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ABSTRACT

Vast resources are invested in the construction of

software. Reuse of software offers potential savings in the

construction of new software systems. From the perspective

of cognitive science, current proposals for software reuse

are depicted. This work starts with a cognitive analysis of

programing behavior (human thought processes). The aspects

of cognitive behavior related to program comprehension, the

notions of knowledge domain, knowledge acquisition and

reconstruction and memory mechanisms are discussed. The

definition of software reusability is presented and methods

to achieve reuse are discussed. The software development

model called DRACO is presented and its concepts are related

to software reuse and reconstruction.
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T. IN.MO C TIO!

1. THE SOFTWARI CRISIS

In the last few years more than fifty billions of

dollars was spent on software production and maintenance in

the United States[Ref. 1 ]. This enoraous sum was spent on

something which cannot be seen or touched in the

conventicnal sense. The specific nature of software has
brought on many of the problems in its production. In the

last years the problem of software production has been
growing rapidly with the increased size of the software

systems. In the near future "personal computers" will be

able to hold the largest software systems built. Unless

techniques to create software dramatically increase in

productivity, we will not he able to effectively use this

enormous increase in computer power.

Because of this we can use the term "software crisis"

aeani.g that there is a demand for quality of software which

cannot be met with present methods of software constructicn.

Some of the points which have caused the software crisis are

listed below:

The price/performance of computing hardware has been

decreasing (about 20% per year)[Ref. 2];

The total installed processing capacity is increasing

(atout 40% per year)[Ref. 2];

As computers become less expensive they are used in mcre

applications areas, all of which demand software;

Ihe cost of software as a percentage cost of a total

cosputing systems has been increasingERef. 3];

8



The Froductivity cf the software creation process has

increased only 3% - 8% per year for the last twenty

years[Ref. 2];

As the size of the software system grows, it becomes

increasingly hard to construct;

There is a shortage of qualified personnel to Gzeate

software"Ref. 4].

B. TBE SOFTWARE LIFICYCLE

The beginning of the software crisis was announced by

the failure of some very large software systems to meet

their analysis goals and delivery dates in the 1960's. These

systems failed in spite of the amount of money and manpower

allocated to the prcjects. These failures originated an

analysis of the problems of software construction which
marked the beginning cf software eagineering.

Several studies of the process of software construction

have identified the phases that a software project goes
through and these phases have beeD combined into a model

called the software lifecycle[Refs. 3,S). If we view the

lifetime of a software system as consisting of the phases:

requirements analysis, design, code and testing, and

maintenance then the average cost associated with the Fhases

areZRef. 3]:

- Requirements analysis .......... 9%

- Design .. .. ....... ..6

- Code and testing ............. 15%

- Maintenance .................. 70%

If a tool is developed to help the producticn of

software its impact depends on the importance of the

9



lifecycle phases it affects. Thus a design tool has the

least impact while the maintenance tool has potentially the

most impact.

C. REUSABILITY AND COGNITIVE SCIENCES

Cne attempt to reduce software costs has focused on

incorporating software products produced in previous

projects into projects that are under development. This

approach is called "software reusability" and it involves

trying to incorporate whole or partial software products

such as code, analysis plans, requirements design, test

plans, etc. Software reuse has been an active research area
and there has been c:aisiderable discussion about the obvious

economic benefits. But despite the considerable interest,

there has been very little actual reuse of software

products.

The current enthusiasm for reusability seems to be based

on the assumption that if software exists that performs the

same (or nearly the same) function as the product under

development, it should be found and used. This assumption

represents a simple and very naive view of the programmer's

role in software development process. Recent work on

cognitive sciences has lead to the development of scme more
sophisticated (and hopely more accurate) views of the

programming process. Here this work on cognitive science is

reviewed and then, from this perspective, current proposals

for scftware reuse are analysed.

The section of the thesis on cognitive models depicts
the memory mechanism, the knowledge involved in the

components of the memory and the techniques to increase

memory capacity (chunking). The cognitive aspect in computer

programming, which includes the concepts of domains, its

application to reusability and the issue of "documentation"

10
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included in the generic field of external memory, is

discussed.

Finally the fundamental idea of this work, software

reusability, is presented. The principles of reusability

will be discussed and one model,the "DRACO PARADIGM" tdsed

on reusable principles will be presented. Using this model

we analyze how tc create software and the way its

maintenance and design recovery is acomplished.

-'4
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1I. M2gIUL SGIENC 11 SOZT1ABB AISEhIXI

A. INTRODUCTION

More and more in the study of programming and

programming languages, human factors directly related with

the behavior of the programmers and the human mind itself

become important. How we think, our limitations and

capabilities play a fundamental role in the organization of

the human thought process. The thinking process is based on

the understandabilty cf a stimulus, how it affects us and

the way in which the information of a stimulus is processed.

In programming the stimulus can be code, design, software

tools, cr other forms of software information needed to

construct and develop a program.

Another issue to consider is the proper cognitive

psychology of the human being, that consists of how Feople

perceive, organize, process and remember information. This

important mechanism is analysed in the next chapter.

B. COGNITIVE SCIENCE

7here exist several theories or approaches to

understanding how programmers develop programs. They are

usually based on the psychological principles related to

memory mechanisms.

Usually the approaches legin with the distinction

hetween short and long-term-memory, its capacity and way it

works. Also the concept of "chunking", that expands the

capacity of our short-term-memory, is important.

Another important approach is presented by Shneidermann

and flayer[Ref. 6]. 7hey present a model of knowledge based

on a syntactic/semantic model and the concept of knowledge

domain.

12
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The fundamental idea is related to the acquisition and

development of programming skills and consists of the

integration of knowledge from several different knowledge

domains.

Another model is given by Atvood[ Ref. 7] for the

comprehension of a program. In his theory he breaks a

program into a hierarchical tree structure of statements.

After understanding the elementary statements at the bottom

of the tree, they are fused into macro statements until the

top of the tree is reached. Once this stage is achieved the

programmer understands the program. This process is very

close to "chunking".

Cognitive science shows one way of representation and

organization of the programmer's knowledge and permits one

opportunity to control the largest source of influence of

project performance.

C. PROGRAS COEPREHRISION

The program comprehension task is a very important cne

in programming because it is ccamon to several task such as

debugging, testing and modification. In prcgram

comprehension, programmers have to develop an internal

semantic structure for representing the syntax of the

program. It is acguired as high level knowledge, so the

programmer doesn't need to memorize the program's

line-ty-line form based on syntax. With the knowledge of

internal structure it is possible to do a large variety of

transformations on the program like, for instance,

converting it to another programming language or developing

new data representaticns.

13
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D. PUOBLEN SOLVING HODEL

Problem solving is characterized by a process that

develcps several steps in a defined order . The first step

in this model will be to join and to organize all the

material relevant for the prcblem. Then the protlem is

fractionated and the data is analyzed to propose solutions

for the parts of the probles[Ref. 8] After the several

solutions have been analyzed using a process of synthesis,

the final solution of the protlem is constructed. Finally,

the last step consists of the test and verification of the

solution.

E. SCFTWARE ENGINEERING KNOWLEDGE

A software development model for the explicit

representation and manipulation of domain specific and

software engineering knowledge allows us to take a new view

of the problem of system evolution and maintenance. The

descripticn of a system includes its initial statement,

specifications, the software engineering knowledge, the

constraints of the generation process, and construction

planning heuristics base which encapsulate the design

rationalizations and engineering knowledge involved in its

current iiplementation. As a software system evolves due to

changes in the content specification, in the software

engineering specification or in the operating environment,

we can relate these changes to precisely defined portions of
the system's descriptions. Either the initial specification
can be modified and an executable representation rederived

or appropriate manipulation of the system's associated
engineering knowledge bases may guide software engineering
knowledge in the derivation of alternatives implementations.

