
AD-MN 33VLSI (VWR LARGE SCALE INTEGRATED) DESIGN GF A SIXTEEN v/1
MW- " F33BIT IEL INED, NULT.. (U) NAVAL POSTGRADUATE SCHOOL

NOT1VCA R J SIMNIK JUN 85
UNCLSSIFIED F/G 9/5 NL

mEohEEmhhhhhhE

mhEEEEh~hhIN

1111.0 M 2 2
2.2

11111 .1 ~ ' 112.0

1.125 ((1.4 111.

mill,

MICR~OCOPY RESOLUTION TEST CHART

NATIONAL S tA OF STAARS -'963

A

.° . -

. .I

- . . p. .

I (Ido

NAVAL POSTGRADUATE SCHOOL
Monterey, California

JJ

-THESISiv

VLSI DESIGN OF A
SIXTEEN BIT PIPETINED MIITIPIIEP

USING THLREE MICRON MNIOS TECIINOIO(iY

~by

Richard J. Simehik ,Jr.

" ,June 1985

• ~., .

"* ' I" " Thesis Advisor: II. II. I.mis

Approved for publ i c rl ,as,; di.st ri hut ion unI inn ,d.

| - .. -.- -

SECURITY CLASSIFICATION 'tF THIS PAGE 'Whan Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REOR NVTE AC*00 3 RECIPIENT'S CATALOG ,JMBER

4. TITLE (and Subtitle) 5. TYPE OP REPORT & PERIOD COVERED

VLSI Design of a Sixteen Bit Pipelined M1aster's Thesis;
Multiplier Using Three Micron NMOS -June 1985

6. PERFORMING ORG. REPORT NUMBER

Technology

7. AUTHOR(I) S CONTRACT OR GRANT NumBERI)

Richard .. Simchik Jr.

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMEN
T

. PROJECT, TASK

Naval Postgraduate School AREA & WORK UNI, NJMBERS

Mjontcrey, California 93943-5100

11 CONTROL _ NG OFlICE NAME AND ADDRESS 12 REPORT DATE

N.aval Postgraduate School June 1.985
Mjonterey, California 939-43-5100 n. NU1EROFPAGS

94t

4 MONI
T

ORING AGENCY NAME & AODRESS(HI differenr !rom Controlirll Office) 15. SECURITY C-ASS, -! !hf@ report)

I UNCASSIFIED

15 , OECL1,SS7 CA-,",N DOWNO1 ADING

16 OIS RI N S"A-EYEN
-

zof r.hIs Report,

.\ppr()vd for public rlol(u,tS1; dis tribution uniimi,Id.

17 DISTPI0BUj' N S A mcN ' . ehs!rec, entered in Block 20, if different trom Report

18 S-PPLEME-,AP- ~Z

,, '\' V I'S 1 "11111 n . i ,, 1. i,. 1.nr 1ft. '', .

20 A BSTRACT "Con!In'e on seire ede if leoselrv atd Identifv by bo.-k number#

~u T hrf d lppin in'nt I stn ir{' ,.It l j ,l-b ,, i.- .' '

i ir in thr((,flii n \',i)S 11 ir91tr(j-. ,

,' (..u i ,](s,4) o-ii r l :I i p ' . I , % .,

-()MI~i i I s Il 1(- 11 t Add I 1 1 .

DD JAN,3 1473 EDIION OF I NOV 6S3I OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGf fWPen Die Entered,

-. ,- ,.=._..,= ..-m ' -- . . m = ' € . -, , , _ - . . , .. , , . . - , ..

Approved for public release; distribution is unlimited.

V SI Pesign of aSixteen Bitpipellned Mult~ier
using Three Micron NROS Tecanology

by

Richard J. Simchik Jr.
Captain, United States Army

B.S., Clarkson University, 1;78

Submitted in partial fulfillment of the
requirements for the degree of

A
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAl POSTGRADUATE SCHOOL
June 1985

* Author:

Approved by:__

Department of Electrical an& Computer Engineering

Dean of Science ani Engineering

2

0-7"

ABSTRACT

Th 2e application of computer-aided design (CAD) tools in

the full custom design and testing of a 16-bit pipelined -.

two's ccaplesent multiplier in three micron I4MOS is

described. A comparison between the fall custom carry-save

addition (CSA) multiplier designed using CAD tools and a

multiplier generated by the .acPitts silicon compiler is -

presented. Additional background material is also presented

on the CSA multiplication algorithm atiized.-->L5.S

AccCOSIon
-or

.7,' --

Ave 1e -3 -

.4 .-.. '

3

described,~~~~~~ . .oprio .ewe .h f.l . uto .a -sv .-.--..

"-"-:L:,

O.

SABLE OP CONTENTS

I. INTRODUCTION 8

II. UNSIGNED BINAR7 MULTIPI1CATION 10

A. ADD-AND-SHIFT ALGORITHM 10

B. SINULTANECUS MATRIX GENERATION AND

REDUCTION 12

1. Partial Products Generation 12

2. Partial Products Reduction 15

3. Carry Look-Ahead Addition . 17

C. PIPELINED ADAPTATION 21

III. DESIGN: 16-BIT TWO'S COMPLEMENT MULTIPLIER 25

A. TWO'S COMPLEMENT MULTIPLIER 25
.

1. Theoretical Architecture 25

2. Actual Implementation 30

B. DESIGN TOCIS.32
1° EQNTOIT . . * a 33

2. TPLA . . e o 33

3. LYRA e 34

C * LAYOUT e o . * * . 0 a 34

D. DESIGN VALIDATION 41

1. Logical Simulation 41
2. TiAing 44
3. Power Consumption 45

IV. TEST- PLAN 47
A. IDENTIFYING INPUT AND OUTPUT PINS 47

B. POW3R CONSUMPTION 49
a. C. TESTING FOR LOGICAL OPERATION 50

D. TESTING FOR MAXIMUM SPEED 51

4

,e%

V. FULL CUSTOM VS. SILICCE COMPILER DESIGN 52

A. FUNCTION&I ARCHITECTURE 53

B. CHIP AREA AND DENSITY 5.. 4

C. POWER CONSUMPTION * 55

D. SPEED OF OPRTION. 56

E . SUMMARY 58

VI. CCICLUSION 59

A. DESIGN~ OF THE MULTIPLIER 59

B. CAD HIEDWABE AND SOFTWARE 60 .

C. SILICON CCEPILATION-. 61

APPENDIX A: STIPPLE ELOTS 62

APPE14DIX E: SIMULATICN RESULTS 69

APPENDIX C: TEST VECTORS 90

LIST Ci BEFERENCES 93

INITIAL DISTRIBUTION LIST * 9L4

LIST OF TABLES

I Matrix Height for Partial Product Generation
M ethods a0....a...0... 16

II Levels of CSA Needed vs. Maximum Coluan Height . . 19

-I1 Summary of Comrarison Statistics 58

.6

'.5

.

.

i6

• • . . . ,-. --

LIST OF FIGURES

2.1 Paper and Pencil Multiplication 11

2.2 Multiplying Tvo 8-bit Operands 11

2.3 Dot Representation 12

2.4 An 8x8 Multiplication Using RO~s 14

2.5 ROM Multiplier Weighted Position Structure 15

2.6 Partial Products in Wallace Tree Structure 16

2.7 CSA Reduction fcr an 8-bit Multiplication. 18

2.8 Blcck Diagram cf a 32-bit CLA Adder 20

2.9 Pipelined CSA Multiplier 2""

3.1 Two's Complement Multiplication 26

3.2 Input to Wallace Tree Reduction 'ethod 26

3.3 Partial Product Reduction Using CSA 28

3.4 Partial Product Reduction Using CSA (cont'd.) . . . 29

3.5 Initial Floorplan 31

3.6 Selector Adder Circuit Diagram 36

3M7 1-bit Latch Cell o 38

3.8 Generation of the Control Signals 38

3.9 Final Chip Floozplan 40

3.10 Initialization Macro for ESI4 44

3.11 Minimum Clock Cycle Parameters . . . 46

4.1 Pad Identification 43

5.1 MEXTEA .log Output 54

A.1 Full Adder Cell 63

A.2 1-Eit Latch Cell 64
AA CIA Unit oo.65 -'[-

A.4 Block P and G Generator . . , 66

Ao5 Hand-crafted 16-Bit dultiplier o o 67

A.6 MacPitts 8-Bit Fultiplier 68

7

%% %° v

:- "r1. INTRODUCTION

With the ever increasing demand for extremely complex

integrated circuits, today's electrical engineers and

systems designers have to be knowledgeable in the design and

fabrication of Very large Scale Integrated (VLSI) circuits.

Several approaches exist today for the design of VLSI

circuits. These approaches include the interconnection of

standard library cells, gate arrays, programmable logic

arrays, and full custom design. Full custom design is the

most time consuming and expensive of the three, but gener-

all1 yields a more efficient VLSI design in terms of circuit

density and speed of cperation.

One methodology for full custom design that can be

easily understood and implemented by the systems designer

has been developed by Mead and Conway (Ref. 1]. This meth-

odology, coupled with the wide variety of computer-aided

design (CAD) tools that are available, makes it possible for

the systems designer to translate a design from a functional

block diagram, or a lcgic diagram, to silicon. Intelligent

simulaticn of the design prior to fabrication gives the

designer a high degree of confidence that the circuit fanc-

tions as desired, barring any unforeseen fabrication errors.

Another method tkat is available for the generaticn of

VLSI circuits is the use of a silicon compiler which takes

as input an algorithmic description of a circuit's desired

functions and generates the final layout of a VLSI circuit.

Using this approach to circuit design results in a rapid

design turn-around time. This allows the system designer

the atility to explore different architectures and find the

method best suited tc solve a specific problem. Cne such

compiler that is installed and running at the Naval

8

* ',*

Postgraduate School (BPS) is the MacPitts silicon compiler

develcped at Massachusetts Institute of Technology's Lincoln

laboratory. The installation and initial research on the

MacPitts compiler is documented in work done previously by

Carlscn [Ref. 2]. Carlson utilized the Mac2itts silicon

compiler to generate an 8-bit unsigned pipelined multiplier

to be used in a digital filter. To provide the basis for

comparison of a full custom design and a design generated by

the MacEitts silicon compiler, a 16-bit two's coiplement

sulti~lier in three micron NICS was hand-crafted using CAD

tools currently available at NES.

The discussion of a general carry-save addition (CSA)

multiplier follows in Chapter 2. Chapter 3 presents the

adaptaticn of the CSA multiplication scheme to the 16-bit

two's coaplement multiplier. The remainder of Chapter 3

contains the design and testing of the multiplier and a

description of the CAZ tools utilized. Chapter 4 presents a

test plan for the VLSI circuit after its fabrication by the

OS Iaplementation Service (MOSIS) of the Defense Advanced

Research Projects Agency. This is followed by a comparison

of the hand-crafted and MacPitts generated multipliers in

Chapter 5.

,',

II. UNSIGNED BINARY MULTIPLICATION

In this chapter, the implementation of an unsigned

binary parallel multiplier is described. First, a brief

discussicn of the add-and-shift algorithm is presented.

Although almost every reference in digital arithmetic

contains a section on this aljoritha (also called sequential

multiplication), it is given here so that terminology and

representations used in this chapter and the next zay be

introduced. Next, a multiplication scheme utilizing simul-

taneous gePL.-ration of partial products followed by simulta-

neous reduction using carry-save addition (CSA) is

described. The chapter concludes with a discussicn of

implesenting this parallel multiplication scheme as a pipe-

lined VLSI design.

A. ADD-AND-SHIFT ALGORITHM

The Iasis for th.e multiplier design presented in this

chapter is the add-and-shift algorithm, which is similar to

the way one multiplies using pencil and paper. For example,

as shcwn in Figure 2.1, in multiplying two binary numbers

each bit of the multiplier requires a corresponding add-and-

shift cperation.

A mathematical representation of the add-and-shift algo-
rithm for two n-bit numbers is given in Equation 2.1. This

esuation has been derived from chapter 2 of Introductin to

5;2)112 ArEchitecture by Stone and others [Ref. 3].

P 2= 2'aI (eqn 2.1)
A 0OIn this e(uation and throughout the remainder of this

10

IUtTIFLICAND 1101
alLTIELIE3 x1011

PARTIAL PRODUC7S 111P
0000
1101

FINAt PRODUCT 1U ,T r-

Figure 2.1 Paper and Pencil Multiplication.

thesis, concatenation implies the logical AND, the symbol +

implies the logical CE, _ relresents the n-bit multiplicand
vector, an represents bit n of the multiplier vector a and P

represents the 2n bit product vector. Figure 2.2 illus-

trates this ccncept for the multiplication of two 8-tit

operands and Figure 2.3 introduces a convenient dot repre-

sentation of the same multiplication. As can be seen from

Figure 2.2, multiplying two 8-bit operands results in eight

partial products which are added to form a 16-bit final

product.

I X74:X;X:,X X '- XXo IT.ULT11TA''NI)

117" ll 111 , IiFI 111 1;-__ III,
1 " 1 ''7 '~ s, .,, ~ .. l . - I"NA.I. 'IODUCT

Figure 2.2 Multiplying Two P-bit Operands.

k'.'.

-- '" il - * ,, , .' I-- ../il.*...

.-. .-.

4.

.lgo o 0

i' - ._ -. --

Figure 2.3 Dot Representation.

B. SIBULTINEOUS MATRIX GENERATION AND REDUCTION

In terms of speed, the basic add-and-shift algorithm is

the slowest of the multiplication schemes. One methcd to

improve the speed of the basic seguential multiplier is to
perform as many operations as possible in parallel. Ihis

method, known as the Simultanoeus Matrix 7eneration and

Reductior method [Ref. 4: pp. 132-147], is composed of three

distinct steps. In the first step, all of the partial prod-

ucts are simultaneously generated. I- the next step, the

resultant matrix of jartial products is reduced using carry-

save addition (CSA) until two vectors remain. Finally, the

two remaining vectors are added together to form the final

product.

