
RD-A159 391 TESTS FOR A'CHNNE-POINT(U) STANFORD UNIV CA DEPT OF 1/1
STATISTICS 8 JAMES ET AL. AUG 95 TR-35
NggM4-7?-C-096

UNCLSSIFIED F/G 12/1 M

EEEEEEEEEEoiE
Iflflflfll ll

I fllll......lli



111.0 '1.. 8 -5
16 13.2

1.8

11111_!2 1.4 1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL *uREAUOF STANDADS-1943-4

- - w 0

4'......~.

% *



-1 l _ . n I.. . . - . . ,p * -. ! . Slo q n ! ,n n e , p , p ,

TESTS FOR A CHANGE-POINT

by

Barry James
and

Kang Ling James
IMPA, Rio de Janeiro

David Siegmund
Stanford University

00 TECHNICAL REPORT NO. 35
AUGUST 1985

S)

tow PREPARED UNDER CONTRACT
N00014-77-C-0306 (NR-042-373)

FOR THE OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted
for any Purpose of the United States Government

Approved for public release; distribution unlimited

DEPARTMENT OF STATISTICS
0STANFORD UNIVERSITY

STANFORD, CALIFORNIA

DTIC
... .....I

:. SEP 2 4 ,c5', oo
85 09 21 175

4, , " , • .d * o



q .... .q ** g u - -

TESTS FOR A CHANGE-POINT

by

Barry James
and

Kang Ling James
IMPA, Rio de Janeiro

David Siegmund
Stanford University

TECHNICAL REPORT NO. 35
AUGUST 1985

PREPARED UNDER CONTRACT
N00014-77-C-0306 (NR-042-373)

FOR THE OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted
for any Purpose of the United States Government

Approved for public release; distribution unlimited

Also prepared under National Science Foundation Grant MCS80-24649 and issued as Tech-
nical Report #235, Department of Statistics, Stanford University.

-: Accession For 4
NTIS GRA&I
DTIC TAB 0 DEPARTMENT OF STATISTICS
* U,,nounced E STANFORD UNIVERSITY
Ju I r . t ion_ STANFORD, CALIFORNIA

S iy

D Dtri / Cu3e:g

_ d/orDrc

• -.- .,. - .- .- ,- -.- .- *,- . . :. , , - . . . - - . .. . .... . . .. . . . . -.. -. . • . . - . -

'". . . .



TE STS FOR A CHANGE-POINT

Barry James, Kang Ling James, and David Siegmund

The problem considered is that of testing a sequence of independent normal random vari-

ables with constant, known or unknown, variance for no change in mean versus alternatives

with a single change-point. Various tests, such as those based on the likelihood ratio and recur-

sive residuals, are studied. Power approximations are developed by integrating approximations

for conditional boundary crossing probabilities. A comparison of several tests is made, and the

p7 er approximations obtained are compared with Monte Carlo values. j/~

Some key words: Change-point; Likelihood ratio test; Recursive residuals; Power approx-

imations; Boundary crossing probabilities.



TESTS FOR A CHANGE-POINT

Barry James, Rang Ling James, and David Siegmund

1. Introduction and Summary.

Let z1, z,, z be independent random variables. The purpose of this paper is to

discuss tests of the hypothesis that the x's are identically distributed against the alternative

that for some value j, 1 5 j < m, sx, zi are identically distributed and zi+,, .,. are

also identically distributed, but with a distribution different from that of z1 . For the most

part we consider only the special case where the z. are normally distributed with mean it.

and variance I. Then the hypotheses can be described more formally as

Ho :,= : p = " =2
(1)

H, :Forsomej,1.5j<m, Pfi="'" =-/j# ji+j= i" =P .

One important goal in studying this very simple problem in detail is to gain insight

into more complicated models and related problems. Thus, although we do not consider

regression models explicitly, we attempt to keep this generalization in mind and comment on

it when appropriate. Similarly, we do not study the related problems of estimating j and/or

the magnitude of the change, but when other things are equal we prefer test statistics which

seem to be useful for estimation as well. For discussions of confidence sets for the change-

-point j see Cobb (1978) and Siegmund (1986).

The sampling distributions of most of the statistics described below are quite compli-

cated, and other authors have often studied these problems by numerical or Monte Carlo

methods (e.g. Sen and Srivastava, 1975; Hawkins, 1977; Worsley, 1983). Using methods

developed to solve boundary crossing problems in sequential analysis, we give analytic ap-

proximations to the sampling distributions of various test statistics. This facilitates our
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comparisons of different tests and allows one to make informal use of the procedures with-

out any programming effort. The process of obtaining the approximations also yields some

qualitative insights into the tests themselves.

The paper is organized as follows. Section 2 introduces several test statistics and

describes their behavior qualitatively. The most important are (1) the likelihood ratio

statistic, (2) an ad hoc statistic proposed by Pettitt (1980), which can be interpreted as

a kind of score statistic, (3) the recursive residuals statistic of Brown, Durbin, and Evans

(1975), and (4) the quasi Bayes statistic of Chernoff and Zacks (1964). Approximations

for the significance levels of these tests are given in Section 3 and approximations for the

power in Section 4. Section 5 contains numerical examples. Section 6 contains miscellaneous

remarks and speculations concerning extensions of our results to non-normal data, survival

analysis and regression problems. An appendix gives some mathematical results. A more

detailed presentation of the underlying mathematics will be given in a future paper.

The reader more interested in our conclusions than in the theoretical development may

wish to turn directly from Section 2 to Sections 5 and 6, which can be read independently

of Sections 3 and 4.

