AD-A159 386 COGNITIVE ISSUES IN SOFTWARE REUSE(U) NAVAL
POSTGRADUATE SCHOOL MONTEREY CA E M COELHO JUN 85

UNCLASSIFIED F/G 972

)
i
'
t

o

-

by %

-

-

o

n

I
[

—
.
—
[44
3
Fe

o™

N
(3]
I S
==
o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A
L]

AR

Ky
0 ‘,“ﬂ.‘.‘l.‘.‘h&ﬁ‘-:hz

AT . . BN
S & T TR

. NAVAL POSTGRADUATE SCHOOL

‘ Monterey, Galifornia

AD-A159 386

oAy

P o)
.

L | THESIS A

RS COGNITIVE ISSUES
s IN
NN SOFTWARE REUSE

L

by
Eduardo M. P. Coelho
June 1985

Thesis Advisor: Gordon H. Bradley

MC FICE COPY

% Approved for public release; distribution is unlimited

"y |.’ !

Y D ; e N T, T, R A O SN S S e L
M p T iy L S R X . by ‘
e {-T‘ls“wg‘!'n‘?":".."‘:’.'s‘?':“,!t‘. ngh X I e T N R SO RO L OO O TR S R RO N

o 85 9 24 065_

4 JRERL N J
A/ \J (RO)Y
4 i iR ‘!‘f"ta.l‘-‘l':’0‘&‘5‘5’1';‘0".0 .

g bandd band e FRFT The 1 T W S 3 TR T R YRR RS R W N T

A::: ‘ SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
£
B REPORT DOCUMENTATION PAGE BEFORE COMPLETTNG FORM
‘-,::, T"REPORT NUMBER 3. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
LA/57 106
(BN -

4. TITLE (and Subtitle) 5. TYPE O".EPOIT & PERIOD COVERED
< . Master's Thesis;
h]
?:?‘ Cognitive Issues in Software Reuse June 1985
n . PERFORMING ORG. REPORT NUMBER
e .
e 7. AUTHOR(s) % CONTRACT OR GRANT NUMBER(s)

Eduardo M. P. Coelho

4 _
X .
. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM !Llns'ﬂ'. PROJECT, TASK

, Naval Postgraduate School AREA & WORK UNIT NUMSERS

My Monterey, California 93943-5100

.;.i' V1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

: ; Naval Postgraduate School June 1985

,::' Monterey, California 93943-5100 3. NUMBER OF PAGES

»

o 75

T,;.: Fﬂ" MONITORING AGENCY NAME & ADDRESS(i/ different from Controlling Office) | 15. SECURITY CLASS. (of this report)

[4

.

,'; 1Se. DECLASSIFICATION/ DOWNGRADING

9.:’ SCHEOULE

. e ———— —

B":‘ X 16. DISTRIBUTION STATEMENT (ol this Report)

.'gl Approved for public release; distribution is unlimited

w st

73

‘1.{ 17. DISTRIBUTION STATEMENT (of the abatract entered In Plock 20, if different from Report)

By

-

;:\u 18. SUPPLEMENTARY NOTES

o,::

('."

!‘l‘

: ' 19. KEY WORDS (Continue on reverse side If necessary and Identify by block number)]

'% knowledge domain, memory, short-term-memory, long-term-memory, software

e reusability, DRACO Paradigm

) i o .

‘0, s \ P

' ’ 20. ABSTRACT (Continue on reverse eide {f necessary and identily by block number) VA E resourceg’ a‘IETﬁ'\TéEEEQ'_

P\ in the construction of software. Reuse of software o? ers potential savings 1in

’;» the construction of new software systems. From the perspective if cognitive scit
' . ence, current proposals for software reuse are depicted. This starts with

:.‘-. a cognitive analysis of programming behavior (human thought processes). The as-

pects of cognitive behavior related to program comprehension, the n‘otions of

;;:‘ knowledge domain, knowledge acquisition and reconstruction and memory mechanisms

", are discussed. The definition of software reusability is presented and methods

W to achieve reuse are discussed. The software development model called DRACO is

) lpresented and its concepts are related to software reuse and reconstruction. . -

% DD ,j5n's 1473 €oiTion OF 1 NOV 88 13 OBsSOLETE 1

- $ N 0102- LF-014- 6601 SECURITY CLASHIFICATION OF TH1S PAGE (#hen Data Bntered)

.

TR - o\ N 0 A

W N Bl A L - L PRCGEATRIL N A AT L e Y N e
AR AR AN o S o O Ay ,..'09!’\ ; AR RAN IR AIG A NN } Ay Ladet T Tt Y L

G-l pu g, mba v 3 0~urvc'n‘l|n‘ut\a~u

%) Approved for public release; distribution is unlimited.
}

Cognitiv: Issues
s Softvare Reuse

*;:z!:
fehy by
A

B

' . Eduardo M. P. Coelho
Sk Lieutenant Comander of Portuguese Navy
%@ B.S.,Portuguese Naval Acadeay, 1968.
g
it
;ﬁ% Submitted_ ip partial fulfillment of the
N requireménts for the degree of
,:.5,; MASTER OF SCIENCE IN COMPUTER SCIENCE
R from the
)
{» NAVAL POSTGRADUATE SCHOOL
e June 1985

’ Author: <j;\uou-&c\'€0-uP ‘:"‘Cl LX ’

it EdUardo M. P. Coe

SN
é:;;;: Approved Ly _74&15/%:

avissr —

ruce J. Haclennan, Chairmamn,
Department of Computer Science

Kneale T. HMa
- Dean of Information and P

14, .
1icy Rciences

™~

o«

,\‘.-_’ \:."3.\")

.l

P T R L O R PR A0 P PP L
: DN -"" . ~‘-_' O N A Ry }' Ry
- , B B . N a . N . .

D

o..' Alu.n LRN

»

K

B e T T T T T T O T T T O T IO TI T W I RO WY --:r

i

N . ABSTEACT

2

-?' . Vast resources are invested in the construction of
b software. Reuse of software offers potential savings in the
" construction of new scftware systems. From the perspective
ﬁﬁ of cognitive science, current proposals for softwvare reuse
&f are depicted. This work starts with a cognitive analysis of
ﬁ? Frogramneing behavior (human thought processes). The asrects
. of cognitive behavior related to program comprehension, the
iﬁ notions of knowledge domain, knowledge acquisition and
?_ reconstruction and memory &mechanisams are discussed. The
5 definition of software reusability is presented and methods
L to achieve reuse are discussed. The software develofrment
A model called DRACO is presented and its concepts are related

to software reuse and reconstruction.

ra
i
&:’ R 3 L 1
‘.f‘ ____,_,__]
V4 -) Aos
\\“. - YT . o
Dist St Cual
g o
o .
i

- ﬂ“\' "- -
e I
w

- b
&

N LR LT LB S A 4 T2k \] oty '\
‘.‘:'.. .‘n.‘ 'c""'» .‘w‘,'& -"'.'a. -.:‘.q"!u'ino’ P HN A AT AT 0 LR L an i L LRI T OO OO ‘v e

TABLE OF CONTENTS

1. INTRODUCTION ¢ ¢ « « = o ¢ ¢ o = o« o o o o« o« o o« o« 8
A. THE SOFTHAEE CRISIS . « « ¢ o ¢ o o o ¢ o o »
B. THE SOFTWAFE LIPECYCLE « ¢ ¢« ¢ ¢ ¢« ¢« ¢« ¢ o« o « 9
C. REUSABILITY AND COGNITIVE SCIENCES « « « « « « 10

1I. CCGNITIVE SCIENCE IN SOFTWARE ENGINEERING 12
A. INTRODUCTION <« « o o o o o o « o o o o o o « o 12
Be COGNITIVE SCIENCE . o o« o ¢ o « o« « o« o o« o o« 12
C. PROGRAM CCMPREHENSIOR . . ¢ ¢ ¢ « « « o « « « 13

1

i‘:
kY
(Y

P
-

v
X

-4 D. FROBLEM SCLVING MODEL . <« o« o« « = o « =« « o« « 14
;: E. SOFTWARE ENGINZERING RNOWLEDGE . « « « « « « o 14
G IIT. KNROWLEDGE ACQUISITION ANRD REPRESENTATION . « « . . 15
ﬁ A. INTRODUCTION « o ¢« o o o = s e « s o« o o o « o« 15 .
W B. ACQUISITICN OF INFORMATION . « + ¢« « o« « « o« « 15
& C. PROCESSING AND STORING INFORMATION . . « « . . 16
% D. MEMORY IN EROBLEM SOLVING MODEL . . « « « « « 18
R E. DPROBLEM SCIVING TASKS « « « o o o o « o« « = o 19
; 1. Program Composition . . « ¢« o« ¢ « ¢ ¢ « « 19
:} 2, Comprebension and Design of a Solution . . 19
0 3. COQING o o o o o « =« o o o o o« o « o o o « 20

4. Debugging and Modification 20

t 5¢ LEArNIEg « « o o o ¢ o o o o o s o o o o o 21
; F. MEMORY TRACES CLASSIFICATION o o « « o « o o o 21
5 1. Non-Associative MemOLies « « « « « o o « o 21
3 2. Associative Memories . « « o « ¢ o o o o o« 22
g 3. Hybrid MemoriesS . ¢ o ¢ ¢ o « s o o o o o 22
' G. VERTICAL ASSOCIATICN OR CHUNKING - o« o« « « o » 22
. He EXTERNAL MEMORY ¢ < o « o o « « « « o o o « « 23

[
P S)

K3
L
DY Az Y s W o AR 0N T AR »"""‘ > -
R A o R T L R R S g

DA

.......

[Iv. KNOWLEDGE ACQUISITION < « ¢ « o« o o « o o o o o « 28

I A INTRODUCTICN . « o © « « o o o « o« « o s o o o 24
i: . B. SYNTACTIC/SEMANTIC EKNORLEDGE . « « o o o « « « 24
0 1. Syntactic Knowledge . . ¢ o o« ¢ o « o« = « 25
k) 2. Semantic Knovwledge « o« o « « « o o « « o « 25
§ " 3. Computer—-Related Concepts .« . « « « « . o 25

4. Problem-Domain CONCEPLS .« ¢« o« « « o « « « 26
§ C. KNOWLEDGE DOMAIN « « « « « « o « o« « « o« o « o 28
: C. DOMAIN ACCUISITION . . « o « « o o o o o« o o « 29

E. DOMAIN RECCNSTRUCTION .« « ¢« o ¢ o o ¢ o « « o 29
F. DOMAIN KNCWLEDGE AND REUSABILITY . « « « « « « 30

s v. REUSABILITY &« o « « © @« s o s s « s « o« o « o o« o 32
4 A. INTRODUCTICN . ¢ « o o o« o o @« o« a a = o « o« « 32
' B. CHARACTERISTICS OF REUSABILITY . -« « « « « « « 33
4 C. PRINCIPLES OF REUSABILITY . « « o o o o » « o« 34
§ 1. Reusable Architecture . . ¢« « ¢ ¢ o« « « o 34

2. Modularization « « ¢« ¢« ¢ ¢ o ¢ o o o o o o 35
" . D. FORMS OF REUSABILITY . & o« ¢« « ¢« o« o o o s » « 36
. 1. Common Processing Modules . « « « « « « « 37
1. 2. Macro Expansions and/or Subroutines . . . 37
3. PACKAGES « o o @ ¢ o s o o o o o o o o o o 37
B, ComMPile€rS .« ¢ o e « o « o« « o« « o« o« « « o« 38

VIi. THE DRACO PARALIGM « « « ¢ o ¢ ¢ « o o= =« « « « « « 39
A. INTRODUCTION 2 o o © o o « o o« = o o =« o « o « 39
1. Domain ANAlYSiS =« « o o o « o « ¢ « o« o« o« 40
2. Domain Language =« ¢ o o ¢ o o o o o o o o W40
3. Software Components . . « o ¢ ¢ ¢« ¢ o o« o U1

4, Source-to-Source Program
Transfcrmaation « « ¢« o ¢ o ¢ ¢ o ¢ o o o o« 42
B. THE PARTS-AND-ASSEMBLIES CONCEPT « o « o « o o 42

;; C. SOFTWARE CCNSTRUCTION USING
PARTS—=AND—ASSEMBLIES o« « « o ¢ o o« « a o o« o o« 43

e e b

0

W\

\
L% LM RN AT b T bR e}y ™l WL Y Y N QI GO ERART G ey
“"&i L0 o 05t '4*:' :’)l‘n -‘ht'a 2 “‘ { A ,.M«h las J"\'Qs‘ M\’ 3'-?' WP S ma AT

- - RIS T FLEY TEBSTES T /e WU WL we Ve TSy Wit~ - v

D. DRACO PARADIGH L J L] - Ll L] L] L * L] L] - L - - - L] uu

RO E. AN EXAMPLE OF THE USE OF THE DRACO

» PARADIGH. e e e - e o e e o o e o o ° e e o e as
)

. F. PRINCIPLES OF THE DRACO PARADIGM. . « « . . . 47
150

g VII. CCNCLUSION = « « o « = « o « o « o « o = o « o« « « 50
¢

APPENDIX A: FLOWCHARIS AND PRCGRAM DESIGN LANGUAGES . . 52
0 A. FLOWCHARTS o « « = « o « o = o o o« o o« o « « o 52
o B. PROGRAM DESIGN LANGUAGE . . « o « « « « « o » 53

i C. FLOWCHARTS VS. PROGRAM DESIGN LANGUAGES . . . 53

0 APPENCIX E: EXTERNAL AIDS IN OPERATION OF A COMPUTER

::E‘ SYSTEM < o o « = « o = o o o o o o o o o o « 56
b A. TRADITIONAL USER'S MANUAL . . « « « o« « « - . 56
;" B. USER'S MANUAL DESIGN « ¢« « « « « « o« « « « « « 56
% C. ORGANIZATION AND WRITING STYLE « « « « « « « « 57
iy D. COMPUTER-EASED MATERIAL « « « « « « « « « « - 58

E. PAPER DOCUMENTS VS. ONLINE HELPS « « « « « « « 60

APPENDIX C: MWAINWTERANCE AND DESIGN RECOVER IN DRACO . . 62
’(A. MAINTENANCE -* L] - L J - - L J - L] - L J L] - - L L] L] 62
b B. THE PROCESS OF DESIGN KECOVERY « o« ¢« ¢ « ¢« « « 66

 »
w 1IST CF FEFERENCES « o o o o o o o o o o o o o o o o o o« 11

Q‘Q:' EIBLICGRAPHY ® e @ ®© © ®© ® o @ e o & & o °© @& o & ® e ° e 7“

0 INITIAL DISTRIBUTION 1IST o« ¢ « o 2 o o o o o o o« o « « « 15

P

o By G
- 3 8

0

. LIST OF FIGURES

o
Q0
f% - 3.1 Memory Cognitive Model .« ¢« ¢ ¢ ¢ ¢ ¢ o o e « o « « 17
b 3.2 Components of Memory in Problem Solving . . « . . . 18
A 4.1 Knowledge in Lcong=Term=MEBOLY « « « « o « o o« o« o o 24
ﬂ' 4.2 Kncwledge Domaimns in Problem Solving . « « « « o « 28

) 6.1 Block Structure Chart « « ¢ o o ¢ o « o o o o o o « 41

6.2 Construction of Program from Specification 48
BN A.1 An Example of a (PDL) Specification « . « « « « « . 54
ﬁ cC.1 Maintenance. Geperal Choice r1 is Preserved . . « . 63
b C.2 Changing the Environaent,r3b New Refinement 64
C.3 Changing Specification. G"is Isomorphic to G . . . 65

" C.4 Convertional Maintenance . « <« « « « ¢« « ¢« « « « o 67
"

%f C.5 The Process of Lesign ReCOVELY .« « « « ¢« o« « « « « 68
e C.6 Recovered Design vs "Ideal Design" . « « « ¢« « « « 69
X

k)

u

it

iQ §

s

¢ -

L4

9

b+

'

N

-} |

i ave

N

Q

-,,I'J"J"‘J'-:" 'J-" ;} %& . \q.’ ‘.n‘\\.q'

} vayh SOV AL S AR LG T T

LY

‘e ﬂl‘
LR]

-
2"

?-‘.’.J‘ -'.‘f.f:t?"f {'."

