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PHAZR: A Phenamenological Code for Holeboring in Air ,*

I. Introduction

This report describes a new code for studying holeboring by a charged

particle beam, laser, or electric discharge in a gas. The coordinates which

parameterize the channel are radial displacement (r) fram the channel axis

and distance (z) along the channel axis fran the energy source, hence the

letters "ZR" in the name. The code is primarily "phenamenological"; that

is, w use closed solutions of simple models in order to represent many of

the effects which are important in holeboring. In the case of a particle .

beam propagating through a gas, we use a model provided by Lee and Buchanan

[17] to account for changes in the area of energy deposition (beam radius)

with distance fran the accelerator. We have modified the treatment of

scattering of the beam by the ambient medium to include the results of

Hughes and Godfrey [181, as shown in Appendix B. To represent hydrodynamic

expansion of the gas heated by a given energy pulse, we use the adiabatic ..--

equation of state, which Lampe et al. have shown to be a good approximation

[1-31. The equations of Picone and Boris (4] form the basis of a subgrid

turbulence model required to compute the enhanced channel cooling caused by

asymmetry-driven turbulence. The numerical simplicity which we gain from

the use of such solutions enables us to estimate the structure of a channel

while using a far less camputer time than a more "detailed" code which

solves differential equations for the fields, beam envelope, and the

chemistry and dynamics of the ambient gas. This feature permits the

computation of channel properties over long propagation distances (e.g.,

the distance over which significant beam expansion occurs) and thus makes

PHAZR a useful code for those studying and designing future systems.

Manuscript approved June 13, 1985.
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As indicated by the report title, we have been interested primarily in
4-'.

air, although the model will apply to any chemically nonreactive gas and can

be modified to include the effects of chemical reactions. Conversely, the

various modules comprising the code can be incorporated easily into other

codes. To account for the effects of air chemistry in PHAZR, we currently

use a real air equation of state routine based on the equilibrium data of

*'" Gilmore [5-61, which cover a temperature range of at least 300 - 24000 K.

using a fast table lookup routine developed by Young [71, we are able to

obtain values of y, the ratio of principal specific heats, over the entire

grid in roughly the same amount of time required to ccmpute a vector square

root function on the Texas Instruments Advanced Scientific Conputer at NRL.

Fram this discussion, we see that the name PHAZR forms an acronym for

"Phencmenological Holeboring in Air using (Z, R) coordinates". In the

remaining sections, we discuss the various modules in the code in greater

detail. The primary emphasis of this report will be charged particle beams,

and as an example, we present typical results for an ETA-like beam

propagating in air. These calculations will clearly demonstrate how PHAZR

may be used to investigate accelerator parameter space and to isolate the

important physical parameters which determine the holeboring properties of a

given system.

%b note that the subgrid turbulence model is of particular interest

because of two features:

(1) This model represents our first attempt at a systematic application

of the analysis of asymmetry-generated turbulence to a numerical model of

channel physics.
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(2) We provide a link between the theory of Boris and Picone, which

deals with the generation of large scale turbulent structure (vorticity) and

the experimental data of Greig et al. [11], in which the cascade to small

scales has taken place.

The problem of multipulse energy deposition leads naturally to a

representation in which the effective turbulent diffusivity varies with

position in the interior of the channel, since the pulses most likely will

not be collinear. Certainly more turbulent transport will occur near the

paths of the pulses than in portions of the channel which do not contain the

trajectory of at least one pulse. In addition fluid dynamic and turbulent

transport will affect the distribution of turbulence and the spatial

variation of the turbulent diffusivity within the channel. The model in

this report has the above properties and should provide a useful starting

point for future treatments of asymmetry -generated turbulence.

'.% *-',"'
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II. General Structure of the Code

Because we assume that a given beam, discharge, or laser channel is

locally cylindrically symmetric, we use only the radial (r) and axial (z)

coordinates. For this discussion we assume that we have a model with closed

solutions or tabulated data to describe energy deposition as a function of

axial position (z) and time. Appendix B gives an example of such a model

[171 for a particle beam. The most important beam parameters for energy -

deposition at a given z are pulse radius and length and average particle

energy, all of which we may estimate frcm a model or data, which depend

mainly on local ambient conditions at the time a pulse propagates past a

given point and not on subsequent channel evolution. In order to compute

the local conditions for each beam pulse, we need to perform calculations of

channel expansion only on transverse slices of the channel which are

displaced in z by distances that are small ccapared to the shortest scale of

variation of the beam parameters given above. For example, for a particle

beam in a gas, the Nordsieck length normally defines the shortest scale on

which the beam pulse expands, and we would choose our slices at intervals of

same fraction of the Nordsieck length. The code, therefore, is something

* less than two dimensional, since the numerical grid consists of a number of

weakly connected radial grids, each at a different value of z.

For a given slice (transverse plane) of the channel and a given pulse,

the calculation proceeds as shown in Fig. 1. In this paragraph, we will

briefly discuss each box. The numbers correspond to those in Fig. 1.

-4
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(1) We now consider a string of N pulses and a set of J "channel

slices" or planes transverse to the path of propagation, along which

energy is deposited in the ambient medium. %b compute the channel

properties consecutively, beginning with pulse 1 and slice 1, after the

*ambient values have been entered during initialization. For a given

*[7 pulse "n", we proceed to each channel slice "j", ccmputing the evolution

of the channel up to the time at which another pulse is to be produced

by the accelerator.

(2) When we begin a new pulse n, the simulated time elapsed since the

passage of the first pulse through slice j is (n-i) times the pulse

repetition interval (PRI). Note that the time step number "i" may be

different for each slice, since the time step size is determined by

local conditions.

(3) Fetch the values of the necessary variables (density, grid cell

positions, temperature, ratio of specific heats, and vorticity) from memory

for slice j.

(4) Frm the vorticity wi ' we compute the turbulent dffusivity aTi

and then a turbulent thermal conduction coefficient X~i. We then add XTi

to the classical molecular thermal conductivity xmi based on kinetic theory

mii[8,9] to obtain a total effective thermal conduction coefficient xi. From

the temperature and the ratio of specific heats, we compute the energy

density at each radial grid point.

(5) Modify the vorticity distribution based on the turbulent

diffusivity aTi"

5



(6) Calculate a time step size based on the timescale of energy transport

by the effective thermal conduction computed in (4).