1. lartial Products Generation

The simplest way to generate each bit position of

the partial products is to use the logical AND operaticn as

a 1xi multiplier. Fcr example, in Figure 2.2, each of the

terms in the eight partial products is the result of a
, logical AND operation and also corresponds to a single dot

in each of the partial products of Figure 2.3. For an n-tit

12

•.. • .•..-.... .•....

L ,. . - . -" ' - , . , .

multiplication this scheme requires nxn AND gates, which is

a simple, but hardware intensive scheme.

It is possible to use encoding technilues that will

reduce the number of partial products. One such method that

reduces the number of partial products by half is the modi-

fied Booth's algorithm. For a description of both Bocth's

original and modified algorithms, the reader is referred to

two presentations of these topics [Refs. 4,5: pp. 132-137,

152-157].
Another way tc generate partial products is to use

read only memories (RQMs). For example, the 8x8 multiplica-

tion cf Figure 2.2 can be implemented using four 256x8 RCIs

where each R performs a table lookup multiplication, as

shown in Figure 2.4.

In Figure 2.4, the 4-bit value of each element of

the pairs (YO,XO), (YO,X), (Y1,XO), and (YI,X1) is ccncat-

enated tc form an 8-bit address into the RON table. The RON

location corresponding to the address contains a unicue

8-bit product. Thus four tables are required to simultane-

ously form the products Y1xX1, Y1xXO, YOxX1, and YOxXO.

Note that the YOxXO and Y1xX1 terms have disjoint signifi-

cance, thus only three terms must be added to form the final

product. The number of rearranged partial products which

must be summed is referred to as the matrix height h. This

height ccrresponds tc the number of initial inputs to the

CSA tree. A generalization of this scheme for up to a 64x64

bit multiplication is shown in Figure 2.5. Each rectaanle

in Figure 2.5 [Ref. 4: p. 138] represents a 4x4 ROl multi-

plier prcduct.

"able I [Ref. 4: p. 139] summarizes the maximum

height of the partial products for the three partial prcduct

-eneraticn schemes discussed in this section.

In the final design implemented in this thesis, the

partial products were generated using the 1xi multiplier

13

4-BIT

BLOCKS

W1 ZIo

B-BIT __ _ _ __ _ _ __ _ _ _ __ _ _ __ _ _ _

YOxXI PARTIAL
PRODUCTS

YIXX1II YOx
Yx×i

REARRANGED
Y~xXIY~xXIPARTIAL

F .Xx0 PRODUCTS

FINAL 16-BIT PRODUCT

Figure 2.4 An 8x8 Nultiplication Using ROMs.

(AND gate) method. This method was chosen over the cther

two Lecause of its simple and rejular implementation.

Booth's algorithm was rejectel as a choice due to the

complex nature of tle control signals that are required.

T :he FC1 Fartial product generation method was not chosen

hecause it would require 16 EOs of 65536 x 16 hits to

simultaneously generate the 16 partial products needed in a

16-Lit multiplier. Other possible combindtions of different

size 5C.s could also be u sed to generate the partial prod-

ucts, Lut due to chip area and feature size linitaticns

imposEl ly IOSIS the E0M method of generating partial prod-

ucts was rejected because it was not feasible to construct

on a single chip.

dill

..-.....-.-:,- ! i ' " "........"...."

[

I

12 1 2

~16
[a

F I- I L

Figure 2.5 ROM Multiplier Weighted Position Structure.

2. Partial Products Reduction

Cnce the partial products are generated, the next

step is to reduce the n partial products down to two. Cne

* te-chnique that can be used to accomplish thi.s is to utilize

3-input, 2-output full adders performingi CSA in a Wallace

tree structure.

7he partial products for the 8x8 multiplication
* represented by Figure 2.3 can be viewed as adjacent columns

15

0

TABLE I

Matrix Height for Partial Product Generation Methods

j - LAX HEIGHT OF THE MLATRIX

GENERAL Number of [tits

SCHEME FORMULA 8 16 24 32 40 48 56 64
I" 1 1Multiplier (AND gate) n 81 161 24 1321 .10 1 4.4 56 64

" 4 X 4 multiplier (ROM) i 7i 11 1 15 19 23 2,27 31

i rniultiphet (ROM) (04)-l 1 3 4 i 71 9 11 13 15

KMotifi, Booth's aliorithm (n/2) j 4 8 12 16 1 20 2-1 2 1 32

of height h, where each column corresponds to all terms to

the same power of 2, as shown in the Wallace tree structure

cf Figure 2.6.

........

.. o • oo .0 ooo. * .

. . o. ... eo.

Figure 2.6 Partial Products in Wallace Tree Structure.

lio reduce these columns of height h, CSA is used to

redice three dots of column heigit to two dots. These two

output dots, which represent the familiar sum and carry

outputs of a full adder, are placed in the next level of the

tree structure in tteir appropriate power positions. In

geLeral, the number cf required levels (L) of CSA required

to reduce a Wallace tree structure of column height h tc two

is given by rquation 2.2 [Ref. 4: p. 139]. L can also be

16

..

viewed as the minimum number of full adder delays required
to ptcduce the pair cf column operands. For an 8x8 multi-

plication, the maximum column height is h=8. Thus, four

levels of CS& are required as illustrated in Figure 2.7

[Ref. 4: p. li].

L ,(egn 2.2)

Table II [Ref. 4: . 139] shows the number of carry-save

adder levels corresponding to various column heights.

3. CarrY Look-lh~ad Addition

The final ster in this multiplication scheme is to

sum the two remaining vectors created by the CSA reduction

scheme discussed in the previous section. The majcr consid-

eraticn in the choice of addition methods for the final

summation is speed of operation. One method that signifi-

cantly reduces the number of gate delays and increases the

speed over ripple carry addition is carry lookahead (CLA)

aldition. Rather than give a full derivation of the CLA

addition concept [Ref. 5: pp. 84-91], the basic operation is

presented for the 32-bit CLA adder that is used in the final

design iaplemented in this thesis.

rigure 2.8 represents the designed 32-bit CLA alder

which can be thought cf as operating in three steps. First,

the two input vectors X and Y to be summed are broken into

4-bit blccks. These blocks are routed into a circuit called

a block P & G generator. The block P & G generator looks at
each 4-hit Llock from X and I to determine if a carry into

the least significant bit position will propogate to the

carry out of the most significant bit position of the block,

The logic equations for these two signals, called block

propogate (Pn) and blcck generate (Gn) respectively for bit

positicn n, are given in Equations 2.3 and 2.4 for the nth

bit Fosition. Equations 2.3 through 2.15 are derived from

[Ref. 5: pp. 84-91].

"" 17

• " .. '. '. "-'" . .',- ."...- . .-- '° ." . ," '. -,. ,,,, . *. *. •''.. J '- ','"
- . - e'.. li a i i -; *.

~SECOND LEVEL

?:" iTHIRD LEVEL. .OF CSA

5%.

-- C F •FOURTH LEVEL

OF CSA

LAST LEVEL:
CARRY-LOOK-

......... . LALAHEAD

Figure 2.7 CSA Reduction for an 8-bit Multiplication.

18

d •. . • " "%

P- el-r -r -7- r. 7 r - C

TABLE II

Levels of CS leeded vs. Kaxiaua Column Height

Column Height (h) Number of Levels (L)

3 1

4 2

4<n<6 3
6 < n<9 4

9<n<13 5

13<n< 19 6

19<n< 28 7

28 < n542 8
42<- <63 9

P,.= (+Y.)(x..,I 3 Y.,-I).,) (X-+Y.2)r.+-) (egn 2,3)

G.= X.y. + (x.+,..v.., (.+,.). 1 +Y. 1)x.-v.- (eqn 2.4)

•ext, the blcck P and G signals are input into a CLA

unit that generates the true carry Cn out of the next least

significant block C(L-1). For a 32-bit addition, two CLA

units are required. The eguations for the lower order CLA

unit are given in Euations 2.5, 2.6, 2.7, and 2.8.

C.= GS+ PA. (egn 2.5)

C = Gr + P7 Gs + P7 P sC,. (eqn 2.6)

C12 = GI + PIG 7 + PP 7 Gs+ PPP 3 C.,, (eqn 2.7)

CIO Gs + PISG"I + PIsPI'GC + P'sP1 IP 7 Gs + PIsPIIPPsC (eqn 2.8)

Since in a multiplication of two numbers the carry into the

least significant bit position is zero, the above four equa-

tions rduce to Equations 2.9, 2.10, 2.11, and 2.12.

C4 = G, (egn 2.9)

19

Z".

4'

*r4

0
U-

x0

1.4

200

Cs = G7 + P7 Gs (egn 2.10)

C 12 = G11 + P 1 GC - Pj1 P7 G3 (egn 2. 11)

C16 = Gs + PISGII + PIsP 1 G 7 + PISP,1 P TG3 (egn 2. 12)

Similarly, the equaticns for the upper CIA unit are given as

E uations 2.13, 2.14, ana 2.15.

C20 = Gi + P 19C (egn 2.13)

C 24 = G23 + P23 C19 + P2sP,1CI6 (egn 2.14)

C 28 = C27 + P27G.3 + P27 P 2SGC1 + P27 Pr2 PgCi 6 (egn 2.15)

Note that the carry out of the most significant bit is

disregarded. This is because the result of multiplying two

16-bit operands yields only a 32-bit result.

Finally, the carry signals generated by the previous

two steps are added in 4-bit block ripple carry adders with

their appro-riate slices of X and Y to form the 32-bit sum.

Note that the carry cut of each 4-bit ripple carry adder is

disregarded, as it was generated and used previously.

C. PIPULINED ADAPTA7OH

In the previous section, the implementation cf a

parallel CSA multiplier was described. This method can

logically be partiticned into stages for realization as a

pipelined design.

In pipelining any design or algorithm, the basic otjec-

tive is tc introduce concurrency by taking the functicn to

be perfcrmed and partitioning it into several subfunctions.

The fcllcwing properties [Ref. 6: p. 4] are important to

consider when pipelining a design:

1. Evaluation of tke basic function is equivalent to scme

sequentidi evaluation of the subfunctions.

2. The inputs for one subfunction come tctally from the

21

..........................

* . a * a ' * * . ' a

outputs of the Erevious subfunction in the evaluation

sequence.

3. Other than the exchange of inputs and outputs, there

are no interrelationships between subfunctions.
4. Hardware can be developed to execute each subfunction.

5. The times required for these hardware units to perform

their individual evaluations are usually approximately

equal.

The hardware required to perform each subfunction of a

pipeline is called a stage. At the output of each stage is

a latch that is used to perforn the actual exchange of oper-

ands ketween stages.

To Fartition the CSA multiplier into its stages, a

logical division of the subfunctions to be executed must be

determined. One method that initially may come to mind is

to make the partial product reduction scheme using the

Wallace tree structure as one stage of the pipeline and the

CLA addition as a second stage. This was rejected because

for a 16-bit multiply, the first stage would require six

full adder delays and an AND gate delay before being ready

to be latched. In the second stage, the CLA adder would

require the delay for the P and G generation, the true carry

generation in the CIA unit, and four full adder delays

before being ready to be latched.

The next partitioning of subfunctions went one level

further into defining each stage. The CLA adder was further

subdivided into three subfunctions. The first stage

performs the generation of the P and G signals based on the

two 32-bit input vectors. The next stage uses the P and G

signals generated in the previous stage to produce the true

carry signals. In the third and final stage of the CLA
adder, the 4-bit blocks are summed with their appropriate

carry in signals generated in the previous stage to form the

final product. In looking at the CLA adder portion, the

22

t.

°7q

longest delay occurs in the final stage. This delay has a

magnitude of 4 full adder delays and it is this figure that
is used to partition the Wallace tree reduction scheme into

stages.,

For a 16-bit multiplication, the maximum height of the

Wallace tree is sixteen as shown in Table I. This maximum

2leight requires six levels of CSA addition (see Table II)

before a cclumn height of two is obtained to be input into

the CIA adder. Also to be performed in this stage is the

generaticn of each bit of the partial products through the

use of AID gates. Starting at the beginning of the Wallace

tree structure and keeping the stage delay at less than the

four full adder delays of the CLA adder, the Ixi multiply

and three levels of CSA can be accomplished in the first

stage of the pipeline. This leaves the next stage of the

pipeline with the remaining three levels of CSA to perform

- before goirg into the 32-bit CIA adder for the generation of

the final product. Figure 2.9 shows each stage of the pipe-

line and its subfunction. This pipelined structure is to be

the one igplemented in the final design of this thesis with

adaptations to allow for the implementation of a two's

complemert multiplier.

.p2

€ 23

.o ..

lxi MULTIPLIERS

I ST LEVEL CSA

2ND LEVEL CSA

3RD LEVEL. CSA

LATCH-

4TH LEVEL~ CSA

STH LEVEL CSA

57H LEVEL CSA

LATCH

BLOCK P & G GENERATORS

LATCH.LA

LATCH

4-BIT RIPPLE CARR~Y ADDERS

LATCH

Figure 2. 9 Pipelined CSA Multiplier.

24

...................................
..

L"

I.

II. DESIGN: 16-BIT TWO'S COMPLENENT MOLTIPLIER

A. T1O'S CONPLEMENT EULTIPLIEB

1. 7heoretical Architecture

The multiplication of two 16-bit signed numbers

represented in two'S complement form can be performed

through the implementation of Equation 3.1 [Ref. 3] where n

eauals sixteen. In Equation 3.1, the notation b, denotes

the one's complement cf the multiplicand.

n-2

P F, 2ka - a.

n -2/

-E 2'aki + 2n'.I+
k =0E 2'-- i +,)j: ---2 a -

= = 2 k O - ai - 2"- _ (egn 3.1)

Each partial product generated through the use of Equation

3.1 is summed with the remaining partial products as in the

unsigned CSA multiplier discussed in the previous chapter

with two exceptions. First, each partial product must have

its most significant bit extended to the most significant

bit of the final product. In the design used in this thesis

for 16-lit operands, the mcst significant bit of each

partial product must be extended to bit position 31.