2. Test Statistics and Qualitative Behavior.

Let zl, Z2,'", z., be independent random variables, and assume that z. is normally

distributed with mean &. and variance 1 (n = 1,2,. mm). Let 5, = Zj + + Z..

The square root of the log likelihood ratio statistic for testing the hypotheses (1) is easily

calculated to be
"" m IkS.M - S&l/[k(1 -k/r)I 12).

; -" l5k<ns

Without the max, (2) is the normalized difference between the mean of the first k obser-

vations and the overall mean, i.e. it is the standard two sample test statistic for testing

2
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that the means of the first k observations and the l,.st m - k are equal. The max searches

for the most plausible place to separate the sample into two subsamples having different

means. A derivation of this statistic which suggets some alternative possibilities goes as

follows. The testing problem (1) is invariant under common shifts in location of all the

observations, so one might restrict consideration to invariant procedure, i.e., those which

depend not directly on the z's but only on the differences yn =zn - zi, n = 2, " ', m (cf.

Lehmann, 1959, p. 216). For given values of j and 8 = pm - Pi, the likelihood ratio of the

Y's under Ht to the Y's under Ho is easily calculated to be

exp6'(jS./m - Sil- j(1 - j/m)6/2}. (3)

Maximizing (3) first over 6 and then over j yields (2).

In what follows it wll be more convenient to consider one sided alternatives, for which

we assume that the sign of 6 is known, say 5 > 0. Then the likelihood ratio statistic is (2)

without the absolute values. For reasons given below we consider the generalization

max [{kS./m - Sk)/lk(l - k/m)}'/ 2], (4)
mokm.:5

where 1 _ mo < mi < m.

By differentiating the logarithm of (3), setting 6 = 0 and then maximizing over j, we

obtain a score-like statistic suggested by Pettitt (1980),

max (kS,/m - S). (5)
l~k~m

Still another possibility is to take the log of (3) for some arbitrary value 80, which might

be interpreted as a typical change or the minimal change one is interested in detecting, and

maximize over j. This yields the statistic

max{kS./m - Sk - k(1 - k/m)6o/2}. (6)

3
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An interesting ad hoc test statistic is the so-called recursive residual statistic proposed

by Brown, Durbin, and Evans (1975). We consider the standardized residual of z., from

the mean of Z,'" ,Zn, to wit

S= [n/(n + 1)]1/2(z.+i - .), n = 1,., -. (7)

We form the cumulative sum Sn - z, +.•. + za, and we use as a test statistic

max (g./n /2 ). (8)mo__.n~S

Actually there is considerable arbitrariness in this definition. One might equally well cu-

mulate sums "from the right" to obtaiu

mal {S._1 - S._ _)/(k - )1/2,  (9)
mo<h_<.

and one might consider either (7) or (8) with z. defined as the residual of Z. from the mean

of zn+,", - z-.. We shall argue below that (9) is typically preferable to (8), but in general

there seems to be no preferred way to define zn.

It is easy to see that under H0 the recursive residuals z, . , z,1.- are independent

standard normal random variables. The appeal of the recursive residual concept is that this

prope~ty persists under general regression models (Brown, Durbin, and Evans, 1975). By

way of contrast, in a regression context the null hypothesis distribution of the likelihood

ratio statistic depends on the spacings between the independent variables.

Chernoff and Zacks (1964) assume that j has a uniform prior distribution over {1, 2,-..,

m} and that 6 is close to zero. An expansion for small 6 gives the quasi Bayesian test statistic

rn-1C = [,(, + 1) ]'/'z,.. (10)
n=L

where z. is the recursive residual defined in (7). Gardner (1969) follows the Cheruoff-Zacks

prescription to obtain a test statistic for two sided alteratives, which turns out to be quite

4
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different from (10) in appearance. A disadvantage of Gardner's statistic is that in general

it gives no idea whether 6 is positive or negative. For this reason one might prefer to use

ICI for a two sided test. For simplicity we consider only the statistic (10) for a one sided

alternative. Unlike the other statistics suggested above, the sampling distribution of (10)

is normal under both the null and alternative hypotheses. Other things being equal, this

would be a point in favor of (10). We shall see that other things are not equal.

Under the alternative hypothesis, we have the following relations:

-k(l -j/m)6 for k <(

E(ksm.Im - s&) = (j/m)(m - k)6 fork >_ j;

0 for k <j
E(Zk)(12)

S ji6/{k(k + 1)}1/2 for k >j,

s( 0 for k <jE(S') = 6 k(13)
j6 an n=i 1/(n(n + 1)}i/2 for k _2t,

and

E(C) = jm - j)6. (14)

Some qualitative insights follow from (11)-(13). If we represent the rejection region

of (2) (without the absolute value signs) as indicated in Figure 1, it seems intuitively clear

that the primary contribution to the power of that test comes from the probability that

the process kSm/m - S/ exceeds b{k(1 - kIM)} 1/ 2 for some k in a neighborhood of k .

If we superimpose the rejection region of (5), i.e. (maxk(kS./?A - S&) > bl}, on the same

picture, in order that the two tests have the same significance level, b, must be less than

b(k(1 - k/m))1/ 2 in a neighborhood of k = m/2. Hence we expect that (5) has greater

power than (2) when j is .bout m/2 and the line of drift is more likely to carry the process

above the constant b, than above b{k(l - k/m)}l/ 2 . The converse is true when j is near

0 or m, and the curve b{k(l - k/m)}1/ 2 near the change-point lies below bl. Introduction

; ::... ... .,,.. .. .. ... ,... .,.. , ., ... .,. ,, .. . .. . .. -... . ... ., ., -. ... -. , . ...



of tnc and mi in (4) gives the statistician the flexibility to trade some decrease of power to

detect changes occurring near j - 0 and ; - m for an increase in power to detect changes

occurring near j = n/2.

