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PHAZR: A Phenamenological Code for Holeboring in Air

I. Introduction

This report describes a new code for studying holeboring by a charged
particle beam, laser, or electric discharge in a gas. The coordinates which
parameterize the channel are radial displacement (r) from the channel axis
and distance (z) along the channel axis fram the energy source, hence the
letters "ZR" in the name. The code is primarily "phenamenological®; that
is, we use closed solutions of simple models in order to represent many of

the effects which are important in holeboring. 1In the case of a particle

1"'(* > * ¥

" e
—"1~{"1“’{1
. e
>, f;t x
P x L T K

beam propagating through a gas, we use a model provided by Lee and Buchanan

.
v
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L

[17] to account for changes in the area of energy deposition (beam radius)
with distance fram the accelerator. We have modified the treatment of
scattering of the beam by the ambient medium to include the results of
Hughes and Godfrey (18], as shown in Appendix B. To represent hydrodynamic
expansion of the gas heated by a given energy pulse, we use the adiabatic
equation of state, which Lampe et al. have shown to be a good approximation
[{1-3]. The equations of Picone and Boris (4] form the basis of a subgrid
turbulence model required to compute the enhanced channel cooling caused by
asymmetry-driven turbulence. The numerical simplicity which we gain from
the use of such solutions enables us to estimate the structure of a channel
while using a far less camputer time than a more "detailed" code which
solves differential equations for the fields, beam envelope, and the
chemistry and dynamics of the ambient gas. This feature permits the
computation of channel properties over long propagation distances (e.g.,
the distance over which significant beam expansion occurs) and thus makes

PHAZR a useful code for those studying and designing future systems.
Manuscript approved June 13, 1985,
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1 As indicated by the report title, we have been interested primarily in :
AN N
‘;:‘:::- air, although the model will apply to any chemically nonreactive gas and can N
. |
oo be modified to include the effects of chemical reactions. Conversely, the -
\:‘"- various modules comprising the code can be incorporated easily into other
b
s codes. To account for the effects of air chemistry in PHAZR, we currently
¢
use a real air equation of state routine based on the equilibrium data of '
o . .
{-{ Gilmore [5-6], which cover a temperature range of at least 300 - 24000 K. .
p Lk q
{‘._‘: Using a fast table lookup routine developed by Young [7], we are able to 9
:"‘ . . ‘
obtain values of y, the ratio of principal specific heats, over the entire -
::::fi: grid in roughly the same amount of time required to compute a vector square g
s i
Ve root function on the Texas Instruments Advanced Scientific Computer at NRL. ¥
T t
A Fram this discussion, we see that the name PHAZR forms an acronym for
.'\.'. {
'C::f; "pPhenamenological Holeboring in Air using (2, R) coordinates". 1In the !
~ )
" remaining sections, we discuss the various modules in the code in greater R
oo
detail., The primary emphasis of this report will be charged particle beams, i
-""-: ;\
j-;‘,i. and as an example, we present typical results for an ETA-like beam t
> J,: \
;.‘ <. propagating in air. These calculations will clearly demonstrate how PHAZR ‘
) may be used to investigate accelerator parameter space and to isolate the
i
v
jj.:-_ important physical parameters which determine the holeboring properties of a )
'.rt'.
L given system. :
. We note that the subgrid turbulence model is of particular interest
e X
e because of two features: (
'yt h
l
"'-’ (1) This model represents our first attempt at a systematic application :
! 2 of the analysis of asymmetry-generated turbulence to a numerical model of
'S
§'~$ channel physics. ‘
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(2) We provide a link between the theory of Boris and Picone, which ‘ g&,
YRk

deals with the generation of large scale turbulent structure (vorticity) and E)E%
the experimental data of Greig et al. [11), in which the cascade to small - b
scales has taken place. .\.:_:,\
The problem of multipulse energy deposition leads naturally to a “.hl";_
representation in which the effective turbulent diffusivity varies with B
position in the interior of the channel, since the pulses most likely will ::.* :
not be collinear. Certainly more turbulent transport will occur near the _—:":'5’
paths of the pulses than in portions of the channel which do not contain the ; v
T

trajectory of at least one pulse. In addition fluid dynamic and turbulent w\?_:

transport will affect the distribution of turbulence and the spatial
variation of the turbulent diffusivity within the channel. The model in

this report has the above properties and should provide a useful starting

point for future treatments of asymmetry - generated turbulence.
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II. General Structure of the Code

Because we assume that a given beam, discharge, or laser channel is
locally cylindrically symmetric, we use only the radial (r) and axial (z)
coordinates. For this discussion we assume that we have a model with closed
solutions or tabulated data to describe energy deposition as a function of
axial position (z) and time. Appendix B gives an example of such a model
[17] for a particle beam, The most important beam parameters for energy
deposition at a given z are pulse radius and length and average particle
energy, all of which we may estimate fram a model or data, which depend
mainly on local ambient conditions at the time a pulse propagates past a
given point and not on subsequent channel evolution. In order to compute
the local conditions for each beam pulse, we need to perform calculations of
channel expansion only on transverse slices of the channel which are
displaced in z by distances that are small campared to the shortest scale of
variation of the beam parameters given above., For example, for a particle
beam in a gas, the Nordsieck length normally defines the shortest scale on
which the beam pulse expands, and we would choose our slices at intervals of
same fraction of the Nordsieck length. The code, therefore, is something
less than two dimensional, since the numerical grid consists of a number of
weakly connected radial grids, each at a different value of z.

For a given slice (transverse plane) of the channel and a given pulse,
the calculation proceeds as shown in Fig. 1. In this paragraph, we will

briefly discuss each box. The numbers correspond to those in Fig. 1.
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_. (1) We now consider a string of N pulses and a set of J "channel "

5" slices" or planes transverse to the path of propagation, along which : _,
N \ energy is deposited in the ambient medium. We compute the channel
:E properties consecutively, beginning with pulse 1 and slice 1, after the :W"

