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SUMMARY

The unsteady transonic small perturbation differential equation is converted into an
integro-differential equation by application of the classical Green's function method. It is
shown that no contribution from shock waves explicitly appears in this integral equation,
due to the shock capturing properties of the Green's function method. After assuming that
the motion consists of small infinitesimal perturbations around a thin nearly-planar body,
a simplified integral equation for the streamwise velocity component is obtained, which is
suitable for fast numerical computations.
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NOTATION

Definition

pressure coefficient

scaled pressure coefficient for M < 1

.. scaled pressure coefficient for M > 1 __

domain function

Green’s function

Heaviside step function
coefficients for subsonic case
coefficients for supersonic case

typical chord length

"free stream Mach number

unit normal in Prandtl-Glauert variables
unit normal in Eulerian variables
{(x—x1)2—et{(y—y1)2 + (z—z1)3 P
{(x—x1)2+ By —y1)2+(z—2)* ]}

{(X— X2 —(Y— Y12 ~(Z—-2Z,3}
projection of wing surface onto z = 0 plane
projection of wake surface onto z = 0 plane
equation defining wing, wake and shock surfaces
streamwise perturbation velocity (=o®/dx)
= o®p/ox

free stream velocity

Eulerian variables

Prandtl-Glauert variables

position of trailing edge

JMI

Ji=m?

ratio of specific heats

2—2—y)M?

thickness ratio, Dirac delta function
accustic time delay between two points

accustic time delay in Prandtl-Glauert variables

« = e ae




A | X=Xi1| —{(Y— Y1)} +(Z—2Z,)3}

P free stream density
z surface surrounding wing, wake and shock waves
. ] perturbation potential
o scaled perturbation potential
o ®p _ __._. solution for purely symmetrical flow . TR ST ST
X M1+ 7*)x $xx
¥ velocity potential
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1. INTRODUCTION _ U —

- S 1o . e - — e

The integral equation method in steady transonic flow problems was first used by Oswatitsch
[13]). Since then, the method has been extended and modified by Spreiter and Alksne [15],
Norstrud [11), Nixon [9] and Piers and Sloof [14). Nixon [8], [10] extended the integral equation
method to harmonically oscillating two-dimensional airfoils, by perturbing from the steady solu-
tion. A weakness of this formulation is its inability either to create or eliminate shock waves as
a result of the unsteady motion. In this paper we use a method initially developed by Morino {6),
[7] for purely subsonic and supersonic oscillatory flows. The method uses the classical Green’s
theorem approach to derive an integro-differential equation for the perturbation velocity potential
for unsteady flow about a general body. Recently the technique was adapted to unsteady tran-
sonic flow by Tseng and Morino [16).

In the following, the isentropic inviscid flow of a perfect gas, initially irrotational, is con-
sidered. Under this hypothesis, the existence of a velocity potential i, may be assumed such that
the fluid velocity v = (u, v, w) = . The most basic approximation of inviscid aerodynamics
is that of a small disturbance. Thus if U« is the free stream velocity (which is assumed to be
directed solely in the x-direction), the:: a perturbation potential ¢ can be defined such that

Hx, y, 2; ) = Unlx+¥(x, y, 2; 1)), )

where x, y, z represent a rectangular cartesian co-ordinate system and ¢ is the time variable.
Note that subsequent equations are expressed in non-dimensional co-ordinates based on a length
scale /, a typical value of the airfoil chord length, a velocity scale Uw, and a density scale pow,
a typical value of the density at infinity. The time variable is then scaled with //U» and the
pressure with po Uw®.

