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PART ONE. EXACT DETECTION PROBABILITY

INTRODUCTION

The determination of detection probability when the sum of N detected
pulses of signal plus noise is compared to a threshold hos been studied by

Marcum, Swerling, Schwartz, and Vannicola, among‘others. Marcum1 treated

the non-fluctuating target; Swerling2 treated two limiting fluctuating tar-

get situations (complete correlation and complete decorrelation) - he also
presented a general method for treating arbitrary correlationB, but cave no
results for particular correlation models; Schwartz4 achieved an exact solu-
tion when there are only two pulses; Vannicola5 has constructed a solution
from Swerling's two extreme fluctuation models by considering M independent
sats of N fully correlated pulses - his solution applies only to targets
which are block correlated. This paper extends the previously referenced
work and presents exact results for a Rayleigh target whose inphase (and

quadrature) components have exponential correlaticn.

——e

1,2,3,4,85

See References at end of text.




ANALYS1S

11.

wnote the inphase and quadrature components of signal and noise respect-

ively by the Nxl complex vectors A+iB and X+iY. We assume (i) A,B are i.i.d.;
(i1) X,Y are i.i.C stationary Gaussian; {iii) the noise is additive and inde-
pendent of the signal. Employiny the Neyman-Pearson detection criterion, the

probability of detection is given by

xR0
A
PD-{ p, (v)av (1)

T

where v is the integratox output normalized to the average per pulse noise

power, i.e.,

o4 laex]? e [evl?

26

and vT is the normalized thresho’i determined by the specified probability

of false alarm,
l ]
Pra 3 vf pv(VI!AI + |B|T = 0) av (3)
T

In order to determine PD we regquire the probability density function (pdf)

of v. We first write pv(v) as an inverse Laplc e transform

V400

p,(v) = -2—% f Lv(s)esvds (4)




Next recognizing

o0

L, (s) = 6f pv(v)e_svdv

. . -8V .
as thne expectation of e s we proceed to calculate thiis expectation over

the domain of A,B,X,Y i.e.,

« s JA+x12 + |B+v|?
L (s) -ffffp(n,a,x,we 252 AAdBAXAY
-Q0

In view of the three assumptions characterizing the signal and noise, the
joint pdf of 3,B,X,Y may be written as

P(A,B,X.Y) = pA(A)pA(B) -——l-—g e 28 (7

(21B*)
Thus (6) becomes

- —33 (s|A+x|2 + !le)

] © - 28 )
L (s) = :‘;pA(A)dA:!; 7 T dy

(2ﬂ82)

or, completing the square in X,

(9}




Thus for any signal model we have the general formula

A. Marcum Model

The non-fluctuating target may be acccmmodated by choosing

N
pA(al,...,aN) - gé(an-a)

where & (+) is the Dirac delta function. Then (10) vields Marcum's

result

Lv(s) -

e
(s+1)N

where X is the per pulse ratio of signal power to average noise power, i.e.,

Swerling Models

Typical radar targets are composed of a lacge number of scatterers
whose distances relative to the radar change with body vibration and vary-

ing target aspect. The echoes from the individual scatters contribute




amplitude and phase terms which combine at the radar fregquency to produce
a fluctuating signal. Swerling has bounded the effects of target correla-
tion by considering two limiting situations: The slow fluctuation model
{unity amplitude correlation on a scan, scan-to-scan independence) and the
fast fluctuation model (zerc amplitude correlation on a scan, pulse-to-
pulse independance). These may be accommodated by chooging respectively

N

P, (al.--..aN) = p,(a,) Azlé(a“-al) (14)

and

N
P (al,....aN) - Pa(an) i13)

2 1
Measuremant56 of echoes from wmany types of radar targets corfiim that the
q best characterization of the first order amplitude statistics is given by
the Rayleigli distribution. (The hest characterization of the autocorrela-~
tion function of the radar cross section is given by an exponential func-

tion.) Thus we assume

p (r) = e (0 <t <w (16)

2.2
a“+b

2 3
where 2a” is the average target cross section. In the remainder of this
paper we confine our attention to this "Rayleigh target".

