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PART ONE. EXACT DETECTION PROBAB1L1TY

I. INTRODUCTION

"The determination of detection probability when the sum of N detected

pulses of signal plus noise is compared to a threshold hz.s been studied by

Marcum, Swerling, Schwartz, and Vannicola, among'others. Marcum1 treated

the non-fluctuating target; Swerling2 treated two limiting fluctuating tar-

get situations (complete correlation and complete decorrelation) - he also

* presented a general method for treating arbitrary correlation 3, but aave no

results for particular correlation models; Schwartz4 achieved an exact solu-

tion when there are only two pulses; Vannicola 5 has constructed a solution

"from Swerling's two extreme fluctuation models by considering M independent

sets of N fully correlated pulses - his solution applies only to targets

which are block correlated. This paper extends the previously referenced

"work and presents exact results for a Rayleigh target whose inphase (and

quadrature) components have exponential correlatic:n.

12 See References at end of text.

... ` • • •.° L • • . . • -- - .`. - % . • • . . . • . ` -•..- .° .•` `. •. . .•. - -. . . •- .. . "-.
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I1. AN,',AYSIS

b % note the inphase and quadrature components of siqnal and noise respect-

ively by thb Nxl complex vectors A+iB and X+iY. We assume (i) AI are i.i.d.;

(ii) X,Y are i.i.d stationary Gaussian; (iii) the noise is additive and inde-

pendent of the signal. Employing the Noyman-Pearson detection criterion, the

probability of detection is given by

• PD • pvT P(v)ldv()

VT

:O where v is the integrator output normalized to the average per pulse noise

power, i.e.,

ý.

" IA+X12 _+ I4Y 2, (2)

and V is the normalized thresho'.3 determined by the specified probability

of false alarm,

F • fF p, ,(V IAI + BI -0) dv (3)
. -[ VT -

In order to determine P we require the probability density function (pdf)

of v. we first write pv(v) as an inverse Laplc. -e transform

40 N+joo
()svSp(v)- - Iz-n-r Lv(S)e ds (4)

2,1i f.

5 2

..................... .. .......................................................



Next recognizing

(s) - pv M)e-'dv (5)

- vas the expectation of e we proceed to calculate thls expectation over

the domain of A,B,X,Y i.e.,

AXJ2 +IB+Y,2-- ~~IA+Xj2 + 1÷Zl

Lv(s) -S f f f (A,B,X,Y)e- 2 2 dAdBdXdY (6)

In view of the three assumptions characterizing the signal and noise, the

joint pdf of A,B,X,Y may be written as

p(ABX.Y) p pA(A)p (B) 1 e 262 (7)
(21TB')

Thus (6) becomes

L(s) - 0A (A)dA C 22 2

00 2
vN/2dx] ( 8)

L•- (21T82

I

or, completing the square in X,

-fP ( •e ' f;s + AI2 1
' P~A eA 8

.3

--



Thus for any signal model we have the general formula

- s+1 2
"( (s) (WelN A(AA (10)

A. Marcum Model

The non-fluctuating target may be accommodated by choosing

* N
pA (a1 .... ,aN) - H6(a-c) (-(I

where 0 (-) is the Dirac delta function. Then (10) yields Marcum's

result

SslNX
I ~Sl

L v(s) - -+) e (12)V (s+l)N

where X is the per pulse ratio of signal power to average noise power, i.e.,

A 2- (13)S2

B. Swerling Models

Typical radar targets are composed of a lacgc number of scatterers

whose distances relative to the radar change with body vibration and vary-

ing target aspect. The echoes from the individual scatters contribute

40"



amplitude and phase terms which combine at the radar frequency to produce

a fluctuating signal. Swerling has bounded the effects of target correla-

tion by considering two limiting situations: The slow fluctuation model

(unity amplitude correlation on a scan, scan-to-scan independence) and the

fast fluctuation model (zerc amplitude correlation on a scan, pulse-to-

pulse independance). These may be accommodated by choosing respectively

N

PA (al ..... aN N a(a 1 ) H (a ,-a ) (14)
2

and

N
p a (a ., .... taN ) p a a (a n )1 )