N 3

ambient values have been entered during initialization. For a given

pulse "n", we proceed to each channel slice "j", computing the evolution

_;"_.."r-"'.:“’ ARAA

of the channel up to the time at which another pulse is to be produced
‘ . by the accelerator, ;_::
(2) When we begin a new pulse n, the simulated time elapsed since the
:':.\ passage of the first pulse through slice j is (n-1) times the pulse F-f
repetition interval (PRI). Note that the time step number "i" may be
,. different for each slice, since the time step size is determined by :
local conditions. :
(3) Fetch the values of the necessary variables (density, grid cell ‘S
- positions, temperature, ratio of specific heats, and vorticity) fram memory !
for slice j. '
(4) Fram the vorticity w; o we compute the turbulent diffusivity Omi
. and then a turbulent thermal conduction coefficient Apie We then add )‘Ti -'
\" to the classical molecular thermal conductivity Ani based on kinetic theory -.
;: [8,9] to obtain a total effective thermal conduction coefficient Ao From
the temperature and the ratio of specific heats, we compute the energy N
density at each radial grid point.
S (5) Modify the vorticity distribution based on the turbulent -
diffusivity a,. 1::
T
-
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ti (6) Calculate a time step size based on the timescale of energy transport
by the effective thermal conduction computed in (4).
(7) We test to see if we are just beginning the calculation or slice j
for pulse n.
(8) If so, we campute the radial distribution of energy cdeposition by
pulse n and add this increment to the existing energy distribution.
In the case of a particle or laser beam, this step includes the beam
dynamics, which determines the radius of energy deposition as a function
of propagation distance (slice number). This factor provides a physical
link between successive slices along the propagation path.
(9) If the test in (7) is positive, we also campute the increment in
vorticity caused by pulse n, but we do not yet update the vorticity
distribution,
(10) We modify the energy distribution based on the effective thermal
conduction which we calculated in step (4).
(11) The thermal conduction process and the periodic energy deposition
by beam pulses, laser pulses, cr discharges, cause a departure from
pressure equilibrium in this (time-step-split) algorithm. We return to

pressure equilibrium in one time step by using the adiabatic equation of

state, P= A oY. where P is the pressure, ¢ is the mass density, v is the

ratio of principal specific heats and A is a constant. This equilibration

results in the transporting of mass, energy, and vorticity in a Lagrangian
manner. This transport will be largest when a new pulse propagates through

the slice (i.e., t = (n-1) PRI).
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(12)=(13) If this is the first time step for pulse n (t = (n-1) PRI),
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add the increment in vorticity camputed in (9) to the total vorticity.

We do this after the fluid transport step (1l1) above, since the vorticity
increment which we compute is the value present after the hot gas has
reached pressure equilibrium,

(14) Update the time.

(15) Perform diagnostics.

(16)-(18) When a time interval equal to the PRI has passed, store all

of the primary variables (see (3)) and increase the slice index by one.
(19)-(2C) when all J slices have existed for a relative time interval

n X PRI, we begin the sequs'.ce for a new pulse, starting at slice 1,

which is nearest the accelerator.

(21) WwWhen all pulses have propagated, stop.

In the remaining sections, we present the equations underlying the sequence
of steps listed above. The groupings around which the paper is organized
are as follows: energy deposition, thermal conduction, fluid transport, and
subgrid turbulence. The section on thermal conduction includes a discussion
of the time step calculation, ard that on subgrid turbulence includes

various aspects of vorticity generation and evolution.
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- III. Deposition of Energy S
- S
. . . ol
- 1. Energy Density vs. Radial Distance o
L Pl
iy
" Past holeboring calculations have employed a circuit model (Appendix A) E
o for energy deposition. An important problem with circuit models relates to jl‘;:;:
.\ e
= the radial profile of energy deposition. Although Bennett profiles with I:R:
different characteristic radii for direct and ohmic contribution will often il—
-
- provide a useful representation, detailed models like VIPER [15] are more . .;-.:
s :';-:1
realistic., Furthermcre, we must account for the decrease in particle energy RN
-, .
and the increase in beam radius with increasing prcpagation distance, as ) ’!';
( 5
well as the variation of energy deposition and net current with the local
- density at a given position along the beam path. Constructing and using a b
table of ohmic and direct energies versus these parameters would entail too E

-
N much expense and operational difficulty relative to the accuracy which we ro
- would expect fram the overall model. -
We therefore cambine the best features of "detailed" models and ;"
v pamp
-_;j circuit models by using the following scheme: T
: (1) For a short distance from the accelerator (~1 m), use a "first :f'f}'?
principles" code like VIPER to compute tables of direct and ohmic energy !:_
1 :':!.'
- density vs. radial displacement from the beam axis vs. local mass density. o
y (2) At farther distances z > 1 m along the beam path, use the local :f::j
‘ average mass density to compute a corresponding net current from the Viper [ 3
A
data and then compute the average beam radius a(z), pulse length L(z), and e
particle energy from a beam dynamics model or data. '_:f.::
) ]
. e
. _.\\:
+
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(3) Using the local density at z > 1 m and the VIPER data corresponding
to a 1 m propagation distance, calculate (interpolated) radial distributions -
of direct and ohmic energy densities, (asD/aV) and (agq/aV), where deD
denotes the amount of energy deposited through direct collisions within the
volume element dV and dgQ carries a similar definition for ohmic heating.

(4) Now assume that the energy deposition densities at axial position !&
z > 1 m have the forms f (r/a(z)), and f,(r/a(z)). We may then preserve the ' 23
shapes of the functions computed in step (3) above while accounting for beam

expansion and conserving energy through the transformation

3z 3g <
D a(z) D a2(1) -
—= (¢', 2) = ( z) = —= (r, 1) [ ] (IIT.1)
v W a(l) v a2(z) =
E

-
i1,
)

In eq. (III.1l), the "1" signifies the first slice (at approximately 1 m),

(el
v

for which we actually have data, and r' is the radial coordinate for the E'
channel slice at z. This gives us the total direct energy deposition per .
x. J
unit length: Eﬁ
3E, 3E b
. = _ ' 13y =

=5 (z) = 2n [ (', z) r'dr r [ = = D(r, 1) rar (II1.2)
Nl
1%
We use a similar transformation for the density of energy deposited at b
z > 1 m through olmic heating., Notice that we have not yet accounted for -
the decrease in pulse length with increasing z. :i
(5) Scale the direct energy density to account for the decrease in Ef
particle energy and pulse length with increasing propagation distance x
\-F
according to eq. (Bl13), developed in Appendix B from the circuit model }ﬁ
‘?
9 N
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(Appendix A), This gives us

& 3k

D, ., _ 3% calz) _ D a2(1)7 (L(z)
F (' 2 =52 CETTT r, z) = 5 (o 1) [az(z)] [L(l)] R(z, 1) (I11.3)
where
( ~)pe (£(2))
9z’'D»

is the ratio of the respective changes in particle energy per unit path
length due to direct deposition (subscript D) in ambient air (p = p_) for
particles of energy £(z) and €(1). 1In eg. (III.3) L(z) is the pulse length
at propagation distance z from the accelerator.

(6) Again using the circuit model, scale the ohmic energy density dis-
tribution for the effective inductance according to egs. (Bl6) and (Bl7).