14

'V-L r- -AV. A -H ..



in1. IINiIBLEDG jACQJ-T AND REPRESENTAION

A. I1 ODUCTION

One important component of the human knowledge mechanism

is memory which is at once remarkable for its power and for

its limitations. On the one hand the vast store of

information that we have in memory for the meaning of words,

facts and images is considerably superior to the most

powerful computer. On the other hand the occasional

constraints on memory are often severe enough to be major

bottlenecks in human performance. The processes that make

use of all the information stored in memory are recognition

and memory search. Recognition is related to problem sclving

to the extent that stimulus elements in the problem space
suggest appropriate things to do. Memory search is involved

in problem solving wken more devious pathways must be taken

in constructing a problem space, or in applyng

Eroblem-solving operators.

This chapter discusses how the information is acquired

and processed, which is followed by the presentation of a

cognitive model of memory. Finally memory classifications

will be analysed and techniques for increasing the memory

capacity will be discussed.

B. ACQUISITION OF IVPOREATION

The human being depends on the environment where he

lives and it is in this environment that he obtains the

information needed for his survival. The sense organs are

importants factors in this acquisition because they furnish

a physiclogical representation of the outside world. An

attention mechanism will select the conspicuous asFects of



this representation for further processing by a central

system. However, the nervous system introduces alterations

in the physical image received, simplifying the information

that must be transmited to high level analysing systems and

later to the memory.

The central processing of this information can be
executed in two different ways[Refs. 9,10]:

Bottom-up systems or data driven. The input information

is treated in sucessive and increased levels of

sophistication until the final recognition of the input.

Tcp-down systems or conceptual driven. This prccess

starts with the highest-level of expectation of an object

that is further refined by analysis of the context to

yield expectation of particular lines in particular

locations.This is a more powerful process than the

bottcm-up but it's strongly dependent on the ability to

make syntactic chcices of the objects to expect.

Top-down and bottom-up processing take place

simultaneousely and come together in the job of the
comprenhension of the outside world.

C. PROCESSING AND STORING INFORRATION

One of the aspects of the human thought process, related

with computer programming, is the way the memory works and
the information is prccessed and stored. A memory cognitive

model commonly adopted[Bef. 6] is depicted in Figure 3.1.

In this model very-short-ter-memory (VSTM) is composed

cf locations to hold data for a short time[Ref. 9]. This

information can be retrieved by the short-term-memory (SIR)

by an attention mechanism. Here another process occurs

(perception or recognition) related with the analysis of the

individual characteristics of the stimulus and the context

where these characteristics are inserted.

16



stimiuli Very Shrr f-Termn Shci f-rerm
Mtfi7cry (vsTM) Memory (S T^.?)

L'ong Trm
IP-emcry (L TM)

Figure 3.1 Memory Cognitive Model.

The ST3 has a temporary and limited capacity to store

information. Its span imposes severe limitations on the

amount of information that we. are able to receive, process

and remember. Miller[Ref. 11, in his paper "THE 4AGICAL

NU3BEB SEVEN PLUS OR MINUS TWO" identifies 5-9 chunks of
information as the capacity of short-term memory. This

information is highly volatile and can be lost by the
changing of 'attenticn. To avoid this problem it will be

necessary to rehearse the information. The reherasal process

consists of refreshing the contents of STM by ccntinuous

repetition to oneself.

Finally, in this process, the information needs to be

stored in a permanent place called long-term-memory (LTM).

The 113 is characterized by its unlimited capacity to store

the programmer's permanent knowledge. The store process is

relatively slow and requires a second rehearsal for fixing

this information (learning).

'. 1



* D. HfBOBf IN PROBLEB SOLVING HODEL

In protlem solving processes it will be necessary to

introduce modifications in our model[Ref. 12]. Following

Feigenbaun new components will be incorporated as shown in

Figure 3.2.

Problem Short Term

V M Moryr(S T(M)
¢WorWcking ( WM) Slution

L Cn9 TermT

E Dory (L.rM

E Memcry

Figure 3.2 Conpcments of Memory in Problem Solving.

These new components are the working memory and external

memory. The working memory is characterized by having more

permanent storage capacity than STM and less than LTH. The

working memory plays the role of integrating all the

informaticn from the STH and LT, of analyzing data, of
building it into new structures and furnishing the results

to be used to generate solutions.

The external memory collects all the information

contained in exterzrl sources (modulesmodels,programs,

documentation) and is helpful to develop possible scluticns

to the prcblem[Ref. 13]. It also compensates for the slow

fixation times associatei with the LTM, and frees the

18



limited ST11 resources for use in problem solving

(creativity, concentration etc.).

E. PROBLIE SOLVING TASKS

The process related with problem solving tasks involves

the following steps[,efs. 6,10::

- Erogram composition

- Comprehension and design a solution

- Coding

- rebugging and modification

- learning

1. Eo_ rqa topm--ion

In this first step the problem is presented to the

programmer. By a meucry mechanism it passes from the short

term memory to the working memory. Here the problem is

analysed and defined in terms of the "given state" and "goal

state".At the same time additional information is called

from long term memory and external memory for further

analysis.

2. Comprehesio and Design of a Solution

This second step is one of the most important

because it is the tasis for debugging, modification and

learning tasks. The programmer constructs a multilevel

internal semantic structure (hierarchical) with the aid of

his syntactic knowledge of the language. At the top of this

hierarchical structure the programmer develops a

comprehension of what the program does. At the lower levels

the programmer may recognize the algorithms or ccmmon

19
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sequences of statements that can be used to solve the

problem (solution). The important issue here is that the

programmer develops an internal semantic structure for

representing the syntax of the program, but he doesn't need

to memorize or comprehend the programm line-by-line based on

* the syntax.

3. Codinq

In this third step, the programmer will translate

the program to internal semantic structure using an encoding

process similar to chunking. The programmer will recognize

the function of groups of statements instead of

character-by-character, and chunk this group of statements

into progressively larger chunks until all of the program is

comprehended and the internal semantic structure is

developed. Then the programmer could convert the program to
any programming language and explain it to others easily.

4. 1 ebug ig and Modification

In debugging we are going to identify the errors

that can occur in the composition task. These errors result
from an incorrect transformation from the internal semantics

to the program statements or from an incorrect
transformation of the problem solution to the internal

semantics. The first kind of error can be detected by

analysing the output which, in case of error, will differ

from the expected output. These errors can be originated by

* mistakes in the coding of a program or from incorrect

knowledge of the functions of certain syntactic

constructions in the programming language. The second kind

of error is more difficult because their recovery implies a

total reevaluation cf the programming strategy. They are,

for example, failure to deal with out-of-range data values,
inability to deal with special cases such as the average of

a single value, etc.

20
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Modification develops by two steps. The first step

consists of understanding the internal semantic structure of

the program to modify. The second step consists of changing

this semantic stucture in function of the modification

needed with the consequent alteration of the programming

statements. This is a complex task that requires knowledge

in composition, comprehension and debugging.

5. learning

This last task consists of the acquisition of new

programming knowledge. The two classes of knowledge,

semantic and syntactic, are acquired in two different ways.

The semantic knowledge is acquired by meaningful learning

through the development of internal semantics fcr a

particular problem, and it is essential during the problem

analysis. The syntactic knowledge acquired by rote learning

is specific to the language used, and becomes important

during the coding and implementation phase.

7. MEMORY TRACES CLASSIFICATION

The memory traces can be classified as non-associative

and associative memories[Ref. 14].

1. _Vo -Assoc,.vle jemories

This kind of memory consists of records encoded and

stored in locations (cells,registers,etc.) in the order that

they occur. Its purpose is to get the exact temporal

sequences of the events. In computer terminology this

representation is usually denoted "location adressable"

because we can obtain directly the contents of a particular

location to answer questions. In non-associative memories we

can have one dimensional non-associative memory as for

examFle the sucessive sections of magnetic recording or the

is 21
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columns of an IBM card, or two dimensional non-associative

memories such as charts, tables or pictures. The human

memory involves non-associative memory when it creates

external memory (documentation, tables, modules etc.).

2. Associative remories

Associative memories consist of records of events

that are encoded and stored by networks of nodes. The big

difference between this type of memory and non-associative

memory is that when the same event occurs at a later time,

precisely the same node or set of nodes are activated

(direct access). This constitutes an important economy in

the representation of events.