1

Measurements of echoes from mitany types of radar targets confiim that the

best charactrrization of the first order amplitude statistics is given by

the Rayleigh distribution. (The best characterization of the autocorrela-

tion function of the radar cross section is given by an exponential func-

tion.) Thus we assume

I2

r

S(r) - e a (0 < r < •1 (16)

Ia'a+b 2

where 2a is the average target cross section. In the remainder of this

paper we confine our attention to this "Rayleigh target".

The inphase (or quadrature) components have first order statistics

given by

2a

1 2
Pa (a) e (17)0. -~

See References at end of text

*5
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Thus the generdl formula (10) specializes to Swerling's slow fluctua-

tion result (case 1)

L (-) '" (18)
V ( 5+ 1)N-1 (l+NX)s+l)

P-o.

"when (14) is employed as the correlation model and to Swerling's fast

fluctuation reault (case 2)

S(a) (19)

when (15) is employed as the correlatioa model.

C. Partially Correlated Model

In order to accommodate Rayleigh targets which give rise to partially

correlated signals (0<pcl) we introduce the general correlation model

1 2T -1

20e L20N2CtPA (all .... aN) e ()N/2 2Cj (20)

(27r) IacKl~

where "T" denotes transpose and C is the covariance matrix of .

For this correlated Rayleigh model, (10) yields

6
_S.

....................................................,_'-.



A NC_ + 7;AxI)(1)A
•" Lv (s) -A (21)__ e a

(Is+f)N (21T)&N/ 2 1(2c1i ]21)

In (21) I is the identity matrix and X [c.f.(13)] is the average signal-to-

noise ratio. In order to evaluate the integral we assume that C is posi-
-1 -1 Stive definite; then so also is C ; hence when s > 0, C + -1 I is non-

singular and (21) may be written as

K - -- AT C-l1 + x A 2

() + IN Uc-c-l+ s2 Ž ) dA (22)
S ( 2 -T) N / 2 C ,2 ( C - 1 + s-- X 1 -T

Since the integral equals unity we have

• 1

L (s) -(3v (s+l)I + sXCI

Expressing the determinant in terms of the (positive) eigenvalues

X•'...... X of C the Laplace transform of p (v) is given by
- N v

S

L (s) (24)
v N

. [(l+XXn)s+-l]
• 1

•..• .
.S

'V- - ' - - - - . - V ' : - - - *p-



Swerling's results may be obtained from this formula by choosing XllN, X =0

(n#l) for the slow fluctuation case [c.f. (18)], and X -i for the fast fluctu-
n

ation case (c.f.(19)]. These correspond respectively to the singular co-

variance matrix

C - NO (25)

in which the first pulse contains all the averacge signal power of the

*O pulse train and the remaining pulses contain no bignal, and to the identity

matrix

C10L0 I J (26)

in which the total average signal power is uniformly distributed among the

N pulses.

The inverse laplace transform of (24) now yields the pdf of the inte-

grator output. When X-0 we obtain

N-1-v v (27)
.Pv (VIX-0) e (N-1) i

and when XO0, (assuming distinct eigenvalues) we obtain

o_

-. 8

-.



v

N N k ½xX n
- Z(v) (28)

I.

." Z II v (v1 +XXn I+XX (8

Thus [c.f.(3)] the threshold, VTI is given in terms of the specified PFA

by

-VT N-I V

and (c.f.(l)] the probability of detection by

"" t c E) e 1n (30)

In order to calcula-e P D for any particular correlation model we must

provide a description of the correlation matrix. If the signal arises from

a stationary process, then C is a symmetric Toeplitz matrix with N distinlct

elements. We should like to associate the eigenvalues with a single correl-

ation parameter, p, in terms of which P may be conveniently characterized.
D

For this purpose we assume that the signal is described by a first order

Markov process. This is consistent with Edrington's measurements which show

that the radar cross section is exponentially correlated.