In terms of the dimensionless Eulerian co-ordinates x, y, z and t, the governing equation
for the perturbation velocity potential can be written as

o 0\2
V%—Mz(é;-i-a"—x) d=1x, ¢)

where M is the free stream Mach number and x includes all the nonlinear terms. For simplicity
the discussion will be restricted to the nonlinear term

X = M¥1+9*) ¢x éxx, (3a)
with
y* = 2—-(2—y)M?, (3b)

where y is the ratio of specific heats. The procedure used to derive the approximate equation
{(2) with x given by (3a)), when the flow is transonic, is based on the small parameter 3 repre-
senting the ratio of airfoil thickness to chord length. The main assumptions are that as 3 — 0,
the quantities (1 —M2)/(8), J/e(8), y/pu(8), z/(8) and t/u2(d) all remain fixed, whereas €(3),
#(8) = 0 (cf. with [1] and [2]). If terms smaller than eu? and €2 are neglected then x is given by
equation (34). Note that the coefficient of ¢x ¢xx in (3a) is usually written as M*(1 +y). The
modification in (3a) comes forward if the small perturbation equation is derived directly from
the conservation of mass equation (see [17]).

The effect of this modification is that the relations for a normal shock show better agree-
ment with those of full potential theory. It also leads to a better agreement of the critical pressure
coefficient with its exact isentropic value (i.e. when the steady local fluid speed equals the local
sonic speed) (see [3] and [4]).
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In the subsequent analysis a general theory of potential aerodynamic flow around thin
lifting bodies having arbitrary shape and motion is presented. In Section 2, for subsonic free
stream Mach numbers, the small perturbation differential equation (2), is converted into an
integro-differential equation for the velocity potential, by application of the classical Green's
theorem approach. It is also shown that no contribution from shocks explicitly appears in the
subsequent integral equation for ¢, due to the shock capturing nature of the method. In Section 3
and 4 the integral equation formulation is simplified by assuming that the motion consists of

~ sinall infihitésimal perturbations around a steady thin nearly-planar body. Eventually we obtain,”
a simplified integral equation for the streamwise perturbation velocity component, which is
suitable for fast numerical calculations. In the Appendix a similar integral equation is derived
for the case when the free stream Mach number is supersonic.

2. SOLUTION BY NONLINEAR GREEN’S FUNCTION METHOD

The method of solution for (2) is based upon the well-known Green’s function technique.
The Green’s function for the equation of potential is the solution of the problem

2

2 2
V2G—-M2 —4+ — = — — — —1
G—M (6t+ 5 ) G = 8x—x1, y—y1,z—2z3, t—11) (4a)

with
G =0 atinfinity, 4)

where 8 is the Dirac delta function. The solution of (42 and 4b) for the subsonic case (M < 1)
is given by (see Morino [7])

Glx—x1, 1—h) = — ey xl)8(11—1+ a), (5a)
where
re(x, x1) = {(x —x1)?+BH(y—y)%+(z— 21}, (5b)
p2=1—-M2 (5¢)
and
M
0= E;[r,(x, x1)—M(x—x1)). (5d)

The corresponding solution for the supersonic case (M > 1) is given in the Appendix.

Using the procedure developed in [7] in order to obtain a representation of the perturbation
potential in terms of its value and the values of its derivatives on the wing body, the wake and
the shock waves (if any) we find it convenient to define a domain function E such that

1 outside
Ex,y,2;t)=(3% onZ 6)
0 inside I,

where I is a surface which completely surrounds the wing, its wake and any shocks, and which
is defined by the equation

S(x,y,2;1)=0. @
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% i
«‘;: Following the general Green’s theorem method we now multiply the equation of :’;,7,{-1
Sy aerodynamic potential (equation (2)) by the Green’s function G and subtract equation (4a) “1" %
’ multiplied by ¢. After suitable manipulations we find that F
) {
b1 Vi (GV$—49:6)— -t ——¢ ey
AN e Y SR S,
Y ' N
= Gx—¢8(x—x1, y—y1, z—215 t—1), (8a) .
&
P with
?‘_’v . "
2 d 2 @ NG
¥ —_— == —t—, 8b X
dt at+ ox @) - %:
il *
2 In (8a) the arguments of ¢ and its derivatives are xi, y1, z1 and #1, while the arguments of G and LRy
o its derivatives are x—x1, y—yi1, z—21 and t—#1. If equation (84) is multiplied by the domain .; :
function E, and integrated over the whole four-dimensional space-time, it is found that the poten- N
K\ tial satisfies (see Morino [6], [7]), e
) T

