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ABSTRACT

—:> Relational programming is a methodology which combines
the advantages of funtional programming with the relatively
simple laws which govern relations. The goal is to give the
programmer an environment which allows a higher level of
prygramming abstraction than currently gxists, an easier
approach to proving programs correct, and a language which
can support new parallel architectures. In this-ﬁ§$;:t, the
design and implementation of a prototype interactive inter-
preter for a relational programming language is presented.
The reasoning behind the decision to use LISP as the
implementation language is presented followed by an in depth
discussion of the design issues involved and the implementa;
tion decisions méde. How to use the interpreter and future
research topics are discussed. Also several appendices are

provided which include the grammar, the relational operators

1mplemented, and the documented LISP code. CjZ;LAM%anZ/
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I. INTRODUCTION

Relational programming is a programming style which uses
the relation as the basic structure for all programming.
This innovative methodology may be a sound approach to
meeting the future needs of the computer science community.
BgFause entire relations are manipulated instead of
individual data elements, relational programming may serve
as the basis for an efficient, modern machine architecture
which will overcome the limitations and low level word-—-at-a-
time processing of the von Neumann type computers.

A relational programming language is a higher level
language than conventional languages such as Fortran,
Pascal, and Algol. These languages are sequential in nature
and involve the programmer in many low level p.-ogramming
decisions such as keeping track of counters or indices to
array structures. This means that the programmer must worry
about how to manipulate individual membhers of an array to
achieve the desired result instead of being able to deal
with the array structure as a whole. Relational programming
frees the programmer from these types of decisions, allowing
him to work at a higher level of abstraction, concentrating

more on WHAT the program must do, but not details of HOW it

will be done. Relational programming can do this because
data and programs are not treated differently. Data and
a8
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programs are equivalent. since they are based upon a common

structure, the relation.

The relation is a reasonable and feasible basis for a
programming language because a well developed theory of
relations exists and the laws which govern relations are
relatively simple. A similar approach to relational
programming, which has been an active area of research, is
functional programming. 'Backus described in his Turing
Award paper [Ref. 11 a #unctional language, FP, and its
advantages in meeting fﬁture programming needs. As
MaclLennan (Ref. 21 has stated relational programming
subsumes functional programming because every function is a
relation. Therefore everything that can be done in a
functional language can be done in a relational programeing
languagé. MacLennan has described the advantages of
relational programming and demonstrated its potential as a
power ful high 1level 1language. These advantages are

summarized below:

1. Relational programming supports abstract higher level
programming.

2. Relational programming deals with a single kind of
entity, the relation, and uses it for all purposes.

3. Relational programming more directly suppdrts non-
linear data structures such as trees and graphs.

4. Programs can be algebraically derived and manipulated.

S. Relational programming can more easily support
utilization af_associative and active memories.
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This research Qill serve as a mechanism to demonstrate
the practicality and feasibility of a relational programming
language as described by MaclLennan ([Ref. 21. Therefore,
familiarity with his report is necessary to better
understand the +further development of his work presented
here.

This report will describe the development and design of

a prototype interactiwe- interpreter for a relational
pr;gramming language. It will also demonstrate that such an
interpreter is ‘implementable on a current machine
architecture, although it would probably be more suitable to
a newer type of architecture.

This research and its product, an interactive Relational
Programming Language (RPL) interpreter, will serve as a
kernel and impetus for follow-on work with relational
. programming concepts. It is hoped that the issues and
decisions made in this implementation will provide the

; answers to some of the basic questions, and identify some

critical areas for future research.
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11. BACKGROUND

The von Neumann madel of computation has been dominant
for the last 30 years and has remained largely unchanged
even though significant advances in both software and
hardware technology have taken place. Applications continue
to become more complex- and sophisticated, requiring
in;reasingly more powerful computer systems. To date,

p extensions of conventional software systems have seemed to

meet the demands. However, it has become quite clear that an

M3

alternative to the von Neumann computer organization is

DA

needed.

Programming languages were originally designed for and
have supported the von Neumann machine architecture. But,
as technology has aannced, the von Neumann sequential word-
at—a—-time bottleneck has become painfully apparent. Real
5 world applications are not sequential in nature and the

b conversion of concurrent processes to operate sequentially
.

affects efficiency and speed of computation.
Hardware research has acknowledged that a fundamental
:: limit exists on the performance increases which can be
derived from advances in technology alane. VLSI technology
.. seems to be naturally suited to new types of parallel
. architectures, and programming language design is following

suit with the development of higher level programming

11
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languages which are more powerful, abstract and easier to

prove \correft. The increasing complexity of real world
applications is dictating a need for higher levels of
abstraction so that the programmer can concentrate on the
overall solution without becoming bogged down in the
details. Relational prograﬁming is one passible solution to
this praoblem.

Relational programming is based upon the use of a
relational calculus which can model almost any data
structure. Therefore, the high level relational operators
can also be used to manipulate entire data structures.
MacLennan has presented and discussed the basis for a
relational programming language in references 2 and 3. The
operators he describes are based on naive set theory and
operate an three basic objects: individuals, binary
relations and sets. Individuals are the indivisible data
values which can be used to compute. A binary relation 1is
some property which relates one aobject to another. For
example, the less than () relation relates all pairs of
values, » and y, for which % is less than y. Therefore the
pair (3,4) is a member of the '<° relation. The '+’
relation can be denoted (x,y)+z, which means that it takes a
pair (x,y) and relates it to its sum =z. In general, a
relation can be represented by the notation, xRy where x and

y may represent any objects.

12
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A set is any grouping of individuals, binary relations

and/or other sets. Thus there is no restriction on what
sets or relations can be members of other sets and
relations.

With these basic objects, MacLennan develops and
describes the operators which he feels would be useful to
the relational programmer, and demonstrates the éotential
advantages of a programminé language based upon a relational
ca&culus. He shows that relational opérators can be
algebraically manipulated to derive other, more complex
operators. This ability sypports the premise that
relational programs would be easier to prove correct. It
also demonstrates that programs can operate on other
programs to yield relativefy straight-forward solutions to
complex problems. High level abstraction is thus supported,
allowing the programmer to be more productive and able to
conceptually manage larger and more unusual applications.

An important point made by Maclennan is the need to
separate intensional and extensional operators. Relations,
functions and sets can have both a finite (extensional) or
an infinite (intensional) representation. Many operators or
combinations af operators are implementable in either
representation. ‘This complicates the programmer’'s life
because he must remember the underlying restrictions

involved when he wishes to use an operator which falls into

one or the other category.
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In order to prevent confusion caused by double duty

Ay A4y by '; DL

operators, MaclLennan made a decision to separate the

operatars into disjoint classes, those which are used on

finite sets and relations, and those which operate on the

JSLA

caomputable functions which represent infinite sets and
A relations. For example the application operator can both be
. used for applying a function to its argumeﬁt and for looking
. up an item in a table (a %inite relation). The first case
ié represented ?Qx, which applies the computable function f
to the argument x. The more common mathematical notation is
g f(x). The second case, which is denoted by t ¢ %, and read
- as 't select x°, applies the finite table t to x. This
simply means lookup x in table t and return the first item
related to x. Thué, if t = (1:2, 2:3, 3:4, 4:5S) and x = 2,

t ¢ x would return ‘3°. The °':’' operator used above is just

'x“l*'l Y Y N

a pair making operation which says the x:y is a pair (x,y)
that is a member of the relation R, hence xRy.
The operators were further subdivided by MaclLennan into

a primitive class and non-primitive class. Operations were

CRCROROAU LA

considered to be primitive if they could not simply be
defined in terms of other operations. 13 primitive
extensional operators and 13 primitive intensional operators

were proposed by MaclLennan. These primitive operations were

supplemented by 355 non-primitive extensional operators, 10

. non-primitive intensional operators and 13 miscellaneous.

operations which were defined fn terms of the primitive

7 14
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operators. MaclLennan felt that these non—-primitive
operations should be built-in to any relational programming
language implementation. Because the work done in this
study resulted in modifications to some of the operators
proposed by Ha;Lennan, a discussioq of the operators will be
presented in later chapters and in detail in Appendix C.
Since a computer’'s memory is finite, representation of
large extensiona;v sets aﬂd relations is of major concern.

To this end, Suha Futaci [Ref. 41 extended MaclLennan’'s

research by analyzing the complexity of the algorithms
associated with several different extensional
representations.

Finally, the purpose of the prototype interpreter
developed in this research is to further advance the study
of a relational calculus as a programming methodology. The
interpreter will provide a tool to evaluate the relational
operations and provide tangible input for the selection o+f
optimal set of combinators and relational operators. To
achieve this several unique linguistic issues made the
implementation of this prototype particularly interesting:

1. RPL supported a syntax which allowed infix operators
to be used in prefix format if desired. The
expressions (x + y) and ([+1<x,y> have the same
semantics, therefore the parser had to be designed =0
that both expressions were ultimately evaluated by the
same function. The utility one can gain by this
convention is illustrated in Example I of Appendix G.

2. Many operators can be defined in RPL which require the

creation of huge sets or relations to be generated as
an intermediate form. This is generally what may

N 1S
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happen before the application of a filtering operator,
in which the final result requires a fraction of the
storage needed by the intermediate form. This 1is
illustrated by the development of the ‘xi° operator,
see Example 2 Appendix G. A mechanism to allocate
storage and perform garbage collection is imperative
for RPL. Such a mechanism was provided by LISP's
built-in storage management system. Having this
. feature available in LISP was a major consideration
for its use as an implementation language.

3. The original grammar shown in Appendix A was not
deterministic and had several productions defined with
left recursion. It also contained several meta symbols
that bhad special meaning to LISP (these included " (°,
‘Y 'y 'Ly ‘)", and °.°"). These issues resulted in the
transformation of the grammar to the one shown in
Appendix B.

4. Twelve of the fourteen alternatives to the production

‘primary’ shown in Appendix B are tagged LISP lists.

This syntax provides a deterministic way of parsing

these entities and alleviates the problem presented

with the LISP metasymbols contained in the original

grammar. Having tagged lists for these structures in

RPL led to a type checking mechanism where most of the

RPL primitives are implemented with a uni que
identification tag.

Chapters I1I through V will further examine these issues and

outine the overall design of this prototype. Chapter VI

explains how to use the interpreter and provides several

sample terminal sessions for illustration. Chapter VII

demonstrates the use of LISF performance analysis features

and suggests a direction for follow on research in RFL.

16
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III. WHY LISP?

There were four primary considerations for using LISP
as an implementation language for the RPL interpreter: the
availability of the Interlisp-10@ programming environment,
the ability to simplify scanning and parsing by adopting a
LISP-like syntax, the ability to use LISP’'s built in memory
management and garbage collection system, and finally, the
ability to simplify several complex data structures by
using built in LISP structures.

These advantages far outweigh the sometimes awkward
LISP-like syntax, and some of the LISP specific input/output
problems that surfaced as the prototype was developed. A
discussion of the all RPL input/ocutput, including the

problems encountered, is found in Chapter V.

A. THE INTERLISP-10 PROGRAMMING ENVIRONMENT

The Interlisp—-1® system provides a rich programming
environment. The tools it provides to enhance code
development include an integrated structure editor, a
compiler and an excellent set of debugging facilities.
These tools operate within a framework which does more than

just process one command and wait for the next. Three

additional resident features of Interlisp that are always




...............

present to enhance program development also influenced the

choice of LISP as an implementation language.

The ‘Do What I Mean® (DWIM) feature of Interlisp, is

invoked any time the system detects an error. DWIM attempts

to correct common programming errors by trying to 1logically
predict what the programmer had intended. The ability of the
DWIM feature to correct spelling and typographical errors is

a definite time saver.

s

Another resident feature of the Interlisp environment is

the Programmer's Assistant (PA). This feature basically

maintains a history 1list of all commands entered by the

programmer. Using various PA commands the programmer can

REDO a sequence of operations, or use UNDO to cancel

previous operations, or replace one variable name -with

another with the USE command.

Two particular features available in the Interlisp

environment, Masterscope and Breakdown, are especially

useful to future reasearch. Breakdown is an excellent tool

for conducting performance analysis, allowing the programmer

to probe the system to collect information such as, the
. number of calls and amount of cpu time required by a
X particular function. The programmer can even find out how

many times a function executes another function (sometimes

the of calls on the LISP CONS function is a

number good

performance indicator in LISP systems).

...............
...............
.....
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Masterscope is a remarkable feature of the Interlisp
environment: which creates a database from analyzing a
pragram. Using this database, the programmer can interrogate
the system ¢to find out information, such as where each
function is called and where variables are bound or
referenced, or edit a function any where a particular
variable is used. This feature is particularly desirable in
a prototype such as this since follow on research will have
a facility to predict the effect of changes as program

revisions are proposed and implemented.

B. SCANNER AND PARSER IMPLEMENTATION SIMPLIFIED

Since LISP views everything in terms of its primitives,
atoms and lists, the tokenization function normally provided
by a character—at—-a-time scanner was significantly
simplified, although the grammar had to be modified slightly
to adopt a more LISP-like syntax. By requiring all
expressions to be enclosed within a set of parentheses,
parsing an expression becomes a simple matter of determining
the 1length of an expression. The LENGTH function is built
into LISF. For example an infix expression written as
(x + y) is recognized by the length 3, while the prefix
expression (not p) is distinguished by its length of 2.
Notice the requirement for spaces between the operand and
operator. Spaces and parentheses are the only delimiters

used in RPL’'s LISP-like syntax. Although this syntax became
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necessary as a result of implementation issues, it served

the main objective of this prototype, to develope a tool to -
; further advance the study of the use of a relational

A » calculus as a programming language.

The ability to readily identify infix and prefix
expressions provided a logical basis for the overall design
of the parsing function.

By representing all 'RPL expressions as LISP lists,
ex;racting the operands and operator of a given expression
can be accomplished easily by using the LISP CAR and CDR
functions. These functions each take a non—-empty (non—-null)
. list as its argument. The CAR function returns the first
’ element of a list, whereas the CDR function returns a list
containing all elements of a list except the first element.
Therefore, the CAR function is used to extract the operator
of a prefix expression, and the operand is obtained by first

using the CDR function on the expression, followed by the

O
.
.

CAR function. For example, the expression (not p) can be

A

§ parsed into its ogperator and operand as follows:
operator <= (CAR ‘'(not p)) = not
- operand <= (CAR (CDR ‘(not p) = p
o Note that LISP evaluates nested functions from inside out.
This means that to obtain the operand, the function (CDR
§j ‘(not p)) is evaluated first, which returns the list (p). '

This result is then the argument to the CAR function, which

AS %S

extracts the p from (p). Since LISP programming requires
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sany instances where successive CAR and CDR combirations are
required, ' a shorthand notation simplifies the operand
extracting code to the follouiﬁgs

operand <= (CADR ‘(not p)) = p
where the °A° of the CADR function comes from the CAR
function, and the ‘D’ from the CDR function.

Therefore, simple length checks on expressions direct
the parse into two lnéical subsets. Once this is
ac;omplished the operator and operands are readily
accessible through a sequence of CAR and CDR function calls.

This simplicity made LISP particularly attractive as an

implementation 1language.

C. LISP PROVIDES A BUILT-IN MEMORY MANAGEMENT SYSTEM

Using LISP as an implementation lanquage also eliminated
the need for coding a memory management and garbage
collection system, since tﬁese features are already
available in LISP. Issues such as variable storage
requirements simply went away. The ability to let a proven
system like Interlisp perform all the memory management
provided a sound foundation on which the RPL system could
implemented. This also eliminated a very error-prone area of
coding that might have created significant delays in the

development of this prototype.

21

. L) «

P R R e N AT




D. RPL DATA STRUCTURES SIMPLIFIED

| Many of the data structures needed by the RPL
interpreter were readily available in LISP. Using built in
LISP +functions simplified and/or eliminated a considerable
amount of code in the sets and symbol table data structures.

ALL of RPL’'s extensional operators operate on finite
sets. LISP's implementation of sets is simple, the LISP
list. Additionally, Inéerlisp—lﬂ praovides a complete
assortment of set operations including union, intersection,
set difference, cartesian product and both membership and
subset boolean functions. .Using these built in LISP
functions as a foundation, all that was needed to implement
many of the set operators in RPL was the addition of type
checking to ensure the compatibility of the operands used
with the built-in functions.

One of the main design decisioné in the development of
the RPL interpreter was the choice of the data structure to
represent the symbol table. Several related design decisions
had already decreased the complexity'of the symbol table
requirement. Variable storage requirements were no longer an
issue, and a type checking tag was to be embedded within the
variable’'s definition. All thét was needed was a mechanism
that could provide a binding between a variable name and its
definition, along with a fast and efficient accesssing
function to retrieve the definition of a variable given its

name and scope. This requirement translated directly to the
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LISP. association list, - or a-list. The RPL symbol table is
referred to as the RPL environment (denoted globally as ‘E’)
since it is the same structure used in MaclLennan’'s
development of a LISP interpreter written in LISP, [Ref. S1.

The a-list is nothing more than a 1list where each
element is a list. The following is an example of an a-list:

E=((x 1) (y 2) (z 3) (t set 1 2) )

Each element of the a—li;t. represents a name/definition
pa;r. The name is the CAR of the a-list element, its
definition is the CDR. In the example above the x, vy and z
are bound to 1, 2 and 3 respectively, while t is bound to
(set 1 2).

The a-list structure in LISP can be efficiently scanned
by the LISP SASSOC function. This function, given an a-list
and a target, will return the a-list element (both target

and its definition), if the target name is found, otherwise

it returns NIL, indicating the target was not in the found.

- The use of the a-list data structure to represent the
- RPL environment provided still another means to simplify the

!. the overall coding requirements of the interpreter.
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IV. RPL GRAMMAR AND SYNTAX
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A. INTRODUCTION
One of the goals of relational programming is to develop
a notation which is both readable and has the manipulative

advantages of a two-dimensional algebraic notation. Such a

y s
. &
DA RS )

notation would enhance the ability of relational programs to
W be more easily proved correct. Unfortunately, most printers
o do not incorporate the unique mathematical symbols that are

necessary to support a notation of this type. However ,

-l,‘l

there are software methods which enable some specialty

printers to produce such symbols.

\} - FA A0

With such a notation in mind, MaclLennan proposed the

original grammar shown in Appendix A. This grammar was

printed using the ‘egn package of the Unix O0Operating

System. This package is a text formatting tool which takes
- an English—-like description of an equation and generates the
“~ mathematical symbols for that equation when it is printed.
Thus the notation and operator names utilized by Maclennan
have the eqr. input format as a base. The utility of the egn
package is introduced in this version of the grammar, but

its real value will be demonstrated later when the symbols

LSLYL Y

selected for the operators are discussed.

.
YL W

MaclLennan’'s grammar accurately presents the production

rules necessary to produce legal relational programming

Fr e p s 000
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statements independent of implementation considerations.
However, it 1is loaded with left recursion, which means a
great deal of effort would have been required to transform
it into a form from which a conventional parser <ould be
generated. Fortunately, the decision to usc LISP as an
implementation language eliminate& this concern, but did
present other problems which required modifications to this
generic grammar. In addiéion to basic changes required by
th; use of LISP itself, other modifications were found to be
necessary as the RPL interpreter wés designed, tested and
" exercised. The remainder of this chapter will discuss the
evolution of the original grammar into its implemented +form

presented in Appendix B.

B. DISCUSSION ABOUT THE ORIGINAL GRAMMAR

At the highest level, the original grammar called for an
interaciive session which consisted of zero or more commands
and the word ‘done’. Commands could consist of a data
definition, a prefix function definition, input from a file
and output to the screen. In addition to the many built-in
infix and prefix operators, several special constructs were
available including iteration, superscription and
conditionals. Finally, a variety of symbols represented
different objects within the language.

The bracket symbols, ‘L and 1", had two meanings as

printed in Appendix A. In one sense their use meant that
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) the abject(s) enclosed were optionally required. This
y meaning is still retained in the revised. grammar. On the
other hand the brackets also were terminals in the language

which produced different relational structures depending

I<;J )J)

upon what objects were enclosed by them. First, an infix
operator enclosed in brackets, e.g. [+], transformed the "+~

operator which took two numeric arguments, into a prefix

» )
Lol ar A 5

operator which took one aréument, a pair of numbers. Thus
(; + y) became equivalent to [+]1(x,y) where x and y could
AN be any number. Second, ‘the brackets could be used to fix
o ' either the 1left or right arguments of an infix operator.
Therefore, it was permissible to write [3+]1x where [3+] is a

specialized operator which adds '3’ to any other single

numeric argument such as x. Likewise, [+4] fixed the right

? argﬁment to ‘4° and would add any numeric argument provi sed

é . to ’4°, Use of the brackets in any of the above manners

f created a functional which could be combined with other

- functionals to create whatever mechanisms were required to

z accomplish a particular task.

é Parentheses were included to allow natural mathematical

f groupings of both expressions and their arguments. Thus
expressions could be both RPL functionals or data. The angle
brackets, ‘<’ and °'>°, when used to enclase data represented

: a special sort of sequence which had a termination symbol,

? much like a LISP list structure which ends in ‘nil’.

% Finally, braces were used to enclose the elements of a set.

&
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The use of these symbols presented a convenient method for

manipulating functionals, but conflicted with the LISP
syntax. The changes to the grammar that resulted because of

this are discussed next.

B AR Sn AR am . o 4

C. GRAMMAR MODIFICATIONS DUE TO LISP

Unforturnately, parentheses and brackets have a
different meaning in LISP.. In LISP parentheses are used to
delimit a list structure. Brackets serve basically the same
purpose, but the right bracket, known to some as the super
bracket, closes off all left parentheses which do not have a

matching right parenthesis. For those who are familiar with

DRSS 2 T e an e

LISP, this feature is both good and bad!' Some say LISP
stands for ‘Lots of Idiotic Stupid Parentheses®’ which

summarizes the frustrations encountered with parenthesis

Pare . Cermomy

bookkeeﬁing.
This conflict of symbols required that an alternative

syntax be developed to conform with the LISP list structure

e sa Sl ane

and still maintain the semantics of the RPL 1language.

N e, .

b To distinguish between structures, it was decided to use
! keywords as the first element of the list which represented
them. These input formats are then transformed into the

3 internal structures required by the interpreter. Another

problem was the use of a pair of dots or periods to indicate
a range of values. For example, in the original grammar the

range (6..8) was equivalent to sequence (6,7;9). Use of the
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character ‘.’ in RPL created a symbolic conflict in LISP.

Dots in LISP are treated as special connectors which form a

structure called a dotted pair. Since LISP does not
normally treat dots as reqular characters, anywhere a pair
of dots was required in the original grammar, the word ‘to’
was substituted in the new grammar.

Al though somé of the symbols used in the original
grammar did not pose a proﬁlem in LISP, they were abandaned
fo} consistency. The resulting constructs are summarized by
example in Table 1V-1. Note that these formats are just
LISP lists with their formal requirements for spaces between
the objects in the list, be they numbers, words or any
grouping of characters. Thus, a disadvantage of LISP is
inherited by RPL, the importancz of spaces and the correct

placement of parentheses.

D. BRAMMAR MODIFICATIONS DUE TO DESIGN AND IMPLEMENTATION
Several productions were added to the grammar due to
considerations and factors which surfaced during the
implementation process. At the command level a decision was
made early on to increase the flexibility for the RPL
programmer by allowing him to define infix operators as well
as prefix operators. The original grammar forced the
programmer to define infix operators in a prefix format.
That meant that his normal thinking about an infix operator

had to be altered to fit the prefix form of a function which




X Table IV-1 —— RPL Grammar Modifications
X Required By Use Of LISP

RPL SYNTAX

E Original H Final
=====================B=3===============B==========================================:=:

C+1 (op +)

£3+1] (lsec 3 +)

““’1..!’}'0 [

[+4] (rsec + 4)

(1,2,3,4,5) (seq 1 2 3 4 5)

(1..9) (seqrange 1 to 35)

{1..5> (setrange 1 to 5)

<1,2,3> (list 1 2 3)

<1..5> (listrange 1 to 95)

iterfp->f1 {iter p —-> €)

€01,2,3,4,5} " ! (set 1 2345

Lif p —-> f39g1 (if p =-> £ 3 g)
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takes a single argument — in this case a list containing two

RN WA

arguments. Internally, all operators can be considered as a

5 pre{ix, but most people have become accustomed to thinking
§ about binary operators in the infix sense. For example, to
N add 2 and 3 in RPL it is natural to  write
E% ‘(display (2 + 3)) " . But to define the infix operator
35 ‘'plus’ which would do the same thing, a user would have to
a enter ‘(plus (x y) == (x +.y))'.

- ’ To alleviate this inconsistency, a production rule was
;. added to allow the programmer to define the operator ‘plus’
;‘ in the more natural way and to use it the same as any other
i; infix operator:

iv Definition => (x plus y == (x + y))

; Example => (display (2 plus 3))

vx The second major addition to the grammar was a similar
. construct - to the LAMBDA expression in LISP. This construct

provides the programmer with a great deal of flexibility and
5: was incorporated into RPL as a ‘func’ expression to insure
no confusion with the LISF equivalent. Like the LAMBDA
expression in LISP, the func expressiaon consists aof the name

of the function, a list of formal parameters, and the body

. .
L2 2
AR LA

of the function in terms of the formals. Thus, the RPL.

programmer can now define functions/relational operators in

Py
'.

three ways, directly using the "func®' expression, as a

prefix operator, or as an infix operator. For comparison,

::'I:L l..l.

the three types of definitions for the ‘plus’ operator as




described on the previous page are shown below:
Direct: (plus == (func (x y) (x + y)))
Prefix: (plus (x y) == (x + y))
Infix: (x plus vy == (x + y))

From the examples above, it appears that parentheses are
going to plague RPL just as they do LISP, but, as will be
discussed in a later chapter, the Interlisp envirgnment
provides a mechanism which'allows the outside parentheses to
bé.dropped when inputting commands, and actually assists in
keeping tract of correct placement of parentheses.

The next modification, which was deemed appropriate to
make the programmer ‘s life a little easier, dealt with the
RPL command ‘display’. At the comménd level this word had
to be written to obtain output to the screen. It quickly
became apparent that it was cumbersome to type ‘display’ in
order to see every result of a computation. So, the
alternative input forms oaof ‘dis’ and °‘d° were added.
Finally, even these forms were made optional, requiring the
interpreter to detect automatically the programmer ‘s intent.

As mentioned earlier in this chapter, the original
grammar only permitted input from a file. The intent was to
allow the user to create a series of RPL data structures
outside of the RPL environment and to read them in as
necessary during a session. It became apparent that there
also was a need to save data created during a session. For

example, a database in RPL is just a large set of records,
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where each record is a relation between the field names and
their assaociated values. It is desirable to be ;ble to read
the entire database structure from a file, update it in some
fashion during a session, and rewrite it back to a file. 7o
allow this, another production was added at the command
level thch permitted commands of the form:
file string == expression

Execution of a comm;nd of this type would place the
value of the evaluated expression into a file with a
filename given by the ‘string’ argument of the operator
‘file’. For example, consider an existing database stored
in a file called °‘OldMaster’ and an updating function,
called ‘Update’, which when given a database as an argument
would modify the value of a selected field in all records
and return the updated database. With this new production
it is then possible to execute the following command:

(file "NewMaster" == (Update (file "OldMaster")))

This command would read the °‘OldMaster’ file iﬁ, execute the
‘Update’ function with °‘OldMaster’” as its argument and then
rewrite the updated database to the file °‘NewMaster'.

The one problem with this construct is that it should
not be used to store function definitions to a file. A
function definition has associated with it an.environment of
definition. This environment consists of all previously
defined functions, their environments, arnd any data

definitions made up to the point of definition in the
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session. Since the environment is nothing more than an
association list which contains the bin&ings of all hames to
their values, this list can become extremely long in a short
period of time. Internally, pointers are used to conserve
space, but when printed, the entire environment chain is
produced, which could result in many pages of information.
As discussed in Chapter V this could cause a fatal problem
or be a terrible inconvénience at the least. Another
fé;ture of the RPL system, which is discussed in more detail
in Chapter VvV, allows function definitions created during a
session to be saved for future use and thus avoids the
problems which could be created with the file command in the
output mode.

The function definition and its associated environment
did 1lead to two other grammar modifications. First, the
initial implementation of the ‘display’ command returned the
evaluated form of the arqument. Therefore, the result of
executing such a command returned something totally
different +Ffrom what the user typed in and compounded the
problem with environment length.

For example, say the user typed in the following data

definition:

Later in the session he decides to remind himself of how x

was defined. He types in the command (display %), but what

is returned is not his definition, but the internal
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representation of the sequence he defined:

(Erel (1 2) (2 3))
Likewise, if he had defined the function f as:

(f x == (x times x))
and then entered (display f), he would see:

closure x (x times x) ...

Internal representations will be discussed in detail in
Chapter V. To an unfamiliar user, this would be quite
confusing and so the DISPLAY function was modified to return
the user definition as it was typed in.

After one becomes familiar with the RPL language it
becomes desirable to sometimes see the evaluated internal
representation of any particular name. This feature is
especially helpful when ¢trying to debug a command that
didn’'t work. The °‘val identifier” command was developed to
handle this need and was extended to meet the need to see
the overall session environment or the environment of any
particular function.

Every function definition has its environment of
definition attached when it is converted into its internal
representation. In LISP, that means a simple pointer is
added .to the list which describes the function. When this
definition is printed, however, that simple pointer is the
beginning of a very 1long 1list of pointers which may
represent atoms or other lists of atoms to be printed.

Consequently, pages of information are printed to the
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screen. When this same information was in evaluated form,

the result was excessive and usually resulted in aborting

the session. To prevent this surge of unwanted information,
N . ~ the DISPLAY function was modified to print only the +first
three elements of a function definition, its name, its

formal paramenters, and its body. Unfortunately, this

el e

modification also eliminated the ability to ever look at any
environment. So, the 'eﬁv' command level productions were
cr;ated. They allow the user to look at the overall sgssion
environment or the «..vironment of any designated function.
* These featu}es will be discussed further in the input/output

section of Chapter V.

E. INFIX VS PREFIX OPERATORS
” At first view the myriad of operators shown in
MaclLennan’'s grammar seem overwhelming and confusing, but one
. must rémember that many of the words and symbols choseﬁ were
based upon the Unix egn input format. Due significantly to
the way the RPL intgrpreter was developed, many of the
prefix operators became more naturally suited to an infix

format. Some operators were discarded as no longer relevant

AR i Bt s

E because of changes in the way argument lists were
f represented. Others were added because of a new found
utility based upon the same change just mentioned. It is

also here where the true utility of the eqn text formatting

tool becomes apparent. The sheer quantity of operations,
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due mostly to the goal of preventing overloaded operaters,
required a great deal of distinct symbols. The purpose and
use of these operators are discussed in Appendix C, but

their names, original input forms, final input forms and the
eqn publication forms are shown in Appendix E. This

appendix summarizes the final changes to the grammar,
highlights the conversion of some prefix operators to infix,
and also serves as a concise guide to the relational
apérators and their syntax. Finally, the current grammar as
implemented by the RPL interpreter is shown af Appendix B

and includes all the modifications discussed in this

chapter.
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V. INTERPRETER DESIGN AND DEVELOPMENT

Previous chapters have illustrated the rationale behind
the choice of LISP as an implementation language and the
resulting modifications that became necessary to adapt the
the original RPL grammar. The purpose of this chapter is to
focus on issues related éa the implementation the of RPL
pr}mitives and the overall structure of the interpreter. In
addition, since Maclennan’'s report tRef. 2] illustrates how
many RPL operators can be implemented by defining them 1in
terms of a set primitive operators, the mechanism used to

implement the extensible nature of RPL is also an issue that

will be discussed.

A. RPL PRIMITIVES
RPL contains three fundamental elements, individuals,
sets and relations. The function, which is merely a special
case of a relation, was added to the list of primitives
because it required a unique internal representation.
1. Individuals
The indivisible data element found within RPL is the
individual. This data type is equivalent to LISP atomic
values and is implemented accordingly. Numeric, string and

boolean scalars common to all programming languages are

available in RPL. Strings must be enclosed in quotation
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marks to distinguish them from LISP literal atoms. Literal
atoms in LISP are used to implement the boolean values,
‘true’ and ‘false’, and all identifiers.
2. Sets

The set in RPL is implemented as a LISP list
containing the tag ‘Eset’ as its first element. The tag
‘Eset’ 1is wused both to distinguish the internal set
representation in evaluated form from its input format and
as a type checking device. For example, the set having the
internal representation (Eset 1 2 3) may have been input as

(set 1 2 3) or (set a b c), where a-c have appropriate

internal bindings.

3. Relations
The finite relation, being a special kind of set,

has an internal representation that closely resembles the
set. The relation requires a special type of LISP 1list,
called an assoaciation list or a-list. This particular data
structure was chosen to implement the relation for two
reasons. First, the mathematical notation for a relation
closely resembles an a-list. For example, the mathematical
relation

{ (1,2) (2,3) (3,4) (4,5
is represented in RPL as the following tagged a-list:

(Eset (1 2) (2 3) (3 4) (4 5) ).

Second, the desire to use relations as tables, suggests the

choice of a data structure that can be searched quickly and
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efficiently. The LISP SASSOC function provides this
capability when called with an a-list as its argument.
Since many built-in RPL operators are designed to

operate on relations, to perform the fast recognition

necessary for type checking, the ‘Erel’ tag was used in
place of tﬁe ‘Eset’ tag. This efficiency was not free. The
cost of distinguishing relations as a special type of set
was paid for by the incre;sed complexity in set opefations
an; the coding necessary for coercion functions.

.a. The Evolution of ‘Erel”’

During the earlier stages aof development,
after the decision to have the ‘Erel” tag to distinguish
relations, it seemed logical to extend this principle to
special kinds of relations, namely sequences and arrays.
There were many operators within RPL designed to operate on
these kinds of relations, therefore, for the same rationale
behind having the ‘Erel’ tag, the ‘Eseq’ and °'Elist’ tags
were adopted.

The langquage incorporated two input formats
as convenient ways to enter mathematical sequences and
arrays. The familiar mathematical notation for the two
entities was reflected in the original grammar. The sequence
was shown in the original grammar as ( 2, 4, 6, 8 ), whereas
the array (n—-tuple), was represented as < 2, 4, &, 8 >. Both

of these are mathematically relations:




.....

- (2, 4, 6, 8) <=> { (2,4) (4,6) (6,8) 3
< 2, 4, 6, 8 > <=> { (1,2) (2,8) (3,6) (4,8) .
This was modified to the following LISP-like syntax:
(2, 4, 6, 8 ) => (seq 2 4 6 8),
< 2, 4, 6, B8 > => (list 2 4 6 8).
For cqmpleteness, an input syntax was
. adopted to permit relations to be entered through the use of

= the tag ‘rel’, in place of the ‘set’ tag, and the use of the

.

RPL pair making operator, ‘:°'. The input format

k- ' (rel (1 : 2) (2 : 3)),

was represented internally in RPL as the relation

(Erel (1 2) (2 3)).

Although the decision to have different tags
to distinguish each special kind of set made type checking
very fast and efficient, having numerous internal forms that
are mathematically equivalent was a problem not easily

solved. Consider the relations r, s and 1 bound as follows:

I
"

r ( Erel (1 2) (2 3) )

s <

( Eseq (1 2) (2 3) )

1 <= ( Elist (1 2) (2 3) ).
Any operation applied to any of these relations should vyield
the same results. Additionally, an equality test comparing
any two of them should return ‘true’. This situation becomes
even more muddled if the following binding is made:

s <= ( Eset (1 2) (2 3) ).

Now there are four variables, bound to four physically
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different representations, which must be evaluated as
equivalent structures. This is like trying.to do computation
with numbers given four different number systems.

