AD-A159 476 DESIGN ANALYSIS AND IMPLEMENTATION OF THE PRIMARY 172
OPERATION RETRIEVE-COMM = (U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CR H L TUNG JUN 85

UNCLASSIFIED F/G 9/2

)

A.E._..,.?ﬁeﬁ .,..;i.
P 1) S T o N

J‘ B

T

~

. &
, 4
. N -
: o) ,
2
“
- ﬂ,
“ __2 o & m
ddgAd 5
oF on . = B § :
- . Q "~
I L ;

ol o 24 . @
EEEEEEEPR ~ 23 2
= d
2]
Q - 0 w ¢
= = == @ 2 2
_ = = = Ly
p

Ly oleln, =p PLICIR gl g Pra s e R ST o ,w»h.-ﬂﬂ»w.ﬂf..n.: Tl T PRI 5 , B T oW
AR | ..-.a..w.n..wf%. .0.\N\ o OO w2 ,uu\\ﬂ . AL § B u..i!‘...wm‘.-.ﬁ .

L B e gt ot A p o e et L hi? e da . iiet diade, Sl it Al ibh et Aniel

Ll e M R sl et I S B S 2ot e B S ~Iin T el e e Sine Wl g a

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

AD-A159 476

DTIC

ELECTE

DESIGN, ANALYSIS AND IMPLEMENTATION
OF THE PRIMARY OPERATION, RETRIEVE-COMMON,
OF THE MULTI-BACKEND DATABASE SYSTEM (MBDS)

o)
'V
>
L4
L3

by
Hsiang-Lung Tung

June 1985

T FILE coRy

Thesis Advisor:

David K. Hsiao

Approved for public release; distribution is unlimited

Lal A A 2 Sl Y i

W TN YT T T T P TN TN R W VU R LY T VI F LY LR CR e e) TR L T T T YWY ¢ T

SECUYRITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFQRE COMPLETING FORM
T. n!l'on'r NUMBER 2. 60”(:!”7431? T'S CATALOG NUMBER
4. TITLE (and Subtitle) $. TYPE QF REPORT & PERIOD COVERED
Master's Thesis

Design, Analysis and Implementation of the June 1985

Primary Operation, Retrieve-Common, of the
Multi-Backend Database System (MBDS)

3. AUTHOR(a) 8. CONTRACTY OR GRANT NUMBER(s)
Hsiang-Lung Tung

Y

6. PERFORMING ORG. REPORT NUMBER

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
Naval Postgraduate School
Monterey, CA 93943-5100
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Naval Postgraduate School June 1985
Monterey, CA 93943-5100 13. NUMBER OF PAGES
148
14. MONITORING AGENCY NAME & ADDRESS(i{ different from Controlling Otfice) 1S. SECURITY CLASS. (of this report)
UNCLASSIFIED
18a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abetract sntered in Block 20, il different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side |f necessary and identily by block numbder)

Database System

20. ABSTRACT (Continue on reverse side If necessary and Identity by bdlock number)

The multi-backend database system (MBDS) in the Laboratory for
Database System Research at the Naval Postgraduate School is
designed to overcome the performance-gain and capacity-growth

problems of either the traditional database system or the single-
kakend—software database system. The original MBDS supported four AT
primary operations, namely, RETRIEVE, DELETE, UPDATE and INSERT. H?V«
(Continued) QKE;.
At
DD % on's; 1473 eoiTion oF 1 Nov €813 oBsOLETE t};:}\fq
S N O102-LF-014-5601 1 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) T‘%
ggfn
S
CRENT
t' S B e AR x -.-';_‘»;-}'-l'-"hi'_\-';l'-'-j-;i-"1'1:1;}1".-'-:'-.'-;'1-:;:':- R R A RS RIS NCAT A

W N N VW P P VL T T I doTERL s R FL s LU E WL W T T T T N T I T P T P T S PN PP T I Y O e e

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered

ABSTRACT (Continued)

This thesis presents the design and implementation of the fifth
primary operation, the RETRIEVE-COMMON operation. The retrieve-
common operation is used to merge two files by their common i
attribute values. First, the overall design and implementation of
MBDS is reviewed. Then, several alternatives are compared and
analyzed to select the best one as our design and implementation -
approach. Finally, we describe the detailed design and the im-
plmentation. Our goal is to maximize the utilization and minimize
the effects to the existing system.

For integrating our design into MBDS, several modifications are
made. The algorithms for the modifications and their program
specifications are also provided in Chapter IV, V and Appendices.

“ Aceeosinn For
SRR | f

ety nton/
tion0 ity Codes
rreiil o snafer
K X
R Spacial

S N 0102- LF-014- 6601

2 SECURITY CLASSIFICATION OF THIS PAGE(When Data Enteced)

- R
- P T . JPT IPE TN SN S N N N N N S T T R R P ERN .'.q' 4
A A TR e A T T T L e T T e e e R L T e . AR R
- ¥ e I TRt IR o« CRT APt et - B A S Tl S - -\‘ b ..\‘- | Y
.r‘,;-._"_i'z.h_".a_");"i‘;.e.':.p‘ DY N RN ST '.-f.'-'t‘u_.':_\-‘-‘.‘- .J:J."; RERS TR TR LRI Yk LSk LOL L LA TS

Lot e i b B aiat AR e 8 B M i Asi Mach Sane ~SierSiao s i et B s A Ao Ik fade el Aakt i AL JUiC bl) wm—vvmr-r———-r

P =8 W,

Approved for public release; distributionm is unlimitei.

Design, Analysis and Implementation
of the :1larg gera Oll etrieve~-Coaaon
of the Multi-Backend Database System (MBDSf

by

Hsiang-Lung Tun
Commander, Republic Of China Nav
B.S., Chinese Naval Academy, 19/

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
June 1985

Author: M /‘?@;

Approved zégggﬁgﬁgg(KJ&L ééfg;;‘)
pprove fe—— Hs1iao0, ysor

%e@%'%c_oﬁﬂtiﬂﬁ“—'
Ve ‘ / —

ChaiTian,
Departnent of Computer Science

Rneale T. Ma
Dean of Information and Pol;cv Sciences

- ABSTRACT .
E. - The waulti-backend database system (MBDS) in the

L laboratory for Datakase Systenm Research at the Naval

- Postgraduate School is designed to overcoae the

52 performance-gain and capacity-growth problems of either the

‘gﬁ traditional database system or the single-backend-software

wy database systenm. The original MBDS supported four primary

e operations, namely, RETRIEVE, DELETE, UP ATE and INSERT.

8 This thesis presents the design and implementation of

‘éﬂ the fifth primary operation, the RETRIEVE-COMMON operation.

;Rq The retrieve-common oreration is used to merge two files by

%;‘ their common attribute values. First, the overall design

:&' and isplementation of MBDS is reviewed. Then, several

- alternatives are compared and analyzed to select the best

one as our design and implementation approach. Finally, wve
describe the detailed design and the implementation. our

E@l goal is to maximize the utilization and minimize the effects .
:33 to the existing systen.

s For integrating our design into MBDS, several

i modifications are nade. The algorithms for the

&3 modificatiors and their program specifications are also

js provided in Chapter IV, V and Appendices.
" AN

o]
=

2 .
rt

o

- - -

N AN,
S o o ot P

TABLE OF CONTENTS

. 1. INTRODUCTION o ¢ « o o o o « o o « o s o o o« o« o o
A. THE SCOPE OF THE THESIS =« « ¢ o o © o o« o o o ?
{ B. THE ORGANIZATION OF THE THESIS .« « ¢« « = « o o 12 é
* ?
> IT. THE MULTI-BACKEND DATABASE SYSTEM (MBDS) . « « « . 13 E
A. THE SISTEM GOALS . o =« ¢ « o o o o« o « =« =« o « 13 ,
13 1. Design Requirements . . . ¢« ¢ ¢ 2« ¢ « » « 13
s 2. DesSign ISSUES =« o o o « o o o o« « = o« » « 14
i B. THE UNDERLYING AND INTENDED HARDWARE . . « . « 15

C. THE DATA MCDEL AND THE DATA LANGUAGE . « . . . 17

oy AR 8

- 1. The Attribute-based Data Model 18 {
" 2. The Attribute-Lased Data Language 19 R
- . D. THE PROCESS STRUCTURE &« « ¢ « o o ¢ o o o « o 21 %
y 1. The Ccmmunication Processes . « « « « o o« 21 ki
2 2. The Test Interface ProcessS . . « « « « « « 23 Q
Y 3. The Prccesses of the Controller 23 \
“3 4. The Prccesses of Each Backend .+ « « . . o 24 k
II1I. DESIGN AND ANAIYSIS OF THZ RETRIEVE-COMMON 3
9 REQUEST + o o o o o o o o o o o o o « s o« o o« o « 26 \
}Q A. THE INTENDED OPERATION « v ¢« « « o o =« o « « « 26 T
‘? 1. An Operation On Two FileS <« « « « o « « « 26 N
~ 2. The Syntax Of Retrieve-Common Rkeguest . . 28 :
o B. AN ANALYSIS OF DIFFERENT DESIGNS « = ¢ « « « o« 29 }
‘; 1« The Ccntroller Does All the Merge !
f Operation . . « o « 2 o « « o ¢« o ¢ « « « 30
‘* ﬂ 2. The Ccntroller And The 3ackends Share :
: The Merge Operation . « « ¢ ¢ « = « o » o 30 ¢
SO 3. The Backends Do All the Merge R
% OPEratiol « « « « o « « o « « « o o « « o 30 N
; 7
R 5 ~

DA R RS LI £ T W I

P R AR NI SN
OSSN SR e

Iv.

Ve

NN A

I‘l

- RO
.' -'

b v VAT AT AT T T TN T P P TR T O Iy

Eiake

4.

Y T T T RV P T TR P Yy

An Analysis of the Design Approaches

AN ANALYSIS OF DIFFERENT IMPLEMENTATIONS

1.
2.

3.

u,

The Straightforward Implementation .
The Implementation Based on Sorting
and Matching « o ¢ ¢ 2 ¢ ¢ ¢ o & o &
The Inplementation Based on
Bucket-Hashing « « ¢ ¢ o« « ¢ o o o« @
A Comrarison Of The Three
Inplementation Approaches

DETAILED DESIGN FOR IMPLEMENTING
RETRIEVE~COMMON OPERATION INTO MBDS . o« . «

A.

THE
A.

C.
D.

THE
1.

3.
4.

HASHING MODULE & o o ¢ ¢« « o o o o @
Alternatives for Implementing the

Hashing Module o « <« o« o o o o o o &«
The Hashing Procedure . « « « « « «
The Bucket-Block Tracking Procedure
The Merging Procedure . « . « « < «
OPERATIONS OF THE FOUR PHASES . . .
The Request-preprocessing Phase . .
The Record-retrieving Phase
The Hashing-and-storingy Phase . . .
The Merging Phase . « « « « ¢ « o &

IMPLEHENTAIION L d - L] . - - - - - - L 3 - -

THE
1.
2.
THE
1.
2.
THE

MODIFIED PROCESSES OF THE CONTROLLER

The Request Preparation Process (REQP)

The Post Processing Process (PP) . .

MODIFICATION OF THE BACKEND PROCESSES
The Directory Management Process (DM)

The Record Processing Process (RECP)
MODIFIED MESSAGE-PASSING FACILITIES

EXECUTION OF A RETRIEVE-COMMON
REQUEST--VIEWED VIA MESSAGE-PASSING . .

31
32
32

33

34

36

45
4e

46
50
54
59
60
60
61
62
63

65
65
65
67
68
68
70
75

75

&
'!

T —_—

vI. CCNCLUSION L] e e - - L] [] L) - L] - L] L] L] - L] L] [) [) L] 79
A. REvIEw AND SUHHARY L) -] L] . L] - L] - . L] L] L] - 79
B. FUTURE WOBK -) - . L] - - [L] - . L] -] - -] 81

PPN

APPENDIX A: THE MODIFIED REQUEST PREPARATION PROGRAM
SPECIFICATIONS « « « « « o « = o o o o« « = « 82
A. THE LEX MODIFICATIONS . o o « o o « « « « « o« 82
B. THE YACC MCDIFICATIONS . . o « « o o« « « « « « 83

APPENDIX B: THE MODIFIED DIRECTORY MANAGEMENT
PROGRAM SPECIFICATIONS . « « o « o « « « « » 91

A

APPENDIX C: THE MODIFIED RECORD PROCESSING PROGRAN
SPECIFICATIONS * - - * L] - - - L] L] L] L] - L] L] 95

APPENTCIX D: THE HASHING PROCEDURE PROGRAM
SPECIFICATIONS - . L] - - L] - L] - L] - - * -* 108

APPENDIX E: THE BUCKET-BLOCK-TRACKING PROCEDURE
PROGRAM SPECIFICATIONS « o o« « o « « o « o« 124

APPENDIX F: THE MERKGING PROCEDURE PROGRAN
SPECIFICATIONS - L] - - - - - * - - - - - L] 138

APPENLIX G: THE HASHING MODULE DATA STRUCTURE !
DEFINITICNS - - - - * - * - - - * - L] - L 1“3

LIST CF REFERENCES ¢ « ¢ o o o o « o o « o« o o« o o « o W46

INITIAL DISTRIBUTION IIST &« o o o = o « o o o o o o o o« 148

P

? >
p

2,

.

. e a . e
< r NN

[t
PR]

B

.«

LS N

-1

NAN NN

".. L2)

-
N
Y
.

HESOTSM IRCRRETS

Ay
e

1.1
1.2

2.1
2.2
2.3
2.4
3.1
3.2
3.3

3.4
4.1
4.2
4.3
4.4
4.5
Se 1
5.2

LIST OF FIGURES

The Multi-Backend Database System (MBDS) .
The Functions of the Current MBDS Database
Orerations . . ¢ o« ¢ ¢ ¢ o ¢ o o o « o o
The MBDS Hardware Organization
The MBDS Process Structure
The General Format of MBDS Messages
The MBDS MeSSace TYPES =« « ¢ o o o o o o =
The Nest-loop Merge Procedure . . « « « «
The Hashing_merge Procedure
The Time Complexities of the Bucket-Hashing
Irplementations « ¢« « ¢ o ¢ ¢ o « o « o o
Time Complexity of Different Implementation
Hashing Module As a Separate Process . . .
Hasing Module as Part of RECP . « « « ¢ « &
The structures of Block and Its Header . .
The Structure of a Bucket-entry
The Structure c¢f the Global Table
The New MBDS Message-TypPeS .« o ¢ o « o « =
The Sequence of Messages for Executing a
Retrieve-common Request « « « o ¢ o « = « &

10

1"
16
22
23
25
33
37

43
44
47
48
55
56
57
76

77

-y -, -

e ———

(<t ARl ol aand Aok S-S A s b el mco o

I. INTRODUCTIION

A. THE SCOPE OF THE THESIS

A database, is a collection of stored operational 3Jata;
and a dataktase system 1is a computer-based system whcse
overall purpose is tc record and maintain information (data)
[Ref. 1]. The traditional approach to manage the database
system is to run the dataltase system software as an
application program in a mainframe computer systen. The
database system must share the use and the control of the
mainframe computer resources with all of the other
applications of the computer systen. The performance of
this apprroach suffers whenever there is an increase from
either the usage of the computer system or the database
applications.

One solution to this problem 1is to offload the database
system from the mainframe to a single, dedicated backend
computer. The backend computer has its own disk storage and
used to perfornm database operations exclusively.
[Refs. 2,3]. This approach is known as the single sgitware
tackend approach. Latabase systems based on this apgroach
are referred to as goftwvare sipgle backend database systems.
However, this approach still has the disadvantage, that is,
rerformance upgrades will require the replacement of the
rackend and this may entail software modifications and
hardware disruption [FRef. 4§ : p. 4].

A second approach to solve the database performance
problem is to develop a special-purpose database machine
with Sgpecially designed hardware. However, the
cost-effectiveness of this approach, known as the Lardware
rackend approach, has not yet been demonstrated [Ref. S5].

X Xk KXok K

R

S S A A & 4 S . A SAE? BiTa®aZatsTalAl

LK A 8 A K_.

T

T N, & J >
L _IERAAARS 1SRy

e g v R 4
D NOYMD
t LI 'Y

T r 4

i

*
a

oy
i?.
»
-

lad Bak fads Bok St ol Bl A A-a 0 0 A0 B s 8 A8 as-Ame B moa bas 2t anl i B ol

In order to overcoae the pertoradnce-gain and
capacity-growth problems of citler the traditional Jdatabase
system or the single ltackend software system, a research of
a multi-tackend datatase system, known as MBDS, is conducted
ir the Laboratory for Datalase Systeus Rescarch, at the
Naval FPcstgraduate School. Instead of a single tackend
computer, H4BDS uses several identical (both ia hardware and
in software) miniccoputers as its Dbackend computers in a
parallel fashion in order to gygain perforwance gain and
capacity growth. These backends with their resgpective disk
systems are connected with another ainicoumputer, called the
rtackend cecntroller. The controller 1s responsitle for
supervising ti 2 execution of parallel database operatioans on
the tackeas.s and {or interfacing with the hosts and the
user. Users access the system either by way of the host or

through the controller directly (as shown in Figure 1.1).

sk
L__§ Controller

~ Backend | 8

Disk
Controller
{1 Backend 2 6

Host Transaction .
Applications Operating Backend .
=1 L)
Programs System Controller
) Answer Dish

Controller

~{ Backend N 6 @

Figure 1.1 The BMulti-Backend Database System (MBDS).

10

et A et At LTttt

LR o~ u R g e e ey st S e BASLLugh L-g bed B dec T ~Sge Sy’ Akt Mty Tade e - St S i St i et it B et J‘?:"TYWA]

The attribute-based data language (ABDL) [Ref. 6] is :
used as the basis of the data language of MBDS. Currently,
ABDL supports four primary database operations, RETRIEVE, ?
DELETE, UPDATE and INSERT. The functions of these four
datakase operations are shown in Figure 1.2.

Operation Function
semeve	metrieve records from the database	
omste	cetete records from the datavase	
werate	motify records of the astabase	
________ - - e e e e e d
INSERT Insert records into the database g

PRILIPLN

Figure 1.2 The Functions of the

~ AT _ T

Current PEBDS Database Operationms.

In order to make MBDS a more complete database systenm,
the fifth operation, the RETRIEVE-COMMON operation which is
used to merge two files by common attribute values, has been
proposed [Ref. 7). This thesis will focus on the design and
implementation of the RETRIEVE-COMMON operation of MBDS. We
will fprogrose several alternatives of the design and
implementation strategies, then evaluate and analyze these
alternatives based on the time complexities, the affects to
the existing system and the design-goals of MBDS. According
the results of the analysis, ve will choose the Dbest

. alternative to desigr and implement the fifth operation.

AT 4 x4y

RIS Y VIIERLT L W

« =

1

| '

N S S

..........

. ': P T Y et Y
RO Y AT TS A

M0 tad eaa il e B i las b 8 h il AUS B 8k ot al i setal ’ Al amnl amd aecd cai B &)

Y, THE OEGANIZATION OF THE THESIS

The rest of this thesis is organized as follows. In
chapter II we give an overview of the architecture of the
MBDS. We will descrilte the design goals, the underlying and
intended hardware, tke process structure, the data model and
the data 1language of MBDS. In chapter III, we first
define the intended operation and the syntax of
RETRIEVE_COMMON operation, and then evaluate and analyze the
alternatives for the design and implementation. According
to the analysis, we will select the best alternative to add
the retrieve-common oreration into the MBDS. In chapter IV,
we present the details of the design for the selected
approach. We also consider the possible effects of this
approach to the existing system. 1In chapter V, we describe
how to incorporate our design into MBDS. cur goal is to
minimize the effects cf the implementation. Finally, this
thesis is summarized and concluded in chapter VI. It is
hoped that this thesis will provide a definite help to the
future werk on MRDS.

12

S A X o

= C i ik s~ - auio aiia o o die- amifa KR ol A G T Sa dac San dlan Mac Mocs s Jaus S Sok Soh Aoz Bag Ak A4 80 & b A DR A AA R LA EE 4

<

- II. THE BULTI-DACKEND DATABASE SYSTEH (MBDS)

<

,EQ:] In this chapter we will briefly review the configuration
ﬁﬁ' and the theory of ofperations of the MBDS. Most of the
< information provided in this chapter has been extracted froa
:%f [Refs. 4,7 : pp. 1-68, 7-20]. The interested readers are
;? encouraged to refer to the references.

\ A. THE SISTEH GOALS
;; As mentioned in chapter I, MBDS is designed to overcore
E?: the performance prcbleas and upgrade issues of the
Lfv traditional mainframe-based or the software single-backend
. datalkase systen. In cther words, the overall goal for MBDS

‘ﬂi' is to freove that:

;E: _ (1) the system is easily extensible; and

. {2) the performance gain and improvement should be
%S proportional to the multiplicity of processing and
A storage elements [Ref. 4 : pp.1-51].

iﬁ In order to achieve the aforementioned goal, the design
) requirements and their correlated design issues for
2 designing and implementing MBDS have been defined in [Ref. 7
‘:1;: : pp. 7-101).
538 1. Design Requirements

{Y There are three main design requirements for MBDS.

(1) The system must be expandable.

%5 (2) Both the hardware and software are generic.

\‘f (3) The dJdatabase is evenly distributed across the disk
. systems of the tackends, and, for operation, there are
:QE parallel and ccncurrent processing of transactions by
the Lackends.

13

TN }EI;,E?-E'E*"E:"‘:} P

LA oV PR ML RTE STA R Rt £ 2 A Sl Sah hoh thad Bt Sol Sodl il tnad bl S o Smi e iie e ie s R ierauhe 0 e as Al £ o e -

) The first twc design requirements can support the

Bt additicn of backends for performance enhancement and

‘_ capacity growth by adding new backends of the same type and -
;f& by using existing system software. With the third

- requirenment, performance gain (in terms of response-time

'LF' reduction) and capacity growth (in terms of response-time

.~ invariance) of the system are likely to be in proportion to

- the number of backends of the systen.

Ny 2. Design Issues

P Ther- are several issues which must be resolved in
order to mee: the design requirements of MBDS. The first
issue concerns the backend controller. As shown in Pigure
ot 1.1, the controller may become a primary bottleneck of the
F s © systen. In order to avoid this problem, the functions of
the ccntroller should be minimized and reduced to the
pre-processing of the user tramnsactions, the post-frocessing
of the transaction results, the sending and receiving data
Letveen the backends and the host, and the arbitraticn of
- data insertion into tte database.

,;%ﬂ The second design issue addresses the
- characteristics and functionality of the communication bus
féz Letween the controller and the backends. The bus should be
7 cost-effective and efficient for both backend communication
. and rackend addition.

The third class of issues involves the backends of
R the system. The backends must have identical software to
?5£ allow replication of the scftware on a new Lackend.
Additionally, the lackends must have complete software to
perforr all of the database management functions. These
SEn functions include directory managemeat, concurrency control, -
record processing and communication.

e The fourth design issue concerns the database. fThe
- database should be evenly distributed across all the disk
e systems of the backends.

=5 14

T e T D TN VLW Iy v

The £ifth design issue is on the choice of a data
model and data language. The data model should easily
support the required data distribution and the data
placement of the dataktase. The data language for the systenm
is of course Lased on the <chosen data model. It nmust
capture all of the primary operations of the database
systen. The chosen data model is the attribute-based data
model and the data language 1is the attribute-based data
language.

The sixth design issue focuses on minimizing the
communications traffic of the system. The controller should
only communicate with the backends for serding the
pre-processed user transaction, for arbitrating the data
placement, and for receiving results. The backends should
only ccmmunicate with the controller for sending the results
of tle user transactions. Communication among Lackends
should te held to a rinimunm.

The seventh issue deals with the directory placement
strategies. In order to enable each backend to perform all
the database management functions and minimize the
communication aamong backends, the directory data are
duplicated at each backend.

B. THE UNDERLYING AND INTENDED HARDWARE

An overview of MEDS hardware orjanization is showa in
Figure 2.1 User access is accomplished through a host
computer which in turn communicates with the controller.
Phen a transaction (either a request or a set of requests)
is received, the controller will broadcast the transaction
to all the tackends. Since the 3Jata of all data files are
evenly distributed across all the backends, all backends can
now execute the same request in parallel. A gueue of
requests 1is maintained in each backend. When a backend

15

3 E-t ML A B e

.
" aj
PR A

¥

T LY A
2L o B
b

"~
“~
..-
My
~
Y

LR S L by
’u_%{*) BAN

B Y TP S T T T i e W T T T T T —rv— T
' Backend 1 .-
one OT mOore
41s8: draves
)

To the
rost
compute

|
|
|

[EA Y

Brogucasting

hackend

T——.

tone OT mMOre
diss crivesg

ONe Or more
Jdiss crives

Figure 2.1

'1.*.-'\-5-‘.1.-.._.\
! -~ '
ﬁ d'f Nt

p(-

;1‘\&

16

$~ e
Ekases

e N
¥

The MBDS Hardware Organization.

*'-:,'-‘. . -1 SN e e
»

e e AN e L

\\--..-
Sua e T

5':. .:. l- X
e Y

Y Y T T R Y T R Y T e S T T TR T T e T T T T YT R TR T W R TR IRITV TR W TR ITE T T TR T T e

finishes executing one reguest it will send the results of
that regquest to tie controller and be able to start
executing the next request independent to the other tackend.

Originally, MBDS is designed to be configured with a
number of microprocessor-based processing units and their
disk sulbsystems and be connected by a broadcast-lased
compunications line. When the implementation of MBDS began,
neither the microrrocessor-~based computers nor the
broadcast-based communications devices were available. The
present MBDS is configured with a VAX-11/780 (VMS 0S) as
both the host and the controller and two PDP-11/44s (RSX-11M
0S) and their disk systems as the backends. Communication

Letween computers is accomplished by
time-division-mulitiplexed buses, knovns as parallel
communication links (PCls). The broadcasting bus |is

sinulated by the PCL.

Currently, MBDS is being down-locaded to an initial
configuration of eight microprocessor-based,
broadcast-bus-connected, and Winchester-drive-supfported
workstations, with cne of the eight being used as the
contrclier and the others as the backends. This workstation
{(Sun-2/170, 4.2 BSD UNIX OS) has the Motorola MC68010 as the
CPU with 16 mbytes of virtual space per process and uses
Ethernet as the broadcast bus among workstations. The disk
drives on the backends are Fujitsu Bagle Winchester-type
drives, with a formated capacity of 380 mbytes per drive.

