Even if message-passing within a computer is extremely

fast, there is a large number of messages (i.e.,

records) which is considerable. Since it amounts to

route the messages (records) between two processes.

(3) The extra communication paths required by alternative

(a) (i.e., the communication paths among the hashing

module and the other MBDS processes), increase the

number of messages passed within a backend and among

backends. By increasing the inter-backend and

intra-backend communication, we may adversely effect

the overall peiformance of a backend.

49

', . ,. .. -'-,:.;<,.,;-, , ./ .,- -'- , ,.,.-.. .-.. - .-. .. - . . .. . . - .V. - ; .. .



2. 7he Hashin q Procedure

This procedure is used to perform the hashing

operation on the values of the join attributes of the input

records. The inputs to the procedure are either the local
source records or the local target records, which are

received from the physical-data-operation subprocess of

RECP. The output frcm the procedure are the input records

and their hashed values (i.e., the bucket numbers), which

are sent to the bucket-block tracking procedure with the

request id for further processing.

The hashing operation is done by the hashing

functicns of this procedure. Since the type of the values

of the join attributes may either be an integer or a

character string, we have designed two hashing functicns in

this procedure. Generally, a good hashing function should

satisfI the following three requirements:

(1) All of the reccrds should be evenly distributed into

buckets of the hashing table;

(2) The chance of hashing different records into the same

bucket should be minimized; and I
(3) The hashing computation should be fast.

These requirements are closely related to the number of

buckets and the hashing algorithm which is used in the

hashing function.

a. The Number of the Buckets

A hashing table with a large number of buckets

is useful for a number of reasons. First, the large number

of buckets may reduce the chance of hashing different

records into the same buckets. Second, the number of

records in each bucket is also quite small, and this will
reduce the access time during mer-ing. However, it would be

50



impractical to have a table with a very large number of

bucket entries, where each bucket would only contain a few

records. When the table becomes exceedingly large, a

substantial cost is incurred to maintain the bucket index.

The bucket index of a hashing table is an array of

fixed-size bucket entries. There is a bucket entry for each

bucket to keep track cf the records which are stored in that

bucket. Therefore, the number of buckets (and therefore the

bucket entries) can be computed by the following equation:

let X be the size of the bucket index (measured in bytes),

Y be the size of a bucket entry (measured in bytes),

then the number cf buckets is (X / Y).

For example, if the size of bucket index of a hashing tatle

is 8K bytes and the size of each backet entry is 8 bytes

then the number of bucket entries for that hashing table is

1k, i.e., 1024.

How should we determine the size of the bucket

index cf our hashing table? Since nBDS allows the

concurrent execution cf different user transactions, there

may be a number of retrieve-ccmmon requests being processed

hy the system. Each of the retrieve-common requests

requires two hashing tables, one table for the source record
set and one table for the target record set. Because of the
potentially large number of hashing tables concurrently in
use, it will be necessary to store the bucket indexes of the

tables in the secondary storage and stage them into the

primary memory on demand. To minimize and optimize the size

of the bucket index of the hashing table, it is desirable to

have the size of the bucket index as a multiple of the unit

of disk I/O transfer. For example, if the unit of disk I/O

transfer (which is typical the track size) is 4K bytes, then

the size of the bucket index shall be M*4K bytes, where i

fi, 2, 3, ...). In cur case, we choose 16K bytes to be the

51

............................



size of our hashing table, yielding 2048 entries (therefore,

2048 buckets) in the hashing table each with a bucket entry

size of 8 bytes.

b. The Hashing Algorithm

Since the value type of the join attribute may

be either an integer cr a character string, we have designed

two hashing functions, one for each value type.
(1) The Hashing Algorithm for the

Integer-Valued Attributes. In order to evenly distribure

the values of all jcin attributes into the buckets and to

minimize the collisicns; we use the information aLout the

maximum and minimum values of the join attributes. 7hese

information is maintained in the record templates. 1he

hashing algorithm for the integer attribute value is

descriled as follows.

Step 1: Get the MAX (maximum) and MIN (minimum) values of

the join attribute from the rtcord template. let

X = ThenuEberof buckets iu _ashing_table

Step 2: If MAX-MIN < X

then go to step 4

else Tezpl = (MAX - MIN) Div X

Step 3: Get the input record and let

Y = The value of thejoin attribute

bucket number = (Y - MIN) Div Templ
go to step 5

Step 4: Get the input rocord and let

Y = The value of the joinattribute

bucket numter = Y - MIN

Step 5: Return the bucket number to the calling Frocedure.

(2) The Hashing Al..orithm t , the

Character-Valued Attributes. The recorl template does iiot

52

A5---



The record template does not provide the maximum and the

minimum values for the character-valued attributes as it

does for integer-valued attributes. In order to minimize

collisions and distribute records evenly into buckets, we

design a lookup table, which is an array with 2048

character-string elements, to perform the hashing function.
The number of the elements is equal to the number of the

entries in the bucket index of the hashing table. The

values of the join attributes of the input records are

searched against the contents of the lookup table to obtain

the bucket values. The binary search algorithm is used to

minimize the searching time of the lookup table.

The contents of the entries of the lookup

table are created in the following way:

(1) Get a English dictionary with more than 2048 pages;

(2) Divide the page number by the number of the buckets

(in our case the number is 2048);

(3) Let the result be x.y, where the x and y are positive

decimal digits;

(4) Pick up the last word of every x.y page from the

dictionary and place the first four characters as an

entry in the lookup table; and

(5) If the length of the selected word is less than 4,

fill the word with trailing blanks.

We use only the first four characters to compare the values

of join attributes for two reasons. First, we believe that

there are very few English words that will have the same

first four letters. Second, we want to reduce the

primary-memory requirements for the lookup table.

The algorithm for the character-valued

attributes is as follows.

Step 1: Let MIN = 0 and MAX = 2047.

Step 2: Get the input record and let

X = Thevalueof thejoin attribute;
Step 3: If X _Z look-up_table[MAX]

53

:2



then

bucket-number M 1AX, go to step 6.

Step 4: Use binary search to find the bucket number.

Step 5: Return the bucket number to the calling procedure.

3. The Buck et-Bl~cck Track ing Procedure

The input to this procedure may be either the local

records (either the source records or the target records)

with their bucket numbers from the hashing procedure or the

non-local target records grouped by tiieir bucket values from
the other backends. The outputs from the procedure are the

logical addresses of the hashing tables of the source

request and the target request, which are sent to the
merging procedure for the merging operation. The
bucket-block tracking procedure performs three functions:

(1) maintaining a global table to keep track of the

* .logical addresses of the hashing tables for all
retrieve-common requests which are currently being

prccessed in the system;

(2) maintaining a hashing table for the current request

and keeps track of all of the buckets and blocks of

that hashing table; and

*(3) storing the input records into appropriate buckets and

blocks according to their bucket values.

In order to provide a better understanding of this

procedure, we first introduce the structures of the blocks,

the buckets, the hashing table and the 41obal table. We then

discuss how these functions are accomplished.

a . The Structure of a Block

Each block is divided into two parts: the header

*and the body. The header has two fields. The first field is

used to record the length (in bytes) of the body, i.e., allI

54



of the records in bytes currently stored in this t.lcck. The

second field is used to store the logical address of the

next tlock whose reccrds have the same bucket value as this

block. If there is no other block of the bucket, then there

is a null address in this field. The bod is used to store

the bashed records and their common attribute values.

Blocks which are in the same bucket are maintained as an

inverted list and tracked by their logical addresses. The

structures of the block and its header are shown in Figure

4.3.

Header Rec 1 Rec 2 Eec 3

B. The Structure of a Block

Length Logical Address

Of Of

Body Next Block

B. The Structure of Block Header

Figure 4.3 The structures of Block and Its Header.

k. The Structure of a Bucket

As mentioned in chapter II, instead of using

primary and overflow areas, each bucket uses fixed-size

blocks to store records. The number of blocks per bucket

may vary among different buckets. The bucket entry is used

to indicate the status and to keep track of the blocks of

that lucket.

"' 55

" . ... ,

. . . ..



- - - - - -

Each bucket entry in the bucket index has two

Farts: the status and the logical address of the blcck

currently being used. The status is used to indicate

whether cr not the bucket is empty. The size of the bucket

entry is 8 bytes, where 2 bytes are used for the status and

6 bytes are used for the logical address which is

represented by a tufle consisting of the logical disk

number, the logical cylinder number and the logical track

number. 1he structure of a bucket is shown in Figure 4.4.

Status The logical address

of of

The Bucket The Block Currently Being Used

Figure 4.4 The Structure of a Bucket-entry.

c. The Structure of the Hashing Table

A hashing table is an array of bucket entries.

We anticipate that the retrieve-common operation will be

implemented on a SUN Iorkstaticn running the UNIX operating

system, with a 16K unit of disk I/O. Using the equation

from the previous subsection, we can compute the number of

bucket entries for our hashing table to be 2048.

d. The Global Table

Since MBDS allows concurrent processing during

the retrieval operation, there may be several

retrieve-common requests in the system. We need a table

that keeps track of all of the logical addresses of the

56

'' i'" -. ,.,..,..,,..,,.,.... .. . .. .. ." " .' ,# .".. , .. . ' .-. . . . . .. ,,."-:K", , .," - ,.



2. 1 O V . . . . . . .

bashing tables for each retrieve-common request. Each entry

of the global table contains two parts: the request id of

the request and the logical address of the hashing table for

that request. The request id consists of the traffic id,

which is the unique identifier of a traffic unit [Ref. 11 :
p. 41], and the request number which indicates the seguence

cf the request in the traffic unit. Each entry of theI'." global table is created whenever a new hashing table is

created, and deleted when that reguest has been completed

processing. The structure of the global table is shown in

Figure 4.5.

Request ID Logical Address

- --------- ---- of
Traffic ID Request No Hashing Tables

"I I

.',': Figure 4.5 The Structure of the Global Table.

e . 'he Seuence of the Operations of the

Bucket-block Tracking Procedure

_' The steps of the sequence to accomplish the

operaticns of this procedure are described as follows.

Step 1: Create and initialize the global table.

S5'7

:i: )~i.. , .., .. ,. .. , ., ,,,_...... . _ ,, .. .. .. . ,. ., ,.. .. .. ..:~ - , . ..,,....



Step 2: Check the request ID of the input records with the

global table to see if the input records belong to

a new request. If they do, then allocate a hashing
table for that request, initialize the bucket

index and store the logical adiress of the hashing
table into the global table. Otherwise, get the

existing hashing table into the primary memory
using the logical address information provided by

the global table.

Step 3: Extract a record from the input buffer. If the

record is the first record of that request, then

go to step 10.

Step 4: If the bucket value of this record is the same as

the previous one, then go to step 8.

Step 5: Store the block which contains the previous record

back to the secondary storage.

Step 6: Get the desired bucket entry (table entry) for the

record by its hashed bucket-value. Check the

status of the bucket. If it is "empty", then go

to step 11.

Step 7: Get the currently used block by its logical

address in the bucket entry.

Step 8: If there is space in the block t t is available

for storing this re rrd, then go tc step 12.

" Step 9: Get a new block, pu: the current logical address

of the bucket entry into the "logical address of

next block" field of the block header. Then,

update the bucket entry with the logical address

of this new block. Goto step 12.

Step 10:Get the desired bucket entry by its hashed

• -. ucket-value, update the status of that bucket

entry to "nct empty".

Step 11:Get a new block and put its logical address into

the bucket entry.

5
.. 58



Step 12:Store the record into the block and update the

"length of record" field of the block header.

Step 13:Repeat the steps 3 to 12 intil all records have

been processed.

Notice that the block is not immediately

returned to the secondary storage after the insertion of one

input record. Since the records in MBDS are stored by

clusters, it is very likely that records within the same

cluster will be retrieved again. Therefore, by keeping the

current block in the primary memory, we may save one store

and one read operations if the next input record is

retrieved from the same cluster and hashed into the same

bucket (that is, they may have the same bucket value).

4. The Merginq Procedure

This procedure is used to perform the merging

operation. The inputs to this procedure are the logical

addresses of the hashing tables of the source request and

the target request, which come from the bucket-block

tracking prccedure. The outputs from this procedure are the

Y merged results, which are sent to the controller.

The algorithm of the merging procedure is as
follows.

Stel 1: Reserve a result buffer.

Step 2: Get the hashing tables of the source request and

the target reguest by their lcgical addresses.

Step 3: Compare the bucket statuses of these two hashing

tables bucket by bucket. If both buckets contain

records fcr a particular bucket number, then

retrieve all the records associated with this

particular tucket value from both tables.

Step 4: Apply the straightforward merging algorithm on
those retrieved records. Insert merged results

into the result buffer.

4." 59

*44



VA UC.-.-''f --- -r-..--

Step 5: If the result buffer is full, then send its
contents to the controller.

Step 6: Repeat steps 3, 4 and 5 until all the buckets have

been processed.

Step 7: Free the result buffer.