Second, the most significant bit of the multiplier must be

added into bit position 15. This insertion of the most

significant bit of the multiplier can also be accomplished

by inserting it twice into the final summation at bit Fosi-

tion 13 and once intc each of the bit positions 14 and 15.

.his is done in the final design of this multiplier to keep

the maximum column l.eight to be input to the Wallace tree

25

S* * .

reduction scheme at sixteen. Figure 3.1 demonstrates the

use of this equation directly on the multiplication cf two

4-bit two's complement numbers where n equals four.

' 0111 = +7 0111 = +7
x0101 = +5 x1011 = -5

000UUTT'" 00 0UIWTT
0000000 0000111
000111 000000
00000 11000
00000 00001
vIUUuwrI = +35 "TT'rTur = -35

1001 = -7 1001 = -7
x0101 = +5 x1011 = -5

11 1TUU'T 11 lTT-mr
0000300 1111001
1 11001 000000
00000 00110
00000 00001
"ITTI"TUT = -35 UUI" T = +35

Figure 3.1 Ivo's Complement Multiplication.

213a

•.. I<" 2*C C.. C.

CC... ** *CC a* * ** *** a00 . .

.. . .C * CC o oCC ** * * * C*

". .* - * * **C o• a .. C 7.

"igure 3.2 Input to Wallace Tree Reduction Method.

26

o....-

J" • o o ooo o ' o o

Figure 3.2 shows, in dot notation, the partial prod-

- ucts generated with lxi multipliers using Equation 3.1 with

the two exceptions discussed above for a 16-bit two's

complement multiplication. It is this structure that is

input into the Vallace tree reduction scheme to be reduced

to a final maximum cclumn height of two. Since the maximum

column height is sixteen for the 16-bit two's conplement

multiplication presented in this thesis, six levels of CSA,

as shown in Figures 3.3 and 3.4, are reiuired to decompose

this structure to a maximum column height of two. The

resulting two vectors generated by the CSA are then input

into the CIA adder presented in the previous chapter.

One interesting point to note is that the column

height fcr certain cclumns is only one. This is caused when

CSA is performed on three or less operands in a column and

no carry into that column is produced by the next lower

significant one. In these operand vectors, a zero is in-ut

for the appropriate bit position into the CLA adder.

lo perform this multiplication in a pipelined

manner, latches must Le inserted at the end of each stage of

the pipeline as discussed earlier. Since the first stage

involves a 1xi multiplication to generate the partial prcd-

ucts and three levels of CSA, the first latch must be

inserted at the end cf the third level of CSA. At this

point, 143 bits of data must be transferred to the second

stage. Therefore, the first latch is 143 bits wide.

Similarly, the second stage ends after the sixth level of

CSA is performed. This re4Auires the second latch to he 57

bits %ide. These 57 bits are then input to the CLA adder.

The third stage of the circuit generates the block P and G
signals. These signals and the 57 bits of the two CiA oper-

ands are then transferred to the fourth stage in a 70 bit

wide latch. The fourth stage uses the P and G signals to

generate the true carry signals to be used in the fifth and

27

---. -

1ST LEV.EL OF CSA
(55 FILL ADDERS)

2ND LEVEL. OF CSA
(93 FULL. ADDERS)

3RD LEVEL OF CSA
(51 FULL ADDERS)

Figure 3.3 Partial Product Reduction Using CSA.

28

.p

-.-. - . . .

.....-o. ..-..........-.
.

4TH LEVEL OF CSA

(42 FLJLL ADDERS)

5TH LEVEL OF CSA
(22 FLJLL ADDERS)

. .

6TH LEVEL OF CSA
(19 FULL ADDERS)

INPUT TO 32-BIT Ct-A ADDER

Figure 3.4 Partial Froduct Reduction Using cS& (cont'd.).

29

S S.

Q~o- :lisl. .. LULei
S.S S ~ol l o o l

final stage. This requires a 64 bit latch at its output to

hold the carry signals and the two CLA operand vectors. The

final product appears at the output of the fifth stage and

is stored in a 32 bit wide latch so that latched outputs can

be provided to any subsequent circuits that this multiplier

may drive.

2. Actual implejentation

The initial floorplan for the circuit is shown in

Figure 3.5. This flcorplan closely follows the theoretical

implementation with two exceptions.

First, in a VLSI design, an AND gate used as a 1xi
multiplier is implemented with a NAND gate followed ty an

inverter. This active-high signal is then input to an

active-ihigh input, active-high output full adder in the
first level of CSA. Rather than construct these two circuit

*.- elements in this manner, the actual implementation utilized

a NAND gate as the 1x1 multiplier driving an active-low

input, active-high output full adder. Any signal generated

*with a NAND gate as a partial product bit that is not used

in the first level of CSA is simply routed through an

inverter to convert it to an active-high signal for use in
subsequent levels of CSA. This provided a reluction cf 256

in tI.e number of inverters to be constructed.

Second, the sign bits oZ each of the partial prod-

ucts aust be extended to bit position thirty-one. These

extendel hits must also be added in the Wallace tree reduc-

tioa of the partial products. When these sign hits are

grouped for input to a full adder in the first level, up to

fourteen adders have the same three inputs. Rather than
duplicate the adders which would increase power consumption

and usage of chip area, only one adder was used to calculate

the sum and carry inputs to the next level of CSA. 7hese

high fancut sum and carry inputs are then superbuffered to

30

. - . -. . -. . . . ° - - ° - . . t ° . . t h . . ° h ' - ' ' ' ' ' , . "

Ain Din

LV=

IR

PACR f WO

Figure 3.5 initial Floorplan.

drive the second level of CSA. This resulted in a savings

of thirty-five full adders not having to be implemented in

silicon.

The clocking of the circuit is accomplished ty a

non-overlapping two-Ehase clock. Both phases are input to

the circuit through separate input pads. An additional

signal called OP is ;xovided to allow for the implementation

of a level sensitive scan design (LSSD) [Ref. 7]. In a
ISSD, the contents of the latches are either loaded in

parallel when OP is a high or serially shifted to an output

31

"IN '_4' *. ,*Z07

pad and serially loaded from an input pad when OP is low.

This allcws the contents of each of the first four latches

to be examined to aid in the detection of fabrication errors

or circuit malfuncticms. The output latch is not serially

loaded or shifted to an output pad because its contents are

directly available at the output pads.

B. DESIGN TOOLS

Before the actual layout of a VLSI circuit can be under-

taken, certain CAD tocls are needed by the designer. First,

a graphical layout editor is reguired to allow the designer

to ccnstruct a VLSI circuit. Second, to allow for the

implementation of complex logic functions, a PLA generator

is desired. Next, the ability to employ a design rule

checker on a layout is essential to insure that design rule

violations do not unintentionally occur. Finally, tocls

that perform circuit simulation for logic, timing, and power

consumption are useful in determining the proper operation

of the designed circuit.

In the design of the 16-bit pipelined mdltiplier, the

CAESAR layout editor [Refs. 7,8] was used as the basis for

the laycut of the entire chip. To facilitate the design of

complex logic functicns, EQNTOTT (Ref. 9] an.1 TPLA [Ref. 9]

were employed to construct complex programmed logic arrays

(PLAs). LYRA [Ref. 9] was used to perform design rule

checks on the circuit. Circuit simulation for lcgic,

timing, and power were performed by ESIM [Refs. 2,9],

CRYSTAL [Refs. 10,11] and PCWEST [Ref. 9] after a node

extraction was performed using MEXTRA [Ref. 9].

.be manuals for each of the CAD tools discussed above

are available on the MPS Computer Science Department's UNIX

operating system. 7o obtain an on-line copy of the manual

for a specific design tool, issue the command

I cadman <design tool name>.

32

V *. . ../, ..- " ." .o -.. . '. ' .. °, . *,. ... ' . -oC. . '. ' •- -o- , -, . - ' - - -, ,• ° •, % % ' ' ' ' ,, .

7Io obtain a hardcopy .f a certain CAD tool manual, issue the

command

cadman <design tool name> I lpr.

his ccmmand will send a copy of the normal CAD manual to

the linerrinter.

1. U9NT

ZCNTOTT is a program which generates a truth table

suitable for input tc TPLA from a set of Boolean equations

which define the PLA outputs in terms of its inputs. The

equation syntax is

NAME = EXPRESSION;

where NAME is the output variable name and EXPRESSICN is a

*" Boolean equation in sum of products (SOP) form that repre-

sents the output variable in terms of its inputs. In the

SOP expression, the 6 symbol denotes the logical AND, the |

symbol denotes the logical OR, and the ! symbol preceedinj

an operand denotes the logical inversion. The input and

output signal order, from left to right or top to bottom, as

appropriate, can be ccntrolled with the INORDLF ani C9TCHDER

commards.

2. 7PIA

7PLA is a technology inlepenlent PLA generator that

supports design rules in the following styles:

1. Mead-Conway NMCS with butting contacts, no buried

contacts.

2. Mead-Conway NMCS with buried contacts, no butting

contacts.

3. MCSIS 3 micron kulk CMOS.

5. 33

'... '........................ ,.

It takes as its input the output of EQNTOTT and generates a

PLI layout in the desired technology. The default output

option is a CAESAR file. TPLA can provide inputs and

outputs on either the same side (cis version) or on opposite

sides (trans version) of the generated PLA. In addition,

clocked inputs and/or outputs can be supported by TPLA

through another opticn selection.

3. LIRA

LYRA is a design rule checker that operates on

graphical files in CAESAR format. It can be invoked either

interactively while editing a CAESAR file or on a CAESAR

file and run in the background on the UNIX operating system.

The interactive mode is discussed in earlier work done by

Reid [Ref. 7]. In the background mode, LYRA is invoked by
executing the command

% lyra filename.ca 8.

This generates a file named CHECKPT which contains the names

of all subcells of the design being checked that have

completed a design rule check. If an error is found in the

parent cell or any of its sutcells, a file with the same

name of filetype .ly is output to the user's current wcrking

directory. This file contains all error informatior and can

be edited using CAESAR to view the errors for further

correction. This mcde of operation for LYRA provides an

excellent means for design rule checking large designs that

normally would take a lonj time in the interactive mode.

C. IAYOUT

Cnce the designer has determined the architecture to be

implemented, the initial floorplan, and has mastered the CAD

tools that are available, the next step in the design cycle

34

i.

is to tegin the layout of the actual circuit. One technique

that is utilized in this design of a 16-bit pipelined multi-

plier is a form of tie hierarchical design method. In this

method, once the above three items are completed, the archi-

tecture is examined to look fcr some basic building blocks

that could be designed and used repeatedly in the ccnstruc-

tion of the circuit. Upon examination of the architecture

for the 16-bit pipelined multiplier, the four basic circuit

elements that can be designed and iterated throughout the

circuit are a full adder, a 4-bit block P and G generator, a

CLA un- t, and a 1-bit latch cell.

The full adder is the main element in both of the first

two stages in the pipeline as well as a basic buildirg block

for the 4-bit ripple carry adders in the fifth stage. 7he

first two methods of implementation that immediately arise

are ccnstructing an adder by using either discrete gates or

a PLA generator such as TPLA. A third method [Ref. 12] that

is possible is to use pass transistors in a selectcr logic

circuit tc generate the sum and carry bits that are conli-

tioned on the three input bits to be added.

In choosing the adder to be implemented, two main

considerations in the selection of the adder are its speed

and power consumption. Both the discrete gate and the PLA

adders have a higher static power consumption than the

selector adder because they contain more depletion pull-up
transistors than the selector adder. After simulation of

these circuits for sieed using CRYSTAL, it was found that

the selectox circuit, with a 14.7 nanosecond propagation

delay, was faster than both of the other two by at least two

nanoseconds. Therefcre, tLe selector adder was chosen as

one of the basic building blocks of the circuit. Figure 3.6

shows a circuit diagram of the selector adder used in the
design of the 16-bit sultiplier. Two minor drawbacks exist

to the selection of this type of addir. When the outlut of

35

,.. o o°..o....o °o . . o o. ' °..•. °-.- ° o

7 , . - 7 .7 .

one adder drives the input of another, this is egaivalent to

the output of a pass transistor driving an inv*.ter. To

insure that the following adder inputs are driven tc the

necessary voltage levels to operate properly, the input

inverters to each vertical selector rail must have a pull-up

to pull-down ratio of eight. Also, the selector rail that

provides the true signal to the circuit must pass through

two inverters. This prevents the output of a pass tra,-

sistor in the previous adder from directly driving the gate

of a pass transistor in the current adder [Ref. 1: pp.

24-25].

A B

K5 K=8

C" m V ._.___

_Cout

... -- ___-

.ND r

2i Figure 3.6 Selector Adder Circuit Diagram.

" 36

-'i -

Both the 4-bit block P and G generator and the CIA unit

are complex logic functions well-suited for implementation

as PIAs. These two circuit elements are implemented by

inputting Eguations 2.3 and 2.4 (for the P and G generator)

and Equations 2.9 to 2.15 (for the CLA unit) into EQNTOTT.
The output of EQNTOT7 is then piped to TPLA to generate the

actual CAESAR files for the PLAs. Since data flows into cne

side and out from the opposite side of each stage, the trans

version of the PLAs was constructed.

The last building block of the circuit to be designed is

the 1-bit latch cell. Since a LSSD is an important

criterion for designing the 16-bit multiplier, the 1-tit

latch cell must be able to be loaded either in parallel

* along the data path or in serial from an adjacent latch

cell. This function is under control of the OP signal.