Similar reasoning suggests that (6), like (4), is a compromise between (2) and (5); and

preliminary calculations suggest this is indeed the case. Since (6) seems less easily adapted

to multiparameter problems, we shall not discuss it in this paper.

One can make a similar crude comparison of (8) and (9). Now, in effect the rejection

regions are the same, but the processes are different (cf. Figure 2). It is easy to see that if

mt* for some fixed 0 < t" < 1 and m is large, then
p -I ." -b2{m(l - t)L/2] - maxpr(Sm. i - S/..- 1 - -b2nl/" )

-- I'

> max pr(Sn > 62n'/2),
n

provided {t*/(1 - t*)} 1/2 log(l/t) > 2e - '. To a considerable extent the power of (8) and

(9) is determined by the maximum marginal probabilities, and hence it appears that (9) is

usually preferable to (8). Although some additional investigation of (8) may be warranted,

we do no pursue it here.

Remark. Although Brown, Durbin, and Evans (1975) and Sen in several papers (e.g. Sen,

1982) consider recursive residuals as in (8), often normalized by a + en rather than n1/2,

Cox in the discussion to Brown, Durbin, and Evans (1975) implicitly proposes (9).

It is worth noting that (11) and (4) or (5) suggest simple estimates of and 6. For

example, (4) suggests estimating ; by the value 3" which yields the maximum, and then (11)

suggests estimating 6 by

0"... (us./,, - s )I( -

Similarly, a comparison of §m.- - 5 m-&, k = 1, 2, m, with the corresponding e.pected

values (cf. Figure 2) gives some idea of the values of j and 6, albeit less well defined than

6
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for (4) or (5). Although one can compute numerically a formal Bayes estimate, there do

not appear to be natural estimators associated with (10).

For future reference we also record the log likelihood ratio statistic for testing (1) when

the variance of the z's is an unknown, but unchanging, constant a2 . The statistic is

max I!rnlog [I _ (S& kS /M) 2

i~~ k(1 -k/n) E'x - 2.)i 1

where :2,n Sm.

Approximations to the signil.Nance level of (4), (5), (9), and (15) are given in the

following section.

3. Approxmations to Significance Levels.

In this section we give approximations to the right hand tail of the distributions under

Ho of (4), (5), and (9), or equivalently, (8). These approximations have been developed in

the context of sequential analysis. For example, the null hypothesis distribution of (9) yields

the significance level of a so-called repeated significance test, first studied by Armitage,

McPherson, and Rowe (1969) by numerical methods. For derivation of the approximations

and documentation of their accuracy for very small samples, e.g. in = 5, see Siegmund

(1985, 1986).

We also give approximations for the significance level of (15) and appropriate mod-

ifications of (5) and (9) for the case of an unknown variance. The derivation of these

approximations requires some new techniques, which are described in the simplest context

in an appendix and will be given in more detail in a future publication.

Several authors have noted that the likelihood ratio statistic in various change-point

problems, not restricted to the normal case considered here, has a large sample approxi-

mation under the null hypothesis of no change, which corresponds to (4) with {Sik, k=

,%8



0,1, ..- ,m} replaced by standard Brownian motion {W(t), 0 < t _< m}. See, for exam-

ple, Kendall and Kendall (1980) an' Matthews, Farewell, and Pyke (1985). Although this

approximation is often fairly crude, its generality makes it useful. A simple and accurate

approximation to the Brownian motion probability is given below. With a view towards

more general problems, it is given for the d-dimensional case (d > 1).

In order to state approximations to the significance levels of (4), (5), and (9) it is

helpful to introduce the function

v(z) = 2z 2 exp -2 n-4 - z1/2 (z > 0), (16)

where D denotes the standard normal distribution function. The function v is easily eval-

uated numerically; or alternatively in the range 0 < z < 2 one can use the local expansion

v(X) = exp(-pz) + o(z 2 ) (Z-- 0), (17)

where p is a numerical constant which approximately equals .583. See Siegmund (1985,

Chapter X).

Let i, i2, y. ,lim be independent standard normal random variables and S y -1 +

• .+ Y. (n =1, 2,-..m). The-n for 1 <5mo < m, < m and b > 0

pr max (nS./m - S.)/n(1 - nlm)11 2) b)
/p1" I -m- i) 11 (18)

" 1 - 4(b) + bi(b) f(---m,/' x-tv(z + b2/mz)dz,

and

* pr( max n- 1 2S,, > b) -1 - 4'(b) + bv(b) x-'v(x)dx, (19)

where 0 is the standard normal distribution, jp = V", and v is given by (16) or approximately

by (17). Also

pr{ max (nSm1./t - S.) > b}2 eXP[-2m-'(b + p)21, (20)

X<,,<_9

' iId m=. d"1" -" ' '" "Ui"'"" "£d "~t~" ""a"atd m a '" ' " " uldl mm' " l ' "... " "" " ' " "" ' "" *.' ' ""," '
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where p V .583, as above.

The approximations (18)-(20) are respectively (11.33), (4.40), and (10.43) of Siegmund

(1985). They can be shown numerically to provide excellent approximations by comparing

them to exact numerical computations of Pocock (1977) and Worsley (1983). Some com-

parisons are given by Siegmund (1985, 1986). Siegmund (1985, p. 83) provides a table for

evaluating the integral in (19).