This gives us

¥q -, g ra(z) 359 a2(1)
T (£ 2 =55 (a( Ty T r, z) = (r, 1) [E)-] stz, 1) (IT1.5)
where
1n (b/a(z))
IE—T573TTTT , alz) <b (III.6)
S(z, 1) =
0 , a(z) > b

Here b is the radial distance fram the axis of the beam at which the conduc-
tivity falls to a negligible value and is assumed to be constant. This will
be a useful approximation if the time dependence of the induction reduces

the ohmic energy deposition by a constant factor a, as in eq. (Al0).
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2. Energy Deposition Off Axis

:'. To discuss energy deposition by a pulse having a trajectory which lies
] off the channel axis, we first must recall that we have tables or equations
for energy density (denoted, in this section only, by £) deposited versus
radial displacement (r) fram the center of the pulse (go) versus the local
mass density (p) in the region where energy is being deposited. The usual
procedure is then to use the actual local density (and if tables are being
used) to interpolate linearly in density to obtain g(p) versus (r - go).
When 50 * 0, a one-dimensional cylindrical model can only treat energy
deposition as occurring in an annulus centered at RO. Thus we initially
treat the table as data on £(p) versus (r - Ro), that is, with r and Ro
scalar, to interpolate onto our computational grid.

Note, however, that an annulus of characteristic width "a" at same
radius RO # 0 will have a greater area than a circle of radius a, on which
the tables are based. We must, therefore, renormalize the energy deposited
on the grid by the factor

f; g(r, 0, a) r dr

Re = = ' (I11.7)
[o E(rs Ry sa) r dr
4.
" where r is the radial coordinate, R, is the radial coordinate of the center
-, of the latest pulse, and a is the Bennett radius of the pulse. For example,

an annular Bennett-like profile

.. 1

f(r, R,, a) = ’ (111.8)
0 r—R0

212

! gives us

N R

S R, (a, Ry = {1+ 52- [ 2+ tan! (D1}, (II1.9)



which is always < 1. If the grid is sufficiently extensive, the denaminator
in eq. (III.7) is approximately equal to the integral of the unrenormalized
energy density over the grid. 1If not, we assume that the energy deposition

has the form of eq. (III.8) and use the value given by eq. (III.9).
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ot IV. Thermal Conduction o
. e
" The only time dependent physical process currently in the code is :C):
. AL
'_ thermal conduction, since we are primarily interested in the evolution of ).
€\
% the channel temperature after expansion to pressure equilibrium. The design
': of PHAZR assumes that the time scale of the latter process is short compared -2
o, > oL
. to the pulse repetition interval and the time scale of thermal conduction.
> :Fs._: A
:[ : We use the adiabatic equation of state to set the channel density to the ;\
v:. r::
e hydrodynamically equilibrated value immediately after one time step. Recent S
by .
calculations using the HINT code [14] have shown that, with a nonequilibrium it
:'_: chemistry and a time dependent fluid transport algorithm, the minimum pulse f:.';
. repetition interval for which pressure equilibrium is reached at the end of “?
i each pulse is approximately 50 us. This value is also the effective minimum s
- Y
1. . ‘)-“.
o for which turbulence would have any effect on an ETA or ATA beam of ten ?:"’
- s o
- pulses. Thus PHAZR appears to be useful for estimating the effects of :-r
- turbulence con channel temperature in most experiments.
'f: Our thermal conductivity is the sum of two terms: a coefficient of E:
A
'Y - L",. o
}{ molecular thermal conduction, camputed fram kinetic theory, and an effective !-
- coefficient of turbulent thermal conduction AT' camputed as described in
~° e
» section VI. The coefficient of molecular thermal conduction is (8] E:
X Ce 0 )
o Ap = Co A (Iv.1) 2
o where X
~ g
3 0 _8.322x 103 1, " R
o V= =sts— () lerg/(on s K] (1v.2) n
o ¢ Q (T) o
- =
.
and the Eucken coefficient is [9] l
< C_ = 0.115 + 0.354 (-X=) (IV.3) R
s e -1 W
' )
2 :::
- 13 :
i
. N
' ~
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In eq. (IV.2), o is the collision diameter associated with air; @ is a

E - normalized collision integral; M is the molecular weight of air; T is
.. . temperature in K; and T* is a normalized temperature. In eq. (IV.3), vy is
:".;: the ratio of principal specific heats.,

Given the total coefficient of thermal conductivity A = A_ + A, we
9 solve the diffusion equation,

%E- =7 « AT (1v.4) )

> explicitly using cell-centered differences, where £ is the internal energy

:: density. The choice of the timestep is consistent with the criterion of
:_:_J Richtmyer and Morton (10] in order to maintain the stability of the scheme.
' = In fact we use the samewhat more stringent condition

:".

i

. At = 0.25 min {N;k A, ar;/ A,C,(y; = 1)} (IV.5)
, In eq. (IV.5), we are taking the minimum of the quantity in brackets over
‘.::'.t the grid, where N, is the particle density in cell i, A, is the area

. _ enclosed by cell i, Ari is the width, Ci is the circumference of a circle
wj,'g passing through the cell center, and Ai bis the thermal conductivity. The
i quantity in brackets is approximately the time required for thermal

_‘, conduction to smooth out a temperature gradient across a given cell.
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V. Fluid Transport Algorithm .
As stated in the previous section, we are primarly interested in ¢
4

channel evolution after pressure equilibrium has been reached following the

passage of a pulse through a given slice of the channel. 1In particular, :::
PHAZR is applicable to multipulse beams with a pulse repetition interval of ’
approximately 50 us or greater, Thus we need only use adiabatic expansion I.
to estimate the change in channel properties when a new pulse has propagated j-:{
through the channel. Over the time scale of channel expansion to hydro- :_
dynamic pressure equilibrium, we assume that turbulent energy transport has ~-
very little effect. That is, the tlime scales of energy transport by :::'
turbulence and molecular thermal conduction are much longer. Therefore, we (
allow hydrodynamic equilibration to be instantaneous. The vorticity
distribution changes due to this hydrodynamic transport, as well as energy ~
and mass density. After pressure equilibration occurs, only the turbulent '*
velocity field remains, Since we use an effective diffusivity (thermal
conductivity) to model the turbulence field and because the internal energy ';'E

s
i

density is much greater than the kinetic energy density, we may eliminate

the calculation of radial velocities., The expansion of the channel is A
Lagrangian, giving us f'
X

Af = A(i) (pi/pa)l/Y (V.1) %

i

where Pi is the pressure prior to transport, P, is the ambient pressure, Ai =3
is cell area, superscript zero (0) indicates the value just before transport .,
and superscript £ indicates the value just after transport. The pressure Pi :
is the sum of the ambient pressure and the incremental changes in pressure :
resulting fram energy deposition by a pulse and fram thermal conduction. ‘:.
3
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Notice that at the end of each time step, the pressure is always egqual to
the ambient value. Past calculations with flux corrected transport have
shown that deviations from ambient pressure are a few percent after the
shock from the most recent pulse has decoupled fram the channel. To compute
the new internal energy, we derive a value of gamma from a table of data

measured by Gilmore [7,8] and use the equation
£=P/(y - 1) (V.2)

The mass density is given by the (constant) mass in a cell divided by the
new cell volume. Finally we must campute a new value for the vorticity in
each cell, according to the equation
£ _ 0 f£,0

