
BRMC-84-5n4

A1) A (^S7^

USE OF A SOFTWARE DEVELOPMENT AND SUPPORT ENVIRONMENT
AS GOVERNMENT-FURNISHED EQUIPMENT (GFE)

Technion International, Inc.
201 Webster Building, Concord Plaza
3411 Siverside Road
P.O. Box 417
Wilmington, Dealware 19899

28 June 1985

Final Report for Period Covering 1 October 1984 - 28 June 1985
Contract No. F33615-84-C-5114

Prepared for
AIR FORCE BUSINESS RESEARCH MANAGEMENT CENTER
Wright-Patterson AFB Ohio 45433

Approved for Public Release:
Unlimited Distribution

ACKNOWLEDGEMENTS

The authors are indebted to a number of people for their help
on this study. Ken Nidiffer of AFSC was a constant source of
knowledge and inspiration. In a different sense, Ron Deep, Jim
Weber and Ed Mitchell of AFRRMC made it all possible through
their support and funding.

At SASC, the help of Ed Barr and Joe Clema was indispensable
during the early stages. The graphics department, particularly
Laura Geissler, Vicki Hodges, and Joan Sargies, met our many
challenges for artwork that would help clarify intangible
concepts.

Dick Werling and Al Chande have special admiration for Ray
Houghton's depth of professional knowledge, and for his skill in
charting the course through the intricacies of software tools.

11

TABLE OF CONTENTS

Acknowledgements ^^

Table Of Contents

List of Illustrations

List of Tables

List of Acronyms and Technical Terms

EXECUTIVE SUMMARY

ill

111

iv

v

vi

S-l

Chapter 1. Objectives, Hypothesis, and Methodology. 1-1

Chapter 2. Relevant Literature. II-l

References cited in chapter two 11-17

Chapter 3. What would a "HAPSE" Look Like? —
Research Results. III-l

Chapter 4. Pros and Cons of Furnishing a Standard
Environment as GFE. IV-1

Chapter 5. Planning for Implementation of HAPSE. V-l

Bibliography. Biblio-1

d

LIST OF ILLUSTRATIONS

Figure Page

S-l Software Productivity Increases Exponentially S-5

S-2 Diffusion of Software Systems Takes Decades S-7

2-2 Diffusion of Software Systems Takes Decades 11-10

3-1 Distribution of Sample Tools Across
Life Cycle ITI-6

3-2 Tool Capabilities by Life Cycle Phase III-O

3-3 Tool Technology -- "Transformation" 111-17

3-4 Tool Technology — "Static Analysis" 111-18

3-5 Tool Technology -- "Dynamic Analysis" 111-19

3-6 Tool Technology — "Management" 111-20

3-6A Tool Functions Found in Typical Environments 111-22

3-7 Types of Tools Included in an Environment
Vary Significantly 111-26

3-8 Priorities of Tool Capabilities for HAPSE 111-28

3-9A Overlying Requirements for HAPSE (1 of 2) 111-31

3-9B Overlying Requirements for HAPSE (2 of 2) 111-32

3-10 UNIX as a MAPSE 111-33

4-1 HAPSE Implementation Schedule IV-4

4-2 Model of Environment Implementation IV-9

4-2A Detail of Non-Quantitative Parameters IV-11

4-2B Detail of Quantitative Parameter Treatment IV-12

4-2C EXAMPLE: Comparison of Model Output IV-13

4-2D Detail of Result Comparison IV-14

IV

4

LIST OF ILLUSTRATIONS, continued

4-3 Software Productivity Increases
Exponentially IV-19

5-1 Graphic Illustration of
Relationships in Table V-l v-4

5-2 Assumptions and Causal Chain —
GFE/HAPSE v_7

5-3 Causal Chain -- Programming Support
Environment Y_8

Table

LIST OF TABLES

Page

S-l Results of Environment/GFE Research to date S-12

1-1 Characteristics of Mission-Critical Software 1-4

3-1 Sample of Software Tools Available III-3

3-2 Definitions of software tools III-9

3-3 Priorities for Tool Capabilities 111-23

4-1 Summary of HAPSE Development Schedule iv-6

4-2 Correlation Matrix IV-18

5-1 "HAPSE" Tools to Enhance Life-Cycle
Productivity Y_2

5-2 Data Required by Econometric Model V-10

t>

GLOSSARY OF ACRONYMS AND TECHNICAL TERMS

Ada A standard programming language used in new DoD
systems (ANSI/MIL-STD-1815A). Ada is a regis-
tered trademark of the U. S. Government, Ada
Joint Program Office.

ALS The U. S. Army's Ada Language System.

APSE Ada Programming Support Environment.

Contractor Developer of systems, including the software
required for their operation. Often, contrac-
tors also enhance and maintain systems and
software after the initial development and
through the systems' in-service (post-deploy-
ment) life.

Environment A framework for integrating sets of methods,
proedures, and computer programs (computerized
software tools), to support the entire software
life cycle.

GFE/Environment As used in this report, a standard software
development and support environment made avail-
able to contractors as government furnished
equipment.

HAPSE

The first level contains a basic set of soft-
ware tools. The second set adds to the basic
set those tools judged most necessary by soft-
ware development managers. The third level
contains those plus additional tools judged
valuable. Finally, the fourth level contains
all the above plus additonal tools judged
useful but not critical.

Life Cycle As generally used, "the period of time from the
perception of need for a software system to its
retirement. In this report a distinction is
made between the life cycle of defense systems
and the life cycle of the software components
for them. (For details of this new insight,
see chapter 2, section B2).

vi

(o

GLOSSARY, continued

MCCR

Methodology

Method

Post-Deployment
Support

Productivity

Reliability

Reusable Code

System
Life Cycle

Software
Life Cycle

UNIX

Mission-Critical Computer Resources.

As used in this report, a general collection of
rules, methods, and philosophies supporting
software life cycle activities.

As used in this report, a set of specific
rules, guidelines and techniques supporting
software life cycle activities.

Support of software after its initial deploy-
ment. During the total life cycle of a system
containing software, most so-called "mainte-
nance" is done to enhance performance of the
system in which the software is embedded, by
meeting new requirements or adapting to changes
in other system components.

As used here, the average number of delivered
source instructions per staff work-month.
Includes both freshly written and reusable
code components.

The probability that software will not cause
the failure of a system for a specified time
under specified conditions.

Standard proven fragments of code that can be
reused, and hence need not be rewritten. Re-
usable code provides both improved reliabil-
ity and maintainability and increased produc-
tivity.

As used in this report, the Life Cycle of a
defense system that contains MCCR. Includes
hardware, software, facilities, policy and
human elements. For contrast, see Software.

As used in this report, the life cycle of the
software components of a defense system.
Includes both initial development and post-
deployment support of MCCR software. For
contrast, see System.

An operating system, developed by Bell Labora-
tories. It also has many software tools.

VI i

EXECUTIVE SUMMARY

A. BACKGROUND

1. Purpose of Research

The research was begun to answer this question:

Can and should the United States Air Force (USAF)
build and supply to contractors as Government
Furnished Equipment (GFE) a Standard Government-
Owned Environment (GFE/Environment) for their use
in developing Ada*-ba3ed Computer Software
for Mission-Critical Systems?

2. Methodology

The research was conducted as three tasks, which built upon
one another. The tasks were to identify, define and document:

Task 1. what an integrated automated software
development/support environment would
consist of: [see chapter 3]

Task 2. what tools and methods are available and what
needs to be developed: [see chapter 3]

Task 3. what the pros and cons are of developing a
standard environment to be provided as Government
Furnished Property (GFE). [see chapters 4 and 5].

3. Results

Results of the research make it clear that:

1. The annual costs of maintaining the existing massive
inventory of non-standard computer programs (projected
by JLC to be $5 billion for FY 1990) may justify heroic
measures, such as imposing a standard environment as
GFE [JLC84].

2. The USAF can build an integrated, automated environment
with today's technology.

* Ada is a registered trademark of the U. S. Government, Ada
Joint Program Office (AJPO).

S-l

%

3. An extensive amount of research has been completed and
more than 400 software tools have been identified. At
least one software tool (usually written in the FOR-
TRAN, not in the Ada, language) exists to support each
function needed during the life cycle of software for
mission-critical systems.

4. Use of a standard development/support environment would
improve the post-deployment maintenance and enhancement
of mission-critical system software.

5. The standard environment must be designed to accommodate
future changes in software modules, user interface, and
methodology. That is, the functional capabilities built
into the environment must be designed for frequent
change during the next 20 years, or throughout the
entire life cycle of the environment.

6. The pre-software development work and the post-deploy-
ment support phases demand the most resources and time,
and exert powerful effects on software development and
support throughout the system life cycle. Not only
must the environment support the pre- and post-coding
work, defense project planning should be conducted with
the extended definitions in mind.

4. Sources of Benefits to USAF

Based on our research, we believe that use of standard
integrated software support environments would bring USAF these
benefits:

■

1. Reduction in the number of unique environments now
supported by the Air Force. Each weapon system
contractor supplies a unique environment tailored
to the system supported. Currently, the Air Force
is supporting about 400 different languages and dia-
lects, and several dozen unique environments [Ichb84].
Other benefits include reduction of training costs and
costs of contractor lock-ins.

2- Increases in productivity of staff who actually use
the standard environment [Boeh84]. Concentration on a
few environments per unit provide opportunities for
focused technology investments, which lead to greater
productivity. (For details, see chapter 2).

3' Increased reliability and maintainability of the
software produced by the standard environment,
which lead to lower maintenance costs. (See chapter 4).

S-2

l/

B. ROOTS OF THE CURRENT PROBLEM

How did the Air Force accumulate its massive inventory of
non-standard software? Although there are many sources, they can
be traced to two roots.

1. Exponential growth in capabilities of technology

The first is analogous to aiming at a target that moves
rapidly and takes protean evasive actions, such as literally
changing its shape. Computer hardware and software have changed
their technology, roughly every five years, throughout the past
three decades CWerl83].

The incessant change in technology has required managerial
responses to technologies that constantly evolved. This led to
many decisions to optimize development of individual mission-
critical subsystems, each of which depended heavily on technolo-
gies that were improving exponentially. During the past 25 years
the performance of new computer-based hardware products has
doubled every four years and the cost has decreased by the same
amount (i.e., at the combined rate of about 30 percent every
year) [Werl83]. This means that each of today's hardware items,
which may have been near state of the art when it was developed,
was soon overtaken by technological evolution. A comparable but
less dramatic pattern occurred for software [Phis79].

In short, with the increasing likelihood that software per-
forms tasks formerly done by hardware [Fox82], the support tech-
nology has slipped farther and farther behind the technological
and economic state of the art.

2. Incomplete view of life cycle

The second root is found in the incomplete view of the
software life cycle that prevailed during most of the past 25
years. This view, reinforced by required contracting practices,
saw completion of the initial development of software as an end
in itself. Subsequent changes and enhancements to the delivered
software were seen as beyond the scope of the initial development
process. This conception might have been valid for products
bought "off the shelf", but was misleading for development of
software components of mission-critical systems. Software
products were not only custom built, but evolved throughout the
initial development stage and then throughout the subsequent
years of the system life cycle.

A 1984 study [lDA84a] showed that it takes an average of 14
years to develop an innovative system, such as those on which
defense systems are based. Because support software is developed
early in that period, when the system is delivered the support
software is old with respect to state-of-the-art technology. The

S-3

1"

application software usually needs to be updated within a short
time after delivery of the defense system. Other factors that
complicate the post-deployment phase of the life cycle also
include poor documentation and low functional capability of the
delivered support system.