Consider a signal which consists of a train of N pulses with uniform spac-

ing T. Let the k,n element of C be taken as

Ck e k-nTv A k-nOCk e (0<0<I) (31)

9



then

c - (32)
LP

The eigenvalues of C provide a non-trivial solution to the matrix equation

(C - XI]U - 0 (33)

since the sum of the eigenvalues equals the trace of C we have the relation

N
n N (34)

which we make use of later.

Consider first the special case of a low prf (pulse repetition frequency)

waveform for which the interpulse spacing, T, is so large that the correla-

tion of noncontiguous pulses may be neglected. Thus C becomes tri-diagonal

and (33) is equivalent to a homogeneous bvp (boundary value problem). This

consists of a set of homogeneous second order difference equations

Pu n- + (l-X)u n + Oun+l - 0 (n-l,...,N) (35)

together with the homogeneous boundary conditions

u N0 "N+l 0 (36)

Since the equation is linear and has constant coefficients, there are

10
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two solutins in the form

u n yn (37)

where

X- 1 j7772 -1y t 2 (38)

The condition > I implies either X > 1+2P or X < 1-2p, each of which

leads to a contradiction of (34). Hence we must have 1 < 1 , i.e.,

y e e where

Aos (39)

tine
We write the general solution to (35) in terms of e as

u K cos nG + K2 sin ne (40)n 2

Since u0 - 0, we have

0u -K sin nO (41)
n 2

and since u = 0, 0 satisfies the transcendental equation.2 N+1

* sin (N+l)e - 0 (42)

"Further since (41) is a non-trivial solution, e cannot equal 0 or 1T.

Thus tre roots of (42) are

6 = -- l (n=lT....N) (43)
n N+I

r . . . .. .- - .. ---.. •.i -..i,.-i- -i-;,.-i. -2?-? -L -2 72- .--.. . . ..... ,.. . ...-.. .,_-.-... .- .... . . . . . ." '. ." i " "-.,.......". "



Note that they are equally spaced in the open interval (0,7). Equation

(39) then yields the distinct eigenvalue5

1-2P < X . 1 + 2p cosn < 1+2p (n-l,...,N) (44)n n

so that P is given by (30).

When the correlation of non-contiguous pulses may not be neglected

we require the eigenvalues of the full C matrix. As is easily verified,

the inverse matrix, C-, is the tri-diagonal matrix

2 ( 40

1-I IN • "-l 1- (45)

SI+P2 _P

L J

Thus the eigenvalue problem to be solved is

(1-02) (c-1 - ;1 I)V-o (46)

or

I2

_ 0

I+•2 1-2

SH
•.• •.(47)

S-- I-
2 1.2 -0

I 1 -0 2

"L"-0 ---- tVN j

12
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In the special case N-2, this becomes

"-..1 - -L -P vI0
""r 1[ [(48)

_•-P 1i -0 I2 0

which leads immediately to the distinct eigenvalues

-1 ± P (49)

Equation (30) then yields PD which may be written in the form

*. (l+X)VT

"PD e (l+X) 2 
- (PX) 2 [+X sinh PXVT 1XVT 1 (50)

Ox(+x) 2 - 2 + cosh21
r1 ( (0)( .- +)o (O-

* which is the same result as that of Schwartz.

"To solve (46) when N>2, we employ the technique developed for the low

prf waveform; i.e., we again formulate and solve 3n equivalenc homogeneous

bvp. From (47) we have the equation

+ (1+0 v2 -vn+ 0 (n-l,....N) (51)

*O and the boundary conditions

v0  - 0 (52)

* VN+l Pv - 0 (53)

Again there is a solution of the form (37), provided that

1+02 -P-2

'Y [1+02 - ± (+ -2- 4,-) 2)) (54)