The human ccnceptual (semantic) memory involves

association of particular concepts, events, facts and

principles with each other, but to retrieve information,

memory must be given specific cues.

3. Hybrid Memories

The computer memories are nct as fully associative as the

human memory. One can tell that it is hybrid because it is

a combination of associative and non-associative memories.

The information (documentation) is stored in a

non-associative manner but each of these documents will be
indexed by a large number of items and any of the various

combinations of indexing terms will provide relatively
direct access to the document through a sorting tree that

works as an associative memory.

G. IRTICAL ASSOCIIIION OR CHUNKING

Given the severe capacity limitations of

short-term-memory, one method of reducing these limitations

and sc expanding our capacities is by "chunking"[Ref. 11].
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As commonly used this term refers to regrouping or recoding

the stimulus information presented.For example if the

unbroken seven-item 4731052 was translated into 473 pause

1052 one would have one type of chunking (regrouping) cr if

110100000011 (binary) was translated into 6403 (octal) one

would have another type of chunking (recoding). The

importance and usefulness of chunking was first sugested by

Miller and as experimental evidence he actually used a

demonstration similar to the binary octal translation

example given above. Here two main points about chunking in

short-term-memory are shown. First, memory as measured by

memory span is more a function of the number of chunks of

information, than the number of bits of information. Second

memory span, for binary digits, could be dramatically

increased by a recoding technique. Miller also points out

that memory span is primarly a matter of the number of

chunks we can recall, regardless of the amount of

information contained in each chunk.

•. EITERNAL ENOR!

External memory, one of the components of human

information processing, can be viewed in two different ways
depending on the type of aid that it can furnish and its

application in the programmer's work. The first one,

external aids in domain reconstruction, will be analyzed in

Appendix A and the second, external aids related with the

operation of an interactive computer system, will be

discussed in Appendix B.
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~~IV. KNOUEiLgE _ cQqISLTOM

A. ISTRODUCTION

This chapter outlines the basic conceptual understanding

of ccoputer programming process and the knowledge-tased

approach used for its development. The ideas outlined here

are embodied in a toci intended to implement a radically new

software process. This new tool (reusability of programs)

becomes each day a more important way to solve the actual

problems of generatic¢ of new software.

B. SINTICTIC/SERANTIC KNOWLEDGE
0

The knowledge stcred in IT can be divided into two

different parts [Ref. 6]: Syntactic and Semantic Knowledge

Figure 4.1.

Low LOw

Prcblem Conputer
Oomo in Relored

So rcuntic Syntac tic

Figure 4.1 Knowledge in Long-Term-Memory.

24'' 2



1. Syntactic Knowledge

7he syntactic knowledge is characterized ty its

precision and detail and involves the knowledge of the

structure of the language, formats, iteration, conditionals,

assignment statements, libraries of functions, etc.

2. Semantic Knowledqe

*' Semantic knowledge is located in LTM and it has two

components: computer related concepts and problem domain

concepts. Semantic knowledge has a hierarchical structure

going frcm low-level action to high-level goals.

3. Computer-Related Concepts

Computer-related concepts include objects and

actions at high and low levels. For example, a central set

of ccmputer-related object concepts deals with storage.

Users ccme to understand the high level concept that

computers store information[Ref. 6]. The concept of store
information can be refined into the object concepts of the

directory and files of information. In turn the directory

object is refined into a set of directory entities which

each have a name, length, data of creation, owner,acess

control etc. The file objects can be decomposed into program

files, data files, index files, text files, image files,

audio/speech files etc. Each file may have a lower level

structure consisting of lines, fields, characteristics,

pointers, binary numbers etc.

The computer-related actions with respect to stored

information include saving and loading a file. The

high-level concept cf saving a file is refined into the

middle level actions of storing a file on one of many

disks,of applying access control rights (or simply write

protecticns in most cases) , of overwriting previous
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versions, of assigning a name to the file, etc. Then there

are many low-level details abcut permissible file types or

sizes, error condition such as shortage of storage space, or

responses to hardware or software errors.

Users can learn computer-related concepts by seeing

a demonstration of commands, hearing an explanaticn of

features, or by trial and error. A common practice is to

create a model of concepts, either abstract, concrete, or

analogical, to convey the operation. For example, with the

file saving concept, an instructor might draw a picture of a

disk drive and a directory to show where the files go and

how the directory references the file. Alternatively the

instructor might make a library analogy and describe how the

card catalog acts as a directory for books saved in the

library.
I Since semantic knowledge about computer-related

concepts has a logical structure and since it can be

anchored to familiar concepts,this knowledge is expected to

ke relatively stable in memory. If we remember the high

level concepts about saving a file, we are able to conclude

that t.e file must have a name, a size, and a storage

location. The linkage to other concepts and the potential

for a visual presentation support the memorization of this

knowledge.

In conclusicn, the user must acquire semantic

knowledge aLout computer-related concepts. These concepts

are hierarchically organized, can be acquired by meaningful

learning or analogy, independent of the syntactic details,

hopefully are transferable across different computer

systems, and are relatively stable in memory.

The usual way for people to deal with large and

complex problems is to decompose them into several small
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problems, in a hierarchical manner, until each subproblem is

manageable. Thus, a book is decomposed into chapters, the

chapters into sections, the sections into paragraphs, and

the paragraphs into sentences.

Similarily, problem domain actions can be decomposed

into smaller actions. As an example in writing a business

letter with a computer the user has to integrate three forms

of knowledge. The user must have the high-level concept of

writing a letter (problem domain), recognize that the letter

will ke stored as a file (computer related domain) and know

details of the save command (syntactic knowledge). The user

must be fluent with the middle level concept of composing a

Js sentence (problem dcmain), recognize the mechanism for

begining, and ending a sentence (computer-related) and know

the details of how sentences are demarcated in the screen

(syntactic knowledge). Finally the user must know the

proper low-level details of spelling each word (problem

domain), comprehend the motion of the cursor on the screen

(comuter-related domain), and know which keys to press for

each letter (syntactic knowledge).

Integrating the three forms of knowledge,the objects

and actions, and the multiple levels of semantic knowledge

is a substantial challen~e which takes high motivation and

concentration. Learning waterials that facilites the

acquisition of this knowledge are dificult to design,

especially because of the diversity of background knowledge

and motivation levels of typical learners. he

syntactic/semantic model of user knowledge can provide a

guide to educational designers, by highlighting the
different kinds of kncwledge that users must acquire.
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C. I ULIDGE DOIN

A great number of tasks in computer programming and

software reuse are closely related to the programmer

knowledge that is critical for understanding, testing and

debugging a program and in the development and maintenance

of the scftware.

7bis knowledge can be seen as a succession of knowledge

domains which bridge tetween the problem domain language and

the final problem domain, execution Figure 4.2.

refine' erni Process

LProblem I iPrb/ein
Domoin ". Ocmin
Lan quoqe Execution

Intermediate Domains

Figure 4.2 Knowledge Domains in Problem Solving.

"uven BrooksERef. 13], Fresents a theory of how the

understanding phase is acomplished and how it is based on

the ccncept of knowledge domain. This concept is defined as

a set of primitive objects, properties of the objects, and

relations among objects' and operators which manipulate these

properties or relaticns. Following this theory the task of
developing a program consists of constructing and

reconstructing inforaation atout the modelling "knowledge

domains" beginning with the program in execution.

1his concept of domain provides a convenient

encapsulation of one problem in the following way: the

problem is presented in one domain language. When a
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refinement process is invoked the problem passes through one

or more intermediate domains, ending in the execution of the

program. Also it is important to present the concept of the

refinement process. This concept consists of restating the

problem specified in one domain into other domains by using

or excluding assertions. The choice of the refinement

process will have to obey and maintain the consistency of

the developing problem but its level of abstraction must be

reduced.

E. DCBAIN ACQUISITICI

The acquisition of a knowledge domain can be viewed as

acquiring two different types of information. First the

programmer has to know the set of objects within each
domain, their properties and relationships, the set of

operations performed on these objects and the sequences in

which they occur.