In the case of an unknown and constant variance, if t,e statistics (4), (5!, and (9) are

Studentized in the "obvious" way, we obtain the following appx,.,imationp as analogues of

(18)-(20) respectively. Let y = b/ml/ 2, and assume that 0 < "/< 1. Then

(rmax [(nsi.l: - S.)/{n(1 - n/m)}-/2 (r-I ">.- g2}] > 6

(m/2;r)' /2 --/(1 - X 2)(m-4)/2 dz

S+ (2w)-/b(i - 62/m)(m-4)/2 (('f'--)/(- 9 ))'/' -'V[Z + b2/{M(1 - 9)z}Idz

(21)

and

pr max SI nm /2 > b - (m/2r) 1 /2 (1 -z2 )(m-It d(
1 4 (22)

+ (21)-1/2b(1 - b 2/m)(m-/)/ 2 uI(.) v(z)d.

The first integrals in (21) and (22) can themselves be approximated by virtue of the expan-

sion

,'
ml/ (1 - 2)(m-)/2dZ = 6-1(1 - 62/m)f(m-/2{1 + 2m 1 - b- 2 + o(m-}, (23)

which is valid as 6, m -- oo with b/mI12 = '7 fixed. Now let -7= b/m and assume that

10
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0 < y < 1/2. Then

prmax (kS1m - Sa)I ~m1 (Y2 gm)l~>
pr ~ b].(Y (24)

9 v{47/(1 - 4-12)1/2}(1 - 4b2/M2)(.-3)/2.

The approximations (21), (22), and (24) are written in a way to facilitate comparison

with the corresponding results, (18)-(20), for known variance. It appears that there is little

difference between the two cases. Some numerical results given in the appendix indicate

that this is in fact the case except when the probability or the sample size m is quite small.

The appendix also contains an informal proof of (24). The more complicated (21) and (22)

will be discussed in a future paper.

Remarks. (i) It is easy to see that the probability that the likelihood ratio statistic (15)

exceeds a is given approximately by twice (21) with b = [m(1 - exp(-2a/m)}] 1/2. (ii) At

first glance (22) may appear to be an incorrect Studentization of (9). But note that the V's

in (22) play the role of the z's in (9); and if z,, is defined by (7), it is easy to use the Helmert

orthogonal transformation to show that E-l- Zn = I(z,- m)2 . (iii) The approximation

(22) can be used for the general regression model of Brown, Durbin, and Evans (1975), but

the distribution of the likelihood ratio statistic is quite model dependent.

An easy application of the theory of weak convergence of stochastic processes, e.g.

Billingsley (1968), shows that the probabilities discussed above are given approximately

by the corresponding probabilities defined in terms of a Brownian motion process W(t),

0 < t < oo. For example, the left hand side of (18) or (21) is approximately

pr[ max Wo(t)/{t(1 - t)}1/2 > 61, (25)

where Wo(t) = W(t)-tW(l) is a Brownian bridge process on (0, 1] and t, = mi/m (i = 0, 1).

The advantage of (25) as an approximation is its generality. It would serve also if the
'11
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underlying distribution of the observations were not normal, hence for testing the hypothesis

of no change in quite general models. This same generality is its disadvantage, because it

means that the approximation is often a crude one.

Several authors, e.g. Mandl (1962), Keilson and Ross (1975), and DeLong (1981) have

described numerical methods for evaluating (25) and have published numerical tables. We

give here an approximation to (25), which is easily evaluated and which is valid in an

arbitrary number of dimensions. A proof can be given along the lines of Siegmund's (1985,

Theorem 11.1) argument for the one dimensional case.

Let Wo(t), 0 : t < 1, be a d-dimensional Brownian bridge process, and let " I denote

the d-dimensional Euclidean norm. Let 0 < to < tj < I and set r = t1 (1 - to)/to(l - tn).

Then as b - o

pr[ Max IIWo(t)I/(t(1 - t)}/2 > b)

V exp(-/2) - d/b') logr + 2b- 2 + o(b 2)}, (26)
=2(d -2)12r(d12) "2"

where r(.) is the gamma function.

Remark. It is well known and easily verified that W(t) = (1 + t)Wo{t/(l + t)}, 0 <_

t < oo, is a standard d-dimensional Brownian motion process, and hence (26) also gives

approximations to the probabilities appearing in (19) and (21).

The accuracy of (26) is easily ascertained by comparing it with extensive tables of

DeLong (1981) for d = 1, 2, 3, 4. For example, for d = 4, r = 50, and 6 = 3.85, 4.10, and 4.58,

DeLong gives for the probability in (16) the respective values .1, .05, .01. The right hand

side of (26) yields .104, .051, and .0103. In fact, the approximation (26) is moderately good

even when the probability is not close to zero, although there is no apparent mathematical

reason why this should be the case.

As an approximation to the probability in (18), (26), or more precisely (26) multiplied

12
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by 1/2, is much less satisfactory. The numerical example discussed -xtensively in Section

5 has b = 2.82, m0 = 5, ml = 35, and m = 40, so r = 49. The approximation (18) yields

.025, whereas (26) gives .041. A 2500 repetition Monte Carlo experiment using importance

sampling along the lines indicated in Remark 4.45 of Siegmund (1985) yielded .0239 ±.0005.

Remark. Kiefer (1959) has computed pr{maxo<,<l1 IIWO(t)IH -e 6} exactly in terms of an

infinite series of Bessel functions, and has given tables for dimensions 2, 3, and 4. An

approximation similar to (26) but requiring a somewhat different argument is given in

Problem 11.1 of Siegmund (1985).

