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ABSTIRACT

This thesis gives a description of the physical and
tactical paraaseters pertaining to nissile defense arnd
offense, and then proceeds wuith an overview of the sathemat-
ical investigations done on the missile allocation problea
up to the 1972 publication of the survey monograph on this
subject by Bckler and Burr. Finally, it presents the results
of a similar survey done by the author of later unclassified
studies on the ®issile allocation protles.
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I. IN1BODUCTION

A. BASIC PBCBLEN DEFINITIOCY

In the past 35 years, a number of papers and reports,
both classified and unclassified, have been published on the
missile allocation probleam. This proltlea can be stated very
simply as fcllous:

Given an existing veapon force and a set of targets, what
is the 'ofptimal! allocaticn of veapons to targets?

The problem can be analyzed from twvo perspectives:

e that of the defender, in which case the problea
cencerns the optiamal allocation of defense missiles for
the defense of a single target or a group of targets,
or

e that of the attacker, in wvhich case ¢the problea
ccncerns the optisal allocation of weapons to attack
the targets and possibly the defense systeas.

There are many elements that comprise the aissile alloe-
cation problem. These elements can bLe broadly divided into
six grcups:

« the attackang force,

¢ the defending force,

e the target cosplex,

e iptelligence available to both forces,

¢ scenario of the battle, and

e the criterion upon which the effectiveness of the
veapon allccation strategy is bacsed.

Tbe srecification of the paraseters of these siz
elemeats detersine the complexity, npature and scope of the
particular allccation problea. The solution .5 a weapon
allocation strategy that optimizes the objectives set forth
by the force seeking the alleccation strategy.




B. PURPOSE

This thesis is motivated by the author*s interest in
the field of air defense and aissile defemse systeas. Air
defense is of particular importance to a small country like
Singapore, the author's hcmeland, wvhere vital ailitary
installations and industrial centres are located very close
to one another geographically. It is thus especially vulner-
able to a concentrated attack of eneay aircraft taat can fly
at lov altitude and unmask cnly at a close proximity to the
intended targets refore unlcading their ordnance. The other
notivation is that the analysis of the nmissile allocation
Eroblsa froam a mathematical viewpoint necessitates the use
of maay optiamization techniques, such as linear and nonli-
near [programsing, stochastic dynamic prograaming, gaae
theory and Monte Carlo aethods, that fora the core of a
traditional Crerations Research study. As such, the missile
allocation prolklse is a good example of the kind of probles
that is amenable to amnalysis by Operations Research
techniques.

C. SCOPE ANL OEGANIZATIOR

The scope of the thesis can be delineated as followvs:

e the investigations and results gresented are all drawn
fros the gunclassified literature, dve to a lack of
access to the classified papers.

s no detailed sathematical proofs and derivations are
jiven fcr most results given. However, the interested
reader capr exasine tle original references for wmore
details.

e 2mphasis is given to results obtained froam cmalytical
3€¢ans ratber than from coaputer simulation. In studies

vhich consider realistic situations, the resulting
aatheaatical analyses are usually so coaplicated that




it is necessary to resort to Nonte Carlo siamulation in
order to oktain numerical results. The restrictions on
computer time usually dc not perait extensive varia-
tions in rarameters in order to find an optimal sola-
tion or to conduct sensitivity analyses.

e studies pertaining to specific weapon systeas are not
included here, in line with the gemeral appeal of this
Sykject.

Chapter 2 fresents the missile allocation probles in
teras of its components. leras and pomenclature pertaining
to this field of study are given as an aid to understanding.
The cosmon notations used in later mathematical foraulations
of tha probleam are also given.

Chapter : gives a general ovarview of the investigations
and results ccncerning the smissile allocation problea prior
to the publication of the sonograph by Bckler and Burr
[Bef. 1] on this subject. This publication can be comsidered
a lanlmark as it is the £first coaprrehensive survey of the
literature on the missile allocation probles and a coapila-
tion c¢f the results obtainped in a more or less logical
fashion. A tctal of 138 refereaces are cited therein. Matlin
[Ref. 2] is the only authcr prior to that monograph tc
atteapt a general survey of the missile allocation problea.
He presented a tctal of 40 papers and reports in abstract
fora with no analytical results or sathematical derivaticas.
The source of the material presented in Chapter 3 is the
sonograph putlication, and the amalytical results given fora
a basis for the further results obtained in the survey by
the author of the receat (post 1972) literature on the
sissile allocation probles. These results are presented in
Chapter 4, wbich forms the ccre of the thesis.




II. IHE BISSILE ALLOCATION PROBLEN

A. INTRODUCIION

In this chapter, the basic missile allocation probles is
presented in its simplified foram as essentially a stochastic
duel Ltetveen an attacker and a defender, each possessing a
stockpile of missiles. The defender defends a single target
or a jroup of targets with surface-to-air (SAM) aissiles and
the attacker uses tactical sissiles that may be aimed at the
targets, or at the SAM systess, wvith the basic objective of
destroying as sany of the targets as possible. The basic
missile allccation probles is the deteraination of an
optisal defensive and/or an optimal offensive strategy that
can be described by the nuster and type of missiles to be
allocated to each tarqet or groups of targets, and the
firing policy for these missiles so as to aminimize (for the
defenler) or saximize (for the attacker) the destruction cf
the targets.

The richness and complexity of the aissile allocation
probiem is 8 consequence of the multitude of factors that
tear 2n this rroblea, and the influeace their parameters
oave on the detersination of the allocation strategy. These
factors can te broadly categorized into 6 parts:

e attacker characteristics,

e Jefender characteristics,

e target characteristics,

e intelligence available cn the opjosiag force,

e sceanaric, and

e 3ecasure of effectiveness of the allocation stiategy.

The specifications of and assuaptions made for each of
these elemests ip a particular study into the aissile

10
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allocation preoblem will deterzine the degree of complexity
and realism of the situaticn it portrays, and ultinately,
the optimal allccation strategy that is sought.

B. ELEMENIS OP THE BISSILE ALLOCRTICE PROBLEM

1. Attacker

The attackiag force, which is assumed to be lomg-
range tactical aissiles in mcst of the literature related to
this subject, cana be specitied by three main characteris-
tics:

& ye€apon tyges,

e geapon capabilities, and

e attack strategy.
Bach of these characteristics is elaborated oz in the
fcllcuing three subsections.

a. Weapon Types

Tbe attacking fcrce cam ke composed of just a
single type cf veapon or a rumber of different veapon types.
A single veapon type means that each individual missile bhas
the same physical and perfcrmance characteristics such as
size, weight, ramge, accuracy, radar signature, payload and
yield, reliability and availability, and vill be treated as
identical entities in the apalysis. The attacking force can
also cosprise of a wmix cf different veapon types with
dif ferent payloads, targeting accuracies, yields, etc., or a
aix of real wmissiles and decoys, vhich are *dusmy® missiles
used to deceive the defense and derive benefit througa the
exhaustion eifect cr the saturation effect. The decoy is
Just au exasfle of a penetration aid for the actual veapons
that are aised at the targets. These penetration aids
facilitate the penetration of the main veapons through the
defensive systess to the intended targets. Other geaetration

11
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aids include weapons targeted at the defense systeas, chaff,
precursor, and ECM.

b. Weapon capabilities

The ability of the attacking weapon to destroy a
target that it is aimed at depends on its performance char-
acteristics viz.:

e paximun range of the weapon,

e aising accuracy of the weapon,

e availaltility of the weapon for launch,

e reliability of the weapon- whether it can reach its
target without degradation in payload or accuracy,

o Jeliverable payload c¢f the weapon~- the number of
warheads that the delivery platform can carry,

e yield of the weapon~- destruction capability of the
varheads, and

s survivakility of the weapon- can be affected by such
factors as its radar signature, flight profile, or
sreed. '

In @many analytical studies, these individual
factors are lumped together into parameters that reflect
their combined effects, e.g. the availability, reliability
and accuracy of a weapon may be expressed as a single guan-
tity called protability of reaching the target that it is
aimed at, while the payload and yield of the weapon may be
combined together with the hardness of the target into a
single parameter called the radius of effectiveness of the
wveapon. These 'convoluted' guantities may siaplify subseq-
uent mathesatical analyses cousiderably, but they should be
used with cauticn for tvo reasons:

e they are not physical guantities that are directly
aeasureakle, and to obtain numerical values for thea in
specific cases may invclve tedious experimentation and
gathering of data.

12
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e the vay that the physically unegual coaponental factors
are coabined into a single guantity may also be sukject
to debate as to their relative weights.

C. Attack Strategy

The attack strategy can be seen in teras of
three dichotcmies. The first is concerned with vwhether a
single simultaneous attack cf all weapons is utilized or
vhether the attack is sequenced in several waves, which may
be equally or unequally spaced in :tise. The successive wuave
attack is normally accompanied by assessments of the attack.
The attacker may observe the impact points of his weapons
and ajjust the aim-points of subsequent veapons accordingly
to coapensate for aiming errcrs or dispersion effects. He
may alsc perform a dJdamage assessment at the end of each
vave, and »im his weapons only at surviving targets "in
subsequent uttacks. The former assessment is terzed a
‘shoot~adjust-choot' strategy, while the latter is termed a
‘shoot-lcok-shoot'! strategy.

The second dichotomy is whether the attacker
fires at all available targets or just a subset of the
target group. Different targets amay have differeant values,
and may have associated with each a different kill prob-
ability depending on characteristics of the target such as
its hardness, 1location, existence and type of terminal aix
defenses, e€tc. If the objective of the attacker is to
maximize target value destrcyed with a limited stockpile cf
veapons, bhe may consider firing at only that subset of
targets which have the |highest values and kill
probabilities.

Another consideration for the attacker is the
allocation of his veapons to targets and defense systeas,
vhich wmay inclule defense radars, cossand-and-contiol
centras or missile silos. The attacker may choose to fire
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A part of his +weapons at the defense systems in an effort to

Y destroy thes and thus increase the probability of subseguent

: veapong penetrating the defenses and reaching their targets.

i The optimal allocation of wv2apons to value targets and

defense system targets under different assuaptions and

conditions comprise one class of the missile allocation
probles.

For an attacker who is concerned with maximizing
target destruction at ainisus ecumomic cost, a possible
o 4 attack strategy is to use a mixture of real missiles and

| cheaper decoys, or to substitute better (in teras of

CA ~ performance) but more expensive missiles with a nuserically
ﬁ greater forc: ¢f cheaper rissiles of relatively inferior
K perfcrlance. By using this strategy, The attacker hopeé_to

bring into rlay two effects that degrade the capability cf

' gi th: dafense tc¢ counter the attack. These two effects are:

g e exhaustion effect: by firing a larger nuaber of wearons
against a fixed stockpile of defensive emissiles, the
attacker teapts the defender to use ap all of his
sissiles, i.e. to exhaust his stockpile before the
attacker exhausts his supply of veapons. At that point, :

i the targets become undefended and would be more

| vulneratle.

e saturation effect: a defense system is said to be in a
state of saturation if the nuaber of attacking weapons

"y arriving sisultaneously vithia its coverage emnvelope is

jreater tban the nuster vwhich it is lcapable of

engaging. Thus the deferse has to select a liaited

aumber of of attackers to engage while the rest of the

intruders are alloved to penetrate the defonse unhin-

dered (leakage). By having a numericalliy larger force

of veapons, the attackexr hopes to induca this conditior

during bhis attack on tle targets. ‘
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2. Defepder Characteristics

The defending force, assuzed to be surface-to-air
;'; ) (SAM) missile systems in gemeral, can be specified in terams
37;5 of tvo major characteristics:
k e aissile tyres and capabilities, and

e Jefense strategy.
Each of these¢ characteristics is elatorated om in the next

f:!' tvo sutsections.
B
N a. Missile Types and Capabilities
'*-E The defending fcrce may Le comprised of just a
'Fﬁ single type of defense missile or of different types of
N

- aissiles of different ranges, coverages and reliabilities.

Pd

e

L Here, reliaki"ity of a wmissile means the probability of
1. destroyirg an attacking weapcn it is assigned to, aud takes
IV; into account sucu parameters as the probability of

;S success{1l launch, probability of cuccessful intercept, and

N probability of kill given irtercept, which depend om missile
?ZQ reforsance specificatiors. Many defense studies postulate

;3 : the availability of two types of dJdeiense amissiles cf
g-ﬁ substantially difierent coverages:

L e a local missile, hich can defend against veapouns
‘_5 lirected 4t a single target ‘terminal defense), and

=%‘ e an area missile, which has a bigger coverage and can
..'% defend agains: weapons directed against ane of a groug
¥ of targets in an exteaded region (arsu defensi).

955 b. Deferse Strategy

At
? The appropriate (or optisal) defense strategy
ii; depends greatly on vwvhat the dJdefender knows alkout the
o offense's r[rlaps, capabilities and r.sources. Given the
. extent of intelligence about the attacker, and the resources
he possesses, the defensive strategy can be dichotomized in

1 MR

several wvays.
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The first dichotomy 1is preallocation strategy
vs. non-preallocation strategy. In the former case, a speci-
fied. number of amissiles is assigned to the defense of each
target, derending on its value. Preallocation defenses
require that the dJdefense keep track of exactly how Bmany
attacking veapons have been directed at each target in order
to decide whether or mot to allocate a missile against the
pext weapon apiroaching the target. When this is 1not
possible, a non-rreallocation strategy (or group preferen-
tial strategy) say nonetheless be rossible, vherein the
target group is divided intc disjoint subsets, and a frac-
tion of the defense stockpile is allocated to each of the
target subsets.

The second dichotomy concerns the allocation
Let ween local (terminal) and area missiles. Bach target can
be defended ty a aix of local missiles which are allocated
to it prior to the attack, ard area missiles wvhich can cover
any target within some regicn of protectioan. The defense
strategy in this case is concerned with the relative nuabers
of each tyre toc Le allocated to the target and the firing
policy.

The third dichotomy is concerned vith vhether
the dafensive strategy is target-oriented or attacker-
oriented. In the former case, the defender allocates
missiles to specific targets. 1In some cases, the defender
say not be able to detersine which target a wveapon is
directed against in time to zake an intercept if desired
(at tack evaluation). Ib such a situation, the defender aust
use an attacker-oriented strategy instead, whereby missiles
are assigned tc each incoming weapon.

3. Iagget Shasacteristjcs

The target can be characterized by:
s tyre of target,
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¢ value assigned to the target, and
e defenses associated with the target.

a. 1yre of Target

A simplifying assuaption made in most analyses
of *the missile allocation prcblem is that targets are either
classified as rpoint targets or area targets. A target is
considered a gfpoint target if the 1lethal radius of the
attacking weapon is large encugh relative to the size of the
target so that a single weapon can destroy the target
entirely. If more than one weapon is required to cover the
target, it is considered an area target. BExaaples of area
targets are a large airbase, a city, or a harbour. However,
an area target sight be ccnsidered to be a collection of
point targets if it can be troken down into individual aim-
points with values associated with each point rather than
vith the target as a whole.

A target is ccnsidered to bLe independent of
other targets if no single attacking weapon can destroy more
than one target at a time, whereas collateral targets cam be
Xilled by a single veapon.

b. Value of a Target

The value of a target is an important considera-
tion in the aissile allocation problea because the usual
objective or measure of effectiveness used in the compari-
sion of alternative allocation strategies is the expected
target value destroyed. In most cases, it is assumed that
the value or silitary vorth associated with a target is the
same as perceived by the offense as for the defense,
although in reality it probably is not. Again in most anal-
yses, a single parameter 1s used to detersine the value of
the target, e.g. the population of a city target, although
in reality, several factors may be of important strategic
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value, e.g. the industrial capacity and military installa-
tions, in additionm to the porulation.

The value of a target may be constant with tise,
€.d. an ammunition production plant, or it may vary with
time, e.g. an airbase from shich aircraft are taking off, or
a city vhose population is being rapidly evacuated. The
value scales are usually assumed to be linear, implying for
example that a city with two =nillicn people is twice as
valuable as a city with one sillion people, all other things
being equal, an assumption that is generally inappropriate.

A target may have an indirect value in the sense
that no value is assigned for destroying it, but if it is
eliminated, it Lecomes easier to accumulate direct values
from other targets. Indirect valued targets are sometimes
called secondary targets, whereas direct valued targets are
called primary or value targets. Exaaples of secondary
targets are defensive aissile silos, air defense radars, and
ccanand-and-ccntrcl ceaters.

Cc. Defenses Associated wvith the Target

A target may either have no defenses at all, or
terainal defenses only, area defenses only, or a mixture of
both types of defenses. In models which treat the defemses
implicitly, the dafensive capability of a target is givem by
that target's penetration prcbability (or protabilities for
coabined area and terainal défenses). Rhere a number of
separate defense regions are considered, a region consisting
of a subset of targets defended by a single area defemse,
the defeuses in one area canpot be used in another area, and
probabilities of penetrating each region are specified sepa-
rately. Defease regions may overlap to some extent so that
some targets are contained in more than one defense region.
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4. Ipteiligence Avajlarle on the Qpposing Force

The kncwledge that each side has regarding the
opposing force, its size, cafabilities and intentions deter-
mines to a large extent the optinal strategy to eaploy
against this force. In all studies on the missile allocation
problem, assuaptions are made as to the extent of informa-
tioca the attacker and defender has on =ach other's stockpile
size and vearon composition, allocation sirategies, and the
results of such strategies. Specifically, the intelligence
that each side has of its opponent can be delineated as
fallous:

¢ the total numbers and types of veapons that the oppo-
nent possesses, or if the exact numbers are not known,
the protability distritution of the force size;

¢ the reliakilities of the aissiles, given generally as
the probability that a defensive missile will intercept
and destroy an attacking weapon, or the probability
that ap attacking weapon will reach and destroy an
undefended point target;

e the impact points or probability distribution of impact
points of the attacking weapons, and their lethal
radii, and

e target dJdamsage evaluaticn, if the attack occurs in
successive vaves i.e. determine which targets have
already been destroyed and allocate missiles or veapoas
Jnly to surviving ones (shoot-look-shoot strategies).

The most complete intelligence is obtained when one
side cam see tle entire allccation of the opposing force's
stockpile to targets before aaking its own allocation, i.e.
the oprosing force's strategy (allocation and firing policy)
is known beforeband. If the offense has this knowledge, an
olfense-last-sove situation exists, and similiarly, if the
defense possesces this intelligence, a defense-last-move

19

S TR T Ae T e T TR AT R RaSTe T I TTRRTRS R OVRe TR e T T R MAERG W v Ve T BT W ST AT ol WODOR T TR T W M BT WY M M U e Nk . b W N B W I Wk M NI Wiy PN Y -



MR W T TR W T e TR P AR IARIARTIRSR M TS R T Al Ve e By L VTN B BV W YR Wl e W PR TR R R R SR UV AT 87 e GO N SN L CW R LR W § -4 W LR TR SIRILLR I

situaticn is present. On the other eand of the scale,the
offense and defense may allocate their resources each in
ignorance of the other's allocatioms. This allocation
problem can in general be formulated as a two-person-zero-
sum gase.

5. Scenaric

A majcr portion of the studies on the aissile allo-
catioa problem have been devoted to strategic weapons
exchanges betveen two superpowers. Since strategic nuclear
varfare remains outside the reals of ailitary experience,
models are proposed and amalyzed to provide decision makers
vith informaticn on possible consequences of policy deci-
sions on the derloysent and employment of strategic nuclear
veapons,

The scenario usually considered is based on the
precept of smutual deterence, i.e. the threat of massive
nuclear retaliation to deter aggression. To achieve this,
each side wmaintains a massive and secure strategic force
that is expected to retain its capadbility of delivering a
devastating retaliatory strike despite an all-out enemy .
first strike intended to reduce the retaliatory force
(assured destruction policy).