C. THE DATA HODEL ABD THE DATA LANGUAGE

In this section wve will first introduce the concert and
terminology of the attribute-lkased data model which is the
data model used in MBLS, then describe the data language in
which users may issue request to MBDS.

17

-
LN

e "‘.l .l'

L
[T A

.
.

e
ll'-. l"'

(]
e
s

L]
’

——

”

"y

NS

1. Ihe

MBDS chooses the attribute-based data model to be
its data model. In the attriltute-based data model, data is
modeled with the ccnstructs: database, file, record,
attribute-value pair (keyword), directory keyword,
directory, record bcdy, keyword predicate, and query.
Informally, a database is a collection of files, each file
contains a droups of records which are characterized by a
unique set of directory keywords. A record is comrosed of
tvo parts. The first part is a collection of
attrikute-value pairs or keywvords. An attribute-value pair
is a member of the Cartesian product of the attriltute name
and the value domain of the attribate. As an exanmple,
<SALARY, 30000> is an attribute-value pair having 30000 as
the value for the attribute SALARY. All the attributes in a
records are required to Le distinct. Certain
attribute-value pairs of a record (or a file) are called the
directory keyword of that record (file), because either the
attritute-value pairs or the ranges of their attribute
values are kept in the directory for addressing the record
(file). The rest of the record is textual information which
is referred to as the record body.

The angle brackets, <, >, enclose an attribute-value
pair. The curly brackets, {, 3}, include thke record Lody.
The rparenthesis, (o), form a record. The £first
attribute-value of all records of a file is the sare. In
particular, the attribute is FILE and the value is the file
name. An example cf a record of employee file 1is shown
telow:

(KFILE, Employee>, <JCB, Mgr>, <DEPT,Toy>, <SALARY, 30000>

{Emrloyee Description})

.’ ... -_ . ﬁ_.v- -.,. -"(l n_,. -'. - .-’ 'J' ." -...- K ". '-'.-l,‘-’. _.r.‘- .'_ n _‘n_'.—_—-‘.-."“‘. . ' S e _».-_'. _‘. e _
o \-".‘-'-"p.t" et ‘u": W e e e e 9 NN ORT R N BRI, N
Al 3 LN K - - - !

........

i Tk B Se et o an sred ank b ih AA S SRS o el and acis aAR~med a3 A shd-subh- el bl < siaR et Aedll- st uh A adih ol > o SRS B Ml i kgt ST gl o S £~ e A

The record has four keywords and a record body of emrloyee
description.

A keyword predicate, or simply predicate, is of the
forn

(attribute, relational operator, value).

Without confusion, we also use parenthesis to enclose a
predicate. A relaticnal operator can be one of (=, t=, <,
=, >=). For example, (SALARY > 20000) is a predicate. A
keyword K is said to satisfy a predicate T if the attribute
of K is identical to the attribute in T and the relation
specified by the relational operator of T holds between the
value of K and the value in T. FPor exanmple, the keyword
<SALARY, 30000> satisfies the predicate (SALARY > 20000).

A query consists of several keyword predicates in
disjunctive normal form. An example of a query is:

{ (DEPT=Toy) and ((SALARY<30000) or (SALARY>20000))).

2. 1The Attribute-based Data lamguage

The data manipulation language for MBDS, the
attrikute-based data 1language (ABDL) is a noa-procedural
language which originally supports four primary database
operations: RETRIEVE, INSERT, DELETE and UPDATE. It is the
purpose of this thesis to design and implement the fifth
rrimary database operation, the RETRIEVE-COMMON operation.

The RETRIEVE request is used to retrieve records of
the datatase. The syntax of a RETRIEVE request is shown as
kelow:

RETRIEVE Query (Target-lList) [BEY Attribute] [WITH Pointer]

The guery specifies which records are to be retrieved. The
) target-list is a list of output attributes. It smay also
consist of an aggregate operators on one or more output

19

P AT TP T Tt D R P R g ” (TR AR TR LR S B VL ‘:_ -_»_ Ny LG AL \.-\ '.
Pradas ‘\".J'-' e d‘ AR ety b £ TR SN
2 e Wy o 8 - - - - L t A

b P " -
T e T S DA

attritutes. MBDS supports five aggregation operators, they
are: AVG, COUNT, SUM, MIN and MAX. The BY-clause and the
WITH-clause are optional. The BY-clause may be used to group
records when an aggregate operation is specified. The
WITH-clause may be used to specify whether pointers to the
retrieved records must be returned to the user or user
program for later use in an update request. Some examples of
retrieve request are shown in fkelow.

Example 1. Retrieve the names of all employees who work in

the Tcy department.

RETRIEVE ((FILE=Em: ‘oyee) and (DEPT=Toy)) (NAME)

Example Z. lList the average salary of all departments.

RETRIEVE (FILE=Employee) (AVG(SALARY)) BY DEPT.

The INSERT request is used to insert a record into
the dataktase. The syntax of as INSERT request is:

INSERT Record

The following example will insert a record into the Emfployee
file.

INSERT (<FILE,Employee>, <SALARY,30000>, <DEPT, Toy>)

The syntax of a DELETE request is:

DELETE Query
where the query specifies the record(s) to be removed from
the datalase. The following example will delete records from
the Explcyee file.

DELETE ((FILE=Employee) and (S.LARY=30000) and (DEPT= Toy)).

20

t v e w_ ¥

Y Y v

“» ¢ Y

T 2

- g T T T T T W ey T WY IE AN NI ™A I e TS T T T T M T Te @Y siTwe w en = mtmae =

The JPDATE request is used to modify records of the
datakase. The syntax cf the UPDATE request is:

UPLATE Query <Modifier>

where the query specifies the particular records to be
updated from the database and the nmodifier specifies tke
kinds of modification that need to be done omn records that
satisfy the yuery. The following example will give a $1000
raise to all employees.

UPDATE (FILE=Employee) <SALARY=SALARY+1000>

The RETRIEVE-COMMON request is used to merge two
files by common attritutes. It will be detailly discussed
in the later chapters.

D. THE PROCESS STRUCIURE

MBDS is a message-oriented systen. In a
message-oriented systen, each process corresponds to one
systen function. These processes communicate among
thenselves Ly passing messages. The processes are created at
system start time and exist until the system is storped.
Figure 2.2 provides an overview of MBDS process structure.

1. Ihe Compunjcation Processes

Communication between computers in MBDS is achieved
by using the PCL. MEDS provides a software abstracticn to
this tus for each computer in order to enulate troadcast
capabilities. The abstraction consists of two complimentary
processes. The first process, get-pcl, dets message from
other computers off the PCL. The second process, f[fut-pcl,
puts messages on the bus to be broadcasted to other
computers. Every computer, whether it is the contrcller or a
tackend, has its own get-pcl and put-pcl.

21

."’
MR
Pl AS

.

e
y ‘.

I'n

f

|

-
r -

[S Tl I}
av.l_.l'l_ll,‘

5y % 4 A dpd

&
/]

Ca g
%

=~ L
LA

"~

AT s " Y M Sk e g e M LI M A Bk el Saair ot Sl el ShuB- S 2 ar 20 v B an B M Smi auao mas s h o o

The Controller

Post
Processing

: @PCL
|

Insert Information
Generation

Request
ratiog ?

Record
Processing

Concurrencs
Control

Direcrory
Matiagement

!
e e e e s mem o - e

Each Backend

Pigure 2.2

LT Ty B0 S P Y PR TS Iy 20 09 T
. o Rt A ld w T L1

il 2ty

The MBLDS Process Structure.

22

NI 3

bR T e
'y’l"fq.'(-t_ $".‘\,'F '(.J,.

L oo o sl e e g e 20 St B g0 e A b Sghbi B ut St - A gt i i P - e areg e ol irat St P R di 4 B it S J aaiu ha L *

There are 31 message types and one Jeneral message
format used in the MBDS message-passing facilities. The
format (shown in Figure 2.3) 1is used for each of the three
message-passing facilities, namely, messages vwithin the
contrcller, messages within the backends, and nmessages
Letween computers.

- - D S - D D D D —— - D - ——— - —— —

A Message Data Type
Message Type a numeric code E
Message Sender a pumeric code e
Message Receiver a numeric code N
LS
Message Text an alphanumeric field terminated ﬁ
by an end of message marker i
Figure 2.3 The General Format of MBDS Messages. N

Messages between conmputers are divided into two classes:
messages between tackends and messages between the
contrcller and the backends. Figure 2.4 describes each of
MBDS message types.

-

2. Ihe Test Interface Process

The test interface process allows the wuser to
interact with the MBLS directly. Since MBDS does not use a
host computer, the test interface process is contained in
the ccntroller.

In addition to the communications and test-interface

processes, the controller consists of three additional
processes: Request Preparation (RP), 1Insert Information
Generation (IIG) and Post processing (PP). RP receives,

23

P i 8, By & -
Al Akl .

parses and formates a request (transaction) before sending
the formated request (transaction) to the
directory-management process im each backend. IIG is used
to provide additional information to the backends when an
insert request is received. PP is used to collect all the
results cf a request (transaction) and forward the results
to the user.

4. IThe Processes of Each Backend

In addition to the ccmmunication processes, each
tackend also consists of three other processes: Record
Processing (RP), Directory Management (DM) and Concurrency
Contrcl (CC).

DM controls the execution of a request at a backend
and accesses the seccndary-storage-based directory tables.
It determines the disk addresses where the relevant data of
a particular reguest are stored and then sends those disk
addresses to RP.

€CC is used to insure the consistency of the database
while alloving concurrent execution of multiple reguests.

FP performs the disk I/0 operations and other
operations specified by the reguest. It receives the
secondary-addresses from DM, which processes the reguest.
The results are then forwarded to the controller.

24

- o i e oo it Mo s suskt i s aeu T R

s

. R
A 2]

: TP)
'n~"""~'

kY

LR

: '{'r R T
] L .t .
N . PRAPLEN . P

» e

»

A

PR e
' .t

]

?

v.J,".“.'J‘} "

.
’

1
IR R

Lo b
'
¢

'

————
Lo e
AN

Xk an 0 2 30 ke A ae - Al "B~ e "R e R

Y

-
MESSAGE-TYPE NUMBER AND NAME | SRC | DEST | PATH i
1 TRAFFIC UNIT HOST 1 S
REQUEST RESULTS t PP nesr 1 & 1 :
ER OF REQUESTS IN A TRANSACTION REQP PP ¢ k
AGGREGATE OPERATORS REQP PP c
5 REAglleSTS WITH ERRORS RE PP cC 5
PARSED TRAFFIC UNIT RESP | DM & [
NEW DESCRIPTOR ID II DM c8
BACKEND NUMBER IIG ™M B
CLUSTER ID DM 116 BC
10 REQUEST FOR NEW DESCRIPTOR ID 104 10 116 10 B2 1
\.KBND RESULTS FOR A REQUEST RECP pP BC
BACKEND AGGREGATE OPERATOR RESULTS RECP PP BC
RECORD THAT HAS CHANGED CLUSTER RECP REQP 8C
RESULTS OF A RETRIEVE OR FETCH RECP REQP BC
CAUSED BY AN UPDATE
15 DESCRIPTOR 1DS 15 DM 15 DMs 15 B8 15
REQUEST AND DISK ADDRESSES DM RECP B
CHANf‘ED CLUSTER RESPONSE ™M RECP 8
FETC DM RECP B 1
oLD AND NEW VALUES OF ATTRIBUTE RECP DM B]
BEING MODIFIED g L .
20 TYPE-C ATTRIBUTES FOR A TRAFFIC UNIT 20 DM 20 CC 20 B :
DESC-ID GROUPS FOR A TRAFFIC UNIT DM cc B
CLUSTER IDS FOR A TRAFFIC UNIT DM cc B
RELEAST ATTRIBYUTE DM cc B
RELEASE AL. ATTRIBUTEZ FOR AN INSERT _| DM L cc |8 }
25 RELEASE DESCRIPTOR-ID GROUPS 25 DM 25CC 25 B]
ATTRIBUTE LOCKED cc DM B ;
DESCRIPTOR-1ID GROUPS LOCKED cC DM 8 .
CLUSTER IDS LOCKED C DM B
29 NO MORZI GEMERATEIL IMN3ERTS REC REQP BC
29 NO MORT GENTRATET IMNZERTT REQP DM cB
29 W5 MORE GENERATED DNSERTC DM B RECP BC
30 REDUEST ID GF 2 FINISHED RENJEST 30 RECP 30 & 30 B 139
31 ANTUPDATE REDUEST HAS FINTISHED ’ RECP DM B
31 AN UPDATE REQUEST HAS FINISHED DM cc B
2]
SOURCE OR DESTINATION DESIGNATION ‘| PATH DESIGNATION 1
HO‘—‘I‘ : HOST MACHINE !'rvs'r-rm' H : HOST "
REJP : RENJEST PREPARATION) C : CONTROLLER b
Q 2‘ ~ C -
115 ¢ INSERT INFORMATION SENERATION C 1 &qn‘noz.z_g ,
PP~ : POST PROCESIING ¢ CONTROLLER g
DM : me;opv MAYAGEMENT B : A BACKEND L
RCCP : ROCOR: PROCESSING g ;A BACKEND
< : CONCURRENZY COMTROL : BACKEND)
H
Figure 2.4 The MBDS Message Types.
25
- - '-‘-- " - -”. ,‘ '''''' REREAE “"44- Tt .,' \.“ ;-.‘ »." R --.‘ e ‘.‘ """"" ""‘.':"
;‘l ° - - :' ~ ;.-; :('.-; 1-;.":'!:';’L-{L":‘-'"-__.A__L‘mALA‘.;A"S-P"\-'-)5:-"5&& -‘AL‘-\ ails

III. DESIGN AND ANAIYSIS OF THE RETIRIEVE-COMNON BEQUEST

In this chapter, we introduce the teraminology and

notaticns of the "Retrieve-Common" request, investigate and
analyze several Ecssible design and implementation
approaches, and then select the best one to design and
implement the Retrieve-Common operation for MBDS. The
selection of an agproach is based on the design
requirements and the design issues of MBDS.

A. THE INTENDED OPEBATION

1. An Operation Cn Two Files

The RETRIEVE-COMMON request is used to merge two
files ty common attribute values. The common
values are the attribute values which belong to the records
cf both files. For exaaple, suppose there are two files:
file A and file B. File A contains the records of tie

street names of San Jcse city:

"l‘k“‘
e

oAb

({<FILE, A>, <STREET, MONTEREY>, <CITY, SAN JOSE»
({FILE, A>, <STREET, SECOND>, <CITY, SAN JOSE>)

a1
L XN

o,

D
A

K " 4

File B consists the records of city names of the Monterey
couanty:

@

AP

j2Y

(<FILE, B>, <CITY, MONTEREY>, <COUNTY, MCNTEREY>)
(<FILE, B>, <CITY, SEASIDE>, <COUNTY, MONTEREY>)

J'l

l'
o

N “

e e e T e Pt et Rt TN et
ESEAT A NEAR Ay TR IR

T T T VT W T TN, T T T T T W O N e U T R T ey I e T T W

The RETRIEVE-COMMON request can provide us a third f£file,
say, file C, with the information such as: "All the records
of both files A and B, vwhere the street name of the records
in file A is identical to the city name of the records in
file B. One of the records in file C which satisfy the
request would be

(<FILE, ©, <FILE, A>, <STREET, MONTEREY>, <CITY, SAN JCSE>,
<PILE, B>, <CITY, MCNTEREY}, <COUNTY, MONTEREY>).

logically, the retrieve-comaon request involves two
retrieval operations. We define the first retrieval
operation as the soujce retrjeve and the second retrieval
operation as the target cretrjeve. The set of all the
records that belong to the result of the source retrieve is
called the source record set. The set of all the records
that belong to the result of the target retrieve is called
the target record set. A source (target) record is the
record that belongs to the source (target) record set.
Similarly, those attributes will be refered as source

attritutes and target attributes. The merged source and
target records are termed the _[result record set. The

aforementioned file C is a result record set.

We term the source and target attribute npames that
participate in the retrieve-coaaon operation the join
attriktute pames or briefly jojip attributes. However, their
values are termed common atiritute values, or simply coamon
values. The retrieve-common operation requires that the
join attribute which 1is specified in the source record set
must have the same dcmain as that of the join attribute in
the target record set, although they need not have the same
attritute nanme.

Consider another example, suppose the source records
are characterized by the attributes, Employee_name, Wages,
and the target records are characterized by Rank, Wages.

27

Nt - e S

R
r"\:\?n{‘

L")

- \

A T PNt e L e
DI YSATINSY u\;.x ﬁ&ﬁ;ﬁuﬁlﬁﬂi&g

DIl ASaC as st "ulEC i = dar e ab er 2av fab fale hat ies Bt Sak it h Aok A oa Adh ot e R AR Lk AN ite iiie e bl R b S te S A ekt ekt dnih i oS Akt A bt i " L
® ¢
[}

F -ther, let the domain of the Employee_name€ be the
character string and the domain of both Rank and Wages be
the integer. A retrieve~-common operation may be perfcrmed
ty merging on the attribute values of the wvage of the
respect.ive source record and the target record. A
retrieve-common operation may also be performed by merging
on the wages of the source record and the ranks of the
target record. Since their value domains are the same.
However, a merge between the employee names and the ranks
would nct be permitted, since their domains are different.

The 1logical operation for the retrieve-ccmnon
request can be descrited as follows.

(1) All records satisfying the source retrieve are
collected.

(2) All records satisfying the target retrieve are
collected.

(3) The records of the two collections are pairvise merged
on the common (source and therefore target) attribute
values.

2. 1The Syntax Of Retrievn-Common Regquest

Fhen developing the syntax of the retrieve-common
request, vwe must attempt to design a data language construct
that is similar, syntactically, to the other primary
operations of ABDIL. In particular, the syntax of
retrieve-common operation should resemble the syntax of the
ABDL retrieve operation given below:

RETRIEVE Query (Target-list) [BY Attribute] (WITH Pointer]

Using the above syntax as a guideline, we define the syntax

for the retrieve-comacn request as follows.

RETRIEVE Query-1 (Target-list-1)[BY Attribute])[WITH Pointer)
CONMON (Attribate-1, Attribute-2)

28

B S R T S) L AT e v o T T I e R R A A LR RS

LR e T T T T I Y A TP S P e ST DI A I YA e e A,

N, } T e Ve e RPN IO R S S B e e NS f" i_} \
R .'-J.%L-l‘ P A AL SO Y XAy 9 18 5;).1‘..':“.‘;'.L'.".‘L'}X..".:_.x‘,_g[_-_[_ e et ‘l}-ﬂ‘""L \)_.}u::ﬁ

T T T T Y T T T W T T T N W S VT P L P TR s TR T T R TR TR T TR T F TR R T T W T T T TR TN TR T U T T I e

RETRIEVE Query-2 (Target-list-2)[BY Attribute][WITH Pointer)

The retrieve-common request consists of three parts.
The first part is what we have referred to as the source
retrieve request, vhich retrieves the source record set.
The second part is the specification of the join attributes,
where Attribute-1 telongs to the source record and
Attribute-2 Dbelongs to the target record. Although the
values of these two attributes must be the same in order to
satisfy the condition for merging the respective records,
their attrikute pnames need not be identical. The third part
is what has been refered to as the target retrieve request,
which retrieves the target record set.

B. AN ANALYSIS OF DIFFERENT DESIGNS

In order to make this thesis self-contained, several
possitle design arrroaches described in [Ref. 8] are
reviewed in this section.

The main issue when considering alternative strategies
for inmplementing the retrieve-common request is where the
merge of the source and the target records should be
performed.

There are three major alternatives for distributing the
worklcad of the retrieve-common request.

(1) The controller does all of the merge operation.

(2) The backends do all of the merge operation.

(3) The controller and the backends share the worklcad of
the merge.

Each of these alternatives will be analyzed and judged using

the design requirements and design issues of MBDS.

S

In crder to simplify the analysis of design (or
implementation) strategies, we make the following
assumpticns.

[

h
NN .v,

)

.........

.........
BRI . e T ® -

AR
e

’

AN

-,_-,
P yA
R

LY

P
)

— sl
PR

z .,l‘

X6

e
) = R) N N

A Y

2t

cee

SRS
HNNNN

Syl
3 ¥

- o T
e e " ate e
et a.
L e SN SR TR
PRI L LN

Al A Zok Mo Sl R s-Soi st dey

L L AR B BB Sue bt el s s — M aaE s s e s Biae A ek aad o vor

(1) The records of the source record set and the records
of the target record set are distributed evenly across
the tackends.

(2) The operation of the retrieve-common is performed as
described in the previous section.

1. Ihe Coptroller Does All the Merge QOperatjion

In this alternative, each backend only performs
these two retrieval coperations and then sends the records of
source record set and records of the target record set to
the ccntroller. Upcn receiving all the source records and
target records froam all the backends, the contreller
perforas the merging operation and sends the results to the
host comfputer.

2.

.
o

h 92.5..11.2 Apd Ibe Backends Share The MNexge
ati

101

lﬁ.?

Each backend performs the merge operation over its
source records and target records. The merged records, along
with the source and target record sets are then sent tc the
contrcller. The ccntroller performs the merge operation
over the source and target record sets coming frcm different
tackends and then =sends the results togeth - with the
previcusly merged recocrds (done by individule backends) to
the hcest.

3. 1Ihe Backends Lo All the Merge Operation

This alternative may be further broken into two
subalternatives.
(a) The tackends share the merge operation.
The tackends send either source or target records to
each other. let's assume that the tarjet records are
sent. Each backend will have a portion of the scurce
record set and a whole set of target records. Then,

30

the backends perform the merge operation over its own
source records and all of the target records, and
sends the results to the controller.

(b) One designated tackend performs the merge operation.
All records of both the source record set and the
target record set are sent to the designated backend
frcm all of the other backends. The designated
tackend perforas the entire merge operation and sends
the results to the controller.

4. Ap Apalysis of the Design Approaches

Four alternatives of distributing the workload of
the merge operation among the controller and the lackends
have Lkeen discussed in previous subsection. We now examine
these alternatives with the design goals of MBDS.

Alternative 1, wvhere the controller performs the
entire merge operaticn will dincrease the workload of the
contrcller. Recall that in chapter II we have stressed that
in order to reduce tke chance of the controller bYeing the
bottleneck of the systen, we mainimize the vwork of the
controller. Alternative 1 violates this design regquirement
Therefore, it will not be considered further.

Alternative 2 will increase the cosmmunications load
and increase the vworkload of the controller. This
alternative comflicates the first and the sixth design
issues of MBDsS. Therefore, it will also be eliminated from
the design consideration.

Alternative 3a meets the design issue of minigizing
the ccntroller function and distributing the workload to
each lackend evenly. Alternative 3b does rot increase the
workload of the controller; nor does it distritute the
worklcad to each backend. Furthermore, transaitting all the
records of both the source record set and target record set

31

Te N e T TR P e ~
RORORAN i N e

T T R I R AL S Mt o Svn B ee RAsTian ben Boo Sen £ b 2w o-n o 2 oe 2 0

T TR T Y g Y T T T N e r—

—

-

will increase the ccmmunications overhead. In aldliition,
performing the entire merje vperation in one backend will
unbalance the workload, therety reduciny the paralielisa oL .
the tackends, i.e., Ly having a sinjic-tackend tc dc the
merJe anl all other tackends to idle. This coupliciates hota
ot the third and sixth design issues, sc tais alternative is
also eliminatel.

witl. this analysis we choose the alterrnative 3a
our design aApPproacie. That is, each backend perforss
paptial merge with its portion of source records and

target records. And then, sends its cresult

controller. The comtroller forwards the final result

R
I U

o
& & |
o o

C. AN ANALYSIS OF DIFFERENT INPLEMENTATIIONS

Three 2ifferent lamplementatioas for merjirng the scurce
and the tarjet record sets are considered.
(1) A straightforward impleaentation.
(2) An ig;lementaticn basel on sortiny and matching.

{3) An ip,lenmentaticn based or rpucket-hashing.

1. 1Ihe Straijhticrwdard Iicplementation

The concept of this alternative i3 very siagle arnd
the serying operation is basced on the "pest-loop"™ alyorithe
[Ref. 8 : p. 86] whicu is showbn in Figjure 3.1,

This alternative is accoas;iislcd iu five phases:

(1) Each backend Jdetermines 1its oWl sSource records and
stores thea intc a predefined gort.on of the secoulary
storage area.

(2) Each Dbackend deteraines its owa taryot recoris anl
stores thed into the vrelezinced _oertior ¢f the

seconddary storage area.

|9
"o

PRCCEDUORE Nest_loof_merge
FOE each record in the source record set DO
FOR each record in the target record set DO
IF the merging condition is satisfied
THEN
form a result record
E

e O i % e AT B KX R o

DUORE Nest_loop_merge

Pigure 3.1 The Nest-loop Merge Procedure.

(3) Each tackend troadcasts its own local target recorids
to all of the other backends.

(4) Each tackend receives the broadcasted target records
from the other backends and stores them intc the
secondary storage together with its own target
records.

(5) Each ltackend brings its own source records and the
entire target record set into the primary aemory,
performs the "nest-loop"™ merging operation and then
send the merged results to the controller.

2. Ihe Implepentatjon Based op Sorting and Matching

The idea of this implementation is based on the
following inference.

Since the retrieve-common operation is simply a merging

L

operation on two files of records sets, if we can have

¥

these two files presorted by the values of their common
attributes then the merging operation may be efficiently

33

Y ke 2y P 0,

"

2

......... Y T e T W W T W W W TN W W T e T W W W T T W Ty W T YW T U e L ailh e

performed by matching the values of the comnon
attritutes of the records of these two files.

There are two possible alternatives to perform the
sort-match algoritham.

(a) The backends do all of the sorting and matching
ofperations.

(b) The backends and the controller share the sorting and
matching operations.

Alternative (k) vill increase the workload of the
contrcller and contradict with the design goals of MBDS, and
is therefore eliminated from consideration. Only
alternative (a) will be examined. Alternative (a)
accoaplishes the retrieve-common operation in four phases.

(1) Each backend retrieve, sorts and stores . s own source
records and target records separately, and then
broadcasts either set of records to the ctkter
kackends. {({Let's assume that the target records are
transmitted.)

(2) Each ‘lackend receives and merges the incceming
ncn-local target records into its own local target
records.

(3) Each trackend performs the matching operation over its
own portion of source records and the entire set of
target records (from all the backends).

(4) The backends send the results to the controller.