;. i
0 dnE(x; 1)(x; t) = JJJIE"] X avixy) §§
i, ?,,; ;

‘ _j f Vis. Vig—m2e S BEE 1 rvax)

dn dn r,]VIS"I

‘l’;
%’ 1 ds @ $0
3
0 ViS. Vi — |- M2— Z(x
4 +f f [ S l(’ﬂ) dn ar(’ﬂ)]o w59 )
i Pz
& 24 St Ty
] ds (00 ¢ e
ol - .Vi0—M2— — )| === dZ9(xy). 9 Ll
R’ ’ s
’ )
's In equation (9) the superscripted 6 indicates evaluation at time 1 = ¢—0, where 0 is defined by -
§ (5d), thus £f indicates the surface defined by S® = S(x1, y1, z1; 1—0) = 0. Therefore Z* is a ::
‘,:" surface of the three-dimensional space (xi, y1, z1), which depends parametrically upon x, y, » 1\\. b
.:,: and 1. Note that the surface X is composed of three branches. The first, I, is the surface of i)
AL the body. The second is the surface Zw, of the wake. Note that this surface Zw is considered Lhe
'. twice, since £ is a closed surface. In other words, the two sides of the wake are considered to be . 7
:- independent surfaces having the same equation but opposite outwardly directed normals. The :;; o
] third one is the surface, Zs, of any shock waves, for which similar considerations are valid. BOSS:
3 In the subsequent analysis it is convenient to isolate the contribution of each of these surfaces. K
A\ If we now substitute for x in (9) with its approximate value (3a), we see that the volume o N
5 integral on the right of (9) can be integrated by parts in the x-direction. This integration by c“ :
3 ‘
Gy
N
WY




parts delivers integrals over the bounding surfaces of the volume. If we separate the contribution
of each of these surfaces it is found that (9) reduces to

Qo
M1+ o* 93 (1 1 o6
A ) = YY) f f f {20 e e e [ avesa
—

3 Cageds b MX1+y*), a5 1
J f [V1S.V1¢ M2 —h—eﬁxﬁ&—l] r,|V1s0|dza(x‘)

dn dny 2
B+ Zw)?
i ds & (1\ ¢°
+ NS V= )—m22 Z (Y] 2w
.[ .f [ ' l(’a) o axl( p)] |Vls"|d2 G)

Es+Iw)?

0 ds 0\ ¢°
_ g Y @ 9

o ff [Vls.Vla Mci—tl(l+ax1)] r—pIVh_S"Idz (x1)- (10)

Ce+IZIw)?

The contribution from shocks does not explicitly appear in (10), this is due to the shock boundary
conditions.

A$ =0, (11a)

_mA(«f»x +¢z)z—j+ A[(l —Mz)¢x— ”—'-z(i;l*-)cﬁxz—m«h]z{—‘

YR IR Co i

where A f represents the jump in f across the shock. The condition (11a) follows from the fact
that there can be no circulation around infinitesimal paths threading the shock front, while (115)
is found by integrating the conservation or divergence form of (2) (with x given by (3a)) across
a jump discontinuity. The lack of an integral over the surface Zg, does not necessarily signify
that shocks do not contribute to the potential . As shown by Tseng and Morino [16] the con-
tribution from shock waves is now effectively imbedded in or captured by the volume integral

in (10).