Host studies assume a two-strike nuclear exchange,
in vhich each side possesses twvo kinds of assets:

e several types of strategic veapons with vhich each side
can strike at the otker, e.g. land-based ICBA's,
subsarine-btased SLBM's, or long-range nuclear boabers,
and

e value assets, consicting of industrial, economic and
jovernsental facilities and population that contribute
tc a society's economic viability. By attacking these
targets, weach side aims to destroy the other as a
social and econonic entity. :
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The first striker can allocate his strategic veapons
aqainst his ofronent's strategic arsenal ia a counterforce
attack. in order to reduce tte eipected retaliatory damage to
himself, or he may target his ofponent's value targets,
thereby fulfilling the gcal of damaging bhis =zcoasoamic
viability in a countervalue attack, or he could aix counter-
force and countervalue c¢frtions to ob*tain aa optimal
targeting strategy based on some objective functioun. Because
a two-strike exchange is assumed, there will be nn furthar
strikes after the other side retaliates. Therefore the first
striker allocates all his weapons in a first strike, and his
opponent retaliates with all bis veapons agaimst value
targets only.

This tasic scenaric can be enriched by considering
reserve forces, or nmore than two sequential strikes.
Selective threat targeting and progressive confrontation
targeting may also be considered as alternative scenarios of
the real world situation.

6. Heasureg of Bffectiveness of the Allocatjop Sirateqy

The criterion of effectiveness used to compare
alternative strategies or to find an ‘optimal' strategy in a
given situation is deterained by the decision aaker faced
vith the prcitlea. The choice of an appropriate measure of
effectiveness (MOE) is deteramined largely by the physical
parameters of the problem, such as relative stockpile sizes,
nature of the¢ targets, degree of knowledge about the oppo-
nant's weapons and allocatict strategy, as wall as political
objectives and subjective ferceptions. Such a choice may
depeni largely obp intuitlon, and hence be somewhat arbi-
trary. In many studies, a particular MOB is chosen for its
sathesatical tractability rather than its closeness to real
political oljectives.
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3
3 The MOE's normally used in missile allocation prob-
e leas are: '
> e probability of target destruction- this MOE is appro-
f: priate if the target ccpsists of a single point; )
e e expected target value destroyed- this MOE is suitable
3 if the target is an area target or a composition of .
b sany point targets, and both sides know the size of the
B orponent's stockpile;
?: e aexpected nuaber of attacking weapoms not intercepted by
A the defense- this MOE is used because the expected
&; target value destroyed is directly related %o the
;; number cf renetrating weagons;
2 * gxpected target value surviving a certain percentage of
‘S all attacks of a given size- in some instances, this
g YCE is used. It is more difficult to deal with analyt-
2 ically; hovever it is easily evaluated using HNonte
b Carlo methcds;
:% e probability that no target value is destroyed- this MOZX
) is afppropriate if the opumber of defensive missiles ‘
'ﬁu availakble to a target is greater than the aumber of
& attackizg veapons directed at the target, and the -

. aature of the target is such that even a relatively
small amount of damage inflicted would be as cata-
strophic as a large aamcuat of damage;

3 o gxpected cost of achieving destruction of the target-
b this MOE is used in a situation vhere the offense is
act resiricted to a nuskter of attack waves, but could

'% continue with the attacks until the target is

?g lestroyed. This attack strategy is used in the case
. vhere the cperational value or worth of the target is

_; very high and the nuaker of vearons that the attacker

§§ can expend on its destruction is practically unliaited; *
M e gxpected rumber of weapons expended until the first

% penetrator- this NOE is suitable if the attacker fires
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one veapon at a time against the target and the defense
has no information about the size of the offense stock-
pile. In this situaticn, it is pot possible for the
Jefense to design a strategy which wminiaizes the
expected fraction of targets destroyed or to maximize
the protability that no target value is destroyed.

e axpected target value extracted rper offensive weapon
fired- this MOE is apprcpriate if the defense designs a
strategy such that the expected fraction of targets
lestroyed is proportional to the attack size. These are
also kncwn as *Prim Read' deployments.

The selection of an appropriate MOR is importaat in
the missile allocation problem because the optimal alloca-
tion strategy in most cases depends critically om this
choice. In some situations however, different criteria of
effectiveness le¢ad to the same allocation strategy or lead
to similiar zesults.

C. TEBSINOLCGY AND NOTATION

The terminclogy and notation used throughout this thesis
will be consistent in the mcst part vith those wused in the
sonograph of Bckler and Burr. This will provide a sense of
continuity in geing froam Chapter 3, in which ap overviev of
the pre-1972 investigations into the =missile allocation
problea is presented, vith Bmaterisl largely extracted froa
Bckler and Burr's publication, to Chapter 4, which gives the
results of studies done subsequent to the publication of the
sanograph.

Bost of the terainology related to the aissile alloca-
tion [problem has been articulated and explained in the
previous secticns of this chapter, when the elements of the
sissile allocation probleam are descrited. HNevertheless, it
is worthvhile tc sumamarize the salient terms here to avoid
any confusjion.
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In a typical situation, the offense has a stockpile of
veapons which are used tc attack a target or target:s
belonging to the defense. 1The defense has a stockpile of
nissiles which can be used to intercept the attacking
veapons. The targets may le either point targets, any of
vhich can be destroyed by a single veapon, or area targets,
vhich require several weapons to destroy. A amissile has an
inherent reliability or proltability that it will Jestroy the
veapon it is assigned to. A weapon in turn has a wveapon kill
grobability, wvhich is the frobability that it will destroy
the target it is aimed at if it is not intercepted by a
defense missile. The value cf a target is the military worth
assigned to it and is assumed to be the same from both the
offense's and the defense's point of view. The attack can
occur simultanecusly in a salvo, or it cam occur in several
successive vaves separated in time. Seguential attacks on a
target makes fossible damage assessment and leads to shoot-
look-shoot strategies.

The most common symbols used in the apalyses preseated
later are given below. Other notation peculiar to a partic-
ular apalysis will be given as required.

A = tatal nuater of veapons in the offense stockpile,

D = tatal nusber of missiles in the defense stockpile,

T = total nuaber of targets,

a= A/T = nornalized offense stockpile on a per target
kasis,

d = D/T = ncrmalized defense stockpile on a per target
basis,

F = veapon kill probability,

¢ = sissile reliability,

q,= 1-p = probalility an unintercepted weapon fails to kill
its target,
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q,= 1-p(1-§) = probability that a wearon to whbich a aissile
bas been assigned fails to destroy its
target,

v; = value of the ith target,

R = l1lsthal radius of a weapco,

E(X) = expected value of quantity X,

[x] = greatest integer less than or equal to x, aad

Pr(X) = probability of event X occuring.
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IXI. PRE-1972 INVESIIGATICES INIO THE MISSILE ALLOCATION
PECBLEN

A. IHIRODUCTICH

In this chapter, an overview of the investigations into
the missile alleocation problea from the unclassified litera-
ture prior to the 1972 survey monograph by Eckler and Burr
is given. The order of presentation follows that of this
monograph; however only a summary of the major results of
interest are given, since this is aimed at giving a general
idea of the state of research on the missile allocation
problem up tc¢ 1972 rather tham a lengthy exposition of all
these studies. No references to the original publications
are given for the results quoted, =<s.nce the wmonograph by
Eckler and Burr provides a comprehensive list of the orig-
inal papers in its bibliograghy.

The purpose of this chapter is to give an overview of
the state of research into the aissile allocation probleam up
to 1972, so that the results of subsequent analyses
presented in chapter 4 could be better appreciated and the
develorment cf certain key ideas and applications could be
more easily traced. The key results are organized in the
follceiing marner:

e jefense strategies for a single point target,

e offense and defense strategies for a group of identical
point targets,

e offense and defense strategies for a group of non-
identical targets with different values, and

e nffense and defense strategies in special situations.

Each of these classes cf probleas will be aldressed in
the followiag sectioms.
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B. DBIENSE STRATEGIES FOR A SIBGLE PCINT TARGRT

In this section, the defense of a single point target or
a single area target with uanifors value against a single
salvo of weafpcns or sequential waves of veapons are consid-
ered. The MOE in the case of a single target is
Pr(the target survives), and in the case of an area target
is E(nusber cf fenetrators).

The stapdard defense [roblem assumes that the damage
function is a ‘'cookie-cutter'! function in the case of a
point target, i.e. a weapon destroys the target if and omly
if it lands within a distance R of the target, R being its
lethal radius. It is also assumed tbhat individual missiles
and weapons cperate independently of each other.

If the defense knovs the lethal radius and also that a
weapons out of a salvo of A vearons will land wvithin
distance R before making his allocation, the optimal defense
strategy is to salvo his D missiles as uniformly as possible
against each of the a weapons, and the probability of target
destruction is

Be = 1={1-(1-9)K}* " (1-(1-0)k*)"

vhere k = [D/A] and r is the remainder when D is divided

by 3, i.e. D =%ka ¢+ r . P can be approximated by perait-
ting non-integer allocaticns of missiles to each weapon:

Pa 1 - (1-(1-¢)%3% .

The approximation will, in all cases, be at aost as large
as the actual value.
The unconditional probakility of target destruction is

A A A=
£ (a)p* (=g e,

asd

vhere p = Pr(a weapon lands within distance’' R of the
target).
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Various modifications tc¢ this standard defense problea
can be comsidered viz.
e jefense does not know lethal radius R in a salvo

attack,

e jefense does not know attack size 1 ia a sequential
attack,

e lefense does not kncw lethal radius R in a sequential
attack,

o lefense kncws that the sequential attack contains one
weapon nixed with decoys, and
e jefense can do damage assessment on attacking weapons.
The follcwing subsecticns descrite each of these five
cases in tursn.

1. Defense Sirategies wben Lethal Radjus js Unknown

It is assumed that the defense knows the attack size
a and the impact points r; of each of these a ueapdns ptiox
to allocation of his missiles. However the lethal radius R
of the weapcns is not knowt. An appropriate MOE to use is to
maximize E (distance of the target to the impact point of the
pearest penetrator) = B. '
The probability that the ith closest weapon will penetrate
is

N o= (1-9™,
vhere s; = no. cf aissiles allocated to the ith veapoin.
il J
Then B = I, A, +I, 3, {1=A; ) %cc.tr; lj‘q:("l;)’rp:’!‘“‘l;).

if the nearest j veapons are assigned aissiles. To find the
optimus allocations a* , dynaaic programming could be used
to mazimize E such that

i

TTA = ("‘S)" ¢

3
vhece 3= Za .
i
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An aprroximate solution can te derived by allowing
the unknowns to be continuocus, and differentiating E with
tespect to m;. 1In this case a set of recursive egquations is
obtained:

B, = P (1-2%) ,
Qe = Que (1-2% )+ =Ty,

Ak* = Ex/Qx for k = j"2'j‘3,.o0,‘ ’
vhere E = L =L, Q = Ljn =Ly, AF = B /Q,.

Ihis recurrence enables one to get sSuccessively Ay A
rx X} Q'A'*O Thﬁn

n* = log A*/log (1~§} o

2. strategies for a Seguential Attack of Unknown Size

It is assumed here tbat the weapons arrive one at a
tine and the defenss knows the lethal radius ¥ of the weapor
but not the size of the attack. The objective of the defense
is tc smaximize E(number of veapons to the ist penetrator).
This probles is very neaxly identival %o that of the
preceling sabsection, and ome can similiarly derive an
approximate solutinon by pmeans of a set of recursive
foraulae. A very nearly coptimal defense strategy can be
stated siaply as follows: N ‘

For a stockpile of D missiles, allocate approximately D/h
of them to the 1st L weagons, and none tc the (h+1)th
veafpcn. ‘
Numerical calculations indicate that the choice of h for
this near optimal defense strategy is about 30% of the first
unengaged weapon under the optimal allaecation. The loss in
the expected nuamber to the 1st penetrator is only about 6%
coapared vith the continuous optinus.
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An exact procedure which provides integer alloca-
tions can be derived directly if it is assumed that D is not
“00 large, or that no more than 2 aissiles may be assigned
to each wveapon. By coamparing the MOE if 1 missile is
assigned to ¢ack of the first (m+1) weapons to the MOE if 2
missiles are allocated to the first weapon and 1 missile t¢
each of the next (s-1) weapcns, the following defense allo-
cation strategy is derived: let

m, = {~log(1-3-p+pg)i/(log q,) ¢ 2

wvhere r = weapon kill probability, and

q = 1-pli-g) .
Then if D £ m, , assign | nmissile each to the first
D weapons, and if D > m,, assign 2 missiles each to the
first (D-m. +1)/2 veapons and 1 mnissile each to the next
(D¢m, - 1) /2 weapcns. '

Using the same methodology, o¢ne could also derive a
procedure to ottain the optimal defense allocation strategy
given that nc more than 3 missiles may be assigned to each
veapon. However, no soluticn has been given vhich permits
pore than 3 missiles to be assigned to a weapon; it is then
neccessary to resort to djynaaic progralninq to cbtain a
soluticn. N

An alternative Jdefemnse strategy cam be obtained if,
instead of maxizizing E(aumlter of weapons to the 1st pene-
trator), the defenie chocses to make Pr(target destruction)

proportional to the attack size up to the point of aissile

exhaustion. In this case, the marginal increase in the
target destruction probability achieved by allocating t more
veapon tJ the target is constant. This doctrine of ‘constant
value decrement'! yields the following near optimua alloca-
tion stratsgy: “

m; = -log{(1-i®n)p}/log(1-¢) , 1 = Vleccon ,
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vhere ®; is the puaber of wmissiles assigned to the ith
veapon, and p is the number of weapons needed to exbaust the
aissile stockpile.

If tbe defense knoes the probability distribution of
the attack size, and its objective is to ainimize E =
E(nunker of penetrators), tlemn

E=Zp (1-9",

(3 1)

vhere p; = Pr(offense will attack with i or more weapons
inside the lethal radius). p; may be assumed to be either
binomial or gecmetric. The reduction in E resulting froa
adding the jth missile to the ith wearponm is

B(i,9) = B {(1-9) ' =(1-9) 3 .

To oktain the ortimum allocation, the missiles are assigned
one at a time tc that weapcn vhich gives the greatest valae

B .1‘. Of R (i'j)'
A 3. 3trategies against g Seayentijal Attack of Unkmown
g iethal Badiys

2
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it is assumed here that the attack occurs in vaves
of one veapsn at a tise. The defense dces not know the
lethal radius of the weapoms, but knows the attack size and
can predict the impact point of each veapon relzative to the
target. Twc simplifying extreme cases can be considered,
according to whether the defense has 1no kanowledge or
complate knowledge of the impact point distribution. Two
NOB's are possille:
e HOB 1: max. Pr(the offensive weapon landing nearast the
target is assigned a miesile), or
e 4CE 2: max E(total sccre of veapons destroyed), where
score cf a wveapon is the protability that a randos
weapon will land further from the target than it did.

»
ST
P -

-

T X

-~

K
-

; S
o . LTI

(o Y
I o

g
-,

!

31

I R 3

g

|

-

>
4

3

ra

A\
,;a ALt 3 iy FRANN R Vil Tl T TS arnt SV y K YA ) Vb

DALY



In the case where the impact point distribution is
unknovn, and MOR 1 is used, the optimum defense :utrategy is
as follows:

observe the smallest  miss-distance in a frac-

tionoi, i = 1,ee.,D of the attack, and assign a mnissile to

the 1st weapcn appearing with a smaller miss-distance.
This olservation is done I times, where D 1is the total
punber of missiles available. The optimuam fractions « have
teen computed and are tabulated. An alternative near optisua
strategy for large attack sizes which is siampler to compute
is as follows:

observe the smallest aiss-distance in a  fraction
oL = exp{-(n!)*'} of the attack and assign ma missiles to
the 1st m wearons whose miss-distances are smaller.

If the impact point distribution is known, a near
optimal defense strategy fcr 1large attack sizes A can be
given as folloss:

observe the aiss-distance r of the ith weapon and assign

a missile tc it if r; € r*, vhere r* = k/A =jfb(r)dr.
Cptimum values of k for different values of D have been
detersined.

In the case vhere the impact point distribution is
knovn and MOE 2 is used, the optiauam defense strategy has
the folloving fcra.

Suppose there are t £ D aissiles remaining, and
k s A veapcns yet appear ip the attack. When the first of
the k veapons appears vith wiss-distance r, allocate a
missile if r S r(k,t), where r(k,t) is defined implicitly

by:
rikt)
odk,t) = pr)dr
)

If B(k,t) is the average value of the t probabilities that a
randos veapcn exceeds the cbserved aiss-distances of the
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veapons destroyed by the final t aissiles,
E(total score of the t weapcns) is given by the iterative
equation:

tB(k,t) = [1+0(k,t)} {0.5{1+0(k,t) )+ (t-1)E(k-1,t-1)}
+0(k,t)tE(k-i,t) .

This yields:
U* (k,t)*(t‘1)£‘ (k"",t-1)= tB‘(k"l,t) s

and the optimua values E*[k,t) and U*(k,t) can be found
recursively using the ipitial conditions U*(k,k) = 0,
E*(k,kx) = 0.5, 1 £k < n.

4. Strategqjes agajmst a Seguential Attack of Ope Weapon
with Decoys

The assumptions made are the defense knows that the
sequential attack of size A contains one veapon aixed with
(A-1) decoys, and the missile reliatility < 1 while the
veapon kill protability p = 1. 1In this situvatiom, an appro-
priate MOR for the defense would be to minimize the prob-
ability that a weapon is nct intercepted. The veapon is
characterized by a single ctservation (real number) drawn
from a protability distribution with pdf £,(x), and the
decoy is also characterized by an cbservation drawn from a
pdf fa(x), bcth of wvhich are known to the defeanse.

The cptimum strategy can be specified as follows:
Suppcse there are t £ D gissiles remaining, and k £ 12
attacking objects yet to appear. ¥hen the first of the
objects aprear, note the value ¢ of its cbservation, aad
allocate i missiles to it if ¢; S ¢ S Cie1

Optimal values of ¢;, 1 = 1,...,t¢1 can be derived froa the
analytical expression of Er(the veapan penetrates) = p,
vhich is a ccaplicated faunction of the ¢, values. Tabulated
values of p asscciated vith optiaum ¢; values are available

3
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for fy (x) and £f,(x) being Normal distributions with unit
variance.

A more gemeral model vith more than one weapon among
the A attacking objects has been postulated. The optimal
strategies for two different criteria of effectiveness viz.
min. Pr(1 or more veapons penetrate) and min. E (number of
weapons penetrating) have been determined, for fw(x) being a
Normal density function with unit mean and variance and
f4(x) being a Normal Jensity <function with zero mean and
unit variance.

5. Defepse Strategjes yith Dazage Assesspent

When the defense is able to perfora damage assess-
gent on the attacking weapons, he car use a k-stage shoot-
look~strategy, whereby m missiles are allocated to A weapoas
in the first stage, then m; missiles are allocated tc
A-n, surviving wveapons in the second stage after observing
which n, weafpons have been destroyed im the first stage, and
so on, and finally D-(m, ¢a,+...+a,, ) missiles are allocated
to the A-(n, *n, ¢...¥n,., ) surviving veapons. The MOE used in
this case is max. Pr{no veapcns survive).

An algoritha for deteraining the optimal shoot-look-
shoot strategy for any number of stages can be devised by
using a set ¢f recursive equations, whereby the optimuas
k-stage strategy is deterained from the (k=1), (k=2) yeee,
i1st stage strategies.

Por a 2-stage shoot-look-shoot strategy with A = 2,
the optimal alloccation is D/2 missiles to the 1st stage and
D/2 aissiles to the 2nd stage; in both cases, the missiles
are assigned uniforaly to all wveapons. When A = 3 or more,
anmalytical results are difficnlt to obtain, and a computer
must be used to oltain the optiamua allocation for each A and
D.
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For a D-stage shoot-look-shoot strategy, a missile
is assigned at each stage, and in this situation,
Pr(no weapons survive) is

p=2(d)a-gtet

Por high values of §, providing a single 'look' im a
2-staje shoct-lcok-shoot strategy is gquite vorthwhile in
teras of the gain in Pr(nc veapons survive) over a 1-stage
strategy (no damage assessmert), but providing more than one
look is amuch less so unless the missile reliability is
low. _

A special consideration for k-stage shoot-look-shoot
strategies is wwhen a single missile is allocated to each
weapon and time is limited. This gives rise to vhat is
known as a fire-pover limited shoot-look-shoot defemse. If
T is the time interval between the 1st possible assignment
of a aissile to a weapon and the destruction of the target
by that weapcn, and T is the time required for a aissile to
attack the veapou and evaluate the outcome, then a k-stage
shoot-1lcok~shoot strategy can be used against each veapon,
vhere k = [T/¢). It is assumed that the offense attacks with
A weapons arriving at egually spaced intervals of length sT.
Four cases can le considered depending on the value of s.

