

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

; ·

ARL-STRUC-R-416

AR-003-999

47

ŗ

and the section

DEPARTMENT OF DEFENCE DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION AERONAUTICAL RESEARCH LABORATORIES

MELBOURNE, VICTORIA

STRUCTURES REPORT 416

INTEGRAL EQUATION FORMULATION FOR THREE-DIMENSIONAL UNSTEADY TRANSONIC FLOW

by

J. A. GEAR

THE UNITED STATES NATIONAL TECHNICAL INFORMATION SERVICE IS AUTHORISED TO REPRODUCE AND SELL THIS REPORT

Approved for Public Release

FILE COPY

C COMMONWEALTH OF AUSTRALIA 1985

COPY No

FEBRUARY 1985

AR-003-999

DEPARTMENT OF DEFENCE DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION AERONAUTICAL RESEARCH LABORATORIES

6

STRUCTURES REPORT 416

INTEGRAL EQUATION FORMULATION FOR THREE-DIMENSIONAL UNSTEADY TRANSONIC FLOW

by

J. A. GEAR

SUMMARY

The unsteady transonic small perturbation differential equation is converted into an integro-differential equation by application of the classical Green's function method. It is shown that no contribution from shock waves explicitly appears in this integral equation, due to the shock capturing properties of the Green's function method. After assuming that the motion consists of small infinitesimal perturbations around a thin nearly-planar body, a simplified integral equation for the streamwise velocity component is obtained, which is suitable for fast numerical computations.

(C) COMMONWEALTH OF AUSTRALIA 1985

POSTAL ADDRESS: Director, Aeronautical Research Laboratories, Box 4331, P.O., Melbourne, Victoria, 3001, Australia

CONTENTS

Page No.

NOTATION

1. INTRODUCTION

1. INTRODUCTION

2. SOLUTION BY NONLINEAR GREEN'S FUNCTION METHOD

2

3. QUASI-STEADY APPROXIMATION

4. THIN BODY APPROXIMATION

5. CONCLUSIONS

10

APPENDIX

REFERENCES

DISTRIBUTION

DOCUMENT CONTROL DATA

NOTATION

L'ELECTE AL CONTRACT

2

Symbol	Definition		
Ср	pressure coefficient		
Ċ _P	scaled pressure coefficient for $M < 1$		
. ĈP	scaled pressure coefficient for $M > 1$		
E	domain function		
G	Green's function		
H	Heaviside step function		
K ₁ , K ₂ , K ₃	coefficients for subsonic case		
Ĩ 1, Ĩ 2±, Ĩ 3±	coefficients for supersonic case		
1	typical chord length		
М	free stream Mach number		
Ñ	unit normal in Prandtl-Glauert variables		
ñ	unit normal in Eulerian variables		
ra	${(x-x_1)^2-\alpha^2[(y-y_1)^2+(z-z_1)^2]}^{i}$		
r _ß	${(x-x_1)^2+\beta^2[(y-y_1)^2+(z-z_1)^2]}^{i}$		
R	${(X-X_1)^2-(Y-Y_1)^2-(Z-Z_1)^2}^{i}$		
R _B	projection of wing surface onto $z = 0$ plane		
Rw	projection of wake surface onto $z = 0$ plane		
S	equation defining wing, wake and shock surfaces		
U	streamwise perturbation velocity $(=\partial \Phi/\partial x)$		
UP	$=\partial\Phi_{\mathbf{P}}/\partial x$		
U_{∞}	free stream velocity		
x, y, z, t	Eulerian variables		
X, Y, Z, T	Prandtl-Glauert variables		
X _T	position of trailing edge		
α	$\sqrt{M^2-1}$		
β	$\sqrt{1-M^2}$		
γ	ratio of specific heats		
γ*	$2 - (2 - \gamma)M^2$		
δ	thickness ratio, Dirac delta function		
θ	accustic time delay between two points		
Θ	accustic time delay in Prandtl-Glauert variables		

Λ	$ X-X_1 - \{(Y-Y_1)^2 + (Z-Z_1)^2\}^{\frac{1}{2}}$		
Pao	free stream density		
Σ	surface surrounding wing, wake and shock waves		
ø	perturbation potential		
Φ	scaled perturbation potential		
Φ	solution for purely symmetrical flow		
x	$M^2(1+\gamma^*)\phi_x\phi_{xx}$		
\$	velocity potential		

1. INTRODUCTION

ŝ

The integral equation method in steady transonic flow problems was first used by Oswatitsch [13]. Since then, the method has been extended and modified by Spreiter and Alksne [15], Norstrud [11], Nixon [9] and Piers and Sloof [14]. Nixon [8], [10] extended the integral equation method to harmonically oscillating two-dimensional airfoils, by perturbing from the steady solution. A weakness of this formulation is its inability either to create or eliminate shock waves as a result of the unsteady motion. In this paper we use a method initially developed by Morino [6], [7] for purely subsonic and supersonic oscillatory flows. The method uses the classical Green's theorem approach to derive an integro-differential equation for the perturbation velocity potential for unsteady flow about a general body. Recently the technique was adapted to unsteady transonic flow by Tseng and Morino [16].

In the following, the isentropic inviscid flow of a perfect gas, initially irrotational, is considered. Under this hypothesis, the existence of a velocity potential ψ , may be assumed such that the fluid velocity $\mathbf{v} = (u, v, w) = \mathbf{v}\psi$. The most basic approximation of inviscid aerodynamics is that of a small disturbance. Thus if U_{∞} is the free stream velocity (which is assumed to be directed solely in the x-direction), then a perturbation potential ϕ can be defined such that

$$\psi(x, y, z; t) = U_{\infty}[x + \phi(x, y, z; t)], \qquad (1)$$

where x, y, z represent a rectangular cartesian co-ordinate system and t is the time variable. Note that subsequent equations are expressed in non-dimensional co-ordinates based on a length scale l, a typical value of the airfoil chord length, a velocity scale U_{∞} , and a density scale ρ_{∞} , a typical value of the density at infinity. The time variable is then scaled with l/U_{∞} and the pressure with $\rho_{\infty} U_{\infty}^2$.

In terms of the dimensionless Eulerian co-ordinates x, y, z and t, the governing equation for the perturbation velocity potential can be written as

$$\nabla^2 \phi - M^2 \left(\frac{\partial}{\partial t} + \frac{\partial}{\partial x} \right)^2 \phi = \chi , \qquad (2)$$

where M is the free stream Mach number and χ includes all the nonlinear terms. For simplicity the discussion will be restricted to the nonlinear term

$$\chi = M^2(1+\gamma^*) \phi_{\rm x} \phi_{\rm xx}, \qquad (3a)$$

with

$$\gamma^* = 2 - (2 - \gamma)M^2, \tag{3b}$$

where γ is the ratio of specific heats. The procedure used to derive the approximate equation [(2) with χ given by (3a)], when the flow is transonic, is based on the small parameter δ representing the ratio of airfoil thickness to chord length. The main assumptions are that as $\delta \to 0$, the quantities $(1 - M^2)/\epsilon(\delta)$, $\phi/\epsilon(\delta)$, $y/\mu(\delta)$, $z/\mu(\delta)$ and $t/\mu^2(\delta)$ all remain fixed, whereas $\epsilon(\delta)$, $\mu(\delta) \to 0$ (cf. with [1] and [2]). If terms smaller than $\epsilon \mu^4$ and ϵ^2 are neglected then χ is given by equation (3a). Note that the coefficient of $\phi_x \phi_{xx}$ in (3a) is usually written as $M^2(1 + \gamma)$. The modification in (3a) comes forward if the small perturbation equation is derived directly from the conservation of mass equation (see [17]).