13



Since (+ 2 I-02)/(20) > 1 implies either X > or X < _I-0" -- -- 1-0 -- +P'

equation (34) cannot be satisfied. Thus we introduce the real angle 0 by

means of

2

2p
Cos e

and write the solution in the form (40). Application of the boundary

conditions then yields the pair of equations

1[-P cosOeK 1 - [P sinflK2 = 0 (56)

[cos (N+1)6 - p cos N6]K1 + (sin (N+1)0 - p sin NOIK = 0 (57)

U( [c.f.(42)1,

2
sin(N+l)0 - 20 sin Ne + p sin(N-l)e - 0 (58)

Since the values 6.-0, 1T do not permit a non-trivial solution to the bvp,

the roots of (58) again lie in the open interval (0,M). Since it has not

becn possible to solve (58) analytically, the following remarks allow a

numerical soli.tion to be easily achieved:

To show that there are exactly N roots between 0 and TT we first write

(58) as

[(l+p 2)cos6-2p] sin Ne + [(-p 2)sin 0) cos N6 0 (59)

then introduce the function D(9) by means of

sin t(e) A (1-02) sine (60)

-1+'2- 20 cos8

* 14
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C o (s ) P (1+0 2)cose - 20 (61)
1 + p2 - 2P cose

so that (59) becomes

sin [N6 + ý(O)] - 0 (62)

[N.B. as P-0, 00() 6 0 and (62) ÷ (42)]

Since

f - > 0 (63)
dO l+P - 2pcose

we have

iT2

I(r.) - ¢(0) + f 2-0 dO - Tv (64)
0 l+p - 2pcosO

Since (62) represents a modulated sinusoid whose total phase increases

monotonically from 0 at O-0 to (N+I)lT at 6-n, it has exactly N distinct

zero crossings in the open interval (0,r).

2
Further, since - < 0 in (0,iT) and 1- at cosO-p, the function

dO

sin (NO +J(6)] oscillates more rapidly than does sin(N+l)e in the domain

0 < 0 < cos- p and more slowly (but still more rapidly than does sin NO)
-I

in the domain cos p < 0 < n. Using these observations concerning the

spacing of the roots, it is an easy matter to accurately locate the roots

by means of a Newton-Raphson method.

Denoting the roots by i . the eigenvalues [c.f.(55)] are given by

... -N

is -.



.- I- < < l+__ (n-1,... ,N) (65)

_I+ n l+P2 - 20cosO 1-P

n

"and the detection probability by (30).

Note that expansion of (65) into a power series in 0 yields a first

order approximation which is identical to (44) - a useful check.

S111. RESULTS

Figures 1-7 present detection probability versus per pulse average

signal-to-noise ratio in dB for false alarm probability .of 10-6 and N-2,4,

6,10,15,20,30 pulses respectively.

The dashed curve is the Marcum result which was obtained by employing
(11) in (10), performing the Laplace inversion and integrating the result-

ing pdf over the threshold; this leads to

"k
-(V +NX) n N-l+n V

"- P + e T n : T k- (66)
"-An-1 k-N

The closest dark curve is the Swerling case 2 result (p-0) which

was obtained by replacing VT by VT/(l+X) in (29).

The next (lighter) curves are the results for C-0.40, 0.60, 0.80,

0.90, 0.95, 0.99 respectively.

The last (dark) curve is the Swerling case 1 result (P-i) which was

obtained by performing the inverse Laplace transform of (18) and inte-

grating the resulting pdf over the threshold; this leads to

* k
_V g \nN-1 +n Vk

1 T _ L T
"D FA i•÷ + e I+NX k-N

1n- k6N

i 16



For N-20, the numerical instability exhibited at small values of X when

- 0.99 is caused by the small tigenvalues [c.f.(65)1 which cluster together;

i.e., by indexing the eigenvalues according to size, it may be seen that the

individual terms in (30) alternate in sign and increase in magnitude as the dif-

ference XXn - becomes smaller. This instability becomes more pronounced and

occurs at even smaller values of P as N increases (it occurs at 0 - 0.95 when

N - 30). In order to present a clean figure when N - 30, the curve for p - 0.99

has been deleted from figure 7.

