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ABSTRACT

Relational programming is a methodology which combines

the advantages of funtional programming with the relatively

simple laws which govern relations. The goal is to give the

programmer an environment which allows a higher level of

programming abstraction than currently exists, an easier

approach to proving programs correct, and a language which

-t -7 I
can support new parallel architectures. In this Pepapt, the

design and implementation o4 a prototype interactive inter-

preter for a relational programming language is presented.

The reasoning behind the decision to use LISP as the

implementation language is presented followed by an in depth

discussion of the design issues involved and the implementa-

tion decisions made. How to use the interpreter and future

research topics are discussed. Also several appendices are

provided which include the grammar, the relational operators

implemented, and the documented LISP code.
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I. INTRODUCTION

Relational programming is a programming style which uses

the relation as the basic structure for all programming.

This innovative methodology may be a sound approach to

meeting the future needs of the computer science community.

Because entire relations are manipulated instead of

individual data elements, relational programming may serve

as the basis for an efficient, modern machine architecture

which will overcome the limitations and low level word-at-a-

time processing of the von Neumann type computers.

A relational programming language is a higher level

language than conventional languages such as Fortran,

Pascal, and Algol. These languages are sequential in nature

and involve the programmer in many low level pe-ogramming

decisions such as keeping track of counters or indices to

array structures. This means that the programmer must worry

about how to manipulate individual members of an array to

achieve the desired result instead of being able to deal

with the array structure as a whole. Relational programming

frees the programmer from these types of decisions, allowing

him to work at a higher level of abstraction, concentrating

more on WHAT the program must do, but not details of HOW it

will be done. Relational programming can do this because

data and programs are not treated differently. Data and

8
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programs are equivalent, since they are based upon a common

structure, the relation.

The relation is a reasonable and feasible basis for a

programming language because a well developed theory of

relations exists and the laws which govern relations are

relatively simple. A similar approach to relational

programming, which has been an active area of research, is

functional programming. Backus described in his Turing

Award paper [Ref. 13 a functional language, FP, and its

advantages in meeting future programming needs. As

MacLennan [Ref. 2] has stated relational programming

subsumes functional programming because every function is a

relation. Therefore everything that can be done in a

functional language can be done in a relational programminq

language. MacLennan has described the advantages of

relational programming and demonstrated its potential as a

powerful high level language. These advantages are

summarized below:

1. Relational programming supports abstract higher level
programming.

2. Relational programming deals with a single kind of
entity, the relation, and uses it for all purposes.

3. Relational programming more directly supports non-
linear data structures such as trees and graphs.

4. Programs can be algebraically derived and manipulated.

5. Relational programming can more easily support
utilization of associative and active memories.

9



This research will serve as a mechanism to demonstrate

the practicality and feasibility of a relational programming

language as described by MacLennan [Ref. 23. Therefore,

familiarity with his report is necessary to better

understand the further development of his work presented

here.

This report will describe the development and design of

a prototype interacts Je interpreter for a relational

programming language. It will also demonstrate that such an

interpreter is implementable on a current machine

architecture, although it would probably be more suitable to

a newer type of architecture.

This research and its product, an interactive Relational

Programming Language (RPL) interpreter, will serve as a

kernel and impetus for follow-on work with relational

programming concepts. It is hoped that the issues and

decisions made in this implementation will provide the

answers to some of the basic questions, and identify some

critical areas for future research.

.1
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II. BACKGROUND

The von Neumann model of computation has been dominant

for the last 30 years and has remained largely unchanged

even though significant advances in both software and

hardware technology have taken place. Applications continue

to become more complex and sophisticated, requiring

increasingly more powerful computer systems. To date,

extensions of conventional software systems have seemed to

meet the demands. However, it has become quite clear that an

alternative to the von Neumann computer organization is

needed.

Programming languages were originally designed for and

have supported the von Neumann machine architecture. But,

as technology has advanced, the von Neumann sequential word-

at-a-time bottleneck has become painfully apparent. Real

world applications are not sequential in nature and the

conversion of concurrent processes to operate sequentially

affects efficiency and speed of computation.

Hardware research has acknowledged that a fundamental

limit exists on the performance increases which can be

derived from advances in technology alone. VLSI technology

seems to be naturally suited to new types of parallel

architectures, and programming language design is following

suit with the development of higher level programming

11
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languages which are more powerful, abstract and easier to

prove -correct. The increasing complexity of real world

applications is dictating a need for higher levels of

abstraction so that the programmer can concentrate on the

overall solution without becoming bogged down in the

details. Relational programming is one possible solution to

this problem.

Relational programming is based upon the use of a

relational calculus which can model almost any data

structure. Therefore, the high level relational operators

can also be used to manipulate entire data structures.

MacLennan has presented and discussed the basis for a

relational programming language in references 2 and 3. The

operators he describes are based on naive set theory and

operate on three basic objects: individuals, binary

relations and sets. Individuals are the indivisible data

values which can be used to compute. A binary relation is

some property which relates one object to another. For

example, the less than (<) relation relates all pairs of

values, x and y, for which x is less than y. Therefore the

pair (3,4) is a member of the <' relation. The '4"

Vi relation can be denoted (x,y)+z, which means that it takes a

pair (x,y) and relates it to its sum z. In general, a

relation can be represented by the notation, xRy where x and

y may represent any objects.

12
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A set is any grouping of individuals, binary relations

and/or other sets. Thus there is no restriction on what

sets or relations can be members of other sets and

relations.

With these basic objects, MacLennan develops and

describes the operators which he feels would be useful to

the relational programmer, and demonstrates the potential

advantages of a programming language based upon a relational

calculus. He shows that relational operators can be

algebraically manipulated to derive other, more complex

operators. This ability supports the premise that

relational programs would be easier to prove correct. It

also demonstrates that programs can operate on other

programs to yield relatively straight-forward solutions to

complex problems. High level abstraction is thus supported,

allowing the programmer to be more productive and able to

conceptually manage larger and more unusual applications.

An important point made by MacLennan is the need to

separate intensional and extensional operators. Relations,

functions and sets can have both a finite (extensional) or

an infinite (intensional) representation. Many operators or

combinations of operators are implementable in either

representation. This complicates the programmer's life

because he must remember the underlying restrictions

involved when he wishes to use an operator which falls into

one or the other category.

13
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In order to prevent confusion caused by double duty

operators, MacLennan made a decision to separate the

operators into disjoint classes, those which are used on

finite sets and relations, and those which operate on the

computable functions which represent infinite sets and

relations. For example the application operator can both be

used for applying a function to its argument and for looking

up an item in a table (a finite relation). The first case

is represented f@x, which applies the computable function f

to the argument x. The more common mathematical notation is

f(x). The second case, which is denoted by t 4 x, and read

as 't select x', applies the finite table t to x. This

simply means lookup x in table t and return the first item

related to x. Thus, if t - (1:2, 2:3, 3:4, 4:5) and x = 2,

t , x would return '3'. The ":' operator used above is just

a pair making operation which says the x:y is a pair (x,y)

that is a member of the relation R, hence xRy.

The operators were further subdivided by MacLennan into

a primitive class and non-primitive class. Operations were

considered to be primitive if they could not simply be

defined in terms of other operations. 13 primitive

extensional operators and 15 primitive intensional operators

were proposed by MacLennan. These primitive operations were

supplemented by 55 non-primitive extensional operators, 1

non-primitive intensional operators and 13 miscellaneous

operations which were defined in terms of the primitive

14



operators. MacLennan felt that these non-primitive

operations should be built-in to any relational programming

language implementation. Because the work done in this

study resulted in modifications to some of the operators

proposed by MacLennan, a discussion of the operators will be

presented in later chapters and in detail in Appendix C.

Since a computer's memory is finite, representation of

large extensional sets and relations is of major concern.

To this end, Suha Futaci [Ref. 4] extended MacLennan's

research by analyzing the complexity of the algorithms

associated with several different extensional

representations.

* Finally, the purpose of the prototype interpreter

developed in this research is to further advance the study

of a relational calculus as a programming methodology. The

interpreter will provide a tool to evaluate the relational

operations and provide tangible input for the selection of

optimal set of combinators and relational operators. To

achieve this several unique linguistic issues made the

implementation of this prototype particularly interesting:

1. RPL supported a syntax which allowed infix operators
to be used in prefix format if desired. The
expressions (x + y) and [+]<x,y> have the same
semantics, therefore the parser had to be designed so
that both expressions were ultimately evaluated by the
same function. The utility one can gain by this
convention is illustrated in Example 1 of Appendix G.

2. Many operators can be defined in RPL which require the
creation of huge sets or relations to be generated as
an intermediate form. This is generally what may

15
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happen before the application of a filtering operator,
in which the final result requires a fraction of the
storage needed by the intermediate form. This is
illustrated by the development of the 'xi* operator,
see Example 2 Appendix 6. A mechanism to allocate
storage and perform garbage collection is imperative
for RPL. Such a mechanism was provided by LISP's
built-in storage management system. Having this
feature available in LISP was a major consideration
for its use as an implementation language.

3. The original grammar shown in Appendix A was not

deterministic and had several productions defined with
left recursion. It also contained several meta symbols
that had special meaning to LISP (these included "(',
.) 1 'E', ]J', and '.'). These issues resulted in the
transformation of the grammar to the one shown in
Appendix B.

4. Twelve of the fourteen alternatives to the production
'primary' shown in Appendix B are tagged LISP lists.
This syntax provides a deterministic way of parsing
these entities and alleviates the problem presented
with the LISP metasymbols contained in the original
grammar. Having tagged lists for these structures in
RPL led to a type checking mechanism where most of the
RPL primitives are implemented with a unique
identification tag.

Chapters III through V will further examine these issues and
.

outine the overall design of this prototype. Chapter VI

explains how to use the interpreter and provides several

sample terminal sessions for illustration. Chapter VII

demonstrates the use of LISP performance analysis features

and suggests a direction for follow on research in RPL.

16
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I II. WHY I~s_ P?

There were four primary considerations for using LISP

as an implementation language for the RPL interpreter: the

availability of the Interlisp-1 programming environment,

the ability to simplify scanning and parsing by adopting a

LISP-like syntax, the ability to use LISP's built in memory

management and garbage collection system, and finally, the

ability to simplify several complex data structures by

using built in LISP structures.

These advantages far outweigh the sometimes awkward

LISP-like syntax, and some of the LISP specific input/output

problems that surfaced as the prototype was developed. A

discussion of the all RPL input/output, including the

problems encountered, is found in Chapter V.

A. THE INTERLISP-1 PROGRAMMING ENVIRONMENT

The Interlisp-10 system provides a rich programming

environment. The tools it provides to enhance code

development include an integrated structure editor, a

compiler and an excellent set of debugging facilities.

These tools operate within a framework which does more than

just process one command and wait for the next. Three

additional resident features of Interlisp that are always

17
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present to enhance program development also influenced the

choice of LISP as an implementation language.

The 'Do What I Mean' (DWIM) feature of Interlisp, is

invoked any time the system detects an error. DWIM attempts

to correct common programming errors by trying to logically

predict what the programmer had intended. The ability of the

DWIM feature to correct spelling and typographical errors is

a definite time saver.

Another resident feature of the Interlisp environment is

the Programmer's Assistant (PA). This feature basically

maintains a history list of all commands entered by the

programmer. Using various PA commands the programmer can

REDO a sequence of operations, or use UNDO to cancel

previous operations, or replace one variable name -with

another with the USE command.

Two particular features available in the Interlisp

environment, Masterscope and Breakdown, are especially

useful to future reasearch. Breakdown is an excellent tool

for conducting performance analysis, allowing the programmer

to probe the system to collect information such as, the

number of calls and amount of cpu time required by a

particular function. The programmer can even find out how

many times a function executes another function (sometimes

the number of calls on the LISP CONS function is a good

*performance indicator in LISP systems).

'is
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Masterscope is a remarkable feature of the Interlisp

environment which creates a database from analyzing a

program. Using this database, the programmer can interrogate

the system to find out information, such as where each

function is called and where variables are bound or

referenced, or edit a function any where a particular

variable is used. This feature is particularly desirable in

a prototype such as this since follow on research will have

a facility to predict the effect of changes as program

revisions are proposed and implemented.

B. SCANNER AND PARSER IMPLEMENTATION SIMPLIFIED

Since LISP views everything in terms of its primitives,

atoms and lists, the tokenization function normally provided

by a character-at-a-time scanner was significantly

simplified, although the grammar had to be modified slightly

to adopt a more LISP-like syntax. By requiring all

expressions to be enclosed within a set of parentheses,

parsing an expression becomes a simple matter of determining

the length of an expression. The LENGTH function is built

into LISP. For example an infix expression written as

(x + y) is recognized by the length 3, while the prefix

expression (not p) is distinguished by its length of 2.

Notice the requirement for spaces between the operand and

operator. Spaces and parentheses are the only delimiters

used in RPL's LISP-like syntax. Although this syntax became

19



necessary as a result of implementation issues, it served

the main objective of this prototype, to develope a tool to

further advance the study of the use of a relational

calculus as a programming language.

The ability to readily identify infix and prefix

expressions provided a logical basis for the overall design

of the parsing function.

By representing all RPL expressions as LISP lists,

extracting the operands and operator of a given expression

can be accomplished easily by using the LISP CAR and CDR

functions. These functions each take a non-empty (non-null)

list as its argument. The CAR function returns the first

element of a list, whereas the CDR function returns a list

containing all elements of a list except the first element.

Therefore, the CAR function is used to extract the operator

of a prefix expression, and the operand is obtained by first

using the CDR function on the expression, followed by the

CAR function. For example, the expression (not p) can be

parsed into its operator and operand as follows:

operator <= (CAR '(not p)) = not

operand <= (CAR (CDR '(not p) = p

Note that LISP evaluates nested functions from inside out.

This means that to obtain the operand, the function (CDR

'(not p)) is evaluated first, which returns the list (p).

This result is then the argument to the CAR function, which

extracts the p from (p). Since LISP programming requires

20



many instances where successive CAR and CDR combinations are

required, a shorthand notation simplifies the operand

extracting code to the followings

operand <- (CADR '(not p)) - p

where the 'A' of the CADR function comes from the CAR

function, and the "D" from the CDR function.

Therefore, simple length checks on expressions direct

the parse into two logical subsets. Once this is

accomplished the operator and operands are readily

accessible through a sequence of CAR and CDR function calls.

This simplicity made LISP particularly attractive as an

implementation language.

C. LISP PROVIDES A BUILT-IN MEMORY MANA6EMENT SYSTEM

Using LISP as an implementation language also eliminated

the need for coding a memory management and garbage

collection system, since these features are already

available in LISP. Issues such as variable storage

requirements simply went away. The ability to let a proven

system like Interlisp perform all the memory management

provided a sound foundation on which the RPL system could

implemented. This also eliminated a very error-prone area of

coding that might have created significant delays in the

development of this prototype.

21



D. RPL DATA STRUCTURES SIMPLIFIED

Many of the data structures needed by the RPL

interpreter were readily available in LISP. Using built in

LISP 4unctions simplified and/or eliminated a considerable

amount of code in the sets and symbol table data structures.

ALL of RPL's extensional operators operate on finite

sets. LISP's implementation of sets is simple, the LISP

list. Additionally, Interlisp-1 provides a complete

assortment of set operations including union, intersection,

set difference, cartesian product and both membership and

subset boolean functions. Using these built in LISP

functions as a foundation, all that was needed to implement

many of the set operators in RPL was the addition of type

checking to ensure the compatibility of the operands used

with the built-in functions.

One of the main design decisions in the development of

the RPL interpreter was the choice of the data structure to

represent the symbol table. Several related design decisions

had already decreased the complexity of the symbol table

requirement. Variable storage requirements were no longer an

issue, and a type checking tag was to be embedded within the

variable's definition. All that was needed was a mechanism

that could provide a binding between a variable name and its

definition, along with a fast and efficient accesssing

function to retrieve the definition of a variable given its

name and scope. This requirement translated directly to the

22



LISP association list, or a-list. The RPL symbol table is

referred to as the RPL environment (denoted globally as "E °)

since it is the same structure used in MacLennan's

development of a LISP interpreter written in LISP, rRef. 5].

The a-list is nothing more than a list where each

element is a list. The following is an example of an a-list:

E = ( (x 1) (y 2) (z 3) (t set 1 2) )

Each element of the a-list represents a name/definition

pair. The name is the CAR of the a-list element, its

definition is the CDR. In the example above the x, y and z

are bound to 1, 2 and 3 respectively, while t is bound to

(set 1 2).

The a-list structure in LISP can be efficiently scanned

by the LISP SASSOC function. This function, given an a-list

and a target, will return the a-list element (both target

and its definition), if the target name is found, otherwise

it returns NIL, indicating the target was not in the found.

The use of the a-list data structure to represent the

RPL environment provided still another means to simplify the

the overall coding requirements of the interpreter.

."2

J'. 23



IV. RPL QRAMtAR AND SYNTAX

A. INTRODUCTION

One of the goals of relational programming is to develop

a notation which is both readable and has the manipulative

advantages of a two-dimensional algebraic notation. Such a

notation would enhance the ability of relational programs to

be more easily proved correct. Unfortunately, most printers

do not incorporate the unique mathematical symbols that are

necessary to support a notation of this type. However,
A-

there are software methods which enable some specialty

printers to produce such symbols.

With such a notation in mind, MacLennan proposed the

original grammar shown in Appendix A. This grammar was

* printed using the "eqn' package of the Unix Operating

System. This package is a text formatting tool which takes

an English-like description of an equation and generates the

mathematical symbols for that equation when it is printed.

Thus the notation and operator names utilized by MacLennan

have the eq input format as a base. The utility of the eqn

package is introduced in this version of the grammar, but

its real value will be demonstrated later when the symbols

selected for the operators are discussed.

MacLennan's grammar accurately presents the production

rules necessary to produce legal relational programming

2
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statements independent of implementation considerations.

However, it is loaded with left recursion, which means a

great deal of effort would have been required to transform

it into a form from which a conventional parser rcould be

generated. Fortunately, the decision to use LISP as an

implementation language eliminated this concern, but did

present other problems which required modifications to this

generic grammar. In addition to basic changes required by

the use of LISP itself, other modifications were found to be

necessary as the RPL interpreter was designed, tested and

exercised. The remainder of this chapter will discuss the

evolution of the original grammar into its implemented form

presented in Appendix B.

B. DISCUSSION ABOUT THE ORIGINAL GRAMMAR

At the highest level, the original grammar called for an

interactive session which consisted of zero or more commands

and the word 'done'. Commands could consist of a data

definition, a prefix function definition, input from a file

and output to the screen. In addition to the many built-in

infix and prefix operators, several special constructs were

available including iteration, superscription and

conditionals. Finally, a variety of symbols represented

different objects within the language.

The bracket symbols, '[ and "', had two meanings as

printed in Appendix A. In one sense their use meant that

25
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the object(s) enclosed were optionally required. This

meaning is still retained in the revised grammar. On the

other hand the brackets also were terminals in the language

which produced different relational structures depending

upon what objects were enclosed by them. First, an infix

operator enclosed in brackets, e.g. E+3, transformed the '+'

operator which took two numeric arguments, into a prefix

operator which took one argument, a pair of numbers. Thus

(x + y) became equivalent to [+J(x,y) where x and y could

be any number. Second, the brackets could be used to fix

either the left or right arguments of an infix operator.

Therefore, it was permissible to write [3+]x where E3+3 is a

specialized operator which adds '3' to any other single

numeric argument such as x. Likewise, (+43 fixed the right

argument to '4' and would add any numeric argument proviaed

to '4'. Use of the brackets in any of the above manners

created a functional which could be combined with other

functionals to create whatever mechanisms were required to

accomplish a particular task.

Parentheses were included to allow natural mathematical

groupings of both expressions and their arguments. Thus

expressions could be both RPL functionals or data. The angle

brackets, '<' and ">', when used to enclose data represented

a special sort of sequence which had a termination symbol,

much like a LISP list structure which ends in 'nil'.

Finally, braces were used to enclose the elements of a set.

V2
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The use of these symbols presented a convenient method for

manipulating functionals, but conflicted with the LISP

syntax. The changes to the grammar that resulted because of

this are discussed next.

C. GRAMMAR MODIFICATIONS DUE TO LISP

Unforturnately, parentheses and brackets have a

different meaning in LISP. In LISP parentheses are used to

delimit a list structure. Brackets serve basically the same

purpose, but the right bracket, known to some as the super

bracket, closes off all left parentheses which do not have a

matching right parenthesis. For those who are familiar with

LISP, this feature is both good and bad! Some say LISP

stands for 'Lots of Idiotic Stupid Parentheses' which

summarizes the frustrations encountered with parenthesis

bookkeeping.

This conflict of symbols required that an alternative

syntax be developed to conform with the LISP list structure

and still maintain the semantics of the RPL language.

To distinguish between structures, it was decided to use

keywords as the first element of the list which represented

them. These input formats are then transformed into the

internal structures required by the interpreter. Another

problem was the use of a pair of dots or periods to indicate

a range of values. For example, in the original grammar the

range (6..8) was equivalent to sequence (6,7,8). Use of the

27
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% character ". in RPL created a symbolic conflict in LISP.

Dots in LISP are treated as special connectors which form a

structure called a dotted pair. Since LISP does not

normally treat dots as regular characters, anywhere a pair

of dots was required in the original grammar, the word 'to'

was substituted in the new grammar.

Although some of the symbols used in the original

grammar did not pose a problem in LISP, they were abandoned

S-' for consistency. The resulting constructs are summarized by

example in Table IV-1. Note that these formats are just

LISP lists with their formal requirements for spaces between

the objects in the list, be they numbers, words or any

grouping of characters. Thus, a disadvantage of LISP is

inherited by RPL, the importanca of spaces and the correct

placement of parentheses.

D. GRAMMAR MODIFICATIONS DUE TO DESIGN AND IMPLEMENTATION

Several productions were added to the grammar due to

considerations and factors which surfaced during the

implementation process. At the command level a decision was

made early on to increase the flexibility for the RPL

programmer by allowing him to define infix operators as well

as prefix operators. The original grammar forced the

programmer to define infix operators in a prefix format.

That meant that his normal thinking about an infix operator

had to be altered to fit the prefix form of a function which

28
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Table IV-1 -- RPL Grammar Modifications
Required By Use Of LISP

RPL SYNTAX

Original Final

E3+3 1 (sec 3 +)
-------------- --- -------- I

(+43 ( rsec + 4)

(1,2,3,4,5) 1 (seq 1 2 3 4 5)
-------------- :--- ---------- I

(1-.5) 1 (seqranoe 1 to 5)

(1,2,394,53 (set 1 2 3 4 5) 1

(1..53- (setranqe 1 to 5)
---------- ---------- ---------------------

<192,3> 1 (list 1 2 3)
------- ------- ----------------------------

a<1..5> 1 (listrange 1 to 5)
-------------------- -------------------- a

iterlp->f3 1 (iter p -> f)
- - - - - - - - - - - j - - - - - - - - - -

[if p -> f;g3 I (if p -> f;g)

a----------------------------------------------------------
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takes a single argument - in this case a list containing two

arguments. Internally, all operators can be considered as a

prefix, but most people have become accustomed to thinking

about binary operators in the infix sense. For example, to

add 2 and 3 in RPL it is natural to write

*(display (2 + 3))'. But to define the infix operator

plus' which would do the same thing, a user would have to

enter '(plus (x y) == x + y))'.

To alleviate this inconsistency, a production rule was

added to allow the programmer to define the operator 'plus'

in the more natural way and to use it the same as any other

infix operator:

Definition => (x plus y == (x + y))

Example => (display (2 plus 3))

The second major addition to the grammar was a similar

construct' to the LAMBDA expression in LISP. This construct

provides the programmer with a great deal of flexibility and

was incorporated into RPL as a 'func' expression to insure

no confusion with the LISP equivalent. Like the LAMBDA

expression in LISP, the func expression consists of the name

of the function, a list of formal parameters, and the body

of the function in terms of the formals. Thus, the RPL

programmer can now define functions/relational operators in

d three ways, directly using the "func expression, as a

prefix operator, or as an infix operator. For comparison,

the three types of definitions for the 'plus' operator as

. 30
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described on the previous page are shown below:

Direct: (plus -- (func (x y) (x + y)))

Prefix: (plus x y) - x + y))

Infix: x plus y == (x + y))

From the examples above, it appears that parentheses are

going to plague RPL just as they do LISP, but, as will be

discussed in a later chapter, the Interlisp envirqnment

provides a mechanism which allows the outside parentheses to

be dropped when inputting commands, and actually assists in

keeping tract of correct placement of parentheses.

The next modification, which was deemed appropriate to

make the programmer's life a little easier, dealt with the

RPL command 'display'. At the command level this word had

to be written to obtain output to the screen. It quickly

became apparent that it was cumbersome to type 'display' in

order to see every result of a computation. So, the

alternative input forms of "dis' and 'd' were added.

Finally, even these forms were made optional, requiring the

interpreter to detect automatically the programmer's intent.

As mentioned earlier in this chapter, the original

grammar only permitted input from a file. The intent was to

allow the user to create a series of RPL data structures

outside of the RPL environment and to read them in as

necessary during a session. It became apparent that there

also was a need to save data created during a session. For

example, a database in RPL is just a large set of records,
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where each record is a relation between the field names and

their associated values. It is desirable to be able to read

the entire database structure from a file, update it in some

fashion during a session, and rewrite it back to a file. To

allow this, another production was added at the command

level which permitted commands of the form:

file string expression

Execution of a command of this type would place the

value of the evaluated expression into a file with a

filename given by the 'string' argument of the operator

'file'. For example, consider an existing database stored

in a file called 'OldMaster' and an updating function,

, called 'Update', which when given a database as an argument

would modify the value of a selected field in all records

and return the updated database. With this new production

,* it is then possible to execute the following command:

(file "NewMaster" == (Update (file "OldMaster")))

This command would read the 'OldMaster' file in, execute the

'Update' function with "OldMaster" as its argument and then

rewrite the updated database to the file 'NewMaster'.

o' The one problem with this construct is that it should

not be used to store function definitions to a file. A

function definition has associated with it an.environment of

definition. This environment consists of all previously

defined functions, their environments, and any data

definitions made up to the point of definition in the
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session. Since the environment is nothing more than an

association list which contains the bindings of all hames to

their values, this list can become extremely long in a short

period of time. Internally, pointers are used to conserve

space, but when printed, the entire environment chain is

produced, which could result in many pages of information.

As discussed in Chapter V this could cause a fatal problem

or be a terrible inconvenience at the least. Another

feature of the RPL system, which is discussed in more detail

in Chapter V, allows function definitions created during a

session to be saved for future use and thus avoids the

problems which could be created with the file command in the

output mode.

The function definition and its associated environment

did lead to two other grammar modifications. First, the

initial implementation of the 'display' command returned the

evaluated form of the argument. Therefore, the result of

executing such a command returned something totally

different from what the user typed in and compounded the

problem with environment length.

For example, say the user typed in the following data

definition:

(x == (seq 1 2 3))

Later in the session he decides to remind himself of how x

was defined. He types in the command (display x), but what

is returned is not his definition, but the internal

33

" .r. ° '. '%" * - * - " '"- - -'. "d°"- ,-- / . ,:' -. - * . '%"" "- ".' d -* .'," - % .*" , ". -"""-"-°-", 
"

." . . . " i t.. r~j f~i:,- , ",
"

" 
"

-" " ' 
T

" . ... ... .'" " " "" - "-""- , " "" "" ..- "."..."".
-.-... ".......".."....

".



representation of the sequence he defined:

(Erel (1 2) (2 3))

Likewise, if he had defined the function f as:

(f x == (x times x))

and then entered (display f), he would see:

closure x (x times x) ...

Internal representations will be discussed in detail in

Chapter V. To an unfamiliar user, this would be quite

confusing and so the DISPLAY function was modified to return

the user definition as it was typed in.

After one becomes familiar with the RPL language it

becomes desirable to sometimes see the evaluated internal

representation of any particular name. This feature is

especially helpful when trying to debug a command that

didn't work. The 'val identifier' command was developed to

handle this need and was extended to meet the need to see

the overall session environment or the environment of any

particular function.

Every function definition has its environment of

definition attached when it is converted into its internal

representation. In LISP, that means a simple pointer is

added to the list which describes the function. When this

definition is printed, however, that simple pointer is the

beginning of a very long list of pointers which may

represent atoms or other lists of atoms to be printed.

Consequently, pages of information are printed to the
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screen. When this same information was in evaluated form,

the result was excessive and usually resulted in aborting

the session. To prevent this surge of unwanted information,

the DISPLAY function was modified to print only the first

three elements of a function definition, its name, its

formal paramenters, and its body. Unfortunately, this

modification also eliminated the ability to ever look at any

environment. So, the 'env' command level productions were

created. They allow the user to look at the overall session

environment or the i.,vironment of any designated function.

These features will be discussed further in the input/output

section of Chapter V.

E. INFIX VS PREFIX OPERATORS

At first view the myriad of operators shown in

MacLennan's grammar seem overwhelming and confusing, but one

must remember that many of the words and symbols chosen were

based upon the Unix eqn input format. Due significantly to

the way the RPL interpreter was developed, many of the

prefix operators became more naturally suited to an infix

format. Some operators were discarded as no longer relevant

because of changes in the way argument lists were

represented. Others were added because of a new found

utility based upon the same change just mentioned. It is

also here where the true utility of the eqn text formatting

tool becomes apparent. The sheer quantity of operations,
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due mostly to the goal of preventing overloaded operators,

required a great deal of distinct symbols. The purpose and

use of these operators are discussed in Appendix C, but

their names, original input forms, final input forms and the

eqn publication forms are shown in Appendix E. This

appendix summarizes the final changes to the grammar,

highlights the conversion of some prefix operators to infix,

and also serves as a concise guide to the relational

operators and their syntax. Finally, the current grammar as

implemented by the RPL interpreter is shown at Appendix B

and includes all the modifications discussed in this

chapter.
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V. INTERPRETER DESIGN AND DEVELOPMENT

Previous chapters have illustrated the rationale behind

the choice of LISP as an implementation language and the

resulting modifications that became necessary to adapt the

the original RPL grammar. The purpose of this chapter is to

focus on issues related to the implementation the of RPL

primitives and the overall structure of the interpreter. In

addition, since MacLennan's report [Ref. 2) illustrates how

many RPL operators can be implemented by defining them in

terms of a set primitive operators, the mechanism used to

implement the extensible nature of RPL is also an issue that

will be discussed.

A. RPL PRIMITIVES

RPL contains three fundamental elements, individuals,

sets and relations. The function, which is merely a special

case of a relation, was added to the list of primitives

because it required a unique internal representation.

1. Individuals

The indivisible data element found within RPL is the

individual. This data type is equivalent to LISP atomic

values and is implemented accordingly. Numeric, string and

boolean scalars common to all programming languages are

available in RPL. Strings must be enclosed in quotation

:37
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marks to distinguish them from LISP literal atoms. Literal

atoms in LISP are used to implement the boolean values,

'true' and 'false', and all identifiers.

2. Sts

The set in RPL is implemented as a LISP list

containing the tag Eset as its first element. The tag

'Eset' is used both to distinguish the internal set

representation in evaluated form from its input format and

as a type checking device. For example, the set having the

internal representation (Eset 1 2 3) may have been input as

(set 1 2 3) or (set a b c), where a-c have appropriate

internal bindings.

*5 3. Relations

The finite relation, being a special kind of set,

has an internal representation that closely resembles the

set. The relation requires a special type of LISP list,

called an association list or a-list. This particular data

structure was chosen to implement the relation for two

reasons. First, the mathematical notation for a relation

closely resembles an a-list. For example, the mathematical

relation

- (1,2) (2,3) (3,4) (4,5) 3,

is represented in RPL as the following tagged a-list:

(Eset (1 2) (2 3) (3 4) (4 5).