The problemsicreated by having four objects
with the same meaning was not solvable without a
considerable amount of coding. A coercion function for
every possible representation was required. The glabal
variable °‘ESETS’, a list'of tags considered legal for set
op;ratians, had to be established. Precedence rules had to
be implemented to determine what tag to affix to the result
of a set operation. The equality check had to be designed to
focus on tagless lists. All this additional effort hardly
seemed cost effective for a prototype, especially when the
algorithm for the coercion function to create a seqguence
was considered. Coding to ensure a set is a fully connected
irreflexive bijection (definition of a sequence used in by
MacLennan [Ref. 2: p. 22]1) is not trivial task.

It was time to re-examine the efficiency
gained in the ¢type checking mechanism by having tags
distinguish various kinds of sets, versus the increased
coding complexity necessary to ensure the semmantics is not
altered in this new syntax. This 1involved screening
Maclennan's report [Ref. 2] to classify operators based on
their operands and their output. It was observed that when a
prefix operator required two arguments, a two element

sequence was used. For example, the function defined as

a1
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sum == (x + y)

was used with the syntax, sum{2,4). Further analysis found
cases where the use of the sequence was inconsistent with
its formal definitidn. This discovery led to the RPL list,
depicted as <{x,y> in the original grammar, replacing the
seguence as the form for arguments to functions like ‘sum’.
This shift from sequences to lists will be discussed in more
detail in the following sugsection.

. The significance of the shift from sequences
to 1lists as functional arguments was that the sequence and
its operators were now considerably less important to the
RPL programmer. This, along with the coding complexity
descfibed earlier, resulted in the decision to abandon the
‘Eseq’ tag. Additionally, knowing a set is a relation makes
it is easy to verify if the relation is a RPL 1list. This
resulted in the elimination of ‘Elist®’ tag also. By
eliminating these two tadé a viable compromise had been
made.

The special input formats discussed
previously were kept in the language for user convenience,
with the tag °‘Erel’ being appended internally, vice ‘Eseq’
or ‘Elist’, to the a-list that made up the relation.
Sequence operators were still provided but error checking
was limited to verifying that operands are relations. This

put the responsibility on the programmer to ensure proper

arguments were used.
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The end result of the trade-off analysis,

weighing the issues of type checking efficiency verses code
complexity, brought to 1light ‘the detail and depth of
planning required to design an effective software system.
Lanquage features are not free, and simple solutions to one
problem may well create a snowball effect in complexity in
other areas. Unfortunately, sometimes this is not obvious
without modeling the impleﬁentation.
‘ b. The Sequence Loses Significance in RFPL

The sequence is used by MacLennan [Ref. 2]
to represent an argument to multi-parameter prefix operators
and functions. Many applications used the sequence
operators, alpha and omega, to extract the individual
operands from the two element sequences. In the sequence
(x,¥), alpha and omega were used to extract x and vy
respectively. These aoperators can aonly be used an a pure
sequence. Graphically sequences can be represented as being
a fully connected structure, with no cycles, and all arrows
pointing in one direction (see Chapter VI).

In addition, the DELTA function was
introduced to create a mechanism that could duplicate an
argument for function application. For example, the squaring
function would be defined as follows:

sqr == [times] o DELTA.

The DELTA +function duplicates any argument returning the

sequence shown
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DELTA n => (n , n).
Therefore sqr 4 can be written

sqr 4 => {times] (4 , 4).

This looks perfectly reasonable, except that (4 , 4) is not
a sequence. By definition a sequence is irreflexive.

The problems created by the irreflexive
property of the sequence are discussed in Maclennan’'s
research (Ref. 2: p. 221 'in considerable detail. He also
su;gests an alternative definition to the sequence, but the
structure used as the argument to functions remained
sequences throughout.

The failure of the sequence as an argument
to functions became obvious as many of the extensionally
defined operators were implemented. ' In many instances
definitions used the alpha and omega operators on their
arguments. These functions would not work for inputs of the
form (n, n). Functions that were defined in terms of DELTA,
alpha and/or omega would not work on any input, since the
operations

alpha o DELTA
and

omega o DELTA
are undefined.

The RPL list, which had notational
similarities to the sequence, <x,y> verses (x,y), was a

logical replacement to the sequence as the argument to

functions. The 1list construct <n, n»>, which is just an

a4
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array, was well defined, filling the.void not covered by. the

sequence. The ‘sel’ operator, when used with RPL list,

provided a means to extract each operand to a function,
N similar to the alpha and omega used previously on the

sequence. The operators [sel 1] and [sel 2] extract the x
. and y components from the list <x,y>. DELTA bhad to be
redefined to return the list <n,n>. The !! operator, which
was defined as

£ il g=>(C#x) , gix) )

£ 11 g =>< $(x) , gix) >.

Essentially, definitions where (x,y) appeared in the

original report were replaced by <x,y>, and alpha and omega

were replaced by either [sel 11 and [(sel 2] , respectively.
‘The wunsuitability of the sequence as a

arqument to a function has in no way diminished the power of

DR I I T T

RPLL. The 1list structure 1is just as easy to manipulate
- algebraically, and is more versatile in many respects. For
example with the use of the "func’ a programmer can define
: functions of the form

- add3 == ( func (x y 2) ( {(x + y) + 2) ).

This can be used for any number of variables. A flexibility

W
a2 2 s

L

not possible with sequences. From a system development
aspect, it is far easier to perform error checking on lists.

If anything the shift frqm sequences to lists made RPL

a AN e

system development and programming tasks simpler.
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= 4. Functions
Since RPL is extensible, both user defined functions

and system functions that are defined in terms of a kernel

of primitive functions have the same internal

el Y ¥ A R

representation. This representation consists of four
elements, the keyword ‘closure’, the formal parameters, a

function baody and an environment pointer.

AU

The keyword ‘closure’ is adopted from its use by
MacLennan [Ref. S5: pp. 436—-437]. He defined a closure as
having two elements, uhich can be used to implement static

_ scoping, an instruction part (ip) and an environment part
~ (ep). The ip 1is a pointer to the part of the code which

~ defines the function, and the ep is a pointer to the

- context of a given function, which is all the names visible

Y 7,

to that function. For RPL purposes the keyword ‘closure’ is

merely a type checking tag like ‘Eset’ and ‘Erel ‘. However,

NS

the basic structure used by MacLennan to implement static
scoping in his model LISFP interpreter was also used in RPL.
Q Figure V-1 shows the parallel between MaclLennan’'s model and
RPL.

The formal parameters and the body of the +f <tion
correspond to the ip used by MaclLennan. Formal parameters
are represented in LISP as either a literal atom or a list

of literal atoms. The body of the function is a LISP 1list

e O
)

which is syntactically a RPL expression. The expression is

»
v e
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defined in terms of the formal parameters along with names

defined in function’'s environment of definition.

The environment pointer is a snapshot of the RPL
system environment at the time a function is defined. More
precisely, this pointer corresponds to the RPL system
environment pointer when the function uaé defined (this
takes advantage of the way LISP implements the list
internally). In view of tsis, all names defined by the RPL

programmer during a session and all RPL built-in functions

are within a function’'s environment of definition.

MaclLennan’'s Madel RPL Model
ip ===> -’////’:;7.§:::\\\‘\‘
closure ep claosure formals body ep

lambda formals body

Figure V-1 —— Similarity between Models

Section D, which illustrates the process of
evaluating funcions will elaborate on how RFL system binds

formal parameters to their actuals.

B. RPL ENVIRONMENT
As discussed in Chapter III two of the main advantages
for using LISP as an implementation language were the

ability to wuse built-in LISP data structures and LISP’'s
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aemory management system. By embedding tags as part of the

.

internél definition of sets, relations and functions, and

using the LISF boolean functions, NUMBERF and STRINGF, on

L G Yy

individuals (non-lists), the type checking mechanism was
easily established. Therefore, many of the attributes
normally stored in the symbol table of conventional language
b, systems were eliminated. Combining this with the static
scoping mechanism discusse& in the previous section reduced
thé RPL symbol table requirements to a mechanism that would
bind each name with a pointer to its internal definition and
provide a fast means of accessing that definition.

LISFP implements the list very efficiently by using
pointers to cells in memory. Since every list can be broken
into two components, its CAR and CDR, the list was a simple
. but logical choice of a structure to be used to associate a
name with its definition. The name and its definition form a
pair corresponding to the CAR and CDR of a list.

A 1list construction function, appropriately called

P DN AN

CONS, is available in LISP. CONS takes two arguments, the
first argument is -he CAR of the list, the second argument
is the CDR. Using this function a binding can be made
between a name and its definition. This is illustrated in
Figure V-2.

The most primitive of LISP lists is called a dotted
pair. Like any other list, dotted pairs have a CAR and a

CDR. Dotted pairs get their distinction from the dot that
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sometimes separates the CAR and CDR when displayed. The CONS
function usually adds its first argument to the beqginning of
a list, which is the second argument. Most LISP lists end
with a NIL marker, thus (CONS 1 NIL) is the 1list (1).
However, 1list without a NIL marker occurs when the second

argument to the CONS function is an atom (and not NIL).

Since the second argument has no NIL marker, the li;t
created by CONS in this iﬁstance has no NIL marker either
an& it looks a little strange when printed. LISP prints its
lists by following the pointers of each element. A dot .7
is printed preceding the last element if there is rno NIL
marker associated with it. This is why a dot is shawn in

the illustration (f . def). In many LISP implementations the

dot .’ is the same operation as the CONS function.

femem3i

! CONS {-———- > (§ . def)
.1 : . :

def ———————- ‘ CAR CDR

Figure V-2 —— Typical Binding

Having each name assaciated with its definition by
using the CONS function is not a novel idea to a LISP
programmer. A list of these pairs is called an association

list or a-list in LISP. To search these constructs rapidly
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LISP provides the SASSOC function. This function, when
called with a target and an a-list, will compare the target
to the CAR (or name pointer) of each element of the a-list.
1f the target is found the entire element is returned.
Taking the CDR of this result provides the definition. This
process is encapsulated by the RPL system function LOOKUP.
The simplicity and efficiency of this data strucéure makes
it an excellent mechanism'to implement the RPL environment,
esbecially in a prototype.

Although efficiency issues of RPL will be topics for
future research, the design of the RPL environment using the
the a-list owes its efficiency to its LISP implementation.
By taking advantage of the characteristics of the LISP list
and its most basic list constructor to bind names and
definitions it was hoped that efficiency could be inherited
from LISP. Pointers used in many PASCAL like languages are
often hard to use and error—prone. LISP provides the
efficiency of using pointers without the programmer having
any conscious awareness of their implementation. This level

of abstraction simplified the programming task considerably.

C. PARSING RPL
In most languages user input is first analyzed by a
scanner. However, by using LISP as an implementaion language

and making some minor modifications to the grammar to adopt

a LISP-like syntax, the functionality of the scanner was
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eliminated. The RPL command line is simply a LISP 1list.
Using various LISP funcions to examine the syntax of this
list, the semmantics of the command is extracted.

Parsing the grammar shown in Appendix B can be
accomplished by div;ding the parse into .two stages. The
basic input to the interpreter is the RPL command line.
Determining which of the nine different commands is . being
used is the first staégwéf the parsing task. Five of the
c&hmands require the evaluation of a RPL expression. Parsing
the expression is the second parsing stage.

The first parsing stage, which is accomplished by the
RPL system function EXECUTE, classifies the RPL command. ALL
RPL commands with the exception of the command ( done ) can
be classified as shown in Figure V-3. The utility function
POSIT scans the command line and returns the postion of the
atom ‘==-. I+ ‘==’ is not part of the command line POSIT
returns 8. Using this infaormation, combined with checking
the 1length of the command line, syntax is verified and the
parse 1is guided to either the function DEF_BINDINGS or
DISPLAY +for every command except the ‘done” and ‘file’
commands. The ‘file’ and ‘done’ commands are directed to the
FILE_WRITE and EXIT RPL systems function respectively.

The function DEF_BINDINGS, expecting one of the first
three input forms shown in Figure V-3, completes the parse

by checking the length of the command 1line. Knowing the

length of the command, the name and expression can be
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extracted using the CAR and CDR functions. Once the
expression is isolated it can be evaluated by calling the
function EV.

If the expression is evaluated successfully several
events occur. First the CONS function binds the name to the
evaluated expression, and this pair is consed onto the RPL

environment, E. Second, the name is consed onto the command

( £ == exp )

——— contain the atom ‘==~
binding required

{ f x == exp )

( x §f y == eup )=————————

( file "string" == exp ) ————— contain the atom ‘==
file IO required

( display exp ) ————~———

( val identifier)
——=—— do not contain ‘==’

- oo oa oo we ==

{ env ) display required
( env identifier) ————-
( done ) : do not contain ‘==

Figure V-3 —-—~ Command line analysis

line and is added to the a-list called USERDEFS (giving the
user the ability to save his commands to a file; see

Chapter VI). Fipally, if ¢the binding is being made to a

function defined using prefix syntax, the name of the

TR
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function is added to the global PREFIX_OPNAMES. If an error
is detected while evaluating the expression the message
"BINDING CANNOT BE MADE° is given.

The DISPLAY function looks at the CAR of the command
line to continue the parse and determine what must be
displayed. 1If the ‘display’ command is Qsed with an
identifier, the name 1is 1looked up in USERDEFS and the
command that generated 'the binding of that name is

-

displayed. Otherwise the expression is evaluated and the

result is shown. The debugging commands illustrated in the
last three forms in Figure V-3 are also handled by the

DISPLAY function (see section H on 1/0).

D. EVALUATING RPL EXPRESSIONS

. The heart of the RPL language is the expression. The
K expression 1is the vehicle that allows programmer ‘s creative
ability to be transmitted through RFL into something
! meaningful to LISP. The process of evaluating these
N expressions 1is centered around the RPL system function EV.

This function, along with several auxiliary functions, parse

and evaluate the expression recursively. The basic mechanism
implemented by RPL used the design illustrated by MaclLennan
(Ref. 5: chap. 111 and Winston [Ref. 7: chap. 23], where a
LISP interpreter was written in LISP, as a model.

There are two main differences between the design of the

text book model and the RFL system. Every operator
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implemented in the model design was in prefix notation. RPL
must handle both infix and prefix operators and be able to
recognize infix operators used with prefix syntax. The RPL
system treats any infix operator as syntactic sugar for a
prefix operator, which is made explicit in the use of the
(op f) syntax. In this respect, the RPL system design is
much more complex than its model. Adding to RPL’s complexity
was code necessary to provide a robust interpreter that
would survive common praogramming errors. The error
detection/recovery mechanism is discussed separately in
section G.

The remaining section will explain the design of the EV
function and its auxiliary'functions that together provide
the mechanism to evaluate the RPL expression.

1. The EY Function

EV is a <function which was named after the LISF
function EVAL, since functionally EVAL and EV are identical.
Every expression in a LISP program is sent to EVAL. Every
expression in an RPL session is sent to EV. EV, then, is the
single most called function in the system. It takes two
parameters, a RPL expression and a pointer to the
environment of evaluation, which is the global environment
when called originally. Using indirect recursion, EV and its

supporting functions provides an effective mechanism which

is central to the power available in RPL.




The case analysis shown in Figure-v;; provides the
framework for the design of EV. The RPL expression is
represehted in LISP as either an atomic entity or as a list.
Both these cases can each be further subdivided into three
possibilities. Using the LISP conditional, COND, the logic
suggested in Figure V-4 can be encapsulated into one
efficient statement. COND ig efficient since it stops
evaluation at the first true statement. By carefully
oraering the possibilities shown in Figure V-4 the number of

unsuccessful checks can minimized. The order shown in

TYPE EXPRESSION EXAMPLE EV ACTION
LISP atomic
numeric : =] return S
string "hours" return "hours"
literal avalue call LDOKUP
LISP list

special syntax (if p -> f ;3 q) call
EV_SPECIAL _CASES

length 2 (not p) call PREFIXOP
length 3 (x + y) call INFIXOP
list w/bar (f (, bar) q? call

EV_SPECIAL_CASES

Figure V-4 -- Case Analysis for EV

Figure V-4 is considered the most efficient since for every
call to EV with a prefix or infix expression, which is a
list, will require 2 or 3 calls to EV to evaluate the
operator and the operands. In most cases these will all be
atoms. Having the atomic values checked first, since they
will be the operand to EV 2 or 3 times more often than the
lists, takes advantage of LISP’'s implementation of the COND

function.
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A humeric or string-_vglue sent to EV is
immediately returned since these values are the same in RPL
as they are in LISP. The Literal atom, which is used to
represent any of the RPL primitive data types, when sent to
EV, must be found in the environment so that the value to

which it is bound can be returned. This value is obtained by

calling the RPL system function LOOKUP with the variable

name and the environment bointer (see Figure V-4). If the
variable is not found, NIL is returned from LOOKUP, which
will trigger an error in EV. -

When the expression sent to EV is a list it may have
special syntax that requires special handling. Most cases
are identified by a distinguishing tag in the grammar: ‘op°’,
‘lsec”’, ‘rsec’, etc. These tags are listed in the global
variable SPECIAL_CASES. 1 the CAR of the expression is
found in the list of SPECIAL_CASES the expression is sent to
EV_SPECIAL_CASES for evaluation. Otherwise, the length of
the expression becomes the key to its disposition. This is
possible due to the modifications that were made to
‘lispify’ the grammar (see Appendices A and B). Prefix
expressions are of length 2 from the production

expression —-> (application primary),
while infix expressions are of length 3 from the production
expression ~-> (expression infix expression).

With this information EV can call either PREFIXOFP or INFIXOP
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3 to finish the parsing and continue the evaluation process on
the expression. -

A There is one exception to the method just outlined.

! , Before calling INFIXOP one final check must be made for

special syntax to detect the use of the ‘bar’ with an infix

e

operator. This syntax is used to combine functions. The

N

2 )

~ following expression

' (f (+ bar) @)

is a function represented by
(closure x ( (f x) + (g x) ) Ep).

5 This closure is created in EV_SPECIAL_CASES.

- The following subsections will illustrate how RPL
- internally translates an infix to a prefix expression, in
i order to maintain a single internal application function and
" provide a high degree of user flexibility. The four step
'ﬁ mechanism to perfdrm functional application will élso be
’ discussed. The process includes:

: (1) the evaluation of the actual parameters

5 {(2) binding the formal parameters to the actuals to form
& the local environment

‘ (3) the addition of the 1local environment to the
; function’'s environment of definition creating the
% evaluation environment

{4) the evaluation of the body of the function in its
evaluation environment. ‘

;; This application process is the key to the power of RPL.

N
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2. Evaluate Operands - BREFIXOP and INFIXOQP

fhese two functions provide the next level of
parsing required to determine the semantics of the
expression. Both fun;tions are called from EV with a RPL
expression and an environment pointer. The operator and its
operands are extracted and calls to EV are made to ensure
operands are defined and the operator is defined as a
function. Completing thése checks, the first step in the
aphlication process is accomplished. Note that no validation
of operand compatibility with the operator is done at this
time. If no errors have been éncountered, the process
continues. This is where INFIXOP .and PREFIXOP differ
slightly.

Since the expression in PREFIXOFP has the syntax
needed by the RPAPPLY function, where the application
process continues, no further processing is required in
FREFIX0OP. However, since RPAPPLY must handle both prefix and
infix expressions, before calling RPAPPLY "INFIXOP must
convert its operands intoc a two element RPL list. Therefore,
if L and R are the evaluated arguments of the expression
originally sent to INFIXOP, the parameter sent to RPAPPLY
will be the equivalent to the RFL list (list L R). This
would have the follow internal representation:

( Erel (1 L) (2 R) ).
In summary both PREFIXOF and INFIXOF can be

considered preprocessors for RPAPPLY. In addition, by
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evaluating the operands, they perform the first step of the

functional application process by evaluating the operands.

3. Binding Formals and Evaluation - RPAPPLY

RPAPPLY has one primary task, to complete the
functional application process. To do this it first must
determine whether the function being applied has been
implemented in LISP directly as part of the RPL kernel. The
kernel functions are readily distinguished +fram user or
built-in extensional functions by the length of the 1list
containing the function’'s definition. For example the
function '+, which is implemented in LISP directly, is
bound to

(closure +)
in the environment. The function DELTA is extensionally
defined and bound to
{closure x (list x x) EP).

RPAPPLY passes all built-in functions that have been coded
as part of the kernel (length 2 closures) to BIF_APPLY
(restrictive relative closure). For user and extensiaonally
detined functions RPAPPLY completes the functional
application process recursively through EV.

The arguments to RPAPPLY are the products of either
PREFIXOP or INFIXOP. The function and the actual parameters

have both been evaluated. To complete the application

.=




. environment pointer are extracted from its definition

(closure). Formals are bound to the actuals by using the
CONS function to create the lacal environment. The number of
formal parameters must match the number of actuals. If no
error is detected, the local environment is consed onto the
environment of definition creating the evaluation
environment. With this new environment the function body,
which is a RPL expression,' can be evaluated. This requires
an;ther call on EV. Thus recursion is used indirectly to
make a very powerful evaluation mechanism.

The following example demonstrates the way RPAPPLY
completes the functional application process. Suppose
RPAPPLY is called with the following arguments:

F <= (closure x (x + 1) Ep-¥)
A<= 8
Since F 1is of length 4, RPAPPLY knows this is not a LISP
coded function. The local environment, LE, is constructed,
LE <= (CONS X 8) = (x . 8).
The evaluation environment, EE, is constructed,
EE <= (CONS LE EP-f) = ( (X . 8 ) EP_f ) ).
Naow EV is called to evaluate the body of the function,
(EV "( % + 1 ) EE).

4. Built-in Functions Are Handled By BIF-APPLY

Of the 112 RPL operators, 68 are coded directly in
LISP. These &8 functions form the kernel of RFL and 354 are

handled in BIF_AFPLY. The other 14 operators have unique
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syntax and are handled in EV_SPECIAL_CASES. The parameters

to BIF_APPLY are the same as to RPAPPLY: taking both  a
function and its argument in evaluated form. In the case of
infix operators, operands have to be extracted from the
argument list.

As discussed in the previous section the functions
which are coded directly in LISP are bound to a definition
represented by a list of iength two. The second element of
th;s list is used as the key to a very large LISP
conditional. To find this key the conditional is divided
into two logical parts, the built-in infix operators
followed by the prefix built-in operators. Since all the
built-in 1infix operator names are listed globally in the
list BIFTAG_INFIX, chéﬁking for membership in this 1list
directs the funcfion to the appropriate section of
the conditional.

Once the key has satisfied one of arms of the
conditional, operand compatibility is verified. If no errors
are detected the code which implements that operator is
executed. Otherwise, an error handling mechanism is
triggered which will provide both meaningful diagnostics and
a graceful way of unwrapping the process back to the RPFL
command mode. RPL error handling is discussed in detail in
a later subsection.

This huge nested LISP conditional can be considered

the end of the line for any recursion that might have been
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necessary through the application process. The result of

T,

this +function will find its way back to EV through RPAPPLY
and either PREFIXOP or INFIXOP.
S. Special Syntax - EV_SPECIAL_CASES

From an RPL programmer’'s perspective RPL is a

AL,

PRl

language with an enormous flexibility. Much of the

.
by 8, 8, 0
%

programming power in RPL is achieved through the use of

special syntax to create programs mathematically. Although

-4‘
Y 4t

RPL has 7@ operators implemented in the kernel and 4S5

)~

P
N

extensionally defined, the 1language technically has an

'

infinite number of operators available to the programmer.
This power and flexibility is achieved through special RPL
syntax. EV_SPECIAL_CASES is called fraom EV to evaluate
expressions that have the atam ‘func’, ‘op‘’, °‘lsec’, ‘rsec’,

‘i€, ‘bar’ and ‘iter’ in them. In addition,

13
.

EV_SPECIAL_CASES provides a mechanism to distinguish between

‘5 :‘ :I . ..' ‘u

the input and internal forms of sets, relations and RPL

" °

r
.
L ]

lists and always returns the internal evaluated form.

NN
._-..'r

From an implementation perspective, EV_SPECIAL_CASES
became a trap for cases that did not really +fit anywhere
else syntactically. This was particularly useful in the

implementation of the 'if" and ‘iter’ operators. These both

]
frlete S

return a claosure.

The implementation strategy for all special cases

) .‘_D & .‘.

.

whose outcome was a function was the same. Each closure is

(s »

created by parsing the expression to capture the semantics

%t Sk}
.
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of the expression within the new body of the new function.

~ I ]

The bady is another RPL expression. For example, the

b, expression
" (l1sec + 1)
 § would be translated into a closure of the form
{closure ?x ( ?x + 1 ) Ep).

'2 This methodology was adopted to implement 'if° and ‘iter’.

. Tao preserve the semanties of the original expression,
Y special syntax was introduced for the bady of the closure,
Ei which would be special cases not available to the user.
: Adding these expressions to the lists handled by
i EV_SPECIAL_CASES provided the facility to capture the
43 semantics of these expressions. The following example will
; illustrate the translation that occurs whenever 'if° and
: ‘iter’ are used:
, Gfp =>f ;@
‘E becomes
. {closure ?x ( when (p ?x) do (f ?x) elsedo (g ?x) ) Ep},
'§ and
titer p => #)
1; becomes
;E (closure ?x ( repeat f untilnot p ) ) Ep).
‘E By adding ‘repeat’ and ‘when’ to the list of special case
T tags these new syntax forms can also be evaluated by
: EV_SPECIAL_CASES, where they are parsed and evaluated
3 directly in LISP. Note that the ‘repeat’ syntax aone shows
3
!
4
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the 1initial condition for the iteration. The result of
evaluating (§ 7?x) becomes the agrument to ‘p’. If the
predicate is true, ‘¥’ is evaluated with the result of the
lst iteration as an argument. This process continues until
the predicate fails. The result of the iteration is the last

value of (¥ ?x). This 1is all done in the REPEAT RFL

function.
- The rationale to create new RPL expressions for

> system use only was so successful, it became apparent that

implementation of other operators like ‘red’, an array

reduction operator, could use the same convention. Since
‘red’ 1is an infix operator and has no special syntax, a
slight conceptual problem of where to create the closure
emérged. All closures that were formulated thus far were
done in EV_SPECIAL_CASES, but these came from cases having
special synta&. Since the ‘red’ operator had no special
syntax, it was inappropriate to create the closure in
EV_SPECIAL_CASES. To be consistent with the design, the
closure was created in BIF_AFPLY. However, in formulating
the body of the closure a special syntax is used which can
be identified and evaluated readily by EV_SPECIAL_CASES. The
closure created for this operator is illustrated by the
following example: the expression
(f red i)
becomes

(closure 7A ( reduée ?A by £ from i ) Ep).

b4
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Another choice of implementation would still result
in the final evaluation in EV_SPECIAL_CASES but would
eliminate a call to BIF_APPLY. Since what is actually hard
coded in LISP is the function ARRAY_REDUCTION, the ’‘red’
operator could be defined extensionally in terms of the
special syntax and take advantage of the bindings created by
RPAPPLY. For example, if the ‘red’ operator were defined

red == kfunc (£ 1) kfunc ?A (reduce ?A by ¥ from i)))
or

f red i == (func ?A (reduce ?A by f from i))
the call to EV from RPAPPLY with ‘red’ and the environment
Ep would produce the same results as what was accomplished by
BIF_APFPLY. However, this implementation would require the
error checking now done in BIF_APPLY to be shifted into the
function ARRAY_REDUCTION.

Tracing the evaluation of the extensionally defined
‘red’ shows the subtle differences between implementations.
Given the expression

( §  red i° ),
EV recognizes the infix expfession and calls INFIXOFP, where
the ‘red’ is evaluated. The current implementation calls
BIFAPFLY since the evaluated form of ‘red’ is

(closure reduction).
However, in the extensionally defined implementation ‘red’
is bound to

(closure (f i) (func ?A (reduce ?A by f from i)) Ep).
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In the current implementation BIF_APPLY is called to finish
the application process directly in LISP, whereas the
alternate implementation uses the mechanism provided in
RPAPPLY. The formals, f and i, are bound to the actuals §°
and 1i°. The evaluation environment is created and EV 1is
called to complete the process with the expression
{(func ?A (reduce ?A by ¥ from i) EE).

The ;func' tag directs tﬁe expression to EV_SPECIAL_CASES
wh;re the closure is created.

The difference in implementation efficiency can be
studied by using the LISP function BREAKDOWN. Currently the

composition and paralleling operator are defined using the

‘func’ construct as extensionals.

F. EXTENSIONAL MECHANISM

Almost half the operators in RPL have been implemented
extensionally. The operators directly coded in LISF either
were listed as primitive operations by MaclLennan [Ref. 2] or
had a function readily available in LISF which would
hopefully provide a more efficient implementation than the
extentional definition. The purpose of this section is to
discuss the mechanism which the system uses to implement an
extensional operator.

The extentionally defined operator is executed by the
RFL system taking advantage of the same mechanism that is

in place to bind user defined functions. When RPL is called,
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after all the globals have been initialized, (see Figure V-
5), the system is ready to define the extensional operators.

During initialization the environment contains all the
built-in operators which are coded in LISP. These are
represented by a length 2 closure as discussed earlier in
this chapter. At this time commands can now be accepted by
the system. All the extensionally defined operators are
contained in a list as RPL commands. This list is called
IN}OPS. Using a the LISF function MAPCAR, all extensional
commands are sent to EXECUTE and ultimately bound to the
environment. After the last extensional operator has been
defined the system ready for the user.

Implementing this mechanism was straigh£ forward but
there were some varibles that had to reset before the user
was given control of the system. These are shown in
Figure V-5.

The interesting part of this implementation was the
ability to try each of these operators during RPL sessions
prior to committing them into the 1list of extensiocnals.
Since some extensionals were built on others, the order that
these were actually defined was significant. This was due to
static scoping. Therefore, some care had to be used when
adding new definitions to INTOFS. Future research may try
coding some of the extensionals of this implementaion intao
LISP directly and do a performance analysis using BREAKDOWN.

This will be discussed in more detail in Chapter VII.
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NAME / INIT VALUE

BIFTAG_INFIX
/ list of names

BUILT_IN_PREFIX_OPS
/ list of names

E
/ SYSOPS

EMSG
/ list of msgs

ERRORCODE
/. ERRORFREE

FILTER_ON
/ NIL

INTOPS
/ list of commands

NUMOP
/ list of operators

OPNAMES
/ list of names

PREF1X_OPNAMES

/ BUILT_IN_PREFIX_OPS

SETS
/ list of input tags

SETOPS
/ list of operators

SYSOPS
/ list built-in
operators

SYSTEM_ENV
/ E

USERDEFS
/ NIL

JE X - R ey

LYl A p R § ey by J/ike ibeg Sty

CHANGED BY

N/A

N/A
DEF_BINDING
EXIT

N/A
ERROR_HANDLER
FILTER

N/A

N/A

N/A

DEF_BINDING
EXIT (reset)

N/A
N/A

N/A

N/A

DEF_BINDING
EXIT (reset)
RPL (reset)

PURPOSE

Control flow in
BIF_APPLY

Resets '
PREFIX_0OPNAMES

Global environment
Table of error
messages

Error recovery
Switch off error
msgs while filtering

All extensional
operator definitions

Control flow in
BIF_APPLY

- Check to avoid

renaming built-in ops
Error checking

for ‘op’, ‘lsec’,
‘rsec’

Control flow in
EV_SPECIAL_CASES

Control flow in
BIF_AFPPLY

Kernel

To reset E when
clearing environment

display
WRITE_USER_DEFS

Figure V-5 -- Alphabetic Global Listing
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6. ERROR DIAGNDOSTICS AND RECOVERY
The primary consideration for performing e?ror chgcking
in the RPL interpreter was to ensure the system would
survive common programming errors. If every minor miscue
were to cause the RPL system ta crash errors like undefined
variables, improper arguments to built-in and user defined
functions, syntax, spelling and typographical errors, each
could cause a major catastéophy, costing many hours of work
anﬁ added programmer frustration. Surely a system . without
safequards to prevent self destruction would be impossible
to work with, even in a prototype implementation. Therefore,
one of the major design decisions in the deyelopment of the
interpreter was to make the RPL system as robust as possible
and provide meaningful diagnostics to the user.
1. Error Recovery
LISP‘s built-in functions are not unlike those found
in any other language; improper operands are generally a
disaster. A keen awareness of this prablem had to be
developed to ensure sufficient type checks were accomplished
so0 that wuser inputs could not create an unrecoverable
situation. Although Interlisp does provide a means of error
recovery through its &ebugging facilities, this is only a
benefit to the user who has had sufficient experience with
the Interlisp break commands (see Teitelman [Ref. 61 for
more details). Therefore, it was necessary to build into the

RPL system a self-contained capability that could detect,
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! diagnose and resume operation, totally independent from the
LISP error handling mechanism. | _

Once an error is detected, the RPL system calls its ”

> error handling function with two parameters. The first

parameter is an error code, which is used as an index to a

- table of error messages. The second parameter is the cause

- of error. The error handler prints the appropriate error

message and cause of er;or, and assigns to the global

va;iable ERRORCODE the value of the first parameter.

ERRORCODE is always initialized to ERRORFREE before a

command is entered by the user. Finally, the value returned

- by the error handler is the LISP atom NIL.

Checking the value of ERRORCODE in strategic areas

throughout the program prevents both redundant error

h

messages and meaningless operations. For example, in the

process of evaluating a prefix expression both the operator

G
BAOTRE Y

and the operand must be evaluated separately to ensure they

- are defined. If any errors are encountered in this process

the remaining code in the prefix expression parse can be by-
) passed by checking the value of ERRORCODE before preceding.

The value of ERRORCODE is checked before any

bindings are ﬁade to the RPL environment. If ERRORCODE is

; not ERRORFREE the message °‘Binding cannot be made’ is given.

. The value of the functions that parse either prefix
o
: or infix expressions each return NIL if an error occurs. In

the RPL DISPLAY function, if the LISP value NIL is returned

'l
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from evaluating an expression, the message ‘Undefined’ will
be displayed.

Calls to the error handler and the inspection of the
value of ERRORCODE is interwoven throughout the RPL system.
This was impossible to avoid, if the RPL system was to have
the degree of resiliency desired. To change the basis of the
error handling mechanism used would certainly take a
considerable amount of recéding. This should be unnecessary
dﬁé to the excellent recoverability shown in the RPL system
during testing.

2. RPL Diagnostics

RPL suffers f;am a problem prevalent among many
extensible languages, its diagnostics are sometimes
meaningless. This is because error checking is performed on
the operands of the functions defined in the kernel of the
language. The. kernel is é set of functions Ffrom which
additional features are implemented. The diagnastics related
to calls on these functions, when used explicitly by the
user, are helpful and descriptive. These same diagnostics,
when given to a user who is invoking a function defined in
terms of the kernel, may be of little or no value.

The diagnostics displayed when an error is
discovered while performing a domain restriction illustrate
a situation where the system can provides accurate but
confusing diagnostics. The operator ‘->° is defined directly

in terms of the RFL’'s ‘filter’ operator as follows:
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p ->t = ((p o hd) filter t).

. .

The composition operator ‘0’ is defined using the formal
parameters ¥ and g as follows:

o == (func (f g) (func x (f (g x)))).
A user who is unfamiliar with these dependencies would
certainly find diagnostics in terms of p, t, f or g quite
puzzling if he had never bound these names in his
environment.

‘ The more familiar that one becomes with the RPL
system and the various extended functions, the‘ more
meaningful the diagnostics will become.’ When given
diagnostics th;t appear totally unrelated to what was input
as an RPL command, there is an excellent possibility that an
extended operatar 1is being used. Probing the environment
with some of the features added to RPL as a troubleshootihg
aid (env, val and env ) will help put more meaning into
errar diagnostics, and enable the user to better understand
the RFL language.

3. Errors Can Be Easily Built In
The incompatibility between functions and their
arguments referred to thus far are a direct result of user
errors. Guarding against this kind of circumstance was only
part of the problem encountered to make RPL robust. Extreme

care had to be taken not to build potential fatal errors

into the interpreter. This became apparent as the system
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crashed in areas ariginally thought to be sound, during some

of the earlier RPL system tests.