B. TEE OPERATIONS OF THE FOUR PHASES

In this section we discuss the operations of each phase

of the retrieve-commcn request and the software which will

be affected by those cperations.

1. _he Ae u.e t egrocessinq Phase

a. The Operations

The operations of this phase include parsing the

user's transaction (cr request) and if the transaction

(request) is correctly parsed, then the controller will

compose an appropriate message to inform the backends to

legin execution for the request. Since the retrieve-common

request is conceptualized and executed as two retrieval

operations, the parser has to parse the user's request and

transform the request from the form of a single request to a
form cf a transaction with two requests.

b. The Affected Software

Basically, operations of this phase can be done

by the existing Request Preparation process. However, the

software for this process must be modified as follows:

(1) The parser should be able to recognize the newly added

syntax and correctly parse the request;

(2) The composer shculd be able to form a new message to

inform PP and all of the backends so that they can

perform the desired operation;

60



(3) New message types are added for processing the

retrieve-common request; and
(4) PP and all of the backends should be able to recognize

and process the new created message for the

retrieve-common request.

2. The Record-retrievinq Phase

a. The Operations

Operations of this phase include the address

generation and the record retrieval for both the scurce

request and the target request. These two requests will be
processed by DM as the other four different types of

requests. As mentioned in previous chapter, the target

records are processed after the source records. In crder to
separate the records of these two requests, DM will first

send the source request and its associated address set to

RECP, and hold the target request and its addresses set

until receiving a message frcm RECP indicating that all

source records have been retrieved.

The record-retrieving operation is performed by

the physical-data-operation subprocess in RECP as a regular

retrieve request. Instead of sending the retrieved records

to tle controller, control logic is used to route them toJ

the bashing module fcr hashing and subsequent merging.

b . The Affected Software

most of the operations of this phase are done by

DM, CC and the Physical Data Operation of RECP in each

-ackend. The affected software includes:
(1) We need to add contrcl logic into DM so that the

address information of the source and target request
will not be sent to RECP together; and

-a!
. 61

%~-t'



(2) We need to add a new procedure to handle the

retrieve-common rejuest and control logic to route

the results to the hashing module instead to PP.

3. The Hashi n-amd- stori ng Phase

This is the most important part of the

retrieve-common reguest. All of the records are prepared in

this Fhase, so they can be merged on next phase. The

operations of the hashing-store phase includes:

(1) performing hashing operations on the local records,

(2) table maintenance and bucket-block tracking

operations, and

(3) broadcasting (and receiving) the target records and

their bucket-values to (from) the other backends.

a. The Hashing Operations

This operation is performed by the hashing

procedure of the hashing module. Upon receiving the local

records from the previous phase, the hashing procedure will

check the record teiplate to get the value type of the

common attribute values and then apply an appropriate

hashing functicn to hash the common attribute values. The

records and their hashed bucket-values will then be Fassed
to the bucket-block tracking procedure for further

processing.

b. Table-maintenance and Bucket-block Tracking

Operation

""This operation is done by the bucket- tlock

tracking procedure. A global table is maintained to store

the address of all of the hashing tables for all of the

different retrieve-cmmon requests *ich are currently being

62

$&Y~~~~ V %~~~; *'~.. *~ % ~** *



processed by the system. Whenever a new retrieve-common

request is encountered, the bucket-block tracking procedure

will create a new hashing table for that request. The

logical address of the newly created hashing table is then

stored into the global table. The hashing table will be

deleted when the reguest is complete. Records are stored

into buckets according to their hashed values. The

information of the bucket entries and the block headers are

maintained and updated by the bucket-block tracking

procedure as described in the previous section.

c. Broadcasting And Receiving Target Records

Between Backends

After the local target records has been hashed

and processed, each backend will buffer its local target

records (retrieved frcm the target-hashing table with their

bucket values) and broadcast then to the other backends.

Upon receiving those non-local target records, each backend

will store them intc the target-hashing table by their

bucket values. A checklist is used to ensure that the

target information ficm all of the other backends has been
received.

d. The Affected Software

Since the operations of this phase are done by

the hashing module; RICP is affected to the extent that this

module is integrated into the RECP process. No ctber

existing software will be affected.

4. je !erging Phase

This is the last phase of the retrieve-ccmon

operation. The local source records and the entire set of

target records are ccrpared and merged.

63

.. .N



a. The eration

The operations are performed by the merging

procedure of the hashing module. Because the records of
bzoth tables are unscrted, they are merged by using the

straightforward algorithm. The merged results are stored in

a result buffer and then sent to the controller.

- b . The Affected Software

Since this phase is also done by the hashing

module; RECP is affected to the extent that this module is

integrated into the RECP process. No other existing system

software is affected.

614



.9

V. THE IMPLIRMENTATION

In this chapter, we describe how the retrieve-common

request is integrated into the MBDS system. To successfully

perform the integration, it is necessary to modify a portion

of the MBDS software. Therefore, this chapter also on

discussing how the NBDS software is modified for the

integration and implementation of the retrieve-ccmmon

operation.

In the remainder of this chapter we first descrihe the

molified processes of the controller. Second, we describe

the mcdified processes of each backend. Then, we present

the modified 1BDS message-passing facilities. Finally, we

trace the execution sequence of the retrieve-common reguest

in terms of the types of messages that are passed among the

ABDS frocesses.

A. THE MODIFIED PROCESSES OF THE CONTROLLER

1. The Request Prearation Process (_RE_)

There are t wc subprocesses in aEQP, namely the

parser and the composer. The parser parses the requests an,!

checks for syntax errors. The composer transforms the

correctly parsed requests into the form reqaired for

processing at the backends.

a. The Parser

The parser does both the lexical and the

syntactical analyses cf the ABDL transaction (or requests).

The input to the parser is either a re;uest or a

transaction. The cutputs frcm the parser are the error

messages to the test interface, the aggregation operators to

PP and the correctly Farsed requests to the composer.

65



The lexical analysis is done by the lexical

analyzer produced by IEX [Ref. 11 : p. 42]. The input to

LEX is a specification of the tokens of the language(i.e.,

the tokens of ABDL) in the form of regular expressions ani a
set of subroutines which specify the actions to be taken

upon recognition of the tokens. The syntactical analyzer is

generated by YACC (Yet Another Compiler Complier) [Ref. 12].

7he input to YACC is a specification which includes the

declarations of tokens' names, the rewriting rules of the

grammar, and the action program. YACC produces a C program

to letermine whether the input ABDL transactions (requests)

are syntactically correct.

For the parser tc correctly parse the users'

retrieve-common requests, we have made several modifications

to the original parser suhprocess. These modifications are

listed below.

(1) Regular expressions for the LEX.

We have added a new set of regular expressions so

that the lexical analyzer can recognize the

retrieve-common request and generate appropriate

tokens which in turn can be recognized and used by

YACC.

(2) Grammar rules fcr YACC.

A new set of rules has been added into the criginal

ABDL grammar sc that the parser can recognize those

tokens which are generated for retrieve-common request

and organize those tokens by these newly create4

rules.

(3) The request type.

We have added a new request type, the retrieve-ccmmon

request, so that the parsed transaction can be

correctly identified and properly executed by the
composer and the other proce7 -es of MBDS.

66



(4) The action program.

The input of the retrieve-common request to the parser

is in the form cf a single request. The parser should

be able to parse this request and generate a

transaction of two retrieval requests (each of the

retrieve-common request type). If the join attribute
is not in the target list (of the source or the target
request) , the action program inserts the join

attribute into the head of the target list. The extra

attribute-value pairs (i.e., the join attribute-value

pairs) of the retrieved records, which are going to be

deleted by the zerging procedure, are not to be in the

results so that the merged results contains only the

desired attribute-value pairs. The newly added

regular expressions, grammar rules and the SSI for
the modified action program are provided in Appendix

A.

b. The Composer

The composer receives the correctly parsed

requests from the parser and formats them into the require4

message format. Then, the composer broadcasts the formated

messages to all of the backends for execution. We have

modified the original composer program so that the composer

can correctly reformat the retrieve-common request.

2. The Post Processing Process (PP)

7he post processing process includes the aggregate

post operation and the reply monitor. The functions of PP

are described in [Ref. 11 : p. 27]. The aggregation post

operation is not modified. The only modification in the

reply monitor is to recognize the new request type for the

retrieve-common request.

67



B. THE MODIFICATION OF THE BACKEND PROCESSES

As described in chapter II, one of the design issues of

MBDS is to assign as zuch work as possible to the backends.

Consequently, there are more changes in the processes of

each lackemd than changes in the controller. The affected
processes are directory management and record processing.

1. 7he Director! Manaement Process (DM)

BM receives the new transaction message for the

retrieve-common request from the request composer and then

performs a number of directory operations, which includes
attribute search, descriptor search, cluster search, address

generation and directory table maintenance. From our

earlier discussion, we know that the source and target

request for a retrieve-common request should not be

processed concurrently by RECP. The target request must be

held in DM until RECP informs DM that the source request has

finished execution. Therefore, DM will first process the

source request and send the request and its addresses to

RECP. The target request is held in DN until RECP notifies

DM that the source request is done.

At what stages of the DM processing do we hold the

target request? There are several alternatives for holding

the target request in DM. These alternatives are list below.
(1) Hold the target request without performing any

directory operation.

(2) Hold the target request after it completes attribute

search.

(3) Hold the target request after it completes attribute
search and descriptor search.

(4) Hold the target request after it completes attribute

search, descriptor search and cluster search.

68

... .



(5) Hold the target request after it completes attribute

search, descriptor search, cluster search, and address

generation.

-~ Alternatives 2, 3, 4, and 5 will generate status and

directory information for the target request which must be

held somewhere. Due to the large number of the possible

attributes, the size of the status and directory information

may be too big to be kept in the primary memory, i.e., they

will have to be stored back to the secondary storage. The

extra disk 1/0 time for Roving the status and directory

information in and out of the primary memory, not only slows

the retrieve-common operation, but also increases the

prograr complexity and causes many unnecessary changes to

the existing software. Therefore, we choose alternative (1)

to process the target reguest.

The algorithm for the modified DAi is as follows.

Step 1: Get the next message from the message queue and

find the sender of the message.

Ste; 2: If the sender is the controller, then go to step

Stp3 I h sne i EPte5g.ostp8

Step 3: If the sender is RC, then go to step 81.

Step 5: If this is not a retrieve-common transaction, then

go to step 11.

Step 6: Identify and separate the source request and the
target request from the transaction. 11old the

target reguest and perform the directory

processing on the source request.

Step 7: Send the source request with its address set to

RECP. Go to step 1.
Step 8: If this is not the message which indicates the

completion of retrieving all the source records,

then go to step 11.

69



Step 9: Get the correspondent target request and perform

directory prccessing on that target request.

Step 10:Send the target reguest with its address set to

RECP.

Step 11:Perform the original DR operation.

The SSL for the modified DR is provided in Appendix B.

2. The Record ProcessiR.g 2 (1ECP

RECP receives the requests and their address sets

from DR and performs the physical data operations on those

requests. The original physical-data-operation subprocess

includes a control function and a subfunction fo- each type

of request. The sutfunctions are invoked by the control

function according to the type of request being processed.

In order to process the retrieve-common request, we

have made two modifications to RECP:

(1) adding a new subfunction, the retrieve-ccmmon

sutfunction, into the physical-data-operation

sutprocess; and

(2) adding a new subprocess, the hashing module, into

RECP.

a. The Retrieve-Common Subfunction

The purpose of the retrieve-common subfunction

is to direct the flow of the control in the

physical-data-operaticn subprocess so that the

retrieve-common request can be processed correctly. The

difference between the retrieve-commnn subfunction and the

retrieve subfunction can be summarizel as follows.

(1) The retrieve subfunction sends the retrieved records

to the PP, whereas the retrieve-common subfunction

Eends the retrieved records to the hashing module.

70

°.'2 S



j

(2) In addition to sending a message to CC to indicate the

completion of the retrieval of physical data (as the

retrieve subfunction does), the retrieve-ccmmon

sutfunction will send a message to notify DM that all

the source records have been processed.

The algorithm for the retrieve-common

subfunction is as follows.

Step 1: Reserve a result buffer.

Step 2: For each address in the set of tracks which are

furnished ty DM, fetch the track from the disk

and place it in the track buffer in the primary

memory.

Step 3: Examine the records in the buffer one-by-one. If

the record is marked for deletion, disregard it.

If the record does not satisfy the query,

disregard it. If a record satisfies the query,

then extract the values for the attribute names in

the target-list of the request and store this

information in the result buffer.

Step 4: When the result buffer is full, send the contents
of the buffer to the hashing module.

Step 5: Repeat steps 2, 3 and 4 until there are no more

addresses for the request.

Step 6: Send a message to CC to release the lock for thiis

request. If this is a source request, then send a

message to DH so that DM can process the target

request.

Step 7: Free the result buffer.

The SSL for the modified control function and the

retrieve-common subfunction are provided in Appendix C.