Second, the desire to use relations as tables, suggests the

choice of a data structure that can be searched quickly and
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efficiently. The LISP SASSOC function provides this

capability when called with an a-list as its argument.

Since many built-in RPL operators are designed to

operate on relations, to perform the fast recognition

necessary for type checking, the "Erel' tag was used in

place of the sEset" tag. This efficiency was not free. The

cost of distinguishing relations as a special type of set

was paid for by the increased complexity in set operations

and the coding necessary for coercion functions.

a. The Evolution of 'Erel'

During the earlier stages of development,

after the decision to have the 'Erel° tag to distinguish

relations, it seemed logical to extend this principle to

special kinds of relations, namely sequences and arrays.

There were many operators within RPL designed to operate on

these kinds of relations, therefore, for the same rationale

behind having the 'Erel' tag, the "Eseq' and 'Elist' tags

were adopted.

The language incorporated two input formats

as convenient ways to enter mathematical sequences and

arrays. The familiar mathematical notation for the two

entities was reflected in the original grammar. The sequence

was shown in the original grammar as ( 2, 4, 6, 8 ), whereas

the array (n-tuple), was represented as < 2, 4, 6, 8 >. Both

". of these are mathematically relations:
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( 2, 4, 6, 8 ) <=> < (2,4) (4,6) (6,8) }

< 2, -4, 6, e > <=> c (1,2) (2,4) (3,6) (4,B3)

This was modified to the following LISP-like syntax:

( 2, 4, 6, 8 ) => (seq 2 4 6 8),

< 2, 4, 6, 8 > => (list 2 4 6 a).

For completeness, an input syntax was

adopted to permit relations to be entered through the use of

the tag 'rel°, in place of the 'set' tag, and the use of the

RPL pair making operator, *:'. The input format

(rel (1 : 2) (2 : 3)),

was represented internally in RPL as the relation

(Erel (1 2) (2 3)).

Although the decision to have different tags

to distinguish each special kind of set made type checking

very fast and efficient, having numerous internal forms that

are mathematically equivalent was a problem not easily

solved. Consider the relations r, s and 1 bound as follows:

r <= ( Erel (1 2) (2 3) )

s <= ( Eseq (1 2) (2 3) )

1 <= ( Elist (1 2) (2 3) ).

Any operation applied to any of these relations should yield

the same results. Additionally, an equality test comparing

any two of them should return 'true'. This situation becomes

even more muddled if the following binding is made:

s' <= ( Eset (1 2) (2 3) )•

Now there are four variables, bound to four physically
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different representations, which must be evaluated as

equivalent structures. This is like trying. to do computation

with numbers given four different number systems.

The problems created by having four objects

with the same meaning was not solvable without a

considerable amount of coding. A coercion function for

every possible representation was required. The global

variable "ESETS', a list of tags considered legal for set

operations, had to be established. Precedence rules had to

be implemented to determine what tag to affix to the result

of a set operation. The equality check had to be designed to

focus on tagless lists. All this additional effort hardly

seemed cost effective for a prototype, especially when the

algorithm for the coercion function to create a sequence

was considered. Coding to ensure a set is a fully connected

irreflexive bijection (definition of a sequence used in by

MacLennan [Ref. 2: p. 223) is not trivial task.

It was time to re-examine the efficiency

gained in the type checking mechanism by having tags

distinguish various kinds of sets, versus the increased

coding complexity necessary to ensure the semmantics is not

altered in this new syntax. This involved screening

MacLennan's report [Ref. 23 to classify operators based on

their operands and their output. It was observed that when a

prefix operator required two arguments, a two element

sequence was used. For example, the function defined as
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sum == Cx + y)

was used with the syntax, sum(2,4). Further analysis found

cases where the use of the sequence was inconsistent with

its formal definition. This discovery led to the RPL list,

depicted as <x,y> in the original grammar, replacing the

seguence as the form for arguments to functions like 'sum'.

This shift from sequences to lists will be discussed in more

detail in the following subsection.

The significance of the shift from sequences

to lists as functional arguments was that the sequence and

its operators were now considerably less important to the

RPL programmer. This, along with the coding complexity

described earlier, resulted in the decision to abandon the

'Eseq ° tag. Additionally, knowing a set is a relation makes

it is easy to verify if the relation is a RPL list. This

resulted in the elimination of 'Elist' tag also. By

eliminating these two tags a viable compromise had been

made.

The special input formats discussed

previously were kept in the language for user convenience,

with the tag "Erel' being appended internally, vice 'Eseq"

or Elist', to the a-list that made up the relation.

Sequence operators were still provided but error checking

was limited to verifying that operands are relations. This

put the responsibility on the programmer to ensure proper

arguments were used.
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The end result of the trade-off analysis,

weighing the issues of type checking efficiency verses code

complexity, brought to light the detail and depth of

planning required to design an effective software system.

Language features are not free, and simple solutions to one

problem may well create a snowball effect in complexity in

other areas. Unfortunately, sometimes this is not obvious

without modeling the implementation.

b. The Sequence Loses Significance in RPL

The sequence is used by MacLennan ERef. 2]

to represent an argument to multi-parameter prefix operators

and functions. Many applications used the sequence

operators, alpha and omega, to extract the individual

operands from the two element sequences. In the sequence

(x,y), alpha and omega were used to extract x and y

respectively. These operators can only be used on a pure

sequence. Graphically sequences can be represented as being

a fully connected structure, with no cycles, and all arrows

pointing in one direction (see Chapter VI).

In addition, the DELTA function was

introduced to create a mechanism that could duplicate an

argument for function application. For example, the squaring

function would be defined as follows:

sqr == [times] o DELTA.

The DELTA function duplicates any argument returning the

sequence shown
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DELTA n => (n , n).

Therefore sqr 4 can be written

sqr 4 => Ctimes] (4 , 4).

This looks perfectly reasonable, except that (4 , 4) is not

a sequence. By definition a sequence is irreflexive.

The problems created by the irreflexive

property of the sequence are discussed in MacLennan's

research CRef. 2: p. 223 in considerable detail. He also

suggests an alternative definition to the sequence, but the

structure used as the argument to functions remained

sequences throughout.

The failure of the sequence as an argument

to functions became obvious as many of the extensionally

defined operators were implemented. In many instances

definitions used the alpha and omega operators on their

arguments. These functions would not work for inputs of the

form (n, n). Functions that were defined in terms of DELTA,

" alpha and/or omega would not work on any input, since the

operations

alpha o DELTA
and

omega o DELTA

are undefined.

The RPL list, which had notational

similarities to the sequence, <x,y> verses (x,y), was a

logical replacement to the sequence as the argument to

-. functions. The list construct <n, n>, which is just an
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array, was well defined, fillinq the void not covered by. the

sequence. The 'sel' operator, when used with RPL list,

provided a means to extract each operand to a function,

similar to the alpha and omega used previously on the

sequence. The operators [sel 1] and [sel 2] extract the x

and y components from the list <x,y>. DELTA had to be

redefined to return the list <n,n>. The H: operator, which

was defined as

f H' g => C f(x) , g(x)

was also refined to

f :1 g => < flx) , g(x) >.

Essentially, definitions where (x,y) appeared in the

original report were replaced by <x,y>, and alpha and omega

were replaced by either [sel 13 and [sel 2] , respectively.

The unsuitability of the sequence as a

argument to a function has in no way diminished the power of

RPL. The list structure is just as easy to manipulate

algebraically, and is more versatile in many respects. For

example with the use of the 'func' a programmer can define

functions of the form

add3 == ( func (x y z) ( (x + y) + z) )

This can be used for any number of variables. A flexibility

not possible with sequences. From a system development

aspect, it is far easier to perform error checking on lists.

If anything the shift from sequences to lists made RPL

system development and programming tasks simpler.
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4. Euci gi~ci

Since RPL is extensible, both user defined functions

and system functions that are defined in terms of a kernel

9 of primitive functions have the same internal

representation. This representation consists of four

elements, the keyword 'closure', the formal parameters, a

function body and an environment pointer.

The keyword 'closure' is adopted from its use by

MacLennan [Ref. 5: pp. 436-4373. He defined a closure as

having two elements, which can be used to implement static

scoping, an instruction part (ip) and an environment part

(ep). The ip is a pointer to the part of the code which

defines the function, and the ep is a pointer to the

context of a given function, which is all the names visible

to that function. For RPL purposes the keyword 'closure' is

merely a type checking tag like 'Eset° and "Erel'. However,

the basic structure used by MacLennan to implement static

scoping in his model LISP interpreter was also used in RPL.

Figure V-1 shows the parallel between MacLennan's model and

RPL.

The formal parameters and the body of the f _tion

correspond to the ip used by MacLennan. Formal parameters

are represented in LISP as either a literal atom or a list

of literal atoms. The body of the function is a LISP list

which is syntactically a RPL expression. The expression is
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defined in terms of the formal parameters along with names

defined in function's environment of definition.

The environment pointer is a snapshot of the RPL

system environment at the time a function is defined. More

precisely, this pointer corresponds to the RPL system

environment pointer when the function was defined (this

takes advantage of the way LISP implements the list

internally). In view of this, all names defined by the RPL

programmer during a session and all RPL built-in functions

are within a function's environment of definition.

MacLennan's Model RPL Model

closure/ ep closure formals body ep

lambda formals body

Figure V-1 -- Similarity between Models

Section D, which illustrates the process of

evaluating funcions will elaborate on how RPL system binds

formal parameters to their actuals.

B. RPL ENVIRONMENT

As discussed in Chapter III two of the main advantages

for using LISP as an implementation language were the

ability to use built-in LISP data structures and LISP's
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memory management system. By embedding tags as part of the

internal definition of sets, relations and functions, and

using the LISP boolean functions, NUMBERP and STRINGP, on

individuals (non-lists), the type checking mechanism was

easily established. Therefore, many of the attributes

normally stored in the symbol table of conventional language

systems were eliminated. Combining this with the static

scoping mechanism discussed in the previous section reduced

the RPL symbol table requirements to a mechanism that would

bind each name with a pointer to its internal definition and

provide a fast means of accessing that definition.

LISP implements the list very efficiently by using

pointers to cells in memory. Since every list can be broken

into two components, its CAR and CDR, the list was a simple

but logical choice of a structure to be used to associate a

name with its definition. The name and its definition form a

pair corresponding to the CAR and CDR of a list.

A list construction function, appropriately called

CONS, is available in LISP. CONS takes two arguments, the

first argument is -he CAR of the list, the second argument

is the CDR. Using this function a binding can be made

between a name and its definition. This is illustrated in

Figure V-2.

The most primitive of LISP lists is called a dotted

pair. Like any other list, dotted pairs have a CAR and a

CDR. Dotted pairs get their distinction from the dot that
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sometimes separates the CAR and CDR when displayed. The CONS

function usually adds its first argument to the beginning of

a list, which is the second argument. Most LISP lists end

with a NIL marker, thus (CONS 1 NIL) is the list (1).

However, list without a NIL marker occurs when the second

argument to the CONS function is an atom (and not NIL).

Since the second argument has no NIL marker, the list

created by CONS in this instance has no NIL marker either

and it looks a little strange when printed. LISP prints its

lists by following the pointers of each element. A dot

is printed preceding the last element if there is no NIL

marker associated with it. This is why a dot is shown in

the illustration (f def). In many LISP implementations the

dot ." is the same operation as the CONS function.

---- >1

CONS ----- > (f . def)

def " CAR CDR

Figure V-2 -- Typical Binding

Having each name associated with its definition by

using the CONS function is not a novel idea to a LISP

programmer. A list of these pairs is called an association

list or a-list in LISP. To search these constructs rapidly
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LISP provides the SASSOC function. This function, when

called with a target and an a-list, will compare the target

to the CAR (or name pointer) of each element of the a-list.

If the target is found the entire element is returned.

Taking the CDR of this result provides the definition. This

process is encapsulated by the RPL system function LOOKUP.

The simplicity and efficiency of this data structure makes

it an excellent mechanism to implement the RPL environment,

especially in a prototype.

"* Although efficiency issues of RPL will be topics for

future research, the design of the RPL environment using the

the a-list owes its efficiency to its LISP implementation.

By taking advantage of the characteristics of the LISP list

and its most basic list constructor to bind names and

definitions it was hoped that efficiency could be inherited

from LISP. Pointers used in many PASCAL like languages are

often hard to use and error-prone. LISP provides the

efficiency of using pointers without the programmer having

any conscious awareness of their implementation. This level

of abstraction simplified the programming task considerably.

C. PARSING RPL

In most languages user input is first analyzed by a

scanner. However, by using LISP as an implementaion language

and making some minor modifications to the grammar to adopt

a LISP-like syntax, the functionality of the scanner was
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eliminated. The RPL command line is simply a LISP list.

Using various LISP funcions to examine the syntax of this

list, the semmantics of the command is extracted.

Parsing the grammar shown in Appendix B can be

accomplished by dividing the parse into two stages. The

basic input to the interpreter is the RPL command line.

Determining which of the nine different commands is .being

used is the first stage of the parsing task. Five of the

commands require the evaluation of a RPL expression. Parsing

the expression is the second parsing stage.

The first parsing stage, which is accomplished by the

RPL system function EXECUTE, classifies the RPL command. ALL

RPL commands with the exception of the command ( done ) can

be classified as shown in Figure V-3. The utility function

POSIT scans the command line and returns the postion of the

atom '=='. If '==' is not part of the command line POSIT

returns 0. Using this information, combined with checking

the length of the command line, syntax is verified and the

parse is guided to either the function DEFBINDINGS or

DISPLAY for every command except the 'done' and 'file'

commands. The 'file' and 'done' commands are directed to the

FILEWRITE and EXIT RPL systems function respectively.

The function DEFBINDINGS, expecting one of the first

three input forms shown in Figure V-3, completes the parse

by checking the length of the command line. Knowing the

length of the command, the name and expression can be
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- extracted using the CAR and CDR functions. Once the

expression is isolated it can be evaluated by calling the

function EV.

If the expression is evaluated successfully several

events occur. First the CONS function binds the name to the

evaluated expression, and this pair is consed onto the RPL

environment, E. Second, the name is consed onto the command

f == exp ) --------------

( f x == exp ) --- contain the atom
binding required

x f y == exp )-----------

a. ( file "string" == exp ) ----- contain the atom
file I0 required

( display exp )----------

( val identifier)
*°a '---- do not contain

( env ) display required

( env identifier)--------

C done ) --------------------- do not contain "=

Figure V-3 -- Command line analysis

line and is added to the a-list called USERDEFS (giving the

user the ability to save his commands to a file; see

Chapter VI). Finally, if the binding is being made to a

function defined using prefix syntax, the name of the
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function is added to the global PREFIXOPNAMES. If an error

is detected while evaluating the expression the message

'BINDING CANNOT BE MADE' is given.

The DISPLAY function looks at the CAR of the command

line to continue the parse and determine what must be

displayed. If the 'display' command is used with an

identifier, the name is looked up in USERDEFS and the

command that generated the binding of that name is

displayed. Otherwise the expression is evaluated and the

result is shown. The debugging commands illustrated in the

last three forms in Figure V-3 are also handled by the

DISPLAY function (see section H on I/O).

D. EVALUATING RPL EXPRESSIONS

The heart of the RPL language is the expression. The

expression is the vehicle that allows programmer's creative

ability to be transmitted through RPL into something

meaningful to LISP. The process of evaluating these

expressions is centered around the RPL system function EV.

This function, along with several auxiliary functions, parse

and evaluate the expression recursively. The basic mechanism

implemented by RPL used the design illustrated by MacLennan

[Ref. 5: chap. 11] and Winston [Ref. 7: chap. 23), where a

LISP interpreter was written in LISP, as a model.

There are two main differences between the design of the

text book model and the RPL system. Every operator
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implemented in the model design was in prefix notation. RPL

must handle both infix and prefix operators and be able to

recognize infix operators used with prefix syntax. The RPL

system treats any infix operator as syntactic sugar for a

prefix operator, which is made explicit in the use of the

(op f) syntax. In this respect, the RPL system design is

much more complex than its model. Adding to RPL's complexity

was code necessary to provide a robust interpreter that

would survive common programming errors. The error

detection/recovery mechanism is discussed separately in

section G.

The remaining section will explain the design of the EV

function and its auxiliary functions that together provide

the mechanism to evaluate the RPL expression.

1. The EV Function

EV is a function which was named after the LISP

function EVAL, since functionally EVAL and EV are identical.

Every expression in a LISP program is sent to EVAL. Every

expression in an RPL session is sent to EV. EV, then, is the

single most called function in the system. It takes two

parameters, a RPL expression and a pointer to the

environment of evaluation, which is the global environment

when called originally. Using indirect recursion, EV and its

supporting functions provides an effective mechanism which

is central to the power available in RPL.
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The case analysis shown in Figur. V-4 provides the

framework for the design of EV. The RPL expression is

represented in LISP as either an atomic entity or as a list.

Both these cases can each be further subdivided into three

possibilities. Using the LISP conditional, COND, the logic

suggested in Figure V-4 can be encapsulated into one

efficient statement. COND is efficient since it stops

evaluation at the first true statement. By carefully

ordering the possibilities shown in Figure V-4 the number of

unsuccessful checks can minimized. The order shown in

TYPE EXPRESSION EXAMPLE EV ACTION
LISP atomic

numeric 5 return 5
string "hours" return "hours"
literal avalue call LOOKUP

LISP list
special syntax (if p -> f ; g) call

EVSPECIALCASES
length 2 (not p) call PREFIXOP
length 3 (x + y) call INFIXOP

list w/bar (f (, bar) g) call
EVSPECIALCASES

Figure V-4 -- Case Analysis for EV

Figure V-4 is considered the most efficient since for every

call to EV with a prefix or infix expression, which is a

list, will require 2 or 3 calls to EV to evaluate the

operator and the operands. In most cases these will all be

atoms. Having the atomic values checked first, since they

will be the operand to EV 2 or 3 times more often than the

lists, takes advantage of LISP's implementation of the COND

function.
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A numeric or string value sent to EV is

immediately returned since these values are the same in RPL

as they are in LISP. The Literal atom, which is used to

represent any of the RPL primitive data types, when sent to

EV, must be found in the environment so that the value to

which it is bound can be returned. This value is obtained by

calling the RPL system function LOOKUP with the variable

name and the environment pointer (see Figure V-4). If the

variable is not found, NIL is returned from LOOKUP, which

will trigger an error in EV.-

When the expression sent to EV is a list it may have

special syntax that requires special handling. Most cases

are identified by a distinguishing tag in the grammar: 'op',

°lsec °, rsec', etc. These tags are listed in the global

variable SPECIALCASES. If the CAR of the expression is

found in the list of SPECIAL-CASES the expression is sent to

EVSPECIALCASES for evaluation. Otherwise, the length of

the expression becomes the key to its disposition. This is

possible due to the modifications that were made to

°lispify ° the grammar (see Appendices A and B). Prefix

expressions are of length 2 from the production

expression -> (application primary),

while infix expressions are of length 3 from the production

expression -> (expression infix expression).

With this information EV can call either PREFIXOP or INFIXOP
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to finish the parsing and continue the evaluation process on

the expression.

There is one exception to the method just outlined.

Before calling INFIXOP one final check must be made for

special syntax to detect the use of the 'bar' with an infix

operator. This syntax is used to combine functions. The

following expression

(f (+ bar) g)

is a function represented by

(closure x ( (f x) + (g x) ) Ep).

This closure is created in EVSPECIALCASES.

The following subsections will illustrate how RPL

internally translates an infix to a prefix expression, in

order to maintain a single internal application function and

provide a high degree of user flexibility. The four step

mechanism to perform functional application will also be

discussed. The process includes:

(1) the evaluation of the actual parameters

(2) binding the formal parameters to the actuals to form
the local environment

(3) the addition of the local environment to the
function's environment of definition creating the
evaluation environment

(4) the evaluation of the body of the function in its
evaluation environment.

This application process is the key to the power of RPL.
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2. EvjAIte O perands - PREFIXOP and I NFIXp

These two functions provide the next level of

parsing required to determine the semantics of the

expression. Both functions are called from EV with a RPL

expression and an environment pointer. The operator and its

operands are extracted and calls to EV are made to ensure

operands are defined and the operator is defined as a

function. Completing these checks, the first step in the

application process is accomplished. Note that no validation

of operand compatibility with the operator is done at this

time. If no errors have been encountered, the process

continues. This is where INFIXOP and PREFIXOP differ

slightly.

Since the expression in PREFIXOP has the syntax

needed by the RPAPPLY function, where the application

process continues, no further processing is required in

PREFIXOP. However, since RPAPPLY must handle both prefix and

infix expressions, before calling RPAPPLY INFIXOP must

convert its operands into a two element RPL list. Therefore,

if L and R are the evaluated arguments of the expression

originally sent to INFIXOP, the parameter sent to RPAPPLY

will be the equivalent to the RPL list (list L R). This

would have the follow internal representation:

( Erel (1 L) (2 R) ).

In summary both PREFIXOP and INFIXOP can be

considered preprocessors for RPAPPLY. In addition, by
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evaluating the operands, they perform the first step of the

functional-application process by evaluating the operands.

3. injajng Egrcrals and Evaluaki on - RPAPPLY

RPAPPLY has one primary task, to complete the

functional application process. To do this it first must

determine whether the function being applied has been

implemented in LISP directly as part of the RPL kernel. The

kernel functions are readily distinguished from user or

built-in extensional functions by the length of the list

containing the function's definition. For example the

function '+', which is implemented in LISP directly, is

bound to

(closure +)

in the environment. The function DELTA is extensionally

defined and bound to

(closure x (list x x) EP).

RPAPPLY passes all built-in functions that have been coded

as part of the kernel (length 2 closures) to BIFAPPLY

(restrictive relative closure). For user and extensionally

defined functions RPAPPLY completes the functional

application process recursively through EV.

The arguments to RPAPPLY are the products of either

PREFIXOP or INFIXOP. The function and the actual parameters

have both been evaluated. To complete the application

process the function's formal parameters, body and
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environment pointer are extracted from its definition

(closure). Formals are bound to the actuals by using the

CONS function to create the local environment. The number of

formal parameters must match the number of actuals. If no

error is detected, the local environment is consed onto the

environment of definition creating the evaluation

environment. With this new environment the function body,

which is a RPL expression, can be evaluated. This requires

another call on EV. Thus recursion is used indirectly to

make a very powerful evaluation mechanism.

The following example demonstrates the way RPAPPLY

completes the functional application process. Suppose

RPAPPLY is called with the following arguments:

F <= (closure x (x + 1)'Ep-f)

A <= 8

Since F is of length 4, RPAPPLY knows this is not a LISP

coded function. The local environment, LE, is constructed,

LE <= (CONS X 8) = (x . 8).

The evaluation environment, EE, is constructed,

EE <= (CONS LE EP-f) = ( (X . 8 ) EP_f ) ).

Now EV is called to evaluate the body of the function,

(EV "( x + 1 ) EE).

4. Built-in Functions Are Handled By B IF-APPLY

Of the 112 RPL operators, 68 are coded directly in

LISP. These 68 functions form the kernel of RPL and 54 are

handled in BIFAPPLY. The other 14 operators have unique
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syntax and are handled in EVSPECIALCASES. The parameters

to BIFAPPLY are the same as to RPAPPLY: taking both- a

function and its argument in evaluated form. In the case of

infix operators, operands have to be extracted from the

argument list.

As discussed in the previous section the functions

which are coded directly in LISP are bound to a definition

represented by a list of length two. The second element of

this list is used as the key to a very large LISP

conditional. To find this key the conditional is divided

into two logical parts, the built-in infix operators

followed by the prefix built-in operators. Since all the

built-in infix operator names are listed globally in the

list BIFTAG_INFIX, checking for membership in this list

directs the function to the appropriate section of

the conditional.

Once the key has satisfied one of arms of the

conditional, operand compatibility is verified. If no errors

are detected the code which implements that operator is

executed. Otherwise, an error handling mechanism is

triggered which will provide both meaningful diagnostics and

a graceful way of unwrappint the process back to the RPL

command mode. RPL error handling is discussed in detail in

a later subsection.

This huge nested LISP conditional can be considered

the end of the line for any recursion that might have been
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necessary through the application process. The result of

this function will find its way back to EV through RPAPPLY

and either PREFIXOP or INFIXOP.

5. §P__egil y.nta - E V__PECIAL CASES

From an RPL programmer's perspective RPL is a

language with an enormous flexibility. Much of the

programming power in RPL is achieved through the use of

special syntax to create programs mathematically. Although

RPL has 70 operators implemented in the kernel and 45

" extensionally defined, the language technically has an

infinite number of operators available to the programmer.

This power and flexibility is achieved through special RPL

syntax. EV_SPECIALCASES is called from EV to evaluate

expressions that have t4he atom 'func', Iop', 'Isec', Irsec',

if, 'bar' and "iter" in them. In addition,

-" EVSPECIALCASES provides a mechanism to distinguish between

the input and internal forms of sets, relations and RPL

lists and always returns the internal evaluated form.

From an implementation perspective, EVSPECIALCASES

became a trap for cases that did not really fit anywhere

else syntactically. This was particularly useful in the

implementation of the 'if' and 'iter' operators. These both

return a closure.

The implementation strategy for all special cases

whose outcome was a function was the same. Each closure is

created by parsing the expression to capture the semantics
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of the expression within the new body of the new function.

The body is another RPL expression. For example, the

expression
(lsec + 1)

would be translated into a closure of the form

(closure ?x ( ?x + 1 ) Ep).

This methodology was adopted to implement 'if* and 'iter'.

To preserve the semantics of the original expression,

special syntax was introduced for the body of the closure,

which would be special cases not available to the user.

Adding these expressions to the lists handled by

EVSPECIALCASES provided the facility to capture the

semantics of these expressions. The following example will

illustrate the translation that occurs whenever 'if' and

"iter" are used:

(if p -> f ; g)

becomes

(closure ?x ( when (p ?x) do (f ?x) elsedo (g ?x) ) Ep),

and

(iter p -> f)

becomes

(closure ?x ( repeat f untilnot p ) ) Ep).

By adding 'repeat' and 'when' to the list of special case

tags these new syntax forms can also be evaluated by

EV SPECIAL CASES, where they are parsed and evaluated

directly in LISP. Note that the 'repeat' syntax above shows
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the initial condition for the iteration. The result of

evaluating (f ?x) becomes the agrument to 'p'. If the

predicate is true, "f' is evaluated with the result of the

1st iteration as an argument. This process continues until

the predicate fails. The result of the iteration is the last

value of (f ?x). This is all done in the REPEAT RPL

function.

The rationale to create new RPL expressions for

system use only was so successful, it became apparent that

implementation of other operators like 'red', an array

reduction operator, could use the same convention. Since

I red' is an infix operator and has no special syntax, a

slight conceptual problem of where to create the closure

emerged. All closures that were formulated thus far were

done in EVSPECIALCASES, but these came from cases having

special syntax. Since the 'red' operator had no special

syntax, it was inappropriate to create the closure in

EVSPECIALCASES. To be consistent with the design, the

closure was created in BIFAPPLY. However, in formulating

the body of the closure a special syntax is used which can

be identified and evaluated readily by EV_SPECIALCASES. The

closure created for this operator is illustrated by the

following example: the expression

(f red i)

becomes

(closure ?A ( reduce ?A by f from i ) Ep).
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Another choice of implementation would still result

in the final evaluation in EVSPECIALCASES but would

eliminate a call to BIFAPPLY. Since what is actually hard

coded in LISP is the function ARRAYREDUCTION, the 'red'

operator could be defined extensionally in terms of the

special syntax and take advantage of the bindings created by

RPAPPLY. For example, if the 'red' operator were defined

red == (func (f i) (func ?A (reduce ?A by f from i)))

or

f red i == (func ?A (reduce ?A by f from i))

the call to EV from RPAPPLY with 'red' and the environment

Ep would produce the same results as what was accomplished by

BIFAPPLY. However, this implementation would require the

error checking now done in BIFAPPLY to be shifted into the

function ARRAYREDUCTION.

Tracing the evaluation of the extensionally defined

,red' shows the subtle differences between implementations.

Given the expression

f' red i' ),

EV recognizes the infix expression and calls INFIXOP, where

the 'red' is evaluated. The current implementation calls

BIFAPPLY since the evaluated form of 'red' is

(closure reduction).

However, in the extensionally defined implementation 'red'

is bound to

(closure (f i) (fune ?A (reduce ?A by f from i)) Ep).
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In the current implementation BIFAPPLY is called to finish

the application process directly in LISP, whereas the

alternate implementation uses the mechanism provided in

RPAPPLY. The formals, f and i, are bound to the actuals f'

and i °. The evaluation environment is created and EV is

called to complete the process with the expression

(func ?A (reduce ?A by f from i) EE).

The 'func ° tag directs the expression to EVSPECIAL CASES

where the closure is created.

The difference in implementation efficiency can be

studied by using the LISP function BREAKDOWN. Currently the

composition and paralleling operator are defined using the

"func" construct as extensionals.

F. EXTENSIONAL MECHANISM

Almost half the operators in RPL have been implemented

extensionally. The operators directly coded in LISP either

were listed as primitive operations by MacLennan [Ref. 2) or

had a function readily available in LISP which would

hopefully provide a more efficient implementation than the

extentional definition. The purpose of this section is to

discuss the mechanism which the system uses to implement an

extensional operator-.

The extentionally defined operator is executed by the

RPL system taking advantage of the same mechanism that is

in place to bind user defined functions. When RPL is called,
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after all the globals have been initialized, (see Figure V-

5), the system is ready to define the extensional operators.

During initialization the environment contains all the

built-in operators which are coded in LISP. These are

represented by a length 2 closure as discussed earlier in

this chapter. At this time commands can now be accepted by

the system. All the extensionally defined operators are

contained in a list as RPL commands. This list is called

INTOPS. Using a the LISP function MAPCAR, all extensional

commands are sent to EXECUTE and ultimately bound to the

environment. After the last extensional operator has been

defined the system ready for the user.

Implementing this mechanism was straight forward but

there were some varibles that had to reset before the user

was given control of the system. These are shown in

Figure V-5.

The interesting part of this implementation was the

ability to try each of these operators during RPL sessions

prior to committing them into the list of extensionals.

Since some extensionals were built on others, the order that

these were actually defined was significant. This was due to

static scoping. Therefore, some care had to be used when

adding new definitions to INTOPS. Future research may try

coding some of the extensionals of this implementaion into

LISP directly and do a performance analysis using BREAKDOWN.

This will be discussed in more detail in Chapter VII.
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NAME / INIT VALUE CHANGED BY PURPOSE

BIFTAG INFIX N/A Control flow in
/ list of names BIFAPPLY

BUILTINPREFIX OPS N/A Resets
/ list of names PREFIXOPNAMES

E DEF BINDING Global environment
/ SYSOPS EXIT

EMSG N/A Table of error
/ list of msgs messages

ERRORCODE ERRORHANDLER Error recovery
/. ERRORFREE

• FILTER ON FILTER Switch off error
/ NIL msgs while filtering

INTOPS N/A All extensional
/ list of commands operator definitions

NUMOP N/A Control flow in
/ list of operators BIFAPPLY

OPNAMES N/A Check to avoid
/ list of names renaming built-in ops

PREFIXOPNAMES DEFBINDING Error checking
/ BUILT_INPREFIXOPS EXIT (reset) for "op', "lsec',

Irsec"

SETS N/A Control flow in
/ list of input tags EVSPECIALCASES

SETOPS N/A Control flow in
/ list of operators BIFAPPLY

SYSOPS N/A Kernel
/ list built-in

operators

SYSTEM ENV N/A To reset E when
/E clearing environment

USERDEFS DEFBINDING display
/ NIL EXIT (reset) WRITEUSERDEFS

RPL (reset)

Figure V-5 -- Alphabetic Global Listing
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*G. ERROR DIAGNOSTICS AND RECOVERY

The primary consideration for performing error checking

in the RPL interpreter was to ensure the system would

survive common programming errors. If every minor miscue

were to cause the RPL system to crash errors like undefined

variables, improper arguments to built-in and user defined

functions, syntax, spelling and typographical errors, each

could cause a major catastrophy, costing many hours of work

and added programmer frustration. Surely a system without

safeguards to prevent self destruction would be impossible

to work with, even in a prototype implementation. Therefore,

one of the major design decisions in the development of the

interpreter was to make the RPL system as robust as possible

and provide meaningful diagnostics to the user.