The inphase (or quadrature) components have first order statistics

given by
2
-2
1 20
Pa(a) o e -a an
\NI2AIT Q
_——
See References at end of text.
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Thus the general formula (10) specializes to Swerling's slow fluctua-

ticn result (case 1)

L(s) | = 1 (18)
v

(s+1)V Y [ (1emy) 5413

P=1

when (14) is employed as the correlation model and to Swerling's fast

fluctuation result (case 2)

L (s) -t (19)
v

N
Gw0 { (1+X)s+1]

when (15) is employed as the correlatiod model.

"ﬁ C. Partially Correlated Model

In order to accommodate Rayleigh targets which give rite tn partially

correlated signals (0<p<l) we introduce the general correlation model

- -1—2 atcia
e 2
p.(a ,...,a) = (20)
A1 N (2W)N/2 |a2C|i

where "T" denotes transpose and C is the covariance matrix of ¢

For this correlated Rayleigh model, (10) yields




o 1 Tr -1 s 2
-—ac "’E?IXI)A
1 e 2a
L (s) = (21}
v (s+1)¥ | % @m™? |o%c|?
In (21) I is the identity matrix and X [c.f.(13)] is the average signal-to-
noise ratio. 1In order to evaluate the integral we assume that C is posi-
tive definite; then so also is C-l; hence when s > 0, C-1 + ;%T I is non-
singular and (21) may be written as
o 1T -1 s A 2
- (c +—XI)
2 s+l
1 1 /e 2o
{ -
Lv s) P 3 dA (22)

Since the integral equals unity we have

1
" TGs+DT + sxc|

Lv(s)

Expressing the determinant in terms of the (positive) eigenvalues

Aysenesd

N of C the Laplace transform of pv(v) is given by

1

T [(1+xAn)s+1]
1
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Swerling's results may be obtained from this formula by choosing XI-N, ano
(n#l) for the slow fluctuation case [c.f.(18)], and Ansl for the fast fluctu-
ation case {[c.f.(19)]. These correspond respectively to the singular co-

variance matrix

N
cf = °\O (25)
N
]

in which the first pulse contains all the averare signal power of the
pulse train and the remaining pulses contain no signal, and to the identity

matrix

M
Y, (26)

S
©
[]
(@]
Q,
’
—

- l.l
A'

Q': in which the total average signal power is uniformly distributed among the
: N pulses.
The inverse laplace transform of (24) now yields the pdf of the inte-
o grator output. When X=0 we obtain
s
. o N1
. s E - - ———————— (27
8 P, (v|x=0) ~ e NI (27)
i a
- and when X#0, (assuming distinct eigenvalues) we obtain
o




e

4 v

= ¥y 14x\k o e X

" pv(v) = F I 1 - ien 1—+X~X——-—- (28)

s ) n=l ﬁ;%

Thus [c.f.{3)] the threshold, V_, is given in terms of the specified P

T Fa
. by
v n
. -V N-l V
v -e T T
. Prp ™ © X o (29)
> ti=y
.
and [c.f.{1)] the probability of detection by
v,
N N v/ 1+x_?\k \ -1 - 1+‘)1(‘A
po=2 1 ( T, e n (30)
n=ji E;% n

In order to calcula e PD for any particular correlation model we must
provide a description of the correlation matrix. If the signal arises from

a stationary process, then C is a symmetric Toeplitz matrix with N distinct

elements. We should like to associate the eigenvalues with a single correl-
Pf ation parameter, D, in terms of which PD may be conveniently characterized.
“:i For this purpose we assume that the signal is described by a first oxder

Markov process. This is consistent with Edrington's measurements which show

e

that the radar cross section is exponentially correlated.