The USAF World Wide Military Command and Control System
(WWMCCS) Improvement Program (WIS) is attempting to correct this
situation. The support software is being designed to accommodate
updates in the post-deployment support phase. The support soft-
ware is being designed to be portable among various hardware
systems. A large portable WIS support environment will be stan-
dard with respect to all its sites. It is not clear that the WIS
acquisition strategy should not be applied throughout USAF. The
system engineering function for the WIS C I mission area may be
different from other mission areas such as mission simulators,
missiles, space, and avionics. Therefore, it,may be necessary to
have a small number of versions of the standard environments.

C. POTENTIAL SOLUTIONS

How have other organizations addressed problems associated
with support of software? It is not, after all, a condition
unique to the USAF.

1• Standardization

One key strategy used by industry has been to standardize,
first on hardware and then on the software needed to use the
hardware optimally during the developmental and later during the
support phases. A corollary industrial strategy, made feasible
by the practice of standardization within vendors' product lines,
is to increase computing capacity by upgrading equipment more
frequently than is possible for Federal agencies [GAOSla]. This
is possible because vendors design new hardware so that software
uses the same "instruction set architecture" and so is "upward
compatible". Software designed for the S/360 computers can be
run on the later S/370 and 303X models, although the reverse may
not be true.

2. Increasing Productivity

A second strategy is to increase productivity of software
development and support people, by providing them with better
tools. Figure S-l, "Programming Productivity Increases Exponen-
tially", demonstrates that productivity increased for both
"small" and "large" projects producing software of the sort
embedded in mission-critical weapon systems. Some of the techno-
logical changes are indicated on the chart, in roughly the time
periods in which they became (or will become) effective. (For
details of the data base and results, see Chapter 4).

S-4

5000-1

w z
o
H u

El

3 o: 5 o 3 o
o o 5
ac co _
^oS

IU a.
B

1000-

500-

100-

50 —

10-

30 MCCR-UKE SOFTWARE PROJECTS

26.2%
13"LARGE" PROJECTS
(SIZE-50 < 1200 KDSI)

3328

/ y Expert System
/ y Approaches

Reusable Code / / R*

/ /™
/ / Ada Compilers
/ / I

Software Tool Box / y

Ada Environments

Ada

'ordable
Memories

31.6

24.4%
17 "SMALL" PROJECTS

(SIZE «10 < 60 KDSI)

Interactive
'cawning and

27.7

Batch Programming and Testing

1970 1975 1980
I

1985 1990

Figure S-l. Software Productivity Increases Exponentially.

The reader is advised that technical agreement has not been
reached on metrics to measure productivity. These curves are
"least squares semi-log" lines, derived from statistical analysis
of the "COCOMO" project database of "well-managed" projects.
The curves show delivered source instructions (DSI) per work-
month (W-M), or DSI/W-M. (For additional detail, see chapter 4).

S-5

3. Benefits and Costs Extend Over Decades

The benefits cited above are substantial, but they are not
free. In this research, we have identified both the general
"pros" and "cons" of furnishing a standard environment as GFE,
and identified the categories of costs that would be incurred in
obtaining the benefits cited above. (See chapters 4 and 5). The
need to estimate benefits and costs more accurately, for both
quantitative and non-quantitative cost categories, led us to
design a simple econometric model of the software development and
support process (See chapter 4).

To identify these costs, we first defined a Hypothetical Ada
Programming Support Environment ("HAPSE"). It includes four
increasingly essential groups of software tools. The costs that
must be considered extend beyond the costs of acquiring and
supporting a HAPSE-like standard environment, and include costs
incurred by variations in implementation in different services
and with different control strategies.

D. SUMMARY OF RECOMMENDATIONS

Six recommendations have emerged from this research.

1• Continue Ada and STARS programs

The USAF should continue its present actions to increase
productivity of software development and post-deployment support
for mission critical computer systems. The Ada language program
addresses the DoD concern with excessive resources needed to cope
with the more than 400 incompatible programming languages and
dialects. The Software Technology for Adaptable and Reliable
Systems (STARS) Program primarily addresses automated Software
Engineering Environments (SEE). Each program will require sever-
al years of effort before yielding the massive potential benefits
of which they are capable. However, progress is already visible.

Ada Acceptance "on schedule". Figure S-2, "Diffusion of
Software Systems Takes Decades," shows that the progress of the
Ada standard language program, though begun a decade ago, is
comparable with similar software innovations. Such new software
technologies typically require about 14 years to progress from
concept to fielded status [lDA84a]. Ada compilers and support
environments are beginning to appear, and promising signs of
successful institutionalization of Ada are visible [Elec85].

Productivity Increasing. Software productivity (measured in
lines of delivered source code per work-month) is growing
dramatically for programming and unit-level testing, although the
benefits of this improvement have not been fully reflected in
improved costs to DoD. For example, this improvement has not yet
been extended to the activities that precede and follow pro-
gramming. (For possible reasons, see chapter 2).

S-6

«

oc«tu»
MM
COMMMMTV

MLCAM
MOOUCT

OCVfUW
MOOUCT

OCVfLOT
UNOCMVINO
coNctrra

rtiMMM

^^

SOURCE: IDA84a

Figure S-2. Diffusion of Software Systems Takes Decades.

Suboptimization caused by incomplete reporting of costs.
Present federal accounting and reporting systems generally do not
report all costs or permit determination of all benefits that
bear on this type of issue. For example Federal accounting
records, which do not depreciate investments in computer hardware
or software, make it difficult to show the true net costs of one
policy as compared with others [Werl83].

2. Pursue standard software development/support environment

The Air Force should continue planning for ways to increase
software quality and improve the effectiveness of software pro-
duction. One promising way is to integrate in one "environment"
several automated software tools that aid in developing and
supporting mission-critical software, then supplying such produc-
tivity enhancing tools to contractors, maintainers, and users as
GFE. Such a GFE/ Environment is technically possible today. At
least one software tool has been built to serve each function
needed in the development and lifelong support of software.

S-7

The proposed strategy involves use of many existing public domain
(or Air Force owned) software tools, and developing an "overlying
HAPSE environment" that would integrate the tools, use a common
set of commands, and provide an effective user interface. (For
details, see chapter 3). Two important potential benefits to
USAF are improved: (1) portability of tools from one hardware
system to another; and (2) interoperability, which allows trans-
ported tools to be integrated in the transported environment.

3. Quantify net benefits of GFE/Environment strategy

The Air Force should quantify the net benefit (in terms of
software quality and effectiveness of software development and
support) from a GFE/Environment strategy. This is a necessary
and complex undertaking, with ramifications affecting policies,
costs, and organizational configurations.

Econometric model. Overcoming this complexity requires
preparation of a primitive "econometric model" to describe the
costs and benefits available by using productivity-enhancing
tools in the different Services, in different settings, and by a
variety of users. (For details of this model, which, though
primitive, is quite complex, see chapters 4 and 5).

Non-quantitative elements of econometric model. Critical
elements in the situation to be modelled are not only technical
in nature. They also involve matters of ownership, control, and
historically-based ways of doing things. (These forces are
economic, organizational, and political in nature. For a dis-
cussion of similar forces that affected Federal ADP managers
during the years 1958-1983, see [Werl83]). As one example,
"benefits" from the GFE/Environment strategy accrue to one group
of people (taxpayers, DoD, and the individual Services), while
costs are borne by others (program managers, contractors, and
software developers, maintainers, and users).

Offsetting the obvious benefits are strong forces that oppose
use of standard languages and a standard environment [Werl83].
In part as a resultant of these forces, every software-intensive
defense system delivered to the government now has a unique
environment supplied by the system's developer. —

General form of econometric model. For an assumed software
workload (i.e., programs to be developed, enhanced, or repaired),
the model compares the economic variables listed below.

Net Benefit = (Software cost, current)

- (Software cost, with GFE/Environment)

- (Pro rate share of cost for developing,
supporting, and implementing GFE/En-
vironment) .

S-l

^

Total cost to the government will be the annual number of
software units required (perhaps in millions of delivered source
instructions per year) multiplied by the unit cost per delivered
source instruction. For each assumed level of software workload,
the econometric model will include the following variables:

Software cost,
current

Software cost,
GFE/Environment

Software cost to Government, using
current practices and support tools.

Software cost to Government,
using the GFE Environment.

Costs, for both current methods and GFE/ Environment, will
include variables such as these:

Cost of producing
software, using
current practices
or GFE/Environmant
method

• Cost of personnel who use current
methods or the GFE/Environment (sal-
ary, benefits, equipment, space, etc.)

• Productivity of personnel, in measures
such as source code instructions per
work-year (quality, reliability, and
maintainability being held constant)

• Cost of software reliability, a post-
deployment support cost

• Cost of software maintainability, a
post-deployment support cost

Cost of developing,
producing,
supporting, and
implementing a
GFE/Environment

• cost of initial design and development

• cost for production and continuing
support

• cost of continuing development, to
assure that benefits of evolving
technology are available to the
government for the next decade

• Cost of organizations and procedures
used to control software development/
support practices

• Cost of training users (both gov't and
contractor) in effective use of the
GFE/Environment

S-9

/fc

4. Control software by improving control of defense system

Because "software inherits system problems" [Fox823, the Air
Force should extend its efforts to improve conduct of projects in
the requirements and specification phases of system development.
This would precede development of software, and cover several
years during which system "requirements" are hammered out of the
operational needs and technological capabilities, then fitted
into budgetary realities. We recognize that implementation of
this recommendation, which would require action at high levels in
each DoD organization, is clearly beyond the scope of the present
study. Nevertheless, because the phenomenon is only beginning to
be understood, it is necessary to reinforce the idea now, so that
the benefits from improving software development and support can
be obtained eventually.

System^variables drive software productivity. Software pro-
ductivity is driven by system variables like these:

• Volatility of requirements, (partially imposed
by changes in the defense system of which
the software is an integral part).

• Reliability required from software.

• Complexity of defense system.

These "software" development variables are functions of the total
defense system more than simply of software development.

5. Design GFE/Environment for continuing development

The standard GFE/Environment must be designed to accommodate
future changes in system requirements, as well as in software
modules, user interfaces, and methodologies used for software
development and support. Expressed another way, the environment
must be designed for frequent change during the next 20 years, or
throughout the entire life cycle of the environment. (See
chapters 2 and 5).

6. Extend environment functions to include pre- and post-coding

Finally, definitions of the "life cycles" of defense systems
to be served by the environment must include the work done before
software development is started. Not only must the GFE/Environ-
ment support the pre- and post-coding work on defense systems,
project planning should be conducted with the extended defini-
tions in mind. This is again because "Software Inherits System
Problems". (See chapter 2).