As discussed in Chapter 111, the functions CAR and

T

CDR are used to access various elements of a list. Like any
other function, these functions are designed for a specific
type. of operand. Calling either function with a non-list
creates a fatal error. The system was vulnerable to this
situation in the original.coding. Ta prevent this typéA"of
er;or, each time the CAR/CDR functions éppeared in the
development of the interpreter, a list check gnd/or length
check had to performed before proceeding. The code used to
implement the type checking function, TYPE, for the RPL
system indicates the caution needed when using these
functions. This 1is also evidenced the use of compound
statements in many LISP conditioﬁals, where the AND
; statement first performed a list check and then a length
check before using the CAR or CDR functions.
: Achieving the goal of making RPL robust involved
much more than an exercise in anticipating user errors. It
also required a conscientious analysis of every aspect of
the interpreter to determine what inputs or results could
create disaster. Testing thus far has shown that this goal

has been essentially achieved.
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H. INPUT / OUTPUT

WY NNX RS,

The input/output functions needed by the RPL system can
be logically divided into two cateqories, console I0 and

file I0. Console 10 functions provide a mechanism to input

YA

RPL commands, display the results of evaluating RPL

-

& . commands, provide error messages and prompt the user for
4 input. The file I0 functions provides both a facility to
execute the RPL ‘file’ operator and gives the user the

ability to save and recall his RPL sessions.

1. Consgle Input/QOutput

——— e

The primary consideration for altering normal LISP
10 originally was the aesthetic desire to eliminate
parentheses not absoclutely essential to parsing and command
execution. This is achieved through masking some of the
required input parentheses and filtering meaningless
parentheses during output. This eliminated some of the
awkward syntax that had been introduced in order to use LISF
as an implementation language (see Why LISP Chapter III). As
the interpreter developed, a far more important reason for
filtering console output was realized.

The only relief from the LISP syntax during terminal

input was achieved by the elimination of the outer set of

30 2.8 2 > »

parentheses from the RFL command line. This was accomplished

through the use of the Interlisp READLINE function. This

LI N

function inserts parentheses around a line of input which is

terminated by a carriage return or the character °‘1]°.
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Additionally, the READLINE command pravides a mechanism to
enable the user to know when all open parentheses have been
closed. This is illustrated in the following example.
I+ the user wants to type the command

(f x == (x + 1)),
the READLINE function would allow i¥ to_entered as follows:

f x == (x + 1).
When the user types the ciosing parenthesis after the '1°,
th; the following would be displayed:

£ x.== (x + 1)

The ‘...’ 1indicates all parentheses have been closed. A
carriage return at this point will enter the command for
.execution. Since every RPL expression must be enclosed 1in
parenthéses, this feature is particularly helpful to the
programmer.

To ‘delispify’ RPL output, user prompts and error
messages were printed by a function written to filter
parentheses by printing lists one atom at a time, using the
very fast and efficient LISP MAPCAR function. This
methodology was originally used for all RPL output, but had
to be resctricted to prompts and messages. This restriction
was necessary since the way lisp prints a list proved to
unsuitable for printing the internal definition of a
function. This problem was encountered printing output from

the RPL ‘display’ command.
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The method chosen to internally represent functions

made displaying them on_ the screen impractical and in some
instances impossible.

As discussed in Chapter V, each function that is
either user defined or built-in as an extension of the RPL
kernel, ﬁas associated with its name the keyword ‘closure’,
its formal parameters,. its boay and its environment of
definition. This environﬁent, which is representéd as a
po}nter to an a-list in LISP, includes all RPL built-in
functions along with all n;mes and functions definea by the
user up to time the function was defined. Printing this
environment had to avoided. This was accomplished by
creating two integrated functions, PRINT_LIST and SHOW_ATOM,
to screen all RPL output, trapping all functions so that the
environment could be truncated for console output.

To maintain the user’'s ability to inspect the
environment, some additional features had to be added to the
RFL system. This resulted in a minor madification to the
grammar and the addition of the function .SHDW_ENV. For
example, typing ‘env’ provides a list of all names with
their respective internal definitions that are within the
environment created by the user. Each function, of course,
would be shown without its environment of definition. To
display the environment of definition associated with a

given function f, the command ‘env €’ is used.
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Two additional features were also added that allow
the user to view either the internal definition associated
with a name or his original input form. This is discussed in
more detail in Chapter VI.

2. Eile Input/Output

There are two sets of file 10 functions used within
the RPL system. The first set, consisting of the functions
FILE_READ and FILE_WRITE; is used to implement the RPL
'4;19' operator. The second set, added as a user convenience
to provide a mechanism to save and recall RPL sessions, is
comprised of the functions SET_USER_ENV, READ_USER_DEFS,
EXIT AND WRITE_USER_DEFS. Both sets of file I0 functions
utilize the Interlisp file package commands to access or
initialize a file, perform desired 10 and close the file.

RPL's ‘file’ operator is designed to read or write
data in its evaluated form. This data is usually a set or
table. This operator should never be used with functions,
either directly or indirectly, embedded within a set. This
would cause the function’'s entire environment of definition
to be written to a file as a list, one atom at a time.
Reading a function from a file that was written in evaluated
form, not only may be impossible due to insufficient memory,
but obviates the efficiency of the environment mechanism.
RPL was designed to have only one a-list represent its
environment. A function’s environment of definition is Jjust

a pointer to a node within the RPL system environment.
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In a typical RPL session a user may bhave a

atate -'l"- ‘

considerable amount of time invested constructing numerous

functions and data definitions. As a command 1is entered

N MW NP AR

that binds a name to the RéL environment, the command 1is
saved in a separate list that can be written to a file. When
read back into RPL, the system executes each command, thus
recreating the previous session.

The user has the‘flexibility to modify or create

? files using any available editor. His only constraint is to

ensure the string EOF appears as the last line of the file.

The EOF string is automatically written to all sessions
saved in RPL.

Intérlisp operating on UNIX provides a means to save

\ MO AN

old versions of files as new files are created. The updated

‘
W

file will have its file name modified to indicate the next

version number. Since UNIX only recognizes unnumbered names,

. each updated file created by Interlisp contains two
X directory entries, one numbered and one unnumbered.
AN
“ Interlisp provides the mechanism to manipulate older

versions [Ref. 8: p. 111.
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VI. USING THE RPL INTERFPRETER

A. INTRODUCTION

The RPL language 1is different from any conventional
language that currently exists. Because of its uniqueness,
inherent power, and mathematical base, it can be difficult
to use at first. But, as Qith any other language, it can be
ma;tered through a study of the underlying concepts and
hands on experience with the commands. This chapter will
describe the basic knowledqge required to use the prototype
RPL interpreter developed in this research. It will only
touch wupon, through simple examples, the power of such a
language. Only the dedicated efforts of an innovative user

will test tHe system and discover the real potential of the

relational programming concept.

B. GETTING STARTED

The RPL interpreter exists as a Unix file which consists
of 77 LISP functions which implement the RFL grammar shown
in Appendix B and the relational operators described in
Appendix C. To invoke the RPL interpreter, a user must
first have a basic knowledge of the Unix Operating .System.
He must at a minimum be able to log on with access to an
account which contains the “RPL-INT® +file. For more

information on the Unix Operating System, see reference 8.
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When the Unix prompt (%) appears, the next step is to
enter the Interlisp environment; which provides a shell for
RPL. Since the interpreter is written in LISP, familiarity
with its basic constructs is desirable, and a necessity if
one is going to explore the LISP code for the interpreter
itsel+. See references S5, 6 and 7 for more information
about LISP and the Interlisp environment.

Loading the Interlisp-environment is accompanied by a
sﬁbstantial delay, but when the environment is finally
loaded, it gives the user a friendly greeting to 1let him
know it is ready to accept commands. The only LISP command
that must be used is ‘LOAD’ which loads a file(s) of LISP

. .

functions. Therefore, at the LISP prompt, s the user

must type LOADCRPL-INT1’. When the closing bracket 1is
typed Interlisp will automatically execute the command.
Interlisp searches the user ‘s directory for this file and,
when it is found, displays a message indicating the date the
file was created. Once loaded, another Interlisp prompt
will be displayed. Now all the functions necessary to
execute RPL commands are part of the Interlisp environment,
but of no use to the programmer until he invokes the RPL
interpreter itself.

All commands in LISP are enclosed in parentheses or
brackets. Just as the keyword ‘ilisp’ triggers the Unix

system to load the Interlisp environment, the LISP function

‘RPL" initializes and loads the RPL en.ironment on top of
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Interlisp. Thus tao begin an RPL session the LISP command

‘"[IRPL]1" is typed at the LISP prompt. Onice this command is
executed, the user will enter and remain in the RFL
environment until the RPL command ‘done’ is executed. (See
section I for exceptions).

When the initialization required by the RPL interpreter
is completed the user is asked if he wishes to resume a
previous RPL session. This gives the programmer the option
of‘ having a file of RPL definitions executed that was
created either from within RFL or by an external text
editor. Caution is advised if the file was created by an
external editor since no error checking will be done until
loading such a session for the first time. If there is a
parenthesis out of place or missing, it could throw the user
out of RPL and into the LISP error handler. Some other
dangers are discussed in section I of this chapter.

If the user answers ‘yes’ he will be prompted for a
filename. It is appropriate to menticon at this point, that
an inconvenience exists due to the limited control over
input/output by the interpreter. When a response is
required, or a command is entered, the first character typed
is fixed, i.e., it cannot be removed fraom the input buffer.
All characters after the first one can be altered as
required until a input termination signal is sent. In the
RPL environment, hence the Interlisp environment, this

sighal is a carriage return or a final closing parenthesis

81

et - et et
ERC

- - - . » . - - 0 - . - - . . » - - ~
PPl S St S . . ot . DR S LIRS TR
S ALl S AR W L PR o - . PENRPEDAT AR v P WA A AT

o '.-_..~_-. ‘I
N N

.‘\.:.l.. e ;‘u{‘; :j




TEYUNL Y

or bracket. Thus if the user makes an error, for whatever

(o2

reason, and the filename is not -in his directory, RPL will
inform the user that the file was not found and continue on.

The only avenue open to the user if this happens, 1is to

Jal Al
S8NI 00

terminate the session and begin again. This is not as bad

as it may sound, as the next section will point out.

. If the file does exist, RPL will load and execute all
commands in the file, and prompt him for his first RPL
command. Figure VI-1 and Figure VI-2 illustrate the command

sequence which would load RFPL with and without a previous

session, respectively.

C. SESSION TERMINATION
When the user is finished with a session he types the

command ‘done’. This command triggers a series of options

p

available to the user. First, he will be asked if he wishes

to save the session just completed. If the answer is yes he
will be prompted for a filename. RPL will write all
commands executed in the session, in their original input
S form, to that file. ‘Display’ commands are not included.
Regardless of his answer to the first question, the user
is then given three options: exit to the Interlisp
environnent, exit to the Unix Operating System, or begin
anothar RFPL session. I1f he chooses to begin another session
he will be asked if he wants the current environment fraom

-, the session he is leaving to be cleared. After completing

[ATAE S ‘.- '.. 54
Q
J

\.‘- RO

o Te LT e e ‘ ...... A S e ST S SR L R B R S T S A S IR IS Sy L L )
RPN SN . -'x‘» : RN . . : TN SRR e

.




- = . a = W w e a T e ol o el .
PSR S L R DA RN N N S A SO S i S S A N i o A L N g st SR i S pes Sl sl shih il el ana ars Sl R S

X ilisp
ISI-INTERLISP 15-MAY-84 ...

Hi.

_LDADIRPL-INT]

File Created:12-MAY-85 16:@3:30
RPL-INTCOMS

expanding LISTP, 65528 used, 2424832 before &C

work/brown/RPL-INT

_[RPL] ‘

Loading RPL--- DO YOU WANT TO RESUME A PREVIOUS RPL SESSION? (y/n) y
INPUT FILENAME

sess512

{oading--- Session loaded

RPL INTERPRETER ON LINE!!
7d4(2+3)

3

Figure VI-1 -- Loading the RPL Interpreter, With Previous Sessian

Mo ot i




the action required by the user’'s response, the RPL
interpreter begins the éamg cycle as if the user was

beginning a new session. This cycle continues until the

Tilisp

ISI-INTERLISP 13-MAY-B4 ..,
Hi.

_LOADIRPL-INT]

File Created: 12-HAY-85 10:83:30
RPL-INTCONS

expanding LISTP, 45528 used, 2424832 before 6L

/work/brown/RPL-INT

_[RPL]

Loading RPL--- DQ YOU WANT TO RESUME A PREVIOUS RPL SESSION? (y/n) n
RPL INTERPRETER ON LINE!!

?) sqr x == {x times x)

”

Figure VI-2 -- Loading the RPL Interpreter, Without Previous Session

user decides to completely exit the RPL environment.
Figure VI-3 illustrates a session termination sequence where
the user wishes to remain in the RPL enviraonment.
Figure VI-4 shows a user termination with exit to the Unix

Operating System.

D. EXECUTING COMMANDS
RPL commands are derived from the grammar in Appendix B.

It allows for three basic types of commands: data
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7> done

DO YOU WANT YD SAVE ENVIRONMENT FOR FUTURE USE? {y/n} y
INPUT FILENANE
5e55323

EXIT T0 LISP - PRESS “D

EXIT TO UNIX - PRESS “C

CONTINUE RPL - PRESS <RETURN>

DO YOU WANT TO CLEAR CURRENT ENVIRONMENT? (y/n} y

DD YOU NANT TO RESUME A PREVIOUS RPL SESSION? {y/n) n
”

Fiqure VI-3 -- Session Tersination - Resain in RPL

7> done

DO YOU WANT TO SAVE ENVIRONMENT FOR FUTURE USE? {y/n: y
INPUT FILENAME
s855325-1

EXIT TO LISP - PRESS D
EXIT TO UNIX - PRESS “C
CONTINUE RPL - PRESS {(RETURN>

% logoft
Signing off...

Figure VI-4 -- Session Teraination - Exit to Unix

as




definitions, function definitions, and input/output. The
sections following this one will describe how to enter- the

commands of each type and provide a brief discussion of the

built-in relational operators. This section will provide

some general information and guidance.

RPL operators and commands are case sensitive. Since

maost operators and all commands are in lowercase, it .is
recommended, though not réquired, to use lowercase letters
th;oughout an RPL session. Lowercase was used to help
distinguish the operators and commands from LISP function
names, which are capitalized. Any variation at the keyboard

will cause RPL to return an error.

E. DATA DEFINITIONS

1. Introduction
There are several data typés évailab{e to RPL. In
addition to the normal scalar types, integers, reals,
booleans and strings, there are sets and relations. Sets
and relations can be used to represent any conventional data
structures such as arrays and records. They can also easily
represent more complex structures such as matrices,
databases, trees and graphs. A relation is actually a
special form of set where each element must be a pair of RPL
data types. The tremendous flexibility of the relation

results because this pair can be any combination of RPL data

types.
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RPL syntax allows the binding of a name to any

scalar type directly. For example:
x == 3
error == true

name == "John"

The ‘==’ symbol in RPL means ‘defined as’.
2. Sets . -
A set is defined simply by placing the keyword

‘set’ as the first element of the set. For example:

aset == (set 1 2 "dog" colorsl
The ‘1 symbol, used to close the defintion, keys the
interpreter to execute the command. This aspect of the
command line will be discussed further in section G. Note
the name colors must have been previously defined or an
error will result. In this case, colors may have been
defined as:

colors == (set "red" “white" "blue"]
This illustrates that each element of a set can be anything,

even another set.

3. Relations
Any relation can be defined in RPL wusing the
following syntax:
r == (rel (X1 : Y1) (X2 : Y2) ... (Xn 2z Yn)1]
The X's and Y's can be any RPL data type. The ‘:’ symbol is

the pair—-making operation. It binds any particular X and Y
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tagether into a pair, distinguishing it as an element of the

relation. Note that there must be a space on either side of
the operator. This is required because this structure is
treated internally as a LISP list. If a space is left out,
an RPL error will occur.

To demonstrate the utility of this structure, a
sequence, an array and a record will be defined below:

sequence == (réi kl 1 2) (2 : 3) (3 : 4)1

array == (rel (1 : "a") (2 : "b") (3 : "c")]
record == (rei (“#* : 101) ("name" : "John") ("age" : 32)1]
Even more complex data structures can be formed easily by
combining these and other primitive relational structures.
For example, a database is just a set of records. Since
there are so many different forms of a relation, RPL has
included syntax to simplify the definition of two of the
more common ones, the sequence and list.

4. Seguences

The relation 'sequence’ shown in section 3 can be

entered as:
sequence == (seq 1 2 31

It must be pointed out that this is a pure sequence, i.e., a
relation which has one initial element, one terminal
element, and is +fully connected. Formally, it 1is an

irreflexive connected bijection. Graphically, this sequence

can be represented as shown in Figure VI-S.
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The label that is put on a node is not important, so the

sequence, (seq 5 2 10 ?), is equally as valid as the one

r—>a—>e
1 2 3

Figure VI-5 - Graphic representation of a sequence

shown in Figure VI-5. However, RPL does not prevent the user

from entering:
sequence == (seq S 2 18 92 27 7 8)

This is an invalid sequence and is represented graphically:

S 3
>0 X

10 9

e
N

Therefore, it 1is up to the programmer to insure that he is
defining a proper sequence. The sequence agperators do not

verify that the structure passed to them is a valid

sequence. When this occurs, an error can result, the
results can be meaningless, or at worse the computation may
not halt - forcing the user to abort the session and lose
everything. For this reason, caution is advised. On the
other hand, the 1lack of rigidity in- sequence definition
permits the easy representation of certain types of directed

graphs, as the example above points out.
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S. Lists

The list is just a restricted form of an array which
has a starting index of 1. An array, on the other hand, can
have any integer as a starting index. The relation ‘array’
shown in section 3 is also a list and can therefore be
written as: array == (list "a" "b" "c"1l. |

The most common use for the list, and the reason it
is included as a separate.entity in RPL, is to represent
ar;ument lists. All multi-parameter functions in RPL are
represented internally in prefix format and use the list as
their argument.

6. Ranges

To simplify the data definition further when dealing
with large numeric structures, the setrange, seqrange and
listrange syntax is provided. For example, it is possible
to define: |

s == (setrange 1 to 501
s’ == (seqrange 1 to 501
lst == (listrange 10 to 601

These definitions evaluate to the appropriate internal
forms: s would be a set of the integers from 1 to 5@, s’
would be a relation which relates each number with its
successor, up ¢to 5@, and lst would be a relation which

relates an index, starting from 1, to each value from 10 to

60. . The utility of this syntax becomes apparent when one

9@
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thinks about what is involved if these structures had to be
entered using the general relation syntax.

The input forms discussed in this section can be used
effectively Qithin the RPL interpreter to create any form of
data required. Saometimes it may be more convenient to use
the simpler sequence and list syntax than the more general
relation syntax to define a desired data structure. For
example, suppose the user.uanted a five element array which
c&htained even numbers starting with 2, and which was
indexed starting with 108. Internally, the desired structure
would look like:

(rel (10 2) (11 4) (12°6) (13 8) (14 1@))
With the relation syntax the user would have to write:

a == (rel (10 : 2) (11 : 4) (12 : 6) (13 : B8) (14 : 18)]
He could achieve the same result by using the sequence tao
array operator, sa, which takes a sequence, and a starting
index as arguments, and returns the appropr%ate array. Thus,
he could have typed:

a == ((seq 2 4 6 B 10) sa 101
Which method is easier must be decided by the user and
depends upon his degree of familiarity with RPL. Note,

however, that the second format has less parentheses and

spaces to contend with!
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F. FUNCTION DEFINITIONS

Although RPL contains a rich set of built-in operators,
it could never include everything, nor should it, that a
user‘ could want. RPL is extensible and thus includes a
mechanism for defining user functions. As illustrated in
earlier chapters, there are three definition options:
direct, prefix and infix. Most user functions can be
defined using the simplé prefix and infix syntax. For
ex;mple, if the user had a need for a function which would
add 2 to its input and square the result, .he could write:

add2sqr x == ((x + 2) times (x + 2)1

For a similar, but more general function, which takes two

arguments he can write:

X addsqgr == ((x + y) times (x + y)1]

An alternate definition for addsqr could be written using

the DELTA operator, which duplicates an argument, and the
composition operator:
Xx addsqr y == ((times o DELTA) (x + y)1]
A third, and even more formidable looking definition is
given by:
addsqr == ((times o DELTA) o (ap +))

The last two definitions introduce the flexibility of RPL by
showing how complex functionals can be easily defined in
terms of built-in and/or user defined operators.

There are some cases, however, where the prefix and

infix definitional syntax will not meet the user’'s needs,
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E and therefore the direct method for defining functions is
N included. One utility. of this syntax is its ability to
v define functions with any number of parameters. For
; example, say a function called addsub is desired. This
: function adds its first two arguments and subtracts the

third. It can be defined via the direct method as:

addsub == (func (x y z) ((x + y) - 2)1]

This is just another way t; write:
2 ‘ addsub (x y z) == ((x + y) — 2)
i Notice that the argument to these functions must be a RPL
; list with three elements. The advantage of the direct
‘3 syntax over the prefix—type syntax is the ability of the
E ‘func’ definitional structure to be imbedded within another
> function. This gives RPL the same flexibility as LISP with

its ‘LAMBDA’ expression.
é This same function could be defined using the prefik
* syntax, but the user must be aware of how RPL extracts the
% actual values from thé argument list in order to bind its
E formal arguments to the actuals. This extraction is done by
% use of the RPL ‘sel’ operator. Thus when given a table and
E a member of its domain, this operator will return the first
? member in the range related to it. Equipped with. this
- knowledge and familiarity with the list structure, the user
é can also define addsub in prefix form as:
él addsub x == (({x sel 1) + (x sel 2)) - (x sel 3J)]
Y This form and the direct definition are equivalent and will
5
o
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waork equally as well, but it is obvious in this case that

the direct method is much simpler and more understandable.

6. INPUT/QUTPUT
1. Screen Input/Output
All syntax presented thus far is for cummandg that
will be typed at the terminal in an interactive session as
input. Output at the .screen is generated using the
‘display”’ commands. Ta recall to the screen any definition,
the user can type the word ‘display’ followed by the name of

the entity he wishes to see, e.g.,

display array <CR>

Ccaniy | Ak M e oe - de o anuion am s

Notice that this is the first time that the requirement for

e

a carriage return, <CR>, has been indicated. This 1is

because the definitional forms discussed earlier ended with

a "]’ which automatically triggers execution. For commands
such as display, and those that are ended with a "J)’, a
{CR> 1is required. Execution of the command above will

display the definition bound to the name ‘array’” in the
environment. For example, it might be:
array == (list "a" "b" "c™)

The display command can also be used to see the result
of a computation immediately, but once displayed, the result
is lost because it will not be bound to a name. For example
if the wuser types ‘display (3 + 3)° , '8’ will be shown.

Thus ’display' can have any expression as an argument. Ta
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simplify output to-the screen, the word ’‘display’, and two
shorter versions,” ‘dis’ and ‘d’, are optional. Thus, only
the expression itself needs to be typed to display a result.
2. FEile Inpput/Output

Any data definition can be saved to a file for

future use simply by typing:
file "tablei" ==t <(CR>
This command assumes tha£ t has been previously defined,
e.é., as a table of squares for a finite range. To later
read that table into another RPL session, the user can type:
tbl == file "tablel" <CR>
Since file input/output is implemented as a special command,
it can also be used directly in an expression. For example,
the command ‘((file "tablel") sel 2)° would return '4° +for
the table of squares mentioned earlier.
3. Debugging

The finmal form of output to the screen in RPL was
implemented to assist debugging. Since a function
definition can involve the composition of many operators,
both built-in and user defined, cause—af—-error messages
might give a strange response. This happens because the
cause of the error may be rooted in the execution of one of
the internal component functions within the definition.
Likewise, there will be times when the user passes an

argument to a function, but it is rejected as the wrong

type. On these occasions, it is nice to be able to probe
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deeper. into RPL. The ‘val’ and ‘env’ commands proavide this

mechanisa.

The ’‘val’ operator applied to any name will return the
evaluated form of the definition bound to that name. Thus,
if s is bound to the sequence (seq 1 2 3), typing ‘val s’,
will return ‘(rel (1 2) (2 3))°. Similarly, for the
function sum, defined as (x + y), typing °‘val sum’ would
return ‘(closure x ((x sei 1) + (x sel 2)))°. Notice the
en;ironment of definition is missing. As discussed in
earlier ﬁhapters, the environment is omitted due to its
excessive length.

The ‘env command provides the mechanism to view the
environments that are omitted from the display of functions
in evaluated form. The environment is shown in definitional

.

form. Thus, ‘env alone will produce all definitions
created during the current session. Applying ‘'env’ to a
function name will produce all definitions visible within
its scope. For example, the result of typing ‘env’ for a
short RPL session might be:

f == (lsec (times o DELTA) img)

s == (set 5 6 7 8)

X sSum y == (x + y)

arg == (list 2 4)

System Defined Functions
The last definition put into the environment is shown first.

‘System Defined Functions® constitute all of the built-in

S S T T N S T SR L T T
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function definitions within RPL. Finally, using the same
environment, typing ‘env sum’ would return:

X sum y == (x + y)

arg == (list 2 4)

System Defined Functions
H. RELATIONAL OPERATORS

In the RPL interpreter there are 112 built-in relational
operators based upon the operations described by Maclennan
imr reference 2. All the operators implemented within the
RPL system are discussed in detail in Appendix C. and are
broken down into classes based on both the number and type
of arguments, and what they return.

The operators are a mix of first and higher order
functions. A first order function is one that has data for
inputs and outputs. A higher order fuﬁction is one that has
a +Ffirst or higher order function as either input or ogutput.
Since RPL has seVgr;l higher order functions they are
further separated into two classes: those which return a
function, and those which have a function as an input, but
return data.

Finally, there is a group of operators which are unique

because of their special syntactic requirements or their

special bhandling required in implementation. They are
consolidated under the title of °‘Special Operators’. They
include the data definition operators, a conditional

functional, an iteration functional, a function to compute
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closures, the empty operator, and the ‘bar’ functional which

gives any infix operator a special meaning.

Based upon the preceeding discussion, the operators are
broken into 11 logical classes as shown in Figure VI-6. The
Glaobal class of operators include thase which take anything
as an argument(s), or in the case of 'h&' and ‘tl°, return
anything. The Arithmetic and Logical operators parallel
their conventional counterﬁarts. The next five classes are
dé;ived from the type (form) of the relation involved.

Finally, there are the two classes. of higher order

operators, and the special operators.

1. Global

2. Arithmetic
3. Logical

4, Set

S. Relation

6. Sequence

7. Array

8. Database

.9. Higher Order - Return Function
18. Higher Order — Return Data

11. Special

Figure VI-6 —— RPL Operator Classes

I. BEWARE THE KEYSTROKE
1. Introduction
Unfortunately, because the RPL Interpreter is
running within the Interlisp environment and the Unix

Operating System, there are a few keystrokes which may cause

unexpected results. Some keystrokes should be avoided, some
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should be used with caution, and some can be used to the
user ‘s advantage.

2. The Control-D (D) and Control-C (7C)

Pressing a ~D should be avaided. It will abort
whatever LISP function is being executed, return the LISP
prompt and wait for the next command. Since the RPL
interpreter is invoked as a LISP co&mand,. a D will
immediately abort the use}'s RPL session, discarding all
wa;k done to this point. Likewise, only more severe,
pressing a ~C will abort both RPL and Interlisp and return
the user to the Unix Operating Systém.

The ~D and ~“C are used, however, as part of the RPL
system to exit the RPL environment. They are options within
the RPL ‘done’ command and should be used only in this
context. In general the Control key should be left alone
since there is no meaning associated with control characters
in RPL, and they may cause Interlisp or Unix to do
unexpected and probably unwanted things.

3. TIhe Backspace Key

A second key to be avoided is the backspace key.
For reasons not totally understood to date, pushing the
backspace key causes Interlisp to invoke the LISP error
handling package. A strange message appears on the screen,
which 1looks something like ‘broken below BGETTY' and a ‘:°
prompt will appear. Fortunately, this is not the kiss of

death as was the ~D. Typing 'RETURN NIL' (in capitals) will

99

ORI R A P LY ST S I UL PN TR I S N TR A At e e e T e .
e e e e e e e




s .
e e v

v

AR LIS

LA A AL

Al

Ny
AA'AJJJ

Te5 %S

BRI I L IR
o .:-’.:n‘ -)\-'.:-'\\‘

return the user back to where he was in RPL before hitting

the backspace key. If another strange message appears

followed by another °‘:° then the user probably hit the
backspace key more than once. A "RETURN NIL®° must be typed
for each time the backspace key was hit, and only then will
Interlisp return the user to RPL in the place it left off.
There is one instance. in thch this keystroke

becomes an advantage. It can used to temporarily leave the

RPL environment to invoke any Interlisp feature. of
particular interest is the °‘BREAKDOWN® package. This

package allows the user to do performance analysis of the
LISP functions used within the RPL interpreter. A more
detailed discussion of the benefits of this package will be
presented. in the final chapter. This feature of RPL is of
real interest to those individuals who are interested in
further research with relational programming and the
improvement of the RPL interpreter.
4. The Control-Z (77)

The final keystroke to be discussed is the least
dangerous, and in fact has a positive utility. Hitting a
Control-Z (~Z) will temporarily suspend whatever the user is
doing and put him back at the Unix logon level. The wuser
can then execute any Unix command desired, e.g., he could

look at his directory to verify the filename of a session he

wished to load. When he is finished at this level,. he types

-

‘fg° (lowercase letters only) and returns to the exact place
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he had left off when he pressed the ~Z. Thus the programmer

can take advantage of the facilities, flexibility and power
of the Unix Operating System concurrently while execdting an

RPL session.
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VII. CONCLUSIONS AND RECOMMENDATIONS

The primary goal of this prototype RPL implementation
was to provide a mechanism for future research. Prototypes
generally have a definite starting point, which is the
theoretical work of its creator, the language developer.
What marks 'the completién of the prototype is a design
dé&ision that must be made. Along these lines, one of the
maost difficult dilemmas facing this implementation was
handling implementation improvements that became obvious as
the development progressed. Without exercising restraint,
implementation improvements can become an obstacle to timely
completion. Unless specific performance criteria have been
set as a system design requirement, and it can be determined
that a particular mechanism of the system must be changed to
meet this objective, improvements that become obvious to the
prototype developer should be documented far follow on
research. Focus on design issues can easily become blurred
and transition between .prototype and future research
obscured as improvements that become apparent to the
developer divert efforts from the original goal. Let the
completion of the prototype be the springboard to
enhancements and efficiency issues.

Future research on RPL was one of the primary

considerations in this prototype, which, as discussed in

..............
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Chapter 111, prompted its implementation in LISP using the
Interlisp environment. Tools available in Interlisp were a
powerful incentive that influenced the choice decision of
the implementation language used for RPL. The cost of this
decision, however, was more than anticipated.

Using the Interlisp progfamming environment can be a
very frustrating experience to a programmer. Documentation
available ([Ref. 6] and [Réf. 8]) assumes an Interlisp users
af; expert LISP programmers. The system, called HELPSYS,
which is usually a integral part of Interlisp system
providing online help messages to the user is not
implemented for UNIX 4.2. These obstacles result in a steep
learning curve to one who desires to use Interlisp .uithout
LISP programming experience. Only hindsight can say that the
struggle and frustration needed to become productive in this
environment were well worth the effort. The impact of seeing
these powerful tools in action was an experience that
paralleled viewing a rare piece of art that one had only
previously read about.

It is incredible to watch the speed with which a
database is created by MASTERSCOPE on the RPL system, which
consists of 77 LISP functions. The information available
through queries to this database provided the basic
documentation (that was only amplified slightly) for every

function shown in Appendix F.
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This feature of Interlisp will be a definite asset to
future research. The effects of changing a particular
mechanism within the RPL system can be determined by making
a few database queries. Figure VII-1 shows how the
information was obtained for the documentation listed in
Appendix F for a single function and illustrates a few
simple queries. By substituting the function name with ‘all’
in the first query, every.function in the database will be
'&;scribed'.

Before making specific changes to an existing
implementation of an operator or system mechanism some
concrete data may be needed to verify perceived problem
areas. This performance data is readily available through
BREAKDOWN. The next section will illustrate this mechanism
and demonstrate the use of the otherwise disastrous

backspace key as an RPL interrupt, allowing the programmer

to enter LISP commands for debugging, editing and/or

performance testing. Note that the message
?> interrupted below READFP

h- (READP broken)

i: will occur when the backspace is pressed at the RPL prompt. :

The ‘:’ prompt is the LISP break prompt and the programmer
has the freedom to execute any LISP command. The command
s return NIL

will restore RPL to the same position where the session was
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interrupted. Note that the system will not redisplay the

line, therfore the cursor will be on the first column of
what appears to be a blank line.

The array reduction operator was implemented in LISP
as part of the kernel. The main consideration for the LISP
implementation was to make the operator more efficient. The
extensional definition suggested by MaclLennan [Ref. 2 p. 651
using a ‘while’ *unctional'uas painfully slow. The current
implementation takes advantage of the fact that both
operands have been evaluated at the time the closure is
made (in BIF_APPLY). Therefore, the expression formed as the
body of the closure has the operands in evaluated form. As
discussed in Chapter 5, this operator could have been easily
defined extensionally. In this implementation the operands
have to be evaluated in ARRAY_REDUCTION. The results of a
performance test using BREAKDOWN is shown in detail in the
following section. Of particular note was the minor editing
of the function ARRAY_REDUCTION that was done in order to
perform the comparison.

This type of analysis can be done for the composition
operator and parallel operators. These operators are
currently implemented extensionally, and both operators
return closures. With the extensional implementation input
errors are not detected until the function is applied.
Adding ‘o’ and ‘i!° to the kernel may enhance RPL efficiency

considerably.

105




-+ The design of the RPL system allows the addition of

operators to the kernel without a major coding effort. le
grouping operators in BIF_APPLY according to the operand(s)

requirements, error checking for most operators is already

in place. Of course an infix operator being changed from an

extensional implementation to the kernel will have to have

its extensional definition removed from INTOPS and a

representative definition‘ added to SYSYOPS, as well as

ha;ing its name added to the list BIFTAG_INFIX.

Much work remains to be done to determine which set of
operators is best suited for the RPL kernel. This may be
answered through a systematic analysis of this prototype
with the tools provided by Interlisp. More efficient
implementations of some kernel operators is alsa likely.
Additionally, follow on implementations will have more

flexibility with RPL notation if a character—-at-a-time

parser is adopted.

A. USING BREAKDOWN

In order to illustrate the power and flexibility
available to do performance analysis, edit functions and
g create a history of the work performed, the following
: examble was created. This example will use the UNIX function
‘script’ to record the terminal session. In this session the
factorial function will be defined in terms of the RPL array

reduction operator. This function will be used as a
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Script started on Tue Jun 11 21:@4:52 1985
Lilisp
ISI-INTERLISP 15-MAY-B4 ...

food evening.

_loadlrpl-int]
File Created: 8-JUN-85 13:39:37

RPL-INTCONS
expanding LISTP, 45528 used, 2424832 before 6C
/work/mitton/RPL-INT.;2 .

_aasterscope)

Masterscope 28-MAR-B4... Type HELP{cr} for commsand susmary.