1. Error Recovery

LISP's built-in functions are not unlike those found

in any other language; improper operands are generally a

disaster. A keen awareness of this problem had to be

developed to ensure sufficient type checks were accomplished

so that user inputs could not create an unrecoverable

situation. Although Interlisp does provide a means of error

recovery through its debugging facilities, this is only a

benefit to the user who has had sufficient experience with

the Interlisp break commands (see Teitelman rRef. 6] for

more details). Therefore, it was necessary to build into the

RPL system a self-contained capability that could detect,
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diagnose and resume operation, totally independent from the

LISP error handling mechanism.

Once an error is detected, the RPL system calls its

error handling function with two parameters. The first

parameter is an error code, which is used as an index to a

table of error messages. The second parameter is the cause

of error. The error handler prints the appropriate error

message and cause of error, and assigns to the global

variable ERRORCODE the value of the first parameter.

ERRORCODE is always initialized to ERRORFREE before a

command is entered by the user. Finally, the value returned

by the error handler is the LISP atom NIL.

Checking the value of ERRORCODE in strategic areas

throughout the program prevents both redundant error

messages and meaningless operations. For example, in the

process of evaluating a prefix expression both the operator

and the operand must be evaluated separately to ensure they

are defined. If any errors are encountered in this process

the remaining code in the prefix expression parse can be by-

passed by checking the value of ERRORCODE before preceding.

The value of ERRORCODE is checked before any

bindings are made to the RPL environment. If ERRORCODE is

not ERRORFREE the message 'Binding cannot be made' is given.

The value of the functions that parse either prefix

or infix expressions each return NIL if an error occurs. In

the RPL DISPLAY function, if the LISP value NIL is returned
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from evaluating an expression, the message 'Undefined' will

be displayed.

Calls to the error handler and the inspection of the

value of ERRORCODE is interwoven throughout the RPL system.

This was impossible to avoid, if the RPL system was to have

the degree of resiliency desired. To change the basis of the

error handling mechanism used would certainly take a

considerable amount of recoding. This should be unnecessary

due to the excellent recoverability shown in the RPL system

during testing.

2. RPL Diagnostics

RPL suffers from a problem prevalent among many

extensible languages, its diagnostics are sometimes

meaningless. This is because error checking is performed on

the operands of the functions defined in the kernel of the

language. The. kernel is a set of functions from which

additional features are implemented. The diagnostics related

to calls on these functions, when used explicitly by the

user, are helpful and descriptive. These same diagnostics,

when given to a user who is invoking a function defined in

terms of the kernel, may be of little or no value.

The diagnostics displayed when an error is

discovered while performing a domain restriction illustrate

a situation where the system can provides accurate but

confusing diagnostics. The operator "->' is defined directly

in terms of the RPL's 'filter' operator as follows:
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p -> t (- p a hd) filter t).

The composition operator 'o" is defined using the formal

parameters f and g as follows:

o - (func (f g) (func x (f (g x)))).

A user who is unfamiliar with these dependencies would

certainly find diagnostics in terms of p, t, f or g quite

" puzzling if he had never bound these names in his

environment.

The more familiar that one becomes with the RPL

- system and the various extended functions, the more

meaningful the diagnostics will become.' When given

diagnostics that appear totally unrelated to what was input

as an RPL command, there is an excellent possibility that an

extended operator is being used. Probing the environment

with some of the features added to RPL as a troubleshooting

aid (env, val and env f) will help put more meaning into

error diagnostics, and enable the user to better understand

the RPL language.

3. Errors Can Be Easi l Built In

The incompatibility between functions and their

arguments referred to thus far are a direct result of user

errors. Guarding against this kind of circumstance was only

part of the problem encountered to make RPL robust. Extreme

care had to be taken not to build potential fatal errors

into the interpreter. This became apparent as the system
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crashed in areas originally thought to be sound, during some

of the earlier RPL system tests.

As discussed in Chapter III, the functions CAR and

CDR are used to access various elements of a list. Like any

other function, these functions are designed for a specific

type of operand. Calling either function with a non-list

creates a fatal error. The system was vulnerable to this

situation in the original coding. To prevent this type of

error, each time the CAR/CDR functions appeared in the

development of the interpreter, a list check and/or length

check had to performed before proceeding. The code used to

implement the type checking function, TYPE, for the RPL

system indicates the caution needed when using these

functions. This is also evidenced the use of compound

statements in many LISP conditionals, where the AND

statement first performed a list check and then a length

check before using the CAR or CDR functions.

Achieving the goal of making RPL robust involved

much more than an exercise in anticipating user errors. It

also required a conscientious analysis of every aspect of

the interpreter to determine what inputs or results could

create disaster. Testing thus far has shown that this goal

has been essentially achieved.
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H. INPUT / OUTPUT

The input/output functions needed by the RPL system can

be logically divided into two categories, console IO and

file 10. Console 10 functions provide a mechanism to input

RPL commands, display the results of evaluating RPL

commands, provide error messages and prompt the user for

input. The file I0 functions provides both a facility to

execute the RPL 'file' operator and gives the user the

ability to save and recall his RPL sessions.

1. Console Inout/Outgut

The primary consideration for altering normal LISP

10 originally was the aesthetic desire to eliminate

parentheses not absolutely essential to parsing and command

execution. This is achieved through masking some of the

required input parentheses and filtering meaningless

parentheses during output. This eliminated some of the

awkward syntax that had been introduced in order to use LISP

as an implementation language (see Why LISP Chapter III). As

the interpreter developed, a far more important reason for

filtering console output was realized.

The only relief from the LISP syntax during terminal

input was achieved by the elimination of the outer set of

parentheses from the RPL command line. This was accomplished

through the use of the Interlisp READLINE function. This

function inserts parentheses around a line of input which is

terminated by a carriage return or the character 1'.
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Additionally, the READLINE command provides a mechanism to

enable the user to know when all open parentheses have been

closed. This is illustrated in the following example.

If the user wants to type the command

(f x == (x + 1)),

the READLINE function would allow it to entered as follows:

f x == (x + 1).

When the user types the closing parenthesis after the 11,

the the following would be displayed:

f x (x + 1)

The "... indicates all parentheses have been closed. A

carriage return at this point will enter the command for

execution. Since every RPL expression must be enclosed in

parentheses, this feature is particularly helpful to the

programmer.

To 'delispify' RPL output, user prompts and error

messages were printed by a function written to filter

parentheses by printing lists one atom at a time, using the

very fast and efficient LISP MAPCAR function. This

methodology was originally used for all RPL output, but had

to be restricted to prompts and messages. This restriction

was necessary since the way lisp prints a list proved to

unsuitable for printing the internal definition of a

function. This problem was encountered printing output from

-" the RPL 'display' command.
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The method chosen to internally represent functions

made displaying them on.the screen impractical and in some

instances impossible.

As discussed in Chapter V, each function that is

either user defined or built-in as an extension of the RPL

kernel, has associated with its name the keyword 'closure',

its formal parameters, its body and its environment of

definition. This environment, which is represented as a

pointer to an a-list in LISP, includes all RPL built-in

functions along with all names and functions defined by the

user up to time the function was defined. Printing this

environment had to avoided. This was accomplished by

creating two integrated functions, PRINTLIST and SHOWATOM,

to screen all RPL output, trapping all functions so that the

environment could be truncated for console output.

To maintain the user's ability to inspect the

environment, some additional features had to be added to the

RPL system. This resulted in a minor modification to the

grammar and the addition of the function SHOWENV. For

example, typing 'env' provides a list of all names with

their respective internal definitions that are within the

environment created by the user. Each function, of course,

would be shown without its environment of definition. To

display the environment of definition associated with a

given function f, the command 'env f" is used.
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Two additional features were also added that allow

the user to view either the internal definition associated

with a name or his original input form. This is discussed in

more detail in Chapter VI.

2. File InRut/Qut2. t

There are two sets of file I functions used within

the RPL system. The first set, consisting of the functions

FILE-READ and FILE_WRITE, is used to implement the RPL

'file' operator. The second set, added as a user convenience

to provide a mechanism to save and recall RPL sessions, is

comprised of the functions SET USERENV, READUSERDEFS,

EXIT AND WRITEUSERDEFS. Both sets of file 10 functions

utilize the Interlisp file package commands to access or

initialize a file, perform desired I0 and close the file.

NRPL's 'file' operator is designed to read or write

data in its evaluated form. This data is usually a set or

table. This operator should never be used with functions,

either directly or indirectly, embedded within a set. This

would cause the function's entire environment of definition

to be written to a file as a list, one atom at a time.

Reading a function from a file that was written in evaluated

form, not only may be impossible due to insufficient memory,

but obviates the efficiency of the environment mechanism.

. RPL was designed to have only one a-list represent its

environment. A function's environment of definition is just

a pointer to a node within the RPL system environment.
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In a typical RPL session a user may have a

considerable amount of time invested constructing numerous

functions and data definitions. As a command is entered

that binds a name to the RPL environment, the command is

saved in a separate list that can be written to a file. When

read back into RPL, the system executes each command, thus

recreating the previous session.

The user has the flexibility to modify or create

files using any available editor. His only constraint is to

ensure the string EOF appears as the last line of the file.

The EOF string is automatically written to all sessions

saved in RPL.

Interlisp operating on UNIX provides a means to save

old versions of files as new files are created. The updated

file will have its file name modified to indicate the next

version number. Since UNIX only recognizes unnumbered names,

each updated file created by interlisp contains two

directory entries, one numbered and one unnumbered.

Interlisp provides the mechanism to manipulate older

versions [Ref. 8: p. 113.
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VI. USING THE RPL INTERPRETER

A. INTRODUCTION

The RPL language is different from any conventional

language that currently exists. Because of its uniqueness,

inherent power, and mathematical base, it can be difficult

to use at first. But, as with any other language, it can be

mastered through a study of the underlying concepts and

hands on experience with the commands. This chapter will

describe the basic knowledge required to use the prototype

RPL interpreter developed in this research. It will only

touch upon, through simple examples, the power of such a

language. Only the dedicated efforts of an innovative user

will test tle system and discover the real potential of the

d

relational programming concept.
1

B. GETTING STARTED

The RPL interpreter exists as a Unix file which consists

of 77 LISP functions which implement the RPL grammar shown

in Appendix B and the relational operators described in

Appendix C. To invoke the RPL interpreter, a user must

first have a basic knowledge of the Unix Operating System.

He must at a minimum be able to log on with access to an

account which contains the "RPL-INT' file. For more

information on the Unix Operating System, see reference 8.
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When the Unix prompt (%) appears, the next step is to

enter the Interlisp environment, which provides a shell for

RPL. Since the interpreter is written in LISP, familiarity

with its basic constructs is desirable, and a necessity if

one is going to explore the LISP code for the interpreter

itself. See references 5, 6 and 7 for more information

about LISP and the Interlisp environment.

Loading the Interlisp environment is accompanied by a

substantial delay, but when the environment is finally

loaded, it gives the user a friendly greeting to let him

know it is ready to accept commands. The only LISP command

that must be used is 'LOAD' which loads a file(s) of LISP

functions. Therefore, at the LISP prompt, _ the user

must type 'LOAD[RPL-INT]'. When the closing bracket is

* typed Interlisp will automatically execute the command.

Interlisp searches the user's directory for this file and,

when it is found, displays a message indicating the date the

file was created. Once loaded, another Interlisp prompt

will be displayed. Now all the functions necessary to

execute RPL commands are part of the Interlisp environment,

but of no use to the programmer until he invokes the RPL

interpreter itself.

All commands in LISP are enclosed in parentheses or

brackets. Just as the keyword "ilisp' triggers the Unix

system to load the Interlisp environment, the LISP function

'RPL' initializes and loads the RPL en'.ironment on top of
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Interlisp. Thus to begin an RPL session the LISP command

'ERPL]' is typed at the LISP prompt. Once this command is

executed, the user will enter and remain in the RPL

environment until the RPL command 'done* is executed. (See

section I for exceptions).

When the initialization required by the RPL interpreter

is completed the user is asked if he wishes to resume a

previous RPL session. This gives the programmer the option

of having a file of RPL definitions executed that was

created either from within RPL or by an external text

editor. Caution is advised if the file was created by an

external editor since no error checking will be done until

loading such a session for the first time. If there is a

parenthesis out of place or missing, it could throw the user

out of RPL and into the LISP error handler. Some other

dangers are discussed in section I of this chapter.

If the user answers 'yes' he will be prompted for a

filename. It is appropriate to mention at this point, that

an inconvenience exists due to the limited control over

input/output by the interpreter. When a response is

required, or a command is entered, the first character typed

is fixed, i.e., it cannot be removed from the input buffer.

All characters after the first one can be altered as

required until a input termination signal is sent. In the

RPL environment, hence the Interlisp environment, this

signal is a carriage return or a final closing parenthesis
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or bracket. Thus if the user makes an error, for whatever
'a

reason, and the filename is not-in his directory, RPL will

inform the user that the file was not found and continue on.

The only avenue open to the user if this happens, is to

terminate the session and begin again. This is not as bad

as it may sound, as the next section will point out.

If the file does exist, RPL will load and execute all

commands in the file, and prompt him for his first RPL

command. Figure VI-1 and Figure VI-2 illustrate the command

sequence which would load RPL with and without a previous

session, respectively.

C. SESSION TERMINATION

When the user is finished with a session he types the

command 'done'. This command triggers a series of options

available to the user. First, he will be asked if he wishes

to save the session just completed. If the answer is yes he

will be prompted for a filename. RPL will write all

commands executed in the session, in their original input

form, to that file. 'Display' commands are not included.

Regardless of his answer to the first question, the user

is then given three options: exit to the Interlisp

environment, exit to the Unix Operating System, or begin

another RPL session. If he chooses to begin another session

he will be asked if he wants the current environment from

the session he is leaving to be cleared. After completing

8 2
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I ilisp
ISI-INTERLISP 15-MAY-84 ...

Hi.

.LDADERPL-INT)
File Created:12-MAY-85 11:13:31
RPL-INTCOMS

expanding LISTP, 65523 used, 2424832 before SC
/work/brown/RPL-INT
.RPLJ
Loading RPL--- DO YOU WANT TO RESUME A PREVIOUS RPL SESSION? (yin> y
INPUT FILENAME

sess512
Loading--- Session loaded

RPL INTERPRETER ON LINE!!

I ?> d(2 +3)

5

Figure VI -- Loading the RPL Interpreter, With Previous Session
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the action required by the user's response, the RPL

interpreter begins the same cycle as if the user was

beginning a new session. This cycle continues until the

Z ilisp
SISI-INTERLISP 15-MAY-84...

Hi.
LOAD[RPL-INT]
File Created:12-NAY-85 11:13:31
RPL-INTCOMS

i expanding LISTP, 65529 used, 2424832 before 6C
/work/brown/RPL-INT

i E.RPLI
Loading RPL--- DO YOU WANT TO RESUME A PREVIOUS RPL SESSION? (y/n> n

RPL INTERPRETER ON LINE!!

?> sqr x = (x times x)

Figure VI-2 -- Loading the RPL Interpreter, Without Previous Session

user decides to completely exit the RPL environment.

Figure VI-3 illustrates a session termination sequence where

the user wishes to remain in the RPL environment.

Figure VI-4 shows a user termination with exit to the Unix

Operating System.

D. EXECUTING COMMANDS

RPL commands are derived from the grammar in Appendix B.

It allows for three basic types of commands: data

.84
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?) done

DO YOU WANT TO SAVE ENVIRONMENT FOR FUTURE USE? (y/n> y
INPUT FILENAME
sess525

EXIT TO LISP - PRESS AD
EXIT TO UNIX - PRESS AC

CONTINUE RPL - PRESS (RETURN)

DO YOU WANT TO CLEAR CURRENT ENVIRONMENT? (y/n> y

DO YOU WANT TO RESUME A PREVIOUS RPL SESSION? (y/n n

Figure VI-3 -- Session Termination - Remain in RPL

----------------------------------------------------------- -----------

?> done

DO YOU WANT TO SAVE ENVIRONMENT FOR FUTURE USE? (y/n> y
INPUT FILENAME
sess525-!

EXIT TO LISP - PRESS AD

EXIT TO UNIX - PRESS AC

CONTINUE RPL - PRESS <RETURN>

Zlogoff
Signing off...

Figure VI-4 -- Session Termination - Exit to Unix
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definitions, function definitions, and input/output. The

sections following this one will describe how to enter the

commands of each type and provide a brief discussion of the

built-in relational operators. This section will provide

some general information and guidance.

RPL operators and commands are case sensitive. Since

most operators and all commands are in lowercase, it is

recommended, though not required, to use lowercase letters

throughout an RPL session. Lowercase was used to help

distinguish the operators and commands from LISP function

names, which are capitalized. Any variation at the keyboard

will cause RPL to return an error.

E. DATA DEFINITIONS

1. Introduction

There are several data types available to RPL. In

addition to the normal scalar types, integers, reals,

booleans and strings, there are sets and relations. Sets

and relations can be used to represent any conventional data

structures such as arrays and records. They can also easily

represent more complex structures such as matrices,

databases, trees and graphs. A relation is actually a

special form of set where each element must be a pair of RPL

data types. The tremendous flexibility of the relation

results because this pair can be any combination of RPL data

types.
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RPL syntax allows the binding of a name to any

scalar type directly. For example:

x = 3

error == true

name == "John"

The '==' symbol in RPL means 'defined as'.

2. Sets .

A set is defined simply by placing the keyword

'set' as the first element of the set. For example:

aset == (set 1 2 "dog" colors)

The '3' symbol, used to close the defintion, keys the

interpreter to execute the command. This aspect of the

command line will be discussed further in section G. Note

the name colors must have been previously defined or an

error will result. In this case, colors may have been

defined as:

colors == (set "red" "white" "blue"]

This illustrates that each element of a set can be anything,

even another set.

3. Relations

Any relation can be defined in RPL using the

following syntax:

r == (rel (XI : Yi) (X2 : Y2) ... (Xn : Yn)]

The X's and Y's can be any RPL data type. The ':' symbol is

the pair-making operation. It binds any particular X and Y
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together into a pair, distinguishing it as an element of the

relation. Note that there must be a space on either side of

the operator. This is required because this structure is

treated internally as a LISP list. If a space is left out,

an RPL error will occur.

To demonstrate the utility of this structure, a

sequence, an array and a record will be defined below:

sequence == (rel (1 : 2) (2 : 3) (3 : 4)3

array == (rel (1 : "a") (2 : "b") (3 : "c")]

record == (rel ("#" : 101) ("name" : "John") ("age" : 32)]

Even more complex data structures can be formed easily by

combining these and other primitive relational structures.

For example, a database is just a set of records. Since

there are so many different forms of a relation, RPL has

included syntax to simplify the definition of two of the

more common ones, the sequence and list.

4. Segunces

The relation 'sequence' shown in section 3 can be

entered as:

sequence == (seq 1 2 33

It must be pointed out that this is a pure sequence, i.e., a

relation which has one initial element, one terminal

element, and is fully connected. Formally, it is an

irreflexive connected bijection. Graphically, this sequence

can be represented as shown in Figure VI-5.

88



The label that is put on a node is not important, so the

sequence, (seq 5 2 10 9), is equally as valid as the one

1 2 3

Figure VI-5 - Graphic representation of a sequence

shown in Figure VI-5. However, RPL does not prevent the user

from entering:

sequence == (seq 5 2 10 9 2 7 7 8)

This is an invalid sequence and is represented graphically:

7 8

Therefore, it is up to the programmer to insure that he is

defining a proper sequence. The sequence operators do not

verify that the structure passed to them is a valid

sequence. When this occurs, an error can result, the

results can be meaningless, or at worse the computation may

not halt - forcing the user to abort the session and lose

everything. For this reason, caution is advised. On the

other hand, the lack of rigidity in sequence definition

permits the easy representation of certain types of directed

graphs, as the example above points out.
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5. Lists

The list is just a restricted form of an array which

has a starting index of 1. An array, on the other hand, can

have any integer as a starting index. The relation 'array'

shown in section 3 is also a list and can therefore be

written as: array == (list "a" "b" "c"].

The most common use for the list, and the reason it

is included as a separate entity in RPL, is to represent

argument lists. All multi-parameter functions in RPL are

represented internally in prefix format and use the list as

their argument.

6. Rangg2

To simplify the data definition further when dealing

with large numeric structures, the setrange, seqrange and

listrange syntax is provided. For example, it is possible

to define:

s =(setrange 1 to 58]

== (seqrange 1 to 50]

1st == (listrange 10 to 69]

These definitions evaluate to the appropriate internal

forms: s would be a set of the integers from 1 to 50, s'

would be a relation which relates each number with its

successor, up to 50, and 1st would be a relation which

relates an index, starting from 1, to each value from 19 to

60.. The utility of this syntax becomes apparent when one
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thinks about what is involved if these structures had to be

entered using the general.relation syntax.

The input forms discussed in this section can be used

effectively within the RPL interpreter to create any form of

data required. Sometimes it may be more convenient to use

the simpler sequence and list syntax than the more general

relation syntax to define a desired data structure. For

example, suppose the user wanted a five element array which

contained even numbers starting with 2, and which was

indexed starting with 10. Internally, the desired structure

would look like:

(rel (18 2) (11 4) (12'6) (13 8) (14 10))

With the relation syntax the user would have to write:

a == (rel (10 : 2) (11 : 4) (12 : 6) (13 : 8) (14 : 10)3

He could achieve the same result by using the sequence to

array operator, sa, which takes a sequence, and a starting

index as arguments, and returns the appropriate array. Thus,

he could have typed:

a == ((seq 2 4 6 8 10) sa 10]

Which method is easier must be decided by the user and

depends upon his degree of familiarity with RPL. Note,

however, that the second format has less parentheses and

spaces to contend with!
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F. FUNCTION DEFINITIONS

Although RPL contains a rich set of built-in operators,

it could never include everything, nor should it, that a

user could want. RPL is extensible and thus includes a

mechanism for defining user functions. As illustrated in

earlier chapters, there are three definition options:

direct, prefix and infix. Most user functions can be

defined using the simple prefix and infix syntax. For

example, if the user had a need for a function which would

add 2 to its input and square the result,he could write:

add2sqr x == ((x + 2) times (x + 2)]

For a similar, but more general function, which takes two

arguments he can write:

x addsqr y == ((x + y) times (x + y)]

An alternate definition for addsqr could be written using

the DELTA operator, which duplicates an argument, and the

composition operator:

x addsqr y == ((times o DELTA) (x + y)3

A third, and even more formidable looking definition is

given by:

addsqr == ((times o DELTA) o (op +))

The last two definitions introduce the flexibility of RPL by

showing how complex functionals can be easily defined in

terms of built-in and/or user defined operators.

There are some cases, however, where the prefix and

infix definitional syntax will not meet the user's needs,
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and therefore the direct method for defining functions is

included. One utility of this syntax is its ability to

define functions with any number of parameters. For

example, say a function called addsub is desired. This

function adds its first two arguments and subtracts the

third. It can be defined via the direct method as:

addsub == (func (x y z) ((x + y) - z)]

This is just another way to write:

addsub (x y z) == ((x + y) - z)

Notice that the argument to these functions must be a RPL

list with three elements. The advantage of the direct

syntax over the prefix-type syntax is the ability of the

"func definitional structure to be imbedded within another

functiod. This gives RPL the same flexibility as LISP with

its 'LAMBDA' expression.

This same function could be defined using the prefix

syntax, but the user must be aware of how RPL extracts the

actual values from the argument list in order to bind its

formal arguments to the actuals. This extraction is done by

use of the RPL 'sel' operator. Thus when given a table and

a member of its domain, this operator will return the first

member in the range related to it. Equipped with this

knowledge and familiarity with the list structure, the user

can also define addsub in prefix form as:

addsub x == (((x sel 1) + (x sel 2)) - (x sel 3)3

This form and the direct definition are equivalent and will
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work equally as well, but it is obvious in this case that

the direct method is much simpler and more understandable.

G. INPUT/OUTPUT

1. Screen Input/Output

All syntax presented thus far is for commands that

will be typed at the terminal in an interactive session as

input. Output at the screen is generated using the

'display' commands. To recall to the screen any definition,

the user can type the word 'display' followed by the name of

the entity he wishes to see, e.g.,

display array <CR>

Notice that this is the first time that the requirement for

a carriage return, <CR>, has been indicated. This is

because the definitional forms discussed earlier ended with

a '3' which automatically triggers execution. For commands

such as display, and those that are ended with a ')', a

<CR> is required. Execution of the command above will

display the definition bound to the name 'array' in the

environment. For example, it might be:

array == (list "a" "b" "c")

The display command can also be used to see the result

of a computation immediately, but once displayed, the result

is lost because it will not be bound to a name. For example

if the user types 'display (3 + 5)' , '8' will be shown.

Thus 'display' can have any expression as an argument. To
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simplify output to the screen, the word 'display', and two

shorter versions,- 'dis' and 'd', are optional. Thus, only

the expression itself needs to be typed to display a result.

2. File Inaut/Out.ut

Any data definition can be saved to a file for

future use simply by typing:

file "tablel" == t <CR>

This command assumes that t has been previously defined,

e.g., as a table of squares for a *inite range. To later

read that table into another RPL session, the user can type%

tbl == file "tablet" <CR>

Since file input/output is implemented as a special command,

it can also be used directly in an expression. For example,

the command '((file "tablet") sel 2)' would return '4' for

the table of squares mentioned earlier.

3. Debugging

The final form of output to the screen in RPL was

implemented to assist debugging. Since a function

definition can involve the composition of many operators,

both built-in and user defined, cause-of-error messages

might give a strange response. This happens because the

cause of the error may be rooted in the execution of one of

the internal component functions within the definition.

Likewise, there will be times when the user passes an

argument to a function, but it is rejected as the wrong

type. On these occasions, it is nice to be able to probe

" 95



1~~Ai-I59 4S4 RELATIONAL PROGRAMMING: DESIGN AND IMPLEMENTATION OF A 2/3
PROTOTYPE INTERPRETER(U) NAYAL POSTGRADUATE SCHOOL
MONTEREY CA J R BROWN ET AL. JUN 85

UNCLSSIFIED F/O 9/2 NL

E~hhh~h~hh



1111111.2
§ 2.0O

U1.25 11.4 1.

MICROCOPY RESOLUTION TEST CHART
OOAionM. SJUI OF sTANODARO - 1963 - A

J%-4.
%

%

I%

dP%-



deeper. into RPL. The 'val" and 'env* commands provide this

mechanisma.

The 'val' operator applied to any name will return the

evaluated form of the definition bound to that name. Thus,

if s is bound to the sequence (seq 1 2 3), typing "val s',

will return '(rel (1 2) (2 3))'. Similarly, for the

function sum, defined as (x + y), typing 'val sum' would

return *(closure x ((x sel 1) + (x sel 2)))'. Notice the

environment of definition is missing. As discussed in

earlier chapters, the environment is omitted due to its

excessive length.

The 'env' command provides the mechanism to view the

environments that are omitted from the display of functions

in evaluated form. The environment is shown in definitional

form. Thus, "env' alone will produce all definitions

created during the current session. Applying 'env' to a

function name will produce all definitions visible within

its scope. For example, the result of typing 'env' for a

short RPL session might be:

f == (lsec (times o DELTA) img)
s == (set 5 6 7 8)
x sum y == (x + y)
arg == (list 2 4)
System Defined Functions

The last definition put into the environment is shown first.

'System Defined Functions" constitute all of the built-in
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function definitions within RPL. Finally, using the same

environment, typing 'env sum' would return:

x sum y == (x + y)
arg == (list 2 4)
System Defined Functions

H. RELATIONAL OPERATORS

In the RPL interpreter there are 112 built-in relational

operators based upon the operations described by MacLennan

irv reference 2. All the operators implemented within the

RPL system are discussed in detail in Appendix C. and are

broken down i.nto classes based on both the number and type

• -of arguments, and what they return.

The operators are a mix of first and higher order

functions. A first order function is one that has data for

inputs and outputs. A higher order function is one that has

a first or higher order function as either input or output.

Since RPL has sev.-ral higher order functions they are

further separated into two classes: those which return a

function, and those which have a function as an input, but

return data.

Finally, there is a group of operators which are unique

because of their special syntactic requirements or their

special handling required in implementation. They are

consolidated under the title of 'Special Operators'. They

include the data definition operators, a conditional

functional, an iteration functional, a function to compute
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closures, the empty operator, and the 'bar' functional which

gives any infix operator a special meaning.

Based upon the preceeding discussion, the operators are

broken into 11 logical classes as shown in Figure VI-6. The

Global class of operators include those which take anything
-d,

as an argument(s), or in the case of 'hd" and "tl', return

anything. The Arithmetic and Logical operators parallel

their conventional counterparts. The next five classes are

derived from the type (form) of the relation involved.

Finally, there are the two classes of higher order

operators, and the special operators.

1. Global
2. Arithmetic
3. Logical
4. Set
5. Relation

6. Sequence
7. Array
8. Database
.9. Higher Order - Return Function
10. Higher Order - Return Data
11. Special

Figure VI-6 -- RPL Operator Classes

I. BEWARE THE KEYSTROKE

i', 1. In~trogMj~tjgn

Unfortunately, because the RPL Interpreter is

running within the Interlisp environment and the Unix

Operating System, there are a few keystrokes which may cause

unexpected results. Some keystrokes should be avoided, some
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should be used with caution, and some can be used to the

user's advantage.

2. M2 ntr.gJz .R2. ci . ("C)

Pressing a OD should be avoided. It will abort

whatever LISP function is being executed, return the LISP

prompt and wait for the next command. Since the RPL

interpreter is invoked as a LISP command, a ^D will

immediately abort the user's RPL session, discarding all

work done to this point. Likewise, only more severe,

pressing a ^C will abort both RPL and Interlisp and return

the user to the Unix Operating System.

The ^D and ^C are used, however, as part of the RPL

system to exit the RPL environment. They are options within

the RPL 'done' command and should be used only in this

context. In general the Control key should be left alone

since there is no meaning associated with control characters

in RPL, and they may cause Interlisp or Unix to do

unexpected and probably unwanted things.

3. The Backspace Key

A second key to be avoided is the backspace key.

For reasons not totally understood to date, pushing the

backspace key causes Interlisp to invoke the LISP error

handling package. A strange message appears on the screen,

which looks something like *broken below @GETTY' and a ':'

prompt will appear. Fortunately, this is not the kiss of

death as was the ^D. Typing 'RETURN NIL' (in capitals) will
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return the user back to where he was in RPL before hitting

the backspace key. If another strange message appears

followed by another ": then the user probably hit the

backspace key more than once. A 'RETURN NIL' must be typed

for each time the backspace key was hit, and only then will

Interlisp return the user to RPL in the place it left off.

There is one instance in which this keystroke

becomes an advantage. It can used to temporarily leave the

RPL environment to invoke any Interlisp feature. Of

particular interest is the 'BREAKDOWN' package. This

package allows the user to do performance analysis of the

LISP functions used within the RPL interpreter. A more

detailed discussion of the benefits of this package will be

presented in the final chapter. This feature of RPL is of

real interest to those individuals who are interested in

further research with relational programming and the

improvement of the RPL interpreter.