The effect of this modification is that the relations for a normal shock show better agreement with those of full potential theory. It also leads to a better agreement of the critical pressure coefficient with its exact isentropic value (i.e. when the steady local fluid speed equals the local sonic speed) (see [3] and [4]). In the subsequent analysis a general theory of potential aerodynamic flow around thin lifting bodies having arbitrary shape and motion is presented. In Section 2, for subsonic free stream Mach numbers, the small perturbation differential equation (2), is converted into an integro-differential equation for the velocity potential, by application of the classical Green's theorem approach. It is also shown that no contribution from shocks explicitly appears in the subsequent integral equation for ϕ , due to the shock capturing nature of the method. In Section 3 and 4 the integral equation for mulation is simplified by assuming that the motion consists of small infinitesimal perturbations around a steady thin nearly-planar body. Eventually we obtain, a simplified integral equation for the streamwise perturbation velocity component, which is suitable for fast numerical calculations. In the Appendix a similar integral equation is derived for the case when the free stream Mach number is supersonic.

2. SOLUTION BY NONLINEAR GREEN'S FUNCTION METHOD

The method of solution for (2) is based upon the well-known Green's function technique. The Green's function for the equation of potential is the solution of the problem

$$\nabla^2 G - M^2 \left(\frac{\partial}{\partial t} + \frac{\partial}{\partial x}\right)^2 G = \delta(x - x_1, y - y_1, z - z_1, t - t_1)$$
(4a)

with

$$G = 0$$
 at infinity, (4b)

where δ is the Dirac delta function. The solution of (4a and 4b) for the subsonic case (M < 1) is given by (see Morino [7])

$$G(\mathbf{x}-\mathbf{x}_{1}, t-t_{1}) = -\frac{1}{4\pi r_{\beta}(\mathbf{x}, \mathbf{x}_{1})}\delta(t_{1}-t+\theta),$$
(5a)

where

$$r_{\beta}(\mathbf{x}, \mathbf{x}_{1}) = \{(x - x_{1})^{2} + \beta^{2}[(y - y_{1})^{2} + (z - z_{1})^{2}]\}^{4},$$
(5b)

$$\beta^2 = 1 - M^2 \tag{5c}$$

and

$$\theta = \frac{M}{\beta^2} [r_{\beta}(\mathbf{x}, \mathbf{x}_1) - M(x - x_1)].$$
(5d)

The corresponding solution for the supersonic case (M > 1) is given in the Appendix.

Using the procedure developed in [7] in order to obtain a representation of the perturbation potential in terms of its value and the values of its derivatives on the wing body, the wake and the shock waves (if any) we find it convenient to define a domain function E such that

$$E(x, y, z; t) = \begin{cases} 1 & \text{outside } \Sigma \\ \frac{1}{2} & \text{on } \Sigma \\ 0 & \text{inside } \Sigma, \end{cases}$$
(6)

where Σ is a surface which completely surrounds the wing, its wake and any shocks, and which is defined by the equation

$$S(x, y, z; t) = 0.$$
 (7)

Following the general Green's theorem method we now multiply the equation of aerodynamic potential (equation (2)) by the Green's function G and subtract equation (4a) multiplied by ϕ . After suitable manipulations we find that

$$\nabla_1 \cdot (G\nabla_1 \phi - \phi \nabla_1 G) - M^2 \frac{d}{dt_1} \left(G \frac{d\phi}{dt_1} - \phi \frac{dG}{dt_1} \right) = G_{\chi} - \phi \delta(x - x_1, y - y_1, z - z_1; t - t_1), \quad (8a)$$

with

$$\frac{d}{dt} = \frac{\partial}{\partial t} + \frac{\partial}{\partial x}.$$
(8b)

In (8a) the arguments of ϕ and its derivatives are x_1 , y_1 , z_1 and t_1 , while the arguments of G and its derivatives are $x-x_1$, $y-y_1$, $z-z_1$ and $t-t_1$. If equation (8a) is multiplied by the domain function E, and integrated over the whole four-dimensional space-time, it is found that the potential satisfies (see Morino [6], [7]),

$$\begin{aligned} h\pi E(\mathbf{x};t)\phi(\mathbf{x};t) &= -\iint_{-\infty}^{\infty} \int \frac{[E_X]^{\theta}}{r_{\theta}} d\mathbf{V}(\mathbf{x}_1) \\ &- \iint_{\Sigma^{\theta}} \left[\nabla_1 S \cdot \nabla_1 \phi - M^2 \frac{ds}{dt_1} \frac{d\phi}{dt_1} \right]^{\theta} \frac{1}{r_{\theta} |\nabla_1 S^{\theta}|} d\Sigma^{\theta}(\mathbf{x}_1) \\ &+ \iint_{\Sigma^{\theta}} \left[\nabla_1 S \cdot \nabla_1 \left(\frac{1}{r_{\theta}} \right) - M^2 \frac{dS}{dt_1} \frac{\partial}{\partial x_1} \left(\frac{1}{r_{\theta}} \right) \right]^{\theta} \frac{\phi^{\theta}}{|\nabla_1 S^{\theta}|} d\Sigma^{\theta}(\mathbf{x}_1) \\ &- \frac{\partial}{\partial t} \iint_{\Sigma^{\theta}} \left[\nabla_1 S \cdot \nabla_1 \theta - M^2 \frac{ds}{dt_1} \left(1 + \frac{\partial \theta}{\partial x_1} \right) \right]^{\theta} \frac{\phi^{\theta}}{r_{\theta} |\nabla_1 S^{\theta}|} d\Sigma^{\theta}(\mathbf{x}_1). \end{aligned}$$
(9)

In equation (9) the superscripted θ indicates evaluation at time $t_1 = t - \theta$, where θ is defined by (5d), thus Σ^{θ} indicates the surface defined by $S^{\theta} = S(x_1, y_1, z_1; t - \theta) = 0$. Therefore Σ^{θ} is a surface of the three-dimensional space (x_1, y_1, z_1) , which depends parametrically upon x, y, γ and t. Note that the surface Σ is composed of three branches. The first, Σ_B , is the surface of the body. The second is the surface Σ_W , of the wake. Note that this surface Σ_W is considered twice, since Σ is a closed surface. In other words, the two sides of the wake are considered to be independent surfaces having the same equation but opposite outwardly directed normals. The third one is the surface, Σ_S , of any shock waves, for which similar considerations are valid. In the subsequent analysis it is convenient to isolate the contribution of each of these surfaces.