(7) We test to see if we are just beginning the calculation on slice j

for pulse n.

(8) If so, we ccmpute the radial distribution of energy deposition by

pulse n and add this increment to the existing energy distribution.

In the case of a particle or laser beam, this step includes the beam

dynamics, which determines the radius of energy deposition as a function

of propagation distance (slice number). This factor provides a physical

link between successive slices along the propagation path.

(9) If the test in (7) is positive, we also compute the increment in

0vorticity caused by pulse n, but we do not yet update the vorticity

distribution.

(10) We modify the energy distribution based on the effective thermal

conduction which we calculated in step (4).

(11) The thermal conduction process and the periodic energy deposition

by beam pulses, laser pulses, or discharges, cause a departure from

pressure equilibrium in this (time-step-split) algorithm. W return to

pressure equilibrium in one time step by using the adiabatic equation of

state, P = A p , where P is the pressure, p is the mass density, y is the

ratio of principal specific heats and A is a constant. This equilibration

results in the transporting of mass, energy, and vorticity in a Lagrangian

manner. This transport will be largest when a new pulse propagates through

the slice (i.e., t = (n-i) PRI).

(12)-(13) If this is the first time step for pulse n (t - (n-i) PRI),

6
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add the increment in vorticity computed in (9) to the total vorticity.

We do this after the fluid transport step (11) above, since the vorticity

increment which we copute is the value present after the hot gas has

reached pressure equilibrium.

(14) Update the time.

(15) Perform diagnostics.

(16)-(18) When a time interval equal to the PRI has passed, store all

of the primary variables (see (3)) and increase the slice index by one.

(19)-(20) When all J slices have existed for a relative time interval

n x PRI, we begin the sequ '.ce for a new pulse, starting at slice 1,

which is nearest the accelerator.

(21) When all pulses have propagated, stop.

In the remaining sections, we present the equations underlying the sequence

of steps listed above. The groupings around which the paper is organized

are as follows: energy deposition, thermal conduction, fluid transport, and

subgrid turbulence. The section on thermal conduction includes a discussion

of the time step calculation, and that on subgrid turbulence includes

various aspects of vorticity generation and evolution.

7 1
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III. Deposition of Energy

1. Energy Density vs. Radial Distance

Past holeboring calculations have employed a circuit model (Appendix A)

for energy deposition. An important problem with circuit models relates to

the radial profile of energy deposition. Although Bennett profiles with

different characteristic radii for direct and ohmic contribution will often

provide a useful representation, detailed models like VIPER [151 are more

realistic. Furthermore, we must account for the decrease in particle energy

and the increase in beam radius with increasing propagation distance, as

well as the variation of energy deposition and net current with the local

density at a given position along the beam path. Constructing and using a

table of ohmic and direct energies versus these parameters would entail too

much expense and operational difficulty relative to the accuracy which we

would expect frcn the overall model.

we therefore combine the best features of "detailed" models and

circuit models by using the following scheme:

(1) For a short distance from the accelerator (-I m), use a "first

principles" code like VIPER to compute tables of direct and ohmic energy

density vs. radial displacement fran the beam axis vs. local mass density.

(2) At farther distances z > 1 m along the beam path, use the local

average mass density to compute a corresponding net current from the Viper

data and then compute the average beam radius a(z), pulse length L(z), and

particle energy from a beam dynamics model or data.

8
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(3) Using the local density at z > 1 m and the VIPER data corresponding

" to a 1 m propagation distance, calculate (interpolated) radial distributions

of direct and ohmic energy densities, (OD/WV) and (,/V), where dED

denotes the amunt of energy deposited through direct collisions within the

volume element dV and dE carries a similar definition for ohmic heating.

(4) Now assume that the energy deposition densities at axial position P

. z > 1 m have the forms fD(r/a(z)), and f .(r/a(z)). We may then preserve the

shapes of the functions computed in step (3) above while accounting for beam

expansion and conserving energy through the transformation

%,E

Dr' z 'ED (a(z) 0 -a2(l)1  111a, -(r' z) - v a-[ ) r, z wv (r, 1 -(II .i)"rr a2 (z)

In eq. (III.1), the "1" signifies the first slice (at approximately 1 m),

for which we actually have data, and r' is the radial coordinate for the

channel slice at z. This gives us the total direct energy deposition per

unit length:
a 3 D r ',

(Z) = 2w f -- (r', z) r'dr' = 2w f - (r, 1) r dr (111.2)
3" 3V

we use a similar transformation for the density of energy deposited at

z > 1 m through ohmic heating. Notice that we have not yet accounted for

the decrease in pulse length with increasing z.

(5) Scale the direct energy density to account for the decrease in

3particle energy and pulse length with increasing propagation distance

according to eq. (313), developed in Appendix B from the circuit model

9
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(Appendix A). This gives us

(r', z) = (z r, z) = (r, 1) a2 (z) LW) -1
-- = DV "al) r, 2 r ) - L- ( , i (111.3)

where

'"--""R(z, 1) = (111.4)

is the ratio of the respective changes in particle energy per unit path

length due to direct deposition (subscript D) in ambient air (p = p.) for

particles of energy e(z) and e(l). In eq. (111.3) L(z) is the pulse length

at propagation distance z from the accelerator.

-', (6) Again using the circuit model, scale the ohmic energy density dis-

tribution for the effective inductance according to eqs. (B16) and (B17).

This gives us
i! } B [2(1)]

-. (r', z) 3V (a(.) r, z)= (r, i) a( S(z, 1) (111.5)

where

' in (b/a(z))

.ln (b/a(l) , a(z) < b (111.6)

S(z, 1) =

10 , a(z) ) b

Here b is the radial distance fram the axis of the beam at which the conduc-

tivity falls to a negligible value and is assumed to be constant. This will

be a useful approximation if the time dependence of the induction reduces

the ohmic energy deposition by a constant factor a, as in eq. (WO).