4. Power.

In this section we adapt the methods of Siegmund (1977, 1978, 1985) to obtain ap-

proximations to the power of (4), (5), and (9). The basic ideas, which go back to Anscombe

(1952), are much simpler than in the preceding section and quite general. They are sketched

below without details. We first consider (4) and (5), and later indicate the changes appro-

priate to handle (9).

The following result is related to Cramer's approximation for the probability of ruin

of a risk process. See Feller (1972, Chapter XII) and Siegmund (1085, Chapter VIII).

Proposition 1. Let i > 0 and assume that V1, Y2, are independent N(-p, 1). Then as

pr F _> z for some n >_ I) v(2i) exp(-2pz),

where v is defined by (16) and given approximately in (17).

For the rest of this section zj, ", zi are independent N(pl, 1), zi+, , z,,. are inde-

pendent N(pm, 1), 6 =pm -jul, Sn= zi +"" + z.n, and Sn = nS./m - S, n = 0, 1,-.., m.

13



The process S*, n = , ,- ,m ham the mean value (11) and the covariance function

cov(S,S.*) = (1i- n/m) (k < n), (27)

of a discrete time Brownian bridge, tied down to equal 0 at n = 0 and n = m. Let c(t), 0 <5

t _5 1, be a function, and for 1 _< mo < m < m let To = inf{n : n i o, S. >. mc(n/m)}.

The power of the tests defined by (4) and (5) is of the form

pr(To < in)

"with ct) - bm-/2{t(1 - t)}1/ 2 and clt) - bm - respectively. Assume that Mo < j < MIo;

the other cases can be handled similarly. We begin with the obvious decomposition

pr(To 5i mi) = pr{S* > mc(j/m)) + pr(To < m I S = C) pr(S* E dC). (23)

Since the marginal distribution of 8] is known, to approximate (28) it suffices to approxi-

mate the conditional probability. Moreover, given S = j , the processes S., n = 09 I,..- j,

and S", n = j, j + 1,..., m are conditionally independent and are themselves discrete time

Brownian bridges with endpoints tied down at 0 and at f. Hence in terms of T, = sup{n:

n _i mi, S. me(n/m)}, we can write for f < mc(j/m)

pr(To _m i = ) = pr(T <j js; = f) + pr(T > j l s; =)
m (2o)

- pr(To <31 s; = f) pr(T > j I s* = f).

Since both probabilities on the right hand side of (29) are of the same form, it suffices to

consider the first one. We assume that m is large and that j and j-m 0 are proportional to m.

For many boundary curves c(t), including those of interest here, the principal contribution

to the integral on the right hand side of (28) comes from values of f close to me(j/m), say

f = n RM) - z (30)

.14



with z -O(log m) as m -- oo. Given = - of the form (30), if S. > mc(n/m) for some

m0 5 n < j, this event with overwhelming probability occurs for some n close to j. For n
S,.

close to j, say n j-k, we have

mc(n/m) = m(j/m) - kc'(j/m) + o(k2/M).

Hence for f of the form (30) and k. - o(ml/2)

pr(To < j s; = f) - pr{S8-., - s; _ z - kc'(j/m) for some k < k. [ =

For k << j, given Sj - , the process 8_ - s;, k = 1, 2, behaves like a sum of in-

dependent normally distributed random variables, each having mean - /j -mc(j/m)/j

and variance 1. Consequently pr(T < I s; = S ) is approximately a probability of the

form considered in Propositon 1 with p = (j/mn)-lc(j/m) - c'(j/m). Although we have

reasoned that the important values of z are not large, if we nevertheless use the large z

approximation of Proposition 1 together with (17), we obtain

pr(To < I s; = ) exp[-2{t*'c(t°) - c'(t')}(z + P)I, (31)

where t = j/r.

Consider the special case c(t) = bm-/2{t(l - t)}1/2, and assume that bM- /2 - and

jm -1 = t" are fixed as m -, oo. If we use (31) and a similar approximation for the other

conditional probability on the right hand side of (29), substitute into (28), and evaluate the

.7 integral asymptotically as m - oo, we obtain the approximation

pr[S _ b{n(1 - n/m))1/2 for some mo _ n < M 1 - 4() + m-/2(f)

6t'( - to)}1/2 - + bto(I - t)}1/ 2

where s = ml/21 - b{t(- t))1/2], -/= bm - 1/ 2 , and t" = Rm.
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The analogous approximation when c(t) b/m is easily obtained, but in this case it is

possible to squeeze out a bit more accuracy for small samples by using a slightly different

approximation along the lines suggested by Siegmund (1985, Example 8.77) in a similar

context. The final approximation is omitted.

According to (13) the mean of the numerator in (9) is a nonlinear function of k and

hence it is convenient to center the process to have mean 0. If we also approximate (13) by

j& log+(k/j), the power of (9) can be expressed as

pr{Sn mc(n/m) for some m0 _< n <i m). (33)

Here §n = z, + + zn, where the z's are independent standard normal random variables,

and in terms of t* = j/m and -y = bm- 1/2,

o(t) - -It'/2 + 6t max{log(1 - t), log t*}.

By conditioning on S.-i one can argue as above to derive an approximation to (33).