When s 2 k, the successive weapon engagements are
independent of each other, and the probability that a weapon
vill Jdestroy the target is

P = 1-{1-(1-¢ )*j}* |

¥hen s < k, sSuccessive veapcn engagements are not
independent of each other and delays in engagements of
successive veapcns can  QOcCur. The evaluation of P s
conseguently much more involved, and it becomes neccessary
to use a coamfuter to evaluate P.

35

&,
SO IS
s.".‘s,‘.



Hhen s = 1, the time interval betwveen successive
weapon arrivals is egual to the time required to engage a
veapon with a missile, and P can be given by the cumulative
negative bincmial distribution

p=E(%)a-piigt .

In the previous analyses, it was assumed that the
arrival times of veapons are egually spaced. In an attempt
to bLe more realistic, it is sometimes assumed that the
arrival tises consist of order statistics obtained from a
Narmal or an Expomential distribution. In these cases, it
pay occur that certain weapons cannot be engaged at the time
of their arrival because the dJdefense is still occupied with
earlier weapcns, if the arrival time of a weapon is less
tkan the time T required for a missile to engege a wveapon.
The probability of no delay of the weapons can be given, in
the cas¢ where 2 = 2, ¢ = 1, and the arrival time distribu-
tion is a Normal distributicn with standard deviation , as

Lot {5 ]e

b6?

For values of A greater than 2, it is necessary tco
resort to Monte Carlo siaulation to olbtain the values of the
saximusz delay times.

If the veapon arrival times are assumed to be expo-
nential vith paranmeter a, the probability of no delay can be
given in closed fora as

at~'(a=1) texp(-aTA(a-1)/2} .
A acre general result assumes that T is not
constant, but a randor sariable from a Gamama distribution
vith paramseters n,A. In this case, tbe probability of no

delay is

At
TT(I - 1a4&) .
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C. STRATBGIES FOR A GROUP CF IDENTICAL TARGETS

In the [frevious sections, optiaum defense strategies
vere presented in the case cf a single point target. In
contrast this section considers offense and defense strat-
egies for a grcup of independent identical point targets
with identical values under different degrees of knowledge
each side has of the other's stockpile size and allocations
to individual targets.

The offense and defense strategies that are considered
here are orgapized in the fcllowing sanner:
preallocation strategies- offense-last-move

- defense-last-move
- peither side knows the
other's allocation
ncn~-preallocation strategies- varying attack size
- fixed attack size
sixed ncn-fpreallocation and preallocation strategies

Jaasage assessaent strategies- defense damage assessment
- offense damage assessament
attacker-oriented strategies- neither side knows the
other*s allocation

- offense knovs defeanse
allocation
Each of these topics vill be dealt vwith in the following
subsectioans.

1. Preallccation gstrategies

Strategies allocating veapons and micsiles to indi-
vidual targets rather tbhan to subgroups of targets are
called preallocation strategies, and are based on the
assumption that attack evaluation by the defense 1is
possible. Iwo advantanes cf preallccation strategies are
that they regpresect effectively computable exact solutions
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of fairly realistic probleams, and that they are more effec-
tive for the defense than <cther strategies if the offense
outnunbers the defense and sissile reliability is not very
high.

It is genmerally assumed here that amissile engage-
sents are ore-on-one, and that both sides know the other's
stockpile size and weapon kill protability p and amissile
reliability ¢ . The MOE is E(fraction of targets saved), and
can be given by

Be) = i,
where P; is Pr(the ith target survives), and T is the total
purdber of targets.

a. Cffense~Last-NMove

The offense~last-move situation represents a
lover Lound for BE(fraction of targets saved), since it
implies that the otfense can see the entire defense alloca-
tion of missiles to individual targets before making his own

allocation. In this case, the best possible defense
strategy is to allocate an equal aumter of amissiles to each
target.

1he optiaua cffense strategy against this

defense can te derived as fcllows: 1Llet the offense attack a
fracticn of the taryets y, = a/k vith k veapons per target,
k2 a. IXf F(k) dis the fprobability that the target is
destroyed if attacked by k veapons and defended Dy 4d
missiles, then E(fraction of targets saved) B(f) = l-y, P({k)
Assuaing that'P(k) is a function for vhich a unique value of
Kk, denoted k¢ wmaximizes B(k)/k (the average roturn per
vaapon at an attacked target), the offense allocation that
saximizes P(k)/k also sinimizes E(f) if k¢ > a. Hence

E(f) =1 - {(aF(k®*)}/k¢* if 0 < a S k¢, and

E(f)= 1 - Ela) if k* S a .
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For the one-on-cone defense that is assumed,

ald, k-
P(k) = q'm(l k) g:\u (o, k-d) )

b. Tefense-Last~Nove

The defense-last-move situation represeats an
upper bound for the expected fractioz of targets saved,
since it implies that the defense can see the entire offense
allocation of weapons to targets before making his own allo-
cation of missiles. The best possible offense strategy in
this case is to allocate an equal nusber of weapons to each
target. Por the defense, if d 2 a, the maximizing defense
strategy is to attack each veapon with a single amissile
(since engagements are assused to be one-on-one wnnly). If
d < a, the octisal defense strategy is assign 1 missile each
to a fracticn dsa of the targets, and no missiles to the
rest. The corresponding value of B(f) is

B(f) = (a~d)gesa ¢ dq*/a .
C. Beitheor Side kncus the Otheﬁ's Allocation

In the situation where neither side knows the
other's allocatjon to targets, the problea can be foraulated
in teras of a tvo-person-2ero-sul gaae, vith the payoff
being the fraction of targets saved. ) generalization of the
fundasental theorem of games states that there exists
optisum pdf's of offense ard defense strategies, and the
gaxe has a value V g¢given Ly u}; I%P B(f), wvhere ¥ and y
represent the dJdiflerent defense and offense Jevels respec-
tively. 1The sclution to the allocation probiem consists of
findiag these vectors X = (X, 0% 4Xgpeee) aand
Y= (¥ oY1 ¢Yro---) Such that a fraction x,of the targets are
selected at random for no defense, a fraction x, are
sel ected for defense by 1 aissile, etc., and siailiarly for
the vector y. Tben E(fracticn of targets saved) is
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in (4,3) 0,j=4)
v:%xzysgr“‘g’mﬂ(J .

This problea «can be expressed as a constrained game which
are usually solved by linear programeing. However, Matheson
[Bef. 3] has found a soluticn to the preallocation probles
vithout using linear progragming explicitly. -The results of
Mathescn's werk are rather difficult to describe concisely;
the reader is urged to refer to the original paper for
details. Tbe froblem car be simplified by setting
p=9 =1 (perfect weapons and missiles). In this situation,
the optimum offense and defense strategies can be given in
terns of a and d in each 2f two cases:

e defense dcuyinant, i.e. [2d+1] 2 [2a]. In this case, the

defense strategy is

XL = 2([2d*1 ]‘d)/[2d+23[2d+1] for i = 0,1,..-,[2&] '3
and Xqyeg = (28-[2d))/[2d+2] ,

and th: offense strateqgy is

it

A 2a,[2d+1][24+42] for i = 1,2,...,[2d+1] , and

Yo 1 - 2a/[23+2) .
¢ offense dcyinant, i.e. [2d+1] < [a). In this case, the
defense strategy is

1]

X, 2&/[26][2&-1] for i = 1,2,..',[26-1] »

1]

b 9 1 - Zd/[za] ’
and the offense strategy is

Vg™ (za~-[2a])/f2a] .
In order to get integer allocations which smay
not be possiltle using the previous analyses, an iuteger
strategy game analogous to the Matheson game can be defined,
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whereby the mixed strategy used is a probability distribu-
tion fuaction (p, ,p,seseePy) taken over N different pure
strategies (the aciual allocations of an integer number of
missiles or vearoas to each of the T targets). This integer
allocation game is impossible to solve in closed form except
for very small numbers of weapons, aissiles, and targets,
because the number of pure strategies becomes very 1large
guickly. For g,= 0, and ¢,= 1 hovwever, the value of the
Matheson game is the same as that of the integer strategy
gane. If D (cr A) and T are not too large, it is possible to
find the optimum strategies by using linear prograaming,
vhich can alsc be used to sclve various generalizations to
the Matheson game such as:

e upper limits on the nuster of missiles or weapons that

can be allccated to a target,

¢ allocatican doctrines besides one-on-one,

e several different types of aissiles or weapons,

e independent defense regioas, and

e jeneralized shoot-look-shoot strategies.

The variance in the total onumber of targets
saved if botbl sides use pure strategies can be given by the
upper tound Var(2z) £ T *V(1-Vv)/(T-1), which shovs that the
variance bornd depends only cn E(fraction of targets saved),
and pot on the sissile and weapon allocations.

It can also be argued that if both offense and
defense use pure strategies,then as T-we, the distribution
of the nuaber of targets saved converges to a Normal distri-
bution witi mean 0 and variance less than 1. This liaiting
¥orsal distribution can be used to make estimates of the
frobasilities tbat the nunlter of surviving targets is less
than, cr greater than, 2 specified value.

Another amodel fox the preallocation offense and
defense vhan neither side koows the other's allocation is
known frejuently as a *Blotto game', vhereby the defense has
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a single real target mixed with (T-1) dummy targets, and the
offense, not knowing which is the real target, allocates
veapons among the targets. The Blotto game can be formulated
either as a discrete game or as a continuous game. When
9=p =1, and a 2 d (offense dominant), the optimum offense
strategy is to attack a typical target with a; wveapons,
where a; is a random variable drawn from a Unifora distribu-
tion U©({0,2a); the optimum defense strategy is to defend a
typical target with probakility d/a, using 4. wmissiles,
where d; is distributed according to the same Unifora
distritation.

If a § 4 (defense doainant), the optimua offense
strategy is to attack a typical target with probability avzd
using a; weapons, where a, is a randoa drawing from a
Oniforam distribution U(0,2d4), and the corresponding optimua
defense strategy is to defend a typical target with
d; missiles, where 4; is dravn <from the saae probapility
distriltutioxn.

The general form of the optimum oifense and
defense strategies for a continuous Blotto game with one-on-
one engagemernts was derived assuming that the probability
that a target svrvives vien attacked by y veapons and
defended by x rissiles is of the form

2(x,y) =sly) , 0 syszx
= s{x)t{y-x) , T 5Y.
vhere s{x) and ¢t(y) are convex functions with continuous
derivatives, apd s{0) = t{0) = 1. If £{y)dy and g{(x)dx are
the fractions of targets attacked by y veapons and dofended
by x aissiles respectively, the optisuom defense strategy is
given by g{x; satisfying the equation:

f’g(x)P(x,yzd; = g=-h{y) in some ianterval & < y < V, and

I'g(x}P(x,y)dx > a~L({y) outside thie interval.

42

- . . . . L. e - P I
L TP I O LI P N MR I A R AN YR . LI S L RN Wi
e o v, ¢ LR RN

A .
At a, AR
ﬁ;‘u&&..‘xl}.kﬁ;

AT LA




G
. e

“
C.\’
-

En ® .
o,
.,

- )-

AL

@

Py «"‘.'
RS

“ .‘ 4.
i "l .

e i
R R
% b

»
LA AR

The quantities a,h,U,V are determined so that
a-ha is maximized. The corresponding offense strategy is
given by £(y) satisfying the egquation:

f: f(y)P(x,y)dy = n+kx in some interval U < x < V and

J £(y)E(x,y)dy < n+kx cutside this interval.

Again, the quantities n,k,U,V are determined so that n+kd is
pinimized.

2. Non-preallocation Strategies

When the defense is not able to perform attack eval-
uatioa for each‘target, a group preferential strategy would
need to be adcpted by the defense instead of a preallocation
strategy. In this case, the defense allocates all of its
missiles to defend only a sukgroup of the targets. In this
subsection, group preferential strategies are considered in
two situaticres:

e varying attack size
¢ fixed attack size

When the attack size is varying, one possible
defense strategy is to defend a random subset d/k of the
targets with the entire stcckpile, vhere k is an integer
value. When any target within the subset is attacked, a
nissile is allocated to it. It is assumed that the offemse
knows the value of the fraction d/k, but not the actual
defended subset, and attacks the targets in vaves of one
veapon against each target with a total of i wvaves, where i
is a randoa variable from a probability distribution with a
mean of a. In this situaticn, the optimum offense strategy
is a strategy containing a lower and upper attack level
denotad by i and (a+j) respectively.

If k = a, the defense stockpile will be equal to the
expected attack size on the defended subset. As d—a, the
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advantages of randomization are lost, If 4@ 2 a, the best
defense vould be to engage each weapon, abondoning the groug
preferenmtial strategy.

If the value of k is not known to the uffense, he
could tailor his attack such that E(fraction of targets
saved) is the same no satter vhat value k is selected,
d< k <t, ty selecting the Matheson strategy corresponding
tod="54ht = n.

When the attack size is fixed, two extreme cases can
be considered:

¢ weapons arrive at randcms, and
e geapons arrive in an order controlled by the offense.

Each side knows the other's stockpile but not the
specific allccation of weapons to targets, or which subset
of targets bhave been selected for defense. It is assumed
that p = ¢ = 1. When the weafon arrival order is controlled,
the decision to use a groug preferemtial or a preallocation
strategy depends on vwhat the defense thinks the offense
knows atout bhis plans. If tte veapon arrivals are randos, it
is likely to be rrofitable for the defense to shift from a
preallccation to a group preferential strategy.

3. Mixed Preallocatiop and Non-preallocation Strateqies

A aixture of preallocation and non-preallocation
strategies can ke selected ty the defense as follows. Thie
target set is divided randoaly into disjoint groups of
various sizes, and a fraction of the total stockpile of
nissiles is allccated to eacht group for defense. It appears
quite difficult to determine the optisal offense and defense
stratagies as a fuaction of A,D, and T if D < A and T < A.

For defense-last-move, the determination of an
optimal offense strategy is equivalent to solving a set of
ponlinear equations, and becomes coamputationally foraidable
s the complexity of the prcblea increases. If neither side
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knows the other's strategy Lefore choosing his allocation,
the probles becomes a gase-theoretic ome. The expected
nunber of targets saved will lie between the offense-last-
move and defense-last-move values, and both sides must use
mixtures of strategies. Ip general, these game-theoretic
probleas are even more difficult to solve. One can use a
linear program +o determine approximate optimus non-
preallccation defense strategies vhen both p and are less
than 1. However, since the expected fraction of targets
saved is not lipear in the offensive allocations y; , where
¥: is the fraction of targets attacked by i veapons, an
exact linear programming solution to the allocation problenm
sust consider as many linear constraints as there are pure
offense strategies (since a mixed offense strategy is a
linear combinaticn of pure offense strategies), which is a
very large nualer.

4. Damage Asgessment Strategies

Damage assessment Ly the defense enables hia tc
increase the expected fraction of targets saved by evalu-
ating target damage during the course of the engagesent and
subseguently defending only undestroyed targets. On the
other hand, the offense can also damage assessaent by
attacking ip vaves and oltaining iaformation about the
effectiveness of earlier waves before deciding on the
targets for the next vave. The potential gains in using
damage assessment strategies are analysed in the followiag
tvo sulsecticns.

a. Defense Damage Assessaent

1 general defense-last-amove damage assessment
sodel can be developed assuming that the paraceters A,D,T,p
and are known to both sides, and that the defense knows
that the offense will attack in wvaves of one wveapon per
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Jﬁ% target in each wave., To simplify the analysis, it is further
@é? assumed that the number of targets surviving after each wave
q%v is given detersinistically by its expected value.

f %hen p < 1, the optimal defense has the
L$é following fcram, with wave a arriving first, and wave 1
A7 arriving last:

ﬁ‘ vave a thrcugh n+1: defend no targets,
i%ﬁ wave n: defend a fraction cf the surviving targeis, and
?-i vave n-1 through 1: defend all surviving targets.

L %hen p = 1 (perfect weapoms), thkis s*rategy must
;L, be modified so that a fraction of the targets is defended
Rpf starting at wave a. The value n is equ:l to the smallest
i;g value c¢f i fcr which Q; 2 4 where _

ks R P L S I
e 1= 4)(\~ 1\)
}?g The exprected number of missiles to allocate to targets on
R the ith wvave d# can be given by a set of recursive equa-
AR tions, and E(f) is given by ,
f} B(f) = {d2/T11{g,+ (1-2) Q) -
_ ?&I IThe maxiaum value of D required if ali targets are defended
“iﬂ at all waves is
- (et G-q.)4}"
E Do+ T AL TICH
SN = 1. )(“‘ q:) .
N3
O Coaparisons of the expected fraction of targets
) saved in the case of oreallocation strategy and dasmage
%%% assesssent strategy show that there is not auch iaprovement
§g sade by damage assesssent. Thus these strategies gain little
'{i for the defense in the case cof deferse-last-move.
SN b, (CfZense Damage Assessment

Cffense damage assessment strategies have been
consilered in the cases vhere both missiles and wveapons are
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perfect, oply the defensive missiles are perfect, and only
the attacking veapons are perfect.

In the case of perfectly reliable nmissiles and
weapons, the defense can maximize B(fraction of targets
saved) im a k-vave attack by observing the number a; of
wveapons per surviving target allocated by the offemse at the
ith attack vave, and then selecting di, the corresponding
number of missiles allocated per surviving target at the ith
wave such that a; /4 = as/d. In this case,

E(f) = (d/a)k .

A Dbetter strategy for the defense would be to select
d = 11,k missiles to be used in each vave. The fraction of
targets saved using this strategy is greater than B(f) with
equality occuring vhen aT/k weapons are allocated to each
wave.

In the case vhere veapon kill probability is
less than 1, tke problem becomes more complex. To simplify
the analysis, it is assumed that the offense does not reat-
tack a target if a veapon assigned to that target was not
intercepted by the defense, even though the target say
swvive. Then

B =1 - 3 £ 0-(a y

(£) =1 - Z£ (1-(di/a)) (- (1-p)F )

vhere f£; = E?di/a; .

The optimal strategies satisfying sax ajn E(f) appears
unsolvalle in closed fora. An upper bound can however be
easily obtained if an infirite number of vaves is assuamed.
let the 1at wave attack be a, = a-d veapons per targat. In
subsejuent waves, if the dJdefense allocates d; missiles per
target in the ith wvave, the attacker allocates aj,, = d:
veapons per target in the (i#1)th vave. The expected frac-
tion of targets killed is 1-(1-p)*™9.
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A scmevhat different offensive damage assessaent
probles can ke considered assuming that the defense does not
know the wveagon stockpile size A. The offense is assumed to -
allocate one vweapon at a time to a target, and continue
firiny at undestroyed targets umtil all T targets are
destroyed. In this situaticn, an appropriate MOE for the
. defense would be to maximize E(number of weapons required
X to destroy T targets). The optimum missile allocation can
then be found by dynamic precgramming using the recursion:

£@,d) = pax (142,30 (E(1-9)7) +£ (-1, 3-m) p (1-6)71,

wvhere f£(i,j) = E(number cf weapons required to destroy
i targets given j missiles are availalle).

5. Attacker-Oriented Defense Strategjes

The preceding secticr considered the gain in effec-
vy tivenaess if the defense could assess damage to its targets.
' In contrast, there may arise a situation where the defense
is not able to predict which target a weapon is aimed at
3 before allocating a missile to engage it. The best that the
defense can do in such a situatior would be to use an
attacker-oriented strategy and assiyn aissiles at randoam to
the wveapons cn a one-to-cne basis, and kanowing this
strategy, the offense vwvould attack each target with
a veapcns.
If d 2 a, every weapon vill le allocated t missile.
If d < a, the numsber of weapons which are actually inter-
3 ceptel would be a randoa variable from a binomial distribu-
E tion vith parameter d/a.
N Two distinct cases can be considered for attacker-
A oriented defense: vhen rneither side knovs the other's

allocation, and vhen the attacker knovs the defender's allo-
2 cation. In toth cases, it is assumed that both sides know
R the value of A,B,I.g, and p.