3. QUASI-STEADY APPROXIMATION

In practical applications it is convenient to introduce a restrictive assumption, which allows
a considerable simplification of equation (10). In particular the unsteady motion of the aircraft
can be assumed to consist of small infinitesimal perturbances around the steady state configura-
tion, so that, for the purpose of evaluating the integrals in (10), £ and S are assumed to be fixed.
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However, when the boundary conditions on the body are applied, the time dependence of the
surface position must be taken into consideration, in order to produce any unsteady motion.
It is also convenient to introduce the Prandtl-Galuert variables

X=x, Y=8y, 2Z=8z

and
—_—— . _;E e e = e e
T= (12q)
with
o= 0T, (125)

Substituting (122 and 12b) into (10) and applying the quasi-steady approximation, it is found
that the perturbation potential satisfies

EX)YX, T)
)
1 o 1 1 ® 2 .
= s“njff""x"{wéiﬁQx—x]|)“|X—x1| ox ot U }T. L
—
1 [ [o0 1
Zp+3Iw
ol ve (N—i)
Zp+Iw
i 0 | o 0}
“_"f f {est{ic )% 2720 (130
Xp+Zw
where
0 = I X-Xi|-M(X—X1), (13b)
IX—=X1| = {(X—X1)2+ (Y- Y1)2+(Z—2Z1)3}, (13¢)
and
0

Here & and N are the gradient operator and unit normal to the surface in Prandtl-Galuert space.
It should be noted that all the terms on the right hand side of (13a) have a physical interpretation
analogous to potential theory. The first integral on the right (of (13a), which originates from the

5
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nonlinearity on the right of (2), has the form of a distribution of streamwise directed doublets
of strength (U%X, T)/8= per unit volume. The second and third integrals represent distributions
of sources over the wing and the wake with strengths given by —1/4n0®/0N and QM®y+ U?[2)
(N . i)/4n per unit area. The last integral on the right of (13a) corresponds to a distribution of
doublets, directed normally to the wing and the wake, with strength ®(X, T')/4= per unit area.
Hence (13a) asserts that the disturbance outside the closed surfaces Zp and Zw, is the same
disturbance that would be produced by a fictitious distribution of sources and doublets. Also, .
- = - - it should benoted that & (see (135)) is equal to the time necessary for a disturbance to propogate
from X; to X at the speed of sound. In other words, © is equal to the usual acoustic time delay.

At this stage in the analysis we should note that the volume and surface integrals in (13a)
have singular contributions when X; equals X. In the preceding and subsequent analysis it is
assumed that these singular points are excluded from the integration region by suitable principal
value definitions. For the volume integral we define a principal value by surrounding the singu-
larity with a sphere of small radius and take the limit as the radius tends to zero. When X is on
either the body or the wake the: °he surface integrals are singular when X, equals X. In this
case we define the principal v-lue by surrounding the singularity with a circle of small radius
and take the limit as the radius tends to zero.

The integral equation for the perturbation potential can be further simplified by applying
the relevant boundary conditions on the body and the wake. Firstly we consider the kinematic
condition on a surface in an invisied fluid. This condition amounts to the statement that a fluid
particle initially in a surface, remains in that surface throughout the motion. If the surface is
defined by s(x; t) = O then the kinematic condition specifies that

D
E(S(X; t)) = St+sx+¢xSx+¢ySy+¢st =0

on

S(x; 1) =0, =14)

where D/Dt is the Eulerian derivative. Now consider 8®/0N, the normal derivative of ® in
Prandtl-Glauert variables. Using (12a and 125), &®/0N can be written as

i _ M MX(1+v*) 8¢ A
N =— B?(N DUXK, T+ X, 1)

B o™i =

where &¢/0n is the normal derivative of ¢ in Eulerian coordinates, and is known from (14) when
the surface § is specified.