The approximate drift of the conditional random walk S.-i-k - Sm.-i given m.-i = mc(l -

t) - x is -c(1 - t°)/(l - to), and hence the appropriate p for an application of Proposition

1 is c(1 - t*)/(1 - t*) - cS_(l - to), where c!_ denotes the left hand derivative of e. However,

since Sm-i+k - S-i, k = 1, 2,'' ,j is not tied down at k = j, its drift is 0 and the

approprite value of i for this part of the path is c'.(1 - t°). The resulting approximation is

1 - 0( ) + -1()

exp(-p[l/(1 - t-)1 / 2 + 26{t" log t'/ - t') + 1}1) exp{-pIy/(I - t')}
X f62(1 - t') + t" logt} + 6t log(1/t') (34)

exp(-2p[-y/(l - t')1/2 + ${t log t'/(I - t) + 1}) }

where M - in/2({y + 6t, logtI/(I - to)1/ 2 ), and as always p is the constant appearing in

(17).
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Remark. The methods of this section easily yield approximations to the power of (5).

However, for (8) they appear to work only when t* > e- 2. Otherwise the asymptotic

normalization of Daniels (1974) may be more useful. See also Barbour (1981).

5. Numerical Comparisons.

Tables 1-3 below compare the power of the statistics (4), (5), (9), and (10). To keep

the tables digestible, only the case of a sample size m = 40 and one-sided significance level

.025 is considered. Two issues are involved: (i) the accuracy of the approximations given

in Section 4 and (ii) the comparative power of the various test statistics. To verify that the

approximations are sufficiently accurate to give a reasonable picture of the relative merits

of the various tests, the outcome of a 909 repetition Monte Carlo experiment is given in

parentheses in most of the cells. Other numerical calculations, not reported here, show that

the essential conclusions are unchanged over a range of significance levels and sample sizes,

although the magnitude of the differences can be more or less for different sample sizes.

Table 1 involves the likelihood ratio statistic (5) with two different choices of mo and

ml. Table 2 studies the recursive residual statistic (9). Since this statistic is not symmetric

with respect to the ordering of the time scale, i.e. a change at j is not equivalent to a change

at m - j, this table is slightly more elaborate than the others. Table 3 contaim Pettitt's

statistic (5) and the Chernoff-Zacks quasi Bayesian statistic (10).

Roughly speaking, the two likelihood ratio statistics and the recursive residual statistic

perform about the same, while the Pettitt and Chernoff-Zacks statistics have somewhat

greater power to detect changes occurring near m/ = f2 and less power to detect changes

occurring near j = 0 or j = m. Some cf these differences were predicted from qualitative

considerations in Section 2, and what the numerical calculations add is a feeling for the

magnitude of the differences. The modified likelihood ratio statistic with mo > I and
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mi < m - 1 has power at j=m/2 which improves over the unmodified likelihood ratio

statistic. It must pay for this improvement by having less power for j' close to 0 or m,

although in the range of j studied, the cost is not apparent.

One possible conclusion is that one should choose a test statistic on a subjective basis,

depending on where one "expects" a change to take place, should there be one. A difficulty

with this recommendation is our belief that change-point statistics are often applied to

retrospective data, frequently after something resembling a change has been noticed in

informal investigations, If so, it would not be appropriate to make such a subjective choice

of test statistic.

The numerical results lend support to the argument that the recursive residual statis-

tic is not demonstrably inferior to the others, and since it generalizes immediately to a

regression context, it seems a reasonably good general purpose statistic. The arbitrariness

in its definition noted in Section 2 and reflected in the lack of symmetry about j m/2 in

Table 2, and the difficulty in using it for estimation are weak points.

The Chernoff-Zacks statistic does not seem to have any distinct advantage over the

Pettitt statistic, except the simplicity of its sampling distribution, and even that vanishes

if the variance is unknown. Since the Pettit statistic gives simple and natural estimates of

j and 6. it seems preferable.

If estimation of3j and/or 6 is an important consideration, the preferred statistics appear

to be the modified likelihood ratio statistic and Pettitt's statistic, which are not inferior as

test statistics and provide natural estimates. Although neither of these tests dominates the

other, the modified likelihood ratio test is perhaps slightly preferred because it performs

better when j is near 0 or mn, where all tests are weak.

Some speculations about the use of these test statistics in different contexts are given
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in the following section.

Table 1

Likelihood Ratio Statistics

Power

6 j (4): b-2.95, mo=1, m,=39 (4): b=2.82, mo =, m, 35

0 "0" .0254 .0250

.8 20 .482 (.499) .540 (.541)

10 .353 (.377) .409 (.406)

5 .186 (.209) .182 (.218)

1.0 20 .706 (.716) .753 (.758)

10 .549 (.568) .605 (.608)

5 .301 (.319) .300 (.337)

1.2 20 .872 (.878) .900 (.905)

10 .737 (.751) .781 (.785)

5 .444 (.470) .447 (.475)

Table 2

Recursive Residual Statistic

Power

6 j (9): b = 2.65, mo =5

0 "00" .0253

.8 20 .555 (.573)
10 30 .364 (.379) .462 (.477)

5 35 .172 (.169) .237 (.270)

1.0 20 .758 (.770)

10 30 .534 (.558) .654 (.660)
5 35 .244 (.258) .368 (.398)

1.2 20 .899 (.904)

10 30 .702 (.728) .815 (.821)

5 35 .334 (.367) .520 (.547)

* o
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Table 3

Pettit and Cheroff-Zacks Statistics

Power

6 j (5): b = 8.01 (10): b = 240

0 co .0250 .0250

.8 20 .633 .591

10 .401 .376

5 .137 .158

1.0 20 .826 .782

10 .593 .538

5 .205 .223

1.2 20 .939 .908

10 .769 .693

5 .297 .301

Remark. It is natural to complement these numerical examples with a discussion of asymp-

totic efficiency, but we do not know a satisfactory formulation. Although it is a simple

matter to compute the Bahadur efficiency of the tests, this measure seems too crude to

provide much insight for reasonable sample sizes. For example, it would say tht the ike-

lihood ratio statistic (2) is better than the others for every 5 and change-points j" which

are proportional to m as m -. co. For a discussion of Bahadur efficiency in a regression

context, see Deshayes and Picard (1982).