"The figures show that as p increases from zero to unity, more per pulse av-

erage signal-to-noise is required to achieve the same PD' This increase, how-

ever, is, smaller than one would intuitively expect; for example, increasing 0

from zero to ope-half requires an additional increase of less than a dB in

signal-to-noise at any 0.50 < PD < 0.99 and N > 1 while, for example at PD)

0.95, inczeasing P from zero to one requires an increase of 5.2 dB for N - 2

Sor 10.6 dB for N 30.

1
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"PART TWO. FLUCTUATION LOSS

1. INTRODUCTION

The exact fluctuation loss for a Gauss-Markov signal is determined as a

function of the number of integrated pulses, the correlation between conti-

guous pulses and tie specified detection and false alarm probabilities. This

exact loss is compared to Barton's 7 approximation which calculates fluctuation

lozs by assuming a Swerling case 2 target and a reduced number of "independent"

pulses. Two expressions for the number (N or N ) of equivalent indepe-Aent
eI

pulses are derived. The domain of validity of the approximations is estab-

lished.

7 See references at end of text.
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11. BACKGROUND

Figures 1-7 of part 1 show that at fixed PFA and N a greater per pulse aver-

age signal-to-noise ratio (detectability factor) is required to achieve a speci-

fied PD (5 0.50) when the target fluctuates than when it does not. This re-

quired increase in detectability factor is called the fluctuation loss. For

fixed PD and PFA it depends on the number of detected pulses and their correl-

ation and will be denoted by L f(N,Q).

Table I presents the detectability factors D 0(N) for a non-fluctua&ing tar-

get, D 2(N) for a Swerling case 2 (P-0) target and D (N) for a Swerling case 1

(0-1) target at various PD s of interest; also shown is the normalized thresh-

old voltage required to achieve the conmmon PFA of 10-6. This table has been

calculated from eqs. (66), (29) with VT replaced by VT/(l+X); and (67) of part J.

For the PD 's of interest the fact that for N>l,

Lf(N,l) D D1 (N) - Do(N) > D2 (N) - D0(N) - Lf(NO)

is well known to radar systems engineers from the previously published work of

Marc'um and Swerlinr_

Whenever a surveillance radar encounters the situation P1, the target may

lie in a deep fade for all N pulses received on a given scan, thus causing a de-

tection to be missed. In order to avoid this situation some radar systems de-

correlate the N signal returns by transmitting pulse-to-pulse frequency diverse

waveforms. This certainly decreases the fluctuation loss from Lf(NO) to Lf(NO)

(a considerable reduction at high PD and N) but involves increased system com-

plexity and cost.

Fluctuation loss depends not only on PF and P but also on the fluctuation

model and the correlation model. For PFA - 10 , a Gaussian fluctuation model

(Rayleigh envelope), and a first order Markov correlation model the analysis of

part I yields the appropriate detectability factors for each N and p. By sub-

tracting the detectability factor D0(N), we obtain the fluctuation losses,

Lf (N,,), of table II.

It is observed that the fluctuation loss increases monotonically with PD

and, except for the singular case p - 1, decreases monotonically with N. Of

greater significance however is the nature of the monotonic increase in fluc-

tuation loss with o and in particular its rate of increase as 0 approacheL 1.
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TABLE I

DETFCTABLILZTY FACTORC AT PFA 10-6

pD -0.50 PD-0.70 PD-0.90 P -0.95 pD -0.99 VT(d)

SD0 (N) D0 (N) D (N) D a(N) O 0(N)

1 11.24 12.09 13.18 13.66 14.50 11.40

2 8.80 9.61 10.65 11.11 11.91 12.22

4 6.49 7.26 8.25 8.68 9.44 13.29

6 5.21 5.94 6.90 7.32 8.06 14.05

10 3.65 4.35 5.27 5.67 6.38 15.15

15 - 47 3.14 4.03 4.41 5.10 16.13

20 1.66 2.31 3.17 3.55 4.21 16.89

30 0.54 1.18 2.00 2.37 3.01 18.03

D2 (N) D (N) D)2 (N) D2 (N)