_« ANALYZE FUNCTIONS ON RECORD
expanding LISTP, 131032 used, 2339294 before 6C
ciserarsresessnseineeesesdone :
_» DESCRIBE EV
EVIEXP,E]
calls: NUMBERP,STRINGP,ATOM,MEMBER,LDOKUP,ERROR_HANDLER,
EV_SPECIAL_CASES,LENGTH,PREFIXOP, INFIXOP
called by: EXECUTE,DEF_BINDING,DISPLAY,EV_SPECIAL_CASES,
NAPEV,EVSER, INFIXOP PREFIXOP,RPAPPLY,
ARRAY_REDUCTION,RPL_REPEAT,MAKE_UNIQUE
binds: 1,TAG
uses free: SPECIAL_CASES.
NIL
_» WHD CALLS ERROR_HANDLER
{DISPLAY EVRANGE EVSEQ RPAPPLY ARRAY_REDUCTION MIN_SET
RPL_REPEAT EXECUTE EV EV_SPECIAL_CASES INFIXOP PREFIXOP
BIF_APPLY ARRAY_CONCATENATION HEAD MAX_SET MEM
_» WHO USES ERRORCODE
(RPL ERROR_HANDLER FILTER READ_USER_DEFS DEF_BINDING
DISPLAY EV_SPECIAL_CASES EVSEQ INFIXOP PREFIXOP RPAPPLY
BIF_APPLY RPL_REPEAT)
_» WHO SETS ERRORCODE
{RPL ERROR_HANDLER FILTER READ_USER_DEFS)
0K
NIL
14D
script done on Tue Jun 11 21:23:92 1985
1

Figure VII-1 -- Exasple of LISP's Masterscope Feature
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benchmark to examine the ‘red’ operator implementation. The

current implementation of ‘red’ is done in LISP using the

techniques described in Chapter 5, and will be compared to

two extensional implementation.

Amplifying remarks for notes in Figure VII-2:

*,
&
:.:
o
.'- 1 L]
Y
2N
o 2.
3.
o a,
- 5.
"-
>
S b.
.
-
e
7.
>
8-
8
- 9-
= 10.
: 11.
9 12,
) 13.
. 14.
’
y
4

The file ’'brkdwn.sess’ initialized by the UNIX
‘script’ function to record the terminal session.

RPL system functions are loaded into Interlisp.
The command ‘BREAKDOWN‘ followed by a list of
functions will internally mark these functions +for

monitoring in the performance analysis during the
session.

Factorial fdnction defined as a benchmark.

‘Backspace’ (BS) key causes an interrupt to the RPL
session.

The command ‘breakdownl[]l’ will zero internal counters
for the performance analysis. This is done so that
any data accumulated during RPL 1loading and the
definition of ‘fac’ will not distort analysis.

The command 'brkdwnfesults[]' is used to verify that.
the counters are zeroed.

The command ‘return NIL® is used return to RPL.

The RPL command ‘(fac S5)° is entered for benchmarking.
BS interrupt (See #5).

The data generated from BREAKDOWN is retrieved.

The LISP editor is used to modify ARRAY_REDUCTION.
This 1is necessary since f and i are passed in
evaluated form in the current implementation.

Return to RPL (See #8).

An extensional version of the array reduction operator

is defined, and a factorial function using this
operator is defined.
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15.
16.
17.
18.

19.

21.

22.
23.
24,
25.
26.

27.

28.

BS interrupt (See #35).

Counters are zeroed using ’‘breakdownll’ command.
Return to RPL and benchmark praogram ran ( facext’).

BS interrupt (See #35).

Performance data is obtained.

Return to RPL (See #8).

Array reduction is defined by translating the
definition used by Maclennan [Ref. 21. This
illustrates the shift in the use of sequences to lists
as functional arguments. The poor preformance shown
below led to the implementation used in the +first
example. ‘

BS interrupt (See #35).

Counters in BREAKDOWN zeroed.

Return to RPL and benchmark program ran (FAC).

BS interrupt (See #35).

Performance data is obtained.

‘~C’ terminates the Interlisp process and returns the
process to UNIX.

‘D’ terminates the session and writes ‘brdwn.sess’.
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1 script brkdwn.sess

Script started on Sat Jun 8 12:45:99 1983
T ilisp
ISI-INTERLISP 15-MAY-84 ...

Hi.

load(rpl-int}

File Created: &-JUN-83 84:04:45
RPL-INTCOMS

expanding LISTP, 43528 used, 2424832 before 6L
Iwork/witton/RPL-INT
_breakdown (EV EV_SPECIAL_CASES RPAPPLY INFIXOP PREFIXOP BIF_APPLY)
(EV EV_SPECIAL_CASES RPAPPLY INF1XOP PREFIXOP BIF_APPLY)
_IRPL]
Loadxng RPL--- DO YQU WANT TO RESUME A PREVIOUS RPL SESSION? (y/n) N

RPL INTERPRETER ON LINE'!

?> fac n == {{lop timses) red 1) (listrange | to )
7> interrupted below READP

{READP broken)

sbreakdown(]

{EV EV_SPECIAL_CASES RPAPPLY INFIXOP PREFIXOP BIF_APPLY)
sbrkdwnresults(]

FUNCTIONS TINE § CALLS PER CALL 1
Ev 0.8 ¢ 8.2 i
EV_SPECIAL_CASES

0.0 ] 2.0 9
RPAPPLY 8.0 2 2.0 ]
INFIXOP 8.0 e 0.0 (]
PREF1X0P e.0 ] 2.1 ]
BIF_APPLY 0.0 ] 0.0 ]
TATAL e.q 8 1.1
NIL
sreturn NIL
READP = NIL
{fac 91
120

Figure VII-2 -- RPL Terainal Session Using BREAKDOWN
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7> interrupted below READP 10

(READP broken) )
sbrkdwnresul tsll 11

FUNTIONS  TIN  §CALS PERCAML 1
Ev 1.12 YN T
EV_SPECIAL_CASES
.24 3 0.0746847 7
RPAPPLY (K1 B NN 7
INF1X0P 0592 6 LB7T 18
PREFIIOP  0.048 2 L
BIF_APPLY  1.0% 1 0M6 2
TOTAL 3.28 124 00260816
ML
sedi t# (ARRAY_REDUCTION) 12
edit
# FNC
o AN
WP
(SETQ FNC {CADDOR EXP))
3P
(CADDOR EXP)
#-1 EV)
+(N EA)
#
(EV CADDDR EXP EA) ;
823
14
(EV (CADDOR EXP} EA)
* START
1
v« START (CADDOR &))
W
(SETQ START (CADDDR &))
B3P
(CADDOR (CDDR EXP))
H-1 EV) )

#(N EA}

#P

(EV CADDDR (CDDR EXP) EA)

$}123

P

(EV {(CADDDR &) EA)

#0K

ARRAY_REDUCTION

sreturn NIL 13
READP = NIL

1 UM AT ielaiaie s SN S s PRIty - e A R AL S arum il an e gl ga i e L
.

A T

T AR P e e

.'- '-. '—.

Figure VI1-2 -- RPL Terminal Session Using BREAKDONN (continued)
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 redext i == (func 7A (reduce ?A by f froa il 14
7 facext n 3= (({op tises) redext 1) (listrange | to n)
?) interrupted below READP 15

(READP braken)

sbreakdowal] 14
(EV EV_SPECIAL_CASES RPAPPLY INFIXOP PREFIXOP BIF_APPLY)

sreturn NIL . 17
READP = MIL

{facext 3]

120
?) interrupted below READP 18

(READP braken)
shrkdwnresults(] 19

FUNCTIONS TINE # CALLS  PER CALL 1
Ev 1.104 87 80176716 35
EV_SPECIAL CASES

8.224 4 0.856 7
RPAPPLY 1.352 3 LU 1

INFIXOP 0.5 16 8.83% 17

PREFIXOP 2.064 2 2.032 2

BIF_APPLY 8.9 13 0.8 29

TOTAL 3.3 127 2.0263307

NIL )

treturn NIL i |
READP = NIL

sl == (rsec sel 1) 21

7> s2 == (rsec sel 2]

7 p == ((rsec {> empty) o0 s2]

?% edr == ({1 {\ bar) (un o epsilan)) o s2]

7> arg == (I i} (t] o epsilon]

7§ RED i == (s1 o (({((f 0 arg) }i cdr) o DELTA) while p} o (lsec i ,]
75 FAC n == ({(op times) RED 1) (listrange ! to nl

7 interrupted below READP 2

Fiqure VII-2 -~ RPL Terainal Session Using BREAKDONN (continued)
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{READP broken) YA

sbhreakdown(]
{EV €V_SPECIAL_CASES RPAPPLY INFIXOP PREFIXOP BIF_APPLY)
sreturn NIL 24
READP = NIL .
{FAC 9
' ) 128
7> interrupted below READP 23
{READP broken) . .
+ BRKDWMNRESUL TSI ) ‘ 26
‘_ ‘ FUNCTIONS TINETINE # CALLS PER CALL 1
i EY 9.192 97 0.0188974 4
f EV_SPECIAL_CASES
{ 1.808 33 9.0547879 8
RPAPPLY 3.2 161 6.0198758 14
. INFLXOP 2.064 51 LMMY 9
PREFIXOP 2.88 14 §.8088 12
BIF_APPLY 3.872 S8 0.06475886 17
{ TOTAL 23,218 R ) 0.8257956
NIL
1 " 3
' 14D 28
script done on Sat Jun 8 13:83:33 1985

Figure VII-2 -- RPL Terninal Session Using BREAKDOWN (continued)
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APPENDIX A - ORIGINAL RPL GRAMMAR

session = command dome
prefizid | identifier] = ezpression
command = display ezpression

. [ezpression infiz] application
ezTpresaon = {'u”r.c@&ﬂ }

o | application| primary -
application = iter [ prinary — primary |
application
superscription = ezpression sup{ +
*

S

( )
literal
prefizid
infiz
infiz primary
) I primary nfiz l {
pnmary — primary ; pnmary
primary = | ( ezpression |.. ezpression] )
{ ezpression |.. ezpression] }
< pmmary, ‘- ° >
\ file string J

infiz = infizop |bar|

letter .
. . prime

identifier = letter digit
prime = °

digit™ |. digit™|
. string
literal = true

false
string = ** char’ "
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L gy

T s,

nfizop =
sel |, :.cup member nomem !subset subset = -> < - restr; clcrcap) -
Qhat!cat @ .|| Sred + - times divide I= < > <= > =
andsign orsign cart

. identifier
prefirid = {mﬁtw}

prefizop =
- un cur unc theta size str DELTA inv dom rng mem Lm Rm Mm run lun bua
init term alpha omega ALPHA OMEGA min max mu index select join as sa sa0
rp rpi rsort sort unimg all ssm img curry uncurry PHI Id while upsilon
phi delta PI extend restrict wig not
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APPENDIX B - IMPLEMENTED RPL GRAMMAR

session

command

expression

application

superscription

primary

infix
formals

identifier
prime

literal

string

prefixid

infixid

(command)* (done)

prefixid lidentifier] == expression

identifier infixid identifier == expression

file string == expression
[display ! dis | d] expression
val identifier

env [identifier]

(exgression infix expression)
application
superscription

primary .
(agplication primary)
(iter primary -> primary)

(expression sup agplication)
(expression +
(expression sup #%)

literal

prefixid

(op infix) .

(reec infix primary)

(lsec primary infix) .

(if primary =2 primary 3 primary)
(rel (expression : exgresslon) .es
(seqrange expression to expression)
(setrange expression to expression)
(listrange expression to expression)
(seq primary ...

(set primary ... )

(list prx@ary eee )

(file strin .

(func formals expression)

empty
infixid
(infixid bar)

identifier
(identifier+)

letter [letter | digitl* prime»

digit+ [. digit+]
string

true

false

= "chars"

identifier
prefixop

identifier
infixop
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prefixop

Primitive Extensionals

AN NN
”
T
]
ﬂ-
»

Non-Primitive Extensionals
run {(Group I)

Non-Primitive Extensionals
max (Group 1II)

Wumuwinnmnnnn
3
-
3

nun
[
3
N
E
3
B
~<

Primitive Intensionals

FEIEJE I I J6 A6 I3 16 229036 366 3336363630036 36166 29696 36 36 396 36 3636 9

while
ugs11nn

delta
Pl

wig

Non_Primitive Intensionals

3696 3 I I W I I I I NI I I I I I I I I I I I I N

not Miscellaneous
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’ Primitive Extensionals
c

Non—-Primitive Extensionals
= (Group I)

Non-Primitive Extensionals
(Group II)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
%
*
*
%
*
*
*
*
*
*
*
*
*
*
*

Primitive Intensionals

% --0 @

im
PH
red

extend
restrict

Non-Primitive Intensionals

6963 I 3639 I 36 I 36 I I I I I I I I I I I I W I I I I

+

times
qivéde\: /

g Miscell aneous
{=

>=

andsign | and

orsign | or

cart
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APPENDIX C - RPL OPERATOR

17y

A. INTRODUCTION

This appendix will describe all the RPL operators
implemented to date. Sections B - L each cover one of the
operator classes outlined in Chapter VI. Because all of the
i data input operators are igcluded in the ‘Special Operator’

class, it is discussed first, followed by the the remaining

classes in the order indicated in Chapter VI. Alsao, to

provide easier access to the operators, an index is included
at Appendix D.

The format utilized provides the user with the name of
the operator in functional terms, its syntax,
input(s)/output, a description of what the operator does,
and one or more examples. Each example is written as an RPL
command which will return a result. Therefore, definition
of variables 1is kept to a minimum to keep the structures
visible so the user can follow more easily what is

happening.

f Long input definitions and output are highly formatted
; in this appendix. The user must realize that output from
ﬁ the interpreter itself is not as structured. A large
relation in RPL is just a LISP list, and so when it is

printed to the screen, it is printed as a single long list,

madified slightly by RPL routines. Therefore, the output
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represented in this Appendix has been nicely formatted to

clarify the structures involved and to help the

understanding of the user. -
Arguments to RPL operators can take various forms, but

are all variations of the three basic types - scalars, sets

or relations. In general, data types will be represented

through the use of lowercase letters as follows:

. ‘ Xy Yy Z == scalar, or anything

: s ==3 set
é' t, u ==3 relation (table),
p.: sequence or list
E d == relation - database

f, g == function

p ==> boolean function i
i my, N == integers |

»
.

o The operators have generally been classified by the type !

- |
i of argument they apply to, e.g., set, relation, sequence,
; array. Sequences, arrays, records and the like are all
X special forms of a relation. Another unique form of

is the data structure.

E relation utilized by several of the higher order operators
}
b
p
- A RPL data structure consists of two parts, the form

part, R, and the data part, D. These two parts are combined
: as a RPL list. Thus, the internal structure appears as:

(rel (1 D) (2 R))




R, the form component, is a relation represented as a
sequence of indices to the data elements. These indices can
be anything the user desires, as long as they all are
distinct. The data part, D, 1s also a relation which
relates the indices to their respective data values. Far
example, consider a data structure for the sequence,
(18, 20, @, 4@, SO).

For simplicity, let the form part, R, be represented by the
sequence, (1, 2, 3, 4). Internally, R would look like:

(rel'(l 2) (2 3) (3 4))
This would lead to the data part, D, with an internal form:

(rel (1 1@ (2 20) (3 3@) (4 4@))

Together these components would produce the data structure:

S = (rel (1 (rel (1 10) (2 28) (3 3@) (4 4@)))
(2 (rel (1 2) (2 3) (3 4))) )

In this appendix, a data structure will be represented by

the capital letter, ‘'S°. This letter is used to distinguish

T

it from the lowercase letters which are used to represent

1 other argument/data types in the language.

For additional and developmental information concerning

any of the operators in this Appendix, see Maclennan
[Ref. 21]. Some operators have been altered, added or
deleted from the originall set proposed by MaclLennan.
Appendix E summarizes in tabular form, the evolution from
the original proposal to the implemented version of

operators. It provides a quick reference to the syntax of

. .-;..-;.‘_ :.-‘: ".\'.\.-..---....‘. ...... . - :l
ML TR S S, N, P PP, L)



the operators in their input form and contrasts this input
form with the publication form created through the use of

the Unix ‘eqn’ package.

B. SPECIAL OFPERATORS

1. Relation Definition

a. Syntax: (rel (x1 y1) (x2 : y2) ... )
b. Inputi(s): anything
Output: relation

c. Description: The ’‘rel’ operator is the general
: mechanism to create a relation in
RPL. It normally uses the pair-
making operation described in the
next section to convert the data
given into the internal
representation for a relation.

d. Example(s):

?> (rel (1 2 2) (3 = &) (4 : 5]
(rel (1 2) (3 4) (4 5))

2. Set Definition

a. Syntax: (set %1 x2 %3 ... )
b. Input(s): anything
Output: relation (set)

c. Description: The ’'set’ operator evaluates and
transforms the data items given
into the internal representation
for an RPL set.

d. Example(s): Suppose a = 3 and b = 5:

?> (set 1 2 a 4 bl
(set 1 2 3 4 5)

3. Sequence Definition

a. Syntax: (seq %1 %2 x3 ..s )
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b. Input(s): anything
putput: relation

c. Description: The °‘seq’ operator is an easier
way to enter a special kind of
relation called a sequence. It is
up to the user to insure that the
data item he is creating is a pure
sequence, i.e., has no redundant
elements in it. This mechanism
can also be used to enter certain
types of directed graphs when
redundant elements are included.

d. Example(s):

(1) 7?> (seq 1 2 3 4 31
(rel (1 2) (2 3) (3 4) (4 S))

(2) ?> (seq 83 7 7 S 41
(rel (8 3) (3 7) (7 7) (7 5) (S5 4);

List Definition

a. Syntax: (list x1 x2 x3 ... )
b. Input(s): anything
Butput: relation

c. Description: The ‘list’ operator is an easier
method to enter a relation which
looks 1like an array. It sets up
an internal structure which orders
the data given by relating an
index, starting with 1, to the
value provided. It is called a
list after its primary use, for
making argument lists for infix
functions.

d. Example(s): Suppose x = 30:

?> (list 1@ 20 x 401
(rel (1 1@) (2 28) (3 3@) (4 4@))

a. Syntax: {setrange m to n)
(seqrange m to n)
(listrange m to n)
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Input(s): integers

Output: relation

Description: These operators are used to easily
create relatively 1large numeric
relations. The values within the

range Ffrom m to n are transformed
into the appropiate structure.

Example(s):

(1) 7?> (setrange 2 to 51

(set 2 3 4 3)

(2) 7?> (seqgrange 1 to 31

(rel (1 2) (2 3) (3 4) (4 5))
(3) 2> (listrange 10 to 301

(rel (1 10) (2 20) (3 3@))

name == (func (arg) (body))
Input(s):

Output:

argument list;
RPL function

body of definition

Description: The syntax includes the entire

command line required to execute a

“func’. The function components
provided are converted into the
RPL internal function representa-

tion and the environment of defin-
ition is attached. However, this
environment is never displayed to
the screen in evaluated form. The
‘env’ command will allow the user
to see the environment of any

function in its definitional form.

The ‘val’ command will allow the
user to see the internal repre-
sentation of a function, but the

environment will not be displayed.

Example(s):

?» sum == (func (x y) (x + y)1]
?>» val sum |
(closure (x y) (x + y)) '

?x

S

(sum (list 2 3)1
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Infix to Prefix Conversion

a. Syntax:

b. Input(s):
Output:

c. Description:

d. Example(s):

(ap )

infix function

prefix function

The ‘op’ operator transforms an
infix operator into a prefix
operator s0O that it can be
composed with other functions.
Once converted the arguments to
this function must be provided in
the form of a binary list.

?> ({op +) (list 2 3]

b. Input(s):
Output:

C. Deséription:

d. Example(s):

(lgsec x )
(reec f x)

X, anything; ¥, infix operator
function

These two operators allow the user
to fix either the left or right
argument to an infix function.
Thus x must be a suitable argument
to the infix function provided.

(1) ?>» ((lsec 3 +) 2]

S

(2) 7?> ((rsec

false

a. Syntax:
b. Input(s):

Output:

= 3) 21

(if p -> f 3 g)

p, predicate — boolean function
¥, g - any function
function
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Description:

Example(s):

?> p x ==

?> § == (op +1]

?> g == (op

?» (if p ~->
1

This functional creates a function
which when given an argument will
pass it to the predicate. If
true, then f will be applied to
the argument, else g will be
applied to the argument.

Suppose the user wanted to add or
subtract two numbers based on the
sign of the +first number. The
following predicate and functions
could be used (See Chapter VI for
explaination of function defini-
tional forms:

3 9) (list 3 2]

C.

Syntax:
Input(s):
Output:

Description:

Example(s):

(iter p 5 )

p, predicate (boolean function)
£, any function
anything

This functional produces a
function which when given an
argument will apply f to that
argument at least once. Then if
the predicate applied to the
result of the first application of
f is true, it will apply f to the
result. This cycle continues
until the predicate fails.

Consider a trivial case where the
user wanted the argument to be
doubled until it was greater than
5@, and then return the result:

?> p == (rsec <= 5@1]
?>» ¥ = (rsec times 21
?» ((iter p —-> f) 4]

64
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11. Superscription

a. Syntax:

b. Input(s):
Output:

€. Description:

d. Example(s):

(t sup +)
(t sup #*)
(t sup -1)
(f sup n)

t, relation
¥, function; n, positive integer
relation; functiaon

This operator has four cases as
shown above and is the only one
that can be applied to both exten-
sional relations and functions.
When the right argument is ‘+° a
transitive closure is performed.
When a '##° is provided, a reflex-
ive transitive closure is done.
Note, a double asterisk is
required because of a conflict
with the use of the ‘#° symbal in
LISP. When a ‘-1’ is the right

-argument, the converse of t is

returned. When the left argument
is a function and the right
argument is a positive integer,
the function is composed with
itself n times.

Let t = (seq 1 2 3 &)
£ = (x + 2)

(1) 2> (t sup +1
(rel (1 2) (2 3) (3 4) (1 3) (2 4) (1 &)

8
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a. Syntax:

:
r
A
)
L
”
¥
.

..................

(2) 7?2 (t sup #*#»]
(rel (1 1) (2 2) (3 3) (4 4) (1 2)
(2 3) (3 4) (1 3) (2 4) (1 4))

(3 72> (¢t sup -11
(rel (2 1) (3 2) (4 3))

(4) 72> ((f sup 2) 21

12. Egrmalization Functional

(£ (+ bar) g),
(f§ (- bar) q),
(f (times bar g), . . .
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b. Input(s):
OQutput:

16

a. Syntax:

b. Input(s):
Output:

C. GLOBAL OPERATORS

a. Syntax:

b. Input(s):
Output:

B N L S S K S I LSy
SRR SRR, 2, .

c. Description:

d. Example(s):

?> sqr ==
?> (sqr 41

c. Description:

d. Example(s):

?» x == empty

infix,K operator; functions
function

The ‘bar’ operator converts any
infix operator into a functional
which takes two functions as
arguments. The resulting func-
tional will apply the input
functions f and g to an appropiate
argument and then apply the
‘barred’ infix operator to the
results.

Consider a definition for a func-
tion which squares its arguments.
It utilizes the Identity function,
I, which is explained in the next
section:

(times bar) 11

15. Empty Set or Relation

empty

none
set or relation

This operator is actually a data
element which represents the empty
set or relation. It is normally
used to initialize sets or
relations and may be returned as
the result of other operations.

1. Eguality and Ineguality

(x = vy)
(x '=y) or (x <> vy)

anything
bool ean
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c. Description:
d. Example(s):
(1 72> (2 = 3]
false
(3 ?> ((set (1
true
2. Duplication
a. Syntax:
b. Input(s):
Output:
c. Description:
d. Example(s):
3. Ildentity
a. Syntax:
b. Input(s):
Output:
c. Description:
d. Example(s):
4. Pair Formation
a. Syntax:
b. Input(s):
OQutput:
c. Description:
d. Example(s):
St

Compares any two RPL data
based upon  their
equivalence, not form.

types
mathematical

(2) 2> (2 '= 31
true
: 2) (2 : 3) (3 s 4)) = (seq 1.2 3 41
(DELTA x)
anything
relation
Duplicates the argument and

returns a relation in the form of
a binary list.

?> (DELTA "a"1]
(rel (1 "a®") (2 "a"))
(I x)
anything
anything

Returns the input unchanged.

?> (I 31
3

(x 2 y)

anything
elementary pair

Used to create the elements of a
relation in conjunction with other

operators. It has no meaning by
itself.
(1 : 2) ==> (1 2)
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ead, Tail

a. Syntax:
b. Input(s):
Qutput:

c. Description:

d. Example(s):

~(hd 2)
(tl 2)

elementary pair
anything

Given a LISP elementary pair,
i.e., a dotted pair, ‘hd’ will
return the first element, “tl’
will return the last element.
These operations are used within
function definitions to extract
pieces of a relation which can be
further processed.

(1) 72> (hd (10 : 20]

10

(2) 2> (t1

(18 : (rel (3 : 4) (4 : 51

(rel (3 4) (4 5))

Pair List

b. Input(s):
Output:

c. Description:

d. Example(s):

a. Syntax:

b. Input(s):
Output:

c. Descriptior:

d. Example(s):

(x 4, y)

anything
relation

Converts the two inputs into the
relational form of a binary list.

2> (20 , 301
(rel (1 20) (2 30))

{(un x)

anything
set

Converts the input data item to a
set containing that single data
item.

?> (un "dog"]
(set dogqg)

130




e

RSO 0

OO

D. ARITHMETIC OPERATORS

1.

Sum, Difference, Product, Quotient

- » - - - * .
L N e

Syntax:

Input(s):
Output:

Description:

Example(s):

(x + y)

(x - y)

(x times y)

(x divide y) or (x / y)

numeric, real or integer
numeric, real or integer

Normal mathematical aoperations.
I1f either input is a real, the
result will be a real, except in
division. If the numerator is
integer, an integer division will
be executed.

(1) 2> (2 + 33 (2) 2> (3.125 - 2]
S 1.125

(3 2> (3 - 21 (4) 72> (2 % 4]
1 8 .

(3) 2> (2 divide 41 (&) 72> (2.8 /7 4]
o 8.5

Input(s):
Output:

Description:

Example(s):

(x <

(x > y)
(x <= y)
(x >=vy)

numeric, real or integer
bool ean

Conventional relational operators.

(1Y 2> (2 < 3] (2) 2> (2 >= 31
true false
131
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D. LOGICAL OPERATORS

) 1. Conjunction, Disjunction, Negation

Syntax:

Input(s):
Output:

Description:
Example(s):

(1) ?> (true
true

(2) ?> ((2 <
true

(3) 7?>» (not
false

E. SET OPERATORS

'. -
° b.
" c.
N
- d.
y a.
- b.
:l C L]
d -

Syntax:
Input(s):
Output:

Description:

Example(s):

(1) ?> (max
10

(2) 2> (min
2

............

(x andsign y) or (x and y)
(x orsign y) or (x or y)
(not x)

boolean (s)
bool ean

Conventional logical operators.

andsign truel

3 or (2 > 31

(3 = 31

(max s)
(min s) -

numeric set
number

Returns the maximum or minimum
element of the input set,
respectively.

(set 4 8 2 10 91

(set 4 8 2 10 921
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a. Syntax: (rsort s)
(sort s)

b. Input(s): numeric set
Output: relation

c. Description: The input set is sorted in ascend-
ing order and converted into a
sequence for rsort, and a list for
sort.

d. Example(s):

(1) ?> (rsort (set 4 8 2 10 91
(rel (2 4) (4 8) (8 2) (9 18))

(2) ?> (sort (set 4 8 2 10 <91 !
(rel (1 2) (2 4) (3 8) (4 9) (S 1@)) 1

a. Syntax: (epsilon r)
b. Input(s): set or relation
OQutput: anything

c. Description: Returns the first element of the
input provided.

d. Example(s):

(1) ?> (epsilon (set 4 8 2 10 21
4

(2) 2> (epsilon (rel (1 : 2) (2 : 3]
(1 2)

——ddams S Sasas SERaaSaL T

a. Syntax: (theta s)
b. Input(s): unit set
Output: anything

c. Description: Extracts the single member of a
unit set and returns it.

d. Example(s): ?> (theta (set “"dog"]
: dog
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Unigue Set

a. Syntax: (uset r)

b. Input(s): set or relation
Output: set or relation

c. Description: Eliminates redundant elements from
. the input structure provided.

d. Example(s): ?> (uset (set 4 8 2 4 10 91
(set 4 8 2 10 9)

Intersection, Union and Set Difference

_—— e Ihanet i e e e —— ———

a. Syntax: (s cap r)
(s cup r)
(s \ r)
b. Input(s): set or relation
Output: set or relation

€. Description: Conventional set operations.
d. Example(s):

(1) ?> ((set 1 2 3) cap (set 2 3 4]
(set 2 3)

(2) ?> ((set 1 2 3) cup (rel (1 : 2) (2 : 31
(set 1 2 3 (1 2) (2 3))

(3) ?> ((set 1 2 3) \ (set 2 3 4]
(set 1)

DAL
.

(4) ?> ((set 1 2 3) \ (set 1 2 31

l; empty

; 7. Cartesian Product

if a. Syntax: (s cart r)

E; b. Input(s): set or relation
= Output: relation

€. Description: None required.

d. Example(s):

‘ ?7» ((set 1 2) cart (set 5 6]
¥ (rel (1 S) (1 &) (2 5) (2 6))
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8. Cardinality

Input(s):

Description:

Example(s):

?> (size (rel (1

(size r)

set or relation
integer

Returns the number of elements in
the input set or relation.

?> (size (set 4 8 2 18 91

3) (3 : 5) (5= 7]

Membership, Nonmembership

a.

b.

-

C.

Input(s):

Description:

Example(s):

Input(s):

Description:

—— . s ey e i i s, T, e

(X member r)
(x nomem r)

anything; set or relation
boolean

Verifies if x is or is not a
member of the input set or
relation.

?» (2 member (set 1 2 31

2) nomem (rel (1 =z 2) (2 : 31

(s 'subset r)
(s subset r)

set or relation
boolean

Verifies that all members of s are
members of r. The cardinality of
S must be less than the
cardinality of r for a proper
subset.
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d.

Example(s):

(1) ?> ((set 1 2 3) 'subset (set 1 2 3)]

true

(2) ?> ((set 1 2 3) subset (set 1 2 3]

false

(J3) ?> (rel (1 = 2)) subset (set 4 (1 : 2) S1

true

F. RELATION OPERATORS

.

as

b.

Syntax:

Input(s):
Output:

Description:

Example(s):

?> t == (rel
?> (2 sel 1]
3

2. Construction

Input(s):
Output:

Description:

(t sel x)

anything; relation
anything

Given the left member of a rela-
tion, X, the associated right
member of the first occurence of x
in t will be returned.

(t # u)

relations
relation

Constructs a table (relation)
which relates each common left
member of t and u, to a list
created by selecting the
respective right members from ¢t
and u by using the common left
member as a target. When creating
the list, the right member

associated with the first
occurence of the target is used.
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d. Example(s):

?2>t == (rel (1 ¢ 2) (2 2 3) (1 2 3) (2 : 4)]

?> u == (rel
?2> (t #% ul

(1

8) (2 : 9) (3 1@)1

(rel. (1 (rel (1 2) (2 8)))
(2 (rel (1 3) (2 9)))

Converse
a. Syntax:

b. Input(s):
Output:

c. Description:

d. Example(s):

?> t == (rel
?> (cnv t1]
(rel (2 1)

b. Input(s):
Output:

c. Description:

{cnv t) or (t sup -1)

relation
relation

Returns a table where each element
of table t has the left and right
member inverted. See special
operator section for other uses of
the ‘sup’ syntax.

(1 2 2) (2 3 (1 : 3) (2: 4)]

(3 2) (3 1) (4 2))

(cur t)
(unc t)

relation
relation

Given an extensional representa-
tion of an infix function in
either curried form or uncurried
form, these operators will convert
one form to the other. Each
element in the uncurried form of
such a table consists of the
function argument list paired with
the result of applying the
function to these arguments. In
curried form, the resulting table
is the equivalent of fixing the
left member of the infix operator.
This left member is paired with
another table which contains all
potential right members paired to
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d. Example(s):

?>t == (rel ((1
(1

(2

?>» (cur t1]

the result of .épplying the
function to the fixed left member.

Consider a portion of an uncurried
table which represents the ’'+°
function:

1) = 2) (1 , 2) : 3)
3) ¢ 4) (2 , 1) £ 3)
2) : 4) ((2 , 3 : 3 1

(rel (1 (rel (1 2) (2 3) (3 4)))
(2 (rel (1 3) (2 4) (3 5)) )

Ordered Union
a. Syntax:

b. Input(s):
Output:

c. Description:

d. Example(s):

?> t = (rel

?¥% u == (rel

?>» (t 3 ul
(rel (1 2)

(1 : 2 (2
(2 ¢

(t 3 w

relations
relation

Creates a table where all elements
of t are added to u, replacing any
corresponding elements already
there.

3 (3 : 4)1

4) (3 6) (4 7)1

(2 3) (3 4) (4 7))

a. Syntax:

b. Input(s):
Output:

c. Description:

relations
relation

For an element in t, its right
member is used as a target in u,
producing a set of values
associated with the target. New
elements for the resulting table
are created by pairing the left
member of the element in t with
each value in this set. The
resulting table contains all the
elements created by the above
process for each element in t.

[
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d. Example(s):
2>t = (rel (1 : 2) (2 : 31
?>u == (rel (2 1 4) (2 : B) (3 z: 6) (3 : 1221
?» (£ 1 1l
(rel (1 4) (1 8) (2 &) (2 12))
7. All, Unit Ilmage
a. Syntax: (y all )
(t unimg x)
b. Input(s): anything; relation (all}
relation; anything (unimg)
Cutput: set
c. Description: ‘all’ returns a set of all left
members related to the target
right member, Ye Likewise,
‘unimg’ returns a set of all right
members related to the target left
member, x.
d. Example(s):
Let ¢t = (rel (1 2 2) (2 2 3) (1 2 3) (2 : 4))
(1) 2> (3 all t1
(set 2 1)
(2) 722> (t unimg 21
(set 3 4)
8. Domain, Range
a. Syntax: (dom t)
(rng t)
b. Input(s): relation
Output: set
c. Description: ‘dom’ returns all left members of
the relation t, and ‘rng’ returns
all right members of t. Neither
of these operators eliminate
redundant elements.
139
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d. Example(s): Consider the relation shown
graphically in Figure C-1 and its
input form here:

t == (rel (1 3 2) (2 2 4) (2 : S3) (3: 95 (5: 3

(S 2 6) (7 : 6) (B : 7) (B: 8 (92: 7))
8
€«
7 9
Figure C-1 Arrow Diagram for Relation t
(1) ?> (dom t1]
(set 1 22335578899
(2) ?> (rng t1
(scet 2 4535566787
Initial Members, Terminal Members
a. Syntax: (init t)
(term t)
b. Input(s): relation
Output: set

c. Description: Given a table which represents
some relation, the initial members
are those which are left members
of the relation, but not right
members. Conversely, the terminal
members are those which are right
members, but not left members of
the relation. "'init’ returns the
intial members of a relation, and
‘term’ returns the terminal
members.

d. Example(s): Using the relation in Figure C-1,

?x (init t1
(set 1 3 9)

140
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Mesbers

a. Syntax: i} (mem t)

b. Input(s): relation
Output: set

c. Description: Returns a set of all left and
right members of the relation t.
Because this operator is defined
in terms of the domain, range and
union opertors, redundant elements
may be left in. The union between
the domain and range of t will
leave any redundant elements in
the range in the result. See
reference ##% for more information
on haow LISP implements union.

d. Example(s): Using the relation from Figure C-1,

?> (mem t1
(set 1 3 92435566787

Left Member, Right Member., Member

a. Syntax: (x Lm t)
(x Rm t)
(x Mm t)

b. Input(s): anything; relation
OQutput: bool ean

c. Description: Verifies if x is a left, right, or
either a left or right member of
t, respectively.

d. Example(s):

Let t = (rel (1 ¢+ 2) (3 2 4) (5 : 6))

(1) 2> (3 Lm t1 (2) ?> (8 Mm t1
true false
(3) ?> (S Rm t1 (4) ?> (5 Mm t1
false true
141
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; 12. Left Univaleot, Right Univalent, Bi-univalent
a. Syntaxz (lun t)

2 (run t)

. (bun t)

- b. Input(s): relation
Output: bool ean

. c. Description: A left univalent relation is one
. in which each element in the
domain is unique. In other words,
no two different right members can
have the same left member.
Likewise, a run univalent relation
is one in which every right member
is unique. Therefore, it follows
- : that a bi-univalent relation, also
known as a isomorphism is one that
has both unique left and right

members. These operators deter-—
- mine if the relation is what is
N requested.

d. Example(s):

- (1) 2> (lun (rel (1 = 2) (2 : 3) (1 :+ ]
L false
% (2) 72> (run (rel (1 : 2) (2 : 3) (1 : S)]
. true

(3) 2> (bun (rel (1 =2 2) (2 2 3) (3 : &)1
true

a4

G. SERUENCE OPERATORS

< a. Syntax: (alpha t)
- (ALPHA t)
X b. Input(s): sequence
Qutput: anything; sequence
c. Description: ‘alpha’ returns the first element !

o of the sequence s, while ‘ALPHA’
. returns the entire sequence except
the last element.