The second is related to the information about the

relationships between objects and operators in one domain

and those in a nearby domain.

To acquire this knowledge, the programmer has tc use

different sources of information contained in the program
(for example, variables, structure, procedures etc.) and

external aids such as user's manuals, flowcharts, program

design languages, that will be analyzed in Appendix A.

E. DONAIN RECONSTRUCTION

Now synthestizing the several concepts presented before,

we cansee the two different processes to understand a

program kncwn as the lata driven and concept driven

processes. The first one, which is more naive, uses a

bottom-up hierarchy where the programmer tries to understand

each line of code and assign them interpretations. Then he
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aggregates these interpretations to provide the

understanding of larger segments of code. In the second

process, based on a top-down hierarchy, sucessive

refinements of hypotheses from other knowledge domains will

be performed and their relationships to the execution of the

program established.

These hypotheses appear from the person's knowledge, the

task domain and the cther domains that might relate to it.

The refinement process is progressive and interactive and is

based on the information extracted of the program text and

other sources and can involve generation of subsidiary

hypotheses. With this hypothesis and certain features of the

program text, the programmer can reconstruct the knowledge

domain for a particular job that is being performed.

Finally we can use the procedure to acquire information

to reconstruct the kncwledge domain in the following way:

Ihen the programmer obtains any information about the

program or its description a primary hypothesis is created.

Then, by a process of verification the programmer generates

sucessive subsidiary hypotheses in a top-down, depth-first

manner (hypothesis hierarchy generation) that will be

refined. The lowest point in this hierarchy may te refined

enough to be verified against the program text or

document ation.

F. DCRAIN KNOWLEDGE IND REUSABILITY

Developing domain knowledge theories is difficult, but

theories can be designed in such a way as to be
' reusable[Ref. 15]. Reusable domain theories can be viewed as

nodes in a network. 7he direct arcs indicate the directions

of ontological shifts that explain concepts in one theory in

terms of concepts in other theories. These logical links are

developed as steps along abstraction dimensions of
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classif ication, aggregation-decomposition and

generalization-specialization [Ref. 16).

The conceptual modelling activity produces a parallel

development of a domain language network. Entities,

relations, functions etc. in domain theories have

corresponding constructs in the domain languages. Their

implementation corresponds to the translation functions of

the theory network and reflect the abstraction processes

used. By defining a network at a high level with respect to
domain languages, we are separating the domain modelling

problem (using a syntactically decoupled language) and the
model integrdtion prcblem. The network (unlike most wide

spectrum languages) is neutral with respect to modelling

application knowledge and effectively implements extensile

families of languages. The orthogonality of the domain

languages enable the implementation of projection mechanisms

allowing the system developer to view a system from

different perspectives at any point in its evolution [Refs.

16,17:.
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V. flUjI§jjLT

'1

A. T1RECDUCTION

Software reusability can be defined as the extent to

which software products can be used in other applications.

Reusabilty is measured in terms of the effort required to
move a software product or a part of a software product to

another application.

Beusability is a very important concept in software

engineering and invclves a large scope of actions directly

related to the programmer, his behavior and the organization
of his knowledge.

In this field we can consider two different ways to

acomplish this task. For the first one the problem is

presented as a set of needs which potentially can be solved

by a software program. Then the programmer attempts to meet

those needs by creating a semantic knowledge model cf the

problem. Finally with a knowledge of software workproducts

from previous development situations, he incorporates one or

more of those workfroducts in the creation of the new

program. This is the common way to make software reusable.

In the second way the programmer acquires a large

knowledge of the software programming process by studying

pieces of software already tested, that are available from

external aids (external memory). Then the programmer is able

to construct a semantic model in his mind and easily to

translate it to code. To accomplish this task he needs aJa

syntactic knowledge which is specific to the language that

he will use. This is the traditional process to produce

software and we will refer to it as "software

reconstruction". That is, the programmer using his knowledge
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base and external memories "reconstruct" the program from
his mind.

Both ways involve the principles presented in the last

chapters. We can see how the human process is developed and

the fundamental role of the memory mechanism and attention

in the process. The new theories of cognitive science bring

important help to understanding how the comprehension task

is executed and how the knowledge is stored in memory. The

cognitive model presented by Shneidermann and Mayer

completes this ideas and clarifies the process of the human

thinking.

The reusable task development begins by the

comprehension of the problem to be solved, using the prcblem
1.. '." solving model depicted in Chapter II. Then the programmer

was to acquire the whole set of related information, which

constitutes the set cf several domain knowledge involved,

and constructs his semantic knowledge. After this the

programmer chooses the best approach to solve the prcblem.

The cognitive theory prevides a more sophisticated
model cf how people reuse software products. The model shows

that in some situaticns the programmer may use the results

cf previous projects to reconstruct a new product. Thus the

previous software product has made a significant

contribution to the programming process, but this is not

called reuse because the previous product was not copied

into the new product. This suggests a reason why reuse is

not used more widely and suggests that reuse may not be ever

used as extensively as some proponents avocate.

B. CDARACTERISTICS 01 REUSABILITY

Reusabilty of software requires the software be

understandable, flexible, modifiable, and accessible.

Simplicity, systems clarity and self lescriptiveness
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criteria will enhance the understandability. Generally,

machine and software independence, application independence
and modularity will improve the flexibility, modifibility

and adaptability. well structured documentation and machine

independence were consolidated into and replaced by the term

independence.

The reuse of program products has a number of obvious

payoffs such as reduction of costs,increased reliability,

increased performance and enhancement of software systems.

If the effort required to reuse the software is such less

than that required tc implement it initially and the effort

is small in an absolute sense,then the software program is

highly reusable. The degree of reusability is determined by

the number, extent and complexity of the changes, and hence

by the difficulty in the software implementation process.

C. PRINCIPLES OF REUSABILITY

It will be useful to present some concepts that are very

important to consider in a reusable application. They are

the basis of effective work in this field.

1. Heaqb~e_ .=.bit.c.tur_

This concept is related to the necessity to create a

specific architecture for reusability. Kendall pcints

out[Ref. 18] that an effective reuse requires an

architectural starting point,rather than joining modules and

trying to link them together.

The approach presented by Kendall has the following

attributes:

All the data description should be external to the

programs or modules intended for reuse;
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All the literals and constants should be external to the

programs or modules for reuse;

The input/output control should be external to the

prcgram or modules intended for reuse;

The programs or modules intended for reuse consist

primarly of application logic.

Even though this architecture is not complete(it
does not deal with graphics,voice,or nonstandard data), this
model is an important approach in the domain of reusability.

2. o4z_ion

-come softwar is reusable because it has been built

to be sufficiently general to be adaptable to a sizable
family of applications. This idea can be implemented in the

concept to use modules in software reuse.

Re can point to some factors advantageous for using

this approach:

The possibility of handling modules as data;

Modules which are good abstractions and have general

interfaces with the rest of the software;

The use of specific modules as software interfaces to

different parts of the environment of the software.

'We can define a module as a program or a group of
closely related progams. The structure of a module is lased

on the principle of information hiding. Following this
principle, systems details that are likely to change
independently should be the secrets of separate modules.

7he only assumptions that should appear in the interfaces
between modules are those that are considered unlikely to

change. Every data structure is private to one module; it
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may be directly accessed by one or more programs within the

module but not by other modules. Any other programs that

require information stored in module's data structures must

obtain it by calling the module program.

Finally some of the goals of this module structure

are:

The decomposition into modules brings a reduction of

software costs by allowing modules to be assigned and

revised independently;

Each module's structure should be simple enough that it

can be understood fully;

It should be possible to change the implementation of one

module without kncwledge of the implementation cf other

modules and without affecting the behavior of the other

modules;

It should be possible to make a major software change as

a set of independent changes to individual modules.

Based on the goals above, the software will be

composed of many small modules and organized into a

structural hierarchy. Each nonterminal node in the tree is

composed of modules represented by its descendents. This is

the fundamental concept where the DRACO (Ref. 16] paradigm

lies, as we will see telov.