10
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2. Energy Deposition Off Axis

To discuss energy deposition by a pulse having a trajectory which lies

off the channel axis, we first must recall that we have tables or equations

for energy density (denoted, in this section only, by ) deposited versus

radial displacement (r) fram the center of the pulse (R0) versus the local

mass density (p) in the region where energy is being deposited. The usual

procedure is then to use the actual local density (and if tables are being

used) to interpolate linearly in density to obtain E(p) versus (r - R1

When R0 * 0, a one-dimensional cylindrical model can only treat energy

deposition as occurring in an annulus centered at R. Thus we initially"!1:'

treat the table as data on E(p) versus (r - R0 ), that is, with r and Ro

scalar, to interpolate onto our computational grid.

Note, however, that an annulus of characteristic width "a" at sane

radius R0 * 0 will have a greater area than a circle of radius a, on which

the tables are based. We must, therefore, renormalize the energy deposited

on the grid by the factor

S0 (r, 0, a) r dr

E ' C(r' R ,a) r dr

where r is the radial coordinate, R0 is the radial coordinate of the center

of the latest pulse, and a is the Bennett radius of the pulse. For example,

an annular Bennett-like profile

f(r, R0 , a) i , (III.8)
I1 - <( - )- 1

*i gives us

R (a, R 1 = I + + tan-1  (111.9)

"'%1
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which is always 1 1. If the grid is sufficiently extensive, the denaninator

in eq. (111.7) is approximately equal to the integral of the unrenormalized

energy density over the grid. If not, w assune that the energy deposition

has the form of eq. (111.8) and use the value given by eq. (111.9).

12p
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IV. Thermal Oonduct ion

The only time dependent physical process currently in the code is

thermal conduction, since we are primarily interested in the evolution of

the channel temperature after expansion to pressure equilibrium. The design

of PHAZR assumes that the time scale of the latter process is short ccmpared

to the pulse repetition interval and the time scale of thermal conduction.

We use the adiabatic equation of state to set the channel density to the

hydrodynamically equilibrated value immediately after one time step. Recent

calculations using the HINT code [141 have shown that, with a nonequilibrium

chemistry and a time dependent fluid transport algorithm, the minimum pulse

repetition interval for which pressure equilibrium is reached at the end of I:

each pulse is approximately 50 us. This value is also the effective minimum

for which turbulence would have any effect on an ETA or ATA beam of ten

pulses. Thus PHAZR appears to be useful for estimating the effects of

turbulence on channel temperature in most experiments.

our thermal conductivity is the sun of two terms: a coefficient of

molecular thermal conduction, computed fra kinetic theory, and an effective

coefficient of turbulent thermal conduction AT' computed as described in

section VI. The coefficient of molecular thermal conduction is [8]
0Xm= Ce X (IV.l)

where

3 1/2
0 8.322 x 10 TK)2X 2  * - [erg/(an s K)] (IV.2)

a 2 (T*)

and the Eucken coefficient is [91

Ce 0.115 + 0.354 Y (IV.3)

13
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In eq. (IV. 2), a is the collision diameter associated with air; n is a

normalized collision integral; M is the molecular weight of air; T is

tenperature in K; and T is a normalized temperature. In eq. (IV.3), y is

the ratio of principal specific heats.

Given the total coefficient of thermal conductivity X + XT,

solve the diffusion equation,

= V • XVT (IV.4)at ~-

explicitly using cell-centered differences, where is the internal energy

density. The choice of the timestep is consistent with the criterion of

Richtmyer and Morton (101 in order to maintain the stability of the scheme.

In fact we use the somewhat more stringent condition

At = 0.25 min {Nik Ai Ari A.C.(yi - 1)1. (IV.5)

In eq. (IV.5), we are taking the minimun of the quantity in brackets over

the grid, where Ni is the particle density in cell i, Ai is the area

enclosed by cell i, Ari is the width, C. is the circunference of a circle

passing through the cell center, and X. is the thermal conductivity. The

quantity in brackets is approximately the time required for thermal

conduction to smooth out a temperature gradient across a given cell.

A -
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V. Fluid Transport Algorithm

As stated in the previous section, we are primarly interested in

channel evolution after pressure equilibrium has been reached following the

passage of a pulse through a given slice of the channel. In particular,

PHAZR is applicable to multipulse beams with a pulse repetition interval of

approximately 50 us or greater. Thus -we need only use adiabatic expansion

to estimate the change in channel properties when a new pulse has propagated

through the channel. Over the time scale of channel expansion to hydro-

dynamic pressure equilibrium, we assume that turbulent energy transport has

very little effect. That is, the time scales of energy transport by

turbulence and molecular thermal conduction are much longer. Therefore, we

allow hydrodynamic equilibration to be instantaneous. The vorticity

distribution changes due to this hydrodynamic transport, as well as energy

and mass density. After pressure equilibration occurs, only the turbulent

velocity field remains. Since we use an effective diffusivity (thermal

conductivity) to model the turbulence field and because the internal energy

density is much greater than the kinetic energy density, we may eliminate

the calculation of radial velocities. The expansion of the channel is

Lagrangian, giving us

f A0 (P /Pa) (V.)

where Pi is the pressure prior to transport, Pa is the ambient pressure, Ai

is cell area, superscript zero (0) indicates the value just before transport

and superscript f indicates the value just after transport. The pressure P

is the sum of the ambient pressure and the incremental changes in pressure

resulting fram energy deposition by a pulse and fram thermal conduction.

" 15
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Notice that at the end of each time step, the pressure is always equal to

the ambient value. Past calculations with flux corrected transport have

shown that deviations from ambient pressure are a few percent after the

shock fran the most recent pulse has decoupled fran the channel. To compute

the new internal energy, we derive a value of gamma from a table of data

measured by Gilmore [7,8] and use the equation

P= Pa/(y - ) 2)

The mass density is given by the (constant) mass in a cell divided by the

new cell volune. Finally w must compute a new value for the vorticity in

each cell, according to the equation

f 0 f 0W z = Ozi 0i/Pi'? (V. 3)

Where w is the z-camponent of the vorticity vector w and i labels the

computational grid cells. This vorticity expansion term does not include

the effects of diffusive processes, which are also present in the form of

the effective thermal conductivity. We discuss diffusive processes in the

next section.