To minimize the area consumed by the latch, a dynamic

latch coiposed of a pair of inverters coupled by pass tran-

sistors was selected. As in the adder circuit, a pull-up to

pull-dcwn ratio of eight is needed for the inverters because

they are driven by pass transistors. Figure 3.7 shows the

circuit diagram of tie 1-bit latch cell as implemented. The

operaticn of the latch cell is as follows. For normal cper-

ation (OF=1), the NOBEAL signal is hig3h and the SHIFT signal

is low during PHIl. Data appearing at the DATA IN port

drives tle first inverter. When PHIl falls, the gate of the

first inverter retains the logic value of DATA IN in its

gate capacitance. Nhen PHI2 rises, this data drives the

second inverter which effectively transfers the data to DATA

OUT and the next stage. For a shiftinj operation (OP=O),

the NCEMAL signal is low and the SHIFT signal is high. Data

appearing at the LATCh IN port, which connects to LA1A OUT

of the next latch cell to the left, charges the gate capaci-

tance of the first inverter. The pass transistor transfers

the data to the second inverter on PH12 as in a normal

37

........................ °°.................. """" °........ . ". °

SHIFT OUT

DATA DATA
IN OUT

FROMI PREVIOUS CELL

Figure 3.7 1-bit Latch Cell.

operation. This effectively shifts the data from the LAICH

13I port to the LATCH OUT port in one cycle of the clock.

Figure 3.8 shows the circuitry to condition PHIl with OP to

generate the NORMAL ard SHIFT signals used above.

PHI I NORMAL

OP

SHIFT

Figure 3.8 Generation of the Control Signals.

38

Once these four basic building blocks are designed, each

stage of the pipeline and its latch is developed out of the

appropriate subcells. Next, the internal routing of signals

within a stage is accomplished through the use of a wire

list. Then the five stages of the circuit are wired

together to form the core of the design. Finally, all that

remains to be done is to connect this core design to a frame

to allow adequate interfacing for the packaging process.

This routing of signals both within the core of the

design and to the frame is an extremely time consuming task

that requires as much time, effort, and planning as the

design and layout of all the major components. The addition

of an automatic router would be a welcome addition to any

designer's CAD toolbag.

Ihe design frame is composed of a pad set that was

obtained from MOSIS. These pads were specifically designed

for fabrication at 1.5 microns per lambda. A copy of these

pads is located in tle file

/vlsi/berk83/lib/p ads 15. cif

and associated documentation can be found in the file

/vlsi/berk 8!/doc/pads 15.

Both cf these files are located in the NPS Computer Science

Department's VAX11-780 running the UNIX operating system.

Numerous repetiticns of the design - rule check - rede-

sign cycle occurred before a final design was obtained.

Using LYA for the design rule check on a large design such

as the 16-bit multflier reyuires approximately 1000 CPU

minutes. When the UNIX system is heavily loaded, this

results in a turn-aicund time on the order of two tc three

days. Figure 3.9 depicts the final design of the entire

chip. Each of the six levels of CSA are shown as levell

through level6. The latchvs are labelled latchxx where xx

is the appropriate number of bits in the latch. The block P

and G generators are designated PG and the CLA unit is

39

.......................

................ o

simply shown as CLa. The 4-bit ripple carry alders are
shown as ADD. Three blocks not previously discussed are

labelled IMP. These are control line drivers that drive the

high fancut NORMAL, EHIFTV dnd PH12 signals to each of the

latches. These drivers are comiosed of the same circuitry

used by the output pads to drive off chip loads.

16 Anm PXP L Bin PIM6

2EEL
-~~ pa p a EM " a P IP

PG- G SI S M P

32 PGOWJCT PrNS ~ ~

Figure 3.9 Final Chip Floorplan.

The actual plots cf each of the four building blocks and

the final circuit layout are contained in Appendix A. These

plots were generated using the program CIPPLOT [Ref. 9].

40

D. DESIGN VALIDATIOU

The next step in the design cycle is to functionally

validate the chip's operation tefore it is sent to MCSIS for

fabrication. This will give the designer a high degree of

certainty that the chip operates logically as desired with

an approximate power consumption and at a certain maximum

frequency of operatiot.

Before these three items can be accomplished, two

preliminary steps must be accomplished. First, the CAESAR

file must be edited to label the nodes and a Caltech

Intermediate Format (CIF) file generated. For the purpcse

of performing design validation using CAD tools, the scale

of centiuicrons per lambda must be an even multiple of four.

This prevents round-cff errors in the resultant CIF file.

Since the final design is to be fabricated at lambda equals

1.50 vicrons, 152 centimicrons per lambda is used. Second,

the CIF file must be passed through the MEXTRA program using

the ccmmand

- mextra -o filename.cif &

so that a node eztraction is performed on the circuit. On

large files, it is extremely useful to run this program in

the backcround mode as shown ty the .- in this command. A

large CIT file such as the one for the 16-bit multiplier can

take up to 'thirty minutes of CPU time to run. When the UNIX

systea is heavily loaded, this requires eight to ten hours
of real time. The output files are directly compatible with

the CAD simulation tocIs to be used.

ii ~. .oqical simulation

"he first step in any design validation process is

to deterline if the circuit functions as it was designed to.

Today, as the complexity of VLSI designs increases, the

41

....

°.2.

%''.* ..

number of possible inputs goes up tremendously. For

example, to exhaustively test just the normal operation of

the 16-bit multiplier would require each possible cozkina-

tion cf the 16-bit multiplier and multiplicand inputs. 2he

number of possible ccabinations of the vectors a and t is

(216)2 = 232 = 4,294,967,296.

The ESIM logic simulator is the CAD tool to be used

for checking operaticn of the 16-bit multiplier. If a

vector pair is input cnly once, without regard to order, and

at an estimated rate cf two test vector pairs simulated per

minute, this wculd require

4,294,967,296 vectcrsxl day/2880 tests=1.49x10 days.

This ascunts to over 4085 years required to perforr an

exhaustive test.

Therefore, seven representative pairs of test

vectors were selected for simulation to determine if the

circuit operates correctly. Exhaustive testing is not

possitle, but most possible errors would be revealed by

these few, carefully chosen test vectors. These seven test

vectors are:

1. +143 x +27

2. -143 x +27

3. +143 x -27

4. -143 x -27

5. +1123 x +891

6. -1123 x +891

7. -32768 x -32768

These vectors were designed to test as large a number of

subcircuits as possible. The first four vector pairs test

the basic architecture for the correct implementation cf the

algorithm represented by Equation 3.1. The positive/

42

negative and negative/negative test vector pairs also test

the CIA adder's ability to produce a proper sum over the

entire thirty-two bit width. The next two vector fairs test

the atility of the CSA in the lallace tree reduction scheme

to produce a correct result in the upper sixteen bits of the

. product. The last test vector is the largest negative

number representable in 16-bit two's complement form.

Further simulation with additional test vectors would

increase the confidence of the designer in the ability of

the circuit to properly simulate a 16-bit two's complement

multiplication prior to fabrication.

Cnce the read-in of the .sim file by ESI, is

completed, the initialization of the circuit, the defining

of watched nodes, and describing the clock cycles must be

accomplished before any simulation is performed. Rather

than do this each time ESIN is entered, a macro file was

created that is called at the beginning of each session.

This file is called initesim and is shown in Figure 3.10

for the 16-bit multiplier. The input vectors for the two

operands are reireserted as ain and bin. The resultant

product vector is shcwn as phigh and plow representing the

upper and lower 16-bits of the 16-bit product, respectively.

The latch input and cutput signals are represented as the

vectors latchin and latchout where the leftmost hit corre-

sponds to the first latch and the rightmost Lit tc the

fourth latch.

After initialization of the circuit by executing the

init-esim macro, at each clock cycle the seven test vector

pairs previously defined are input in sequential order. In

each case, on the fifth clock cycle after introduction of a

test vector, the correct product appeared at the output pads

phigh and plow. This demonstrates that the circuit can

properly multiply two 16-bit two's complement operands to

yield a 16-bit result with the result dependent only on the

* f43

V

•i Zn t.... 3

.

w op
W ain alS a14 aJ$ a12 all &10 a9 a8 a7 a6 &5 a4 a3 a2 &I aO
Wbin WiS hi4 b13 b12 bi I blO b9 b8 b7 b6 b5 W4 b3 b2 bl bO
W latchin 11 in 12 in 13 in 14 in

. - W phigh p31 p30 p29 p28 p27 p26 p25 p24 p23 p22 p21 p20 p19 p18 pit p16
W plow p15 p14 pl pl2 pll plO p9 p8 p7 p6 p5 p4 p3 p2 pl pO
W latchout 11 out 12 out 1S out 14 out
K phil 01000 phi2 00010
hop

• . S

Figure 3.10 Initialization macro for ESIN.

inputs to the circuit five clock cycles prior. The results

of this logic simulation are contained in Appendix B.
The serial shifting of the latches has simulated and

used to generate the ictermediate results discussed in the
next charter. This also proved to -logically operate as

expected, thus giving the designer a high deyree of confi-

dence that the circuit operates as desired.

2. Timing

The CRYSTAL VISI timing analyzer is used to test for

the worst case propagation delay in the circuit. Each phase

of the clock in both a normal and shifting operation is

checked for a critical path that is defined to be within cne
percent of the worst case propagation delay. These critical

pdths determine the naximum clock speed at which the circuit

can ;roperly operate. The worst delays found are discussed

for each phase of the clock.

* 41

--................................... - . " , - . - - . , , ., 4 4
• . '.-.-.,-.-. ; ; ., .-. ,,.. -. ,% , ,-.- , , ,.--% -" . ,, - • ' .,.',"% ,- :%- -, ,-%- % ,- .
. . .. • i - ' ...m m| " i ' '

on the rising edge of an externally applied phil,

the longest propagation delay occurs from the input pads.

until the data is stcred in the first inverter of the stage

1 latch. This delay is found to be 558.82 nancseccnds.

This long delay can be attributed to the two high fanouts

that cccur in the data path of the first stage. The first

is a fanout of sixteen that occurs at each input pad to the

input of the sixteen NAND gates used as lxi multipliers.

The seccnd is a fanout of fourteen that occurs at the end of

the first stage where the full adder cells that correspond

to the extended sign bits are distributed to drive full

adders in the second stage

When phil falls, it takes 89.11 nanoseconds for the

latch cells to turn of their input pass transistors and

isolate the data so it may be transferred during phi2. This

fall time corresponds to the separation time between phil

and phi2 when both clcck phases are low.

Once a rising clock edge is applied to phi2, it

. . takes 96.26 nanoseccnds for the pass transistors in the

latch cells to turn cE and charge the second inverter. To

complete the transfer of data, these pass transistors must

be disabled by the falling of phi2. This corresponds to the

minimum separation between the phi2 and phil clock phases

and is fcuna to be 64.28 nanoseconds.

Figure 3.11 depicts the minimum clock cycle for the

16-bit multiplier as determined by CRYSTAL. This e~uates to

a maximum overall clcck frequency of 1.234 MHz. The results

of the CEYS7AL timing analysis are contained in Appendix B.

3. rower Consumition

EC rower requirements for the 16-bit multiplier are

determined through the use of the CAD program POSEST.

POWES7 looks for pullup transistors and determines a total

count of these devices. Using a reference power consumption

45

. -- ,- , . *..* 9 . . 26

ia,

, .- iII

PHI2

I-. "6I28\ 1

I- I
- .I I

NOTE: FL TIMES IN W4OSECONDS.

Figure 3.11 linimum Clock Cycle Parameters.

for pullup transistors of certain sizes and types, it

obtains a maximum estimate of power consumed by assuming all

pullups are on at the same time. The average power consump-

tion is determined by assuming that only half of the pullups

are cn at a given time.

For the 16-bit multiplier, the ma -mum DC power

consumption is found to be 3.177 watts with a average power
consumed of 1.983 Watts. The results of the :OWEST simula-

tion are found in Apfendix B.

46

" ? . *.S.~.... 4.- . . , . ,-. , . * . - , • •

. V 1 *' V . M- PLAN.

As stated earlier, the use of the logic simulator ESIM,

the CRYSTAL timing analyzer, and POWEST will give the

designer a high degree of confidence that the circuit

designed will perform as desired. Once the circuit has been

fabricated and received from MOSIS, it must be tested to

insure that fabricaticn and/or bonding errors did not occur.

Preliminary work done by Carlson on a 16-bit jipelinel

multiplier indicates that errors in fabrication and/or

bonding do actually cccur. In this chapter, a test pldn for

the verification of lower consumption, correct logical cper-

ation, and maximum speed of operation is presented.

A. IrEN71IYING IMPU7 AND OUTPUT PIES

After fabrication, the chip will come back packaged in

an 84 pin square grid package with 21 pins on each side.

Since only 77 pins axe used in the 32-bit multiplier, it is

imperative that the Fin to pad connections are accurately

known. To do this, one must properly orient the chip.

Close examination of the chip will reveal the logo "GC ARIY"

located hetween the GND and Vdd rails that run arcund the

perimeter of the chip. Place this logo in the southeast

corner as shown in Figure .1. Using this logo as a land-

mark, proceed clockwise around tie chip starting on the

southern edge.

Along the southern edge are twenty-one output pads that

are used for a porticn of the product. Representing the

product as p3l...pO where p0 is the least significant bit,

the southern edge ccntains signals p6 through p26 as one

moves frcm east to west. The western edge is made up of

47

o.". * .7i~i:' " - " . " . ' - " " '" " * " " "' ."" "" ' ""- ."' " " " ' ' " - " " " " •

Ala 310

A14

AIS

_m CORE
LL-=U

OF L2OU=
Ll-M LSOUT

DESIGN

PHI 21

P3. PL

PM P5

pm P4

Figure 4.1 Pad Identif ication.