D. FOBHS OF REUSABILITY

It will be useful to present and examine some of the
actual applications where reusabilty has been shown to be

successful.
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1 common amogmei-,nq 3eseimi1a

These modules are standard "black box" modules that

execute generic program functions. They are characterized by

having high cohesion (perform one specific function) and

loose coupling (meaning that they pass only the data

required from the invcking program). They return only their

input, resulting data and a validity code. These

characteristics assure reusability in a maximum number of

applications[Ref. 19].

2. Macro Expansions and/or Subroutines

This is the cidest reusable software technigue. It

has been used in assembly level languages as well as high

level languages and is well suited for modelling procedural

abstactions. They have been used extensively in constructing

program libraries of mathematical functions.

3. Packa es

Packages are usually collections of routines that

together execute a number of possible related services.

Their behavior and operation principles are similar to

mathematical functions. Examples of this packages include

accounting packages, statistical packages, payroll packages,

linear programming packages etc. They are written for

specific applications that are well understood.

Packages generally have to be treated as mcnolitic

entities. They are difficult to modify or embed in other
systems. Most packages are insufficiently paramaterized and

therefore have limited use as generic entities. They have a

low level of reusability because they are strongly dependent

on specific operating systems.
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4. Compiles

Another example where the reuse concept is applied

is in compiler development. The specification language for

compiler-writing is BNF which is used to describe the syntax

of the language. Once the BNF formalism is assumed, a parser

generator program can be built. This digests a BNF
specification of a language and automatically generates

parsing tables. These tables, coupled with a simple

' algorithm, allow for the syntactic analysis of sentences.

The final tool is the compiler-compiler. This allows for the

specification of the source language, the object language,

translaticn of source language into object language and

other optimizations. Once the user has provided complete

details to the compiler-compiler, part of a compiler is

*produced.

As we can see the compiler-compiler presents a high

level of reusability because if we furnished the set of

specifications of one source language it automatically

produces a compiler for this source language.

.3
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VI. THE DRACO PAR _DIG

A. INTRCDUCTION

This chapter will present and discuss a mechanism called

DRACC which essentially consists of a model where the reuse

concepts are applied in construction of software systems.

The fundamental purpose purpose of DRACO has been to

increase the productivity of similar software systems, and

its approach is based on the construction of software from

reusable software components in a reliable way. The programs

produced from these mcdels are very efficient with the major

optimi2ations done in the intermediate modelling

languages[Ref. 16].

Basically three activities executed by DRACO can be

pointed cut:

DRACo accepts a definition of a problem domain as a

high-level domain specific language. For acomplishing

this task it will te necessary to describe the syntax and

semantic of the dozain language;

After the domain language has been described, DRACO

accepts a description of a software system tc be

constructed as a statement or program in the domain

langage;

Finally, once a cciplete domain language program has been

given, DRACO can refine the statement into an executable

program under human guidance.

For a better analysis of the DRACO model, four major

themes dominate the way DRACO operates: the analysis of a

complete problem area (domain analysis), the formulaticn of

a model of the domain into a special purpose, high-level
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language(domain language), the use of software components to

implement the domain language, and the use of the source to

source program tranformations to specialize the components

for their use in a specific system.

1. Domain Analysis

Domain analysis differs from systems analysis in

that it is not concerned with the specific actions in a

specific system. It is instead concerned with what the

actions and objects occur in all systems in an application

area (problem domain). This may require the development of a

general model of the objects in the domain, such as a model

which can describe the layout of the documents used. Domain

analysis describes a range of systems and is very expensive

to create. It is analogous to designing standard parts and

standard assemblies for constructing objects and operations

in a domain. Domain analysis requires an expert with

experience in the prcblem domain.

2. Domain Language

A DRACO domain captures an analysis of a problem

domain. The object in the domain language represents the

objects in the domain and the operations in the domain

language represent the actions in the domain. It is

commonly accepted that all languages used in computing

capture the analysis of some problem domain. [any people

bemoan the features of the Fortran language; but it is still

a gocd language for making straight line output of

calculations, the type of computing high-energy physics has

done for many years. This is not to say that FORTRAN is a

good analysis of the domain of high-energy physics

calculations, but it has its place[Ref. 20]. Domains are

tailored to fit into the right place as defined by the uses

in which man is interested in using computers.
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3. §gf twal _q2ncnents

As discussed in Chapter IV, software components are

analogous to both parts and assemblies. A software component

describes the semantics of an object or operation in a

problem domain. There is a software component for each

object and operation in every domain.

Once a software component has been used

successfully in many systems, it is usually considered to be

reliable. A software component's small size and knowledge

about various implementations makes it flexible to use and

produces a wide range of possible implementations of the

final program. The top-down representation (refinement

history) of a particular program is organized arcund the

software components used to model the developing program.

The use of components does not always result in a program

with a block structure chart in the form of a tree. Usually,

as with programs written by human programmers, the block

structure chart of the resulting program is a graph as shown

in figure 6.1.

Reownum

St.

Figure 6.1 Block Structure Chart.
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4. Jgurce-to-Source Pra Transformation

The source to source program transformation[Ref. 21]

used ty DLRACO strip away the generality in the components.

This makes general ccmponents practical. The tranformations

also smooth together ccmponents, removing inefficiencies in

the modelling domain. This makes small components practical.

Since single-function, general components are esential to

the parts-and-assemblies approach, the tranformations make

component-built systems efficient and practical.

A tranformaticn differs from an implementation of a

component (a refinement) in that transformations are valid

for all iiplementaticms of the objects and operations they

manipulate. Refinements can make implementation decisions

which are limitations on the possible refinements for other

components of the domain. In general transformations relate

statements in one prcblem domain to statements in that same

problem domain, while components relate statements in one

problem domain to statements in other domains.

The DRACO mechanism, in this way can be considered

as a general mechanism which can create (from human

analysis) and manipulate (with the human guidance) a library

of domains.

B. THE PARTS-AND-ASSINBLIES CONCEPT

Among the several approaches to building things there

exists one called "parts-and-assemblies" that has special

importance for our study. The concept underlying this

approach has been used extensively in engineering[Ref. 22]

and it is one of the techniques which has enabled computer

hardware engineers tc increase the power and capacity of

computers in a short time. The parts-and-assemblies approach

relies cn already built standard parts and standard

assemblies of parts to be combined to form the object. This
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approach offers cheaper construction costs since the object

is built from pre-built standard parts.

we can define an assembly as a structure of standard

parts which cooperate to perform a single function. The use

of standard parts and assemblies will supply some knowledge

about tte failure nodes and limits of the parts. This

approach has as disadvantages that the design of useful

standard parts and assemblies is a very expensive work and

requires craftsman exlerience.

C. SOFTUIRE CONSTRUCTION USING PURTS-AID-ASSEMBLIES

A software component is analogous to a part and can be

viewed as either a part or an assembly depending on the

level of abstraction cf the view. The view of a particular

component usually changes from a part to an assembly of

subparts as the level of abstraction is decreased. This

duality of a component is a very important concept and

failure to recognize it caused some problems with earlier

work on reusable software (representation of the software to

be reused). In program libraries the programs to be reused

are represented by an external reference name which can be

resolved by an linkage editor. While the functioni

description of each Frogram is usually given in a reference

manual for the library, the documentation for a library

program seldom gives the actual code or discusses the

implementation decisions. The lack of information prohibits

a potential use of a library program from viewing it as

anything other than a part. If the user can treat a library

program as an isolated part in his developing system then

the program library will be useful. Mathematical function

libraries fit well into this context.

Usually, however, a user wishes to change or extend the

function and implementation of a program to be reused. These
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modifications require a view of the program as an assembly
of subparts and a part of many assemblies. To decrease the

level of abstraction of a library program in order to view

it as an assembly of subparts requires information about the

x theory cf operation of the program and implementation

decisions made in constructing the program.

To increase the level of abstraction of a library

program to view it as part of a collection of assemblies

requires information about interconections between programs

in the library and the implementation decisions defining

common structures. Ncne of this information is explicit in a
simple program library; the burden is placed on the user of

the library to extract this information.