71

,, - ., -. ,,- ,. .... .. . ... .. . ... .... .. .. .. .-. ..- . .. 5 '



b. The Hashing Module

The hashing module performs the hashing and

merge operations. The merged results are sent to the

contrcller. The module is invoked by the retrieve-ccmmon

subfunction of the physical-data-operation subprocess.

here are three procedures within this module, the hashing

procedure, the bucket-block tracking procedure and the

merging procedure.

(1) The Hashing Procedure. The hashing

procedure receives the records from the retrieve-common

subfuncticn of the physical-data-operation subprocess and

performs the hashing function on the value of the join

attritute of each record. The records and their hashed

results are stored in a result buffer. When the buffer is

full, its contents are passed to the bucket-block tracking

procedure for further processing.

The algorithm for the hashing procedure is

as follows.

Step 1: Reserve a result buffer.

Step 2: Get the data type of the value of the join

attribute from the record template and reserve a

result buffer.
Step 3: Extract a record from the input buffer which is

passed from the retrieve-common subfunction.

Step 4: Apply the appropriate hashing function to hash the

value of the join attribute of the record

according to data type. (See Chapter IV again.)

Step 5: Store the record and the hashed bucket value in

the result kuffer.

Step 6: If the result buffer is full, then send the

contents of the result buffer to the bucket-block

t cking piccedure.

72

U'.

-*- *.o*o' *-



Step 7: Repeat steps 3, 4, 5 and 6 until there are no more

records in the input buffer.

Step 8: Free the result buffer.

The SSL for the hashing procedure is provided in Appendix D.

(2) The Eucket-block Trackir.g Procedure. This

procedure stores the records (both the source records and

the target records) into blocks according to their bucket

values and maintains one hashing table for the currently

processed request and one global table to store the

logical-hash-table addresses for all of the retrieve-ccmon
requests in system. The inputs to this procedure are the
records and their hashed bucket values, which either come

from the local hashing procedure or from the other backends.

A checklist is used to ensure that the hashed results of the

non-local target reccrds are received from all of the other

lackends. There is also an additional disk I/O buffer used

in this procedure to zove the blocks of each bucket into and

out of the primary memory. The outputs from this procedure

are the logical addresses of the two hashing tables of the

source request and the target request, which are passed to

the merging procedure. The structures of the global table,

hashing table, bucket, and block have been described in

Chapter IV. After prccessing all of the local records, this

procedure will group the local target records together with

their bucket numbers, and then broadcast them to all of the

other backends.

The algorithm for this procedure is as

follows.

Step 1: Create the global table and reserve a disk I/O
buffer.

Step 2: Get an input buffer of records. If the input

buffer contains source records, then go to step 5.

73

'o"." , . " .", "" , • .'', .''', "'. ".'' ''," '':', 3 l #,'. ',.., -J" .''..-::'',.'',''.:.-:-" ',"'- ,- : h .-



Step 3: If the input buffer contains local target records,

then go to step 6.

Step 4: If the input buffer contains the target records

received from the other backends, then go tc step

8.
Step 5: Get the hashing table for the source request. Go

to step 7.

Step 6: Get the hashing table for the target request.

Step 7: Store the record into a bucket and perform the

bucket-block tracking operation (as described in

chapter IV). Go to step 9.

Step 8: Perform the bucket-block tracking operations to

insert these incoming records into the target

bashing talle.

Step 9: Repeat steps 2 to 8 until all records have been

processed.
Ste; 10: If the input buffer contains local target

records, then retrieve the local target records

from the target hashing table bucket-by-bucket

and broadcast them (with the bucket number) to

the other lackends.
Step 11: If the input buffer contains non-local target

records, then get the logical address of the

hashing table of the source request. Pass the

logical address of the hashing tables of the

source request and the target request to the

merging prccedure for the merging operation.

The SSL for this procedure is provided in Appendix E.

(3) The Merging Procedure. This proce.dure does

three functions:

(1) fetching the hashing tables of the source reguest and

the target request by their logical addresses which

have been prcvided by the bucket-block tracking

procedure;

74



(2) performing the merging operation on the records of

both hashing tables (as described in chapter IV); and

(3) sending the merged results to the controller.

The merged results contains only the

attribute-value pairs whose attribute names are specified in

the target-lists (either the source reguest or the target

request). The extra attribute-value pairs (i.e., the join

attritutes and their vales, which have been added into the

target lists by the parser) are deleted by this procedure.
_he S5L for the merging procedure is provided in Appendix E.

C. TEE MODIFIED MESSAGE-PASSING FACILITIES

In Chapter II we have introduced the general format and

the different types cf MBDS messages (see Figure 2.3 and

Figure 2.4). In order to accomplish the retrieve-ccmmon

request we have added two new message types which are shown

in Figure 5.1.

D. EXECUTION OF A RETRIEVE-COMMON REQOEST--VIENED VIA

-ESSAGE-PASSING

In this section we describe the sequence of actions for

executing the retrieve-common request as it moves through

IBDS. The sequence of actions are described in terms of the
types of messages passed between the MBDS processes: PEQP,
PP, DM, RECP and CC. The order in which message are passed

is denoted alphabetically ('a' is first). The digit

following the ordering letter will be the message type as

shown in Figures 2.4 and 5.1.

The sequence of actions for a retrieve-common reguest is

shown in Figure 5.2. First the retrieve-common request comes

to RECP from the host (al). REQP sends two messages to PP:

the number of requests in the transaction (b3) and the

aggregate operator of the request (c-4). The third message

v(

75

4

-2;[ f



- S

Message Type : (32) Hashed Tar, .t Records

Source : Eeccrd Processing

Destination : Reccrd Processing (other backends)

Explanation :This message contains the bucket numbers

of the target hashing table and all of

the target records associated with

their buckets.

Message Type : (33) Source Eetrieve Finished

Source : Reccrd Processing

Destination : Directory Management (same backend)

Explanation : This message is used to notify Directcry
Management that all of the source

reccrds have been retrieved. DM can then

begin processing the target request.

Figure 5.1 The New IBDS Message-Types.

sent ty REQP is the parsed traffic unit which goes to DM in

the backends [d6). D. sends the type-C attributes needed by
the retrieve-common request to CC (e20). Once an attribute

is locked and descriptor search can be performed, CC signals

DM (f26). DM then prccess the source request (target request

is now held). DM performs descriptor search and signals CC

to release the lock cn that attribute (g23). DM sends the
descriptor ids for the request to the other backends (h15).

'->. The DN processes in the other tackends send their descriptor

ids to the DM process residing in this backend (i15). DM

then uses its own descriptors and the descriptors received

from the other backends to form descriptor-id groups. DMI

now sends the descriptor-id groups for the source request to

76

&A."d-°



PP RE(QP

IIG

Get Pc. ~Put PcI.

Put Pcl i c

U 121

Figure 5.2 The Se uence of Messagjes for Executing a
Retrieve-common Re q~est.

77



CC (j21). Once the descriptor-id groups are locked and

cluster search can te performed, CC signals DM (k27). DM

then performs cluster search and signals CC to release the

locks on the descriptor-id groups (m25). Next, DM sends the

cluster ids for the retrieval to CC (n22). Once the cluster

ids are locked, and the request can proceed with address

generation and the rest of the source-request execution, CC

signals DM (028). DE then performs address generaticn and

sends the source request and the address set to RECP (p16).

Once the retrieval request has executed properly, RSCP sends

a message to DM to start processing the target request

(r33). DM processes the target request in the same way of

processing the source request (i.e., phases e20 to p16).

7he retrieved records ate processed by the hashing mcdule in

RECP. Once the local target records have been processed

properly, the hashing module broadcasts the hashed target
records (grouped by tucket numbers) to the other backends

via RICP (s34). The hashing modules in the other backends

sends their hashed target records to the hashing module of

this backend (t34). Once the comparing and merging

operations performed by the hashing module, the results are

sent to PP (u2). PP then forwards the results to the host

(v2).

78



TI. CONCLUSION

A. REVIEW AND SUHHASY

The xulti-backend database system (HBDS) in the

laboratory for Database System Research at the Naval

Postgraduate School is designed to overcome the

performance-gain and capacity-growth problems of either the

traditional database system or the

single-backend-software-database system. The original MBDS

supported four primary operations, namely, RETRIEVE, DIIETE,

UPDATE and INSERT. This thesis presented the design and

implementation of the fifth primary operation, the

RETRIEVE-COMMON operation. The retrieve-common operation is

used to merge two files by common attributes. Our major

goal is to maximize the utilization and minimize the

affects to the existing system.

We have analyzed several possible design alternatives

and then selected the best one for our design and

implementation approach. The key issues for the selections

are the cohesion to the design requirements, the design

issues of MBDS and tle time ccmplexities of implementation.

Cur design and implementation is based on the bucket-hashing

approach. Each backend performs partial merge with its

portion of source records and the entire set of target

records, sending its results to the controller. The

controller forwards the final results to the user at the

host comuter.
Based on the selected design and implementation

approaches, the operations of the retrieve-common request

are executed in four phases, the request-preprccessing

phase, the record-retrieving phase, the hashing-and-storing

79

- . . - . . . - .* * t1t*



phase and the merging phase. The retrieve-common requests

is first parsed to be a transaction of two retrieval

requests (each of the retrieve-common type reguest) by the

parser. Then, the parsed requests are reformated into

required message forzats and broadcasted to all the tackends

by the ccmposer of the controller. 3ach backend receives

the formated messages of the transaction, separates the

source request and t.e target request and then performs the

directcry operations and retrieves the records according to

the queries specified in the requests. The retrieved

records of the source record set and the records of the

target record set are separately hashed on their common

attribute values and then stored into buckets of the scurce

bashing table and the target hashing table, respectively.

The hashed records of the source buckets and the records of

the target tuckets are compared and merged bucket-by-bucket.

The merged results are sent to the controller from all of

the backends. The ccntroller then forwards the results to

the hcst computer. In order to accomplish the operaticns of

the retrieve-common request, we have designed a hashing

module into the record-processing rocess of each backend.

For integrating cur design into MBDS, we have made

several rodifications. These are:

(1) the message-passing facilities,

(2) the parser of the request-preparation process of the

ccntroller, and

(3) the directory-management process and the

record-processing process of each hackend.

The algcrithms for the modifications and the prcgram

specifications (SSL) are also provided in Character IV, V

and Alpendices.

80

w



B. FUTURE WORK

The next step in the design and implementaticn cf the

retrieve-cmmon operation is the modification of the AfBDS

software according to the SSL given in the appendices. There

are two classes cf modifications. First, existing software

is updated to reflect the changes necessary for the

retrieve-common operation. In the system, Lew message types

must le defined, the request-prepatation and post-processing

processes of the controller are changed, and the

directory-management process is changed to ccrrectly

sequence and execute the retrieve-common request. Second,

new software is written to handle the processing of the

retrieve-common request, i.e., the hashing module. In the

system, the software for the hashing module is coded tested,

and integrated into the record-processing process of each

lackerd.

81

. .



APPENDIX A
THE MODIPIED REQUEST PREPARATION PROGRAM SPECIFICATIONS

In this appendix, we present only the modified Fortions

of the Request Preparation process. The original SSI is in

[Ref. 11 : p.87].

A. TEE IEX MODIFICATIONS

We have added the regular expression for the token *

COMMON into LEI. The rest of LEX remains unchanged.*

The original specification is in the lsrc file. *

* (The original lscr specifications.)

* EY

return (TOKBY) ;
1

return (TOKCOM);

I

"I<=" (

return (LE);

k * (The original lscr specifications.)

82

-..- . -..
o

i" i



o 7 - - -- -" - -. . i , , TL r :V ,W', .C ,< 'W'. , W.' U:

N

B. TB YACC RODIFICITIONS

In this section, we present only the SSL for the

modified portion of the parser. Tke original program is in

the ysource file.

procedure yyparse() ;

* This procedure is used to parse the output of LEX.

T The modificaticn of the yyparse procedure converts

* the retrieve-ccmmon request from a single request *

into a transaction of two requests. *

* Data structures and variables used in this *

* procedure:

1. No new data structures are introduced by this i

* imodif icaticn.

* 2. com_flag_l, comflag_2, corn_flag_3, com_flag:

* Boolean variables which are used indicate the

* different conditions of the retrieve-common

* request. *

* 3. newtblptr:

* A pointer to a request table. *

* The request table is defined in the commdata.def*

* file as a BEQtbldefinition structure. *

* 4. comatrb_ 1, com_atrt 2: *

* Character strings to hold the common attribute. *

/* The following is the modified portion of yysourc.*/

/* Add a new token in the specification. */

5token [str] TOKCCM /* common */

/* Add new derivations and program specifications. *,

transaction : beg tran lines

/* No changes in this part */

83

........