1 12.77 15.77 21.14 24.29 31.3"

2 9.52 11.53 14.83 16.62 20.47

- 4 6.83 8.28 10.51 11.65 13.97

6 6.65 8.49 9.41 11.22

10 3.', 4.80 6.29 7.02 8.40

15 2.5'. 3.46 4.75 5.36 6.52

j 20 1.71 2.55 3.73 4.29 5.32

30 0.58 1.34 2.39 2.68 3.78

S DID(N) D 1D(N) DI(N) DI(N) 01 (N)

1 12.77 i 15.77 21.14 24.29 31.37

2 10.34 13.32 18.69 21.84 28.91

S 4 8.03 11.00 16.36 19.51 26.60

6 6.74 9.71 15.07 18.21 25.30

10 5.19 8.15 13.50 16.64 23.73

15 4.00 6.96 12.31 15.45 22.54

20 3.19 6.14 11.49 14.63 21.72
30 2.08 5.03 10.37 13.-1 20.57
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TABLE II

L f(N,P) - FLCTUPTION LOSS (dB)

SN P-0.00 P-0.40 P-0.60 P-0.80 P-0.90 P-0.95 P-0.99 o,'..

2 0.72 0.85 1.04 1.28 1.41 1.48 1.51 1.53
4 0.34 0.46 0.65 1.00 1.26 1.40 1.49 1.54
6 0.21 0.31 0.47 0.81 1.12 1.32 1.47 1.53

0.50 10 0.12 0.19 0.29 0.58 0.92 1.19 1.43 1.54
15 0.07 0.11 0.19 0.42 0.73 1.04 1.39 1.53
20 0.05 0.08 0.14 0.32 0.60 0.93 1.34 1.53
30 0.04 0.06 0.10 0.22 0.44 0.65 1.26 1.54

2 1.92 2.13 2.44 2.95 3.31 3.51 3.64 3.71
4 1.02 1.24 1.58 2.26 2.86 3.22 3.57 3.74
6 0.71 0.90 1.21 1.86 2.54 3.06 3.53 3.77

0.70 10 0.45 0.59 0.83 1.40 2.08 2.72 3.44 3.80
15 0.32 0.42 0.61 1.08 1.71 2.35 3.35 3.82
20 0.24 0.33 0.48 0.88 1.45 2.12 3.23 3.83
30 0.16 0.22 0.33 0.64 1.12 1.74 3.C-4 3.85

e
2 4.18 4.49 4.93 5.79 6.59 7.21 7.88 8.04
4 2.26 2.59 3.13 4.23 5.36 6.36 7.73 8.11
6 1.59 1.90 2.39 .3.48 4.66 5.79 7.65 8.17

0.90 10 1.02 1.27 1.68 2.65 3.78 5.00 7.44 8.23
15 0.72 0.93. 1.25 2.11 3.15 4.33 -7.24 8.28
20 0.56 0.72 1.01 1.73 2.72 3.87 6.98 8.32
30 . 0.39 0. 52 0.73 1.32 1 2.17 3.23 6.58 8.37

2 5.51 5.84 6.33 7.33 8.32 9.18 10.52 10.73
4 2.97 3.36 3.96 5.24 6.60 7.86 10.32 10.83
6 2.09 2.44 3.03 4.28 5.68 7.08 10.22 10.89

"0.95 10 1.35 1.64 2.13 3.27 4.62 6.06 9.93 10.97
15 0.95 1.19 1.60 2.58 3.84 5.26 9.66 11.04
20 0.74 0.94 1.29 2.16 3.33 4.69 9.32 11.08
30 0.51 0.67 0.94 1.65 2.66 3.92 8.79 11.14