-5

wt

I. IBTRODUCTION

A. THE SOFTWARE CRISIS

In the last few years pore than fifty billions of
dollars was spent on software production and maintenance in
the United States[Ref. 1]. This enormous sum was spent on
something which cannot be seen or touched in the
conventicnal sense. The specific nature of software has
brought on many of the probless in its production. 1In the
last years the problem of software production has been
growing rapidly with the increased size of the software
systems. In the near future "personal computers" will be
able to hold the 1largest software systems built. Unless
techniques to create software dramatically increase in
productivity, we will not ke able to effectively use this
epormous increase in coamputer fower.

Because of this we can use the term "software crisis"
meanirg that there is a demand for quality of software which
cannot be met with present mettkods of software comnstructicn.
Some of the points which have caused the sof tware crisis are
listed below:

The price/performance of computing hardware has been
decreasing (about 20% per year)[Ref. 2];

The total installed processing capacity is increasing
(aktout 40% per year)[Ref. 2];

As computers become less expensive they are used in mcre
applications areas, all of which demand software;

The cost of software as a percentage cost of a total
cogputing systems has been increasing{Ref. 3];

...............

LN T T U AT AT >
A ‘h-\.\ ‘\-"'\ \.\‘\,\‘ N

SR

S e
L]

)

¢ *

:ﬁ The [froductivity cf the software creation process has
e increased only 3% - 8% per year for the last twenty
i years[Ref. 2];

,i As the size of the software system growus, it becones
}3 : increasingly bhard to construct;

" There is a shortage of gqualified personnel to ccreate
if software{Ref. 4].

2

qf B. THE SOFTRARE LIFECYCLE

o The teginning of the software crisis was announced by
Qé the failure of some very large software systems to meet

fE their analysis goals and delivery dates in the 1960's. These

) systems failed in spite of the amount of money and manpower

‘g allocated to the prcjects. These failures originated an
ﬁ analysis of the protlems of software construction which

ﬁ: marked the beginning cf software engineering.

W Several studies of the process of software construction

Ll have identified the phases that a software project goes

j% through and these phbases have beep combined into a modei

{t called the software 1lifecycle[Refs. 3,Z]. 1If we view the

- lifetime of a software system as consisting of the phases:

> requirements analysis, design, <c¢ode and testing, and

Y maintenance then the average cost associated with the phases
Y are_ Ref. 3]:

e £
1

- Fequirements analySiSeceeccccceces 9%

o
|

DeSign .l..‘.'......o.00000'0006%

B
'

Code and testing ceccecccecscal5%

, - uaintenanceC.......O.....7ox

o If a tool is developed to help the producticn of
o software its impact depends on the importance of the
-

o ke

"-._. LSl
< s n‘-

*zilx_xuﬁlnrdeﬁl‘

."v<-
et

oy

- X/
* NP

CalSalal R

pra

2,
¥
i
" l

>
'
.-
<

lifecycle phases it affects. Thus a design tool has the
least impact vhile the maintenance tool has potentially the
most impact.

C. REUSABILITY AND COGBEITIVE SCIENCES

Cne attempt to reduce software costs has focused on
incorgorating software products produced in previous
Frojects into projects that are under development. This
approach is called "software reusability" and it involves
trying to incorporate whole or partial softwvare products
such as code, analysis plans, requirements design, test
plans, etc. Software reuse has been an active research area
and there has been cuvasiderable discussion about the obvious
economic benefits. But despite the considerable interest,
there has been very little actual reuse of software
Froducts,

The current enthusiasm for reusability seems to ke Lased
on the assumption that if software exists that performs the
same (or nearly the sanme)function as tke product under
development, it should be found and used. This assumption
represents a simple and very naive view of the programmer's
role in software development process. Recent work on
cognitive sciences has lead to the development of scme more
sophisticated (and hopely more accurate) views of the
prograaming process. Here this work on cognitive science is
revieved and then, from this perspective, current proposals
for scftware reuse are analysed.

The section of the thesis on cognitive models defpicts
the wmemory aechanispn, the knowledge involved in the
components of the nmemory and the techniques to increase
memory capacity (chunking). The cognitive aspect in computer
programming, which includes the concepts of domains, its
application to reusability and the issue of "documentation"

10

ORI ‘.\‘.\":_\ e
AN

rr‘ér

~

- -
-

A AN

(i Bt e)
R

by ‘1' f tal

A b
ety

srnld

'r_n.-

-
»w

e fu)

|
]
)
L]
L/
)

«Vaal e

included in the gemeric field of external umemory, is
discussed.

Finally the fundamental idea of this work, software
reusakility, is presented. The principles of reusability
will be discussed and one model,the "DRACO PARADIGM" fased
on reusakrle principles will be presented. Using this rgodel
we analyze how tc create software and the way its
maintenance and design recovery is acomplished.

1M

LA s
-~

N
LW AR X X

II. COGNITIVE SCIENCE 18 SOFTSARE ENGINEERING

A. INTRODUCTION

£ SN

More and more in the study of prograaming and
i prograrmaing languages, human factors directly related with
the behavior of the rrogrammers and the human aind itself
become important. How we think, our limitations and
capabilities play a fundamental role in the organization of
o the human thought process. The thinking process is based on
H; the understandabilty ¢£ a stisulus, how it affects us and
the way in which the informatiom of a stimulus is processed.
In programming the stimulus can be code, design, software
tools, c¢r other forms of software information needed to

AT P

a2 2B

construct and develop a progran.
Another issue to comnsider is the proper cognitive
psychology of the human being, that consists of how feorle

-

; perceive, organize, rrocess and remember informatiomn. This
ﬁ important mechanism is analysed in the next chapter.
|
B. COGNITIVE SCIERNRCE
? There exist several theories or approaches to
:’ understanding how programmers develop programs. They are
f usually based on the psychological principles related to
memory mechanisms.
? Usually the approaches lLegin with the distinction
o retveen short and long-term-memory, its capacity and way it
p works. Also the concept of T"chunking", that expands the
; capacity of our short-term-memory, is important.
f Another important approach is presented by Shneidermann
f and Mayer[Ref. 6)]. They present a model of knowledge lased
g on a syntactic/semantic model and the concept of knowledge
3 domain.
: 12
4

B

L ARTRe At 5 Uik OB TREVN "m} oy
it ﬁ*:‘.‘q‘“}.u:*& ,A’:‘lz\ s k .\ (¢

&i

52 4
-

i

-~
»
-

- E—"y
;
‘-

-

SIS SR

o r
S

s

< . w W

Lo Lot S Iae v
AT DN BN

The fundamental idea 1is related to the acquisition and
development of programming <skills and consists of the
integration of knowledge from several different knowledge
domains.

Another model is given by Atwood[Ref. 7] for the
comprehension of a [prograam. In his theory he breaks a
program into a hierarchical tree structure of statements.
After understanding the elementary statements at the botton
of the tree, they are fused into macro statements until the
top of the tree is reached. Once this stage is achieved the
programmer understands the prograa. This process is very
close to "chunking".

Cognitive science shous one vay of representation and
organization of the frogrammer's knowledge and persits one
opportunity to control the largest source of influence of
project performance.

C. PROGEAE CONPREHENSION

The program comprehension task is a very important cne
in programming because it is ccmmon to several task such as
debugging, testing and modification. In prcgram
comprehension, progranmers have to develop an internal
semantic structure for representing the syntax of the
progran. It is acgquired as high level knowledge, so the
prograamer doesn't need to memorize the program's
line-ky-line forn based on syntax. With the knowledge of
internal structure it is possible to do a large variety of
transformations on the prograa like, for instance,
converting it to another programming language or develcping
new data representaticas.

13

g D. PROBLEEN SOLVING BODEL

Problem solving is characterized by a process that
develcps several steps in a defined order . The first step
i in this model will be to Jjoin and to organize all the
2 material relevant for the prcblem. Then the protlem is
fractionated and the data is analyzed to propose solutiomns
J for the parts of the probles[Ref. 8] After the several

32 solutions have been analyzed using a process of synthesis,
Wy the final solution of the protlea is constructed. Finally,

the last step consists of the test and verification of the
§ solution.

é? E. SCFTVARE ENGINEERIBG KNOWLEDGE

> A software development mmodel for the explicit
}3 representation and =zanipulation of domain specific and
§§ softwvare engineering knowledge allows us to take a new view
Wy of the rroblem of system evolution and maintenance. The
i descripticn of a system includes its initial statement,
§£ specifications, the software engineering knowledge, the
ﬁ‘ constraints of the generation process, and construction
o planning heuristics base which encapsulate the design
ﬂd rationalizations and engineering knowledge involved in its
gg current izplementation. As a software system evolves due to
gp changes in the content specification, in the software
U? engineering specification or in the operating environment,
» we can relate these changes to precisely defined portions of
5{ the system's descriptions. Bither the initial specification
33 can be modified and an executable representation rederived
o or arpropriate amanipulation of the systea's associated

%. engineering knowledge bases may guide softvare engineering
) knovwledge in the derivation of alternatives implementatioxns.

i 19

(0;”‘ AN S S SRR R ,"-;\n'\;' ‘\‘;‘ '.‘.»\. ““ N Y AR N S e

’ » v, N Al - h} a‘}' N
’.;‘!h‘_" AN R ‘l.ﬂal. ,\‘l‘ I,"l,l’[] () “\, .'. o YW, W

. IIX. KBOWLEDGE ACQUISITIOR ARD REPRESENTATION

g A. INTRCDUCTION

One important component of the human knowledge mechanism
is memory which is at once remarkable for its power and for
its 1limitations. Cn the one hand the vast store of
' information that we have in memory for the meaning of words,

facts and images is considerably superior to the most
b, powerful computer. On the other hand the occasional
) constraints on pmemory are often severe enough to be major
K bottlenecks in human performance. The processes that make

g use of all the information stored in memory are recognition
‘ and memory search. Recognition is related to problem sclving
g to the extent that stimulus elements in the probleam space

' suggest appropriate things to do. Memory search is involved

in problem solving wien more devious pathways must bte taken

! in constructing a problem space, or in applyng
. rroblem-solving operators.

This chapter discusses how the information is acgquired

and processed, which 1is followed by the presentation of a

cognitive model of memory. Finally memory classifications

will be analysed and techniques for increasing the memory

- e

capacity will be discussed.

.

-

B. ACQUISITION OF INFORBATION

The human being depends on the environment where he

MR ALK A perige

lives and it is in this environment that he obtains the
: information needed for his survival. The sense organs are
8 importants factors in this acquisition because they furnish
he a physiclogical representation of the outside worlad. An
b attention mechanism will select the conspicuous asgects of

p e o L AL RS AL L L e e e L e e e R T A .
Tl am ot N S R T A T R ANAS R ES N Ok 3y, SO) "
TG e RO A S '_ﬁ& N R LA AR N AVAG NN

LA

3% this representation for further processing by a central
Kt system. However, the nervous system introduces alterationms
R in the physical image received, siaplifying the information
%i, that must be transmited to high level analysing systems and

later to the menmory.
el The central processing of this information can be

Q? executed in two different ways[Refs. 9,10]:

Gt

#% Bottom-up systems or data driven. The input information
B R

Fh‘ is treated in sucessive and increased levels of

sorhistication until the final recognition of the input.

Tcg-down systems or conceptual driven. This prccess
starts with the highest-level of expectation of an okject
that is further refined by analysis of the context to
yield expectation of particular 1lines in particular
locations.This 1is a more powerful process than the
bottca-up but it's strongly dependent on the ability to
make syntactic chcices of the objects to expect.

Top-down and bottom-up processing take Flace
simultaneousely and come together in the job of the
comprenhension of the outside world.

:
)

-
-

Par

»

C. PROCESSING AND STORING INFORMATION

One of the aspects of the human thought process, related
with computer programming, is the way the memory works and

AR

{
1

. L

the information is prccessed and stored. A memory cognitive

5; model commonly adopted[Ref. 6] is depicted in Figure 3. 1.

?. In this model very-short-term-memory (VSTM) is coaposed
aﬂ cf locations to hold data for a short time[Ref. 9]. This
i information can be retrieved Ly the short-term-memory (SIN)
g& by an attention mechanisa. Here another process cccurs
3?. (percepfion or recognition) related with the analysis of the
fh? individual characteristics of the stimulus and the context
;‘ wvhere these characteristics are inserted.