When roth sides must make their allocations in igro-
rance of the other's allocation, the optimal strategies for
koth are to allocate missiles and veapons randoaly and as

) uni forsly as possible. 1In the case where tke attacker has
:? the last move, the optimal defense strategy is to allocate
’ Bissiles as upiformly as possible to the targets. If D/A is
an integer and the defense uses his optimal strategy, the
j optimal offense strategy would be to assign [A/T] veapons to
I-(A-1[A/T]) targets and ([A/T}+1 weapons to A-T[A/T]

targetse.

D. STRATEGIES FOR A GROUP OF NON-IDENTICAL TARGEZS

In this section, pffense and defense strategies for a
group of targets with unegual values v; are considered. The
value of a target may be related to some physical parameter
of the target such as the human population for a city

Ji target. It is assumed that the target values and stockpile
8 sizes are kncwn to both offense and defense. An appropriate
MOB in this case would be the expected value of targets
saved, E(V), Since the targets have differenmt values, it is
Ieasonakle tc assuse that tley vwould have different vulner-
abilities; Lence the value of p, the veapon kill prob-
ability, will not be coastant, but wvill vary with the target
. with wbich it ic associated. In gezeral, the approaches that
: have teen develored to find optimua offense and defense
3 strategies fcr targets of unequal values lead to approximate
soluticas rather than exact omnes. The following situations

have been analyzed hy researchers:
:S e one-sided alloccatian prchleas,
%; e affense-last-move strategies,
o e strategies vhen neither side kacws the other's alloca-
>

‘i

Lo el e

tion,
e strategies vhen offense stockpile size is uanknown, anad

7ot of
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e attacker-oriented defense strategies.

R Each of these situations are presented in the following
i subsections.

o

{ 1. Oge-Sided Allocation Problea

Y,

[ A one-sided allocaticn problem exists when the allo-

o cation strategy of one side bas been specified and is known
-3 to the other side who then designs his optimal allocation to

i counter that specific enemy strategy. Two mathematical tech-

"f nigues available for this type of problem are dynamic
‘ programming and Lagrange Multipliers. To utilize these
*2 methods for finding the wmaximum value of E(V) and the
4 optizzl defense allocation for a specified offense alloca-

r;f tion, the prctlem can be forsulated as

; max i::Z‘:B(i,d;) subject tc ‘%c;d;sc ’

é; vhere E{i,4;) is a general function denoting the expected
'jI value saved at the ith target if d: aissiles each of cost c; .
" are allocated to it, and C is the total available defense
w

budget for missiles.

A The dynamic prograaring approach solves successive
maxiaization prcblems using a recursion equation, whereas
the Lagrange MNultiplier =method finds the unconstrained

»
-

~

‘2 aaximus of the lagrangian function either by direct differ-
.ﬁi entiation of the lagramgian, or by direzt search sethods.

~ -

2 2. strategies yith offepse-last-Move

'% various sethods for determining offense and defense
:é strategies vhen the offense has the last move have been

L AR
PN

prwposed. The agproaches to this problea can bhe divided into
4 tvo categories. The first category uses an arbitrary payecff

_Qi function E(i,a;,d;), vhile the other category assumes
ﬁf specific paycff functions. 1In general, specialized payoff
B functicns siaplify the analysis considerably.
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Using the lagrange Multiplier approach, approximate
upper and lower bounds for E*(V) can be obtaimed, if optismal
strategies are used by bcth sides, by dintroducing the
Lagrangian function:

T k4
L(A,¥) = u‘nlx ni;n {En(i,a‘ ,d;)-l\.z_‘d; ﬂréaa} o
A lower bound to E*(V) is given by

vhere (X,.v, ,3%,3%) is the wmaxisum solution to the
lagraigian. An upper bound to E¥ (V) can be obtained by
finding maxizum solutions to the lLagrangian for other values
of n and v, e.g. A, , W, with corresponding values a',q?*,A’
and D*. Then if E(i,a!,d!)-A(d-a*)+w, (D-D?) < {B(i.ap,da),
a range of A, A SASA] can be elimipated, wherep! in the
above equation changes the inequality. Using this eliaina-
tion procedure successively for different Lagrangian solu-
tions, only a small region of in the vicinity of A, will not
be elisinated, e.g. 2. £ As SAy. An upper bound for E®*(V) is
then the maximum value of L (A,v) in the region AL S A S Ay,
W= N, If the difference between these bounds is small,
the use of the lagrangian strategies a# and d* is practi-
cable.

Another apgproach to the same problea is by using the
dynamic prograssing relation

c, (A,I) = J‘a:‘ oﬁ-a (B(i.3; ,9)) *cio, (=3 ,D=4;))

starting with i = 1 and sclving iteratively for ay, d»,
i= 1,ee.0Tc 1The fipnal c,(A,D) will however only be an
upper rouad to B¢(V), and the allocaiion found will be non-
optimal. A lover round can re fouand hy adopting the weapon
allocation a#, and using dynaaic prograaming to detersinve
the carresponding defensive allocations.

-y
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.Z Three explicit paycff functions with increasing
;s degrees of simplicity are cciusidered.

Sl In an idealized defemse in which each veapon is
,-f intercepted by 4 sa missiles, the payoff functiom E(i) can
%ﬁ; be given by

E(i) = Vi {1-g, exp(~-tidi/ai)} ,
‘ﬁ where ti = -la(1-¢;) .

The expected value of targets saved with optimal strategies
is then

E#*(V) = max min { B{i) .
4 a [0

The problea ¢f finding the ortimal strategies a* and 4* is a
very 1ifficult apalytical prcblea. An approximation to the
optimal strategies can be dcrived in the case vhen the total
attack size is very large ccapared with the defease stock-
pile and the pumber of targets. Then

a* = {ln ¢ - In(-wi1n ui)js1ln u; ,

where u, = 1 - g4 exp(~t.Ds3) ,
lnc=( ¢+ fla(-wiln w)/ln wi}/ 3 1/0n w
d* = Lapsh and Be(V) = Ewul .

A valid soluticn is obtained when any pegative a* are elimi-
pated (target i left upndeferded), the closed forw solution
derived for the remaining targets, and the pogitive ap
satisty) the inequality

a*ln y ¢ l.t,;Q <1 et d;(1-u)ru .
If the zissiles are assumed to e reliable, i.e. 9=
1, the payoft functior is given by

() = v, (=™ 89,
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) and Es(V) = 33‘! n;.‘n (E(1)-Ad; +va; ) .
e The optimizing values of 4; and a can be found for any A
I : and v in three cases:

o A< vw: then d* = (v,-t;)/v for w < v x, and
a* = 0or vy /v - 1/x at will,

- vhere x = -ln(1-p) and ¢ = {(w/x,{t - 1ln (w/v, x)} ;

;; n = v: then §* = any value in the range {0,(w -% )/v} for
,.53 v v x,

a¥ =0 or v;/v - V/x if @¥ = (v, -t{)/v and
5 a# = d% - 1n(w/v;X) /x if 4% < (W, -t;)/v
‘1 h> v: then d® = 0 and ap = max {0, -(ln(v/v; x))/x} ;

\3‘ h and v are selected by trial and error so that ‘{.S,a{ = A,
:‘S and ‘S.;d.f = D. 1In the first two cases, 4p# = a® =0 if
::) v Z,x.

;{: In the case where [ = ¢ = 1 (perfect aissiles and
i wea pons),

{:f: B(i) =w 4if a; €& , and 0 if a; > & .

i One trecatmeat of ¢this problem assumes a weapon
“-_f stockpile size porsalized to 1 and a missile stockpile size
) of H = D/A. Using technigaes fros the theory of linear equa-
_u }‘ tions and nusber theory, it can be shown that there exists
:‘ certain canonical defense strategies corresponding to
ﬁé:; defense stockpiles H ,...,Hy , such that the defense can
,’ achieve the sase B®(V) by using only H; aissiles, vheze
b H, €31 S H;y , i.0. one lists the couplete set of offense and

by s,
4%
P g

defense strategies for 1 < D/ £ T, and the optimal offense/
defense strategies are those that saxisizes/minimizes the
expected value destroyed. This metbod is bhowever oanly
feasidble for saall nuabers of targets, as the coabinatorial
possibilities go up rapidly with increases in the nusber of
targets.
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3. Sirategies when Neither Side Knows the OQther's
Allocation

The game-theoretic situation where each side knows
the other's stockpile size tut not his allocation to targets
is a very difficult problez mathematically. In order to
obtain optiaum strategies, it is necessary to make a number
of sisplifying assumptions to make the problem more trac-
table anaiytically.

If it is assumed that A 2 D and p =9 = 1 with the
payoff functicn being the expected value of targeis
destroyed, the optimal offense strategy is to attack the a
single target with the entire stockpile A, and the deremnse
allocates its eissiles among the wmore valuable targets,
leaving the less valuable targets undefended.

If there are only tvo targets with values v, and
Va the optimum dJdefense and offense strategies can be
obtained in S cases:

¢ D = A-1 (neither side dominant): the unique optimal
offense strategy is to allocate all weapons to the more
valuable target, vhile all defense strategies are
equivalent. The value cf the game V is max (Vi ,Vy);

e D 2 22 (defense overwhelming): any defense strategy is
optimum as long as at least A missiles are allocated to
each target, while all offense strategies are equiva-
ient with v = 0;

e (U+2 £ A (offense overwhelming): auny offense strategy
is optizal as long as at least De¢1 weapons are allo-
cated t¢ <cach target. The defense strategy kas no
effect and Vv = v, +v,.

In the remaining tvo cases where 2A-12 D 2 )
(dlefense dominant) and D¢2 € A S 2D+41 (offense dominant),
the optimal strategies cam e written as a convexi linear
combination of extremal stiategies cf the general fora:
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allocate i missiles (or weapons) +to the target of value v
and the remaining missiles (cr weapoms) to the other target

Tati T e

of value v, vith probability x{ , vwhere ¥ x; = 1. +When
defense is dcminant, each extremal optimal defense strategy
X corresgends to a seguence M = (@ ,..., @) of integers such
L that 1<m, By See<BgSR wvhere k is the smallest

integer 2 (A+1),/(D-A+1), and R = k(D-A+1)-3, and allocates
i(D-a¢1)-m; aissiles to the target with value v, (and the
remaining missiles to the target with value v,) with prob-
. ability

t= A i -2 - -1 .
(00N 2 (v ey e e ) L i = 1,000,k

Similiarly each extremal optimal offense strategy corre-
;' sponds to a sequence (0} ,1; 4ee.) of integers such that
(D-A+1)2n 2n.2...2R, and allocates i({D-A+1)-n; weapons to
the target of value v, (aud the remainder to target v, )
with probability

. (wRoigit) / (5 v, el cevi v 400, 121,000,k .
When the offense is doainant, the extresal optimal
_EZ defense strategies are obtained by substituting D = A-2 and
. 1 =D into the extremal optimal offense strategy given
above, and the extremal cptimal offense strategies are
obtained by substituting D and 1 into the estremal optiaua
defense strategy formula.

4. strategles for Upkpown Heapou Stockpile Size

If the defense has no kanowledge of the offensive
stockpile size, it is reascnable to design a strategy such
that the expected value of targets destroyed is approxi-~

~ nhately proporticmal te the attack size (robust strategy). If
. the offenée has the last mové, the oljective of thz defense
‘ vould e to sinipize the mazisus (over all possible attack
stratagies) exgected value destroyed per weapon expended at

\
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the ith target, i.e. min Si vhere
S, = 23x {{(wi-B{d,a:,4,))/a} -« This is achieved by
selecting an optimal defense strategy (d*,...,d¥) such that
S; = k at all defended targets and S; < k at all undefended
targets, where Xk is found by trial and error satisfying
ax = D,

When neither side knovs the <ther's allocation, a
near optimal defense strategy can ke constructed if the
nissile reliability is assumed to Lte 1, and an uninter-
ruptel veapon damages exactly one unit of target value. If v
is an integer and Z v, = D, then 0, 1,...,2v; nissilies are
assigned to the defense of a target of value v;, each wvith
Erobability 1/(2v; +1). If tbe stockpile size is D =kZv; ,
the corresponding defense allocation would be scaled up to
ke 0, 1, 2,...,2kv; missiles assigned with probabilities
1/(2kv; +1) .

5. Attacker-oOriented Defense Strategjes

Attacker-oriented defense strategies are used when
the defense is ignorant of which targets the incoming
veapons are attacking. If tie offenmse has the last move, the
unifors attacker-oriented strategy described earlier for
identical targets is also cptimum in the case of unequal-
valued targets.

If toth sides are ignorant of the other's alloca-
tion, the oftisal defense is a uniforam random attacker-
oriented strategy similiar to the case wvhere targets are
identical, i.e. allocate [D/A] missiles randoaly to
A-D¢A{C/2] inccming veapons and [D/AJ¢1 pissiles to the
resainder. ‘The ofptimal offense strategy can be approximated
to be as follcus: allocate veapons to the T, targets of
greatest value, vhere 1T, is the saxisum value of i satis-
fying the inequality

v E(T‘fvj)f"‘\'c{*, 1<$istT Py
™
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and ¢ =1-p(1-p,) .

with

(31 ki
P, = (1#D/2+4[D/A]) (1-(1-§) )¢ (D/A-[D/A]) {1-(1-9) ).
The number of weapons assigned to v;, 1 S j < Tis

a; = (log ¢ - log v, )/log C ,

4
T T A
c=(fw) Q% .

84 !

E. SIRATEGIES 1IN SPECIAL SITUATIORS

Ia this section, the rroblem of allocating offensive
veapons and defensive missiles in three special situations
are presented:

e attacks on the defense system,

L defense'nsing local and area missiles, and
e ptudget constrained defense using local and area
aissiles.

These represent more realistic scenarios than the previ-
ously idealized cases of offense and defense strategies. The
matheaatical sodels are consequently more difficult to solve
apalytically, and it is necessary in sost cases to resort to
iterative search procedures or Monte Carlo simulations on a
coaputer in order to find the optimal allocation strategies.

1. Attacks op the Defepse Systes

It was nentioned earlier that an alternative
feasible strategy for the offense would be to allocate some
of his wveapons to attack tle defense systea itself on the
fremise that undefended targets vould be more vulnerable
than defended cnes. The offense would normally attack a
critical cosponent of the defense system such that when it
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is destroyed, the entire defense system would be rendered
either inoperative or its operation would be seriously
degraded. Exaailes of such critical components are radars,
command-and-ccntrol centres cr tactical communication links.
It is assumed that there are R such identical components
e.g. R radars all of wvhich nust be destroyed before the
entire defense system is considered destroyed. It is also
assumed that tlere are T identical point targets, the
defense can carry out attack evaluation, and both sides know
the other's stockpile size.

The MOE is the expected fraction of taryets saved,
and can be given generically by

E({f) = pE,(f) + (1-p)E4(f)
wvhere p is Pr(all radars are destroyed), E,(f) and E, (f) are
the expected fractions of targets saved if undefended and
defended, respectively.

If the cffense has the last move and if missiles are
conpletely reliable, but tle radars are completely vulner-
able to attack, i.e. Pr(an undefended radar is destroyed by
a weapon) is 1, then the oftimal defense strategy would be
to divide the s=issile stockrile into two equal parts, and
allocate each part evenly tc the radars and targets respec-
tively, if the offense allocates his weapons evenly amorg
the defended targets. 1In scre circumstances when the attack
is not unifora, a better defense strategy wvould be to shift
some sissiles from radars to targets, since only oue radar
is rejuired for the defense systea to be operative.

If the defense has the last move and has a central
stockpile frca which aissiles are dravn either to defend a
radar or a value target, he vill defend a randomly selected
radar against attack as 1lcng as aissiles remain in the
stockpile, and then use arp attacker-oriented strategy to
assign missiles to incoaming veapons starting with the most
lightly attacked targets. The offense will attack all radars

58



...
e

B i

vy
e

- ..
o

3
=

“.;'v »

Lok o g
- .

&
AL

3"
s

vty

.

%.

s o
...,-l’,l,
P gL

s,

9 - ‘."“
N
S

with the same number of veapons in order to reduce or
exhaust the defense stockpile. Above a certain number, the
radars will no longer be a soft spot in the defense, and a
better offenmse strategy vwculd be to attack the targets
directly rather than attack the radars. In the defense-last-
sove aodel, the dJdefense must make allocation decisions in
the course of the attack, Lased on up-to-date information.
An alternative defemnse strategy analogous to the Matheson
strategy could e devised, that do not depend on the capa-
bility to =ake ‘on-the-spot' decisions. However, tbis
strategy is inferior to the defense-last-move strategy.

In the case where the defense is restricted to a
one—-oa-one defense for both radars and targets, and the
defense intercegts each attacker as 1long as there are still
missiles available, the prcblem of determining the airimua
necessary nuaber of zadars so that the offense attacks
targets only can be solved. In a target-only attack, the
expected fracticn of targets saved is given by

B, (£) = (g ¢+ p(1-a.03¥

and in a mixed target-radar attack, the expected fraction of
targets saved is given by

A-Rap A-Re,
E. (£) = kg, ™ ¢ (1-k) {q. *?(1-90)} T .
vhere k = Pr (all radars are destroyed) = {1-(9,0541-q,))“]“,

a, is the numlker of weapons allocated to radars, and g, is
Pr(an undefended radar survives an attack by a weapon). The
Binimum neccessary value of R is the ssallest R for which
EL.(f) 2 By (f) for all a, in the interval (0,A/R).

In a sodel vith offensive dasage assessment, it is
assumed that the offense kncws the defensive stockpile size
but not vice versa, the attack is sequential wvith i veapon
at a tise allocated to either a radar or a target, and the
offense can carry out damaye assessaent between firings. The
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MOE used is the expected nuster of wveapons required to kill
the T targets. Dyramic programming can be used to obtain the
optimal defense allocation to each incoming weapon, and the
offense allocation to either target or radar im each succes-
sive uave. If the expected number of weapons reguired tc
destroy i targets given j radars and k missiles and the next
attack is on a target is denoted by £f¢(i,j,k), and the anal-
ogous expected nuaker of weajonms, given the next attack is
on a radar, 1is denoted by £.(i,j,k), then the recursive
equations are

fisJek)=max {1+£(i,],k-n) (1-9(1-p)" ) +£(i-1, . k=m) p(1-9)" } ,
£di oo K)=max {1+£(i, 3, k=u) (1-p(1-P)" ) +£(i, j=1,k-nm) B, (1-P)"} ,

£d,j.k) = min{f, (i,J,k), £-(1,3,k)} , vhere P, = 1-gw .

If an offense strategy that includes attacks on
missile silcs is considered, the problem becomes more
complex. In order to evaluate this situation, the following
assunptions are made: the cffense can attack missile silos,
radars and value targets in waves of one weapon directed at
each of the L sissile silos, or at each of the R radars, or
at each of the T targets, and continues with the attacks
until I or fever targets survive, the value of I being knovn
to the defense. All engagements are one—-on-one given that
p=9¢ =1, and there is rno offense damage assessaent,
although the offense has the last aove. The MOB used is the
expected numter of veapons required to destroy I or more
targets.

The defense strategy is as follows: if the offense
attacks the radars, allocate 1 maissile to defend a specific
(unknown to the offense) radar; if the offense attacks the
targets, then allocate I missiles to defend a specific
subset (unknown to the offense) containing I targets; and if
the aissile silcs are attacked, allocate half of the unused

..........



! and undamaged missile stockpile to defend the silos of the
other half of the stockpile. If R and T/I are both integer
powers of 2, the pumber of weapons required to emsure I or

)

3{ more targets are destroyed is

13

- A = T-IR+D(1+log,R) for R < T/I

™ = D{1+log,(1/I)}  for F > /I .