48

five output pads and twelve input pads. Moving frc south

to north, the first five pads are p27 through p31. The next

pad is the phi2 clcck input followed by the four latch

serial inputs for latch 4 through latch 1. Then comes the

Vdd pad followed by the six most significant bits of the

multiplier a15 through atO. Moving west to east along the

northern edge, the remainder of the multiplier inputs a9

through aO and the eleven inputs of the multiplicand t15

* through k5 are encourtered. Along the eastern edge going

from north to south, the remainder of the multiplicand pads

b4 through bO are found followed by the GND pad. Next are

the fcur latch serial outputs for latch I through latch 4.

Next are the OP and phil inputs which are ioilowed by the

lower six bits of tle product vector p0 through p5. This

should ccmplete the circuit dround the chip and leave one

back at the logo. Extreme care must be exercised when

tracing the fine wires from the bonding pads to the pins,

especially along the east and west edges where the number of

pins is greater than the number of bonding pads.

.* To power the chip +5 volts DC should be applied tc the

Vdd pad and 0 volts tc the GND pad. All inputs should use

Vdd to represent a logic 1 and GND for a logic 0. The

outputs use the same levels as the inputs to represent tie

two lcgic levels. To measure the outputs, they should be

connected to a device with a high input impedance.

According to the documentation for the pads, the output pads

are designed to drive approximately two TTL loads, but may

require a puliup resistor to obtain a full Vid output level.

B. PCWES CONSUMPTION

The simplest of the three tests to perform is to check

the static DC power ccnsumption of the circuit. Once input,
JI output, and supply pins are properly connected, this can be

49

accomplished by inserting a illianmeter into the Vdd supply

-line and measuring the nuber of amperes the circuit is

drawing. This value multiplied by the +5 volts of the Fower
supply will give an approximate average DC power consump-

tion. This figure should be in the vicinity of the 1.983

Batts predicted by PONEST.

C. 71STIIG ?OR LOGICZL OPERATION

Since exhaustive testing of the 32-bit multiplier is

virtually impossible, the same seven test vectors that were

used in ESIM should be utilized to verify correct operation.

In addition, other random vector pairs should be tested for

correct operation in the circuit. At this point, speed of

operation is not a ccncern and the clock frequency should be

reduced by a magnitude of approximately ten from that

predicted by CEYSTAI. This will insure that propagation

delays do not beccae a factor in determining logical

correctness.

First, the vector pairs should be applied one at a time

and a minimum of five clock cycles completed with OP at a

logic 1. At the end of the fifth clock cycle, the output

should represent the correct product for the input Fair.

This will at least insure that the chip performs a 32-hit

two's coipiement multiplication. This should be done for

each of the seven test vector pairs that were used in ESIM.

-ext, each of the seven test vector pairs should be applied

every clcck cycle. After a delay of five clock cycles, the

correct results should appear at the output during phi2 of

each cycle of the clock. This establishes the fact that the

chip can multiply in a pipelined manner.

To determine if the latches can serially operate as

designed, known sequences should be applied at the inputs

with the OP pin at a logic 0. Since the latches that are

50

o4o. -

output to the four latch output pads are all of different

lengths, the output of this operation will occur at

different times for each pin. For latch 1, latch 2, latch 3

and latch 4, the input sequence will start appearing at the

appropriate output Fin after 143, 57, 70 and 64 clock

cycles, respectively.

If any of the test vectors fail, the intermediate latch

results cf each vector pair can be shifted to an output kin

for examination. This can provide an excellent aid in

locating circuit faults. The intermediate latch values and

the final product outputs for each of the seven test vector

pairs are found in Appendix C.

D. 71STIBG FOR DAXIU1N SPEED

The third and final test to be performed on the chips

that pass the logic function testing is to determine the

maximum frequency at which they will operate correctly. To

accomplish this, the duration of the time that phil and phi2

are high and the two interphase times when phil and phi2 are

low should be separately reduced until an incorrect product

is generated. This should be done with each of the seven

test vectors until a minimum time is found for each of these

four clock parameters. Then the worst case for each of

these parameters over all seven test vectors can be called

the minimum clock parameters for the 32-bit multiplier. The

maximum cverall clock frequency for the chip is then just

the reciprocal of the sum of the four minimum clcck

parameters.

51

i,

V.-, 1' . S I2 COMP Zi DRS-.-3-. - -

One of the main advantages of using a silicon compiler

is that it provides an extremely fast transition time from

the initial architecture to the final layout of the design.

This author estimates that the total time to actually

generate the design of the 8-bit multiplier by Carlson

[Ref. 2] using the IacPitts silicon compiler was less than

24 man-hcurs. Theoretically, at the end of this time, a

functionally correct layout is generated. Later work done

by Froede [Ref. 11] on this compiler has proven that

lMacPitts does not always generate a correct layout. In

comparison, the time consumed in the design of the 16-bit

multiplier presented in this thesis is estimated at over 750

man-hcurs.

This design turD-around time advantage of using a

siliccn compiler for chip generation allows the designer a

great degree of freedcm to explore possible different archi-

tectures to solve a problem and actually see the results in
silicon. This freedom is not enjoyed by the full custom

designer whose architecture must be thoroughly researched

aid optimized prior to the layout of the actual chip. If

this is not the case, a tremendous loss of valuatle man-

hours occurs when tle redesign of a chip's basic architec-

ture must be undertaken.

The use of a silicon compiler is not without its disad-

vantages though. Three of the main areas that a silicon

compiler generated chip is at a disadvantage are:

1. density of transistors.

2. speed of operation.

3. power consumpticn per transistor.

52

o' .*

To make a specific comparison, an 8-bit multiplier

generated by the aacPitts silicon compiler available at NPS

was compared with the full custom multiplier of this thesis.

The fcllowing sections discuss-the three main areas listed

above. They are pieceeded by a discussion of the two

circuit architectures that are to be compared.

A. UCIONAL ARCHITICTURE

The architecture of the 16-bit multiplier has already

been thoroughly presented in the previous two chapters. In

summary, the chip performs a 16-bit two's complement Fiue-

lined multiplication on 16-bit operands with a latency of

five cycles of a two phase clock. The circuitry for this

chip is designed using a minimum feature size of 3.0 micrcns

and is wholly contained on one integrated circuit.

The multiplier generated by the HacPitts silicon

compiler performs an 8-bit multiplication on unsigned 8-hit

operands with a latency of eight cycles of a three phase,

five segment clock. It uses the basic add-and-shift algo-

ritlim for the basis cf its architecture. Due to the limita-

tions in chip dimensions, pin count, and minimum feature

size imposed by MOSIS at the time the chip was fabricated,

this chip was designed with a minimum feature size of 4.0

microns. It requires the cascading of two identical inte-

grated circuits to perform an 8-bit multiplication.

Additionally, the 16-bit multiplier employs a LSSD tech-

nique that allows the contents of each of the four interme-

diate latches to be serially examined to aid in the

detecticn of circuit fabrication errors. The MacPitts

multirlier does not employ this technique and determing

fabrication and/or design errors is extremely difficult, if

not impossible, to perform by examining just the chip

outputs. A LSSD technigue could possibly have been included

53

.....o ="°, •-..• . . . °..... -... °---- • %° %.--J m &,,,,h L. -. n.d "- " '"'..... -. -'

*- 7 '4- - ; -

in the MacPitts design, but if included the maximum chip

area delined by MOSIS may have been exceeded.

B. CHIP ARE AND DENSITY

Since both VLSI circuits are designed with different

minimum feature size, to provide a fair basis for comparison

oi the two designs tke 16-bit multiplier is normalized to a

14.0 micrcn feature size. Figure 5.1 shows the resultant

.log file from the MIXTRA node extractor for both the 8-Lit

and 16-bit multipliers. This file contains the chip dimen-

sions in microns and the number of transistors in the

circuit.

iWindow: 0 676600 0 602400

801 depletion
1612 enhancement

1398 nodes

Macritts 8-bit Multiplier.

Window: -600 919350 -600 789300
3914 depletion
11962 enhancement

8503 nodes

Custom 16-bit Multiplier.

Figure 5.1 MEXThA .log Output.

The size shown in Figure 5.1 for the 16-bit multiplier

is based on a 1.5 minimum feature size. This results in

54

.° . •.

chip dimensions of 9199.50 by 7899.0 microns. By current

HOSIS limitations, tLe maximum chip dimensions are 9200.0 by

7900.0 microns. Theiefore, at lambda equal 1.5 microns the

overall design is within one micron or less of the maximum

allowed by MOSIS. ficralizing the circuit dimensions to a

4.0 micron minimum feature size, the 16-bit multiplier

consumes an area 12,260.0 by 10,532.0 microns. By compar-

ison, the MacPitts generated 8-bit multiplier occupies an

area 6766.0 by 6024.0 microns. The MacPitts chip consumes

approximately one-third of the area of the hand-crafted

multiplier.

The cther main point of interest that deals witl. the

physical characteristics of the chip is its transistor

density or number of transistors per square micron. Fcr the

normalized 16-bit multiplier, Figure 5.1 shows a total of

15,876 transistors. This yields a transistor density of

1.23 x 10- 4 transistors per square micron. For the MacPitts

multiplier, the MEXIRA node extraction found a total of

2,413 transistors. This gives a transistor density of 5.92

x10-5 transistors per square micron. One interesting point

to note is that the lacPitts compiler found eighty-four more

transistors on the 8-bit multiplier than the NEXTEA ncde

extractor did fRef. 21. One possible explanation for this

difference is that P.acPitts generates some unusual tran-

sistor structures that were unrecognizable by 3EXTEA.

C. PCWEE CONSUMPTION

One area that is becoming more and more important with

the increasing number of transistors per chip that is being

created 1y improved technology is the static DC power dissi-

pation of a VLSI circuit. For the purposes of providing

compariscns, the CAD prcgram PCWEST is used as the basis for

reference.

55

. . t o. . , . • . ,
I

. *. •. • . .
p°., -, *° %. % .% % , % .% . i , % ° . i -% . . % . . . , • °. • ° . . . ° % , . .° .

For the 16-bit multiplier, the average DC power consump-

tion is found to be 1.983 Watts with a maximum power usage

of 3.177 Watts. Using POWEST on the 8-bit multiplier

yielded an average DC power consumption of 0.352 Watts and a

maximum ;ower usage cf 0.667 Watts. Appendix B contains the

results of the POWEST runs on both of the designs. The

MacPitts silicon compiler also outputs an estimate it makes

of the xaximum power consumed ty a circuit. For the 8-bit

multiplier, this value is 0.407 Watts. This value is over

thirty-five percent less than the POWEST maximum value.

One way to possibly compare the power consumpticr for

the two designs is to determine a power consumed per tran-

sistor figure. Using the maximum POWEST values for both

designs yields 2.00 x 10-4 Watts per transistor for the

16-bit multiplier and 2.77 x 10-4 Watts per transistcr for

the 8-Lit multiplier. The difference between these two

figures can be primarily attributed to the following. The

"acPitts multiplier uses nine two input NAND gates to

generate the full adders used in each stage. The custom

multiplier uses a selector adder composed primarily of pass

transistcrs which consume no DC static power. This results

in an overall lower pcwer consumption per transistor for the

16-it multiplier when compared to the 8-bit multiplier.

D. SPEED OF OPERATICI

As discussed earlier, CRYSTAL determined that the

maximum clock frequency for the 16-bit multiplier is 1.234

MHz. Macitts generated designs use a different clocking

scheme than the two phase, ncn-overlapping clock presented

by Head and Conway [Ref. 1: p. 65]. It uses a three phase,

five segment overlapping clock to generate the ccntrol
signals for each latch in the pipeline. For a full discus-

sion cf the dacPitts clocking scheme and how to use the

56

S ." -

CRYSTAL timing analyzer on a flacPitts design, the reader is

referred to work done by Froede [Ref. 11]. The timing anal-

ysis was performed on the HacEitts multiplier in accordance

with this document and the worst-case CRYSTAL timing results

are cortained in Appendix B.

The overall minimum clock period for a CRYSTAL design is

fouad by adding the worst stage propogation delay that

occurs during the first two segments of the clock to the

last three clock segment delays. For the 8-bit multiplier,

the longest stage is the first. The critical path is found

to run from the input pads, through the Weinberger array,

and then through eight full adders cascaded in series to

perform one summation of the partial products in the add-

and-shift algorithm. This delay was found to be 4838.89

nanoseconds. The sum of the individual times for the clock

signals tc travel fica the input pads to the latch cells

during the last three segments of the clock is 207.14 nano-

seconds. This results in an overall minimum clock period of

5046.03 nanoseconds and a maximum clock frequency of 198.176

KHZ. The high prorogation time in the first stage of the

circuit is due primarily to three things. First, high

resistance kolysilico is utilized for the long data runs.

Second, no signals are buffered in any way to provide an

imprcved signal sourcing capability to help combat the high

fanouts and long data runs. Third, a 8-bit ripple carry

adder is utilized to sam two partial products in every stage

of the pipeline. Each 1-bit full adder in an 8-bit ripple

carry adder is composed of nine NAND gates. The carry in

between each full adder in the ripple carry adder is nct

routed directly, but is routed over a long polysilicon wire

which also contributes to the high critical path delay.

57

Z. .gllR

Tatle III summarizes the results for the comparison of

the hand-crafted design and its silicon compiler generated

counterpart. The results are as expected with the custom

design having a six-fold increase in maximum speed, a

thirty-eight percent decrease in power consumption per tran-

sistor, and a doubling of chip density over the LacPitts

design. The true advantage of the MacPitts silicon compiler

is in its ability to provide extremely rapid design turn-

around time versus a hand-crafted design. As research

continues into the area of silicon compilation and improve-

ments are made to existing compilers, they may someday

become the powerful and useful tool that they have the

potential to be.