Upd

&

:.) 16

e

. g

‘ \:,,*-":n;. Ay R I e e T T e A L A)
by

PRV . R
“"‘ b Ml g

TR ! -
IASANAY LS L e oL TN S

- -

-

-

SRR LT tde DR (1 (| Tt R R N PR TN s
A f"“:"‘.. Aot X .0‘.‘.-', ,\»‘l':’:'- ..:-‘»1 3 ALG LS, ll.t .l,'l‘s..l‘i‘.‘:‘!.\.\‘l'o.i.:&,\‘:\.:fl“\‘l 2“:!\‘\ WALhH, Son \

Stimuli Very Shert-Term Shert-Term
—_—
Memcry (V) TM) Memory (ST M)
Long-Term
Memcry (L TM)

Figure 3.1 Hemory Cognitive Model.

The STM has a temporary and limited capacity to store
information. Its <span imposes severe limitations on the
agount of information that we. are able to receive, process
and remesber. Hiiler[Ref. 11), in his paper "THE MAGICAL
NUMNBEF SEVEN PLUS OR MINUS TRO"™ identifies 5-9 chunks of
information as the «capacity of short-term memory. This
information is highly volatile and can be lost by the
changing of /attenticn. To avoid this problem it will be
necessary to rehearse the information. The reherasal process
consists of refreshing the contents of STM by ccantinuous
repetiticn to oneself.

Finally, in this process, the information needs to be
stored in a permanent place called long-term-memory (LTN).
The 11IM is characterized by its unlimited capacity to store
the prograsmer's perxanent knowledge. The store process is
relatively slov and requires a second rehearsal for fixing
trtis information (learaning).

17

Sl

Ay

ST S R S)
M | w 1Y) \. ‘,¥~ e
ARy

vl

K T

- o e, 5
-J e e

{

Ml o T ar T A T 4 R

() %
LA IO AT Al ST

D. MNEBORY IN PROBLEB SOLVING MODEL

In protlem solving processes it will be necessary to
introduce modifications im our modelfRef. 12]. Following
Feigenbaun new components will be incorporated as shown in
Figure 3.2.

Problem Short Term
VSTM Memery (ST M)

werking Solution
Memory (WM}

Leng Term
Memory (L TM,

Externcl ,_
Memcry (c)

Pigure 3.2 Compcnents of MNemory in Problea Solving.

These new componerts are the working memory and external
memory. The working memory is characterized by having more
permanent storage capacity than STM and less than LTN. 1The
vorking memory plays the role of integrating all the
informaticn from the S&H and LTM, of analyzing data, of
building it into new structures and furnishing the results
to be used to generate solutions.

The external sepory collects all the information
contained in exterrdl sources (modules,models,prograas,
documentation) and is helpful to develop possible scluticnas
to the prcblea[Ref. 13). It also compensates for the slow
fixation times associated with the LTM, and frees the

18

v - Y,.\ " "
N SV \v‘
.\S"i‘l‘ .(. 'k‘ L “:t"'o." - n' Che 2o} l! % N . Sy LI b M " M 2y X N |

S S S e S Sk Y L AL T A A TR
o e R T YA <0 RV
i, L

‘l
(!"l

3

+ Y

:? limited STM resources for use in problem solving
1

ﬂ: (creativity, concentration etc.).

n

? E. PRCBLEN SOLVIBG TASKS

N1

. The process related with problem solving tasks invoclves
\

?‘ the fcllcwing steps{ Refs. 6,10 :

[X]

& - Erogram composition

é -~ Comprehension and design a solution

s

- Coding

Fetugging and mcdification

| [

learning

1. Erogram Compcsition

ol

)

{% In this first step the problem is presented to the
™ | programmer. By a memcry mechanisa it passes froa the short
;ﬁ | term memory to the vworking memory. Here the proklem is
' analysed and defined in terms of the. "given state" and "goal
e state".At the same time additional information is «called
;) from 1long term mnmemory and external wmemory for further
fa analysis.

b 2. Comprehension and Design of a Solution

}f This second step 1is onme of the nmost inmportant
§: tecause it is the tasis for debugging, modification and
ﬁ learning tasks. The programmer constructs a gmultilevel
o internal semantic structure (hierarchical) with the aid of
. his syntactic knowledge of the language. At the top of this
:2 hierarchical structure the programmer develogs a
:Q comprehension of what the program does. At the lower levels
o / the programmer may recognize the algorithms or ccmmon

19

3 WA -.);.%\' ey '."_\:,‘-‘.:,\}{.:r\}x ALY -\.;,:.“ SV OSSR NS WY
, W AT N .
R A T e e R DO

A A RLA o

> i PR S

(%

L e B e .
e

SeeM

LT Saf Ul Tl -

sequences of statements that can be used to solve the
problem (solution). The important issue here is that the
programmer develops an internal semantic structure for
representing the syntax of the program, but he doesn't need
to memorize or comprehend the programm line-by-line based on
the syntax.

In this third step, the projrammer will tramslate
the program to internal semantic structure using am encoding
frocess similar to chunking. The programmer will recognize
the function of groups of statements instead of
character-by-character, and chunk this group of statements
into progressively larger chunks until all of the program is
conprehended and the ianternal semantic structure is
developed. Then the frogrammer could convert the program to
any programming language and explain it to others easily.

4. Crebugqing and Modification

In debugging we are going to identify the errors
that can occur in the composition task. These errors result
from an incorrect transformation from the internal semantics
to the program statements or from an incorrect
transformation of the problem solution to the internal
semantics. The first kind of error can be detected by
analysing the output which, in case of error, will differ
from the expected outgut. These errors can be originated by
mistakes in the coding of a program or from incorrect
knowledge of the functions of certain syntactic
constructions in the programming language. The second kind
of error is more difficult because their recovery implies a
total reevaluation cf the programming strategy. They are,
for example, failure to deal with out-of-range data values,
irability to deal with special cases such as the average of
a single value, etc.

20

-

N

“) N oYy 1IN N IR NSy T BT AT RSy Oy
‘?':‘,’l ' n'l‘.-'l ’.Q‘ » ""A'l'l.l..‘"‘&'l -':.r"‘:‘.& .’f * $ I' :" :"-:... (N X .. " .’ ‘ y

T ARTY Ry w

T WY T TwweYeTY

Modification develops by two steps. The first step
consists of understanding the internal semantic structure of
the program to modify. The second step consists of changing
this semantic stucture in function of the modification
needed with the consequent alteration of the programming
statements. This is a complex task that requires knowledge
in composition, compreheasion and debugging.

5. learning

This last task consists of the acquisition of new
programaing knowledge. The two classes of knowledge,
semantic and syntactic, are acquired in two different ways.
The semantic knowledge is acquired by meaningful learning
through the develorment of internal semantics fer a
particular problem, and it is essential during the problen
analysis. The syntactic knowledge acquired by rote learmning
is specific to the language used, and becomes important
during the coding and implemertation phase.

F. MHEMORY TRACES CLASSIFICATION

The memory traces can be classified as non-associative
and associative memories[Ref. 14].

1. Non-Associative Memories

This kind of memory comnsists of records encoded and
stored in locations ({(cells,registers,etc.) in the order that
they occur. Its purpose is to get the exact temporal
sequences of ¢the events. In computer terminology this
representation is wusually denoted "location adressable"
because we can obtain directly the contents of a particular
location to answer questions. In non-associative memories we
can have one dimensional non-associative mnmemory as for
examfple the sucessive sections of magnetic recording or the

21

R TRAFTRTRT

K

L
l'.A 3

2 ; ‘i’\a"l"l..]

JelJal

P % % TR

PN ST e e

PO W RO

T
a'l\l'l’l-k

-

=~y WO PR

columns of an IBM card, or tvwo dimensional non-associative
memories such as charts, tables or pictures. The huaman
memory involves non-associative memory when it creates
external memory (docusentation, tables, modules etc.).

2. Associative PMemories

Associative memories consist of records of events
that are encoded and stored by networks of nodes. The Lig
difference between this type of memory and non-associative
memory is that when the sanme event occurs at a later tinme,
precisely the same node or set of nodes are activated
(direct access). This constitutes an important economy in
the representation of events.

The human ccnceptual (semantic) memory involves
association of particular concepts, events, facts and
principles with each other, but to retrieve information,
memory must be given specific cues.

3. BHBybrid Memories

The computer memories are nct as fully associative as the
human memory. One can tell that it is hybrid because it is
a combination of associative and non-associative memories.
The information {documentation) is stored in a
non-associative manner but each of these documents will be
indexed by a large number of items and any of the various
combinations of 1indexing terms will provide relatively
direct access to the document through a sorting tree that
works as an associative memorye.

G. TVERTICAL ASSOCIATION OR CHUNKING

Given the severe capacity limitations of
short-tern-memory, cne method of reducinyg these limitations
and sc expanding our capacities is by "chunking"[Ref. 11].

22

ety L .. - R T Y TP T T S S T L
R e R T T e e R e e e e e e e e e I s L R L
S -... TR _:._,‘.:_:.,.__\ SEETIEN <"-_'.-r-'.-,- < _'.'_,. vousnes \‘\\‘_&',_.._\;._-. \ A- RGN

|' v

N
)

ity

b
Ay

v

= /' Ll
Al

Q7 - FERACRAGTS

B

NN

As coamorly used this term refers to regrouping or recoding
the stimulus information presented.For example if the
unbroken seven-item 4731052 was translated into 473 pause
1052 one would have cone type of chunking (regrouping) cr if
110100000011 (binary) was translated into 6403 (octal) one
would have another type of chunking (recoding). The
importance and usefulness of chunking was first sugested by
Miller and as experimental evidence he actually used a
demonstration similar to the binary octal translation
example given above. Here two main points about chunking in
short-term-memory are shown., First, memory as measured by
memory span is more a function of the number of chunks of
information, than the number of bits of information. Second
memory span, for binary digits, could be dramatically
increased by a recoding technique. Miller also points out
that memory span is primarly a matter of the number of
chunks we can recall, regardless of the amount of
informaticn contained in each churk.

H. EXTEENAL MEHORY

External nmenory, one of the components of human
information processing, can be viewed in two different ways
depending on the type of aid that it can furnish and its
application in the programmer's work. The first one,
external aids in domain reconstruction, will be analyzed in
Appendix A and the second, external aids related with the
operation of an interactive computer systenm, will be
discussed in Appendix B.

23

A. IBRIRCDUCTION

This chapter outlines the Lkasic conceptual understanding
of ccaputer programming process and the knowledge-tacsed
approach used for its develogpment. The ideas outlined here
are embodied in a tocl intended to implement a radically new
software process. This newv tool (reusability of prograas)
becomes each day a more important way to solve the actual
problems of generaticn of new software.

Be SYBTACTIC/SEHANTIC KNOWLEDGE

The knowledge stcred in 1TM can be divided into two
different parts [Ref. 6)]: Syntactic and Semantic Knowledge
Figure 4.1.

Sign Hich
low Low
Frcblem Computer
Domain Relgred
Semantic Syntactic

Figure §.1 Knowledge in Long-Term-Nemory.

24

S a0 an JRat G Pl Al AR R S R

P 2V A A a4

IL calp= : ‘,'_""', —_—

V

1. Syntactic Knouwledge

The syntactic knowledge is characterized Lty its
precision and detail and involves the knowledge of the
structure of the language, formats, iteration, conditionals,
assignment statements, libraries of functions, etc.

2. Semantic Knowledge

Semantic knowledge is located in LTM and it has two
components: computer related concepts and problem domain
concepts. Semantic knowledge has a hierarchical structure
going frcm low-level action to high-level goals.

3. Computer-Related Concepts

Computer-related concepts include objects and
actions at high and low levels. For example, a central set
of ccmputer-related object concepts deals with storage.
Users ccme to understand the high level concept that
computers store information{ Ref. 6]. The concept of store
information can be refined into the object concepts of the
directory and files of information. In turn the directory
object is refined into a set of directory entities which
each have a name, length, data of creation, owner,acess
control etc. The file objects can be decomposed into progran
files, data files, index files, text files, image files,
audio/speech files etc. Each file may have a lower level
structure consisting of 1lines, fields, characteristics,
pointers, binary numters etc.

The computer-related actions with respect to stored
information include saving and loading a file. The
high-level concept cf saving a file is refined into the
middle 1level actions of storing a file on one of many
disks,of applying access control rights (or simply vwrite
protecticns in most cases), of overvwriting fgrevious

25

versions, of assigning a name to the file, etc. Then there
are many low-level details abcut permissible file types or

sizes, error condition such as shortage of storage space, or

!xai responses to hardvare or software errors.

;@3 Users can learn computer-related concepts by seeing
ﬁ%, a demonstration of commands, hearing an explanaticn of
e features, or by trial and error. A common practice is to
i\% create a model of concepts, either abstract, concrete, or
é%# analogical, to convey the operation. For example, with the
R file saving concept, an instructor might draw a picture of a
- disk drive and a directory to show where the files go and
gﬁ how the directory references the file. Alternatively the
%ﬂ instructor might make a library analogy and describe hovw the
?ﬁ card catalog acts as a directory for books saved in the
?? library.

:ﬁi ' Since semantic knowledge about computer-related
;fi concepts has a 1logical structure and since it cam be
ke anchored to familiar concepts,this knowledge is expected to
. Le relatively stable in memory. If ve remeaber the high
%S level concepts about saving a file, we are able to conclude
;aﬁ that the' file must have a name, a size, and a storage
e location. The linkage to other concepts and the potential
;%e for a visual presentation support the memorization of this
1;}’ knowledge.

.@k In conclusicno, the user aust acgqguire seamantic
fﬁz knowledge alkout computer-related concepts. These concepts
. are hierarchically organized, can be acguired by meaningful
;g{ learning or analogy, independent of the syntactic details,
f', hopefully are transferable across different computer
%%_ systems, and are relatively stable in memory.

T; 4. Eroblem-Domain Comgepts

:%? The usual way for people to deal with large and
:ﬂk complex froblems 1is to decomrose them into several small
- s

5

s

;2;,?3?*. At Il e S LS L LA s L Ty el S i T il L

h R ATk, v QW RS

-

[l

¥

C wwlatalelib

Ry -

~ Py

Ahiulel

. &

iy)

1 a

P

Froblems, in a hierarchical manner, until each subproblea is
manageable. Thus, a book is decomposed into chapters, the
chapters into sections, the sections into paragraphks, and
the paragraphs into sentences.