2
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d.

Example(s):

(1) " ?> (alpha (seq 1 2 3 4 5)
1

(2) ?> (ALPHA (seq 1 2 3 4 51
(rel (1 2) (2 3) (3 4))

2. Last Member, Final Seguence

b.

C.

Syntax: t (omeda t)
(OMEGA t)
Input(s): sequence
Output: anything; sequence
Description: ‘omega’ returns the last element

in the sequence t, while ‘'OMEGA°’
returns the entire sequence except
the first element.

Example(s):

(1) ?> (omega (seq 1 2 3 4 51
b=

(2) ?> (OMEGA (seqg 1 2 3 4 51
(rel (2 3) (3 4) (4 5))

Cons Left, Cons Right

a.

b-

C.

d-

{(x el t)
(t cr x)

Syntax:

Input(s):
Output:

x = anything; t = sequence
sequence

Description: Any data item is added te the
beginning (left) or to the end
(right) of the sequence t.

Example(s):

(1) 2> (1 cl (seq 2 3 4 51
(rel (1 2) (2 3) (3 4) (4 3))

(2) ?> ((seq 1 2 3 4) cr 3]
(rel (1 2) (2 3) (3 4) (4 3))
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4. Minimize Seguence

Syntax:

Input(s):
Output:

Description:

Example(s):

?> t == (rel

?> (mu t1
(rel (3 4)

(mu t)

relation
sequence

This operator eliminates redundant
edges from a relation which has as
its underlying structure a
sequence. This type of structure
can be obtained as a result of
some of the higher order operators
discussed in sections K and L.
Care must be exercised. If t does
not originate from a true
sequence, the computation may not
halt.

(3 2 8) (3 : 6) (3 :27) (3 : 2)
(4 : 6) (4 2 7)) (4 : 2) (6: 7)
6 : 2) (7 = 21

(4 6) (6 7)) (7 2))

S. Seguence of Seguences to Matrix

-1

b.

€«

-’.’f"(..-'_-".'.'\l" :

Input(s):
Output:

Description:

Example(s):

(ssm t)

relation
relation

Given a relation in the form of a

sequence of sequences, this
operator converts it into a
relation which represents a

matrix. The left member is a list
of the column and row number, and
the right member is the value at
that position.

(seq 10 20 30)
(seq 40 50 6Q)
(seq 70 8@ 90)1
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?> (asm t]
(rel
((rel (1 1) (2 1)) 1@
- ((rel (1 1) (2 2)) 20)
((rel (1 1) (2 3)) 3®
({rel (1 2) (2 1)) 4@
((rel (1 2) (2 2)) S@&
((rel (1 2) (2 3)) &
((rel (1 3) (2 1)) 7@)
((rel (1 3) (2 2)) 80)
((rel (1 3) (2 3)) 90))

6. Seqguence to Array

a. Syntax: (t sa n)

b. Input(s): sequence; positive integer
Output: relation (array)

Description: Converts the sequence t into an
array indexed starting with n.

Example(s):
?> ((seq 10 20 3@) sa 41
(rel (4 1@) (S 20) (6 3@))
H. ARRAY OPERATORS
1. Array to Segquence
a. Syntax: (as t)

b. Input(s): relation (array)
Output: relation (sequence)

Chlas g P raaiiaringSai gy o aan SR B AR S g ol e e R o g
Qa n
] .

c. Description: Converts the values of the given
array into a sequence.

d. Example(s):

?» (as (rel (1 : 1@) (2 : 20) (3 : 3@) (4 : 4Q)1]
(rel (10 20) (20 30) (3@ 4@))

@
N
b
b
.
h
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I.

1.

-

b.

Ce.

dl
?>t
?> u

?> (
(re

Data

C.

Syntax:

Input(s):
Output:
Description:

Example(s):

(1
(1

(rel
(rel
t cat ul
1 (1 1

(2

Input(s):
Output:

Description:

Example(s):

?> (rev t1
(rel (1 38@)

DATABASE OFPERATORS

base Index
Input(s):
Output:

Description:

(t cat w)’

relations (arrays)

relation (array)

Concatenates u to t by altering
the indices of u to be consecutive
with the indices of t.

: 1@ (2 : 3@8) (3 : 3@)1]

: 40) (2 : S@) (3 : 6@ 1

280) (3 30) (4 4@) (5 S@) (6 6@))
(rev t)
relation (array)
relation (array)
Returns an array with the values
reversed.

Using t from the example abave,

(2 20) (3 1@))

{(x index d)

x, anything (field name)
d, relation (database)
relation

Returns a relation which pairs the
value associated with field name
xy, to the entire record that the
for all

field name was found in,
records in d.




d. Example(s): Consider the following database:

dbl = (set
(rel ("#" : 10@) ("name" : "“Brown") ("hours" : 10))
(rel ("#" : 101) ("name" : "Mitton") ("hours" : 8))
(rel ("#" : 102) (“"name” : "Benson") ("hours" : 14))
(rel ("#" : 103) ("name" : "Murnan”) ("hours" : 10))
(rel ("#" : 104) ("npame" : "Garcia") ("hours" : 12)))

?> ("hours" index dbl1ll
(set (10 (rel (# 10@) (name Brown) (hours 10)))
(8 (rel (# 101) (name Mitton) (hours 8)))
(16 (rel (# 102) (name Benson) (hours 16)))
{10 (rel (# 103) (name Murnan) (hours 10)))
(12 (rel (# 104) (name Garcia) (hours 12))))

a. Syntax: (x select d)
b. Inputis): x, anything (field name)
d, relation (database)
Cutput: function
c. Description: Returns a function which when

given a predicate selects those
records far which the predicate is
true and returns a relation with
those records.

d. Example(s): Suppose the user wanted all
records which nave an ‘haurs’
field equal to 1@ from the
database, dbl, used above. Thus the
argument to the functional created
by the ’‘select’ operator would be
the predicate, (rsec = 1@). This
predicate compares the value of
the x field with the value 10. If
true, the record is included in
the resulting set.

-~ e

?x (("hours" select dbl) (rsec = 10]
(set (rel (# 10@) (name Braown) (hours 10))
(rel (# 1@03) (name Murnan) (hours 10)))
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Y
- 3. Database Join
a. Syntax: (x join dl)
; b. Input(s): X, anything (field name)
& dl, relation (database list)
- Output: relation (database)
. €. Description: This operator performs a natural
= join on two databases, combining
o all the fields of both databases,
! based on the equality of the
N values in the field specified - x.
. d. Example(s): Consider the database, dbl, in the
';; . ‘index’ example and the additional
o database, db2, given below:
db2 = (set
by (rel ("#" : 1280) ("age" : 32) ("office™ : "D3I"))
(rel ("#" : 101) (“"age" : 27) ("office"™ : "A4"))
- (rel ("#" : 102) (“age" : 21) ("office" : "C1"))
- (rel ("#" : 1@3) ("age" : 45) ("office" : "A2"))
- (rel ("#" : 104) ("age" : 37) ("office" : "B8")))
. ?> ("#" join (list dbl db2)1]
. (set
N (rel (name Garcia) (hours 12) (# 1@84) (age 37) (office BB))
- (rel (name Murnan) (hours 10) (# 103) (age 45) (office A2))
S (rel (name Benson) (hours 16) (# 102) (age 21) (office C1))
- (rel (name Mitton) C(hours 8) (# 101) (age 27) (office A4))
(rel (name Brown) (hours 10) (# 100) (age 32) (office D3))) %
.:' i
< K. HIGHER ORDER OPERATORS - RETURNING FUNCTIONS
. |
f 1. Array Reduction. |
i
a. Syntax: (f red x)
: b. Input(s): function; anything
- Output: function
3 c. Description: Given a function f, which will
operate on the data of an array,
. and a starting point, x, this
T operator produces a function which

reduces an array. When executed,
the result is set to the star’ing
point, «x. f 1is applied to the
result and the first element of
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d. Examplel(s):

?>» fac x == (({op
?> (fac 81
40320

. a. Syntax:

b. Input(s):
Qutput:

c. Description:

d. Example(s):

data in the array, producing a new
result. f continues to be applied
as above until all data elements
have been utilized as input. The
result is then returned.

Consider the definition tor
factorial:

times) red 1) (listrange 1 to =1

(f o g)

functions
function

Produces a function which when
given an appropriate argument will
apply ¥ to the result of applying
g to that argument. '

Consider another definition for
the squaring function: )

?>» sqr == (times o DELTA)

?» (sqr 4)
16

b. Input(s):
Output:

c. Description:

(curry +)
(uncurry f)

function
function

These two operators are used to
convert between the two types of
infix functions. An infix func-
tion which takes a single argument
in the form of a 1list 1is in
uncurried form. When such a
function is curried, it produces a
functional, which will produce
another function when given one of
the two arguments that are
normally required. This resultant
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function +fixes this argument and
creates a function which takes any
other valid argument and returns
the same result as if the
uncurried version had been given
both arguments.

d. Example(s):

?> sum == (op +1] {% uncurried form »>
?> add == (curry suml
?> == (add 3]
?> (sum (list 3 51
a .
?> (£ 51

‘ 8

4., Extension

a. Syntax: (t extend )
b. Input(s): relation; function
. Output: functional
R
t' c. Description: Produces a functional which when

given an argument first checks to
see if it is the domain of t. If
5 sa, its right member is returned,
: else the function f is applied to
the argument.

e |
S,

- d. Example(s): Suppose the user wanted to work
N ' with a subrange of the positive
h integers, say 1 to 50, so that the
3 successor of the argument would be
- returned if the argument was in
N this subrange, and an error
3 message would be returned if it
N was not:
(1) 72> t == (segrange 1 to 581
?> £ ¥ == "Error - not within range"

?> subrange == (t extend f1]
?> (subrange 251
246

(2) ?%» (subrange 551
Error - not within range
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Syntax=x (wig p)
Input(s): boolean function
Output: function

Description: Returns a function which negates
the result of the input boolean
function.

Example(s): Consider a function to determine
if a numeric argument is within
the subrange 10 to 20, and then
the opposite, a function to
determine if the argument is
outside the range:

?> in-range x == ((x >= 10) and (x <= 201
?> out—of-range == (wig in-rangel

?> (out-of-range 251

true

a. Syntax: (£ 1} @)
b. Input(s): functions
Output: function

c. Description: Produces a function from the two
input functions which when given
an argument list, returns a list
of the results of applying f to
the first member of the argument
list and g to the last member of
the argument list.

d. Example(s): Consider a different approach to
the in-range function from the
last example:

?> blist == (({(rsec >= 1@) !! (rsec <= 20)) o DELTA]
?>» (blist 131
?» (rel (1 true) (2 true))
?>» in—-range == (and o blist]
?> (in-range 151
true
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While Loop
a. " Syntax:

b. Input(s)i
Output:

c. Description:

d. Example(s):

(f while p)

function; boolean function
function

Produces a function which when
given an argument will first test
the predicate with the argument.
If the predicate succeeds then ¢
is applied to the argument. The
result of this application is
passed to the predicate and if the
predicate again succeeds, f is
applied to this result. This cycle
continues until the predicate
fails. If the predicate fails on
the first attempt, the original
argument is returned.

Consider a definition for modulo
arithmetic:

?> modaux x == {{rsec — %) while ((rsec >= 0) o (rsec - )1
== ({(uncurry modaux) o revl
?> (10 mod 4]

?> mod

2

8.

Value of a Node, Data Structure

a. Syntax:

b. Input(s):
Output:

c. Description:

d. Example(s):

(upsilon )

function
function

Creates a function which takes a
data structure and returns the
value of the node selected by .

Suppose the user wanted a function
which would return the value of
the first node of a given data
structure. Cansider a RPL data
structure for a sequence:
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?> 8§ == (list (list 3 4 -2 6 7 -1 2 -4)
(seqrange 1 to 81

?> val S
(rel (1 (rel (1 3) (2 4) (3 -2) (4 &) (5 7)
(6 -1) (7 2) (B8 -4))
(2 (rel (1 2) (2 3) (3 4) (4 5) (5 &)
) 6 7Y (7 8)) )
?> firgt == (upsilon alphal
?> (first S1
3

?. Operate on Data, Data Structure

a. Syntax: {delta f)
. b. Input(s): function
Output: function

c. Description: Creates a function which will
operate on the data part of the
RPL data structure. Therefore the
function * f must accept as a valid

argument the relation which
represents the data part of the
data structure. The resulting

function takes a data structure as
an argument, applies f to the data
component, and returns the
modified data structure.

d. Example(s): Suppose the uéer wanted to add 1
to every data element of the data
structure used in the last

example:
?> f == (lsec (hd (: bar) ({(rsec + 1) o tl)) imgl
?> addl == (delta 1]

?> (addi S1]
(rel (1 (rel (1 4) (2 5) (3 -1) (4 7) (5 8)
(6 @) (7 3) (8 -3))
(2 (rel (1 2) (2 3) (3 4) (4 T5) (5 &)
(6 7) (7 8)) )

' li Tt '

18. QOperate on Farm, Data Structure

A
E a. Syntax: (phi )
&
3 b. Input(s): function
L Output: function
K
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€. Description: Creates a function which will
aoperate on the form part of the
RPL data structure. Therefore the
function f must accept as a valid

argument the relation which
represents the form part of the
data structure. The resulting

function takes a data structure as
an argument, applies f to the form
component, and returns the
modified data structure.

d. Example(s): Using the data structure defined
preiously, consider a function
which will eliminate the first
node of the data structure:

?> rest == (phi OMEGAl
?> (rest S1]
(rel (1 (rel (1 3) (2 4) (3 -2) (4 &) (5 7).
b ~1) (7 2) (8 -4))
(2 (rel (2 3) (3 4) (4 5) (5 &)
(6 7) (7 8)) )

11. Image of a Data Structure

a. Syntax: (PI ¥)
I b. Input(s): function
Output: function
] c. Description: Creates a function, that when

given a data structure, applies f
to all values in the data part of
the structure and returns the
modified data structure.

d. Example(s): Now, to add 1 to every value as
done in the ‘delta’ example, the
user simply writes:

?> addl == (Pl (rsec + 1))
?> (addi 81
(rel (1 (rel (1 4) (2 3) (3 -1) (4 7) (S &)
(6 @) (7 3) (8 -3))
(2 (rel (1 2) (2 3) (3 4) (4 5) (S &
(6 7) (7 8 )
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L. HIGHER ORDER OPERATORS - RETURNING DATA

1. Eiltering Sequences

C a. Syntax: (p xi t)

L b. Input(s): py function (boolean)

4 t, relation (sequence)
Output: relation (sequence)

c. Description: Filters the relation t, using the
predicate, p. Reconnects nodes
that could be lost by the normal
filtering discussed later in this

- section. Used as a part of the
g filtering function for data
structures, is discussed next.

d. Example(s): Suppose the user wanted to
eleminate the negative nodes of
the below sequence:

?> s == (seq 3 4 -2 67 -1 2 -41]

?> ((rsec >= @) xi s
(rel (3 4) (4 6) (& 7) (7 2)1

a. Syntax: (p PHI S)
b. Input(s): p, function (boolean)
S, relation (data structure)
Output: relation (data structure)
c. Description: Extends the ‘xi’ functional to

work on RPL data structures. Note
that the data part is not changed,
only the form part is filtered.

T TETE T T LY Y T NS S T s s " e WV TV VIV "RV VOV Y VYV U U W WU W

(seqrange 1 to 8)1
?> ((rsec >= @) PHI S1]
(rel (1 (rel (1 3) (2 4) (3 -2) (4 &)
(5 7) (6 -1) (7 2) (8 -4)))
(2 (rel (1 2) (4 5) (2 4) (5 7))) )

d. Example(s): Consider the sequence used in the
. "xi”’ example as a RPL data
2 structure:
i ?> 8 == (list (list 34 -2 6 7 -1 2 -4)

Note: Sequence order doesn‘'t matter in the form part.
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Eiltering Relations

b.

Syntax: (p filter t)
Input(s): boolean function; relation
Output: relation

Description: Eliminates undesireable nodes from
t by applying the predicate to
each element of ¢. If the
predicate succeeds, the element is
left in the relation, otherwise it
is remaved. This functional is
the basis for the restriction
operators discussed next in this

section.

Example(s): Caonsider the same sequence, s,
used in the example of the “xi’
operatar. This will illustrate

that this filtering method can
eliminate valid nodes and leave
nodes disconnected in the case of
sequences:

?> val s .
(rel (3 4) (4 -2) (-2 &) (& 7)
(7 -1 (-1 2) (2 -4))
?>p == ((hd x) >= @) and (tl x) >= @)1
?> (p filter sl
(rel (3 8) (6 7))

Syntax: tp > t)

(t <- p)

(t restr p)
Input (s): bogolean function; relation
Output: relation

Description: Returns a relation which restricts
the domain, range or both the
domain and range, respectively.
This 1is accomplished by filtering
the table using the predicate p on
the appropriate members of each
element of the relation.
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d. Example(s): Consider the same sequence s, used
in previous examples:

- (1) ?> val s
(rel (3 8) (4 -2) (=2 86) (6 7)
(7 -1) (-1 2) (2 -4))
?> ((rsec >= @) -> sl
(rel (3 4) (4 =-2) (6 7)) (7 -1) (2 -4))

. (2) ?> (s <— (rsec >= @)1
¥ (rel (3 4) (=2 6) (6 7) (-1 2))

(3) ?> (s restr (rsec >= @)1
(rel (3 4) (& 7))

a. Syntax: (£ @.x)
) b. Input(s): function; anything
* Qutput: anything
3 c. Description: Returns the result of applying f

to the argument x.
d. -Example(s):

?> (lop times) @ (list 2 3)1]
b

a. Syntax: (t @hat x)
b. Input(s): relation (table of functions)
anything
Output: relation

= €. Description: Produces a relation which pairs
3 each left member of the input
: : relation to the result of apply-
ing the right member function to
) the argument x.

~ d. Example(s): Consider the following simple list
of functions:

?> t == (list (op times) (op +) (aop -) (aop /)1
?> (t @hat (list 4 3] .
- (rel (1 12} (2 7) (3 1) (4 1))
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a. Syntax: (t ! )
b. Input(s): relation
Output: relation
L c. Description: The input table to this functional
must have a domain and range which
consists of functions only. The
o argument x must be valid for all
! functions contained within the
) table. Each element of t will be
g replaced by the result of applying
i . both the left member and right
member functions to the argument.
d. Example(s):
: ?> t == (rel ((op times) : (op /))
. ((op +) : (op -))1
?> (t ! (list 4 31
(rel (12 1) (7 1))
8. 1Image of Sets
a. Syntax: (£ img t)
b. Input(s): function; relation
Output: set
€. Description: Returns a set which is the result
of applying f to every member of
the set or relation t.
; d. Example(s):
?> sqr == (times o DELTAl
?> (sgr img (set 1 2 3 4 5]
(set 1 4 9 146 25
: ?. Ilsomorphism, Image on Relations
" a. Syntax: (£ & t)
b. Input(s): function; relation
Output: relation
158
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c. Description: Returns a relation which has the
same structure as the original,
except that each element is
composed of the result of applying
¥ to both the 1left and right
member of the element of t.

.

d. Example(s): Consider again the °‘sqr’ function:

?> (sqr ¥ (seqrange 1 to 61
(rel (1 4) (4 9) (9 16) (16 23) (25 346))

18. Relative Product. Lnsgnglgnel
a. Syntax: (t rp )
: b. Input(s): function
: Output: relation

c. Description: Returns a relation which is the
result of applying the function +
to every right member of the input
relation.

d. Example(s):
?> t == (listrange 1 to 51

?> (t rp (rsec times 10]
(rel (1 1@) (2 200 (3 3@ (4 4@) (5 S@))

11. Relative Product Inverse, Intensional
a. Syntax: (f rpi t)
j b. Input(s): function
. Output: relation
. t. Description: Returns a relation which is the
s result of applying the function ¢
to every left member of the input
relation.
d. Example(s):
3 ?»> t == (listrange 1 to S1

?» ((rsec times 10) rpi t1
(rel (10 1) (20 2) (3@ 3) (40 4) (S50 )
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12. Restriction of a Function

a. ‘Syntax: (s restrict )
b. Input(s): relation (set); function
Output: relation

c. Description: Transforms the function into a
extensional relation (table) based
upon the set of domain elements
given as input. It pairs each
element of s with the result of
applying the function f to it.

d. Example(s): Suppose the user wanted a table of
squares for the subrange 4 to 8:

?> s == (setrange 4 to 8]
?> sqr == (times o DELTA]
?> (s restrict sqgrl
(rel (4 16) (5 25) (&6 36) (7 49) (8 64))
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APPENDIX D - INDEX TO RPL OPERATORS
Name Operator Page
-+ + 4+ —_——=E===== 3+
Addition + 131
All all 139
Application
anything @ 157
- functional record @hat 158
functional structure ! 158
Array .
concatenation cat 146
irom sequence sa 145
ireduction red 149
reverse rev 146
Array to sequence as 146
Bi—univalent bun 142
Cardinality size 135
Cartesian product cart 135
Composition
functions o 149
repeat using superscription sup n 127
Concatenation - array cat 146
Conditional functional if 126
Conijuntion andsign, and 132
Cons left - sequence cl 144
Cons right - sequence cr 144
Construction # 137
Converse
relation cnv 137
using superscription sup -1 127
Curry
extensional cur 138
intensional curry 158
Data definition
list list 123
list range listrange 123
relation rel 122
sequence seq 122
sequence range seqrange 123
set set 122
set range setrange 123
Data structures
filtering PHI 155
image PI 154
operate on data part delta 153
161
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Data structures, cont.
operate on form part
value of a node

Database
index

join
select
Difference
Disjuntion
Division
Domain
Duplication
Element selection
Empty set or relation
Equality
Extension of a relation
Filtering
data structures
relations
sequences
Final sequence
First member - sequence
Formalization functional
Function definition
conditional
direct
fix left argument
fix right argument
infix to prefix
iteration
while loop
Greater
Greater or equal
Head - elementary pair
Identity
Image
data structure
of domain element
of range element
relations - isomorphism
sets
Improper subset
Inequality
Infix to prefix conversion
Intial members
Initial sequence
Intersection
Isomorphism — relations
Iteration functional

Last member - sequence
Left member

phi

upsilon

index
join

select

orsign,
divide or /

dom
DELTA

epsilon

empty

extend

PHI

filter

®i
OMEGA
alpha
bar

if
func
lsec
rsec
op
iter
while
o

=
hd

I

PI
unimg
all

b 3

img

'subset
'= or <>

op
init
ALPHA
cap

b 3
iter
omega
Lm

154
153

147
148
147
131
132
131
140
129
133
128
129
150

155
156
155
143
143
128

126
124
125
125
125
126
152
132
132
130
130

154
139
139
159
158
136

129

125
141
143
134
159
126
143
142
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Left section

Left univalent
Less

Less or equal
List definition
List range definition
Maximum - set
Member

Members
Membership.
Minimize sequence
Minimum - set
Multiplication

Negation
Negation - function
Nonmembership

Ordered union
Pair Formation
Pair list
Paralleling
Product
Proper subset
Quotient
Range
Reduction
array
Reflexive transitive closure
Relation definition
Relational sort
Relative product
intensional
intensional inverse
primitive
Restriction
domain
of a function
range
range and domain
Reverse array
Right member
Right section
Right univalent
Selection
Sequence
all but first element
all but last element
cons left
cons right
convert to array
convert to matrix
definition

lsec
lun
<

=
list

listrange

max
Mm
mem
member
mu

min
times
not
wig
nomem

. ws

times
subset

divide or /
- rng

red
sSup **
rel
rsort

rp
rpi

<_
restrict
->

restr
rev

Rm

rsec

run

sel

OMEGA
ALPHA
cl

cr

sa
ssm
seq

.......
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125
142
132
132
123
123
133
142
141
135
144
133
131
132
151
135
138
130
131
151
131
136
131
140

149
127
122
133

159
160
139

157
168
157
157
146
142
125
142
136

143
142
144
144
145
145
122

-----
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Sequence, cont.
filtering
first member
from array
last member
minimize
range definition
Set definition
Set difference
Set range definition
Sort
Subtraction
Sum
Superscription
converse
‘reflexive transitive closure
repeat composition
transitive closure
Tail - elementary pair
Terminal members
Transitive closure
Uncurry
extensional
intensional
Union
Unique element selection
Unigque set
Unit image
Unit set
While loop

xi

alpha

as

amega

mu
seqrange
set

\
setrange
sort

+

sup -1
sup *#*
f sup n
sup +
t1

term
sup +

unc
uncurry
cup
theta
uset
unimg
un
while

155
143
1446
143
144
123
122
134
123
133
131
131

127
127
127
127
130
141
127

138
15@
134
134
134
139
131
152
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APPENDIX E - RPL INPUT FORM SUMMARY

TABLE 1. Primitive Extensional Operations

~

Name Old Input Form | New Input Form | Publication Form
selection t sel x t sel x tlz
relative product t|a t|u t|s
construction t, baru t#u t# u
pair formation X:y X:y z:y
union tcup u tcupu tu u
unit set un x un x un z
currying curt curt cur t
uncurrying unc t unc t unc t
unique element selection | thetas theta s ds

7 element selection (added) epsilon t et
cardinality size t size t sige t
structure strt (deleted) (deleted)
transitive closure t sup + t sup + tt
empty set empty empty 9

TABLE 2. Nonprimitive Extensional Operations: Group 1

Name Old Input Form | New Input Form | Publication Form
pair list (x, y) (x,y) (z, ¥9)
left pair section (x,) (deleted) (deleted)
right pair section (,y) {deleted) (deleted)
duplication DELTA x DELTA x Az
membership x member t x member t T Et
nonmembership X nomem t X nomem ¢t z ¢t
improper subset s !subset t s !subset t s Ct
proper subset s subset ¢t s subset t sCt
equality s=t s=t s =1
converse inv t, tsup -1 cnv t, t sup -1 envt, t!
domain dom t dom t dom t
range rngt rng t mgt
members mem t mem t mem ¢
left member Lm (x,t) x Lm ¢ z Lmt
right member Rm (x,t) x Rm t z Rmt
member Mm (x,t) x Mm t z Mm¢
right univalent run t run t run t

' left univalent lunt lun ¢ lun ¢t

’ bi-univalent bun ¢t ! bun ¢ bun ¢
initial members init t | init t init ¢
termin al members term t | term ¢ term ¢

: reflexive transitive closure | tsup * I tsup ** t

| domain restriction p->t l p->t p—t
range restriction t<-p t<-p t—p
restriction t restr p t restr p tip
sequence filtering (added) pxit pEt

ALY
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TABLE 3. Nonprimitive Extensional Operations: Group 2

0

: .
W 8 %

Name Old Input Form | New Input Form | Publication Form
first member alpha ¢ alpha t at

last member omega t omega t wt

initial sequence ALPHA t ALPHA t At

final sequence OMEGA ¢t OMEGA t ¢
ordered union t;u t;u t; u

cons left xeclt xeclt zelt
cons right terx terx terz
minimum min s min s min s
maximum max s max s max s
intersection scapt scapt sN t

set difference s\t s\t s\t
apply functional record t Q@ hat x t @ hat x toz
apply functional structure | t! x t!x t!'z
minimise mu ¢t mu t Bt
database index index x d x index d z index d
database select select x x select d r select d
database join join x x join dblist z join dblist
array to sequence as t as t as i
sequence to array sat tsai tsats
seq. to zero-origin array sal t (deleted) {deleted)
relative product rpft trpf t|f
relative product inverse rpift frpit Tt
array concatenation tcatu tcatu t catu
relation sort rsort s rsort s rsort s
sort sort s sort s sort s

unit image unimg t x t unimg x t unimg z
all all ¢ all ¢ all ¢
sequence to matrix ssm t ssm t ssm ¢t

+

e
"

TABLE 4. Primitive Intensional Operations

DAL

.
-

-
SaNG
yor o A

Pk A AR

—

B RS

Name Old Input Form New Input Form Publication Form
application fO x fox fe =z
image imgfs fimgs f imgs
composition f.g fog f 9
infix to prefix (added) (op + ), (op times), ... [+], [x], - -
left section (x+), (x-), ... (1sec x +), ... (z+], [z-], -
right section (+y), (-y), ... (rsec + y), ... [+y], -],
paralleling fllg flle filg
isomorphism fet f$t IR R

. formal application f@ barg (deleted) (deleted)

. functional condition | (p-> f; g) (ifp-> f;g) (p—1;9)
curry curry f i curry f curry f

. uncurry uncurry { uncurry f uncurry f
filtering PHIp (d, r) p PHIS p®S
iteration iter [p -> f] (iter p-> f) iter [p » /|
formalization + bar, times bar, ... | {+ bar), (times bar), ... | ¥, X

' identity 1d 1 1

1
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TABLE 5. Nonprimitive Intensional Operations

LA

Name Ol Input Form | New Input Form | Publication Form
. . while loop while {p, f] (f while p) J while p
. array reduction fredi fredx f§z
X repeated composition | fsup n fsupn I
y value of node upsilon f upsilon f vf
. operate on form phi f phi f o f
- operate on data - delta f delta f §f

image of structure PIf PIf nmys
N extension extend (t, f) t extend f t extend f
- restriction restrict (s, f) s restrict f s restrict f
. formal negation wig p wig p ~p

TABLE 6. Miscellaneous Operations

o Name Old Input Form | New Input Form | Publication Form
- sum X+ y X+ y z+y
difference x-y X-y z -y
product x times y X times y T Xy
quotient x divide y x divide y z+y
. inequality x!=y x!=y T #E Y
less x<y x<y 1<y
. greater x>y x>y x>y
- less or equal xX<=y xX<=y <y
.:', greater or equal x>=y x>=y '/ T2y
conjunction x andsign y x andsign y z Ny
i disjunction X orsign y X orsign y tVy
- negation not x not x -z
- cartesian product | s cartt s cart t s Xt

TABLE 7. Data Input Operations and Syntax

Name Input Form Publication Form

o identifiers a, b’, total, etc. a, b’, total, ete.

3 strings ‘“abed” “abed”
.. booleans - true, false true, false
- relation (rel (x :y), ...) (zy), - )

= set (setxy..) {z, ¥, :

: sequence (segxy..) (z,9, )
: list (listxy...) <z,y, - >
: subrange set (setrangem ton) ! {m,..., n}
X subrange sequence | (seqrange mton) | (m, ..., n) !
subrange list | (listrange m to n) <m,...,n> _L

% 167




AT

TABLE 8. RPL Command Types

T SV A, SR

Name —[-I—n‘pl‘l—t Form Publication Form
data definition xX== =y
prefix function definition fx== fz=y
infix function definition xfy==13 s fy=z2
write data to a file file ““name” == x file “name” = z
" read data from a file x == (file ““name’’) | z = file “name”’
b output, form 1 display x display z
b output, form 2 dis x display z
output, form $ dx dz
- output, form 4 x z
) output value of definition val x val z
C output function environment | env f env [
’? output entire environment env env
:
'I
b
:
b
b
r
»
g
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(RPL

63638 36 363 636 6 36 36 I6 366 36 36 36 36 36 I6 36 96 6 6 36 36 36 I 336 I I 330U 6 I W I I3 I I I WK

calls:

INIT_SYS_NAMES, WRITE, MAPCAR, SET_USER_ENV,
TERPRI, PRIN1, SPACES, CONS, READCMD, EXECUTE

uses free: BUILT_IN_PREFIX_OPS, INTOPS, SYSOPS, CMD,

USERDEFS, SYSTEM_ENV, PREFIX_OPNAMES, OPNAMES,
TEMPNAMES ERRORCODE, E, FILTER_ON

comments: Shell for RPL: Interpreter.
666U T I I 666 I 66 I I 6T I I I I I IE TN I 636 I I
{LAMBDA NIL '
(PROG NIL

(INIT_SYS_NAMES)

(SETQ@ FILTER_ON NIL)

(WRITE (QUDTE (Loading RPL---)))

(SETR E SYSOPS)

(SET@ ERRORCODE (RUOTE ERRORFREE))

(SETR TEMPNAMES OPNAMES)

(SET@ OPNAMES NIL)

(MAPCAR INTOPS (QUOTE EXECUTE))

(SETQ OPNAMES TEMPNAMES)

(SETQ@ PREFIX_OPNAMES

BUILT_IN_PREFIX_OPS)

(SETQ E (CONS (CONS (QUOTE SYSTEM)
(QUOTE SYSTEM)) E})

(SETR SYSTEM_ENV E)

(SETQ USERDEFS NIL)

(SET_USER_ENV)

(TERPRI)

{TERPRI)

(WRITE (QUOTE (RPL INTERPRETER ON LINE!!)))

(TERPRI)

(TERPRI)

LOOP (SETQ ERRORCODE (QUOTE ERRORFREE))

(PRIN1 (QUOTE ?>))
(SPACES 1)

(SET@ CMD (READCMD))
(TERPRI)

(EXECUTE CMD)

(GO LOOP1])




(INIT_SYS_NAMES \
IS I I A6 I3 I35 36 536 I 66 6696 0363636 363 3636 36 6963 3696 396 3 6363
called by: RPL
uses free: EMSG, SETOP, NUMOP, SPECIAL_CASES, SETS,
INTOPS, BIFTAG_INFIX, SYSOPS, PREFIX_OPNAMES,
BUILT_IN_PREFIX_OPS, OPNAMES, USERDEFS
comments: Initialization required to execute RPL.
36 096 I I IE I 0362 I I 6 II6 I 63363636 I I3 I 6636966636 969696 3 39636 3496
LLAMBDA NIL
(SETQ USERDEFS NIL)
(SETQ OPNAMES :

(BUOTE (SYSTEM done file display dis val env sup rel
set seq list setrange seqrange listrange func
empty true false filter hd tl lsec rsec op if
iter or and <> # @ 0o § red img curry uncurry

: PHI I while upsilon phi delta PI sel Z! , :
extend restrict wig cup member nomem !subset
subset = -> {- restr ;3 cl cr cap \ @at ! cat
+ - times divide /7 '= { > {(= »= andsign orsign
cart un cur unc theta epsilon size DELTA cnv
rev dom rng mem Lm Rm Mm run lun bun init term
alpha omega ALPHA OMEGA min max uset mu index
select join as sa rp rpi rsort sort unimg all
ssm not PHIaux xi)))

(SETQ@ BUILT_IN_PREFIX_OPS

(QUOTE (lsec rsec op if iter hd tl un cur unc size
theta epsilon DELTA cnv rev dom rng mem run
lun bun init term alpha omega ALPHA OMEGA min
max mu select join as sa rsort sort all ssm
curry uncurry I while upsilon phi delta PI
wig not uset)))

(SETR@ PREFIX_OPNAMES NIL)

(SET@ SYSOPS (RUOTE ((unimg closure select_all)
(hd closure Hd)
(t1l closure T1)
(filter closure filter)
(run closure run)
(# closure construction)
(size closure cardinality)
(rpi closure rel_prod_inv)
(rp closure rel_prod)
(img closure imyg)
(empty Eset)
(true true)
(false false)
(+ closure +)
(- closure -)
(times closure #*)
(divide closure /)
(/ claosure /)
({ closure <)

ORI, DOl SUNE

PR

AR,  ~ 4

-y
[

N HMTRDAMRDMNIALS LA PR o

b

"
[OR
K
2

17@




}".-.1_., NN PN A B R IR T R R Py, Wiy Nie A 2O 1A SR T Ty e )

(> closure >)

({= closure <=)

(>= closure >=)

{not closure not)

(or closure or)

(and closure and)

(orsign closure or)

(andsign closure and)

(epsilon closure elementselect)
(theta closure unitset_select)
(un closure unitset)

(cup closure union)

(cap closure intersection)

(\ closure setdif+f)

(cart closure cart)

. (subset closure subset)
(!subset closure !'subset)
(= closure =) '
(!= closure <>)

(<> closure <>)

(member closure member)
(nomem closure nomem)

(L closure %Z!)