S-10

i1

E. UNDERLYING CONCE-PT — INTERCHANGEABILITY

Except for the promise of Ada, today there is no ^noT*
integrating standard language, methodology^ and support tec^nol
ogy that addresses the problems of t^' USAF-s Tulti-bUUon
dollar software inventory. Although everyone is familiar w^h
hardware composed of standard interchangeable parts, which can be

cha'na^ble63311^3"^ ^^^^Y' the concept^f s andard inter-
changeable parts for software has not been accented irtr ll
computer programs that have become so vital !n weapo'n'systems. '

In this report, we describe briefly the results of r-^o^ u
xndxcating the potential benefit the7 Air PVrce can 5" bj
increasing its use of interchangeable software CBoeh84] in
addition to integrated collections ("toolboxes") of softwai^
tools, the GFE/Environment accesses libraries of "reusable code fragments". ^uoauxt! ooae

F. IMPLICATIONS OF COMPLETED WORK

1- "Managing" productivity drivers

In the present contract, we have successfully identified
eifortl* ^^ enables on which USAF can focus environmental
efforts. These are the 15 independent project characteristics
used m the "COCOMO" model for forecasting software costs USAF
can manage: programmers' experience with the programming language
used on a proDect (LEXP); reliability needed in the resulting
product (RELY), use of modern programming practices (MODP): and

"intu?/ SOftware tools (T00^- divers at the system level
(RVOL) 117^ CfTeXity (CPLX)' volatility of requirements
chapter/). SChedule constraints (SCED). (For details, see

2. Next steps in research

^.nH0 ^Upport the kif Force business decision on developing one
standard environment (perhaps having several compatible versions)
k?ndreoqfUiring ^ USe " a standard GFE, we now^eed a dif?e?ent
r-wh.t- "^^"i1; .Table S-1 s^ari2es what we have learned
(What we know") and, in the second column shows what we still
neea to learn.

S-ll

\%

Table S-l. RESULTS OF GFE/ENVIRONMENT RESEARCH TO DATE

 WE KNOW; WE NEED TO KNOW:

- Principle technical elements
of an Ada-based environment needed
to support each of the functions
required for software support
throughout the system life-cycle.

- At least one software tool
exists to support each activity of
the software life cycle.

- These tools can be inte-
grated into support environments.

- How environments relate to
the variety of methodologies now
available for software develop-
ment and post-deployment support.

- To build a software engi-
neering environment in the near
term, an existing environment or
operating system (such as UNIX)
must be used as the basis.

- Exponential improvement
for the design, programming,
and test activities for years
1970-79.

- Improvement can be pro-
jected by using software para-
meters in pricing models such
as "COCOMO".

- Many constraints and
barriers to implementation.
For example: vendors/market
structure; economic and con-
tractual factors; personal and
organizational inertia;
and political factors.

- How to overcome pro-
liferation of environments
that are non-compatible.

- Rates of exponential
growth in productivity for
requirements specification,
design, and post-deployment
support.

- How to avoid techno-
logical stagnation from
eventual obsolescence of
GFE environments.

- Effect of imposing a
single mandatory standard
environment on vendors of
the many mission-critical
weapons system projects.

- Effects on benefits
to different Federal org-
anizations using different
control strategies.

S-12

i'i

CHAPTER ONE

OBJECTIVES, HYPOTHESIS, AND METHODOLOGY

A. OBJECTIVES

The objectives of this contract were to "identify, define and
document what an integrated automated software development/sup-
port environment would consist of, what tools and methods are
available, what needs to be developed to build this environment,
and what the pros and cons are of developing a standard environ-
ment to be provided as Government Furnished Equipment (GFE)".

B. HYPOTHESIS

In conducting the study, we began by developing and stating
the research hypothesis.

DoD should develop, maintain, and provide
as GFE on Government Contracts, a Single Inte-
grated Ada-based Software Support Environment
(which can be tailored to meet unique needs).
For this research, we postulate a Hypothetical
Ada Programming Support Environment (HAPSE).

In classic scientific tradition, we then directed the study
effort toward testing the hypothesis. This approach let us
concentrate our forces in a relatively narrow channel.

C. METHODOLOGY

In October 1984, AFBRMC/RDCB, WPAFB, OH, engaged Technion
International, Inc. to evaluate the feasibility of developing
integrated, automated software development/support environments
to be provided as GFE to contractors, software support organ-
izations, users, and trainers responsible for managing software-
intensive mission-critical systems.

1. Three Tasks

The work was structured as three tasks:

Task 1: Identify and define the principal [sic]
technical elements of a single hypotheti-
cal integrated automated software devel-
opment/support environment (HAPSE) re-
quired to support the complete software
life cycle for embedded systems. (For
details, see chapter 3).

We used public sources, such as IEEE and ACM journal publi-
cations and interviews, for this task.

1-1

$>

Task 2: Outline a development plan leading to an
implementable HAPSE. (See chapter 4).

We found that at least one software tool exists today that
can support each activity of the software life cycle. We re-
viewed current laboratory and operational software tools, as
well as programming environments. We investigated the state of
the art in software support environments, then defined a Hypo-
thetical Programming Support Environment ("HAPSE") that would
meet USAF needs for a GFE environment. Finally, we verified the
current technical feasibility of building a HAPSE. (Chapter 3).

Task 3: Investigate the pros and cons of imposing
HAPSE as a standard GFE for contractors,
users, support organizations, and trainers,
dealing with mission-critical software.
(See chapters 4 and 5).

With technical feasibility confirmed by Tasks 1 and 2, in
Task 3 we looked at the pros and cons to USAF of implementing the
HAPSE/GFE strategy. We found that this area contains more con-
straints on successful implementation — in the form of organiza-
tional, control, and economic variables — than do the purely
technical concerns. Success in achieving the potential improve-
ments in software reliability, maintainability, and productivity
will depend on negotiations among the many parties who are moti-
vated to conduct business as usual.

In Task 3, we performed statistical analyses of 34 software
projects from the COCOMO project database [BoehSl]. This, with
material from journal articles, enabled us to determine which
project dependent variables help most in improving performance of
software development and support activities. (See chapters 3 and

2. System/Software Engineering

It became necessary to differentiate sharply between two
quite different complex entities, each of which is usually
referred to as "...the system". we made this differentiation:

A Defense System contains hardware (e. g., sensors,
launchers, communications, weapons, computers, etc.)
people, and computer software.

A Software System is a subset of the defense system of
which it forms a vital part. The software function,
analogous to the nervous system in an organism, coordi-
nates and controls all the varied components of the
Defense System. The software subsystem itself comprises
a complex collection of computer programs, support and
test equipment, and trained people. But it is only a
subset, not the complete Defense System.

1-2

^

It is widely believed that the proper intent is to optimize per-
formance/ reliability, and maintainability of the defense system
with respect to its mission objectives, as opposed to optimizing
performance, maintainability, or reliability of any subsystem
(such as software). While we used both system engineering and
software engineering frameworks in the research, we viewed
defense software projects as subsets of, and interdependent with,
the defense systems of which they are parts.

Complex defense systems require support during the research,
development and post-deployment operational phases of their life
cycles. This is particularly true of the software components of
defense systems, because they are often required to compensate
for incompatibilities among hardware and human resource compo-
nents.

The HAPSE will need to assist many different software people
working over many years, in the initial development as well as in
the later operational enhancement and support activities for
defense systems. As a hypothetical example, let us take the
initial development of software for a small defense system. It
is done by contractors and takes, say, five years to complete.
Subsequent enhancement during the operational life of the defense
system may be done by the same contractor but is performed by
different people and — for a successful mission-critical system
— may be needed for more than 20 years after the initial
delivery. It is usually the case, in both industrial and govern-
ment, that development is conducted much differently than is
maintenance and enhancement [Fox82, Pari84, and others].

Much of the software developed, and the literature describing
software engineering, refer to administrative and process control
programs. These are clearly different in nature from the soft-
ware contained in defense systems. For the purpose of this
study, we differentiated mission-critical software from admini-
strative data processing systems by the characteristics in Table
1-1.

1-3

^

TABLE 1-1

CHARACTERISTICS OF MISSION-CRITICAL SOFTWARE
COMPARED TO ADMINISTRATIVE SOFTWARE

Mission-Critical Software
Administrative Software

Perform complex mathematical
calculations such as solution
of simultaneous differential
equations in real-time.

Stringent real-time processing
requirements with limited
run-time constraints and
complex interrupt-processing
patterns.

Relatively small run-time
memory, sometimes no secondary
storage.

Perform simple calcula-
tions involving data
replacement, arithmetic
operations, or symbol
manipulations in batch
mode.

Less stringent run-time
constraints, and simple
interrupt processing.

Large run-time memory
and secondary storage.

Cost of failure measured in
terms of possible loss of
human lives.

Life cycle often includes
up to ten years for system
containing software; soft-
ware development often
exceeds ten years.

Post-deployment support of
software is usually very
active; changed requirements
often added after system has
been deployed.

Failure is costly only
in terms of dollar costs
for recovery.

Life cycle for develop-
ment seldom more than
3-5 years.

Post-deployment support
is relatively inactive.

SOURCE: Adapted from Redwine, et. al.. Institute
Analysis Report P-1788, pp. 48-49 [lDA84a]. of Defense

1-4

3. Technical Elements of Environments

At the outset, we studied current environments and those
features that will probably be available in the next seven years.
The need to provide support throughout the system life cycle
dictates use of a "General" environment approach, which will
support more than one programming language and does not require
users to follow one specific methodology.

As detailed in chapter 3, the most effective approach, given
the schedule restriction of seven years, is to build the "HAPSE"
as a layer "on top of" an existing operating system. This per-
mits the "HAPSE" overlay to present a uniform set of commands to
the user, and compensates for differences in the individual soft-
ware tools called by the user, which may use different command
structures internally.

The existing operating system (the "underlying" system)
permits use of existing technical capabilities such as: (a)
Ability to build databases; (b) File system; (c) Editor; and (d)
Ada translator and interpreter. Several experimental environ-
ments have been built in this manner (e.g., "on top of" the UNIX
operating system) .

Using this approach, programmers will see the HAPSE, with its
commands and set of integrated software tools. Four sets of
tools are described in chapter 3. Toolsets begin with a bare
minimum set of four tools, and add a set of seven additional
tools "required" for effective support. An additional six, less
critical but still "important", tools comprises the third set.
The fourth adds five tools judged "useful" but not required.

4. Modelling the Effects of this Technology Push Strategy

Since we began work on this contract, Technion International,
Inc. and our subcontractor. Systems and Applied Sciences, have
concluded that standard software support environments can be
built using current technology. We verify (in chapters 4 and 5)
the technical soundness of the Air Force's proposed GFE approach
and describe potential savings of substantial magnitude.

The criteria used for design of the software support environ-
ment included: (a) improving the productivity of software de-
velopment and support activities; (b) improving reliability of
the software products; (c) producing operational portability of
software products [to different projects, hardware and organi-
zations]; and (d) factors such as effectiveness, user-friendli-
ness and product usability that are essential to achieving the
other objectives.

1-5

4+

The research and analyses performed yield the conclusion that
the HAPSE is technically feasible. For the HAPSE to become a
reality in the competitive market place — and to ensure that it
escapes the fate of quick obsolescence — the Air Force also
needs to consider economic and organizational issues. These are
especially important with regard to different plausible levels of
standardization to be imposed. Chapter 4 sketches a primitive
econometric model that depicts the complexity of implementing the
strategy. Additional research is proposed to develop this model
further and possibly to parameterize it dynamically.

It is foolhardy to estimate potential savings in a field sub-
ject to so many uncertainties. However, a "rule of thumb" in the
management consulting profession is that a target of ten percent
savings can be realized in nearly any operation. Attainment of
such savings requires changes in the ways of doing things. While
this conceivably may not be true for the software field, the
leverage is enormous. Because of the large annual DoD costs for
software development and support (estimated at up to $10 billion
annu- ally), an improvement of only one percent would make about
$100 million available for other purposes each year. A ten
percent savings would release $1 billion annually.

1-6

CHAPTER TWO

RELEVANT LITERATURE

A. INTRODUCTION

In this chapter we first describe the nature of the problem
addressed by the proposal to develop a single standard GFE/En-
vironment, then review some factors that affect feasible solu-
tions. Reviewing literature of this field is like a journey in a
time machine. Most of the material published only a few years
ago seems out of date. Precious little written before 1975 de-
scribes the realities of 1985. Our survey has.five parts.