Similarily, problea domain actions can be decomfosed
into smaller actions. As an example in writing a business
letter with a computer the user has to integrate three forams
of knowledge. The user must have the high-level concept of
writing a letter (problem domain), recognize that the letter
will re stored as a file (computer related domain) and know
details of the save command (syntactic knowledge). The user
must ke fluent with the middle 1level concept of composing a
sentence (problem dcmain), recognize the mechanism for
begining, and ending a sentence (computer-related) and know
the details of hovw sentences are demarcated in the screen
(syntactic knowvledge). Finally the user must know the
proper low-level details of spelling each word (problenm
domain), comprehend the motionm of the cursor on the screen
(conputer-related domain), and know which keys to press for
each letter (syntactic knowledge).

Integrating the three forms of knowledge,the objects
and actions, and the multiple 1levels of semantic knowledge
is a substantial challenje which takes high motivation and
concentration. Learning raterials that facilites the
acquisition of ¢this knowledge are dificult ¢to design,
especially because of the diversity of backgjround knowledge
ard motivation levels of typical learners. The
syntactic/semantic model of user knowledge can provide a
guide to educational designers, by highlighting the

different kinds of kncwledge that users must acquire.

ITIHN IR TITST ™ e T T e T e

C. KBOVWLEDGE DOBAID

A great number of tasks in computer programsing and
software reuse are closely relateld to the prograasmer
knowledge that is critical for understanding, testing and
debugging a progras and in the development and maintenance
of the scftvare.

This knowledge can be seen as a succession of knaowledge
domains wvhich bridge Letween the probles domain language and
the final problem domain, execution Figure 8.2.

refinement Process

Problem /

___ Problem
Oomain Ocmain
Language N Execution
“ _/

/e ;
Intermediote Domains

Figure 8.2 Knowledge Domains in Problea Solving.

Ruven Brooks[Ref. 13), fresents a theory of how the
understanding phase is acomplished and how it is based on
the ccncept of knowledge domain. This concept is defined as
a set of primitive objects, rproperties of the objects, and
relations among objects'and operators vhich manipulate these
properties or relaticns. Following this theory the task of
develorping a program consists of constructing and
reconstructing inforszation akout the modelling ™“knowledge
domains" beginning uiti the program in execution.

This concept of domain provides a convenient
encapsulation of one problem in the following way: the
problem is presented in one domain language. When a

28

AR S R R AR R

o ul il el et e @
> R L B -

Pt |

Rl

e oy

i

refinement process is invoked the problem passes through one
or more intermediate domains, ending in the execution of the
program. Also it is important to present the concept of the
refinement process. This concept consists of restating the
problem specified in one domain into other domains by using
or excluding assertions. The choice of the refinement
process will have to obey and maintain the consistency of
the develoring problem but its 1level of abstraction must be
reduced.

L. DCMAIN ACQUISITICS

The acquisition of a knowledge domain can be viewvwed as
acquiring two different types of information. First the
Frogranmer has to know the set of objects within each
domain, their properties and relationships, the set of
operations performed cn these objects and the sequences in
which they occur.

The second is 1related to the information about the
relationships between objects and operators in one domain
and those in a nearby domain.

To acqguire this knowledge, the programmer has tc use
different sources of information contained in the program
(for example, varialles, structure, procedures etc.) and
external aids such as wuser's manuals, flowcharts, progranm
design languages, that will be analyzed in Appendix A.

E. DOCBAIN RECONSTRUCIION

Now synthestizing the several concepts presented before,
we cansee the two different processes to understand a
program kncwn as the Jata driven and concept driven
frocesses. The first one, which is more naive, uses a
bottom—up hierarchy where the Frogrammer tries to understand
each line of code and assign them interpretations. Then he

29

AR

P
'

-
‘-

oK 3 - e e
b >3-

DM
L3 LA P

-
Bl 1
" a -l-“

>)

§
b
)
3

)
-
‘e
‘e
d

aggregates these interpretations to provide the
understanding of larger segments of code. In the second
Frocess, based on a top-down hierarchy, sucessive
refinements of hypotheses from other knowledge domains will
e performed and their relationships to the execution of the
program established.

These hypotheses appear from the person's knowledge, the
task domain and the cther domains that might relate to it.
The refinement process is progressive and interactive and is
tased on the information extracted of the program text and
other sources and can involve generation of subsidiary
hypotheses. With this hypothesis and certain features of the
program text, the programmer can reconstruct the knowledge
domain for a particular job that is being performed.

Finally we can use the procedure to acquire information
to reccnstruct the kncwledge domain in the following way:

When the programmer obtains any information about the
program cr its descrifption a [rrimary hypothesis is created.
Then, by a process of verification the programmer generates
sucessive subsidiary hypotheses in a top-down, depth-first
manner (hypothesis hierarchy generation) that will be
refined.. The lowest fpoint in this hierarchy may e refined
enough to Dbe verified against the progran text or
documentation.

F. DOCHAIN KNOWLEDGE AND REUSAEBILITY

Developing domain knowledge theories is difficult, rLut
theories can be designed in such a wvay as tc be
reusable[Ref. 15]. Reusable dosain theories can be viewed as
nodes in a network. The direct arcs indicate the directions
of ontolcgical shifts that explain concepts in one theory in
terms of concepts in cther theories. These logical links are
developed as steps along abstraction dimensicns of

30

classification, aggregation-decomposition and
generalization-specialization [Ref. 16].

The conceptual modelling activity produces a fparallel
developaent of a domain language network. Fntities,
relations, functions etc. in domain theories have
corresponding constructs in the domain languages. Their
implementation corresponds to the translation functions of
the theory network and reflect the abstraction processes
used. By defining a network at a high level with resgect to
domain languages, we are serarating the domain modelling
problem (using a syntactically decoupled language) and tae
model integration picblem. The network (unlike most wide
spectrum languages) is neutral with respect to modelling
application knowledge and effectively implements extensitle
families of lamnguages. The orthogonality of the domain
languages erable the implementation of projection mechanisms
allowing ¢the systes developer to view a system fronm
different fperspectives at any point in its evolution [Refs.
16,17 .

KR

A Bl R R S ARt AT

~ V. BBUSABILITY

A. INTRCDUCTIOB

Software reusability can bte defined as the extent to
wvhich software products can be used in other applications.
Reusakilty is measured in terss of the effort required to

e move a software product or a part of a software product to
re another application.
o Reusaltility is a very important concept in software
ﬁzi engineering and invclves a large scope of actions directly
k« related to the programmer, his behavior and the orgamnization
i: of his knowledge.
b In this field we can consider two different ways to
:ig acomplish this task. Por the first one the problem is
. presented as a set of needs which potentially can be solved
R by a software program. Then the programmer attempts to meet
A those needs by creating a semantic knowledge model cf the
Sﬁ problem. Finally with a knovledge of software workproducts
‘i; from rrevious develorment situations, he incorporates one or
:) more of those workrroducts in the <creation of the new
o program. This is the common way to make software reusable.
,ﬂl In the second vway the programmer acqguires a large
;JE knowledge of the software programming process by studying
A pieces of software already tested, that are availalkle from
&‘j external aids (external memory). Then the programmer is atle
:xg to construct a semantic model in his mind and easily to
:tj translate it to code. To accomplish this task he needs a
2 syntactic knowledge which is specific to the 1language that
%; he will use. This is the traditional process to produce
kz software and ve will refer to it as "software
?gé reconstruction"., That is, the rrograamer using his knowledge
A 32
52
e A I A S T B T N LR o e T S e
e L s T A T e e e e S e R A e

N N . A o Ad - ol ond o LA aad - anh - ot atR osh-aak okl asle ach abl ath Shd sl SRR AR A3
4%
{2

e
1 _'L s
ﬂ' tase and external memories "reconstruct" the program from
e his mind.

o Both ways involve the prirmciples presented in the last
é: chapters. We can see how the human process is developed and
&h' _ the fundamental role of the memory mechanism and attention
!ﬁh in the process. The nev theories of cognitive science kring
3}, inportant help to understanding how the comprehension task
fﬁﬁ is executed and how the knowledge is stored in memory. The
§ ¥ cognitive model presented by Shneidermann and Mayer
ey completes this ideas and clarifies the process of the human
- thinking.
oy The reusable task development begins Ly the
!fﬁ comprehension of the problea to be solved, using the prchlenm
:“3 solving nmodel depicted in Charpter II. Then the programmer
5gr was to acquire the whole set of related information, which
? N constitutes the set cf several domain knowledge involved,
“:‘ and constructs his semantic knowledge. After this the
:>¢ Projrammer chooses the best approach to solve the fprchlen.
. The cognitive theory prcvides a more sophisticated
}'2 model c¢f how people reuse software products. The model shows
’%l that in some situaticns the programmer may use the results
::J cf previbus projects to recomnstruct a new product. Thus the
73‘ previous softwvare product has nade a significant
?& contritution to the rrogramming process, but this 1is not
'y% called reuse because the previous product was not copied
;#E into the new product. This suggests a reason vwhy reuse is
% not used more widely and suggests that reuse may not be ever
i&i used as extensively as some proponents avocate.

Y

}E:: B. CHABACTERISTICS OF REUSABILITY
:{7 Reusabilty of softvare reguires the software be
Ei- understandatle, flexible, modifiable, and accessible.
2€ﬁ Simplicity, systems clarity and self Jdescriptiveness
2N

R0

)

/.‘-‘5 33 \
ﬁfi

s AR

Py

criteria will enhance the understandability. Generally,

LR S R R R
Py a8 a A KB

machine and softvare independence, application independence
and modularity will improve the flexibility, modifibility
and adaptability. Wwell structured documentation and machine
independence vere consolidated into and replaced by the term
independence.

-y =

- o aion ol e w »

The reuse of program products has a number of obvious
payoffs such as reduction of costs,increased reliability,
increased performance and enhanceaent of software systems.

IS

If the effort required to reuse the software is nmuch less
than that required tc implement it initially and the effort
is small in an absolute sense,then the softwvare program is
highly reusable. The degree of reusability is determined by
the number, extent and complexity of the changes, and hence
by the difficulty in the software implementation process.

Pl M-

L P,

C. PRINCIPLES OF REUSABILITY

DA

It will be useful to present some concepts that are very
important to consider in a reusable application. They are
the lbasis of effective work in this field.

o I')j'::‘l',‘ o

1. Beusable Architecture

This concept is related to the necessity to create a

g - -
[Faf e gt g

specific architecture for reusability. Kendall pcints

e

out[Ref. 18] that an effective reuse requires an
o architectural starting point,rather than joining modules and
a trying tc link them together.

W The approach presented by Kendall has the following
3 attritutes:

i All the data description should be external to the
programs or modules intended for reuse;

34

PO T

PP

S o AT AR, q‘-““"(

e L LA

-

o e L N e .

d -.'- v l_p l J-. .) A : ..\.‘i-(-('-q"y " .-.'_."-*;'
5-1- "'" .n“!-b.“t:‘. o2 " b e TR ey ik Dt ‘“ o}

All the literals and constants should be extermal to the
pregrams or modules for reuse;

s The input/output control should be external to the
Yl

N prcgram or modules intended for reuse;

5 “--:“

Jﬁﬁ' The programs or modules intended for reuse consist
,'\ -

1

primarly of application logic.

«

Even though this architecture is not complete(it
does not deal with graphics,voice,or nonstandard data), this
model is an important approach in the domain of reusability.

m
’ .
SN S

¢ ﬁ 2. Modula.ization

[,

)

5Kg Some softwar. is reusakle because it has been tuilt
e

R to be sufficiently general to be adaptable to a sizalle

family of applications. This idea can be implemented in the
concert to use modules in software reuse.

We can point to some factors advantageous for using
this approach:

e e
TR,
Ky v A,

o The pcssibility of handling modules as data;

':ﬁj Modules vhich are good atstractions and have general

E;‘ interfaces with the rest of the software;

' .I - .

Y:; The use of specific modules as software interfaces to

i:gi different parts of the environment of the sof tware.

"\.'!.,

-ﬁﬂﬂ We can define a module as a program or a group of

ﬂ&; closely related progams. The structure of a module is lased
\I

:t$ on the rrinciple of information hiding. Following this
3ﬁi principle, systems details that are 1likely to change
-{ independently should be the secrets of separate modules.

A The cnly assumptions that should appear in the interfaces

Ny

{fﬁ tetween modules are those that are considered wunlikely to

Q&: , change. Every data structure is private to one module; it

i

5 35

R A N N S A e N A S R N S SRR YE YR WY \3;."_ ‘._‘x:’-.'_-.:_-.:,\:;.:_-.:_-.;':“;3'
Sy g e i NS \"} N A Ry e A L T AN IR i B P L Oy N

7’ r

"'-r"" MO

may be directly accessed by one or more programs within the
module but not by other modules. Any other programs that
require information stored in module's data structures must

obtain it by calling the module prograam.
Finally some cf the goals of this module structure
are:

The decomposition into modules brings a reduction of
softwvare costs by allowing modules to be assigned and
revised independently;

Each module's structure should be simple enough <that it

can be understood fully;

It should be possible to change the implementation of one
module without kncwledge of the implementation c¢f other
modules and without affecting the behavior of the other
modules;

It shculd be possikle to make a majcr software change as
a set of independent changes to individual modules.

Based on the goals above, the software will be
conposed of many small modules and organized into a
structural hierarchy. Each nonterminal node in the tree is
composed of modules represented by its descendents. This is
the fundamental concert where the DRACO [Ref. 16] paradignm
lies, as we will see Lelow.

D. TFOBHS OF REUSABILITY

It will be useful to present and examine some of the
actual applications vwhere reusabilty has been shown to be
successful.

36

T

W
o
-’c.

o ol .t"u \ .-
o.'.,ol.ln’ -‘s \‘\"&“.' h"

These modules are standard "“black box" modules that
execute generic program functions. They are characterized by
having high cohesiocn (perform one specific function) and
loose coupling (meaning that they pass only the data
required from the invcking program). They return only their
input, resulting data and a validity code. These
characteristics assure reusability in a maximum number of
applications[Ref. 19]).

2. Macro Expansions and/or Subroutines

This is the cldest reusable software technigue. It
has been used in assembly level languages as well as high
level languages and is well suited for modelling procedural
abstactions. They have been used extensively in constructing
program libraries of mathematical functiomns.