If we now substitute for χ in (9) with its approximate value (3*a*), we see that the volume integral on the right of (9) can be integrated by parts in the x-direction. This integration by

parts delivers integrals over the bounding surfaces of the volume. If we separate the contribution of each of these surfaces it is found that (9) reduces to

$$4\pi \underline{E}(\mathbf{x};t)\phi(\mathbf{x};t) = \frac{M^{2}(1+\gamma^{*})}{2} \int \int \int \left\{ \left[E\phi_{\mathbf{x}1^{2}} \right]^{\theta} \frac{\partial}{\partial x_{1}} \left(\frac{1}{r_{\theta}} \right) - \frac{1}{r_{\theta}} \frac{\partial\theta}{\partial x_{1}} \frac{\partial}{\partial t} \left[E\phi_{\mathbf{x}1^{2}} \right]^{\theta} \right\} dV(\mathbf{x}_{1}) - \frac{1}{r_{\theta}} \int \frac{\partial\theta}{\partial x_{1}} \frac{\partial}{\partial t} \left[E\phi_{\mathbf{x}1^{2}} \right]^{\theta} \frac{\partial}{\partial \frac{\partial}{\partial t} \left[E\phi_{\mathbf{x}1^{2}} \right]^{\theta}$$

The contribution from shocks does not explicitly appear in (10), this is due to the shock boundary conditions.

$$\Delta \phi = 0, \tag{11a}$$

$$-M^{2}\Delta\left(\phi_{x}+\phi_{t}\right)\frac{\partial s}{\partial t}+\Delta\left[\left(1-M^{2}\right)\phi_{x}-\frac{M^{2}(1+\gamma^{*})}{2}\phi_{x}^{2}-M^{2}\phi_{t}\right]\frac{\partial s}{\partial x}$$
$$+\Delta\left(\phi_{y}\right)\frac{\partial s}{\partial y}+\Delta\left(\phi_{z}\right)\frac{\partial s}{\partial z}=0,$$
(11b)

where Δf represents the jump in f across the shock. The condition (11*a*) follows from the fact that there can be no circulation around infinitesimal paths threading the shock front, while (11*b*) is found by integrating the conservation or divergence form of (2) (with χ given by (3*a*)) across a jump discontinuity. The lack of an integral over the surface Σ_s , does not necessarily signify that shocks do not contribute to the potential ϕ . As shown by Tseng and Morino [16] the contribution from shock waves is now effectively imbedded in or captured by the volume integral in (10).

3. QUASI-STEADY APPROXIMATION

In practical applications it is convenient to introduce a restrictive assumption, which allows a considerable simplification of equation (10). In particular the unsteady motion of the aircraft can be assumed to consist of small infinitesimal perturbances around the steady state configuration, so that, for the purpose of evaluating the integrals in (10), Σ and S are assumed to be fixed.

However, when the boundary conditions on the body are applied, the time dependence of the surface position must be taken into consideration, in order to produce any unsteady motion. It is also convenient to introduce the Prandtl-Galuert variables

$$X = x, \quad Y = \beta y, \quad Z = \beta z$$

and

$$T = \frac{\beta^2}{M}t \tag{12a}$$

with

$$\Phi = \frac{M^2(1+\gamma^*)}{\beta^2}\phi.$$
 (12b)

Substituting (12a and 12b) into (10) and applying the quasi-steady approximation, it is found that the perturbation potential satisfies

$E(\mathbf{X})\Phi(\mathbf{X}, T)$

$$= \frac{1}{8\pi} \int \int \int E(\mathbf{X}_{1}) \left\{ U^{2} \frac{\partial}{\partial X_{1}} \left(\frac{1}{|\mathbf{X} - \mathbf{X}_{1}|} \right) - \frac{1}{|\mathbf{X} - \mathbf{X}_{1}|} \frac{\partial \Theta}{\partial X_{1}} \frac{\partial}{\partial T_{1}} U^{2} \right\} \Big|_{\mathbf{T}_{1} = \mathbf{T} - \Theta} dV(\mathbf{X}_{1})$$

$$- \frac{1}{4\pi} \int \int \frac{\partial \Phi}{\partial N} (\mathbf{X}_{1}, T - \Theta) \frac{1}{|\mathbf{X} - \mathbf{X}_{1}|} d\Sigma(\mathbf{X}_{1})$$

$$\Sigma_{\mathbf{B}} + \Sigma_{\mathbf{W}}$$

$$+ \frac{1}{4\pi} \int \int \left\{ 2M\Phi_{\mathbf{T}} + \frac{U^{2}}{2} \right\} \Big|_{\mathbf{T}_{1} = \mathbf{T} - \Theta} \frac{(\mathbf{\tilde{N}} - \mathbf{i})}{|\mathbf{X} - \mathbf{X}_{1}|} d\Sigma(\mathbf{X}_{1})$$

$$+ \frac{1}{4\pi} \int \int \left\{ \Phi \frac{\partial}{\partial N} \left(\frac{1}{|\mathbf{X} - \mathbf{X}_{1}|} \right) - \frac{\Phi_{\mathbf{T}}}{|\mathbf{X} - \mathbf{X}_{1}|} \frac{\partial \Theta}{\partial N} \right\} \Big|_{\mathbf{T}_{1} = \mathbf{T} - \Theta} d\Sigma(\mathbf{X}_{1})$$

where

 $\Theta = |\mathbf{X} - \mathbf{X}_1| - M(\mathbf{X} - \mathbf{X}_1), \tag{13b}$

(13a)

$$|\mathbf{X} - \mathbf{X}_1| = \{ (X - X_1)^2 + (Y - Y_1)^2 + (Z - Z_1)^2 \}^i,$$
(13c)

$$U = \Phi_{\rm x} \tag{13d}$$

and

$$\frac{\partial}{\partial N}f = \vec{\nabla}f. \ \mathbf{\tilde{N}}.$$

 $\Sigma_{\rm B} + \Sigma_{\rm W}$

Here $\tilde{\Delta}$ and \tilde{N} are the gradient operator and unit normal to the surface in Prandtl-Galuert space. It should be noted that all the terms on the right hand side of (13*a*) have a physical interpretation analogous to potential theory. The first integral on the right (of (13*a*), which originates from the nonlinearity on the right of (2), has the form of a distribution of streamwise directed doublets of strength $(U^2(\mathbf{X}, T)/8\pi)$ per unit volume. The second and third integrals represent distributions of sources over the wing and the wake with strengths given by $-1/4\pi\partial\Phi/\partial N$ and $(2M\Phi_T + U^2/2)$ $(\mathbf{N} \cdot \mathbf{i})/4\pi$ per unit area. The last integral on the right of (13*a*) corresponds to a distribution of doublets, directed normally to the wing and the wake, with strength $\Phi(\mathbf{X}, T)/4\pi$ per unit area. Hence (13*a*) asserts that the disturbance outside the closed surfaces Σ_B and Σ_W , is the same disturbance that would be produced by a fictitious distribution of sources and doublets. Also, it should be noted that Θ (see (13*b*)) is equal to the time necessary for a disturbance to propogate from \mathbf{X}_1 to \mathbf{X} at the speed of sound. In other words, Θ is equal to the usual acoustic time delay.

At this stage in the analysis we should note that the volume and surface integrals in (13a) have singular contributions when X_1 equals X. In the preceding and subsequent analysis it is assumed that these singular points are excluded from the integration region by suitable principal value definitions. For the volume integral we define a principal value by surrounding the singularity with a sphere of small radius and take the limit as the radius tends to zero. When X is on either the body or the wake the the the surface integrals are singular when X_1 equals X. In this case we define the principal value by surrounding the singularity with a circle of small radius and take the limit as the radius tends to zero.