TABLZ III
Summary cf Comparison Statistics

PAA._ETER CUSTOM AULT MACPITIS MULT

S12E CF 16 bits 8 bits
OPERAND INPUTS

DI E1:SICNS 12266 x 10532 6766 x 6024
(21crcns)

DSI'IX .1.23x10- 4 5.92x10-5
t (transistors/micrcn2)

S71TIC DC POWER
(Watts1

AVERAGE 1.983 0.352
MAXIMUM 3.177 0.667

MACPITTS
MAXIMUIM NA 0.4U07

PONER/TRANSISTOR 2.00x10-4 2. 766x 10-4
(Watts)

-AZIMUI3M FREQUENCY 1234.0 198.176
(KEz)

DESIGN TIE 750 24
(man-hours)

v 58

. ., .°• .. * . . i . . .

vI. QON.QjAJgO

In this thesis, the application of carry-save addition

to a 16-bit two's ccplement multiplication and its imple-

mentation as a pipelined VLSI design have been presented. A

compariscn between this hand-crafted design and an 8-it

unsigned multiplier was developed. This comparison coupled

with the experience gained in the actual design and computer

simulaticn of the multiplier leads to the following conclu-

sions and recommendations.

A. DESIGN OF THE SMMIPLIER

If the design of the multiplier were to be undertaken

a!ain, three changes to the circuit would be desirable.

First, the incorporation of a static latch would be

attempted provided a feasible design that would fit intc the

limited available chip area could be developed. A static

latch would insure that data remains valid and not be

discharged from the inverter's gate capacitance if toc slow

a clock is applied. Second, the high fanout from the latch

contrcl drivers would be divided into a tree structure. At

its termination points would be smaller, more efficient

drivers that would drive a fanout not greater than five.

Third, improvements tc the buffering of the high fanout sign

extended bits of the first stage and the outputs of certain

1xi multipliers would be accomplished. Both of the last two

improvements would be directed at optimizing the maximum

clock freguency of the multiplier.

Another possible solution to the long propagation delay

through the fitst stage is to partition the stage intc two

stages with approximately equal delay. Although this vould

59

%-

reduce the propagation delay through the first stage, the
increase in routing complexity and area required for an

additicnal 201-bit latch may not be feasible in current

MOSIS limitations.

The LSSD technique is highly recommended to ke applied

to any pipelined design so that the testing and detection of

fabrication errors is made easier. Not only will the LSSD

technique prove beneficial in the after-fabrication testing,

but it also proved extremely useful in CAD simulation before

fabrication to detect routing errors. The value of imple-
menting a LSSD in most cases will far outweigh the increased

complexity of the latch design and the potential frustration

in searching for errors based on final latch outputs.

A 32-bit CIA adder could ke developed to complement the

16-bit multiplier. This can be accomplished very rajidly

and with little additional effort by using the same method

described in this thesis with the following exception.

Since the carry in to an adder is not necessarily zero, the

equations actually input to EQNTOTT and TPLA should be

Equations 2.3 througl 2.8 and Equations 2.13 through 2.15.

Additionally, the use of full 32-bit operands will require

the expansion of all of the latches.

P. CID UPDVARE AND SOFTVARE

.- The combination of EQNTOTT AND TPLA proved to be a very

useful pair of CAD tools in the development of complex logic

functions. Additionally, TPIA appears extremely versatile

with the different technologies available and its numerous

cptions.

CAESAR proved to be a very good design tool for the

graphical layout of a VLSI design. The installation cf its

successor, the layout editor MAGIC, should greatly ease the
routing hurden of the designer.

.0

• ." 60

°

he coning addition of hardware to support actual

testing of chips that have been fabricated by KOSIS will

greatly aid in determining the accuracy of available CAD

simulaticn tools. Once these in-house testing capabilities

are available, extensive testing should be accomplished in

the two multipliers discussed here. In particular, a

detailed comparison should be made between CAD simulation

and actual results in the areas of functional operation,

maximum speed, and static DC power consumption.

C. SILICCU COIPILATICI

Even though the facPitts program available at NPS by no

means prcvides an optimum integrated circuit design, it is

an excellent vehicle from which to study the area of siliccn

compilers. They pzcvide an excellent alternative to the

custom, gate array, and standard cell interccnnection

methods that are in tse today. Further research into opti-

sizing the existiny MacPitts silicon compiler for speed,

power consumption, and transistor density should be

undertaken.

6.

i6

STIPPLE PLOTS

On the following Fages are the stipple plots of the four

basic building blocks that were used in the design of the

16-bit multiplier. Icllowing these is a stipple plot of the

final layout for the 16-bit two's complement multiplier that

was designed for this thesis. For the purpose of clarity

and continuity, a stipple plot of the 8-bit multiplier

generated by the MacPitts silicon compiler is also

presented. All plcts were made with the CAD prcgram

CIPPLCT.

._

2"62

t. . . .

*% % %.-a 'S

Figure A.1 F ull Adder Cell.

63

W V Q. v .

PiueA 2 1PtLac el

464

4.,

L'

Figure 1.3 CLI Unit.

65

~!T~w~ wc77...........

Figure A.14 Block F and G Generator.

66

- . - . - - . .I' ~ - t. -. - -~ -.. S4

I.c
F4

I4

.44

4-4

WA)

LN4

*1 67

........ . -....- . - --. - - . .. ~ - . - ..

IMI

6 e

-+. , . .- .* -+ :,+ - .-. -I ,. U n U ' J %. r, -9 C. , p ,~ , -,.+

~- - - 7 - -:

SIKULkTIOD RESULTS

7he following pages in this appendix contain, in order,

the resultant ESIM and CRYSTAL session for the 8-bit multi-

plier, the CRYSTAL timing analysis for the 8-bit multiplier,

and the POWEST estimates for both the 16-bit and 8-bit

69

.fu,. i* . .- **.*

ISI results for 16-bit two's complement multiplier.

'% esini mult32.:iim
11962 transistors, 8452 nodes (3914 pulled up)

Sim> 0 init esim
initialization took 33772 steps
initialization took 4682 steps

initialization took 230 steps
initialization took 0 steps
initialization took 0 steps
step took 6 events
lachout=0000 0
plow---11111111111111 I1 65535

phigh=1111111111111111 65535
latchin=O000 0
bin=0000000000000000 0
ain =000000(0IO0000 0
op= l

Sim> R 5

Sim> v
lat.chout-0000 0
plow =000000000(O0000 0
phigh =0000000000000000 0
latchin=0000 0
bin -0000000000000000 0
ain =0000000000000000 0
op=I
h inputs: Vdd op
) inputs: GND phil phi2

Sim> 0 test vectorl
step took 451 events
latchout=0000 0
plow =0000000000000000 0
phigh= 0000000000000000 0
latchin=000 0
bin=0000000010001111 143
ain =000000000001 1011 27
op=I

%: 7 0
N.

latch..-ut-0000 C)

plow (i()fl00J000 00OM a
* phigh -~ (000000000000000 0

Iatchin=00OO 0
bin. -UOOO01000h11I1 143
ain -oooooooooooiioii 27
op-lI
cycle took 3785 events

Sim> (U test vector2
step took 1927 events
latchou(=0000 0
plow = 0000000000000000 0
phigh =0000000000000000 0
laichin=0000 0
bini-11111l101110001 65393
ain=0O0O0OOO0OO1 1011 27
op 1
Sim> C
latchout=0000 0
plow = 000000OOO0000OO 0

phigh =0000000000000000O 0
latchin=0000 0
bin=1J11111I10111000l 65393
&in =000000000001 1011 27
op= 1I

* cycle took 4888 events

Sim> 0 test vector3
step took 2819 events
latchout=0000 0
plow =000JOOOOOOOOOOOO 0
phigh -0000000000000000 0
latchin=0000 0
bin=0000000010001111 143
ain=1111111111100101 65509
op=lI
Sim> c

latchout.=0000 0
plow (KM00(00(X)00000 0
phigh 000000000(K)0000 0
latcbin=0000 0
bin=0000000010001111 143
ain=lII 11ll1111100101 65509
op= 1

cycle took 5243 events

71

.9. *.9-A-

", "-'-
I : - . i

. - * . . . S. -- '. - -, - -. ,-- .

-.

-,1 t0 lest vector4
. 1op took 4777 events
latchout- 0000 0
plow = 0000000000000000 0
phigh=O000000000000000 0
Iatchin=0000 0
bin.! 111 I1101110001 65393
ain=1111111111100101 65509
op= 1
sim> c
latchout=0000 0
plow =0000000000000000 0
phigh "-0000000000000000 0
l iatchin=0000 0
bin=-1111111101110001 65393
ain=l11111111110101 65509
op=I
cycle took 4821 events

sim> 0 test vector5
step took 3403 events
latchout=0000 0
plow= 0000000000000000 0
phigh-=000000000X0000 0
latchin=O000 0
bin-0000010001100011 1123
ain=0000001101111011 891

op--i
". sim> c
.- latchout=0000 0

plow=00001 1100010101 3861
phigh =0000000000000000 0
latchin=0000 0
bin 00000100011000 11 1123
&in 000000 110 11110 1I 891
op .I
cycle took 5981 events

.

72

..-. . . .

ImnI 1 test v'ector6
step.took 2121 events
latchout=-0000 0
plow- 0030111100010101 3861
.,high= 0000000000000000 0
latchin=0000 0
bin=-0000001101111011 891
ain= 1111101110011101 64413
op=l
sim> C
lachout=0000 0
plow= 1111000011101011 61675
phigh=1111111111111111 65535
latchin=O000 0..
bin-=0000001101111011 891
ain=1111101110011101 64413
op=l
cycle took 5341 events

sim> D test vector7
step took 1708 events
latchout=0000 0
plow= 1111000011101011 61675
phigh= ll 1 1II I 65535
latchin=0000 0
bin =1000000000000000 32768
ain= 1000000000000000 32768
ol-- I

sin> c
latchout=0000 0
plow= 1111000011101011 61675
phigh=1 111111111111111 65535

latchin=0000 0
bin= 1000000000000000 32768
ain - l000000000O0000 32768
op-I
cycle took 5084 events

73

S .-- " 2-.." . "- . -. .- - - -.- " - ---

latchout=0000 0
Plow =00001 11100010101 3861
phigh -=000000000000 0
lat-chin=0000 0
bin = IO000W0000000000 32768
a in=1000000000OO0000O 32768
OP= I
cycle took 4786 events

Sim> c

latcbout=0000 0
Plow =010001001 0010001 17553
phigh=OOO0oooooo0oiiii 15
latchin=0000 0
bin '1000000000000000 32768
ain 1 000000000000000 32768
op= I
cycle Look 4170 events

aimn> c
latchout=0000 0
PlOw.=1011101I011ii 47983
phigh=llililliloooo 65520
latchin=0000 0
bin=1000000000000000 32768
ain =1000000000000000 32768
op=l
cycle took 4280 events

aimn> c
latchout=0000 0
Plow =0000000000000000 0
phigh=0looo00ooooooooo 16384
latchin-=0000 0
bin- I000000000000000 32768
ain = If00000000000000o 32768
op=1I
cycle took 3953 events

Sin> q

74

CRYSTAL results for 16-bit tvols complement multiplier.

Crystal, v.2
:build mult32.sim

[1:12.lu 0:12.4s 1786k!

inputs a<15:0> b<15:0> op phil phi2
[0:0O.lu 0:00.1s 1795k]
:inputs 11 in 12 in 13 in 14_in'

10:00.ou 0:00.0. 1795IF
:outputs p<31:0> 11_out 12_out 13 out 14_out

[0:00.Ou 0:00.Os 1795k]

markdynamic phil 0 phi2 0
Marking transistornfow...
Setting Vdd to 1...
Setting GND to 0...
j10:08.Iu 0:01.1s 1795k)

** RISETIME FOR PH12 IN NORMAL OP
:set I op
10:00.5u 0:00.1s 1795k]
:set 0 phil
10:00.7u 0:00.1is 1795k]
:delay phi2 0 -1
(12279 stages examined.)
10:46.8u 0:04.6s 1855k!
:critical Im
Node 14171 is driven high at 98.26ns

*-through et at (2772, 1751) to Vdd after
18259 is driven low at 95.79ns

.. through fet at (2792, 1810) to OND after
16988 is driven high at 92.08ns

... through fet at (2800, 1819) to 17829
through ret at (2794, 1823) to Vdd after

1273 is driven high at 89.36ns
...hrough fet at (313, 1486) to Vdd after

11735 is driven high at 35.9Ons
-.through fet at (303, 1506) to Vdd after

11765 is driven high at 14.1 7 ns
.through fet at (287, 1506) to Vdd after

11745 is driven low at 10.O3ns

..through fet. at (285, 1422) to GND after
11764 is driven high at 5.79ns

.. through fet at (160, 1582) to Vdd after
12847 is driven low at O.lIns

.through fet at (156, 1604) to GND after
phi2 is driven high at 0.O0ns

10:00.3u 0:00.1s 1855k]

75

'~FALLTIME FOR PH12 IN NORMAL UP
clear

;0:00.9u 0:00.3s 1855ki
:set 1 op

Marking transistor flow...
Setting Vdd to I1...
Setting GND to 0 ...
jO:06.4u, 0:00.6s 1855k]
:set 0 Phil

[0:00.Su 0:00.1s 1855k]
delay phi2 -1 0

(16400 stages examined.)
10:58.8u 0:02.6s 1879k]
critical Im

Node 11983 is driven low at 64.28ns
.through fet at (2836, 1550) to GND after

12776 is driven high at 64.98as
... through fet at (2842, 1802) to 13219
... through fet at (2852, 1602) to 13220
.through fet at (2863, 1845) to Vdd after

12892 is driven high at 54.Olns
... through fet at (2840, 1645) to Vdd after

13081 is driven low at 53.08ns
*...through fet at (2836, 1856) to GND after

14010 is driven high at 55.67ns
...through fet at (2756, 1696) to 14572

... through fet. at (2772, 1696) to 14437
-.through fet at (2782, 1751) to Vdd after