3. Ibe Implementation Based on Bucket-Hashing

This implementation strategy attempts to speed up

~, the conmparison and merge by hashing records into small
!& groups (the buckets of the hashing table) which contain .
o records with common attribute values, so that the time
Caitd

"o complexity of the merging operation may be reduced.

-

i 34

-L ‘

o

(9

"{; b T S SRRy T \"-\.‘ n

D T I R S R I R T TR O W37 A G R L R G ORI N (NG TR AL L L N N UL TR SR I YL IR R
-.)-."" > -ﬂ.(.'{ X ."_- L) .‘. 3‘_ v - ‘\-‘ . " Lol . : W e
) LA YA Ad .

YL S

T T T R TR T T T T W e Y T R e T T e S S S g I T I UL T W I I T T O TRT R LW R T TR TR TR T TTe T @ I TR TR L T e e

O,

ol

e

I* - . -

e A hashing function applied to the common attribute
Q: values is used to hash records into buckets. The bucket
; . numbers are consecutive integers. Instead of using primary

and overflow areas, the buckets use one or more fix-sized

g
D

blocks to store records. The numbers of blocks nmay vary

e
F

i ay adh B A
.

among buvckets. Details of the hashing table, the buckets
and the the blocks will be described in the next charter.
Those source records and target records within the
same bucket will be examined and merged if the merging
condition is matched. This alternative can also be broken
to two sultalternatives.
{(a) One common hashing table is used for both source and
target record sets.
(b) Twc separatc takles are used, one for each record set.

a. One Common Hashing Table

This alternative is accomplished by each tackend
in four rhases:

(1) All local source records will be hashed and stored
into blocks according to their hashed values. These
blocks (therefore buckets) are termed source blocks

(2) After all the 1local source records have been hashed,
the local target records are hashed one at a time and
ktuffered. If the target record is hashed into an
engty source bucket, then it is buffered fcr
transmitting to other backends. Otherwise, all the
records in the source Lucket will Le retrieved and
merged with that target record only if the merging
condition 1is =satisfied. The results are first

. tuffered and then sent to the controller.

(3) Since the non-local target records may arrive at a
tackend while the backeni is processing some cther
records, each backend will place these inccming
records on a predefined secondary storage area.

3¢

1y gy oy
AL S

i

)
]

SCAL

M3

RN

‘l.'.l"l

Ve

(4) Each rackend retrieves the non-local target records
from the secondary storage area and processes them in
the same way as the the backend does on its local
target records.

E. Separate Hashing Tables

This alternative is accomplished in three
phases.

(1) The backends will hash and store their own source
records and target records into two separate hashing
takles by a commcn hashing function. After all of the
tar ‘et records have been hashed and stored, each
backend will Lkroadcast the hashed results of their
target records (i.e., the bucket number and the
records associated with that bucket number) to all of
the other backends.

(2) Opon receiving all of the target information from the
other backends, each rackend stores those target
records into appropriate buckets accordiing to their
bucket numbers.

(3) The backends perform the merge operation on the 1local
source records and the entire set of target records
and send the results to the controller. The procedure
is shown in Figure 3.2.

4. A Comparison Cf The Three Implemerntation Approaches

In this section vwe compare and analyze these
iaplementation apprcaches. Since the backends work in
parallel, our analysis only focuses on how much time it
takes for one backend to do one particular strategy. There
are ccmmon operations that each backend performs, so that
the time complexities for these operations can te ignored
when conmparing the implementation strategies. The times of
these common opera 'cns are:

36

g

YW YW TN T T T Y Y T v T ——— YT T WY N Y W W VY A it bl st st g aeuht bl ol Sabh LS st~ o SR oI N A S

FOR the bucket_value = pin_value to max_value DO
IF the buckets of both tables are not enmpty
then
retrieve all the records from both kuckets
perform merge operation based on
the straightforward algorithm

END EROCEDURE Hashing_merge

Figure 3.2 The Hashing_merge Procedure.

(1) the time to process the records for the source request
which involes determining which records of the
database satisfy the query, projecting the
attribute-value pairs of the target-list of the
satisfied records and forming a source record set;

(2) the time to frocess the records for the target
request, which involes determining which records of
the dJdatabase =satisfy the query, projecting the
attribute-value pairs of the target-list of the
satisfied records and forming a target record set;

(3) the time to broadcast the 1local target records to the
other backends; and

(4) the time to send the merged results to the contrcller.

The following notions are introduced to simply the easuing
analysis.
Cs : Cardipality of the source record set in one backend.

Ct : Cardipality of the target record set in one backend.
Cb : Average number of records in a bucket.

37

. = TR B LT P S St R e A T R T S R R S IR
" - o "-.". '._.', '_~. B S S PRI I T AN T T T T T Tl e T BRI \.-.-.'_-
N Rt . e T

‘- IIIIII - a -
$)." _h‘fl (3% 'iuh._.}_..:_‘ 'z A R

e - - . B o .
< . .
e e e e T e e e e T T

Number of Backends.

Number of Index Entries in the hashing tabhle.

Ti : Average time tc read (write) a block of records fronm
(to) secondary storage. :
Tt : Average time tc read (write) a record form (to) a :f
bucket. ¢
Tc : Average time to compare the common attribute values F
of two records. "
Th : Average time tc hash a recori. i
Tm : Average time tc merge two records. Q
a. An Analysis for the Straightforward 4
Implementation ;
We recall that there are five phases in this 3
ioplementation as discussed in a previous section. ?
Phase 1: Since there are Cs 1local source
records in each backend, the time complexity for storing
them into the secondary storage is: ,
Ti* (Cs/Cb).
Phase 2: Since there are <Ct local target :f
records in each backend, the time complexity for storing ;
them intc secondary storage is: .
Ti* (Ct/Cb). '
Phase 3: The time complexity for this phase is E
ignoread. g
Phase 4: Since each backend receives {M-1) *Ct "
target records from the other rackends, the time complexity f
for storing them in the secondary is: .
(4-1) * (Ct/Cb) *Ti.
Phase 5: Records are merged in this F[fhase, :
There are Cs source records and M*Ct target records in each . ?
backend. Each block of the source records is compared and
merged with all of tte target records. It takes Ti to tring :
one blcck of source records into the primary memory fromx the .

38

..........
......

rv"‘"’?f"‘"'"f Lt Al ahd § A ek il e i - - 1. o A dihie el ag Sl) - R Yl e & i A SRR el “ana et ihe Y Bntad R eV e VAL U B vinh e b il S R CAR I B Y Te B el Taail i kol

L

t\
-
)
h

secondary storage and M¥*(Ct/Cbk)*Ti for the entire target
record set.

It takes Cb*Tb to access one block of source
records and M*Ct*Tb to access all of the target records.
The time complexity for comparing one block of +the source
records and all of the target records is

Ch*M*Ct*Tc.
We further assume tlat there are k fraction of target
records participating the merging operation. The time
complexity for merging one block of source records and all
of the target records becomes:

k*M*Ct*Ta.
The total time complexity for processing one block of scurce
records of this implementation is:

[Ti+¥* (Ct/Cb) 1+{Cb+M*Ct*Cb) *Tb+ (Ch*M*Ct*Tc) + (k*M*Ct*Tu) .

There are Cs/Cb blocks of source records in each

tackend; therefore, the time complexity of this alternative

is:
(Cs/CDb) * {{ Ti+M* (Ct/Cb)]+ (Cb+M*Ct*Cb) *Tb
t + (CL*M*Ct*Tc) + (k*M*Ct*Tn) }
- or
& (M*Cs#*Ct) *[Ti+ (Tb+k*Tm) /Cb+Tc J+Ti* (Cs/Ch) +Cs*Th
ﬁl Because Cs may be equal to Ct and M is a small constant, the

- time complexity may te further simplified to be
' 0(Cs*Ct) or

Ei 0 (Cs?).

- .

E§ b. An Analysis for the Sort-Matching Implementation
8

1 we will analyze each phase of this
‘ implementation approach.

Phase 1: Each backend sorts its two record sets
b and broadcasts the scrted target record set to the other

39

..... DT R T S T e e

P
v a2

& t5 <

4
" "1',‘r e 2/ B

l'l .
& 4, t MRS

:'a,'nn'

YA

* 4
ala

AR
AR

’

"l
S |
R - O

v «

‘s % I":

R S

2" s) AN
JO
et Sata AT Y

Ly
]
)
a

B
AR

B g
T et T,

1% %%,
L r')

tackends. Due to the large size of records, the sorting
operation can not be done by using an internal sorting
algorithem. There are several external sorting algorithms
which can sort the lccal source records and the local target
records with the time complexities of 0(Cs*(logCs)) and
O0(Ct*(log Ct)), respectively. However, these algorithms all
have some limitaticns: either using special hardware
configuration or running different software among processors
[Refs. 9,10].

Because we do not want to put limitaticns on the
hardware configuraticn of MBDS and to use different software
among the backends, this alternative is eliminated from our

consideration.
C. An Analysis for the Bucket-Hashing
Implementation

In order to further simplify our analysis, we
assume that the local source records and target records can
be evenly hashed across all the buckets of the hashing
tables and each bucket will contain only one block of local
source records or one block of local target records. First,
we analyze the alternative that uses only one hashing table.

Phase 1: Each source record needs to Lte hashed,
written into a Dbucket by its hashed value. This includes
getting the block of that Ltucket from the secondary storage
and writing the record into the block and returning the
Plock to the secondary storage. Therefore, the time
complexity for each tackend to hash and store the scurce
records is:

Cs*(Th +Tb + 2Ti).

Phase 2: Every time a target record is hashed,
the kucket with that hashed value is checked. If the bucket
is not empty, then all the source records in that bucket

40

s s S b b i dnalb s T P T T T P T L Ve T R Tl T P e asw TR OwTwd

will le retrieved intc the primary memory, compared with the
target record and merged with it if their common attribute
values are equal. The time complexity for bring one bucket
{(block) of source records intc primary memory is Ti. The
time comrlexity for accessing those source records from the
block and comparing with that target record is:

Cb * (Tb + Tc).

Suppose that the protability of hashing a target record into
a non-empty bucket is p and the probability of satisfying
the merging condition is £, then the time conmplexity for
each Lackend to process one local target recorids is:

Th + p * {Ti + Cb * (Tb + £ * Tc)].

Because we assume the source records are evenly hashed
across the buckets of the hashing table, p is equal to 1.
There are Ct local target records in each backend so that
the time complexity for each backend to process its local
target records is:

Ct* {The[Ti+Cb* (Tb+Tc+£*Tm) J}.

Phase 13: Bach kackend receives (i1-1)*Ct target
records frcm other backends. The time complexity for
storing thcse records back to the secondary storage is:

(M=1) * (Ct/Cb) *Ti.

Phase 4: It takes (M-1)*(Ct/Cb) for each lLackend
to retrieve all tlte non-local targjet records from the
secondary storage into the primary memory. The time
complexity for processing thcse records is:

(M=1) *Ct * {(Th+[Ti+CL* (Tb+Tc+k*Tnm)]}.
The time complexity of this phase is:

(M=1) *{Ct/Cb) *Ti+M*Ct {Th+[Ti+Cb (Thb+Tc+£*Ta) J} .

41

hd “Badk S 2 "B N D A AR e "R Y S a i Sui n o S 0 B G B I N Sl i A A A A4 Pabaiivut artd ara sk aisil - Sl ghelh adir e~ dine e L e Biae aas Suite Sk Shol Jhode G S b b oh dciat b aoa L A le S

The total time complexity of this alternative
for a backend is:

Cs (Th+Tr+2Ti) +2 (M-1) * (Ct/Cb) *Ti
+M*Ct {Th+[Ti+Cb (Tb+Tc+£*Tn)]} .

Now, we analyze the other alternative vhich uses
two separate hashing tables.

Phase 1: The source records and the target
records will be hashed, grouped into the buckets of separate
hashing tables and then placed onto the secondary storage.
The time complexity for each backend to process its local
records is:

(Cs+Ct) * (Th+Tb+2Ti) .

Upor receiving the target records from the other
tackends, each backend will insert those incoming records
into the hashing table of the target records and stored then
back to the secondary storage. Since those non-local target -
records are grouped and sent by their bucket numbers, the
insertion time is so guick that it may Le ignored. By using -
an inverted list, the time complexity for each backend to
return those incoming target records to the secondary
storage is:

(M-1) * (Ct/Cb) *Ti.

Phase 2: Records of these two hashing tables
will re processed one bucket at a tisme. For any bucket
number (i.e., a table entry), if the buckets of both hashing
tables are not empty, then all blocks of the records of both
buckets will be read into the primary memory for the merging
operation. It takes Ti for tringing one bucket of scurce
records (in this case, one block) into the primary memory
and M*Ti for one bucket of target recc-ds (M blocks). The

time <ccaplexity for accessing, comparingy and rossitly

it ok Bl S kg al e Ml ey et Ebd Steit aiess L p s A e Ak lase by it gt ges e B figie hac it hn RS- RE™ MR s Pl bt -aibi ol - an - AR RAG ah s piiuied Al SR] t-r;rar;rm}l

-

merging one bucket cf source records with one bucket (M
blocks) of target records (not including the disk I/O time)
will te:

Cb*[T1b+M*Chb* (TIb+Tc+£f*Tn)].
The expected time complexity for all buckets will be:
(CS/Cb) *Cb*[Thb+M*CL* (Tb+Tc+ £*Tm)]

Therefore, the total time complexity for this alternative

is:

(Cs+Ct) (Th+Th+2Ti) + (M-1) *{Ct/Cb) *Ti

+ (CS/Cb) *Cb*[Tb+M*Cb* (Tb+Tc+£*Tn)]
| | onecommon mbte | two Separate Tamie |
e
| cascesmsct | memecsce
lre | msceses | covmecs
I | 2commceezmnrcen | @sectremen serses
re | mectscoee | casmecons

Pigure 3.3 The Time Complexities of the
Bucket-Hashing Isplementations.

A summary of the time complexity in terms of Th,
Ti, 1b, and Tc for these two subalternatives is shcwn in
Figure 3.3. As shown in Figure 3.3, alternative which uses
two separate tables is Dbetter than the other one which

KRR) A

.
[AS)

ol
P &

NN
L
’ "y -

._v

A a8

43

L]
.
Az a

P33 e DM

-.-._“;“..;- A R A T S S S . e ’.:' R . . '_ :4 : ’.‘ :_ .’..:_ e

E SN IS A O A
> .A".r‘_-"}:f.p})&.)-}ﬁ.r:.* P e

(-:-'v.‘ i~ o Beitn Done s At i it Ay “S iy ¥ St Sl M v B el gl il i R sk g - i i Sl it R e A B S S T T TS TR T TS S LW VAT TR T W e
:".;:f
B
o
o employs only one table. Since Cb and ¥ are constants, f is
<
K smaller than 1 and Ct may be equal to Cs, we carn further

simplify the the time complexity of the two-separate-tables -
.%? subalternative to be:
"3 0(Cs+Ct) or

2 0 (Cs).
o
ot) .
LS d. The Conclusion for Our Implementation Apfroach
A summary of the analysis for those

;% implementation approaches in terms of time complexity are
§$§ shown in Pigure 3.4. Clearly, the one Lased on
M Bucket-Hashing with two separate hashing tables is the bhest
. & approach. Therefore, our implementation will be tased on
j&j that approach. The details of design and implementation
Y
=t will ke discussed in the next chapter.
v F-
S -
i Straightforward 0 (Cs?)
Y .
£ B —mm oo
{gﬁ Sorting-Matching Not considered
o Bucket Hashing 0 (Cs)
32
::::::f
,;;; Figure 3.4 Time Ccaplexity of Different Implementation.
W
3308
S
N
®.
X .
54
Ay
N .
o
x:_‘__.:
S0 uy
ol
TN
—
':.;:5 7
T N b A Y S e T T g T T R e i L T g

IV. DETAILED DESIGH POR IBPLEMENTING BETRIEVE-CCMMON
OFEBATION INTIO MBDS

In the previous chapter, a bucket-hashing Lased
implementation approach has lbeen selected for implementing
the retrieve-common ofperation irto MBDS. In this chafpter, ve
focus on specifying the details of that approach and discuss
any of the existing MRDS software which will be affected by
this isplementation. Our primary goal 1is to use the
existing software as much as possible and to minimize the
effects which may be caused by the implementation.

The operations cf the retrieve-common request may be
described in four phases. First, the user's request must be
preprocessed so that all backends can be informed by an
approfriate message. This is the reguest-preprocessing
phase. Secongd, the records of both the source and the
target record sets are retrieved before the @merging
operation. This 1is the record-retrieving phase. Third,
those retrieved records are hashed on the values of their
join attributes and stored into a hashing table acccrding to
their hashed values (i.e., the bucket numbers). We recall
that there are two hashing tables, one for the scurce
records and one for target records. Further, the hashed
local target records are broadcasted to the other backends.
This 1is the hashjing-and-storing phase. Lastly, hasted
records of source tuckets and hashed records of target
tuckets are compared and merged bucket-by-kucket,
respectively. The merged results are sent to the contrcller
from all of the backends. This is the merging phase. The
controller then forwards those results to the host computer.

The operations of the first and second ptases can be
done ky the existing systenm sof tware with minor

4s

B e L el ok 3 a8 A8 42 & = han b =3 She Ads A e ahe -aiacen b S d dan Sab anib sadh sl Snd sttt Shi HRE Sl SRE 2

SRR m wmim oW

['I. o, ‘l,

. \'.'....

. e - o4
»
LS A .

DA A G I S T ol e i S “Hhedr e Bt dt T TR g gy g vy -

modifications. However, in order to accomplish the
operaticns of the last two phases, ve must design a new set
of procedures, wvhich wve have referred to as the hashing
module. In the remainder of this chapter, we first describe
the hashing module, and then the operations of those four
rhases.

A. TRE EASHING MODULE

This module is desigred to accomplish the operaticns of
the last two phases c¢f the retrieve-coamon request. There
are three procedures within this module. They are: the
hashing frocedure, the bucket-block tracking procedure asnd
the merging procedure. In this section, we first discuss
the two dJifferent alternatives for implementing this
module. After choosing the ltetter alternative, we tten
describe the three prccedures of the hashing module.

1. Alternatives for Implementing the dashing Module

There are two alternatives that may be used for
implementing the hashing mocule. In the first altercative,
the hashing module 1is implemented as a separate process of
the rackend. This alternatives modifies the existiny
Frocess structure of a backend by introducing a sixth
process and its associated communication paths irtoc each
tackend. In the seccnd alternative, the hashing module is
implemented as part of the existing record frocessing
process (RECP). This alternative leaves the existing fFackend
Frocess structure unchanged.

a. As a Separate Process

In this alternative, the hashing @module is
designed as a separate process of the backend. The irnputs
to the hashing module are either the local source or target

4é

%

i
Al
|
X

-
-

POPRPIT I Ve e Sl f_yale 0

LARE P W W O W W Y W W T Y B L Y Y T T T W W WY RO RO R R R RN TW TR TTEVTE T T 1R T TR T LR

records frouw the local RECP or the other taryet records froa
the KRECEs of the othler Dbackernlis. The outputs from the
hashing a@odule are the merged results, which are sent to the
contrcller. The transfer of records Letween [frocesses
(i.e., non-local target records ftroa "Put Pcl" to the
hashing module or the local source records or the local
target records from the lccal EECP to the hashing module) is
accomplished using the intergiccess message capabilities of
each lLackend. The rew ;rocess structure of each tackernd
with the additioral ccmmunication pathks is shown as Figy 4.1.
Since the hkashing mcdule is an indeperdent process, the
effects of this implementaticn on the other processes of
MEDS may te minimized.

—— - s] - - ——— . — - ———————— - - . —— —— -] - D - ———

Each Backend

, Fut Pcl l , Get Pcl l
"""""""]F‘ b Sttt ot
Fecord Concurrercy Directory

Processing Control Manajement

Figure 4.1 Hashing Module As a Separate Process.

47

PP s R WA S Wy e

2¢]

~

a E. As a Procedure within Record Processing

:d In this alternative, the hashing module is

xﬁ designed as a group cf procedures that are added to FECP. X

0 In Figure 4.2 we show the structure of the hashing module

;j with FECE. The local records (both the source records and '
the target records) are retrieved by the physical Jdata

;5 operation of RECP of each lLackend. Once the records are

;f retrieved, they are sent to the hashing wmodule. The

ig non-lccal target records dare received by RECP Lrom the cther
rackends and theu passed to the hashinj mcdule. ILe merged

o results are then sent to the controller. With modularized

‘} programping, the hashing module may Lte independently

:i implemented with a &sminiwal effect on the origiral KECP

i: software.

EECP of Each Backend

- Aggregate Physical

'fi Operation Data :

f} e e Operation

3
Vol
——

Retrieveld
Local Records

3 I l.‘ 4
ORI — &
[+9)

(]

= ad

=

=

[Ve}

=

[#]

foW)

=

[

®

o
—_—

]
ia

- D L R - —— — - —— —— -

D D T D D D D VD N —D D — - - - S N e M W > - . A -

- Figure 8.2 Hasing Module as Part of RECP.

e 48

e

.
D B A B R N .
T At e et e e e . T e N
. et P .-...f,-_-_ q"
. gt ' L 1

PR R -
ot -"'-. '\'{ ‘.':*-\-. -"'h." ‘u -\. t

TS T T T T T T T T T T T T T T T T T TR T T TR T O TR T TR TR TR T TR TR R TR SO ORT RS LT T R RA T R

C. Compariscn of These Two Alternatives

Both alternatives can be easily implemented with
minimal effect on the existing systean. The difference
tetveen these two alternatives is the way that the local
records are passed frcm the "physical 3ata operation”" to the
hashing module. In alternative (a), the records are passed
as an interprocess message. In alternative (b), the records
are passe€ed as a parageter of a procedure call. ¥e choose
alternative (b) for three reasons.

(1) The message-passing between two processes within a
backend 1is slower than the parameter-passing. In
message-passing, both processes have to access a
cchmon memory tc put (or get) message. The accessing
tire coupled with the time reyuired to place a
message in the common memory by the sender and fetch
the message frcm the common memory by the receiver is
considerable. In parameter-passinrg, only the logical
address of the record buifer is passed between the
proccedures, which is much simpler and faster.

(2) Even if message-passing within a computer is extremely
fast, there is a large number of messages (i.e.,
records) which is considerable. Since it amounts to
route the messages (records) between two processes.

(3) The extra communication paths reguired by alternative
(a) (i.e., the communication paths amongy the hashiny
module and the other MBDS processes), increase the
number of messages passed within a backend and among
backends. By increasing the inter-backend and
intra-backend commurnication, e may adversely effect
the overall peirformance of a backend.

LD R
elenas “

‘:\'.‘)\S} “.- :A:'Ju._. . "

SR TS

o
LIl
v e

R
LA

.
DA

s

I e IR
. .

This procedure is used to perform the hashing
operation on the values of the join attributes of the input
records. The inputs to the [fprocedure are either the 1local
source records or the local target records, vwhich are
received from the rhysical-data-operation subprocess of
RECP. The output frca the procedure are the input records
and their hashed values (i.e., the bucket numbers), which
are sent to the bucket-block tracking procedure with the
request id for further processing.

The hashing operation 1is done by the hashing
functicns of this procedure. Since the type of the values
of the join attributes may either be an integer or a
character string, we have designed two hashing functicns in
this fprocedure. Generally, a good hashing function should
satisfy the following three requirements:

(1) All of the reccrds should be evenly distributed into
buckets of the Lashing table;

{(2) The chance of hashing different records into the same
Lucket should be minimized; and

(3) The hashing computation should be fast.

These requirements are closely related to the number of

buckets and the hashing algorithm which 1is used in the
hashing function.

a. The Number of the Puckets

A hashing table with a large number of luckets
is useful for a number of reasons. First, the large numkter
of Fuckets may reduce the chance of hashing different
records into the same buckets. Second, the numker of
records in each bucket is also cuite small, and this will
reduce the access time during merjing. However, it would be

50

Lt LAWY PPN | g " SO

r-v— A atas cBa el Cam o (3 Caat” mhacs - T e e e Ty Lol sl - P T T P T T T e TR T T W R N EP R e VWL WL R RLWLTLRLELEL

28 44
impractical to have a table with a very 1large number of jé
bucket entries, where each bucket would only contain a few :;
records. When the table becomes excesedingly large, a -;
substantial cost is incurred to maintain the bucket index. EZ
The Lbucket index of a hashing table is an array of o
fixed-size bucket entries. There is a bucket entry for each ot
tucket to keep track c¢f the records which are stored in that !ﬁ
bucket. Therefore, the number of buckets (and therefore the ii
Eucket entries) camn te computed by the following equation: E;
Iet X be the size of the bucket irndex (measured in bytes), y

Y te the size of a bucket entry (measured in bytes),
then the number cf buckets is (X / 1).

For examfple, 1if the size of bucket index of a hashing tatle
is 8K bytes and the size of each bucket entry is 8 Lytes
then the number of bucket entries for that hashing table is
%k, i.e., 1024,

How should we determine the size of the kucket

index cf our hashirg table? Since MBDS allows the
concurrent execution cf different user tramnsactiomns, there
may ke a number of retrieve-ccmmon requests being processed
ty the systen. Each of the retrieve-common reguests

T TR T S
PR B |
P"""""
o 2y .

requires two hashing tables, omne table for the source record

SO

‘x

set and one table for the target record set. Because of the

L AP
F]
.

potentially large number of hashing tables concurrently in

B
JLMEAE.

use, it will be necessary to store the bucket indexes of the

'Y
Vo ud

tables in the secondary storage and stage them into the

primary memory on demand. To minimize and optimize the size Ei
of the bucket index of the hashing table, it is desirable to k\
have the size of the tucket index as a multiple of the urit &ﬁ
of disk I/0 transfer. For example, if the unit of disk I1I/0 %j
transfer (which is tyrical the track size) is 4K bytes, then i%
the size of the bucket index shall be M*4K bytes, where 4 = fﬂ
{1¢ 24 3, ccal}e In cur case, we choose 16K Lytes to be the »
o

> =

S

r

...................

size of our hashing table, yielding 2048 entries (therefore,
2048 tuckets) in the hashing table each with a bucket entry
size of B kytes.

E. The Hashing Algorithm

Since the value type of the join attrikute may
e either an integer cr a character strinjy, we have designed
two hashing functions, one for each value type.

(1) The Hashinyg Algorithm for the

Integer-Valued Attributes. In order to evenly distribure

the values of all jcin attributes into the buckets and to

minimize the collisicrns; we use the information akout the I
maximum and minimum values of the join attributes. These Q
information is maintained in the record teaplates. The é

hashing algorithm for the integer attribute value is
descrited as follows.