In the wake the usual Kutta condition applies. The wake is a surface of discontinuity in ¢,
where the two sides of the wake are independent surfaces having the same equation. If the boun-
dary condition (14) is applied to both sides of the wake we have that

o

on R

Swix, 1) =0, (16)

w .
J'J'

e

5

G
I el st
o .

where A( ) now represents the value on the upper side minus the value on the lower side and
Sw specifies the wake surface. Equation (16) simply states that there is no jump in normal
velocity across the wake. Also from the Kutta condition we know that the flow leaves the trailing
edge smoothly. Consequently there can be no discontinuity in pressure at the trailing edge and
throughout the wake. When the flow is isentropic the appropriate approximate expression for
the pressure coefficient is

L

-

4

Cp= —2¢x+41). )
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1 g
¥ %
ﬁ »
:{- Thus across the wake we have that -
N (P
%3 e
i85 A2 +A@) =0 o
"y . on E
1 > .-\..'-
7o Swix, 1) =0 (18) )
vy ) " or in Prandtl-Glauert variables - N T e Eﬁ‘

\ M2
. —ZCAU = MAD :

2 g ! AN
B on ':.j}
o 1
o Sw(X, T) = 0. (19) 235

If we now apply (16) and (19) to (15) we find that across the wake,

o 1

7

1

N 20 {.‘:"
T A(—) = (N.i)MA®T R
' Ce 6N b: L
b7, %

a on
-_»;. Sw(X,T)=0. (20)

oo

-::-j Equation (13a) can now be simplified by substituting (15) and (20) into the second integral

W) on the right hand side (i.e. (15) is used over Zp and (20) over Zw). However, it is convenient

at this stage, due to the discontinuity in ¢, to assume that the wake can be represented by a vortex
sheet parallel to the X Y-plane. Thus the normal direction to the wake is parellal to the Z-axis

“u and terms involving N . i (in (13a)), one zero over the wake. Also, since the fluid is all moving at
- approximately the same stream speed, a vortex element at a general point X of the wake was
:; shed in the past at a moment determined by the time interval 82(X— X( Y))/M required for it to
rae reach X.

Hence at a general wake point X and time 7,

,,:tf Af(X, Y,Z,T)=Af(XHY), Y,Z, T—BUX— X(Y))/M), @n
& |

""x: where X1( ¥') specifies the position of the trailing edge and fin (21) represents @ and its derivatives.

5 Thus using (21) integrals over the wake can be evaluated once @ is known at the trailing edge.
xa Now using (15) and (20), in the second integral on the right of (13a), together with (21) on
:.:.-i the horizontal wake, we find, after a few minor manipulations, that the integro-differential
M equation for ¢ becomes
™)
e
E(X)®(X, T) = ®y(X, T)
£
: ‘~ o
: :: r © oU%).

1 ] 1 1 20 alz).

% — EXiRU2—~ o Vo o dv(X
"g +81rJ ff ( ‘){ ax,(|x—x1|) IX—X1l 91 an}m Ll
" J — 0
3o . :

1 N.i

f +— {—Mﬂc"p/ﬂ2 + Uz}; o —)dz(x,)

o 8"d !Tl = T-e'x_xll

; Zs

-




oy
1 of 1 ,
= {(ba—N(\X—Xll) XK él—v(lx—xu)}:h_Hdz(xl)
v
2B
z [ [ (a0x(r1), 11,0, T—T) A®KXx(¥y), ¥1,0,T—T)
o { XX + XK }dx,dn, (220)
Rw
where
M2(1+Y") ) VS|
)] e
061 = Jf S Al @)
Cp = —2U+B207/ M) = M2(1 +y*)Cp/B2 (220)
and
I' = @ +B2( X1 — X V1))/M. (224)

In (22a) @, represents the solution for the purely symmetrical problem of linearized flow past a
thin symmetrical wing at zero incidence. Once the shape of the body is specified ® is completely
determined by (22b) and (14). In the last integral of (22a) Rw represents the projection of the
wake surface Zw onto the X — Y plane, which is assumed to be the mean horizontal surface of
the wake. Also, we note here that T, see (22d), is the time necessary for a disturbance to be ad-
vected downstream from the trailing edge to the wake point X, at free stream speed, plus the
acoustic time delay between X; and the field point X.