3. Packages

Packages are usually collections of routines that
together execute a number of possible related services.
Their Dbehavior and operation principles are similar to
mathematical functions. Examples of this packages include
accounting packages, statistical packages, payroll packages,

linear programming rackages etc. They are written for
specific arplications that are well understood.

Packages generally have to be treated as mcnolitic
entities. They are difficult to wmodify or embed in other
systems. Most packages are irsufficiently paramaterized and
therefore have limited use as generic entities. They have a
lovw level of reusability because they are strongly deperndent
on specific operating systeas.

37

PRI r .50 R L LA S S L
RS R G -.\. oo Py
.ﬁai RO 20N (‘\ﬂ < Afs‘$ﬁ$, Lot

r ” 8 it aam e - ik el aded - oA - adba-ad 1" st “nilh aild ~ oS- et il = and @l TR T T T Tt T T AT e e e e e et ".“"._"'_""L"."'.."""_\"'\"i"\".hT

4. Compilers

Another example wvhere the reuse concept is applied
is in compiler development. The specification language for
compiler-vwriting is BNF which is used to describe the syntax
of the language. Once the BNF formalism is assumed, a fparser
generator program can be built. This digests a BNF
specification of a language and automatically generates
parsing tables. These tables, coupled with a simple
algorithm, allow for the syntactic analysis of sentences.
The final tool is the compiler-compiler. This allows for the
specification of the source 1language, the object language,
translaticn of source language into object language and
other optimizations. Once the user has provided complete
details to the compiler-compiler, part of a compiler is
Froduced.

As we can see the compiler-compiler presents a high
level of reusability because if we furnished the set of
specifications of one source language it automatically
produces a compiler for this scurce language.

38

K KU " Calr IR I e e, .
“' ‘ <""‘ '. h) “m a2 T eI AN e T LT e TS ‘.'-.._L LIRS AN .._‘...‘.'-L‘j
ﬁ_Jﬂ*\thhii*ﬁ xh.-.;_’ ? L‘t‘;‘;;QALmLA APUCA LA AR AT TR WA B LTSV EA RS CHEY. O PR

X 3
75
A A

- I'N- N
AN

A ‘r.< :
g2

-
R s

.
.
£ax

T

OO

P ook SR

LAY
. -

ER

A a_ &

S
. » 2 -
.t 1

/]
13

O d

-
"l
’-
o
LS
e
.
e

......

Vi. IH

=

BACO PARADIGH

A. INIRODUCTION

This chapter will rresent and discuss a mechanism called
DRACC which essentially consists of a model where the reuse
concepts are applied in construction of software systens.
The fundamental purpose purpose of DRACO has been to
increase the productivity of similar software systems, and
its arprocach is based on the construction of software from
reusakle softwvare components in a reliable way. The frograsms
produced from these mcdels are very efficient with the major
optimizations done in the intermediate modelling
languages[Ref. 1617.

Basically three activities executed by DRACO can be
Fointed cut:

DRACC accepts a Jdefinition of a problem domain as a
high-level domain specific 1language. For acomrlishing
this task it will ke necessary to describe the syntax and
sepantic of the dorain language;

After the domain 1language has been described, DRACO
accepts a descrirtion of a software system tc be
constructed as a statement or program in the domain
langage;

Finally, once a ccriplete domain language program has been
given, DRACO can refine the statement into an executable
prcgram under humanp guidance.

For a better analysis of the DRACO model, four major
themes dominate the way DRACO operates: the analysis of a
complete problem area (domain analysis), the formulaticr of
a model of the domain into a special purpose, high-level

39

i

;; language (domain language), the use of software components to
a‘ implement the domain language, and the use of the source to
f, source program tranformations to specialize the conponents
§I for their use in a specific systen.

1. Domain Analysis

" Domain analysis differs from systems analysis in

K\ that it 1is not concerned with the specific actions in a
§% specific system. It is instead concerned with what ‘the
0

s actions and objects «cccur in all systems in amn application

area (problem domain). This may require the develofrment of a
general model of the cbjects in the domain, such as a model

h{ which can describe the layout of the documents used. Domain
ﬁ. analysis describes a range of systems and is very expensive
:! to create. It is analogous to designing standard parts and
3 standard assemblies for constructing objects and operatioms
,; in a domain. Domain analysis requires an expert with
)

experience in the prcktlem domain.
2. Domain Language

; A DRACO domain captures an analysis of a problenm
domain. The object in the domain language represents the

X objects in the domain and the operations in the domain
vﬁ language represent the actions in the domain. It is
 ; commonly accepted that all languages used in computing
%” capture the analysis of some problem domain. Many feorle
{f tenoan the features of the Fortram language; but it is still
o a gocd language for making straight 1line output of
%ﬁ calculations, the tyre of computing high-energy physics has
i done for many years. This is not to say that FORTRAN is a
?' good analysis of the domain of high-energy physics
10 calculations, but it has its place[Ref. 20]. Domains are
3{ tailored to fit into the right place as defined by the uses

X in vwhich man is interested in using computers.

40

JE ,mihb-ixj

3. Software Compcnents

As discussed in Chapter IV, software components are
analogous to both parts and assemblies. A software comfponent
describes the semantics of an object or operation in a
problem domain. There is a software component for each
object and operation in every domain.

Once a softvare component has been used
successfully in many systems, it is usually considered to be
reliable. A software component's small size and knowledge
about various iaplementations makes it flexible to use and
produces a wide rangye of possible implementations of the
final progran. The top-down representation (refinement
history) of a particular program is organized arcund the
softvare components used to model the developing program.
The use of components does not always result in a progran
with a block structure chart in the form of a tree. Usually,
as with programs written by human programmers, the block
structure chart of the resulting program is a graph as shcwn

in figure 6.1.

| S_r‘arf |

' Quudratic
Reoanum \

e,

Abs.

Number Rorer] [dv)

Figure 6.1 Block Structure Chart.

41

“"5 {ﬂd:('-{'g N IC‘\- L'b .3 P) 25 ”‘W'.T‘Y.I i L km.f“ k'(\‘.\'%ﬁ

S e Y e

-

J)JJ o

P

WA S

4. Source-to-Source Program Iransformation

The source to source program transformation[Ref. 21]
used ry CRACO strip away the generality in the components.
This makes Jeneral ccmponents practical. The tranformations
also smooth together ccmponents, removing inefficiencies in
the modelling domain. This makes small components practical.
Since single-function, general components are esential to
the parts-and-assemblies approach, the tranformations make
component-built systems efficient and practical.

A tranformaticn differs from an implementation of a
component (a refinement) in that transformations are valid
for all implementaticps of the objects and operations they
manirulate. Refinements can make implementation decicsions
which are limitations on the possible refinements for other
components of the domain. 1In general transformations relate
statements in one prcktlem domain to statements in that same
problens domain, vhile components relate statements in one
Froblea domain to statements in other domains.

The DRACO mechanism, in this way can be considered
as a general @mechamism which can create (from human
analysis) and manipulate (with the human guidance) a litrary
of dosains.

B. THE PARTS-AND-ASSENMBLIES CONCEPT

Among the several approaches to building things there
exists one called "parts-and-assemblies" that has special
inportance for our study. The concept underlying this
approach has been used extensively in engineering[Ref. 22]
and it is one of the techniques which has enabled computer
hardware engineers tc increase the power and capacity of
computers in a short time. The parts—-and-assemblies apfproach
relies cn already built standard parts and standard
assenlklies of parts tc be combined to form the object. This

42

i '.f'.f‘.-'.' ‘/‘ ’/ ‘f'.r'-'.r;r'.".(I VIR S . o7
oY ‘ e Ry J_J"'.P. o
-‘; Af\K SO ‘ - -y

T WTRWLNE TWTTE R e LT R AT R T el &, % ¥ T

W,

‘40

; approach offers cheaper coastruction costs since the olkject
K

3ﬁ is built from pre-built standard parts.

, We can define an assembly as a structure of standard
;j parts which cooperate to perform a single function. The use
2 of standard parts and assemblies will supply some knowledge
5 about tke failure nodes and limits of the parts. This
- approach has as disadvantages that the design of useful
:Z standard parts and assemblies is a very expensive work and
e requires craftsman exgerience.

C. SOFTWARE CONSTRUCTIION USING PARTS~AND-ASSEMBLIES

23 A software component is analogous to a part and can be
?3 viewed as either a part or an assembly depending on the
b level of abstraction cf the view. The view of a particular
& component usually changes from a part to an assesmbly of
:i subparts as the level of abstraction is decreased. This
;* duality of a component is a very important concept and

failure to recognize it caused some probleamas with earlier
work on reusable software (representation of the software to
> . Le reused). In program libraries the programs to be reused
Z are represented by an external reference name which can be
v resolved by an 1linkage editor. While the functicnl

.t description of each frogram is usually given in a reference
; manual for the library, the documentation for a 1library
P program seldom gives the actual code or discusses the

implementation decisions. The lack of information prohibits
a potential use of a library program from viewing it as
anything other than a part. If the user can treat a litrary
ﬁ program as an isolated part in his developing system then
i the prograsm 1library will be useful. Mathematical function
libraries fit well into this ccntext.

Usually, however, a user wishes to change or extend the

-~ o o -

§ function and implementation of a program to be reused. These

l;__

]

- 43

‘.D

>

~

. . e e tat o . R . - -
Y N %) : R S T TR DS S L Ny N N S S DL SR Sy e = e T

:5 modifications require a view of the program as an asseantly
&f of subparts and a part of many assemblies. To decrease the
: level of abstraction of a library program in order to view
kf it as an assembly of subparts requires information akout the
x; theory cf operation of the program and implementation
;? decisions made in constructing the progranm.
b To increase the level of abstraction of a 1likrary
3: Frogram to view it as part of a collection of assestlies
- requires information about interconections between prograss
‘3 in the library and the implementation decisions defining
. common structures. Ncne of this information is explicit in a
,ﬁ simple program library; the burden is placed on the user of
the library to extract this information.
;; Finally it seems that the key to reusable software is to
Qr reuse analysis and design, not code. In code the structure
3 of parts which make up the code has been removed and it is
;; not divisilkle back into parts without extra knowledge. Thus
;, code can only be viewed as a part. The analysis and design
| representation of a program make the structure and the
‘3 definition of parts used in the program explicit. Thus,
§ analysis and design is capable of representing both the part
o view and assembly view while code only represent the part
\; view. This 1is the fundamental jprinciple of the DRACO
3: approach[Ref. 16] for reusable software.
Y
0 D. DBRACC PARADIGH
J The DRACO paradigm is used for the generaticn of
& software. In this aprroach one assumes that an organization
;3 vants to construct a number of similar software prograams.
X DRACO consists of an interactive system which fermits a
4&5 user to conduct the refinement of a problem stated in a high
:j level proklem domain specific 1language into an efficient,
f& low level executable jrogram. This is accomplished by making
o
=
%2 44
2
4
g

R s e R i e

aa o Aok ang aod b ok 2ok sl b - el §

individual modelling and implementation choices and tactics,

and by giving guidelines for semi-automatic refinement.

o Draco furnish mechanisas to enable the definition of problen
;: domains as special purpose, high-level 1language with ‘
;S automatic translation into an executable format. The
h notation of these 1languages is the notation of the problen
-~ domain; it is not necessary for the user to learn a new
.§ language. When the user interacts with the systeaz he uses
f% the language of the dcmain.
N
&(E. AR EXABPLE OF THE USE OF THE DRACO PARADIGAH.
ﬁ' Supose an organization was interested in building many
3; customized systems in a particular application area, say
systens for aiding banks. They would go out to bank offices
;f and study the activities of banks. A model of the general
ﬁ activity of being a rank would be formed and the objects and
.§ operations of the activities identified. At this point, the

analyst of the domain of bank systems would decide which
3 general activities of a bank are appropriate to be included
3 in rank systeams.
4 The decisions of which activities to include and which
to exclude are crucial and will limit the range of systems
wkich can later be built from the model. If the model is too
general,it will be harder to specify a particular simple
bank agency. If the model is too narrow, the model will not
cover enough systems to make its construction worthwhile.
Cnce the analyst has decided on an appropriate model of
tank activities, he specifies this model to the DRACO systenm
in terms of a special-purpose language specific to the

-
A P

-
»,

. ‘&“’

AR

E.

domain of ranks and their notations and actions.
The idea here is not to force all the banks intc the
3 same rold by expecting them all to use the same system. 1If

e

the model of the domain of banks is not general enough to

(W)

:’c’a 45

v PG AR TR

.'.," -~-‘,- ~_.'."-'-l'\ »
(TSN h) i ‘ 4]
N ‘t:I‘ i 4;;'\"; v At.’ '!‘!‘ Fak. E‘!l!' m}j}i{“

L

"W cover the pecularities which separate one bank from ancther,
i then the model will fail.

y The domain of rank systems is specified to DRACO by
N giving its external-foras syntax, guidelines for printing
e things in a pleasing manner, simplifying relations between
;Jﬁ the cbjects and ogperations, and semantics in teras of
- domains already known by DRACO. 1Imitially, DRACO contains
k{ domains which represent conventional, executable computer
YE languages.

Iy Once the bank domain has been specified, systeams

analysts trying to describe a system for a particular bank
may use the wmodel 1language as a guide. The use of
domain-specific language as a guide by a system analyst is
the reuse of analysis.

Once the specification of a particular bank systea is
ﬂg cast in the high-level language specific to banks systeams,
:$ DRACO will allow the user to make amodeling, representation,
.§¥ and control-flow choices for the objects and operations

specific to the bank system at hand. The selection between

g: implementation possibilities for a domain-specific language
G : is the reuse of the design.
wj Design choices refine the bank system into ctter
' modeling domains and the simplifying relations of these
{i modeling domains may then be applied. At any one time in the
;; refinement, the different parts of the developing program
}g are usually modeled with many different =modeling domains.
M The individual design choices have conditions on their usage
isﬁ and make assertions about the resulting program model f
t:ﬁ they are used. If the conditions and assertions ever c. *»
;} into conflict, then the refinement aust be backed up to to a
o~ point cf no conflict.
A
3
89
g \.
B,
e
) 46

e

"

»

.l
.

ny
A
.

s Bl

e IR
,‘_._-

PR L XA .
AT s

XA

N Pa Py WLV O e TRy RNy Py ETa o MMM ICIC
R A R S s L R AR S g e

F. PRINCIPLES OF THE DRACO PARBADIGH.

Before the program comstruction begins,the domain areas
of interest are formalized by specification of each domain
in the following way[Fef. 16]:

An (informal) set of concepts composed of objects,
orerators and relations;

A formal external notation for specifying an instance of
the dcmain language;

A reccgnizer for the notation{parser) ;

A formal internal representation for the notation(an
abstract graph constructed from the parser process);

A set of transformations which map internal
representation in a domain to equivalent internal
representations in that same domain (generaly used to
effect optimizaticnms).