Yzi = Yzi 03/Pyr (v.3)
Where w, is the z-component of the vorticity vector w and i labels the
computational grid cells. This vorticity expansion term does not include
the effects of diffusive processes, which are also present in the form of
the effective thermal conductivity. We discuss diffusive processes in the

next section.,
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VI. Subgrid Turbulence Model
l. Experimental and Theoretical Backgrcund

The experiments of Greig et al. [11] have provided strong evidence that
any asymmetries in energy distribution by an electric discharge, laser
pulse, or particle beam propagating in a gas will lead to an enhancemant of
two or more orders of magnitude in the cooling rate of the resulting
channel, Schlieren photographs of laser and electric discharge channels
[11] indicate that the rapid cooling is related to turbulence, and as the
channels cool, self-similar expansion occurs according to the simple

empirical equation

R2(t) = R%(1) + 4da (t - 7) (VI.1)

where R(t) is the radius of the channel, t is the time measured fram the
instant at which energy deposition begins, t is the time at which expansion
to pressure equilibrium is complete, and a (assumed to be spatially
nonvarying in ’the channel) is an effective thermal diffusivity. Experiments
show the diffusivity to be approximately constant for a significant period
of time. This behavior would result from the random walk of vortex
filaments whose strengths do not decay rapidly.

The fact that an effective diffusivity provides a useful model of the
turbulent transport of energy indicates that a subgrid turbulence model
should be sufficiently accurate for numerical holeboring codes. 'In addi-
tion, we note that the details of the turbulent structure (spatial distribu-

tion of different scale lengths) must not be of major importance, since such

information would probably not lead to a spatially constant diffusivity.

The size of the region in which the turbulence is generated should, however,
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appear in the calculation. We point out that this scale may differ from the Ky

RS

'\-!

channel size and that the turbulent diffusion may, therefore not initially Y

operate evenly throughcut the channel cross section. o

A realistic subgrid model should also provide for the evolution with o

h s

time of the turbulent flcw and the effective turbulent diffusivity in _é‘

(% t

accordance with the equation for the evoluton of the vorticity field, "h

o

2¢

dw ) NG

yA - RO

Et_ =Qa V mz . (VI.Z) :_‘.

»

)

Since our calculation uses time step splitting to treat fluid transport and P

e

thermal conduction, we satisfy eq. (VI.2) in two steps: o
(1) On the fluid transport step, treat the vorticity as a conserved ‘_3

-‘.'\.

Lagrangian variable, satisfying the continuity equation just as the mass .,

N

density does [see eq. (V.3)]. ;-I
(2) Use the effective total diffusivity a to diffuse the vorticity. R,

s

We may then use the updated vorticity to define an updated effective ::_:"e

hat

turbulent diffusivity and an updated total thermal conductivity. We ti

describe the relationships between these quantities below. .

Picone and Boris [4] have developed a detailed theory of vorticity ":

‘D

generation by asymmetric energy deposition in a gaseous medium. The :::'§

!!..

important asymmetry types which the theory treats include the following:

(1) Norcollinear pulses or misaligmment of an existing channel and a _:j-

given pulse, =

(2) A pulse with a noncircular cross section,

(3) Three dimensional asymmetries leading to energy deposition along a I

e

curved axis, and

-
: 8
. N
r: 18 Q
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(4) Fluctuations or nonuniformitites in the energy contours within a
pulse. An excellent example of case (4) is the existence of hot spots
within a laser pulse due to the presence of several modes [11].

The generation of vorticity follows the equation

tuley=ac Ly (D x IR/] (VL.3)

& &

where v is the fluid velocity and P is the pressure. Any deviation from
cylindrical symmetry will lead to the misalignment of the gradients in
pressure and density as the hot channel gas expands to pressure equilibrium
with the ambient gas. The source term in eq. (VI.3) will be nonzero,
leading to the formation of at least one vortex filament pair, although

cases (2) - (4) will lead to more complex vorticity distributions. The

strength (or circulation) « has the form
kig = Uy [R(x) = R(O)} 1n (py/n(1)) fiq (V1.4)

where i labels the asymmetry class, 8 labels the vector component, Um(~cs)
is a characteristic velocity of expansion, Py is the local mass density
prior to energy deposition by a'pulse, p(t) the density at the position of
the center of the pulse after pressure equilibration, and fiB is a form
factor usually < 1. For the two-dimensional asymmetries [classes (1), (2),
and (4)], the form factor fiB is non-negligible only for 8 = z, for which
the vorticity vector is parallel to the channel axis. Although the form
factor is supposedly calculable for the cases of practical interest,
experimental pulses and discharges most likely contain same combination
which would be difficult to discern and measure. For this reason, we use
eq. (Vi. 3) with fiB varying over a reasonable range of values and calibrate
the model with detailed two-dimensional calculations employing FAST2D (4].
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These FAST2D calculations involve the solution of the inviscid equations for

-.-’

-’-f‘.f‘f

- conservation of mass, momentum, and energy, and include no effective
diffusivity. Thus, in two dimensions we resolve the actual asymmetry-

induced large scale turbulent structure (vortex filament pairs).
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R,
2. Theoretical Effective Diffusivity in the Region of a Vortex Pair i
We must now relate the vortex strength to the effective diffusivity. fi
The theory of Picone and Roris shows that asymmetric energy deposition

produces one or more vortex pairs, The vortices in each pair have a
separation given approximately by the scale length of the local asymmetry
which generated the pair. To obtain an effective diffusivity in the region
contairing a given vortex pair, we assume that a rapid cascade to smali
scale structure occurs. This is reasonable given the experimental data and
the proven viability of an effective constant diffusivity.

Conventional wisdam often presented in conjunction with dimensional
analysis states that most of the energy resides in the large eddy scales
while the dissipation occurs at the smallest eddy scales. We infer that the
flux of fluid through the region originally containing a vortex pair will be
constant after the cascade to smaller scales occurs. The smaller eddies
will, however, mix the cooler ambient gas being pulled into the channel with
the hot channel gas much more effectively than would the original vortex
pair driving the flow.