14171 is driven low at 35.54ns
% -through fet at (2767, 1756) to GND after

16259 is driven high at 33.63ns
.. through fet at (2794, 1800) to Vdd after

16968 is driven low at 22.80ns
..through ret, at (2800, 1819) to 17829

... through fet at (2792, 1816) to OND after
1273 is driven high at 21.54ns

... through fet at (315, 1486) to Vdd after
11735 is driven hit'h at 13.39ns

... through frt at (293, 1506) to Vdd after
11765 is driven low at 10.69ns

.through fet at (285, 1483) to GND after
11745 is driven high at 7.l9ns

... through fet at (287, 1410) to Vdd after
11764 is driven low at 2.5lns

*.through fet at (156, 1581) to GND after
12847 is driven high at 0.56ns

.through fet at (163, 1604) to Vdd after
phi2 is driven low at 0.00ns

0:00.3u 0:00.1s 1879k]

76

.%~ ~~~~~ %,0
,b * .a

T- W. -: -7--- II I -. ,

PHIl RISETIME IN NORMAL OP *
clear

10:00.9u 0:00.3s 1879k]
: set I op
Marking transistor flow...
Setting Vdd to 1...
Setting GND to 0...
10:06.5u 0:O0.5s 1879k]
: set 0 phi2
10:00.2u 0:00.09 1879k]
: delay phil 0-1
(5926 stages examined.)
10:12.lu 0:00.6s 1879k]
: critical Im
Node 17518 is driven high at 108.62ns

...through fet at (2256, 1845) to 18827 after
normdrout is driven high at 101.60ns

...through fet at (4013, 1343) to Vdd after
10876 is driven high at 48.60ns

...through fet at (4141, 1351) to Vdd after
11000 is driven high at 26.81ns

...through fet at (4163, 1351) to Vdd after
11302 is driven low at 22.55ns

... through fet at (4166, 1423) to GND after
11063 is driven high at 17.47ns

... through fet at (4408, 1354) to Vdd after
11064 is driven low at 6.6ins

... through fet at (4433, 1362) to 11369

... through fet at (4433, 1566) to GND after
10622 is driven high at 5.72ns

...through fet at (4483, 1305) to Vdd after
10603 is driven low at 0.11ns

...through fet at (4498, 1281) to GND after
phil is driven high at 0.00ns

10:00.lu 0:00.1s 1879k)

* PHIl FALLTIME FOR NORMAL OP *
clear

10:00.8u 0:00.3s 1879k]
set I op

Marking transistor flow...
Setting Vdd to I...
Setting GND to 0...
10:06.2u 0:00.1s 1879k)
: set 0 phi2
[0:00.2u 0:00.Os 1879kj
delay phil -1 0

(4092 stages examined.)
[0:10.4u 0:00.6s 1896k]

77

;,. ,., ... ' ,, ,.. , ,

critical Im
Node 4675 is driven low at 89.11ns

...through fet at (2091, 781) to GND after
4486 is driven high at 83.87ns

.through fet at (2736, 842) to Vdd after
normdrout is driven low at "9.96ns

... through fet at (4021, 1351) to GND after

B 11059 is driven high at 32.15ns
... through fet at (4141, 1446) to Vdd after

11302 is driven high at 10.54ns
... through fet at (4163, 1446) to Vdd after

11063 is driven low at 5.9Ins
... through fet at (4407, 1362) to GND after

11064 is driven high at I.1Sns
... through fet at (4434, 1354) to Vdd after

10622 is driven low at 2.49ns
... through fet at (4498, 1304) to GND after

10603 is driven high at 0.56ns
... through fet at (4489, 1282) to Vdd after

phil is driven low at 0.OOns

[0:00.2u 0:00.1s 1896k]

• PHIl RISETIME FOR SHIFT OP *
clear

10:00.9u 0:00.3s 1896k)
set 0 op

Marking transistor flow...

Setting Vdd to 1...
Setting GND to 0...
10:06.6u 0:00.5s 1896kJ
: set 0 phi2
10:00.2u 0:00.Os 1896k

delay phil 0 -1
(11989 stages examined.)
10:42.1u 0:01.7s 1918k]

critical Im
'Node 4354 is driven high at 343.02ns

... through fet at (2743, 502) to 3227

... through fet at (2734, 463) to Vdd after

shdrout is driven high at 45.78ns
through fet at (4007, 1223) to Vdd after

10522 is driven low at 29.07ns
... through fet at (4053, 1228) to GND after

10336 is driven high at 27.68ns
... through fet at (4067, 1216) to Vdd after

10523 is driven low at. 24.23ns
-through fet at (4070, 1266) to GND after

78

....................................-
. ' - ..-

10589 is driven high at 19.49ns
... through fet at (4407, 1334) to V'dd after

10633 is driven low at 6 .61nsA... through fet at (4433, 1327) to 10831
*... through fet at (4433, 1324) to GND after

10822 is driven high at 5.72ns
... through fet at (4483, 1305) to Vdd after

10603 is driven low at 0.l1lns
... through fet at (4498, 1281) to GND after

phil is drivein high at 0.00ns
10:00.lu 0:00.1is 1918k]

** PHIJ FALLTIME FOR A SHIFT OP**
clear

[0:00.8u 0:00.3s 1918k]
:set 0 op

'Marking transistor flow...
Setting Vdd to L..
Setting OND to 0...
10:06.4u 0:00.4s 1918k]

set 0 phi2
[0:00.2u 0:00.Os 1918k]
delay phil -1 0

(20633 stages examined.)
[1:22.2u 0:08.4s 1961k]
:critical im

Node 11983 is driven low at 72.O4ns
..through fet at (2836, 1550) to OND after

12776 is driven high at 7 0.74ns
... through fet at (2842, 1602) to 13219
... through ret at (2852, 1602) to 13220
... through fet at (2863, 1645) to Vdd after

12892 is driven high at 6 1.78ns
... through ret at (2840, 1645) to Vdd after

13081 is driven low at 60.84ns
-.through ret at (2838, 1656) to GND after

14010 is driven high at 6 3 .i3ns
... through fet at (2756, 1696) to 14572
-.through fet at (2772, 1696) to 14437

... through fet at (2782, 1751) to Vdd after
14171 is driven low at 43.3Ons

... through ret at (2767, 1758) to GND after
16259 is driven high at 41.39ns

... through fet at (2794, 1800) to Vdd after
shdrout is driven low at 30.7Ons

... through fet at (4032, 1225) to GND after

79

.~* *'**% *

- ~ ~ ~ ~ ~ ~ ~ ~ 77 7r . ,* .*. - -- - --

10522 is driven high at 19.22ns
... through fet at (4045, 1289) to V'dd after

10523 is driven high at 10.Olns
-* .- through fet at (4067, 1289) to Vdd after

10589 is driven low at 6.29ns
..through fet at (4406, 1327) to GND after

10633 is driven high at 3.13ns
... through fet at (4434, 1334) to Vdd after

10622 is driven low at 2.49ns
... through fet at (4498, 1304) to GND after

10803 is driven high at 0.56ns
... through fet at (4489, 1282) to Vdd after

phil is driven low at 0.00ns
10:00.2u 0:00.2s 1961k1

SINPUT PAD TO LATCH 1 DELAY**

clear
10:00.9u 0:00.7s 1961k]

set l op
Marking transistornfow...
Setting Vdd to 1 ...
Setting GND to 0 ...
[0:06.3u 0:00.3s 1961k]

set 0 phil phi2
10:00.9u 0:00.1s 1961ki
:delay a< 15:0> 0 0

(43921 stages examined.)
]1:16.6u 0:09.2s 1961k]

critical lmn
Node 19554 is driven high at 558.82ns

... through fet at (1008, 2140) to Vdd after
19655 is driven low at 554.42ns

... through fet at (980, 2145) to GND after
21705 is driven high at 531.79ns

.through fet at (667, 2760) to 27839
... through fet at (677, 2760) to 27714
... through fet at (693, 2798) to Vdd after

27436 is driven low at 485.22ns
.through ret at (698, 2808) to OND after

22366 is driven high at 473.4Ons
... through ret at (1823, 3125) to Vdd after

30352 is driven low at 337.44ns
... through fet at (183 . 3142) to GND after

30351 is driven high at 332.90ns
-.through fet at (1807, 3257) to 33567

... through fet at (1817, 3257) to 33568

... through fet at (1840, 3306) to Vdd after

80

33186 is driven lo'w at 299.22ns
... through fet at (1818, 3293) to GND after

33391 is driven high at 298.l5ns
... through fet at (1822, 3306) to Vdd after

30591 is driven low at 295.49ns
... through fet at (1955, 3577) to 38872
... through fet at. (1955, 3580) to GND after

38615 is driven high at 241.93ns
... through fet at (1997, 3813) to Vdd after

40527 is driven low at 3.3Tns
... through ret at (2011, 3839) to GND after

40457 is driven high at 2.6Ins
... .through fet at (2030, 3824) to Vdd after

40625 is driven low at 0.l1Ins
... through fet at (2052, 3839) to GND after

a2 is driven high at 0.O0ns
10:00.2u 0:00.2s 1961c1

18:58.2u 0:49.Os 1961k] Crystal done.

78

CRISTAI results for stage 1 for the HacPitts chip.

build stagel.sim
o 12.4u 0:01.3s 247k]
inputs in<27:1>

'0:00.Ou 0:00.1s 258k]
outputs a<24:1>

*** FIRST STAGE DELAY *
delay in<27:1> 0 0

Marking transistor flow...
Setting Vdd to I...
Setting GND to 0...
(11559 stages examined.)
10:22.7u 0:00.9s 411k]

critical
Node 2195 is driven high at 4838.89ns

... through fet at (565, 934) to Vdd after
2118 is driven low at 4831.44ns
... through fet at (506, 926) to 2127
•through fet at (506, 921) to CND after

2095 is driven high at 4825.4ins
through ret at (485, 928) to Vdd after

1867 is driven low at 4813.82ns
... through fet at (423, 922) to 2086
... through fet at (423, 917) to CND after

1805 is driven high at 4783.75ns
... through ret at (669, 910) to a2

... through ret at (683, 910) to 1944

... through ret at (620, 934) to Vdd after

2119 is driven low at 4330.98ns
... through fet at (585, 924) to 2103
... through fet at (585, 919) to GND after

2048 is driven high at 4326.95ns
.through ret at (537, 930) to Vdd after

1933 is driven low at 4314.44ns
... through fet at (645, 1000) to 2790

... through ret at (645, 1005) to GND after
2730 is driven high at 4306.4Ins

.. through ret at (537, 1010) to Vdd after

2798 is driven low at 4293.82ns
... through fet at (506, 1006) to 2807
... through ret at (506, 1001) to GND after

2775 is driven high at 4287.69ns
.. through fet at (485, 1008) to Vdd after

2551 is driven low at 4275.76ns
... through ret at (423, 1002) to 2766
... through ret at (423, 997) to GND after

82

Mik
* * **.):-,*.,..2-* ~ ; : .:. - - - *

' "= . "• '. " . , 'o.,o° .. wl- -.... ". S
•

i o" ' - * ""%"" % .'- . * i',' o"- * J % "
° ° °

",''. .' '/ "., '," . ' .,'=' '.,; " ', ," ,r . ' ,, , -/ , ., , . ," , ,*

2525 is driven high at 4243.64ns
S...through fet at (669, 990 to S3
...through fet at (683, 990) to 2637
...through fet at (620, 1014) to Vdd after

2799 is driven low at 3741.79ns
... through fet at (585, 1004) to 2783
... through fet at (585, 999) to GND after

2624 is driven high at 3735.64ns
...through fet at (652, 1074) to Vdd after

3236 is driven low at 3712.11ns
...through fet at (423, 1082) to 3449
...through ret at (423, 1077) to GND after

3210 is driven high at 3680.28ns
...through fet at (669, 1070) to a4
...through fet at (683, 1070) to 3318
...through ret at (620, 1094) to V'dd after

3482 is driven low at 3186.59ns
.. through fet at (585, 1084) to 3466
...through fet at (585, 1079) to GND after

3411 is driven high at 3182.56ns
...through fet at (537, 1090) to Vdd after

3307 is driven low at 3170.04ns
...through fet at (645, 1160) to 4149
...through fet at (645, 1165) to GND after

4087 is driven high at 3162.01ns
...through fet at (537, 1170) to Vdd after

4157 is driven low at 3149.43ns
... through fet at (506, 1166) to 4166
... through fet at (506, 1161) to GND after

4133 is driven high at 3143.25ns
...through fet at (485, 1168) to Vdd after

3907 is driven low at 3131.21ns
... through fet at (423, 1162) to 4124
... through fet at (423, 1157) to GND after

3881 is driven high at 3098.30ns
... through fet at (669, 1150) to a5
... through fet at (683, 1150) to 3990
...Ihrough fet at (620, 1174) to Vdd after

4158 is driven low at 2577.22ns
...through ret at (585, 1164) to 4141
...through ret at (585, 1159) to GND after

3978 is driven high at 25 7 1.91ns
-through ret at (652, 1234) to Vdd after

4770 is driven low at 2555.05ns
...through fet at (530, 1244) to 4825
...through fet at (530, 1239) to GND after

4841 is driven high at 2547.85ns
...through fet at (513, 1252) to Vdd after

83

* * * *.'. .* * \ * *

4818 is driven low at 2532.70ns
... through fet at (478, 1242) to 4810

... through fet at (478, 1237) to GND after
4568 is driven high at 2501.33ns
...through fet at (669, 1230) to a6
... through fet at (683, 1230) to 4677
.. through fet at (620, 1254) to Vdd after

4842 is driven low at 1985.61ns
... through fet at (585, 1244) to 4826
... through fet at (585, 1239) to GND after

4666 is driven high at 1980.29ns
... through fet at (652, 1314) to Vdd after

5456 is driven low at 1963.43ns
... through fet at (530, 1324) to 5508
... through fet at (530, 1319) to GND after

5526 is driven high at 19 58.23ns
... through fet at (513, 1332) to Vdd ater

5501 is driven low at 1941.04ns
... through fet at (478, 1322) to 5493
...through fet at (478, 1317) to GND after

5248 is driven high at 19 09.46ns
...through let at (669, 1310) to a7
... through fet at (683, 1310) to 5363
... through fet at (620, 1334) to Vdd after

5527 is driven low at 1388.69ns
... through fet at (585, 1324) to 5509
... through fet at (585, 1319) to GND after

5346 is driven high at 13 8 3.38ns
...through fet at (652, 1394) to Vdd after

6129 is driven low at 1366.51ns
.. .through let at (530, 1404) to 6181
...through fet at (530, 1399) to GND after

6197 is driven high at 13 5 9.33ns
... through fet at (513, 1412) to Vdd after

6174 is driven low at 1344.20ns
... through fet at (478, 1402) to 6166
... through fet at (478, 1397) to GND after

5928 is driven high at 13 12.98ns
.. through fet at (669, 1390) to a8
...through fet at (683, 1390) to 6036
... through fet at (620, 1414) to Vdd after

6198 is driven low at 800.6lns
...through fet at (585, 1404) to 6182

... through fet at (585, 1399) to GND after
6025 is driven high at 794.45ns

... through fet at (652, 1474) to Vdd after
6637 is driven low at 770.92ns

... through fet at (423, 1482) to 6842

... through (et at (423, 1477) to GND after

84,€.