- 4. The Contrgl-Z (^Z)

The final keystroke to be discussed is the least

dangerous, and in fact has a positive utility. Hitting a

Control-Z (^Z) will temporarily suspend whatever the user is

doing and put him back at the Unix logon level. The user

can then execute any Unix command desired, e.g., he could

look at his directory to verify the filename of a session he

,* wished to load. When he is finished at this level, he types

'fg' (lowercase letters only) and returns to the exact place

180

14* I * * I I* **'-... ~ . . *. S~**~ ~ % %* * .7



he had left off when he pressed the ^Z. Thus the programmer

can take advantage of the facilities, flexibility and power

of the Unix Operating System concurrently while executing an

RPL session.
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The primary goal of this prototype RPL implementation

was to provide a mechanism for future research. Prototypes

generally have a definite starting point, which is the

theoretical work of its creator, the language developer.

What marks the completion of the prototype is a design

decision that must be made. Along these lines, one of the

most difficult dilemmas facing this implementation was

handling implementation improvements that became obvious as

the development progressed. Without exercising restraint,

implementation improvements can become an obstacle to timely

completion. Unless specific performance criteria have been

set as a system design requirement; and it can be determined

that a particular mechanism of the system must be changed to

meet this objective, improvements that become obvious to the

prototype developer should be documented for follow on

research. Focus on design issues can easily become blurred

and transition between prototype and future research

obscured as improvements that become apparent to the

developer divert efforts from the original goal. Let the

completion of the prototype be the springboard to

enhancements and efficiency issues.

* Future research on RPL was one of the primary

considerations in this prototype, which, as discussed in
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Chapter III, prompted its implementation in LISP using the

Interlisp environment. Tools available in Interlisp were a

powerful incentive that influenced the choice decision of

the implementation language used for RPL. The cost of this

decision, however, was more than anticipated.

Using the Interlisp programming environment can be a

very frustrating experience to a programmer. Documentation

available (IRef. 6] and [Ref. 8]) assumes an Interlisp users

are expert LISP programmers. The system, called HELPSYS,

which is usually a integral part of Interlisp system

providing online help messages to the user is not

implemented for UNIX 4.2. These obstacles result in a steep

learning curve to one who desires to use Interlisp without

LISP programming experience. Only hindsight can say that the

struggle and frustration needed to become productive in this

environment were well worth the effort. The impact of seeing

these powerful tools in action was an experience that

* paralleled viewing a rare piece of art that one had only

previously read about.

It is incredible to watch the speed with which a

database is created by MASTERSCOPE on the RPL system, which

consists of 77 LISP functions. The information available

through queries to this database provided the basic

documentation (that was only amplified slightly) for every

function shown in Appendix F.



This feature of Interlisp will be a definite asset to

future research. The effects of changing a particular

" mechanism within the RPL system can be determined by making

a few database queries. Figure VII-1 shows how the

information was obtained for the documentation listed in

Appendix F for a single +unction and illustrates a few

simple queries. By substituting the function name with 'all'

in the first query, every function in the database will be

'described'.

Before making specific changes to an existing

implementation of an operator or system mechanism some

concrete data may be needed to verify perceived problem

areas. This performance data is readily available through

BREAKDOWN. The next section will illustrate this me'hanism

and demonstrate the use of the otherwise disastrous

backspace key as an RPL interrupt, allowing the programmer

to enter LISP commands for debugging, editing and/or

performance testing. Note that the message

?> interrupted below READP

(READP broken)

will occur when the backspace is pressed at the RPL prompt.

The ": prompt is the LISP break prompt and the programmer

has the freedom to execute any LISP command. The command

: return NIL

will restore RPL to the same position where the session was
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interrupted. Note that the system will not redisplay the

line, therfore the cursor will be on the first column of

uhat appears to be a blank line.

The array reduction operator was implemented in LISP

as part of the kernel. The main consideration for the LISP

implementation was to make the operator more efficient. The

extensional definition suggested by MacLennan [Ref. 2 p. 65]

using a 'while' functional was painfully slow. The current

implementation takes advantage of the fact that both

operands have been evaluated at the time the closure is

made (in BIFAPPLY). Therefore, the expression formed as the

body of the closure has the operands in evaluated form. As

discussed in Chapter 5, this operator could have been easily

defined extensionally. In this implementation the operands

have to be evaluated in ARRAY-REDUCTION. The results of a

performance test using BREAKDOWN is shown in detail in the

following section. Of particular note was the minor editing

of the function ARRAY-REDUCTION that was done in order to

perform the comparison.

This type of analysis can be done for the composition

operator and parallel operators. These operators are

currently implemented extensionally, and both operators

return closures. With the extensional implementation input

errors are not detected until the function is applied.

Adding 'o and "" to the kernel may enhance RPL efficiency

considerably.
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*The design of the RPL system allows the addition of

operators to the kernel without a major coding effort. By

grouping operators in BIFAPPLY according to the operand(s)

requirements, error checking for most operators is already

in place. Of course an infix operator being changed from an

extensional implementation to the kernel will have to have

its extensional definition removed from INTOPS and a

representative definition added to SYSYOPS, as well as

having its name added to the list BIFTAGINFIX.

Much work remains to be done to determine which set of

operators is best suited for the RPL kernel. This may be

answered through a systematic analysis of this prototype

with the tools provided by Interlisp. More efficient

implementations of some kernel operators is also likely.

Additionally, follow on implementations will have more

flexibility with RPL notation if a character-at-a-time

parser is adopted.

A. USING BREAKDOWN

In order to illustrate the power and flexibility

available to do performance analysis, edit functions and

create a history of the work performed, the following

example was created. This example will use the UNIX function

"script' to record the terminal session. In this session the

factorial function will be defined in terms of the RPL array

reduction operator. This function will be used as a
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Script started on Tue Jun 11 21:14:52 1985
I ilisp
ISI-INTERLISP 15-MAY-84 ...

good evening.

_load[rpl-int]
File Created: 8-JUN-85 13:39:37

RPL-INTCOMS
expanding LISTP, 65521 used, 2424832 before SC
Iworkleitton/RPL-INT.;2

.asterscope]

Masterscope 29-MAR-84... Type HELP<cr> for command summary.

.. ANALYZE FUNCTIONS ON RECORD

expanding LISTP, 131032 used, 2359296 before GC
......................... done
. DESCRIBE EV

EV[EXP,E]
calls: NUMBERP,STRINGPATOM,MEMBER,LOOKUP,ERRORHANDLER,

EVSPECIAL.CASES,LENGTH,PREFIXOP,INFIXOP
called by: EXECUTE,DEF.BINDING,DISPLAY,EY.SPECIALCASES,

MAPEV,EVSEQ,INFIXIP,PREFIIOP,RPAPPLY,
ARRAY.REDUCTION,RPLREPEAT,MAKEUNIQUE

binds: X,TAG
uses free: SPECIAL-CASES.

NIL
_, WHO CALLS ERROR HANDLER
(DISPLAY EVRANGE EVSEQ RPAPPLY ARRAY REDUCTION MINSET
RPL REPEAT EXECUTE EV EY SPECIAL CASES INFIXOP PREFIXOP
BIF APPLY ARRAY CONCATENATION HEAD MAX SET HEM

W_ WHO USES ERRORCODE
(RPL ERROR-HANDLER FILTER READ USERDEFS DEFBINDING
DISPLAY EVSPECIALCASES EVSEO INFIXOP PREFIXOP RPAPPLY
BIF.APPLY RPLREPEAT)
. WHO SETS ERRORCODE
(RPL ERROR HANDLER FILTER READ USER DEFS)
-.OK
NIL

4% D

script done on Tue Jun 11 21:23:82 1985

Figure VII-1 -- Example of LISP's Masterscope Feature
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benchmark to examine the 'red' operator implementation. The

current implementation of 'red' is done in LISP using the

techniques described in Chapter 5, and will be compared to

two extensional implementation.

Amplifying remarks for notes in Figure VII-2:

1. The file 'brkdwn.sess" initialized by the UNIX
script' function to record the terminal session.

2. RPL system functions-are loaded into Interlisp.

Z. The command 'BREAKDOWN' followed by a list of
functions will internally mark these functions for
monitoring in the performance analysis during the
session.

4. Factorial function defined as a benchmark.

5. 'Backspace' (BS) key causes an interrupt to the RPL
session.

6. The command "breakdownE]" will zero internal counters
for the performance analysis. This is done so that
any data accumulated during RPL loading and the
definition of "fac" will not distort analysis.

7. The command "brkdwnresults[]" is used to verify that.
the counters are zeroed.

8. The command 'return NIL' is used return to RPL.

9. The RPL command "(fac 5)' is entered for benchmarking.

10. BS interrupt (See *5).

11. The data generated from BREAKDOWN is retrieved.

12. The LISP editor is used to modify ARRAYREDUCTION.
This is necessary since f and i are passed in
evaluated form in the current implementation.

13. Return to RPL (See #8).

14. An extensional version of the array reduction operator
is defined, and a factorial function using this
operator is defined.

IeJ
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15. BS interrupt (See 5).

16. Counters are zeroed using "breakdown[]' command.

17. Return to RPL and benchmark program ran ('facext').

18. BS interrupt (See *5).

19. Performance data is obtained.

23. Return to RPL (See N8).

21. Array reduction is defined by translating the
definition used by Maclennan [Ref. 2]. This
illustrates the shift in the use of sequences to lists
as functional arguments. The poor preformance shown
below led to the implementation used in the first
example.

22. BS interrupt (See *5).

23. Counters in BREAKDOWN zeroed.

24. Return to RPL and benchmark program ran (FAC).

25. BS interrupt (See *5).

26. Performance data is obtained.

27. '^C' terminates the Interlisp process and returns the
process to UNIX.

28. "^D' terminates the session and writes 'brdwn.sess'.

1"
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NOTE
I script brkdwn.sess 1

Script started on Sat Jun 9 12:46M3 1915
1 ilisp
ISI-INTERLISP 13-MAY-84..

Hi.
loadtrpl-intl 2

SFile Created: 6-JUN-85 14:34:45
RPL-INTCDNS

expanding LISTP, 65523 used, 2424832 Weore SC
/wr k/si ttanIRPL-INT
-breakdown (E'J EV SPECIAL CASES UPAPPLY INFIXOP PREFIXOP 1IF-APPLYI 3
CEY EV.SPECIALCASES RPAPPLY INFIXOP PREFIXOP DIF-APPLY)
3RPLI
Loading RPL--- DO YOU WANT TO RESUME A PREVIOUS RPL SESSION? (y/n> N

RPL INTERPRETER ON LINE'!

?> fac n zz MUop times) red 1) (listrange 1 to n] 4

?) interrupted below READP 5

(READP broken)
:breakdown(] 6
(EV EV SPECIAL-CASES RPAPPLY INFIXOP PREFIXOP DIFAPPLY)
:brkdvnresults(I 7

FUNCTIONS TINE # CALLS PER CALL I
EV 1.3 1 3.3 1

-'5EV-SPECIALSCASES

RPAPPLY 3.3 1 3.3 1
INFIXOP 3.3 1 I.E 1
PREFIXOP I.E 1 I.E 1
DIF APPLY I.1 1 I.E I
TOTAL 3.3 1 I.E
NIL
:return NIL 8
READP z NIL
(fac 51 9

123

Figure VII-2 -- RPL Terminal Session Using BREAKDOWN
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?) interrupted belo REAP 1

(READP broken)
:brkdnruults[I 11

FUNCTIONS TIME # CALLS PER CALL Z
EV 1.12 64 1.1175 34
EV SPECIALCASES

1.224 3 1.1746667 7
RPAPPLY 1.24 23 .1.1114348 7
INFIOP 1.592 16 1.137 18
PREFIXOP 1.148 2 1.124 1
BIF APPLY 1.356 16 1.166 32
TOTAL 3.28 124 4.1264516
NIL
:editf (ARRAY.REdUCTION] 12
edit
*F FNC
*F FNC
U* P

(SETO FNC (CADDOR EIP))
*3 P
(CAODR EXP)
*(-I EV)
#(N EA]

I..P

(EV CADOI EIP EA)
0i1 2 3
#P

(EV (CADOR EXP) EA)
#,F START

,.. START (CAOR M)
*1l P

(SETO START (CADDOR 1))
#3 P
(CADDOR (CDDR EXP))
*(-I EV)
#(N EA]
*P
(EV CADDDR (CODR EXP) EA)
*81 2 3

#P
(EV (CADDDR &) EA)
OK
ARRAY REDUCTION
:return NIL 13
READP z NIL

Figure VII-2 -- RPL Terminal Session Using BREAKDOWN (continued)
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f reduit i a, (fuc ?A (reduce ?A by f from i1 14

?) facet n M (((op times) redet 1) (listrenge I to n!

?) interrupted below READP 15

(READP broken)
:breakdomo] 16
(EV EY SPECIAL.CASES RPAPPLY INFIXOP PREFIXOP IF.APPLY)
:return NIL 17
REAP a NIL
(facext 5]

121

?) interrupted below READP 19

(READP broken)
:brkdmresults(] 19

FUNCTIONS TIME # CALLS PER CALL I
EV 1.184 67 1.3176716 35
EV.SPECIAL.CASES

8.224 4 3.356 7
3APPLY 052 23 1.1153143 11

INFIXOP 3.56 16 1.135 17
PREFIXOP 1.164 2 3.632 2
DIF APPLY 3.96 15 1.064 29
TOTAL 3.344 127 8.1263317
NIL
.return NIL 23
REAP z NIL
st == (rsec sel 1! 21

?> s2 == (rsec sel 21

? p == ((rsec (> empty) o s2]

7> cdr == (( (I bar) (un a epsilon)) a s2]

?> arg =( :: (t o epsilon]

? f RED i == (st o (Mf a #rg) :1 cdr) o DELTA) while p) o (Isec i ,3

?> FAC n == (((op times) RED 1) (listrange I to n)

?> interrupted below READP 22

Figure VII-2 -- RPL Terminal Session Using BREAKDOWN (continued)
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(11W broken) 23
:breakdon()
(EV EVSPEC!M..CASES RPAPPLY INFIXOP PREFIXOP BIF.APPLY)
return NIL 24

REW z NIL
(FAC 51

121

?) interrupted belo. R.AP 25

(READP broken)
:BRKDNNRESULTSE] 26

FUNCTIONS TINETINE I CALLS PER CALL I
EV 9.392 497 1.1188974 41
EV.SPECIAL.CASES

1.988 33 1.3547879 8
RPAPPLY 3.2 161 1.1198758 14
INFIXOP 2.164 51 1.3447 6 9
PREFIXOP 2.88 I1 8.8289 12
BIF APPLY 3.872 58 I.IM67586 17
TOTAL 23.216 9H 1.1257956
NIL
AC 27
1 AD 28
script done on Sat Jun 8 13:33:33 1985

Figure VII-2 -- RPL Terminal Session Using BREAKDOWN (continued)
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APPENDIX A - ORIGINAL RPL GRAMMAR

seuion = command done

{preftzid I identified _exrssocommand = dipa preo

( [ezpresson ifiz] appliationi
ezpr on superscription

-applic.tion] primar
appliation = iter [ primary . primary ]

superscription = ezpruson sup + }

literal
prefixid

infiz

uuifi primary

primary uifiz piay

primary -. primary priar

primary = (expression expression]

{expreson .. ezpression])
< primary, >

file string

infiz = infixop bar]

letter
identifier = letter prime

prime

_digit-. digQ

s itring
literal true

false

string = " char'
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infuzop =
eel I, :.cup member nomem !subet subset = > < - restr; cl cr cap \
Ohat! catO .!Itred+ - timesdivide!= < > <= >=
andsign orsign cart

jireficid = (prefizep)

prefimp =
- un cur unc theta sie str DELTA inv dom rug mem Lm Rm Mm run Inn bun
init term alpha omega ALPHA OMEGA min max mu index select join us a saO
rp rpi ruort sort unimg all ssm img curry uncurry PHI Id while upsilon
phi delta PI extend restrict wig not

e;
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O"RWX a 1 RPL 2ROAR

session - (command)* (dane)

command = prefixid [identifier] -= expression: idyrtifier identifier == expression'- fie a sring !M expression
- disulay 1 dis , d3 expression

val identifier
= env ridentifier]

expression M ( xpression infix expression)
aaplitcatioon

= superscription

application 
= primarya"( sic ion primary)

( primary -> primary

superscription (expression so * icati )
(expression sup si

=(soreexpression toexresin

priseq primary l!i!  I p r e f'i x i d

(op infix)

(rsec infix primary)
(lsec primary infix)(if primary -? primary ;primary)

=(el (expression expression) ...
= (seqrange expression to expression)
= (setrange expression to expression)=(listrange expression to expression)
= (seq primary ...
= (set primary . . )
i(list primary ... )
=(file strin
= (func formals expression)
= empty

rinfix = infixid
= prnfixid bar)

-,formals = identifier
inid= (identifier+)

:"identifier = letter [letter 1 digit]* prime*

! prime ="

:-"literal = digit+ [. digit+]
I-= string
[*"= t:rue
["= false

[%,string = "char*"

. prefixid = identifier
= prefixop

Sinfixid = identifier
= infixop
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prefixop = un
= cur
- unc
- theta Primitive Extensionals
= epsilon
= size

= DELTA
= cnv
= rev
- doe

rng
= meM Non-Primitive Extensionals
- run (Group I)
= lun
-bun
= init
= term

= hd
= tl
= alpha• , =omega
ALPHA

= OMEGA
= in Non-Primitive Extensionals
= max (Group II)

uset
- mu
- as
= rsort
= sort
= ssm

= curry
= uncurry Primitive Intensionals

= while= upilIon
P tI Non-Primitive Intensionals
=delta

= PI
= wig

= not Miscellaneous
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infixop sel* - ,
= ,Primitive Extensionals

= cup

= member
= nomeui
- Lm
= Ru
= Mm
= !subset= subset Non-Primitive Extensionals
= =(Group
= filter(ropI

- restr

= index
= selec-t
= join

unimg
= all
= cl
- cr
= cap Non-Primitive Extensionals

\ (Group II)
- rp.
- rpi

= @hat
= xi

- - sa

= sa
= cat

=0
' H Primitive Intensionals

=img
=PHY

= red
= extend Non-Primitive Intensionals
= restrict

- times
= divide : /
S!= : <>

=< Miscellaneous
=>

= andsign : and
orsign : or
cart
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APPENDIX C - RPL OPERATORS

A. INTRODUCTION

This appendix will describe all the RPL operators

implemented to date. Sections B - L each cover one of the

operator classes outlined in Chapter VI. Because all of the

data input operators are included in the 'Special Operator'

class, it is discussed first, followed by the the remaining

classes in the order indicated in Chapter VI. Also, to

provide easier access to the operators, an index is included

at Appendix D.

The format utilized provides the user with the name of

the operator in functional terms, its syntax,

input(s)/output, a description of what the operator does,

and one or more examples. Each example is written as an RPL

command which will return a result. Therefore, definition

of variables is kept to a minimum to keep the structures

visible so the user can follow more easily what is

happening.

Long input definitions and output are highly formatted

in this appendix. The user must realize that output from

the interpreter itself is not as structured. A large

relation in RPL is just a LISP list, and so when it is

printed to the screen, it is printed as a single long list,

modified slightly by RPL routines. Therefore, the output
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represented in this Appendix has been nicely formatted to

clarify the structures involved and to help the

understanding of the user.

Arguments to RPL operators can take various forms, but

are all variations of the three basic types - scalars, sets

or relations. In general, data types will be represented

through the use of lowercase letters as follows:

x, y, z scalar, or anything

S set

t, u relation (table),
sequence or list

d relation - database

f, g function

p boolean function

m, n integers

The operators have generally been classified by the type

of argument they apply to, e.g., set, relation, sequence,

array. Sequences, arrays, records and the like are all

special forms of a relation. Another unique form of

relation utilized by several of the higher order operators

is the data structure.

A RPL data structure consists of two parts, the form

part, R, and the data part, D. These two parts are combined

as a RPL list. Thus, the internal structure appears as:

(rel (1 D) (2 R))
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R, the form component, is a relation represented as a

sequence of indices to the data elements. These indices can

be anything the user desires, as long as they all are

distinct. The data part, D, is also a relation which

relates the indices to their respective data values. For

example, consider a data structure for the sequence,

(10, 20, 30, 40, 50).

For simplicity, let the form part, R, be represented by the

sequence, (1, 2, 3, 4). Internally, R would look like:

(rel (1 2) (2 3) (3 4))

This would lead to the data part, D, with an internal form:

(rel (1 10) (2 20) (3 30) (4 40))

Together these components would produce the data structure:

S = (rel (1 (rel (1 10) (2 20) (3 30) (4 40)))
(2 (rel (1 2) (2 3) (3 4))) )

In this appendix, a data structure will be represented by

the capital letter, "S'. This letter is used to distinguish

it from the lowercase letters which are used to represent

other argument/data types in the language.

For additional and developmental information concerning

any of the operators in this Appendix, see MacLennan

[Ref. 23. Some operators have been altered, added or

deleted from the original set proposed by MacLennan.

Appendix E summarizes in tabular form, the evolution from

the original proposal to the implemented version of

operators. It provides a quick reference to the syntax of
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the operators in their input form and contrasts this input

form with the publication form created through the use of

the Unix 'eqn" package.

B. SPECIAL OPERATORSI 1. agj~tgfl 22fi~jljgin
a. Syntax: (rel (xl : yl) (x2 : y2) ... )

b. Input(s): Anything
Output: relation

c. Description: The "rel' operator is the general
mechanism to create a relation in
RPL. It normally uses the pair-
making operation described in the
next section to convert the data
given into the internal
representation for a relation.

d. Example(s):

?> (rel (1 : 2) (3 : 4) (4 : 5)3
(rel (1 2) (3 4) (4 5))

2. Set _Def inition

a. Syntax: (set xl x2 x3 ... )

b. Input(s): anything
Output: relation (set)

c. Description: The 'set' operator evaluates and

transforms the data items given
into the internal representation
for an RPL set.

d. Example(s): Suppose a = 3 and b 5:

?> (set 1 2 a 4 b3
(set 1 2 3 4 5)

a. Syntax: (seq xl x2 x3 ... )
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b. Input(s): anything
Output: relation

c. Description: The 'seq" operator is an easier
way to enter a special kind of
relation called a sequence. It is
up to the user to insure that the
data item he is creating is a pure
sequence, i.e., has no redundant
elements in it. This mechanism
can also be used to enter certain
types of directed graphs when
redundant elements are included.

d. Example(s):

(1) ?> (seq 1 2 3 4 5]
(rel (1 2) (2 3) (3 4) (4 5))

(2) ?> (seq 8 3 7 7 5 4]

(rel (6 3) (3 7) (7 7) (7 5) (5 4))

4. List Definition

a. Syntax: (list xl x2 x3 ... )

b. Input(s): anything
Output: relation

c. Description: The 'list' operator is an easier
method to enter a relation which
looks like an array. It sets up
an internal structure which orders
the data given by relating an
index, starting with 1, to the
value provided. It is called a
list after its primary use, for
making argument lists for infix
functions.

d. Example(s): Suppose x = 30:

7> (list 10 20 x 49]
(rel (1 10) (2 20) (3 39) (4 49))

5. Range Definition - Seta Seguente, and List.

a. Syntax: (setrange m to n)
(seqrange m to n)
(listrange m to n)
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b. Input(s): integers
Output: relation

c. Description: These operators are used to easily

create relatively large numeric
relations. The values within the
range from m to n are transformed
into the appropiate structure.

d. Example (s):

(1) ?> (setrange 2 to 53
(set 2 3 4 5)

(2) ?> (seqrange 1 to 5]
(rel (1 2) (2 3) (3 4) (4 5))

(3) ?> (listrange 10 to 39]
(rel (1 19) (2 20) (3 39))

6. Direct Function Definition

a. Syntax: name == (func (arg) (body))

b. Input(s): argument list; body of definition
Output: RPL function

c. Description: The syntax includes the entire
command line required to execute a
func. The function components

provided are converted into the
* ' RPL internal function representa-

tion and the environment of defin-
ition is attached. However, this
environment is never displayed to
the screen in evaluated form. The
: env' command will allow the user

. to see the environment of any
function in its definitional form.
The 'val' command will allow the
user to see the internal repre-
sentation of a function, but the
environment will not be displayed.

d. Example(s):

?> sum == (func (x y) (x + y)3
?> val sum

(closure (x y) (x + y))
?> (sum (list 2 3)]
5

124

44 |. *' . . .* *b*l. ...,-_ % "... ".. .."..' ... ,- .' .. '. ..Q . .... . ' -. .*.. * . i ..'. .. ,*. J - ... .-... . .. ..-..." .. "...'."...o . ...... .". ... ....



* 7. In.if& _ tg Ecf.la cgonr-__ion

a. Syntax: (op f)

b. Input(s): infix function
Output: prefix function

c. Description: The "op' operator transforms an
infix operator into a prefix
operator so that it can be
composed with other functions.
Once converted the arguments to
this function must be provided in
the form of a binary list.

d. Example(s):

?> ((op +) (list 2 3]
5

B. Left Sention and Right Section

a. Syntax: (Isec x f)
(rsec f x)

" - b. Input(s): x, anything; f, infix operator
Output: function

c. Description: These two operators allow the user
to fix either the left or right
argument to an infix function.
Thus x must be a suitable argument
to the infix function provided.

d. Example(s):

(1) ?> ((lsec 3 +) 23
5

(2) ?> ((rsec = 3) 2]
false

9. Cgnditional Functjigal

a. Syntax: (if p-> f ; g)

b. Input(s): p, predicate - boolean function
f, g - any function

Output: function

17
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c. Description: This functional creates a function
which when given an argument will
pass it to the predicate. If
true, then f will be applied to
the argument, else g will be
applied to the argument.

d. Example(s): Suppose the user wanted to add or
subtract two numbers based on the
sign of the first number. The
following predicate and functions
could be used (See Chapter VI for
explaination of function defini-
tional forms:

?> p x == ((x sel 1) < 03
?> f (op +3
?> g == (op -3
?> ((if p -> f ; g) (list 3 23

1

10. Iteration Functional

a. Syntax: (iter p ; 4)

b. Input(s): p, predicate (boolean function)
f, any function

Output: anything

c. Description: This functional produces a
function which when given an
argument will apply f to that
argument at least once. Then if
the predicate applied to the
result of the first application of
f is true, it will apply f to the
result. This cycle continues
until the predicate fails.

d. Example(s): Consider a trivial case where the
user wanted the argument to be
doubled until it was greater than
50, and then return the result:

?> p == (rsec <= 503
?> 4 = (rsec times 23
?> ((iter p -> f) 4)

64
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11. PUrE~rxiLt i2n

a. Syntax: (t sup +)
(t sup **)
(t sup -1)
(f sup n)

b. Input(s): t, relation
f, function; n, positive integer

Output: relation; function

c. Description: This operator has four cases as
shown above and is the only one
that can be applied to both exten-
sional relations and functions.
When the right argument is '+' a
transitive closure is performed.
When a '**" is provided, a reflex-
ive transitive closure is done.
Note, a double asterisk is
required because of a conflict
with the use of the '*' symbol in

LISP. When a '-1 is the right
argument, the converse of t is
returned. When the left argument
is a function and the right
aegument is a positive integer,
the function is composed with
itself n times.

d. Example(s): Let t = (seq 1 2 3 4)
f N Cx + 2)

(1) ?> (t sup +3

(rel (1 2) (2 3) (3 4) (1 3) (2 4) (1 4))

(2) ?> (t sup **]

(rel (1 1) (2 2) (3 3) (4 4) (1 2)
(2 3) (3 4) (1 3) (2 4) (1 4))

(3) ?> (t sup -1]
(rel (2 1) (3 2) (4 3))

(4) ?> ((f sup 2) 2]
8

12. FgM jzjtin Functional

a. Syntax: (f (+ bar) g),
(f (- bar) g),

(f (times bar g),
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b. Input(s): infixoperator; functions

Output: function

c. Description: The 'bar' operator converts any
infix operator into a functional
which takes two functions as
arguments. The resulting func-
tional will apply the input
functions f and g to an appropiate
argument and then apply the
'barred' infix operator to the
results.

d. Example(s): Consider a definition for a func-
tion which squares its arguments.
It utilizes the Identity function,
I, which is explained in the next

section:

?> sqr == (I (times bar) I]
?> (sqr 43
16

'"" 13. Emotv Set or R e~IU20

a. Syntax: empty

b. Input(s): none
Output: set or relation

c. Description: This operator is actually a data
element which represents the empty
set or relation. It is normally
used to initialize sets or
relations and may be returned as
the result of other operations.

d. Example(s):

x == empty

C. GLOBAL OPERATORS

1. EgLuait ad In2g~ality

a. Syntax: (x = y)
(x . y) or (x <> y)

S.

b. Input(s): anything
Output: boolean
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c. Description: Compares any two RPL data types
based upon their mathematical
equivalence, not form.

d. Example (s):

(1) ?> (2 = 31 (2) ?> (2 != 33
false true

(3) 7> ((set (1 : 2) (2 : 3) (3 : 4)) = (seq 1.2 3 43
true

2. DRnisstign

a. Syntax: (DELTA x)

b. Input(s): anything
Output: relation

c. Description: Duplicates the argument and
returns a relation in the form of
a binary list.

d. Example(s): 7> (DELTA "a"]
(rel (1 "a") (2 "a"))

3. Identity

a. Syntax: (I x)

b. Input(s): anything
Output: anything

c. Description: Returns the input unchanged.

d. Example(s): ?> (I 31
3

4. Pair Formation

a. Syntax: (x : y)

b. Input(s): anything
Output: elementary pair

c. Description: Used to create the elements of a
relation in conjunction with other
operators. It has no meaning by
itself.

d. Example(s): (1 : 2) ==> (1 2)
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5. Head+ Tai 1

a. Syntax: -(hd z)
(tl z)

b. Input (s): elementary pair
Output: anything

c. Description: Given a LISP elementary pair,
i.e., a dotted pair, "hd ° will
return the first element, til

will return the last element.
These operations are used within
function definitions to extract
pieces of a relation which can be
further processed.

d. Example(s):

(1) ?> (hd (10 : 293

(2) ?> (tl (10 (rel (3 : 4) (4 : 53
(rel (3 4) (4 5))

6. Pair List

a. Syntax: x , y)

b. Input(s): anything
Output: relation

c. Description: Converts the two inputs into the
relational form of a binary list.

d. Example(s): ?> (20 , 30]

(rel (1 20) (2 39))

7. Unit Set

a. Syntax: (un x)

b. Input(s): anything
Output: set

c. Description: Converts the input data item to a
set containing that single data
item.

p.

d. Example(s): ?> (un "dog"]
(set dog)
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D. ARITHMETIC OPERATORS

1. SEM&L _iiffrgncgA EodUct Quotient

a. Syntax: (x + y)
(x - y)
(x times y)
(x divide y) or (x / y)

b. Input(s): numeric, real or integer
Output: numeric, real or integer

c. Description: Normal mathematical operations.
If either input is a real, the
result will be a real, except in
division. If the numerator is
integer, an integer division will
be executed.

d. Example(s):

(1) ?> (2 + 33 (2) ?> (3.125 - 23
5 1.125

(3) ?> (3 - 23 (4) ?> (2 * 43
"1 B

(5) ?> (2 divide 43 (6) ?> (2.2 / 43

0 0.5

2. Less. Greatge.l Less gE gual, Greater or Egual

a. Syntax: (x < y)
(x > y)
(x <= y)
(x >= y)

b. Input(s): numeric, real or integer

Output: boolean

c. Description: Conventional relational operators.

d. Example(s):

(1) ?> (2 < 33 (2) ?> (2 >= 33
true false
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D. LOGICAL OPERATORS

1. _gniunstign.. Ri2iuakio0. N

a. Syntax: (x andsign y) or x and y)
(x orsign y) or (x or y)
(not x)

b. Input(s): boolean(s)

Output: boolean

c. Description: Conventional logical operators.

d. Example(s):

(1) ?> (true andsign true]
true

(2) ?> ((2 < 3) or (2 > 33
true

(3) ?> (not (3 = 33
false

E. SET OPERATORS

1. Maximufm itimum

a. Syntax: (max s)
(min s).