ﬁ' The offense strategy is as follows: if R £ /1,
'¢ attack missile silos in log,R vaves of D weapons each, then

Kot attack radars in (D/R - 1) waves of &R weapons each, and
finally attack (T-I) targets in a single vave of T weapoas.
If R > T/I, attack nmissile silos in log, (T/I) vaves of

4. D veapous each, then attack targets in D/T waves of
QE T veapons each.

Y 2. Defense Using Local and Area Missiles

3

B¢ In the preceding discussion, it was assumed that
'f there is only cne type of defensive missile. A more real-

. istic situaticn vould be to allov two types of missiles: a
b short-range local missile which defends single targets
(terminal defense), and a longer range area missile which
L can defend against veapons directed at one of a group of
. targets in an extended regicn (area missiles). Various
i possibilities for defense using both local and area amissiles

13 are considered tere.

f? The simplest model involves the defense of a set of

# targets of different values using D, area aissiles which can

4 cover any target in the set and for vhich the defense has

ij the last move, and D 1local missiles which are allocated to

o singly targets prior to the attack. It is assumed that both

E; sides know the cther's stockpile size, and both veapons and
missiles are perfectly reliatie. The offense is assumed to

W attack a subset of the targets, each one with a number of

?‘ . veapons progpcrtional to its wvalue, vhile the defense
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allocates 1lccal aissiles in numbers also proportional to
target value. The area missiles are allocated to targets
such that they destroy just enough of the weapons directed
at each target to let the remainder be destroyed by the
local sissiles defending that target. The optimum fraction
of total target value to be attacked is given by Ap/D, if
A} < D, , where 2¢ = A-(DAAQ*: othervise the offense attacks
the entire set cf targets. 1f the local defense covers only
a fraction h of target value instead of the entire set of
targets, A® = A - D, {A+D_(1/h - 1)},

If instead of the missile reliability being equal to
1, it is assumed that t lccal missiles or s area missiles
are required to kill a weapcn, A¥ =1 - (I),.‘l/:%)t ¢« and the
optizus fracticn of total target value attacked is tA®/D .

If the defense uses a preallocation strategy for
area 3issiles, and it is assumed that the targets have iden-
tical values, the amissiles and weapons have perfect reli-
ability, and roth sides know the other's stockpile size, the
problea can be formulated as a continuous Blotto game by
alloving the cffense and defense allocations to vary contin-
uously. The local missiles are allocated evenly among the
targets. The allocation of area amissiles and veapons
depenis, however, on vhether the offense or defense is
doainant.

If d.(a - 4,/2) s (a - d‘f’ wvhere d, and 4, are the
nuaber cf area and local missiles available per target, and
the offense is dcsinant and he attacks a typical target with
a; weapons where a is a; random variable dravn from the
Uniform distribution U(d,, 2a-4d,). 1f£, hovever,
d.(a - 0.53,) 2 (a-4,)', the defense becomes dominant, a&nd
in this case, the offense should attack a target with
probability

2373028, + (ah+ 24.4,)%)
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using a; vearons, vhere ai is a random variable <froa the
Unifors distribution U(4,. d,+d‘+,hffd.d¢). The defense
defends a target with probalility

(g [+ 20,4, - (dsa0)

using 4; area pissiles, vhere di is a randoam variable froa
the Uniform distribution (0, d.*Jdi*d‘d‘) .

A further relaxation of the assumptions would be to
allow several non-overlapping area defense regioms, each
containing several point targets of different values
wvhich are protected by local defenses as well. One-on-one
missile engagements are assused, togethér vith veaporn kill
probatkility teing equal to 1. An approximate solution to
this nested allccation problem can be found if the offense
stockpile is assumed to be of infinite size, and veapons are
allocated tc minimize the cost in terss of weapons destroyed
per unit target value destrcyed. The defense strategy is to
allocate area zxissiles among regions so that the offense
pinimum cost per unit value destroyed is the same for every
sector. The local missiles are allocated among targets
within a region such that the miniaum cost per unit value
killed is the same for every target in the raegiom, ignoriag
the coatribution of the area missiles.

3. Budggt constrained Defense Using Local and Agea
Hissiles

The models considered here differ from the previcus
models in tkat the defense is given a fixed budget to divide
among local and area aissiles. The optimization therefore
involves this division as vell as the allocation of the two
types of missiles to the defease of targets. It is assuaed
that the defense can putchase d area amissiles per tacrget
with his budget, and that the ratio of the cost of an area
pissile to that of a local sissile is k, both values being
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knouwn to the offense. Both sides know the other's stockpile
size, and a cre-on-one defemse is used. Furthermore, it is
assumed that the weapons and wmissiles are perfectly reli-
able. Since the defense can use an attacker-orieated
strataegy and save il targets with area amissiles if 3 2 a
the analyses that follow assume d < a, and consider three
cases kased on specific assumptions akout the area defense:
¢ Jefense-last-move strategy for area amissiles,
e area defense strategy fcr area missiles, randoa weapon
arrivals, and
e area defense strategy for area missiles, controlled
veapon arrivals.

In the first case of defepse-last-move for area
missiles, the defense has d-j area missiles per target and
jk local missiles per target, j = 0,1,...,d. If the offense
attacks a fraction i/(jk) cf the targets with ajk/i veapons
apiece, then jk of these wveapons wvill be destroyed by local
missiles at each target attacked, leaving (a-i) jk/i veapons .
to vhich area missiles are assigned. The offense can choose
i after observing the defemse's choice of j. The optimal
strategies are found by differential calculus to be as
follous:
if 1 ¢asd <k, 3§ = 4a(1 - dsa), i.e. allocate a'/a area
missiles per target, and i = a(l! - dsa), i.e. a fraction
a/s(dk) of the targets are attacked.

In the case of random veapon arrivals, as aach
veapon arrives, the defense assigns an area aissile to it
vithout knowing which target is being attacked, antil the
area aissile stockpile is exbausted; then local aissiles are
used. Weapon arrivals are rardoa vith respect to the targets
the weapons are directed against. Assuming independent
engagesents of wveapons by local peissiles at different
targets, the probability that a veapon is intercepted Ly apn
area aissile is (d-3)/sa. If there are a¢i veapoans,
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i=0,1,2,... allocated to a target, the probability that
exactly m of them are intercepted by area missiles is given
by the approximation
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No simple analytical soluticn to this problem can be
found; however the offense strategy i cam be approximated by
dk-a+1 if @ and k are small and d << a. I1f a > 33/2, the
defense strategy j is approximated by d-1.

The =model with ccntrolled weapon arrivals is
similiar to the one analyzed previously except that in this

o Vil ol 2l S R Tt

. L R R
S R

;
;@ case, the offense can contrcl the order of arrival of his
! weapons on targets. The offense exhausts the area missile
gi stockpile with (d-j)T weapons, then attacks as many targets
;? as possible with {jk¢#1) wveapcns per target. The fraction of
e,

. Iy targets to le attacked is determined Ly
-

_' ) i = max {0, a(jk+1)/{a-d+3) - a} .

3@ The optimal defense strategy iz one of two extreomes: all
?ﬁi local or all area missiles, according to wvhether 1,k is
3? greater than or less than a-d.
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Iv. LAZEB INIBSIIGATIIONS INIC IBE HISSILE ALLOGATION PEGRBLEA

A. INIEODUCIICH

In Chapter 3, an overview of the studies done on the
aissile allocaticn problem that are mentioned in the aono-
graph ty Eckler and Burr wvas presented. This chapter gives a
survey of the investigations in this field conducted after
the moncgraph's publication, with material drawn from papers
published in scientific journals and rostgraduate theses. A
list of these publications is givea ip the Reference section
of tais thesis.

It is generally observed that the later investigations
into the missile allocation probles tend to model more real-
istic and hence more complex scenarios of the battle, in
contrast to the situatiors rresented in Chapter 3, which are
fairly simple =xodels with a number cf sisplifying assusp~ .
tioas made to make the rraobles solvabdle. As a result, the
matheaatical foraulations c¢f the problem are not generally
amenable¢ to solution in closed form, and various solution
technigues such as iaplicit cnumeration algorithas, dJdyanasnic
programging techniqaes, lipear and nonlinear prograaaing
algorithas and other constrained ofptiaization procedures
vere utilized to obtain numerical results.

This survey of the recent literature on the umissile
allocation prcbles is by no seans cosprelieasive due to the
restrictions on the scope of the thesis given in Chapter 1.
However, the literature that vas revieved revealed a nuamber
of interestlng analytical aprroaches to the aissile alloca-
tion probles in specific, and sosetimes novel, situatioas.

The papers that vere surveyed analyzed the aissile allo-
cation problems from a number cf different perspectives and
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used various analytical techniques. They can however be
loosely grouped for exposition purposes here according to
the specific scenario the acdel seeks to represent, or to
the objectives that the defender or attacker seeks to
achieve, as follous:
e strategies involving decoys,
e strategies involving attacks on the defense systea,
e strategies involving specific types of defensive allo-
cations,
e strategies involving targets of opportunity,
e strategies with specific target assuaptioas,
e strategic nuclear exchange situations,
e strategies involving prcportional defense, and
e strategies in a game theoretic situation.
The studies vill be presented in the folloving sections
ander these scenarios.

B. SIBATEGIES JNVOLVING DBLCYS

In Chapter 3, Section B.4, the problem of allocating
defensive missiles to a wmizture of attacking wveapons and
decoys was considered in the case where a limited capability
of the defense to distinguish betveen actual veapons and
decoys exists, expressed in terms of his knowvledege of the
probability distributions £, (x) and £,(zx) of some arbitrary
physical characteristic.

1. Defepse Strateqy

layno {Bef. 8] alsc considercd the defense alloca-
tion against a mirture of veapons and decoys wvhen the
defense is assused to possess a liaited capability of
distisguishirg Letveen a weapon and a decoy, this capability
being guantified by the prctabilities of smistaking a decoy
for a weapon p, and mistaking a veapon for a decoy p,. The
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defense is assumed to know the total number of threat
objects, the number of defensive aissiles available and
their kill prctabilities, and the values of p, and p,. The
objective of the defense is tc minimize the expected total
nunber of real weapons penetrating <the defense, by finding
an optigal allocation of missiles against an incoming object
diagnosed as Lkeing a weapon and an object diagnosed as being
a decoy.

In the case where the defense has no discrimination
capability, the expected number of fpenetrating weapoms can
ke given by

¥

L = A (1-0)" (1-fp) ,

vhere Ar is tke total number of attacking weapons, i is the
integer part ¢f 4, the average nuzber of missiles allocated
per attacking ocbject, and £ is the fractiomal part of 4,
i.e. 4 = i+¢f . If the apprcximation 1-£fp z.(1~§)f is used,
then

L, = 3 (1-9)"F = 2, (1-p)¢ .

In the case where the defense possesses a lisited
discriminaticon capability, the average aumber of attacking
objects which are diagnosed as being wveapons is
A} = A.~p, A-#p, &y , where A; is the total number of jincoming
decoys. Similarly, the nuaber of objects diagnosed as teing
decoys can te given by

A = Ry-py A *piAr o The expected number of penetrating
weapons in the lipited discriminatica case can be given by

L = A {{1-5.) (1-9)% + p, (H’f? .

wvhere d, and d; are the nusbers of wissiles allocated to
each incoming ckject diagncsed as a weapon and a decoy
respectively.
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The rrotlem of £inding the values of 4. and d4; to
sinimize 1L reduces to being a nonlinear program vith a
linear comstraint: '

min A ({1=Fa) (1-p) ¢p, (1-0)¥]
subject to A!4, + A}d, =D,

where T is the total number of missiles. The optimal solu-
tion jiven by layno is:

uf = (b=B)/(a'+1) if (b-B)/(m'+1) > 0, and 0 otherwise:
and
d¢ = (tvu'B)/(a*+1) if df > 0, and b othervise,

vhere b = T/A} , B = log{pi/n* (1-pa1)1/log (1-¢) and
@' = Af/AY . '
The solution is, hovever, not correct since B can become a
large negative number if p, is close to 1, in which case
d¥ > J, and d* could be negative if -#B > b. Por example, if
A = Y, A) =2, py = 0.9%5, y=0.6, and D =&, then
d¥ = 2.15 and 4% = -0.31! using the abeve two equatioums.

The correct solution is as follows: letting

1-¢ = €%, the cbjective function becomes:

‘J'* Pxé«‘) P)

it

min A, {{1-r,)€

and usipy the lagrange Multiplier technique, the optimal
- soluticns are fcund to be:

4% = (1/x)1n{a(1=pa) /(AB1)) + 3 = (W) ln{p®/ (AAD))

vhere A is the lagrange Multiplier.
If «(1-pa)/AR') > 1 and &f,/(A}) > 1 , vhere

A= exp{(M1D((1-ps) /A1) ¢ AJIn(pa/AJ) - kD)Z(AS*A])} .

thea 13 = (1) 1n{e(1-p )/ (AM)] + 4f = (i) ln(pai/ (AA))) -
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Otherwise, surpose (1-p,)/A! > p,/A}, then d* = D/A!, and
dg = 0, and if (1-p.)/A} < p,/A}, then 4d* = 0, and
¥ = D/B).
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2. 0Offepse Strategy

Sverdlov [Ref, 5: Pp. 183-264] considered this
subject within a different context. Whereas layno analyzed
the problem frca the defense's viewpoint, Sverdlov consid-
ered the prollem of deplcying weapcns and decoys in an
attack on targets utilizing the two effects that were
mentioned in Chapter 2, ramely the defense exhaustion
effect, and the saturation effect. 1In both cases, it is
assumed that the defender dces not possess any veapon-decoy
discrizinaticn capability, and that the engagements are
one-on-one. The MOE used is the expected cost of killing the
value target, and the offense strategy consists of deciding
vhether to fire a weapon <¢r a decoy at each stage of the
game vhile the defense strategy consists of either inter-
cepting the incoming object with a missile or not. It is
assumed that there is perfect information to both sides
about the state of the process.

When the exhaustion effect is utilized, the offense
launches wave after wvave until che single target is
destrayed. It is assamed that N aissiles are available. If
the value of the game is W, the cost of destruction VW ,
geasured in terses of the cost of destruction incurred if the
attacxker uses real veapons crly, is given by

Vg = Vu/{ca/(F9)} »

vhers c, is the cost of a real weapon, p is the probability
that ths vearcn destroys the target given that it sucvived
intercertion by the defense, and g is the probibility thas
the weapon survives the intercept. Vs caa be written in
recursive fors as
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0.5(B + Vaey ¢ B#Vyu <lCTym) o ¥ =g,

with B = g-qre (*~p), ¢ = g-qr. (1-pq), r.= Cp/Cqs ©C, being
the cost of a decoy.

The sclution to the problem can Le stated as
follous: if N < N*, where N* = min (N: ¥V, > 1-r. ), the
optimal offense strategy is randonized, characterized by the
probability that the attacker launches a real weapon,

P* = (V,-Vuu)/ir(M-gWu) 3 &

The corresponding optimal defense strategy is also random-
ized and 1is characterized by the probability that the
defense fires at the incoaing object,

P = (W +qra-q)/ (Vy-gWh.) .

Howevar for K > K#*, the optimal strategies are pure: the
attacker alvays uses weapons and the defense alvays fires at
then.

When the saturation effect is utilized to overcome
the defense, tlke offense strategy consists of f£fipding the
optinum nuaber of decoys tc accompany the real weapons in
each attack save. Tvo cases are considered, firstly vhean the
attacker can launch only a single weapon mized with decoys
in each wave, and secondly when the nuambker of wveapons is not
restricted te one.

In the first case, the expected cost of destructicn
whben & decoys acccmpany the single veapoa is given by

cimy) = (Byey + )/ (p(1- (1-9)/(m +1))™)

where & is the nuaber of dJdefense systeas protecting the
target, and eachk is assumed to act indepently of the others.
To minimize the expected cost. this expression is differen-
tiated with respect to m, to obtain the folloving optiamal
offense strategy:
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if ¢ > ¥,/ (¥ ¢r,), the optimal value af = 0, i.e. there is

no need to have decoys;.

if g € Bg/(X; ¢x.), B} is either [m}] cr [a) }+1, depending cn .
vhether c([®}]) is less than or greater than c({n} J+1),

vhere ¥J is the pcsitive root of the guadratic equation

Gy *+ Gy {gt1-Ns(1-q))1my + Cq = Coly (1-q) =0 .

In the other case, where no restriction on the
number of real weapons ax per vave is imposed, but assusing
cnly one defense system is available, i.e. Ns = 1, the
ainimum expected cost of destruction when the attacker is
constrained to lauanch a total of » objects at a time is

c*(8) = Cyn + min{(cy~Co)mat(1-p)™ ' (1-pemap (1-q) /M) c* (m) ) .

Numerical precedures must be empleyed to solve this
equatica.

C. SYRATEGIES INVOLVING ATIACKS OR THE DEPENSE SYSTEM

Ia the previous chapter, the problem of attacks om the e
defense system itself vas analysed essentially from the
AN , defenler's viewpoint under a variety of assuaptions. In
con trast, fverdlov [Ref. 5: pp. 31-182) considers the
prcblea from the point of viev of the attacker, vho seeks to

o

»i‘ allocate his weapcns in a successive wave attack betveen
.E%S defense systems and a single value target such that various
’1§: objectives are achieved, e.g. wmaximizing the probability of

oY hitting the target, or maxiaizing the expected number of

gg penetrators. In solving focr the optimal strategies uader
§§ different sets of assuapticams, various applications of

'éj stochastic dynaszic prograasing and gase theory are eaployed.

?f In general, the sequential optisal attack on the defense

;Q starts with attacks on the defense sjste- (if the offeanse

%; stockpile is large eamough) wuntil the weapon stockpile is

fQ reduced to N®, then the offense svitches over to attack on

%
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the value target which is assumed to suffer 0-1 damage, and
continues tntil the weapon stockpile is depleted. It is not
feasible for the offense tc switch back to attacking the
defense systea, hence only cne switchover at M* is optimal
and no switch is possible from an attack on a target to the
defense systes in an optimal policy.

In the case where the defense systeam comprises a single
point target (a defense target), and the MOE used is the
probability cf hitting the value target, the optimal policy
can be obtained using dynamic grogramsing, and is given by:

Lo+ ["‘“-%)
NER

M

B and Fs are the probabilities that an unintercepted veapon
destroys the value target and the defense target respec-
tively, and g is the probakility a weapon wvill survive an
intercept by the defense systea.

If the XCE is the expected number of penetrators, the
optimial policy is

N* = 1 ¢ [ /B (1-q)]) .

When the [roblem is generalised to include ¥N; defense
systeas (and hence N; defense targets), and the assumption
is aale that there is no collateral dasage among targets and
the operaticr of defense targets is independent, the optisal
attact strategy, using the maximus probability of hit

critecion, is
In (‘- %)

MUNg) ¢ L T TR (N 1) )
"(u-uq(m) )

B*(n) is non-increasing if the miss [robability ratio £(n),
def ined as

£(b) = (1-Epq(n)}/(1-Bpq(n-1)} ,
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is monotone increasing. MNost weapon survival functions g do
not have the monotone miss [rrobability ratio property, and
M*(N) is actually strictly monotcome increasing, i.e.
M*(n+1) > ¥*(n). In this case, an algoritha based on the
maxisizing [protability of hit criterion was derived for
solving N* (k).

If the MOE is to maximize the expected number of pene-
trators, the cptimal policy is

!
M*(at)) = | *[&{q(n)-g(nﬂ)] ’

If g(n) is strictly concave, M* is non-increasing.

A special situation arises when the defense is assumed
to have the capability of switching to a cautious aode of
operation, in which the defense systea becomes much less
vulneraktle to attack, but at the same time is also much less
effective in intercepting attacking veapons. The defense is
assumad to comsist of a single systea, and possesses a
limited capaltility for discerning whether am incoaing weapon .
is aised at a target or at the defense systea itself. The
defense thus has fcur choices of action denoted as follows:

e P1s1: earley ordinary asode of operation (Mode 1)
regardless of the classification of an incoming veapon;
e P252: emrloy the cautious mode of operation (Mode 2)
regardless of the classification of the weapon;
e P152: eumflcy Mode 1 if the wveafpon is discerned to be
aimed at a value target ('anti-primary' veapon), and
Jode 2 if it is discerned to be aimed at the defense
gystea (*anti-secoandary' weapon);
® P4S1: employ Yode 1 if the weapon is classified as
anti-secondary and H#cde 2 if it is classified as
anti-prisary.
In any case, the probabilities that a veapon aimed at a
target and at tte defense system is correctly classified by
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_the defense are o and Xs respectively, and the probabilities

of survival of the weapon when the defense uses the norsal
mode and the secure mode are g, and g, respectively.