In part B/ "View from the Top", we find a conception of
software development and support that is available from no other
source. We learn what it looks like to those responsible for
success of software development and support projects. Our guides
are two of the rare authors who have actually managed development
of software systems, and who help us learn from their mistakes.

Next, we look briefly at the nature of the programmer's task,
and describe the recent revolution in the way designers and
programmers construct and support software. This is important,
because the nature of this work has changed dramatically during
the past 15 years and it will probably continue to evolve during
the foreseeable future.

In part D, we take a bird's eye view of some landmark de-
velopments that have led both to the present problems and to the
proposed solutions.

In part E, we review the situation that led to the proposal
to develop a single standard GFE/Environment for contractors,
maintainers, and users to use in developing and supporting DoD
software.

Finally, in part F we look at the organizational settings in
which the DoD conducts software development and support, with a
view to identifying barriers to successful transition. We review
past developments which have had unforeseen results and ask how
those results can be avoided in implementing the GFE/Environment
proposal.

II-l

2^

B. VIEW FROM THE TOP

In this section we discuss two publications that changed the
way we look at the symptoms of software problems, thereby affec-
ting where we search for solutions. Each book changed conven-
tional thinking by adding insights born of actual experience. In
its time, each represented a fresh look in managerial thinking
about software systems. Each author writes in language differ-
ent from that of the theoretician, the academician, or the engi-
neer, and presents ideas far in advance of conventional thinking
when first published. Most importantly, each brings valuable
insights for the GFE/Environment implementation effort.

1. Frederick P. Brooks, Jr.

Wider known of the two is Frederick P. Brooks, Jr., with his
now-classic The Mythical Man-Month [Broo75]. Brooks was manager
of IBM's development of the OS/360 operating system software pro-
ject during the 1960s. His best known axiom is "Brooks's Law":

Adding manpower to a late software project
makes it later.

He explains.

More software projects have gone awry for lack
of calendar time than for all other causes
combined (pp. 25,26).

Ten years have passed and Brooks's Law still seems to be
valid. Other comments are equally valid, but less well known:

a. The general tendency is to over-design the second
system, using all the ideas and frills that were
cautiously sidetracked on the first one.

[Another second system effect is] . . . the
tendency to refine techniques whose very existence
has been made obsolete by changes in basic system
assumptions. . . OS/360 has many examples of this,
(pp. 55-58).

b. Brooks was the first to apply to software engineering
projects the understanding that communication and coordination
among team members is a necessary, even a major, part of the work
on large projects:

If there are n workers on a project, there are (n2-n)/2
interfaces across which there may be communication,
and there are potentially almost 2n teams within which
coordination must occur (p. 78).

II-2

xl

c. He advised that we should ". . . plan to throw [the
first] software system away; you will anyhow." Following up on
this observation, he stressed the needs to "plan the system for
change", and to "Plan the organization for change". (DD.
116-118). F

d. Viewing program maintenance over the years (the term
"Life Cycle" had not yet become prominent in 1975) he found:

All repairs tend to destroy the structure, to
increase the entropy and disorder of the system.
Less and less effort is spent on fixing original
design flaws; more and more is spent on fixing
flaws introduced by earlier fixes. (p. 122).

2. Joseph M. Fox

Even more important for the GFE/Environment project is Joseph
M. Fox's Software and Its Development [Fox82]. In this book. Fox
describes software development at a later period, as seen by a
top level manager (he headed IBM' Federal Systems Division
during part of the 1960s and 1970s). He emphasizes the
"hands-on" aspects of managing system development and support
projects. His insights on development and support cover the
complete range of software products, from very small to very
large ones similar to defense systems. Most valuable to the
GFE/Environment project are these:

a. [The Continued Development Phase of the Life Cycle]
. . . is often the most ignored piece of the life
cycle, left to be taken care of by some new and
often unnamed team. One of the key ideas we will
stress is that this piece of the cycle must be
taken into consideration from the very beginning
of the development effort. (p. 45). (Our emphasis).

Building on his description of the "Continued Development Phase
of the Life Cycle", he subtly revolutionizes life cycle thinking
about software by distinguishing among (1) initial development
(which is not really complete when software is accepted, in part
because the software contains "latent" or unfound shortcomings,
and in part due to the "abandon function" phenomenon seen as
scheduled completion time approaches); (2) [operational] use;
and (3) continued development (i.e. addition of new software
capabilities, as well as correcting shortcomings when they are
found). (pp. 35-46).

b. To implement the concept of
Phase of the Life Cycle", he advises:

the "Continued Development

The first requirement of a large system
of software is that it be built so that
it is easy to change.

II-3

tf

The first job of the manager of a large
software effort is that he or she budget
for many releases of the software"

. . . the lack of clear requirements is
the single most difficult problem in
developing large . , . systems. The
project manager does not know where he or
she is going. (p. 75).

Why does he state this so strongly? Fox has observed that:

c "Software Inherits the System Problems".

He explains.

In the case of large . . . systems, as the
other pieces of the system solidify, the last
piece that can be modified is the software. What
do we mean, 'solidify1? In large . . . systems
there are often many elements that are under de-
velopment, [and/or] being improved. The communi-
cations/display/radar/ sonar/lR/teleme try/mi ss i le/
satellite/propulsion/control/whatever — some of
these will be the newest, most advanced in the
world when they work in our system, or they will
be in new connections. Therefore, they will sur-
prise us in the way they work, and we will have to
adapt to reality.

The burden for adapting to the differences
falls on two pieces of our system — the software
and the human operators. We try to push as much
into the software as we can, and then let the rest
fall onto the operators. The software is "soft,"
if we designed it right and controlled it right.
If we documented it and modularized it. Then in-
deed, it is soft. If we did not, it can be a
block of solid concrete, (p. 73).

II-4

^1

IS
d. Particularly appropriate for the GFE/Environment project

Fox's citation of:

A Department of Defense study . . . con-
ducted in August, 1977 of nine major automated sys-
tems. Most were communications systems. . . The
study summarized:

• All had unstable and changing requirements;
the bigger the system, the worse the rate
of change.

• Most lacked any formal mechanism to track/
manage requirements.

• Some did not even perceive the need to
validate requirements.

• Most were plagued by "wish lists".

The study accurately describes [the au-
thor's] experience in the commercial realm
of computers. (p. 104).

e. Adapting to practice the insights just described, he
explains a ubiquitous phenomenon. Most software engineers and
programmers have observed that requirements on their projects are
seldom static. It remained for Fox to point out that unceasing
change is not an isolated anomaly or a sign of "mismanagement,"
but in fact is a fundamental characteristic of the role of
software in complex systems. His succinct statement, "Require-
ments Definition is a Continuous Task," (p. 107) has rich
implications for all who work with defense systems:

f. On progressing toward the software equivalent of "inter-
changeable parts", he compares it to the historical evolution of
hardware production. He begins by describing manufacturing prac-
tices before the "industrial revolution" (when individual items
were literally handmade), and follows the evolution to wide use
of machinery and of standard interchangeable parts. The results
of the evolution included greater productivity in manufacture,
lower costs to consumers, and longer life resulting from easier
repair.

Software development is still in the early
phases of its industrial revolution. . . . some
specialization of labor has occurred, and some
automation, but we do not yet have . . . the
interchangeable part. It is on its way: it is
inevitable, even with software, but it is not

II-5

1°

here^ yet. We are still learning how to organize
to "produce" software. We are developing the
tools and technologies simultaneously. We are
proceeding at a great rate, faster probably
than most imagine. (p. 288).

The significance to USAF of Fox's concepts has only begun to
be recognized since about 1982 [Fox82, JLC84].

C. REVOLUTION IN SOFTWARE CONSTRUCTION

The view of the system life cycle, completed by Fox and JLC,
has been accompanied by an outmoded view of programming. in 1979
Winograd noted that an obsolete view of software construction
still dominated thinking about software practices, years after
the true nature had changed dramatically Cwino79]. In the earli-
est days, the software developer's image was that of a mathe-
matician/artist. Ideally, the software product was the equiv-
alent in elegance of the "Mona Lisa". While the artistic image
remained, capabilities of the artist's tools (hardware and soft-
ware) grew enormously, and the nature of the developers' work
changed. Today a more appropriate image might be that of an
engineer developing and supporting a telephone system or an elec-
tric power utility CArth83, Myer85, Silv85].

Throughout the development of numerous programming languages
and systems, the artist/mathematician's implicit objective was to
design an algorithm that could be written down in a precise and
exhaustive number of instructions. But the development of high
order languages (HOL) and compilers quietly revolutionized the
work actually done by software people. They began to use the
basic HOL building blocks (instructions which represent logical
algorithmic structures in both the control and data domains) In
addition to increasing productivity, this meant that program-
mability was definable at a level closer to the system than to
the level of the machine. But the older self-image remained:
programmers still think of themselves as artists.

Stating this restricted view of programming and programming
languages, Winograd points out trends in the technology of large
complex systems that happen to contain software. First, the com-
puter is no longer just a computational machine, but now forms a
prime component in an integrated hardware-software system of high
complexity. Such "embedded" systems are proliferating as the
microcomputer revolution continues, making feasible applications
like message processing on telephone networks or satellite TV
networks. Embedded computer software exhibits different charac-
teristics than administrative software. It is more fault toler-
ant , responds in real time, and interacts with a more advanced
display input/output (I/O) front end.

II-6

71

Second, the building blocks are larger. No longer HOL
instructions/ now they tend to be subsystems or packages which
are themselves collections of integrated data structures, pro-
grams and protocols. Winograd basically addresses the difficulty
currently being faced in integrating many independent components
which are not within the same computer hardware.

Third, most programming activity (more than 50 percent) is
now concentrated on integration and modification of existing
software instead of generation of new independent programs
[Wino79). This is confirmed by a General Accounting Office
survey conducted in 1983 [GA083]. The survey showed that 61
percent of programs surveyed were modified during the year
because requirements had changed. Only 17 percent were modified
because of software defects. ' Finally, nearly four fifths of
programs surveyed were maintained during the year. Only 22
percent of programs had no maintenance during the survey period.

Reasons for software maintenance

Enhancing program beyond original objectives
Upgrading hardware or software
Keeping tables/codes current
Changing legislation/regulations

Total due to changing requirements 61%

Removing defects in software 15
Other 2

Percen t

21%
16
14
10

Total defects 17

Programs not maintained during year 22

Total programs in survey 100%

The GAO survey supports Winograd1s finding. Other reports show
that maintenance is generally not done systematically, either in
industry or in Federal departments [GAOBl , GA083, Mart83,
Wien84].

The main reason for the software evolution demonstrated by
these findings seems to be that systems containing software
components are required to evolve over many years. In the DoD
environment, this means that the software components, called on
to satisfy new and changed requirements throughout a system's
life cycle, permit the system to remain useful in supporting DoD
missions.

II-7

u

D. LANDMARK DEVELOPMENTS IN SOFTWARE ENGINEERING

Landmarks along the road include FORTRAN, JOVIAL, COBOL,
optimizing compilers, systematic use of software tools, and
reusable code. Together with other technical developments, the
result was the exponential growth in productivity shown in Figure
S-l, "Software productivity increases exponentially". If history
is a guide, the journey will probably continue along this
exponential path. The new landmarks will include increasingly
high level languages and the tools that support them, "reusable
code", "support environments", use of expert systems and other
artificial intelligence techniques and, most importantly, devel-
opments that are still unknown.