b. Input(s): numeric set
Output: number

c. Description: Returns the maximum or minimum
element of the input set,
respectively.

d. Example (s):

(1) ?> (max (set 4 8 2 10 9)

10

(2) ?> (min (set 4 8 2 10 9)
2
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2. Relational Sort. Sort

a. Syntax: (rsort s)
(sort s)

b. Input(s): numeric set
Output: relation

c. Description: The input set is sorted in ascend-
ing order and converted into a
sequence for rsort, and a list for
sort.

d. Example(s):

(1) ?> (rsort (set 4 B 2 10 9]

(rel (2 4) (4 8) (8 9) (9 10))

(2) ?> (sort (set 4 8 2 10 9]
(rel (1 2) (2 4) (3 8) (4 9) (5 10))

3. Element Selection

a. Syntax: (epsilon r)

b. Input(s): set or relation
Output: anything

c. Description: Returns the first element of the
input provided.

d. Example(s):

(1) ?> (epsilon (set 4 8 2 10 9]
4

(2) ?> (epsilon (rel (1 : 2) (2 : 3)
(1 2)

4. Unigue Element Selection

a. Syntax: (theta s)

b. Input(s): unit sqt
Output: anything

c. Description: Extracts the single member of a
unit set and returns it.

d. Example(s): ?> (theta (set "dog"]
dog
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5. Uninue Set

a. Syntax: (uset r)

b. Input(s): set or relation
Output: set or relation

c. Description: Eliminates redundant elements from
the input structure provided.

d. Example(s): 7> (uset (set 4 8 2 4 10 9)

(set 4 8 2 10 9)

6. Intersection, Union and Set Difference

a. Syntax: (s cap r)
(s cup r)
(s \ r)

b. Input(s): set or relation

Output: set or relation

c. Description: Conventional set operations.

d. Example(s):

(1) ?> ((set 1 2 3) cap (set 2 3 4)
(set 2 3)

(2) ?> ((set 1 2 3) cup (rel (1 : 2) (2: 3)
(set 1 2 3 (1 2) (2 3))

-,

(3) ?> ((set 1 2 3) \ (set 2 3 43
(set 1)

(4) 7> ((set 1 2 3) \ (set 1 2 3
empty

7. Cartesian Product

a. Syntax: (s cart r)

b. Input(s): set or relation
Output: relation

c. Description: None required.

d. Example(s):

?> ((set 1 2) cart (set 5 63
(rel (1 5) (1 6) (2 5) (2 6))
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8. Cardinality

a. Syntax: (size r)

," b. Input(s): set or relation
Output: integer

c. Description: Returns the number of elements in
the input set or relation.

d. Example(s):

(1) ?> (size (set 4 8 2 10 9)
5

(2) ?> (size (rel (1 : 3) (3 : 5) (5 : 7)

9. Membershiga Nonmembershig

a. Syntax: (x member r)
(x nomem r)

b. Input(s): anything; set or relation
Output: boolean

c. Description: Verifies if x is or is not a
member of the input set or

relation.

d. Example(s):

(1) ?> (2 member (set 1 2 3)
true

(2) ?> ((1 : 2) nomem (rel (1 : 2) (2 : 3)]
false

10. ImEqREr Subset± PrE er Subset

a. Syntax: (s !subset r)
(s subset r)

b. Input(s): set or relation
Output: boolean

c. Description: Verifies that all members of s are
members of r. The cardinality of

s must be less than the
cardinality of r for a proper
subset.
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d. Example(s):

(1) ?> ((set 1 2 3) !subset (set 1 2 3)3
true

(2) ?> ((set 1 2 3) subset (set 1 2 32
false

(3) ?> (rel (1 : 2)) subset (set 4 (1 : 2) 52
true

F. RELATION OPERATORS

1. Se3j3tion

a. Syntax: (t sel x)

b. Input(s): anything; relation
Output: anything

c. Description: Given the left member of a rela-
tion, x, the associated right
member of the first occurence of x
in t will be returned.

d. Example(s):

?> t == (rel (1 : 2) (2 : 3) (1 : 3) (2 : 4)]
?> (2 sel 3

2. Construction

a. Syntax: (t # u)

b. Input(s): relations
Output: relation

c. Description: Constructs a table (relation)
which relates each common left
member of t and u, to a list
created by selecting the
respective right members from t
and u by using the common left
member as a target. When creating
the list, the right member
associated with the first
occurence of the target is used.
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d. Example (s):

?> t == (rel (1 : 2) (2 : 3) (1 : 3) (2 : 4)]
?> u == (rel (1 : 8) (2 : 9) (3 : 10)]
?> (t # u3
(rel. (1 (rel (1 2) (2 8)))

(2 (rel (1 3) (2 9))))

3.

a. Syntax: (cnv t) or (t sup -1)

b. Input(s): relation
Output: relation

c. Description: Returns a table where each element
of table t has the left and right
member inverted. See special

operator section for other uses of
the 'sup' syntax.

d. Example(s):

?> t - (rel (1 : 2) (2 :3) (1 3) (2: 4)3
?> (cnv t3
(rel (2 1) (3 2) (3 1) (4 2))

4. Extensignal Curry.L Ex t nsional Uncurry

a. Syntax: (cur t)
(unc t)

b. Input(s): relation
Output: relation

c. Description: Given an extensional representa-
tion of an infix function in
either curried form or uncurried
form, these operators will convert
one form to the other. Each
element in the uncurried form of
such a table consists of the
function argument list paired with
the result of applying the
function to these arguments. In
curried form, the resulting table

is the equivalent of fixing the
left member of the infix operator.

This left member is paired with
another table which contains all
potential right members paired to

1
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the result of applying the
function to the fixed left member.

d. Example(s): Consider a portion of an uncurried
table which represents the +

function:

?> t == (rel ((1 , 1) : 2) ((1 , 2) : 3)
(C1 , 3) : 4) ((2 , 1) : 3)
((2 , 2) : 4) ((2 , 3) : 5) ]

?> (cur t
(rel (1 (rel (1 2) (2 3) (3 4)))

(2 (rel (1 3) (2 4) (3 5))) )

5. Ordergd Lnign

a. Syntax: (t ; u)

b. Input(s): relations
Output: relation

c. Description: Creates a table where all elements
of t are added to u, replacing any
corresponding elements already
there.

d. Example (s):

?> t (rel (1 : 2) (2 : 3) (3 : 4)]
?> u (rel (2 : 4) (3 : 6) (4 : 7)]
?> (t ; u3
(rel (1 2) (2 3) (3 4) (4 7))

6. Primitive Relative Product

a. Syntax: (t I u)

b. Input(s): relations
Output: relation

c. Description: For an element in t, its right
member is used as a target in u,
producing a set of values
associated with the target. New
elements for the resulting table
are created by pairing the left
member of the element in t with
each value in this set. The
resulting table contains all the
elements created by the above
process for each element in t.
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d. Example(s):

?> t == (rel (1 : 2) (2 : 3)]
?> u = (rel (2 : 4) (2 : 8) (3 : 6) (3 : 12)]
?> (t 1 u3
(rel (1 4) (1 8) (2 6) (2 12))

7. Al Unit Image

a. Syntax: (y all t)
(t unimg x)

b. Input(s): anything; relation (all)
relation; anything (unimg)

Output: set

c. Description: "all' returns a set of all left
members related to the target
right member, y. Likewise,
"unimg' returns a set of all right
members related to the target left
member, x.

d. Example(s):

Let t = (rel (1 : 2) (2 :3) (1 :3) (2: 4))

(1) ?> (3 all t
(set 2 1)

(2) ?> (t unimg 2]
(set 3 4)

8. Domain, Range

a. Syntax: (dom t)
(rng t)

b. Input(s): relation
Output: set

c. Description: "dom' returns all left members of
the relation t, and "rng' returns
all right members of t. Neither
of these operators eliminate
redundant elements.
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d. Example(s): Consider the relation shown
graphically in Figure C-1 and its
input form here:

t = (rel (1 : 2) (2 : 4) (2 : 5) (3 : 5) (5 : 5)

(5 :6) (7 :6) (8 :7) (8 8) (9 :7))

444

3 5 6 7 9

Figure C-1 Arrow Diagram for Relation t

(1) ?> (dom t3
(set 1 2 2 3 5 5 7 8 8 9)

(2) ?> (rng t3
(set 2 4 5 5 5 6 6 7 8 7)

9. Initial Members TerMinal Members

a. Syntax: (imit t)
(term t)

b. Input(s): relation
Output: set

c. Description: Given a table which represents
some relation, the initial members
are those which are left members
of the relation, but not right
members. Conversely, the terminal
members are those which are right
members, but not left members of
the relation. "init' returns the
intial members of a relation, and
'term' returns the terminal
members.

d. Example(s): Using the relation in Figure C-i,

?> (init t3 ?> (term t3

(set 1 3 9) (set 4 6)
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a. Syntax: (MM t)

b. Input(s): relation
Outputs set

c. Description: Returns a set of all left and
right members of the relation t.
Because this operator is defined
in terms of the domain, range and
union opertors, redundant elements
may be left in. The union between
the domain and range of t will
leave any redundant elements in
the range in the result. See
reference ** for more information
on how LISP implements union.

d. Example(s): Using the relation from Figure C-1,

?> (mom t]
(set 1 3 9 2 4 5 5 5 6 6 7 8 7)

11. Left Member1 Right MeMber _e er

a. Syntax: (x Lm t)
(x Rm t)
x Mm t)

b. Input(s): anything; relation
Output: boolean

c. Description: Verifies if x is a left, right, or
either a left or right member of
t, respectively.

d. Example(s):

Let t = (rel (1 :2) (3 :4) (5: 6))

(1) ?> (3 Lm t3 (2) ?> (8 Mm t3
true false

(3) ?> (5 Rm t3 (4) ?> (5 Mm t3
false true
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12. Left Unly-ant.L Righftt in~i aI tn& Bi-univalent

a. Syntax: (Iun t)
(run t)
(bun t)

b. Input (s): relation
Output: boolean

c. Description: A left univalent relation is one

Jin which each element in the
domain is unique. In other words,
no two different right members can

have the same left member.
Likewise, a run univalent relation
is one in which every right member
is unique. Therefore, it follows
that a bi-univalent relation, also
known as a isomorphism is one that

has both unique left and right
members. These operators deter-
mine if the relation is what is
requested.

d. Example(s):

(1) ?> (lun (rel (I : 2) (2 : 3) (1 : 5)]
false

(2) ?> (run (rel (1 : 2) (2 : 3) (1 : 5)]
true

(3) ?> (bun (rel (1 : 2) (2 : 3) (3 : 4)]
true

6 . SEQUENCE OPERATORS

1. First ember Initial Seguence

a. Syntax: (alpha t)
(ALPHA t)

* b. Input(s): sequence
Output: anything; sequence

c. Description: "alpha' returns the first element
of the sequence s, while 'ALPHA'

returns the entire sequence except
the last element.
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d. Example (s):

(1) ?> (alpha (seq 1 2 3 4 53

(2) ?> (ALPHA (seq 12 34 53
(rel (1 2) (2 3) (3 4))

2. Last ftIg.L Eiflal gggcing

a. Syntax: t (omega t)
(OMEGA t)

b. Input(s): sequence
Output: anything; sequence

c. Description: 'omega' returns the last element
in the sequence t, while 'OMEGA'
returns the entire sequence except
the first element.

d. Example(s):

(1) ?> (omega (seq 1 2 3 4 53

5

(2) ?> (OMEGA (seq 12 3 45]
(rel (2 3) (3 4) (4 5))

3. Cons Left. Cons Riah

a. Syntax: (x cl t)
(t cr x)

b. Input(s): x = anything; t = sequence
Output: sequence

c. Description: Any data item is added to the
beginning (left) or to the end
(right) of the sequence t.

d. Example(s):

(1) ?> (Ilcl (seq2 34 53
(rel (1 2) (2 3) (3 4) (4 5))

(2) ?> ((seq 1 2 34) cr 53
(rel (1 2) (2 3) (3 4) (4 5))
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a. Syntax: (mu t)

b. Input(s): relation
- Output: sequence

. C. Description: This operator eliminates redundant
edges from a relation which has as
its underlying structure a
sequence. This type of structure

" can be obtained as a result of
. some of the higher order operators

discussed in sections K and L.
Care must be exercised. If t does
not originate from a true

sequence, the computation may nothalt.

d. Example(s):

?> t == (rel (3 :4) (3 :6) (3 :7) (3 :2)
(4 :6) (4 :7) (4 :2) (6 :7)
(6 2) (7 : 2)3

.> (mu t3

(rel (3 4) (4 6) (6 7) (7 2))

5. Seguen4e oi Sequences to Matrix

a. Syntax: (ssm t)

b. Input(s): relation
Output: relation

c. Description: Given a relation in the form o a

sequence of sequences, this
operator converts it into a
relation which represents a
matrix. The let member is a list
o the column and row number and

the right member is the value at
that position.

d. Example(s):

?> t == (seq (seq 10 20 30)

• , (seq 40 50 60)>(seq 70 80 90)
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?> (ssm t
(rel
((rel (1 1) (2 1)) 10)
((rel (1 1) (2 2)) 20)
((rel (1 1) (2 3)) 30)
((rel (1 2) (2 1)) 40)
(Crel (1 2) (2 2)) 50)
((rel (1 2) (2 3)) 60)
((rel (1 3) (2 1)) 70)
((rel (1 :3) (2 2)) 80)
((rel (1 3) (2 3)) 90))

6. Segence to ACrla

a. Syntax: (t sa n)

b. Input(s): sequence; positive integer
Output: relation (array)

c. Description: Converts the sequence t into an
array indexed starting with n.

d. Example(s):

?> ((seq 10 20 30) sa 41
(rel (4 10) (5 20) (6 30))

H. ARRAY OPERATORS

1. Arrav to Seguence

a. Syntax: (as t)

b. Input(s): relation (array)

Output: relation (sequence)

c. Description: Converts the values of the given
array into a sequence.

d. Example(s):

?> (as (rel (1 : 10) (2 : 20) (3: 30) (4: 40)]
(rel (10 20) (20 30) (30 40))
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2. . Cgncatenation.

a. Syntax: (t cat U)

b. Input(s): relations (arrays)
Output: relation (array)

c. Description: Concatenates u to t by altering
the indices of u to be consecutive
with the indices of t.

d. Example(s):

?> t== (rel (1 : 10) (2 : 30) (3 : 30)]
?> u ==(rel (1 : 40) (2 : 50) (3 : 60)]
?> (t cat u]
(rel (1 10) (2 20) (3 30) (4 40) (5 50) (6 60))

3. Reverse Array

a. Syntax: (rev t)

b. Input(s): relation (array)
Output: relation (array)

c. Description: Returns an array with the values
reversed.

d. Example(s): Using t from the example above,

?> (rev t]
(rel (1 30) (2 20) (3 10))

I. DATABASE OPERATORS

1. Database Index

a. Syntax: (x index d)

b. Input(s): x, anything (field name)
d, relation (database)

Output: relation

c. Description: Returns a relation which pairs the
value associated with field name
X, to the entire record that the
field name was found in, for all
records in d.
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d. Example(s): Consider the following database:

dbl = (set
(rel ("#" : 100) ("name" : "Brown") ("hours" : 10))
(rel ("#" : 101) ("name" : "Mitton") ("hours" : 8))
(rel ("#" : 102) ("name" : "Benson") ("hours" : 16))
(rel ("#" : 103) ("name" : "Murnan") ("hours" : 10))
(rel ("#" : 104) ("name" : "Garcia") ("hours" : 12)))

?> ("hours" index dbl]
(set (10 (rel M# 100) (name Brown) (hours 10)))

(8 (rel (M 101) (name Mitton) (hours 8)))
(16 (rel (* 102) (name Benson) (hours 16)))
(10 (rel M# 103) (name Murnan) (hours 10)))
(12 (rel (M 104) (name Garcia) (hours 12))))

2. Database Select

a. Syntax: (x select d)

b. Input(s): x, anything (field name)
d, relation (database)

Output: function

c. Description: Returns a function which when
given a predicate selects those
records for which the predicate is
true and returns a relation with
those records.

d. Example(s): Suppose the user wanted all
records which have an 'hours'
field equal to 10 from the
database, dbl, used above. Thus the
argument to the functional created
by the 'select' operator would be
the predicate, (rsec = 10). This
predicate compares the value of

the x field with the value 10. If
true, the record is included in
the resulting set.

?> (("hours" select dbl) (rsec = 10]
(set (rel (# 100) (name Brown) (hours 10))

(rel (# 103) (name Murnan) (hours 10)))
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" 3. Database !in

a. Syntax: (x join dl)

b. Input(s): x, anything (field name)
dl, relation (database list)

Output: relation (database)

c. Description: This operator performs a natural
join on two databases, combining
all the fields of both databases,
based on the equality of the
values in the field specified -.x.

d. Example(s): Consider the database, dbl, in the
'index* example and the additional
database, db2, given below:

db2 = (set
(rel ("#" : 100) ("age" : 32) ("office" : "D3"))
(rel ("#" : 101) ("age" : 27) ("office" : "A4"))
(rel ("#" : 102) ("age" : 21) ("office" : "Cl"))
(rel ("#" : 103) ("age" : 45) ("office" : "A2"))
(rel ("#" : 104) ("age" : 37) ("office" : "B8")

?> ("#" join (list dbl db2)J
(set
(rel (name Garcia) (hours 12) (* 104) (age 37) (office B8))
(rel (name Murnan) (hours 10) (# 103) (age 45) (office A2))
(rel (name Benson) (hours 16) (# 102) (age 21) (office C1))
(rel (name Mitton) (hours 8) (# 101) (age 27) (office A4))
(rel (name Brown) (hours 10) (# 100) (age 32) (office D3)))

" K. HIGHER ORDER OPERATORS - RETURNING FUNCTIONS

1. Array Reduction.

a. Syntax: (f red x)

b. Input(s): function; anything
Output: function

c. Description: Given a function f, which will
operate on the data of an array,
and a starting point, x, this
operator produces a function which
reduces an array. When executed,
the result is set to the star ng
point, X. f is applied to the
result and the first element of
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data in the array, producing a new
result. f continues to be applied
as above until all data elements
have been utilized as input. The
result is then returned.

d. Example(s): Consider the definition for
factorial:

?> fac x == (((op times) red 1) (listrange 1 to x]
?> (fac 83
40320

2. Composition

a. Syntax: (f o g)

b. Input(s): functions
Output: function

c. Description: Produces a function which when
given an appropriate argument will
apply f to the result of applying
g to that argument.

d. Example(s): Consider another definition for
the squaring function:

?> sqr == (times o DELTA)
?> (sqr 4)
16

3. Curry and Uncurry

a. Syntax: (curry f)
(uncurry f)

b. Input(s): function
Output: function

c. Description: These two operators are used to
convert between the two types of
infix functions. An infix func-
tion which takes a single argument
in the form of a list is in
uncurried form. When such a
function is curried, it produces a
functional, which will produce
another function when given one of
the two arguments that are
normally required. This resultant
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function fixes this argument and
creates a function which takes any
other valid argument and returns
the same result as if the
uncurried version had been given
both arguments.

5d. Example(s):

?> sum == (op +J {* uncurried form *}
7> add == (curry sum]
7> f == (add 3)
7> (sum (list 3 5]
8

?> (f 5]
e

4. Extension

a. Syntax: (t extend f)

b. Input(s): relation; function
Output: functional

c. Description: Produces a functional which when
given an argument first checks to
see if it is the domain of t. If
so, its right member is returned,
else the function f is applied to
the argument.

d. Example(s): Suppose the user wanted to work
with a subrange of the positive
integers, say 1 to 50, so that the
successor of the argument would be
returned if the argument was in
this subrange, and an error
message would be returned if it
was not:

(1) 7> t == (seqrange 1 to 503
7> f x == "Error - not within range"
7> subrange == (t extend f3
7> (subrange 25]

26

(2) 7> (subrange 55]
Error - not within range
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5. ~~eation of & Eungtgn

a. Syntax: (wig p)

b. Input(s): boolean function
Output: function

c. Description: Returns a function which negates
the result of the input boolean
function.

d. Example(s): Consider a function to determine
if a numeric argument is within
the subrange 10 to 20, and then
the opposite, a function to
determine if the argument is
outside the range:

?> in-range x == ((x >= 10) and (x <= 20]
?> out-of-range == (wig in-range]
?> (out-of-range 25]
true

6. Paralleling of Functigns

a. Syntax: (f ,,, g)

b. Input(s): functions
Output: function

c. Description: Produces a function from the two
input functions which when given
an argument list, returns a list
of the results of applying f to
the first member of the argument
list and g to the last member of
the argument list.

d. Example(s): Consider a different approach to

the in-range function from the
last example:

?> blist == (((rsec >= 10) :1 (rsec <= 20)) o DELTA]
?> (blist 15]
?> (rel (1 true) (2 true))
?> in-range == (and o blist]
?> (in-range 15]
true
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7. While 1ggg

a. Syntax: (f while p)

b. Input(s): function; boolean function
Output: function

c. Description: Produces a function which when
given an argument will first test
the predicate with the argument.
If the predicate succeeds then f
is applied to the argument. The
result of this application is
passed to the predicate and if the
predicate again succeeds, f is
applied to this result. This cycle
continues until the predicate
fails. If the predicate fails on
the first attempt, the original
argument is returned.

d. Example(s): Consider a definition for modulo
arithmetic:

?> modaux x == ((rsec - x) while ((rsec >= 0) a (rsec - x)]
• > mod == ((uncurry modaux) o rev]
?> (10 mod 43
2

8. Value of a Node4 Data Structure

a. Syntax: (upsilon f)

b. Input(s): function
Output: function

c. Description: Creates a function which takes a
data structure and returns the
value of the node selected by f.

d. Example(s): Suppose the user wanted a function
which would return the value of
the first node of a given data
structure. Consider a RPL data
structure for a sequence:

152



?> S == (list (list 3 4 -2 6 7 -1 2 -4)
(seqrange 1 to 8]

?> val S
(rel (1 (rel (1 3) (2 4) (3 -2) (4 6) (5 7)

(6 -1) (7 2) (8 -4))
(2 (rel (1 2) (2 3) (3 4) (4 5) (5 6)

(6 7) (7 8))
?> first =- (upsilon alpha]
?> (first S3
3

9. OeQrate on Data. Data Structure

a. Syntax: (delta f)

b. Input(s): function
Output: function

c. Description: Creates a function which will
operate on the data part of the
RPL data structure. Therefore the
function' f must accept as a valid
argument the relation which
represents the data part of the
data structure. The resulting
function takes a data structure as
an argument, applies f to the data
component, and returns the
modified data structure.

d. Example(s): Suppose the user wanted to add 1
to every data element of the data
structure used in the last
example:

?> f == (Isec (hd : bar) ((rsec + 1) o tl)) img]
?> add1 == (delta f]
?> (add1 S]
(rel (1 (rel (1 4) (2 5) (3 -1) (4 7) (5 8)

(6 U) (7 3) (8 -3))
(2 (rel (1 2) (2 3) (3 4) (4 5) (5 6)

(6 7) (7 8))

10. Oerate on Form Data Structure

a. Syntax: (phi f)

b. Input(s): function

Output: function
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c. Description: Creates a function which will
operate on the form part of the
RPL data structure. Therefore the
function f must accept as a valid
argument the relation which
represents the form part of the
data structure. The resulting
function takes a data structure as
an argument, applies f to the form
component, and returns the
modified data structure.

d. Example(s): Using the data structure defined
preiously, consider a function
which will eliminate the first
node of the data structure:

?> rest == (phi OMEGA]
?> (rest S]
(rel (1 (rel (1 3) (2 4) (3 -2) (4 6) (5 7).

(6 -1) (7 2) (8 -4))
(2 (rel (2 3) (3 4) (4 5) (5 6)

(6 7) (7 8))

11. Image of a Data Structure

a. Syntax: (PI f)

b. Input(s): function
Output: function

c. Description: Creates a function, that when
given a data structure, applies f
to all values in the data part of
the structure and returns the
modified data structure.

d. Example(s): Now, to add 1 to every value as
done in the 'delta' example, the
user simply writes:

?> addl == (PI. (rsec + 1)]
?> (add1 S3
(rel (1 (rel (1 4) (2 5) (3 -1) (4 7) (5 8)

(6 0) (7 3) (8 -3))
(2 (rel (1 2) (2 3) (3 4) (4 5) (5 6)

(6 7) (7 8))
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L. HIGHER ORDER OPERATORS - RETURNING DATA

1. Fi_ __ ng Sguence

a. Syntax: (p xi t)

b. Input(s): p, function (boolean)
t, relation (sequence)

Output: relation (sequence)

c. Description: Filters the relation t, using the
r predicate, p. Reconnects nodes

that could be lost by the normal
filtering discussed later in this
section. Used as a part of the
filtering function for data
structures, is discussed next.

d. Example(s): Suppose the user wanted to
eleminate the negative nodes of
the below sequence:

?> s == (seq 3 4 -2 6 7 -1 2 -43
?> ((rsec >= 0) xi s3

(rel (3 4) (4 6) (6 7) (7 2)3

2. Flteng Data StEutrUes

a. Syntax: (p PHI S)

b. Input(s): p, function (boolean)
S, relation (data structure)

Output: relation (data structure)

c. Description: Extends the "xi' functional to
work on RPL data structures. Note
that the data part is not changed,

only the form part is filtered.

d. Example(s): Consider the sequence used in the
"xi" example as a RPL data
structure:

?> S == (list (list 3 4 -2 6 7 -1 2 -4)
(seqrange 1 to 8)3

7> ((rsec >= 0) PHI S]
(rel (1 (rel (1 3) (2 4) (3 -2) (4 6)

(5 7) (6 -1) (7 2) (8 -4)))
(2 (rel (1 2) (4 5) (2 4) (5 7))) )

Note: Sequence order doesn't matter in the form part.
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3. Eiltarina a .ti&gns
a-

a. Syntax: (p filter t)

b. Input(s): boolean function; relation
Output: relation

c. Description: Eliminates undesireable nodes from
t by applying the predicate to
each element of t. If the
predicate succeeds, the element is
left in the relation, otherwise it
is removed. This functional is
the basis for the restriction
operators discussed next in this
section.

d. Example(s): Consider the same sequence, s,
used in the example of the 'xi'
operator. This will illustrate
that this filtering method can
eliminate valid nodes and leave
nodes disconnected in the case of
sequences:

?> val s
(rel (3 4) (4 -2) (-2 6) (6 7)

(7 -1) (-1 2) (2 -4))
?> p x == ((hd x) >= 8) and (tl x) >= 0)]
?> (p filter s3
(rel (3 4) (6 7))

4. Restriction - Domaiox Range Both

a. Syntax: (p -> t)
(t <- p)
(t restr p)

b. Input(s): boolean function; relation
Output: relation

c. Description: Returns a relation which restricts
the domain, range or both the
domain and range, respectively.
This is accomplished by filtering
the table using the predicate p on
the appropriate members of each
element of the relation.

.
.. 156

',



............... ~ * ~ . * . - t - - - - - - - -

d. Example(s): Consider the same sequence s, used
in previous examples:

(1) ?> val s
(rel (3 4) (4 -2) (-2 6) (6 7)

(7 -1) (-1 2) (2 -4))
?> ((rsec >= U) -> s]

(rel (3 4) (4 -2) (6 7) (7 -1) (2 -4))

(2) ?> (s <- (rsec >= 0)]
(rel (3 4) (-2 6) (6 7) (-1 2))

(3) ?> (s restr (rsec >= 0)]
(rel (3 4) (6 7))

5. ORglication

a. Syntax: (f Q.x)

b. Input(s): function; anything
Output: anything

c. Description: Returns the result of applying f
to the argument x.

d. Example(s):

?> ((op times) @ (list 2 3)]

6

6. AgRlication. Functional Record

a. Syntax: (t @hat x)

b. Input(s): relation (table of functions)
anything

Output: relation

c. Description: Produces a relation which pairs

each left member of the input
relation to the result of apply-
ing the right member function to

*' the argument x.

d. Example(s): Consider the following simple list
of functions:

?> t == (list (op times) (op +) (op -) (op /)]
?> (t @hat (list 4 3]
(rel (1 12) (2 7) (3 1) (4 1))
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7. lipion Functignal Structure

a. Syntax: (t ' x)

b. Input(s): relation
Output: relation

c. Description: The input table to this functional
must have a domain and range which
consists of functions only. The
argument x must be valid for all
functions contained within the
table. Each element of t will be
replaced by the result of applying
both the left member and right
member functions to the argument.

d. Example(s) :

?> t == (rel ((op times) : (op ))
((op +) : (op -))3

?> (t (list 4 33
(rel (12 1) (7 1))

8. Image of Sets

a. Syntax: (f img t)

b. Input(s): function; relation
Output: set

c. Description: Returns a set which is the result
of applying f to every member of
the set or relation t.

d. Example(s):

?> sqr == (times o DELTA]
?> (sqr img (set 1 2 3 4 5)
(set 1 4 9 16 25)

9. IsomorRhism1 Image on Relations

a. Syntax: (f $ t)

b. Input(s): function; relation

Output: relation
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c. Description: Returns a relation which has the
same structure as the original,
except that each element is
composed of the result of applying
f to both the left and right
member of the element of t.

d. Example(s): Consider again the 'sqr' function:

?> (sqr $ (seqrange 1 to 63
(rel (1 4) (4 9) (9 16) (16 25) (25 36))

10. Relative Pr2gut.L Intensional

a. Syntax: (t rp f)

b. Input(s): function
Output: relation

c. Description: Returns a relation which is the
result of applying the function f
to every right member of the input
relation.

d. Example(s):

7> t == (listrange 1 to 53
?> (t rp (rsec times 103
(rel (1 10) (2 20) (3 30) (4 40) (5 50))

11. Relative Product Invergse, Intensional

a. Syntax: (f rpi t)

b. Input(s): function
Output: relation

c. Description: Returns a relation which is the
result of applying the function f
to every left member of the input
relation.

d. Example(s):

7> t == (listrange 1 to 53
7> ((rsec times 10) rpi t]
(rel (10 1) (20 2) (30 3) (40 4) (50 5))
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12. _gtjri£ion of a Function

a. Syntax: (s restrict f)

b. Input(s): relation (set); function

Output: relation

c. Description: Transforms the function into a

extensional relation (table) based

upon the set of domain elements

given as input. It pairs each
element of s with the result of

applying the function f to it.

d. Example(s): Suppose the user wanted a table of

squares for the subrange 4 to 8:

?> s == (setrange 4 to 8)

?> sqr == (times o DELTA)
?> (s restrict sqrl
(rel (4 16) (5 25) (6 36) (7 49) (8 64))
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APPENDIX - INDEX TO RPL OPERATORS

Name Operator Page

Addition + 131
All all 139
Application

anything @ 157
functional record @hat 158
functional structure 158

Ar-ray
concatenation cat 146
from sequence sa 145
reduction red 149
reverse rev 146

Array to sequence as 146
Bi -univalent bun 142
Cardinal ity size 135
Cartesian product cart 135
Composition

functions o 149
repeat using superscription sup n 127

Concatenation - array cat 146
Conditional functional if 126
Conjuntion andsign, and 132
Cons left - sequence cl 144
Cons right - sequence cr 144
Construction # 137
Converse

relation cnv 137
using superscription sup -1 127

Curry
extensional cur 138
intensional curry 150

Data definition
list list 123
list range listrange 123
relation rel 122
sequence seq 122
sequence range seqrange 123
set set 122
set range setrange 123

Data structures
filtering PHI 155
image PI 154
operate on data part delta 153
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Data structures, cont.
operate on form part phi 154
value of a node upsilon 153