The integral equation for the perturbation potential can be further simplified by applying the relevant boundary conditions on the body and the wake. Firstly we consider the kinematic condition on a surface in an invisied fluid. This condition amounts to the statement that a fluid particle initially in a surface, remains in that surface throughout the motion. If the surface is defined by $s(\mathbf{x}; t) = 0$ then the kinematic condition specifies that

$$\frac{D}{Dt}(S(\mathbf{x}; t)) = S_t + S_x + \phi_x S_x + \phi_y S_y + \phi_z S_z = 0$$

on

でいたから

$$S(\mathbf{x}; t) = 0, \tag{14}$$

where D/Dt is the Eulerian derivative. Now consider $\partial \Phi/\partial N$, the normal derivative of Φ in Prandtl-Glauert variables. Using (12a and 12b), $\partial \Phi/\partial N$ can be written as

$$\frac{\partial \Phi}{\partial N}(\mathbf{X}, T) = -\frac{M^2}{\beta^2} (\tilde{\mathbf{N}} \cdot \mathbf{i}) U(\mathbf{X}, T) + \frac{M^2(1+\gamma^*)}{\beta^4} \frac{\partial \phi}{\partial n} (\mathbf{x}, t) \frac{|\nabla S|}{|\tilde{\nabla}S|}$$
(15)

where $\partial \phi / \partial n$ is the normal derivative of ϕ in Eulerian coordinates, and is known from (14) when the surface S is specified.

In the wake the usual Kutta condition applies. The wake is a surface of discontinuity in ϕ , where the two sides of the wake are independent surfaces having the same equation. If the boundary condition (14) is applied to both sides of the wake we have that

$$\Delta\left(\frac{\partial\phi}{\partial n}\right)=0$$

on

 $S_{\mathbf{W}}(\mathbf{x},t) = \mathbf{0},\tag{16}$

where $\Delta(\)$ now represents the value on the upper side minus the value on the lower side and S_W specifies the wake surface. Equation (16) simply states that there is no jump in normal velocity across the wake. Also from the Kutta condition we know that the flow leaves the trailing edge smoothly. Consequently there can be no discontinuity in pressure at the trailing edge and throughout the wake. When the flow is isentropic the appropriate approximate expression for the pressure coefficient is

$$C_{\rm P} = -2(\phi_{\rm x} + \phi_{\rm t}). \tag{17}$$

Thus across the wake we have that

$$\Delta(\phi_{\mathbf{x}}) + \Delta(\phi_{\mathbf{t}}) = 0$$

on

on

$$S_{\mathbf{W}}(\mathbf{x},t) = 0 \tag{18}$$

or in Prandtl-Glauert variables

$$-\frac{M^2}{\beta^3}\Delta U = M\Delta\Phi_{\rm T}$$

$$S_{\rm W}({\rm X},T) = 0.$$
(19)

If we now apply (16) and (19) to (15) we find that across the wake,

 $\Delta \left(\frac{\partial \Phi}{\partial N} \right) = (\mathbf{\tilde{N}} \cdot \mathbf{i}) M \Delta \Phi_{\mathbf{T}}$

on

$$S_{W}(X, T) = 0.$$
 (20)

Equation (13a) can now be simplified by substituting (15) and (20) into the second integral on the right hand side (i.e. (15) is used over Σ_B and (20) over Σ_W). However, it is convenient at this stage, due to the discontinuity in ϕ , to assume that the wake can be represented by a vortex sheet parallel to the XY-plane. Thus the normal direction to the wake is parellal to the Z-axis and terms involving $\tilde{N} \cdot i$ (in (13a)), one zero over the wake. Also, since the fluid is all moving at approximately the same stream speed, a vortex element at a general point X of the wake was shed in the past at a moment determined by the time interval $\beta^2(X - X_T(Y))/M$ required for it to reach X.

Hence at a general wake point X and time T.

$$\Delta f(X, Y, Z, T) = \Delta f(X_{\rm T}(Y), Y, Z, T - \beta^2 (X - X_{\rm T}(Y))/M), \tag{21}$$

where $X_{T}(Y)$ specifies the position of the trailing edge and f in (21) represents Φ and its derivatives. Thus using (21) integrals over the wake can be evaluated once Φ is known at the trailing edge.

Now using (15) and (20), in the second integral on the right of (13*a*), together with (21) on the horizontal wake, we find, after a few minor manipulations, that the integro-differential equation for Φ becomes

$$E(\mathbf{X})\Phi(\mathbf{X},T) = \Phi_{\mathbf{p}}(\mathbf{X},T)$$

$$+\frac{1}{8\pi} \int \int \int \sum_{-\infty}^{\infty} E(\mathbf{X}_{1}) \left\{ U^{2} \frac{\partial}{\partial X_{1}} \left(\frac{1}{|\mathbf{X} - \mathbf{X}_{1}|} \right) - \frac{1}{|\mathbf{X} - \mathbf{X}_{1}|} \frac{\partial \Theta}{\partial X_{1}} \frac{\partial U^{2}}{\partial T_{1}} \right\}_{|\mathbf{T}_{1} = \mathbf{T} - \Theta} dV(\mathbf{X}_{1})$$

$$+ \frac{1}{8\pi} \int \int \sum_{\mathbf{X}_{\mathbf{B}}} \left\{ -M^{2} \hat{C} \rho / \beta^{2} + U^{2} \right\}_{|\mathbf{T}_{1} = \mathbf{T} - \Theta} \frac{(\hat{\mathbf{N}} \cdot \mathbf{i})}{|\mathbf{X} - \mathbf{X}_{1}|} d\Sigma(\mathbf{X}_{1})$$

$$+\frac{1}{4\pi} \int_{\Sigma_{B}} \left\{ \Phi \frac{\partial}{\partial N} \left(\frac{1}{|\mathbf{X} - \mathbf{X}_{1}|} \right) - \frac{\Phi_{T}}{|\mathbf{X} - \mathbf{X}_{1}|} \frac{\partial}{\partial N} (|\mathbf{X} - \mathbf{X}_{1}|) \right\}_{|\mathbf{T}_{1} - \mathbf{T} - \mathbf{0}}^{|\mathbf{T} - \mathbf{T} - \mathbf{0}} d\Sigma(\mathbf{X}_{1})$$

$$+ \frac{Z}{4\pi} \int_{R_{W}} \left\{ \frac{\Delta \Phi(X_{T}(Y_{1}), Y_{1}, 0, T - \Gamma)}{|\mathbf{X} - \mathbf{X}_{1}|^{3}} + \frac{\Delta \Phi_{T}(X_{T}(Y_{1}), Y_{1}, 0, T - \Gamma)}{|\mathbf{X} - \mathbf{X}_{1}|^{2}} \right\} dX, dY_{1}, \qquad (22a)$$

where

Same and the

のないというので、「ないないない」というで

and I see that the second beauties and the second second

$$\Phi_{\mathbf{p}}(\mathbf{X},T) = -\frac{M^{2}(1+\gamma^{*})}{4\pi\beta^{4}} \int \int \frac{\partial\phi}{\partial n} (\mathbf{x}_{1},t-\theta) \frac{|\nabla_{1}S|}{|\mathbf{X}-\mathbf{X}_{1}|} \frac{|\nabla_{1}S|}{|\nabla_{1}S|} d\Sigma(\mathbf{X}_{1})$$
(22b)