$ * ~.. ** .*, ~*'~.g %L r2



/* cf the transaction rule. *1

begsinglereg line

if corn_flag

then

/* This is a retrieve-common

request. */

Perform the operations which are

specified under the begtran

lines;

else

/* Perform original operations. */

end if;

end_req : EOR

/* Clear the com-flags. */

comflag = false;

comflag_3 = false;

reqforms : delete query

... /* These are the

original derivations. */

reg-forms ccmmcn target_list reqforms;

ccmacn : TOKCCM

perform CHECKREQUESTTYPE(req_tbl,OK);

/* Check if the first request is

a retrieve. */

if CK

then
comrflag = comflag_l = true;

else

perform ERROR-PROCEDURE;

end if;

attribute : LETTEFFIRST

84

- . ... ,. ................ .... ...
; pp. *.*.. p., ,,'. -.. ;-,, . . '.- . " . "" " . -" , , ,. . -"-' .'•"• , •. .. * .- --,,,,. ' '-.. .' . ".. ." ., ' ..



if comnflag-1

then

/* This attribute is the common

attriLute of the source

request. Copy the attribute

into corn atrb_ 1. *

perform strcpy (com-atrbl1,

attribute) ;
/* Put the common attribute of

the source request into

the target list and

convert the request table from

the form of single request to

the fors of a transaction. *
perform CONVERT (tbl~ptr->regtl,

con atrb_1,

trafid, req cnt,

nev-tbljptr->reqtb1) ;

cof flag_2 = true;

com flagl1 = false; %

/* com-flag = true U

else

if corn flag_2

then

/* This attribute is the

common attribute of the

target request. *
com atrb 2 = strcpy(attribute);

com.flag_3 = true;

com...flag_2 = false;

else

if comflag_3 = true;

then

/* This is the first

attribute of the target

85



5 list of the target

request. *

insert com atrb 2 intc the

target request table;

insert the attribute into

the target request table;

end if;

/* Perform the original

operations. *
end if;

en d;

retrieve :TOKEEIRIEVE

if ccmflag 3

t ben

perform EREOR-PROCEDURE;

else

if com-flag

then

/* Change the type to be

RETRIEVE-COMMON. *

end if;

end if;

/* Perform the original operations. *

delete :TOKDEIETE

if cam_flag

t 12en

perform ERROR PROCEDURE O;

else

/* Perform the original operations. *

end if;

insert :TOKI1BSERT

if ccmuflag

t~en

86



perform EBRORPROCEDUREO;

else

/* Perform the original operations. */

end if;

update : TOKUP£ATE
if ccwflag

perform ERFOR PROCEDUREO :

else

/* Perform the original operations. */

end if;

/* Perform the original operations. */

end Erocedure yyparse;

procedure CONVERT(input: sourcereq_table, sourcecoaatr,
traf id, requestnumber,

index reqptr;

output: target-req_table, request-number,

in dexreqptr);

* This procedure is used to rearrange the contents *

* of the request table of a request which is the *

* source retrieve of a RETRIEVE COdiION rejuest.
* This procedure performs the following tasks: *

" * 1. Rearrange the source request table. *

* 2. Make the common attribute of the source request*

.* the first attribute of the target list. *

* 3. Create a request table for the target request *

* and returr it to the calling procedure. *

* Data structures and variables used in this *

* rocedure are: *

* source req_table, taret reg table: *

' * The request tables of the source request and *

87



. ... ..

* the target request. *
* 2. new table: *

* An array of Reqtbl-definition structures. *

* 3. traf id: *

* A character string which is the traffic id of *

* a transaction. *

* 4. request_number: *

* An integer which is used to indicate the *

* number of requests in a traffic unit. *

* 5. index-regptr: *

* ~ pointer to a parsed traffic unit, which is *

* an array of Reqtbl-definition structures. *

* 6. source cco atr: *

* A character string which is the common *

* attribute of the source request. *

/* Use a new request table, new_table to hold the

contents of tke sourcereqtable, */
new table[O] = ECR;
new table[l] = str to num(traf id) ;

new-table[2] = requestnumber;

new table[3] = rcuttype; /* Defined in yyparseo.*/
new table[4] = RETRIEVE-COMMON;

/* Copy the contents of the source request table into

the new-table. *1

i =5

repeat

new table[i] = source reqtable[i];

i= i+1;

until source reqtable[i) = EOQ;

/* Insert the common attribute into the new table.*/

new table~i] = scurcecom_atr;
i = i+1;

/* Copy the rest of the source req_table into

88



the new-table. */

repeat

new tableli] = source reqtable[i-1];
i = i+1;

until sourceregtable[i-1] = null;

/* Put an end-of-request marker, EO,

into the new-table. */

new.table[i] = ECR;
/* Copy the new-table into the source-reqtable. *,

i = 0;

repeat

source reqgtablei] = new tablei];
i = i+1;

until sourcereg_tablefi) = EOR;

/* Increase the request number, and create a request

table for the target reguest. */
reguest-number = request-number+l;
perform ALLOCATE_EEQ_TABLE (targetreq_table) ;

/* Put the targetreq_table into the

parsed traffic unit. */

index-regptr->regtbl[ request_number- 1]
= targetreq_table;

/* Feturn the request number, targetreqtable and

indexreqptr to the calling procedure. */

end procedure CONVERI;

89



-- =4 o & -- -- --- . : .: . . : -- - . , . =- -; - . . ." ' ......yc ~ .. - -~ " --- .. ... . . . . ..

procedure CHECKREQUEST_TYPE(input: reqtbl; output: ok);

* This procedure is used to check the syntax of a *

* retrieveccmmon request. If the request type is

* not retrieve, set OK to false. Otherwise, set OK

* to true. Return OK to the calling procedure.
********** ** ** ** ***, ** *** * /

end procedure CHECKREQUESTTYPE;

procedure ERRORPPOCELURE( ;
*******************************************************

* This procedure is used whenever there is a syntax *

* error in the request. *

* This procedure will print an error message and ,
* terminate the parser operations. *

end procedure ERRORPEOCEDURE;

90

,d ,

4., ," w " . " . ."" " -'""' . '- " ~ . '.- .' - '-"""' . ' ' ' '" " " ''- ."'" . .. " % " "" " ' " " k" ' ,-,- 
,

"



U!

THE MODIFIED DIRECTCRY MANAGEMENT PROGRAM SPECIFICATIONS

The original SSL for the Directory Management process is

in [Ref. 13 : p. 82-102]. In this appendix, we present only

those procedures which are affected by the retrieve-ccmmon

reguest.

procedure DMParesedTrafUnit () ;

* This procedure is used when Request Preparaticn *

* (EQP) sends a traffic unit to Directory *

Management (DM.). The original procedure is in *

the tu.c file.

We add an if statement to differentiate between

the retrieve-cmmon request type and the other

request types. *

No new variables are introduced in this procedure.

/* Get a pointer to the parsed traffic unit. */

ti_ptr = DMR$ParsedTrafUnit();
/* Get a pointer to the record template

of this traffic unit. */
tuplptr = get_tmlptrtiptr->ti dbid) ;

/* Get a pointer to the attribute table. */

Al = AT-lookuptblti ptr->tidbid)
/* Get the type-c attributes for the traffic unit

and send them to DSCC. *I

perform DMTypeC_ttrsTrafUnit();
/* Process the requests of this traffic unit. */

91

.3 ,,.: .... ,..- .... I.,. :.:, .-- :; .-, . ,:.:- :.:,:.: .-. ,,.: -:-; ., :-: ; .-.-.. .. : . , :,-.-., . .-, :.;.:...



ri-ptr = tiptr -> ti-first-reqpointer;

/* Get the type cf the first request of

this traffic unit.*/

if req_type = RETRIEVE-COMMON

then

/* Ue will cnly process the source request. */

/* The target request will not be processed */

/* until the record-processing process has */
/* retrieved all of the source records. */

/* Perform the descriptor search processing. */

done = NINSSRDESC(&rie, riptr, tmplptr, AT);

if done

then

/* Broadcast the descriptor ids to the

other backends. *1

DM Broadcast DIDs(Srid);

end if;

else

/* This is nct a retrieve-common transaction, so

process the requests of the traffic unit

one-by-one.

end if;

end procedure DM ParesedTrafUnit;

procedure DM ecP Msg0

-. $~*This procedure is used when there is a message

- for DM from RECP (in the same backend).

'A. * We add a new message type to indicate that all

* cf the source records have been retrieved. *

* No new data structures or variables are used. *

* The original Frocedure is called by *

92

" . . . . •• ..... . .."" ". " " 2. " - " ".



* DM THIS BE MSG 0 and is in the dirsan.c file. *

/* Get the message type. */

lMsgT7ype = DM R$Type;

switch (MsgType)

case OldNewValue:

perform DM.OldNewValues () ;

case UpdFinished:

perform D?_UpdFinisbedO ;

case Sourcefirished:
/* This is the message which indicates the

completion of the retrieval of all the

source records. *1
perform DE Source finished (msg) ;

end switch;

end procedure DMRecPNsg;

procedure DMSource-finished(input: message);

* This procedure is used when DM receives a messages, *

* from RECP, which indicates the completion of the *

* retrieval of all of the source records. DA is now *

* ready to process the target reluest.

* This procedure is called by D?_Recpmsg(o. *

/* Receive the request id from the message. *I

perform DM_RSRid (sourcereqid);

/* Get a pointer to the trafjinfo entry by the

source-reqid. */

ti-ptr = DM_TiFind(source-req_id);

/* Get a pointer to the req_iufo entry for the source

reguest. */

93

.- ., -.



source req info itr =DM1 RiFi nd(reg id, tiptr);

/* Get a pointer to the reqjinfo entry for the target

request by the source reiiinfo ptr. *
targetriptr = scurce req infopt->next req info;

/* Get the request id of the target reauest. *
target re- id = Find request id (target riptr) ;

/* Perform the directory operations on the

target request.*/

/* Get the record template for the target request.*/

tuplptr = gettmpl ptr(ti ptr->tit Lid);
/* Get a pointer to the attribute table. *

A7= A_lo okup tb(tiptr ->ti dbi d);
/* Perform the descriptor search processing. *
dcne = NINSSRDESC(&rid, ri_ptr, tmptptr, AT);
if done

then

/* Broadcast the descriptor ids to the other
backends. V1

perform DMBzoadcastDIDs(&rid) ;

end;

end procedure DMISource-finished;

,A

94



APPENDIX C

THE MCDIFIED RECORE PROCESSING PROGRAM SPECIFICATIONS

In this part cf the appendix, we have added the

retrieve-common subfunction into the control function of the

physical-data-operaticn subprocess of the record-processing

.process {BECP}. We have presented only the modified portion

of the original RECP in this appendix.

procedure ReqProcessirg(input: MsgType) ;

* This procedure is used to process requests according *

* tc the request type. *

* we add tha retrieve-common request type into the *

* switch statements as one of the optional cases. *

* This procedure is called by the procedure RP_DM. The *

* original procedure is in the reproc.c file. *

/* Get the request type. */

switch (requesttype)

RETRIEVECOMMON:

perform STyRet Del() ;

/* From this point, we ues the same

procedures as used for the

RETRIEVE request processing. */

/* Now, back to the original ReqProcessing(). *1
end procedure ReqProcessing;

95

F....... .. ........... . ......................... . ... .



RD-A559 476 DESIGN ANALYSIS AND IMPLEMENTATION OF THE PRIM22
OPERATION RETRIEVE-COMM (U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA H L TUNG JUN 85

UNCLASSF]ED F/G 9/2 NL_

EhhmhhEEEEEEEIEEEEEIIEEEEIIE
EIEEIIIIIEEEEE
UIIIIIII



I
-.. 4 4
'4 .1~~~

'S

21 
-~

'.4 .4

- .4.

* 

.44 ~

.4.

4,. 'V
*~. .'~

4~ ~V
-4

* 
.4~5%*

-4..

A'

45

11111 ~ A WU28~ ,.SIIItI~~L~ ~
jj~jj~ ~ 2 .LU~

~

'-'-''4' .4
- l11II~~

IEEE,- luull~1111.25 1.4 1.6- mmmli-
-i

~4*~',

*v ~.

MICROCOPY RESOLUTIO#4 TEST CtIMT
NATO~4AL BU4~MJ-O~ STANDWCS-1963-A

4

.'. Sm...

*4~4

h. ~-'

*'

.9.

-4 .*-.'

4.4..~

'.4 ~.r-4



procedure EPReadCompleted() ;

* This procedure is used when a physical read is *

* ccmpleted. We add the retrieve-common request *

" type into its switch statements as one of the *

* the request types cases. *

This procedure is called by the procedure RP RP. *

The original procedure is in the recproc.c file. *

/* Get the request type of this request. */

switch (reguesttype)

RETRIEVE-COMMON

perform SCReto;
RETRIEVE:

perform EC_Ret();
/* Now, back to the original processing. *1

end switch;

end procedure RPReadCompleted;

.- d

procedure RB$SENDCOMPLETION(input: RBptr, reqtype) ;

* This procedure does the following tasks: *

* 1. Send the contents of the result buffer to *

* either the hashing module or the controller, *

* depending on the request type. *

* 2. If this is a source request of a retrieve- *

* common request, then send a message to DM *

* indicating that all of the source records *

* have been retrieved. *

* 3. Send a message to CC to release the locks on *

* the database for this request. *

* ~. Free the result buffer space after the *

* contents of the result buffer have been sert.*

96



APP NDI .