(file closure file)

(sel closure sel)

(: closure :)

(dom closure dom)

(rng closure rng)

(cnv closure converse)
(sup closure superscript)
(rev closure reverse_array)
(#% claosure star)

($# closure isomorphism)
(as closure array_to_seq)
(sa closure seq_to_array)
(min closure min)

(max closure max)

{(cat closure concatenation)
{(cur closure curry_ext)
(unc closure uncurry_ext)
(rsort closure rsort)
(sort closure sort)

(red closure reduction)
(uset closure unique_set]

M e 2 Jne an o 2

(SETR BIFTAG_INFIX
(QUOTE (+ — ®# / ¢ > <= >»= or and union intersection
setdiff cart subset 'subset = <{> member nomem
construction %! sel : img rel_prod rel_prod_inv
filter superscript isomorphism concatenation
seq_to_array select_all reduction)))
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CSETE@ INTOPS (QUOTE (Lo ==(func (f g) (func x (f (g x]
(lun t ==((run o cnv) t))
(bun t ==((run t) and (lun t)))

. (x Rm t ==(x member (rng t)))

2 {(x Lm t ==(x member (dom t)))

; (mem t ==((dom t) cup (rng t)))
o (term t ==((rng t) \ (dom t)))
(x Mm t ==(x member (mem t)))

(init t ==({(dom t) \ (rng t)))
(t <—- p ==((p o t1) filter t))
(p —-> t ==((p o hd) filter t))
(t restr p ==((p -> t) <- p))

(t ;3 ==(t cup ((rsec member

"{{dom u) \ (dom t))) => uw)))
(alpha t ==((theta o init) t))

oy ‘ (omega t ==((theta o term) t))
- (ALPHA s ==(s <-(rsec nomem (term sl
- (OMEGA t ==((rsec nomem (init t))
: -> &)
(x cl t ==((rel (x s (alpha t)))
cup t))
[t cr x ==(t cup (rel ((omega t): x1]

- (£ @ x ==(f x))

" (x , y ==(list x y))

B [%i%! ==(func (f g) (func (x y)
(list (f x) (g vyl

(I x == »)
e (wig p ==(not o p))
™ (DELLTA x ==(list x x))
. (phi ==(lsec I %Z!%Z!))
- (delta ==(rsec Zi%Zi 1))
(f while p ==(if p -> (iter p -> )
s D))
. (PI ¥ ==(delta (rsec rp f)))
-, (upsilon ==
- (sel o (I %Zi%Z! £y
’ (t extend f ==
- (if (rsec member (dom t))
=> (lsec t sel) ;3 £))
- (s restrict f ==(((op :)
- o ((I Zi%Z! f) o DELTA)) img s))
. (x index t ==(((rsec sel x)
- : (z bar) I) img t))
Y (t @hat x ==
((hd (: bar) ((rsec @ x) o tl1))
- img t))
" (t ' x ==((rsec @ x) § t))
.- Cmu t ==(t \ (t Z! (t sup +1]
. . (p xi r ==(mu ((r sup +) restr pl)))
P [t PHIaux s ==((s sel 1) ,

((rsec Lm t) xi (s sel 21




(p PHI s ==(((s sel 1) <- p)
PHIaux s))
(ssm t ==((unc o (rsec sa 1))
({rsec sa 1) & t)))
{y all t ==((cnv t) unimg y))
[x select d ==
(rng o (rsec -> (x index dl
(x join dp ==
(C(lsec (cup o (hd (, bar) tl)) img)
o (((rsec sel 1)
(Z! bar) (rsec sel 2))
o ({cnv Zi1%Z1 I)
0o ((lsec x index)
Zi4! (lsec x index1l
dp))
(curry £ ==(func x (func y (f (x , vyl
(uncurry ¥ ==(func (x y) ((f x) y]
(SETQ SETS (QUOTE (rel set setrange seq seqrange list
listrange)))
(SETQ SPECIAL_CASES
(QUOTE (Eset Erel rel set setrange seq seqrange list
listrange op lsec rsec func if when iter
repeat reduce)))
(SETQ NUMOP (QUOTE (+ - # / £ > <= >=)))
(SETRQ SETOP (QUOTE (cart union intersection setdiff
subset !'subset)))
(SETR EMSG (QUOTE ((BAD_CMD bad command)
(UBI unbound individual)
(PARAM number of parameters in error)
(BAD_RANGE bad range variables)
(BAD_SER@ bad sequence)
(EXP_SET set, relation, sequence
or list expected)
(EXP_SEQ@ sequence expected)
(EXP_NUM numeric arguments expected)
(EXP_REL relation expected)
(UBTE unbound table element)
(EXFP_FUNC function expected)
(UDF undefined function}
(BAD_SYNTAX syntax error)
(EXP_BOOL boolean predicate expected)
(BAD_ARGS invalid arguments)
(EXP_UNITSET unit set expected)
(EXP_INFIX infix operator expected)
(EXP_PAIR elementary pair expected)
(EXP_NSET numeric set expected)
(EXP_ARRAY array expected)
(ZERO_D1V zero divisor)
(EXP_NEMPTY non—-empty set expected)
(BIF built in function or RPL keywordl)
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(SET_USER_ENV
I 36 W26 I U I 36 I 336 I I I W I U W I I I I I 3 W3 I W6 W I I 16 I 63

calls: MEMBER, WRITE, TERPRI, READ_USER_DEFS, READTERM
called by: RPL, EXIT
binds: RESP, FILENAME

Ly W

363666 I 20336366 23036 36 266 236 693036 3663 3 363 J I3 3636363636 2620003 36363633636 3690003696930 6
CLAMBDA NIL
(PROG (RESP FILENAME)
(WRITE (QUOTE (DD YOU WANT TD RESUME A PREVIOUS
RPL SESSION? <y/n>?)))
(SETQ@ RESP (READTERM))
(COND
((MEMBER RESP (QUOTE (y Y)))
(WRITE (QUOTE (INPUT FILENAME)))
(TERPRI)
(SET@ FILENAME (READTERM))
(READ_USER_DEFS FILENAME])

(EXECUTE

336 3636366 I3 I3 I I I J6 6 I I I3 T I T 636 36936363 336 36 036 336 3636 I I I ¥
args: CMD
calls: MEMBER, POSIT, LENGTH, DEF_BINDING, FILE_WRITE,

EV, DISPLAY, EXIT, LIST, CONS, ERROR_HANDLER
called by: READ_USER_DEFS, RPL
binds: X
uses free: E
comments: Command level parser.
26236 2636 62 336 3366366 362263623036 I6 I 6T 36 I 3666 T 6 I I I I3 I 3696 I I
CLAMBDA (CMD)
(PROG (X)
(SETQ X (POSIT CMD (RUOTE ==)))
(RETURN (COND.
((AND (E@ X 2)
(E@ (LENGTH CMD) 3))
(DEF_BINDING CMD))
C(AND (EQ@ X 3)
(EQ (LENGTH CMD) 4))
(COND
((ER@ (CAR CTMD) (QUOTE file))
(FILE_WRITE (EV (CADR CMD) E)
(EV (CADDDR CMD) E)))
(T (DEF_BINDING CMD1
((AND (EQ@ X 4)
(EQ@ (LENGTH CMD) 3))
({DEF_BINDING CMD))
C(E@R X @)
(COND
((AND (MEMBER (CAR CMD)
(QUOTE (display dis d env val)})
(ERQ (LENGTH CMD) 2))
(DISPLAY CMD))
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((EQ (CAR CMD) (QUOTE done)) (EXIT))
L(ER@ (LENGTH CMD) 1)
(COND

((EQ@ (CAR CMD) (RUOTE env))
" (DISPLAY (LIST (RUOTE env) NIL)))
(T (DISPLAY (CONS (GUOTE d) CMD1

(T (ERROR_HANDLER (RUOTE BAD_CMD) CMD1

(T (ERROR_HANDLER (RUOTE BAD_CMD) CMD1)

s 8 A

(DEF_BINDING
296963316 363636 363636 266 26363630 36 36 J060 363 36363636 36 9 3036 36 3 9630 303636 363630 3036 3 3 36 363 36 3646 3696 96 6 96 96 6
args: DEXP
calls: MEMB, ERROR_HANDLER, LDIFFERENCE, SPACES,
WRITE, LENGTH, LOOKUP, CONS, LIST, EV, LAST,
SASSOC, TERPRI, RPLACD, READTERM
called by: EXECUTE
binds: NAME, NEWNAME, EXP, RESP
uses free: ERRORCDDE, OPNAMES, USERDEFS, PREFIX_OPNAMES, E
comments: Makes all bindings to the environment; includes
machanism to implement simple recursion.
36636 9626963669636 6 63363629636 I 36 I 963636 366363 633 6636336 6396 36 23 3636 36 696 36 3 3 6 36
[LAMBDA (DEXP)
(PROG (NAME EXF NEWNAME RESP)
N CCOND
j ((ER@ (LENGTH DEXP) 3S) (SETR NAME (CADR DEXP)))
. (T (SETQ@ NAME (CAR DEXP1
LCOND
((MEMB NAME OPNAMES)
(WRITE (QUDTE (SYSTEM DEFINED FUNCTION OR
- KEYWORD, OVERWRITE? <y/nx*)))
- (SETQ@ RESP (READTERM)) (TERPRI)
: (COND
(INOT (MEMB RESP (RQUOTE (Y yJ
(WRITE (QUOTE (ABORT AT USER'S RERUEST)))
) (TERPRI) (TERPRI) (GO EXIT]
- CLCOND
((EQ (LOOKUP NAME E) NIL)
;e (SETQ@ NEWNAME NIL)
5 (SETE E (CONS (CONS NAME NIL) E)))
: (T (SETQ@ NEWNAME T1
LCOND
((ER (LENGTH DEXP) 4)
b (SETQ EXP (LIST (QUOTE clasure)
-, ' (CADR DEXP)
(CADDDR DEXP) E)))
((ER (LENGTH DEXF) 35)
(SETRQ EXP (LIST (QUOTE closure)
(LIST (CAR DEXP)
(CADDR DEXP))
(CADDDR (CDR DEXP)) E)))
(T (SETQ@ EXP (EV (CAR (LAST DEXP)) EI]

-‘ -‘
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BIND_NAME
(RETURN (COND
[ (E@ ERRORCODE (RUOTE ERRORFREE))
(COND
((EQ@ NEWNAME T)
CCOND
((AND (MEMB NAME PREFIX_OPNAMES)
(E@ (LENGTH DEXP) 5))
(LDIFFERENCE PREFIX_OPNAMES
(LIST NAME)))
((AND (NOT (MEMB NAME PREFIX_OPNAMES))
(NOT (E@ (LENGTH DEXP) S)))
(SETR PREFIX_OPNAMES
(CONS NAME PREFIX_OPNAMES]
(COND
((NOT (MEMB NAME OPNAMES))
(RPLACD (SASSOC NAME E) EXP)
(RPLACD (SASSOC NAME USERDEFS) DEXP)
(SPACES 1)
(WRITE (LIST NAME (QUOTE Redefined)))
(TERPRI) (TERPRI))
(T (SETQ@ USERDEFS
(CONS (CONS NAME DEXP) USERDEFS))
LCOND
((AND (LISTP EXP) (EQ@ (CAR EXP)
(QUOTE closure)))
(COND
((OR (EQ@ (LENGTH DEXP) 4)
(EQ (LENGTH DEXP) 3))
(SETQ@ PREFIX_OPNAMES
i (CONS NAME PREFIX_OPNAMES]

(RPLACD (SASSOC NAME E) EXPJ
(T (WRITE (QUOTE (BINDING CANNOT BE MADE) )}
(TERPRI) (TERPRI)
(COND

((NOT (EQ NEWNAME T)) (SETQ E (CDR EJ

EXITI)
(DISPLAY
T T E Ry Yy s
-, args: CMD '
. calls: MEMBER, LITATOM, PRINT, SHOW_ATOM, TERFRI,
. DISPLAY_ENV, ERROR_HANDLER, LOOKUP, EV, TYPE,
LENGTH
. called by: EXECUTE
. binds: KEY, EXP, EVEXP
- uses free: ERRORCODE, E, USERDEFS

comments: Performs all output to the screen to include
the "val" and "env" commands. _
303 6 26 I 63 I I 6T I 6T 66T I I I IEIE I I IR
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C[LAMBDA
(PROG

(CMD)

(KEY EXP EVEXP) i
(SETR KEY (CAR CMD))
(SETQ EXP (CADR CMD))

CCOND

[ (MEMBER KEY (RUOTE (d dis display)})

(COND

C(LITATOM EXP)

(SETQ@ EVEXF (LOOKUP EXP USERDEFS))
(COND

( (NULL EVEXP)
(PRINT (QUOTE Undefined)))
(T (PRINT EVEXP1

(T (SETQ EVEXP (EV EXP E))

(T [COND

(COND

( (NULL EVEXP)
(PRINT (QUOTE Undefined)))
(T (SHOW_ATOM EVEXP)
(TERPRI]

((NOT (NULL EXP))

(SETR EVEXP (EV EXP E1
(COND

( (ER ERRORCODE (RUOTE ERRORFREE)})

(TERPRIY)

(COND

L (AND (EQ KEY (RUOTE val})
(LITATOM (CADR CMD)))
(COND
{ {NULL EVEXF)
(PRINT (QUOTE Undefined)))
(T (SHOW_ATOM EVEXP)
(TERPRI]
((AND (E@ KEY (QUOTE env))
{NULL EXF))
(DISPLAY_ENV EXP))
((AND (EQ KEY (QUOTE env))
(LITATOM (CADR CMD))
(EQ (TYPE EVEXF)
(QUOTE closure))
(EQ@ (LENGTH EVEXF) 4))
(DISPLAY_ENV EXP))
((EQ@ KEY (QUOTE env))
(ERROR_HANDLER
(QUOTE EXP_FUNC) CMD))
(T (ERROR_HANDLER
(QUOTE BAD_SYNTAX) CMD1
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(ERROR_HANDLER
9636363636336 2363636 9633636 663 I 36 I I I T I I6 66666 I 36 36 36396 3 36 696 3 36303 3
args: CODE, EXP
calls: WRITE, TERPRI, FRINT_LIST, LOOKUP
called by: DEF_BINDING, DISPLAY, EVRANGE, EVSER, RPAPPLY,
ARRAY_REDUCTION, MIN_SET, RPL_REPEAT, EXECUTE,
EV, EV_SPECIAL_CASES, INFIXOP, PREFIXOP,
BIF_APPLY, ARRAY_CONCATENATION, HEAD, MAX_SET,
MEM, SEL, SUPERSCRIPT, TAIL, BINARY_LIST,
COERCE_TO_REL
uses free: EMSG, FILTER_ON, ERRORCODE
comments: Based on the CODE given, displays the appro-
piate error message and the probable cause of
error, EXP.
3636623363 36326363663 I T I I3 9636 6 3 6666 I I I I 2 66636 6 I I 3636 36 I 6 336 3 3 3
TLAMBDA (CODE EXP)
(PROG NIL
(COND
((E@ FILTER_ON T)
(GO EXIT)))
(WRITE (RUOTE (#%¥#% ERROR *%%*)))
(WRITE (LOOKUP CODE EMSG))
(TERPRI)
(WRITE (QUOTE (Cause of error ==3)))
(PRINT_LIST EXP)
{TERPRI)
EXIT(SETE ERRORCODE CODE) NIL1)

(EXIT

J36 3303 J I 3 I I I I 6T 663 I I I I I I I I T I I 6 666 I I I I I I I I
calls: MEMBER, WRITE, TERPRI, WRITE_USER_DEFS,

READTERM, SET_USER_ENV
called by: EXECUTE
uses free: BUILT_IN_PREFIX_OPS, SYSTEM_ENV, USERDEFS, i
PREFIX_OPNAMES, E, FILENAME, RESF
comments: Used to exit the RPL environment or begin
another session.
6366 I IEI6I I 3633636 I IEIE I I T I I I I I IE I 6 I I I I I I3 I I I
[LAMBDA NIL
(WRITE (QUOTE (DO YOU WANT TO SAVE ENVIRONMENT FOR
FUTURE USE? <y/n?>)))
(SETR@ RESF (READTERM))
(COND
((MEMBER RESF (QUOTE (y Y)))
(WRITE (RUOTE (INPUT FILENAME)))
(TERPRID)
(SETQ FILENAME (READTERM))
(WRITE_USER_DEFS FILENAME)))
(TERPRI)
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(WRITE (QUOTE (EXIT TO LISP - PRESS ~D)))

(TERPRI)

(WRITE !QUGTE\jEXIT'TD.UNIX - PRESS ~C)))

(TERPRI)

(WRITE (QUAGTE (CONTINUE RPL - PRESS <RETURN2X)))

(TERPRI)

(READTERM)

(TERPRI)

(WRITE (QUOTE (DO YOU WANT TO CLEAR CURRENT

ENVIRONMENT? <y/n?>)))

(SETQ RESF (READTERM))

(TERPRI)
(COND

({(MEMBER RESP (RQUOTE: (y Y)))

(SETR
. (SETQ
(SETR

E SYSTEM_ENV)
USERDEFS NIL)
PREFIX_OPNAMES BUILT_IN_PREFIX_OPS)))

(SET_USER_ENV1)

(EV

636 I 36363636 36 I 36 I I 6 I3 I HE I I I I I I I I I I I I I I I I I I I

args:
calls:

called by:

binds:
uses free:
comments:

EXP, E

NUMBERP, STRINGP, ATOM, MEMBER, LOOKUP,
ERROR_HANDLER, EV_SPECIAL_CASES, LENGTH,
FPREFIXOP, INFIXOP

EXECUTE, DEF_BINDING, DISPLAY, MAFEV,
EV_SPECIAL_CASES, EVSER, INFIXOP, PREFIXOP,
RPAPPLY, ARRAY_REDUCTION, RPL_REPEAT,

MAKE _UNIGUE

X, TAG

SPECIAL _CASES

Given an expression, EXP, and its environment,
E, this function directs its evaluation.

FE I I I I I IIEIE I I 66 336 396 I3 I I I I I 63636 36 36 36366 3633696 36
LLAMBDA (EXP E)

(PROG (X

TABG)

(RETURN (COND

ANGS GHCR CRL Tt Sr SUTE
e ) M . e S

((NUMBERF EXP) EXP)
((STRINGP EXP) EXP)
((ATOM EXP)
(SETR X (LOOKUP EXP E))
(COND
((E@ X NIL)
(ERROR_HANDLER
(RUOTE UBI) EXP))
(T X))
(T (SETR TAG (CAR EXP))
(COND
((MEMBER TAG SPECIAL_CASES)
(EV_SPECIAL_CASES EXP E))
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(EV_SPECIAL_CASES
FE3EI036 96 I I I 636 36 30 I I I I I I I636 36 I IE I IE I IE I I I I I 6636 3 369 393 3

args:
calls:

uses free:
comments:

EXP, E
MEMBER, ALL_PAIRS, ATOM, CONS, MAKE_UNIQUE,
ERROR_HANDLER, LENGTH, EV, EVRANGE, EVSER,
LIST, TYPE, RPL_REPEAT, ARRAY_REDUCTION
called by: EV
binds:

((ER (LENGTH EXP) 2)
(PREFIXOFP EXP E))
C(EQR (LENGTH EXP) 3)
(COND
({(LISTP (CADR EXP))
(EV_SPECIAL_CASES EXP E))
(T (INFIXOP EXP EI
(T (ERROR_HANDLER
(QUOTE PARAM) EXPI1)

TAG, LOW, HIGH, F

PREFIX_OPNAMES, ERRORCODE, SETS
Handles all operators with special syntax.

I3 I I I 6 I I 96 I I I 36 I I I I 96 3636 I I I W I I I 16636 I W I I I I I NI I
[LAMBDA (EXP E)
(PROG (TAG LOW HIGH F)
(SET@ TAG (CAR EXP))
(RETURN (COND
[ (MEMBER TAG SETS)
(COND

)

o a1t

T A T ST S e SR S Y
- ,\“'._-_ _'-..- ey q" ,cv\-('.'u Ny 5.\ *.\. J‘_.."‘( -

L(EQ@ TAG (QUOTE set))
(SETQ EXP (CONS (QUOTE Eset)
(MAKE_UNIQUE
(CDR EXP)
NIL E3]
((EQ TAG (QUOTE rel))
(SETR EXP (CONS (QUOTE Erel)
(MAKE_UNIQUE
(CDR EXP)
NIL E)))
(COND
((NOT (ALL_PAIRS (CDR EXP)))
(ERROR_HANDLER
(QUOTE EXP_REL) EXP))
(T EXP)))
[{(EQ TAG (RUOTE setrange))
(COND
L(AND (EQ (LENGTH EXP) 4)
(EQ (CADDR EXP)
(QUOTE to)))
(SETR LOW (EV (CADR EXP) E))
(SETR@ HIGH (EV (CADDDR EXP) E))
(COND
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[ (EB ERRORCODE
(QUOTE ERRDRFREE))
(SETQ@ EXP
(CONS (QUOTE Eset)
(EVRANGE LOW HIGH]
(T (RQUOTE impossiblel
(T (ERROR_HANDLER
(QUOTE BAD_RANGE) EXP1]
[ (MEMBER TAG (QUOTE (seq seqrange)))
(SETQ EXP (CONS (QUOTE Erel)
(EVSER EXP E1
[ (MEMBER TAG (QUOTE (list listrange)))
(SETQ EXP (CONS (QUOTE Erel)
(EVSEQ EXP E1
: (T (RQUOTE impossiblel
‘ ({(MEMBER TAG (QUOTE (Eset Erel))) EXP)
((EQ TAG (QUOTE func))
(LIST (QUOTE closure)
(CADR EXP)
(CADDR EXP) E))
C(AND (E@ TAG (RUOTE ap))
(EQ (LENGTH EXP) 2))
(SETQ F (EV (CADR EXP) E))
{COND _
(COR (NOT (EQ (TYPE F)
. (QUOTE closure)))
(AND (E@ (LENGTH F) 2)
({MEMBER (CADR EXP)
: PREFIX_OPNAMES))
(AND (EQ (LENGTH F) 4)
(ATOM (CADR F1
(ERROR_HANDLER
(QUOTE EXP_INFIX)
(CADR EXP)))
(T (LIST (RUOTE closure)
(QUOTE 7?x)
(LIST (LIST (RUOTE ?x)
(GUOTE sel) 1)
(CADR EXP)
(LIST (QUOTE 7?x)
(QUOTE sel) 2))

El
((AND (EQ TAG (QUOTE lsec))
(EQ (LENGTH EXP) 3))
(LIST (QUOTE closure)
(QUOTE 7x)
(LIST (CADR EXP)
(CADDR EXP)
(QUOTE ?x)) E))
((AND (ER@ TAG (QUOTE rsec)Y
(EQ (LENGTH EXP) 3))
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(LIST (QUOTE closure)
(QUOTE ?x) )
(LIST (QUOTE 7?x)
({CADR EXP)
(CADDR EXP)) E))
((AND (EQ TAG (QUOTE if))
(EQ@ (LENGTH EXP) &)
(EQ (CADDR EXP) (QUOTE ->))
(ER (CADDDR (CDR EXP)) (QUOTE 3)))
(LIST (QUOTE closure)
(QUOTE 7?x) .
(LIST (QUOTE when)
(LIST (CADR EXP)
(QUOTE 7?x))
(QUOTE do)
(LIST (CADDDR EXP)
(QUOTE 7?%))
(QUOTE elsedo)
(LIST (CADDDR (CDDR EXP))
(RQUOTE 7?x))) E))
[(ER TAG (QUOTE when))
(COND
- ((EQ@ (EV (CADR EXP) E)
. (QUOTE true))
- (EV (CADDDR EXP) E))
- " ((EQ@ (EV (CADR EXP) E)
(. (QUOTE false))
(EV (CADDDR (CDDR EXP)) E))
(T (ERROR_HANDLER (QUOTE EXFP_BOOL)
N (LIST (CADR EXP) (QUOTE in) EXF1
. ((AND (EQ} TAG (QUOTE iter))
(EQ@ (LENGTH EXP) 4)
= (EQ (CADDR EXP) (QUOTE ->)))
(LIST (QUOTE closure)
- (QUOTE 7x)
(LIST (QUOTE repeat)
(CADDDR EXP)
(QUOTE until_not)
(CADR EXP) E))
((ER TAG (QUOTE repeat))
(RPL_REPEAT EXP E))
((AND (LISTP (CADR EXP))
N (EQ (LENGTH (CADR EXP)) 2)
: - (EQ (CADADR EXP) (QUOTE bar)))

¥ - -‘\;‘AI‘! [ ]
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o (LIST (QUOTE closure)
- (QUOTE 7?x)
(LIST (LIST (CAR EXP)
(QUOTE 7x))
(CAADR EXP)
(LIST (CADDR EXP)
(QUOTE ?x))) E))
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((ER TAG (RUOTE reduce))
(ARRAY_REDUCTION EXP E))
(T (ERROR_HANDLER
(QUOTE BAD_SYNTAX) EXPI1)

(MAPEV
F69630 363636366 36363663 3636 36 36636 2 36 96 03663336 630633336 3600 36 30 36 363636336 36 36362636 3 36 3046 34 3 3¢
args: L, E
calls: MAPCAR, EV
called by: EVSER
binds: X

comments: Given the list, L, and its environment, E, it
returns a list of evaluated elements..
9636366333636 39636 26 9696 236 000966 3636 H 33 3636 3636 33636 36 3636 3 33636 3636336 36636 36 3636 3636 363034 3¢
[LAMBDA (L E)
- (MAPCAR L (QUOTE (LAMBDA (X) (EV X EI)

(EVRANGE
26363363630 33036 2 963636 3036 363 336 20336 36363636 I 363630 269 36 2 23633 362633636 3 363636 363696 3 36 36 363696 366 06
args: LOW, HIGH
calls: NUMBERP, LEG, ERROR_HANDLER, LIST, CONS,
DIFFERENCE
called by: EV_SPECIAL_CASES, EVSEQ
binds: L

comments: Enumerates the range from LOW to HIGH and
returns the list of numbers.
3363636 3636 I I 263 3636 I 33 I 36 3636 63 I3 36 300663 I I 30 636U 636 36390 33 36 I 666 2 36 36 I3 3 336
- [LAMBDA (LOW HIGH)
(PROG (L)
(SETE@ L NIL)
(COND
( (AND (NUMBERP LOW)
(NUMBERP HIGH)
(LE@ LOW HIGH))
(GO MAKE_LIST))
(T (ERROR_HANDLER (RUOTE BAD_RANGE)
(LIST LOW HIGH))
(GO EXITY)»)
MAKE_LIST
(COND
{(E@ LOW HIGH) (SET® L (CONS LOW L)))
(T (SETR L (CONS HIGH L))
(SETR@ HIGH (DIFFERENCE HIGH 1))
(60 MAKE_LIST)))
EXIT(RETURN LJ)
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(EVSEQ
363636363366 32 062336 366363662 36 36 I I 3 36363 23 03633 3636363363 30 36369 36 36 3696 3636 36
args: sa@, E
calls: MEMBER, GREATERF, ERROR_HANDLER, LENGTH, MAPEV,
EV, EVRANGE, SE@_TO_REL, LIST_TO_REL
called by: EV_SPECIAL_CASES
binds: TAG, S, LOW, HIGH
uses free: ERRORCODE
comments: Takes the tagged sequence or sequence range,
s@, its environment, E, and returns a tagged
. evaluated relation.
2636306323636 36 3636 3636623 3666 2336366 I3 3 3663 36 I3 3363663 3 32696 3363 3663336 366 I %
CLAMBDA (58 E)
(PROG (TAG S HIGH LOW) -
(SETE TAG (CAR S@))
. (SETR@ S (CDR S@))
LCOND
({AND (MEMBER TAG (RUOTE (seq list)))
(GREATERP (LENGTH S) 1))
(SETR S (MAPEV S E))
(G0 COERCE})
(T (COND
((AND (ER (LENGTH S) 3)
(E@ (CADR S) (QUOTE to))).
(SETQR LOW (EV (CAR S) E))
(SET2 HIGH (EV (CADDR S) E))
(COND
((EQ ERRORCODE (QUOTE ERRORFREE))
(SETR S (EVRANGE LOW HIGH))
(60 COERCE))
(T NIL))Y)
(T (ERRDR_HANDLER
{QUOTE BAD_SER) S1
COERCE
(RETURN (COND
[ (ERQ ERRORCODE (QUOTE ERRORFREE))
(COND
((MEMBER TAG (QUOTE (seq segrange)))
(SEQ_TO_REL S))
(T (LIST_TO_REL S1
(T NILD

184




i 2" s s ss

PrrP

Y ot X Xl

LR |

(INFIXOP
I T I I IE I I 6T 36 36663 I I I I I I3 IE16 6T 6363630036 3606396 3369 9363696 3636 3656

args:
calls:
called by:
binds:
uses free:
comments:

IEXP, ENV-1

EV, TYPE, LIST, CONS, RPAPPLY, ERROR_HANDLER
EV

L, OP, R, A

ERRORCODE

Performs pre-processing for evaluation. The
arguments, L and R, and operator, OP, are
extracted from IEXP and evaluated in ENV-1, the
environment. The argument list is created and
is sent with the operator to be evaluated.

3636363636 36 36 363636 36-36 36 36363036390 3696 363 36 36 30 30 90 3 96 I I 036 36 36 36-36 36 36 3636363639696 96 9696 636363 6 36 6
CLAMBDA (IEXP ENV-I)
(PROG (L OP R A)
(SET@ L (EV (CAR IEXP) ENV-I))
(SET@ OFP (EV (CADR IEXP) ENV-1))
(SET@ R (EV (CADDR IEXP) ENV-I))
(RETURN (COND

(PREFIXOP
69696363636 309 I I I I I I IEIE T I I6IE 6 636 66 3663636 6363696 I0I 90 I3 I I I 363 I 6363636 63636

args:
calls:
called by:
binds:
uses free:
comments:

({(ERQ ERRORCODE (QUOTE ERRORFREE))
(COND
((E@ (TYPE OP) (QUOTE closure))
(SETQ A (LIST (QUOTE Erel)
(CONS 1 L)
(CONS 2 R)))
(RPAPPLY OF A))
(T (ERROR_HANDLER (BUOTE EXP_FUNC)
(CADR IEXP1)

PEXP, ENV-P

EV, TYPE, RPAPPLY, ERROR_HANDLER

EV

OFP, ARG

ERRORCODE

Same as INFIXOP, except for prefix operators.