6. Generalizations and Variations.

There are two generalizations of the simple model of the preceding sections which have

received considerable attention in the literaure. One involves relaxation of the normality

assumption to allow any distributi .n, say in an exponential family. Change-point problems

with Poisson and/or Bernoulli data are discussed by Kendall and Kendall (1080) and Levin

and Kline (1985). A more subtle variation occurs in Matthews and Farewell (1982), who
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introduce a model for survival after therapy. In their model the effect of therapy is not

instantaneous, but deaths continue to occur at P_ constant hazard rate until an unknown

time when the therapy becomes effective and the hazard rate for those still alive decreases

to a second constant value.

Kendall and Kendall (1980) discuss a modification of the likelihood ratio statistic and

observe that one can approximate its null hypothesis distribution by that of the appropriate

functional of a Brownian bridge process. On the basis of what appear to be limited compar-

isons of simulations of the Poisson process with numerical computations for the B~rownian

bridge given by Mandl (1962), they conclude that the approximation is reasonable.

The asymptotic formula (26) gives an accurate and easily evaluated approximation

to the relevant Brownian bridge probability in an arbitrary number of dimensions, but

in general one should expect that it is a rather crude approximation for the probability

of interest. In particular, for the one dimensional problem with normal data considered

throughout this paper, it often overestimates the correct probability by 40 to 100%. It

should be possible to give a precise asymptotic approximation similar to (18) for the Poisson

case; but it remains to be seen whether more sophisticated mathematical analysis actually

leads to a better approximation.

Note that the recursive residual idea depends very heavily on the assumption of nor-

mality to be exactly valid, although Sen (1982) has shown that it is asymptotically valid

under quite general conditions. We do not know of any attempt to study the accuracy of

Sen 'a approximations for sample sizes of interest.

Regression models are a second generalization which has been discussed in a number

of papers, particularly with reference to econometric data. See, for example, Quandt (1958,

1900), Brown, Durbmn, and Evans (1975), and Worsley (1983). The recursive residual con-
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cept adapts nicely to this setting (Brown, et al., 1975), and indeed the null hypothesis

distribution is basically no different than in the simple normal case. A precise asymptotic

analysis of likelihood ratio like statistics is rather complicated and depends on the spacings

between the dependent variables, which translate into the variances of the normal obser-

vations making up a multidimensional statistic similar to (4). Again the multidimensional

Brownian bridge provides a crude approximation, which is probably adequate for practical

purposes, although rather unsatisfying theoretically.

Remark. In a regression context, there is some ambiguity in the definition of a change-point

problem. Scientifically, it may well be reasonable to assume that the regression function

is continuous at the change-point. We are assuming, however, along with most authors,

that the regression function can jump. It seems plausible that for testing the hypothesis of

no change, not much power is lost by allowing this additional degree of freedom under the

alternative, but the situation is less clear with regard to estimation. See Hinkley (199) or

Feder (1975a,b) for a discussion when the regression function is required to be continuous

at the change-point.
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Appendix

Approximate Significance Levels for Studentised Processes

In this appendix we describe an approach to deriving the approximations (21), (22),

and (24). A complete development is quite complicated and will be given elsewhere. Here we

restrict attention to the simplest case, to wit (24), or more precisely to a slight generalization

of (24) which involves one important ingredient of (21) and (22) as well. The method is

adapted from Siegmund (1982, 1985).

Let Y1, Y2,"" be independent N(p,a 2 ) variables, and put S. = yl + + 1!,, Un =

Y 2 + + V, 2. It is convenient to introduce the notation

P- (A) = pr(A I S. = f, U. = A) (m-'C2 < X),

which by sufficiency does not depend on the parameter (p,o 2 ). Let A0 = A/m and consider

p( Max Sk " bAlo 2). (A.)
" O<k<_m -- (.1

Let S 2 
- m- jf(yi - U.)'. Since the distribution of the process {(S. - nS/m)/S,

n = 0, 1,..., m) does not depend on (i, ar2), the process is independent of the complete

sufficient satistic (S,,,U,,), by Basu's theorem (Lehmann, 1959, Theorem 5.2). Therefore

the left hand side of (24) is equal to (A.1) for all A > 0.

Let j7 be a real number and define

r -inf{n :S. _ b + qn}. (A.2)

Then in the special case q = 0, (A.1) equals P"*){r < m). We study this probability more

generally in the following theorem.

Theorem. Assmne b = mr, = m~o, and A mAo for some o < + q and A > o. Then
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as m-00

r_________________________ Ao - 01 - (2C - fo) 2 ).(=i-3)/2'Am %v[{AOf-(2C f)2 }1/2] { 0 - e2(A3

where v is defined in (16) and given approximately in (17).

Proof. Let 00m) f e(m)(n, S., I.; C, C1, A, A) denote the likelihood ratio of V,", y. under

P('m) relative to P(m A straightforward calculation shows that for n S m - 2,

-.U - S) 2 /(M n) }(m-n3)/2 (A, - (m-3)/2

X1 - (6 - A(- 2/m ) (A.4)

For n = m - I the two probabilities are not absolutely continuous, but we do not need to

consider this case. By Wald's likelihood ratio identity (e.g. Siegmund, 1985, p. 13), for all

m, < M - 1

A-) m } = in#) {4=);r < m'}. (A.5)

It is easy to see that for any fixed i = 1, 2,... p s( - > b + iq(m - i)} is of smaller order

of magnitude than (A.3), so it suffices to show that for suitable fl, Al, and m' = m - i the

right hand side of (A.5) is asymptotic to (A.3).