A rough map of the journey is found in a paper by Herb Hecht
and Ray Houghton [Hech82]. NBS reported that, in 1980, we were
still not using software tools widely [HechSl], Another NBS
report, on the May 1980 workshop on Programming Environments
[BranSl], described the state of the art and proposed environ-
ment-related research for the next five years.

Reports from the advance scouts include descriptions of the
Boeing experimental software environment, ARGUS [Stuc83] , and
Japanese practices [Taj84]. Other key reports are Boehm's
article on the TRW Software productivity system (SPS) [Boeh84],
which suggests that the way to go is an n-fold path; and the
Zelkowitz survey of industrial software practices in use in the
U.S. and Japan in 1983 [Zelk84]. Additional details are given in
Chapter 3.

The difficulties encountered in building and modifying large
systems are numerous and not easy to overcome. Solutions prob-
ably lie not in rigorous academic discipline but in more adequate
tools. Let us consider the Ada experience as an example.

1. Standardization of Languages

Agreed on standards and conventions are required to prevent
misconceptions and miscommunications among the many different
people involved in the development of any complex system. During
the 1970s, DoD had some success in standardizing the COBOL and
Jovial languages. These DoD efforts addressed the proliferation
of languages and dialects by standardizing languages as a means
to attain independence from a single vendor's computing hardware.
In an attempt to limit language proliferation, DoD and USAF later
limited the number of standard HOLs to be used on new defense
systems [USAF76]. DoD subsequently extended the effort by
sponsoring development of the Ada language, which began around
1975. It was intended to standardize on a single programming
language. This would help in DoD's battle to control escalat-
ing software costs and create software that could run on
computers built by many vendors.

II-8

32

In July 1980, a draft of the Ada language was proposed, and
in 1983 the ANSI standard for Ada was accepted [Ichb84]. From
1980 to 1983 Ichbiah's Ada development team had tested and evalu-
ated the Ada language and incorporated 7000 modifications that
came from 15 different countries. The entire process involved
more than 1000 people from all over the world [lchb84]. But the
road to an accepted standard is not smooth. The Association for
Computing Machinery (ACM) standards committee's position on Ada
did not oppose the principle of standardization, but objected to
the Ada specification proposed as of February 1982. The ACM
position was given in [Skel82].

"Although the ACM is in opposition to the present
proposal, two points should be emphasized:

• The ACM is not opposed to national and inter-
national standardization of the Programming
Language Ada, but views the present specification
as inappropriate for such adaptation:

• The raising of this issue at the national standards
level has had the extremely beneficial effect of
focussing attention on the specification, and thus
eliciting pertinent comments which might otherwise
not have been available."

Some potential Ada users still see problems with adapting to the
language [Buxt85, Ledg82, Wild83].

II-9

3^

Figure 11-2, Diffusion of Software Systems Takes Decades,
shows that progress of the Ada standard language program, though
begun a decade ago, is not slower than other comparable innova-
tions have been. New systems typically require about 14 years
toprogress from concept to fielded status) [lDA84a]. ' Ada
compilers and support environments are beginnina to appear, and
some promising signs of successful institutionalization of Ada
are visible [Elec85].

DEVELOP
USER
COMMUNITY

RELEASE
PRODUCT

DEVELOP
PRODUCT

DEVELOP
UNDERLYING h
CONCEPTS

PUBLISH
CONCEPT

TIME (Years)

SOURCE: IDA84a

TIME (Years)

Figure 2-2. Diffusion of Software Systems Takes Decades.

2- Software Engineering of Tools and Environments

Software Tools. Hundreds of individual software tools have
been developed over the years, and some are used widely by both
commercial and government customers CData84, FSTC83a] To show
the wide usage, we provide a sample, drawn from 17 commercial
i§R2granin el0pment aids" Package3 studied by Datamation in
1984. Because of the nature of Datamation's study, all 17

11-10

packages had substantial numbers of users. We obtained reli-
able estimates of the number of users were available for 9 of the
packages reported. After each package, the number of users is
shown in parentheses.

CONDOR (400+); ADR/VOLLIE (1600): INTERTEST (1400);
MANTIS (1700); QUOTA II (550); O-W-L (400);
CPG (530); SPEED I (4000); DATAMACS (950+).

Such wide use shows that standard software packages meet real
needs in the industrial market. These packages provide various
portions of the capabilities needed for the HAPSE, but none has
the complete range. Further, none is usable for USAF's purposes.
All reported packages are designed primarily for computers and
languages widely available to commercial users, but not used in
MCCR.

Studies of Environments. In November 1981, the Institute for
Computer Science and Technology (ICST) at the National Bureau of
Standards published an overview of software tools usage, with
results of a survey and an interpretation of findings [HechSl],
It also gave the requirements for future tools usage. In Sep-
tember 1982, the same group published another document on the
introduction of software tools [Hech82]. This document details
the levels of tool usage envisioned in various types of user
organizations,, outlines user tool needs, and enumerates event
sequences for tool development.

During February, 1984 ICST put out a study plan for comparing
software development schemes for Ada [Houg84b]. The study
details typical developmental phases and maintenance phases.

Concurrent with this standardization activity, industry and
academia have been making headway in software engineering by
research in software environments. Many different experiments
are under way [Bars84, Wass81]. In this report we focus on the
experience of commercial firms which have described their work
with integrated software support environments.

3. Commercial Firms' Experience

Perhaps a dozen separate environments have been, or are
being, developed [lDA84a]. Several of these, particularly rele-
vant to the GFE/Environment proposal, are discussed below.

ARGUS. Boeing Computer Services developed the ARGUS environ-
ment, which combined CAD/CAM-like functions for producing soft-
ware products [Stuc83]. The aims of ARGUS are to increase pro-
ductivity throughout the software life cycle, improve software

11-11

>

quality, provide MIS control capabilities, and establish an
integrated software environment. ARGUS contains four separate
"toolkits", which have been built on the UNIX operating system.

The ARGUS makers have three observations on distributed
software engineering environments.

• First, in the development of micro-based workstations,
a bigger environment may not necessarily be better: in
fact smaller environments built on top of the UNIX
operating system have significant software capability.

• Second, net computing costs are lower with automated
tools because increased productivity uses relatively low
cost computer time to increase the effectiveness of high
cost employees' work hours. The human component is now
more expensive than the hardware.

• Third, the environment must have timely infusion of
project information that directly bears on project
success parameters [i.e., project management data].

TRW'S "Software Productivity System (SPS)." At TRW, Barry W.
Boehm's group developed an automated software environment primar-
ily to boost productivity and decrease maintenance cost [Boeh84]
TRWa Software Productivity System (SPS) is a conglomerate of
strategies; it includes a work environment, evaluation and
procurement of hardware equipment, provision of immediate access
to computing resources through area networks, integration of
software developmental tools and transfer of new technology. The
motivating factors for construction of the SPS were increasing
demand for software, limited supply of software engineers,
increasing support expectations and reduced hardware costs. The
broad guideline specifications laid down by TRW management for
the SPS support environment included some adapted from the DoD
Ada Stoneman requirements [Buxt80], and added these:

a. provide multiple-programming language capability

b. support mixed target-machine complexes

c integrate existing programs and data

d. support of classified projects

e. facilitate non-programming activities, such as
documentation.

The SPS architecture currently supports a broadband local
area network to perform high speed terminal-to-computer communi-
cations. The SPS uses the UNIX operating system as the base, the
"underlying environment".

11-12

3-7

The conclusions of the earlier TRW study that lead to the SPS
experiment are given below CBoeh84]. Emphasis is added to show
Technion's estimate that seven of those conclusions most impor-
tant to the GFE/Environment effort:

i- The integrated approach and immediate access to an
excellent set of tools has the highest payoff.

ii. Office automation with project support capabilities is a
must.

iii. A master project data base with software development
artifacts is worthwhile.

iv. Adherence to user interface standards is a must for
preserving the capability to evolve.

v. User acceptance of development environments needs
careful fostering.

vi. [Local Area Networks] . . . allowing interconnection of
user terminals are a strong support to distributed work
environments.

vii. Privacy of [programmers'] offices improves productivity.

TRW management believes that "The SPS is a long term am-
bitious project that we can learn from as it evolves over the
years." [Boeh84]. That evolutionary learning can also be of
value to AFSC.

Computer Integrated Manufacturing (CIM). At McDonnell Doug-
las in St. Louis, corporate managers have embarked on an am-
bitious Computer Integrated Manufacturing (CIM) task that
virtually amalgamates the company's software tools into one
system, which forms a global resource for a fully automated
manufacturing facility. Tools involved in CIM are those of
Computer-Assisted Design (CAD), Computer-Aided Manufacturing
(CAM), Computer-Aided Engineering (CAE), Management Information
Systems (MIS), and Decision Support Systems (DSS).

DoD Experience. There is some experience with incorporating
automated software environments into DoD software production
practices. The life cycle management analysis and development
schemes described by Stuebing [Stue84] in his Systems Engineering
Environment (SEE) for weapon systems software is the first step
in this direction. The SEE approach brings to light many perti-
nent parameters that need to be examined for successful develop-
ment of automated environments. The FASP (Facility for Automated
Software Production) at the U.S. Naval Air Development Center

11-13

&

(which Stuebing describes) has now been rewritten, using the UNIX
operating system on a VAX 11/780 [Stue84]. During the survey,
the Technion researchers noted that the UNIX operating system
cited by Stuebing is now being used by a majority of the U. S.
automated software environment developers.

4. Limited Use in Software Production

Yet these experimental developments have not entered the
workplaces in which software is developed and supported. in a
recent survey of current software engineering practices in the
U.S. and Japan, data from 20 organizations (including IBM and
five Japanese firms) were collected and analyzed by a group at
the University of Maryland [Zelk84]. They found that:

i. Every company had its own guidelines for software
development that were either written or unwritten.

ii. There was a disparity between techniques used in
industry and the current software engineering
1iterature.

iii. Use of software engineering practices was quite rare.

iv. None of the firms used tools to support software
engineering practices in any significant way.

The analysis also makes observations of existing
organizational structures in the simplistic sense, to determine
tool usage and data collection for the development of software
environments. Their survey evidently was restricted to the
initial development of software, using the traditional phases
[requirements and specification, design, code and unit test, and
integration test].

Are tools investments or expenses? Zelkowitz, et. al. point
out that software developers in the United States are primarily
oriented to individual projects or applications. In contrast,
for the the Japanese firms centralized development of software
tools and centralization of software resources is prominent. The
Japanese tend to invest in software tools, seeing the costs as
part of their firms' capital investment base, rather than
charging tool costs as unique expenses to separate projects. The
Japanese also incorporate a post-mortem analysis of error data to
track related failures [Zelk84, MatsSl, Taj84],

11-14

?f

E. HOW DOD GOT TO THE GFE/ENVIRONMENT

DoD's attention to the symptoms of software problems is not
new. The topic has been studied frequently and in some depth for
the past two decaaes, during which time the field has undergone
several complete transformations. Technion has noted that
recognition of the inherently evolving nature of software, and of
the magnitude of required post-deployment support were not widely
recognized until about 1982. For example, well done key reports
dated 1970, 1975, 1978, and 1983 mention post-deployment support,
but do not seem to have understood the revolution in software
development and support that they implied. Examples of these
studies include:

• U.S.A.F. Select Committee on Computer Technology
Potential, "An Air Force study of Air Force
Organizational Ability to Exploit and Manage Computer
Technology", 1970 [USAF70].