$$\bar{C}_{p} = -2(U + \beta^{2} \Phi_{T}/M) = M^{2}(1 + \gamma^{*})C_{p}/\beta^{2}$$
(22c)

and

 $\Gamma = \Theta + \beta^2 (X_1 - X_T(Y_1)) / M. \tag{22d}$

In (22a) Φ_p represents the solution for the purely symmetrical problem of linearized flow past a thin symmetrical wing at zero incidence. Once the shape of the body is specified Φ_p is completely determined by (22b) and (14). In the last integral of (22a) R_W represents the projection of the wake surface Σ_W onto the X - Y plane, which is assumed to be the mean horizontal surface of the wake. Also, we note here that Γ , see (22d), is the time necessary for a disturbance to be advected downstream from the trailing edge to the wake point X_1 at free stream speed, plus the acoustic time delay between X_1 and the field point X.

In order to solve for the potential it is necessary, in general, to obtain a numerical approximation for (22a). We note that (22a) determines the potential, at time T, on the body, the wake and in the fluid from known values of Φ , Φ_T and U at times less than T. The evaluation of Φ_T and U from Φ involves the use of finite differences. When evaluating U, due care must be used to ensure that the correct differencing scheme is used in regions where the flow is locally supersonic. It should be noted however, that, the necessity to find U by finite differencing can be eliminated by differentiating (22a) with respect to X (taking due care of the singularity in the volume integral). Thus equation (22a) and the integro-differential equation for U can then be used with time differencing, to step forward in time evaluating Φ and U at all points of the flow. However at this stage it is worthwhile making a further approximation which in effect assumes that the wing is a thin nearly planar body.

4. THIN BODY APPROXIMATION

The determination of the original equation (2) (with (3a)) was based upon the smallness of the parameter δ (which represents the ratio of airfoil thickness to chord length). Consequently, it is consistent to assume that the wing is a thin nearly-planar body with normal direction parallel to the Z-axis. Applying this approximation to the surface integrals in (22a), but not Φ_p , produces a significant simplification. The third term on the right of (22a) becomes zero and the last two integrals may be integrated by parts in the X-direction, to produce an integral over a vortex sheet. Note that this is the same as analytically continuing the integrands through the surface of the body onto a mean horizontal plane and then ignoring terms of second order in δ .

Applying the thin body approximation to the surface integrals in (22a) and subsequently integrating by parts the last two integrals, we find that the integro-differential equation for Φ can be written as

$$E(\mathbf{X})\Phi(\mathbf{X},T) = \Phi_{\mathbf{p}}(\mathbf{X},T)$$

$$+\frac{1}{8\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}E(\mathbf{X}_{1})\left\{U^{2}\frac{\partial}{\partial X_{1}}\left(\frac{1}{|\mathbf{X}-\mathbf{X}_{1}|}\right)-\frac{1}{|\mathbf{X}-\mathbf{X}_{1}|}\frac{\partial\Theta}{\partial X_{1}}\frac{\partial}{\partial T_{1}}U^{2}\right\}\Big|_{\mathbf{T}_{1}=\mathbf{T}-\Theta}dV(\mathbf{X}_{1})$$

$$+\frac{Z}{4\pi} \int_{R_{\rm B}} \int \frac{dX_1 dY_1}{[(Y-Y_1)^2 + Z^2]} \left[1 + \frac{(X-X_1)}{|X-X_1|} \right] \left\{ \Delta U(X_1, Y_1, 0, T-\Theta) + (1-M) \Delta \Phi_{\rm T}(X_1, Y_1, 0, T-\Theta) \right\}$$

$$+\frac{Z}{4\pi(1+M)} \int_{R_{W}} \int \int \frac{dX_{1}dY_{1}}{[(Y-Y_{1})+Z^{2}]} \left[1+\frac{(X-X_{1})}{|X-X_{1}|}\right] \Delta U(X_{T}(Y_{1}),Y_{1},0,T-\Gamma),$$
(23)

where $R_{\rm B}$ represents the projection of $\Sigma_{\rm B}$ onto the X - Y plane and (19) has been used to eliminate $\Delta \Phi_{\rm T}$ on the wake. Note that the last two integrals in (23) represent lifting effects, and correspond to a vortex distribution over the X - Y plane. It should also be noted that if the flow is steady, then derivatives with respect to T are zero, ΔU is zero at the trailing edge and throughout the wake, and (23) then reduces to the formula derived by Klunker [5].

The integral equation (23) for the reduced velocity potential contains derivatives of the reduced velocity potential under the integral signs and as such, is an integro-differential equation for Φ . Although it is quite conceivable to solve this equation by straight forward numerical means it is convenient to derive an integral relationship for the streamwise velocity component U. The relevant integral equation is found by differentiating (23) with respect to X, taking appropriate care of the dipole singularity in the volume integral at the pivotal point (X, Y, Z). The form of the nonlinear singular integral equation for U depends upon the definition of the principal value of the singular volume integral. Following Ogana [12] we define the principal value of this integral by surrounding the singularity with a sphere of small radius and take the limit as the radius tends to zero. It follows from (23) on differentiation with respect to X, that

$$E(\mathbf{X})U(\mathbf{X},T) = E(\mathbf{X})U^2(\mathbf{X},T)/6 + U_p(\mathbf{X},T)$$

 ∂^2

$$+\frac{1}{8\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}E(\mathbf{X}_{1})\bigg\{U^{2}(\mathbf{X}_{1},T-\Theta)K_{1}(\mathbf{X},\mathbf{X}_{1})+\frac{\partial}{\partial T}U^{2}(\mathbf{X}_{1},T-\Theta)K_{2}(\mathbf{X},\mathbf{X}_{1})\bigg\}$$

$$+\frac{\partial^{2}}{\partial T^{2}}U^{2}(\mathbf{X}_{1},T-\Theta)K_{3}(\mathbf{X},\mathbf{X}_{1})\bigg\}dV(\mathbf{X}_{1})$$

$$+\frac{Z}{4\pi}\int\int\bigg\{\frac{\Delta U(X_{1},Y_{1},0,T-\Theta)}{|\mathbf{X}-\mathbf{X}_{1}|^{3}}+\frac{\Delta U_{\mathbf{T}}(X_{1},Y_{1},0,T-\Theta)}{|\mathbf{X}-\mathbf{X}_{1}|^{2}}\bigg\}dX_{1}dY_{1},$$

$$(24a)$$

$$R_{\mathbf{B}}+R_{\mathbf{W}}$$

where

$$K_1(\mathbf{X},\mathbf{X}_1) = \{(Y-Y_1)^2 + (Z-Z_1)^2 - 2(X-X_1)^2\} / |\mathbf{X}-\mathbf{X}_1|^5,$$
(24b)

$$K_2(\mathbf{X},\mathbf{X}_1) = 2M(X-X_1)/|\mathbf{X}-\mathbf{X}_1|^3 + |\mathbf{X}-\mathbf{X}_1|K_1(\mathbf{X},\mathbf{X}_1),$$
(24c)

$$K_{3}(X,X_{1}) = -[M|X-X_{1}|-(X-X_{1})]^{2}/|X-X_{1}|^{3}$$
(24d)

and

れたのよう

$$U_{\mathbf{p}}(\mathbf{X},T) = \frac{\sigma}{\partial X} \Phi_{\mathbf{p}}(\mathbf{X},T).$$
(24e)

In (24a) $U_p(X,T)$ is uniquely determined from (24e), (22b) and (14) once the shape and motion of the body are specified. It is easily seen that equation (24a) involves only U, U_T and U_{TT} . If we specify that U is zero everywhere for T less than zero and start the body moving at T equals zero, then using an appropriate numerical approximation, (24a) can be used to step forward in time evaluating U at all points of the flow. Equation (23) can be used on the same way to evaluate Φ and Φ_T , while the pressure coefficient can be found from (22c).