TB BCDIFIED RECORE PROCESSING PROGRAM SPECIFICATIONS

In this part of the appendix, we have added the

retrieve-common subfunction into the control function of the
physical-data-operaticn subprocess of the record-processing

process (2ECP). We have presented only the modified portion

of the original RECP in this aFpendix.

procedure ReqProcessivg(input: MsgType) ;

* his procedure is used to process requests according *

* to the request type. *

* e add the retrieve-common request type into the *

* switch statements as one of the optional cases. *

* This procedure is called by the procedure RP DM. The *

* original procedure is in the reproc.c file. *
%'%.************************* *

/* Get the request type. */

switch (request_type)

RETRIEVE COMMON:

perform ST RetDel() ;

/* From this point, we ues the same

procedures as used for the

RETRIEVE request processing. */

/* Now, back to the original ReqProcessing() .

3. end procedure ReqProcessing;

95

S.............................. .......... ........... . . . .



* All of the data structures ans variables are the

* same as the original procedure.
* his procedure is called by the procedure *

S -RCet () . *

* The original jrocedure is in the recproc.c file. *

S- /* Get the request id by the result buffer pointer

-BEptr. */

request-id = RB ftr->RB_rid;

if reqtype = RETEIEVECOMHCN

then

if the result-buffer is full

then

/* Send the contents of the result buffer *1

/* to the hashing module and reinitialize */

/* the tuffer size to 0.

HASHFUNC (requestid, result, resultlength);

result-length = 0;

end if;

if this is the last result buffer

for this request

then

/* Send the result buffer to the

hashing module. */

perform HASHFUNC (requestid, result,
result-length)

if this is a source request

them

/* Send a message to DM indicating */

/* that all of the source records */

/* have been retrieved. *1

perform DIFinRegSRP_ (reguestid);

end if;

/* Free the result buffer space.

97



perform "ecpfree (requestid);

/* Send a message to CC to */

/* release the locks for this */
/* reguest. */

perform CCFinReq$RP_S (requestid);

end if;

else

/* This request is not a retrieve-common

request.

Now, back to the original processing. */

end if;

end procedure RB$SENLCOMPLETICN;

procedure XTRACT(input: TR&CK-BUFFER, indexB, result2,

request, tmplptr, targetptr;

output: result2) ;
,-2-2'*********** ***********************************~*******

* This procedure extracts the attribute names and *

* values which correspondend to the target list *

* cf a record. *

* his procedure is called by the procedure *

$ SRETrPROCES SING(. *

* The original Erocedure is in the rbabs.c file. *

R We add an end-of-record marker, BOB, at the end

* of every reccd.
* *************************************

/* Process all statements of the original procedure

until the end of the outermost while loop. */

/* Add the following processing. */

if the reqtype = RETRIEVECO3MON

then

put the EORecord marker into the result buffer;

end if;

/* Now, back to the original processing. */

98

4*.* -- * A ,. .' .% . " .* -. ..- ... . -r. . ..- . ." -.- ". --" ,. , '' ' , ,,.r ,' . ''.:'o'.v. '\ , .' .'''; -. '" .k '
"
,,.' '' ,,".' .','W$A.-4,''



"nd procedure XTRACT;

procedure RBSPUT SEND(input: RESULT BUFFER, result,
lengthof-result);

0 This procedure puts the results for a request *

into the result buffer. If the result buffer is *

full, then the contents of the buffer are sent to *

the controller or the hashing module and the

length of the buffer is set to 0. *

This procedure is called by the procedure

RETRPROCESSING (. '

The original Frocedure is in the rbabs.c file.
******** ***************************** , , ***/

if the result buffer is full

then

/* Find the request type in the result buffer.*/

reqtype = FIND reqgtype (result buffer);

if reqtype = RETRIEVE-COMMON

then

/* Send the results to hashing module. */
perform HASHFUNC(resultbuffer);

else

/* Send the results to the controller. */

perform RES$CNTLSRPS (requestid,results,

length of.result);

end if;

lengthofresult = 0;

else

/* Store the results into the result buffer. */

/* Now, back to the original processing. /1

emd if;

end procedure RB$PUT_SEND;

99

N N



procedure RP CNL. ANO0HERBEJMSG()

° The purpose of this procedure is to process

* the messages received from the controller or

the other backends.

This procedure is modified for processing the

the hashed information of the non-local target

records.

The original procedure is in the reproc.c file.
* ~********* *******************************************/

/* Get the message type. */

perform MsgType = Type$RP_B;
case NsgType of

Bucket-info:

/* This message is the hashed information */

/* for the non-local target records. */

perform PROCESSBETARGET() ;

/* This procedure should return the sender,*/

/* the reuest-id of the target request *1

/* and whether or not this is the last */

/* message from this backend. */

/* Check to see if all the target records */

/* of all the other backends have been */

/* received. *1

if LAS7_MSG

then
perform CHECKRECEIVE_MSG (sender,

requestid, ALLRECEIVED);

end if;

if ALLFECEIVED

then

100

".,. ., .. . .,-. -....- .- .-. .,.. - -, ,./. ,°' °'- -,. -,- -.- .- , .,-.-., , ... ,,,-., ... .- ,-,.. : ,-, -, .,' '- .- '," -,- -',--, - -*- -



perform STAETTOMERGE(request id);

/* The called routine will perform */

/* the merging operation and send the */

/* results to the contrcller. *1

end if;

/S Now, back to the original processing. *1
end case;

end procedure RPCNLAWOTHER_BMSG;

procedure PROCESS BETARGET(input: message;

output: sender, request id

LASTRECORD) ;

T This procedure is called to process the message

which contains the hashed bucket information of

* the non-local target records.

This procedure will return the sender of the

message, the request id of those non-local

records and a boolean variable, LAST RECORD, to

indicate that all of the target records from the

sending tackend have been received.

* Data structures and variatles used in this

procedure are:

1. LASTRECCRD: A boolean variable which is

used to indicate the end of

*this request.
2. message: A character string which is used

* to store the hashed results of

* target records and is sent from *

* the other backends. *
******** ****************************************** */

/* Get the sender of the message. */

perform GETMSGSENDER (sender);

/* Get the request id of the request. 5/

101

.4 !

. -........................................................ .. . .. I



perform GET_ REQU IST ID (reguestid);

/* Now, check the global table to find the address */

/* of the hashing table for this request. */

perform CHECKGICEALTABLE(request id, hash-table,

NEW REQUEST);

NEWEECORD = true;

/* Since the message is an array of characters,

/* we have to bypass the header to get the record */

/* information. If this message is the last message */

/* of the sending backend, then there will be an

/* end-of-request marker, FORequest, in the front */

/* of the end-of-message marker.

I = the integerwbich standsfor

_the index-wbere-record_start;

/* Gets the bucket numbers and their associated */

/* records from the message, then insert them into */

/* correct buckets of the hashing table. */

while ((not end cf message) or (not end of request)) do

perform GETBUCKET -UMBEE(message, I, bucket-value);

/* Get the bucket number of the record and the */

/* record itself from the message, and then

/* store the record into the appropriate bucket */

/* of the hashing table by using the */

/* bucket number. */

perform GETARECORDSET(message,I,set);

Ferform STORERECORDINBASHTABLE (hash table,

bucket-number, set, NEW-RECORD);

NEW-RECORD = false;

end while;

if EOReguest

then LAST RECOED = true;

else LAST RECOED = false;

end if;

end procedure PROCESSBETARGET;

102

p".n n



procedure STARTTOM EGE(input: requestid) ;

* This procedure is called when the target record *

* set has been received from all of the other *

* backends. *

* The input reguest id is the request id of the *

* target request. *

* The data structures and the variables used in *
* this procedure are: *

* 1. TARGETTAPlE : The hashing table for the *

* target request. *

* 2. SOURCETAELE : The hashing table for the *

* source request. *

* 3. targetid: The request id of the target *
* request. *

* 4. source-id: The request id of the source *

* request. *

target id = requestid;

/* Get the source request id. *1

perfcrm GETSOURCEID (targetid, source_id);
/* Get the hashing table of the source request.
perform CHECKGLOBAL TABLE(sourceid, globaltable

source ha shtable,

NEW REQUEST);
/* Get the hashing table of the target request.

perform CHECKGLOBAL TABLE (targetid, global-table

targethashtable,

NEW_RZQJESt);
/* Merge the records of these two requests and send */
/* the results to the controller.
perform MERGE(sourceid, source-hash-tableaddress

103



target hash-table. address);

end procedure START_7CMERGE;

procedure GETSOURCE_ID(input: requestid;

output:requestid);

* This procedure is used to find the request id for

* the source request by using the request id of the *

* target request. *

" * Recall that tbe source request and the target

* request has the same traffic id, the difference

* between them is that the request number of the

* source request is less than that of target

* request by 1. *

- end procedure GET SODECE ID;

110

.4* "-

.J..



procedure CHECKRECEIVEMSG (input: sender, requestid;

output: ALLRECEIVED);

- This procedure is used to check whether all

*- * of the non-local target records have been

* retrieved from all of the other backends for

- a particular request. If all of the non-local

" target records have been received, then *

L AL RECEIVED is set to true. Otherwise,

AILRECEIVED is set to false.

end procedure CHECK UICEIVEMSG;

41

procedure CHECK GLOBI ATABLE (inpu.request id;

output: hash-table,

NEWREQUEST) ;

- This procedure is 4.

- ,* is a new request by checking if the request id is *

* in the global table. If the il is found, then set *

* the value of NEW_REQUESS to false and return the *
* NEW VALUE and the hash table of of the request.

* This procedure has been defined in HASHFUNCO. *

. . end procedure CHECKGIOBALTABLE;

105

J* ]°'.

V:::

:....................................



procedure GET BUCKETNUMBER(input: message, index;

output: index, bucket-number);

"* his procedure is used to extract the bucket

* numbers from the message, then return the

t tucket number and the incremented index to its

* caller. *

* Data structures and variables used in this *

p procedure: *

* 1. bucket: A character string representation *

i,* of the bucket number. *

... 2. j: A general purpose index.

j =0;

repeat

bucket[j] = message[index];

index = index+1;

until messa e~r i= EOV;

- perform STRINGTCINTEGER(tucket, bucket-number);

end procedure GETBUCIETHUMBER;

106

I

V. *- - - - - - - - - * * 4 **.-.- . ~

".-- i.*:.( ~ **. 2' . ..-. j* . . * -



procedure GETA.RECORDSET(input: message, I;
output: set);

* This procedure is used to extract the common *

* attribute value of a record and the record itself*
* from the message which contains the hashed bucket*
* information of the non-local target records. *

* The data structures and the variables used in
* this procedure are: *

* 1. set: A array which contains the common *

* attribute value of a record and the *

* record itself. *

* 2. j: A general purpose index. *

3J= 0;

repeat

set[J] = message[I];

I = I 1;

= J+1;

until message[I-I] = EORecord;

end procedure GETAJECOEDSET;

107

U1'o"



THE HASHING PROCED0RE PROGRAN SPECIFICATIONS

Procedure HASHFUNCTICN(input: request id, result, length;

output: reguestid, hashed-result,

length-hashedyresult);

* The purpose of this procedure is to hash the value*

* of the join attribute into a bucket of the hash*

* table.

* A hash buffer is reserved to store the hashed

* results.

* Data structures and variables used in this*

* procedure are:*

* 1. hash buffer: A variable of the data type

* hashingbuffer which is used

* to stored the records and their*

* hashed bucket VdlueS, and is

* defined in hashingamodule.def. *

* 2. RP rid izifo: The information for a request. *

* This structure is defined in

* the comadata.def file.*
* 3. RPridptr: A pointer to the data structure*

* of type RP_rid-info.*

* 4. regtblptr: A pointer to a request table. *

* The request table is defined in*
* the commdata.def file as a

* REQtbl definition structure. *

* 5. tempentry: A variable of data type rtntry *

* which is defined in commdata.def.

* 6. temptr: A pointer to tempentry.

* 7. rtenrty: A pointer to a field of RP -rid -info.*

* The type of this field is rtntry.*

106



/* Check if the request id is a new request.

if new request

tien

/* Get the record template to find the value

/* type (i.e., integer, string or float) of the */

/* common attribute value.

perform FINDRP-rid-info (requestid,RPridptr);

/* Get a pointer to the request table from the */

/* RP rid info. */

req tblptr = RP_rid ptr -> P_rireq;

/* Find the attribute name from

the request table. */
perform FINDCOMmONA!TRIBUTE (req_tblptr,

attributename);

/* Get a pointer to the entry */

/* of the tezplate for the common attribute.

temptr = RP_ridptr -> RP-ritmplptr -> rt-entry;

/* Get the value type of the common attribute

/* from the record template. */

if temptr->tempentry.valuedata type = 's'

then

value-type = string;

else

/* If the value type is integer, then */

/* we decide which hashing function to

/* use. */

MAX = temptr.value_cl; /* The possible *1

/* maximum value */

/* for this *1

/* attribute.