This problem can be formulated as a sequential game.
Since one player (the attacker) has only two pure actions
availakle to hinm, optimal randomized defense strategies
exist vhich six at mpost two of the four alternatives
mentioned akove.

If qp# 1-d; no optimal defense strategy exists in which
P1S1 and P2S2 are the only 'active' actions. 1If Xp > 1-0s,
PI1S1 is active in all cptimal =mixed strategies, and
conversely, if op< 1-y,, P25S1 vill be present in all optismal
mixed strategies.

The first value of M in which Loth players resort to
randoaized strategies instead of pure strategies (offense
attacks value target, defense uses P1S1 strategy) is the
M* of the one-sided dynamic prograaming model given above.

The general structure of the optimal defense and offense
strategies is as fcllows:

e the numter of veapons ¥ S N* : the optimal defense
strategy uses purely the normal sode of operation, and
the optiral offense attacks value targets only;

o 4% C M £ N : the optimal defense randoaizes over P1S1
and P1Ss2, and the cptimal offense randomizes over
attack on the value target and attack on the defense
systea;

e 8 > N*s : the defense randomizes over P2S2, and the
offense randoaizes over attack on value targets and
Jefense systeas.

The value of X% can be calculated by the following set of
equaticas:

H*¢ = ain (8: N2Xe, g, > (a'L®-a®b')/((a"-a')~-(b"-Db'))) ,

vhere 1t' = (g-q,)/%q, P, ,
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at (9=q9,) (1~0:)

(9, -9) /{9, P (1-u5)}

) oL

a" = {g,-g-(1-us)q,q,Ps}/{q, Bs {(1-s)} ,

9y = ¥-W1 and g = &pq =(1-%)q, .
D. STRATEGIES INVOLVING SPECIPIC TYPES OF DEPEHSE
ALLCCATICES

In this section, situations involving models of partic-
ular Jefense systems are apalyzed. The first concerns the
Frobles of overlapping area defense regions and the optimsal
allocation of defenmsive missiles to frotect targets within
these regions. 1In Chapter 3, the defense of targets with
local and area aissiles vas also considered, but only in the
case where the area defense regions are non-overlapping.

Ancther interesting pircblem that is considered here
coancerrs optisal defense and offense strategies when the
defense has a choice of allocating defense resources in
Frocuring ‘numerically vulnerable' defense systeams which are
easy to locate but difficult to destroy, or 'percentage
vulnerakle' systeas whichare relatively difficult to locate,
but once located can be easily destroyed.

Ihe last aodel assuses that the defense consists of
several ‘'layers' of defense systeas, and that the attacker
has tu survive all of these layers ir order to reach tte
target. The probability of an attacker pematrating all the
layers is analyzed.

1. Qverjapripg Axea Defspse Begicns

Swinson, et. al. [Bef. 6] consider the probles of
overlarping area defense regions ccntaining a number of
Foint targets of different values, ard developed a procedure
that applies a dynasic [rogramming algoriths within a
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general framework of successive aprroximations that allow
area aissile allocations to target 'sectors' to be optinmized
sequentially within the constraint of the missile stockpile
size.

ﬂ??:
et " "

In the model, several area dJdefense systeas are
distribtuted throughout an area containing point targets of
dif ferent values. Each area defemse covers a certain region
within vhich a subset of the targets are located. These
regions may intersect, and when they do, the union of these
rejions may te decoaposed by these intersections into non-
overlapping areas called 'sectors®. Targets in the sectors
are dafended by either a single area defense or several area
defenses. Asscciated with a given attack of a weapons
against target t is a function ry (d¢) denoting the expected
value saved at the target if d wmissiles are allocated to
intercept the attacking weapcns. The function may be given
by

. Ty (1e) = w (1-pg™) (1-pg™ye~fe

vhere v, is the value of target t, p is the weapon kill
Frobability, g is the probakility that the veapon survives
an enjagement by a missile, and c: and f¢ are given by

C¢ = [deza,) , f£o = ag(c*l) - & .

The objective of the defense is to maximize the
expected total target value saved over all targets. If an
optimal vithis-sector missile allocation policy is eaployed
to allccate a total of D; sissiles to the defense of the
T tarjets in sector j, then the total expected value saved
for sector j is given by:
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This can be written in the standard functional equatioan of
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vhich can be used recursively to find optimal missile allo-
cations within each sector given a total sector allocation
of D; missiles. 1In order tc find a set of optimal missile
allocations to each sector, the expected total value saved
over all sectcrs P (x) = ,i., £; ("‘ihx:j) is to be pmaximized
sub ject to 3§hxq =b, i=1,...0, where n is the total
number of sectors, xj is the nuaber of missiles allocated
from area defense i to sectcr j, I; is the set of indices of
the area dJefences that cover sector j, J. is the set of
indices of the sectors that lie within the region of area
defense i, bi is the size of the missile stockpile at area
defense i, and m is the total nuaber of area defemses. The
sequential optimization procedure developed runs as follows.
The missile stockpile of each area defense is first randoaly
allocated amcng the sectors which it covers. The expected
total value saved as a result of this initial allocation ¥
is then P(X¥) = %"‘f,- (‘ﬁx’.j). The allocations of all area
defenses other than a particular area defense k is then held
fixed, and the allocations x; , J€Ju of area defemse k can
be deterained using the standard dynamic prograaming tech-
nigue to maximize the payoft

= i (X ¢ & X . o = b .
F(x) = &Lty ¢ §555) ’j}xf’ (5x4 Vo subject toj&(‘ﬁ by

ita

Starticg vith the matrix of sissile allocations x* resulting
from optimizing the allocations for area defense k, the next
area Jlefense is optimized in the same wvay with the other
area Jlefense allocations held fixed. This sequential opti-
sization prccedure is repeated for all the area defenses
cyclically until an entire cycle rasses within vhich no
sector rayoff changes from that of the previous cycle, thus
indicating tbhat a local maxisum solution to the problem has
teen found. A set of local maximuam solutions can be gemer-
ated by eitber varying the initial randos allocation x*, or
by varying the crder for cptimizing the area defenses.
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Furman and Greenberg [Ref. 7] also analyzed the
attacker's problem of allccating a fixed stockpile of
weapons of dJdifferent types against targets of different
values that are frotected by a number of overlapping area
defenses. It is assumed that only one wveapon type can be
allocated to a particular target or area defense, and that a
target sust first be rendered defemseless, i.e. the area
defenses that are protecting the target must first be
exhausted befocre a target camn be attacked. The decisions
that the offense must make that constitute his allocation
stratagy can te represented ty the following decision vari-
ahles: the exhaustion strategy E, vhere ké€ E means area
defense k is to be exhausted; the binary variable bsj which
indicates which veapon tyre j is used to exhaust area
defense k;  the binary variable tj which indicates which
veapoa type j is allocated to target i; and aj giving the
nuaber of veapons of type j that are allocated to target i.
The total paycff to the attacker can te defined as

T o
f(a) = 53’.“0-3 (aj)ty

vhere T is the pumker of targets, N is the nuaber of weapoa
types, and Dj{a;) is the collection of damage functions
representing the expected damage to target i wvhem a weapons
of type j are allocated to it. D;(aj) can, for ezample, be
specifically a square root lawv damage function

D5 (ag) = w (1-(1+cyJay )exp(~-c; [T] ))
or a pover lav camage functicn
Dj (a3) = w (1-(1=c;)%)

vhere v; is the value of target i, and ¢j is the daeage

caastant, a value Letween 0 aod 1, depending on the wvarhead
characteristics and certain seasures of uncertainty.




""" 'I"" "

+
,"‘ ’l ‘i ‘n..r '.t 'i.
y, f

.

. t",.l;{o,“)'. -

oL PR
e r g At e,
s L.

A
A
A

(W
,i

ry
L]

N

L
B,

%
«
L

.‘.
P
g
Y

3

The cosplete mathematical programming foraulation
for the offense weapon allocation protlea is

max f(a)
subject to Ec(1,2,...,D) , wvhere D is the total number of
area defenses;
éa;j Svj 4, J = 14e0.,8, vwhere §; is the number of
wveapor: of type j available;
Bt S 1,10 fee,T

jgh.j =1, Kk€E ;
aij =0 if j e 3%, where 3 is the index set of weapon
types to which the target i is exposed vhen using exhaustion
strategy E, and ét;a:j *E‘b.jx,.j S , 3= 1...,8, vhere Xy
is the puaber of weapons of type j required to exhaust area
defense k.

This p[prollee can ke partitioned and writtem as:
agx {:ﬁf £ (x))} subject to the above constraints, where B is
chosen over all exhaustion =ctrategies. The Lagrangian with
respezt to the last constraint akout available veapon
resources can then be formulated, and the generalised
Lagrange HNultiplier =method used tc solve the resulting
probles:

Mo ez (aax fla)-FNa b &Pty Al

vhere the wultiplier A; represents the price of a unit of
veapon type j.

FPor given A and B, the optimal values h®, a* and te®
can be found by sisple enumeration, apd when the coverage of
each area defense is the saae for each veapon type, the
optimal exhaustion strategy E®¢ can le found (for a given
prtice wectorA) by finding the mirimum—-cut of a capacitated
netwock wvith vertices regresenting targets . and area
defenses, and arcs representing the area defense coverages.
Details are given in the original paper of Pursan and
Greenlerg.
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L?j In an earlier paper by Mdiercourt amd Soland
5 [(Bef. 8), an offensive optimizatica model is analyzed given
specific defense 1levels. In a later paper by Soland

24 {(Ref. 9], the optimization of <¢the defensive allocations
_ § ‘ given an offense-last-move situation ond optimal offense
ﬁ allocation is considered. 1be scenario calls for a =mizxture
B of ovarlappirg area defenses as well as terainal defenmses
; vith perfectly reliable missiles, and an upper limit on the
*.g defensive stockpile sizes due to a budget constraint B. The
S

! offense is assumed to possess a stockpile of size A of a
single type cf wveapon that exects a level of damage on an
: undefanded target (after its area and terminal defenses have

. been exbausted) according tc the discrete concave and non-
v decreasing Jdamage function {; (2;), vhere a; is the nuamber of
z: veapons directed against target j. The defense's allocation
;: problesg consists of finding the optimus number of amissiles d?
, 5: to allocate to arca defemse region i, i = 1,...,8 , and
;% optiaum nuaber of point dJd<fense amissiles dg to assign to
. target j, j = l,...,T so as to zinimize the maximum damage
A the offense cam inflict. If the nuaber of weapons required
_‘: to exbaust the ~zea defense region i and point defense of
g: target j are given by e and e respectively, then a dasage
‘ functicn g, can tLe defined such that g; (3 .d{) = 0 it
3,< €, and g; (3, ,5") = £ (3, -e]) othervise. The joint opti-
N mjizaticn prollex can then be formulated as follows:
,: v ’
2 n},g, (ff f“g,- (3; ¢d;))
- subject to 2 <2,
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vhere & is an indicator variable such that &= 1 if defense
of area i is to be exhausted and & = 0 othervise. D* and Q'
are the upper bcunds on the number of area and point d<“ense
pissiles to ke allocated, C(Q‘,Q’) is the total cost func-
tion agsociated with the defense allocation g“ and Q’, and
d; dis another indicator variable that equals 1 if the
defense of area i covers target j, and equals 0 othervise.
The last constraint ensures that no target is attacked
unless all area defenses covering it is to be exhausted.

This prcblem can be reforamulated into a simpler form
ty defining a function ¢.(g“,§') such that

T ’
P = rax Z 9; (35 .4;)

subject to 'I'Iaj + ;L"é".e? <A

e

and fﬁg A, 1% 1,e00,0 .

il
g» can be calculated For given values of g‘ and g' by a
tranch-and-bcund algorithm. The defeuder's proble. can thus
be forgzulated as

sin  #y (2,3

subject to c@t,df) <8,
0s @ <t* , and
0<sd <1 .

As a final step in the simplification process, the
upper kounds on the defense allocations are denoted by
p* = 2% -1, ana o} = 2% -1,
where p; and g¢; are nonnegative integers. This involves no
loss of generality because C(d‘,g') for Qf > D? for example

can be defined as being equal to infinity. New indicator

0-1 variables yy. i=1,cee,m, k= 140easb: and zy,
j= 1,-.- 'T' l = 1'oaolg’ are defined as fOllOUS:
"
X d Ak .
d: = (2P—1) - 5‘2 Yfk e 1 = 1...-,” )

H

4 u .
d)' (2ﬂ"1) -‘.§ 2“ th e J = 1,.0-,! .
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let ting ‘g' g) = (y“ 'Yn rExxl 'YN'. ’ Zy ,2.;,. e ,Zn‘.) to be the
. ¥ new decision vector with ER+ é‘qs tinary components, the
defense allocatior problem can be formulated as

kY
o

-

win f. ‘zl 2)
subject to C(g,g) £B.

b e G §
KA R s

5_ Since it is assumed that ﬂ§(z,g) is non-increasing and
; C(y.,z) is nor-decreasing, this problem can be solved by the
. 4{ lawler~Eell epuneration algcrithm [Ref. 10].

2. Percentage and Numerically Vulnerable Defenses

a rz Shere apd Cchen [Ref. 11] analyzed the problea of
- off ense and defense resource allocations invelving weapon
system develcrment costs ficm a game theoretic viewpoint.
,,i. Ivo classes cf defense systems are considered in the model:
- e percentage vulnerable (EV) systewss, e.g. Polaris suktma-
ot rines, a fixed percentage of vwhich comes under attack
.. fcr a fixed search effort by the attacker. Using randoa
search theory, the fraction of weapons surviviag in the
ith PV syster can be given by exp{-a:; (y; -r;)} and its
® . value after an attack is

£L(x eXi) = vy (% ~qi)expi-a; (¥, -1;)}

where v; represents tle value of the syster (in teras
of destructive capability), x; and y; are the total
apcunt of funds allocated by the defense to the setting
UF, and by the offense to the destruction of the ith PV
System, ¢; and r; are their required development costs
associated with the aforementiocned purposes, and a
represents the vulneralility of the ith systenm.
e numerically vulnerable (NV) systens, comprising of
_ essent ially static veapcn systems such as the Minuteman
~-;_ ICBM system. The attacker's effort is distributed among
- all the weapons of the systea. In this case, the resi-
dval value of the jth NV system is

-

Jr

RS S i
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£ (x,y) = v} (x]-q))exp (~a' (3}'-1) / (x}-4)))

The nmodel assumes an offense-last-move situation
with counterforce targeting only. The objective of the
offense is tc¢ minimize the retaliatory capability of the
defense. Copsegquently, the defense allocates his financial
resources in a manner wvhich maximizes this ainimunm. The
problens can thus be formulated as:

max min (Zf; (x:,7i) + Z£(x),y'))

subject to Zx +Ix
P d

(]

Zy ¢ ?Y)'

3

X (defense's total resources),

Y (offense's total resources).

The authors developed an iterative algorithm to solve the
allocation rrobles for a mix of PV systems only by extending
the max-min thecry, and hyrothesizing that if the offense
consilers attacking the ith PV systen, it will alloczte
resources y, in excess of g, its 'cost of admission' for
this systen; the defense, if it decides to set up the ith PV
system, will sipilarly allocate funds x; in excess of the
systea's develorment cost r; , so that it can procure at
least one wvesrcn. If the choice of A is unigque for some
optimal allocation x = x*%, then the optimal allocation x*
and y* is also a solution tc the game

xr:x u:}n{ Zv (X -g )exp(a; (y;-ri)) + EA‘H (x;-4; )}

subject to ‘).:x‘ = X, {.y; =Y,
x; Zq;' iGE‘ Y“ 2:3' iG&,
vhere A = (i: y* >r;), B = (i: x> q;) .

= (x: x;=0 for i¢B), x= (y: ;= © for i¢a),

and y* and x* are the optimal offense and defense ailoca-
tions respectively.

It can be proven that A = B if A is assumed unique.
Hence the defense should nct invest in a newv PV system




unless it is of sufficient value for the attacker to pay the
penalty for at least a limited counter to this nev systen.

A soluticn methecd for the allocation problem in the
case of a general mix of PV and NV defense systems vas also
developed . It was shown that at most one NV system should
be developed, and thus the problem reduces to the previous
problem concerning a mix of cnly PV systems with the amount
of investment in at rost cne NV system a parameter used to
deteraine the remaining amcunt of resources available to
allocate amcng the PV systesns.

3. Layered Defense

Nunn, et. al. [Ref. 12] analyzed the aissile allo-
cation problem in the situation wvhere the defense is
layerad, and the attackers +try to penetrate the several
layers of defense systeas. An example of such a scenario may
be an ICBM defense system or a high-rate-of-fire air defeanse
systea which adopts a shoct-look-shoot strategy against
attacking aircraft. The objective of the defense is to mini-
mize the expected number of fenetrators.

The arpalysis uses a Markov chain foramulation. No
explicit representation of defense force levels 4is given.
Insteid, it is assumed that the numkers of attackers pene-
trating (i.e. surviving) the ith layer is binomially
distrituted with parameters n,, q,, where 1, is the number
of attackers aprroaching the 1lth layer, and ¢, is the prob-
ability that an attacker survives the lth layer defense. The
passage through the lth layer is vieved as a transition in a
Markov chain, with the associated transition matrix A wvhose
elements a are given as:

ay = (jiq (1-g,)"”

% 1s diagonalizable with AS = SD where S is a lower trian-
gular matrix whcse non-zerc elements are those of Pascal's

85




trianjle, and D |is a vector of the forna
diag (1,9 +9% yeeesq"). It is shovn as a consequence that if
the distributicn of the initial number of attackers is T (a
rcw vector whose elements make up the discrete mass function
of tha initial number of attackers), then the distribution
of survivors after penetrating through L layers of defense
is given by I}zn, . The Lproduct ‘111‘ +8 just another similiar
matrix with parameter :I}: q: -« In the case vhere the initial
distritution T is binomial, that distribution is maintained
throughout the layers of defense. Moreover, the final
distritution cf attackers is independent of the ordering of
the defense layers since the transition matrices coamute.

B. “ABRGBTS CF CPPOBRTUNITY

A unique variation of the missile allocation probles
concerns so-called ‘'targets of opportunity', which =may be
value targets or incoming weapons. These targets of opportu-
nity arrive sequentially within a given time period, each
havinj a random value. In the case of value targets, the
problem concerns the allocation of defensive aissiles to
protect these targets aand weapons to destroy these targets.
In the case where the tarcets of opportunity are incoming
veapons, the problem consists of allocating defensive
missiles to intercept them. This class of probleas can be
solved ty dyrazic programming.

1. Seguentjally Arrivipg Iargess

Sakaguchi [Ref. 13] formulated a generalised two-
persoan-zero-sus game under the following assuaptions: the
attacker has A veapons and the defender has D missiles. A
total of T targets arrive seguentially, each having a value
Ve J=140e.,1, froma prctability distribution P(v). The
allocation [pclicy consists of a decision on whether to
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attack (for thbe offense) or defend (for the defense) each
target as it arrives with a single veapon or missile, and is
based on the value of the arriving target, the number of
veapons (or wmissiles for the defender) remaining in the
stockpile, and the mission time remaining. The payoff for a
target of value v can be given by p(l-g)v if the defender
decidas to defend the target, or pv if the defender decides
not to defend this target. The optimal strategyies can be
characterised by a system of recursive difference equations
using a dynagic prograamming formulationm.