• A. Asch, D. W. Kelliher, J. P. Locher III, and T.
Connors, "DOD Weapon Systems Software Acquisition and
Management Study", MITRE Corporation, May 1975.
CMitr75].

• U. S. Office of Management and Budget, "President's
Federal ADP Reorganization Study Reports," 1978 [OMB78].

• Booz, Allen and Hamilton, U.S.A.F. Acquisition
Improvement Project Reports, 1981 [BoozBl].

1• A Single DoD Programming Language (Ada)

In the early seventies, the U. S. Department of Defense began
laying the foundation for a single high order computer language
for new DoD embedded computer systems. It was clear that even
DoD could not continue supporting as many as 400 different com-
puter languages and dialects. The projected software development
and maintenance costs had become astronomical. In 1975, DoD
initiated the U. S. Department of Defense Common High Order
Language program (which later produced the Ada language). The
preliminary design for the Ada language was completed in 1979,
and 16 Ada compilers had been validated by 1984. At present,
there are no approved Ada dialects. Further, there are no plans
for future approval of dialects for Ada.

11-15

tjd

2. Software Engineering Approaches: APSE and STARS

With the Ada development under way, by 1980 DoD's attention
was directed toward solving the next part of the problem, the Ada
Programming Support Environment (APSE). The "Stoneman" document
CBuxt80] included this summary in its description of requirements
for Ada programming support environments:

It was_recognized from the beginning that the
major benefits to DoD from a common language would
be economic and would derive from Ada's appropri-
ateness to military operations, from the port-
ability that comes with a machine independent
language, from the availability of software
resulting from acceptance of the language for
nonmilitary applications, and most importantly from
the use of Ada as a mechanism for introducing and
distributing effective software development and
support environments to those developing and
evolving military systems. [Buxt80]

The progress of this massive and complex effort can be seen in
other key statements issued since that time:

• "Final Report of the Software Acquisition and
Development Working Group", July, 1980 [DoD80].

• "Report of the DOD Joint Service Task Force on
Software Problems," July 30, 1982 [DoD82]

• "Software Technology for Adaptable, Reliable Systems
(STARS) Joint Task Force Report," 15 March 1983 [DoD83a]

• "Department of Defense Computer Technology: A Report
to Congress", August 1983 [DoD83b]

• "Plan of Action and Milestones for Definition and Pre-
liminary Design of a Joint Services Software Engineering
Environment (JSSEE)", January 1984 [DoD84a]

3. Implementing Standard Environments

The rest of this report analyzes the issue of combining the
power of the standard Ada language with that of a standard
programming support environment, designed to improve adaptability
and reliability of DoD software. The report defines a "HAPSE,"
and suggests an adaptive model for the technology transition.

11-16

^

E. BARRIERS TO SUCCESSFUL TRANSITION

In this section we mention some of the special conditions
faced by DoD and its components in this large scale standardiza-
tion effort. The effects of various proposals for overcoming
these conditions are to be determined using in the econometric
model discussed in chapter 4. Three barriers with special
relevance for the GFE/ Environment strategy are:

1. Present DoD and Service organizational settings, which
are designed to optimize organizational interests rather than
successful development and operation of mission-critical systems.
Development efforts for these systems are thus characterized by
fragmentation of systems development work among many organiza-
tions, each having its own unique incentives and reward system
[OMB78, DoD80, Werl83]:

2. Staff assignments. Governed by Service needs for staff
development that are only weakly related to success of mission-
critical systems, staff assignments are typically of shorter
duration than the life cycles of systems containing software.
[Luttwak, Edward N., The Pentagon and the Art of War, 1984, New
York, Institute for Contemporary Studies/Simon and Schuster, esp.
pp. 89-91, 166-182, and 218-219; and OMB78].

3. Responsibility for systems is shifted among organiza-
tions on many occasions during the typical system's life cycle-
Each shift has wrenching effects, often accompanied by delays and
changes in requirements. Glowing exceptions have included such
programs as the Lockheed "Skunk Works" which developed the U-2
and SR-71. Other examples include the Navy's Polaris program,
and Adm. Rickover's mission-oriented Navy, in which respons-
ibility was maintained in one organization throughout develop-
ment, during deployment, and in post-deployment enhancement and
maintenance.

These are among the issues discussed in Chapter 4, "Pros and
Cons", and Chapter 5, "Planning for Implementation".

11-17

a

REFERENCES CITED IN CHAPTER TWO

Arth83 Arthur, Lowell Jay. Programmer Productivity; Myths,
Methods and Murphology. New York: John Wiley, 1983.

Bars84 Barstow, David R., Shrobe, Howard E., and Sandewall,
Erik. Interactive Programming Environments. New York:
McGraw-Hill, 1984.

Basi84 Basili, V. R. and Perricone, B. T. "Software Errors and
Complexity: An Empirical Investigation." Communications
of the ACM, Vol. 27, No. 1, Jan 1984, pp. 43-52.

Boeh81 Boehm, Barry W. Software Engineering Economics.
Englewood Cliffs: Prentice-Hall, 1981.

Boeh84 , et. al. "A Software Development Environ-
ment for Improving Software Productivity." Computer.
June 1984, pp. 30-42.

B0028I Booz, Allen and Hamilton, Inc. "Final Report: Defense
Acquisition Study." Washington, D.C., 1981. This is
the official document describing the USAF "Acquisition
Improvement Project" headed by Col. Don Sawyer.

Bran81 Branstad, Martha A., and Adrion, W. Richards, (Eds.).
"NBS Programming Environment Workshop Report." National
Bureau of Standards, NBS Special Publication 500-78,
June 1981.

Bray83 Bray, G. "Implementation Implications of Ada Generics."
ACM Ada Letters, Vol. Ill, No. 2, Sept/Oct 1983.

Broo75 Brooks, Frederick P., Jr. The Mythical Man-Month:
Essays on Software Engineering. Reading Massachusetts:
Addison-Wesley Publishing Company, 1975.

Buxt80 Buxton, J. "Requirements for Ada Programming Support
Environment: STONEMAN." U. S. Department of Defense,
Washington, D.C., February 1980.

Buxt85 . "Keynote Address", Proceedings of the ACM
AdaTEC "Future Ada Environment Workshop," Santa Barbara,
California, 17-20 Sept. 1984. Reprinted in Ada Letters,
Vol. IV, Number 5, March, April 1985, pp. IV.5-40/44.

Buzz85 Buzzard, G. D., and Mudge, T. N. "Object-Based
Computing and the Ada Programming Language." Computer,
March 1985, pp. 11-19.

11-18

i3

Cast84 Castor, Virginia L., et. al. "Evaluation and Validation
(E & V) Team Public Report, Vol. I, Interim Technical
Report for Period 1 October 1983 - 30 September 1984."
AFWAL TR 85-1016. Wright-Patterson AFB, Ohio,
45433-6543.

Data84 "Annual Survey of Commercial Software Packages."
Datamation, December 1983, esp. pp. 106-114 and 128-134.

DoD80 Software Acquisition and Development Working Group.
"Final Report of the Software Acquisition and
Development Working Group." (Chairman, Mr. Victor E.
Jones), July 1980.

DoD82 "Report of the DOD Joint Service Task Force on Software
Problems." July 30, 1982.

DoD83a "Software Technology for Adaptable, Reliable Systems
(STARS) Joint Task Force Report." 15 March 1983.

DoD83b "Department of Defense Computer Technology: A Report
to Congress." August 1983.

DoD84 "Plan of Action and Milestones for Definition and Pre-
liminary Design of a Joint Services Software Engineering
Environment (JSSEE)." January 1984.

Elec85 Wolfe, Alexander. "Critical Mass Builds for Ada",
Electronics Week, January 14, 1985, pp. 18-19.

FIPS99 "Guideline: A Framework for the Evaluation and
Comparison of Software Development Tools." FTPS PUB 99.
National Bureau of Standards, March 1983.

Fox82 Joseph M. Fox. Software and Its Development.
Englewood Cliffs: Prentice-Hall, 1982.

Free82 Freeman, P., and Wasserman, A. I. "Software Development
Methodologies and Ada." Ada Joint Program Office,
November 1982.

GA081 U. S. General Accounting Office. Federal Agencies'
Maintenance of Computer Programs; Expensive and Under-
managed. AFMD-81-25. February 26, 1981.

GAOSla . Non-Federal Computer Acquisition Practices
Provide Useful Information for Streamlining Federal
Methods. AFMD-81-104. October 2, 1981.

GA083 Greater Emphasis On Testing Needed to Make
Computer Software More Reliable And Less Costly. GAO/
IMTEC-84-2. October 27, 1983.

11-19

^

HechSl Hecht, H. Final Report: A survey of software tools
U3age' National Bureau of Standards. SpecTaT-Publica-
tion 500-82, November 1981, p. 53.

Hech82 Hecht, H., and Houghton, R. "The Current Status of
Software Tool Usage." Proceedings of COMPSAC 82,
November 1982.

Hech82a Hecht, H. The Introduction of Software Tools. NBS
Special Publicaton 500-91, September 1982, p. 35.

Houg82a Houghton, Raymond C, Jr. "Software Development Tools."
NBS Special Publication 500-88. March 1982. See esp.
Appendix A, Tools by General Classification. Data
in this data base are maintained by RADC (but not
according to the NBS taxonomy of software functions).

Houg82b . "A Taxonomy of Tool Features for the Ada
Programming Support Environment (APSE)." National
Bureau of Standards. NBSIR 82-2625, December 1982.

Houg83 __. "Software Development Tools: A Profile."
Computer. May 1983, pp. 63-70.

Hou584 • "Comparing Software Development Method-
ologies for Ada: A Study Plan." National Bureau
of Standards. NBSIR 84-2827.

HunkSl Hunke, Horst, ed. Software Engineering Environments
North-Holland, 1981"; —'

Ichb84 Ichbiah, J. "Ada: Past, Present, Future." Interview,
in Communications of the ACM. Vol. 27, Number 10,
October 1984, pp. 991-997.

IDA84a Redwine, Samuel T., Jr., Becker, Louise Giovane, Marmor-
Squires, Ann B., Martin, R. J., Nash, Sarah H., and
Riddle, William E. DoD Related Software Technology
Requirements, Practices, and Prospects for the Future.
IDA Paper P-1788. Washington: Institute for Defense'
Analyses. June 1984.

IDA84b DeMillo, Richard A, Marmor-Squires, Ann B., Redwine,
Samuel T., Jr., and Riddle, William E. Software
Engineering Environments for Mission Critical Appli-
cations — STARS Alternative Programmatic Approaches,
IDA Paper P-1789. Washington: Institute for Defense
Analyses. August 1984.

11-20

f'

JLC84 Joint Logistics Commanders' Workshop. "Final Report of
the Joint Logistics Commanders' Workshop on Post
Deployment Software Support (PDSS) for Mission-Critical
Computer Software, Vol. I - Executive Summary." June
1984.

Kern84 Kernighan, Brian W. and Pike, Rob. The UNIX Programming
Environment. Englewood Cliffs, N. J .: Prentice-Hall.
1984.

Klum85 Klumpp, A. R. "Space Station Flight Software: HAL/S or
Ada." Computer. March 1985, pp. 20-28.

Ledg82 Ledgrad, M. F., and Singer, A. "Scaling Down Ada."
Communications of the ACM. Vol. 25, Number 2, February
1982, pp. 121-125.