16
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VI. Subgrid Turbulence Model

1. Experimental and Theoretical Background

The experiments of Greig et al. [11] have provided strong evidence that

any asymmetries in energy distribution by an electric discharge, laser

pulse, or particle beam propagating in a gas will lead to an enhancemant of

two or more orders of magnitude in the cooling rate of the resulting

channel. Schlieren photographs of laser and electric discharge channels

[I1 indicate that the rapid cooling is related to turbulence, and as the

channels cool, self-similar expansion occurs according to the simple

empirical equation

R2(t) = R 2(T) + 4a (t - T) (VI.I)

where R(t) is the radius of the channel, t is the time measured from the

instant at which energy deposition begins, T is the time at which expansion

to pressure equilibrium is ccmplete, and a (assumed to be spatially

nonvarying in the channel) is an effective thermal diffusivity. Experiments

show the diffusivity to be approximately constant for a significant period

of time. This behavior would result fran the randan walk of vortex

filaments whose strengths do not decay rapidly.

The fact that an effective diffusivity provides a useful model of the

turbulent transport of energy indicates that a subgrid turbulence model

should be sufficiently accurate for numerical holeboring codes. In addi-

tion, we note that the details of the turbulent structure (spatial distribu-

4' tion of different scale lengths) must not be of major importance, since such

information would probably not lead to a spatially constant diffusivity.

The size of the region in which the turbulence is generated should, however,

17
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appear in the calculation. We point out that this scale may differ from the

channel size and that the turbulent diffusion may, therefore not initially

operate evenly throughcut the channel cross section.

A realistic subgrid model should also provide for the evolution with

time of the turbulent flow and the effective turbulent diffusivity in

accordance with the equation for the evoluton of the vorticity field,

z a, V 2 W2 (VI.2)
dt z

Since our calculation uses time step splitting to treat fluid transport and

thermal conduction, we satisfy eq. (VI.2) in two steps:

(1) on the fluid transport step, treat the vorticity as a conserved

Lagrangian variable, satisfying the continuity equation just as the mass

density does (see eq. (V.3)).

(2) Use the effective total diffusivity m to diffuse the vorticity.

Ve may then use the updated vorticity to define an updated effective

turbulent diffusivity and an updated total thermal conductivity. We

describe the relationships between these quantities below.

Picone and Boris [41 have developed a detailed theory of vorticity

generation by asymmetric energy deposition in a gaseous medium. The

important asynetry types which the theory treats include the following:

(1) Noncollinear pulses or misalignment of an existing channel and a

given pulse,

(2) A pulse with a noncircular cross section,

(3) Three dimensional asymmetries leading to energy deposition along a

curved axis, and

18
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(4) Fluctuations or nonuniformitites in the energy contours within a

pulse. An excellent example of case (4) is the existence of hot spots

within a laser pulse due to the presence of several modes [11].

The generation of vorticity follows the equation

dw 2
t- +  7 v = 7 '7 V + (V x P)/P (VI.3)

where v is the fluid velocity and P is the pressure. Any deviation from

cylindrical symetry will lead to the misalignment of the gradients in

pressure and density as the hot channel gas expands to pressure equilibrium

with the ambient gas. The source term in eq. (VI.3) will be nonzero,

leading to the formation of at least one vortex filament pair, although

cases (2) - (4) will lead to more complex vorticity distributions. The

strength (or circulation) K has the form

PCi = U [R(r) - R(0)] ln (P/P(T)) fi (VI.4)

* where i labels the asymmetry class, B labels the vector component, Um(~C

is a characteristic velocity of expansion, p1 is the local mass density

prior to energy deposition by a pulse, P(T) the density at the position of

the center of the pulse after pressure equilibration, and fi is a form
is

factor usually < 1. For the two-dimensional asymmetries [classes (1), (2),

and (4)], the form factor f. is non-negligible only for 8 = z, for which
is

the vorticity vector is parallel to the channel axis. Although the form

Afactor is supposedly calculable for the cases of practical interest,

experimental pulses and discharges most likely contain same combination

- which would be difficult to discern and measure. For this reason, w use

eq. (VI. 3) with f. varying over a reasonable range of values and calibrate

the model with detailed two-dimensional calculations employing FAST2D (4].
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-. These FAST2D calculations involve the solution of the inviscid equations for

conservation of mass, mcmentun, and energy, and include no effective

diffusivity. Thus, in two dim~ensions we resolve the actual asymmretry-

induced large scale turbulent structure (vortex filament pairs).

71
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2. Theoretical Effective Diffusivity in the Region of a Vortex Pair

We must now relate the vortex strength to the effective diffusivity.

The theory of Picone and Roris shows that asymmetric energy deposition

produces one or more vortex pairs. The vortices in each pair have a

separation given approximately by the scale length of the local asymmetry

which generated the pair. To obtain an effective diffusivity in the region

containing a given vortex pair, we assume that a rapid cascade to small

scale structure occurs. This is reasonable given the experimental data and

the proven viability of an effective constant diffusivity.

Conventional wisdan often presented in conjunction with dimensional

analysis states that most of the energy resides in the large eddy scales

while the dissipation occurs at the smallest eddy scales. We infer that the

flux of fluid through the region originally containing a vortex pair will be

constant after the cascade to smaller scales occurs. The smaller eddies

will, however, mix the cooler arrbient gas being pulled into the channel with

the hot channel gas much more effectively than would the original vortex

pair driving the flow.

To derive a relationship between a and K, we consider fig. 2, in which

a pair of oppositely directed vortex filaments of radius Rv and strength

± lid are contained in a cylindrical region of radius S. We denote the

separation of the vortex centers by 26. The y-axis is the line passing

through the vortex centers, and the x-axis lies midway between the vortices.

The fluid velocity along the x-axis is [41

2 2v (x,0) = 6I J/i(x + d2). (VI.5)
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The rate (per unit vortex filament length) at which ambient gas flows into

the region of radius S and between the vortices is
;2 M S-R

f dy v  Vx(0,0) D 2(S-R)/n6, (VI.6)

v

where M is mass and we have assumed that the flow is nonnegligible only

outside the radii of the vortices. Numerical simulations [41 have indicated

that the value of R is approximately 6/2. The mass entrainment ratev

implied by eq. (VI.l) is

92 2I -M -t R2(T

t_ z R (at - RT = 4ap. (VI.7)
9ta z a t-T a

Equating the mass entrainment rate of eq. (VI.7) with the large scale flow

rate of eq. (VI.6) and setting Rv S/2, we obtain

a I < V47t (VI.8)

for the theoretical effective diffusivity a. The turbulent contribution to

the thermal conductivity is then [121

X C (V.9T p.9)

where c is the specific heat when the pressure is constant.
p

Unfortunately eq. (VI.8) is not yet adequate for our purposes, since

the effective diffusivity applies only in the region of the vortex pair or,

equivalently, in the region of the nonuniformity which generated the vortex

pair. Therefore, we must localize the turbulent transport coefficient

within a distance Si (the scale of the region containing the vortex pair) of

the position Ri of vortex pair i. For example, we may use a step function
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., , i < S.
S 0 IrE - RI) S (0I.10)' ~0 R. SS.

where a i is given by eq. (VI. 8). In the case. of PHAZR, we have

axisymmetry, so that a pulse which occurs off axis appears as an annulus.