To derive a relationship between o and «, we consider fig. 2, in which
a pair of oppositely directed vortex filaments of radius R, and strength
t |k| are contained in a cylindrical region of radius S. We denote the

separation of the vortex centers by 26, The y-axis is the line passing

M

through the vortex centers, and the x-axis lies midway between the vortices.,

Lo

s

The fluid velocity along the x-axis is [4])

¥

v, (x,0) = | IG/n(x2 + 62). (V1.5)
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The rate (per unit vortex filament length) at which ambient gas fiows into ﬁ

2

the region of radius S and between the vortices is ﬁ

§-R -]

32 M v )

e, [ v (0,00 ~ o |k ] 2(8-R) /ns, (VI.6) K

=(3-R ) N,

O

.3

where M is mass and we have assumed that the flow is nonnegligible only f

outside the radii of the vortices. Numerical simulations [4] have indicated ‘j

that the value of RV is approximately §/2. The mass entrainment rate ;:

implied by eq. (VI.1) is E

vu B -’ _, (VI.7) -1

ot 3z ‘a t -1 - fa0ge : %

Equating the mass entrainment rate of eq. (VI.7) with the large scale flow

rate of eq. (VI.6) and setting RV = §/2, we obtain

a ~ |k [/4n (VI.8)

e e s
'L:'J‘l ""‘ ML

for the theoretical effective diffusivity a. The turbulent contribution to

,.
L
2

the thermal conductivity is then [12] o
)‘T z pcp o, (VI.9) ::‘

5

S

where cp is the specific heat when the pressure is constant. [
]

Unfortunately eq. (VI.8) is not yet adequate for cur purposes, since ?1

the effective diffusivity applies only in the region of the vortex pair or, ,i
equivalently, in the region of the nonuniformity which generated the vortex -
)

pair. Therefore, we must localize the turbulent transport coefficient 33
N\

within a distance Si(the scale of the region containing the vortex pair} of fx
N

the position R, of vortex pair i, For example, we may use a step function

SR
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X ‘-.‘\
Gi(r) = { 0 , lE - Bi , > Si ’ (HalO) :-?.

where a; is given by eq. (VI. 8). In the case of PHAZR, we have Y

axisymmetry, so that a pulse which occurs off axis appears as an annulus.

£

ba

Similarly the effective diffusivity resulting from a pulse off axis will be

.’.'- -0

v

3
2

localized in an annular region. Tc do this, we use a Bennett-like

¢« v ow
v
AT
o Fe Sl

"“’l L A 3
-

function,

a;(r) = (VI.11) %

where r is the radial cylindrical coordinate, Ri is the distance of pulse i ey
fran the the origin, and S i is the scale of the density depression resulting

fram pulse i. In eq. (VI.11) we have used the factor [see eq. (III.9)]

- R
h; = R, (S;, R;) (VI.12) :

to account for the increased area covered by the annulus relative to the
original circular region containing the vortex pair. Note that the average .

of a,(r) is equal to the effective diffusivity a; in eq. (VI.8). T |
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3. Model for the Turbulent Field

We now assume that the turbulent velocity field may be approximated by
that of a superposition cf vortex pairs having a distribution of scale
lengths and strengths. Thus we will deal primarily with the vorticity
field, the effects of which are being modeled by the turbulent diffusivity.
We will assume that pulse "i" has just propagated through a slice of the
channel, generating a vortex pair of strength Ini ' given by eq. (VI.4). The
scale of the region containing the vortex pair is Si, which may be estimated

fram the equation for adiabatic expansion

2 _ .2 1/y

where a; is the radius of energy deposition by pulse i and P, is the
pressure due to rapid, local heating of the channel gas by pulse i. Eq.
(VI.10) then gives the contribution of pulse i to the turbulent diffusivity
present in the entire beam channel. We convert this to an increment of the
total vorticity by multiplying eq. (VI.1l) by 4/Si2' This factor comes fram
first using eq. (VI.8) to convert diffusivity to vortex strength and then
dividing vortex strength by the area containing the vortex pair to obtain

vorticity (units: s7!). The new total vorticity then becomes

w (r,t;) = wlr,t, - at) + 4 a.(r)/s} (V1.14)

where w(r,ti - At) is the vorticity in a slice just prior to the arrival of
pulse i, The average diffusivity within the heam channel is then given by
the area integral of w divided by 4w, to be consistent with eq. (VI. 8) and
the picture of beam channel turbulence as the superposition of vortex
pairs,

24
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o
o
oo Rather than use the average channel diffusivity, we preserve the .
b
‘:{j‘_ spatial dependence of the vorticity field by defining the effective channel o
'_, diffusivity as the product of o (r,t) and a factor <S>2/4. Here <S> is an -
. \J
e average of the scale sizes {Sil of the vortex pairs generated by the beam Y,
_Z’_:_- pulses. For pulses of the same Bennett radius, we expect Si ~ 8 5~ S for :
any two pulses i and j. Thus we have .
> y
o alr,t;) = s%lr,t,)/4 (VI.15) 2
i i s
= %
.__-,. :'(
. This is consistent with the limiting two-dimensional case shown in fig. 3.
IE::. Here the pulses are all misaligned and sufficiently distant that the lecal
l'_j; vorticity is determined by the distance fram the nearest vortex pair. We 5
‘ _' have
S R
s @ (gt = ) wj (50 850 ) (VI.16) 4
Y
. where we use the step function of eq. (VI. 10) i
o 4a./S? r-r. |<s,
o w; (£, S;p t) = | VSl E s (VI.17) 5
i ‘= Sy - 0 |l e=-r }|» ° y r\
= ’ ~ ~ t
x 1 4
N W
In eq. (VI.17), o, is the diffusivity in the region of pair i, as given by 3
‘f-_:'_: the integral over the area of that region. The total effective diffusivity .‘
..::::: is then :
o 3
Y =L 2 - 2 K
o o (5 0(p) dA = o= z wi(E, S;r ) 782 = == w(r, t)  (VI.18) E
. :
2 o
:;::j if the spatial scales { Si} of the vortex pairs are all equal. Equation z
-\l .’.
‘.\- «4
e (VI.15) is therefore consistent with this limiting case. -
po- 3
o5 b
2 :
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XSy VII. Numerical Tests and Simulations
We have performed two-dimensional numerical simulations with the code
i FAST2D [4] to calibrate the results of PHAZR. In both codes, we used a

table of data derived fram VIPER for energy density deposited versus local

r, 4

mass density. The data correspond to a distance of approximately 1 m from

2
r

v
X, Ay 2y
. N v
-{:'.’. el

the accelerator nozzle. We assume that the beam parameters are as follows:

”E: (1) 10 kA beam current, (2) 5 mm pulse radius, (3) 10 ns pulse length, and
.\ (4) 50 MeV beam energy. We used pulse repetition intervals of 1 ms and

100 us, respectively, and strings of ten pulses, Due to the expense of the
', two-dimensional simulations, we computed channel properties only in the
- first channel slice, which was lccated apprcximately 1 m from the
.:w accelerator nozzle.
g The most important difference between the PHAZR and FAST2D calculations

: is the treatment of the rotational flows generated by asymmetric energy

deposition, In the case of FAST2D, the noncollinearity of the pulses

; generates most of the vorticity and the cascade to smaller scales is
n restricted by the grid size and the flux-corrected transport algorithm,
J ‘ PHAZR relies on the subgrid turbulence model described in the previous
“‘:\‘E section, and the form factor f in eq. (VI.4) can range fram 0.0 (no
:%? turbulence) to approximately 1.0 for the cases encountered so far (11,13].
j’ _ We must, therefore, perform several calculations with PHAZR, each with a
.: different value of £, in order to compare the two models. (We point out
'.z that the notation in the figures is "F" instead of "f".)
..1 Figure 4 shows our results for ten pulses with a pulse repetition
, interval of 100 us and a range of values for the form factor in PHAZR. _s
., Notice that we ran PHAZR calculations for strings of collinear pulses and Ci
’, noncollinear pulses, respectively. Each pulse in the "noncollinear" strings ﬂ
% .