2 8.56 8.91 9.47 10.61 11.83 13.04 16.70 17.00

4 4.53 4.98 5.70 7.22 j 8.88 10.56 16.38 17.16
6 3.16 3.60 4.32 5.84 7.56 9.34 16.22 17.24

* 0.99 10 2.02 2.40 3.02 4.44 6.13 7.93 15.77 17.35

15 1.42 1.74 2.27 3.52 5.11 6.87 15.34 17.44
20 1.11 1.38 1.86 3.02 4.46 6.16 14.80 17.51

30 I 0.77 0.99 1.38 2.31 .. 61 5.10 13.94 17.56
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For example,' suppose all we know concerning the target returns is that they are

not independent; if we make the usual assumption that they are fully correlated

(i.e., 0-1) and integrate 30 pulses to achieve required PD's of say C.90, 0.95,

0.99 respectively, then a system which employs pulse-to-pulse frequency divars-

ity could recover the fluctuation losses [Lf(30,l) - Lf(30,0)] of respectively,

8.0, 10.6, and 17.8 dB. If however p is not in fact equal to 1.0 but is instead

0.9 then the recoverable fluctuation losses are only 1.8, 2.2, 2.8 dB respect-

ively (at p-0.8 the recoverable losses are even smaller, viz., 0.9, 1.1 and

1.5 dB). Thus the trade-off of system complexity versus recoverable fluctua-

tion loss is markedly affected by knowledge of the dependence of fluctuation

loss on signal correlation - a dependence established in part 1 of this paper.

In summary, the usually employed assumption, 0-1, should not be facilely

invoked simply because the signal returns are known to lack tr.tal independence.

Doing so results in an extremely optimistic estimate of the b-nefits which

can be achieved by employing frequency diversity.

Ill. ANALYSIS

e next consider two approximations which greatly simplify the determin-

ation of fluctuation loss for any correlation model. Eartor' introduces the

concept of the number of equivalent "independent" pulses; this is defined by

N min. N, 1 ] (67)
eI 

C

In (67) t is the observation time and t is the correlation titue (which Bartono c

defines for any correlation model as the reciprocal of the effective noise band-

width of the two sided fluctuation spectrum). The definition, (67) is assumed

to be valid independent of P0 or P FA Barton's two conjectures state;

Lf (Np) 2 Lf (N e0) (FIRST CONJECTURE) (68)

Lf(NO) 1- L (l,p) (SECOND CONJECTURE) (69)
e

The validity of these conjectures will now be tested against the exact

results available from our analysis of the first order Markov correlation model.

We begin by calculating Barton's N .e

In (67) we interpret t as the correlation time of the process at the detec-c

See references at end of text.
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tor output. Thus letting x and y denote i.i.d. stationary Gaussians which rep-

resent the inphase and quadrature components of signal at the detector input,

the detector output becomes

2 2
z(C) - x (t) + y (t) (70)

Its average (denoted by an overbar) is

z(t) - x (t) + y (t) - 2R (0) (71)

M x

where [c.f.(31)]

R x(T) - Rx(0) e-VITI (72)

is the autocorrelation of the inphase (or quadrature) Markov process.

The covariance function at the detector output is

2R -(T) - [z(t)-z(t)][z(t+T)-z(t+T)] - 2[P 2 (T)-R (0)] (73)z-z

which, since x(t) is a Gaussian process, yields

2
R -t-() - 4R (C) (74)

The "two sided fluctuation spectrum" is interpreted as the Fourier trans-

form of the covariance function, i.e.,

F- S (f) 4R -O2vlTIli2TLEdu 2(0 4\)
Sx(f) Jf 41x 2()e-dT - 4R 2(0) 2 2 (75)

-_C 4v +(2lTf)

This has an effective noise bandwidt-h, fB given by

00'

f S (f)df R- (C)

B S (0) S (0) " v (76)x x
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Since the observation time is (N-I)T and (c.f. (31)] p - a the correlation

time t , is T/in-l. Thus

L 1

N (N,p) - Min. fN, i+(N-l)In -] (77)