MIN temptr.valuec2; /* The possible */

/* minimum value */

/* for this

109

5 ,5" " 5 .. S' , '.. ;';' %,":. .' ._.' ,; : :" ": ..; . :,.. ''' . '. ;":"""" .'":"' , ""''" > " ; , "



/* attribute. */

if (MAX-MIN) < the number of _buckets

then

valuetype = small-integer

else

range (MAX-MIN) / the.number-of)buckets;

value-type = large_integer;

end if;

end if;

end if;

/* Allocate a buffer to store the hashed results. */

perform ALLOCATE_HASHBUFFER(Hash buffer);

/* Note: we may not want to call this */

1* routine at this point. *1
switch (valuetyFe)

case string:
perform STRING_HASH (result,

hashbuffer)
case small integer:

perform SMALIJNTEGEREASH (result, MIN

hashbuffer);

case large integer:
perform LARGTI1iTEGERHASH(result, MIN,

range,
hash_buffr);

end switch;

end procedure HASH PURC:

110

-4.. . v-.."............- "."."" ," , -I



procedure FINDCOMMONATTRIBUTP(input: request table;

output: attribute name) ;

* This procedure is used to find the name of the

* join attribute.

* The join attritute is the first attribute of the

* target list, sc we can just go to the entry
* where the target list begins and extract the first*

* attribute name and then return it to the calling

* procedure.

end procedure FINDCCMMONATTRIBUTE;

procedure ALLOCATEBUFFER (input: reguest_id;

output:hashbuffer);

/* This procedure is used to allocate a buffer for *1

/* storing the records and their hashed bucket number,*/

/* set the length of the buffer to 0, and then

/* return the buffer to the calling procedure.

/* The data structures and the variables used in

/* this procedure are: */

/~ 1. hash buffer: *1
A variable of the data type hashing buffer, */

1* which is defined in hashingaodule.lef

(see Appendix G).

/* 2. HBptr: *1

/ A pointer to the hashbuffer.

/* 3. HB id: */

111

-. *, , - ..*.1. - . , . . . • . , : - , . < - , . , ,. . .,. , . .,. . . .- . .



A field name of the hash buffer that *1

/* contains the request id of the records */

-- /' which belcng to this buffer. */

HE._ptr = allocate the hash buffer;

HEptr->HB-id = reguestid;

HE ptr->length 0;

end procedure ALLOCAIEBUFFER;

procedure STRING HASH(input: result buffer, h buffer);

* This procedure is called when the value type

* of the common attribute is a character string.

* It performs tte following tasks:

1 1. Extract records from the input result buffer

* one at a time.

- 2. Extract tIe value of the join attribute

-*. from the extracted record and then check the

" . lookup talle to get the bucket number for

• * the record.

. 3. Store the bucket number and the record into
."* a reserved hash buffer, h buffer. *

4 4. If the hash buffer is full, then send the

-- * hash buffer to Bucket-block tracking
* procedure.

* Data structures and variables used in this
* procedure are:

* 1. attribute value: A character-string *

*" representation of the common

*- attribute value.
* 2. record: A character-string representatioL *

L112



* of the extracted record.

* 3. bucketnumber: The bucket number where the

* record characterized by the *

* common attribute value is *

* hashed into. *
* 4. bucket: A character-string representation *

* cf the bucket-number. *

* 5. EO: The end-of-value marker. *

* 6. EON: The end-of-name marker. *

* 7. EOB: The end-of-buffer marker. *

* 8. LASTRECOEr: A boolean variable to indicate *

* that this record is the last *

* record for the request. *

* 9. i: The index for the length of the result *

* buffer. *

* j: A general purpose index. *

* 10. lookup: 7he lookup table, which is an array *

* with 2048 character-string elements. *

* 0 abal *

1 abc *

* * *

2047 zyth *

* 11. h-buffer: A variable of type hash-buffer *

* which is defined in *

* hashingmodule.def (see Appendix G)*

* and is used to store records and *

their hashed values.
************************************************** **/

113

%; . .... .. b .. . ...



/* Get the lookup table. 4/

• :'i = 1;

j0;

LAST RECORD = false;

/* Get records frcm the result buffer one at a time. *1

while result buffer~i] <> EOB do

/* Bypass the name of the common attribute. */

while result buffer[i] <> EON do

i = i+1;

end while; /* Ncw, result-buffer(i] = EON.

i = i+I;

/* Get the value of the join attribute.

While result buffer[i] <> EOV do

attribute-value[j] = result buffer[i];

i = i+1;

j = j+1;

end while; /* Ncw, result buffer[i] = EOV.

/* Compare the common attribute value with

/* the contents of the lookup table to get the

/* bucket-number.

bucket numbers = BISEARCH(lookup, attribute number);
perform NUIBER- OSTRING(bucket number, bucket);

-:f. /* Add a EOV marker to the end of
.. the attribute value. *1

attribute value[j] = BOV

/* Extract records from the buffer. */

i = i+1;

j 0;
repeat

record[j] = result buffer[i];

i = 1+1;
J = j+1;

until result-buffer[i-1] = .ORecord;

/* Ncw, recordIJ] = EORecord. */

if result bufferri] = EOlequest

114

.' . ..1
,%V



then

LASTRECORr = true;

i = i+1;

end if;

/* Store the hashed information into the

hash buffer, hbuffer. *1

perform PUTHASEBUFFER(bbuffer, bucket,

attribute value, record,

4ASTRECORD) ;

end while;

end procedure STRINGHASH;

procedure PUTHASHBUFFER(input: hbuffer,

bucket

attributevalue, record,

LA ST RECORD;

*ftf output: hbuffer);

T This procedure is used to store the hashed *

* record information into the hash buffer. *

* Data structures and variables used in this *

* procedure are: *

* 1. X,Y,Zi,j,K: General purpose indexes. *

* 2. MAX: The predefined maximum length of the *

* hash buffer. *

• 3. bucket: A character-string representation *

* cf bucket number. *

* 4. record: The input record which is in the *

'.* form of character string. *

* 5. LAST RECCRD: A boolean variable which is *

115
4, 15'



* used to indicate the end of *

* this reguest. *

* 6. h buffer: A buffer which is used to store *

* records and their hashed values. *

/* Check to see if the buffer has enough space for */

/* the new record. */

X = Stringlen (bucket-number);

Y = Stringlen (attribute-value);

Z = Stringlen(record);

K = the currentlengthof thehashbuffer;

if (K + X + Y + Z) > MAX
then

/* The buffer is full, so it is send to the */

/* bucket-block tracking procedure. /

perform BUCKIT BLOCK(h buffer);
/* Reset the length of the buffer to 0. *1
K = 0;

else

/* The buffer has enough space, so store the *

/* input record into the buffer.*/

for i = 1 tc X do

K = K + 1;
hash result[K) = bucket(i];

end for;

for i = 1 to Y do

K = K + 1;

hash-result[ K] = attribute-value[ i];
end for;

. for i = 1 to Z do

K = K + 1;

" hash-result[K] = record(i];

end for;

/* If this is the last record of this request, *1

116

. -,-,-. . . ° .. . -.. . .. . .- .. . . . -j .. . . .. .- -. - ,.. .... ,,. . %. -. __ 0% ' -..Al,,%.



/* then send the hash buffer to the

/* bucket blcck tracking procedure. */

if LAST RECORD

then
hash resultrK+1] = EORequest;
hash result[K+2] = EOB;

perform BUCKETBlOCK(hbuffer) ;

perform FEEBUFFERSPACE(h_tuffer) ;

end if;

end if;

end;

end procedure PUT HASB BUFFER;

procedure SMALLINTEGER_HASH (input: result-buffer,

HIN,
h buffer;

output: hbuffer);

* This procedure is used when the type of the *

* ccmmon attribute value is integer and when the *

* difference of the maximum and minimum value of *

* the common attribute value is less than the *

* number of the luckets of the hashing table. *

* It performs the following tasks: *

* 1. Extract records from the input result buffer *

* one at a time. *
BL

* 2. Extract the value of the common attribute frcm*
$ the extracted record and then calculate *

* the bucket number. *

* 3. Store the bucket number and the record into *

117

l: " ''-" '" "". .' - '.2-" -" ""-"-" -' "- " ' " -"---' ;" " "-" " '--- ' ".: " '..-/ ..".'---,'. '---- '-- '-.-''- -'.-'?-..--. .; " .'''..,,r' - .-., .- " ' . " . - " .. " -.. ",.-,. .,.,. .- ".-",,' ' .' ' " V ' ,- ,-', , ' '-.,, """ ." - ..,'' ' - . """"q q, " ",""..



• * a reserved hash-buffer. *

* Data structures and variables used in this *

* procedure are: *

* . attribute-value: A character-string *

?* reFresentation of the common *

•. * attribute value. *

* 2. record: A character-string representation *

* of the extracted record. *

* 3. bucket number: The bucket number where the *

" * record characterized by the *

* common attribute value is *

",* hashed into. *

.* 4. ucket: A character-string representation *

• cf the bucketnumber. *

* 5. EOV: The end-of-value marker. *

* 6. EON: The end-of-name marker. *

* 7. EOB: The end-of-buffer marker. *

* 8. IASTRECOr: A boolean variable to indicate *

/[* that this record is the last *

'[* record for the request. *

* 9. i: The index for the length of the result *

.* buffer. *

,/ * j: A general purpose index. *

* k: The index for the length of the attribute *

-value.
* 10. temp: An integer representation of the input *

-* attribute value. *

* 11. h-buffer: An variable of type hash-buffer *

-*-- * which is defined in *

* hashing module,def (see Appendix G)*
l * and is used to store records and *

..* their hashed values. *

* /* Initialize the indexes. */

118

...........



k =1;

j =0;

IAST FECORD =false;

/* Get the records from the result buffer

one at a time. *

while result -bufferliJ <> FOB do

/* Bypass the name of the common attribute. *

while result bufferfi) <> EON do

i = i+1;

end while; /* now, result buffer~i] is EON. *

i = i+1;

/* Get the value of the common attribute. *

wh~ile result buffer~i) <> EOJ do

attribute valuef k] =result bufferf i];

i i +1;

j+1;
end while; /* Bow, result-bufferfi] is EOV. *

/* Compute the tucket number. *

rerform STRING_7ONUMBER (attribute value, Temp);
bucket number = Temp - MIN;

perform NUMBER_10_STRING (bucket_number, bucket) ;

1* Add a EOV marker to the end of attribute value. *

attribute valuefi] = EOV

/* Get the attribute-value pairs of the actual *

/* target list of the record. *

i =i+1;

j=0;
repeat

record~j] result-bufferfiJ;

j =j+1;

until result bulferf i-1) =EOEecord;

/* Now, record~j] is EOPecord. *

if result buffezri] B OReguest

119



then

IASTRECORD true;

i = i+1;

end if;

/* Store the hashed information into the hbuffer. */

perform PUTHASHBUFFER (hbuffer, bucket,

attribute-number, record,

LASTRECORD) ;

end while;

end procedure SMALL_I-ITEGERHASH;

procedure LARGEINTEGERHASH(input: result-buffer,

MIN, range,

h_buffer;

output:Iash buffer) •

* This procedure is used when the type of the *

* ccmmon attribute value is integer and when the *

* difference of the maximum and minimum value of *

* the common attribute value is greater than the *

* number of the luckets of the hashing table. *

* It performs the following tasks: *

* Extract records from the input result buffer *

" * one at a time. *

* 2. Extract the value of the common attribute from*

* the extracted record and then calculate *

Z.* the bucket number. *

• 3. Store the tucket number and the record into *

j * a reserved hash-buffer. *

* Data structures and variables usel in this *

* procedure are: * .