If the defense and offense have d missiles and a
vea pons respectively left in their stockpiles, and there are
t tarjets yet tc arrive, the value of the game

v, (a,d) =I'Value{pn-ﬂvm-.(a—t.d-n Py, (a-t.a)}dr(v) .
%-.(a,ﬁ-ﬂ V*_'(a'd)

vith ipitial condition Vv, {0,0) = 0, and boundary conditions

Ve (0,d) = 0, Ve {a,0) = ;ég.,;, 0<kst,
| 3
Ve(aot) = F(-P)E g » 0SksSt,

vhere g,; o i = 1,...,t is a triangular array of positive
nunbers defined ty the recurrence relations

91 = Seld-) for t 2 2, gu=hpn, and

g.,; = SelBen i) Blgej “genj)  for 254 e,
= ty Eig. .
The function Sg(2z) is given by z#T,(2), vhere Ig(z)
is the mean shortage functicn defined by
Te(2) = I (1-F(x)}dx ,
and 4 in the aktove equation is the expected target value,
given as

A= 1eg(0) = j:xdF(x) .
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The optimal strategy for the defense and offense is
that of the matrix game in tke right hand side of the equa-
tions for V¢ (a,d), if a target of value v arrives in state
(t,a,d). The explicit solution of the game is not easily
solvatle even for the simpliest kind of target value distri-
butions. However, if the simplifying assumption is made that
target value is deterministic having a value of 1, the value
of the game Vy(a,d) = pa(l -¢@d/t). The optimal defense
strategy is to defend the target with with probability d/t,
and sigiliarly, the optimal offense strategy is to attack
the target with probability a/t. A similiar coatinuous time
soluticn can Le derived if the targets are assumed to arrive
according to a Fcisson process with ratenf, i.e. the number
of targets and their arrival times are assumed to be random.
In this case, the value of the game is given by a systeam of
recursive differentiai equations which characterizes the
optimal strategies of the offense and defeuse.

2. Rande¢nly Arriving Heapons

Kisi [Ref. 14 ] considered the ctroblem of allocating
nissiles against attacking wveapons {attacker-oriented
defense strategy) which arrive randomly according to a
Poisson process with rateA. It is assumed that the defense
has a fixed stockpile d of zissiles with reliability p< 1,
and adopts a shoct-look-shcot strategy <for each incoaing
veapon. The defense allocation strategy comsists of deciding
vhether or nct to engage an incoaing vweapon, and hov many
nissiles to fire given a limited number of aissiles and
sission time remaining. It is assumed that the shoot-look-
shoot strategy is instantaneous, i.e. no time is wvasted
tetveen firings within a salvo. Each of the iacoming weapons
have a randce value which is distributed according to a
Uniform (0,1) distribution. The objective of the defense is
to rmaxinmize the expected tctal value destroyed during a
given total missicn duration.
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The pumber of weapcrs that are expected to arrive
during a missicn time t is At, and the expected number of
veapons destroyed is ¢d. Herce, oanly a fraction pd/(at) of
weapons can be destroyed , and the defense should only
select targets with high values greater than or equal to a
critical threshcld value c. Ihe'optilal threshold ¢ derends
on both the tize remaining t and the number of aissiles
remaining 4, and intuitively should increase as t increases,
and decrease as 4 increases. An orptimal value function
ft,d) is defined as the expected value destroyed when time
t and d missiles are remaining, and the optimal allocation
policy is employed by the defense throughout time t. Then
the optimal value of ¢ is given by

c*(t,d) = p{f(t,d) - £(t,d-1)}

and an incoming weapon is allocated a missile so long as its
value v 2 c*, The optimal value function can be derived
exactly, and is given by the folloving recursive relatioa:

*HE(A) - (= £(t,d-1)] = o {f(t,d) - £(t,d-1) -p) for
d= 1,%pece vith initial conditions £(t,0) =0 and
£(0,4) = 0.

An ajprrcximate solution can be given in the form:

f(t,d) = 5(5 - H/7(A(t-t,))) ,
vhere £, = fyq4¢+ 1 ¢ ,}29&-& +1, and £,= 0, t.= 2/N .

The difference betveen the exact optimal and approx-
imate soluticns c*(t,d) is negligible for 1large t, but
increase¢ as t becomes small. Hovever the difference betveen
the valuves of fit,d) in the two cases is negligible evea for
smll values of t.

Mastran and Thomas [Ref. 15] analyzed the same
Frobler of attacking targets of opportunity , however under
a differeat set of assumpticns. Specifically, it is assumed
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that the defender can only attack one incoaing weapon
throujhout the mission time available, and that all missiles
vill bte expended in the ipntercept. A gemeral probability
distridution cf wveapon interarrival tises is assumed instead
of the exponeantial interarrival times assumed earlier. The
conditicnal prcrability D, that there is an incoming wveapon
in the next time 1interval givem that the last arrival
occured i-1 tise intervals ago is given by

i~
Di = '1;/(1-33‘.'13) for i 2 zand D, =T, ,

where 1; is the probability that i time intervals separate
successive arrivals. The value of the incosing weapon v
comes from a genmeral protability demsity fuaction g(v),
instead of a Upifcra (0,1) distribution. An optimal value
functicn f. (i) is defined to be the expected value destroyed
vhen n time intervals remain, and i time intervals have
elapsad since the last weapon arrival, and the optimal
policy is used. A threshold veapon value X, that is varying
over time can be similiarly defined, =such that the defense
vill attack the incoming vweapon vhen n periods remain, if
and only if its value v is greater than K.. Given that there
is an incosing veapon, the expected value destroyed for the
case when g{v) is coantinuous is

f.-a(')"fu‘g(')d' tJ vamar.

The functionp £, (i) is wmazinized only when a veapon is
attacced that has a higher value thaa would Le obtained by
vaiting another tiae iaterval and obhtacining £,.,(1); hence
K. = £,(1). Thus, the recursive relationship can be written
as

£.00) =2 o) GdNgimdr ¢ vg(v)dv) ¢ (1-D;) {falit D)),
) v dfaa ()

vith £, (i) = 0;f{vg{v)dv, and £,(i) =0 .

vae
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Using this dynasic programaing formulation, the value of
fo(i) can be ottained fcr any n and i.

F. STBRATEGIES WITH SPECIPIC TARGET ASSUNPTIONS

Thus far, tle values of targets are either assumed to be
identical or ncn-identical fron some probability distribu-
tion. In this section, the missile alloca“ion problem is
analyzed under some special assumptions on the target, viz.,

d e Jeterioraticn of target value over tiae,
e ccsplementary targets, and
e collateral damage betueen strategic and nonstrategic
targetse.

Bach of these situations is discussed in the following

three subsections.

1. Deterioration of Taxget Value gver Iiae

Bracken and McGill [Ref. 16] treats the prob.ea of
target value deterioration cover time, and seeks an optimal
sequential attack strategy to maximize the expected target
value destroyed. The Bmodel assuses a set of wveapon launch
centers with different capabilities in teras of the mazxiamusm
nuaber of weapons that cam L€ launched at time t, where t is
discretized intc increments of equal length equal to the
tiae letveen successive veapon launches. The target set
consists of a number of point targets with different values
vhich decrease scnotomically over time. It is also assumed
that the flight times of the veapons from a weapon center to
a target is f€ipite, and are differant for each wveapon
cen ter-target pair. No explicit representation of defenses
is included; it is only isfplicitly represeated by pg ¢« the
probability that a wveapon frca launch ceanter i hits target J
at tiae t. The conditional jgrobability of dec<troying target
j givan that the target has survived until time t is then
given ty e

-

.t"/
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vhere a% is tde number of weapons launched from wveagon
center 1 to arrive at target j at time t, p is the total
number of wearon centers, T is the total nuaber of targets,
and r is a value large enough tc allow all weapons to reach
their targets by time r.

It is assumed that the offense has 2 fixed total
attack capability in terms of the number of veapons A that
can be allocated to the launch centers at each tise incre-
ment t. Hence, if A; denotes the nuaber of weapons available
at launch center i at each time increseat , the coanstraiats
éa; € A and %a:;w' < M hold, ty Leing the weapon <Zroa
launch center i to target j. The objective of the offense is
then tc find optiaum values cf aﬁ e 1 = YyeeeyPe J = 1,...T,
t=0,%...,rand ¥, i = 1,...,p to maxinize the expected
total value destiroyed, i.e.

< tat
LR Y I ;
sax Tt K o-pf))
’ i tety
subject to the constraints & < A awd £a; * I N,
vbere v is the value of target j at time t.

If the target values are such that v' 2 %™ for
t=0,1...,0-1 (value nonincreasing cver time), the objec-
tive function is concave in the varialtles ‘3 . and since the
constraints are linear, the problea becomes a convex nonli-

near program which can be sclved to yield a global solution.

2. Complemeptary Targets

Shubik and Weber [Ref. 17)] ccasidered a generaliza-
tion ¢f the «classical Blotto game for aliocating forces to
independent tarcets in the case of ‘'coaplementary' targets
or networks, vhere the value of a subset of targets v(s) is
2ot ejual to the total individual target values, but depends
on the target ccnfiguration. In this case, the defender's
¢xpected payoff can be given by
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vhere ¥ is the set of all the targets, f£; (d;:,a; ) is the
probability that the targets in subset S all survive, given
that the defense and offense allocations at taryet i are d;
and a; respectively. 1In the case where homogeneous offense
and defense resources are assumed, asnd the outcoze function
fu (4, ,a,) at the kth target is of the form

Y (dgoag) = 1 - Wiwt (-%)/K") ,

where X = a, sd, (attacker tc defender force ratio), and ¥u
is a target parameter that represents its natural defensi-
Lility, and = is a parameter that reflects the importance of
the relative Jdifference in size Dbetwecen the attacking and
defeniing forces which have total resources A and D, the
force allocations are proportional to the
(£i ,£4 ¢eeefr) (D,A)-value of the underlying game if both
sides have cptimal pure strategies, vhere T is the total
nun bec of targets. Furthermore, for all sufficiently samall
values of 2, these allocaticrs are optimal.

3. Strategic and Nonstrategic Targets

Grotte ([Ref. 18] corsidered a plausible situaticn
vhere strategic (military) amnd nunonstrategic (nonailitary)
targets are colocated, and the objective is to eaploy coua-
terforce targeting of weapons such that sufficient damage tc
stratagic targets can te actieved without causing appreci-~
able lasage to the surrourding nonstrategic facilities. The
problea therefore consists cf f£inding an optimal allocation
cf weapons tc a set of aispcints such that miniaum levels of
damage to a set of military targets are achieved vhile
peraissable levels of damage to a set of neighbouring
acnmilitary targets are not surpassed.
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This problea can be foramulated as a discrete noanli-
near prograa:

Bin ‘i_" Ga (Z) Aa

subject to £.(2) 2 Cm, 8 = Vyeee, N ,
Gal2) £ 2, D = 1,0ae,8,
J

jz 23" £ W, i =1‘o...1 ’
al

25 €Iy 1 2 l4euasl, 3= 15000,d,

vhere ® and N are the nuslers of military and nonmilitary
targets, I is the number c¢f weapon types, and J is the
number cf [fpcssible weapon aimpoints, ¥, is the nuaber of
veapons of type i available, and z; is the aumber allocated
to aispoint j, £fm(2) and g,(2) represent damage functions
for the military and nobnmilitary targets, o, and d, are the
minimux acceptatle and maxiaus permissable damage to aili-
tary target s apd nonailitary target n, and A, is a nonnega-
tive wveight for nonailitary target a.

The solution to the ;roblem is by implicit enumera-
tion based on the lexicographic technigue of lawler and
Bell.

G. SIBATEGIC EICHANGE BODEIS

It vas sentioned in Chagter 1 that a onumber of studies
on thae sissile allocation prcbleam is done in the context of
a strategic nuclear exchance between tvo superpovers. In
this section, three such fpapers are¢ presented which are
representative of the studies done in this field. The first
paper formulates a general tvo-strike bnuclear exchange s a
sax-min probles, wvhile the second propcesed a model to opti-
size defense allocations in crder to ensure a ainisus level
of post-attack economic capacity. <he last study optimizes
the allccaticn cf resources for population defense.
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1. Genegal Iwc-Strike Nuclear Exchange

Bracken, ©Palk & PFiercourt [Ref. 19] present a
generil forzulaticn of the two-strike strategic nuclear
exchange, in which both sides possess pultiple weapon
systess and value targets. It is assumed that the first
striker allccates all his veapons against his opponents
value targets andé possibly against his strategic weapons in
an optimal countervalue~-ccunterforce targeting amix. The
seconl striker then retaliates with all his surviving
weapons against the first striker's value targets. This
two-strike prcbles can be formulated in general as:

Dax ﬁg') {Cx(x) - Dz(})) .
vhere X is the set of allocations xy, denoting the nuaber of
the first striker's type i varheads allocated the secoad
striker's type j resources, Y is the set of allocations y;
denoting the nuaber of the second striker's surviving type j
varheads allccated against the opponent's value targets. D;
and J; represest maximua value damage to the first and
secon] striker respectively froa the opponeant's weapon allo-
cation against lis resources.

An appropriate function that is coanvex representing
the ezpected pusber of surviving seccand striker's wvarheads
is

1 35
nsugjrggﬁ' ¢

1t
wtere n, iz the total nusber of the second striker's
type j wveapons, v; |is the nusber of varhkeads Fer
type j veapon of the second striker, and gy is the single-
shot survival Gprotability fcr the second striker's type j
vaa pon when attacked by a sizgle type i varhead of the first
striker.
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On the assumption that Dy is a nondecreasing func-
tion, the solution to tike second striker's allocation
Frobles becosmes simply

ain  {-Dp (1)} = max Di(y) = -Di(z) ,

wvhere 2z; = B; (x), i.e. the second striker allocates all his
suwviving weapons-against the first striker's value targets.
The two-strike prcklem can thus be reformulated as:

mex  {Dx(3) - D; ()} subject to z 2 B(x) -
4

If the raximuam value damage functions are assumed to
have the following specific foras

1
Dp(8) = Va{t~exp(-Z £ (x))ds Daly) = % (1-exp(-Z g, 25003,

vhere the functions f: amnd g; are continuous and assuaed to
be linear and x, demntes allocations to value targets, the
two-strike exchange problem can be exrressed as

max (V-v:) - Vyexp(-t, ) + V. exp(-t,)

J
sub ject to: iz 5 S M, 1= 00,1,

3
tt S éf; (1..) Y ]
2 Zgitz) .

in 2; 2 1ln n; V) *éxam $§70j e 3 = Vyeue,d

vhere ®. is the aumber of the first striker's type i
varheads. This is eguivalent to a separable wuonconvex
prograg, apd an approximate global sclution caa be found by
applying a lrancb-and-bouad algoriths after replacing each
noxlinear function by a piecevise linear approxisating func-
tion.

A later paper by Grctte [Bef.'ZOJ expanded on this
Molel Lty considering four specific weapon types on each
side, namely: 1ICEN*'s, submarine launched ballistic aissiles
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SlBM-at-sea, bombers, and SIBM-in-port, and deriving segra-
rate equations for the seccrd striker's surviving force of
these four weapcn types after a first strike, which have as
parameters origipal force levels, reliabilities of the
attacking weapons, penetration and kill probabilities, etc.
The maximum value damage functions were specified as

»
Dy (X) = Vg {1-exp ("E a; x, )} and D;(y) = V3 {1-exp (-Jf."bi 2 )1,

vhere the parameters a;, u;, b v; are selected to repre-
sent the first and second striker's response tc allocations
3 and y. This more detailed problem was solved using tae
same Lranch-and-bcund algcrithm after <forming piecewise
linear apprcxizations for each functicn in the separated
problem.

2. Ensuring Post-Attack Production Capacities

Bracken & McGill [HRef. 21] prcpose an econonic model
of strategic defensecs, and formulate a mathematical pragrana
for allocating a minimum ccst nix of defense resources to
geographical regious such that a specified miniaum level of
econosic production capacity will survive after an optimized
attack by the offemss. It is assumed in the model that the
country is divided ianto geographical regions (defense
regions) with different econcmic sectors, each being charac-
terized by a Ccbb-Douglas production function of the fora
H.;(K‘a”"‘f(I.q)"’j vhere Hj rerresents the technological effi-
cienrcy of econckic sector i in geograghical regiou j, Ki is
the corresgarding capital base, Ly the labor base, « and Bi
denot¢ the elasticities of value added vith respect ta
capital and latcr respectively.

The post-attack production function (in teras of
value added) in sector i of region j cam be given by:

P = HRL
4 } :
vhere B = H (1 - (exp(-g‘x; dp )Y (Y - exp(‘g;y& a)ll
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f K= x;"n - (exp(—-nfﬂxz';'. dx )Y (1 - exp(-‘%y;, aj;))}"" P

% i H

~ L= 1 - exp(-F xh a2 (1 - exp(-Fyh abin®™,

e

N where the standard Cobb-Douglas form has been modified to
<, .

$R make the exrression a function of the offense and defense
b allocations, dx being the number of defense resources of
‘ia tgpe k allocated to region j, k = 1,.0e,ps J = 1,42<.,0, and
fﬁz aﬁ btaing the number of weapcns of type 1 targeted oa region
,ﬁi j in an attack on econcric secter i, i = Vyeee,n,
N 1= 1,...,4.

s The parameters x; e X, and xp, 3. Ya o and yg
ii might ke estimated from detailed analyses. Assuaing that the
rﬁ} unit ccst of defense resource k in region j is Cjk » and the
3;{ required miniaus level of rpost-attack production capacity
1%: for eccnomic sector i is r;, the obective of the defense to
;jﬁ find an optimal (minimum cost) allocation of defense
ﬁ? resources to geographical regions to ensure the surviv-
2 ability of a sirisua level cf production capability can be
- given Lty the mathesatical prcgraa:

2 . 2

:_:j ain é;. i dji

.\." Py

"d subject to: min 3 B 2L, 1=1...,0,
. .

Y and Za; < A, (the number of cffensive weapons of type 1) .

L~ *

W

{j This is a convex mathesatical [program wvith nonlinear
:; Frograms in the constraiaots, and car be solved by a SUAT
St computer progras.

Y 3. pepvlation Defepse jg a Nycleap Attack
:25 Kapperman § Saith [Eef. 22) approached the probleas
15 of optisal offense and defarse strategies in a unique wvay in

. their study cf the role cf population defense in autual

deterence. Their model assuamed that 'centres of destruction®
are placed at randoa in a flane, forming a Poisson process

PN B i A M
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of density m pcints per unit area, with a circle of area A
(area of destruction) centered at each of these points. The
probability that an arbitrary point in the plane will not be
covered by any of these circles would be the probability
that acne of the roints of the Poisson process lies within a
circle cf area A centered at that point, which is exp(-mA).
If a value density v(x) is associated with points x in the
plane, and value is considered to be destroyed in regions
covered by the circles centered at the Poisson distributed
paints, the expected remaining value density is v{exp(-md)},
and conversely, the density cf destruction is v{1-exp(-miA)}.
This fcrmula yields a good approximation in the case where
veapons are delivered with random errors vhich are a
substantial fraction of their lethal radius. If this Poisson
type sodel is applied to ccapute the maximum destruction
inflicted on a circularly symaetric Normal value distribu-
tion, the maxipum damage function can be given in the foram

f(n) = 1 - {1+B/D )exp(-BfT ) .,

vhere n is the number of vweapons, and B is a parameter
constant. This function gives a reasonably accurate repre-
sentation of maxigua net destruction for urban areas in the
US based on census data and vweapons of less than one megaton
yield.

To ccapute optimal offense and defense strategies,
it is obsexved that the effect of an antimissile defense
vould Le to reduce the value of a, 50 that a general
destruction density of the form p = v{l-exp(-v.m.§)} is
obtained, wvith § being a farameter betwveen zero aad one
reflecting both the deployment of the defense and its tech-
nical characteristics, and v is a paraseter. Using a gener-
alization of Gidbb's Leema and the councept of dJdecreasing
marginal utility, an optiaization of the defense to sinimize
at fixed total cost the saximus destruction of value caused
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by an attack of fixed size is found. In essence, each
defense force is characterized by a value A such that the
total defense stockpile D is given by

D = (11w) [ {uv(x)/a - 1 - logluv(x)/n)}dA(x) ,

and the defense allocation d(1x) is given by

d (x) (1/8) {wv(x) /A -1 - log(wv(X)/n)} , wv(x) > A,

0 otherwise ,

where the integral is taken over all points x such that
vv(X) 2A7. This strategy is optimal wvhatever the size of
the ofifense stockpile.