In order to solve for the potential it is necessary, in general, to obtain a numerical approxi-
mation for (22a). We note that (224) determines the potential, at time T, on the body, the wake
and in the fluid from known values of ®, &1 and U at times less than 7. The evaluation of &
and U from ® involves the use of finite differences. When evaluating U, due care must be used to
ensure that the correct differencing scheme is used in regions where the flow is locally super-
sonic. It should be noted however, that, the necessity to find U by finite differencing can be
eliminated by differentiating (224) with respect to X (taking due care of the singularity in the
volume integral). Thus equation (22a) and the integro-differential equation for U can then be
used with time differencing, to step forward in time evaluating ® and U at all points of the flow.
However at this stage it is worthwhile making a further approximation which in effect assumes
that the wing is a thin nearly planar body.

4. THIN BODY APPROXIMATION

The determination of the original equation (2) (with (3a)) was based upon the smaliness
of the parameter 8 (which represents the ratio of airfoil thickness to chord length). Consequently,
it is consistent to assume that the wing is a thin nearly-planar body with normal direction parallel
to the Z-axis. Applying this approximation to the surface integrals in (22a), but not ®p, produces
a significant simplification. The third term on the right of (22a) becomes zero and the last two
integrals may be integrated by parts in the X-direction, to produce an integral over a vortex
sheet. Note that this is the same as analytically continuing the integrands through the surface
of the body onto a mean horizontal plane and then ignoring terms of second order in 8.
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Applying the thin body approximation to the surface integrals in (224) and subsequently
integrating by parts the last two integrals, we find that the integro-differential equation for ® can
be written as

EX)NX, T) = ®p(X, T)

a0
1 2 ( 1 1 2
— v - = e av(x
Tin JJE(XI){ aX |x—x1|) IX—Xi| 9X; 0T} }‘nﬂ_, o)
a0

r‘
Z dX\dY\ (X—x1)
= 1 AU(X1, Y1,0,T—0)+ (1 —M)ADN X1, Y1,0,7—
+4"J J.[(Y—Yl)uzz tXox (X 1 )+ (1 —M)A®H(X1, 11,0,T 9)}

R

dxydY, (X—Xx1) B
4’”(1 + M)ff[( Y— Yl)+Z'31_l + X —Xy U(X1( 1), ,0,T-T), 23)

where Rg represents the projection of X onto the X— Y plane and (19) has been used to eliminate
A®r on the wake. Note that the last two integrals in (23) represent lifting effects, and correspond
to a vortex distribution over the X— Y plane. It should also be noted that if the flow is steady,
then derivatives with respect to T are zero, AU is zero at the trailing edge and throughout the wake,
and (23) then reduces to the formula derived by Klunker [5].

The integral equation (23) for the reduced velocity potential contains derivatives of the re-
duced velocity potential under the integral signs and as such, is an integro-differential equation
for ®. Although it is quite conceivable to solve this equation by straight forward numerical
means it is convenient to derive an integral relationship for the streamwise velocity component U.
The relevant integral equation is found by differentiating (23) with respect to X, taking appro-
priate care of the dipole singularity in the volume integral at the pivotal point (X,Y,Z). The
form of the nonlinear singular integral equation for U depends upon the definition of the principal
value of the singular volume integral. Following Ogana [12] we define the principal value of
this integral by surrounding the singularity with a sphere of small radius and take the limit as
the radius tends to zero. It follows from (23) on differentiation with respect to X, that

EX)U(X,T) = EX)U¥X,T)/6+ Up(X,T)

7]
+slwffJE“I){U“xl,T—O)Kl(X,x1)+ VAKX T—O)KX.X)

— Q0

2
+ 8_7—'2U 2(xl,7'—-('9)1(3(",7(1)}4 V(X1)

Z AU(X1, N,0,T—0) AUNX1, 11,0, T G)