-

Consider a signal which consists of a train of N pulses with uniform spac-

ing T. Let the k,n element of C be taken as

WPoP P>
AN

e e

e Ty eon!
c, =e [keniTv 4 lk-n (0<p<1) (31)
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then

(32)
in-1 NN

——e=p
The eigenvalues of C provide a non-trivial solution to the matrix equation
{c - ATlu=0 (33)

Since the sum of the eigenvalues equals the trace of C we have the reiation

N
SA =N (34)
N n

which we make use of later.

Consider first the special case of a low prf (pulse repetition frequency)
waveform for which the interpulse spacing, T, is so large that the correla-
tion of noncontigquous pulses may be neglected. Thus C becomes tri-diagonal
and (33) is eguivalent to a homogeneous bvp (boundary value problem). This

consists of a set of homogeneous second order difference eguations

Dun-l + (l—X)un + pun+1 = 0 (n=1,...,N) (35)

together with the homogeneous boundary conditions

e TR (36)

Since the equation is linear and has constant coefflcients, there are

10




v

two solutiuns in the form

n
un =Y (37)
where
2
A-1 A-1 -1
¥ 20 t (20 ) (38)

The condition

> 1 implies either A > 1+2p or A < 1-2p, each of which

2
leads to a contradiction of (34). Hence we must have '%ﬁl <1, i.e.,
Y = etle where
A A-1
Fole =4 Q B c——
coe 6 5 (39)
. tin6
We write the general solution to (35) in terms of e as
u = Kl cus nf + K2 sin nb (40)
Since uy = 0, we have
u = Kz sin nb (41)
and since uN+l = 0, 9 satisfies the transcendental equation
sin (N+1)8 = Q (42)

Further since (4l) is a non-trivial solution, 8 cannot equal 0 or T.

Thus the roots of (42) are

8 = — 71 (n=l,...,N) (43)




Note that they are equally spaced in the opan interval (0,7). Egquation
(39) then yields the distince eigenvalues

1-2p < ln =1+ 2p cosen < 1+2p (n=1,...,N) (44)
so that PD is given by (30).
when the correlation of non-contiguous pulses may not be neglected

we require the eigenvalues of the full C matrix. As is easily verified,

. . -1 . . . .
the inverse matrix, C ~, is the tri-diagonal matrix

Thus the eigenvalue problem to be solved is

(1-p5 (7T - % I)v=0

1

O — srm —— — — —— — O




In the special case N=2, this becomes

1 - — -0 vl o]
- (48)

which leads immediately to the distinct eigenvalues
A=11z%0p (49)

Equation (30) then yields PD which may be written in the form

(X0 Vg
- 2 _ 2 XV XV
PD = e (4% (ex) %:x sinh 2 T + cosh 3 T 2] (50)
X 1+ - (ox) (14 ¢ = (o

which is the same result as tnat of Schwartz.

To solve (46) when N>2, we employ the technique developed for the low
prf waveform; i.e., we again formulate and solve an equivalenc homogeneous

bvp. From (47) we have the equation

2
2 1-p
'Cln-l + (1+D by )vn Ovn+1 0 (n=1,....N)

and thc boundary conditions

VO - pv1 = 0

Vel T Py " O

Again there is a soluticn of the form (37), provided that

3\ 3 -
x J(H-Qz - %O—) - 49‘]/29)




2
- 2 _1=0® . oy > 120 1-0
Since (1+p Y \)/(20) > 1 implies eithex X > Top °F A< eVl

equation (34) cannot be satisfied. Thus we introduce the real angle 8 by

means of

102 - 10
cos 0 4 (55)
2p
and write the soluticon in the form (40). Application of the boundary
conditions then vields the pair of equations
(1-p cosG]Kl - (o sinell-:2 =0 (56)
{cos (N+1)6 -~ p cos NB]Kl + [sin (N+1)0 - p sin NG]K2 =0 (57)

whose determinant must vanish. Thus O obeys the transcendental equation
[C.f-(42)]l