Similarly the effective diffusivity resulting from a pulse off axis will be

localized in an annular region. To do this, we use a Bennett-like

function,
ih i

= r - R. (VI.II)

[l + ( s '

where r is the radial cylindrical coordinate, Ri is the distance of pulse i1

fran the the origin, and S. is the scale of the density depression resulting
1

fram pulse i. In eq. (VI.ll) we have used the factor (see eq. (111.9)]

h i -RP (Si, Ri)  (VI.12)

to account for the increased area covered by the annulus relative to the

original circular region containing the vortex pair. Note that the average

of ai(r) is equal to the effective diffusivity ai in eq. (VI.8).
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3. Model for the Turbulent Field

We now assure that the turbulent velocity field may be approximated by

that of a superposition of vortex pairs having a distribution of scale

lengths and strengths. Thus we will deal primarily with the vorticity

field, the effects of which are being modeled by the turbulent diffusivity.

We will assure that pulse "i" has just propagated through a slice of the

channel, generating a vortex pair of strength I' i I given by eq. (VI.4). The

scale of the region containing the vortex pair is $i' which may be estimated

fran the equation for adiabatic expansion

2= 2 1/y
S. a (P/P) (VI.13)1 t..

where a. is the radius of energy deposition by pulse i and P. is the

pressure due to rapid, local heating of the channel gas by pulse i. Eq.

(VI.10) then gives the contribution of pulse i to the turbulent diffusivity

present in the entire beam channel. WTe convert this to an increment of the

total vorticity by multiplying eq. (VI.ll) by 4/Si 2 . This factor comes from

first using eq. (VI.8) to convert diffusivity to vortex strength and then

dividing vortex strength by the area containing the vortex pair to obtain

vorticity (units: s- 1). The new total vorticity then becomes

(r,ti ) = w(r,ti - At) + 4 ai(r)/S4 (VI.14)

where w(r,ti - tt) is the vorticity in a slice just prior to the arrival of

pulse i. The average diffusivity within the beam channel is then given by

the area integral of w divided by 4w, to be consistent with eq. (VI. 8) and

the picture of beam channel turbulence as the superposition of vortex

pairs.

24
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Rather than use the average channel diffusivity, we preserve the

spatial dependence of the vorticity field by defining the effective channel

diffusivity as the product of w (r,t) and a factor <S> 2/4. Here <S> is an

average of the scale sizes {s I of the vortex pairs generated by the beam

pulses. For pulses of the same Bennett radius, we expect S. ~ S. - S for
1"J

any two pulses i and j. Thus we have

a r,ti S; 2 ~~./ .15)

This is consistent with the limiting two-dimensional case shown in fig. 3.

Here the pulses are all misaligned and sufficiently distant that the local

vorticity is determined by the distance fran the nearest vortex pair. We

have

w (r,t) - Wi (r, Si, t) (VI.16)

where we use the step function of eq. (VI. 10)

4a , I r-r. < s
Wi (r, Si, t) r r >0 1 (VI.17)

0

In eq. (VI.17), a. is the diffusivity in the region of pair i, as given by

the integral over the area of that region. The total effective diffusivity

is then

. w(r) dA 1i - *(r, Si, t) rs? = w(£, t) (V.lS)
41r A -4w 4i11~ ~ rt V.8

if the spatial scales fSil of the vortex pairs are all equal. Equation

(VI.15) is therefore consistent with this limiting case.
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VII. Numerical Tests and Simulations

We have performed two-dimensional nuerical simulations with the code

FAST2D [41 to calibrate the results of PHAZR. In both codes, we used a

table of data derived fron VIPER for energy density deposited versus local

mass density. The data correspond to a distance of approximately 1 m from

the accelerator nozzle. We assume that the beam parameters are as follows:

(1) 10 kA beam current, (2) 5 mm pulse radius, (3) 10 ns pulse length, and

(4) 50 MeV beam energy. we used pulse repetition intervals of 1 ms and

100 us, respectively, and strings of ten pulses. Due to the expense of the

tco-dimensional simulations, we ccmputed channel properties only in the

first channel slice, which was lccated approximately 1 m fran the

accelerator nozzle.

The most important difference between the PHAZR and FAST2D calculations

is the treatment of the rotational flows generated by asymmetric energy

deposition. In the case of FAST2D, the noncollinearity of the pulses

generates most of the vorticity and the cascade to smaller scales is

restricted by the grid size and the flux-corrected transport algorithm.

PHAZR relies on the subgrid turbulence model described in the previous

section, and the form factor f in eq. (VI.4) can range fran 0.0 (no

turbulence) to approximately 1.0 for the cases encountered so far [11,131.

we must, therefore, perform several calculations with PHAZR, each with a

different value of f, in order to compare the two models. (We point out

that the notation in the figures is "F" instead of "f".)

Figure 4 shows our results for ten pulses with a pulse repetition

interval of 100 us and a range of values for the form factor in PHAZR.

Notice that we ran PHAZR calculations for strings of collinear pulses and

noncollinear pulses, respectively. Each pulse in the "noncollinear" strings
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was displaced from the origin by 0.0, 0.5, or 1.0 times the pulse radius.