5. CONCLUSIONS

We have obtained an integro-differential equation for the streamwise velocity component U, which asserts that the disturbance outside the wing and wake, is the same disturbance that would be produced by a fictitious distribution of sources on the wing surface, a vortex sheet on the Z = 0 plane and a volume distribution of streamwise directed doublets. It should be noted that if the flow is steady, then derivatives with respect to time are zero and (24a) then reduces to the formula given by Ogana [12].

Both (23) and (24*a*) are suitable for fast numerical computations. It has been stated that these equations may be solved by a time-stepping routine which evaluates U or Φ at a given point of the flow from values obtained at earlier times. It should be noted that (23) and (24*a*) may also be solved by assuming that the motion consists of a steady part plus a small harmonically oscillating unsteady part. Thus time-independent integro-differential equations would be obtained which can be solved by an iterative technique.

REFERENCES

- [1] J. D. Cole, "Modern developments in transonic flow", SIAM. J. Appl. Math. 29 (1975), 763-787.
- [2] J. D. Cole, "Review of transonic flow theory (invited)", AIAA paper 82-0104 (1982).
- [3] R. Houwink and J. van der Vooren, "Results of an improved version of LTRAN2 for computing unsteady airloads on airfoils oscillating in transonic flow", AIAA paper 79-1553 (1979).
- [4] R. Houwink and J. van der Vooren, "Improved version of LTRAN2 for unsteady transonic flow computations", AIAA J. 18 (1980), 1008-1010.
- [5] E. B. Klunker, "Contribution to methods for calculating the flow about thin lifting wings at transonic speeds—analytic expressions for the far field", NASA TN D-6530 (1971).
- [6] L. Morino, "Unsteady compressible potential flow around lifting bodies: General theory", AIAA paper 73-196 (1973).
- [7] L. Morino, "A general theory of unsteady compressible potential aerodynamics", NASA CR 2464 (1974).
- [8] D. Nixon, "A two-dimensional aerofoil oscillating at low-frequencies in high subsonic flow", British Aeronautical Research Council, ARC CP 1285 (1974).
- [9] D. Nixon, "Transonic flow around symmetric aerofoils at zero incidence", J. Aircraft 11(1974), 122-124.
- [10] D. Nixon, "Calculation of unsteady transonic flows using the integral equation method", AIAA J. 16 (1978), 976-983.
- [11] H. Norstrud, "High speed flow past wings", NASA CR 2246 (1973).

- [12] W. Ogana, "Derivation of an integral equation for three-dimensional transonic flows", AIAA J. 17 (1979), 305-307.
- [13] K. Oswatitsch, "Die geschwindcgkeitsverteilung ab symmetrische profilen beim auftreten lokaler uberschallgebiete", Acta Physica Austriaca 4 (1950), 228–271.
- [14] W. J. Piers and J. W. Sloof, "Calculation of transonic flow by means of a shock-capturing field panel method", National Aerospace Laboratory, The Netherlands, NLR MP 79022u (1979).
- [15] J. R. Spreiter and A. Y. Alksne, "Theoretical prediction of pressure distributions on non-lifting airfoils at high subsonic speeds", NACA Rept. 1217 (1955).
- [16] K. Tseng and L. Morino, "Nonlinear Green's function method for unsteady transonic flows", in Transonic Aerodynamics (ed. D. Nixon), (AIAA New York, 1982), 565-603.
- [17] J. van der Vooren and G. H. Huizing, "Modified version of LTRAN2; a calculation method for invicid transonic flow about thin airfoils in moderately slow unsteady motion", National Aerospace Laboratory, The Netherlands, NLR TR 80059u (1980).

APPENDIX

Integral Equation Formulation for Supersonic Mach numbers

When the free stream Mach number is supersonic (M > 1) then the Green's function for (4a and 4b) is (see Morino [7])

$$G(\mathbf{x} - \mathbf{x}_{1}, t - t_{1}) = \frac{-1}{4\pi r_{\alpha}(\mathbf{x}, \mathbf{x}_{1})} \{\delta(t_{1} - t + \theta^{+}) + \delta(t_{1} - t + \theta^{-})\},$$
(25a)

where

and the second second particular second second second

$$r_{\alpha}(\mathbf{x},\mathbf{x}_{1}) = \{(x-x_{1})^{2} - \alpha^{2}[(y-y_{1})^{2} + (z-z_{1})^{2}]\}^{1}, \qquad (25b)$$

$$\alpha^2 = M^2 - 1 = -\beta^2 \tag{25c}$$

and

$$\partial^{\pm} = \frac{M}{\alpha^2} [M(x-x_1) \pm r_{\alpha}(\mathbf{x},\mathbf{x}_1)].$$
(25d)

In (25a, 25b and 25d) it has been assumed that

$$|x - x_1| > \alpha [(y - y_1)^2 + (z - z_1)^2]^{\frac{1}{2}}.$$
(26)

If (26) is not satisfied then $G(\mathbf{x}-\mathbf{x}_1, t-t_1) = 0$.

An integral equation for the reduced velocity potential when the free stream Mach number is supersonic, can be derived by following a similar procedure to that described in Section 2. That is, multiply (8) by the domain function E (see (6)), substitute for G from (25a) and integrate over both space and time. The resulting integral equation is similar to (9) (or (10)) except that twice as many terms appear on the right hand side due to the two time delay terms in (25a). Note, as in the subsonic case, the contribution from shock waves will not explicitly appear in the integral equation formulation due to the shock capturing nature of the method.