Let & = m(2(C + q) - fo}, A 4 ( + q - Ca), and A, = m(Ao + A). The choice of

C" has a natural interpretation in terms of the reflection principle (cf. Siegmund, 1985, p.

39 ff.), Uut our justification for the choice of A, is only that it 'works." Note that A = 0

if q = 0, and this case would be adequate to prove (24). But dealing with arbitrary q# is a

useful warm-up for the proof of (21) and (22).

Some algebraic manipulation shows that

A , - U, - (C - S,)2/(m - r)}/A - Ur- - S,)2/(M - r)} (A.6)

I 1 + 4(c + ol - fo)(S, - m - or)/[(m - r)(o - U,/rn - (f - S,) 2 /M(, -M )}J.
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Law of large numbers arguments indicate that under CIAI

m r - /(2f + q - fo), in-'U, {Ao + 4u( +, - fo)}/(2 + q -o),

and (A.7)

S )2/,'( -,) (1 + rl - o)(2 - fo)/(2 + t - fo).

The results in (A.7) show that the right hand side of (A.6) is I+Op(m-'). Hence by writing

(.) = exp{log(.)}, using (A.6) and a Taylor series expansion, we see that the first factor on

the right hand side of (A.4) has the same limit as

exp[-2(f + q ) - - - qr)/{Ao - U_/M - ( - -)2/M r)1,

which by (A.7) has the same limit as

exp[-2(2C + q - fo)(S, - ,h - nr)/{Ao - 4n - (2f - fo)2}]. (A.8)

Assuming that we can take these limits inside the expectation, we see from (A.4), (A.5),

and (A.8) that

limP(') {r < m - 3)[(Ao - fo2)/{Ao - 4ri - (2C - fo}l(--)/2

:::- =lira E(7), (exp[-2(2f + q - fo)e./I. o - 4qC - (2C _ Co)2 ]; r _< m, - ,

where R, = Sr -mC - r is the excess over the stopping boundary. If we were dealing with an

unconditional probability making the y's independent and identically distributed with the

same mean and variance as under E ( ') the renewal theorem would allow us to finish the

proof along established lines (e.g. Siegmund, 1985, Chapter VIII). Over the relatively short

interval in which m-Ir falls with P"(,-) probability close to one (cf. (A.7)), the conditional

and unconditional processes behave essentially the same, leading one to expect the same

limiting result for the P(") -distribution of R,. This anticipated result can be proved by

ad hoc methods or by appealing to a general theorem in Inchi Hu's unpublished Stanford
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thesis, thus completing our informal proof of the theorem.

The fundamental identity (A.5) can be used to provide an effective variance reducing

device if one wants to perform a Monte Carlo experiment to check the accuracl of the

approximation (A.3). However, there is an interesting pitfall, which is not present in the

use of this technique as suggested by Siegmund (1975, 1985, Remark 4.45). In particular,

it is apparent from (A.4) and (A.6) that when r = m - 2, em) can be extremely large.

Although this happens with small probability, it can create an overflow; and even if the

likelihood ratio is truncated it can completely distort the Monte Carlo estimator. To avoid

the problem, it evidently suffices to use (A.5) with m' = m- 3 rather than m - 2, even

though this slightly increases the bias of the resulting estimator.

Table 4 gives some numerical results. The first approximation in each row is (24),

and for comparison the approximation (20) for the case of known variance is also given.

The Monte Carlo estimates are based on the 'dentity (A.5) with m' = m - 3 in the fifth

column, upper entry, and m' = m - 2 in the fifth column, lower entry. They result from

a 2500 repetition experiment, and are given plus or minus an estimated standard error.

The likelihood ratio was truncated to prevent overflow. In some cases the lower entry is

somewhat larger and its estimated standard error much larger than the upper entry. This

phenomenon is undoubtedly a result of the instability of the Monte Carlo procedure, as

described -&bove. In these cases a Monte Carlo estimate based on a direct frequency count

in a 9999 repetition experiment is given in the sixth column. In all cases it suggests that

the use of (A.5) with m' = m - 3 is preferred over mn - 2. When one takes the substantially

smaller standard error into account, use of (A.5) is roughly twenty-five to one hundred times

as efficient as direct Monte Carlo.

* The analytic approximation is reasonably good in all cases, although it deteriorates

somewhat at the smaller sample sizes. It is interesting that the known sigma approximation,
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(20), is sometimes larger and sometimes smaller than (24). It is also reasonably accurate,

but since neither approximation is onerous to compute, one may as well use the theoretically

appropriate one.

Table 4

Approximations to P()j"r < m}

Analytic Monte Carlo

m b (24) (20) (A.5) Direct

40 8.01 .0237 .0250 .0236 ± .0002

.0234 ± .0002

20 6.0 .0094 .0131 .0097 ± .0002

.0098 ± .0002

20 5.0 .0442 .0043 .0449 :k .0006 .0444

.0493 -.0018

20 4.0 .1366 .1224 .1414 -.0014 .1368

.1810 -k .0091

15 5.0 .0104 .0157 .0114 : .0002 .0116

.0121 ± .0004

15 4.5 .0287 .0319 .0329 ± .0005 .0288

.0482 ± .0035
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