Step 1: Get the MAX (maximua) and MIN (minimua) values of - i
the join attribute from the record template. let E
X = The_nusber_of buckets_iu_itashing_table . ;
Step 2: If MAX-MIN < X
then go to step U
else Templ = (MAX - MIN) Div X
Step 3: Get the input record and let

Y = The_value_of_the_join_attribute
bucket_nuamker = (Y - MIN) Div Teampl
go to step 5
Step 4: Get the input record and let
Y = The_value_of_the_join_attribute
rucket_nugter = Y - MIN
Ster 5: Return the tucket nugber to the calling grocedare.

(2) The ilashing ALgjorithm tuc the

Character-valued Attributes. The recorl template Joes not

R it A R ol et L A WA B e u e ot g wg B i i B i B Ol a0 B i gren gt aag g g o uis inind oo ool Sl s o el S T T T R T T T T T W W T g T W T Y T YT wT wy T

The record template does not provide the maximum and the
minimum values for the character-valced attributes as it

does for integer-valued attritutes. In order to¢ minimize
collisions and distribute records evenly into buckets, we
design a lookup tatle, which is an array with 2048
character-string elements, to perform the hashing function.
The number of the elements 1is egqual to the number of the
entries 1in the Dbucket index of the hashing table. The
values of the join attributes of the input records are
searched against the contents of the lookup table to cktain
the bucket values. The binary search algorithm is used to
minimize the searching time of the lookup table.

The contents of the entries of the lookup
table are created in the following way:

(1) Get a English dictionary with more than 2048 rpages;

(2) Divide the page number by the number of the buckets

{in our case the number is 2048);

(3) Let the result be x.y, where the x and y are positive

decimal digits;

(4) Pick up the 1last word of every x.y page from the
- dictionary and rlace the first four characters as an
'. entry in the lcokup table; and

(5) If the 1length of the selected word 1is less than 4,

£ill the word with trailing blanks.
We use only the first four characters to compare the values

cf join attributes for two reasons. First, we believe that
there are very few English words that will have the same
first four 1letters. Second, we want to reduce the
primary-memory requirements for the lookup table.
The algorithm for the character-vaiued

attritutes is as follows.

Ster 1: Let MIN = 0 and MAX = 2047.

Step 2: Get the input record and let

X = The_value_of_the_join_attribute;
Step 3: If X 2 look_up_table[MAX]

53 g
j

v}

'.- . B . 3 DR WL R VY S YL N SN I S
PN - R R S T AP f et . P S .Tu.._\ P U, ‘.‘._.\. AL " '\- *‘-\
e c e S T, L . aTa . . Qj‘..v.f._- . ‘.'-*.‘ SN \ ‘ .

1 '¢ PR RSP IR SR T et e A e N ‘& [P {\-' A A ._\.‘ Oy 1" AN \ > ‘l,\‘.\\n’{\ll

AR S AT S T P I . P L S VL DA™ S S e a -

s 8.8
N
RV R

o
-

then
bucket_number = MAX, go to step 6.
Step 4: Use binary search to find the bucket nunmter.
Step 5: Return the lrucket number to the calling procedure.

The input to this procedure may be either the local
records (either the source records or the target records)
with their bucket numters from the hashing procedure or the
non-local target records grouped by taeir bucket values fron
the other backends. The outputs from the procedure are the
logical addresses of the hashing tables of the source
request and the target request, which are sent to the
merging procedure for the merging operation. The
bucket-block tracking procedure performs three fuactions:

(1) maintaining a global table to keep track of the
logical addresses of the hashing tables for all
retrieve-comnmon reguests which are currently teing
prccessed in the systen;

(2) maintaining a hashing table for the current reguest
and keeps track of all of the buckets and blocks of
that hashing tatkle; and

(3) storing the input records into appropriate buckets and
blocks according to their bucket values.

In order to provide a better understandiang of this
procedure, we first introduce the structures of the blocks,
the buckets, the hashing table and the global table. We tken
discuss how these functions are accompiished.

a. The Structure of a Block

Each block is divided into two parts: the Leader

and the tody. The header has two fields. The first field is
used to record the length (in bytes) of the body, i.e., all

54

P

PU A el i Siads Sk din - S it et Jhan et e Jiair alldi=at

of the records in bytes currently stored in this Ltlcck. The
second field is used to store the 1logical address of the
next rlock whose reccrds have the same bucket value as this
block. If there is no other block of the bucket, then there
is a null address in this field. The body is used to store
the bLashed records ard their common attribute values.
Blocks which are in the same bucket are maintained as an
inverted list and tracked by their logical addresses. The
structures of the block and its header are shown in Figure
4. 3.

— — —— — — — - R — D D D D - D > - - —————— ——— — - - — b .-

B. The Structure of a Block

Length Logical Address
of of
Body Next Block

B The Structure of Block Header

Figure 4.3 The structures of Block and Its Header.

. The Structure of a Bucket

As menticned in chapter 1II, instead of using
primary and overflow areas, each bucket uses fixed-size
btlocks to store records. The number of blocks per bucket
may vary among different buckets. The bucket entry is used
to indicate the status and to keep track of the blocks of
that lucket.

 ade Sied Shel J0o b b WL LG Ate pogh e A Ade S i -l 2 s LA de i ni A bl el e daihedf-Seisa ke hon e ko e Al Lk b o e

Each bucket entry in the bucket index has two
Farts: the status and the 1logical address of the blcck
currently Leing used. The status is used to indicate
whether cr not the bucket is empty. The size of the bucket
entry is 8 tytes, where 2 bytes are used for the status and
6 bytes are used for the logjical address vwhich is
represented by a tuple consisting of the 1logical disk
number, the logical cylinder number and the 1logical track
number. The structure of a bucket is shown in Figure 4.4.

- - - - — - - - " D D W D - - ———— - —— = -

Status The logical address
of of
The Bucket The Block Currently Being Used

——— — — - - - D - D D > > > —— e ———— ——— -

Figure 4.4 The Structure of a Bucket-entry.

Cc. The Structure of tLe Hashing Table

A hashing table is an array of bucket entries.
We anticipate that the retrieve-common operation will bJe
implemented on a SUN Workstaticn running the UNIX operating
system, with a 16K unit of disk I/C. Using the equation
from the previous subsection, we can compute the number of
bucket entries for our hashing table to be 2048.

d. The Global Table

Since MBDE allows concurrent processing during
the retrieval oferation, there may be several
retrieve-common requests in the systen. We need a tatle
that keeps track of all of the logical addresses of the

56

I IR SR AT 1
. . - - .
SR -‘*-, . el

L
o
1
L
L

R

S ng® ol JAa i aa s bt oh = At A paatalh o gt oS et i it sl S s i it i sl ah ek A S il -~ adhir- il ~ i -l it mia R - o i il i o ol
b

hashing tables for each retrieve-common request. Each entry
of the global table contains two parts: the request id of
the request and the logical address of the hashing table for
that request. The request id consists of the traffic id,
which is the unique identifier of a traffic unit [Ref. 11 :
pe U41], and the request number which indicates the seguence
cf the request in the traffic unit. Each entry of the
global table is created whenever a new hashing tatle is
created, and deleted when that reguest has been completed
processing. The structure of the global table is shown in
Figure 4.5.

Reguest ID 1 Logical Address

e es of

Traffic ID ‘ Request No Hashing Tables

- — D - - - —— - — - ————— ———

1

Figure 8.5 The Structure of the Global Table.

e. The Seguence of the Operations of the
Bucket-block Tracking Procedure

The steps of the seguence to accomplishk the
operaticns of this prccedure are descrited as follcws.
Step 1: Create and initialize the global table.

57

ST I Tt

. A

o ‘5"4:"

aadt Lea” e

..... Hn Ry & ie Bus hatn 4 S Jn - gt s i i s Jhuk mhad fhote dhets Jhat Mt iar duac aade adib-aih - ASi-ath abd ad aum AE S g Ao B M- s md Aol Ol 2o ook Aok o TWOT Ty

Ster 2: Check the request ID of the input records with the
global table to see if the input records belong to
a nev request. If they do, then allocate a hashing

s
S’
I

ii; table for that request, initialize the Lucket
:;; index and store the logical adiress of the hashing
SRS table into the global table. Otherwise, get the
AT existing hashing talkle into the primary memory
Ji using the logical address ianformation provided by
o the global table.

Wy Step 3: Extract a record from the input buffer. If the
o record is the first record of that recuest, tten

:ﬁi go to step 10.
?ﬂ; Ster 4: If the bucket value of this record is the same as
the previous one, themn go to step 8.
Sl Step 5: Store the block which contains the previcus record
- back to the secondary storaye.
Step 6: Get the desired bucket entry (table entry) for the
record by its hashed bucket-value. Check the
~ status of the bucket. If it is "eapty", then go
.fi to step 11.
e Step 7: Get the «currently used Dblock by 1its 1logical
address in the bucket entry.
Step 8: If there is space in the block t t is availatle
for storing this re ~rd, then go tc step 12.
; Step 9: Get a new Etlock, p.: the current logical address
o of the bucket entry into the "logical address of
~ next block" field of the block header. Then,
update the bucket entry wita the 1logical address
of this new block. Goto step 12.
Step 10:Get the desired Lucket entry by its hashed

fucket-value, update the status of that Lucket
S entry to "nct empty".

- Step 11:Get a new klock and put its 1logical address into
' tte bucket entry.

''''''''''

''''''''''

L At SR anaah o o o aos pen b e b d aas sl R-an s Sca 8 g S-d 40 e s g Be e B S BMA asaaiuah B A AC A AENAA i ath st obbi ol add b g 2 A ol ald it g TN TN TR U LY O TRy

Step 12:Store the 1ecord into the block and update the
"length of record® field of the block header.

Step 13:Repeat the steps 3 to 12 until all records have

- Leen processed.

Notice that the block is not ipmmediately
returned to the secondary storage after the insertion of one
s input record. Since the records in MBDS are stored by
'% clusters, it is very likely that records within the same

o cluster will be retrieved again. Therefore, by keeping the
current tlock in the frimary memory, we may save one store
and one read operations if the next input record is
retrieved from the same cluster and hashed into the same
if bucket (that is, they may have the same bucket value).

4. The Merging Procelure

. This procedure is used to perform the merging
ij operation. The inputs to this procedure are the logical
addresses of the hashing tables of the source reguest and
the target request, which come from the bucket-klock

¥i tracking prccedure. The outputs from this procedure are the

‘g merged results, which are sent to the controiller.

i The algoritam of the merging procedure is as

.Q follows.

o Stef 1: Reserve a result buffer.

_E Ster 2: Get the hashing tables of the source request and

. the target request by their lcgical addresses.

-i Ster 3: Compare the bDucket statuses of these two hasaing

< tables bucket by bucket. If both buckets cortain

;S records fc¢r a particular bucket nuwmber, then

;i retrieve all the records associated with this

o particular tucket value froa both tables.

lj Ster 4: Apply ¢the straightforwvard aerging algoriths on

ff : those retrieved records. Insert nmerged results
into the result buffer.

o

s 59 .

R RN e

oy Ster 5: If the result buffer is full, then send its

. contents to the controller.

Step 6: Repeat steps 3, 4 and 5 until all the buckets have .
been processed.

o Step 7: Free the result buffer.

B. THE OPERATIONS OF THE FOUR PHASES

o In this section we discuss the operations of each rhase
Y of the retrieve—-comamcn request and the software which will
e affected by those cperations.

* 1. 1Ihe Request-rreprocessing Phase
a. The Operations

The operations of this phase include parsing the

.25 user's tramsaction (cr regquest) and if the transaction
i; (request) is correctly parsed, then the controller will
;? compose an appropriate message to inform the backends to
— Ltegin execution for the request. Since the retrieve-common
!;ﬁ request is conceptualized and executed as two retrieval -
ff operations, the parser has to parse the user's request and
:t? transform the reguest from the form of a single reguest to a
é;? form cf a transaction with two regquests.

#ﬁ t. The Affected Software

B

‘%; Basically, operations of this phase can be done

ty the existing Request Preparation process. HQowever, the
software for this process must be modified as follows:

'ﬁ (1) The parser should be able to recognize the newly added

f syntax and correctly parse the request;

g!; (2) The composer shculd be able to form a new message to .
’:ﬁ inform PP and all of the backends so that they can

perform the desired operation;

-

K-~

1

60
A

gty 8

o,
14' v

r .
R PRI,)

(3) New nmessage types are added for processing the
retrieve~-cozmon request; and

{4) PP and all of the backends should be able to recognize
and process the new created message for the
retrieve-conmon request.

2. Ihe Record-retrieving Phase

a. The Operations

Operations of this phase 1include the address
generation and the record retrieval for bLoth the scurce
request and the target request. These two requests will be
processed by DM as the other four different tyres of
requests. As mentioned in [revious chapter, the target
records are processed after the source records. In crder to
separate the records of these two rejuests, DM will first
send the source reguest and its associated address set to
RECP, and hold the target request and its addresses set
until receiving a nmessage frcm RECP indicating that ail

T g AT

P

source records have been retrieved.
The record-retrieving operation is performed by

the physical-data-operation sulprocess in RECP as a regular

retrieve request. Instead of sending the retrieved records

to tlLe controller, control logic is nsed to route thex to

the hashing module fcr hashing and subsequent merging.

te The Affected Software

Most of the operations of this phase are done by

DM, C€C and the Physical Data Operation of REICP in each

tackend. The affected software includes:

(1) Ve need to add <contrcl logic into DY so that the

address information of the source and target reguest
will not be sent to RECP together; and

* hat Rk Ral ot Bk SR At 30 B ACA R 2o An R At e JuChie M I A A A I A M T A A A S B Al M ac B bl A i i v T T j
.

~
a M.

N
A
ﬁ?j (2) We need to add a new procedure to handle the
:i‘ retrieve-common re juest and control 1logic to route
'i, the results to the hashing module instead to PP. .
;o 3. Ihe Hashing-apd-storing Phase
o This is the most important part of the
-A retrieve-common regquest. All of the records are prepared in
‘fw this rhase, so they can be merged on next phase. The
%% operations of the hashing-store phase includes:
f'x (1) performing hashing operations on the local records,
e (2) talkle maintenance and bucket-block tracking
e operations, and
“?_ (3) broadcasting (and receiving) the target records and
S their bucket-values to (from) the other backends.
:tE a. The Hashing Operations
o This operation is performed by the hashing
:?% procedure of the hashing module. Upon receiving the local i
.E&‘ records from the previous phase, the hashing procedure will
ﬁﬁj check the record texplate to get the value type of the
‘, coamon attribute values and then apply an agpropriate
‘3§ hashing functicn to hash the common attribute values. The
E& records and their hashed bucket-values will then be fpassed
g& to the Lucket-block tracking procedure for further
processing.
3§; b. Table-maintenance and Bucket-block Tracking
fﬁj Operation
;if This operation is done by the bucket-tlock
i;; tracking procedure. A global table is maintained to store
};g the address of all of the hashing tables for all of the
jix different retrieve-ccmmon requests :ich are currently teing
At
o 62
f't-.-:;
N

'y

8 LR LT e N e e e T e e e

e
(RS OMCS O

N L N e ‘P‘_?“,‘n-‘,‘;. e S \{ X
by -P) B, Y Dy ‘F 1N ? Sl

.
< *

TR ORI
..«_ . 'l'n..)' L NS ", :

o o L o D e an e Ban ot s Sndn S G akel an el une et Jhof sk B Sl 2t B I S’ e it B N T Y L ey I T T Ly e LYy [y

processed by the systen. Whenever a nevw retrieve-ccaaon]
request is encountered, the bucket-block tracking procedure 2
will create a new hashing table for that request. The
logical address of the newly created hashing table is then
stored into the glolal table. The hashing table will be
deleted when the request is complete. Records are stored

into buckets according to their hashed values. The
information of the bucket entries and the block headers are
maintained and updated by the bucket-block tracking
procedure as described in the previous section.

c. Broaldcasting And Receiving Target Records

Between Backends

After the 1local target records has been hashed
and processed, each backend will buffer its local target
records (retrieved frcm the target-hashing table with their
bucket values) and broadcast them to the other backends.
Upon receiving those non-local target records, each backend
will store them intc the target-hashing table by their
bucket values, A checklist is used to ensure that the
target information frcm all of the other backends has been

received.
d. The Affected Software

Since the operations of this phase are done by
the hashing module; RECP is affected to the extent that this
module is integrated into the RECP process. No cther
existing software will be affected.

4. Ihe Merging Phase

This 1is the 1last phase of the retrieve-ccamon
cperation. The local source records and the entire set of
target records are ccapared aad merged.

\
3
;

{

|
.
)

r

63

AN "-"."-".".--< SRR T)

S o e 3! h IS IR GRS ‘.’«.."_«. ’-'_ . ."_~.",--':‘.'~;\':‘.‘j
RN GRS 7% OO -". RSSO ROy Rih OO .\-_ "..‘ "ol _\‘5{5;-5.:1" LY # . '-\ > '(‘: Ty T T e

I ettt e A PR Ui R b oo ity T R T R P W TR TR R Ow T Ty T TR T TR

a. The —eration

The operations are performed by the wmerging
procedure of the hashing module. Because the records of
toth talles are unscrted, they are merged by using the
straightforward algorithm. The merged results are stored in
a result buffer and then sent to the controller.

. The Affected 3oftware

Since this phase is also done by the hashing
module; RECP is affected to the extent that this module is
integrated into the RECP process. No other existing systen
software is affected.

64

R R A-' . ~... ..‘_ .”..4_*..‘_ e T e T e s e Nt ~\< LA SNt
S . e . - e, P AN

\‘ “.-\h . .-, A

13' L T o ‘-';-1 Ta e

. T . [e e - et . LT . RPN . .'.‘, BN
v o . Y Lo - . _J - o ® o . - .
M—*Mmﬂu*“m{‘mm&mnwLLthL-L A_A“L.u‘_a PN

V. THE IBPLEMENTATION

In this chapter, we describe how the retrieve-common
request is integrated into the MBDS system. To successfully
perform the integration, it is necessary to modify a portion
of the MBDS software. Therefore, this chapter alsc on
discussing how the M#BDS software 1is modified for the
integration and irplementation of the retrieve-ccmmon
operation.

In the remainder of this chapter we first descrite the
molified processes of the controller. Second, we describe
the mcdified processes of each backend. Then, we fpresent
the modified MB3DS message-passing facilities. Finally, vwe
trace the execution sequence of the retrieve-common reguest
in terms of the types of messages that are passed among the
MBDS frocesses.

A, THE MODIFIED PROCESSES OF THE CONTROLLER

1. Ihe Request Preparation Process (REQP)

There are twc subprocesses 1in REQP, namely the
rarser and the composer. The rparser parses the requests ani
checks for syntax errors. The composer transforms the
correctly parsed reguests into the form required for
Erocessing at the backends.

a. The Parser

The parser does Loth the 1lexical and the
syntactical analyses cf the ABDL transaction (or reguests).
The input to the parser 1is weither a rejuest or a
transaction. The cutputs frcm the parser are the error
messages to the test interface, the agqregation operatcers tc
P? and the correctly rarsed requests to the composer.

6%

L
Y
-l

.

ML R g o R &

rqs W RO :
. ‘;'."':»:"v

L AN A

A\ PSRN

o
Pyl

E)

LR

» e
o ¢ %

_ v
LBy S [}
A
N L D I Y ¥

'l 2y 4
e

.
r

» L'
P
I

C2h00n-20 i Tt “ s “ 20 10~ i B U i i SO EM N b e e i il e e Wl i e et Bl SRl ol Sl St Mol afh Sho MM BB a0 kAt S-SR A it o Ar e et s

The lexical analysis is done by the lexical
analyzer produced by 1EX [Ref. 11 : p. 42]. The input to
LEX is a specification of the tokens of the language(i.e.,
the tokens of ABDL) in the form of regular exrressioms ani a
set of subroutines which specify the actions to te taken
upon recognition of the tokens. The syntactical analyzer is
generated Ly YACC (Yet Another Compiler Complier) [Ref. 12].
The input to YACC is a specification which includes the
declarations of tokens' names, the rewriting rules of the
grammar, and the action prograam. YACC produces a C progran
to determine whether the input ABDL transactions (requests)
are syntactically correct.

Ffor the parser tc correctly parse the users'
retrieve-common requests, we have made several modificatioms
to the original parser sucprocess. These modifications are
listed below.

(1) Regular expressions for the LEX.
We Lave added a new set of regular expressions so
that the lexical analyzer can recognize the
retrieve-common reguest and generate appropriate
tokens which in turn can be recognized and used by
YACC.

(2) Grammar rules fcr YACC.
A nevw set of rules has been added into the criginal
ABDL grammar <sc that the parser can recognize those
tokens which are generated for retrieve-common regquest
and organize those tokens by these newly created
rules.

(3) The request tyre.
We have added a new request type, the retrieve-ccmmon
request, so that the parsed transaction can be
correctly identified and properly executed by the
ceomposer and tte other procec :es of MBDS.

6€

e -

sl Y N T W W T BT TR T A TR theds Jhm TRl Roth it ni eibie e S A R it dh okl ol RN N e i S) g st gl Sl stenihatet o itadvitin, S 0u - 4 ap }

(4) The action progranm.

DNOBERENT Y A) PRI ..

The input of the retrieve-common request to the rarser f
is in the form c¢f a single request. The parser should 3
te able to parse this request and generate a B
transaction of two retrieval requests (each of the 3
retrieve-common request type). If the join attribute S

PPty

is not in the target list (of the source or the target
regquest) , the action program inserts the join
attritute into the head c¢f the target list. TLe extra
attriktute-value pairs (i.e., the join attribute-value
pairs) of the retrieved records, which are going to be
deleted by the merging procedure, are not to be in the
results so that the merged results contains c¢nly the

N
N
N
-
é
[

'.\

desired attritute-value pairs. The newly added
regular expressions, grammar rules arnd the SS1 for
the modified action program are provided in Appendix
A-

E. The Compcser

*r
_aT

»
i

The composer receives the correctly rparsed

v .
PR

requests from the parser and formats them into the required
message format. Then, the composaer broadcasts the formated

FTRL L

messages to all of the backends for execution. We have
modified the original composer program so that the comfposer

LR R A

Aot tetatula

can correctly reformat the retrieve-common reguest.

~r-x 1

2. The Post Processing Process (PP)

RN b %

The post processing process includes the aggregate
post operation and the reply pmonitor. The functions of PP
are described in [Ref. 11 : p. 27]. The aggregation post

1 el RN

operation is not modified. The only modification in the
reply monitor is to recognize the new reguest type for the
retrieve-common reguest.

67

Tate e aTe
LA R

- e v e
B .. . B P PR ""\»' P -‘7.'\.‘ . ‘\‘. AT
O I I L S LA S-S A, LY L SO A R LA .Y

S
v

:f B. THE MODIFICATION CF THE BACKEND PROCESSES

- v ow

L As described in chapter II, one of the design issues of
MBDS is to assign as much work as possible to the hackends.
Conseguently, there are more changes in the processes of
each rackerd than changes in the controller. The affected
processes are directory management and record processing.

1. Ihe Directory Management Process (DH)

e — -2 — iR te i

) M receives the new transaction nmessage for the

retrieve-common request from the requiest composer and then

N performs a number of directory operations, which includes X
:? attribute search, descriptor search, cluster search, address K
Eﬁ generation and directory table maintenance. Fror our t
VL earlier discussion, we know that the source and target -

request for a retrieve-common regjuest should not be
processed concurrently by RECP. The target request must be X
held in DM until RECP informs DM that the source regquest has
finished execution. Therefore, DM will first process the ;
source request and send the request and its addresses to o
RECP. The target request is held in DM until RECP notifies
LM that the source regquest is done.
) At what stages of the DM processing do we hold the
~L target request? There are several alternatives for holding
the target request in DM. These alternatives are list below. !
o (1) Hold the target request without performing any
directory operation.
- (2) Hold the target reguest after it completes attribute
i search.
.; (3) Hold the target request after it completes attribute
®. search and descriptor search.
ot (4) Hold the target request after it completes attribute
search, descrijptor search and cluster search.

l‘:- 6 8 (
L] v

T,
.l H

AL

EkA

Y "
PR R RS

4

Ty
i

s o
had

g aihaf et

T T R R P T o T N T R N e T T T T Y T g Ry N T T N TRy ronw

(5) Hold the target request after it completes attribute
search, descriptor search, cluster search, and address
generation.

Alternatives 2, 3, 4, and 5 will generate status and
directory information for the target request which must be
held somewhere. Due to the 1large number of the possitble
attribtutes, the size of the status and directory information
may be too big to be kept in the primary memory, i.e., they
will have to be stored back to the secondary storage. The
extra disk I/O time for moving the status and directory
information in and out of the primary memory, not only slows
the retrieve-common operation, but also ircreases the
prograr complexity and causes many unnecessary changes to
the existingy software. Therefore, we choose alternative (1)
to process the target request.

The algorithm for the modified Dd is as follows.

Step 1: Get the next message from the message gJueue and
find the sender of the message.

Step 2: If the sender is the controller, then go to step
S.

Ster 3: If the sender is RECP, then go to step 8.

Step 4: If the sender is CC, then go to step 11.

Ster 5: If this is not a retrieve-conron transaction, then
go to step 11,

Step 6: Identify and separate the source reguest and the
target request from the transaction. Hold the
target request and perfornm the directory
processing on the source rejuest.

Step 7: Send the scurce reguest with its address set to
RECP. Go to step 1.

Step 8: If this is not the message which indicates the
completion of retrieving all the source records,
then go to step 11,

69

Slia

\q
-.
>
P
&
&

—— e e

O IRy

TS
T

v

B s WA gl

Stefr 9: Get the correspondent target request and perforn
directory prccessing on that target request.

Step 10:Send the target regquest with its address set to -
RECP.

Step 11:Perform the original DM operation.

The SSL for the modified DM is provided in Appendix B.

2. The Record Processing Process (RECP)

RECP receives the requests and their address sets
from DM and performs the physical data operations on those
requests. The original physical-data-operation subprocess
includes a control function and a subfunction fo. each type
of regquest. The sukfunctions are invoked by the control
functionr according to the type of request being processed.

In order to frocess the retrieve-common reguest, we
have made two modifications to RECP:

(1) adding a new subfunction, the retrieve-ccamon
sukfunction, into the physical-data-operation
suktprocess; and

{2) adding a new subprocess, the hashing m@module, into
RECP.

a. The Retrieve-Common Subfunction

The purpcse of the retrieve-common subfunction
is to direct the flow of the control in the
physical-data-operaticn subfprocess so that the
retrieve-conmon request can be processed correctly. The
difference between the retrieve-coamon subfunction and the

retrieve subfunction can be summarizel as follows. .