Applying the quasi steady approximation as derived in Section 3, together with the relevant boundary conditions (cf. with Section 3) and introducing the apposite Prandtl-Galuert variables (for M > 1) (cf. with (12a and 12b)),

$$X = x, Y = \alpha y, Z = \alpha z$$
 and $T = \frac{\alpha^2 t}{M}$ (27a)

with

$$\Phi = M^2(1+\gamma^*)\phi/\alpha^2, \qquad (27b)$$

we find that the perturbation potential satisfies (cf. with (22a, 22b and 22c) and (13b, 13c and 13e)),

$$E(\mathbf{X})\Phi(\mathbf{X},T) = \Phi_{\mathbf{p}}^{+}(\mathbf{X},T) + \Phi_{\mathbf{p}}^{-}(\mathbf{X},T)$$

$$\frac{1}{R}\frac{\partial\Theta^{-}}{\partial X_{1}}\frac{\partial}{\partial T}(U^{2})^{\Theta-}\bigg\}dV(\mathbf{X}_{1})$$

$$+\frac{1}{8\pi} \int \int \frac{H(\Lambda)(\tilde{\mathbf{N}} \cdot \mathbf{i})}{R} \left\{ -\frac{M^2}{\alpha^2} [\tilde{C}_p^{\Theta^+} + \tilde{C}_p^{\Theta^-}] + (U^2)^{\Theta^+} + (U^2)^{\Theta^-} \right\} d\Sigma(X_1)$$

$$+\frac{1}{4\pi}\int_{\Sigma_{\rm B}+\Sigma_{\rm W}}\int H(\Lambda)\left\{\left(\Phi^{\Theta_{+}}+\Phi^{\Theta_{-}}\right)\frac{\partial}{\partial N}\left(\frac{1}{R}\right)\frac{-(\Phi_{\rm T}^{\Theta_{+}}-\Phi_{\rm T}^{\Theta_{-}})}{R}\frac{\partial}{\partial N}(R)\right\}d\Sigma({\bf X}_{1}),\tag{28a}$$

where

2000

and the second

APPENDE ASSESS

$$\Phi_{\mathbf{p}^{\pm}}(\mathbf{X},T) = -\frac{M^{2}(1+\gamma^{*})}{4\pi\alpha^{2}} \int_{\Sigma_{B}} \int \frac{H(\Lambda)}{R|\tilde{\nabla}_{1}S|} \frac{\partial\phi}{\partial n} (\mathbf{x}_{1},t-\theta^{\pm}) |\nabla_{1}S| d\Sigma(\mathbf{X}_{1}), \qquad (28b)$$

$$\tilde{C}_{p} = -2(U + \alpha^{2} \Phi_{T}/M) = M^{2}(1 + \gamma^{*})C_{p}/\alpha^{2}, \qquad (28c)$$

$$\Theta^{\pm} = M(X - X_1) \pm R, \tag{28d}$$

$$R = \{(X - X_1)^2 - (Y - Y_1)^2 - (Z - Z_1)^2\}^{i}, \qquad (28e)$$

$$\frac{\partial}{\partial N}f = \left(-\frac{\partial f}{\partial X}, \frac{\partial f}{\partial Y}, \frac{\partial f}{\partial Z}\right). \,\tilde{\mathbf{N}},\tag{28}\,f$$

$$\Lambda = |X - X_1| - \{(Y - Y_1)^2 + (Z - Z_1)^2\}^{\frac{1}{2}}$$
(28g)

and

$$f^{\Theta\pm} = f(\mathbf{X}_1, T - \Theta^{\pm}). \tag{28h}$$

Here as in Section 3, $\vec{\nabla}$ and \vec{N} are the gradient operator and unit normal to the surface in Prandtl-Glauert space and H is the Heaviside step function.

Following Section 4 it is consistent to assume that the wing is a thin nearly planar body with normal direction parallel to the Z-axis. Subsequently we find that equation (28a) reduces to (cf. with (23))

$$E(\mathbf{X})\Phi(\mathbf{X},T) = \Phi_{\mathbf{p}}^{+}(\mathbf{X},T) + \Phi_{\mathbf{p}}^{-}(\mathbf{X},T)$$

30.50

1

555.0

$$+\frac{1}{8\pi} \int \int \int \int E(\mathbf{X}_{1}) H(\Lambda) \Big\{ [(U^{2})^{\Theta_{+}} + (U^{2})^{\Theta_{-}}] \frac{\partial}{\partial X_{1}} \Big(\frac{1}{R}\Big) - \frac{1}{R} \frac{\partial \Theta^{+}}{\partial X_{1}} \frac{\partial}{\partial T} (U^{2})^{\Theta_{+}} \\ -\frac{1}{R} \frac{\partial \Theta^{-}}{\partial X_{1}} \frac{\partial}{\partial T} (U^{2})^{\Theta_{-}} \Big\} dV(\mathbf{X}_{1}) \\ +\frac{Z}{4\pi} \int \int \int \frac{dX_{1}dY_{1}H(\Lambda)}{[(Y-Y_{1})^{2} + Z^{2}]} \Big(1 + \frac{(X-X_{1})}{R}\Big) \Big\{ \Delta U(X_{1}, Y_{1}, 0, T-\Theta^{+}) \\ R_{B} + R_{W} \\ +\Delta U(X_{1}, Y_{1}, 0, T-\Theta^{-}) + (M+1)\Delta \Phi_{T}(X_{1}, Y_{1}, 0, T-\Theta^{+}) + (M-1)\Delta \Phi_{T}(X_{1}, Y_{1}, 0, T-\Theta^{-}) \Big\},$$

where R_B and R_W represent the projection of Σ_B and Σ_W onto the X-Y plane, and, Δ () represents the value on the upper side of body or wake minus the value on the lower side.

(29)

The appropriate integral relationship for the streamwise velocity component U, can now be determined by differentiating (29) with respect to X, taking due care of the dipole singularity in the volume integral at the pivotal point (X, Y, Z). It follows from (29) then, that (cf. with (24a-24e))

 $E(\mathbf{X})U(\mathbf{X},T) = E(\mathbf{X})U^2(\mathbf{X},T)/3 + U_p^+(\mathbf{X},T) + U_p^-(\mathbf{X},T)$

$$+\frac{1}{8\pi} \iiint_{-\infty}^{\infty} E(\mathbf{X}_{1})H(\Lambda) \Big\{ [(U^{2})^{\Theta} + (U^{2})^{\Theta}] \tilde{K}_{1}(\mathbf{X},\mathbf{X}_{1}) + \frac{\partial}{\partial T} (U^{2})^{\Theta} \tilde{K}_{2}^{+}(\mathbf{X},\mathbf{X}_{1}) \\ + \frac{\partial}{\partial T} (U^{2})^{\Theta} \tilde{K}_{2}^{-}(\mathbf{X},\mathbf{X}_{1}) + \frac{\partial^{2}}{\partial T^{2}} (U^{2})^{\Theta} \tilde{K}_{3}^{+}(\mathbf{X},\mathbf{X}_{1}) + \frac{\partial^{2}}{\partial T^{2}} (U^{2})^{\Theta} \tilde{K}_{3}^{-}(\mathbf{X},\mathbf{X}_{1}) \Big\} dV(\mathbf{X}_{1}) \\ - \frac{Z}{4\pi} \iint_{R_{B}} \int dX_{1} dY_{1} H(\Lambda) \Big\{ \frac{[\Delta U(X_{1},Y_{1},0,T-\Theta^{+}) + \Delta U(X_{1},Y_{1},0,T-\Theta^{-})]}{R^{8}} \Big\}$$

$$+\frac{[\Delta U_{\rm T}(X_1,Y_1,0,T-\Theta^+)-\Delta U_{\rm T}(X_1,Y_1,0,T-\Theta^-)]}{R^2}\bigg\},$$
(30a)

where

$$\tilde{K}_1(\mathbf{X}, \mathbf{X}_1) = -2\{2(X - X_1)^2 + (Y - Y_1)^2 + (Z - Z_1)^2\}/R^5,$$
(30b)

$$\bar{K}_{3}^{\pm}(\mathbf{X},\mathbf{X}_{1}) = -2M(X-X_{1})/R^{3} \pm R\tilde{K}_{1}(\mathbf{X},\mathbf{X}_{1}), \qquad (30c)$$

$$\tilde{K}_{3}^{\pm}(\mathbf{X},\mathbf{X}_{1}) = -[MR \pm (X - X_{1})]^{3}/R^{3}$$
(30d)

and

$$U_{\mathbf{p}^{\pm}}(\mathbf{X},T) = \frac{\partial}{\partial \chi} \Phi_{\mathbf{p}^{\pm}}(\mathbf{X},T)$$
(30e)

As in equation (24a), (30a) involves only U, U_T and U_{TT} . Then using an appropriate numerical approximation, (30a) can be used, stepping forward in time, to evaluate U at all points of the flow. Equation (29) can be used in the same way to evaluate Φ and Φ_T , while the pressure coefficient can be found from (28c).