Database
index index 147
join join 148
select select 147

Difference 131
Disjuntion orsign, or 132
Division divide or / 131
Domain dom 140
Duplication DELTA 129
Element selection epsilon 133
Empty set or relation empty 128
Equality 129
Extension of a relation extend 150
Filtering

data structures PHI 155
relations filter 156
sequences xi 155

Final sequence OMEGA 143
First member - sequence alpha 143
Formalization functional bar 128
Function definition

conditional if 126
direct func 124
fix left argument lsec 125
fix right argument rsec 125
infix to prefix op 125
iteration iter 126
while loop while 152

Greater > 132
Greater or equal >= 132
Head - elementary pair hd 130
Identity I 130
Image

data structure PI 154
of domain element unimg 139
of range element all 139
relations - isomorphism $ 159
sets img 158

Improper subset !subset 136
Inequality = or <> 129
Infix to prefix conversion op 125
Intial members init 141
Initial sequence ALPHA 143
Intersection cap 134
Isomorphism - relations $ 159
Iteration functional iter 126
Last member - sequence omega 143
Left member Lm 142
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Left section Isec 125
Left univalent lun 142
Less < 132
Less or equal <= 132
List definition list 123
List range definition listrange 123
Maximum - set max 133
Member Mm 142
Members mem 141
Membership. member 135
Minimize sequence mu 144
Minimum - set min 133
Multiplication times 131
Negation not 132
Negation - function wig 151
Nonmembership nomem 135
Ordered union 138
Pair Formation 130
Pair list 131
Paralleling 151
Product times 131
Proper subset subset 136
Quotient divide or / 131
Range rng 140
Reduction

array red 149
Reflexive transitive closure sup ** 127
Relation definition rel 122
Relational sort rsort 133
Relative product

intensional rp 159
intensional inverse rpi 160
primitive 139

Restriction
domain 157
of a function restrict 160
range -> 157
range and domain restr 157

Reverse array rev 146
Right member Rm 142
Right section rsec 125
Right univalent run 142
Selection sel 136
Sequence

all but first element OMEGA 143
all but last element ALPHA 143
cons left cl 144
cons right cr 144
convert to array sa 145
convert to matrix ssm 145
definition seq 122
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Sequence, cont.
filtering xi 155
first member alpha 143
from array as 146
last member omega 143
minimize mu 144
range definition seqrange 123

Set definition set 122
Set difference 134
Set range definition setrange 123
Sort sort 133
Subtraction 131
Sum + 131
Superscription

converse sup -1 127
reflexive transitive closure sup ** 127
repeat composition f sup n 127
transitive closure sup + 127

Tail - elementary pair tl 130
Terminal members term 141
Transitive closure sup + 127
Uncurry

extensional unc 138
intensional uncurry 150

Union cup 134
Unique element selection theta 134
Unique set uset 134
Unit image unimg 139
Unit set un 131
While loop while 152
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APPENDIX E - RPL INPUT FORM SUMMARY

TABLE 1. Primitive Extensional Operations

Name Old Input Form New Input Form Publication Form
selection t sel x t sel x t I z
relative product t u t I u t I a
construction t, bar u t # u t # u
pair formation x :y x : y z : y
union t cup u t cup u t u U
unit set un x un x Im z
currying cur t cur t cur t
uncurrying unc t unc t WXC t
unique element selection theta s theta s 0 8
element selection (added) epsilon t C t
cardinality size t size t size t
structure str t (deleted) (deleted)
transitive closure t sup + t sup + t +

[empty set empty empty 0

TABLE 2. Nonprimitive Extensional Operations: Group 1

Name Old Input Form New Input Form 1 Publication Form
pair list (x,y) (x, y) (zV )
left pair section (x,) (deleted) (deleted)
right pair section (,y) (deleted) (deleted)
duplication DELTA x DELTA x A z
membership x member t x member t z E t
nonmembership x nomem t x nomem t z Ot
improper subset s !subset t s !subset t a C t
proper subset s subset t s subset t 8 C t
equality s = t s= t 8 = t
converse inv t, t sup -1 cnv t, t sup-1 cnV t, C
domain dom t dom t dan t
range rng t rng t rng t
members mem t mem t mien t
left member Lm (x,t) x Lm t z Lm t
right member Rm (x,t) x Rm t z Rim t
member Mm (x,t) xMmt z Mnt
right univalent run t run t run t
left univalent lun t lun t lun t
bi-univalent bun t bun t bun t
initial members init t init t init t
terminal members term t term t term t
reflexive transitive closure t sup * t sup t"
domain restriction p-> t p-> t p-. t
range restriction t <- p t <- p t- P
restriction t restr p t restr p t p
sequence filtering (added) p xi t J p t
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TABLE 3. Nonprimitive Extensional Operations: Group 2

Name Old Input Form New InpuXt Form Publication Form
firt member alpha t alpha t a t
last member omega t omega t W t
initial sequence ALPHA t ALPHA t A t
finalsequence OMEGA t OMEGA t 0l t
ordered union t ; u t ;ui t; a
cons left X cl t x cit z cl t
cons right t cr x t cr x t cr Zpminimum mini a min a nUn a
maximum maxa3 max 3 max 8
intersection a cap t Scap t sfn t
set difference \ t \ t
apply functional record to0 hat x t 0 hat x t Or
apply functional structure t ! x t ! X t z
mini mise mu t mu t A1
database index index xd x index d x index d
database select select x x select d r select d
database join join x x join dblist z join dblist
array to sequence as t as t as t
sequence to array sa t t sai t saNseq. to zero-origin array Sao t (de le ted) (deleted)
relative product rpf t t rp f t IfKrelative product inverse rpi f t f rpi t f I t
array concatenation t cat u t cat u t cat u
relation sort rsort 3 rsort a rsort s

sotsort s sort s sort s
unit image unimgt X t unimg x tunimgz

Vall ali t alt anit
sequence to matrix sam t sam t ssm t

TABLE 4. Primitive Intensional Operations

Name Old Input Form New In put Form Publication Form
application ; 0 g x fo 0 I 0gz
image img fs f imgs f imgas

J ~~~composition gf0gfg
* infix to prefix (added) (op + ), (op times), x 1 ], x,

left section (x+t ), (x-), .. (lsec x + ), ... [z4JI-1,
right section (+ y), (-y), . (rse c + y),..[+] -,

isomorphismfStf$tf t

formal application f 0 bar g I(deleted) (deleted)
functional condition (p -> f; g) (if p -> f ;g) (p - f; g)
curry curry f curry f curry f
uncurry uncurry f uncurry f ieurry f

iteration iter [p -> fj (iter p -> f) iter I[p P1
formalization + bar, times bar, p+ PHI) Stme bar, ,
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TABLE 5. Nonprimitive Intensional Operations

Name Old Input Form New Input Form Publication Form
while loop while [p, f] (f while p) f while p
array reduction f red i f red x f § z
repeated composition f sup n f sup n f"

value of node upsilon f upsilon f v f
operate on form phi f phi f € f
operate on data delta f delta f 6 f
image of structure P1 f PI f fl f
extension extend (t, f) t extend f t extend f
restriction restrict (s, f) s restrict f a restrict f
formal negation wig p wig p 'p

TABLE 6. Miscellaneous Operations

Name Old Input Form New Input Form Publication Form

sum x+ y x+ y z +Y
difference x- y x - y z - y
product x times y x times y z x 1i
quotient x divide y x divide y z - Y
inequality x!= y x!= y z y
less x< y x< y z < y
greater x> y x > y z > y
less or equal x <= y x < = y z < y
greater or equal x > = y x >= y z v
conjunction x andsign y x andsign y z A y
disjunction x orsign y x orsign y z V y
negation not x not x -z
cartesian product s cart t s cart t a X t

TABLE 7. Data Input Operations and Syntax

Name Input Form Publication Form
identifiers a, bV, total, etc.

strings "abcd" "abed"
booleans true, false true, false
relation (rel (x :y), ... ) ((z V), )
set (set x y ... ) {z, Y, }
sequence (seqxy...) (z, y,
list (listxy...) <z, Y, >
subrange set (setrange m to n) {m , n}
subrange sequence (seqrange m to n) (mi, ... ,n)
subrange list (listrange m to n) < m, n
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TABLE S. RPL Command Types

Name Input Form Publication Form
data definition x = y z 
prefix function definition f x = = y f z y
infix function definition x f y = z f - z

* write data to a file file "name" = = x file "name" = z
read data from a file x == (file "name") z - file "name"
output, form I display x display z
output, form 2 dis x display z
output, form $ d x d z
output, form 4 x z
output value of definition val x val z
output function environment env f env f
output entire environment env env
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APPENDIX F - RPL CODE AND DOCUMENTATION

(RPL

calls: INITSYSNAMES, WRITE, MAPCAR, SETUSERENV,
TERPRI, PRINI, SPACES, CONS, READCMD, EXECUTE

uses free: BUILT IN PREFIXOPS, INTOPS, SYSOPS, CMD,
USERDEFS, SYSTEMENV, PREFIXOPNAMES, OPNAMES,
TEMPNAMES, ERRORCODE, E, FILTER-ON

comments: Shell for RPL Interpreter.

tLAMBDA NIL
(PROS NIL

(INITSYSNAMES)
(SETQ FILTERON NIL)
(WRITE (QUOTE (Loading RPL---)))

(SETQ E SYSOPS)
(SETQ ERRORCODE (QUOTE ERRORFREE))
(SETQ TEMPNAMES OPNAMES)
(SETQ OPNAMES NIL)
(MAPCAR INTOPS (QUOTE EXECUTE))
(SETQ OPNAMES TEMPNAMES)
(SETO PREFIXOPNAMES
BUILTINPREFIX OPS)
(SETQ E (CONS (CONS (QUOTE SYSTEM)

(QUOTE SYSTEM)) E))
(SETQ SYSTEMENV E)
(SETO USERDEFS NIL)
(SETUSERENV)
(TERPRI)
(TERPRI)
(WRITE (QUOTE (RPL INTERPRETER ON LINE!!)))
(TERPRI)
(TERPRI)

LOOP(SETQ ERRORCODE (QUOTE ERRORFREE))
(PRINI (QUOTE ?>))
(SPACES 1)
(SETQ CMD (READCMD))
(TERPRI)
(EXECUTE CMD)
(GO LOOP])
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(INITSYS-NAM ES

called by: RPL
uses free: EMSG, SETOP, NUMOP, SPECIAL-CASES, SETS,

INTOPS, BIFTAGINFIX, SYSOPS, PREFIXOPNAMES,
BUILTINPREFI XOPS, OPNAMES, USERDEFS

comments: Initialization required to execute RPL.

[LAMBDA NIL
(SETO USERDEFS NIL)
(SETQ OPNAMES

(QUOTE (SYSTEM done file display dis val env sup rel
set seq list setrange seqrange listrange func
empty true f lse filter hd tl lsec rsec op if
iter or and <> * Q o $ red img curry uncurry
PHI I while upsilon phi delta PI sel %1 ,

extend restrict wig cup member nomem !subset
subset = -> <- restr ; cl cr cap \ @hat ! cat
+ - times divide / != < > <= >= andsign orsign
cart un cur unc theta epsilon size DELTA cnv
rev dom rng mem Lm Rm Mm run lun bun init term
alpha omega ALPHA OMEGA min max uset mu index

" select join as sa rp rpi rsort sort unimg all
ssm not PHIaux xi)))

" (SETQ BUILT IN PREFIX_OPS
(QUOTE (lsec rsec op if iter hd tl un cur unc size

theta epsilon DELTA cnv rev dom rng mem run
lun bun init term alpha omega ALPHA OMEGA min
max mu select join as sa rsort sort all ssm

curry uncurry I while upsilon phi delta PI
wig not uset)))

(SETQ PREFIXOPNAMES NIL)
[SETQ SYSOPS (QUOTE ((unimg closure selectall)

(hd closure Hd)
(tl closure TI)
(filter closure filter)
(run closure run)
(# closure construction)
(size closure cardinality)
(rpi closure relprod-inv)
(rp closure relprod)
(img closure img)
(empty Eset)
(true true)
(false false)
(+ closure +)
(- closure -)
(times closure *)
(divide closure /)
(/ closure /)
(< closure <)
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> closure >)
(<= closure <=)
(>= closure >=)
(not closure not)
(or closure or)
(and closure and)
(orsign closure or)
(andsign closure and)
(epsilon closure elementselect)
(theta closure unitset select)
(un closure unitset)
(cup closure union)
(cap closure intersection)
(\ closure setdiff)
(cart closure cart)
(subset closure subset)
(!subset closure !subset)
(= closure =)
('= closure <>)
(<> closure <>)
(member closure member)
(nomem closure nomem)
(%M closure %:)
(file closure file)
(sel closure sel)
(: closure :)
(dom closure dom)
(rng closure rng)
(cnv closure converse)
(sup closure superscript)
(rev closure reversearray)
(** closure star)
($ closure isomorphism)
(as closure arraytoseq)
(sa closure seq_to_array)
(min closure min)
(max closure max)
(cat closure concatenation)
(cur closure curry_ext)
(unc closure uncurryext)
(rsort closure rsort)
(sort closure sort)
(red closure reduction)
(uset closure unique set]

(SETQ BIFTAGINFIX
(QUOTE (+ -* < > <= >= or and union intersection

setdiff cart subset 'subset = <> member nomem
construction %M sel : img rel prod relprod_inv
filter superscript isomorphism concatenation
seq to array select-all reduction)))
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ESETO INTOPS (QUOTE (Eo ==(func (f g) (func x (f (g x3
(lun t ==((run a cnv) t))
(bun t ==((run t) and (lun t)))
(x Rm t ==(x member (rng t)))
(x Lm t ==(x member (dam t)))
(mem t ==((doam t) cup (rng t)))
(term t ==((rng t) \ (dom t)))
Cx Mm t ==(x member (mem t)))
(init t ==((dam t) \ (rng t)))
(t <- p ==((p a tl) filter t))
(p -> t ==((p a hd) filter t))
(t restr p ==((p -> t) <- p))
(t ; u ==(t cup ((rsec member
"((dam u) \ (dam t))) -> u)))

(alpha t ==((theta a init) t))
(omega t ==((theta a term) t))
[ALPHA s ==(s <-(rsec nomem (term s3

(OMEGA t ==((rsec nomem (init t))
-> t))

x cl t ((rel (x : (alpha t)))
cup t))

Et cr x ==(t cup (mel ((omega t): x3
(f @ x ==(f x))
Cx , y ==(list x y))
[%I% ==(func (f g) (func Cx y)

(list Cf x) (g y]
(X n == X)
(wig p ==(not a p))
(DELTA x ==(list x x))
(phi ==(lsec I%))
(delta ==(rsec %!%: I))
(f while p ==(if p -> (iter p -f)

; I))

(PI f ==(delta (rsec rp f)))
(upsilon f ==

(sel a (I %f f)))
Ct extend f ==

(if (rsec member (dam t))
-> (isec t sel) ; f))

(s restrict ==((op :)
a ((I %%! f) a DELTA)) img s))

x index t ==(((rsec sel x)
: bar) I) img t))

Ct @hat x ==
((hd C: bar) ((rsec @ x) a tl))
img t))

Ct ! x ==((rsec @ x) $ t))
Emu t ==(t \ (t % (t sup +3
(p xi r ==(mu ((r sup +) restr p)))
[t PHIaux s ==((s sel 1) ,

((rsec Lm t) xi (s sel 2J
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(p PHI s ==(Cs sel 1) <- p)
PHIaux s))

(ssm t ==((unc o (rsec sa 1))
((rsec sa 1) $ t)))

(y all t ==((cnv t) unimg y))
[x select d ==

(rng o (rsec -> (x index d]
(x join dp ==

(C(lsec (cup o (hd (, bar) tl)) img)
o (C(rsec sel 1)

M%: bar) (rsec sel 2))
o ((cnv %:%: I)
o ((lsec x index)

%MX (Isec x indexJ
dp))

[curry f ==(func x (func y (f (x , y]
(uncurry f ==(func (x y) ((f x) y]

(SETQ SETS (QUOTE (rel set setrange seq seqrange list
listrange)))

(SETO SPECIAL-CASES
(QUOTE (Eset Erel mel set setrange seq seqrange list

listrange op Isec rsec func if when iter
repeat reduce)))

(SETO NUMOP (QUOTE (+ - * / < > < >)))
(SETO SETOP (QUOTE (cart union intersection setdiff

subset !subset)))
(SETO EMSG (QUOTE ((BADCMD bad command)

(UBI unbound individual)
(PARAM number of parameters in error)
(BADRANGE bad range variables)
(BADSEQ bad sequence)
(EXPSET set, relation, sequence

or list expected)
(EXPSEQ sequence expected)
(EXPNUM numeric arguments expected)
(EXPREL relation expected)
(UBTE unbound table element)
(EXPFUNC function expected)
(UDF undefined function)
(BADSYNTAX syntax error)
(EXPBOOL boolean predicate expected)
(BADARGS invalid arguments)
(EXPUNITSET unit set expected)
(EXPINFIX infix operator expected)

(EXPPAIR elementary pair expected)
(EXPNSET numeric set expected)
(EXPARRAY array expected)
(ZERO DIV zero divisor)
(EXP_NEMPTY non-empty set expected)
(BIF built in function or RPL keyword])
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(SETUSERENV

calls: MEMBER, WRITE, TERPRI, READUSERDEFS, READTERM
called by: RPL, EXIT
binds: RESP, FILENAME

[LAMBDA NIL
(PROG (RESP FILENAME)

(WRITE (QUOTE (DO YOU WANT TO RESUME A PREVIOUS
RPL SESSION? <y/n>?)))

(SETQ RESP (READTERM))
(COND
((MEMBER RESP (QUOTE (y Y)))

(WRITE (QUOTE" (INPUT FILENAME)))
(TERPRI)
(SETO FILENAME (READTERM))

(READUSERDEFS FILENAME])

(EXECUTE

args: CMD
calls: MEMBER, POSIT, LENGTH,. DEFBINDING, FILE_WRITE,

EV, DISPLAY, EXIT, LIST, CONS, ERRORHANDLER
called by: READUSERDEFS, RPL
binds: X
uses free: E
comments: Command level parser.

[LAMBDA (CMD)
(PROG (X)

(SETQ X (POSIT CMD (QUOTE ==)))

(RETURN (COND.
((AND (EQ X 2)

(EQ (LENGTH CMD) 3))
(DEFBINDING CMD))

[(AND (EQ X 3)
(EQ (LENGTH CMD) 4))

(COND
((EQ (CAR CMD) (QUOTE file))

(FILE_WRITE (EV (CADR CMD) E)
(EV (CADDDR CMD) E)))

(T (DEFBINDING CMD]
((AND (EQ X 4)

(EQ (LENGTH CMD) 5))
(DEF BINDING CMD))

[(EQ X 0)
(COND

((AND (MEMBER (CAR CMD)
(QUOTE (display dis d env val)))

(EQ (LENGTH CMD) 2))
(DISPLAY CMD))

174

• ~~~~~~~~~~~~~~~~~............'.... .. .. . .....,. . .... ,...... ..... ..... ... .. .. . .. . .... . . ..... .. .... .. . ... .



((EQ (CAR CMD) (QUOTE done)) (EXIT))
[(EQ (LENGTH CMD) 1)

(COND
((EQ (CAR CMD) (QUOTE env))

(DISPLAY (LIST (QUOTE env) NIL)))
(T (DISPLAY (CONS (QUOTE d) CMD]

(T (ERRORHANDLER (QUOTE BADCMD) CMD]

(T (ERRORHANDLER (QUOTE BADCMD) CMD])

(DEFBINDING

args: DEXP
calls: MEMB, ERRORHANDLER, LDIFFERENCE, SPACES,

WRITE, LENGTH, LOOKUP, CONS, LIST, EV, LAST,
SASSOC, TERPRI, RPLACD, READTERM

called by: EXECUTE
binds: NAME, NEWNAME, EXP, RESP
uses free: ERRORCODE, OPNAMES, USERDEFS, PREFIXOPNAMES, E
comments: Makes all bindings to the environment; includes

mechanism to implement simple recursion.

[LAMBDA (DEXP)
(PROG (NAME EXP NEWNAME RESP)

[COND
((EQ (LENGTH DEXP) 5) (SETO NAME (CADR DEXP)))
(T (SETQ NAME (CAR DEXP]

ECOND
((MEMB NAME OPNAMES)

(WRITE (QUOTE (SYSTEM DEFINED FUNCTION OR
KEYWORD, OVERWRITE? <y/n>)))

(SETQ RESP (READTERM)) (TERPRI)
(COND
([NOT (MEMB RESP (QUOTE (Y y3

(WRITE (QUOTE (ABORT AT USER'S REQUEST)))
(TERPRI) (TERPRI) (GO EXIT]

ECOND
((EQ (LOOKUP NAME E) NIL)

(SETQ NEWNAME NIL)
(SETO E (CONS (CONS NAME NIL) E)))

(T (SETO NEWNAME T3
ECOND
((EQ (LENGTH DEXP) 4)

(SETO EXP (LIST (QUOTE closure)
(CADR DEXP)
(CADDDR DEXP) E)))

((EQ (LENGTH DEXP) 5)
(SETQ EXP (LIST (QUOTE closure)

(LIST (CAR DEXP)
(CADDR DEXP))

(CADDDR (CDR DEXP)) E)))
(T (SETO EXP (EV (CAR (LAST DEXP)) E]
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BINDNAME
(RETURN (COND

E(EQ ERRORCODE (QUOTE ERRORFREE))
(COND

((EQ NEWNAME T)
ECOND

((AND (MEMB NAME PREFIXOPNAMES)

(EQ (LENGTH DEXP) 5))
(LDIFFERENCE PREFIXOPNAMES

(LIST NAME)))
((AND (NOT (MEMB NAME PREFIXOPNAMES))

(NOT (EQ (LENGTH DEXP) 5)))
(SETQ PREFIXOPNAMES

(CONS NAME PREFIXOPNAMES]
(COND
((NOT (MEMB NAME OPNAMES))

(RPLACD (SASSOC NAME E) EXP)
(RPLACD (SASSOC NAME USERDEFS) DEXP)
(SPACES 1)
(WRITE (LIST NAME (QUOTE Redefined)))
(TERPRI) (TERPRI))

(T (SETQ USERDEFS
(CONS (CONS NAME DEXP) USERDEFS))

ECOND
((AND (LISTP EXP) (EQ (CAR EXP)

(QUOTE closure)))
(COND

((OR (EQ (LENGTH DEXP) 4)
(EQ (LENGTH DEXP) 3))

(SETQ PREFIX_OPNAMES
(CONS NAME PREFIX_OPNAMES]

(RPLACD (SASSOC NAME E) EXP]
(T (WRITE (QUOTE (BINDING CANNOT BE MADE)))

(TERPRI) (TERPRI)
(COND

((NOT (EQ NEWNAME T)) (SETQ E (CDR E3
EXIT])

(DISPLAY

args: CMD
calls: MEMBER, LITATOM, PRINT, SHOW ATOM, TERPRI,

DISPLAYENV, ERRORHANDLER, LOOKUP, EV, TYPE,
LENGTH

called by: EXECUTE
binds: KEY, EXP, EVEXP
uses free: ERRORCODE, E, USERDEFS
comments: Performs all output to the screen to include

the "val" and "env" commands.
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[LAMBDA (CMD)
(PROG (KEY EXP EVEXP)

(SETQ KEY (CAR CMD))
(SETQ EXP (CADR CMD))
ECOND
[(MEMBER KEY (QUOTE (d dis display)))

(COND
[(LITATOM EXP)

(SETO EVEXP (LOOKUP EXP USERDEFS))
(COND

((NULL EVEXP)
(PRINT (QUOTE Undefined)))

(T (PRINT EVEXP]
(T (SETQ EVEXP (EV EXP E))

(COND
((NULL EVEXP)

(PRINT (QUOTE Undefined)))
(T (SHOWATOM EVEXP)

(TERPR I]
(T ECOND

((NOT (NULL EXP))
(SETO EVEXP (EV EXP E3

(COND
((EQ ERRORCODE (QUOTE ERRORFREE))

(COND
[(AND (EQ KEY (QUOTE val))

(LITATOM (CADR CMD)))
(COND

((NULL EVEXP)
(PRINT (QUOTE Undefined)))

(T (SHOWATOM EVEXP)
(TERPRI]

((AND (EQ KEY (QUOTE env))
(NULL EXP))

(DISPLAYENV EXP))
((AND (EQ KEY (QUOTE env))

(LITATOM (CADR CMD))
(EQ (TYPE EVEXP)

(QUOTE closure))
(EQ (LENGTH EVEXP) 4))

(DISPLAYENV EXP))
((EQ KEY (QUOTE env))
(ERRORHANDLER

(QUOTE EXPFUNC) CMD))
(T (ERRORHANDLER

(QUOTE BADSYNTAX) CMD]
(TERPRI3)
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(ERRORHANDLER

args: CODE, EXP
calls: WRITE, TERPRI, PRINT-LIST, LOOKUP
called by: DEFBINDING, DISPLAY, EVRANGE, EVSEQ, RPAPPLY,

ARRAY-REDUCTION, MINSET, RPLREPEAT, EXECUTE,

EV, EVSPECIALCASES, INFIXOP, PREFIXOP,
BIFAPPLY, ARRAYCONCATENATION, HEAD, MAXSET,
MEM, SEL, SUPERSCRIPT, TAIL, BINARY LIST,
COERCE TO REL

uses free: EMSG, FILTERON, ERRORCODE
comments: Based on the CODE given, displays the appro-

piate error message and the probable cause of
error, EXP.

"LAMBDA (CODE EXP)
(PROG NIL

(COND
((EQ FILTERON T)

(GO EXIT)))
(WRITE (QUOTE (*** ERROR ***)))
(WRITE (LOOKUP CODE EMSG))
(TERPRI)
(WRITE (QUOTE (Cause of error >))
(PRINTLIST EXP)
(TERPRI)

EXIT(SETQ ERRORCODE CODE) NIL])

(EXIT
* ******** ** *** *** ** ***** ********** ** ******* ************* ****

calls: MEMBER, WRITE, TERPRI, WRITEUSER_DEFS,
READTERM, SETUSERENV

called by: EXECUTE
uses free: BUILTINPREFIX OPS, SYSTEMENV, USERDEFS,

PREFIX_OPNAMES, E, FILENAME, RESP
comments: Used to exit the RPL environment or begin

another session.

ELAMBDA NIL
(WRITE (QUOTE (DO YOU WANT TO SAVE ENVIRONMENT FOR

FUTURE USE? <y/n?>)))

(SETO RESP (READTERM))
(COND

((MEMBER RESP (QUOTE (y Y)))
(WRITE (QUOTE (INPUT FILENAME)))
(TERPRI)
(SETO FILENAME (READTERM))
(WRITEUSERDEFS FILENAME)))

(TERPRI)
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(WRITE (QUOTE (EXIT TO LISP - PRESS "D)))
(TERPRI)
(WRITE (QUOTE (EXIT TO UNIX - PRESS "C)))
(TERPRI)
(WRITE (QUOTE (CONTINUE RPL - PRESS <RETURN>)))
(TERPRI)
(READTERM)
(TERPRI)
(WRITE (QUOTE (DO YOU WANT TO CLEAR CURRENT

ENVIRONMENT? <y/n?>)M)
(SETQ RESP (READTERM))
(TERPRI)
(COND

((MEMBER RESP (QUOTE (y Y)))
(SETQ E SYSTEM-ENV)
(SETQ USERDEFS NIL)
(SETQ PREFIXOPNAMES BUILTINPREFIXOPS)))

(SETUSERENV])

(EV

args: EXP, E
calls: NUMBERP, STRINGP, ATOM, MEMBER, LOOKUP,

ERROR-HANDLER, EVSPECIALCASES, LENGTH,
PREFIXOP, INFIXOP

called by: EXECUTE, DEFBINDING, DISPLAY, MAPEV,
EVSPECIALCASES, EVSEQ, INFIXOP, PREFIXOP,
RPAPPLY, ARRAYREDUCTION, RPL_REPEAT,
MAKEUNIQUE

binds: X, TAG
uses free: SPECIALCASES
comments: Given an expression, EXP, and its environment,

E, this function directs its evaluation.

rLAMBDA (EXP E)
(PROG (X TAG)

(RETURN (COND
((NUMBERP EXP) EXP)
((STRINGP EXP) EXP)

((ATOM EXP)
(SETQ X (LOOKUP EXP E))
(COND

((EQ X NIL)
(ERRORHANDLER

(QUOTE UBI) EXP))
(T X)))

(T (SETQ TAG (CAR EXP))
(COND

((MEMBER TAG SPECIALCASES)

(EVSPECIALCASES EXP E))
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* ((EQ (LENGTH EXP) 2)
* (PREFIXOP EXP E))

[(EQ (LENGTH EXP) 3)
(COND

(CLISTP CCADR EXP))
CEV SPECIALCASES EXP E))

CT CINFIXOP EXP E3
(T (ERRORHANDLER

(QUOTE PARAM) EXPJ)

(EV-SPEC IAL-CASES

args: EXP, E
calls: MEMBER, ALL-PAIRS, ATOM, CONS, MAKE-UNIQUE,

ERROR -HANDLER, LENGTH, EY, EVRANGE, EVSEQ,
LIST, TYPE, RPL_REPEAT, ARRAYREDUCTION

called by: EV
binds: TAG, LOW, HIGH, F
uses free: PREFIX -OPNAMES, ERRORCODE, SETS
comments: Handles all operators with special syntax.

ELAMBDA (EXP E)
(PROG (TAG LOW HIGH F)

(SETO TAG (CAR EXP))
(RETURN (COND

[ (MEMBER TAG SETS)
(COND

E (EQ TAG (QUOTE set))
(SETO EXP (CONS (QUOTE Eset)

* (MAKE UN IQUE
(COR EXP)
NIL E3

((EQ TAG (QUOTE rel))
(SETO EXP (CONS (QUOTE Erel)

(MAKE UNIQUE
(CDR EXP)
NIL E)))

(COND
((NOT (ALL_-PAIRS (CDR EXP)))
(ERRORHANDLER

(QUOTE EXP-REL) EXP))
(T EXP)))

E(EQ TAG (QUOTE setrange))
(COND
[(AND (EQ (LENGTH EXP) 4)

(EQ (CADDR EXP)
(QUOTE to)))

(SETO LOW (EY (CADR EXP) E))
(SETO HIGH (EV (CADDDR EXP) E))
(COND
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[(EQ ERRORCODE
(QUOTE ERRORFREE))

(SETO EXP
(CONS (QUOTE Eset)

(EVRANGE LOW HIGH]

(T (QUOTE impossible]
(T (ERROR HANDLER

(QUOTE BADRANGE) EXP]
[(MEMBER TAG (QUOTE (seq seqrange)))

(SETQ EXP (CONS (QUOTE Erel)
(EVSEQ EXP E]

((MEMBER TAG (QUOTE (list listrange)))
(SETQ EXP (CONS (QUOTE Erel)

(EVSEQ EXP E]

(T (QUOTE impossible]
((MEMBER TAG (QUOTE (Eset Erel))) EXP)
((EQ TAG (QUOTE func))

(LIST (QUOTE closure)
(CADR EXP)
(CADDR EXP) E))

((AND (EQ TAG (QUOTE op))
(EQ (LENGTH EXP) 2))

(SETQ F (EV (CADR EXP) E))
(COND

((OR (NOT (EQ (TYPE F)
(QUOTE closure)))

(AND (EQ (LENGTH F) 2)
(MEMBER (CADR EXP)

PREFIXOPNAMES))
(AND (EQ (LENGTH F) 4)

(ATOM (CADR F3
(ERRORHANDLER

(QUOTE EXPINFIX)
(CADR EXP)))

(T (LIST (QUOTE closure)
(QUOTE ?x)
(LIST (LIST (QUOTE ?x)

(QUOTE sel) 1)
(CADR EXP)
(LIST (QUOTE ?x)

(QUOTE sel) 2))
E3

((AND (EQ TAG (QUOTE lsec))
(EQ (LENGTH EXP) 3))

(LIST (QUOTE closure)

(QUOTE ?x)
(LIST (CADR EXP)

(CADDR EXP)
(QUOTE ?x)) E))

((AND (EQ TAG (QUOTE rsec)
(EQ (LENGTH EXP) 3))

ile
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(LIST (QUOTE closure)
(QUOTE ?x)
(LIST (QUOTE ?x)

(CADR EXP)
(CADDR EXP)) E))

((AND (EQ TAG (QUOTE if))
(EQ (LENGTH EXP) 6)
(EQ (CADDR EXP) (QUOTE ->))
(EQ (CADDDR (CDR EXP)) (QUOTE ;M

(LIST (QUOTE closure)
(QUOTE ?x)

(LIST (QUOTE when)
(LIST (CADR EXP)

(QUOTE ?x))
(QUOTE do)
(LIST (CADDDR EXP)

(QUOTE ?x))
(QUOTE elsedo)
(LIST .(CADDDR (CDDR EXP))

(QUOTE ?x))) E))
[(EQ TAG (QUOTE when))

(COND
((EQ (EV (CADR EXP) E)

(QUOTE true))
(EV (CADDDR EXP) E))

((EQ (EV (CADR EXP) E)
(QUOTE false))

(EV (CADDDR (CDDR EXP)) E))
(T (ERRORHANDLER (QUOTE EXPBOOL)

(LIST .(CADR EXP) (QUOTE in) EXP]
((AND (EQ TAG (QUOTE iter))

(EQ (LENGTH EXP) 4)
(EQ (CADDR EXP) (QUOTE ->)))

(LIST (QUOTE closure)
(QUOTE ?x)
(LIST (QUOTE repeat)

(CADDDR EXP)
(QUOTE untilnot)
(CADR EXP) E))

((EQ TAG (QUOTE repeat))
(RPLREPEAT EXP E))

((AND (LISTP (CADR EXP))
(EQ (LENGTH (CADR EXP)) 2)
(EQ (CADADR EXP) (QUOTE bar)))

(LIST (QUOTE closure)
(QUOTE ?x)

(LIST (LIST (CAR EXP)
(QUOTE ?x))

(CAADR EXP)
(LIST (CADDR EXP)

(QUOTE ?x))) E))
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((EQ TAG (QUOTE reduce))
(ARRAYREDUCTION EXP E))

(T (ERRORHANDLER
(QUOTE BADSYNTAX) EXP])

(MAPEV

args: L, E
calls: MAPCAR, EV
called by: EVSEQ
binds: X
comments: Given the list, L, and its environment, E, it

returns a list of evaluated elements..