1 1. attribute value: A character-string *

* representation of the commcn*

120

-. • |



* attribute value. *

* 2. record: A character-string representation *

* of the extracted record. *

7., * 3. bucket numter: The Lucket number where the *

.* record characterized by the *

* common attribute value is *

* hashed into. *

* h4 bucket: A character-string representation *

* of the bucket-number. *

* F. EOV: The end-of-value marker. *

* 6. EON: The end-of-name marker. *

* 7. EOB: The end-of-buffer marker. *

* 6. LAST-RECORD: A boolean variable to indicate *

* that this record is the last *

* record for the request. *

* 9. i: The index for the length of the result *

* buffer. *

* j: A general purpose index. *

* k: The index for the length of the attribute *

* value. *

* 10. temp: An integer representation of the input *

* attribute-value. *

* 11. h-buffer: An variable of type hash-buffer *

* which is defined in *

* hashing_module.def (see Appendix G)*

* and is used to stcre records and *

* their hashed values. *
************************************************** **/

/* Initialize the indexes. */

i =1;
k = 1;

j 0;

IASTBECORD = false;

/* Get records frcm the result buffer one at a time. */

121

L 7. N.-



while result buffer[i] <> EOB do

/* Bypass the name of the common attribute. */

while result bufferfi] <> EON do

i = i+1;

end while; /* Now, result buffer[i] is EON. */
i = i+1;

/* Get the value of the join attribute. */

while result bufferi] <> EOV do

attribute value[k] = result buffer[i];

i = i+1;

j = j+1;

end while; /* Now, result bufferfi] is EOV. */

/* Compute the tucket nurber. */
perform STRING TONUMBEB(attribute value, Temp);

bucket value = IRUNC[ (Temp - MIN)/range];

perform NUMBER_7OSTRING (bucketvalue, bucket);

/* Add a EOV marker to the end of attribute-value. */
attribute-number[j) = EOV

/* Get the attribute-value pairs of the actual *1

/* target list of the record. *1
• -f.i = iI;

"',, j = O;1 +1

repeat

" record[jJ = result buffer(i);
:::: i = i+1;

j = j+1;

until result buffer[i-1] = EORecord;

/* Now, record[j] is EORecord. */

if result bufferli] = EOReguest

then

LASTRECORE true;

i = i+1;

end if;

/* Store the hashed info nation into the hbuffer. */

perform PUTJHASH BUFFER(h buffer, bucket,

122

.,.. ,. . . ... . . . . . . °- - . °. . . . . - . . .° * +.. . . . ° ° *. ° . , . .



attribute number, record,

LAST-RECORD);

end while;

end procedure LARGE IWITEGER HASH;

123



THE EUCKET-BLOCK-TRACKIEG PROCEDURE PROGRAM SPECIFICATIONS

procedure BUCKETBLOCK(input: Hbuffer) ;
,****************** ************************* ***********

* This procedure receives a hash buffer, H-buffer, *

* from the ret-ccm subfunction and performs the *

* fcllowing task. *

* 1. Establish and maintain a global table to *

* store the addresses of the hashing tables *

* of all tte requests. *

* 2. Extract the hashed record information from *
* the input hash-buffer. *

* 3. Check the global table to see if the input *

* records belong to a new request. If they do, *

* then allccate a new hashing table. *

* Otherwise, get the logical address of the *

* hashing table from the global table and *

* assign a pointer to the hashing table. *

* 4. Group records into the buckets according to *

* their bucket numbers and store them into *

* blocks. *

* 5. Broadcast the bucket information of the local *

* target records to the other backends. *

* 6. Store the hashing table back to the secondary

* storage. *
**

* Data structures and variables used in this *

* procedure are:
* •

1. FIRST RET CON : *

A boolean variable which is set to

* true when the first retrieve common *

124

L% %

f l.. '.o, • • . .. . .., .... , .. .---.-. .. .- -.--. -.. . .- - - -.- ., ,.-_ _ , .. . . -..,. . . 4,.. ,.. -. , .. .



* request enters the system.*

* 2. GT ptr: *

* A pointer to a global table. *

• 3. Gtable:

• A variable of type global table (see

*Appendix G).

4. HT-ptr:

*A pointer to a hashing table.

5. HT:

*A variable of type Hashtable (see
• Appendix G).

6. HB-ptr:

*A pointer to a hash buffer.

7. H buffer: *

*A varialie of type hash buffer (see *

*Appendix G).

*2. NEWREQUESI:

• A boolean variable which is set to

*true if the request id cannot be found

*in the global table.

* 9. logical_addr:

*A variatle of type addrdefinition,

* which is defined in the commdata.def file.

10. bucket-number:

* The bucket number where the record *

* characterized by the attribute value is *

* hashed into. *

* 11. bucketz

* A character-string representation of *

* the bucket number. *

* 12. reqid: *

125

z.o
* * °



* ~ record which contains the traffic id and *

* request number of a request. *

* 13. i, j: *

* General purpose indexes. *
*-. ********* ********************************************/

if FIRS-RETCOM

then

perform INITIALIZEGLOBAL TABLE(GTptr);

FIRSTRETCOM = false;

end if;

/* Get the request id from the pointer of which

/* pcints the input hash buffer. *1

requestid = H-buffer.Reguestid;

/* Check the glotal table to see if this request is */

/* a new request.

perform CHECKILCEALTABLE (GTptr, reqid,

logical-addr, NEW_RZQUOESI);

if NEW-REQUEST

then

perform ALLOCATEHASH_TABLE (logical-addr) ;

perform INSEETGLOBALTABLE (GTptr, reqid,

logical addr);

end if;

perform GETHASHIWG_TABLE(requestid,

logical-adir, HT)

/* Now, the hashing table is ready to store records. */

/* Extract the record information from the
/* hash buffer one recori at a time.

/* 3ecause the last two character af the hash buffer */

/* are the EORequest marker which indicates whether */
/* this is the last hash tuffer for this request */

/* aud tae EOBuffer marker which indicates the *1

/* end of this hash buffer, the actual length of the */

126

* *. .



/* hash buffer is length-2. .
"ft j =1; "

while j < (H_buffr.length-2) do
/* Get the bucket number. */

i = 0;

repeat

bucket[i] = Hbuffer.Hashed-result[j];

i= i +1;
j +j

j = J 1; 'f

until H buffer.Hashedresult[j] = EOV;

/* Convert the bucket number from a character to "'

/* an integer. */
bucket-number = STRINGTOINTEGER(bulcket) ;

/* Get the common attribute value and the record *1

/* itself. *1
j = j + 1;

i =0;

repeat

ccumonand_recordli) = Hash-buffer.HB buffer[j];

i -i 1;

j= j + 1;
until commonand record [i - 1] = EORecord;

/* Store the record and its common attribute value */

/* into the hashing table. */

perform STORERECORDINJHASHTABLE(HT, bucket-numter,

common-and reccrd,

NEW RECORD) ;

NEW RECORD = false;

end while;

/* Check if this is target request */

if MOD (reqid.reguestno, 2) = 0

then

/* This is a target request.

127
.if

-,.". -.. .. . . - , .. . ., -. , . --... . 2

-ft ft ftft. . ..- ,...t -t ,t f- ,



I.

perform BROAECAST TARGET INFO (HT);

end if;

perform STORE BACF(HT, logical addr)

end procedure BUCKETELOCK;

procedure INITIALIZE_GLOBAL_TABLE(output: GTptr) ;

This procedure is used when the first retrieve-

* ccmmon request is executed in the BUCKETBLOCK *

* procedure.

* This procedure creates a global tdble and *

* returns the pcinter (GTptr) to the table to *

* the calling procedure.

end procedure INITIAIIZEGLOBAITABLE;

procedure ALLOCATEHASH_TABLE(output: logical-addr);
******************************** * ********

* This procedure is used to allocate a hashing

* table for a new retrieve-common request from *

* a predefined secondary storage area and return *

* the logical disk address to the calling

* procedure. *

* The bucket entries are also initialized. *

end procedure ALLOCA71iHASHTABLE;

128



procedure CHECK GLOBAITABLE(inrut: GTptr, request id;

output: logical_addr, NEV_!EQUEST);

* This procedure is used to check whether a request *

. is a new reguest by checking its reguest id *

. against the global table. If the request id is *

- found in the global table, then set the value of

* NEW REQUEST to false and return the logical disk *

address of the hashing table to the calling

" procedure. Ctherwise, return the NEW_REQUEST

* ack to the calling procedure. *

* end procedure CHECKGIOBALTABLE;

procedure INSERTGLOEAL TABLE(input: GTptr, Reqid,

logicaladdr;
output: GTptr);

This procedure is used to insert a new hashing *

* table into the global table. *

. Data structures and variables used in this *

Frocedure are: *

* 1. GTptr: *

A pointer to the global table.

" 2. Req_id: *

--, The request id of the records of the new *

--* hashing table. *

* 3. logical addr: *

•*" The logical disk address of the new hashing *

*' table.

129

"-" s"-' --u' ,...........................-.,. .. . .... .II -I



* An inverted list implementation to maintain the *

* table is recczmanded. *

end procedure INSERTGLOBALTABLE;

procedure ZTORELECOir IN HASHTABLE

(input: HT, bucket number,

info, NEWRECORD);

* This procedure is used to store the common *

attribute value of a record and the record itself *

into a hashing table. *

, Recall that tihe records are stored in blocks. *

* Data structures and the variables used in this *

procelure are: *

V * 1. HT: *

*A variable of type hash-table which is

* defined in hashing_module.def (see Appendix *

* G). *

* 2. bucket number: *

* The bucket number where the record *

* characterized by the common attribute value *

* is hashed into. *

* 3. info: *

* A character string which contains the *

* common attribute value of a record and the *

* record itself. *

** 4. NEW RECORD: *

* A boolean variable to indicate whether the *

130



* input info is a new record of this request *

* id. *

* 5. old bucket number: *

* The bucket-number of the previous input *

" * record. *

* 6. bkt: *

* A variable of type BUCKETENTRY which is *

'* defined in hashingmodule.def (see Appendix *

* G).

* 7. blkptr: *

* A pointer to a record block of type *

.=* RECBLOCK which is defined in *

-.* hashing module.def (see Appendix G) . *

* 8. blk, blk 2: *

"* Variables of type RECBLOCK which is defined *

-*-, * hashing_module.def (see appendix G) . *

-* 9.1: *

' * An integer variable. *

* 10. MAXBLCCKSIZE: *

..* An integer that represent the maximum *

--* length cf the block content. *

if NEW RECORD

then

/* This record is the first input record of this */

/* request. */

perform GETTHE BUCKEI(HT, bucket-number, bkt);

perform ALCCTE BECBLOCK(blk);
perform MODIFYENTR Y_ &-HEADER (bkt, blk) ;

else

/* Compare the input bucket number with the

previous cne. */

if bucket-number <> old bucket number

thev

131

k"..................



perform STOREBACK(blk) ;

/* Get the desired bucket entry for this

input record. */

bkt = H.bkt-entries[ bucketnumber];

/* Check if the kucket is empty. */

if bkt.status = empty

then

perform ALLOCATEREC_BLOCK(blk, addr);

perform MODIFYENTRY_&_HEADEE (bkt,

blk,addr);

else

/* Get the record block by the address */

/* in the bucket entry.*/

perform GET_RECBLOCK (bkt.block-address,

blk);

end if;

end if;

/* Check if the block has enough space to V/

/* store this record. */

I = STRINGIENGTH(info);

if (blk.header.length + I) > MAXBLKSIZE

then

/* This block does not have enough space */

/* for this record. *1

perform ALLOCATERECORDBLOCK(blk_2,

perform MODIFYENTRY&9-HEADER(bkt,

blk_2,

addr_2);

/* This routine will also modify */

/* the header of blk_2. */

perform STOREBACK(blk) ;

blk = blk_2;

end if;

end if;

132

- F r.



<--

perform STOREINCINBLOCK(info, blk);

end procedure STORE BCORD INBASHTABLE;

procedure STORE-BACK(input: A-structure) ;

* This procedure is used to store a hashing table, *

* or a record block back to the secondary storage. *

A_structure is a variable which may be either

* a hashing table or a block. *

end procedure STOREEACK;

procedure GETRECBLOCK(input: logicaladdr;

output: blk);

* This procedure is used to brinj a block of memory *

* from a predefined secondary storage area into the *

* primary memory by its logical address.

* Data structures and variables used in this

* Frocedure are:

* 1. logical-addr

The logical address of a block. *

* A variable of addr definition which is *

* defined in the commdata.def file.

2. blk

~A variable of type RECBLOCK which is defined*

in the hashingmodule. def (see Appendix G).

end procedure GETRECBLOCK;

133

U.



procedure STOREINFOINBLOCK(input: info, blk);

* This procedure is used to store the common *

* attribute value of a record and the record *

* itself into a block.

It is called only when the block has enough *

* space for that information, i.e., info. *

* Data structures and variables used in this *

* procedure are: *

* 1. info: *

* A character string which contains the *

* common attribute value of a record and *

* the reccrd itself. *

* 2. blk: *

* A variable of type RECBLOCK which is *

* defined in hashingmodule.def (see *

* Appendix G). *

* 3. i,j: *

* General purpose indexes. *

i = 0;

j = hlk.header. length+l;

repeat

blk.contents[j] = info[i];
i = i+1;

j = j+1;

umtil i = STRINGIENGTH(info);

end procedure STOREINFOINBLCCK;

134

o.