26 3




was displaced fram the origin by 0.0, 0.5, or 1.0 times the pulse radius.

The FAST2D calculations considered only noncollinear pulses, since in that
code no turbulence would be generated in the ccllinear case. We chose the
pulse locations so that a clockwise progression occurred around the first

pulse which was centered at the origin, Clearly there are an infinity of

patterns fram which to choose.

For the 100 us case, we see that the noncollinearity of the pulses was
more important for keeping the channel cool than was turbulence (f # 0). In
addition, turbulence had no apparent effect until the sixth pulse, which
occurred at t = 500 us. This is the time scale of the large scale
rotational motion [4] and shows that the subgrid turbulence model retains
this feature of the motion. Finally we see remarkable agreement between
FAST2D and PHAZR when the latter uses a form factor of 0.5.

In fig. 5, we show the results of a similar calculation for a pulse
repetition interval of 1 ms., Here turbulence, when compared with
noncollinearity, has a larger effect in cooling the channel than for the
other case, since the time between pulses (energy depositions) is a factor
of ten greater. Once again the PHAZR calculation with £ = 0.5 gives close
agreement with FAST2D.

Figure 6 shows an example of the application of PHAZR. We use the same
parameters as above with a pulse repetition interval of 100 us for a string
of 40 pulses., 1In this case, we have slices at 1, 10, 20, and 30 m fram the

accelerator and a form factor of 0.5. The time required for the channel to

achieve a given temperature increases monotonically with distance fram the
accelerator. We also see that, because of turbulence, the channel does seem

to achieve a samewhat uniform temperature toward the end of the pulse

train.
: 27
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L VIII. Summary

N
I~

j: For a particle beam accelerator which emits pulses into a gas, PHAZR is
L useful for estimating channel properties over long distances. PHAZR is also

applicable to studies of the cooling of laser or discharge channels.,
Because this code does not involve the integration of fluid or field
equations, the running time is very short, making PHAZR valuable for
"systems-level" studies. Calibration of the turbulence model with accurate
e two-dimensional hydrodynamics simulations has shown excellent agreement, and
. the initial calculations have shown that pulse-to-pulse noncollinearity can
result in a measureably cooler channel, even if turbulence is not

- significant., We mention that the use of an equilibrium chemistry model and
instantaneous deposition could lead to a channel which is too cool, even if
there were no shocks to carry energy out of the channel. The trends which
- the model indicates should, however, be quite useful in assessing channel

properties.
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™ Fig. 3. We consider a channel produced by several pulses which are tf

-t A
e displaced from each other by a large distance compared to the radii Si, SJ’

,i::‘_ etc. In this example, the vorticity is constant and nonnegligible only ;
; inside the radius Si of the ith vortex for all values of E. Since the :
f_:,"_ pulses are all roughly identical, the regions of nonzero vorticity are all :
-".:- .
et of approximately the same size S. K
T X
-
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APPENDIX A

A SIMPLE CIRCUIT MCDEL FCR ENERGY DEPOSITION IN THE

ATMOSPHERE BY AN ELECTRON BEAM

1. Direct Collisions
The average "direct" energy loss rate per electron, per cm of

propagaticn distance is

de p (de
==Y =2 (==
\dz)D o, (dz) Do '

(Al)
where z is the distance of the head of the pulse from the source, p is the
average channel density, p, is the ambient density, and the change in
particle energy due to direct collisions in full density air is (%%JDD =
2.5 kevV/cm., The subscript "D»" on the right hand side implies direct
collisions (D) in ambient, full density(=) air. Thus (g%)Dm acts as an

effective electric field, and the energy in joule/am deposited at z by

direct deposition is

Q,

F"D _ de

(A2)

In eq. (A2), is the total energy deposited via direct collisions,

3

I is the electron beam current in amperes and Tp is the pulse length in

b
seconds. For simplicity, we may assume that the radial energy distribution

has a Bennett profile:

dg dg

2.2
avg(r) = _l} EEE /(1 + 5; / (A3)
map ap
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in which a, is the Bennett radius and dsD/dV denotes the density of energy
deposited through direct collisions. The Bennett radius s for a given

beam emittance, cdepends on the net current I which may be determined by a

calculation using the VIPER computer code [15]. The ratio In/Ib varies

[
F oy

slowly with the position gz (measured fram the front of the pulse), except at

J...r’ l" ¢ " l.. .. ; l'.

the expanded head. Constant average values for ap and In’ therefore, X
"4
L.
provide an adequate representation for the circuit model. For a 10kA beam §<

"y
Aok

current, a 10ns pulse length, and ambient density, we find dgt/dz = 0,25

J/cm, which is comparable tc the ohmic deposition, as we shall see below.
2, Ohmic Deposition

As is common with circuit models of beam energy deposition in a gas, we
assunme that the conductivity ¢ is high enough that the displacement current
can be neglected and that no net (beam and air plasma) charge exists out to
radius b >> beam radius ay A further assumption is that b is a constant
multiple of aD(z=0). Maxwell's equations (mks units: volts, amperes,

meters) then give us

28
ZX§=-a—t (A4)
or
__4d b v, .4 (b '
Ez(r) = -3 L Be(r') dr at L By (r') dr* , (A5)

D

since, for r < apy Ez(r) is approximately independent of r over the beam

cross section (variation < 20%). We also have

(A6)




o

T

{

where ug = 47 x 1077 H/m and J,, is the net current density along the

axis of the pulse (z-axis). Equation (A6é) results in

AR
ASABON

Ug - %ﬁ

Be(r) il In(r) ' (A7) R

o

where I (r) is the net (beam + plasma) current within radius r. For r> ay o)
o

we have 2y
Wo :.::t

Be(r) * 5 In (a8) .

el

v‘f:-

o

in which I, is the total net current and is independent of r., Using f;
eq. (A8) in eq. (A5), we find that iy
Bt

UQ - b ;i:-

E, - = I tn (3; . (A9) 3
B

Notice that the factor (u0/21r)2.n(b/aD) plays the role of an inductance, Zj-f-._
:L“‘

which is assumed to be constant in most simple circuit models. At the e
radius b, the conductivity, by definition, becomes too small for the plasma e
e

to provide space charge neutralization. For r > b, therefore, E, drops to :'«‘
zero, an assumption which was used implicitly to integrate eq. (A4). A 5“1
|

representative value for b is usually around 20 an (z=0). Unfortunately T
N\

calculations using VIPER have indicated that the inductance changes with g, ::.
NG

leading to a considerable reduction (factor of 2 or 3) in olmic energy
deposition., A crude representation of this would be to multiply eq. (A9) o
e