A set of refinements which map individual concepts to one
(or usually more) concepts in other domains.

The domains required to develop software for a given
application area can be viewed as constructing a "domain
structure graph™ in which the nodes are domains and the set
of refinements between them are represented as arcs. Such a
network sust provide for a refinement path to map high-level
specifications into lcw-level implementations. Usually there
are @sultiple paths through the domain network fror an
abstract domain node to an isplementation domain node.

Software development starts with an abstract
specification written using a combination of existing domain
languages. The implementation process traverses a path
through a space of possible implementations of progressively
lower abstraction until a concrete implementation is reached
Figure 6.2.

47

Abstract Specification

e Cencrete

A

i Fregram P

'4

‘Qg Pigure 6.2 Construction of Program from Specification.
‘5-’...‘

¥ J’..

The space forms an enormous directed .acyclic graph (DAG)
- called a "possible refinement DAG", with nodes in the graph

. 3%
1?& representing specifications for the program written with
':* notations from multiples domains. The single root of the [AG
* is rerresented by the initial specification. Leaves of the
2 [AG are are concrete specifications. Arcs represent
ig individual possible choices (refinements); the domains used
-“ﬁ Ly the specification at a node linmits the type of arcs which
:fﬂ exit that node to precisely those arcs emanating from the
i} same domains found in the domain structure graph. Usually,
Y- an individual node is reached bty many paths, representing
ii different orders of choice of the same set of design
- decisicns. A fpath from the root to a leaf represents a
‘i:. farticular choice of a set of implementation design
;iﬁ decisions and constitutes wvhat is generally called the

(4

.
-t eta

design. Ravigation through the graph may be controlled by an

§'_ 48
()

L
WA

<t

B

8
\#\- Y ‘-:

I S S RN RN IRIC IR S G W T A N e e L N R L Y NN ._..?:\‘*-._‘“.,_ e a»\._.'
NN T A S T S S R Bt Tt N RN, Sty

R R I L N T DO T LT AT R W @ i Wl e TNV AT TN TN T TR TN VR TRTOR 7N T g FANT AR e T T

implementation-style enforcing mechanism called tactics.
Separate tactics can co-exist for different purgoses:
implementation for speed, for minimal space, for rarid
prototyping,etc.

The refinement DAG is never constructed in its entirety.
Only the path needed to reach a desired leaf from the root
is explored. Once an implementation design path is chosen,
it is not kept as sﬁch, but the design decisions that define
the path are generally retained. A fprototype tool to handle
domain specifications and to <construct an implementation
path from abstract program specifications has been
constructed by DRACO.

In Appendix C it will bLe shown how maintenance and
recover cf design in LRACO is acomplished.

49

VII. CONCLUSION

In this work tlke theories related to human thought
processes, nemory organization and the conseguential
implications on software construction are presented and
discussead. Its isgortance in the new directions of
Frogramming develorment is obvious, since software
reusakility is one field where these concepts have primory
influence.

The two approaches presented are conceptually different.
The first one, more naive, represents the way reusability
was understood in the past with its implementation tased on
the reuse of code. This form of software constuction
represents the largest short-time payoff which explains why
software producing organizations have been preoccupied with
its utilization. However, it is very dificult to reuse code
and it is not, in g¢eneral, efficient because the specific
analysis and design decisions are usually not obvious from
reading the created ccde.

For the second, "software reconstruction", the software
construction relies omn the podern theories of dcmain
analysis and design. The concept of knowledge domain is the
keystcne of this approach and its acquisition usually is
difficult and expensive. The programmer has to spend a large
amount of time in the acquisition of the knowledge involved
tecause no one can le an expert in all the domains related
with [problem execution. Following this reasoning a
programmer has to dedicate a 1long time to study the
documentation contained in his external memory, to read all
the 1literature invclved and finally tc construct the
semantic wodel of the problem domain in his mind.

50

n 'y_*.;._\.;-_‘-(. '-‘P‘y.,'; At e N
T G e
X 2 S y M A

AN In conclusion, many of the future directions of software
3K reusability will have to be based in this latter approach.
_ Prograssers should be instructed in this methodology because
< it is the way to create better software and at the same time
' to provide economic ccmstruction.

5

T googp g .
q«
;‘ L‘ l."l ..I .'I '.l%_

s

AN S]
A

PR

P

) - .
Ir.~<4'A
T4 a2 A AL

o
LAl A L A

" =

2

PRy P

v

-,
Dl
R TR O

-
Ak O

51

1
J.‘l‘ B o

Ay

. R P P A PO PL R PO L BRI TP IO R S T U L
‘f\';\'v)‘"l‘.' WM \"-"':\..'“: o "°~.":.’-. "-f\"? X RN A DA
m*-.n:.:c-&m;b&i_b TR I IR A IE AP S MNP : SN o

»”

-‘

-
‘-

"
o

- a = ~ i e et s ket an st gint hg - gaiet ol e b o B a el it e Tl o el - B o™ Al * i e ik~ sl el b Sl i - aat A ad L it~ sl “ adii e adhn “ udir= o ."\'.'.T
-

APPENDIX A
FLOWCHARTS ARD PROGRAHN DESIGN LANGUAGES

TN b b Iy

k(- In computer programming it is very useful to have good
! techniques for rerresenting a program because these

% techniques help the comprehension task and help in the
= debugging and modification tasks.
;3 Among the actual possible representations of a program

two of the most conson and pmore controversial techniques
{ will be presented: Flowcharts and Program Design Languages

£ '\
“‘F. -
N {(PDL)

A. FIOWCHARTS

- .

D A flowchart consists of boxes containing instructions
;ﬁ that are connected together by lines. Traditiorally,
k- flowcharts have been used as an informal notation for
2 algorithms, but for more complicated algorithms flowcharts
fﬁ become intricate and dificult to draw and to follow.

tﬁ Flowcharts were accepted for a 1long time for detailed
f- program design documentation, but recently have been
53 challenged with the arqument that flowcharts may not aid
f frogram comprehension or error diaygnosis and they are an

%
| 3

unnecessary drain on froject resources.

Knowledgeable programmers apparently prefer to work with
the code itself rather than the lengthy detailed flowcharts.
This is not surprising since a detailed flowchart is merely

S5

B - e

&7 L4

a syntactic recoding of a program and provides 1little

Ky

additional aid. This coincides with the syntactic/semantic
. model of programmer lehavior{hef. 6] which sugests that a
o
“ useful aid must facilitate encoding of the program syntax
A . .
" into higter level semantic units. An expert programeer deals
;
S
"I
(9
"
s
! »
:""

3

R Pt N,

\
PR S C R SR SRR R A T L

-~
B 5 2

-

e

| S

")

P XXX XN
Ay

»

.
o e

1, .l,,

PR P

1
]

5
LA
LY

£

more with problem dcmain related units than with prcgram
domain related syntactic tokens. High level comments using
problem domain terminology have been shown to ke more
effective in aiding comprehension than numerous 1low level
comments using program domain terminology.

These results and the syntactic/semantic model suggest
that helpful documentation would provide a high level
framework which reveals information that 1is dificult to
cbtain from the code itself. With a high level framework a
programmer can anchcr the knowledge acquired from reading
each line or small unit of code.

B. PROGEAHN DESIGHN LABGUAGE

Flowcharts have long been accepted as the standard
medium for detailed frogram design documentation. However
several studies reported by Shneidermann et al.[Ref. 23]
siggest that flowcharts nmay not aid comprehensicn of
programs. Also, Ramsey and Atwood[Ref. 18] considers that a
computer program expressed in a higher level language is
more comprehensible than the ecorresponding flowchart. An
artificially designed language, with a programming-language
like syntax, might also be preferable to flowcharts for the
expression of software design information. Such languages
are commcnly called program design languages (PDL's). Figure
A.1 (From Kraly et al., 1975)[Ref. 24] shows an example of a
PDL specification fcr a precgram which computes social
security with holding (PICA) amounts from a payroll data
tase and prints a regcrt of those values.

C. PLOWCHARTS VS. PHEHOGRAN DESIGN LANGUAGES

The use of a PDL by a software designer for the
develorment and description of a program design groduced
Letter results than the use of flowcharts[Ref. 25].

53

PRI

TRTARITRITNTTR AR AT,SF TN TRARTE T T AVIE THERA T 40408 NIy VIV SN O 4 "..".T

PRINT FPICA REPORT HEADER
OBTAIN FICA PERCENT AND FICA LIMIT FROM CONSTRAINIS FILE
SET FICA TOTAL TO ZERO
DC FCF EACH RECORL IN SALARY FILE
OBTAIN ENMPLOYEEX NUMBER AND TOTAL SALARY TO DATE
IF TOTAL SALAEY IS LESS THAN FICA LIMIT THEN
SET FICA VALIDE TO TOTAL SALARY TIMES FICA PERCEN1

E1ISE
_— SET FICA VAIUE TO FICA LIMIT TIMES FICA PERCENT
o ENDIF
si,i; PRINT EMPLOYEE NUMBER AND FICA TOTAL
0 ADD FICA VALUE TO FICA TOTAL
ENDDO
‘5& PRINT FICA TOTAL
)
1%
Ay
:z% Pigure A.1 An Fxample of a (PDL) Specification.
0
sf Specifically, the design appeared to be significant.y better
j)A quality (involving more algorithmic or procedural detail),
?ﬁg than those produced using flowcharts.
12 Flowchart designs exhibited considerably more
‘vs abbreviation and otlker space-saving practices than did PDL

design, with a possible adverse effect on their readability.

The information presented in these two media may be
encoded in memory in different ways, at least with lisited
exposure time(Wright and Reid, 1973)[Ref. 26), and the forms

ALY
N

A

may differ in the processing effort required to encode thea

$§ in memory e€ven if they are encoded similarly.

%ﬁ FCLs and flowcharts may emphasize dJdifferent properties
&& of the wunderlying software design. At an obvious level,
§

w >

o

A T A N A AL

taiats sty aab s

e TR T T T T TR W AT I TR A T M E LA ST U NN TN 1 8T e T M B s e v e

bl

LN

W

gl

KA flowcharts appear to emphasize flow of control, while PDLs
%, may have a greater emrhasis on program structure.

Thus, in conclusion, an analytical comparasion of PDLs

) and flowcharts would appear, overall, to favor of PDLs for

" detailed design documentation. Only empirical evaluation,

) however, can provide really convincing evidence in favcr or
cne or another technique.

>
d
¥ oot

2

WA PN St

P S R

R R
A
.

LI -

Pt s

e
-y
x

LTI |

3

o

4

! 55

)

(]

)

2

o

N,

L/

) - - . -p PR
- e .- - v ‘.‘.“-vfyvi‘ .u((" '\‘»‘n "..'. ‘\‘\/\‘u» o \ ". '{\.R
U [4 , LHKH '7 : ,I‘ A e T v 0 . 1_

Shidairtatiah i, ' a8 e et Nah! H"é o \'hk b\

(A

2

-
o el e = et

L By Yo et

..,

en v
7 A

'

-

DX

-

~ o
-~ ot

ARRENDIX B
EXTERNAL AIDS IN OPERATION OP A COMPUTER SYSTEM

For the correct operation of an interactive computer
system we have to have external aids like user's manuals and
computer based wmanuals(online helps) which bring together
all the information needed to operate a computer systes.

A. TRADITIONAL USER'S HANUAL

The user's manual is a paper document that describes the
features of tne system. There are many variations in this
theme such as an alghabetic listing, description of the
commands, quick reference card with a concise representation
of the syntax, novice user introduction tutorial and
conversicn manuals. |

B. USER'S HANUAL DESIGN

The syntactic/semantic model offers insight into the
learning process and therefore guidance for instructional
material designers. If the reader knows the problem domain,
such as letter writing but not the computer-related concerts
in text editing and certainly not the syntactic details,
then the instructional materials should start from the
familiar concepts and tasks in letter writing, 1link them to
the comruter-related concepts, and then show the syntax
needed tc accomplish each task.

I1f the reader is knowlegeable about letter writing and
computerized text editing, but must learn a new text editor,
then all that is needed is a brief presentation of the
relationship between the syntax and the computer-related
semantics.

56

e A LA N L e o
a9 *ﬂ.,)“\%_‘\". jﬂ.-*.,,‘.__‘a .x\". . -y\,)\

s Eald ok Sams Aadt Sloo L & Sok Aol Nos b dAod ol il o A WS FLUWITWLEELEL FI IR ST A e TR T

Finally if the reader knows letter writing, computerized
text editing, and wmost of the syntax on this text editor,
then all that is needed is a concise syntax reminder.

These three scenarios demonstrate the three most popular
forms of printed materials: the introductory tutorial, the
command reference and the quick review.

C. ORGAFIZATION AND SRITING STYLE

To acomplish this task one must know about the technical
contents, be sensitive to the background reading level and
intellectual ability of the reader, and be skilled in
writing lucid prose. Frecise rules are hard to identify, but
the author should attempt to rresent concepts in a logical
sequence with increasing order of difficulty, to insure that
each concert is used in subsequent sections, to avoid
forward references, and to construct sections with
approximately equal agount of new material. 1In additicn to
these structural requirements, the manual should have
sufficient examples and complete sample sessions. Within a
section that presents a concept, the author should Lkegin
with the motivation for the concept, describe the ccncept in
problen domain semantic terns, then show the
computer-related semantic concepts,and finally offer the
syntax.

In summary we can present the following guidelines to
help to write manuals:

Make the information ease to find.
Make information easy to understand:
-Keep it simple;

-Be concrete;

-Put it naturally.

-

.

b Tl "

3 Make the information task sufficient:

Ty
-
r S

. -Include all that's needed;

-Make sure it's correct;

RS

5y e

-Exclude what's not needed.