Lutt84 Luttwak, Edward N. The Pentagon and the Art of War.
New York: Institute for Contemporary Studies/Simon
and Schuster. 1984. See esp. pp. 89-91, 166-182, and
218-219.

Mart83 Martin, Roger J., and Osborne, Wilma M. "Guideline on
Software Maintenance." National Bureau of Standards.
NBS Special Publication 500-106. December 1983.

MatsSl Matsumoto, Y., et. al. "SWB System: A Software Fact-
ory." In Software Engineering Environments. H. Hunke,
Editor. Amsterdam: North-Holland. 1981.

Mitr75 Asch, A., Kelliher, D. W., Locher, J. P., Ill, and
Connors, T. "DOD Weapon Systems Software Acquisition
and Management Study." Washington: MITRE Corporation.
May 1975.

Myer85 Myers, W. "An Assessment of the Competitiveness of the
United States Software Industry." Computer. March,
1985, pp. 81-92.

OMB78 U. S. President's Reorganization Project, Federal Data
Processing Reorganization Study. Ten separate reports
were issued; the "National Security Team Report" was
directly relevant to this subject.

Pari84 Parikh, Girish. Programmer Productivity: Achieving an
Urgent Priority. Reston, Virginia: Reston Publishing
Company. 1984.

Phis79 Phister, Montgomery, Jr., Data Processing Technology and
Economics. 2nd ed. Santa Monica, Calif.: Digital
Press. r979.

11-21

•y<-

Silv85

Skel82

Stuc83

StUG84

Silverman, Barry G. "Software Cost and Productivity
Improvements: An Analogical View." Computer. May
1985, pp. 86-96. c

Skelly, P. G. "The ACM Position on Standardization of
the Ada Language." Communications of the ACM, Vol. 25,
Number 2, February 1982, pp. 118-120.

Stucki, L. G. "What about CAD/CAM for software? The
ARGUS concept." IEEE order no. 83CH1919-0. July 1983.

Stuebing, H. G. "A Software Engineering Environment
(SEE) for Weapon System Software." IEEE Transactions on
■JH^jg?6 Enqineerinc'- Vo1- SE-10, No. 4, July 1984, pp.

Taj84

USAF70

USAF76

USAF83

Tajima, Denji, and Matsubara, Tomoo. "Inside the
Japanese Software Industry." Computer. March 1984,
pp. 34-43.

USAF Select Committee on Computer Technology Potential.
"An Air Force study of Air Force Organizational Ability
to Exploit and Manage Computer Technology." 1970.

USAF Regulation 300-10, December 1976. Section 4,
Policy, specified that "an Air Force standard high
order programming language will be exmployed in all
future Air Force systems [4.h]. These were designated
as standard high order programming languages: (1) COBOL-
(2) FORTRAN [ANSI X3.9-1966]; (3) JOVIAL (J3) [MIL-STD-
1588 (USAF)]; (4) JOVIAL (J73/I) CMIL-STD-1589 (USAF)];
and (5) PL/I [ANSI X3.53-1976].

USAF Scientific Advisory Board, "Report of the USAF
Scientific Advisory Board Ad Hoc Committee on The High
Cost and Risk of Mission-Critical Software." December
1983.

USAF85

WassSl

USAF, AF Regulation 700-9, Vol. I, Attachment 4, 15
March 1985. Section A, 2-4.b specified that certain
Air Force standard programming languages will be used
They are: (a) Ada [ANSI/MIL-STD-1815]; (b) COBOL [ANSI
X3.23-1974]; (c) FORTRAN [ANSI X3.9-1978, and DOD
supplement MIL-STD-1753]; and (d) JOVIAL (J73) [MIL-STD-
1589, JOVIAL (J73) (USAF)].

Wasserman, Anthony I. (ed.). Tutorial: Software Devel-
opment Environments. New York: Institute of Electrical
and Electronics Engineers, Inc. IEEE Order No. EHO
187-5), 1981.

11-22

i/

Werl83

Wien84

Wild83

Zelk84

Werling, p.
Reality:

R.

Act],
of Sout
1983.

. ^ternative Models of Organizational
,he ga3e of Public_Law 89-306 ?the Brooks

her;A^?irertati0n submitted to the University
hern California School of Public Administration

S^L^S^1"1'"""-" IEE"
pp. 376-383^ *

Impli-
• Transactions

Vol. SE-10, No. 4, July 84,

Liters W*VoI l'^"1™31 "ost f^ the KAPSE." ACM Ada etters.- Vo1- II1' No. 2, Sept/Oct 1983. "

Wino79 Winograd, T. "Beyond Programming Languages." in
Communxcatxons^f^the^ACM. 22:7 (July 1I7I), pp?

Zelkowitz, Marvin V
:tices

pp. 57-65. "■ ' ■- - •■ " ' and • /.^n. "■^c^te';"91"8^1"9 June 1984,

11-23

ulf

CHAPTER 3

WHAT WOULD A HAPSE LOOK LIKE?
— RESEARCH RESULTS

A. INTRODUCTION

In this chapter we describe the Hypothetical Ada Programming
Support Environment (HAPSE) which we defined in this research
project. We also present the intermediate results of this work:
(1) we first identified the principle technical elements of a
single integrated Ada-based software support environment: then,
(2) verified that it is now technically feasible to integrate
them into a "HAPSE".

The chapter contains five sections. In B, we refresh our
memory of the goals and objectives for which the GFE/HAPSE was
proposed. In C, Software Tool Technology, we describe the
functions served by software tools required during the various
phases of the complete MCCR life cycle. We focus on tool
functions, using the taxonomy of FIPS 99. This simplifies the
task of comprehending the significance of hundreds of individual
software tools now available.

In section D, Environments, we identify four discrete types
of software support environments (each containing several separ-
ate software tools) and indicate the type environment that is now
most suitable for a HAPSE. In section E we describe how we
selected and prioritized the tool capabilities to be included in
the HAPSE. Finally, in section F we describe Environment
Technology and the HAPSE itself.

B. GOALS AND OBJECTIVES

The driving force for this work is the compelling need for
control of total life cycle cost for systems in which software is
embedded.

The major targets of research with respect to a single
integrated automated environment were improvements in: (1) pro-
ductivity of the work force required to develop and support
mission-critical software: (2) reliability of the software
produced (and, where appropriate of the system fn which the
software is embedded): and (3) maintainability of the software
produced across the entire operational life cycle. ~—

In this document the terms "productivity", "reliability", and
"maintainability" are used in conventional engineering senses.

III-l

1/1

For example, the term "productivity" is defined as "unit output"
divided by "unit input", or "output/input". The output is
delivered source instructions (DSI) of quality software produced.
The input is taken as employee work-months (W-M) required to
produce that output. The resulting measure, defined as
"productivity" and useful for planning and budgeting, is:

Delivered source instructions or DSI
work-month w-M

Improvements in productivity can take the form of shorter
development times, fewer resource inputs, or of improved product
reliability and quality levels produced with the same resource
inputs- The integrated automated programming support environment
is considered as a vital tool for reaching all three targets.

C. SOFTWARE TOOL TECHNOLOGY

In terms of the technology of software tools, there is no
tool gap. We found that ample software tools exist. The sample
of tools listed in Table 3^1 (drawn from NBS Special Publication
500-88) have features that are applicable and useful for every
stage of the software life cycle. Figure 3-1 shows the distri-
bution of these tool functions across the software life cycle.

1. Existing tools cover the entire software life cycle

Today it is possible to use existing tools for initial de-
velopment and post-deployment support through the complete life
cycle. In terms of the HAPSE, this means that today it is
feasible technically to build a HAPSE that will support DoD
software throughout the full life cycle.

We do not mean that today's tools, which are written in many
different languages, for different computers, and with many
different command languages, can be integrated easily. Later in
this report (in sections E and F, and in chapter 4) we address
technology for integrating the tools needed for a
GFE/Environment.

III-2

TABLE 3-1

A SAMPLE OF SOFTWARE TOOLS AVAILABLE

54 Requirements/Design Specification and Analysis Tools,

ADF
AUTOIDEFO
COBOL/SP
DARTS
FAME
ISDS
MEDL-D
PBASIC
PIDGIN-FASP
SARA
SCOPE
SIGS
SRIMP
TRANSFOR

AFFIRM
CADSAT
CONFIGURATOR
DATA DESIGNER
FOSTRA
LOGICFLOW
MSL
PDL
PSL/PSA
SCG
SDDL
SPECLE/DARS
STAG/TEMS
XAS8

ARTS
CARA
CRISPFLOW
DECA
IORL
MED-SYS
MTR
PDS
RA
SCG/DOM
SDL
SREM
STRUCTURE (,

AUTO-DBO
CBLSHORT
CS4
DQM
IPDS
MEDL-R
NETWORK PLANNER
PERCAM
RTT
SCHEMACODE
SDP/MAYDA
SREP
SYDIM

13 Software Modeling and Simulation Tools

BEST/1 (TM)
DPAD
SALSIM

AISIM ASRP
DAS DDRP
SIMULAMEDL-P POD
SDVS

CRYSTAL (TM)
HARDWARE
SCERT

36 Program Construction and Generation Tools

ADA-ATOM
COGENT
FOCUS
JOCIT
METRAN
QUIKCODE
SCOBOL (TM)
SMMA
SURGE 72
YACC

ADA COMPILER
COPE (TM)
GRAFMAKER
MAGLE
MODULE ORDERER
RATCODER
SFORT-1
SRTRAN.BASELINE
SYSTEM-80

CHILL TRANS
CSPP
IFTRAN (TM)
MARK IV (TM)
PERLUETTE
RATFOR
SFTRAN3
STRUC1/STRUC2
TAB40

COBOL/SPP
DI-3000
INFORM
MEFIA
PROGRAM GENERAT
S-FORTRAN
SMAL/80
STRUCTURIZER
UCSD P-SYSTEM

SOURCE: National Bureau of Standards Special Publication 500-88,
1982. Listings shown are from Appendix A. Tool Abstracts for
all tools listed are given in Appendix N.

III-3

~\

TABLE 3-1, continued

12 Software Support Systerc/Pronr.mming Environm^ Togla

ADA ENVIR'T
FASP
SEP

ARGUS/MICRO
LILITH
SOFTOOL 80 (TM)

ASSET
MSEF
TOOLPACK

126 Source Program Analysis and Testing Tools

ADS
ATA-SAI
AUDITOR
CASEGEN
CCS
COBOL/DV
COBOL OPTIMIZ
COMSCAN
CQD
EAVS
EVP
FAST
FORTRAN TRACING
FTN ANALYZER
GOTO-ANALYZER
ITB
JOVIAL/J3SC
MENTOR
NUMBER
PACE
PREP HDR GEN
REFLECT II
RISOS TOOLS
SAP/H
SARA-IV
SSA
SUBCRS
SYMCRS
TATTLE
TEVERE-1
TIMER
UCA

AMPIC
ATDG
BSC
CAVS
CENSUS
COBOL STRUCT
COBOL TESTING
CORE
DAVE
ECA AUTOMATION
EXPEDITER
FAVS
FORTRAN TESTING
FTNXREF
HAWKEYE (TM)
JAVS
JOVIAL/VS
MONITOR
OPTIMUS
PACE-C
PROGLOOK
REFORM
RXVP80 (TM)
SARA-U
SCAN/370
STAT ENT & EVAL
SURVAYOR
SYSTEM MONITOR
TCAT
TEA
TPT
XPEDITER

ASSIST-I
ATTEST
CA
CCA
CGJA
COBOL TRACING
COBOL/CP
COTUNE II
DRIVER
EFFIGY
FACES
FCA
FORTRAN OPTIMIZ
GENTESTS
INSTRU
JIGSAW
JOYCE
NASA-VATS
OPTIMIZER II
PET
RADC/FCA
REFTRAN (TM)
SADAT
SARA-H
SELECT
STRUCTURING ENG
SUS
SYSXREF
TDEM
THE ENGINE
TRAILBLAZER

COBOL/ADE
PWB FOR VAX/VMS
VIRTUAL OS

ATA-FASP
AUDIT
CADA
CCREF
CICS DUMP ANALY
COBOL/QDM
COMMAP
CPA-ADR
DYNA
ENFORCE
FADEBUG-I
FORAN
FTN-77 ANALYZER
GENTEXTS
INTERFACE DOCUM
JOVIAL TCA
LOGIC
NODAL
OSCYBR
PPE
REALIGNMENT SYS
PEL MEAS MODEL
SAP
SARA-III
SPTRAN
STRUCT
SYDOC
TAFIRM
TEST PREDICTOR
TIMECS
TSA/PPE

SPLS':E"£~S«'--"."^

III-4

S-x

TABLE 3-1, concluded.