2
sin (N+1)8 - 2p sin N8 + p° sin(N-1)8 = 0O
Since the values 610, T do not permit a non-trivial solution to the bvp,
the roots of (58) again lie in the open interval (0,m). Since it has not
becn possible to solve (58) analytically, the following remarks allow a

numerical solution to hLe easily achieved:

To show that there are exactly N roots between 0 and T we first write

(58) as
2 . 2. .
[(1+p°)cosB-2p] sin NE + [(l-p”)sin O] cos NG = O

then introduce the function ¢(9) by means of

(1-02) sin®

A
sin $(6) =

1+p° - 2p cosd




2 -
cos & (8) Q (140" )cosB - 2p (61)

1+ p2 - 20 cosf

go that (59) becomes

sin [N6 + ¢(8)] = 0O (62)

[N.B. as p*0, ¢(8) + 6 and (62) + (42)])

Since

[ 8]

a 1-p > 0 (63)

1+p2 - 2pcosB

we have

2
1-90 a0 = 7 (64)

il
¢im) = 60 + | >
0 1+p°~ - 2pcost

Since (62) represents a modulated sinusoid whose total phase increases
monotonically from O at 0=0 to (N+1)% at O=mW, it has exactly N distinct

zero crossings in the open interval (0,7m).

2

Further, since 9—2 < 0 in (0,m) and %% = 1 at cosf=p, the function
de”

sin [NO +¢(B8)] oscillates more rapidly than does sin(N+1)€ in the domain
0 <8 < cos-lp and more slowly (but still more rapidly than does sin NB)
in the domain cos_lp < § < m. Using these observations concerning the
spacing of the roots, it is an easy matter to accurately locate the roots
by means of a Newton-Raphson method.

Denoting the roots by 61,...,8N the eigenvalues [c.f.(55)] are given by

15
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1~ 1-p2 1+p
E—% < An - 5 < m (n-l,...,N) (65)
1+p° - 20cosen

and the detection probability by (30).
Note that expansion of (65) into a power series in p yields a first

order approximation which is identical to (44) -~ a useful check.

IIT. RESULTS

Figures 1-7 present detection probability versus per pulse average
signal-to-noise ratio in dB for false alarm probability of 10-6 and N=2,4,
6,10,15,20,30 pulses respectively.

The dashed curve is the Marcum result which was obtained by employing
(11) tn (10), performing the Laplace inversion and integrating the result-
ing pdf over the threshold; this leads to

k
-(V_+NY) = n N-l+n V
- T (NY) T
Pp = Fpa " ° n;l nl kz_: k! (&)

The closest dark curve is the Swerling case 2 result (p=0) which
was obtained by replacing Vo by VT/(1+X) in (29).

The next (lighter) curves are the results for £=0.40, 0.60, 0.80,
0.90, 0.95, 0.99 respectively.

The last (dark) curve is the Swerling case 1 result (p=1) which was
obtained by performing the inverse Laplace transform of (18) and inte-

grating the resulting pdf over the threshold; this leads to

-V T n N-l+n VT
o = Ppa ¥ 1+N\( Z (1+Nx) kZ':N ki (67)

16




For N=20, the numerical instability exhibited at gmall values of X when
P = 0.99 is caused by the small aigenvalues [c.f.(65)] which cluster together;
i.e., by indexing the cibenvalues according to size, it may be seen that the
individual terms in (30) alternate in sign and increase in magnitude as the dif-
farance xln - xkk becomes smaller. This instability becomes more proncunced and
occurs at even smaller values of p as N increases (it occurs at 0 = 0.95 when
N = 30)., In order to present a clean figure when N = 30, the curve for p = 0.99
has been deleted from figure 7.