PRR R T8

‘ Finally software and their manuals are rarely completed,
rather they go into a continuous process of evolutionary

;wt refinement. BEach version eliminates some errors, adds
fi; refinements, and extends the <functionality. If the users
- can comnunicate with the manual writers, then there 1is a
Skt great chance of rapid improvensent. Some manuals offers a
?; tear-cut sheet for sending comments to the manuals writers.
o This «can be effective, but other routes should also be
¥

explored: electronic mail, interviews with users, debriefing
of consultants and instructors, written surveys, group
discussicns, and further controlled experiments or field
studies.

s
P2 AP A

. ey

D. COBPUTER-BASED HMATERIAL

In this type of aid we can consider the following tyges:

> - e
v i »
L Pa

7y

Online User Mapual. An electronic version of the

ﬁ* traditional user manual. The simple conversion to electronic
A

%% form ray make the text more readily available Lkut more
%

ﬁg difficult tc read and absorb.

6':3'

g Cnline Help Facility. The most common form of online
zﬁ help is the hierarchical presentation of keywords in the
hg command language, akin to the index of a traditional manual.
S The user selects or types in a keyword and is presented with
s one or more screens cf text about the commands.

She

s Online tutorial. This potentially appealing and
:53 innovative approach Bpakes use of the electronic medium to
£

o

)

R

L) 58

0‘:.0

"

oy

»
‘. LA AT AL ot B AT S el e e AR A R I AT ¢ S e o Ca T

A0 hS e n » + . % ARLeS ~i%
!Il‘l. .vﬁ) !At,? ’!"t?l’! !"l. L ,'h .055, A \J n'.' -"n v ﬁn g J‘ t“:. >¥. K .I.l! J)‘l»h-!~¢ -0 v AN AKX AN < ' A SV ",

i d b A At add 2 ad b aiebabi ol B alhind FUTTWTTW T WIS O T AT a4 YR

teach the novice user by showing a simulation of the working
systea by attractive animations and interactive sessions
that engage the user.

Others foras cof information acquisition includes
classrocm instructicn, personal training and guidance,
teleplone consultation, videotapes, instructional filams and
audio tages.

There is a great attraction in making technical manuals
available on the computer. The positive reasons for doing so
are:

Information is available whenever the computer is
available. There is no need to go find the correct manual
- a minor disruption if the proper manual is clcse Lty or
a major disruption if the manual must be retrieved from
ancther building or person.

User does not need to allocate vwork space to opemning up
manuals; Paper manuals can becomes clumsy and clutter up
a worksface;

Information can be electronically updated rapidly and at
low cost. Electronic dissemination of revisions ensure
that out-of-date material cannot be inadvertently

retrieved.

Specific information necessary for a task can ke located
raridly if the orline manual offers electronic indexing
or text searching. Searching for one page in a million
can usually be done more guickly on a computer than
through printed material.

A computer screen can show graphics and animations that

may be very important in exrlaining complex actions.

s 2.8 XX

E. PAPEE DOCUMERTS VS. ONLINE HELPS

The technology c¢f printing text on paper has been
evolving for at least 500 years. Much care has Leen taken
with the paper surface, color, font design, character width
etc. to produce the most appealing and readable format.

On the other hand the cathcde ray tube (CRT) has emerged
as an alternative medium for presenting text to meet user
needs. Ccmparing these two media we can tell:

CRT display causes serious concerns about radiation and
other health hazards such as visual fatigue. It makes the
capacity to work with the CRT below the capacity to work

R 200"

4,-
mten"

with printed material.

r

It is easier to detect errors in printed text than the

T

same text displayed in a screen.

23

:
R

Screens display substantially less information than a
sheet of paper and the rate of paging through screens is
slcw compared to the rate of paging through the manual.

The reading rate 1is significantly faster on hardcopy

(printed text) - 200 words/minute - than on the screenm -

155 words/aminute. Accuracy is slightly but reliably

bigher on hardcopy. The subjective ratings of screens are
sipilar in both formats.

Still the online environment opens the door to a variety

of helpful facilities wvwhich might not be practical in

A

9
«

rrinted fornms.
Scme of these aids are:

Pl
PR A
L N

X'

[Py 1 g
[]
t Sl ot

s

ity
»

Successively more detailed explanation of a disfplayed

r

A

€IIor message.

X O]

Successively more detailed explanations of a displayed

7

question or froapt.

B

E

Explanation or definition of a specified term.

i

NN

60

o

vy

4

! .:.l'
g

3 \ . I - s . w . e it v Nyttt bam s v e

) A \ - [ad ; -~ N SN SR AL I TS I T B LA O N)
\) a‘ WY (et |~ oo, = YNy . . ey RN PSR R TR oy RS
\.i.A.n,‘:'a‘l M) t.:..i'pe\ AU TR R Oy o ' \. s n LY, A Al v oY g \\ '\ Yot =

- hoae i a oidl g B A A Aokl Mok ad Bak el Bas Slas e ol LAl athi s acdl Ala i i g A}

A description of the format of a specified command.
A display of a specified section of documentation.
Instruction on the use of the systen.

News of interest to users of the systea.

A list of available user aids.

R
-

-
,4.

.l.
-

¥ {.’ono

2

ZIEE

61

-,
£5T

- ". "\"'""r' - . _} \F _* OBy ...(.‘*_ SN #‘ . ."l.v AN TN L -
; N
‘?'»"::"’t‘!':‘. .'s W ihaint % ey ... PO ’u ot W 4’ ‘ £, ““’l.c'l NonOnh ’O.c'l'nﬁl.o ‘t'";'t’ J" e n'l N . '..0" :‘ " >.

AT BRITTRIERITEIAF VI T e T e T e

qu

3

pAz

&ac

*;' ’1: APRENDIX C

ﬁﬁ: BAINTENANCE AND DESIGN RECOVER IN DRACO

i

b A. HAINIEBARCE

{{4 He assume that a program has been derived from a

gy, specification using the DRACO paradigm and that the

%l specification, the refinement DAG, and the implemented

Frograms are all available to a would-be maintainer. We will

W discuss the maintenance problem in the absence of the
? specification and the refinement DAG in next section.Should

'jt a pregranm need change, there are two methods for

{» acconrlishing it. Omne possibility is to choose an entirely

?if new path through the refinement DAG from the initial

:§: specification to a different isplementation. This method is

(<] generally not preferred, as many of the design decisions

made for the current iaplementation can be reused ir the
desired isplementaticn.

The other alternative is to start with the concrete
implementation chosen, reverse some of the design decisions,

LY

:p‘o--w
e et 2

J moving up the refinement DAG towards the root, until a ncde
ot is reached which is the last ccmmon abstraction (LCA) of the
k{? current implementation and the desired implementatiocn. The
Ef least ccmmon abstraction is the top node of an embedded
fk’ sub-DAG, and can be reached by any of several paths (as the
ﬁ\. design decisions need not be reversed in the crder
3*- originally made). A nev path must then be chosen from the
§ ICA to the desired igplementation Figure C.1.

- This method preserves all of the implementation design
iﬁg decisions made above the LCA and thus minimizes work
:&_ required to accomplish change.

3

-

62

N e I T T N S St S S S Sty S - X S A A e S N S T L L T N T
: « .

» e K o o R . W
QAN GO SO ARG IR B T A S A Rt N !

o <

e

Abstract Spec:fication

Leasr Common Apstraceion

Figure C.1 Maintenance. General Choice r1 is Preserved.

Ferformance 'enhancement. is generally acomplished by
changing the underlying representations used by a fprcgranm
and using more efficient procedures made possible with the
changed representatica. We assuame that the revised
representations and corresponding procedures are already
contained as refinements in the domains used to generate the
current program (if this is not the case, then the domains
must ke augumented accordingly). Some set of nodes in the
refinement DAG are L(As that allow re-implementation cf the

currently low-performance abstractions. Design decisions are
reversed to travel from the current implementation back to
one of those LCAs. Newv decisions are applied to arrive at a
different irsplementation. The change in refinement direction
is acconsplished by a change in tactics.

Changes in the environment can be handled in a similar
fashion. The domains are first augmented with the refinement

: PR TR ‘ 1 “ 4\
W P 7 . § ¢ b 5 A0 U' .' et
P Ml J ';l\:‘n‘. DEOS m Q) .l' \'.!bn' o4 L0 AR 'n‘ '.‘-‘;‘-"\‘\'r.‘-' e u'.‘l' w‘:'t't‘.‘t‘ '- W, ﬂ" W

. Yoox s s N
S

s Abstract Specification
4
1
&
42 .
’ . @ Least Ccmmon Abstracticn
i .
1oy -
;’;s
LS
%
Al N
! -‘
3 (4)
% P! P

~ Figure C.2 Changing the Environment,r3b New Refinement.

specifying how the atstractions used in those domains can be

3; isplemented by the new environment; this effectively

.; rroduces an implementation DAG Figure C.2. A suitable LCA is

b found and refined using the revised refinements. Different
;; functionality is acccmplished Lty changing the specification.

I It is then straight forward, but possibly inefficient, to
2 re-refine the specification to create a new refinement [AG

,f: different than the original.

t' A perhaps more efficient method for producing the

gé revised rrogram requires several steps Figure C.3:

}~ Determine a substitution S that converts the original

) specification to the revised specification (this can be

;ﬁ constructed automatically as the oriyinl specification is

-2 revised);

)

[}

R

B : 64

Q - - o 2 - T LT R ™ _)- ‘ T AT S
LAY, I Y (ol N -.u ¢
.' a. i .t 1t .,q,t.'e,_},cff‘ " ,"‘;q!‘n:’.y.f‘ Wi ,9""%!?!“‘!“!' .-“.l‘a,‘.l ‘.' .-'.‘5‘.“ PN !.1. 't. iy .'H. ey «. <. \ , Y Q:‘ N

-~ - o
bt
R e S e e

- o -
KR SRR S

~

£ ot
b &t i

PLd A S

-l e e a
» S S Fee

-

M

)

B LR Y SV I LAY) \ RS . ¢’_ CER R \ . LA -7 LR) -‘&
\) 9, O O TR RN ’ «
“’;3\:'_'& RSL I NI, O N KRNI " i .. ey

Figure C.3 Chamging Specification. G"is Isomorphic to G.

Detereine the'largest subgraph G" of the new refinement
DAG, starting in the top node, that is isomorphic with a
subgraph G of the old refinement DAG under the
substitution S. Each node n in G has a correspoanding node
n* in G", obtainable by applying the substitution S to n.
Note that G' must include at least the root node (i.e.,
the revised specification).

Find an 1CA of P in G. The corresponding node in G' can
be refined to a cconcrete implementation P' which realizes
the revised specification).

To determine the isomorphisnm, and therefore the
candidate LCAs, the refinement DAGsS need not be constructed
in their entirety. The work accomplished in the original
refinement history up to the chosen LCA in G can lbe reused
at great saving. Refinements from the LCA in G" to the

65

AN]

i Sl |

veibiadde - ~ o FTwT vy ok * S B w 4 - Pafiirtafiare e Jini St Sae gt Lt At A R A o ARt el
o}

concrete iaplementation P' must be applied. This constitutes
the bulk of the work. Design decisions used in the path from
the LCA in G to P can perhaps be reapplied, reusing analysis
A done for the original progran.

- If the specification is mcdular, then there will be a
refinement DAG for each part of the specification. The
implementation will ccnsists of a set of leaves, one taken
from each DAG. A change to the specification will then
affect only some of the specification modules, and sc affect
only scme of the refinement DAGs. Leaf nodes from DAGs which
do not change may be used unchanged in the new

U

a implementation. The frocedure outlined above can be used to
? generate new leaves for the changed DAGs. Modularity is then
i seen simrly as a methcd for making trivial the determination

of the isomorphism on portions (the unchanged DAGs) of the
what would otherwise ke a single, large refinement DAG.

(o g
RN AN

B. TBE PROCESS OF DESIGN RECOVERY

X In Figure C.4 we present a view of the conventional
i approach to maintenance. Arcs are represented Lty Lroken
t lines to indicate that the refinement history, and thus the
original abstract specification, are not available. What is
to guide the maintainer when gcing from program P to P'?

‘o The DRACO paradigm offers a model of maintenance
activities provided that the program specificatior and

e

T

design are available. If we do not have these, we can
recover them from the code, and then use the DRACO paradigm
as the guide. The design recovery paradigm we propose

.

A A

provides a systematic way of carrying out the process that
vwe think maintenance programmers apply informally: before
performing changes in a program to adapt them tc new
requirenments, a higher-level plausible "ancestor"
specification egquivalent to the original prograa is

b I

informsally developed.

‘l
4 66
3}

S R -

e %Y " L e m Y ™ s Pe P
‘.'\-{ \’Z\ 4'('\r » *~*," ; 'r

oy _ , N Kol 3
S h § "4 () U000 0
S St Tt il Vel X W s'l,:'i‘c'l. DO

Pigure C.4 Conventional Maintenance.

Such an ancestral specification can be develcped by
repeatedly performing a "design recovery step". Each step
consists of inspecting the specification recovered from the
previcus step, proposing a set of possible abstracticns of
the portion’ of interest, choosing the "most suitable"
abstraction, and constructing a specification containing the
nev akstraction. Each abstraction proposed implicity selects
some domains and refinements which must produce the existing
code when applied to the ancestor containing the proposed
abstraction. Design recovery steps are repeated until a
useful LCA is reached.

The design recovery process is ilustrated in Figure
C.5S. Starting with program P its plausible immediate
ancestors (broken-circles) are postulated. Selecticn of an
appropriate ancestor (solid circle) is based upon conjecture
that the node is on the path from P to a suitable LCA.