(1) The retrieve subfunction sends the retrieved records
to the PP, whereas the retrieve-common subfunction
sends the retrieved records to the lashing module.

70

Ak i g s a

T P R i T ROy

(2) Irn addition to sending a message to CC to indicate the
completion of the retrieval of physical data (as the
retrieve subfunction does) , the retrieve~ccnmon
sukfunction will send a message to notify DM that all
the source records have been processed.

The algorithn for tae retrieve-common
subfunction is as follows.

Step 1: Reserve a result buffer.

Step 2: For each address in the set of tracks which are
furnished Lty DM, fetch the track from the disk
and place it in the track buifer in the primary
BEmory.

Ster 3: Examine the records in the buffer one-by-one. If
the record is marked for deletion, disregard it.
If the record does not satisfy the query,
disregard it. If a record satisfies the query,
then extract the values for the attribute names in
the target-list of the reguest and store this
information in the result baffer.

Ster 4: When the result buffer is full, send the contents
of the buffer to the hashing module.

Ster S5: Repeat steps 2, 3 and 4 until there are no more
addresses for the regquest.

Ster 6: Send a message to CC to release the lock for tais
request. If this is a source reguest, then send a
message to DM so that DM can process the target
request.

Ster 7: Free the result buffer.

The SSL for the modified control function and the
retrieve-comron subfunction are provided in Appendix C.

B, W RS R TR T R g R L i e e e e ST U T T ew e e ey
i

1 ‘
AL
P

t. The Hashing Module

RN

N The hashing module performs the hashing and
merge oferations. The merged results are sent to the
S contrcller. The module is invoked by the retrieve-ccmmon
‘"% subfunction of the physical-data-operation subprocess.
There are three procedures within this module, the hashing
55 procedure, the bucket-block tracking procedure and the

.. N -'.. -/. R

Ao merging procedure.

:? (1) The Hashing Procedure. The hashing

procedure receives the records from the retrieve-common

‘ subfuncticn of the fhysical-data-operation subprocess and

'fi rerforms the hashing function on the value of the Jjoin

o attriktute of each record. The records and their hashed

- results are stored in a result buffer. When the buffer is

f; full, its contents are passed to the bucket-block tracking

o procedure for further processing.

N The algorithm for the hashing procedure is

o~ as followus.

fﬁ Ster 1: Reserve a result buffer.

_ Step 2: Get the data type of the value of the join

- attribute from the record template and reserve a
result buffer.

Ster 3: Extract a record from the input buffer which is
passed from the retrieve-common subfunction.

¥
R

)
L L N

SRy

HAAPES
an

Ster 4: Apply the appropriate hashing function to hash the
value of the join attribute of the record
according to data type. (See Chapter IV agair.)
Step 5: Store the record and the hashed bucket value in
the result Luffer.
- Step 6: If the result buffer is rfull, tken send the .
contents of the result buffer to the Lucket-tlcck
t .cking prccedure.

o
[
.

" A' . i 1] . Al

72

t'c-u— L iR a S T s s ey aa- ado dust g a Bl ahy (. Ans e Bue aad len s 4 e ML T A A i S S B Ml ol Meodh el M e R At i MR iy o N ey .xv‘l'-.\mu--‘

Step 7: RKepeat steps 3, 4, 5 and 6 until there are no more
records in the input buffer.
Stefp 8: Free the result buffer.

The SSL for the hashing procedure is provided in Appendix D.

(2) The Eucket-block Trackirg Procedure. This
procedure stores the records (bo%h the source records and
the target records) into blocks according to their bucket
values and maintains one hashing table for the currently
processed request and omne global table to store the
logical-hash-table addresses for all of the retrieve-ccmmon
requests in systen. The inputs to this procedure are the
records and their hashed bucket values, which either ccme
from the local hashing procedure or from the other lackends.
A checklist is used to ensure that the hashed results of the
non-local target reccrds are received zirom all of the other
rackends. There is also an additional disk I/0 buffer ased
in this procedure to zove the blocks of each bucket into and
out of the primary memory. The outputs from this procedure
are the logical addresses of the two hashing tables of the
source request and the target request, which are passed to
the merging procedure. The structures of the glotal table,
hashing table, bucket, and block have reen described in
Chapter IV. After prccessing all of the local records, this
Frocedure will group the local target records together with

their tucket numbers, and thenm broadcast them to all of the
cther backends.

The algorithm for this procedure is as
follows.

Aol 2 R Ord ML A

Step 1: Create the global table and reserve a disk 1I/0
buffer.
Ster 2: Get an input buffer of records. If the input

YRR A
1) o

tuffer contains source records, then go to step 5.

g BT T E VNS

73

.

ettt :
. SRR

A el I Y .)}'JL.IA ‘.h::r- :\ jr}.h..lu .“

Et¢fﬁ’l

2R,

B 4.

oW e

MO A

. ,;' .T‘ A P

-

v - &y

PR = =R b plE

Step 3:

Step 4:

Step 5:

Sterp 6:

Step 7:

Step 8:

Step 9:

Step 10:

Step 11:

If the input buffer contains local target records,
then go to step 6.
If the input buffer contains the target recoris
received frcm the other backends, then go tc step
8.
Get the hashing table for the source request. Go
to step 7.
Get the hashing table for the target reguest.
Store the record into a bucket and perform the
bucket-block tracking operation (as descriked in
chapter IV). Go to step 9.
Perform the bucket-block tracking operations to
insert these incoming records into the target
bhashing tatle.
Repeat steps 2 to 8 until all records have been
processed.
If the input buffer corntains local target
records, then retrieve the 1local target records
from the target hashing tabie bucket-by-bucket
and broadcast them (with the bucket nuakter) to
the other tackends.
If the input buffer contains nomn-local target
records, then get the logical address of the
hashing taktle of the source reyuest. Pass the
logical address of the hashing tables of the
source request and the target request tc the
terging prccedure for the merging operation.

The SSL for this procedure is provided in Appendix F.

(3) The Merging Procedure. This procedure does

three functions:

(1) fetching the hashing tables of the source reguest and

the

target reguest by their logical addresses which

have been prcvided by the Dbucket-block tracking
Freccedure;

74

r
1)

T T WO TR eT M B~ S 0 s -l “ Yl i banre s 0 g £ e -2 an T s e S e S = e - Jae i ek G s 8 Sar kg~ ~ 2 e~ . e TS e =Tk SR e "Bl R S g)

(2) performing the merging operation on the records of
both Lashing tables (as described in chapter IV); and
(3) sending the merged results to the controller.

The merged results contains only the
attribute-value pairs whose attribute names are specified in
the target-lists (either the source reguest or the target
request). The extra attribute-value vairs (i.e., the join
attritutes and their vales, which have been added into the
target lists by the rarser) are deleted by this procedure.
The SSL for the merging procedure is provided in Appendix E.

C. THE MODIFIED MESSAGE-PASSING FACILITIES

In Chapter II we have introduced the general format and
the different types cf MBDS messages (see Figure 2.3 and
Figure 2.4). In order to accomplish the retrieve-ccmmon
request we have added two new message types which are shcwn
in Figure S5.1.

D. EXECUTION OF A RETRIEVE-COMMON REQUEST~-VIEWED VIA
MESSAGE-PASSING

In this section we describe the seguence of actions for
executing the retrieve-common request as it moves through
MBDS. The sequence of actions are described in terzs of the
types of messages passed between the ¥BD5 processes: REQP,
PP, DM, RECP and CC. The order in which message are passed
is denoted alphabetically (‘a’ is Zfirst). The digit
following the ordering letter will be the message tyge as
shown in Figures 2.4 and 5.1.

The sequence of actions for a retrieve-commoia request is
shown in Figure 5.2. First the retrieve-common reguest coames
to RECP from the host (al). REQP sends two messages to 2P:
the number of requests in the tramsaction (b3) and the

aggregate operator of the request (c4). The third message

SR GA S A AN A IR A LGSl ol SUb aof gt as (et gag- AR ol g™ LBt a8 vaPunlit)ha e it A et San Sak el Mt denid e
-

Message Type (32) Hashed Tar, :t Records

Source : Reccrd Processing
Destination : Reccrd Processing (other backends)
Explanation : This message contains the bucket nuumbers

of the target hashing table and all of
the target records associated with
their buckets.

Message Type : (33) Source EKetrieve Finished

Source : Reccrd Processing
Destination : Directory Management (same backend)
Explanation : This message is used to notify Directcry

Management that all of the source
reccrds have been retrieved. DM can then
begin processing the target request.

Figure S.1 The New NMBDS Message-Types.

sent ry REQP is the parsed traffic wunit which goes to TM in
the backends [d6). TCM sends the type-C attributes needed by
the retrieve-common request to CC (e20). Once an attribute
is locked and descriptor search can be nerformed, CC signals
DM (f26). DM then prccess the source reguest (target request
is now held). DM perfcrms descriptor search and signals CC
to release the 1lock cn that attribute (g23). DM sends the
descriptor ids for the request to the other backends (h195).
The DM processes in the other Lkackends send their descriptor
ids to the DM process residing im this backend (i15). nn
then uses its own descriptors and the Jescriptors received
from the other backends to form descriptor-id grougs. DM
now sends the descriptor-id groups for the source reguest to

76

e T Y e AR "L,;-i -‘in:';;:{"\v:‘.".;"&\-‘.-:ﬂ ."-v-'.‘-\‘. -
s DA O A A
AR v AL ﬂm;ﬁ‘_};ﬂ) A ey

N e e - T
..

T
Aol
LS A

LAt 2~1

.« & =

>t
i

- D - —— - — — —— D D —— ———— ———— - - - - ———————— -

o AR 4 L aaa ity M sl A i st i mhat g O et~ ol i i g iie <l ot - i » St Jhau lnay. Rat S Mg el Bt Bad Rat Lok Rak Sat Al Ial Thall Tk el ik Rk Rl A |

va The Controller Ay

Get Pcl |

SO | LU |
! 7

—o-mses- idd

&

P’ J|
RECP ras 4 o !

1 Backend

Figure 5.2 The Sequence of Hessages for Executing a
Retrieve-coamon Reqlest.

71

S B S S
. . . .
P AR SN R

. . et
e T T TR I AP

. -, CREEEAE et
Lo et el B B o e s

X cC (j21). Once the descriptor-id groups are locked and
j cluster search can te performed, CC signals DM (k27). DM y
{' then performs cluster search and signals CC to release the

locks on the descriptor-id groups (m25). Next, DM sends the)
cluster ids for the retrieval to CC (n22). Once the cluster . .
ids are 1locked, and the reguest can proceed with address
generation and the rest of the source-regjuest execution, CC
signals TM (028). DM then [ferforms address generaticrn and
sends the source request and the address set to RECP (fp16).

DA
1] [
s

»

a0y

14

1
'y

Once the retrieval request has executed properly, RICP sends
a messaje to DM to start processing the target request
{r33). DM processes the target request in the same way of
processing the source request (i.e., phases €20 to p16).
The retrieved records are processed by the hashing mcdule in
RECP. Once the local target records have been processed
properly, the hashing module broadcasts the hashed target
records (grouped by lucket numbers) to the other backends
via RECF (s34). The hashing modules in the other tackernds
sends their hashed target records to the hashing mcdule of
N this backend (t34). Once the coaparing and wmerging
operations performed by the hashing module, the results are

sent to PP (u2). PP then forwards the results to the host
(v2) .

e 78

A. REVIEW AND SUNBARY

The @multi-backend dataktase system (iBDS) in the
laboratory for Datalase Systenm Research at the Naval
Postgraduate School 1is designed to overcome the
performance-gain and capacity-growth problems of either the
traditional database systen or the
single-backend-software~-database systen. The original MBDS
supported four primary operations, namely, RETRIEVE, DEIEIE,
UPDATE and INSERT. This thesis presented the design and
implementation of the £fifth primary operation, the
RETRIEVE-COMMON operation. The retrieve-common operation is
used to merge two files by common attributes. Our major
goal 1is to maximize the utilization and minimize the
affects to the existing systen.

Fe have analyzed several G[possible design alternatives
and then selected the best one for our design and
implementation approach. The key issues for the selections
are the cohesion to the design requirements, the design
issues of MBDS and tle time ccmplexities of implementation.
Cur design and implementation is based on the bucket-hashing
approach. Zach backend performs partial merge with its
portion of source records and the entire set of target
records, sending its results to the controller. The
contrcller forwards the final results to the user at the
host computer.

Based on the selected design ard implementation
approaches, the ofperations of the retrieve-common request
are executed 1in four phases, the request-preprccessing

phase, the recorid-retrieving phase, the Fashing-and-storing

...................

phase and the merginy phase. The retrieve-common requests

is first parsed to be a transaction of two retrieval

i
requests (each of the retrieve-common type rejuest) by the : *
parser. Then, the parsed regquests are reformated into ﬂ
required message formats and broadcasted to all the tackends 1
ty the ccmposer of the controller. Zach Llackend receives
the formated messagjes of the transaction, separates the
source request and tte target request and thea performs the 1
directcry operations and retrieves the records according to
the queries specified in the requests. The retrieved
records of the source record set and the records of the
target record set are separately hashed on their common
attribute values and then stored into buckets of the scurce
hashing table and the target hashing table, respectively.
The hashed records of the source buckets and the records of
the target kuckets are compared and merged bucket-by-bucket.
The merged results are sent to the controller from all of
the backends. The ccntroller then forwards the results to
the hest computer. In order to accomplish the operaticmns of
the retrieve-coamon 1equest, we have designed a hashing
module into the record-processing ‘'rocess of each Lbackend.
For integrating cur design into MBDS, we have made
several rodifications. These are:
(1) the message-passing facilities,
(2) the parser of the request-preparation process of the
ccntroller, and
(3) the directory-management process and the
record-processing process of each tackend.
The algcerithms for the modifications and the frcgram
specifications (SSL) are also provided in Character IV, V
and Arpendices.

B ai o s e s A Aeri aecme ks~ Maind VA ek St Sl e At Amba Ay~ o ¢ iren i~ st Sai” SlNC et Smegil Sl v Bl gr SR A B i Rl s g S oy o By Sk S I e S 1”“““‘1

B. TFUTURE WORK

The next step in the design and implementaticn cf the
retrieve-ccmmon operation is the modification of the 1BDS ,
software according to the SSL given in the appendices. There
are two classes cf modifications. First, existing software

L

is urpcated to reflect the changes necessary for tiae (
retrieve-common operation. In the system, rew message types

must te defined, the request-prepatation and post-rrocessing

Frocesses of the controller are changed, and the
directory-managenment process is changed to ccrrectly |
sequence and execute the retrieve-common request. Second, :
new software is written to handle the processing of the :
retrieve-compon request, i.e., the hashing moduie. In the :
system, the software for the hashing module is coded tested, i
and integrated into the record-processing process of each :
tackerd. X
.
i
«
E
;
,
.
t
¢
4 .
A |
y» «
[7 .
p 81
! l.
5 .
\d
N -
- - SN SRR A
T e e e e e e e T T T e T e e T LT
R A A RN ST, S SO DL AT PRSI C AL I W N S A T W PR WL V.. S S WS, WAL P AL S AP GONE W/ ST WA SUR, WL SR W W WA W Wt WU WA W S

APPENDIX A
THE MODIFIED REQUEST PREPARATION PROGRAM SPECIFICATIONS

In this appendix, we present only the modified fportions
of the Request Preparation process. The original SSI is in
[Ref. 11 : p.87].

A. THE 1EX MODIFICATIONS

dkkpkkkkR Rk sk khkpkkkkk ko hkkkkkkkkkkk kkk s ok kk Ak hhkhk &
*
We have added the regular expression for the token :

/
3
*
*
: COMMON into LEX. The rest of LEX remains unchanged.:
*
*
*

The original specification is in the lsrc file. :
SRRKERERRRKRR R KRR RRRR RE R AR AR KRR R AR R KRR EK KRR XK /

« (The original lscr specificationmns.)

EY {
return (TOKBY) ;

}
CCMNMON |

return (TORKCOM) ;
}
ng=mn {
return (LE) ;

}

. (The original lscr specifications.)

oA e
.

B. TBE YACC HODIPICATIORS

In this section, we present oniy the SSL for the
modified portion of the parser. TLe original program is in
the ysource file.
rrocedure yyparse() ;

P s T P Y T L

This procedure is used to parse the output of LEX.
The modificaticn of the yyparse procedure converts
the retrieve-ccmmon request from a single request
into a transaction of two reguests.

Data structures and variables used in this
procedure:

modificaticn.

*
%
*
%
*
*
4
1. No new data structures are introduced by this *
X
Boolean variables which are used indicate the *
different conditions of the retrieve_comamon *
request. *
3. new_tbl_ptr: *
A pointer to a request table. *
The request table is defined in the commdata.def*
file as a EKEQtbl_definition structure. *
4. com_atrb_1, com_atrk_2: *

Character strings to hold the common attribute. *

x
*
*
*
%
*
*
*
*
* 2. com_flag_1, com_£flag_2, com_flag_3, com_flag:
*
*
*
x
%
%
*
*
*
AERRRBAARRARRRARIBRBRRER AR IRRRRR R AR RR AR KRR AT AR R/

/* The following is the modified portion of yysource.*/

/* Add a new token in the specification. */

e
N
..‘.'
ool

F %token [str] TOKCCM /* common */
% /* Add new derivations and progjram specifications. */ %ﬁ
l-” \ -:

-

a transaction : beg_tran lines

g

/* No changes in this part */

Pl e
E i T

83

R S .:(; R T e R N N L S Yy Lt
.;':' P X A AT e ST . OO BT et e st
v S A S AT P T O . " DTN
24 - e e e ' .
iy P, » *

AN

T T T T R T N Y W Y T e T T T e T R T T T T N T WY WL WU Y Y T Y T T R T W TR W TR TR T T

-
v

WY i Y

/¥ cf the tramsaction rule. */

'q'ﬂ ‘-":' 4

| beg_single_req line
if com_flag
then
/*¥ This is a retrieve-common
request. */
Perform the operations which are
specified under the beg_tran
lines;
€lse
/* Perform original operations. #*/
end if;

EOR

/* Clear the com_flags. */
com_flag = false;

end_req

com_zflag_3 = false;

req_forms : delete query
| L)

i ««+«/¥ These are tne
original derivations. */

| regq_forams ccmmcn target_list reqg_forms;

ccommcn s TOKCCHM
perform CHECK_REQUEST_TYPE(reg_tLl,CK);
/* Check if the first regquest is
a retrieve. */
if cK
then
com_flag = com_flag_1 = true;

;& €lse

- perform ERROR_PROCEDURE;
end if;

attribute : LETTEFFIRST

\.‘-: 84

.

I~'

="

N

»

-'} TS T T ST N S Y SR Y Ta
COPK PO L R e e e e e St T T R T W ISR TeaT TN T N S s ST
3 ‘r.*“. o~ .. -"'- f‘c_.“.\ - ' . L AT AL LT P ,'\ L _ .,' M tw AR N - '. -) S .-t -\H.-\'.

v

v e _w
-}

T, . I:J;',-

- -
‘i"'

(L - A T e) b ol 7)

. i

o

- " P R R PR

ol

L a Sam Last Ao ol dod L al el B maie i B Aed et i a g S Ml 3 i L o~ b st e v g B AL BINE arad Savh SR s SC R ACHE i add abd ast adt ab ks sl ol A -t aith - alht ud “uibt -l ekl - ok i el ey ot

if com_flag_1
then
/* This attribute is the common
attribute of the source
request. Copy the attribute
into com_atrb_1. */
pecrform strcpy(com_atrb_1,
attribute) ;
/* Put the common attribute of
the source request into
the target list and
convert the raguest table from
the form of single request te¢
the form of a transaction. */
perform CONVERT (tbl_ptr->req_ttrl,
com_atrb_1,
traf_id, req_cnt,
nevw_tbl_ptr->req_tbl);
com_flag_2 = true;
com_flag_1 = false;
/% com_flag = true */
€lse
if com_flag_2
then
/* This attribute is the
common attribute of the

target request. */
com_atrb_2 strcpy(attritute) ;

com_flag_3 = true;
com_flag_2 = false;
else

if com_flag_3 = true;
then
/% This is the first
attribute of the target

85

------- S S e R B s e e e e

"(""T- TR TR T TRy

Lt Sl MtA e shid- s sl aadh ode AEA S and o e —rTre ow

retrieve

delete

insert

list of the target
request. */
insert com_atrb_2 intc the
target request table;
insert the attribute into
the target request tatkle;

end if;

/% Perform the original

operations. */
end if;
end;

:+ TORKREIRIEVE
if ccm_flag_3
tken
perform ERKOR_PROCEDURE;
else
if com_flag
then
/¥ Change the type to be
RETRIEVE_COMMON., */
end if;
end if;
/% Perform the original operations. */

¢ TOKDEIETE
if com_flag
then
rerform ERROE_PROCEDURE();
else
/* Perform the original operations. */
end if;

¢ TOKINSERT
if ccr_flag
tten

T AT VG T T Y — T T I T YR T T G e e g T PR T S UGt e AT YT S e T Twf Th @Y WP wd w8 W el omo owo o= o= e -y

perform ERROR_PROCEDURE () ;
else
/7% Perform the original operations. */
end if;

urdate ¢ TOKUFLATE
if ccr_flag
then
rerform ERRKOR_PROCEDURE() :
else
s* Perform the original operations. %/
end if;

/% Perform the original ofperations. */
end fprocedure yyparse;

procedure CONVERT (infut: source_reg_table, source_con_atr,
traf_id, reguest_number,
index_req_ptr;
output: target_req_table, request_numter,
index_req_ptr);

JERRRRRRRARRRE KR ERKAEER RXRRKRRRRRER KRR RRARRA KK AR KK $ 2k Rk K
This procedure is used to rearrange the contents *
of the request table of a request which is the *
source retrieve of a RETRIEVE_COM#ON reguest. *
This procedure perforams the following tasks: *

1. Rearrange the source reguest table. *

2. Make the common attribute of the source request¥
the first attribute of the target 1list.

3. Create a request table for the target request
and returr it to the calling procedure.

Data structures and variables used in this
frocedure are:
1. source_reg_table, taryet_regq_table:

* % * # ¥ # B F ¥ ¥ ¥ ¥ »

* #* * # £ X * »

The reguest tables of the source reguest and

87

I{J‘\PF‘HX‘LW\F;\"‘ 2o Y 2 2 e e Yt e e e e T R R M T T T T rTrTereersree.

$

e "w Ty e N
oSeandaly

% #* ¥ ¥ ¥ W H X W % F N * ¥

the target request.

2. nev_table:
An array of Reqtbl_definition structures.

3. traf_id:
A character string which is the traffic id of
a transaction.

4. request_number:
An integer which is used to indicate the
number of requests in a traffic unit.

5. index_reg_ptr:
A pointer to a parsed traffic unit, which is
an array of Reqtbl_definition structures.

6. source_ccu_atr:
A character string which is the common
attribute of the source request.

#* % # % * % ® H % * ¥ * ¥ #» ®

ERRERRBEREFKRRERKIRRIRKKR KRR AR RRERREKKRRKK AR KR kR Ek R ARk k% /

/

* Use a new request table, new_table to hold the
contents of tle source_reg_table, */

nevw_table 0] BCR;

new_table[1] str_to_num(traf_id) ;

rew_takle[2] request_numker;

new_taklef 3] rcuttype; /* Defined in yyparse().#*/

pev_table{ 4] = RETRIEVE_COMMON;

s/* Copy the contents of the source request table into

the new_table. */

i=E&;

repeat
new_table[i] = source_req_table[i];
i=1i+1;
until source_req_table[i] = EOQ;
7* Insert the common attribute into the new_table.*/
new_takle i) = scurce_com_atr;
i=1i+1;
/* Ccpy the rest of the source_req_table into

8e

S T L e e e TR i o e Tt

AT

i

g" T T o Lo e s Gnd s s St St el abe gndlan A muah s - tetr Mt B-mhk Sdr ab - -3 N N Y Y LY R Y U T T I T N Y W TN ey T w T

,]
¥y ~ *
I}{ the new_table. */
»
(s repeat
X nevw_table[i] = source_req_table[i-1];
[i= il \
o
e until source_req_table[i-1] = null;
o /s* Fut an end-of-request marker, EOR, ¢
- into the new_table. */
ﬁﬁ new_taktle[i] = EOR;
A /% Copy the new_tablie into the source_reg_table. */ i
- i=o0; |
) rereat
L source_reg_table[i] = new_table[i]; :
S, 1
i= i+ !
v:% until source_reg_table[i] = EOR; !
ﬁa /* Increase the request number, and create a request A
f’ table for the target request. */ 5
f' request_number = request_number+1;
‘ perform ALLOCATE_REQ_TABLE (target_reg_table) ;
s /* Put the target_req_table into the |
:ﬁ parsed traffic unit. */ :
-+ !
- index_reg_ptr->req_tbl[request_number-1) d
g
‘; = target_req_table;
NE /* Return the request number, target_req_table and)
- index_reg_ptr to the calling procedure. */ X
- end procedure CONVERT; :
!..K
(
'-F: k
ffﬁ
”
L. .
-‘,‘ \
N f
w 1
.
4 :
" ;
o ‘!'.
)
3 89 .
i, \
b
»
L4
o9 : ',.-.(.-. el te e o_"-," A . . MO - - . ‘ “a ’:~'.’::$:. '; A -.'\-_(O A \'—-".-'3 :;:3::-.";:: .‘:—.'::‘v'r\;“:.';\t;;‘::}.I'..:"::?‘l}:":.i.\'-;‘\,.:)

Y,

i g

T o T T T T T T T o R e T e T T e T T T T T T T oy T T TP TP T B G T T T T A T ST TP s g e v m e s e o
E.E
o

procedure CHECK_REQUEST_TYPE (ionput: req_tbl; output: ok): .
P2l e T P T T T T y
* This procedure is used to check the syntax of a *
* retrieve_ccmmon request. If the request type is *
* not retrieve, set OK to false. Otherwise, set OK *
* to true. Return OK to the calling procedure. *)
EAEARREKAKKREERR AR AR KR KRR KRR AR KRR KRR KKK KRR RRK K/

end procedure CHECK_EREQUEST_TYPE;

procedure ERROR_PROCELURE() ;
VAR R R R R L L R e R R P P T ™

* This procedure is used whenever there is a syntax *

* error in the request. * .
* This procedure will print an error message and *
* terminate the parser operations. *

L PP R T e
end procedure ERROR_EFOCEDURE;

o -l .. -.