3969 I I I TE I I IE T I6 I IE I I I 66666 I I I I I I I T2 I I I 66T
LLAMBDA (PEXFP ENV-P)
(PROG (OF ARG)
(SETR OP (EV (CAR PEXP) ENV-P))
(SET® ARG (EV (CADR PEXP) ENV-FP))
(RETURN (COND

o B b0 bt

-
L P
2

N

((ER ERRORCODE (QUOTE ERRORFREE))
(COND - »
({(EQ (TYPE OP) (RQUOTE closure))
(RPAPPLY OP ARG))
(T (ERROR_HANDLER

(QUOTE EXP_FUNC) (CAR PEXP1)

185




P I 5 "B T e e AAe —iusa v, de i i ) LML N At Kot S uie e AR e ety A SOl e B s st At e B Jhiui it ol S v - 2ad
A A T et e A et -" R R A AL TR R B St S e AT AC I A R
| ]

(RPAPPLY

I IEIE I I I 66 I I6I6 66 I 63 I I3 3 636 3363636336 3 3696 363 36 36 363 36 -3 36 3
args: F, A (Evaluated form)
calls: ATOM, ERROR_HANDLER, LENGTH, BIF_APPLY, CONS,

DIFFERENCE, BINDARGS, APPEND, LIST, EV
called by: INFIXOP, PREFIXOP, ARRAY_REDUCTION, FILTER,
MAPIMG, MAPRP, MAPRP_INV, MAP_ISOMORPHISM,
RPL_REPEAT
binds: FORMALS, EE, LE
uses free: ERRORCODE
comments: Determines if F is a LISP defined function or
intensionally defined function. Evaluates the
latter with the argument, A, and sends the
former with argument to BIF_APPLY.
29I 2 I 66T I I6I6 I I3 3636 I 363666 I I 6369936 3636 I 2636 3636 36 36 36 3636 36 3636363 36 36 3636 96 36
LLAMBDA (F A)
(PROG (FORMALS LE EE)
(RETURN (COND
((EQ@ (LENGTH F) 2)
(BIF_APFPLY F A))
(T (SETQR FORMALS (CADR F))
CCOND
v, L (ATOM FORMALS) '
b (SETQ@ EE (CONS (CONS FORMALS A)
B (CADDDR F1

(T (COND
[(ER (DIFFERENCE (LENGTH A) 1)
(LENGTH FORMALS))
(SETR LE (BINDARGS FORMALS A))
(SET@ EE (APFEND LE (CADDDR F1
(T (ERROR_HANDLER (QUOTE FPARAM)
(LIST (QUOTE {(number of
parameters in errorl
(COND
((EQ ERRORCODE (QUOTE ERRORFREE))
(EV (CADDR F) EE])

(BINDARGS

I 26360 I 2 33636 26 I 663 I I I I I I I I 6 I I I I I I I I I NN
args: F, A
calls: MAP2CAR

called by: RPAPPLY
F I 36663 036 I3 36636 I I I 3626 3 I 36 I IR NN

LLAMBDA (F A)
(MAP2CAR F (CDR A)
(QUOTE (LAMBDA (X Y) (CONS X (CDR Y1)
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(BIF_APPLY
R R R X Y S S A R SRS AR R B
args: F, ARG
‘calls: MEMB, NUMBERP, ZEROP, ATOM, NUMERIC_SET,
COERCE_TO_REL, TYPE, LENGTH, ERROR_HANDLER,
SEL, LIST, PLUS, DIFFERENCE, TIMES, QUOTIENT,
TF, GREATERP, LER, GER, CONS, INTERSECTION,
UNION, LDIFFERENCE, CART_PROD, DO_SUBSET,
RERUAL, RNOT, MEM, RELATIVE_PRODUCT,
CONSTRUCTION, ARRAY_CONCATENATION,
SE@_TO_ARRAY, SELECT_ALL, MAPRP, FORM_PAIR,
MAPIMG, MAPRP__INV, MAP_ISOMORPHISM, FILTER,
SUPERSCRIPT, FILE_READ, CONVERSE, DOMAIN,
RANGE, MAKE_UNIQUE, REVERSE_ARRAY,
ARRAY_TO_SER, CURRY_EXT, UNCURRY_EXT, HEAD,
TAIL, MIN_SET, MAX_SET, SEQ_TO_REL, SORT,
LIST_TO_REL, LESSP
called by: RPAPPLY
binds: orP, Ly, R
uses free: ENV-P, PEXP, ERRORCODE, SETOP, IEXP, NUMOP,
ENV-I, BIFTAG_INFIX
comments: Evaluates all built-in LISP defined operators.
3636936 6396 363636 36 30 36 3696 36 2 336 36 3 369 366 I I 3 63 36 336 I 6666 IR ‘
[LAMBDA (F ARG)
(PROG (L R OP)
(SETR OP (CADR F))
(RETURN (COND
L (MEMB OF BIFTAG_INFIX)
(COND
((AND (NOT (EQ (TYPE ARG)
(QUOTE Erel)))
(NOT (ER (LENGTH ARG) 3)))
(ERROR_HANDLER
(QUOTE BAD_ARGS) ARG))
(T (SETQ L (SEL ARG 1))
. (SET@ R (SEL. ARG 2))
Y (COND

[(E@ OFP (QUOTE reduction))
. (COND
- ((EQ (TYPE L)
3 (QUOTE claosure))
- (LIST (QUOTE closure)
" (QUOTE 7A)
- (LIST (QUOTE r-educe)
- (QUOTE 7&)
(QUOTE by)
L
(QUOTE from)
R) ENV-I))
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(T (ERROR_HANDLER
(QUOTE EXP_FUNC)
(CAR ARG1]
L (MEMB OP NUMOP)
(COND
L (AND (NUMBERP L)
(NUMBERP R))
(COND
((ER OF (QUOTE +))
(PLUS L R))
((ER OP (RUOTE -))
(DIFFERENCE L R))
((EQ@ OF (QUOTE %))
(TIMES L R))
C(ER OP (QUOTE /7))
(COND
((ZEROF R)
(ERROR_HANDLER
(QUOTE ZERO_DIV)
(CADDR IEXP)))
(T (QUOTIENT L R1J
({(EQ OF (QUOTE <))
(TF (LESSP L R)))
({(EG OF (QUOTE >))
(TF (BREATERP L R)))
((EG OP (QUOTE <=))
(TF (LER L R)))
((EQ@ QP (QUOTE >=))
(TF (GEQ L R)))
(T (QUOTE impossiblel
(T (ERROR_HANDLER
(QUOTE EXP_NUM)
(LIST (CAR IEXP)
(QUOTE or)
(CADDR IEXF1]
C(EQ@ OFP (RUOTE ar))
(COND
((OR (EQ@ L (QUOTE true))
(EQ@ R (QUOTE true)))
(QUOTE true))
(T (QUOTE falsel
[(E@ OF (QUOTE and))
(COND
({(AND (EQ@ L (QUOTE true))
(EQ@ R (QUOTE true)))
(QUAOTE true))
(T (RUOTE falsel
L (MEMB OF SETOP)
(COND
CLAND (MEMB (TYPE L)
(QUOTE (Eset Erel)))
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(MEMB (TYPE R)
(QUOTE (Eset Erell

(COND
L (EQ OFP (QUOTE union))
(COND
[(OR (EQ@ (CAR L)
(QUOTE Eset))
(EQ (CAR R)
(QUOTE Eset)))
(CONS (QUOTE Eset)
(UNION (CDR L)
(CDR R1
(T (CONS (QUOTE Erel)
(UNION (CDR L)
(CDR R3]
[(EQ OP (QUOTE intersection))
(COND
C(OR (ER (CAR L) ;
(QUOTE Erel))
(EQ@ (CAR R)
(QUOTE Erel)})
(CONS (QUOTE Erel)
(INTERSECTION (CDR L)
(CDR R1
(T (CONS (RQUOTE Eset)
(INTERSECTION (CDR L)
(CDR R1
L(EQ OP (QUOTE setdiff))

- (COND I
. [(ER (CAR L)
(QUOTE Eset))
(CONS (QUOTE Eset)
(LDIFFERENCE (CDR L) |
. ' (CDR R1
- (T (CONS (QUOTE Erel) |
. (LDIFFERENCE (CDR L) |
(CDR R1 .
- [(EQ@ OP (QUOTE cart)) !
(CONS (QUOTE Erel) j
(CART_PROD !
(CDR L)
(CDR R1
[ (EQ OP (QUOTE 'subset))
(COND }
((BREATERP (LENGTH L)
(LENGTH R))
(QUOTE false))
(T (DO_SUBSET
. : (CDR L)
N (CDR R1




CL(EQ@ OP (RQUOTE subset))
(COND
((GEQ (LENGTH L)
(LENGTH R))
(QUOTE false))
(T (DO_SUBSET
(CDR L)
(CDR R1
(T (QUOTE impaossiblel
(T (ERRDR_HANDLER
(RQUOTE EXP_SET)
(LIST (CAR IEXP)
(QUOTE or)
(CADDR IEXP]
((EQ@ OF (RUATE =))
(REQUAL. L R ENV-I))
((EG@ OP (QUOTE <>)}
(RNOT (REQUAL L R ENV-I)))
((EQ OP (BQUOTE member))
(MEM L R))
((EQ OF (RUOTE nomem))
(RNOT (MEM L R)))
L (MEMB OP
(QUOTE (%! construction
concatenation)))
(COERCE_TO_REL L)
(COERCE_TO_REL R)
(COND
({(E@ ERRORCODE (QUOTE ERRORFREE))
(COND
C(EQ OF (QUOTE %i))
(CONS (QUOTE Erel)
(RELATIVE_PRODUCT
(CDR L)
(CDR R1]
((EQ@ OFP (QUOTE construction))
(CONSTRUCTION L R))
((EQ OP (QUOTE concatenation))
(ARRAY_CONCATENATION
L R]
[ (MEMB OF (QUOTE (sel seq_to_array
) select_all rel_prod)))
(COERCE_TO_REL L)
(COND

((EQ@ ERRORCODE (QUOTE ERRORFREE))
(COND
((EQ OP (QUOTE sel))
(SEL L R))
((E@ OF (RQUOTE seq_to_array))
(SEQ_TO_ARRAY L R))




((ER@ OF (QUOTE select_all))
(SELECT_ALL R (CDR L)))
((EQ OP (QUOTE rel_prod))
(COND
[(ER@ (TYPE R)
(QUOTE closure))
(CONS (QUOTE Erel)
(MAPRP R (CDR L]
(T (ERROR_HANDLER
(QUOTE EXP_FUNC) R1
((E@ OP (QUOTE :))
(FORM_PAIR L R))
[(EQ@ OF (QUOTE img))
(COND
(CAND (E@ (TYPE L)
' (QUOTE closure))
(MEMB (TYPE R)
(QUOTE (Eset Erell
(CONS (QUOTE Eset)
(MAPIMG L (CDR R)
ENV-1)))
(T (COND
((ER (TYPE L)
(QUOTE closure!})
(ERROR_HANDLER
(QUOTE EXP_SET)
(CADDR IEXP)))
(T (ERROR_HANDLER
(QUOTE EXP_FUNC)
(CAR IEXP]
[ (MEMB OFP (QUOTE (rel_prod_inv
i somaorphism)}))
(COERCE_TO_REL R)
(COND
L(AND (E@ (TYPE L)
(QUOTE closure))
(EQ@ ERRORCODE
(QUOTE ERRORFREE)))
(COND
[(ER OF (QUOTE rel_prod_inv))
(CONS (QUOTE Erel)
(MAFPRP_INV L
(CDR R1
((EQ@ OP (RUOTE isomorphism))
(CONS (QUOTE Erel)
(MAF_ISOMORPHISM
L (CDR R1]
(T (COND
((NOT (EE@ (TYPE L)
(QUOTE closure)))
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b . . (ERROR_HANDLER
K (QUOTE EXP_FUNC) L1
; [(EQ OP (QUOTE filter))
(COND
(CAND (E@ (TYPE L)
(QUOTE closure))
(MEMB (TYFE R)
v (QUOTE (Eset Erell
(CONS (CAR R)
(FILTER L (CDR R)
ENV-1)))
{T (COND
((E@ (TYPE L)
) (QUOTE clasure))
: . (ERROR_HANDLER
‘ (QUOTE EXP_SET)
(CADDR 1EXP)))
(T (ERROR_HANDLER
(QUOTE EXP_BOOL)
(CAR IEXP]
((EQ OP (QUOTE superscript))
(SUPERSCRIPT L R1]
(T (COND
((E@ OP (QUOTE not))
(RNOT ARG))
. ((EQ@ OP (QUOQTE file))
- (FILE_READ ARG))
i [(E@ OP (QUOTE unitset))

- (COND

x (OR (ATOM ARG) (STRINGP ARG)
‘ (LIST (QUOTE Eset) ARG))

v (T (COND

- ((MEMB (CAR ARG)

(QUOTE (Eset Erel closure))) 4
(LIST (QUOTE Eset) ARG))
(T (LIST (QUOTE Erel) ARG]
[ (MEMB OP (QUOTE (unitset_select
elementselect)))
(COND
L (MEMB (TYFE ARG)
(QUOTE (Eset Erel))})

2 (COND

S [(EQ OP (QUOTE unitset_select))

: (COND _

3 ((ERQ (LENGTH (CDR ARG))
1)

. (CADR ARG))

N (T (ERROR_HANDLER

- (QUDTE EXP_UNITSET)

. (CADR PEXP]
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((EQ OP (QUOTE elementselect))
(COND
((NULL (CDR ARG))-
(ERROR_HANDLER
(QUOTE EXP_NEMPTY)
(CADR PEXP)))
(T (CADR ARG1
(T (ERROR_HANDLER
(QUOTE EXP_SET)
(CADR' PEXP1]
f(EQ OP (QUOTE cardinality))
(COND
((MEMB (TYPE ARG) .
(QUOTE (Eset Erel)))
(LENGTH (CDR ARG)))
(T (ERROR_HANDLER
(QUOTE EXP_SET)
(CADR -PEXP]

L (MEMB OF (QUOTE (converse rng dom
array_to_seq run
reverse_array
curry_ext
uncurry_axt)))

(COERCE_TO_REL ARG)
(COND
((EQ@ ERRORCODE (QUOTE ERRORFREE))
(COND ,
((EQ OP (BUOTE converse))
(CONVERSE ARG))
((EQ OF (QUOTE dom))
(DOMAIN ARG))
((EQ OP (RUOTE rng))
(RANGE ARG))
C(EQ@ OF (QUOTE run))
(COND
(CEQ [LENGTH (MAKE_UNIQUE
({CDR (RANGE ARG)
NIL ENV-P]
(LENGTH (CDR (RANGE ARG]
(QUOTE true))
(T (QUOTE falsel
((EQ@ OP (QUOTE reverse_array))
(REVERSE_ARRAY ARG))
((ER OFP (QUOTE array_to_seq))
(ARRAY_TO_SER ARG))
((E@ OF (QUOTE curry_ext))
(CURRY_EXT ARG))
((EQ OP (QUOTE uncurry_ext))
(UNCURRY_EXT ARG]
((ER@ OFP (QUOTE HAd))
(HEAD ARG))
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b ((EQ OP (QUOTE T1))
e (TAIL ARG))
C(MEMB OP (QUOTE (min max unique_set)))
N (COND
Y [(EQ@ (TYPE ARG)
N (QUOTE Eset))
%) (COND
N ((E@ OP (RUOTE min))
(MIN_SET ARBG))
. * ((EQ@ OP (QUOTE max))
2 (MAX_SET ARG)
& ((EQ OP (QUOTE unxque set))
. (MAKE_UNIQUE (CDR ARG)
v NIL ENV-P1
" (T (ERROR_HANDLER
v ‘ (QUOTE EXP_SET) ARG]
‘j ((MEMB OP (QUOTE (rsort sort)))
- (COND
: L (NUMERIC_SET (CDR ARG))
; (COND
" L(EQ OP (QUOTE rsort))
. (CONS (QUOTE Erel)
<. (SE@_TO_REL
o (SORT (CDR ARG)
7. (QUOTE LESSP)]
b (T (CONS (QUOTE Erel)

(LIST_TO_REL
(SORT (CDR ARG)
(QUOTE LESSP]
(T (ERROR_HANDLER
(QUOTE EXP_NSET) ARGJ)

—
a
eVt

"]
,: (ARRAY_CONCATENATION
: 3636363 336 I3 3363633 30 363636 I 366 I T 663 I 66 I I 6363 3636 I I I I 36 I I I 6 I 2
Al args: Al, A2 (Tagged relations)
= calls: NUMERIC_SET, DOMAIN, REVERSE, APPEND, MAPCAR,
: PLUS, CONS, ERROR_HANDLER, LIST
- called by: BIF_APPLY
N binds: INDEX, X
N comments: Given two arrays (relation with numeric index),
.. Al and A2, returns a single array which is the
-~ concatenation of At to AZ.
= 363636303 3663636 35 6 I6IE I 6T I T T I3 3 026263 I I I T I I IS IE I I IEIE I I
- [LAMBDA (Al AZ2) :
- (COND
& CCAND (NUMERIC_SET (CDR (DOMAIN A1)))
$ (NUMERIC_SET (CDR (DOMAIN A2]
: (PROG (INDEX)
f (SETQ INDEX (CAAR (REVERSE Al1)))
’
o
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(RETURN (APPEND A1 (MAPCAR (CDR A2)
(QUOTE (LAMBDA (X) (SETQ@ INDEX (PLUS 1 INDEX))
‘ (CONS INDEX (CDR X1

(T (ERROR_HANDLER
(QUOTE EXP_ARRAY)
(LIST A1 (QUOTE or) A21)

(ARRAY_REDUCTION
U100 30 I I I 23603 I 96 0633 IIE I3 36633 3636626 3696 36 363696 36 36 36 96 353630 34 %
args: EXP, EA

calls: COERCE_TO_REL, MAPCAR, ERROR_HANDLER, EV,
RANGE, RPAPPLY, LIST, CONS

called by: EV_SPECIAL_CASES

binds: ARRAY, FNC, START, ARGS, ANS, X

comments: Given an expression, EXP, of the form:

‘ "reduce Array by Function from Startin_Point"
created by the “red" operator, returns a value
by extracting the function, starting point and
array, to reduce the values in the array by
repeated applications of the functian.

3036 I I W I W W W I I I I I 6 I I W II I I I I I I N

LLAMBDA (EXP EA)

(PROG (ARRAY FNC START ARGS ANS)
(SETQ@ ARRAY (EV (CADR EXP) EA))
(COND
({COERCE_TO_REL ARRAY)
(SET@ FNC (CADDDR EXP))
(SETQ START (CADDDR (CDDR EXP)))
(SETQ ARGS (CDR (RANGE ARRAY)))
(SETR ANS START)
[MAPCAR ARGS (QUOTE (LAMBDA (X)
(SETQ ANS (RPAPPLY FNC (LIST (QUOTE Erel)
(CONS 1 ANS)
(CONS 2 X1
(RETURN ANS))
(T (ERROR_HANDLER (QUOTE EXP_REL) ARRAY1)

(ARRAY_TO_SEQ
I3 36 I I 0I5 I W I I I I I T 16 I I I I I I I AW I 6 I I 96 I I I %

args: ARRAY (Tagged relation)
calls: SET, RANGE, CONS, REVERSE
called by: BIF_APPLY

binds: S1, S2, SEQ

comments: Converts the values of an array into a sequence
W T I I IE I I I I I I I U303 I3 320 3 3633 3 33 36 2

CLAMBDA (ARRAY)
(PROG (S1 S2 SEQ)
(SET@ S1 (CDR (RANGE ARRAY)))
(SETQ@ S2 (CDR S1))
(SET SEQ NIL)
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LOOP (COND
C(NULL S2)
(RETURN (CONS (QUOTE Erel) (REVERSE SEQ1]
(T (SETQ SE@ (CONS (CONS (CAR S1) (CAR S2)) SEQ))
(SETQ@ S1 (CDR S1))
(SETQ@ S2 (CDR S2))

(60 LOGP1)
(CART_PROD
FIE I 6660003 T30 33036106 I3 3T 3300636 0690636 3006 30363636 30336626 I 96963 3363 3696
args: A, B (Untagged sets)
calls: APPEND, MAPCAR, CONS, CART_PROD
called by: BIF_APPLY, CART_PROD
binds: X

PN IS0 I I I 0336 JTE T 00T T 00030 T30 363060 06363696 3633696 36 969636 39636 396 36
CLAMBDA (A B)
(COND
({NULL A) NIL)
(T (APPEND [MAPCAR B (QUOTE (LAMBDA (X)
(CONS (CAR A) X1
(CART_PROD (CDR A) Bl1)

v
MRS mm et e rar e

L A

(CONSTRUCTION
I 66T I T30 T T T3 T 363636 T3 6T T I I I 0 I A0 I 2036 363630 383 36 963 9636 3636 36 36963
args: TBL1, TBL2Z (Tagged relations)
calls: CONS, MAPCAR, INTERSECTION, DOMAIN, LIST, SEL
called by: BIF_APPLY
binds: X
comments: Given two tables, returns a table which relates
every common domain element of TBL1 and TBL2 to
a list containing the range element from each
table, associated with the domain element.
36660036 I 33 336330363 603 I 3663 2363636 3 I 36363 T3 63 263660236 3636336 3 366 36963636 3696 9636 3
LLAMBDA (TBL1 TBL2)
(CONS (RUOTE Erel)
(MAPCAR (CDR (INTERSECTION (DOMAIN TBL1)
(DOMAIN TBL2)))
(QUOTE (LAMBDA (X) (CONS X (LIST (QUOTE Erel)
(CONS 1 (SEL TBL:I X))
(CONS 2 (SEL TBL2 X1

-I!.'J-'. .




(CONVERSE
) TSI 3600363633636 3636 3006636363636 96-36 36966 969636 3696 6

args: R (Tagged relation)

v calls: CONS, REVERSE, MAPCAR
called by: BIF_APPLY, SUPERSCRIPT
binds: X

comments: Given a relation, R, returns a relation with
the range and domain inverted.
T IS T G T 6903036 T 3636336 3 JHIE 303036 303 36 3 36 3 336 96 30696 3036 36 3636 36 96 2696 3096 9
[LAMBDA (R)
(CONS (CAR R)
(REVERSE (MAPCAR (CDR R)

(QUOTE (LAMBDA (X)
' (CONS (CDR X)

(CAR X1)
(CURRY_EXT
SIS AE-363-I-U I IE I IS0 S0 066 206 300363 3T 3636330369636 36 3696 96 33696 36 3 3¢
args: TBL (Tagged relation)
calls: BINARY_LIST, MAPCAR, CONS, REVERSE, LOOKUP,

CURRY_ELEMENT, LDIFFERENCE
called by: BIF_APPLY
. binds: TAG, PTBL, CTBL, FIRST, KEY, SUBTBL, X
comments: Given a table which represents an extensional
uncurried function, i.e., every domain element
is a binary list and every range element is the
result of the represented function on the argu-
ments in the list, returns a table which repre-
sents the curried version of the original TBL.
- e a s S o d s S AR S e LS S e S S e R R s
[LAMBDA (TBL)
(PROG (PTBL TAG FIRST KEY SUBTBL CTBL)
(SETQ TAG (CAR TBL))
(SETQ PTBL (CDR TBL))
: (SET@ CTBL NIL)
. L_0OOPLCOND
. [ (NULL PTBL)
(RETURN (CONS TAG (REVERSE CTBL]
(T (SETR@ FIRST (CAR PTBL))
(COND
((BINARY_LIST
(CAR FIRST))
(SETQ@ KEY (LOOKUFP 1 (CAR FIRST)))
(SETR SUBTBL NIL)
{MAPCAR PTBL (QUOTE (LAMBDA (X)

¢ (COND
C(BINARY_LIST (CAR X))
. (COND

((E@ (CDADAR X) KEY)
(SETR@ SUBTBL (CONS X SUBTBL]
- (T (GO EXIT]
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(SETQ CTBL (CONS (CURRY_ELEMENT
KEY SUBTBL) CTBL))
(SETQ PTBL (LDIFFERENCE PTBL SUBTBL)))
(T (GO EXIT] .
. (680 LOOP)
EXITI)

(DOMAIN
03616 I 6323 6 JEAEE I 616363 I 36 3636 I I I3 3636 63606 36 3636 3 3630 33 30302903626 936 36
args: R (Tagged relation)
calls: CONS, MAPCAR, CAR
called by: BIF_APPLY, ARRAY_CONCATENATION, CONSTRUCTION,
REFLEXIVE_TRANSITIVE_CLOSURE, REVERSE_ARRAY,
SEG_TO_ARRAY
comments: Returns a tagged set of the left members of the
- relation, R.
TSI I6 I I TG I I T 06636 3603636 3636 3696 3636 3363636 36 3696363696 36 96 36363
[LAMBDA (R)
(CONS (QUOTE Eset) (MAPCAR (CDR R) (QUOTE CAR1)

(DO_SUBSET

P66 66T 2 I I 6 I 33260636 36 3 3636030 3 36 3 3 36 3 3 3363636363636 36 36 6 36 36 36
args: S1, S2 (Untagged relation or set)
calls: MEMBER, DO_SUBSET

called by: BIF_APPLY, DO_SUBSET, REQUAL
363 I I I I W36 I I I I I I I W W I W6 I I I IE W I I I I I W
[LAMBDA (S1 S§2)
(COND .
((NULL S1) (QUOTE true))
((MEMBER (CAR S1) S2)
(DO_SUBSET (CDR S1) S2))
(T (QUOTE falsel)

(FILE_READ

3636969 30 36 3636 630 36 3600 30 3636 36 263636 262 J0 3036 36 3 36306 3 36 36 3696 236 030 336 36363 34 303630 990 36 36 38 3636 36 4
args: FNAME (Unix filename)
calls: WRITE, INFILE, TERPRI, CLOSEALL, MKATOM,

INFILEP, READ
called by: BIF_APPLY

binds: INPUT
comments: Reads from a file, a previously stored RPL data
element.

E g 2222222222222 2R 222 T 2Rt S S Yy 2 )
CLAMBDA (FNAME)
(SETR FNAME (MKATOM FNAME))
(PROG (INPUT)
(SETQ@ INPUT (INFILEP FNAME))
(COND
((NULL INPUT)
(WRITE (QUOTE (file not found)))
(GO EXIT)))
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(INFILE INPUT)

(RETURN (READ INPUT))
EXIT (TERPRI)

(CLOSEALL NIL)

(FILE_WRITE
3361634 3 536 302 AU 36T I 00 I3 006 H 306333036 3 3 3 363696 3 3 36 3636 36 3696 3 33 36
args: FNAME (Unix filename)
EXP (Any RPL expression)
calls: OUTFILE, PRINT, CLOSEALL, MKATOM, OUTFILEP
called by: EXECUTE
binds: guUTPUT
comments: Writes the evaluated EXP to the file FNAME.
6363626333663 33 20 T I J U603 I 0TI 636 I3 363096 I 6 I I I 666 I3 3660 I 6 3 6
CLAMBDA (FNAME EXP)
© (SETR FNAME (MKATOM FNAME))
(PROG (OUTPUT)
(SETQ OUTPUT (OUTFILEP FNAME))
(OUTFILE OUTPUT)
(PRINT EXP OQUTPUT)
(CLOSEALL NIL1)

(FILTER
FI 3 28 96362 3030 3630 36 3360366636030 36 3 3 3 I 6636 36336 330296 36 096 363636 363646 3096 96 36 6 36 3 6 %
args: P (RPL boolean predicate, evaluated)
S (Untagged set or relation)
calls: MAPCAR, RPAPPLY, CONS, REVERSE’
called by: BIF_APPLY
binds: FSET, X, ARG

uses free: ERRORCODE, FILTER_ON
comments: Returns S or a subset of S, based upon the
result of applying the boolean predicate, P, to
each element of S.
eI A SRR RS R TSRS R R AR AR R R Y R )
CLAMBDA (P S)
(PROG (FSET ARG)
(SETQ FSET NIL)
(SETQ FILTER_ON T)
CMAPCAR S (QUOTE (LAMBDA (X)
{COND
((EQ (RPAPPLY P X) (QUOTE true))
(SET@ FSET (CONS X FSET]
(SET@ ERRORCODE (QUOTE ERRORFREE]
(SETQ FILTER_ON NIL)
(RETURN (REVERSE FSET1)
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(FNC_BODY
B T
args: N
calls: LIST, DIFFERENCE
called by: REPEAT_COMPOSITION
binds: ANS

comments: An auxiliary function to REPEAT_COMPOSITION
which creates the physical closure with N
compositions of a function f.
F I I T T I6 66300 JEI T I I I3 263696353396 36 33 33636 36 36 36633696 9 90 36 36 36 36 3¢
CLAMBDA (N)
(PROG (ANS)
(SETAQ ANS (LIST (QUDTE ¥) (QUOTE x)))

LOOP (COND
((EQ N & (RETURN ANS))
. (T (SET@ ANS (LIST (QUOTE ) ANS))
(SETE@ N (DIFFERENCE N 1))
(GO LOOP1)
(FORM_PAIR
6363696336 26 3690 30 336 23633636 0 2636303633630 2 369 36336 26 303 36 26 36 36 36 36 3 39063 3636 362 363636 36 36 3636 369 36 3
args: X (An elementary pair)
calls: ERROR_HANDLER

called by: BIF_APPLY
U660 IE T I I IE I T I I I 30 I 60306 300 JE 06 200303 36 3636 36 36 330 0 36 30 34 3¢

CLAMBDA (X Y) (CONS X Y1)

(HEAD

263636 36 338 3063 2630 636 I 30 I 23 663 I I I 33663 I 36 I I 36 I I I K I
args: X, Y (Anything)
calls: CONS

called by: BIF_APPLY
298 363696 2303630 3969636629636 36 36 36 30 36 36 26 330 363696 36363636336 369626 36 36 630 36 36962036 3 363636 36 3036 36 3363696 3
CLAMBDA (X}
(COND
((AND (LISTP X) (NOT (NULL X))) (CAR X))
(T (ERROR_HANDLER (QUOTE EXP_PAIR) X1)

(MAPIMG
3696363696 3 36 36 336 36 3 30 3036 3 36 30 3696 36 36 36 36 30 31 IE-I6 3 I 30 36366 30 3 6636 36 36330 3 6 I 396 36 36 30 363 3 36 3
args: F (RPL function, evaluated form)
S (Untagged set of relation)
calls: MAPCAR, RPAPPLY
called by: BIF_APPLY
binds: X

comments: Returns an untagged set of results of applying
F to each member of S.
PSS T ARSI LIS AL EIL TSI IR SIS TR S
CLAMBDA (F S) .
(MAPCAR S (QUOTE (LAMBDA (X) (RPAPPLY F X1)
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(MAPRP
e R s L
args: F (RPL function, evaluated form)
TBL (Untagged relation)
calls: MAPCAR, CONS, RPAPPLY
called by: BIF_APPLY
binds: X

comments: Returns an untagged table which relates each
domain element of TBL to the result of applying
F to the associated range element.

636936 36309626966 3696 36 T0 3636369636 26 36 36 3330 369 36 33036 3 26636 30 36 I 36963636 63 3036 3636 363636 36 36 34 - N
LLAMBDA (F TBL)
(MAPCAR TBL (QUOTE (LAMBDA (X)
(CONS (CAR X)
(RPAPPLY F (CDR X1)

(MAPRP_INV :
e et L L s s s S
args: F (RPL function, evaluated form)
TBL (Untagged relation)
calls: MAPCAR, CONS, RPAPPLY
called by: BIF_APPLY
binds: X

comments: Returns an untagged table which applys F to
each domain element of TBL, and relates this
result to the associated range element.
I 36363363 366 236 3363636 22 I 336 33 363 66T IE I I I I I I I I I I I IR
CLAMBDA (F TBL)
(MAPCAR TBL (QUOTE (LAMBDA (X)
(CONS (RPAPPLY F (CAR X))

(CDR X1)
(MAP _ISOMORPHISM
363020303636 363 20 36 36 3 2 2 I 3 23 I I I I 363363636 30 30 36 30 36 36 3636 36 36396 I I 2 I I JE I 3 3 2
args: F (RPL function, evaluated form)
TBL (Untagged relation)
calls: MAPCAR, CONS, RPAPPLY
called by: BIF_APPLY
binds: X

comments: Returns an untagged table where each element is
the result of applying F to both the left and
right member of each element in TBL.
I3 326966 I I 36363 J6 36 36662 T 6366 I JE 3636 I 2T I IE I I I 623626 I I
CLAMBDA (F TBL)
(MAPCAR TBL (QUOTE (LAMBDA (X)
(CONS (RPAPPLY F (CAR X))
(RPAPFLY F (CDR X1)
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(MAX_SET
F 3090330360336 36 36363 JE I IE 6 I I I IEIE I 6630263 333636060 336 3 3

args: S (Tagged numeric set) - .

- calls: NUMERIC_SET, GREATERP, MAPCAR, T, ERROR_HANDLER
called by: BIF_APPLY
binds: SET, MAX, X

comments: Returns the maximum member of the set.
F66 3636696 636 36 36 I I 36 I 6 IE36 I 36 I 369 363 636963600362 96 I 362363 6366 3 I 3636 369636 9 696 36 36 96 36 366 %
[LAMBDA (S)
- (PROG (MAX SET)
N (SETQ SET (CDR S))
(COND
((NUMERIC_SET SET:
(SETQ@ MAX (C«R SET))
{MAPCAR SET (QUOTE (LAMBDA (X)
‘ (COND
((GREATERP X MAX)
(SETRE MAX X1

e Ta s s

(RETURN MAX)))

- (T (ERROR_HANDLER (QUOTE EXP_NSET) SET1)
(MEM
39636 J6 36 I I 36 I 03629 36336 3690 363636 I3 3630 6 36 I 363000 36 300 36 36 0 30 3363096 30 30 363 9 3636 96 6 3 3646 36 36 3
args: X (Anything)
S (A tagged set or relation)
calls: TYPE, MEMBER, ERROR_HANDLER

called by: BIF_APPLY
comments: Returns true if X is a member of S, otherwise
false is returned.

~ F2 306 H I 36 I I I 3636 36 36636 3636 30363 I I 36 3636 3636366303363 36 9 I I I 36363 369633 09I I I 3636 3 36 6
LLAMBDA (X S)
(COND
[ (MEMBER (TYPE S) (RQUOTE (Eset Erel)))
(COND

. ({EQ (MEMBER X S) NIL) (QUOTE false))
< (T (QUOTE truel
? (T (ERROR_HANDLER (QUOTE EXP_SET) S1)

(MIN_SET
& I 63 I I I 62 I I 26 IE 3662 I I 3636 I3 3662 I 6 I I I 6 IR
' args: S (Tagged numeric set)
calls: NUMERIC_SET, LESSF, MAPCAR, ERROR_HANDLER
called by: BIF_APFLY
binds: SET, MIN, X

comments: Returns the minimum member of the set.
363636 3 3 363 I3 23636 I 3 36 I 3636 I I 69 236 9633636 I 6 96 62 3666 636 I 36 I I 36 96 IE M I XN
[LAMBDA (S)
(PROG (MIN SET)
(SETR SET (CDR S))
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(COND
((NUMERIC_SET SET)
(SET@ MIN (CAR SET))
[LMAPCAR SET (QUOTE (LAMBDA (X)
(COND
((LESSP X MIN)
(SET&2 MIN X1
(RETURN MIN))
(T (ERROR_HANDLER (RQUOTE EXP_NSET) SET1)

(RANGE

236363636 3036 30 3026 2 2036363630 36 0 3636 I I 36 2 3663636 336 36 H I I 26U 636 36 36 I 363 I 2 A6 2
args: R (Tagged relation)
calls: CONS, MAPCAR,  CDR

called by: BIF_APPLY, ARRAY_REDUCTION, ARRAY_TO_SEQ,
. REFLEXIVE_TRANSITIVE_CLOSURE, SER_TO_ARRAY
comments: Returns a tagged set consisting of the right
members of the relation, R.
02303 26366 3626363632636 3636963636 3696263 0 206036336966 26 I IS I R
CLAMBDA (R) )
(CONS (QUOTE Eset) (MAPCAR (CDR R) (QUOTE CDR1)

(REFLEXIVE_TRANSITIVE_CLOSURE
33696 3636 96 30 63 3636 3030 3636 3036 3 36 3690303636 3690 I0-36 36 6 36 I 26 363636 90 6 36 3 06 I I I 66 I 6 6 3 K%
args: R (Tagged relation)
calls: UNION, DOMAIN, RANGE, CONS, MAPCAR,
TRANSITIVE_CLOSURE
called by: SUPERSCRIPT
binds: TAG, MEM, X
I3 363 3336 3 I 96 I I IE I I 6366360 I I 62 I I 6262 T I I I 66 I I 2636 I I
CLAMBDA (R)
(PROG (TAG MEM)
(SETR TAG (CAR R))
fSET@ MEM (UNION (CDR (DOMAIN R)) (CDR (RANGE R3]
(RETURN (CONS TAG
(UNION C[MAPCAR MEM (BUOTE (LAMBDA (X) (CONS X X1
(CDR (TRANSITIVE_CLOSURE R1)

)
a8
W




(RELATIVE_PRODUCT
F63 20263 I I I 33636 369630 3 I I I 63003036303 3 203 3 26 6 636 30 0303 30 26 3 3 3 0 36 336 3

args: TBL1, TBLZ (Untagged relations)

called by: BIF_APPLY, RELATIVE_PRODUCT, TRANSITIVE_CLOSURE
binds: X
comments: Returns an untagged table which takes the right
member of each element in TBL1 and relates it
to the set of all right members it is related
to in TBLZ.
363696 I I TG IEIE I I 666 IE I I 3606 3 66 I 66 I I 3636263 I 36196
C[LAMBDA (TBL1 TBL2)
(COND
((NULL TBL1) NIL)
(T (APPEND [MAPCAR (CDR (SELECT_ALL
- (CDAR TBL1) TBL2))
(QUOTE (LAMBDA (X)
(CONS (CAAR TBL1) X1
(RELATIVE_PRODUCT (CDR TBL1) TBL21)

(REPEAT_COMPOSITION
F3 I I I I IEIE T I IEI6I6 66 I3 36 I I I I I I I IEIEIE T 66663363 I I I I 3 I I3 2

» args: FNC (RPL function, evaluated form)

& P (A positive integer)

. calls: CONS, LIST, FNC_BODY

g called by: SUPERSCRIPT

i binds: SE

. comments: A special case of the "sup" command. Given a

function, FNC, and the number of times, P, FNC
is to be composed with itself, returns a
. closure which represents the resulting function
363362236 I I 6 I I I I T 2T I I 6 I I I T I I I
CLAMBDA (FNC P)
(PROG (SE)
(SETQ SE (CONS (CONS (QUOTE ) FNO)
(CADDDR FNC)))
(RETURN (LIST (QUOTE closure)
(RUOTE x)
(FNC_BODY P) SEI)

(REQUAL

336330 3 36 3 36 36 63 I IS T 66 I I I3 IE I I I IEIEIE I I N6 NN
args: Xy Y (Anything)
calls: MEMBER, TYPE, DO_SURSET, TF, EGQUAL

called by: BIF_APPLY
336336 I3 I 369 I 36 I 6T I 6 I I I I I I I I I I I I I I I NN
CLAMBDA (X Y)
(COND
[LAND (MEMBER (TYPE X) (QUOTE (Eset Erel)))
(MEMBER (TYPE Y) (QUOTE (Eset Erel]l
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(COND

((AND (ERQ (DO_SUBSET (CDR X) (CDR Y)) (QUOTE true))

(EQ (DO_SUBSET (CDR Y) (CDR X)) (RUOTE true)))
(QUOTE true))

(T (QUOTE falsel
(T (TF (EQUAL X Y1)

(REVERSE_ARRAY
60663 I T30 3036 360 I 600 T30 36 3606363636 3636396396 3636-696- 3636 36 36 96369636 3636 3696 3036 36966 936 3638
args: LST (Tagged relation)
calls: SORT, DOMAIN, PLUS, REVERSE, CONS, MAPCAR,
DIFFERENCE, LESSP
called by: BIF_APPLY
binds: TAG, DOM, K, X
tomments: Given an array, LST, returns an array with the
values in reverse order.
FE 363620 36366 I3 36 36 32630 36 63 66 I I 363633 363636 369 3636 36 96 36 3636 3696 36 36 20 3 36 6 36 3636 96363636 26 36 3¢
CLAMBDA (LST)
(PROG (TAG DOM K)
(SETR@ TAG (CAR LST))
(SETQ DOM (SORT (CDR (DOMAIN LST)) (QUOTE LESSP))})
(SETR K (PLUS (CAR (REVERSE DOM)) (CAR DOM)))
(RETURN (CONS TAG
(REVERSE (MAPCAR (CDR LST)
(QUOTE (LAMBDA (X) (CONS (DIFFERENCE K (CAR X))

(CDR X1)
{(RNOT
2630963638909 90 363636 I I 36 36 I 636 36366 36 J6 96901690 I I J6-36 3 IH-36-36- 3 IIE I I 0363 36 930 36 3 36 36 36 36 636 39 6 6
args: B (LISP boolean)

called by: BIF_APPLY
comments: RPL negation .
FI I3 I3 I I I I TE I I TE I I I 6 I I I 96 I6 3096 I 6 I 06 336 I
CLAMBDA (B)
(COND
((EQ B (QUOTE true)) (QUOTE false))
(T (QUOTE truel)

TGy LB T Ao,




(RPL_REPEAT
I I I IIE I3 6 I3 I 36 I J 0 JEI6 36363096 36T 36009 JEIE I I 363603636 036963336396 96 3 3 3

args: EXP, ER

calls:s ERROR_HANDLER, EV, TYPE, RPAPPLY
called by: EV_SPECIAL_CASES

binds: F, P, X, RESULT

uses free: ERRORCODE
comments: Given an expression of the form:
"repeat (F X) until_not P".
created by the "iter" operation, continues to
apply F tao X until the predicate P is true.
I 6 I I 6 I 66 I I 6336363336 I T30 3636 363163 3 363633963636 36 336 36 96 3 36 363636 36 36
fLAMBDA (EXP ER)
(PROG (F P X RESULT)
(SETQ F (EV (CAADR EXP) ER))
‘ (SETQ P (EV (CAADDR (CDR EXP)) ER))
(SETQ X (EV (QUOTE 7?x) ER))
(COND '
(INOT (AND (E@ ERRORCODE (QUOTE ERRORFREE))
(EQ@ (TYPE F) (QUOTE closure))
(E@ (TYPE P) (QUOTE closurel
(ERROR_HANDLER (QUOTE EXP_FUNC)
(QUOTE (boolean predicate missing or
bad function definition in iter)))
(60 EXIT)))
(SETQ@ RESULT (RPAPPLY F X))
LOOP (COND
((EQ (RPAPPLY P RESULT) (QUOTE true))
(SETR RESULT (RPAPPLY F RESULT))
(GO LOOP)))
(RETURN RESULT)
EXIT])

(SEL

I3 I3 I I I I I I I NI I I I I I I I I I I I I I W I I N
args: TBL (Tagged relation)
T6T (Anything)
calls: SASSOC, ERROR_HANDLER, LIST
called by: BIF_APPLY, CONSTRUCTION
binds: X )
comments: Returns the right member of the first
occurrence of X as a left member.
F 36 I I I I I I T I I I I I I W I I I I 6 I I I I I I I N
[LAMBDA (TBL TGT)
(PROG (X)
(SETQ X (SASSOC TGT (CDR TBL)))
(RETURN (COND
((EQ@ X NIL) (ERROR_HANDLER (QUOTE UBTE)
(LIST TGT (QUOTE (not found in))
TBL)))
(T (CDR X1
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(SEQ_TO_ARRAY
I I8 96 I I I 606 363 6 336 I 26 I I I 6 I WA W I I 6 I I I I I I

args: SEG@ (Tagged relation)
INDEX (A positive integer)
calls: LDIFFERENCE, DOMAIN, RANGE, LIST, CONS, LOOKUP,

REVERSE, PLUS
called by: BIF_APPLY

-

binds: FIRST, ARRAY
comments: Converts a sequence to an array indexed from
INDEX.