Finally it seems that the key to reusable software is to

reuse analysis and design, not code. In code the structure

of parts which make up the code has been removed and it is

not divisible back into parts without extra knowledge. Thus

code can only be viewed as a part. The analysis and design

representation of a program make the structure and the

definition of parts used in the program explicit. Thus,

analysis and design is capable of representing both the part

view and assembly view while code only represent the part

view. This is the fundamental principle of the DRACO
approach[Ref. 16) for reusable software.

D. DRACO PARADIGN

The DRACO paradigm is used for the generaticn of

software. In this approach one assumes that an organization

wants to construct a number of similar software programs.

DRACO consists of an interactive system which Fernits a

user to conduct the refinement of a problem stated in a high

level problem domain specific language into an efficient,

low level executable irogram. This is accomplished by making
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individual modelling and implementation choices and tactics,

and by giving guidelines for semi-automatic refinement.

Draco furnish mechanisms to enable the definition of problem

domains as special purpose, high-level language with

automatic translation into an executable format. The

notation of these languages is the notation of the problem

domain; it is not necessary for the user to learn a new

language. When the user interacts with the system he uses

the language of the dcmain.

E. IN EXAMPLE OF THE USE OF THE DRACO PARADIGH.

Supose an organization was interested in building many

customized systems in a particular application area, say

systems for aiding banks. They would go out to bank offices

and study the activities of banks. A model of the general

activity of being a hank would be formed and the objects and

operations of the activities identified. At this point, the

analyst of the domain of bank systems would decide which

general activities of a bank are appropriate to be included

in hank systems.
The decisions of which activities to include and which

to exclude are crucial and will limit the range of systems

which can later be built from the model. If the model is too

general,it will be harder to specify a particular simple
bank agency. If the model is too narrow, the model will not

cover enough systems to make its construction worthwhile.

Cnce the analyst has decided on an appropriate model of

tank activities, he specifies this model to the DRACO system

in terms of a special-purpose language specific to the

domain of banks and their notations and actions.
She idea here is not to force all the banks intc the

same mold by expecting them all to use the same system. If
the model of the domain of banks is not general enough to
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cover the pecularities which separate one bank from another,

then the model will fail.

The domain of tank systems is specified to DRACO by

giving its external-form syntax, guidelines for printing

things in a pleasing manner, simplifying relations between
the cbjects and operations, and semantics in terms of

domains already known by DRACO. Initially, DELCO contains

,, domains which represent conventional, executable computer

languages.

Once the bank domain has been specified, systems

analysts trying to describe a system for a particular bank

may use the model language as a guide. The use of

domain-specific language as a guide by a system analyst is

the reuse of analysis.

Once the specification of a particular bank system is

cast in the high-level language specific to banks systems,

DEACO will allow the user to make modeling, representation,
and control-flow choices for the objects and operations

specific to the bank system at hand. The selection between

implementation possibilities for a domain-specific language

is the reuse of the design.

Design choices refine the bank system into cther

modeling domains and the simplifying relations of these

modeling domains may then be applied. At any one time in the

refinement, the different parts of the developing program

are usually modeled with many different modeling domains.

The individual design choices have conditions on their usage

and make assertions about the resulting program model f

they are used. If the conditions and assertions ever c,

into conflict, then the refinement must be backed up to to a

point ef no conflict.
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F. PRINCIPLES OF THE DRACO PARADIGM.

Before the program construction begins, the domain areas

of interest are formalized by specification of each domain

in the following way[Bef. 16]:

An (informal) set of concepts composed of objects,

olerators and relations;

A formal external notation for specifying an instance of

the dcmain language;

A recognizer for the notation(parser);

A formal internal representation for the notation (an

a1bstract graph constructed from the parser process);

A set of transformations which map internal

representation in a domain to equivalent internal

representations in that same domain (generaly used to

effect optimizaticns).

A set of refinements which map individual concepts to one

(or usually more) concepts in other domains.

The domains reguired to develop software for a given

application area can be viewed as constructing a "domain

structure graph" in which the nodes are domains and the set

of refinements between them are represented as arcs. Such a

network must provide for a refinement path to map high-level

specifications into icw-level implementations. Usually there

are multiple paths through the domain network from an

abstract domain node to an implementation domain node.

Software development starts with an abstract

specification written using a combination of existing domain

languages. The implementation process traverses a path

through a space of possible implementations of progressively

lower abstraction until a concrete implementation is reached

Figure 6.2.
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Concretp
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Figure 6.2 Construction of Program from Specification.

i The space forms an enormous directed acyclic graph (DAG)

. called a "possible refinement DAG", with nodes in the graph
=, representing specifications for the program written with
, notations from multifles domains. The single root of the DAG

is re~resented by the initial specification. Leaves of the

EAG are are concrete specifications. Arcs represent
-. individual possible choices (refinements) ; the domains used

by the specification at a node limits the tyeof arswhich

i exit that node to preclsely those arcs emanating from the

e.same domains f ound in the domain structure graph. Usually,
, -. an individual node is reached by many paths, representing
7. ;$' different orders of choice of the sane set of dsg

decisions. A path trom the root to a leaf represents a

particular choice of a set of implementation design

decisions and constitutes what is generally called the
design. Navigation through the graph may be controlled by an
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implementation-style enforcing mechanism called tactics.

Separate tactics can co-exist for different purposes:

implementation for speed, for minimal space, for rapid

prototypingetc.

7he refinement DIG is never constructed in its entirety.

Only the path needed to reach a desired leaf from the root

is explored. Once an implementation design path is chosen,

it is not kept as such, but the design decisions that define

the path are generally retained. A prototype tool to handle

domain specifications and to construct an implementation

path from abstract program specifications has been

constructed by DRACO.

In Appendix C it will be shown how maintenance and

recover of design in LRACO is acomplished.
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VII. CONCLUSION

In this work the theories related to human thought

processes, memory organization and the conseguential

implications on software construction are presented and

discussed. Its iuportance in the new directions of

,programming development is obvious, since software
reusability is one field where these concepts have primory

influence.

The two approaches presented are conceptually different.
7he first one, more naive, represents the way reusability

was understood in the past with its implementation based on

the reuse of code. This form of software constuction

represents the largest short-time payoff which explains why
software producing organizations have been preoccupied with
its utilization. However, it is very dificult to reuse code

and it is not, in general, efficient because the specific

analysis and design decisions are usually not obvious from

reading the created ccde.
For the second, "software reconstruction", the software

construction relies on the modern theories of domain
analysis and design. The concept of knowledge domain is the
keystcne of this approach and its acquisition usually is

difficult and expensive. The programmer has to spend a large

amount of time in the acquisition of the knowledge involved
because no one can be an expert in all the domains related

with ;roblem execution. Following this reasoning a
programmer has to dedicate a long time to study the

documentation contained in his external memory, to read all

the literature invclved and finally to construct the

semantic wodel of the problem domain in his mind.
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! In conclusion, many of the future directions of software
-reusability will have to be based in this latter approach.
Programmers should be instructed in this methodology because
it is the way to create better software and at the same time

to provide economic ccnstruction.
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APPENDIX A

FLOWCHARTS AND PROGRAN DESIGN LANGUAGES

In computer programming it is very useful to have good

techniques for representing a program because these

technigues help the comprehension task and help in the

debugging and modification tasks.

Among the actual possible representations of a program

two of the most common and more controversial techniques

will be presented: flowcharts and Program Design Languages

(PDL).

A. FIOWCHARTS

A flowchart consists of boxes containing instructions

that are connected together by lines. Traditionally,

flowcharts have been used as an informal notation for

algorithms, but for more complicated algorithms flowcharts

become intricate and dificult to draw and to follow.

Flowcharts were accepted for a long time for detailed

program design documentation, but recently have been

challenged with the argument that flowcharts may not aid

program comprehension or error diagnosis and they are an

unnecessary drain on Froject resources.

Knowledgeable programmers apparently prefer to work with

the code itself rather than the lengthy detailed flowcharts.