A more common definition of the number of independent integrated pulses
is the increase in the ratio of squared mean to variance when N pulses are

summed, i.e., define

v x n2 N Y 2 (78)

then

-2
1 2/2A N/ VN

0 NI/ v
It is easily shown that

rV
2 1 N"N" N -T N-i (80)

2 2
V N + 2 (N-m) R (m)/R (0)
N mix x

Since for the first order Markov model

R (m) - R ( 0)01Imn (81)
x x

eq. (80) yields

N
N (N,p) - (82)

0+12• N 2

i-p 1-0

Note that N > N except at N - 1 or p - 1, or o - 0 where equality obtains.

Table III compares N with N for the N and 0 of table II.

Figures 8-12 are plots of the exact fluctuation losses of table II versus N e
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the number of equivalent independent pulses as defined by Barton. The solid

curves represent L f(N e,0), i.e., the left side of(69). Aside from a neglig-

ible positive curvature which is most pronounced at low Ne and high PD, these

do (as Barton conjectures) exhibit a linear decrease with N . The dashed curves0
represent the right aide of (69)•, i.e., •- Lf(l,p). We see that the solid and

e

dashed curves are within 1/2 dB of each other; further we note that

Lf(Ne .r < i- Lf(1,0) (PD M 0.50) (83)
0

1
L (Ne,0) > - L (1,0) (P - 0.70,. 0.90, 0.95, 0.99) (84)
fe N f D0

in Figures 10-12 the upper solid curve is the continuation of Lf (Ne,0)

into the region 10 < N < 30 (divide the ordinate by 10 and multiply the1
abscissa by 10). The dashed curve, 1- L (1,0), is its own continuation.

N fe

The symbols , x,o, A,0, V, identify values of Lf(NP) for p- 0.40, 0.60,

0.80, 0.90, 0.95, 0.99 respectively.

We see that for PD - 0.50 and 0.70, Barton's first conjecture underesti-

mates the exact fluctuation loss by a fraction of a dB. For PD - 0.90, 0.95,

0.99 the first conjecture overestimates the exact fluctuation loss at small

N (by more than a dB at P w 0.95 and by several dB at Pt - 0.99) and utnder-
e D

estimates the exact fluctuation loss by less than a dB at large Ne. Since

the fluctuation loss monotonically decreases with Ne, Barton's first conjec-

ture gives a result which is conservative when the losses are large, and op-

timistic when the losses are small.

If one were to use NI instead of Ne to represent the number of indepen-

dent pulses, the symbols representing L f(N,C) would shift to the left so that

the approximations would become even more conservative at P . 0.90, 0.95,D
0.99 when the losses are large. Thus Barton's Ne is the preferred approxi-

mation for PD > 0.90 (large losses), while the approximation using N is to

be preferred for PD < 0.70 (small losses).
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TABLE III

EQUIVALENT NUMBER OF INDEPENDDT PULSES

0 N-2 N-4 N-6 N-10 N-15 N20 N-30

1e NI No N N NI N NI No N Ne NI Ne N
0 I I t I a I 6 I * II

0.40 1.92 1.72 3.75 3.16 5.56 4.60 9.25 7.49 13.83 11.1 18.41 14.72 27.57 21.96

0.60 1.51 1.47 2.53 2.36 3.b5 3.27 5.60 5.13 8.15 7.47 10.71 9.82 1•.81 14.52

0.80 1.22 1.22 1.67 1.60 2.12 1.99 3.01 2.79 4.12 3.85 5.24 4.92 7.47 7.10

0.90 1.10 1.10 1.32 1.28 1.53 1.44 1.95 1.79 2.48 2.25 3.00 2.73 4.06 3.73

0.95 1.05 1.05 1.15 1.13 1.26 1.21 1.46 1.36 1.72 1.57 1.97 1.78 z.49 2.23

0.99 1.01 1.01 1.03 1.03 1.05 1.04 1.09 1.07 1.14 1.10 1.19 1.14 1.29 1.21
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