[LAMBDA (L E)
* (MAPCAR L (QUOTE (LAMBDA (X) (EV X E3)

(EVRANGE

args: LOW, HIGH
calls: NUMBERP, LEG, ERRORHANDLER, LIST, CONS,

DIFFERENCE
called by: EVSPECIALCASES, EVSEQ
binds: L
comments: Enumerates the range from LOW to HIGH and

returns the list of numbers.

[LAMBDA (LOW HIGH)
(PROS (L)

(SETO L NIL)
(COND
((AND (NUMBERP LOW)

(NUMBERP HIGH)
(LEG LOW HIGH))

(GO MAKELIST))
(T (ERRORHANDLER (QUOTE BADRANGE)

(LIST LOW HIGH))
(GO EXIT)))

MAKELIST
(COND
((EQ LOW HIGH) (SETO L (CONS LOW L)))
(T (SETO L (CONS HIGH L))

(SETQ HIGH (DIFFERENCE HIGH 1))
(GO MAKELIST)))

EXIT(RETURN L3)
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, (EVSEQ

args: SQ, E
calls: MEMBER, GREATERP, ERROR_HANDLER, LENGTH, MAPEV,

EV, EVRANGE, SEQTOREL, LISTTOREL
called by: EVSPECIALCASES
binds: TAG, S, LOW, HIGH
uses free: ERRORCODE
comments: Takes the tagged sequence or sequence range,

SQ, its environment, E, and returns a tagged
evaluated relation.

[LAMBDA (SQ E)
(PROG (TAG S HIGH LOW)

(SETQ TAG (CAR SO))
(SETQ S (CDR SQ))
ECOND
((AND (MEMBER TAG (QUOTE (seq list)))

(GREATERP (LENGTH S) 1))
(SETO S (MAPEV S E))
(GO COERCE))

(T (COND
((AND (EQ (LENGTH S) 3)

(EQ (CADR S) (QUOTE to)))
(SETO LOW (EV (CAR S) E))
(SET!2 HIGH (EV (CADDR S) E))
(COND

((EQ ERRORCODE (QUOTE ERRORFREE))
(SETQ S (EVRANGE LOW HIGH))
(GO COERCE))

(T NIL)))
(T (ERROR HANDLER

(QUOTE BADSEQ) S3
COERCE

(RETURN (COND
[(EQ ERRORCODE (QUOTE ERRORFREE))

(COND
((MEMBER TAG (QUOTE (seq seqrange)))
(SEQ TOREL S))

(T (LISTTOREL S3
(T NIL])
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(INFIXOP

args: IEXP, ENV-I
calls: EV, TYPE, LIST, CONS, RPAPPLY, ERRORHANDLER
called by: EV
binds: L, OP, R, A
uses free: ERRORCODE
comments: Performs pre-processing for evaluation. The

arguments, L and R, and operator, OP, are
extracted from IEXP and evaluated in ENV-I, the
environment. The argument list is created and
is sent with the operator to be evaluated.

[LAMBDA (IEXP ENV-I)
(PROS (L OP R A)

(SETQ L (EV (CAR IEXP) ENV-I))
(SETQ OP (EV (CADR IEXP) ENV-I))
(SETQ R (EV (CADDR IEXP) ENV-I))
(RETURN (COND

((EQ ERRORCODE (QUOTE ERRORFREE))
(COND

((EQ (TYPE.OP) (QUOTE closure))
(SETO A (LIST (QUOTE Erel)

(CONS 1 L)
(CONS 2 R)))

(RPAPPLY OP A))
(T (ERRORHANDLER (QUOTE EXP_FUNC)

(CADR IEXP])

(PREFIXOP

args: PEXP, ENV-P
calls: EV, TYPE, RPAPPLY, ERRORHANDLER
called by: EV
binds: OP, ARG
uses free: ERRORCODE
comments: Same as INFIXOP, except for prefix operators.

[LAMBDA (PEXP ENV-P)
(PROS (OP ARG)

(SETQ OP (EV (CAR PEXP) ENV-P))
(SETO ARS (EV (CADR PEXP) ENV-P))
(RETURN (COND

((EQ ERRORCODE (QUOTE ERRORFREE))
(COND

((EQ (TYPE OP) (QUOTE closure))
(RPAPPLY OP ARS))

(T (ERRORHANDLER
(QUOTE EXPFUNC) (CAR PEXP])
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(RPAPPLY

args: F, A (Evaluated form)
calls: ATOM, ERRORHANDLER, LENGTH, BIFAPPLY, CONS,

DIFFERENCE, BINDARGS, APPEND, LIST, EV
called by: INFIXOP, PREFIXOP, ARRAYREDUCTION, FILTER,

MAPIMG, MAPRP, MAPRPINV, MAPISOMORPHISM,
RPLREPEAT

binds: FORMALS, EE, LE
uses free: ERRORCODE
comments: Determines if F is a LISP defined function or

intensionally defined function. Evaluates the
latter with the argument, A, and sends the
former with argument to BIFAPPLY.

[LAMBDA (F A)

(PROS (FORMALS LE EE)
(RETURN (COND

((EQ (LENGTH F) 2)
(BIFAPPLY F A))

(T (SETQ FORMALS (CADR F))
[COND

[(ATOM FORMALS)(SETQ EE (CONS (CONS FORMALS A)

(CADDDR F3

(T (COND

((EQ (DIFFERENCE (LENGTH A) 1)
(LENGTH FORMALS))

(SETQ LE (BINDARGS FORMALS A))
(SETQ EE (APPEND LE (CADDDR F3

(T (ERRORHANDLER (QUOTE PARAM)
(LIST (QUOTE (number of

parameters in error]
(COND

((EQ ERRORCODE (QUOTE ERRORFREE))
(EV (CADDR F) EE])

(BINDARGS

args: F, A
calls: MAP2CAR
called by: RPAPPLY

[LAMBDA (F A)
(MAP2CAR F (CDR A)

(QUOTE (LAMBDA (X Y) (CONS X (CDR Y])

I1.
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(BIFAPPLY

args: F, ARG
calls: MEMB, NUMBERP, ZEROP, ATOM, NUMERICSET,

COERCETO_REL, TYPE, LENGTH, ERRORHANDLER,
SEL, LIST, PLUS, DIFFERENCE, TIMES, QUOTIENT,
TF, GREATERP, LEQ, GEQ, CONS, INTERSECTION,
UNION, LDIFFERENCE, CARTPROD, DOSUBSET,
REQUAL, RNOT, MEM, RELATIVEPRODUCT,
CONSTRUCTION, ARRAY CONCATENATION,
SEQ TO ARRAY, SELECT-ALL, MAPRP, FORMPAIR,
MAPIMGS, MAPRP'INV, MAPISOMORPHISM, FILTER,
SUPERSCRIPT, FILE_READ, CONVERSE, DOMAIN,
RANGE, MAKEUNIQUE, REVERSE-ARRAY,
ARRAY_TO_SEQ, CURRYEXT, UNCURRY_EXT, HEAD,
TAIL, MIN_SET, MAXSET, SEQTOREL, SORT,
LISTTOREL, LESSP

called by: RPAPPLY
binds: OP, L, R
uses free: ENV-P, PEXP, ERRORCODE, SETOP, IEXP, NUMOP,

ENV-I, BIFTAGINFIX
comments: Evaluates all built-in LISP defined operators.

[LAMBDA (F ARG)
(PROG (L R OP)

(SETQ OP (CADR F))
(RETURN (COND

-(MEMB OP BIFTAGINFIX)
(COND

((AND (NOT (EQ (TYPE ARG)
(QUOTE Erel)))

(NOT (EQ (LENGTH ARG) 3)))
(ERROR-HANDLER

(QUOTE BADARGS) ARG))
(T (SETQ L (SEL ARG 1))

(SETQ R (SEL ARG 2))
(COND
E(EQ OP (QUOTE reduction))

(COND
((EQ (TYPE L)

(QUOTE closure))
(LIST (QUOTE closure)

(QUOTE ?A)
(LIST (QUOTE reduce)

(QUOTE ?A)
(QUOTE by)
L
(QUOTE from)
R) ENV-I))
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(T (ERRORHANDLER
(QUOTE EXPFUNC)
(CAR ARS]

[(MEMB OP NUMOP)
(COND
[(AND (NUMBERP L)

(NUMBERP R))
, (COND

((EQ OP (QUOTE +))
(PLUS L R))

((EQ OP (QUOTE -))
(DIFFERENCE L R))

((EQ OP (QUOTE *))
(TIMES L R))

[(EQ OP (QUOTE /))
(COND

((ZEROP R)
(ERROR HANDLER

(QUOTE ZERODIV)
(CADDR IEXP)))

(T (QUOTIENT L R]
((EQ OP (QUOTE <))

(TF (LESSP L R)))
((EQ OP (QUOTE >))
(TF (GREATERP L R)))

((EQ OP (QUOTE <=))
(TF (LEQ L R)))

((EQ OP (QUOTE >=))
(TF (SEQ L R)))

(T (QUOTE impossible]
(T (ERRORHANDLER

(QUOTE EXPNUM)
(LIST (CAR IEXP)

(QUOTE or)
(CADDR IEXP]

[(EQ OP (QUOTE or))
(COND

((OR (EQ L (QUOTE true))
(EQ R (QUOTE true)))

(QUOTE true))
(T (QUOTE false)

[(EQ OP (QUOTE and))
(COND

((AND (EQ L (QUOTE true))

(EQ R (QUOTE true)))
(QUOTE true))

(T (QUOTE false)
[(MEMB OP SETOP)

(COND
[[AND (MEMB (TYPE L)

(QUOTE (Eset Erel)))
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(MEMB (TYPE R)
(QUOTE (Eset ErelJ

(COND
E(EQ OP (QUOTE union))

(COND
[(OR (EQ (CAR L)

(QUOTE Eset))
(EQ (CAR R)

(QUOTE Eset)))
(CONS (QUOTE Eset)

(UNION (CDR L)
(CDR R3

(T (CONS (QUOTE Er-el)
(UNION (CDR L)

(CDR R3
[(EQ OP (QUOTE intersection))

(COND
[(OR (EQ (CAR L)

(QUOTE Er-el))
(EQ (CAR R)

(QUOTE Er-el)))
(MONS (QUOTE Er-el)
(INTERSECTION (CDR L)

(CDR RI
(T (CONS (QUOTE Eset)

(INTERSECTION (CDR L)
(CDR R3

[(EQ OP (QUOTE setdif f))
(COND

[(EQ (CAR L)
(QUOTE Eset))

(CONS (QUOTE Eset)
(LDIFFERENCE (CDR L)

(CDR R3
(T (CONS (QUOTE Er-el)

(LDIFFERENCE (CDR L)
(CDR R3

((EQ OP (QUOTE cart))
(CONS (QUOTE Er-el)

(CARTPROD
(CDR L)
(CDR R3

((EQ OP (QUOTE !subset))
(COND

((GREATERP (LENGTH L)
(LENGTH R))

(QUOTE false))
(T (DO SUBSET

(CDR L)
(CDR R3
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[(EQ OP (QUOTE subset))
(COND

((BEQ (LENGTH L)
(LENGTH R))

(QUOTE false))
(T (DOSUBSET

(CDR L)
(CDR R]

(T (QUOTE impossible]
(T (ERRORHANDLER

(QUOTE EXPSET)

(LIST (CAR IEXP)
(QUOTE or)
(CADDR IEXP]

((EQ OP (QUOTE =))
(REQUAL L R ENV-I))

((EQ OP (QUOTE <>))
(RNOT (REQUAL L R ENV-I)))

((EQ OP (QUOTE member))
(MEM L R))

((EQ OP (QUOTE nomem))
(RNOT (MEM L R)))

[(MEMB OP
(QUOTE (% construction

concatenation)))
(COERCE TOREL L)
(COERCETO_REL R)
(COND

((EQ ERRORCODE (QUOTE ERRORFREE))
(COND

[(ED OP (QUOTE %))

(CONS (QUOTE Erel)
(RELATIVEPRODUCT

(CDR L)
(CDR RJ

((EQ OP (QUOTE construction))
(CONSTRUCTION L R))

((EQ OP (QUOTE concatenation))
(ARRAYCONCATENATION
L R3

[(MEMB OP (QUOTE (sel seqto_array
selectall relprod)))

(COERCETO REL L)
(COND

((EQ ERRORCODE (QUOTE ERRORFREE))
(COND

((EQ OP (QUOTE sel))
(SEL L R))

((EQ OP (QUOTE seq_toarray))

(SEQTOARRAY L R))
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((EQ OP (QUOTE selectall))
(SELECTALL R (CDR L)))

((EQ OP (QUOTE rel_prod))
(COND
[(EQ (TYPE R)

(QUOTE closure))
(CONS (QUOTE Erel)

(MAPRP R (CDR L]
(T (ERRORHANDLER

(QUOTE EXP_FUNC) R]
((EQ OP (QUOTE :))
(FORMPAIR L R))

E(EQ OP (QUOTE img))
(COND

([AND (EQ (TYPE L)
(QUOTE closure))

(MEMB (TYPE R)
(QUOTE (Eset Erel]

(CONS (QUOTE Eset)
(MAPIMG L (CDR R)

ENV-I)))
(T (COND

((EQ (TYPE L)
(QUOTE closure))

(ERRORHANDLER
(QUOTE EXPSET)
(CADDR IEXP)))

(T (ERRORHANDLER
(QUOTE EXP_FUNC)
(CAR IEXP]

E(MEMB OP (QUOTE (relprodinv
isomorphism)))

(COERCETOREL R)
(COND
[(AND (EQ (TYPE L)

(QUOTE closure))
(EQ ERRORCODE

(QUOTE ERRORFREE)))
(COND
[(EQ OP (QUOTE relprod_inv))

(CONS (QUOTE Erel)
(MAPRPINV L

(CDR R]
((EQ OP (QUOTE isomorphism))

(CONS (QUOTE Erel)
(MAPISOMORPHISM
L (CDR RI

(T (COND
((NOT (EQ (TYPE L)

(QUOTE closure)))

10
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(ERRORHANDLER

(QUOTE EXPFUNC) L3
[(EQ OP (QUOTE filter))

(COND
([AND (EQ (TYPE L)

(QUOTE closure))
(MEtB (TYPE R)

(QUOTE (Eset Erel]
(CONS (CAR R)

(FILTER L (CDR R)
ENV-I)))

(T (COND
((EQ (TYPE L)

(QUOTE closure))
(ERROR_HANDLER

(QUOTE EXPSET)
(CADDR IEXP)))

(T (ERRORHANDLER
(QUOTE EXP_BOOL)

(CAR IEXP]
((EQ OP (QUOTE superscript))
(SUPERSCRIPT L R3

(T (COND
((EQ OP (QUOTE not))
(RNOT ARG))

((EQ OP (QUOTE file))
(FILE-READ ARS))

C(EQ OP (QUOTE unitset))
(COND

(OR (ATOM ARG) (STRINGP ARG)
(LIST (QUOTE Eset) ARG))

(T (COND

((MEMB (CAR ARS)
(QUOTE (Eset Erel closure)))

(LIST (QUOTE Eset) ARG))
(T (LIST (QUOTE Erel) ARS]

[(MEMB OP (QUOTE (unitset select

elementselect)))
(COND
[(MEMB (TYPE ARG)

-.ON (QUOTE (Eset Erel)))
•( COND

"(EQ OP (QUOTE unitsetselect))
(COND

((EQ (LENGTH (CDR ARG))
1)

(CADR ARG))
(T (ERROR HANDLER

(QUOTE EXPUNITSET)
(CADR PEXPi
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((EQ OP (QUOTE elementselect))
(COND

((NULL (CDR AR6))-
(ERROR HANDLER

(QUOTE EXPNENPTY)
(CADR PEXP)))

(T (CADR ARGJ
(T (ERROR HANDLER

(QUOTE EXP SET)
(CADR PEXP3

E(EQ OP (QUOTE cardinality))
(COND

((MEND (TYPE ARG)
(QUOTE (Eset Erel)))

(LENGTH (CDR ARG)))
(T (ERRORHANDLER

(QUOTE EXP-SET)
(CADR .PEXP3

[(MEMO OP (QUOTE (converse rng dom
arraytoseq run
reversearray
curry.ext
uncurryext)))

(COERCETO-REL ARG)
(COND

((EQ ERRORCODE (QUOTE ERRORFREE))
(COND

((EQ OP (QUOTE converse))
(CONVERSE ARG))

((EQ OP (QUOTE dam))
(DOMAIN ARG))

((EQ OP (QUOTE rng))
-' (RANGE AR6))

((EQ OP (QUOTE run))
(COND

* (CEQ [LENGTH (MAKEUNIQUE
(CDR (RANGE ARG)
NIL ENV-P3

(LENGTH (CDR (RANGE ARG3
(QUOTE true))

CT (QUOTE false]
* ((EQ OP (QUOTE reverse array))
* (REVERSE-ARRAY ARG))

((EQ OP (QUOTE array..toseq))
(ARRAY.TO-SEQ ARG))

((EQ OP (QUOTE curry~ext))
(CURRY-EXT ARG))

((EQ OP (QUOTE uncurry..ext))
(UNCURRY-EXT ARG].

((EQ OP (QUOTE Hd))
* (HEAD ARG))
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S((EQ OP (QUOTE Ti))
(TAIL ARS))

C (MEMB OP (QUOTE (min max uniqueset)))
(COND

[(EQ (TYPE AR6)
(QUOTE Eset))

(COND
((EQ OP (QUOTE min))

(MIN-SET AR6))
((EQ OP (QUOTE max))

. (MAXSET ARG)
((EQ OP (QUOTE uniqueset))
(MAKE-UNIQUE (CDR ARS)

NIL ENV-P]
(T (ERRORHANDLER

(QUOTE EXPSET) ARG]
((MEMB OP (QUOTE (rsort sort)))

(COND
[(NUMERIC_SET (CDR AR6))

(COND
((EQ OP (QUOTE rsort))

(CONS (QUOTE Erel)
( SEQTOREL

(SORT (CDR ARG)
(QUOTE LESSP]

(T (CONS (QUOTE Erel)
(LIST_TO_REL

(SORT (CDR ARG)
(QUOTE LESSP]

(T (ERROR HANDLER
(QUOTE EXPNSET) ARG])

(ARRAY-CONCATENAT ION

args: Al, A2 (Tagged relations)
calls: NUMERIC_SET, DOMAIN, REVERSE, APPEND, MAPCAR,

PLUS, CONS, ERROR_HANDLER, LIST
called by: BIFAPPLY
binds: INDEX, X
comments: Given two arrays (relation with numeric index),

Al and A2, returns a single array which is the
concatenation of A1 to A2.

[LAMBDA (Al A2)
(COND
[[AND (NUMERICSET (CDR (DOMAIN Al)))

(NUMERIC SET (CDR (DOMAIN A23
(PROG (INDEX)

(SETQ INDEX (CAAR (REVERSE Al)))
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(RETURN (APPEND Al (MAPCAR (CDR A2)
(QUOTE (LAMBDA (X) (SETQ INDEX (PLUS I INDEX))

(CONS INDEX (CDR X3
(T (ERRORHANDLER

(QUOTE EXPARRAY)
(LIST Al (QUOTE or) A23)

(ARRAY-REDUCT I ON

args: EXP, EA
calls: COERCE_TO_REL, MAPCAR, ERROR_HANDLER, EV,

RANGE, RPAPPLY, LIST, CONS
called by: EVSPECIALCASES
binds: ARRAY, FNC, START, ARES, ANS, X
comments: Given an expression, EXP, of the form:

"reduce Array by Function from StartinPoint"
created by the "red" operator, returns a value
by extracting the function, starting point and
array, to reduce the values in the array by
repeated applications of the function.

[LAMBDA (EXP EA)
(PROS (ARRAY FNC START ARGS ANS)

(SETO ARRAY (EV (CADR EXP) EA))
(COND

((COERCEJTO_REL ARRAY)
(SETQ FNC (CADDDR EXP))
(SETO START (CADDDR (CDDR EXP)))
(SETQ ARGS (CDR (RANGE ARRAY)))
(SETQ ANS START)
[MAPCAR ARGS (QUOTE (LAMBDA (X)

(SETO ANS (RPAPPLY FNC (LIST (QUOTE Erel)
(CONS 1 ANS)
(CONS 2 X3

(RETURN ANS))
(T (ERROR-HANDLER (QUOTE EXPREL) ARRAY])

(ARRAYTO SEQ

args: ARRAY (Tagged relation)
calls: SET, RANGE, CONS, REVERSE
called by: BIFAPPLY
binds: $1, S2, SEQ
comments: Converts the values of an array into a sequence

[ LAMBDA (ARRAY)
(PROS ($1 S2 SEQ)

(SETO S1 (CDR (RANGE ARRAY)))
(SETO S2 (CDR S1))
(SET SEQ NIL)
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LOOP (COND
E (NULL 92)

(RETURN (CONS (QUOTE Erei) (REVERSE SEQ]
(T (SETO SEQ (CONS (CONS (CAR Si) (CAR 92)) SEQ))

(SETQ S1 (CDR S1))
(SETO 62 (CDR 92))
(GO LOOP])

(CART-PROD

args- A, B (Untagged sets)
calls APPEND, MAPCAR, CONS, CART-PROD
called by: BIFAPPLY, CART-PROD
binds: X

(LAMBDA (A B)
(COND

((NULL A) NIL)
(T (APPEND [MAPCAR B (QUOTE (LAMBDA (X)

(CONS (CAR A) X]
(CARTPROD (CDR A) B])

(CONSTRUCTION

args: TBL1, TBL2 (Tagged relations)
calls: CONS, MAPCAR, INTERSECTION, DOMAIN, LIST, SEL
called by: BIFAPPLY
binds: X
comments Given two tables, returns a table which relates

every common domain element of TBL1 and TBL2 to
a list containing the range element from each
table, associated with the domain element.

(LAMBDA (TBL1 TBL2)
(CONS (QUOTE Erel)

(MAPCAR (CDR (INTERSECTION (DOMAIN TBL1)
(DOMAIN TBL2)))

(QUOTE (LAMBDA (X) (CONS X (LIST (QUOTE Erel)
(CONS 1 (SEL TBLI X))
(CONS 2 (SEL TBL2 X3)
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(CONVERSE
***** --------- :---- --- -**:

args: R (Tagged relation)
calls: CONS, REVERSE, MAPCAR
called by: BIFAPPLY, SUPERSCRIPT
binds: X
comments: Given a relation, R, returns a relation with

the range and domain inverted.

CLAMBDA (R)
(CONS (CAR R)

(REVERSE (MAPCAR (CDR R)
(QUOTE (LAMBDA (X)

(CONS (CDR X)
(CAR X3)

(CURRYEXT

args: TBL (Tagged relation)
calls: BINARYLIST, MAPCAR, CONS, REVERSE, LOOKUP,

CURRYELEMENT, LD IFFERENCE
called by: BIFAPPLY
binds: TAG, PTBL, CTBL, FIRST, KEY, SUBTBL, X
comments: Given a table which represents an extensional

uncurried function, i.e., every domain element
is a binary list and every range element is the
result of the represented function on the argu-
ments in the list, returns a table which repre-
sents the curried version of the original TBL.

[LAMBDA (TBL)
(PROS (PTBL TAG FIRST KEY SUBTBL CTBL)

(SETO TAG (CAR TBL))
(SETO PTBL (CDR TBL))
(SETO CTBL NIL)

LOOP[COND
[ (NULL PTBL)

(RETURN (CONS TAG (REVERSE CTBL]
(T (SETO FIRST (CAR PTBL))

(COND
((BINARYLIST

(CAR FIRST))
(SETO KEY (LOOKUP 1 (CAR FIRST)))
(SETO SUBTBL NIL)
[MAPCAR PTBL (QUOTE (LAMBDA (X)

(COND
C(BINARYLIST (CAR X))

(COND
((EQ (CDADAR X) KEY)

(SETO SUBTBL (CONS X SUBTBL]
(T (80 EXIT]
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(SETO CTBL (CONS (CURRYELEMENT
KEY SUBTBL) CTBL))

(SETO PTBL (LDI FFERENCE PTBL SUBTBL)))
(T (80 EXIT)

.(60 LOOP)
EXIT])

(DOMAIN

args: R (Tagged relation)
calls: CONS, MAPCAR9 CAR
called by: BIFAPPLY, ARRAYCONCATENATION, CONSTRUCTION,

REFLEX IVETRANSITIVECLOSURE, REVERSE-ARRAY,
SEQ TOARRAY

comments: Returns a tagged set of the left members of the
relation, R.

•LAMBDA (R)

(CONS (QUOTE Eset) (MAPCAR (CDR R) (QUOTE CAR])

(DO-SUBSET

args: S1, S2 (Untagged relation or set)
calls: MEMBER, DOSUBSET
called by: BIFAPPLY, DOSUBSET, REQUAL

.LAMBDA (S1 S2)
(COND

((NULL S) (QUOTE true))
((MEMBER (CAR SI) S2)
(DO SUBSET (CDR S) S2))

(T (QUOTE false])

(FILE READ

* args: FNAME (Unix filename)
calls- WRITE, INFILE, TERPRI, CLOSEALL, MKATOM,

IN1ILEP, READ
called by: BIFAPPLY
binds: INPUT
comments: Reads from a file, a previously stored RPL data

element.

[LAMBDA (FNAME)
(SETO FNAME (MKATOM FNAME))
(PROS (INPUT)

(SETO INPUT (INFILEP FNAME))
(COND
((NULL INPUT)

(WRITE (QUOTE (file not found)))
(GO EXIT)))
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(INFILE INPUT)
(RETURN (READ INPUT) )

EXIT (TERPRI)
(CLOSEALL NIL])

(FILE-WRITE

args: FNAME (Unix filename)
EXP (Any RPL expression)

calls: OUTFILE, PRINT, CLOSEALL, MKATOM, OUTFILEP
called by: EXECUTE
binds: OUTPUT
comments: Writes the evaluated EXP to the file FNAME.

[LAMBDA (FNAME EXP)
(SETO FNAME (MKATOM FNAME))
(PROS (OUTPUT)

(SETQ OUTPUT (OUTFILEP FNAME))
(OUTFILE OUTPUT)
(PRINT EXP OUTPUT)
(CLOSEALL NIL])

(FILTER

args: P (RPL boolean predicate, evaluated)
S (Untagged set or relation)

calls: MAPCAR, RPAPPLY, CONS, REVERSE-
called by: BIFAPPLY
binds: FSET, X, ARS
uses free: ERRORCODE, FILTER-ON
comments: Returns S or a subset of S, based upon the

result of applying the boolean predicate, P, to
each element of S.

[LAMBDA (P S)
(PROS (FSET ARS)

(SETQ FSET NIL)
(SETQ FILTERON T)
[MAPCAR S (QUOTE (LAMBDA (X)

[COND
((EQ (RPAPPLY P X) (QUOTE true))

(SETO FSET (CONS X FSET]
(SETQ ERRORCODE (QUOTE ERRORFREE]

(SETO FILTER-ON NIL)
(RETURN (REVERSE FSET])
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(FNC_BODY

args: N
calls: LIST, DIFFERENCE
called by: REPEATCOMPOSITION
binds: ANS
comments: An auxiliary function to REPEAT-COMPOSITION

which creates the physical closure with N
compositions of a function +.

[LAMBDA (N)
V(PROG (ANS)

(SETQ ANS (LIST (QUOTE f) (QUOTE x)))
LOOP(COND

((EQ N 8) (RETURN ANS))
(T (SETQ ANS (LIST (QUOTE +) ANS))

(SETQ N (DIFFERENCE N 1))
(60 LOOPJ)

(FORMPAIR

args: X (An elementary pair)
calls: ERROR-HANDLER
called by: BIF APPLY

[LAMBDA (X Y) (CONS X Y3)

(HEAD

args: X, Y (Anything)
calls: CONS
called by: BIFAPPLY

[LAMBDA (X)
(COND

((AND (LISTP X) (NOT (NULL X))) (CAR X))
(T (ERROR-HANDLER (QUOTE EXPPAIR) X3)

(MAPIMS

args: F (RPL function, evaluated form)
S (Untagged set of relation)

calls: MAPCAR, RPAPPLY
called by: BIF_APPLY
binds: X
comments: Returns an untagged set of results of applying

F to each member of S.

[LAMBDA (F S)
(MAPCAR S (QUOTE (LAMBDA (X) (RPAPPLY F X3)

200

&. ~ 'k~*.. ~



(MAPRP

args: F (RPL function, evaluated form)
TBL (Untagged relation)

calls: MAPCAR, CONS, RPAPPLY
called by: BIFAPPLY
binds: X
comments: Returns an untagged table which relates each

domain element of TBL to the result of applying
F to the associated range element.

(LAMBDA (F TBL)
(MAPCAR TBL (QUOTE (LAMBDA (X)

(CONS (CAR X)
(RPAPPLY F (CDR XJ)

(MAPRPINV

args: F (RPL function, evaluated form)
4TBL (Untagged relation)

calls: MAPCAR, CONS, RPAPPLY
called by: BIFAPPLY
binds: X
comments: Returns an untagged table which applys F to

each domain element of TBL, and relates this
result to the associated range element.

[LAMBDA (F TBL)
(MAPCAR TBL (QUOTE (LAMBDA (X)

(CONS (RPAPPLY F (CAR X))
(CDR XJ)

(MAPISOMORPHISM

args: F (RPL function, evaluated form)
TBL (Untagged relation)

calls: MAPCAR, CONS, RPAPPLY
called by: BIF_APPLY
binds: X
comments: Returns an untagged table where each element is

the result of applying F to both the left and
right member of each element in TBL.