* AR
ety

)

90

—"l‘v Ll ShaSm i mh e e n made ek sk ol aca bl BN arih ormh S s i aunds et - albi- e ui A iR SLahin < dan g St R Sl it el Bk Tl SIS AR AL S R aa. A0 N SatSen Shila St Ml Rl Lag)
t“\.
w

<

APPENDIX B
THE MODIFIED DIRECTCRY MANAGEMENT PROGRAM SPECIPICATICNS

The original SSL for the Directory Management process is
in [Ref. 13 : p. 82-102]. 1In this appendix, we present only
those procedures which are affected by the retrieve-ccmmon

request.

procedure DM_ParesedTrafinit () ;
PRI L e e S R
* This procedure is used when Reguest Preparaticn *
* (REQP) sends a traffic wunit to Directory *
* Management (DFM). The original procedure is in *
* the tu.c file. *
* We add an if statement to differentiate between *
* the retrieve-ccmmon regquest tvpe and the other *
* request types. *

* No new variables are introduced in this procedure. *

e R s Ly

/% Get a pointer to the parsed traffic unit. #*/
DM_R$ParsedTrafUnit () ;

/* Get a pointer to the record template

of this traffic unit. */

topl_ptr = get_tnpl_ptr(ti_ptr->ti_dbid);

/* Get a pointer to the attribute table. */

AT = AT_lookuptbl(ti_ptr->ti_dbid) ;
- ‘ /% Get the type-c attributes for the traffic unit

and send them to DS_CC. #*/

perform DM_TypeC_Attrs_TrafUnit() ;
/% Process the requests of this traffic unit. =/

ti_rtr

vy 91

o

!

o

W

__x

{3 ri_ptr = ti_ptr -> ti_first_req_pointer;

.? /* Get the type cf the first request of

L5 this traffic urit.*/)
- if req_type = REIRIEVE_COMMON

{i- then

L /* Te will cnly process the source request. */

N /* The target request will not be processed */

;; /% until the record-processing process has */

~ /* retrieved all of the source records. */

b /% Perform the descriptor search processing. */
’}: done = NINS_SR_DESC (6rie, ri_ptr, tapl_ptr, AT);
ot if domne

fz then

fﬁ /* Broadcast the descriptor ids to the

Qfl other backends. */

o DM_Broadcast_DIDs (§rid);
{ig end if;

"’ else

T /* This is nct a retrieve-common tramnsaction, so
XN process the requests of the traffic unit)
:f_ one-by-one. */

A end if;

ui: end procedure DM_ParesedTrafiUnit;

e

Eﬁ procedure DM_PRecP_Msg|)

> /ERRARRERRRRRRRASIRBRRK AR RKRKKR KK KRR KRR RK R E KKK SRR XK
j@ * This procedure is used when there is a message *
fﬁ * for DM from RECP (in the same backend). *
;ﬁi; * *
\Jl‘. * We add a newv message type to indicate that all *
‘£$ * ¢cf the source records have been retrieved. *
:-5- *
:?& * No new data structures or variables are used. *
- * The original frocedure is called by *
:ﬁq
92
T7x

2

AQ A ik St M o a e hes B e Son aeune et SebtoBg Shed Dok -Riehcfd S b AL INCR S M= atn Ada Tie-Sie ke At A -2 0 A ch b an b o 0 10 e b o o S SR M Sl R B~ dhs AL R A pA N R O B

* DM_THIS_BE_MSG() and is in the dirman.c file. x
e R s Y T T Y

T)

/* Get the message type. */
MsgType = DM_R$Tyfe;
switch (MsgType)
case OldNewvValue:
perform DM_OldNewValues () ;
case UpdFinished:
perform DM_UpdFinished () ;
case Source_firished: ’

RSP

/* This is the messaye whiclk indicates the
completion of the retrieval of all the
source records. */

AT

perform DM_Source_finished (msg) ;
end switch; ’
end procedure DM_RecFP_Msg;

procedure DM_Source_finished (input: message) ;

JxRdkkkkk ok kR Ak hk kR kR kR kR Rk R R Rk ARk &
This procedure is used when DM receives a messages, *
from RECP, which indicates the completion of the *
retrieval of all of the source records. DY is now *
ready to process the target reguest. *

*
3

L R K R S
AR AR o8 W

This procedure is called by DM_Recp_umsg() .
AERARKRRRR KRR K KERARRRR KRR KKK R KRR KRR ERRAR KRR P RE AKX/

E /* Receive the request id from the messaje. */ .
:: perform DM_R$Rid (source_req_id) ;

h; /* Get a pointer to the traf_info entry by the i
e source_req_id.*%/ \
_E ti_ptr = DM_TiFind(source_req_id);

% /* Get a pointer to the req_info entry for the source -

request. */

=
l
»

93

AAAN

-~y Y W ¥

G
o
‘.’n‘. ~a PRSI RO

A M A e

RN L)

B R L S S L S A) Y B e tate e 83

[- < < \\ A Y
P PP P S TP S . N Bt~ DA I " N
A T T T e : . L RN 5;\\, \

AN
\.,_VA-’I'V

-

source_rey_info_ptr = DM_RiFind (req_id, ti_ptr);

/* Get a pointer to the req_info entry for the target
request by the source_reqg_info_ptr. */
target_ri_ptr = scurce_rey_info_ptr->next_req_info;

/* Get the request id of the target reguest. %/

target_rej_id = Find_request_id (target_ri_ptr);

/* Perform the directory operations on the
target request.*/
/% Get the record template for the target reguest.*/
topl_ptr = get_terl_ptr(ti_ptr->ti_ttid);
/* Get a pointer to the attribute takle. */
AT = AT_lookuptbl(ti_ptr->ti_dbid);
/* Perform the descriptor search processing. */
dcne = NINS_SR_DESC(¢rid, ri_ptr, tmpt_ptr, AT);
if done
then
/¥ Broalicast the descriptor ids to the other
backends. */
perform DY_PRroadcast_DIDs(&rid) ;
end;

end procedure DM_Source_finished;

%94

T e e ——

Lo 50 - Sl msa, e - i) PRl aiadl sl Mt nlad Sun gae - - v v T W TEUTEUUN Ty N T e W W T T W T TN U W R, e g W NINd

APPENDIX C
THE MCDIFIED RECORL PROCESSING PROGRAM SPECIFICATIONS

In this part o¢f the appendix, we have added the
retrieve-common subfunction into the control function of the
physical-data-operaticn subprocess of the record-processing
process (RECP). We have presented only the modified portion
of the original RECP in this afprendix.

9
% procedure RegProcessing(input: MsgType) ;
Ei JEBRRRRRERR T RRRKRRRRBEKE R R kR kAR KRR AR ARR KK AR R & Rk XK

¥*

This procedur2 is used to process requests according
tc the request type.
We add th2 retrieve-common request type into the

This procedure is called ty the procedure RP_DM. The

ocriginal procedure is in the reproc.c file.

*
* *
* *
* *
* *
* *
* *
: switch statements as one of the optional cases. :
* *
* *
* *
* *
e e L T T2 Y

/* Get the request type. */
switch (request_type)
RETRIEVE_COMMON:
perforam ST_RetDel () ;
/% From this point, ve ues the sanme
procedures as used for the
RETRIEVE request processing. */
/* Now, back to the original RegProcessing() . */
end procedure RegProcessing;

95

OO L SR

AD-A159 476 DESIGN RNRLVSIS RND IHPLEHENTRTIDN OF THE PRIN
’ OPERATION RETRIEVE-COMM <U) NAVAL POSTGRRDURTE SCHOOL
MONTEREY CR H L TUNG JUN 85
UNCLASSIFIED F/G 9/2

o

22 s s

FEEEEEE

gEEEE
FERE

‘\
MICROCOPY RESOLUTION TEST CMART '
NATIONAL BUREAU-OF STANDARDS-1963-A ‘

Mo U
- ,r e

" \‘.' 4
..{‘-J.')
433 .r,»:i

N T R T LA TS, U S T e e e
O R R SV N OO N ROAC M NN

mwrw..u-"“ e v T T Ty

FAE/;’

AR

"oy
[

rocedure RP_ReadConmpleted() ; .
)* -
T T e R L PP T Y .
*

- -
3

This procedure is used when a physical read is

ccmpleted. We add the retrieve-common reguest
type into its switch statements as one of the
the request tyres cases.

LA R

This procedure is called by the procedure RP_RP.

.
R
, e

The original grocedure is in the recproc.c file.

ERRRREKRKRERRRK KRR ARRE KRR RRRR KRR RRERRAREERRE S RRRKHK
/* Get the request type of this request. */

switch (reguest_type)
RETRIEVE_COMMON :
perform KC_Ret () ;
N RETRIEVE:
perform EC_Ret();

XX EFERE X R ¥ ¥
AR R EX AR X R R

L

LT s

D
A

]
I B ek

-

- A

/% Now, back to the original processing. */
end switch;

LSy

end procedure RP_ReadCompleted;

e
LI

s L0
a

.
’
S . L v

[procedure RBSSEND_COMFLETION (input: RB_ptr, regtype);

. JEBARERRRRRRRE BRI SR BRRRERRRRRXRK R AR KR KRKRKE R KR KER K RK XK 1

; * This procedure does the following tasks: *
E * 1. Send the contents of the result buffer to *)
e * either the hashing module or the controller, * §
N * depending on the request type. * 3
- * 2. If this is a source request of a retrieve- * 4
Ei * commron request, then send a message to DM * ?
jE * indicating that all of the source reccrds * ;
b * have been retrieved. * ﬁ
J’ * 3. Send a message to CC to release the locks on * -k
Jf * the datatase for this request. * 5
> * 4. Pree the result buffer space after the * §
* contents of the result buffer have beer sert.* 1
* * .

96

b
;-
R -._:::",:.-‘-,,:‘ RO ‘ - _-.‘ .‘_‘_,\- ':s‘;}‘:\\:;:-;.: ‘_,'L-_- NS TN AT T ‘x";,‘ o

O a1 4% e s

PAAMICan) pia - o C i a bl e - L _fian Hha . 2 - v C3 iy RIA SAN Ll Sl M B sl ad e B s e -h o ue g T

1%
o
N
A
- APPENDIX C
‘;ﬁ TBE MCDIFIED RECORL PROCESSING PROGRAM SPECIFPICATIONS
Eﬁi ' In this part of the appendix, we have added the
_1 retrieve—-common subfunction into the control function of the
’i} physical-data-operaticn subprocess of the record-processing
v \.‘:

o process (RECP). We have presented only the modified portion
< of the original RECP in this arrendix.

s procedure RegProcessing (input: MsgType) ;

P JEEBEBRRRRRRSRERKEAK SRR KK KRR KKK KKK KKRRKRAKK KR AR SRR RE
g s *
: This procedure is used to process requests according :
: tc the regquest type. :
: We add the retrieve-common request type into the :
: switch statements as one of the optional cases. :
* %
* *
* *
* *
* /

’

I‘A

o This procedure is called bty the procedure RP_DM. The
‘2%% original procedure is in the reproc.c file.
‘?ié ERRRAKEERKKERRRRERERRER KRR KRR AR KR A RRRKRAARKA SIS RR IR S
=

) /* Get the request type. */

:fg switch (request_type)
o RETRIEVE_COMNON:

3¢

perform ST_RetDel() ;
/% From this point, we ues the same

8
4
.

procedures as used for the

'

. -

» Tt A
M 3 1

O SR

Al P
LAY S
.

a’q
ot

RETRIEVE reguest processing. */

L Bl
¢

/* Now, back to the original RegProcessing() . */
end procedure RegProcessing;

v ’
L DT S B T)
ety 4, b
PR R O]
] ‘A " .l Y l._l‘ ‘I

5 1A

NN

95

L .
e N A
L -

-
7
g

.
-

" .

-

-
S
b
s,

.........

.............................

All of the data structures ans variables are the *
same as the original procedure. *
This procedure is called by the procedure *
RC_Ret () . *
The original frocedure is in the recproc.c file. *
AREERKREXKKAEERKIERRRR KRR RERKEREREARRRRARKR KRR R IR K Ak k)

* % # » »

/* Get the request id by the result buffer pointer
RB_ptr.*/
request_id

RB_fptr->RB_rid;

if reqtype = RETRIEVE_COMMCN
then
if the result_buffer is full
then

/* Send the contents of the result buffer */
/* to the hashing module and reinitialize */
/* the tuffer size to 0. */
HASH_FUNC (request_id, result, result_length);
result_length = 0;
end if;
if this is the last result buffer
for this reguest
then
/* Send the result buffer to the
hashing module. */
perform HASHA_FUNC (request_id, result,
result_length) ;
if this is a source regquest
then
/* Send a message to DM indicating */

s* that all of the source records *y
/* have been retrieved. */
perforn DM_FinReqg$RP_S(request_id) ;
end if;
/* Free the result buffer space. */

97

.................

Ty M et e ae con A A i Ead mobogac i docian sis s Lon o o - .

perform Recp_ire€e (request_id);
/7% Send a message to CC to */
/* release the locks for this */
/* request. */
perfors CC_FinReq$RP_S(request_id) ;
end if;
else
/* This request is not a retrieve-conmon
request.
Now, back to the original processing. */

end if;
end procedure RB$SENL_COMPLETICN;

procedure XTRACT (input: TRACK_BUFFER, indexB, result2,
request, tapl_ptr, target_ptr;
output: result?);
JERRERRERKERERERAIBRIRARBARARRRRRRRRRAREERRRK RS> SR S AR %%
* This procedure extracts the attribute names angd *
* values which correspondend tc¢ the target list =
* cf a record. *
* This procedure is called by the procedure *
* $RETR_PROCESSING() . *
* The original grocedure is in the rbabs.c file. *
* We add an end-of-record marker, EOR, at the end *
* of every reccrd. *
AR RRARRRREEEREAARRKRE AKX AR RKERRR KRR RER KKK KRR AKX K AR K/

/% Process all statements of the original procedure
until the end of the outermost while loop. */
/* Add the following processing. */
if the reqtype = RETRIEVE_COMMON g
then
put the EORecord marker into the result buffer;
end if;
/* Now, back to the original processing. */

98

3nd procedure XTRACT;

procedure RBSPUT_SEND (input: RESULT_BUFFER, result,
length_of_result);
JERRERRRRERRARERRRRAREK KRR KRR EKR KK RRERRERRKR R SR TR KK KK

* This procedure puts the results for a request *
* into the result buffer. If the result buffer is *
* full, then the contents of the buffer are sent to *
* the controller or the hashing module and the *
* Jlength of the buffer is set to 0. *
* This procedure is called by the procedure *
* RETR_PROCESSING(). *
* The original rrocedure is in the rbabs.c file. *

EREERKKKEREKKR R ERRERREK KKK R KRR KK kR kkkkkk &k kkkkkk kkk/

if the result buffer is full
then
/7* Find the request type in the result buffer.*/
regtype = FIND_req_type(result_buffer) ;
if reqtype = RETRIEVE_COMMON
then
/* Send the results to hashing module. */
perform HASH_FUNC (result_buffer);
else
/7% Send the results to the controllier. */
perform RESSCNTL$RP_S (request_id,results,
length_of_result);
end if;
length_of_result = 0;
else
/% Store the results into the result buffer. */
/* Yow, back to the original processing. */
end if;
end procedure RB$PUT_SEND;

R S L A SPL A U SR SO L S LT T S e LT e SN el e
'-.“\.'.'- "-.‘t . -,’ W g AL S S LR AL ":.-.' L Soel T e A N
Lok o Lo S v ol z i .

B o2y ¥yt Tr oY

R,

3 MADMANNNIE

RARRATIA guf SRR AR g LI ANAD

-I. ‘l. ‘I", A-l I.' ¥

..

R T T O e v —

procedure RP_CNL_ANOTHER_BE_MSG() ;
PATT I PRy R e P T T T 2

* The purpose of this procedure is to process *
* the messages received from the coatroller or *
* the other backends. *
* This procedure is modified for fprocessing the *
* the hashed information of the non-local target *
* records. *
* The original procedure is in the reproc.c file, *

ERREREREE KGR R RERERRE KRR KKK EAEKERKEREEC KRR KA KKK R ARk ¥k,

/* Get the nmessage type. */
perform MsgType = Type$RP_R;
case MsgType of
Bucket_info:
/* This message is the hashed information */
/% for the non-local target records. */

perfors PROCESS_BE_TARGET() ;

/% This procedure should return the sender,*/
/* the reqguest_id of the target request */
/% and whether or not this is the last */
/* message from this backend. */