The figures show that as P increases from zero to unity, more per pulse av-

erage signal-to-noise is required to achieve the same P This increase, how-

o
ever, is smaller than one would intuitively expect: for example, increasing ¢
from zero to one-half requires an additional increase of less than a 4B in

signal-to-noise at any 0.50 <P <0.99 and N > 1 while, for example at P_ =

D D

0.95, increasing P from zero to one requires an increase of 5.2 dB for N = 2
or 10.6 dB for N = 30.
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PART TWO. FLUCTUATION LOSS

1. INTRODUCTION

The exact fluctuation loss for a Gauss-Markov signal is determined as a
function of the number of integrated pulses, the correslation between conti-
guous pulses and tie specified detection and false alarm probabilities, This
exact loss is compared to Barton's7 approximation which calculates fluctuation
locs by assuming a Swerling case 2 target and a reduced number of "independent"
pulses., Two expressions for the number (Ne or NI) of equivalent indepe~-ent

pulses are derived. The domain of validity of the approximations is estab-

lished.

7.
See references at end of text.
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11. BACKGROUND

Figqures 1-7 of part 1 show that at fixed P and N a greater per pulse aver-

age signal-to-noise ratio (detectability factoi? is required to achieve a speci-~
fied PD > 0.50) when the target fluctuates than when it does not. This re-
quired increase in detectability factor is called the fluctuation loss. For
fixed PD and pFA it depends on the number of detected pulses ané +heir correl-
ation and will be denoted by Lf(N,O).

Table I presents the detectability factors DO(N) for a non-fluctuacing tar-
get, DZ(N) for a Swerling case 2 (c=0) target and Dl(N) for a Swerling case 1
(p=1) target at various PD's of interest; also shown is the normalized thresh-
old voltage required to achieve the common PFA of 10—6. This table has been
calculacted from egs. (66), (29) with VT replaced by VT/(1+X); and (67) of part .

For the PD‘sAof interest the fact that for NZl,

Lf(N,l) = Dl(N) - DO(N) > DZ(N) - DO(N) = L (N,0)
is well knowr. to radar systems engineers from the previously published work of

Marcum and Swerling

Whenever a surveillance radar encounters the situation p=l, the target may
lie in a deep fade for all N pulses received on a given scan, thus causing a de-
tection to be missed. In order to avoid this situation some radar systems de-
correlate the N signal returns by transmitting pulse-to-pulse frequency diverse
waveforms. This certainly decreases the fluctuation loss from Lf(N,p) to Lf(N,O)
(a considerable reduction at high PD and N) but involves increased system com-
plexity and cost.

Fluctuatioh loss depends not only on pFA and PD but also on the fluctuation
model and the correlation model. For PFA - 10—6, a Gaussian fluctuation model
(Rayleigh envelope), and a first order Markov correlation model the analysis of
part | yields the appropriate detectability factors for each N and p. By sub-
tracting the detectability factor DO(N), we obtain the fluctuation losses,
L_.{N,”), of table II.

f

It is observed that the fluctuation loss increases monotonically with PD
and, except for the singular case p = 1, decreases monotonically with N. Of
greater significance however is the nature of the monotonic increase in fluc-

tuation loss with 0 and in particular its rate of increase as © approache:s 1.
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TABLE I
DETECTABLILITY FACTORS AT P, = 107°
Q
N P~0.50 P =~0.70 P =0.90 P,=0.95 P =0.99 v, (dB)
D, (M) D, (N) D, (N) D, (N) D, (N)
1 11.24 12.09 13.18 13.66 14.50 11.40
2 8.80 9.61 10.65 11.11 11.91 12.22
4 6.49 7.26 8.25 8.68 9.44 13.29
6 5,21 5.94 6.90 7.32 8.26 14.05
10 3.65 4.35 5.27 5.67 6.38 15.15
15 ~ 47 3.14 4.03 4.41 5.10 16.13
20 1.66 2.31 3.17 3.55 4.21 116.89
20 0.54 1.18 2.00 2.37 3.01 18.03
|
! D, (N) D, (V) D, (N) D, (N) D, (N)
S § 12.77 15.77 21.14 24.29 31.3”
P2 9.52 11.53 14.83 16.62 20.47
' 6.83 8.28 10.51 11.65 13.97
6 s g 6.65 §.49 9.41 11.22
L10 3. 4.80 6.29 7.02 8.40
.15 2.5 i 3.46 4.75 5.36 6.52
i 20 1.71 2.55 3.73 4.29 5.32
3D 0.58 1.34 2.39 2.£8 3.78
D, (M) | D, (M) Dy (N) D, (V) D, (N)
1 12.77 | 15.77 21.14 24.29 31.37
2 10.33 13.32 18.69 21.84 28,91
4 8.03 11.00 16.36 19.51 26.60
' 6 6.74 9.71 15.07 18.21 25.30
1
, 10 5.19 8.15 13,50 16.64 23.73
' s 4.00 6.96 12.31 15.45 22.54
| 20 3.19 6.14 11.49 14.63 21.72
[ 20 2.08 5.03 10.37 13..1 20.57
21