. ’:u_

by a Factor a = 1-f, where f represents the fractional reduction in iy
’r‘

s."“
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" electric field E, resulting fram an inductance which varies with 7. We
p_" might expect a to vary with the density of the gas (pre-existing channel)

into which the latest pulse is injected., Thus we have

i oug

- IEzl » 35— I zn(b/aD) . (A10)
The energy which is extracted from the beam (and eventually deposited in the
:‘ air) per meter of path traversed is
%
x 2—3—’- zofrp Ib|Ez|dt‘, (All)
_ in which Tp is the duration of the pulse in seconds and the integration
variable t° is the time since the pulse head traversed a particular point in
i space. We could alternatively integrate over gz = ct - z, which gives

\: position in the pulse relative to the beam head.
X " In keeping with our model of the beam in which each pulse has a

" constant beam current Ib of duraction Tp’ we neglect the following:

' (1) erosion of pulse length, which depends on the propagaticn range, but is
‘-J typically only a small fraction of the pulse length;

(2) the rise of I, at the head (justified after the rising part, typically
: = 0.3ns, has eroded away); }k
N

(3) the fall of Ib at the pulse tail, which results in relatively little

L4
ohmic energy deposition, since the conductivity o is high, and l:':z is small !-

*
there. :%




Fram egs. (Al0) and (All), we find that the energy deposited through

ohmic heating is

dE GUO
Q2 I I (t.) 2n(b/a.) :
dz ~ 2nx b mp D (al2)

The Bennett profile, eq. (A3), provides a less faithful representation of
ohmic energy deposition than of direct energy deposition, although past
holeboring calculations have used the Bennett profile in the absence of
better data. From Viper calculations, we find that the profile for EQ
decreases less rapidly with radius than that for ED. If a Bennett profile is
used, we would expect that the Bennett radius a, should be chosen to be
greater than . As explained in Section III of this report, we circumvent
this problem by retaining the general profile of the VIPER data at all
slices along the beam path.

We would expect the above model of ohmic deposition to suffer samewhat
fram its simplicity. In the beam head, the conductivity is low even within
the beam radius. Electrostatic neutralization is incomplete, and radial
electrostatic fields and displacement currents exist. A detailed treatment
(16] , however, gives the same result for ohmic deposition except that I n is
replaced by an effective current Ie' which includes electrostatic effects.,
At t°= Tp (the tail of the beam), Ie = In' ard at ¢© = 0, Ie = (), so that
the integral in egs. (All) and (Al2) remains the same. We note that much of
the energy in eq. (Al2) is extracted from the nose of the beam, where the

radius is expanded, and electrostatic effects must receive consideration.
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:;:: The subsequent deposition of this energy in the air occurs primarily through K
0 e
T:}, E . Jp in the main body of the beam (or even after the beam has passed by a v
. ~ ~ ko
L I
v given location), where Jp is the plasma current density. 1In the body of a
LY s
.. pulse, the radius is approximately constant, E, is relatively independent of -
: . 2
LSy r, and Jp has a precfile quite similar to that of the beam. This provides X
A
ot
' same justification for approximating the profile for ohmic deposition by a ]
- Mk
:: Bennett profile. Storage of energy in the associated magnetic field causes }‘:
QY Y
:. a delay between extraction of energy fram the beam and deposition in the N
o N
air.
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APPENDIX B

In this Appendix, we seek to trarsform the equations of Lee and Ruchanan
[17] (below we will designate this reference by "LB") into forms which are
compatible with the use of data fram calculated by VIPER rather than from a

circuit model. Fram this standpoint, VIPER provides shapes for the direct

and chmic energy deposition and values of dED and g , the respective

dz dz

total erergies deposited per unit path length.

1. Particle Energy A

Denoting the energy per particle in MeV by £, the equation of LB for the

change in particle energy with propagation distance z is M
de € de 3

d_z=-x_"(<_i'z')o’ (B1) .

) Y

= »

where ;\R is the "radiation length" and (de/dz)D is the change in particle

~

energy due to direct deposition (ionization loss rate). We may also define an

effective ohmic loss per particle (de/dz)n by dividing the ohmic loss by the '
number of particles in a pulse, 1In eq. (Bl), the initial particle energy is ,‘
0.511 v (MeV); vy = 1/(1-82)1/2; 8 = v/c; and v is the average velocity of the ,
beam particles. IB treat AR and (giz:')D as constants in integrating eq. (Bl). i
Assuming that these guantities do vary slowly with z, we suggest that simple '
averages of the values at the limits of integration would be more appropriate,
If we integrate eq. (Bl) between positions z; and Zin along the beam path, we f

W\

h
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. de de . Q
We will now express (g}, and (FZ), in terms of = and z—, the total
cdirect and ohmic energies, respectively, deposited per unit path length. If
Ne is the total number of elections in a beam pulse, we have
d
g% = % a_g_ , (35)
e
where
2
Ne = n ra DL. (B6)

In eq. (B6), L is the pulse length, a is the beam radius, and n, is the
., average electron density. The beam current is then
.
N
.‘
.
o~
i
'Q 43
b
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obtain

(zi4p) = e(zy) expl=l 25y = 2))/Ag%, 14!
den (B2)
- <(EE)D’ i,i+1 <)R>i,i+l(l- exp[-(zi+1-zi,/<AR>i'i+1])
where
AR, 141 5 12 [aglz) + Atz P} (B3)
ard
de _ de de
(T 1,10 = V2 UFp'z) * (@olzia)h- (B4)

Where no ambiguity is possible, we will drop the subscripts i and i+l on the
average (bracketed) quantities in subsequent equations, and we will denote
quantities evaluated at a given position by the corresponding subscript. Our
integrals will always occur between pcsitions ziand Z 41
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I, = n,ecra 2, (B7)

in which e is the electrcn charge and ¢ is the speed of light. Substituting

eqg. (B7) into eq. (B6), we obtain
N_ » — (B8)
and
A (B9)

To be consistent with LB, we express eq. (B9) in terms of MeV/m, assuming

that g—g- is given in erg/cm:

de _d& 1 (1.6022 x 10719C)(2.9979 x 108m/s) (100cm/m)
2 LI (107erg/J)(1.6022 x 107193/ev)(106ev/MeV)

dz

2,9979 x 1073 dg , (B10)
LT, dz

where L is given in m and I, is the beam current measured in amperes (A).
Again to be consistent with LB, we express Ib in terms of the value in

kiloamperes (kA) to obtain

2.9979x1078  de

(MeV/m) = LIb(kA) 32 (erg/cm) (B11)

Q.-Ig.