/* Check to see if all the target records */

/* of all the other backends have been */
/* received. */
if LAST_NSG

then

perform CHECK_RECEIVE_MSG (sender,
request_id, ALL_RECEIVED);
end if;
if ALL_RECEIVED
then


~~~~ Y - e = ey A o -t S daeut grt BB S i e i el o Snll el o aill gk sg e pfh vgin s B bl by

-

WS

L0

perforn START_TO_MERGE (request_id);

/* The called routine will perforn *y
/* the mergihg operation and send the */
/% results to the contrcller. */

S v B

Phllings 4
>

-ty
I I

end if;

/% Now, back to the original processing. */
end case;

end procedure RP_CNL_ANOTHER_BE_NSG;

T
0,

procedure PROCESS_BE_TARGET (input: message;

" ¥

output: sender, reguest_id

LAST_RECORD) ;
JEERARRKRE AR ER KR KRR RERE KR AR RERR KRR R AR AR KR AKX R KK XX
* This procedure is called to process the message
which contains the hashed bucket information of

v PN AL T,
14 qrr e

the non-local target records.

e
.
h

This procedure will return the sender of the
message, the request id of those non-local
records and a boolean variable, LAST_RECORD, to
indicate that all of the target records from the
sending backend have been received.

*

*

*

*

*

*

*

x

*

*
Frocedure are: *
1. LAST_RECCRD: A boolean variable which is *
used to indicate the end of *

this request. *

2. message: A character string wkich is used *
to store the hashed results of *

target records and is sent from *

%

the other backends.

*
%
»
*
*
E
*
* Data structures and variakles used in this
*
*
*
]
*
*
*
PERBRRERK ARBRRRIBRRERRAARKKKKRRKRKERR AR RRRK K RE KKK R KK /

/* Get the sender of the message. */
& perform GET_MSG_SENDER(sender);
L /% Get the request id of the request. */

101

e
I
1)
>
-

!

'\‘, i

‘‘‘‘‘ cac e PN U RN N Lo o R R P e e S R L R S S i
rﬁ..f\."#.r,, / .f(_ <. -',.l‘ e "l:.'}'l',r:" R RSNt AU S IRt S R TATS A -~ } N\\ \, N
(o . 2" I J W A A aX



»
P
4

roe N .rz_lj;o
' e
oF - RWERA

s Yo
b 3
SR AR

......

end

perform GET_REQUEST_ID(request_id);
/% Now, check the global table to find the address *%*/
/* of the hashing table for this request. */
perform CHECK_GLCEAL_TABLE (request_id, hash_table,

: NEW_REQUEST) ;
NEW_KECORD = true;
/* Since the message is an array of characters, */
/% Wwe have to bypass the header to get the record */
/% information. If this message is the last message */

/% of the sending backend, then there will be an */
/* end-of-request marker, EORequest, in the front x/
/* of the end-of-sessage marker. *y

I = the_integer_which_stands_for
_the_index_where_record_start;

/* Gets the bucket_numbers and their associated */

/* records from the message, then insert them into */

/* correct buckets of the hashing table. */

while ((not end cf message) or (not end of request)) do
Ferform GET_BUCKET_NUMBEF (message, I, bucket_value) ;
/* Get the bucket number of the record and the */
/* record itself from the message, and then */
/* store the record into the appropriate bucket */
/* of the hashing table ty using tke */
/% bucket number. */
perform GET_A_RECORD_SET (message,I,set);
Ferform STORE_RECORD_IN_BASH_TABLE (hash_table,

bucket_number, set, NEW_RECORD) ;

NEW_RECORD = false;

end while;

if ECRegquest
then LAST_RECOCED
else LAST_RECOKD

end if;

procedure PROCESS_BE_TARGET;

true;
false;

102

. s W I S AL T S (5 Pty SR
" L 4 ".‘. ."'* "- -".'{ P. A‘h

M e Rt
SN .-'.,-\'l.g._'-
- r [ -y " e e




| P

ps @ Y -
e
PP g

&

. A

procedure START_TO_MEFGE (input: request_id); :
?3 PE IR Ty T YT T
;} * This procedure is'called when the target record
set has been received from all of the other
kackends.

The input request_id is the request id of the

o

target request.
The data structures and the variables used irn
this procedure are:
1. TARGET_TAEBLE : The hashing table for tte
target request.
2. SOURCE_TAELE : The hashing table for the
source request.
3. target_id: The request id of the target
request.
4. source_id: The request id of the source

B ¥ # X B B B O * B R
[ I JEEE BN I N Y JE I IR T Y SR Y S

reguest.
EXRRRRARKRRARKRIRKARRRKKKAKRERR KRR AR KERRRKKERKKRE SR / .

target_id = request_id; "]

R )
A

/* Get the source request id. */ ’

perfcrm GET_SOURCE_ID(target_id, source_id);

/* Get the hashing table of the source reguest. */

perform CHECK_GLOEAL_TABLE (source_id, global_table

. source_hash_table, 3

= NEW_REQUEST) ;

/* Get the hashing table of the target reguest. */

perform CHECK_GLOBAL_TABLE (target_id, global_table
target_hash_table,
NEW_REZQUEST) ; 3

‘5 /* Merge the records of these two requests and send */

3 /* the results to the controller. */ .

perform MERGE (source_id, source_hash_talble.address .

o LG
ety Bpge 2
-

103




EA
-\

)

v..’

,
.

1
ol

o’

RAAANN
LY B}

AEAEREY o el
e aletata,

)
tx

£l

. -
s ¥ 2
YA
- £ ]
-

ae -
<+

. "

T T T T YT

target_hash_takle.address);
end procedure START_TC_MERGE;

procedure GET_SOURCE_ID(input: reguest_id;
output:request_id) ;
PRI R L T Ty T

* This procedure is used to find the request id for *

the source request by using the request id of the *
target request. *
Recall that tle source request and the target *

request has the same traffic id, the difference

between them is that the reguest number of the

* ¥ B B »

*
*
source request is less than that of target *
*

* request by 1.
ARkkRkkkk kAR kR kAR Rk Rk kR kR ek kR Rk h ke kR k Ak

end rrocedure GET_SOURKCE_ID;

104

'7‘ "al:)n:" -:f’l.'..:,-_, &‘:1:':-1-“.-_{'.‘_':“"-
g W, o bt

WO T e

.....




e T T T s T T o e O T ™ 0 % T~ 3 ™ T T 7

.
“
St
2 e

a0 Y
v
AL H

RN
A

e f
PR
Sl

frocedure CHECK_RECEIVE_MSG (input: sender, request_id;

output: ALL_RECEIVED);
JEEREREARKERKERERRERhE KR RRR KKK KK ER Rk k Rk Rk kk Kk Rk kkk &

e 4
[AKS !i
'!

i &

P

o * This procedure is used to check whether all *
: of the non-local target records have been
retrieved from all of the other backends for

a particular request. 1If all of the non-local

AIL_RECEIVED is set to true. Otherwise,
AIL_RECEIVED is set to false.
el RERRBRRRR AR AR B RRRRKE AR R AR RKER R R KKK RRERKRE AR KK

S end rrocedure CHECK_RECEIVE_MSG;

* * B * % *

*
*
*

:{f * target records have been received, then
. *
X

frocedure CHECK_GLOBAI_TABLE (input:reguest_id;
output: hash_table,

v NEW_REQUEST) ;
R RRREREERRKERRF SR dokk koo kR Rk kR ok ok Rk kkok ok ko koK kk ok

L * This procedure is USed toGhesi—iirersiremmrEr e ———

b * is a nev reguest by checking if the request id is *
1oag] * in the global table. If the id is found, then set *
b

&5? * the value of NEW_REQUEST to false and return the *
b * NEW_VALUE and the hash_table of of the request. =
NP * This procedure has been defined in HASH_FUNC(). *
— e R R s P TP PRy,
;} end procedure CHECK_GIOBAL_TABLE;

v

"7y

"' o

E-ols 105

.'...‘

it

»
PPl

L]
ave

-




procedure GET_BUCKET_NUMBER(input: message, index;
output: index, bucket_number);
JRERRARRRREAR AR IRRARKRRRR KRR R KRR R AR R RRRRE R R R RRR K Ak
This procedure is used to extract the bucket
numbers from the message, then return the
tucket _number and the incremented index to its
caller.

Y
*
&
*
Pata structures and variables used in this *
x
1. bucket: A character string representation *
of the bucket number. *

%

*
*
*
*
*
* rrocedure:
b
*
* 2. j: A general purpose index.
* R ARk kok Rk Kk ok b ok ok ko ok ok ke koK bk sk ook Sk o koK ok ok ok /
j=0:
repeat
bucket[ j] = message[index];
index = index+ 1;
3= 3+

until messageli] = EOV;

P R A .
S WGP G Wl R

perform STRING_TC_INTEGER (kucket, bucket_number);
end procedure GET_BUCRET_NUMBER;

10€




procedure GET_A_RECORD_SET(input: message, I;

output: set);
JRRERERERERRRRRERRERRRERRA KRR ERK KL KRR KRR KRR kR R khokk hk
* This procedure is used to extract the common *
attribute value of a record and the record itself*
from the message which contains the hashed bucket*
information of the non-local target records.

The data structures and the variables used in
this procedure are:
1. set: A array which contains the common
attribute value of a record and the
record itself.

L R B TS B R B TR R R

# # # # H * * »

2. j: A general purpose index.
EEEERERRKE KRR AR RIRRRK R R AR AR RKRR KKK RKKRKRRRR KK RRRRK K/
Jd = 0;
repeat
set{J] = message[I];
1 I+1;
< J+1;
until message[I-1] = EORecord;
end procedure GET_A_KRECORD_SET;

Y

(s
PR R R T

&y Bty by

g




A e mi SR b A adie ol abed 4B B ume it A -t i o o

APPENDIX D
THE HASHING PROCEDURE PROGRAM SPECIFICATIONS

- Procedure HASH_FUNCTICN (input: request_id, result, length;
- output: request_id, hashed_result,
X length_hashed_result);
E JERRRRERRR KK KK KK REX KK KK KKK AR R KKK KKK RKE KRR KRR KK AR AR KKK KK
;‘ * The purrose of this procedure is to hash the value
of the join attribute into a bucket of the hash
table.
A hash buffer is reserved to store the hashed
results.
Data structures and variables used in this
Frocedure are:
1. hash_buffer: A variable of the data type
hashing_buffer which is used
to stored the records and their

'

hashed bucket values, and is

[

A YCRRN
\ ,
K

2. RP_rid_irfo: The information Zor a request.
This structure is defined in

.

SRS

the commdata.def file.
3. RP_rid_ptr: A pointer to the data structure

of type RP_rid_info.

*
*
*
%
*®
%
x
%
x
*
&

defined in hashing_module.def. *
*
*
*
*
*

4. req_tbl_ptr: A pointer to a request table. *

The request table is defined in *

the commdata.def file as a *
REQtbl_definition structure. x

S. temp_entry: A variable of data type rt_ntry *
which is defined in commdata.def. *

6. tem_ptr: A pointer to temp_entry. *
7. rt_enrty: A pointer to a field of RP_rid_info.*

The type of this field is rt_ntry. =

[ JEEE TS N BEE N IR R NEE JEE R R JEE N NN R JEEE B I 2K R R TR Y I

108




A EREERBKKREEEE KX EKRERKERREERRKERRERERR R AR B REREEE R RkEE kSR &)/

b /% Check if the request id is a nev request. */
P if new reguest
- tien
N /7* Get the record template to find the value */
/% type (i.e., integer, string or float) of the */
/% common attribute value. */
- perform FIND_RP_rid_info(request_id,RP_rid_ptr);
2 /% Get a pointer to the request table from the */
X /% BRP_rid_info. */
5 req_tbl_ptr = RP_rid_ptr -> BP_ri_req;
N /% Pind the attribute name from
f the request table. #*/
- perform FIND_COMMON_ATTRIBUTE(req_tbl_ptr,
¥ attribute_nane) ;
- /* Get a pointer to the entry %/
Q /7* of the termplate for the common attribute. */
S tem_ptr = RP_rid_ptr -> RP_ri_tmpl_ptr -> rt_entry;
/*¥ Get the value type of the common attribute */
/% from the record template. */
if tem_ptr->temp_entry.value_data_type = 's!?
then
value_type = string;
N else
- /% If the value type is integer, then */
- /* we decide which hashing function to */
@ /% use. x/
EE MAX = tem_ptr.value_c1; /* The possitle */
N /* maximua value */
' /% for this */
_’ /% attribute. */
ﬁ MIN = tem_ptr.value_c2; /* The possible */
v /* ninimum value */
. /* for this x/

. 109




ichi

A S

s~ RN

.

—a
“Tata
.A."

gl
. L
At b

o~ ey

/7% attribute. */
if (MAX-MIN) < the_nuaber_of_buckets
then
value_type = small_integer
else
range = (MAX-MIN) / the_number_of_luckets;
value_type = large_integer;
end if;
end if;
end if;
/* Allocate a buffer to store the hashed results. */
perform ALLOCATE_HASH_BUFFER(Hash_buffer);
/* Note: we may not want to call this */
/% routine at this point. */
switch (value_ty[e)
case string:
perform STRING_HASH (result,
hash_buffer) ;
case small_integer:
perform SMALI_INTEGER_BASH (result, MIN
hash_buffer);
case large_integer:
perform LARGE_INTEGER_AASH(result, MIN,
range,
hash_buffer);
end switch;
end procedure HASH_FUNC:

110




’ - e ae. . ) e P . e _gerd pad geis mieh o ad ek ik atedaed
- .

B .
1‘ procedure FIND_COHHON_ATTRIBUTE(input: request table;
;' output: attribute name) ;
i' JEVREIRARKRKBREEFIRERKKEKE IR KR KR SRR RS R AR KRR KR Ak K KKK
* This procedure is used to find the name of the *
- * jcin attribute. *
fi * The join attrikute is the first attribute of the * g
:§ * target list, sc we can just go to the entry * y
-5 * where the target list begins and extract the first# ;
* attribute name and then return it to the calling * ;
: * procedure. * f
o FREBRERREREEEERSSRARE KRR KR RAARRR KRR RRRKL KKK KKKE KK /
& end procedure PIND_CCMMON_ATTRIBUTE;
i
y procedure ALLOCATE_BUFFER (input: reguest_id; .
- output:hash_buffer); 3
;ﬁ JEERRRERRKKKKRREEIRARKR AR R ERRRRK KRR KKK R KKREX XK BRAKE KRR K/ h
'2 /* This procedure is used to allocate a buffer for %/ 3
- /* storing the records and their hashed bucket number,*/ ;
4 /* set the length of the buffer to 0, and then x/ '
- /% return the buffer to the calling procedure. */ :
/+ + ;
}Q /* The data structures and the variables used in */ :
13 /* this procedure are: */
- /% 1. hash_buffer: */
= /* A variable of the data type hashing_buffer, =/
" /% which is defined in hashing_module.def */
o /* (see Appendix G). */ .
/* 2. HB_ptr: */ E
v /% A pointer to the hash_buffer. */ R
= s* 3. HB_id: */ "

25 11




» B
DR I I
AP )

v
P

r RSN

NS et e e
PRI e

AN
l.'.l

g,
’

/7%
/%
/*

DLl a et e vty Ao ol g LA Al e e S ok abl nd it aee Bec e g

A field name of the hash_buffer that
contains the reguest id of the records
which belcng to this buffer.

*/
*/
*/

VAR AL RS L 2222 2L 222 S 222 R 2222 22 R Rt 2Rt E R s a SR L 2 2 2 Y

HE_ptr

= allocate the hash buffer;

HB_ptr->HB_id = regquest_id;
HE_ptr->length = 0;
end procedure ALLOCATE_BUFFER;

procedure STRING_HASH (input: result buffer, h_buffer);
JEPERRRRRKRKER KRN RRKERRRERR A KRR AR R KRR KRR KRR KX KRS

* This procedure is called when the value type
of the common attribute is a character string.

It performs tte following tasks:

1.

Extract records froms the input result buffer
one at a time,

Extract tle value of the join attribute
from the extracted record and then check the
lookup talle to get the bucket number for
the record.

Store the tucket number and the record into
a reserved hash buffer, h_buifer.

If the hash buffer is full, then send the
hash buffer to Bucket-block tracking
procedure.

Data structures and variables used in this

procedure are:

*

*

*

*

*

*

*

*

*

*

* 4,
*

»

*

»

 J

* 1.
*

E ]

*

2.

attribute_value: A character-string
representation of the common
attribute value.

record: A character-string representatiorn

112

L I BEE R B R B TN T BT IR T N I R R IR R R R R




L G I aan it Bl e B~ S S 40 g S0 6 A B< i SeLA Bad Sia h S is. S Ac e Ac ol Bt ek sl aios abir-ad pid bR b i-a X

¥
2 a & &

1

.

of the extracted record. *

(I f Bt
.“KI"I..I.

3. bucket_numter:; The bucket number where the *
record characterized by the

coumen attribute value is

P
EY T
LI B}

hashed into.

Y .l'

U. bucket: A character-string representation
cf the bucket_nunmber.

) ._;

5. EOV: The end-of-value marker.

.
e

L
A

P

6. EON: The end-of-name marker.

7. EOB: The end-of-buffer marker.

8. LAST_RECORLC: A boolean variable to indicate
that this record is the last

'
2"

< W

) e e e 4 L NL TR AW

record for the request.
9. i: The index for the length of the result
buffer.
j: A general purpose index.
10. lookup: The lookup table, which is an array
with 2048 character-string elements.

0 abal

11« h_buffer: A varialle of type hash_buffer
which is defined in

v v F oW e owoe

hashing_module.def (see Appendix G)
and is used to store records and

L JE B EEF R XY NN T R IR JEE T T BT N R B R N P 2 T T I T NN SR R P S S ]
L I S B K T T TEET T RN NN BN NN NEEY NN BEEY NN NN I N 2K K TN I BEEE BT BN NN SR )

their hashed values.
REEERREKK KX KKKKRRRKAREERARKKRKRRRKRRKKRRXRK KRR KKK R ALK / X

% 113

Y T

Y ™)

e e e s o P N AP T,
Aoyt T A W R D




/% Get the lookuf table. */
i= 1
j=0;

LAST_RECORD = false;
/7% Get records frcm the result buffer one at a time. */
while result_buffer[i] <> EOB do

/* Bypass the name of the common attribute. */
wvhile result_buffer[i] <> EON do

i=1i+1;
end while; /* Ncw, result_buffer{i] = EON. */
i= i+
/* Get the value of the join attribute. */

While result_buffer[i] <> EOV do
attribute_valuvel j] = result_bufier{i];

i=1i+¢7;

j= je1;
end while; /* Ncw, result_buffer[i] = EOV. */
/* Compare the common attribute value with */
/* the contents of the lookup table to get the */
/* bucket-number. */

bucket_numbers = BI_SEARCH(lookup, attribute_number);
perform NUMBER_TO_STRING (bucket_number, bucket);
/* Add a EOV marker to the end of
the attribute value. */
attribute_value[j] = EOV
/* Extract records from the buffer. */
i=1i+1;
j=0;
rereat
record[j] = result_buffer(i)];
i= i¢1;
3= 3¢5
until result_buffer[i-1)] = EORecord;
/% Ncw, record{j] = EORecord. */
if result_buffer[i) = EOFequest

14




then
LAST_RECORL = true;
i=1+1;
end if;
/* Store the hashed information into the
hash buffer, h_buffer. */
rerform PUT_HASE_BUFFER (b_buffer, bucket,

R

attribute_value, record,
LIAST_RECORD) ;

end while;
end procedure STRING_HASH;

procedure PUT_HASH_BUFFER (input: h_buffer,

bucket
attribute_value, record,
LAST_RECORD;

output: h_buffer);

JEFRERBARRE KRR KK EER KRR AR KRR KRR KRR KRR E R R KRR KR DK K

*

[ Y T BEE 2K I I BEE IR IR R R

This procedure is used to store the hashed
record information into the hash_buffer.

Lata structures and variables used in this
procedure are:
1. x,Y,Z2,i,j,K: General purpose indexes.
2. MAX: The predefined maximum length of the
hash buffer.
3. bucket: A character-string representation
cf bucket_number.
4. record: The input record which is in the
form of character string.
5. LAST_RECCRD: A boolean variable wkich is

L I N 2N 2K JEE N NI NN BT JEEE RN B

115




R T TP T VT T e T Ty Ty g -

) * used to indicate the end of *
i * this request. *
}i‘ » 6. h_buffer: A buffer which is used to store *
S * records and their hashed values. *
i; T T T e T T Ty
-

" /* Check to see if the buffer has enough space for */
;ﬁ /7* the new record. */
;3 X = String_len (bucket_nuaber) ;
o~ Y = String_len (attribute_value);

, 2 = String_len (record);
: K = the_current_length_of the_hash_buffer;

: if (R + X ¢ Y+ 2) > MAX
i’ then

/% The buffer is £full, so it is send to the =/

Ei} /* bucket-block tracking procedure. */
'FE' perform BUCKET_BLOCK(h_buffer);

- /* Reset the length of the buffer to 0. */

o K =0;
_:€ else

- /* The buffer has enough space, so store the */

. /% input record into the buffer.*/

for i = 1 tc X do

'.:f;t K=K+ 13
1 hash_result{K] = bucket{i];
Ej end for;

; for i = 1 to Y do
i; K=K+ 1;
j} hash_result[ K] = attribute_value[i];
Ti end for;
9 for i = 1 to Z do
j§: K=K+ 1;
3 hash_result[K] = record(i];
:éj end for;
,u- /* If this is the last record of this request, */
- 116




Rt a2 B0 & A A dian - Badi-2A il B S i e a1 IO S B R A AR AU -

- g

|
; /*% then send the hash_buffer to the 4
}

/% bucket_blcck tracking procedure. %/ :
< . if LAST_RECOED \
::“ then
3; hash_result{K+1] = EORequest; ;
N hash_result[K+2] = EOB; 3

\ perform BUCKET_BIOCK(h_buffer); .
. perform FREE_BUFFER_SPACE(h_tuffer); R
e end if; :
13 end if; 3

end;
end procedure PUT_HASE_BUFFER;

¥

3

T

AN > ...

procedure SMALL_INTEGER_HASH(input: result_buffer,

, MIN, ¢
j_ h_buffer; ;
;iﬁ output:h_buffer) ; :
- P P P S 3
o * This procedure is used when the type of the * ¢
%i * ccmmon attribute value is integer and when the * :
' * difference of the maximum and minimum value of * A
r * the common attribute value is less than the * :
u; * pumber of the ruckets of the hashing table. * :
ﬁ * It performs the foilowing tasks: * R
% * 1., Extract records from the input result buffer # t
; * one at a time. ¥ 1
2 * 2. Extract the value of the common attribute frcm* ..
23 * the extracted record and then calculate * -
f; * the bucket number. * .
15 * 3, Store the rucket number and the record into * i

117

-t -
t

.

-l =T
Lol Sl Pl
. e g
> »
K .

T AR TR, ¢ K Ut
SRS PN AN B¢ -.~1..‘.Ih‘\q“ "'\. ', o

\,&-._ el



a reserved hash-buffer.

Data structures and variables used in this

fih procedure are:

:ﬁi 1. attribute_value: A character-strinj

xﬁt representation of the common
-ié attribute value.

“;} 2. record: A character-string representation
3&% of the extracted record.

oo 3. bucket_numter: The tucket number where the
I

record characterized by the

commcn attribute value 1is

hashed into.

4. rucket: A character-string representation

cf the bucket_number.

5. EOV: The end-of-value marker.

6. EON: The end-of-name marker.

FOB: The end-of-buffer marker.

8. LAST_RECOKL: A boolean variable to indicate

that this record is the last

record for the reguest.

9. i: The index for the length of the result
buffer.

j: A general purpose index.

k: The index for the length of the attritute_
value.

10. temp: An integer representation of the input

attribute_value.

11. h_buffer: An variabkle of type hash_buffer

which is defined in

hashing_module.,def (see Appendix G)

and is used to store records and

[ I R IR TR Y REE R TR R I T B IR SR T T I TR SN BT TR BEEY JEEE T Y RN 2 K BER N
~
.

L JEEE JEEE Y JEE 2k IR BT R R JEEE B NEEE R NI I DR R R Y O T IR SR T TR BT BEEE BT Y BN B

their hashed values.

e ERARRRKEERKRRRRKBRRERA KRR RRRAKKRKR KRR RKRRK R KR BRK AR/
o

» /* Initialize the indexes. */

T

Qﬁfj 118

o

ST ST S L T

L
0 \.~.. e T e e e

> ,.-:r'.. _.".’ .'-.-




mw.vzwu-.nrrv.wr,r LM s i Al e S it B g W
* -

.

K.
.
K
-

)
)
)

3

i= 1
k = 1;
j=0

IAST_FECORD = false;
/* Get the records from the result buffer
one at a time. */
while result_buffer[i] <> EOB do
/% Bypass the name of the common attribute. #*/
while result_buffer{i] <> EON do
i = 1i+1;
end while; /* Now, result_buffer[i] is EON. */
1= 1i+1;
/* Get the value oI the common attribute. */
wille result_buffer{i] <> EOV do
attribute_value[ k] = result_buffer[i];
i=1i+1;

=+

end while; /* Now, result_buffer[i] is EOV. */

/% Compute the lucket number. */

rerform STRING_TO_NUMBER (attribute_value, Temp) ;
bucket_number = Temp - MIN;

perform NUMBER_TO_STRING (bucket_number, bucket);
/* Add a EOV marker to the end of attribute value. */
attribute_value[j] = EOV

/% Get the attribute-value pairs of the actual #*/
/* target list of the record. */

i+

i
j =03
receat
record[ j] = result_buffer[{i];
i=1i+1;
3= 3+
until result_buffer[i-1) = EOERecord;
/* Now, record{j] is EOPecord. */
if result_buffer{i] = EORequest

119

-------
-------
............
.........




st il i S teaahr malt i S e At M a2 20 A atdiie B¢ B 2 MM S S AR i

then
LAST_RECORL = true;

i=3i+1;

end if;
/* Store the hashed information into the h_buffer. */
rerform PUT_HASH_BUFFER(h_buffer, bucket,

attribute_number, record,
LAST_RECORD) ;

end while;

*

L R Y I N NN K T JEEE I R TEEE BEEE NN R NN

end rrocedure SMALL_INTEGER_HASH;

procedure LARGE_INTEGEF_HASH (input: result_buffer,

#MIN, range,
h_bufier;
output:tash_buffer) ;

P T T T Py T T Y

This procedure is used when the type of the
ccnmon attribute value is integer and when the
difference of the maximum and minimum value of
the common attribute value is greater than the
number of the kuckets of the hashing table.
It performs the following tasks:
1. Extract records from the input result buffer
one at a tinme.
2. Extract the value of the coammon attribute from
the extracted record and then calculate
the bucket number.
3. Store the tucket number and the record into
a reserved hash-buffer.
Data structures and variables used in this
procedure are:
1. attribute_value: A character-striang

L K 2 2T T T T K I IR IR N B R NEEE B

representation of the commcn

120

............

W W T W W WY T




P P o b - aGh aes peest Sr-v Bavt it Bedh S bl s b Aaniotaie Aeh in- e e T g & s Bagh b

'

3
N
'd
o
-
o
y

[

attribute value. *

¥
Ly

2. record: A character-striny representation *

4 b

*

of the extracted record.
3. bucket_nunter: The Eucket number where the *

Ps
LML

record characterized by the

<
~
AR

conmon attribute value is
hashed into.

.

4. tucket: A character-string representaticn

*
PR Y

of the bucket_number.
€. EOV: The end-of-value marker.
6. EON: The end-of-name marker.
7. EOB: The e€nd-of-buffer marker.
€. LAST_RECORD: A boolean variable to indicate
that this record is the last

LR~

record for the request.
9. i: The index for the length of the result
buffer.
j: A general purpose index.
k: The index for the length of the attribute_
value.

4

Onpca
' [NERSAEA & tpdy

10. temp: An integer representation of the input
attribute_value.
11. L_buffer: An varialkle of type hash_buffer

%

which is defined in

l;,"

hashing_module.Jdef (see Appendix G)

LI S W N

and is used to stcre records and

o
- 1)
[ I T BN BEE 2 T TR T T R I NN T N N BT K N T N T T B NN R

[ JEE JEEE BN TR Y K T N N I K R R R S T I K R K R I

their hashed values.
EREERRRRRAKEREERARBRRRERRARRKRRKER SRR RRRRK KRR AAKE 4% /

I' ‘,- {. l.. " I.. T .

> ".a Ko

-,

/% Initialize the indexes. */

Ly ey v e

i 1;

k 1;

e 3 0;

- LAST_RECORD = false;

/% Get records frcm the result buffer one at a time. */

121

»
»
(3
D
,
L}




Bl S 2l o s e i A gul Ba -

while result_buffer[i] <> EOB do
/* Bypass the name of the common attribute. */
while result_buffer{i] <> ECN do
i=1i+1;
end while; /* Now, result_buffer[i] is EON. */
i=1i+1;
/% Get the value of the join attribute. */
while result_buffer;i] <> EOV do
attribute_value[ k] = result_buffer{i];
i=1i+1;
3
end while; /* Ncw, result_buffer{i] is EOV. */
/* Compute the tucket nurber. */
rerform STRING_TO_NUMBER (attribute_value, Temp);
bucket_value = TRUNC[ (Temp - MIN)/range];
rerform NUMBER_TO_STRING (bucket_value, bucket) ;
/* Add a EOV marker to the end of attribute_value. */
attribute_number[j] = EOV

je1;

/% Get the attribute~value pairs of the actual */
/* target list of the record. */
i= i+
j=0;
regeat
record][ j] = result_buffer[i];
i=1i+1;
j= 3+

until result_buffer[i~1] = EORecord;
/* Ncw, record[j] is EORecord. */

if result_buffer[i)] = EORequest

then
LAST_RECORL = true;
i= 1i+1;
end if;

/* Store the hashed info nation into the h_bufier. ¥/
rerform PUT_HASH_BUFFER (h_buffer, bucket,

122

. e W,
DVl RSP




attribute_number, record,
LAST_RECORD) ;

L2 end while;
g end rrocedure LARGE_INTEGER_HASH;

!

33
-

x
-

Pl ek IR s
A )
4w Ty v
ML N N

AN
e
I' l-

LR

o0,
RS
NS

.. .I.

L B S &
‘.....

L.

e
L] .l'.'l‘

123

.
Pl

1
2t
RN

-
-,
-

ARSI
;'-\'-‘ N

o

A




. APPENDIX E .
2 THE EUCKET-BLOCK-TRACKING PROCEDURE PROGRAM SPECIFICATIONS

procedure BUCKET_BLOCK(input: BE_Luffer);
JERRRRKRRRKEEE R ERAR SRR KRR KRR ERK KKK KK KRR R K Aok ook kK

3 * This procedure receives a hash buffer, H_buffer,
§ * from the ret_ccn subfunction and perforas the

% fcllowing task.

* 1. Establish and maintain a global table to
store the addresses of the hashing tables
of all the requests.

2. Extract the hashed record information from
the input hash_buffer.

3. Check the global table to see if the input
records tkelong to a new regquest. If they do,
then allccate a new hashing table.
Otherwvise, get the logical address of the
hashing table from the global table and