TABLE II
Lf(N,o) - FLUCTU?TION LOSS (dB)

p=0.40

p=0.60

p=0.80

P=0.90

=0.95

2 0.85 1.04 1.28 1.48
4 0.34 0.46 0.65 1.00 1.26 1.40 1.49 1.54
€ .21 0.31 0.47 0.81 1.12 1.32 1.47 1.53
0.50 ] 10 0.12 0.19 0.29 0.58 0.92 1.19 1.43 1.54
15 0.07 0.1l1 0.19 0.42 0.73 1.04 1.39 1,53
20 0.05 0.08 0.14 Q.32 0.60 0.93 1.34 1.53
0.06 0.10 0.22 0 0.65

0.70

1.02
0.71
0.45
0.32
0.24

2.13
1.24
0.90
0.59
0.42
0.33
0.22

2.44
1.58
1.21
0.83
0.61
0.48
0.33

2.95

2.26 2.
1.86 2.
1.40 2.
1.08 1.
0.88 1.

0.64

3.81
3.22
3.06
2.72
2.35
2.12
1.74

3.57
3.53
3.44
3.35
3.23

3.74
3.77
3.80
3.82
3.83

2 4.49 4.93 5.79 7.21
) 2.26 2.59 3.13 4.23 5.36 6.36 7.73 8.10
6 1.59 1.90 2.39 3.48 4.66 5.79 7.65 8.17
0.90 |10 1.02 1.27 1.68 2.65 3.78 5.00 7.44 8.23
15 0.72 0.91 1.25 2.11 3.15 4.33 -7.24 8.28
20 0.56 0.72 1.01 1.73 2.72 3.87 6.98 8.32
3G .39 0.52 0.73 1.32 2.17 3.23 .58 8.37
2 5.51 5.84 6.33 7.33 8.32 9.18 10.52 10.73
4 2.97 3.36 3.96 5.24 6.60 7.86 10.32 10.83
6 2.09 2.44 3.03 4.28 5.68 7.08 10.22 10.89
0.95 |10 1.35 1.64 2.13 3.27 4.62 6.06 9.293 10.97
15 0.95 1.19 1.60 2.58 3.84 5.26 9.66 11.04
20 0.74 0.94 1.29 2.16 3.33 4.69 9.32 11.08
30 0.51 0.67 0.94 1.65 2.66 3.92 8.79 11.14
2 8.56 8.91 9.47 10.61 11.83 13.04 16.70 17.00
4 4.53 4.98 5.70 7.22 8.88 10.56 16.38 17.16
6 3.16 3.60 4.32 5.84 7.56 9.34 16.22 17.24
0.99 |10 2.02 2.40 3.02 4.44 6.13 7.93 15.77 17.35
15 1.42 1.74 2.27 3.52 5.11 6.87 15.34 17.44
20 1.11 1.38 1.86 3.02 4.46 6.16 14.80 17.51

-1 30 0.77 0.99 1.38 2.31 3.6l 5.10

13.9444L717.56




.