This is not surprising since a detailed flowchart is merely

a syntactic recoding of a program and provides little

additional aid. This coincides with the syntactic/semantic

model of programmer tehavior[fief. 6] which sugests that a

useful aid must facilitate encoding of the program syntax

into higher level semantic units. An expert programmer deals
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more with problem domain related units than with prcgram

domain related syntactic tokens. High level comments using

problem domain terminology have been shown to be more

effective in aiding comprehension than numerous low level

comments using program domain terminology.

These results and the syntactic/semantic model suggest

that helpful documentation would provide a high level

framework which reveals information that is dificult to

cbtain from the code itself. With a high level framework a

programmer can anchcr the knowledge acquired from reading

each line or small unit of code.

L. PROGRAB DESIGN LANGUAGE

Flowcharts have long been accepted as the standard

medium for detailed program design documentation. However

several studies reported by Shneidermann et al.[Ref. 23]

suggest that flowcharts may not aid comprehensicn of

programs. Also, Ramsey and Atwood[Ref. 18] considers that a

computer program expressed in a higher level language is

more comprehensible than the corresponding flowchart. An

artificially designed language, with a programming-language

like syntax, might also be preferable to flowcharts for the
expression of software design information. Such languages

are commonly called program design languages(PDL's). Figure

A.1 (From Kraly et al., 1975)[Ref. 24] shows an example of a

PDL specification fcr a program which computes social

security with holding (PICA) amounts from a payroll data

base and prints a repcrt of those values.

C. FLOWCHARTS VS. PROGRAM DESIGN LANGUAGES

TEhe use of a PDL by a software designer for the

development and description of a program design produced

Letter results than the use of flowcharts[ Ref. 25].

,.-.
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PRINT PICA REPORT HEADER

OBTAIN PICA PERCENT AND PICA LIMIT FROM CONSTRAINTS FILE

SET FICA TOTAL TO ZERO

DC FCE EACH RECORE IN SALARY PILE

OBTAIN EMPLOYEE NUMBER AND TOTAL SALARY TO DATE

IF TOTAL SALAE7 IS LESS THAN PICA LIMIT THEN

SET FICA VAlUE TO TOTAL SALARY TIMES FICA PERCENT

EISE

SET FICA VAIUE TO FICA LIMIT TIMES PICA PERCENT

ENDIF

PRINT EMPLOYEE NUMBER AND PICA TOTAL

ADD PICA VALUE TO PICA TOTAL

ENDDO

PRINT PICA TOTAL

Figure A. 1 An Example of a (PDL) Specification.

Specifically, the design appeared to be significantly better

quality (involving more algorithmic or procedural detail),

than those produced using flowcharts.
Flowchart designs exhibited considerably more

abbreviation and otter space-saving practices than did PDL

design, with a possible adverse effect on their readability.

The information presented in these two media may be

encoded in memory in different ways, at least with limited

exposure time(Wright and Reid,,973)[Ref. 26], and the forms

may differ in the processing effort required to encode them
in memory even if they are encoded similarly.

PDLs and flowcharts may emphasize different properties

of the underlying software design. At an obvious level,
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flowcharts appear to emphasize flow of control, while PDLs

may have a greater ealhasis on program structure.

Thus, in conclusion, an analytical comparasion of PDLs
and flowcharts would appear, overall, to favor of PDLs for
detailed design documentation. Only empirical evaluation,
however, can provide really convincing evidence in favcr or
one or another technique.
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EIERNAL AIDS Ii OPERATION OF A COMPUTER SYSTEM

For the correct operation of an interactive computer

system we have to have external aids like user's manuals and

computer based manuals(online helps) which bring together

all the information needed to operate a computer system.

A. TEADITIONAL USER'S MANUAL

The user's manual is a paper document that describes the

features of tne system. There are many variations in this

theme such as an alphabetic listing, description of the

commands, quick reference card with a concise representation

of the syntax, novice user introduction tutorial and

conversicD manuals.

B. USER'S MANUAL DESIGN

!he syntactic/semantic model offers insight into the

learning process and therefore guidance for instructional

material designers. If the reader knows the problem domain,

such as letter writing but not the computer-related concepts

in text editing and certainly not the syntactic details,

then the instructional materials should start from the

familiar concepts and tasks in letter writing, link them to

the computer-related concepts, and then show the syntax

needed to accomplish each task.

If the reader is knowlegeable about letter writing and

computerized text editing, but must learn a new text editor,

then all that is needed is a brief presentation of the

relationship between the syntax and the computer-related

semantics.
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Finally if the reader knows letter writing, computerized

text editing, and most of the syntax on this text editor,

then all that is needed is a concise syntax reminder.

These three scenarios demonstrate the three most popular

forms of printed materials: the introductory tutorial, the

command reference and the quick review.

C. OBGANIZATION AND URITING STYLE

To acomplish this task one must know about the technical

contents, be sensitive to the background reading level and

intellectual ability of the reader, and be skilled in

writing lucid prose. Precise rules are hard to identify, but

the author should attempt to present concepts in a logical

sequence with increasing order of difficulty, to insure that

each concept is used in subsequent sections, to avoid

forward references, and to construct sections with

approximately equal axount of new material. In additicn to

these structural requirements, the manual should have

sufficient examples and complete sample sessions. Within a

section that presents a concept, the author should begin

with the motivation for the concept, describe the ccncept in

problem domain semantic terms, then show the

computer-related semantic concepts,and finally offer the

syntax.

In summary we can present the following guidelines to

help to write manuals:

make the information ease to find.

Make information easy to understand:

-Keep it simple;

-Be concrete;

-Put it naturally.
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Make the information task sufficient:

-Include all that's needed;

-Make sure it's correct;

-Exclude what's not needed.

Finally software and their manuals are rarely completed,

rather they go into a continuous process of evolutionary

refinement. Each version eliminates some errors, adds

refinements, and extends the functionality. If the users

can communicate with the manual writers, then there is a

great chance of rapid improvement. Some manuals offers a

tear-cut sheet for sending comments to the manuals writers.

This can be effective, but other routes should also be

explored: electronic mail, interviews with users, debriefing

of consultants and instructors, written surveys, group
discussicns, and further controlled experiments or field

studies.

D. CORPUTER-BASED NA ERIAL

In this type of aid we can consider the following types:

Online User Manual. An electronic version of the

traditional user manual. The simple conversion to electronic

form ray make the text more readily available but more

difficult tc read and absorb.

Cnline Help Facility. The most common form of online

help is the hierarchical presentation of keywords in the

command language, akin to the index of a traditional manual.
The user selects or types in a keyword and is presented with

one or more screens cf text about the commands.

- Online tutorial. This potentially appealing and

innovative approach makes use of the electronic medium to
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teach the novice user by showing a simulation of the working

system by attractive animations and interactive sessions

that engage the user.

Others forms of information acquisition includes

classrocz instructicn, personal training and guidance,

telephone consultation, videotapes, instructional films and

audio tapes.

There is a great attraction in making technical manuals

available on the computer. The positive reasons for doing so

are:

Information is available whenever the computer is

available. There is no need to go find the correct manual

- a minor disruption if the proper manual is clcse hy or

a sajor disruption if the manual must be retrieved from

ancther building or person.

User does not need to allocate work space to openning up

manuals; Paper manuals can becomes clumsy and clutter up

a workspace;

Information can be electronically Lpdated rapidly and at

low cost. Electronic dissemination of revisions ensure

that out-of-date material cannot be inadvertently

retrieved.

Specific information necessary for a task can te located

rapidly if the orline manual offers electronic indexing

or text searching. Searching for one page in a million

can usually be done more quickly on a computer than

through printed material.

A computer screen can show graphics and animations that

may be very important in explaining complex actions.
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E. PAPER DOCUMENTS VS. ONLINE HELPS

The technology of printing text on paper has been

evolving for at least 500 years. Much care has been taken

with the paper surface, color, font design, character width

etc. to produce the most appealing and readable format.
On the other hand the cathcde ray tube (CRT) has emerged

as an alternative medium for presenting text to meet user

needs. Comparing these two media we can tell:

CR1 display causes serious concerns about radiation and

other health hazards such as visual fatigue. It makes the

capacity to work with the CRT below the capacity to work

with printed material.