DISTRIBUTION

AUSTRALIA

DEPARTMENT OF DEFENCE

Defence Central

Chief Defence Scientist Deputy Chief Defence Scientist Superintendent, Science and Program Administration Controller, External Relations, Projects and Analytical Studies Defence Science Adviser (UK) (Doc Data sheet only) Counsellor, Defence Science (USA) (Doc Data sheet only) Defence Science Representative (Bangkok) Defence Central Library Document Exchange Centre, DISB (18 copies) Joint Intelligence Organisation Librarian, H Block, Victoria Barracks, Melbourne Director General—Army Development (NSO) (4 copies)

Aeronautical Research Laboratories

Director Library Divisional File—Structures Author: J. A. Gear R. Jones P. Farrell S. Galea B. Emslie T. Ryall Superintendent Aerodynamics D. Secomb

Materials Research Laboratories

Director/Library

Defence Research Centre

Library

Navy Office

Navy Scientific Adviser Directorate of Naval Aircraft Engineering

Army Office

Scientific Adviser—Army Royal Military College Library

Air Force Office

Air Force Scientific Adviser Aircraft Research and Development Unit

Scientific Flight Group Library Technical Division Library Director General Aircraft Engineering—Air Force RAAF Academy, Point Cook

Central Studies Establishment

Information Centre

Government Aircraft Factories Manager

Library

DEPARTMENT OF AVIATION

Library

STATUTORY AND STATE AUTHORITIES AND INDUSTRY

Commonwealth Aircraft Corporation, Library Hawker de Havilland Aust. Pty. Ltd., Bankstown, Library

UNIVERSITIES AND COLLEGES

Adelaide	Barr Smith Library		
Flinders	Library		
LaTrobe	Library		
Melbourne	Engineering Library		
Monash	Hargrave Library		
Newcastle	Library		
Sydney	Engineering Library		
NSW	Physical Sciences Library		
Queensland	Library		
Tasmania	Engineering Library		
Western Australia	Library		
RMIT	Library		

CANADA

International Civil Aviation Organization, Library NRC

Aeronautical & Mechanical Engineering Library

Universities and Colleges Toronto Institute for Aerospace Studies

CZECHOSLOVAKIA

Aeronautical Research and Test Institute (Prague), Head

FRANCE

ONERA, Library

INDIA

Defence Ministry, Aero Development Establishment, Library National Aeronautical Laboratory, Information Centre

ISRAEL

Technion-Israel Institute of Technology Professor J. Singer

JAPAN

Institute of Space and Astronautical Science, Library

Universities

Kagawa University Professor H. Ishikawa

NETHERLANDS

National Aerospace Laboratory (NLR), Library

NEW ZEALAND

RNZAF, Vice Consul (Defence Liaison)

SWEDEN

Aeronautical Research Institute, Library

UNITED KINGDOM

Royal Aircraft Establishment Bedford, Library British Library, Lending Division CAARC Co-ordinator, Structures Aircraft Research Association, Library British Aerospace Kingston-upon-Thames, Library Hatfield-Chester Division, Library Dr D. E. Davies R. A. E. Farnborough

Universities and Colleges

Bristol	Engineering Library
Cambridge	Library, Engineering Department
London	Professor G. J. Hancock, Aero Engineering
Manchester	Professor, Applied Mathematics
	Professor N. Johannesen, Fluid Mechanics
Nottingham	Science Library
Southampton	Library
Liverpool	Fluid Mechanics Division, Dr J. C. Gibbings
Strathclyde	Library

Cranfield Institute of Technology Imperial College

Library Aeronautics Library

UNITED STATES OF AMERICA

NASA Scientific and Technical Information Facility Applied Mechanics Reviews The John Crerar Library Boeing Company Mr W. E. Binz McDonnell Aircraft Company, Library

Universities and Colleges

Johns Hopkins Professor S. Corrsin, Engineering Massachusetts Inst. of Technology MIT Libraries

SPARES (20 copies)

TOTAL (126 copies)

Department of Defence

DOCUMENT CONTROL DATA

A . AD N-	A h Franklicherson M-		1 0 Tests No			
1. a. AR No. A.R-003-999	1. b. Establishment No. ARL-STRUC-REPT-416	2. Document Date February 1985	3. Task No. DST 82/053			
	INTEGRAL EQUATION FORMULATION FOR		6. No. Pages 19			
THREE-DIME	ENSIONAL UNSTEADY FLOW	Unclassified b. title c. abstract U U	7. No. Refs 17			
8. Author(s)	8. Author(s)		1 tions			
J. A. Gear						
	10. Corporate Author and Address		11. Authority (es eppropriete)			
Aeronautical R 4331, Melbour	tesearch Laboratories, G.P.O. Box ne, Vic. 3001	a. Sponsor b. Security	c. Downgrading d. Approvel			
	12. Secondary Distribution (of this document) Approved for public release					
Branch, Departmen	Overseas enquirers outside stated limitations should be referred through ASDIS, Defence Information Services Branch, Department of Defence, Campbell Park, CANBERRA, ACT, 2601. 13. a. This document may be ANNOUNCED in catalogues and awareness services available to No limitations					
13. b. Citation for	other purposes (i.e, casual announcement) may	be (select) unrestricted (e	or) as for 13 a.			
14: Descriptors Unsteady flow Transonic flow Integral equation		Australia) 2	5. COSATI Group 0040 1000			
16. Abstract The unsteady transonic small perturbation differential equation is converted into an integro- differential equation by application of the classical Green's function method. It is shown that no contribution from shock waves explicitly appears in this integral equation, due to the shock capturing properties of the Green's function method. After assuming that the motion consists of small infinitesimal perturbations around a thin nearly-planar body, a simplified integral equation for the streamwise velocity component is obtained, which is suitable for fast numerical compu- tations. Negroviords;						

あたち

This page is to be used to record information which is required by the Establishment for its own use but which will not be added to the DISTIS data base unless specifically requested.

16. Abstract (Contd)

AND A CARLES AND AND A

and the street

17. Imprint Aeronautical Research Laborato	ries, Melbourne	
18. Document Series and Number Structures Report 416	19. Cost Code 23-6925	20. Type of Report and Period Covered
21. Computer Programs Used		
22. Establishment File Ref(s)		

Ì

Sec.

REPRODUCED AT GOVERNME

FILMED

10-85

DTIC