The FAST2D calculations considered only noncollinear pulses, since in that

code no turbulence would be generated in the collinear case. WV chose the

pulse locations so that a clockwise progression occurred around the first

pulse which was centered at the origin. Clearly there are an infinity of

patterns from which to choose.

eFr the 100 us case, we see that the noncollinearity of the pulses was

more important for keeping the channel cool than was turbulence (f * 0). In

addition, turbulence had no apparent effect until the sixth pulse, which

occurred at t = 500 us. This is the time scale of the large scale

rotational motion [41 and shows that the subgrid turbulence model retains

this feature of the motion. Finally we see remarkable agreement between

F.AST2D and PHAZR when the latter uses a form factor of 0.5. 9.

In fig. 5, we show the results of a similar calculation for a pulse

repetition interval of 1 ms. Here turbulence, when compared with

noncollinearity, has a larger effect in cooling the channel than for the

other case, since the time between pulses (energy depositions) is a factor

of ten greater. Once again the PHAZR calculation with f = 0.5 gives close

agreement with FAST2D.

Figure 6 shows an example of the application of PHAZR. W use the same

parameters as above with a pulse repetition interval of 100 us for a string

of 40 pulses. In this case, we have slices at 1, 10, 20, and 30 m from the

accelerator and a form factor of 0.5. The time required for the channel to

achieve a given temperature increases monotonically with distance fram the

accelerator. We also see that, because of turbulence, the channel does seem

to achieve a somewhat uniform temperature toward the end of the pulse

train.
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VIII. Summary

For a particle beam accelerator which emits pulses into a gas, PHAZR is

useful for estimating channel properties over long distances. PHAZR is also

applicable to studies of the cooling of laser or discharge channels.

Because this code does not involve the integration of fluid or field

equations, the running time is very short, making PHAZR valuable for

"systems-level" studies. Calibration of the turbulence model with accurate

two-dimensional hydrodynamics simulations has shown excellent agreement, and

the initial calculations have shown that pulse-to-pulse noncollinearity can

result in a measureably cooler channel, even if turbulence is not

significant. We mention that the use of an equilibrium chemistry model and

instantaneous deposition could lead to a channel which is too cool, even if

there were no shocks to carry energy out of the channel. The trends which

the model indicates should, however, be quite useful in assessing channel

properties.
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Fig. 1. (con't) Flow chart for PHAZR. An expression "A (bold arrow) B"

impl1ies that we may derive B from A or "A gives us B". An expression "A

4(thin Barrow) A"' means that the quantity A is modiffied in value to A' under

the influence of quantity B. The numbers 1-21 beside the boxes correspond

to the numbers in section II of the text.
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-> 0

'Iz

.001.

Fig. 2. We define the region of influence of a vortex filament pair by a

circle of radius S. The center of the circle forms the origin of our

coordinate system. Te quantity R defines the cross section of each vortexV

and the separation of the filaments is 26. The vorticity vectors of the two

filaments are oppositely directed and the quantity < denotes the magnitude

of the strength of each filament.
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Wa 0 +

+ r , R1

AFig. 3. We consider a channel produced by several pulses which are

i- :-  displaced from each other by a large distance compared to the radii Si ., SP,

~etc. In this example, the vorticity is constant and nonnegligible only

'2'iinside the radius S i of the ith vortex for all values of E. Since the
i,, ,

pulses are all roughly identical, the regions of nonzero vorticity are all

of approximately the same size S.
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MAXIMUM TEMPERATURE BEFORE
EACH PULSE

'B RB PRIC EB Z

10kA 5mm 100ps 10ns 50MeV i

4000.0 F

" 0.0

0

N 0.0
0 0.2

00.5

0.0 TIME (ins) 0.9

C-COLLINEAR N-NONCOLLINEAR
F-FORM FACTOR -ID RADIAL

0 FAST2D

Fig. h. This figure shows the results of PE.AZR and FAST2D calculations of

naximum channel temperature Just before deposition of energy by each

pulse. The beam parameters are given above the diagram. The solid lines

give PHAZR plots for different form factors and collinearity properties.

The dots are the results of the corresponding FAST2D calculation.
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MAXIMUM TEMPERATURE BEFORE

EACH PULSE

IB RB PRI 'P EB Z

10kA 5mm Ims 10ns 50MeV 1m

4000.0 F

C 0.0

N 0.0

0.2"

E-5N o.5

" 0.01

0.0 TIME (ms) 9.0

C-COLLINEAR N-NONCOLLINEAR
F-FORM FACTOR -ID RADIAL

* FAST2D

Fig. 5. This figure shows a set of calculations which are similar to fig.

3, except that the pulse repetition interval is 1 ms instead of 100 s.
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2, APPENDIX A

A SIMPLE CIRCUIT MODEL FOR ENERGY DEPOSITION IN THE
"j..

AIMOSPHERE BY AN ELECTRON BEAM,

1. Direct Collisions

The average "direct" energy loss rate per electron, per cm of

propagation distance is

(de D dz e . (Al)

where z is the distance of the head of the pulse fron the source, p is the

average channel density, p. is the ambient density, and the change in

particle energy due to direct collisions in full density air is

2.5 keV/cm. The subscript "Do" on the right hand side implies direct

collisions (D) in ambient, full density(-) air. Thus de acts as an

effective electric field, and the energy in joule/cm deposited at z by

direct deposition is

d/0 (A2)

,I T

dz -b -Do z p

In eq. (A2), D is the total energy deposited via direct collisions,

Iis the electron beam current in amperes and Tis the pulse length in

seconds. For simplicity, we may 3ssune that the radial energy distribution

has a Bennett profile:

_1 d D r1 2 (A3)
D(r 1 D 1+-

7D aD
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in which aD is the Bennett radius and d /dV denotes the density of energy

deposited through direct collisions. The Bennett radius aD, for a given

beam emittance, depends on the net current In, which may be determined by a

calculation using the VIPER computer code [151. The ratio I /I variesn b

slowly with the position C (measured fran the front of the pulse), except at

the expanded head. Constant average values for aD and I therefore,

provide an adequate representation for the circuit model. For a lOkA beam

current, a lOns pulse length, and ambient density, we find d&D/dz 0.25

J/cm, which is comparable to the ohmic deposition, as we shall see below.