Bvery level of offense aarginal utility p <A has a
unique force level. The total attack size A is given by

) A L ~vix) ”
As b (952 -1 g )dAm + 5 f log (L;—)AA( )

where the first integral is taken over all x such that
wv(x) 2N, and the second irctegral is taken over all x such
that AD> wv(x) 2 p. The payoff to the offemse is

P=[(v(x) - psw)aa(x) ,

vith the integral takea over all x such that v(x) 2 a.

B. PBCFORTICEAL DEPERSE STBATBGIBS

In the case vhere the defense is at a disadvantage, e.g.
vhen the offense has prior knovledge of the defense alloca-
tion before saking his own allocation of veapons to targets
(of fense~-last-move situaticn), the defense can ‘insure'
against excessive losses by saking the defense proportional,
in the sense that the attacker aust pay a *price' that is
proportional tc the target value extracted.

A class of proportional defense 8sodels coaprises the
so-~called ‘Fria-Read® missile deployaments (paamed after their
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develorers R.C. Prim and ¥.1. Read), for defending against
an attack by an unknown nueber of independent and seguen-
tially arriving veapons, with the objective of minimizing
the total expected number ¢f defenders subject to an upper
bound on the =maximuam expected target value damaged [er
attacker, i.e, the maximum jossible dasage under any attack
is bounded by a linear function of the attack size.

Burr, Falk and Karr [Ref. 23] developed a method to
produce globally optimur solutions of integer versions of a
class of problems vhose ccrtinuous solutiops are of the
Prim-Read variety. It is assumed that the offense has the
last acve, &nd the target set consists of T point targets
vith values v, i = 1,...,T, each protected by its own inde-
pendeat terminal defense. 7The defensive missile has a reli-
ability g<, and the attacking weapon kill probability
p= 1.

The expected target valu¢ uestroyed can then be given by

v =% T 4

W = BN TO-0-p70)
waere 3, is the number of weapons allocated to target i, and
d; is the pusber of aissiles assigyned at target i to be
directed at the jth iacoming weapou, Lotk sumbers assuzed to
be nonnegative integers., letting 5 denote the upper bound
on the wmaxisus evpected target damege per attacker, this
defense prokles can thus be foraulated as:

satject to: Vie 5 5
20, a 20, dj, ai integers .,

F

For each value of s, tha problez sxs a solulion which
can be found by sclving a ccllection of single-target prob-
leas, one fer each targeot in  the target set. The sinale
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target problesm can be formulated as:

ain ?d;
"

where d; is the nuaber of missiles assigned to attacking
veapon j, amd v is the value of the single target. It is
shown that for every r = s/v, there exists an optimal solu-
tion 3% such that 4 2 4f 2 4f 2... .

The soluticn to this single~target [problea can be given

in the form cf a recursive relation:

{l' d=rk — }
J= (- 9)*
in (1=p)

Sk <y, &=

vith imitial condition d* = [(ln ri/{ln(1-f}] ;
k > i/r, 4 = 0. |

([x] denotes tle smallest iateéer 2 X ) The individual
optimal solutions to the single-target probleas fora the set
of optinal sclutions to the original aulti-target problen.

A different algoritha fcr the all-integer versionm of the
Priz~3e¢ad model was derived by Burr, vhich is similar in
satura to the above algorithm, but unlike this amethod,
alvays produces nquotone degployaents.

Ia the case vhere both defensive missiles and offensive
veapons are perfectly rellfatle, i.e. f =@ = 1, the defender
can ensure destruction of the attacker by allocatiang a
singla aissile to it, and a target will be destroyed the
first tise it is left undefended; hence the value of d can
be expressed as

dij“‘ij

= 8, 3

1]

1(;.000&
JI. Y, J&’zo°~- ’

13

d, being a unonpegative integer representing the nuaber of
vea poas against vhich target i will Le defended and to which
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it is therefore invulnerable. This simplified probles can
thus be reformulated as:

l}n Z4q
subject to: 7V, < sZa.
The unique sclution to this froblea is given by:

J? = ﬁv;/s) - 1] e 1= 1,2,00e,T.

Haaland & Wigner [{Ref. 24) derived optimal dJefense and
offense strategies using elementary mathematical techniques.
The assumptircns which they zade in their model are that the
weapons and missiles are perfectly reliable, known to the
offense which, as before, bhas the last move. The damage
function at target i is dencted by f£; (ai), and represents
the paxzimua . dazage inflicted on undefended target i (i.e.
its missile defenses having leen exhausted) by a wveapons.
This fuancticp is assused to be @moconotone increasing with
decreasing slcje.

An example of such a function is the square oot law
damaga function,

The optimal attack strategqy is shown to allocate a
nunber of weapons a to each target such that the parginal
incrc~se in dasage by the last wveapon is equal for all
targets, i.e.

£i(a;¢1) - £, (a;) Cc < f;(a;) - £;(a;~-1) for alli,

or igncring integer value considerations, 2f; (a;)/93; = c,
wvhere ¢ is a ccnstant denoting the marginal increase.

The critericn for not attacking a particular target j is
given Ly the inequality £ (a))/(d;+a;) < ¢ , vhere 4; is the
nuaber of aissiles defending target j. Heace, the optieal
attack strategy is obtained as follous: an arbitrary value
of ¢ is chosen, and all values of a; are calculated using
the ejuation 2f; (a;)/%a; = c. 1Those targets for wbicha there
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is po solution to that eguation are disregarded. The
critecrion for not attacking a target is then applied to the
remaining targets, and the sum Z(a; +d;) over all those
targets to le attacked is compared with the total offense
stockpile A. If Z(a;+d;) > A, the procedure is repeated
vith a larger value of ¢, and if Z(a;+d.) < A, it is
repeated witb a sszaller value of ¢. The optimal strategy is
found wben Z(a;+d;) = c. This tactic has the property that
a larger attack size A dces not decrease the number of
veapons aimed at a particular target, and would not cause a
target that is attacked at a smaller attack force level to
be bypassed.

The optisal defense strategy is analogous to the offense
strategy in that missiles are allocated to each target such
that the marginal increase in damage by the 1last veapon is
equal for all targets. This is determined principally by
their alility tc decrease the effect of an attack in which
pot all defended targets are attacked, since if A is such
greater than the defense stockpile D, the offense woulil
simply send in wveapons to exhaust the defense stockpile D,
and then would allocate tle rest of his weapons over any
targets he wishes, resulting in damages independent of the
defense allocation. The defense strategy is specified as
follows: ap artitrary B is chosen, and the nuaker of veapoans
allocated to undefended target i, a! is determimed using tae
equatica

£ (R e1) - £ () < B ()£, (d-1) .

Then the defense allocation & for each target is deteraised
from tbhe eguaticn

£ (ad)/(4 ¢af) = B.

1t f;(a:)/afs B, 4; is set tc 0, i.e. the target j is left

undefended. Then the sua cf the defense allocations are
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compared witk the total defemse stockrile D. If Z24;< D, the
process is repeated with a szaller B, and if T 4 > D, it is
repeated vith a larger B. The optimal defense strategy is
found when 2£4; = D for a certain value of B. This defense
strategy is cptimal when all targets are attacked. A *tuned
attack' is said to occur if the number of attacking wveapons
is just equal to Z(d;oaf), and in this case, all veapons
will be aiped at defended targets, and the total damage will
be B € (d; +a}) = BD.

I. STBATEGIES 1IN A GABE-THECRETIIC SITUATION

Croucher [Bef. 25)] uses game theory to analyse the
missile allocation probles. It is assumed that a target i is
attacked by a vweapon carrying r; reentry vehicles, and is
defenied by 4; sissiles. Given this sitwation, the prob-
akility that an incoming veapon that is aimed at target i
destroys it can le given by a 'natural' payoff function of
toe folloving fera:

P(r; 4d;) = {l-exp(-a;r;)}exp(-b;d;) , vhere a; and b; are
canstants rerresenting vulnerability factors associated with
target i.

If each target i has a value v; asscciated vith it, thea
the total exgected target value destroyed is given by

P(z,d) = Zv (t-exp(-a;r;)lexp(-bid) ,

sub ject to the constraints ér; = B (the total offensive
stockpile of reentry vehicles), and i,.d. = D (tke total
defeuse stockpile). The vectors r and 4@ represest the
offense and dJefense strategies respectively. The function
P(; ,1;) is ccncave in r; for fixed 4, and comvex in " for
fixed r;, ; consequently, it cam be rroven using the funda-
men tal theorea of games that there exists a pure strategy
saluticn for the game with the payoff function P(r,d). The
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optimal max-xin strategies r* and d* are derived using Gibbs
leama to be as follows:

r* ={1/k }1n (V¢ (pk;)/(a;)}, 4% = {1/a )1n{v;/(p/a; + A/%}
ifn.‘)o' d?)OQand

£* = (/b )ln(wbi/n) if ¥ >0 and dp = 0 .

The values of A and n are uniguely deterained by the equa-
tions:
g (W5 )1ln(w bi/n) ¢ &  1o{1+ abi/(aa;)) = B
ac I whed ‘

and X (1/3;)1ln{w /(usa, + Wb;)} =D .
?.)Lo-e

The critericn for attacking or defending a target i is
characterized as follows:

no offense an. defense at target i: £ = 4% = 0 if v <Ay
no defense: r# > 0, 42 = 0 if A/b; < w < (p/a;)*(Nd;);
both offense and defense:r®$>Q, 4p>0 if w >(u/a; ) ¢(Asd;) .

A detense allccation d# > 0 implies r# > 0. The total
expected value destroyed when offense and defense are both
using tbeir optisal strategies is given by the value of the
game

V=AZ /b ¢ (v -A/L) ,
16L lel,

vbere I, is the index set i such tbat r¢ > 0, d¢ > 0, and I,
is tbe index set i such that r® > 0, 4% = 0.

In a later paper, Crcucher [Ref. 26) lerives corre-
sponding results in the case vhare the dasage fuanctios is
given Ly

P(K +4)) = 1 - exp(-b;r; /7(1%a;4;)) .
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On the comdition that R < 2/!%: b; , the optimal cffense and
defense strategies are givers by:

£* = {v; b, n/(art)yexpdbi 8/ 0ai))
d¢ = {v b /Aaexp{(bip/(uR) - Ysag) S£ >0 and a0 ,
and ©?* = (1/k;)log(wb;/a). if r* > 0 and 4% = 0 .

Thus the criteria for attacking or défending a particulsy
target i is characterized by the following ejuations:

L = 48 = 0 if v; < A/b;
>0, 3% =0 if Asb < v < (B )exp(b p/{an)}
* >0, 4*>0 if w > (Mbi)exp{tia/{aAr)} -

The value of A and a is determined by the equations:

z 175 )lcg(w by M) + (b wins/ad)exp (b n/ain)=t,
%“‘f"’(«'gé \t>e¢w(-‘-‘&
&N
and )2 {{v. bi/A)exp (b p/a;A) ~ 1} /a; =D .
wriw(ia)

The value of tke game V is given by

V= 32w (1 - exp(-bin/an))) ¢+ £ (- ¥b) .
Le], sl
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i
i Y. ccacLuston
ﬁai This thesis has attempted to provide a description cf
5;;i the missile aliccation prolleam and a general survey of the
'3j mathematical investigations, models, and results related to
’g§ this problem. The treatments have not included classified
f§$ studies, weafpcn specific studies cr computer simulation
ﬁ&' combat models, and are hence by no means comprehensive. It
¥;’ is hoped, however, that the reader who is interested in
A missile deferse and offense either frcm a practical or math-
332 ematical standpcint would, after reading this thesis, gain a
N better appreciaticn of the range of probleas involved in
;f? this field, the successful attempts that have been pade in
igﬁ solving this prcblem, and the areas in which no solutions
;iﬁ have yet been fcund, and which therefore merit the attention
L of mathematical analysts c¢r operations analysts who are
; ) interested in pursuing this field of research.

f;§ The general trend has been towards the building of more
f;; realistic and aggregated =rodels of missile offense and
) defense. This is especially so in sodels which represent
;% national-level strategic exchanges between superpowers (see
‘i§: for example [Ref. 27] ). Hcwever, as the degree of realisa
QN: and complexity of these models increase, it is generally
%ﬁ? more difficult to obtain analytical sclutions in closed form
i‘; or even through the use of iterative search algorithas, and
E;i it seagss that ccaputer simulation offers the only hope for a
%;5‘ soluticn to the problem. However, simulation studies carry
‘f}, ¥ith thea the disadvantage that sensitivity analyses and
ﬂ!; exploration of alternatives are extremely tedious and time-
Qéf‘ consuning because of the large nuaber of variables or param-
tﬁ eters required to characterize the model. This would
'Egj hopefully mctivate researchers to search for more ‘elegant'
7~: pmathesatical sclution methods for these probless.
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e 108

o

4
L}
)

x
.




e e e m e e e o ——— e T e Y WY v mme < T e A T P AT WL WCLG AT VAW LW G D AT WY BA T BT IR W RS 1 e T T AWV B R -

LIST OF REFERENCES

1. Eckler, A.R. and Burr, S.Ak, al Bodels of
rerations Research Scciety,

2. Hatlln
A ocaﬁl

Ep. 33

l. Analyticg; Services Corfgtaticn, Regort AR 67-;,
ele a 65011, - ! y

4. layno, S.B., "A Model of  the ABA~-ys.-RV Engagement
with Inperfect RV Discrisination," Qperitions
Resiarch, vol. 19, pp. 1502-1517, 1971,

"2 Review ¢f the lLiterature on the Missile

on. Pr blen,™ Cperations Research, vol. 18,
-373, 1970.

Se

E.r.‘

o- e
aliforria, 1991.

6 Swinson, G.E., Randelph, P.H.
Halkens 'M.Ee.’ wa Hodel’ fo
Froa ﬁv

Dunn, B.J. and
T Aliocating Interceptors
er’agping Batteries: A Method of D nanlc

Frograsiing, search, vo 19,
EFQ 18&'19 ) 1971.
7. {g{naneic G.ithagd G§e¢nber H. Jﬁ'f "Optinal Reapon
ocation w verlajping Area Defenses," Qrerations
vol. 21, pp. F1291-1308, 1373, o

8. Miercourt .A. and Socland, R.HB., "Optimal Allocation

cf Missiles Against _Area and Point Defenses, "
QEQLQ&iﬂh&.Bﬁﬁﬂﬁgnh. vel. 19, ppe 605-617e 1971,

e Soland, R. u. "Optilal Defensxve Missile Allocation: a
Discrete g Picblen,® Qpacations _ Research,
vol. 21, pp. 90- 96, 1973.

10. Lauler£e£ .l. and Bell, M.D., “l Method £far Solving

ri Optimization Frobleas, Qpexations Research
volo 18, Fp. 1058-1%12, 1966. ‘

1. Shere, K.D. and Coben, E.A. "y Defense Allocation
Froblep with Develcélent losts
lcgistics Quarterly, v 19, Pp- 8635-5 ) :

109

IR ATV 30 N A SR AN N AT P NP ISP IP AL SL AL F T L P LY (e WA N T P DAY SO S LA LA AL & LA TR LS L LA G AL LA | L




e

.
-
Ky
) »
® .
*
X)
»
» g

0
o
&

v m e ey s TRV e 3T M e R il SR R T E A NS T R R BN R BV E LW ROWTIW S e P RS R KA L T

12,

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

AN Y U AR

Nuan, W.BR. "Analysis of a 1layere en Model, "
creratlian:’ jeseazch, vel. 30, pps 59 ?382 ’

Sakaguchx, H. "A Sequential Allocation Game for
Target wit Yarying Values," 1l of tue

: vol.
EP- . .

Risi, 1., "Suboptlmal Deczsion Rulez for Attackiny
1argets ¢t Opportunity
guarterly, vol. 23, »r- 525-

Mastran, D.V. and Thcszas, C.d., “Decision Rules for
Attackin Targets of 0 ortunztg " yexai ggsgaxgb
Lngmxs.g_amrigm, vel. 20, pr. 661-672, .

Bracken, J. and McGill, J.T "A Cenvex P:ogcanaiua
Pcdlel fcx Optimizing SLBN Aftack_of Boaper Bases,
crerations Research,  vcl. 21, pp. 30-36, 1973.

Shubik, ¥, and Weber, R.J., "S stel Defense Games:
Colonei Blogtto, Commard and Control g;xn*gﬂﬁsggxgh
Icgistics Quarterly, vol. 28, PP. i- N

Grotte, J.H., MA Targeting Model that Minimizes
Collateral Damage,
guarterly, vol. 25, pp. 3 v .

Eiacteni J.,w Falk, JEE.h and B;ercongt, P.Ai del 3 A
Strategic eapons xchange ation ode
H Do, verchgmde Ailgcaion g, jodel
Grotte J.H., "An Ogtinizlng Buclear RBxchange Mcdel
for the Analyszs §ucl ar Wwar _and De%e:rence.
'3 ve 300 Fpo 323‘““5, 982.
Bracken and  NcGill, J.T. "Optimization of
Strate ic Defenses tc Provide §pecifxed Post-Attack
Prodnc Capac1 ies," n2q31_1§9§3159h___LaaL§£is§
VO - 2‘. pP. 663“ -

XKappersan, R.H. anrd Saith, H.l., "The Role of
Ofulaticn Defense in Hutual Deterence,® SIAN Review,
' Fp. 297"‘318' 19770

naaland1 C.H., and Bignerg B.P.‘ "Defense of Cities by

Anti-Pa stic ﬂiss:

€5,"
LI P TTE R ’

Review, vol. 19,

110

T e N LR L RS L e e e e LN S AL TR AN L B W e e e el i e T et Ta e i T T T

a

BT T BT MUY DT AN MR A O T

ERCE N




S S T e e T s e B e e T on e AT TR ke A § e anWae 2 T bR e B RS ARY PR ARSI R AR T AL B - A B /R R T e s LT Y BT R L

o e

ala 2

25. Croucher, J.S., "Aprlication of the Fundamental
) The ge of Games to an  Example _ Concernin
3 Antiballistic Missile  Defense,"

uvarterly, vel. 22, pp. 197-203, .

26. Croucher, J.S. "A Target Selection Model," Qpsearch
vol. 12,"pp. i%14, 19969 ‘ '

a

-

0 27.  Institute for Defense Analyses,  Paper P-1357,

mm' > ¥ y Nede 1] 15, 37/8.,

> ~SERC IR

i
.
Pt

(B 2 )
Pl

. e ¥
- LN
AN - T

o
P

L
P

¢ il

X m

AR N S R A T R I A A TR I I T A LA A TR TG T T TR T T L D C T s S it S AR R I T TR A P AL L R TS % "l



e e e Wb W e WA W e LS TR e VIR WM W PEALE W A R WA W AR N M Wk NN MWW WS MR WOk U P W RO TS AL WYL B WL FOW WD R WL WA RS W BN e W T

IRITIAL DISIRIBUTION LIST

No. Copies

1. Defense Technzcal Inforsation Center 2
ileron Station
Alexandria, vlrglnxa 22304-6145

2. Librarg Code .0 2
Yaval Pos ggadnate School
dcnterey, lifornia 93943-5100

3. Brofessor A. R, washiurn Code Sgﬁs 1
Jepartaent of Operations_ Resear
Naval Postqraduate_ Schocl
Yonterey, California 93943--5100

4. Professeor . R. Barr, Code S55Bn 1
Departaent of Op eratlons Research
Yaval Pcst r uate Schocl
Monterey, fornia 93943-5100

> :%ov Kachﬁ?g Depot Road 4

6-1027, Singapote (0410)
Singapore

6. Professor A. R. Eckler 1
:pring val leﬁ Roa
MorriStcwn, Rev Jersey 07960 ¢

7. Professor S. 1
i:yngg%ig eQFUNIe artsent
n [
neuprork. NY ?003 P

o Park Nam_Ku

R4 L P 1
Yaval Postaxaduate Scheol
VYcnterey, California 93943-5100

9. 8AJ 3083 ¥on Pyo 1
SHC # 7
Naval Pcstggaduate School
jont erey, lifornia 939“3-5100

10. CILR L 8951 Jung 1
SBC {1 1
Nnva Postqraduate Schaol
Yonterey, California 93943-5100

112

AR RT3 -3 AL TAK r BRI A I SAT IR R k. Vel b Tl Yk Rl T AL Sl S UGN Y N, TP, SN N d Tratil “o el v