* --
* *' -

:.'.:- *-'- .* ; "_* " '*. ". m.: ':'.*....."_"'"" '": ". ".?"' . " "'?2 -""- " """??".''?'?. :"-;-'.. .' " ".".:.':". 2

6611 is driven high at 739.O9ns
... through tet at (669, 1470) to 6644
... through fet at (683, 1470) to 6720
.through fet at (620, 1494) to Vdd after

755 is driven high at 219.87ns

.. through fet at (634, 410) to Vdd after
1080 is driven low at 1S4.69ns

... through fet at (2443, 2876) to GND after
* 7571 is driven high at 10.74ns

-through fet at (2487, 2858) to Vdd after
inl6 is driven low at 0.O0ns

[0:00.7u 0:00.4s 411kj

85

I - - *

CRYSTAL results for the clock inputs to

, the registers of the Mlacpitts chip.

Crystal, v.2
: build timing.sir
'0:13.9u O:O1.6s 258k]

: inputs phi• phib phic
.O:O0.Ou O:00.0s 267k]

* PHASE 1 OF 5 *
: set I phia phic

[0:00.lu 0:00.Os 267k]
: delay phib 0 -1

(604 stages examined.)
[0:00.9u 0:00.1s 271k]
: critical
Node 6392 is driven low at 87.36ns

... through fet at (2322, 1476) to 6678

... through fet at (2314, 1472) to GND after
6391 is driven high at 81.45ns

... through fet at (2290, 1485) to 6679

... through fet at (2333, 1483) to Vdd after
588 is driven high at 65.23ns

... through fet at (2316, 841) to Vdd after
490 is driven low at 62.98ns

... through fet at (2314, 834) to GND after
28 is driven high at 50.57ns

... through fet at (791, 149) to Vdd after
21 is driven low at 0.80ns

... through fet at (817, 134) to GND after
phib is driven high at 0.OOns

[0:00.lu 0:00.1s 271k]

* PHASE 2 OF 5 *

" clear
" :O0.lu O:O0.Os 271k]
: set 1 phi.

Marking transistor flow...
Setting Vdd to 1...

Setting GND to 0...
"0:00.6u 0:00.Os 271k]
: delay phib -1 0
(28 stages examined.)

-O:o.lu O:Oo.Os 271k]
, delay phic -1 0
(28 stages examined.)
0:00.1u O:OO.Os 271k]

86

%"%

I
critical

Node 590 is driven low at 119.19ns

... through fet at (2344, 833) to GND after
491 is driven high at 113.28ns

... through fet at (2338, 813) to Vdd after
25 is driven low at 84.73ns

... through ret at (651, 134) to GND after
19 is driven high at 10.74ns

... through fet at (695, 148) to Vdd after
phic is driven low at 0.00ns

[0:00.lu 0:00.Os 271k]

***PHASE 3 OF 5 *

clear
[0-00.1u 0:00.Os 271k]
: set 0 phib phic
[0:00.lu 0:00.Os 271k]
: delay phia -1 0
(40 stages examined.)
1O:00.lu 0:00.0s 272k]
: critical
Node 574 is driven high at 61.22ns

... through fet at (2087, 841) to Vdd after
483 is driven low at 59.1Ins

... through fet at (2085, 834) to GND after
353 is driven high at 49.97ns
.. through fet at (2088, 802) to Vdd after

31 is driven low at 30.89ns
... through fet at (907, 134) to GND after

23 is driven high at 10.74ns
... through fet at (951, 148) to Vdd after

phia is driven low at 0.00ns
[0:00.1u 0:00.1s 272k]

*** PHASE 4 OF 5 *
: clear
.0:00.lu 0:00.Os 272k]

set 0 phib phic
[0:00.1u 0:00.Os 272k!

delay phia 0 -1
(40 stages examined.)
10:00.1u 0:00.Os 274k]
: critical
Node 574 is driven low at 54.31ns

... through fet at (2095, 833) to GND after

87

b 483 is driven high at 49.17ns
.. through fet at (2089, 813) to Vdd after

353 is driven low at 27.72ns
...through het at (2082, 792) to GND after

31 is driven high at 15.16ns
... through fet at (919, 149) to Vdd after

23 is driven low at 0.80ns
...through fet at (945, 134) to GND after

phia is driven high at 0.00ns
[0:00.lu 0:00.Os 274ki

** PHASE 5 OF 5 *
clear

"0:00. lu 0:O0.Os 274k]
set I phia

Marking transistor flow...
Setting Vdd to i...
Setting GND to 0...
'0:O0.Gu 0:00.1s 274k]
: set 0 phib
.0:00.1u 0:00.0s 274k]
: delay phic 0 -1
(412 stages examined.)
10:00.5u 0:00.Os 281k]
critical

Node 6674 is driven low at 91.61ns
...through fet at (2136, 1472) to GND after

6384 is driven high at 85.13ns
...through let at (2116, 1476) to 6673
... through ret at (2099, 1483) to Vdd after

578 is driven high at 70.69ns
...through let at (2130, 841) to Vdd after

485 is driven low at 68.51ns
... through ret at (2128, 834) to GND after

25 is driven high at 55.79ns
...through fet at (663, 149) to Vdd after

19 is driven low at 0.80ns
... through fet at (689, 134) to GND after

phic is driven high at 0.OOns
1 10:00. I u 0:00.Os 281 k
:q

88

W
'-' . . , . . • :,.. ,,, , . . . "- '. . - '- .. - ,,.... - ,..'.-

... ,. _:,...._... ,. .. ,.- ." , ,:.',..'.',....,.... . ,¢,,e:.'

POWEST Results for the 16-bit Multiplier

V.(041, -1).- mul1t32.simn

gamma -0 4V*.5. tox=9e-08m, u0=0.08m**2.'-.s
vdd-5V vtd=-S.5V. vte-0.SV, vsb=2V

odevs Pdcavg (W) Pdc rrax (W) type

0 0.000000 0.000000 enhancement pullups

3720 1.790881 2.793533 depletion pullups

194 0.191948 0.383896 special depletion pullups

3914 1.982829 3.177428 TOTAL

POWEST Results for the 8-bit Multiplier.

% powest -p < multip8c4.sim

gamma=0.4V**.5, tox=9e-08m, u0=0.08m**2/V-s
vdd=5V, vtd--3.5V, vte=0.8V, vsb=2V

#jdevs Pdcavg (W) Pdc__max (W) type

0 0.000000 0.000000 enhancement pullup

690 0.140672 0.244640 depletion pullups
ill 0.211404 0.422809 special depletion pullups

801 0.352076 0.667449 TOTAL

89

.

" *i,*..*..*.-i'l i 'ii..-*-,.. . . . *.i " -. *-....., <.-

.

TEST VECTORS

This appendix contains the inputs, intermediate latch

values, and the final product output for each of the test

vector Faizs described in Chapter 3. Each binary value is

represented as its hexadecimal ejuivalent. The inputs and

outputs are represented with their most significant hexa-
decimal digit in the leftmost position. The intermediate
latch contents are represented in hexadecimal with the Nth

bit shifted out of the latch and placed to the left of the

previous bit serially shifted out. The latch at the end of

stage X is identified as latchX where X goes from 1 to 4.

TEST VECTOE 1

INPUIS: O01B 08P

, OUTPUT: 00000F15

L&TCI1: 0000000000000000000000000000011072E7

LATCH2: 00000000002A6E7

LATCE3: 000000000000153DC7

LATCH4: OOOOOOOOOOCA9DC7

IEST VECTP 2

INPUTS: FF71 0C1B

OUTPUT: FFFFFOEB

LATCH1: 659659659659659659659659768COD5A7295

LATCH2: 155555554AZE695

LATCH3: 2A9AA6A9AA15D70D15

LATCH4: AA552595457B8D15

90

.. o*

OUTPUT: PPPPFOBB

LATCH1: 4104104104104010406016C90E6062250A53

*LATCH2: 1555555555-20653

LATCB3: 219AA6A91A21k580C93

LATCB4: AA552A954ASCOC93

MEST V!CIOR 4

INPUTS: F.FE 5 FF71

OUTFUI: 00000115

LATCHi: 'F3C3CF3C17CA38E768B6C85B49E01EB429

LATCH2: 0AAB34D5562A829

'LATCli3: 15559699AAAC354049

LATCHI: 55ACE9BS5E0AA049

TESTVEC70B 5

INPUTS: 0463 037B

OUTPU~T: 000114491

LATCHI: 00000000000000000020800884A01782641F

*LATCH2: 0 00 0 0014 A1C6 41 P

LATCH3: 00000001AE0383083F
* LATCH4: 00000014&AO11883F

TEST IECIOR 6

IIPUlS: 037B fl9D

OUTPUT: FFFOEB6F

LATCH 1: 41041 04104C04506 5324551459A2B30F169B

LATCH2: 15552C756994A9B

LATCa3: 2A9A9181AB 130A4151B

LATCB4:* AA5491F564C5251B

91

INPU7S: 8000 8000

OUTPUT: 40000000

LATCB1: 0004l104104104104.10410410412000000000

LATCE2: 015555555eC0000

LATCH3: 029"AA6A9AAEO000000

LATCB4: OAD56AB55CC0000

9.

i-2

°. . . .

S I*.* ~~S

7* :-7 -_w7 - 1 71-7W . . 7.

LIST OF REFERENCES

1. Head, C. and Ccn11ag L., ;jroucion to U Istgs

2. Caxison, D.J. ~A ication of a Silicon Cojmjler to
VLSI Design ol2 . R1e e XTI =t5 i ers, -cQ
MUM 'i~ Navl 0 tgrnTeS'aI7Nf onterey,
California, June 1984.

3. Stone, HS. Introduction to Computer Architecture, 2d
ed.0 fp. 29-9~ ce~eef s oci

*4. laser, S. and Flynn, N.J, Introduction to Arithmetic
for flicita S~~ ItaR§ - SClegP61EIn-

5. Hvangtc K. gmter Arithmetic PrinciEl es,

6. Kogge, 7U1. Architecture of Piein- _C~jputers,
Hemisphere Pubsh7ISE17

7. Reid, William B. Dlesign of a Siten Bit Pigned~
Adder Using C.7105 Lulk-ITZ-1 l-echoi.Log, 73,327 iesIs,

av T i1 ost Uu-XT- Sc--51oo!terej, California,
December 1984.

8. Ousterhout, 3. Zd~ VgLSI Circuits with Caesar
Computer.Science Division, B4p-TEi-Eft oT!Ie-ET-1-
EnIIneering and Computer Sciences University of
Ca ifornia, Berkeley, pp. 1-22, NarcA 22, 1983.

9. Computer Science Divisicn (EECS) , Universitv of
California, Berkeley, Re port No. UCB/CSD/83/115 -1983
VLSI Tools edited gy ET Mao .K utrhuW

=M7ft M arch, 1983. JK

10. Ousterhout, 3., Usn gystal for Timina Anall-I-S,Computer. Science Disin Tiatet EPrZ
Engineering and Computer Sciences, Univer sity of
California, Berkeley, pp. 1-23, February 28, 1985:.

11. Froede, A.,- Silicon Conj41er Deslan .2 Com binatioaal
adPipeline AMder-7a In-elr a ircuits7

'MI1~'~ra36E 3-1i5ooI7INnti~iy, Ca.Lifornia, June

12. Newkirk ,. jyjSI sxtem Desiq~ paper presented at
Eigteeth"In nual- IiI3mar-T erence on Circuits

Systems, and Computers, Monterey, California,
November 1984.

93

II171AL DISTRIBUTION LIST

No. Ccpies

1. Superintendent 2
Attn: Librarya Code 0142
Naval Postqraouate School
Monterey, Califcrnia 93943-5100

2. Dr. Herschel H. loomis 5
Code 62LB
Naval Post qraduate School
"onterey, California 93943-5100

3. tr. Donald .. Kirk 2
Code 62KI
Naval Postgraduate School
Monterey, Calif crnia 93943-5100

4. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

5. CPT Richard J. Simchik Jr.
594 Genesee Street
Oneida, New York 13421

794

.

,.

-

-

7..

.... 77 9 . 7

-- -
~ x&~

A

'I

FILMED
~1

-A

I.

11-85

'9

DTIC
..

.~

*.**.'t*',~'.~''~''***

t ~'?..'.* .1

4.