2. Chmic Deposition

As is common with circuit models of beam energy deposition in a gas, we

assume that the conductivity a is high enough that the displacement current

can be neglected and that no net (beam and air plasma) charge exists out to

radius b >> beam radius a D' A further assumption is that b is a constant

multiple of aD(z=0). Maxwell's equations (mks units: volts, amperes,

meters) then give us

aB

V x E -- (A4)
-at

or

E (r) rbB(r)dr' - dr B (r') dr' (A5)
r -aD

since, for r < aD, Ez(r) is approximately independent of r over the beam
*D

cross section (variation < 20%). We also have

(7 x B)z = -- r B, u 0 Jn , (A6)
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where ia = 4w x i0 - 7 H/m and J is the net current density along the

axis of the pulse (z-axis). Equation (A6) results in

uO
B (r) = 12"r In(r) ' (A7)

where I (r) is the net (beam + plasma) current within radius r. For r> a

,nwe have

U0  .
B (r) T In  (A8)

in which In is the total net current and is independent of r. Using

eq. (A8) in eq. (A5), we find that

E n (A9)Ez 77 n

'aD-

Notice that the factor (uO/2w)1n(b/aD) plays the role of an inductance,

which is assumed to be constant in most simple circuit models. At the

radius b, the conductivity, by definition, becomes too small for the plasma

to provide space charge neutralization. For r > b, therefore, Ez drops to

zero, an assumption which was used implicitly to integrate eq. (A4). A

representative value for b is usually around 20 aD (z-0). Unfortunately

calculations using VIPER have indicated that the inductance changes with 4,

leading to a considerable reduction (factor of 2 or 3) in ohmic energy

deposition. A crude representation of this would be to multiply eq. (A9)

by a Factor a 1-f, where f represents the fractional reduction in
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electric field Ez resulting fram an inductance which varies with r. we

might expect a to vary with the density of the gas (pre-existing channel)

into which the latest pulse is injected. Thus we have

JE + z n n(b/a D) )  WOAI) .

The energy which is extracted fran the beam (and eventually deposited in the

air) per meter of path traversed is

0 I blEzldT', (All)

in which T is the duration of the pulse in seconds and the integrationp

variable T' is the time since the pulse head traversed a particular point in

space. e could alternatively integrate over c - ct - z, which gives

position in the pulse relative to the beam head.

Tn keeping with our model of the beam in which each pulse has a

constant bean current Ib of duraction tp, we neglect the following:

(1) erosion of pulse length, which depends on the propagation range, but is

typically only a small fraction of the pulse length;

(2) the rise of Ib at the head (justified after the rising part, typically

- 0.3ns, has eroded away);

(3) the fall of Ib at the pulse tail, which results in relatively little

* ohnic energy deposition, since the conductivity a is high, and E is small
p.z

there.

39° 1
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Fran eqs. (AI0) and (All), we find that the energy deposited through

ohmic heating is

3d = __ Ib In(Tp) Zn(b/aD) (AI2)
dz 27r

The Bennett profile, eq. (A3), provides a less faithful representation of

ohmic energy deposition than of direct energy deposition, although past

holeboring calculations have used the Bennett profile in the absence of

better data. Fram Viper calculations, we find that the profile for C

decreases less rapidly with radius than that for ED. If a Bennett profile is

used, we would expect that the Bennett radius a, should be chosen to be

greater than aD. As explained in Section III of this report, we circumvent

this problem by retaining the general profile of the VIPER data at all

slices along the beam path.

we would expect the above model of ohmic deposition to suffer somewhat

frao its simplicity. In the beam head, the conductivity is low even within

the beam radius. Electrostatic neutralization is incomplete, and radial

electrostatic fields and displacement currents exist. A detailed treatment

(161, however, gives the sane result for ohmic deposition except that In is

replaced by an effective current Ie, which includes electrostatic effects.

At '= T (the tail of the beam), I = , and at T' = 0, = 0, so that
p e n e

the integral in eqs. (All) and (A12) remains the same. We note that much of

the energy in eq. (A12) is extracted from the nose of the beam, where the

radius is expanded, and electrostatic effects must receive consideration.
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The subsequent deposition of this energy in the air occurs primarily through

E . Jp in the main body of the beam (or even after the beam has passed by a

given location), where Jp is the plasma current density. In the body of a

pulse, the radius is approximately constant, Ez is relatively independent of

r, and Jp has a profile quite similar to that of the beam. This provides

some justification for approximating the profile for ohmic deposition by a

Bennett profile. Storage of energy in the associated magnetic field causes

a delay between extraction of energy from the beam and deposition in the

air.
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APPENDIX B

In this Appendix, we seek to transform the equations of Lee and Buchanan

(171 (below ,e will designate this reference by "LB") into forms which are

compatible with the use of data fram calculated by VIPER rather than fran a

circuit model. Frca this standpoint, VIPER provides shapes for the direct

and ohnic energy deposition and values of D and n the respective::)-TZ dT

*" total energies deposited per unit path length.

1. Particle Energy

Denoting the energy per particle in MeV by e, the equation of LB for the

change in particle energy with propagation distance z is

de e de
T-

where R is the "radiation length" and (de/dz)D is the change in particle

energy due to direct deposition (ionization loss rate). Wi may also define an

effective ohmic loss per particle (de/dz), by dividing the ohmic loss by the

number of particles in a pulse. In eq. (BI), the initial particle energy is

0.511 y (MeV); y = 1/(1-02)1/2; B = v/c; and v is the average velocity of the

beam particles. LB treat A and d as constants in integrating eq. (Bl).

Assuming that these quantities do vary slowly with z, we suggest that simple

averages of the values at the limits of integration would be more appropriate.