< d Y; 24a
+ 4"Jf{ L TOT0) AU T O sxiar, (24a)
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where
K(X,X1) = {(Y—1)2+(Z2—-Z1)* - 2(X - X1)%}/ I X —Xa |3, (245)
KX, X1) = 2M(X—X1)/IX—Xy1 3+ X —Xa| K,(X, X)), (24c)
Ky(X,X1) = —[MIX—Xa| —(X—X)P/IX—Xy3 (244)
and

0
Up(X,T) = a—X%(X,T)- (24e)

In (24a) Uy(X,T) is uniquely determined from (24e), (22b) and (14) once the shape and motion
of the body are specified. It is easily seen that equation (244) involves only U, Ur and Uypr. If
we specify that U is zero everywhere for T less than zero and start the body moving at T equals
zero, then using an appropriate numerical approximation, (24a) can be used to step forward
in time evaluating U at all points of the flow. Equation (23) can be used on the same way to
evaluate ® and @, while the pressure coefficient can be found from (22¢).

S. CONCLUSIONS

We have obtained an integro-differential equation for the streamwise velocity component
U, which asserts that the disturbance outside the wing and wake, is the same disturbance that
would be produced by a fictitious distribution of sources on the wing surface, a vortex sheet
on the Z = 0 plane and a volume distribution of streamwise directed doublets. It should be
noted that if the flow is steady, then derivatives with respect to time are zero and (24a) then
reduces to the formula given by Ogana [12].

Both (23) and (24a) are suitable for fast numerical computations. It has been stated that
these equations may be solved by a time-stepping routine which evaluates U or ® at a given point
of the flow from values obtained at earlier times. It should be noted that (23) and (24a) may
also be solved by assuming that the motion consists of a steady part plus a small harmonically
oscillating unsteady part. Thus time-independent integro-differential equations would be ob-
tained which can be solved by an iterative technique.
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APPENDIX

Integral Equation Formulstion for Supersonic Mach sumbers

When the free stream Mach number is supersonic (M > 1) then the Green’s function for
(4a and 4d) is (see Morino [7])

-1

G(X—x1, t—1) = 4"‘(—"—,‘—1){8(11 —1+60Y)+ 8 —1+ 6}, (25a)
where
ra(x,x1) = {(x—x1)2 —at{(y—y1)* + (z—21)*]}, (25%)
at = M2—| = —p2 (25¢)
and
0+ = g[M(x—xl) + ra(x,x1)]. (25d)

In (25a, 25b and 25d) it has been assumed that
Ix—x1| > «[(y—y1)2+(z—21)%)% (26)
If (26) is not satisfied then G(x —x,, t—11) = 0. '

An integral equation for the reduced velocity potential when the free stream Mach number is
supersonic, can be derived by following a similar procedure to that described in Section 2. That
is, multiply (8) by the domain function E (see (6)), substitute for G from (254) and integrate over
both space and time. The resulting integral equation is similar to (9) (or (10)) except that twice
as many terms appear on the right hand side due to the two time delay terms in (254). Note,
as in the subsonic case, the contribution from shock waves will not explicitly appear in the integral
equation formulation due to the shock capturing nature of the method.

Applying the quasi steady approximation as derived in Section 3, together with the relevant
boundary conditions (cf. with Section 3) and introducing the apposite Prandtl-Galuert variables
(for M > 1) (cf. with (12a and 12b)),

a2t
X=x, Y=ay, Z=az and T=—M- (27a)

with
® = M1 +y*)/a?, (27b)

we find that the perturbation potential satisfies (cf. with (22a, 22b and 22c) and (135, 13c and
13e)), :

s %
-~

0




Bl

'-

1
3,
]
¥
[/
L]
4

L
0
g

EXYMX,T) = ®'(X,T)+0p~(X,T)
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1 N REFAAME .
+s';f f f”"”{[wn). Uy ]axx( ) Rox, omV)
— a0

190- 8,
“RaG D }“’ V&)