******************** ***** ** ** ********* ***** **********

[LAMBDA (F TBL)
(MAPCAR TBL (QUOTE (LAMBDA (X)

(CONS (RPAPPLY F (CAR X))
(RPAPPLY F (CDR XJ)

201

r *.%.% V V O.o = = -_%.dnt *; ... . *o-.=. . t. ?= ° .- >-. ... t>..". -.. ..... . ..... _ ..
%fi --- "---_



(MAXSET

args: S (Tagged numeric set)
calls: NUMERIC SET, GREATERP, MAPCAR, T, ERROR-HANDLER
called by: BIFAPPLY
binds: SET, MAX, X
comments: Returns the maximum member of the set.

[LAMBDA (S)
(PROS (MAX SET)

(SETQ SET (CDR S))
(COND
((NUMERICSET SEK'

(SETO MAX (CiR SET))
[MAPCAR SET (QUOTE (LAMBDA (X)

(COND
((GREATERP X MAX)

(SETO MAX X3
(RETURN MAX)))

(T (ERRORHANDLER (QUOTE EXPNSET) SET])

(MEM

args: X (Anything)
S (A tagged set or relation)

calls: TYPE, MEMBER, ERRORHANDLER
called by: BIFAPPLY
comments: Returns true if X is a member of S, otherwise

false is returned.

[LAMBDA (X S)
(COND
[(MEMBER (TYPE S) (QUOTE (Eset Erel)))
(COND

((EQ (MEMBER X S) NIL) (QUOTE false))
(T (QUOTE true)

(T (ERRORHANDLER (QUOTE EXPSET) S3)

(MINSET

args: S (Tagged numeric set)
calls: NUMERICSET, LESSP, MAPCAR, ERRORHANDLER
called by: BIFAPPLY
binds: SET, MIN, X
comments: Returns the minimum member of the set.

[LAMBDA (S)
(PROG (MIN SET)

(SETQ SET (CDR S))
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(COND
((NUMERIC SET SET)

(SETQ MIN (CAR SET))
[MAPCAR SET (QUOTE (LAMBDA (X)

(COND
((LESSP X MIN)

(SETQ MIN X3
(RETURN MIN))

(T (ERRORHANDLER (QUOTE EXPNSET) SET])

(RANGE

args: R (Tagged relation)
calls: CONS, MAPCAR,.CDR
called by: BIFAPPLY, ARRAYREDUCTION, ARRAYTOSEQ,

REFLEXIV E_TRANSITIVECLOSURE, SEQ TO ARRAY
comments: Returns a tagged set consisting of the right

members of the relation, R.

[LAMBDA (R)
(CONS (QUOTE Eset) (MAPCAR (CDR R) (QUOTE CDR])

(REFLEXIVETRANSITIVECLOSURE

args: R (Tagged relation)
calls: UNION, DOMAIN, RANGE, CONS, MAPCAR,

TRANSITIVE-CLOSURE
called by: SUPERSCRIPT
binds: TAG, MEM, X

[LAMBDA .(R)
(PROG (TAG MEM)

(SETO TAG (CAR R))
[SETQ MEM (UNION (CDR (DOMAIN R)) (CDR (RANGE R]
(RETURN (CONS TAG

(UNION EMAPCAR MEM (QUOTE (LAMBDA (X) (CONS X X1
(CDR (TRANSITIVECLOSURE R])
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(RELATIVEPRODUCT

args: TBL1, TBL2 (Untagged relations)
calls: APPEND, MAPCAR, SELECTALL, CONS, RELATIVEPRODUCT

called by: BIFAPPLY, RELATIVEPRODUCT, TRANSITIVECLOSURE
" binds: X

comments: Returns an untagged table which takes the right
member of each element in TBL1 and relates it
to the set of all right members it is related
to in TBL2.

[LAMBDA (TBL1 TBL2)
(COND

((NULL TBL1) NIL)
(T (APPEND EMAPCAR (CDR (SELECTALL

(CDAR TBL1) TBL2))
(QUOTE (LAMBDA (X)

(CONS (CAAR TBL1) X3
(RELATIVEPRODUCT (CDR TBL1) TBL2])

(REPEATCOMPOSITION

args: FNC (RPL function, evaluated form)
P (A positive integer)

calls: CONS, LIST, FNCBODY
called by: SUPERSCRIPT
binds: SE
comments: A special case of the "sup" command. Given a

function, FNC, and the number of times, P, FNC
is to be composed with itself, returns a
closure which represents the resulting function

[LAMBDA (FNC P)
(PROS (SE)

(SETQ SE (CONS (CONS (QUOTE f) FNC)
(CADDDR FNC)))

(RETURN (LIST (QUOTE closure)
(QUOTE x)
(FNCBODY P) SE])

(REQUAL

args: X, Y (Anything)
calls: MEMBER, TYPE, DOSUBSET, TF, EQUAL
called by: BIFAPPLY

[LAMBDA (X Y)
(COND
[[AND (MEMBER (TYPE X) (QUOTE (Eset Erel)))

(MEMBER (TYPE Y) (QUOTE (Eset Erel]
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(COND
((AND (EO (DO-SUBSET (CDR X) (CDR Y)) (QUOTE true))

(ED (DOSUBSET (CDR Y) (CDR X)) (QUOTE true)))
(QUOTE true))

(T (QUOTE false]
*o (T (TF (EQUAL X YJ)

(REVERSEARRAY

args: LST (Tagged relation)
calls: SORT, DOMAIN, PLUS, REVERSE, CONS, MAPCAR,

DIFFERENCE, LESSP
called by: BIFAPPLY
binds: TAG, DOM, K, X
romments: Given an array, LST, returns an array with the

values in reverse order.

[LAMBDA (LST)
(PROG (TAG DOM K)

(SETO TAG (CAR LST))
(SETO DOM (SORT (CDR (DOMAIN LST)) (QUOTE LESSP)))
(SETO K (PLUS (CAR (REVERSE DOM)) (CAR DOM)))
(RETURN (CONS TAG
(REVERSE (MAPCAR (CDR LST)

(QUOTE (LAMBDA (X) (CONS (DIFFERENCE K (CAR X))
(CDR XJ)

(RNOT

args: B (LISP boolean)
called by: BIFAPPLY
comments: RPL negation

[LAMBDA (B)
(COND

((EQ B (QUOTE true)) (QUOTE false))
(T (QUOTE true])

4.

Si

dI
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(RPLREPEAT

args: EXP, ER
calls: ERROR-HANDLER, EV, TYPE, RPAPPLY
called by: EV_SPECIALCASES
binds: F, P, X, RESULT
uses free: ERRORCODE
comments: Given an expression of the form:

"repeat (F X) until_not P".
created by the "iter" operation, continues to
apply F to X until the predicate P is true.

[LAMBDA (EXP ER)
(PROS (F P X RESULT)

(SETQ F (EV (CAADR EXP) ER))
(SETQ P (EV (CAADDR (CDR EXP)) ER))
(SETO X (EV (QUOTE ?x) ER))
(COND
([NOT (AND (EQ ERRORCODE (QUOTE ERRORFREE))

(EQ (TYPE F) (QUOTE closure))
(EQ (TYPE P) (QUOTE closure]

(ERRORHANDLER (QUOTE EXPFUNC)
(QUOTE (boolean predicate missing or

bad function definition in iter)))
(60 EXIT)))

(SETQ RESULT (RPAPPLY F X))
LOOP(COND

((EQ (RPAPPLY P RESULT) (QUOTE true))
(SETO RESULT (RPAPPLY F RESULT))
(60 LOOP)))(RETURN RESULT)

EXIT])

(SEL

args: TBL (Tagged relation)
TOT (Anything)

calls: SASSOC, ERRORHANDLER, LIST
called by: BIFAPPLY, CONSTRUCTION
binds: X
comments: Returns the right member of the first

occurrence of X as a left member.

[LAMBDA (TBL TGT)
(PROS (X)

(SETO X (SASSOC TOT (CDR TBL)))
(RETURN (COND

((EQ X NIL) (ERRORHANDLER (QUOTE UBTE)
(LIST TOT (QUOTE (not found in))

TBL)))
(T (CDR X])
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(SEQTOARRAY

args: SEQ (Tagged relation)
INDEX (A positive integer)

calls: LDIFFERENCE, DOMAIN, RANGE, LIST, CONS, LOOKUP,
REVERSE, PLUS

called by: BIFAPPLY
binds: FIRST, ARRAY
comments: Converts a sequence to an array indexed from

INDEX.

[LAMBDA (SEQ INDEX)
(PROG (FIRST ARRAY)

[SETQ FIRST (CAR (LDIFFERENCE (DOMAIN SEQ)
(RANGE SEQ]

(SETQ ARRAY (LIST (CONS INDEX FIRST)))
LOOP(SETQ FIRST (LOOKUP FIRST (CDR SEQ)))

(COND
E(EQ FIRST NIL)

(RETURN (CONS (QUOTE Erel) (REVERSE ARRAY]
(T (SETO INDEX (PLUS 1 INDEX))

(SETQ ARRAY (CONS (CONS INDEX FIRST) ARRAY))
(60 LOOP])

(SUPERSCRIPT

args: OPND (Tagged relation or RPL function)
PWR (+, **, or a positive integer)

calls: EQUAL, NUMBERP, GREATERP, TYPE,
REFLEXIVETRANSITIVECLOSURE, CONVERSE,
TRANSITIVE-CLOSURE, REPEATCOMPOSITION,
ERRORHANDLER

called by: BIFAPPLY
uses free: IEXP
comments: Handles all cases of the operator "sup".

[LAMBDA (OPND PWR)
(COND

((AND (EQUAL PWR (QUOTE (closure +)))
(EQ (TYPE OPND) (QUOTE Erel)))

(TRANSITIVE CLOSURE OPND))
((AND (EQUAL PWR (QUOTE (closure star)))

(EQ (TYPE.OPND) (QUOTE Erel)))
(REFLEXIVE TRANSITIVE CLOSURE OPND))

((AND (NUMBERP PWR) (EQ PWR -1)
(EQ (TYPE OPND) (QUOTE Erel)))

(CONVERSE OPND))
((AND (NUMBERP PWR) (GREATERP PWR 0)

(EQ (TYPE OPND) (QUOTE closure)))
(REPEATCOMPOSITION OPND PWR))

(T (ERROR-HANDLER (QUOTE BAD-SYNTAX) IEXP])
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(TAIL

argsu X (An elementary pair)
calls: ERRORHANDLER
called by: BIFAPPLY

[LAMBDA (X)
(COND

((AND (LISTP X) (NOT (NULL X))) (CDR X))
(T (ERROR-HANDLER (QUOTE EXPPAIR) X])

(TRANSITIVECLOSURE

args: R (Tagged relation)
calls: CONS, RELATIVE-PRODUCT, UNION
called by: REFLEXIVETRANSITIVECLOSURE, SUPERSCRIPT
binds: TMP, ANS

[LAMBDA (R)
(PROS (TMP ANS)

(SETQ TMP (CDR R))
(SETQ ANS (CDR R))

RPLOOP
(COND
((NULL TMP)
(RETURN (CONS (CAR R) ANS)))

(T (SETO TMP (RELATIVEPRODUCT TMP (CDR R)))
(SETO ANS (UNION ANS TMP))
(GO RPLOOP])

(UNCURRYEXT

args: TBL (Tagged relation)
calls: COERCE TOREL, CONS, APPEND, MAPCAR,

LISTT5_REL, LIST
called by: BIFAPPLY
binds: TAG, PTBL, KEY, SUBTBL, UTBL, X
comments: The converse of CURRYEXT.

[LAMBDA (TBL)
(PROS (TAG PTBL KEY SUBTBL UTBL)

(SETO TAG (CAR TBL))
(SETO PTBL (CDR TBL))

LOOP[COND
((NULL PTBL) (RETURN (CONS TAG UTBL)))
(T (SETO KEY (CAAR PTBL))

(SETQ SUBTBL (CDAR PTBL))
*(COND.

((COERCETO_REL SUBTBL)
(SETO SUBTBL (CDR SUBTBL))

208

'4 244z44! 4



ESETO UTBL (APPEND UTBL
(MAPCAR SUBTBL (QUOTE (LAMBDA (X)

(CONS ECONS (QUOTE Erel')
(LIST TOREL (LIST KEY (CAR X3

(CDR X]
(SETQ PTBL (CDR PTBL))
(60 LOOP]

EXIT])

(ALL-PAIRS

args: S (Untagged set)
calls: MENB, ALLPAIRS
called by: EVSPECIAL_CASES, COERCE_TO_REL, ALLPAIRS
comments: A boolean utility function which determines if

all the elements of S are elementary pairs.

[LAMBDA (S)
(COND

((NULL S) T)
(EAND (LISTP (CAR S))

(NOT (MEMB (CAAR S)
(QUOTE (Eset Erel closure]

(ALL-PAIRS (CDR S])

(BINARY LIST

args: REL (Tagged relation)
calls: COERCE TO REL, ERRORHANDLER, LIST
called by: CURRYEXT
comments: A boolean utility function which verifies that

REL is an RPL binary list.

[LAMBDA (REL)
(COND
((COERCETOREL REL)
(COND

((AND (EQ (CAADR REL) 1)
(EQ (CAADDR REL) 2)) T)

(T (ERRORHANDLER (QUOTE BADARG)
(LIST REL (QUOTE (not a binary list])
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(COERCE_TO_REL

args: S (Tagged relation)
calls: ALL PAIRS, TYPE, ERRORHANDLER
called by: ARRAYREDUCTION, UNCURRYEXT, BINARYLIST,

BIFAPPLY
binds: STYPE
comments: A utility function which changes the tags on a

relation if S is a set and is equivalent to a
relation.

[LAMBDA (S)
(PROS (STYPE)

(SETQ STYPE (TYPE S))
(RETURN (COND

((EQ STYPE (QUOTE Erel)))
((AND (EQ STYPE (QUOTE Eset))

(ALLPAIRS (CDR S))) S)
(T (ERRORHANDLER (QUOTE EXP REL) S3)

(CURRY-ELEMENT

,args: KEY (Anything)
TBL (Untagged relation)

calls: CONS, REVERSE, MAPCAR, LOOKUP
called by: CURRYEXT
binds: X
comments: A auxiliary function to CURRYEXT, which forms

*the curried element, given the KEY and the un-
curried table, TBL.

[LAMBDA (KEY TBL)
(CONS KEY (CONS (QUOTE Erel)

(REVERSE (MAPCAR TBL (QUOTE (LAMBDA (X)
(CONS (LOOKUP 2 (CAR X)) (CDR XI)
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(DISPLAYENV

args: FNC (An identifier or nothing)
calls: SPACES, WRITE, TERPRI, GET-ENV
called by: DISPLAY
binds: ENV
uses free: USERDEFS
comments: Executes the "env" operator. Displays the

entire environment if no argument is given or
the environment associated with the identifier,
FNC. The environment is displayed in
definitional form.

[LAMBDA (FNC)
(PROS (ENV)

(SETO ENV (GETENV USERDEFS FNC))
LOOP (COND

((NULL ENV)
(SPACES 1)
(WRITE (QUOTE (System Defined Functions)))
(TERPRI))

(T (SPACES 1)
(WRITE (CDAR ENV))
(TERPRI)
(SETO ENV (CDR ENV))
(GO LOOP])

(GETENV

args: L, FNAME
calls: MAPCAR
called by: DISPLAYENV
binds: ENV, X
comments: An auxiliary function to DISPLAY-ENV which

returns only that portions of L (USERDEFS)
which are in the scope of FNAME.

[LAMBDA (L FNAME)
(PROG (ENV)

(COND
((NULL FNAME) (RETURN L))
(T (SETO ENV L)

(MAPCAR L (QUOTE (LAMBDA (X)
(COND

((EQ (CAR X) FNAME) (RETURN ENV))
(T (SETO ENV (CDR ENV])
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(LIST-TO-.REL

args: D (Untagged LISP list)
calls:. GREATERP, PLUS, LENGTH, DIFFERENCE, CONS,

MAP2CAR
called by: EVSEQ, BIFAPPLY, UNCURRYEXT
binds: R, C
comments: Returns an untagged relation which represents

the appropiate list, D.

(LAMBDA (D)
(PROS (R C)

(SETO R NIL)
(SETO C (PLUS (LENGTH D) 1))

LOOP(SETQ C (DIFFERENCE C 1))
(COND
(C6REATERP C 0)

(SETO R (CONS C R))
(GO LOOP))

(T R))
(RETURN (MAP2CAR R D (QUOTE CONS)

(LOOKUP

args: TGT (Anything)
TEL (Untagged relation)

calls: SASSOC
called by: DEFBINDING, DISPLAY, ERRORHANDLER, EV,

CURRY-EXT, SEQTOARRAY, CURRYELEMENT
*binds: X

comments: Returns the right member of TEL given the left
member, TST, if TGT is found, else returns NIL.

[LAMBDA CTGT TEL)
(PROG (X)

(SETO X (SASSOC TST TBL))
(RETURN (COND

((EQ X NIL) NIL)
CT (CDR X3)
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(MAKEUNIQUE

args: INPUT (Untagged set or relation)
RESULT, ENV

calls: MEMBER, REVERSE, EV, MAKEUNIQUE, CONS
called by: EVSPECIALCASES, BIFAPPLY, MAKEUNIQUE
comments: Eliminates redundant elements from INPUT and

returns RESULT.

[LAMBDA (INPUT RUSULT ENV)
(COND

((NULL INPUT) (REVERSE RESULT))
(T (COND

((MEMBER (EV (CAR INPUT) ENV) RESULT)
(MAKE-UNIQUE (CDR INPUT) RESULT ENV))

(T (SETO RESULT (CONS (EV (CAR INPUT) ENV)
RESULT))

(MAKEUNIQUE (CDR INPUT) RESULT ENV])

(NUMER I CSET

args: SET (Untagged set)
calls: NUMBERP, MAPCAR
called by: BIFAPPLY, ARRAYCONCATENATION, MAXSET, MIN_SET
binds: X
comments: A boolean utility function which determines if

all members of SET are numeric.

[LAMBDA (SET)
(PROG NIL

EMAPCAR SET (QUOTE (LAMBDA (X)
(COND

((NOT (NUMBERP X))
(GO EXIT]

(RETURN T)
EXIT(RETURN NIL])
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(POSIT

args: L (Any LISP list)
TARGET (Anything)

calls: EQUAL, SET, PLUS
called by: EXECUTE
binds: N
comments: A utility function used to find the position of

the "== symbol in an RPL command.

[LAMBDA (L TARGET)
(PROG (N)

(SET (QUOTE N) 0)
LOOP(COND

((NULL L) (RETURN 0))
((EQUAL TARGET (CAR L))
(RETURN (PLUS N 1)))

(T (SET (QUOTE N) (PLUS N 1))
(SET (QUOTE L) (CDR L))
(GO LOOP])

(PRINTLIST

args: S (Any LISP list)
calls: ATOM, STRINGP, MEMB, SHOW_ATOM, PRINTLIST
called by: ERRORHANDLER, SHOWATOM, PRINTLIST
comments: An output utility to display RPL results which

are in a LISP list form in a more readable
format.

[LAMBDA (S)
(COND

((NULL S) NIL)
([OR (ATOM S)

(STRINGP S)
(EQ (CAR S) (QUOTE closure))
(MEMB (CAR S) (QUOTE (Eset Erel]

(SHOW-ATOM S))
(T (SHOWATOM (CAR S))

(PRINT-LIST (CDR S3)

(READCMD

calls: WAITFORINPUT, READLINE
called by: RPL

[LAMBDA NIL (WAITFORINPUT) (READLINE])
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(READTERM

calls: WAITFORINPUT,_READLINE
called by: SETJSER..ENV9 EXIT

(LAMBDA NIL (WAITFORINPUT) (CAR (READLINE3)

C READ-.USER-.DEFS

args:- FNAME (Unix filename)
calls: WRITE, INFILE, EXECUTE, TERPRI, CLOSEALL,

INWFILEP, READ
called by: SETJSERENV
binds: INPUT, DEFIN
-uses free: ERRORCOIDE
comments: A utility function which reads a previous RPL

session's commands from FNAPIE into the current
RPL session.

rLAMBDA (FNAME)
(PROS (INPUT DEFIN)

*(SETO INPUT (INFILEP FNAME))
(COND

((NULL INPUT)
(WRITE (QUOTE (file not found)))
(60 EXIT)

(INFILE INPUT)
(WRITE (QUOTE (Loading---))
(SETO DEFIN (READ INPUT))

LOOPM(OND
((EQ DEFIN (QUOTE EOF))

(WRITE (QUOTE (Session loaded)))
(60 EXIT))

(T (SETQ ERROIRCODE (QUOTE ERRORPREE))
(EXECUTE DEFIN)
(SETO DEFIN (READ INPUT)
(60 LOOP))

EXIT (TERPRI)
(CLOSEALL NIL])
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(SAVEF

args: FNAME (Unix filename)
DEFS (A LISP list of function names)
VARS (A LISP list of variable names)

calls: SET, PACK, LIST, MAKEFILE
uses free: FFNS, FCOMS
comments: A utility function used to write all or a

portion of the LISP functions, and variables in
the current LISP environment to a file. Used
to create the RPL-INT file. Also used to
convert LISP files not created in InterLisp to
the InterLisp'input format.

,[LAMBDA (FNAME DEFS VARS)
[SETO FCOMS (PACK (LIST FNAME (QUOTE COMS]
[SETQ FFNS (PACK (LIST FNAME (QUOTE FNS]
(SET FFNS DEFS)
(SET FCOMS (LIST (LIST (QUOTE FNS) (QUOTE -7 FFNS)

(LIST (QUOTE VARS) VARS)))
(MAKEFILE FNAME)

(SELECTALL

args: TGT (Anything)
TBL (Untagged relation)

calls: MAPCAR, CONS, REVERSE
called by: BIF_APPLY, RELATIVEPRODUCT
binds: SET, X
comments: Returns an untagged set of all the right

members associated with the TGT in TBL.

[LAMBDA (TGT TBL)
(PROS (SET)

(SETO SET NIL)
[MAPCAR TBL (QUOTE (LAMBDA (X)

(COND
((EQ (CAR X) TGT)

(SETO SET (CONS (CDR X) SET]
(RETURN (CONS (QUOTE Eset) (REVERSE SET])

216

* . *'.. . . . . ** **_ * .



(SEQ_TO_REL

args: S (Untagged LISP list)
calls: LEQ, LENGTH, CONS, SEQTOREL
called by: EVSEQ, BIFAPPLY, SEQ_TOREL
comments: Returns an untagged relation which is the

result of converting the RPL input form for a
sequence to its internal representation.* *** *** **** ******** ***** ******* ***** ** ****** ************ *** *

[LAMBDA (S)
(COND

((LED (LENGTH S) 1) NIL)
(T (CONS (CONS (CAR S) (CADR S))

(SEQTOREL (CDR S])

(SHOWATOM

args: X (Any LISP atom)
calls: ATOM, STRINGP, MEMB, PRIN1, PRINTLIST, LENGTH,

CONS, LIST, SPACES
called by: DISPLAY, SHOW ENV, PRINT_LIST
comments: An auxiliary function for output of RPL atoms.

[LAMBDA (X)
(SPACES 1)
ECOND

((ATOM X) (PRIN1 X))

((STRINGP X) (PRIN1 X))
[(MEMB (CAR X) (QUOTE (Eset Erel)))
(COND

((EQ (LENGTH X) 1) (PRIN1 (QUOTE empty)))
((EQ (CAR X) (QUOTE Eset)) (PRINI (QUOTE %(0)
(PRINTLIST (CONS (QUOTE set) (CDR X)))
(PRINI (QUOTE %))))

(T (PRIN1 (QUOTE %()
(PRINTLIST (CONS (QUOTE rel) (CDR X)))
(PRIN1 (QUOTE %)3

[(EQ (CAR X) (QUOTE closure))
(COND
((EQ (LENGTH X) 4)

(PRIN1 (LIST (CAR X) (CADR X) (CADDR X3
(T (PRINI X3

(T (PRINI (QUOTE %0)
(PRINTLIST X)
(PRIN1 (QUOTE %)]

(SPACES 1])
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(SHO._ENV

args: ENV
calls: MEMB, LEG, WRITE, SHOWATOM, PRINT, TERPRI,

LENGTH, LIST, SHOW-ENV
called by: SHOWENV
binds: X
uses free: OPNAMES
comments: First implementation for the "env" command.

Shows the evaluated form of the environment.
Not currently used, left if wanted for fUture.

.LAMBDA (ENV)
(PROG (X)

(SETO X'(CAR ENV))
(RETURN (COND

((MEMB (CAR X) OPNAMES)
(WRITE (QUOTE (System Defined Functions)))
(TERPRI))

(T ECOND
((LEO (LENGTH X) 4)
(SHOW-ATOM X)
(TERPRI))

(T (COND
E.(AND (EQ (CADR X)

(QUOTE closure))
(EQ (LENGTH X) 5))

(PRINT (LIST (CAR X)
(CADR X)
(CADDR X)
(CADDDR X3

(T (SHOWATOM X)
(TERPRI

(SHOW-ENV (CDR ENV])

(TF~*********************************************************** *

args: B (LISP boolean)
called by: BIFAPPLY, REQUAL
comments: Converts LISP booleans to RPL boolean format.

[LAMBDA (B)
(COND

((EQ B NIL) (QUOTE false))
(T (QUOTE true])
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(TYPE

args: X (Anything)
calls: ATOM, STRINGP
called by: DISPLAY, EVSPECIALCASES, INFIXOP, PREFIXOP,

BIFAPPLY, MEM, REQUAL, RPLREPEAT,
SUPERSCRIPT, COERCETO0REL

comments: A utility function used to trap illegal calls
to the LISP functions, CAR and CDR. Returns
the first element if X is a list.

[LAMBDA (X)
(COND

((OR (ATOM X) (STRINSP--X)) (QUOTE atom))
(T (CAR X3)

(WRITE

args: L (LISP list)
calls: PRIN2, MAPCAR, SPACES
called by: RPL, SETUSERENV, DEFBINDING, ERRORHANDLER,

EXIT, FILE_READ, DISPLAYENV, READ_USER_DEFS,
SHOWENV

binds: X
comments: A utility function which alters LISP output to

a more natural form without parentheses.

LLAMBDA (L)

(MAPCAR L (QUOTE (LAMBDA (X) (PRIN2 X) (SPACES 13)

(WRITEUSERDEFS

args: FNAME (Unix filename)
calls: OUTFILE, MAPCAR, CLOSEALL, OUTFILEP, REVERSE,

PRINT
called by: EXIT
binds: OUTPUT, DEFOUT, X
uses free: USERDEFS
comments: A utility function used to write the current

RPL session's commands to a file, FNAME.

ELAMBDA (FNAME)
(PROG (OUTPUT DEFOUT)

(SETO OUTPUT (OUTFILEP FNAME))
(OUTFILE OUTPUT)
(SETO DEFOUT (REVERSE USERDEFS))
CMAPCAR DEFOUT (QUOTE (LAMBDA (X)

(PRINT (CDR X)
OUTPUT)

(PRINT (QUOTE EOF) OUTPUT)
(CLOSEALL NIL])
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A. INTRODUCTION

The purpose. of this appendix is to illustrate two

example RPL programs which demonstrate the flexibility and

potential power of the language, and also some of the design

issues involved in the implementation.

B. EXAMPLE *1 - PAYROLL

Suppose there is a file of employee records which is

keyed upon a unique employee number. These records contain

only the employee name and accumulated number of hours

worked for payroll purposes.

In RPL this file can be defined as a simple relation

which relates the employee number to the employee record.

The employee record is just another relation between field

names and their associated values. This file will be

refered to as the 'OldMaster' file.

In addition to the 'OldMaster* file an 'Updates' file

which would contain only an employee number related to the

number of hours for a given time period is required. Again,

this file can be represented by a simple relation.

What is desired is a program that will take the

"OldMaster' and 'Updates' files and produce a new updated

master with current accumulated hours.
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In essence, the values of the 'hours' field in the

'OldMaster' file need to be increased by the amount of hours

in the 'Updates' file. A function to do this can be

developed from built-in RPL operators and takes advantage of

the infix to prefix conversion functional, the functionals

which fix one of the two normal infix operator arguments,

and several combining functionals. The power of RPL is that

this complicated sequential process of many steps can be

combined into virtually two steps using RPL constructs.

Figure B-1 shows a RPL program that would accomplish the

task.

F == (file "OldMaster") (1)
U == (file "Updates") (2)
H == "hours" (3)
sumhrs == ((op +) o ((rsec sel H) 1 I)) (4)
u == ((F # U) rp (as o ((1sec H ,) o sumhrs))) (5)
F' == ((u # F) rp (op ;)) (6)
val F' (7)

NOTES:

(1) F = old file
(2) U = update file
(3) H = Field name for hours worked
(4) sumhrs = Update auxiliary function to add old hours

to the update hours
(5) u = Updating function
(6) F' = New file
(7) Display file in evaluated form

Figure G-1 -- Payroll Example

Notice how the 'op' functional is used to allow infix

operators to be combined without any arguments. Likewise,

"lsec' and 'rsec' are used to fix the left or right
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argument, respectively. All operators in this example are

explained in detail in Appendix C.

F, U, and H are all just data definitions to initialize

the names. "sumhrs' is just an auxiliary function which

performs the addition required and also makes the program a

little easier to read. The updating function, u, really

creates an extensional function in the form of a relation

(table) which contains the updated 'hours' field. The new

file is created when an ordered union C;) is performed

between the records of the update table produced by u and

the original file, 'OldMaster'. The ordered union replaces

the value of the 'hours' field in the original file with the

new value contained in the update table. Normally, the new

structure would be saved for use as the 'OldMaster' the next

time an update would be scheduled, but the program in

Figure G-1 simply displays the resulting file for the user

to review.

This example demonstrates the complexity of the

language that had to be dealt with in the implementation,

but also gives one a feeling for the abstraction,

flexibility and power that can be obtained.

C. EXAMPLE *2 - DEVELOPMENT OF 'xi'

The RPL operator 'xi' filters a sequence given a

predicate to test its elements. In order to better

illustrate the need and execution process of this operator
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the following RPL sequence will be used:

s - (seq 3 4 -2 6 7 - 1 2 - 4)

This is represented internally as,

(rel (3 4) (4 -2) (-2 6) (6 7) (7 -1) (-1 2) (2 - 4))

and graphically as

3 4 -2 6 7 -1 2 -4

Suppose, the user wanted to eliminate the negative nodes

in the sequence. The normal filter operation is not

suitable since it would simply test both the left and right

member of each pair in the relation and eliminate the entire

node if either element was negative. The result of

performing a normal filter on s would produce:

(rel (3 4) (6 7))

Graphically, this is:

---u e?-a
3 4 6 7 2

Notice that the resulting elements of the sequence are

disconnected and the valid element, "2', has been

erroneously deleted. A solution to this problem would have

to reconnect the disconnected nodes and not eliminate valid

ones by mistake. Thus, the "xi' operator is justified.

The 'xi" operator accomplishes this process in basically

three steps. First, the transitive closure of the sequence

is computed. Second, the undesireable nodes are
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elimininated and third, the redundant edges are eliminated.

This process is illustrated graphically on the sequence s.

1) Compute (s sup +):

4..

(2) Eliminate negative nodes using restriction,
s restr (rsec > 0):

(3) Eliminate redundant edges using mu, a relation mini-
mization operator defined as: (R \ (R 1 (R sup +1):

s'! (s sup+):

s (s (s sup +)):

3 4 8 7 2
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I

Thus, the definition for "xi" follows:

p xi r == (mu ((r sup +) restr p)

The major implementation problem here is the large

amount of temporary storage required to hold the transitive

closure of s. The use of LISP as an implementation language

eliminated this concern since it already has a built-in

storage management system.
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