For example, suppose all we know concerning the target returns is that they are
not independent; if we make the hsual assumption that they are fully correlated
(i.e., P=1) and integrate 30 pulses to achieve required PD's of say C.90, 0.95,
0.99 respectively, then a system which employs pulse-to-pulse frequency divers-
ity could recover the fluctuation losses [Lf(30,1) - Lf(30,0)] of respectively,
8.0, 10.6, and 17.8 dB. If however P is not in fact equal to 1.0 but is instead
0.9 then the recoverable fluctuation losses are only 1.8, 2.2, 2.8 dB respect-
ively (at p=0.8 the recoverable losses are even smaller, viz., 0.9, 1.1 and
1.5 dB). Thus the trade-off of system complexity versus recoverable fluctua-
tion loss is markedly affected by knowledge of the dependence of fluctuation
loss on signal correlation - a dependence established in part 1 of this paper.
In summary, the usually employed assumption, p=1, should not be facilely
invoked simply because the signal returns are xnown to lack tctal independence.
Doing so results in an extremely optimistic estimate of the b-~nefits which

can be achieved by employing frequency diversity.

I1I. ANALYSIS

e next consider two approximations which greatly simplify the determin-
ation of fluctuation loss for any correlation model. Earton’ introduces the
concept of the number of equivalent "independent" pulses; this is defined by

A to
N in. — 7
e Min N, 1+ T (67)
c
In (67) £ty is the ohservation time and t_ is the correlation time (which Barton
defines for any correlation model as the reciprocal of the effective noise band-

width of the two sided fluctuation spectrum). The definition, (67) is assumed

tc be valid independent of Py Or P,. Barton's two conjectures state;
Le(N,P) = L (N ,0) (FIRST CONJECTURE) (68)
Le (N, ,0) & %r L,(1,p) (SECOND CONJECTURE) (69)
- e

The validity of these conjectures will now be tested against the exact
results available from our analysis of the first order Markov correlation model.
We begin by calculating Barton's Ne'

In {67) we interpret tc as the correlation time of the process at the detec-

7
See references at end of text.
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tor output. Thus letting ¥ and y denote i.i.d. stationary Gaussians which rep-
resent the inphase and quadrature components of signal at the detector input,

the detector output becomes
. A2
zic) = x(£) + y2(t) (70)

Its average (denoted by an overbar) is

Z(t) = x°(t) + y2(t) = 2R_(0) (71)
where [c.f.(31))
R (1) = &_(0) & VIT] (72)
X b
is the autocorrelation of the inphase (or gquadrature) Markov process.
The covariance function at the detector output is
R, 7(T) = [z(t) -2z (£)] [z (t+T) -z (£+T)] = 2[R 2(1)-Rx2(0)1. (73)
x
which, since x(t) is a Gaussian process, yields
R —(T) = 4R_2(T) (74)
- z-z x
The "two sided fluctuation spectrum" is interpreted as the Fourier trans-
form of the covariance function, i.e.,
¢ o2 2v|t|-i2n¢ 2 4
-2 -i2m v
s () = f ar *(0)e vitl-i2mer, o p 200y (75)
X x X 2 2
-0 4V +(27f)
This has an effective noise bandwidth, fB' given by
0
. .!:Sx(f)df R = ©
— - - - -6
s S s, -V ¢
X xX
30.
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Since the observation time is (N-1)T and ([c.f.(31)] p = e-vT the correlation

T A

time tc' is T/ln%. Thus

L
L0

N, (N,0) = Min. [N, 1+(N-1)1n %] (7N

rror

A more common definition of the number of independent integrated pulses

is the increase in the ratio of squared mean to variance when N pulses are

M |

summed, i.e., define

N
A 2 2
‘ Yy zl: (xn +y, ) (78)
;
' then
. =2
b g N / oy
@ Nt T2 (79)
. v / g
: v/
- It is easily shown that
o°
v 2
2 1 N
b S 2 N-1 " . (80
Vi N + 2 gg& (N-m) R _“(m)/R *(0)

Since for the first order Markov model

|m]

R (m) =R (0)p (81)

eq. (80) yields

|rr."'v.'  on S A
R PAEMES

N
NI(N,c) - 7 N (82)
2 N 2
1-p 1-0

Note that N, > NI except at N = 1 or p = 1, or ¢ = 0 where equality obtains.