. . -- %-



procedure MODIFYENTEY_&_HEADEB(input: bkt, blk,
blk-addr;

output: bkt, blk);

This procedure is used to modify the bucket *

• entry of the input bkt and the header part *

o of the input blk. It will then return these *

* modified bkt and blk back to the calling *

* procedure. *
* *

* Data structures and variables used in this *

p procedure:

* 1. bkt: *

* A variable of type Bucketentry *

... * which is defined in hashingmodule. def *

* (see Appendix G). *

* 2. blk: *

* A variable of type RBC BLOCK which *

.'"* is defined in hashing_module.def *

.* (see Appendix G). *

* 3. blk addr *

* A variable of type addr definition *

,..* which is the logical address of a block *

"* and is defined in the commdata.def file. *

bIk.header.next Elk addr = bkt. block address;

bkt.tlock address = blk addr;

end procedure MODIFY INTRY &_B.ADER;

135

Y,



. . -..- -- ,

procedure BROADCAST ARGET INFO(input: HT) ;

* This procedure is used to broadcast the records *

* of the target hashing table to the other *

* kackends. *

* This is the same procedure that is used to *

* broadcast the descriptor ids among backends. *

* Data structures and variables used in this *

* Frocedure are: *

* 1. HT: *

* A variable of type hashingtable *

* which is defined in hashingmodule.def *

* (see Appendix G). *

* 2. i: *

* A general purpose index. *
* 3. NAXBKT#: *

* An integer which is used to represent the *

* maximum number of the bucket entries in a *

* hashing tale. *

* 4. bkt: *

* A variable of type Bucketentry which *

* is defined in hashingmodule.def (see *

* Appendix G). *
* 5. msg: *

* A character string which is used to store *

* the message that is to be broadcasted to all *

* of the backends. *

for i = 1 to MAX-EKT t do

bkt = HT.bkt entries~i2;
if bkt.status <> empty

then

V. /* Put the bucket number into the message.*/

perform GETjRECBIOCK(bkt.block-address,blk) ;

136

N:



repeat

/* Extract the contents of the */

/* blk.content and copy them into msg.*/

if the msg is full

then

send msg to all of the backends;

reset the length of msg to 0;

end if;

if blk.next blk address = blk.own address
them

/* This block is the last block for

this bucket. */

last = true;

until last;

end if;

end for;
send the msg to all of the other backends;

end procEdure BROADCASTTARGETINFO;

137



&PPENDIX F

THE MERGING PROCEDURE PROGRAM SPECIFICATIONS

procedure MERG (input: source request_id,

logical address ofsoarce table,

logical address of target table)
"'-' I************* ******,****** * ************ **** *****

" This procedure is used to perform the merging ** .
operation over the source records and the target *:..* *

* ecords. *

* Notice that the input addresses are the logical *

disk addresses of the two hashing tables. *

Data structures: and variables used in this *

* procedure are:
*,-',*

-* 1. logical address of source table, *

" * logical_address of_target table: ** *
* The logical disk addresses of the source *

* and the target hashing tables, both of the type*

• address definition which is defined in the
* commdata. def file. *

• 2. source tatle, target-table:
• Variables cf hashinytable data type (see *

* Appendix G) that represents the source-hashing
* table and the target-hashing table.

• 3. i: A general purpose index. *

* 4. max bucket number: *
V" * The largest bucket number of a hashing table. *

/* Retrieve the two hashing tables by the input */

/* logical addresses.
/* Ncte: Due to the limited memory space, we may */

not be able to bring in the entire table. */
perform GETHASH _ABLE (logical addressofsourcetable,

138

" ,.---.-



source-table)

perform GETHASHTABLE (log ical-address.of..target...tatle,

targettable) ;

/* Reserve a result buffer. *

perform GET..fUFFE(resultkuffer,sourcerequest id) ;

/* This routine will allocate an instance of a

result buffer and put the request id into the

the header cf the buffer and initialize the

length of the buffer to 0.

This routine has already been coded in

the retp.c file. *

i 0

while i 5 max-bucket-number do

if C (source takle.bucket.eftryii.status <> empty)

and

(target talC.bUcket..Cftryfi].status <> empty)']

then

/* T~here is a collision. *

/* Retrieve the records from both blocks and

perform the merging operation. *f

X = source table. bucket..entry~i ].logicaladdress;

Y = target-table. bucket.entryf iJ. logical..address;

perform mergingoperation (X,Y,result.buffer) ;

/* This routine will perform the merging

operation and send the merged results

to tte contrcller. *

end if;

end while;

/* Signal PP upcm the completion of the source and *

4 /* target reguest. *

end procedure MERGE;

139

* . *~r~. 5~ ~ '' P



'

procedure MERGING OPERATION

(input: logicladdress source block,

logicladdress target-block,

result buffer;
output: resultbuffer) ;

* his procedure is used to perform the following *

tasks: *

* 1. Extract the records from both of the source *

* block and the target block. *

* 2. Compare the common attribute values *

* of the source and target records. *

* If they are equal, then perform the merging

* operation. *

* 3. Put the merged results into a result buffer. *

* If the luffer is full, then send the buffer *

- * to the controller and reinitialize the

-"* buffer length to 0 so that the buffer can *

'" be reused. *

* Otherwise, return the logical aidress of the *

*- the result buffer to the calling procedure.

Data structures and variables used in this *
* procedure are: *

* 1. source-block, targetblock: *

* Variables of the data type BKTBLK which *

*are used to represent the blocks of the *

-• * source bashing table or the target hashing *

* table. *

* 3KTBLK is defined in hashing_module.def *

k * (see Appendix G). *

* 2. source-dcne, target-done: *

* Boolean variables which are used to indicate *

* the comfletion of processing either source *

140



* records or target records.

* 3. i,j: General purpose indexes.*

* /* Continue retrievingj the source blocks by the *
/* lcgical address, until there are no more blocks. *

repeat

source-block

GET BLOCK(logical-address-source_block);

/* Continue retrieving the target blocks by the *
/* logical address until there are no more blocks.*/

repeat

targetblock-
GETBLOCK (logical-adiress-targetblock);

1 = 0;

while source tlock.body-i) <> EOB do

/* Retrieve one common attribute-value and one *
/* record from source block. *
source-value =GEOL"VALUE(source-block. body,i )

source-record =GETjBECORD (source-block. body~i);

= 0;
while target block.bcdy[jJ <> EQE do

1* Retrieve one common attribute value and *
1* one record from the target block. *
target value = GET VALUE (target block.body, j);
target record=

GET RECORD (targetblock.body,j) ;

if source value = targetvalue

then

/* Append target record at the end of *

/* source record and put the newly

/* merged record into the result buffer.*/

result =APPEND(source record,

target~record)
resultlength = STRINGLENGTH(result);

perfcra RBS PUTSEID (result~buffer,

141



result,

else result-length);
else

/* Go to the next tarjet record. */
J = J+1;

end if;

end while; /* End the target-record loop. */

i = 1 1;
end while; /* End the source-record loop.*/

/* Are the target records done? */

if targetblock. header.next-block address =

target_blcck. head er. this-block address

then

target dcne = true;
else

target-block. header. next-block-address =

target-block. header. this-blockaddress;

end if;

until target dcre;

/* Are the source records done? */

if source-block.header.next-block-address =

source block.header.this block address

then
source-done = true;

else

sourceblcck. head er.next block address =

sourceblock. header .this block add1ress;

end if;

until sourcedone;

end procedure MERGINGOPERATION;

142

S .................................... ...... '...-..........',.'-.', .,...,.--'.,v



Z.

T E HASHING ROULE DATA STRUCTURE DEFINITIONS

In this appendix we present the definitions of the data

structures used in the previous appendices. We refer to the

definitions as hashing module. def.

1. hashtuffer:

This is the buffer which stores the hashed informaticn

of recorls.

-- > The request id of
Request-il the hashed records.

h--> The current lengthLength
of the Hashed-results.

S--> ~n array of characterj ~hedresults jstring used for

storing the hashed

records.

The format of tie hashed-results is:
[hashedrecord_infc) EOReq EOB

where
hashed record-info :: = bucket number EOV LRec) +

Rec :: = [attribute-valuepair)+EOEec

attribute valuepair :: -

attribute-name EON attribute-value EOC
"." means one cr more occurence.

ECB : A special character which is used as a marker

for the end-of-buffer.

ECV : A special character which is used as a marker
for the end-of-value.

!CN : A special character which is used as a marker

for the end-of-attribute name.

ECec: A special character which is used as a marker

143



for the end-of-record.

ECReq: & character, either 1 or 0 , which is

use to indicate the end of a request.

1: end cf a request.

0: not end of request, more buffers are coming.

2. RECQEICCK

Blocks used by buckets to store the records and their

common attribute values.

A BEC_-BIOCK is composed of a header two fields,

and a contents.

header This part contains the status

of this block.

-> This part contains the records
ccntents

and their common attribute values.

The format of the content of the REC BLOCK is:

[R ec) + EOB

The header contains two parts:

-- > An integer to indicate the total
length length of the records in this

---------- block.

-> The logical address of the nextnexthlk addr
block o," the same bucket. (If
this block is the first blcck of

the bucket, then a .iull aldress

will be put in here.)

The type of this field is

address definition and is

defined in the commdata.def file.

144

LEM%



3. Bucket entry:

-- > A character which is either 1 fcrnI stat us not empty or a 0 for empty

c a s -- > The logical address of the blockI lock address
of this bucket.

4. Hash-table: An array of 2048 bucket-entries.

145

/.;



4 -W b V . .' . . .7' .

IIST OF REFEEENCES

1. Date C DIntroduction To Database SjSte m Volume
jAAdis;on 4eA1I4-71VWT ---

2. Lowenthal, E. I. "The Backend Computer, Part I and
Part II " A ertact (P-11- ffagjqement) 2.jous, 24-01-04
and 24 -61-U571-S71

3. Maryanski, F. J., "Backend Database System" Cou.El~inA
Suves Vol. 12, No. 1, pp.3-25, March 1960O.

4. Naval Postgxaduate School Technical ReportNPS52-83-O 06, Desig adAnjs oaMlt-Back end
Database S ystem f.-r -Pe,3-ranZ - Ii-Dr oy1EI~T7

I 3 . en on, Jun

5. The Ohio State University Technical Report
OSU-CISRC-TR-82-1 The I~leaentation of a
Ilulti-Backend raaa-e"se -77 Part- I

9-oj~wreZ=-a-1e- n q ees anil- fts-T-oar's X
3 !PyefK -~,nd MEr, -UNMary

6. Hsiao ' D. K. and Harar yF ."A Formal Systemr for
Information Retrieval from files 1 Communcations of

teACM, Vol. 13, No. 2, pp. 6 7- 7 3, Pe3rur 737U.-

7. Naval Postgraduate School Technical Report
NPS52-85-002, A tiBakend Database System for
Performance Gails ClaciTi G-1-wf~aLO -- WdwW@

TT;Hae-by S~~. -Vem uflrj ian Na--3Thefs, TZEIdr-ary

8. Muldur 1  S. lesin and Anal ysis of Ordering and Joinotions10 Mo ti acRasHU
CalforiaJune 1984.

9. The Ohio State University Technical Report
OSU-CISRC-TE-81-11 A Survey of Parallel Sortin3q
A1~qoithms, by D. k. Hsiao XH otK-rs, DeciMerT91T.

*10. The Ohio State University Technical Report
OSU-CISRC-TR-80-7. garallel Record-Sortinq lethods for

3 Ily T8U.

11. Naval Postgraduate School Technical Feport
NP~-82-008 The Impeeil ii of a Multi-Bac end

atbs wsem- Lt- -- __ Ti yfrritan _&I a En1je_ Zjerience. Ey~f.

146



He and the others, July 1982.

12. Johnson, S. C., "IYACC: Yet Another Cornplier-Complier",
U-six* TIME-SE1AFING SYS~TEM: 9NLX PROG RAMMER'S MANUAL,
B411 T5I9-E ffZ-=a oE-at-oes,- T1nZff-EU~7- 11urray
Hill, N.J., 1982.

-13. Naval Postgraduate Sch~ool Technical Re p rt
NES52-81-005, The implementation of a ?iulti-Ba~~end
Database §2st e1 (,MS ?T V = T-=-V9e

C~culifr__B' Dir ecYtofU M- -- PM M

147

J.-



INITIAL DISTRIBUTION LIST

No. Ccpies
1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Likrary, Code 0142 2Naval Postqraduate School
Monterey, Califcrnia 93943-5100

3. Chairman, Code 052 2
repartment of Cc.puter Science
Naval Postqraduate School
!onterey, California 93943-5100

4. Curriculum Officer, Code 037 2
Computer Technology Program
Naval Postgraduate School
Monterey, Califcrnia 93943-5100

5. Professor David K. Hsiao, Code 052 2
repartment of Ccmputer Science
Naval Postgraduate School
Monterey, Califctnia 93943-5100

6. Steven A. Demurjian Code 052 2
repartment of Cczputer Science
Naval Postq raduate School
Monterey, Califcrnia 93943-5100

7. Hsiang-lung Tung 2
8 lane 46 Ming-Chuan Road
Ctia-i CiLty Taiwan 600
Pepublic of 6hina

tit
148

•, 1,,J., .,



FILMED

4.~ 
0-85

DTIC
p.0