It is easier to detect errors in printed text than the

same text displayed in a screen.

Screens display substantially less information than a

sheet of paper and the rate of paging through screens is
slew conDared to the rate of paging through the manual.

The reading rate is significantly faster on hardcopy

(printed text) - 200 words/minute - than on the screen -

155 words/minute. Accuracy is slightly but reliably

higher on hardcopy. The subjective ratings of screens are

similar in both formats.

Still the online environment opens the door to a variety

of helpful facilities which might not be practical in

printed forms.

Some of these aids are:

Successively more detailed explanation of a displayed

error message.

Successively more detailed explanations of a displayed

question or prompt.

Explanation or definition of a specified term.
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A description of the format of a specified command.

A display of a specified section of documentation.

Instruction on the use of the system.

News of interest to users of the system.

A list of available user aids.
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APEDX C
HAIITENINCE AND DESIGN RECOVER IN DRACO

A. MAIE UEANCE

He assume that a program has been derived from a

specification using the DRACO paradigm and that the

specification, the refinement DAG, and the implemented

programs are all available to a would-be maintainer. we will
discuss the maintenance problem in the absence of the

specification and the refinement DAG in next section.Should

a program need change, there are two methods for

accomplishing it. One possibility is to choose an entirely

new path through the refinement DAG from the initial

specification to a different implementation. This method is

generally not preferred, as many of the design decisions

made for the current implementation can be reused ir the

desired izplementaticn.

The other alternative is to start with the concrete

implementation chosen, reverse some of the design decisions,

moving up the refinement DAG towards the root, until a ncde

is reached which is the last ccmmon abstraction (LCA) of the

current implementation and the desired implementation. The

least ccmmon abstraction is the top node of an embedded

sub-DAG, and can be reached by any of several paths (as the

design decisions need not be reversed in the crder
originally made). A new path must then be chosen from the

ICA to the desired isplementation Figure C.1.

This method preserves all of the implementation design

decisions made above the LCA and thus minimizes work

required to accomplish change.
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~erformance "enhancement is generally acomuplished by

changing the underlying representations used by a prcgram

and using more efficient procedures made possible with the

changed representaticn. We assume that the revised
~representations and corresponding procedures are already

i contained as refinements in the domains used to generatE the
~current program (if this is not the case, then the domains

must be augumented accordingly). Some set of nodes in the
~refinement DAG are LeAs that allow re-implementation cf the
" currently low-performance abstractions. Design decisions are

" reversed to travel from the current implementation back to

one of those LCAs. New decisions are applied to arrive at a
different iplementaton. The change in refinement direction

is accomplished by a change in tactics.

Changes in the environment can be handled in a similar

fashion. rhe domains are first augmented with the refinement
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Figure C,2 Changing the Environmentr3b New Refinement.

specifying how the abstractions used in those domains can be

implemented by the new environment; this effectively

produces an implementation DAG Figure C.2. A suitable LCA is
found and refined using the revised refinements. Different

functionality is acccmplished by changing the specification.
It is then straight forward, but possibly inefficient, to

re-refine the specification to create a new refinement DAG
different than the original.

A perhaps more efficient method for producing the
revised program requires several steps Figure C.3:

Determine a substitution S that converts the original

specification to the revised specification (this can be
constructed automatically as the originl specification is

revised);
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Figure C.3 Changing Specification. G"is Isoorphic to G.

~Determine the largest subgraph G" of the new refinement
!!i~iDAG, starting in the top node, that is isomorphic with a

3subgraph G of the old refinement DAG under the
' substitution S. Each node n in G has a corresponding node

n' in G"I* obtainable by applying the substitution S to n.
i Note that GO must include at least the root node (~.

the revised specification).

Find an LCA of P in G. The corresponding node in GO can
i be refined to a ccmcrete implementation PI which realizes

~the revised specification).
lIo determine the isomorphism, and therefore the

~candidate LCAs, the refinement DAGs need not be constructed
m,, in their entirety. Ihe work accomplished in the original
~refinement history up to the chosen LCA in G can be reused

, at great saving. Refimements from the LCA in G"I to the
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concrete implementation P' must be applied. This constitutes

the bulk of the work. Design decisions used in the path from

the LCA in G to P can perhaps be reapplied, reusing analysis

done for the original program.

If the specification is modular, then there will be a

refinement DAG for each part of the specification. The

implementation will ccnsists of a set of leaves, one taken

from each DAG. A change to the specification will then

affect only some of the specification modules, and sc affect

only scme of the refinement DAGs. Leaf nodes from DAGs which

do not change may be used unchanged in the new

implementation. The procedure outlined above can be used to
generate new leaves for the changed DAGs. Modularity is then

seen simply as a methcd for making trivial the determination

of the isomorphism on portions (the unchanged DAGs) of the

what would otherwise be a single, large refinement DAG.

B. THE PROCESS OF DESIGN RECOVERY

In Figure C.4 we present a view of the conventional

approach to maintenance. Arcs are represented ky broken

lines to indicate that the refinement history, and thus the

original abstract specification, are not available. What is

to guide the maintainer when gcing from program P to P11

The DRACO paradigm offers a model of maintenance

activities provided that the program specification and

design are available. If we do not have these, we can

recover them from the code, and then use the DRACO paradigm

as the guide. The design recovery paradigm we propose

provides a systematic way of carrying out the process that

we think maintenance programmers apply informally: before

performing changes in a program to adapt them to new

requirements, a higher-level plausible "ancestor"

specification eguivalent to the original program is

informally developed.
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Figure C.4 Conventional aintenance.

Such an ancestral specilication can be developed by

repeatedly performing a "design recovery step". Each step
consists of inspecting the specification recovered from the

previcus step, proposing a set of possible abstracticns of
the portion,' of interest, choosing the "most suitable"
abstraction, and constructing a specification containing the
new abstraction. Each abstraction proposed implicity selects

some domains and refinements which must produce the existing

code when applied to the ancestor containing the proposed

abstraction. Design recovery steps are repeated until a

useful LCh is reached.

Ihe design recovery process is ilustrated in Figure

C.5. Starting with program P its plausible immediate

ancestors (broken-circles) are postulated. Selecticn of an

appropriate ancestor (solid circle) is based upon conjecture

that the node is on the path from P to a suitable LCA.
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Figure C.5 The Process of Design Recovery.

Gcod choices of abstraction will use domains and

refinements recovered in earlier steps, or will augment them

minimally. The iterative process induces learning in the

maintainer which can be captured in the resulting domains.

The choice of the appropriate ancestor is the result of a

generalization process based on the specificaticn under

consideration. The implementation provides a very limited

sample on which to tase a generalization step. In ctber

words, refinements a're possible only using additional

knowledge: we must rely on the maintainer's knowledge of the

applicaticn domain, inteligence, experience and educated

guesses, on common knowledge and on any additional

information available, on the current implementation (e.g.,

inputs from original designer, existing documentation,

environment specifications).
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Since quite often the maintainers are not the original
author, and are usually distant in time from the original
implementation, maintainers are likely only to regenerate
approximations of the original domains that where used. This
mismatch between the maintenance DAG obtained by design

recovery and an "ideal" Figure C.6 reveals the crux of the
maintenance problem.

Ideol L CA

cecrvered LCA

; ".. Implementotiei' L,';rj

IdeOl P' Cl'os ' Abstructicns
rmplementation

Pg p

Figure C.6 Recovered Design vs "Ideal Designs.

k

Avoiding approximations is very hard, and the

approximation errors are typically amplified by repeated
maintenance steps. The magnitude of the errors is increased
when the recovery process is done informally. The errors,
generated by the lisited sample used for the abstraction
step, can be substantially reduced by performing dcmain

analysis.
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7hrough domain analysis a more adequate, complete and

reusatle set of abstractions of a knowledge domain can be

produced thus enhancing the power of the design recovery

paradigm. This is the reason why domain analysis is a

fuhdauental component of the DBACO technology.
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