assign a pointer to the hashing table.

4. Group records into the buckets according to

[ a
N S

their tucket numbers and store them into
blocks.

.
L -

* % % % X ¥ B % ¥ X X % H % X % % % ¥ * # * #* * % * »

L B N R R R Y TR N K Y N R K R R R NN R TN B BN R

_Eﬁ 5. Broadcast the bucket information of the local
o target records to the other backernds.

;i 6. Store the hashing table back to the secondary
- storage.

&

‘fi Data structures and variables used in this

,?% Frocedure are: .
2 1. FIRST_RET_COM :

~ A boolean variable which is set to

20 true whben the first retrieve common

- 124

O I T
......

- . . .
T A R L P A f
('Y alad sl b L




a0 * request enters the systes. *
;? * * :
:_ * 2. GT_ptr: *
gf * A pointer to a global table. *
- * 3. G_table: *
iy * A variatle of type glolal table (see *
. * Appendix G). *
h\ * 4, HT_ptr: *
- * A pointer to a hashing table. *
- * 5, HT: *
§3 * A variatle of type Hash_table (see *
o * Appendix G). *
_: * *
f * 6. HB_ptr: *
k- * A pointer to a hash bufier. *
o * 7. H_buffer: *
5$ * A variatle of type hash_bufier (see *
. * Appendix G). *
5 * * E
* 8. NEW_REQUEST: * '
i: * A boolean variable which is set to *
) * true if the request id cannot be found ¥
7§ * in the global tatle. *
’} * 9, logical_addr: *
;i’ * A variatle of type addr_Jefinition, *
i » vhich is defined in the commdata.def file. *
jf * 10. bucket_nunmber: * !
:E * The bucket number where the record *
E; * characterized by the attribute value is *
»: * hashed into. x
i; * 11. bucket: * A
;: * A character-string representation of * ;
E; » the bucket_nunmker. * N
* 12. req_id: *

-, 125

-“'h" IS X

-

ALY \"‘.-_\ Rh




A record which contains the traffic id and *
request number of a regquest. *

13. 1, j: * .
General purpose indexes. *
R s T Y Y

* ¥ #» * »

if FIRST_RET_COM
then
perform INITIALIZE_GLOBAL_TABLE(GT_ptr);
FIRST_RET_COM = false;

end if;
/% Get the request id from the pointer of which */
/* pcints the input hash buffer. LV

request_id = H_ltuffer.Request_id;

/% Check the gloltal table to see if this request is */
/* a nev reguest. */
perform CRECK_GLCEAL_TABLE (GT_ptr, req_id,
logical_addr, NEW_RZEQUEST) ;
if NEW_RRQUEST
then
perform ALLOCATE_HASH_TABLE (logical_addr) ;
perform INSERT_GLOBAL_TABLE (GT_ptr, req_id,
logical_addr);
end if;
perform GET_HASHING_TABLE (request_id,
logical_adir, HdT);

/* Now, the hashing table is ready to store records. */
/* Extract the record information froa the */
/* hash buffer one record at a time. */
/* 3ecause the last tvo character of tane hash buifer #*/
/* are the EORequest marker which indicates whether #*/
/% this is the last hash rtuffer for this request */
s/* and tie EOBuffer marker which indicates the x/
/7* end of this hash buffer, the actual length of the */

126




.
N
d ( - AR

RIS FRNAF SIS,

/* hash buffer is length-2. 274

i=1%
while j £ (H_buffer.length-2) do

/* Get the bucket number. */

i=20;

rereat
tucket[i] = H_buffer.Hashed_result{ j];
i=1i +#1;
j=3+ 1

until H_buffer.Hashed_result{j] = EQV;

/% Convert the fkucket number irom a character to */
/* an integer. */

tucket_number = STRING_TO_INTEGER (bucket) ;

/* Get the common attribute value and the record */
/* itself. */

j=3+ 1
i = 0;
repeat

ccemon_and_record{i] = Hash_buffer.HB_buffer[j];
i=i+ 1;
j=3+ 1

until common_and_record [i -~ 1] = EORecord;

/* Store the record and its common attribute value */

/* into the hashing table. x/

perform STORE_RECORD_IN_HASH_TABLE (HT, bucket_numier,
common_and_reccrd,
NEW_RECORD) ;

NEW_RECORD = false;

end while;

/7* Check if this is target request */
if MOD (req_id.request_no, 2) = 0

then
/7* This is a target request. */
127
~ . N P ™~ AT T A% o LY et et et tetae, -
TR S e T A

3

A v 4 RO

IRy =
.

wid TP

SAPRIAIATA

I N 1
]

T, > WMRHN wd

. . » v e >
.. - LTIV,



perform BROALCAST_TARGET_INFO(HT) ;
end if;
. perfora STORE_BACK(HT, logical_addr) .
Y end procedure BUCKET_BLOCK;

AL A

procedure INITIALIZE_GLOBAL_TABLE (output: GT_ptr);
JABABRBRERRRRR RS RAREE R RR AR RRE AR R Rk kR R R SRR K Rk

S
’

* This procedure is used when the first retrieve- *
ccmmon request is executed in the BUCKET_BLOCK *
Erocedure.

This procedure creates a global table and

* ¥ * »

returns the pcinter (GT_ptr) to the table to

* * ® »

* the calling [frocedure.
SAXBERERRER AR R NIRARKR KRR AR KERAREKRKEARREKK KR ARE KKK/

end procedure INITIALIZS_GLOBAI_TABLE;

*
[rocedure ALLOCATE_HASH_TABLE (output: loyical_addr);
JRRRRRERRERRARRRAIRARRE R AR AR AKAR KSR KRRRRE K KRR R K A%

* This procedure is used to allocate a hashing
table for a new retrieve-common request from

the logical disk address to the calling

* % # »

*
*
a predefined secondary storage area and return *
Erocedure. ¥

*®

* The bucket entries are also initialized.
BEREERARE SR RR KR BRRRRRE AR SRR PRRREEKEERERKRRRIRRNE S/

end procedure ALLOCATE_HASH_TAEBLE;

128

.........
----------
e e e
PR SN S o




- e - Y g 4 v b i Cat S S el i il A IR ol i B Sl ) - M - Radl A

procedure CHECK_GLOBAI_TABLE(input: GI_ptr, reguest_id;

}jﬁ cutput: logical_addr, NEW_REQUEST) ;
e JRERERRRERR KRR A AR ARk Rk KRR RR Rk kook Rk & % ko ko Kook Kk
:&f * This procedure is used to check whether a request *
g * 1is a new request by checking its regquest id *
oy * against the global table. If the reguest id is *
?fi * found in the global takle, then set the value of *
=~ * NEW_REQUEST to false and return the logical disk *
* address of the hashing table to the calling *
f3 * procedure. Ctherwise, return the NEW_REQUEST *
kf * lack to the calling procedure. *
Qf? P S F T T Ty
_!,f_ end procedure CHECK_GIOBAL_TABLE;
-
- procedure INSERT_GLOEAL_TABLE(input: GT_ptr, Reg_id,
el logical_addr;
OO output: GT_ptr);
E#S P Ty T T T PP YT e Y
i * This procedure is used to insert a new hashing *
}i; * table into the global table. *
N * *
i; * Data structures and variabies used in this *
- * rrocedure are: *
i * 1. GT_ptr: *
N * A pointer to the global table. *
ix. * 2. Reg_iad: *
;f“ * The request id of the records of the new *
R * hashing table. *
* 3. logical_addr: *
1§: * The logical 3isk address of the new hasaing *
=" * table. *




*
*

*

N i ek a2 -odliy - o Jei- aier Jeaes fe.t 4

An inverted list implementation to maintain the
tatle is reccsnanded.

T T T E TV TR W W W R

*
*®

%

AR R R RSS2 LS 22 2 222 2 a2 R R AL R R RS LT

end procedure INSERT_GLOBAL_TABLE;

procedure ZTORE_RECORI_IN_HASH_TABLE

(input: BT, bucket_cumber,
info, NEW_RECORD) ;

VALERLAL L EL A2 E L R L RS L St E R QR R R R R At R R Rt LR Rt

This procedure is used to store the common
attribute value of a record and the record itself
into a hashing table.

Recall tiat the records are stored in blocks.

Lata structures and thke variables used in this
frocelure are:
1. HT:
A varialtle of type hash_table which is
defined in hashing_module.def (see Appendix
G).
2. bucket_number:
The bucket number where the record
characterized by the common attribute value
is hashed into.
3. info:
A character string which contains the
coamon attribute value of a record and the
record itself.
4. NEW_RECORD:
A boolean variable to indicate whether the

130

*

*

*

* % R % # ¥ ¥ % % X F ¥ ¥ * * ¥ * *




Se

g.

[ I SR SR 2 T T T T R TEEE DRI S NN T N Y I B )

else
A /%

A if

input info is a new record of this request
id.

0ld_bucket_number:

The bucket_number of the previous input
record.

bkt:

A variable of type BUCKET_ENTRY which is
defined in hashing_module.def (see Appendix
G) -

blk_ptr:

A pointer to a record block of type
REC_BLOCK which is defined in
hashing_nodule.def (see Appendix G).

blk, blk_2:

Variables of type REC_BLOCK which is defined
hashing_nodule.def (see appendix G).

I:

An integer variable.

10. MAX_BLCCK_SIZE:

An integer that represent the maximunm
length of the block content.

if NEW_RECORD

perform GET_THE_BUCKET (HT, bucket_number, bkt) ;
perform ALLCCATE_REC_BLOCK (blk) ;
perform MODIFY_ENTRY_&_HEADER (bkt, blk) ;

Coapare the input bucket_number with the
previous cne. ¥/

bucket_number <> o0ld_bucket_number

ther

- [N
-

hhhhh

L BN R B 2 R B N I K BN NN BT BN JEER NN NEEE BN BEEE BN R

kA E kKRR kkk kR o Rk kkkhhkkk ek kR kkkrkrhkk kkkkkkkkkx/

tten
_ék /* This record is the first input record of this #*/
: /* request. x/




A Bia s o au e She. fine ane e dod Eok S e oaesas ahoian iy

perfora STORE_BACK (blk) ;
/* Get the desired bucket entry for this
input record. */
bkt = HT.bkt_entries[ bucket_number ];
/* Check if the lkucket is empty. */
if bkt.status = empty
then
perform ALLOCATE_REC_BLOCK (blk, addr);
perform MODIFY_ENTRY_&_HEADER (bkt,
blk,addr);
else
/* Get the record block by the address */
/% in the bucket entry.*/
perform GET_REC_BLOCK (bkt.block_address,
blk):
end if;
end if;
/* Check if the block has enough space to */
/* store this record. */
I = STRING_IENGTH(info);
if (blk.header.length + I) > MAX_BLK_SIZE
then
/* This block does not have enough space */
/* for this record. */
perform ALLOCATE_RECORD_BLOCK (blk_2,
addr_2);
perforr MODIFY_ENTRY_&_HEADER (bkt,
blk_2,
addr_2);
/*¥ This routine will also modify %/
/* the header of blk_2. */
perform STORE_BACK(blk) ;
blk = blk_2;
end if;
end if;

132




- perfora STORE_INFC_IN_BLOCK (info, blk);
N end procedure STORE_EKECORD_IN_HASH_TABLE;

procedure STORE_BACK {input: A_structure);

OO

JERRBRRRRRRRERRF PR PR R kAR RR Rk Rk R Rk R R Rkkkk k& &k Rk kK

; * This procedure is used to store a hashing table, *
v * or a record blcck back to the secondary storage. * i
Y 4 x .
;” * A_structure is a variable which may be either * :
b' * a hashing table or a block. * K
o R e e T TS S :
'i end procedure STORE_EACK;
. procedure GET_REC_BLOCK (input: logical_addr; &
& output: blk); :
;ﬁ PRy L T T

: * This procedure is used to brinj a block of memory *

* from a predefined secondary storage area into the * :

. * primary memory by its logical address. * K
i * Data structures and variables used in this * i
:Z * procedure are: *

- * 1. logical_addr *

D * The logical address of a block. *
éf * A variable of addr_definition which is *
ti * defined in the compdata.def file. *
] + 2. blk . _
?&j * A variable of type REC_BLOCK which is defined* .
\ * in the hashing_module.def (see Appendix G). * .
. R R T Ty ;
' end procedure GET_REC_BLOCK; L
v 133 §
A7 ]
3 -
L]
4:.

i‘¢¢iﬁﬁ?iﬁﬁuﬁﬁﬁﬂﬁfﬁ*“f*t:

ERE T T TR S T A W et Lt

L]
LR EIE YIRS . . RN S
SN S N NN 2P IS P

B
J‘.&-AL-‘P




v,

LA

procedure STORE_INFO_IN_BLOCK (input: info, blk);
JRERERkkk Rk kR R kk Ak kR kR Rk ko khk gk kk kR kR Kk R hkkk ok

* This procedure is used to store the common *
* attribute value of a record and the record *
* itself into a block. *
* Tt is called only when the block has enough *
* cpace for that information, i.e., info. *
* Data structures and variables used in this *
* rprocedure are: *
* 1. info: *
* A character string which coantains the *
* common attribute value of a record and *
* the reccrd itself. *
* 2. blk: *
* A varialble of type REC_BLOCK which is *
* defined in hashing_module.def (see *
* Appendix G). *
* 3. i,3: *
* General purpose indexes. *
ERRRRRERRRRKRAKKRRRKRR AR Rk AR RERRTERRRERK KRR KKK KK/

i= 0;

j = klk.header.length+t;

repeat
blk.contents[ j] = infoli];

i=1i+1;
j= 3%

urtil i = STRING_IENGTH(info);
end procedure STORE_INFO_IN_BLCCK;

134

...................

.........

> e e

[ ]

« v e 7 ¥

st

v v v, v e e m

LN )



¥ A

procedure MODIFY_ENTRY_&_HEADER(input: Lkt, blk,
blk_addr;

output: bkt, blk);
JHREREEERE KA RR KR RRRKKRR KKK RERRKERKRERERRRERK KRR RRE K $X

Dol (- o o0 wu W S0 g 03

* This procedure is used to modify the bucket
entry of the input bkt and the header part
cf the input blk. It will then returan these
sodified bkt and blk back to the calling

rrocedure.

Data structures and variables used in this
Frocedure:
1. bkt:
A variakle of type Bucket_entry

(see Aprendix G).

blk:

A variable of type REC_BLOCK which

is Jdefined in hashing_module.def

(see Aprendix G).

blk_addr

A variakle of type addr_definition
which is the logical address of a block

[ SN SR TN T T K I I BT BT R K 2R IR B R S

and is defined in the commdata.def £file.
FREIRRRERRAKRABIR PR R KRR KRR KKK AR KRR R Kk kA )/

x*
*
%*
*
*
*
*
*
x
* which is defined in hashing_module. def
*
*
*
*
*
*
*
*
*
*

tlk.header.next_tlk_addr = bkt.block_address;
bkt.klock_address = blk_addr;
end procedure MODIFY_ENTRY_&_EEADER;

- i . - LI * .

R RAYAC




" " X ’ W . - - - e MR an =i dr i res s A ted b Ao Snet At A SR aasd anih skl T T T Y - —L
- - Ml 8 v
-~ Y

"\
)
.j-fl
w procedure BROADCAST_TARGET_INFO(input: HT);
;” P T e P P TP
. * 1This procedure is used to broadcast the records = o
- % of the target hashing table to the other * ¢
é * lackends. * . 3
A * This is the same procedure that is used to * :
- * broadcast the descriptor ids among backends. *
-3 * Data structures and variables used in this *
Eﬂ * frocedure are: * ]
L * 1. HT: * '
" * A variable of type hashing_table * N
- * vhich is defined in hashing_module.def . '
%S * (see Appendix G). * N
- * 2. i: * b
: * A general jpurpose index. * f
+ 3. MAX_BRT_#: * t
$§ * An integer which is used to represent the * t
", * maximum number of the bucket entries in a * T
Py * hashing tatle. * 5
> * 4. bkt: * \
N * A variable of type Bucket_entry which * 3
o * is defined in hashing_module.def (see *
e * Appendix G). * J
& * S. msg: *
j% * A character string vwhich is used to store *
;: * the message that is to be broadcasted to all * 3
- * of the Dbackends. * k
BRERRRKEE RRER R B AR RRRRRKE AR K RAR KRR AR EERSER KRS AARE R ) X
for i = 1 to MAX_EKT_# do E
) bkt = HT.bkt_entries{i?;
v if bkt.status <> empty )
A% then
{Z /% Put the bucket number into the message.*/ TN
i perform GET_REC_BLOCK (bkt.block_address,t1k) ; -
-~ t
% }
:% 136
.: :

-------------
.....................

e e TN e o L T T

"

N TP R A
“w .’p.g _.-_?, Ry ‘._,.‘ o »




T O o P P T W o T T X T W W e T YT IOV W TRY T -

N repeat
R /* Extract the conteants of the #*/
s _ /* blk.content and copy taem into msg.*/
o if the asg is full
"\ then [
b ‘ send msg to all of the backends;
reset the length of msg to 0;
end if;
DAY if blk.next_blk_address = blk.own_address .
. then '
/* This block is the last block for
this bucket. */
last = true; !
until last;

L end if;
?;: end for; 2
- send the msg to all of the other backends;
- end procedure BROADCAST_TARGET_INFO;

AACH
.

'
AN

«
y e

St

)
o~
'
-
3 -,

T 137

i




AT S S S At Bt T o G Ak s e g i e m - e e A e g —
e
.
o

" *
iy »

%
;
s
= APPEEDIX B .
S; THR NERGING PROCEDURE PROGRAM SPECIFICATIONS
o :
- procedure MERGE (input: source_request_id,
o logical-address_of_soﬁrcé_table,
:% logical_address_of_targjet_table) ;
o0 JEERERERERRRRER KR RRR AR R R RKAR R R Rk kR Kok fokk %k kokokok Rk Kok
53 E This procedure is used to perform the merging z
2 : operation over the source records and the target :
- ¥ records. *
;: : Notice that the input addresses are the logical :
;ﬁ : disk addresses of the two hashing tables. :
;» : Data structures: and variables used in this :
A?# : procedure are: :
}; : 1. logical_address_of_source_table, :
- : logical_address_of_target_table: :
: The 1logical disk addresses of the source :
: and the target hashing tables, both of the type: .
: address definition which is defined in the :
p : commdata. def file. :
o : 2. source_talle, target_table: :
fﬁ : Variables cf hashing_table data type (see :
j; : Appendix G) that represents the source-hashing :
R : table and the targjet-hashing table. *
&5 * 3. i: A general purpose index. :
f§ 2 4. max_bucket_number: *
}EI : The largest bucket number of a hashing taktle. *
A EREEERRRRRRKERERBIRERRRRRK AR RAERRRKR KR RKRKEKR KRS RRE X RN K
ﬂg /* Retrieve the two hashing tables by the input */
,gj /* logical addresses. */ ‘
'55 /% Ncte: Due to the limited memory space, we may */
T Ve not be able to bring in the entire table. */
-:J perform GET_HASH_TABLE(logical_address_of_source_table,
:J 138
o
%

RS S R e A TSRS L e L VPR e IR e IR " R LA L hce " SN,
o n.'.’ P , n'J;u’:J'fJ’n ...¢“ PE o FACKCES . ) L .-_ WL AL . S ‘ . A
PIE ,_ R L L Ll e 4 82 b of s s al o * A 3 L




mr.n P
N

o
Yy
«
"
)
R
x

A AT
LSRR AR R

i S ey TP

TR NS S v L Y

source_table) ;
perforn GET_HASH_TABLE (logical_address_of_target_takle,
target_table) ;
/% Reserve a result buffer. */
perform GET_BUFFEE(result_tuffer,source_request_id);
/* This routine will allocate an instance of a
result bauffer and put the request id into the
the header cf the buffer amnd initialize the
length of the buffer to 0.
This routine has already been coded in
the retp.c file. */
i=0;
while i € max_bucket_number do
if [ (source_takle.bucket_entry[i].status <> empty)
and
(targyet_talle,bucket_entry[ i].status <> empty) ]
then
/* There is a collision. */
/* Retrieve the reccrds from both blocks and
perform the mergying operation. */
X = source_table.bucket_entry[i ).logical_address;
Y = target_takle.bucket_entry[i ).logical_address;
perform merging_operation (X,¥,result_buffer);
/% This routine will perform the merging
operation and send the merged results
to tke contrcller. */
end if;
i=1i+1;
end while;
/* Signal PP upcn the completion of the source and */
/* target request. */
end procedure MERGE;

139

o Lo

-y

P Ao A PR

ARG

-~y

‘—c v ¢ - v
. o 0 .

© fﬂ*.; r

DAy f" o,

>y

v v

P

A-"'




v
-

1 %L

P,

-

: procedure MERGING_OPERATION
5 (input: logicl_address_source_block,

‘.

logicl_address_target_block,

s

result_tuffer;
output: result_buffer) ;
PAZ IR LI Ty T PR P T I P

[ g SR

* This procedure is used to perform the following
tasks:

DN
RAAARRA .2 =

1. Extract the records froa both of the source
block and the target block.

2. Compare the comaon attribute values
of the source and target records.

(A

If they are egual, then perform the merging
operation.

3. Put the merged results into a result buffer.
If the tuffer is full, then send the buffer
to the controller and reinitialize the
buffer length to 0 so that the buffer can

"“ Y Y Y

be reused.

-y v-u
.

Data structures and variables used in this

N

procedure are:

“. *

1. source_tklock, target_block:
Variables of the data type BKT_BLK which
are used to represent the blocks of the
source Lashing table or the target hashing
table.
BKT_BLK 1is defined in hashing_module.def
{see Apfpendix G).

P

AF I
3 -‘.‘

2

LI 4

2. source_dJdcne, target_done:

b

s
A
[

E]
ke
>
A .~
A
[~
W~

*
]
*
*
*
*
%
*
%
*
%
%
*

Othervise, return the logical alddress of the *
*
3
*
*
]
*
*
t
‘*
%
%
*

Boolean variables wkichk are used to indicate *

*
*
*
*
*
»
*
*
*
*
»
»
* the result buffer to the calling procedure.
%
*
*
*
*
»
»
*
*
*
%®

the comiletion of processing either source

140 .




* records or target records. *
* 3. i,j: General purpose indexes. %
ERREEIRERRR SR AR SRRERRB R AR AR KR EERERRRERERRRREERRRRR SRS/
/% Continue retrievingy the source blocks by the */
/* lcgical address, until there are no more blocks. */
repeat
source_block =
GET_BLOCK(logical_address_source_block) ;
/* Continue retrieving the target blocks by the */
/* logical address until there are no aore blocks.*/
regeat
target_block =
GET_BLOCK (logical_address_target_block);
i=0;
while source_tlock.bodyii] <> EOB do
/¥ Retrieve one common attribute_value and one %/
/* record from source block. */
source_value = GET_VALUE(source_block. body,i );
source_record = GET_RECORD (source_block. body,i) ;
Jd=20;
while target_block.bcdy[j] <> EOB do
/* Retrieve one common attribute_value and */
/* one record from the target block. */
target_value = GET_VALUE (target_block.body, j);
target_record =
GET_RECORD (target_block.body, j) ;
if source_value = target_value
then
/% Arpend target record at the end of */
/* source record and put the newly */
/% merged record into the result buffer.*/
result = APPEND(source_record,
target_record) ;
result_length = STRING_LENGTH(result);
perfcrs RBSPUT_SEND (result_buffer,

141

R e R T T b A
SRR T Yo AN AN D A XA’

Che SCLT

PO RS R, TK, Y v;. T S T T

&, -y




[_ - L s Sed Juu s o

P

N
LA

2

A e,

Lol FLN
R

o
%

AN

.
LY

. "I‘
.-

b .- e e ey
L RPN B e

O J' "f -f ‘ ..‘ " _-*.‘.i.- N, . L e

i Nl % 4 BN . R

Ty L R T g B S Wy Wy e oy T ST Loiar B B e o s el o4

result,
result_length);
else
/% Go to the next tarjet record. */
J = Jd+1;
end if;
end while; /* End the target-record loop. */
i=1I+1;

end while; /* End the source-record loop.*/

/* Are the target records done? */
if target_block.header.next_block_address =
target_blcck. header.this_block_address
then
target_dcne = true;
else
target_klock.header.next_block_address =
target_block. header.this_block_address;
end if;
until target_dcre;

/* Are the source records done? */
if source_block.header.next_block_address =
source_block.header.this_block_address
then
source_Jone = true;
else
source_blcck.header.next_block_address =
source_block.header.this_block_addiress;
end if;
until source_done;
end procedure MERGING_OPERATION;

. [T
- . .
- -




m- T T T T T T YO U O Oy T~ "o "= T r

2 :
- :
' ARPENDIX G |
5 TBE HASHING NOCULE DATA STRUCTURE DEPINITIONS o
- In this appendix we present the definitions of the data ]
A structures ased in the previous appendices. We refer to the e
% definitions as hashing_module. def. E
‘% 1. hash_tuffer: E
This is the buffer which stores the hashed informatica

e of recoris. .
? ----‘----—--T-------- ~=-> The request id of t
. Request_id )
. the hashed records. !
L T B "7l ~-> The current length "
- Length v
- of the Hashed_results. ¥
)3 Tl < array of character E
- HYashed_results . ;
N - string used for :
- B T T T storing the hashed .
;: : records. [
.; The format of tlte hashed_results is: ;
o {hashed_record_infc}+ EOReq EOB

. where 3
- hashed_record_info :: = bucket_number BOV {Rec}+ ?
2 Rec :: = {attribute_value_pair}+EORec E
Lﬁ attribute_value_pair :: = .
o attribute_name EON attribute_value EOV ?
.3 "+" means one Cr mOore occurence. N
Ej ECB : A special character which is used as a parker E
- for the end-of-buffer. {
“? ECY : A special character which is used as a marker k
.f ' for the end-of-value. K
; ECN : A special character which is used as a marker :
; for the end-of-attribute_naane. X
F( EORec: A special character which is used as a marker

"3
_, 143

5 )

2

N

B S B R S T e S St s b




for the end-of-record.
ECReq: A character, either 1 or O , which is
use to indicate the end of a request. N
1: end of a request.
0: not end of request, more buffers are coming.

2. REC_EICCK
Blocks used by buckets to store the records and tteir
cosacn attribute values.
A REC_PLOCK is conmposed of a header two fields,
and a contents.

T --> This part contairs the status

. header )

: of this block.

N --> This part contains the records
ccntents . .

S and their common attribute values.

g The format of the content of tke REC_BLOCK is:
- {Rec} +EOB

O The header contains two parts:

A --> An integer to indicate the total
- length . .

> length of the records in this

" ——————e e —— e block.

e --> The logical address of the next
o next_klk_addr R .

3 block oif the same bucket. (IZf

. this block is the first bleck of
the bucket, then a aull aildress

. will be put in here.)
i The type of this field is !
address_definition and is

x5 defined in the commdata.def file. .

o 144




ey T T ST VW T

v

‘_-{‘ .

-

Y

;Q 3. Bucket_entry:

Nt

= ~=> A character which is either 1 fecr
status

o e . not empty or a 0 for enpty .

ﬁf ~--> The logical address of the hlock

[-- tlock_address

r
R

of this bucket.

- - —

Hash_tabie: an array of 2048 bucket_entries.

145




)

M)
’

RN

R |
‘e " ‘l .r "
hY L )

)
Pt rAERAENEA
r‘__. ot oy
] R I

A M A
SPAPEINS & B

9.

10.

11.

LIST OF REFERENCES

Date . p Introduction To Database System Volume

3dlson ﬁesl Y"1982‘ 1o Data 212%ed Jo2URs
Lowenthal E. "The Backend Computer, Part I and
Part II Ugertacﬂ (Data Management) Serious, 24-01-04
and

Maryanski,

F. J "Backend Database System", Computing
Surveys, Vol. 1 8

i No. 1, pp.3-25, March 1980,

Naval Postgraduate School = Technical R
NPS52-83-006, Design an a
atabase YStEm  £0T
unct fiaﬁallf I?‘ ansion and

siao and ¥. J enon, June 1

Ul

Ohio State Universi
CISRC -TR-82-1
i-

ken rafabas@ s HBDSI
a ggE%_ neg%;n Sfr Eégié% -33"3 o

Hsiao, D, K. and Harar¥ F. A. "A Formal Syster for
rom files, Commupications of
the ACM, Vol. 13, No. 2, pp. 6 =73, PeBruary 970,

Naval Postgraduate School Technical Report
NPSSZ -85-002, Hgltl Backend Database System_ fo
Per ormance Galns afacity Growth apd BHardw

ngga e. by S. f. “Demurjian and others, eburar

Muldur, Desi
0 eratlons fag % ulti~b -K§H
Thesis, 4]
Callfornla, June 1984,

035-cIoncoTR-81511; A -Sureer’ of paraliel Soriipg
- - - urvey o aralle ortin
Algorithms, by L. k. H%lao anaxotﬁ'rs Decemnber™ 13313

The Ohio State University Technical Report
0SU-CISRC-TR-80-7, Parallel Recor g_§ortig§ Methods fo
Hargggre g.gllzgtl n, by D. K. HS13ao and M. J. HMeaon,
NP5e3-82-008,  The. Tapl Schg;ii ot R Ralti-packond
€2-82~ e mplemen or o a Multi-Backen
atabase sysfex DSy "Ea = The First Protctype
RR85458 FHE S8 (V3RS rofibietiag Eaferibnce o Fr RS

q'- ." L -'.* v
4-.-,"" DNy *"\""L"




LSt A S A S

He and the others, July 1982.

YOy X
PR

12. Johnson, S. C., "YACC: Yet Another Complier-Complier”,
UNIX, TIME-SHARING SYSTEM: OUNIX PROGRAMMER'S MANUAL,
Eell Telephoneé Laboratories, Incorporated, ®Array
Hill, N.J., 1982Z.
13. Naval Postgraduate School Technical = Report
NESS52-84-005, The Implementation of a Multi-Backend
Database Systed (aBDST:, .. Part IV S “ihe mevised
Ccncurrency Tontrol and Directory 4anageme €ment Processes
5 and the FKeviséd Definitions™ of IDter-process ~ and
. Inter-computer Messages Dby S. A. Demurjian and the
- others, February -

o~

e

RIS

_\\_‘—“

i e
oJaga a0

NNl -

et

2T 2
i)

147




4 INITIAL DISTRIBUTION LIST

No. Ccpies

1. Defense Technical Information Center 2
Cameron Station |
Alexandria, Virginia 22304-6145

2. Li}:tar¥, Code 0142 2
2 Naval ostgraguate_School
N Monterey, Califcrnia 939%43-5100

3. Chairman, Code 052 . 2
Lepartment of Ccmputer Science

Naval Postgraduaté_ School

Yonterey, California 93943-5100

. Curriculum Officer, Code 037 2
Computer Technology Progranm

Naval Postgraduaté’ School

Monterey, Califcrmia 93943-5100

Erofessor David K. Hsiao, ,Code 052 2
Lepartment of Ccrputer Science

Naval Postgradyate_ School

Monterey, Califcrnia 93943-5100

6. Steven A, Denur jian, Code 052 2
LCepartament of Ccupu{er Scilence
Naval Postgraduate_ School
Monterey, Califcrnia 93943-5100

7. Hsiang-lung Tung 2
8, .lafe 46, Ming-Chuan Road
chia-7i leyéhTalwan 600

Bepublic of ina

w
[ ]

Yty
SRS

(R

=

)_" ‘e« o, St
,/‘:‘r, i.'.'"‘"""“
¥, A L |

+7 s

148

N

£2




o

2o e AR e WA A 4P SRR

X

A

R T PR TAR NI R LR o bl od BTl P T

we

o )
>

e s = e = b e

10-85

-~ b

o