Table II1 compares Ne with No for the N and 0 of table II.

Figures 8-12 are plots of the exact fluctuation losses of table II versus Ne'

31 ]
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the number of equivalent indepandent pulges as daefined by Barton. The solid
curves represent Lf(Ne.O), i.e., the left side of (69). Aside frém a neglig-
q ible positive curvature which is most pronounced at low Ne and high PD, these

do (as Barton conjectures) exhibit a linear decrease with Ne' The dashed curves

AL

reprasent the right side of (69), i.e., %— Lf(l.o). We gee that the solid and
a

a4

dashed curves are within 1/2 dB of each other; further we note that

t N _.1 - a

; L (N .07 < N Lg(1,0) (P, = 0.50) (83)
1

a > — L - . . . ’ . ¢ . (84

* Lf(‘ve,o) v Lf(l,p) (PD 0.70, 0.90, 0.95, 0.99) )

in Figures 10-12 the upper solid curve is the continuation of Lf(Ne,O)
into the region 10 :_Ne_i 30 (divide the ordinate by 10 and multiply the

abscissa by 10). The dashed curve, 1 Lf(l,o). is its own continuation.

N
e

s

3

4 The symbols *, x,Q, 4,0, V, identify values of L.(N,p) for ¢ = 0.40, 0.60,
b 0.80, 0.90, 0.95, 0,99 respectively.

ii We see that for PD = 0.50 and 0.70, Barton's first conjecture underesti-

. mates the exact fluctuation loss by a fraction of a dB. For P_ = 0.90, 0.95,

D
0.99 the first conjecture ovarastimates the exact fluctuation loss at small

Ne (by more than a dB at PD = 0.95 and by several 4B at PD = (0.99) and under-
estimates the exact fluctuation loss by less than a dB at large Ne' Since
the fluctuation loss monotonically decreases with Ne’ Barton's first conjec-

ture gives a result which is conservative when the losssg are large, and op-

timistic when the losses are small.

If one were to use NI instead of Ne to represent the number of indepen-
dent pulses, the symbols representing Lf(N,c) would shift to the left so that
the approximations weould become even more conservative at PD = 0.90, 0.95,
0.99 when the losses aré large. Thus Barton's N, is the preferred approxi-
mation for Pqu 0.90 (large losses), while the approximation using NI is to

4 be preferred for PD < 0,70 {small losses).
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TABLE III

EQUIVALENT NUMBER OF INDEPENDENT PULSES

T T T T e e g N N TN N N Y e Y Y T FYL Y IS F g _u =% —a~ -
PRENPR S 4 RIS Bt N . PR LA TR R e Pl ali il 4N N

o) N=2 Neq Ne=t N=10 N=15 N=20 N=30
Hy NI N. NI N‘ NI N. NI N. NI N. NI N‘ NI
0.40 1.92 | 1.72 | 3.75]3.16 [5.58 | 4.60 9.25] 7.49 [13.83111.11|18.4114.72]27.57121.96
0.60 1.5011.47]2.53]2.36 [3.55]3.27 |5.60} 5.13]8.15] 7.47|10.71| 9.82|1f.81}14.52
0.80 1.22 41.2211.67|1.60 |2.12 | 1.99 |3.01] 2.79 | 4.12| 3.8S| S5.24} 4.92| 7.47] 7.10
0.90 1,10 |1.10 [1.32{1.28 [1.53|1.44 }1.95] 1.79] 2.48| 2.25] 3.00§ 2.73| 4.0e]| 3.73
0.95 1.05 }1.05 | 1.15} 1.13 |1.26 | 1.21 }1.46] 1.36| 1,72 1.57| 1.97]| 1.78| <.49| 2.23
0.99 1.01 J1.01}1.03]1.03 [1.05}1.04 J1.09} 1.07| 1.14} 1.10{ 1.19| 1.24| 1.29]| 1.21
33
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