I I HE36 03636 6I0 I I3 3 3636306363666 J0 30163 3036 336 3 J 3636 36 6363696963636 96 36 36 36 36 36 36963636 363
CLAMBDA (SER INDEX) '
(PROG (FIRST ARRAY)
[SETR FIRST (CAR' (LDIFFERENCE (DOMAIN SE®)
(RANGE SEQ1
(SETR ARRAY (LIST (CONS INDEX FIRST)))
LOOP(SETR FIRST (LOOKUP FIRST (CDR SE®)))
' (COND
y L (EQ@ FIRST NIL)
(RETURN (CONS (QUOTE Erel) (REVERSE ARRAY]
(T (SETQ@ INDEX (PLUS 1 INDEX))
(SETQ ARRAY (CONS (CONS INDEX FIRST) ARRAY))
(GO LOOPI)

iy aicas ghy b

(SUPERSCRIPT
2326696363636 I 36363 3 3036 6 2636 T 66 I I 6 I3 3666 3 336 3036 36 9036 36 2696 6 36 6 3636 36 96 3 6 38 24 3
args: OPND (Tagged relation or RPL functiaon)
PWR (+, #%, or a positive integer)
calls: EQUAL, NUMBERP, GREATERP, TYPE,
REFLEXIVE_TRANSITIVE_CLOSURE, CONVERSE,
TRANSITIVE_CLOSURE, REPEAT_COMPOSITION,
ERROR_HANDLER
called by: BIF_APPLY
uses free: IEXP
comments: Handles all cases of the operator "sup".
W36 I 6T 26U 0666 I 26 I I 6633363696 I3 36 6 I I 26 I T I6 I I NN
[LAMBDA (OPND PWR)
(COND
((AND (ERUAL PWR (QUOTE (closure +)))
(EQ (TYPE DPND) (QUOTE Erel)))
(TRANSITIVE_CLOSURE OPND))
((AND (EQUAL PWR (QUOTE (closure star)))
(EQ (TYPE OPND) (QUOTE Erel}))
(REFLEXIVE_TRANSITIVE_CLOSURE OFND))
( (AND (NUMBERF PWR) (EQ PWR -1)
(EQ (TYPE OPND) (RQUOTE Erel)))
(CONVERSE OPND))
((AND (NUMBERP PWR) (GREATERP PWR @)
(EQ (TYPE OPND) (QUOTE closure)))
(REPEAT_COMFOSITION OPND FWR))
(T (ERROR_HANDLER (QUOTE BAD_SYNTAX) IEXFI1)
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(TAIL

I I IS0 I3 000D 636 I3 363030036 3630 3633 36 36369 30303696 3 3636 3 36 36 3036 6 6 3
args: X (An elementary pair)
calls: ERROR_HANDLER

called by: BIF_APPLY
90 I I I3 66 II0 I I I 3 3 3 363636663 I3 0363 63636 36 63036 3 336 I 396 36 369696 96 969
CLAMBDA (X)
(COND
-((AND (LISTP X) (NOT (NULL X))) (CDR X))
(T (ERROR_HANDLER (QUOTE EXP_PAIR) X1)

(TRANSITIVE_CLOSURE
IS I I I I I3 I 033030 330303 36 30 30 30 36 3636 3620 26936 3 396 36 303636969 969
args: R (Tagged relation)
calls: CONS, RELATIVE_PRODUCT, UNION
called by: REFLEXIVE_TRANSITIVE_CLOSURE, SUPERSCRIPT
binds: TMP, ANS ’
3696363630 9 3 63636363 303036 0 DI 663616 333006 2008 360 3 366 J6 36 3 3 9 3636 36 36 36 36 302636 36 36 N - 36
CLAMBDA (R)
(PROG (TMP ANS)
(SET@ TMP (CDR R))
(SETR ANS (CDR R))
RPLOQP
(COND
((NULL T™MP)
(RETURN (CONS (CAR R) ANS)))
(T (SETR@ TMP (RELATIVE_PRODUCT TMP (CDR R)))
(SETQ ANS (UNION ANS TMP))
(GO RPLOOP1)

(UNCURRY_EXT
336 30 23 3 3636 I I 66 I 363636 I I 36363 3636 6 36 26 3 6363 36 I 03 3636 030063 W36 3 3 626 39 6 363636 36 3 3 6
args: TBL (Tagged relation)
calls: COERCE_TO_REL, CONS, AFPPEND, MAPCAR,
LIST_TO_REL, LIST
called by: BIF_APPLY
binds: TAG, PTBL, KEY, SUBTBL, UTBL, X
comments: The converse of CURRY_EXT.
363636 3 3 303630 I 1063 20 300303 26 66 2 36 I I I J6 66 3 I 366 I I 66 I 666 I 2 6623 33 I
CLAMBDA (TBL)
(PROG (TAG PTBL KEY SUBTBL UTBL)
(SETQ TAG (CAR TBL))
(SET@ PTBL (CDR TBL))
LOOPCCOND
((NULL PTBL) (RETURN (CONS TAG UTBL)))
(T (SETR KEY (CAAR PTBL))
(SET@ SUBTBL (CDAR PTBL))
(COND,
( (COERCE_TO_REL SUBTBL)
(SETQ SUBTBL (CDR SuBTBL))
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[SETQ UTBL (APPEND UTBL 1
(MAPCAR SUBTBL (QUOTE (LAMBDA (X)
(CONS [CONS (QUOTE Erel)
i (LIST_TO_REL (LIST KEY (CAR X1
(CDR X1
(SETQ PTBL (CDR PTBL))
(G0 LOOP]

EXITI1)

(ALL _PAIRS
90500 2002 I SIS0 I I 00 0603606006036 06006306096 3606 3606
args: 8§ (Untagged set)
calls: MEMB, ALL_PAIRS
called by: EV_SPECIAL_CASES, COERCE_TO_REL, ALL_PAIRS
comments: A boolean utility function which determines if
all the elements of S are elementary pairs.
AT IE I J6 I I I TEIETE I IIEIE I 33630323 2636 36 36300 363606 36 36 36969 363 36 3636363
CLAMBDA (S)
(COND
((NULL S) T)
(CAND (LISTP (CAR S))
(NOT (MEMB (CAAR S)
: (QUDTE (Eset Erel closure)
(ALL PAIRS (CDR S1)

(BINARY_LIST
6NN I I T I I I I I I I
args: REL (Tagged relation)
calls: COERCE_TO_REL, ERROR_HANDLER, LIST
called by: CURRY EXT
comments: A boolean utility function whxch verifies that
REL is an RPL binary list.
F 3629632 I I 36363636 036 6 2363 0 U 30 30 3036366 36 3030 3000 3 2 0 3 2 3 36 36 36 3 363630 369 36 36 96 4 36 3¢
C[LAMBDA (REL)
(COND
((COERCE_TO_REL REL)
(COND
((AND (ER (CAADR REL) 1)
(EQ (CAADDR REL) 2)) T)
(T (ERROR_HANDLER (RQUOTE BAD_ARG)
(LIST REL (QUOTE (not a binary listl)
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(COERCE_TO_REL

T SR

: args: S (Tagged relation)

' calls: ALL_PAIRS, TYPE, ERROR HANDLER

, called by: ARRAY_REDUCTION, UNCURRY_EXT BINARY_LIST,

N BIF_APPLY

> binds: STYPE

’ caoamments: A utility function which changes the tags on a
relation if S is a set and is equivalent to a
relation.

. F 3 I3 166U I IS IEIE 6 I IH U I I 20T 3636363636309 3 60336 30363630 906 9 9696 3 33

N CLAMBDA (S)

: © (PROG (STYPE)

(SETQ STYPE (TYPE s))

’ (RETURN (COND

- ‘ ((ER@ STYPE (QUOTE Erel)))

g ((AND (EQ STYPE (QUOTE Eset))

. (ALL_PAIRS (CDR S))) S)

- (T (ERROR_HANDLER (QUOTE EXP_REL) S1)

&

- (CURRY_ELEMENT
TN I 0036060 0606 0036006 00T I I T 26001360636 9606363606606 3060 326
.args: KEY (Anything)
TBL (Untagged relation)
; calls: CONS, REVERSE, MAPCAR, LOOKUP
called by: CURRY_EXT
binds: X
camments: A auxiliary function to CURRY_EXT, which forms
the curried element, given the KEY and the un-
curried table, TBL.
3630306226 036 263 36 3636 36 396 36 36 35 I N 36263 2 3666 36 45 062630 0 3636 36 363036 I I 36969 3 9 3606 2266
[LAMBDA (KEY TBL)
(CONS KEY (CONS (QUOTE Erel)
. (REVERSE (MAPCAR TBL (QUOTE (LAMBDA (X)
: (CONS (LOOKUP 2 (CAR X)) (CDR X1

‘l"l 'l' 'l .I'—ﬂ"
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(DISPLAY_ENV

FE IS I 00003 36 303000 216 0303026 336303 36 3636 33 696 3 36363
args: FNC (An identifier or naothing)

) calls: SPACES, WRITE, TERPRI, GET_ENV

called by: DISPLAY )
binds: ENV
uses free: USERDEFS
comments: Executes the "env" operator. Displays the

entire environment if no argument is given or
the environment assaciated with the identifier,
FNC. The environment is displayed in
definitional form.
S 210300353506 35 36233236660 IIE I I I I I 3636303636063 3636 396 33 3 3636 63 I
C[LAMBDA (FNC) '
(PROG (ENV)
‘ (SETQ ENV (GET_ENV USERDEFS FNC))
LOOP (COND
((NULL ENV)
(SPACES 1)
(WRITE (RUOTE (System Defined Functions)))
(TERPRI))
(T (SPACES 1)
(WRITE (CDAR ENV))

(TERPRI)
(SETQ@ ENV (CDR ENV))
(60 LOOPD)
L . 1
¥ (GET_ENV
y B Y L I T T A P ey
b ) args: L, FNAME
' calls: MAPCAR
called by: DISPLAY_ENV
binds: ENV, X

comments: An auxiliary function to DISPLAY_ENV which
returns only that portions of L (USERDEFS)
which are in the scope of FNAME.
XTI ELEEE SNSRI ESSIST RS EFFILIEISNT TS ZTEE TR NN T 2
CLAMBDA (L FNAME)
(PROG (ENV)
(COND
( (NULL FNAME) (RETURN L))
(T (SETQ@ ENV L)
(MAPCAR L (QUOTE (LAMBDA (X)
(COND
((EQ (CAR X) FNAME) (RETURN ENV))
(T (SET@ ENV (CDR ENVI)
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oo (LIST_TO_REL
- 6336 63 I I I 661U T30 3636303636 023666 I 303636 3 3 36 3 3 36636 38 3636 9 3 309
args: D (Untagged LISP list)
e} callss GREATERP, PLUS, LENGTH, DIFFERENCE, CONS,
~ MAP2CAR )
_3‘ called by: EVSE@Q, BIF_APPLY, UNCURRY_EXT
o binds: R, C
N\ comments: Returns an untagged relation which represents
the appropiate list, D.
. IS 30I6363 303003 3 I I 3636363063630 003 36 306 2636 336 3636296 33 36 33636 3636 30 36 36 3 36 3 3 2 36
. CLAMBDA (D)
v (PROG (R C)
- (SETQ@ R NIL)
- (SETE C (PLUS (LENGTH D) 1))
i LOOP(SETQ@ C (DIFFERENCE C 1))
x . (COND
% ((GREATERF C @)
o (SETR@ R (CONS C R))
o (GO LOOP))
(T R))
- (RETURN (MAP2CAR R D (RUOTE CONS1)
X
gy (LODKUP
i 33363663636 3 6 I I0 T 3636300 I I 360363636 I 663 I 666 I I I 6363 I 366 U 6N
-~ args: T6T (Anything)
s TBL (Untagged relation)
~ calls: SASS0OC
- called by: DEF_BINDING, DISPLAY, ERROR_HANDLER, EV,
> CURRY_EXT, SEQ_TO_ARRAY, CURRY_ELEMENT
; binds: X
- comments: Returns the right member of TBL given the left
member, T6T, if TGT is found, else returns NIL.
. F6 9336316666 I 263 3 326 36 6336363636636 362 36 30 26 36 36 36 3636363630 3636 36 3696 36 363 3636 3630 36 3696 36 36 336
i CLAMBDA (TGT TBL)
-, (PROG (X)
- (SET@ X (SASSOC TGT TBL))
i (RETURN (COND
" ((ER@ X NIL) NIL)
(T (CDR X1)
"
’n
v.
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(MAKE_UNIQUE )
f a2 2222222 2 22 22 2R 222ttt a2zt 2o

v args: INPUT (Untagged set or relation)
RESULT, ENV
calls: MEMBER, REVERSE, EV, MAKE_UNIQUE, CONS

called by: EV_SPECIAL_CASES, BIF_APPLY, MAKE_UNIGUE
comments: Eliminates redundant elements from INPUT and
returns RESULT.
F 3632 98 90 3 - I 220 W U S 3 I I I I I 6 I I I 6 I 66
) CLAMBDA (INPUT RIZSULT ENV)
- (COND
((NULL INPUT) (REVERSE RESULT))
(T (COND :
((MEMBER (EV (CAR INPUT) ENV) RESULT)
(MAKE_UNIQUE (CDR INPUT) RESULT ENV))
(T (SET@ RESULT (CONS (EV (CAR INPUT) ENW)
RESULT))
(MAKE_UNIQUE (CDR INPUT) RESULT ENVI)

.t

AL

(NUMERIC_SET
36 36 96 W W W I I W36 I A I I I I I I I W W W W I I W W WA I I I W I

args: SET (Untagged set)

calls: NUMBERF, MAPCAR

called by: BIF_APPLY, ARRAY_CONCATENATION, MAX_SET, MIN_SET
binds: X

comments: A boolean utility function which determines if
all members of SET are numeric.
. F60 3 63T I I3 3636963 9 6T 336 36 363626 36363636396 3 3636 I 363636 3636 036 36 2 9 361636 9 3636 3 3 226 %

[LAMBDA (SET)

(PROG NIL
[MAPCAR SET (QUOTE (LAMBDA (X)
(COND
( (NOT (NUMBERP X))
(GO EXIT]
(RETURN T)

EXIT(RETURN NILI1)




(POSIT .
FEIEIEIEAE I I3 6T I I3 6330663363 260006 6363603633063 6 33000066 3 3 3

args: L (Any LISP list)
TARGET (Anything)

calls: EQUAL, SET, PLUS

called by: EXECUTE

binds: N

comments: A utility function used to find the position of
the "==" gsymbol in an RPL command.

963636 I 3636 6 3636636 33636 I I I6 I W 3636 36 3636 I 36 696 I I I W I I I I I I I W W I

CLAMBDA (L TARGET)
(PROG (N)
(SET (QUOTE N) @)
LOOP (COND )
((NULL L) (RETURN @))
- ((EQUAL TARGET (CAR L))
(RETURN (PLUS N 1)))
(T (SET (RUOTE N) (PLUS N 1))
(SET (RUOTE L) (CDR L))
(GO LOOP)

(PRINT_LIST
236336 36 3366 3363 I3 I 0366 2630 I 336 36 3 I 6 I3 I I3 I I3 6 3 363636363 3636 3 36 3 263 36 36 96 26 3 6
args: S (Any LISP list)
calls: ATOM, STRINGP, MEMB, SHOW_ATOM, PRINT_LIST
called by: ERRDR_HANDLER, SHOW_ATOM, PRINT_LIST
comments: An output utility to display RPL results which
are in a LISP list form in a more readable
format.
F 363336 32 3T I I I 362266 I I I I I I 6 I 36 I 36 396 I 3636 36 I 2k
[LAMBDA (S)
(COND
((NULL S) NIL)
(COR (ATOM S)
(STRINGP S)
(EQ (CAR S) (QUOTE closure))
(MEMB (CAR S) (GQUOTE (Eset Erell
(SHOW_ATOM S))
(T (SHOW_ATOM (CAR S))
(PRINT_LIST (CDR S1)

(READCMD
93 636 I 36 36 666 I I I I I 0TI I I I I 66 I I I I T I I I I 6 I I I 6 I I I 66 I N
calls: WAITFORINPUT, READLINE

called by: RPL
36 J6 I IE I I I3 I I I I I I I 36 I 6333033236 I 3036 3662 6 I I I I3 2

CLAMBDA NIL (WAITFORINPUT) (READLINE])
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(READTERM
SIS I IS0 300100000
calls: WAITFORINPUT, READLINE

called by: SET_USER_ENV, EXIT
W W6 I W I I W38 I W I I I3 I I I I I I I I I I IR

CLAMBDA NIL (WAITFORINPUT) (CAR (READLINED)

(READ_USER_DEFS
B T L T Ty
args: FNAME (Unix filename)
calls: WRITE, INFILE, EXECUTE, TERPRI, CLOSEALL,
INFILEP, READ
called by: SET_USER_ENV
binds: INPUT, DEFIN
uses free: ERRORCODE
comments: A utility function which reads a previous RPL
session’'s commands from FNAME into the current
RPL session.
33633636 336 T F 3636 3360 I T I I I I3 303636 20 3616 3 3630 336 336 36 3 63 3636 3 3636 3696 36 369 36 36 96 3¢
CLAMBDA (FNAME)
(PROG (INPUT DEFIN)
{SETQ@ INPUT (INFILEP FNAME))
(COND
C(NULL INPUT)
(WRITE (QUOTE (file not found)))
(GO EXIT)))
(INFILE INPUT)
(WRITE (QUOTE (Loading—-—-)))
(SET@ DEFIN (READ INPUT))
LOOP (COND
((EQ DEFIN (QUOTE EOF))
(WRITE (QUOTE (Session loaded)))
(GO0 EXIT))
(T (SETR ERRORCODE (QUOTE ERRORFREE))
(EXECUTE DEFIN)
(SETR DEFIN (READ INPUT))
(GO LOOP)))
EXIT(TERPRI)
(CLOSEALL NIL1)
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(SAVEF
P33T I JE I T TE 6T T2 I3 T 6 I3 3 36 3 36363696 3636 I 33696 36 I 36 3696 96369696 3 3 3¢

args:

calls:
uses free:
comments:

FNAME (Unix filename)

DEFS (A LISP list of function names)

VARS (A LISP list of variable names)

SET, PACK, LIST, MAKEFILE

FFNS, FCOMS

A utility function used to write all or a
portion of the LISP functions, and variables in
the current LISP environment to a file. Used
to create the RPL-INT file. Also used to
convert LISP files not created in InterlLisp to
the InterLisp input format.

3369 63T 666666 I I T I IE I I IE I I 3636363 03 I 366363 336 36936 3 3 33
T{LAMBDA (FNAME DEFS VARS)
[SETE FCOMS (PACK (LIST FNAME (QUOTE COMS]
[SET® FFNS (PACK (LIST FNAME (GUOTE FNS1
(SET FFNS DEFS)
(SET FCOMS (LIST (LIST (RUOTE FNS) (RQUOTE #%*) FFNS)

(LIST (RUOTE VARS) VARS)))

(MAKEFILE FNAME])

(SELECT_ALL

363 303 I6 I I I I I IE I I I W I I I W I I IE I I I I I I I I I A I I I

args:

calls:
called by:
binds:
comments:

TGT (Anything)

TBL (Untagged relation)

MAPCAR, CONS, REVERSE

BIF_APPLY, RELATIVE_PRODUCT

SET, X

Returns an untagged set of all the right
members associated with the TGT in TBL.

W36 36636 I I I T I 6T I IE NI NI IE I I I IE 6 I6 0 I T I I I NN
CLAMBDA (TGT TBL)
(PROG (SET)
(SETR@ SET NIL)
[(MAPCAR TBL (QUOTE (LAMBDA (X)

(COND
((E@ (CAR X) TGT)
(SETQ@ SET (CONS (CDR X) SET]

(RETURN (CONS (QUOTE Eset) (REVERSE SETI)
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(SEQ_TO_REL
6963636 6263 36 369636 036 069636 6 3036 26 036636236 3636 3 36 36 36 26 36 3626 96 36369636 9 3696 336 3636 3696 3 363 36 36 4 %
args: S (Untagged LISP list) ‘
calls: LE@, LENGTH, CONS, SER_TO_REL
called by: EVSER, BIF_APPLY, SEQ_TO_REL
comments: Returns an untagged relation which is the
result of converting the RPL input form for a
sequence to its internal representation.
236360 362696363036 3 3636 3636 9 36 23636 3 36 269036 36 36 3636 36 363 636 36 3636 303 36 6 336 3 36 36 6 96 36 I 36 3636 3 6

CLAMBDA (S)
(COND
((LER (LENGTH S) 1) NIL)
(T (CONS (CONS (CAR S) (CADR S))
(SEQ_TO_REL " (CDR S1)

(SHOW_ATOM

639 363636 3 I 3036 3336363636 I 636696 I 6363636 3363636 3036036 3630636 3636 J0 I 6963 3 0 64636 I 36 36 369636 36 3 %
args: X (Any LISP atom)
calls: ATOM, STRINGP, MEMB, PRIN1, PRINT_LIST, LENGTH,

CONS, LIST, SPACES
called by: DISPLAY, SHOW_ENV, PRINT_LIST
comments: AN auxiliary function for output of RPL atoms.
I3 36 36 6 I3 36 I I 6 I I I3 W I A I 36 I I I I IEIE W IE I I I I I I I I I I A I I X
CLAMBDA (X)
(SPACES 1)
LCOND
((ATOM X) (PRIN1 X))
((STRINGP X) (PRIN1 X))
L (MEMB (CAR X) (QUOTE (Eset Erel)))
(COND )
((ER (LENGTH X) 1) (PRIN1 (QUOTE empty)))
((EQ (CAR X) (RUOTE Eset)) (PRIN1 (QUOTE %())
(PRINT_LIST (CONS (QUOTE set) (CDR X)))
(PRIN1 (QUOTE %Z))))
(T (PRIN1 (QUOTE %Z())
(PRINT_LIST (CONS (BUOTE rel) (CDR X))}
(FRIN1 (QUOTE 7%)1
C(ER (CAR X) (GQUOTE closure))
(COND
[(E@ (LENGTH X) 4)
(PRIN1 (LIST (CAR X) (CADR X) (CADDR X1
- (T (PRIN1 X1
.. (T (PRIN1 (RUOTE % ())
3 (PRINT_LIST X)
(PRIN1 (RQUOTE 7%)1
(SPACES 11)
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(SHOW_ENV

FEIEIE 6T IE I SEIE I I IETEEIEIE 66T I I I 6636 I I6I6 6333636 T 3 303 3
args: ENV
calls: MEMB, LEQ, WRITE, SHOW_ATOM, PRINT, TERPRI,

LENGTH, LIST, SHOW_ENV
called by: SHOW_ENV
binds: X
uses free: OPNAMES
comments: First implementation for the "env" command.

- Shows the evaluated form of the environment.
N Not currently used, left if wanted for future.
:- 3636 363 636 I 6 3 2636 363 1636 W 3636 I 616 36 6 36 I I I I8 26 3 366 36 I I I I I 26 36 I 3636 I I8 I 363 I 2636 I I 36 %
.. CLAMBDA (ENV)
~ (PROB (X)
o ‘ (SETR X ‘(CAR ENV))
- ({RETURN (COND
- ((MEMB (CAR X) OPNAMES)
3 (WRITE (QUOTE (System Defined Functions)))
: (TERPRI))
> (T CCOND
((LEQ (LENGTH X) 3)
’ . (SHOW_ATOM X)
- (TERPRI))
- (T (COND
g [.(AND (EQ@ (CADR X)
he (QUOTE closure))

(E@ (LENGTH X) 5))
2 (PRINT (LIST (CAR X)
5 . (CADR X)

- (CAGDR X)
¥ (CADDDR X1
; (T (SHOW_ATOM X)

(TERPRI]

(SHOW_ENV (CDR ENVI)

o’ (TF
36 36 I I I 363 I I I I T I I I I I I I A6 6636 I8 I I I I 6 I IEIIE I I I I I I I I I N
args: B (LISP boolean)

called by: BIF_APPLY, RERUAL
comments: Converts LISP booleans to RFPL boolean format.
396 33626302602 636 3636 30 M6 6 16363636 2363536 2 36 3636 36 96 36 336 3636 36 I 36 9036 36 3636 96 36 36 96 3696 36 36 36 96 36 36 ¢
[LAMBDA (B)
< {(COND
; ((E@ B NIL) (QUOTE false))
(T (QUOTE truel)

3
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(TYPE

U666 I I E16 6036 I3 33 I 3336 303 0363639 3 3 3 3 3636 33 3636 36 6469 39 3
args: X (Anything)
calls: ATOM, STRINGP
called by: DISPLAY, EV_SPECIAL_CASES, INFIXOP, PREFIXOP,
BIF_APPLY, MEM, RERUAL, RPL_REPEAT,
SUPERSCRIPT, COERCE_TO_REL
comments: A utility function used to trap illegal calls
to the LISP functions, CAR and CDR. Returns
the first element if X is a list.
36363 H6 36603632630 636363 I 366 2003 26 96 I3 36 36362 3 363636 30 366 T 0 3636 636 96 3 303636 3 30 96396 36 3¢
CLAMBDA (X)
(COND
((OR (ATOM X) (STRINGF X)) (QUOTE atom})
(T (CAR X1)

(WRITE
I 36T I6 66T I I I I 3636 366663630036 I 339626 3 336 36366269636 3 0 6 96 3 34 36
args: L (LISP list)
calls: FPRIN2, MAPCAR, SPACES
called by: RPL, SET_USER_ENV, DEF_BINDING, ERROR_HANDLER,
EXIT, FILE_READ, DISPLAY_ENV, READ_USER_DEFS,
SHOW_ENV
binds: X ‘
comments: A utility function which alters LISP output to
a more natural form without parentheses.
22 I3 I 0363696 636363636 3 263636 30 363636 369636 3 30 36 3636 3 363636 36 3963636 396 36 96 36 - 3¢
[LAMBDA (L)
(MAPCAR L {(RUOTE (LAMBDA (X) (PRIN2Z X) (SPACES 11)

(WRITE_USER_DEFS
336336 6 I 63636 I 660 I I I IEIE I 6666633003 I 39636 I 636336636336 98 3 36 30338

args: FNAME (Unix filename)

calls: OUTFILE, MAPCAR, CLOSEALL, OUTFILEP, REVERSE,
PRINT

called by: EXIT

binds: OuUTPUT, DEFOUT, X

uses free: USERDEFS
comments: A utility function used to write the current
RPL session’s commands to a file, FNAME.
3633636363636 3622 2 I I I 36 0360 6633 36 3 I I 3036363636 696 3 3 90 I 33 336
CLAMBDA (FNAME)
(FROG6 (OUTPUT DEFOUT)
(SET@ OQUTPUT (OQUTFILEP FNAME))
(ODUTFILE OUTPUT)
(SETQ@ DEFOUT (REVERSE USERDEFS))
C{MAPCAR DEFOUT (QUOTE (LAMBDA (X)
(PRINT (CDR X)
OQUTPUT]
(PRINT (QUOTE EOF) QUTPUT)
(CLOSEALL NILY)
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APPENDIX G — EXAMPLES OF RPL PROGRAMS

A. INTRODUCTION

The purpose of this appendix is to illustrate two
example RPL programs which demonstrate the flexibility and
potential power of the language, and also some of the design

issues involved in the implementation.

B. EXAMFLE #1 - PAYROLL

Suppose there is a file of employee records which is
keyed upon a unique employee number. These records contain
only the employee name and accumulated number of hours
waorked for payroll purposes.

In RPL this file can be defined as a simple relation
which relates the employee number to the employee record.
The employee record is just another relation between field
names and their associated values. This +file will be
refered to as the ‘OldMaster’ file.

In addition to the ‘OldMaster’ file an ’‘Updates’ file
which would contain only an employee number related to the
number of hours for a given time period is required. Again,
this %ile can be represented by a simple relatian.

What 1is desired is a program that will take the
‘OldMaster” and ‘Updates’ files and produce a new updated

master with current accumulated hours.
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In essence, the values of the ‘hours’ field in the

‘OldMaster’ file need to be increased by the amount of hours
in the ‘Updates’ file. A function to do this can be
developed from built-in RPL operatofs and takes advantage of
the infix to prefix conversion functional, the functionals
which fix one of the two normal infix operator Arguments,
and several combining functionals. The power of RPL is that
this complicated sequential process of many steps can be
combined into virtually two steps using RPL constructs.

Figure G-1 shows a RPL program that would accomplish the

task.
F == (file "DldMaster™) ' (1)
U == (file "Updates") (2)
H == "hours" 3
sumhrs == ((op +) o ((rsec sel H) i I)) (4)
u== ((F#U) rp (as o ((lsec H ,) o sumhrs))) (5)
F*' == ((u % F) rp (op 3)) ‘ (&)
val F’ (7)
NOTES:
(1) F = old file
(2) U = update file
(3) H = Field name for hours worked

(4) sumhrs Update auxiliary function to add old hours
to the update hours

(3) u Updating function

() F~ New file

(7) Display file in evaluated form

Figure 6-1 —— Payroll Example

Notice how the ‘op’ functional is used to allow infix
operators to be combined without any arguments. Likewise,

‘lsec’ and ‘rsec’ are used to fix the 1left or right
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argument, respectively. All operators in this example are
explained in detail in Appendix C.

F, U, and H are all just data definitions to initialize
the names. ‘sumhrs’ is just an auxiliary function which
performs the addition required and also makes the program a
little easier to read. The updating fuﬁction, u, really
creates an extensional function in the form of a relation
(table) which contains thé updated ‘hours’ field. The new
file is created when an ordered union (;) is performed
between the records of the update table produced by u and
the original file, ‘OldMaster . The ordered union replaces
the value of the ‘hours’ field in the original file with the
new value contained in the update table. Normally, the new
structure would be saved for use as the ‘OldMaster  the next
time an update would be scheduled, but the praogram in
Figure G-1 simply displays the resulting file for the user
to review.

This example demonstrates the complexity of the
language that had to be dealt with in the implementation,
but also gives one a feeling for the abstraction,

flexibility and power that can be obtained.

C. EXAMPLE #2 - DEVELOPMENT OF "xi”
The RPL operator ‘xi’ +filters a sequence given a
predicate to test its elements. In order to better

illustrate the need and execution process of this operator
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the following RPL sequence will be used:

s == (g@q 3 4 267 -12 - 4)
This is represented internally as,
(rel (3 4) (4 -2) (-2 6) (6 7) (7 -1) (-1 2) (2 - 4))
and graphically as

o——).——)o—-)-——).~¥9o——é.——é.
3 4 =2 & 7 -1 2 -4

Suppos=, the user wanted to eliminate the negative nodes
in the sequence. The normal filter operation is not

suitable since it would simply test both the left and right

member of each pair in the relation and eliminate the entire

node if either element was negative. The result of
performing a narmal filter on s would produce:

(rel (3 4) (&6 7))
Graphically, this is:

—>e —>e o

3 4 & 7 2
Notice that the resulting elements of the sequence are
disconnected and the valid element, ‘2%, has been
erroneously deleted. A solution to this praoblem would have
to reconnect the disconnected nodes and not eliminate valid
ones by mistake. Thus, the °‘xi’ operator is justified.

The °‘xi’ operator accomplishes this process in basically

three steps. First, the transitive closure of the sequence
is computed. Second, the undesireable nodes are
223

N AR S AR R R S PO AL ' y
o ) e N e . o]
el e A“A‘:&{&'J;;:L‘:};_!L!Al_l'_fui [ FRER AN

S
s

"

AN T
Ki3ANLRENAY,




e O T AR " BadT R S T Wl PN RS £ et RS L Y

elimininated and third, the redundant edges are eliminated.
This process is illustrated graphically on the sequence s.

(1) Compute (s sup +):

RN\
T\
A a7 W

Qe VY.PP
NS 2

(2) Eliminate negative nodes using restriction,
s restr (rsec > 0):

(3) Eliminate redundant edges using mu, a relation mini-
mization operator defined as: (R \ (R ! (R sup +)):

g ! (8 sup +):

g \ (8 | (s sup +)):
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xi’ follows:

TR s ——

Thus, the definition for
pxir = (mu ({(r sup +) restr p)

The major implementation problem here is the large

amount of temporary storage required to hold the transitive
closure of s. The use of LISP as an implementation language
eliminated this concern since it already has a built-in

storage management system.
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