67

B0
o
I
R
bige l
o5
S
:& Least Commen Abstraction
i New > A RS
: Im@enrario P
a“' ’,"
‘ Ry - -
’:: - Implementations Using
!.I.|‘ (p) * H
e Discarded Plausible
e Abstractions
oy
)
o P
!
L
B Figure C.5 The Process of Design Recovery.
i*:

);
i Gcod choices of abstraction vill use domains and
e refinements recovered in earlier steps, or will augment thea
.x’ sinimally. The iterative process induces learning in the
’? maintainer which can be captured in the resulting domains.
W The choice of the aprropriate ancestor is the result of a
,-- generalization rprocess based on the specificaticn under
N P
.; consideration. The implementation provides a very limited
:,.' sample on which to tase a gereralization step. In cther
B words, refinements are possible only using additional
= knovledge: we must rely on the maintainer's knowledge of the
;5;‘? applicaticn domain, intelligence, experience and educated
:" guesses, on common knowledge and on any additioral
AN]

information available: on the current implementation (e.g.,

:'f',;: inputs from original designer, existing documentation,
:’o environment specifications).
n
ol
i
i °°
‘-‘A;l
O

-'f".h LI TSI Mo O SN 7 L, ¥y
W TN e t‘}h?.\}l“. 50 ‘:?».‘A“;‘qﬁ,."x?) ""’.2‘, '_p?"a g

. PRy] PO A A N 2NN A AR
DUV U A L D O OSSN SO O O OO AR OC T OGP A
ISR RAKT ;@.;,,5’;‘,,4»29#350’%.én%.',:%"&'ﬁ;'a“:'o?:h‘.‘,s.a‘t.,.'» b R KR IR N S0

Freye-icw et el -u.jw-nT

Since quite often the maintainers are not the origirnal
author, and are usually distant in time from the original
isplementation, maintainers are likely only to regenerate
approximations of the original domains that where used. This
mismatch betveen the wmaintenance DAG obtained by design

recovery and an "ideal" Figure C.6 reveals the crux of the
saintenance problesn.

ldeal LC A

‘\ - Implementatier Usir{

A

¢ s Closer AbStructicns

ideal P ()

Implementation
N

Pigure C.6 Recovered Design vs "Ideal Design®.

Avoidirg approxim‘ations is very hard, and the
approximation errors are typically amplified by repeated
maintenance steps. The magnitude of the errors is increased
vhen the recovery process is done informally. The errors,
generated by the lisited sample used for the abstraction

step, can be substantially reduced by performing dcmain
' analysis.

Wiyl

g

AN 69
50';‘\'

¥

& LRV TR {ES, 300 KA L TN o O R l. v o \ |' ‘..‘l\‘
SOOI A TR O T RN S D A T S R A Ry SO0

Through domain analysis a more adequate, complete and
Ay reusakle set of abstractions of a knowledge domain can be
3 produced thus enhancing the power of the design recovery .
e paradiga. This is the reason why doamain analysis is a
SR fundamental component of the CRACO technology.

70

TR CAL 4 <

g Vaeh 0 DA A OGN LSS A » ACHCRERELCRINS W .
-“3'.:2‘.-‘*'3’-‘».1":.4'. k’:‘:‘:':'l’z‘:":‘:'a'l.'*'.b .i .‘t‘hﬁl A , t)-. . 8% A%, W% "- AL ISALILHIGY &‘:k 'so'!.- J\’O‘-ﬁ' 'o: -!'v‘l:.-‘l::‘:l"

e R T TTOTS FeRl ol U UR IR ER UL R e v sesx ey e gl wireea sy el e 4 ;-T

3 1IST OF REPERENCES

1. Lehman M. M. ograns I1ife Cycles and laws of
§gftv%£g gvéf%figé'?foceﬁ%iﬁgs'gf“fﬁe IEEE" 6879y 1060
=~Y07%, septemter, 1980.

2. Moresse J.H. ,and Wu.lL.S.,Software Engineering... An
ggong%%é' Persfective ,In'P;oceHIEgE‘ of 'TEES Fourth
onte nce"BEESETfEEre Engineering, pages 412-422,

IEEE Press, 1976.

3. Boeha, B.'"Softuare and Its Impact: A Quantitative

Assessment" atamatjon 19(5 es 438-59 Reprinted
in Softuax':en E%Eign = Teéh&iqszg by Ffeenag and
Wasserman, May 1973.

4. Lientz, B.P., and Swanson, E. B.,Software Maintenance
Ose agement: A_ study of % Ralntenance of
omputer Appli §gf£!3§§ 3D 487 Data ‘PIocessi
Organization, Reading, MAT diSoh™and Wesleéy, 1980,

S. Brooks, F.P.Jr.,"The Mythical Man-Mouth",Datam
20 (12) pages ks-52. Reprinted in Software D
Techniques by Freeman and Wasserman, December 197

6. Shneidermann, B., and Mayer,R.,"Syntactic/Semantic
Interactions in Programmin Behavior - A Model and

Experimental results" n;g;gag%o al Journal of
Sggpssss and Iﬁigzgasiéa Sciences, 3%‘8. No 3,7 1979,

7. Arpy Research Institute,Technical Report 392, An
crato

Stu of the Cognjtive Structure
BRESREIIRE " onpBinentlly SRIOMoHuacE iGN
TBN. 1979.

an Hooper, Alexandria VA,

8. Dijkstra, E. W.,Notes Structured Programmin EWD
2“3 ’ Teghnigii o8 Uﬁ%?gfgif?,g - iingﬁoven,
Netferlands, 196S.

9. Norman, D.A.,Meno and Attention, John Wiley and Sonms
Inc., New Yor 7‘15;6. ’ ¥

10. Tracz W J.“"COB uter Programming and the Human

Theu ﬁt Process v;sg-g e and Experience
Vol.g9. pages 127-13 ?I* Je Lactice and L<hce,

1. Miller, G.A.,"The Magical Number Seven Plus or Mimus
Twg ¢ Some 1limits of Our Capacity For Processing
Information®, Psychological Revue, pages 81-97, 1956.

71

PO TN Y - -

il b ALANAGOAREE 5 A%y ANy Y, G4 A AL A ol ‘* WU O "'" C *
¥ X0 A 1 7 { () ™.] g
WARIERIIN T ,*'l.":'t‘?i.. ASAGSIERARAY R E NN R AN A’:?i‘.! a,ﬁ‘:\ RINARX NN RN AR Y OO DA OO AN

T LU LW W LW WL, YLt L ELEL

By . .
i T RS R PRSI SR, TERERSRLNG A0, ONRRLAD
-4589, Re

o York 1970.
by 13. Brooks R., I eoret g_; Agal£515 of the BRole of
‘? ent tlon gf nsSion of. ggggg;erg
}& ams, 'In Proced uman actors in~“Comfuter
! New York : AC 1982 pages 125-129.
.
‘f' .

14. Wickelgren,W. A.,learning and uenor Prentice-Hall
' Englewgod Clefs,'ﬁeu fgey, 1977 oLt. ‘
g
I
' 15. Freeman able Softwa Engineering: ncepts
:ﬁ and Reséarch'3%§ ecC ons, §3ce duTres g'ilox: sﬁgﬁ on
Ny Reusakility in 5:6'%ann1ng, pages 2-16, Stanford,
~ 1383 I
&% e le y -
atey 16. Neightors J.,"The Draco Approach to Constructing
ﬁg go%tware gron ﬁeusable gogpogents:bIBEE Transagtlons
> oftwvare En 1neer1 o - ages 5684-573,,
&: September, ad ¢+ P ’
¢
A 17. Aran Knowledge Based Per ective Softuare
1 4 Con gr cti i% ~—Submitted ™ ng E’G E
o Softwvare Engineering, 198&.
X
Ij 18. Kendall, R. C.,"An Architecture for Reusability in
}i Prcqralmlng" I1T Programming, pages 1-3, Stratford,
P |
X 19. Cgva%tere ui a¥d Archambegut, P. PJ.,ReusaL;g Code

a e r nsurance roup, roceedings_ II1

3 WOorksho op on euea bIIITY 1n Progranmlng, pages 373-278:
c\ September 1
[/

u¥. 20. Wegner, P.,Directions jn Software Techonology, MIT
), Press, 1979.

r.’

M

ﬁ; 21. K1t1e§, t fficiency Tand Coggectnesg g%
15 ransforma € s hesis niversi o
ﬁ; g Igfornla a Irvzne,! 67s. f Y

!_;‘.

. 22. Eguards and Teller t Eggg t
S rac er1 ;hg orm o s g, In
gy SEBE zgglgghe 8§§ at1 gt%ﬁ%er ﬁéggf ges
;ﬁ 612- 621, A.C. M., Novem ber

.} 23. Shnelde:mann E., Hayer R., Mekay, D. and Heler
- ons .of the 55%%§1

P g !_;Qs. “pages 38
x' cnmun cat1ons . .n.

M

b 24, Rome Air Develo lent Center, JNTIS No AD16Q15), Flnal
" Report (Report RNo. EC—TR— =300-vol 8), éiﬁ.

50 nggi *nglfgziii 519 Naughtoi ﬂ;gg §HB N.
= Tinamoff, Griftiss APB, New York, Hay 19

"

i

" 72

RN oG 117

. -»
. inl - ; -
an, 3&‘;‘"" A.'l.n':,‘.’lo'io'? Hrd i 97“ " '! b.o in W R SCARCAERY T

T s - -

25. Research Inst;tnte for the Behavioral and 50c1a1
Sciences, Technlcal Re ort TR-78-1422)

| . e Rl Ftin iy

clence Applicatlon, Inc.,Colora o,

- -

>

) 1978.
‘ 26. Wright, P., and Reid, F.,"Written Information, Some
" Alternatives to Porpose for Exgressxng the Outconmes of
Coamplex Conti ncences" ourpal of Applied Psycholo
, Fages 160-166, “1973.
b
!
]
0
{
ﬂ
t
[/
)
.
W
[
¥
3
1
)
A
1
ol
.
k)
d
N
.
h 73
3
:

1

e B NN LW L% R LA LN
'g',.;“p g W “» R ?)

s - 1 1 3
, 3 "qf" A » V\#Q ! ‘ ‘ "’ ‘ﬁ‘ “' ,:‘n 4‘?‘! 5 A‘l'l A .n Pt 119,28, (ML) JQ W g, l‘\.a‘hn NP ;C Nt _‘h ‘15 sl Ql,‘ LS lh i‘ "ln .V‘ s ‘{» ’J-.‘

b. =3 b it ol SR Sl ol Sl S i el 2oh Salh S - I Lol bl T
[}
. "
1/
e
f i
‘l
BIBLIOGRAPHY '
e "
.
.
Q %8;$r, Gordon,Human Memory, Basic Processes,Academic Press,
ﬁ ﬁgggg, lee W.,Knowledge and Cognition,John Wiley & Sons,
-)
21 Qgggeland, John, Mind Design, A Bradford Book, MIT Press,
? Jensen, Rendall R.,and_ Toaes Charle So ft
:' §9§§£§§£ ng, Prentice-Hall, Englewood Cllffs, New 3 y
N
(2
L)
\3
- nutdock Jr, Bennet B.,Human Memory,Theory and Data,John
5 Wiley & Somns 1974.
LAl
Y Neighbors, James M.,Softwa Construction Usi nents
§, Qggger51ty Microfilaés Infe%ﬁaf' al, Ann I'ng ‘QHE'HI‘Ei:
[}
£
Pressor Edward et. al.,Softvare Interoperabilit d
12 Rensah;iigg RADC-TR-83-174 " Vol ? Ro %e an Dev I%pm
v Centet,
Shneiderman Ben coftw re zgho%o ma ctors in
g_ uter ' ;gﬁ%; ;%i, %%le rov%Q Co putéf
ystes Serles,
2
ol Wolber John R. gggv§rs1gg o computer Software
4t Prent;ge-ﬂall Englewdo ifL, New™ §ers 1983. L.
!
Vickens Christopher D. ;%§g sychology Human
} 2_;;o;g§_ge, Charlgs E. HéggnggF 1sh1ng ompany,2198
L)
;3 Youpg, John 2., The ge QLY System of the Brain,University of
K- Califcrrnia Press, T1977.
2
I
2
{
s
”
»
;: 74
%
‘\'i
;

"’ "“""‘ IS o) 0 (S \n o ({"' Qe vn\u' S "
AEORCL N ;‘..oj,@ g,a,n.a.n.a h ,uv,\',!' s .',a.“.l@.‘,.‘, ..0\.1,. el W)lj‘ Loy R ,«5 DAY ..w‘ N

- ow = W

INITIAL DISTRIBUTION LIST

¢

) No. Copies

1. Defense Technical Information Center 2
Cameron Station | |
Alexandria, Virginia 22304-6145

2. Lihrar¥,cOde 142 2
Naval Postgraduate School
Monterey, Califcrnia 93943-5100

3. Professor Gordon H. Bradleg, Code 52Bz 4
Lerartment of Ccgputer Science
Naval Postqraduate School
Bonterey, California 93943-5100

4. Professor Bruce Maclennan Code S52M1 1
Department of Ccmputer Science
Raval Postgraguate_School
Monterey, Califcrnia 93943-5100

S Chairpan, Code 052) 2
Lepartament of Ccmputer Science
Naval Postgraéuate_School
Monterey, California 93943-5100

6 Curriculum Officer, Code 037 2
Computer Techonclogg Progranm
. Naval Postqraduate Schoo
Bonterey, Cliforria 93943-5100

7 Oniversigdade Nova de Lisbca 1
Eraca_Principe Ekeal,
1200 Lisboa, Portugal

8 Di é cao do Servico de Instrucao e Treino 1
Eaifgcio de uargnha

Rua do Arsenal, 1188 Lisboa, Portugal

9 Comandante J. A. Cervaens Rodrigues 1
Estado Maior da Armada - C.Y.0.A.
Rua do Arsenal 1188, lisboa, Portugal

10. Comandante fduatdo Manuel Pires Coelho 3
Rua Nunes Claro 15, 1000 lisboa, Portugal

75

-0 o » ’ et gV . () A ’
E 10 " A &) Py ,i<| S Y, WO ¢ (] 2.9
ot v\?ﬂl";‘i"ﬂ?:h’ﬁ\", L T e R

L5

'y . . S . . .
? ' . - " TN ; TN) o
LU) W QUL 3 N) ~ i) LA OO OO
ot 'f:?‘ el PORR 4-‘?::‘,0;‘?f'l?:f"h‘ WK .Pa‘.l,ﬁfvf"~s‘fi,'f'f‘,\". Mottt ahede!

BTN T . T FUN INU SR TN - X WL W WL

A
ek
‘\.u G"
I

L!.:::Q ’

R4
o
[

¢ ‘3
L
:
s
D)

&

PPN |
P

S S

2o
o
=

ny

U
N b M
Thga -
b \ 1Y
%
,I".'s':

et

o
Ay .

“t .

A

>

v

RSO OO T4 O A DR ORI U IO, YT, T, ORI P AR AR TR AP Ey
‘-‘.’v%“h"*’,"-‘ "td"‘u",!b-“,s “,s”‘{; 5‘.«*" "v’*’;'ﬂv ,4° ol‘.'a’fl‘,"’l. oy MT-'}.' m&mmm