If we integrate eq. (Bl) between positions zi and zi+ 1 along the beam path, we
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* obtain

= :")exf- _+ zi)/< R>i, i+l ]
e(zi+) =(z i ) exp2-( z)

-+ <(zD i+l R' R, +i i+1 ' R l+<de (B2)
- <d-zD > i,i+l <"R>i,i+l (I- eyp[-(Zi+l-Zi'l<XR>i,i+l]) ?

where

<XR>i,i+1 1/2 JIR(zi) + X R(zi+l)l (83)

-3and%

daded< 12fde (B4)( i~
E-D> ii+l 1/2 dz)D(Zi) + ()Dzi+1)}. (B4)

Where no ambiguity is possible, we will drop the subscripts i and i+l on the

average (bracketed) quantities in subsequent equations, and we will denote

quantities evaluated at a given position by the corresponding subscript. Our

integrals will always occur between positions ziand zi+1.

d a de of d D

Swill n express in ter and d- the total

direct and ohmic energies, respectively, deposited per unit path length. If

Ne is the total number of elections in a bean pulse, we have

de 1 dt (M)

where

N = n ea 2 DL. (B6)

In eq. (B6), L is the pulse length, aD is the beam radius, and ne is the

average electron density. The beam current is then
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S necwaD2  (B7)b e D

in which e is the electron charge and c is the speed of light. Substituting

eq. (B7) into eq. (86), we obtain

LIb
N - (SS)e ec

and

de ec d (B9)r "LIb Uz (9

Tb be consistent with LB, we express eq. (B9) in terms of MeV/m, assuming
d(.

that d- is given in erg/cm:

de dC 1 (1.6022 x 10-19C)(2.9979 x 108m/s)(100ai/m)

LIb (107erg/J)(1.6022 x 10- 19J/ev) (10
6eV/MeV)

= 2.9979 x 10-3 dC , (BlO)
LIb

where L is given in m and Ib is the bean current measured in amperes (A).

Again to be consistent with LB, we express Ib in terms of the value in

kiloamperes (kA) to obtain

de (MeV/m) = Lib(kA) 21 (erg/cm) (BI)

Equation (BII) applies to both ohmic and direct deposition of energy;

however, further discussion of the dependence on pulse length is necessary for
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the remaining sections. Both direct and ohnic deposition per electron depend

explicitly on L71. However, the circuit model in Appendix A indicates that

L while depends on L mainly through the logarithmic variation of

effective inductance with beam radius. Thus d is approximately

independent of L while (T), varies primarily as

At positions distant fran the accelerator nozzle, we may use the circuit

dE . dED
model (Appendix A) to modify VIPER data, which give U and _ versus 0 at

dz dz-
positions close to the accelerator nozzle. If the first position (i=l)

corresponds to the VIPER data, we have fron eqs. (Al) and (A2)

d D de (Bi2)

dz (Dw)~L

so that, for position i > 1 and a given local channel density p,

D dD D)D. i Li (Bi3)

We define

R D-. (B14)
il de

for which approximate values may be obtained fram the particle energies,

C and ei , corresponding to positions zI and zi> zIl Fram eqs. (BlI) -

(B14), we find that

Zd i- 2.9979 x 10-6 dD)

DiL 1 Ib (W dz 1 R il l (815)
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which is indeed independent of pulse length, as we would expect for energy

deposition by direct collisions.

For ohmic deposition in air of a given local density p, we have eq. (A12)

(b /ad) (B16)
Tz 

D-

* -" dz =  n ( / D ) .

Defining

In(b/aDi)
Sil - tn(biaDl)' (BI7)

U1.

and assuming that b is approximately constant, we have

de 2.9979 16~ d IrdZQ~L.I ~ ) Si1  (B18)i bkA') dz Iil" BB

In the section B.3 we shall see that aD varies approximately as exp [A(L -

Li )], where A is a constant. The quantity Sil, therefore, depends only weakly

on L, as we would expect.

L.

(%'C.,
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2. Pulse L-ength

LB assume that pulse erosion accounts for the effects of ohmic deposi-

tion, as well as the other mechanisms sumimarized by eq. (BI). if we assume

that the average number of electrons per unit length, dN /dL, is constant in
e

time, we have in the formulation of LB

d -L dE In
U R L A (B19)

in which A is the inductance obtained frcm a circuit model, such as that in

Appendix A; In (kA) is the net current (beam current + plasma current); and

the Alfven current IYis defined as 1.7xl018y(kA) or, equivalently, e(MeV)

times 34(kA/MeV) fram LB. As in eq. (BI), LB treat XR de D' and A InC/IA

as quantities which do not vary with L but which do vary slowly with z. We

again sujgest replacing them with averages as in eqs. (B2)-(B4). An

equivalent equation to eq. (B19) is

dz L z)D -)I (B20)
dz R D

Comparing (B19) and (B20), we find that

Ar nE Al n d*- - = . (B21)

-wT

47

a'~ ?A .-- *, .- a)'a a '



As noted above, the left hand side of Eq. IB21) does not vary strongly with L

and we conclude that neither does the right hand side. Recalling the

discussion at the end of 3ection B.1, (eqs. (812 - BI8)) we see that

(d-) is indeed approximately proportional to L-1 , consistent with this

conclusion. To obtain the reaining equations which correspond to (B21) from

those given by LB, we may therefore replace the quantity AIn"34 by

,1-<

> 1/2 { Li(dzi + Li+l (Bz(+l)22)

which accounts for the slow z dependence.

From eqs. (B) and (B19), LB obtain

dL n - L (d (23)dz 34 i . .
34--c,

Using eqs. (Bl) and (B23), LB also obtain an equation for dL/de. From

* that expression, we obtain the pulse length in eq. (B24):

L d Zn D * (B24)i+- i <(aze de + <R () '-

.. S
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3. Pulse Radius (a)

LB give the Nordsieck equation as
:.2C n (B5

n(aV/In ) = 2Cn 'B25)

R n

where C n 3700 (MeV - kA). W may make the substitution defined by eq. (B23)

in the Nordsieck equation to obtain

d Zn (abv'el n ) 2CN  de
IL" =- ( /< q>). B26) "

dL<XR> <In>E .P=
R n

7400/(<X > <I > <L( - >.

R n L(z) Q

Integrating Eq. (B25) between positions z. and zi+l, we have
1

E. I0 ~1 fll /2
al a exp 17400(L L )/(<XR> <In> <L(-) >)I (B27)

i+1 n(i+l)

An alternative form is necessary if we wish to use the expression of

Godfrey and Hughes (18] for the Nordsieck length IN . Here we have

L - 7.14 vy in (1090 vy) (B28)
N [ln(2970vy)]2

where Budker's parameter is defined by

v = - b (B29)
I I. 7x10 8
A

in which I is the Alfven current limit and I the beam current in
amperes (A).

Fra eq. (B 25), -we identify

Rn
-- -),R~------ ,(B30)
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when the work done by the beam varies slowly with propagation distance. Using

eqs. (B28) and (B30), we obtain

- E-I 112
ai+1 = a i i 1nniil) expf(z. 1 - zi)/L N]. (B31) ]

,,,.
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