8" J‘ jH(AXN i) tl_: [Cpe+ + 6,0—]+(U2)°++(U’)°“}dz(x 1)

i

1 . & (1\— (P2 —0r-) J
‘e J fﬁ(A){(dw +0e- )aN(R)———R— —(R)}dX(XI.),

Ip+Iw
where
M1+ [ [ Hay o
q’l’*(x’T) = —’WJ J‘RIV Sla_ (x - at) lvlsl dz(xl),
Zn

Cp = —2AU+20q/M) = M1 +y*)Cpla2,
0t = M(X—X1) 1R,
R={(X—X1)2—(Y—- ") —(Z-Z1)?},

5 (o of
aN’ — \ ox’or’ez)’
= | X—=X1| —{(Y— Y1)* +(Z—2Z1)%}}

and

fo: = f(X;,T—0%),

(28q)

(280)

(28¢c)

(284)

(28¢)

(281)

(28¢)

(28h)

Here as in Section 3, ¥ and N are the gradient operator and unit normal to the surface in Prandtl-

Glauert space and H is the Heaviside step function.

Following Section 4 it is consistent to assume that the wing is a thin nearly planar body
with normal direction parallel to the Z-axis. Subsequently we find that equation (284) reduces

to (cf. with (23))




EX)(X,T) = Op*(X,T) + ®p~(X,T)

Q0
1 " Lo (1 1 80+ @ ot
‘o f f f E(XI)H(M{I(U”)" +(Upe la—h(i) Fox 7Y
—o0

100~ 8
“RoX UM }JV(Xl)

dXxid Y1H(A) (X—X)) .
ff (Y— y1)2+zz] 1+ R ){AU(X1. Y1,0,7—-0%)

Rp+ Rw
+AU(X1, Y1,0,T—07)+(M + 1)AD( X1, Y1,0,T—0+) + (M —1)A®x( X3, Y1.0,T—9‘)}. (29)

where Rp and Rw represent the projection of g and Zw onto the X—Y plane, and, A ( )
represents the value on the upper side of body or wake minus the value on the lower side.

The appropriate integral relationship for the streamwise velocity component U,can now be
determined by differentiating (29) with respect to X, taking due care of the dipole singularity
in the volume integral at the pivotal point (X,Y,Z). It follows from (29) then, that (cf. with
(24a-24¢))

EX)UX,T) = EX)U¥X,T)/3+ Up*(X,T)+ Up~(X,T)

+ —8]; f f J-E(Xl)H(A){[(Uz)o»f +(U2)0—]R1(x,x,)+%_(uzp+ Ra*(X,X1)

— Q0

2 2 -~
+ ;7-,( Uzye-Ko-(X,X1)+ a_aj-i( U ’-)"*ka*( X, X))+ a—aﬁ( U ’)"‘Kf(X,Xx)}d V(Xy)

— @)+ — )
z J J U TOT 08U 1:0T-8)

R+ Rw

AU X1, Y1,0,T—-04)—~AUN X1, 11,0,T—©-
LBUr( no,T )R“ L2 ”}, (30a)




where

X
A

.‘.‘ LA™
SIS

R(X.X)) = ~ 2A2AX—X1)2+(Y— Y1)*+(Z—Z1)B/RS, (305)

7

£l

>
R P
5. i

oy

Rex(X,X1) = —2M(X—X1)/R3 + RRy(X, X)), (30c)

%

Rs*(X,X1) = —[MR+(X— X1)]*/R8 (304)

s
bk
WM

Bk

£
AR

and

RO -~
RGN
KR

42529
o

0
UpHX,T) = 550X, T) (30e)

F

K

As in equation (24a), (30a) involves only U, Uy and Urr. Then using an appropriate numerical
approximation, (30a) can be used, stepping forward in time, to evaluate U at all points of the flow. s

Equation (29) can be used in the same way to evaluate ® and ®r, while the pressure coefficient
can be found from (28¢).
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