Equation (Bll) applies to both ohmic and direct deposition of energy;

however, further discussion of the dependence on pulse length is necessary for
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$\‘ the remaining sections. Both direct and ohmic deposition per electron depend {1
(\‘ ?
Z::: explicitly on ™!, However, the circuit model in Appendix A indicates that
. dg dt,
A gz =L while F depends on L mainly through the logarithmic variation of N
0 :
- effective inductance with beam radius. Thus (g—z—\D is approximately 2
independent of L while (g%)a varies primarily as L7!, b,
’Q:‘ r-
AR At positions distant from the accelerator nozzle, we may use the circuit t
a.‘ '.
L model (Appendix A) to modify VIPER data, which give E and 3z Versus o at b
. positions close to the accelerator nozzle. If the first position (i=l) ,.
corresponds to the VIPER data, we have from eqs. (Al) and (A2) 3
- - S S (812) 3
dz dz'De ’ 3
AN .
._:. . . g‘
3 so that, for position i > 1 and a given local channel density p, .
de 1
(dED) - (deo) (@i 4 (B13) R
N 3z /" \dz &) L, 5
':;.‘_ dz’'pDe 1 3
o We define
N S ‘
} de A
2 (F) g
™ R, = S2D=1 (B14) N
N il (E) \
i dz/'De 1
g ¥
]
o for which approximate values may be obtained fram the particle energies, :
_.: g i
3-::' €y and ¢;, corresponding to positions z, and z,> z,. Fram egs. (Bll) - -
AN g
Fot (B14), we find that y
® 1
5 ¥ t
de 2.9979 x 1076 D N
(=) = (=) R:,» (B15) b
L dz' ;" L, I, (KA dz ) il \
vl v
§
! :
* ,_:: ,
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A
: which is indeed independent of pulse length, as we would expect for energy N
- depositicn by direct collisions, 3
N
For ohlmic deposition in air of a given local density p, we have eq. (Al2) =
Ry
[
[
de _ (B16) 3
3 © (b/aD). X
Defining .
en(b/a_, ) v
D1 4
S., = (B17) N
il ~ ¢n an 4
o
and assuming that b is approximately constant, we have 3
(dey _ 2.9979 x 1078 (dsn) < (B18)
-dz’qQi L; Ib(kA) dz 1 i1*

In the section B.3 we shall see that ay varies approximately as exp [A( L=
Li)] , where A is a constant. The quantity Sil’ therefore, depends only weakly

on L, as we would expect.
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2. Pulse Length

LB assume that pulse erosion accounts for the effects of ohmic deposi-
tion, as well as the other mechanisms summarized by eq. (Bl). If we assume
that the average number of electrons per unit length, dNe/dL, is constant in

time, we have in the formulation of IB

Ie
d el de n
< eL==-=-L (=) - A —, (B19)
dz )‘R 3z D IA

in which A is the inductance obtained fram a circuit model, such as that in
Appendix A; In (kA) is the net current (beam current + plasma current); and

the Alfven current IAis defined as 1.7x10l8y(kA) or, equivalently, e(MeV)

times 34(kA/MeV) fram LB. As in eq. (Bl), LB treat A )D’ and A I e/I,

R’ (dz
as quantities which do not vary with L but which do vary slowly with z. We
again suggest replacing them with averages as in egs. (B2)-(B4). An

equivalent equation to eq. (Bl9) is

alo.

eL de de
zeL--K—L(a;) - L (33)q (B20)
D
Comparing (B19) and (B20), we find that

AL € AIn

n de
% = [, (__. . (B821)
IA 34 dz q
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As noted above, the left hand side of Eg. (B21l) does not vary strongly with L
and we conclude that neither does the right hand side. Recalling the

discussion at the end of section B.1l, (egs. (B12 - Bl8)) we see that

(%%) is indeed approximately proportional to L7!, consistent with this

conclusion, To obtain the remaining equations which correspond to (B21) from

those given by LB, we may therefore replace the quantity AIn/34 by

- /de
<L( ) > =12 {1 (dz ai ¥ Livl dz)Q(1+1)" (B22)
2 i,i+l
which accounts for the slow z dependence.
Fram egs. (Bl) and (B19), IB obtain
AL
gL_ __"n _ _ L de

®&- "W~ "t (@ (B23)

Using egs. (Bl) and (B23), LB also obtain an equation for dL/de. From

that expression, we obtain the pulse length in eqg. (B24):

de
Uy €. g 4 AR <( )
i+l i D 24
i+1- Li o an | de 1}. (B24)
< e €14 * AR (F)Y
48

MR A
I . ti;"‘l".— ":.]'I.‘.;.g

v

'..ll
PN LS

ORI IR
PR .

2 LI A
PRy

AL

o |
.

> e o o
v
LI I
i

SR

ravars

PR
L A

«
2

r'.
.
=

[
L)

P
"

“
o SN
v' " PRl

R

-

e T
1, A,
o~

o E
PR

Y

LT IN )
Tl
Ay y-Ty

A

'l
% wil oo

-
v I Tty Sy 0y

el

[
",
S
3 s s

. 'r ’l 'l
R

L,
ORI

v e
I'
4, %

4

v ./ -~

e,
aga)ale)

[N}

J‘/“'

»

LA AR s

-
)
~
o
<




T T PR PR o P P T T T T P T o e e o e o P P T P W S T O O T Iy Ty,

=
[ ;
3. Pulse Radius (a) .
:jf-j LB give the Nordsieck equation as
=N 2C :
Ag d-q ln(a/sI ) = L ’ (B25) .‘.h
. 2 n A el ~
} R™"n .
-7 where C_ = 3700 (MeV - kA). We may make the substitution defined by eq. (B23)
7 in the Nordsieck equation to obtain
N 14 ..~
d en (aDveIn) _ L de .
S dL T A> <T e (€/<L(E)Q>)‘ {B26) o
it n :..
- - - 7400/(<A_> <I> <L(3E) > 3
R n dz’/ ~° '
) ¥
. Integrating Eq. (B25) between positions z, and z; ., we have N
S
"' EiIni /2 de 4
. a_,..,,\=a .(————5 exp {7400(L.- L, .)/(<a> <I > <L(=).>)} (B27) 3
- D(i+l) "Di Ein1Tn(i+1) 1 7i+l R n 3z’Q -
- An alternative form is necessary if we wish to use the expression of
g Godfrey and Hughes [18] for the Nordsieck length LN Here we have )
D L = 7.14 vy 1n (1090 vy) , (B28)
. N {In(2970vy)]2 5
X Y
3 ]
5% where Budker's parameter is defined by O
i vI I
- v=—Rs_b | (B29) %
o I 1.7x1048 v
A N
- in which I is the Alfven current limit and I, the beam current in o
. amperes (A), '
. From eq. (B 25), we identify -
- ple
- . ——, (B30) N
Yy l"N R™™n ::
) |
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when the work done by the beam varies slowly with propagation distance. Using

egs. (B28) and (B30), we obtain

E.I . 172
1 nl)

Biniln(i+])

',,
¥

i,y =3 | expl(z;,) - z,)/L . (R31)
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