116 Software Management, Control, and Maintenance Tool.g

ABS
ALIAS
AUTDOC
AUTOMATIC DOC
BUDGET VS ACT
CHECKSUM
COMLIST/TRW
COMSTAR
CROREF
DATAMACS
DICTANL/LOCA
DOCU/TEXT
DOCUMENTOR
ESAP
FORMAN
GADTR AID
INFORM/REFORM
JSDD
LIBRARIAN
LOOK
N5500
PAC II
PFS
PROG COMP ANAL
QCRT
SDP
SMT
SPECTRUM-1
TAPS/AM

ACT/1
ASA-PMS
AUTOCOM
AUTORETEST
CADMUS
CONDIM
COMLIST
CONFIG
CTC
DCD
DIFFS (TM)
DOCUMENTER
DOSSIER
FLOBOL
FORREF
GIM/GIM II
INSERT
LANG INSTRUCTOR
LIBREF
MEDL-X
N-SQUARED
PDS FLOW
PMCS
PRONET
QUICK-DRAW
SLIB
SNOOP
SPELL
TDBCOMP

ADS/CERL
ASC
AUTOFLOW/TRW
BLKGEN-BDD
CALLREF
COMGEN
COMPARE
CPA
CUE
DECKBOY COMPAR
DIRCOM
DOCUMENTER A
DPNDCY
FLODIA
FORTREF
GIRAFF
ISUS
LAYOUT
LOGIFLOW
MEMORY MNG LIB
NUMBER/DEC
PDSS
PMS IV
PSL
REFER
SLIM
SPC
SPREAD
TIDY

AFS
ASEQ
AUTOFLOW(TM)*
BLKGEN/SPECPN
CAPTURE/MVS(TM)
COMGEN/TRW
COMSORT
CPAL
DA
DEPCHT
DOCGEN
DOCUMENT
EASYTROL
FLOWGEN
FTNCODER
HARP
JET
LEXICON
LOGOS
MPS
ONLINE ASSIST
PFORT
PPP
QCM
RENAME
SMS
SPEAR
SPRINT
TOOLS DATABASE

f2ooCE: .Nat.ional Bureau of Standards Special Publication 500-88,
1982 Listings shown are from Appendix A. Tool Abstracts for
ail tools listed are given in Appendix N.

III-5

<U

NUMBER OF
SOFTWARE
TOOLS

-£>

"l

i SOFTWARE
ACTIVITY COHPREHENO

"Pfff-SOFTWAflt"
DEVEIOPMENT

ANALYZE
SOfTWARE
REQUIREMENTS

PERFORU
PRELiMINAHY
DESIGN

PERFOW
DETAILED
DESIGN

CODE AM)
TESTS/W
UMTS

CSC
MTEGAATE
AM)TEST

CSQLEVaTEST
FOR ADEQUATE SA»
PERFOMIANCE

TEST FOB *SM¥x:.
PBVOmANCEOF
TQTAL SYSTEM'

OPERATION
&

MAINTENANCE
LONG TERM

PRODUCT; '■■
IMPROVEMENT:

DEPLOYMENT
AND SUPPORT

and CONTINUING
PRODUCT DEVELOPMENT

SOURCES. NBS Special Publication 500-88, Apps A-J
J.M. Fox, Software and lt» Development: Final Report of the Joint Logistics Commanders' Workshop on
Post Deployment Software Support IPOSS! for Mission-Critical Computer Software, Vol. I, June 1984. p.
1-3: Report of the USAF Scientific Advisory Board ad hoc Committee on the High Cost and Risk of Mission-
Critical Software: and Dr. Richard WerNng. Technion International.

Figure 3-1. Distribution of Sample Tools across Life Cycle.

^

Table 3-1 listed software tools, and Figure 3-1 showed the
distribution of these tool functions across the software life
cycle. In contrast, Figure 3-2 identifies some specific tool
capabilities along with the life cycle phase in which they are
most used. Table 3-2 gives definitions of tool capabilities
indicated in Figure 3-2.

III-7

r>'

SOFTWARE
TOOLS

MULTIPURPOSE
THROUGHOUT

LIFE CYCLE
DATA BASE FILE MANAGER: TEXT EDITOR; PRETTY PRINTER; FILE COMPARE; MAILBOX

H
I

00

REQUIREMENTS
LANGUAGE

REQUIREHENTS
TRACING .

SOFTWARE te^,,
ACTIVITY KVELOfHOn

DESIGN
SUPPORT

V

PREPROCESSOR
COMPILER/ASSEMBLER
LINKER/LOADER
CONTROL FLOW ANALYZER
REPORT GENERATOR

EXECUTION MONITOR
INTERFACE SIMULATOR
SOURCE DEBUG
TEST CASE GENERATOR
ENVIRONMENT SIMULATOR

ANALYZE
SOFTWARE
REQUIREMENTS

PERFORM
PflELUHNARV
DESIGN

GLOBAL CROSS-
REFERENCE

CALL STRUCTURE
ANALYZER

TIMING/
PERFORMANCE

CONFIGURATION MANAGEMENT
STANDARDS AUDITOR
MIUSPEC GENERATOR
DOCUMENTATION TEMPLATES
INTERFACE DOCUMENTER

REQUIREMENTS TRACING
FAULT REPORT
STANDARDS AUDITOR
PROJECT CONTROL
CONFIGURATION MANAGEMENT

PERFORM
DETAILED
DESIGN

inunacni SIMULA lun ■ ,

nDCDATirtu L^

CODE AND
TESTS/W
UMTS

CSC
INTEGRATE
AM) TEST

CSO L£¥EL TEST
FORAOEQUATES/W
PBTOMiANCE

OPERATION
&

MAINTENANCE

TEST FOR :x
PERFOmiANCE OF
TOTAL SYSTEM'

x LONG TERM
PRODUCT

IMPROVEMENT

DEPLOYMENT
AND SUPPORT

and CONTINUING
PRODUCT DEVELOPMENT

SOURCES: J.M. Fox. Softwara and Its Development; Final Report of the Joint Logistics Commanders' Workshop on
Post Deployment Software Support IPDSS) for Mission-Critical Computer Software. Vol. I. June 1964, p.
1-3: Report of the USAF Scientific Advisory Board ad hoc Committee on the High Cost and Risk of Mission-
Critical Software: and Dr. Richard Werling. Technion International.

Figure 3-2. Software Tool Capabilities, by Life Cycle Phase.

P!K

TABLE 3-2

DEFINITIONS OF SOFTWARE TOOLS

Requirements Phase

Requirements Language

Requirements Tracing

A formal language, which may be graphical
and/or textual in nature. A requirements
analyzer can check the requirements as
expressed in the requirements language,
for syntactical errors in the require-
ments specifications and then produce a
useful analysis of the relationships
between system inputs, outputs, pro-
cesses, and data. Logical inconsis-
tencies or ambiguities in the specifica-
tions can also be identified by the
requirements analyzer.

Requirements tracing provides a means of
verifying that the software of a system
addresses each major requirement of that
system and that the testing of the soft-
ware produces adequate and appropriate
responses to those requirements.

Design Phase

Design Support Software tools for design support aid in
the synthesis, analysis, modeling, or
documentation of a software design.
Examples include simulators, analytic
aids, design representation processors,
and documentation generators.

Development Phase

Preprocessor A computer program that preprocesses
source code, part of which may be
unacceptable to another program, to
generate equivalent code that is
acceptable to the program. An example is
a preprocessor which converts structured
FORTRAN to ANSI-standard FORTRAN.

III-9

:-i

Ada Translator

Ada Interpreter

Ada Compiler/
Assembler

Linker/Loader

TABLE 3-2, continued

A program that transforms a sequence of
Ada language statements into object code.

A program (which may be software, hard-
ware, or "firmware") that translates and
executes each Ada source language state-
ment of a computer program before trans-
lating and executing the next statement.

A computer program used to translate from
Ada language or assembler language state-
ments into machine executable form (ob-
ject code).

A computer program used to create one
load module from one or more independent
modules by resolving cross-references
among the modules, and reads the load
module into main storage prior to its
execution.

Control Flow
Analyzer

Report Generator

Execution Monitor

Interface Simulator

A computer program that analyzes the flow
of control through another computer pro-
gram.

A computer program that generates com-
puter instructions for extracting data
from a data base and preparing reports
from the data. The program prepares
computer code, using instructions from a
few descriptive statements, rather than
from source language statements.

A program that monitors execution of
another program, instruction by instruc-
tion, as the program runs.

A device or computer program that repre-
sents certain features of a hardware,
software, or data base with which a
system or system component must
interface.

111-10

Source Debugger

TABLE 3-2, continued

Interactive test aids, which are used in
the process of locating, analyzing, and
correcting suspected faults in computer
programs. Debuggers are used to assist
in identifying and isolating program
errors. Tools allow the user to:

• suspend program execution at any point
to examine program status,

• interactively dump the values of
selected variables and memory locations

• modify the computation state of an exe-
cuting program,

• trace the control flow of an executing
program.

Test Phase

Test Case Generator

Environment
Simulator

Test Tools

Global Cross-
reference
generator

A software tool that accepts as input a
computer program and test criteria, and
generates test input data that meet the
criteria. A fully automated test genera-
tor may also determine the results of
running the test data.

A device or computer program that repre-
sents certain features of the environment
in which a computer system will function
(e.g., temperature, vibration, atmospher-
ic pressure, g-loads, etc.).

Computer programs used in the process of
exercising or evaluating a system or
system component to verify that it sat-
isfies specified requirements or to
identify differences between expected and
actual results.

Computer programs which produce lists of
data names and labels showing all of
the places they are used in a program.

111-11

51

Call Structure
Analyzer

Statement Coverage
Analyzer

Performance
Evaluation Tools

Timer/Performance
Analyzer

TABLE 3-2, continued

Computer program which analyzes control
structure of programs. Analyzes process
by which one program invokes another,
passes parameters to it, and receives
results back. Analyzer helps detect some
types of improper subprogram usage and
violation of control flow standards.
Also identifies control branches and
paths used by test coverage analyzers.

Special case of test coverage. Test
coverage analyzers monitor the execution
of a program during program testing in
order to measure the completeness of a
set of program tests. Completeness is
measured in terms of the branches,
statements or other elementary program
constructs which are used during the exe-
cution of the program over the tests.

Computer programs that aid in technical
assessment of a system or system compo-
nent to determine how effectively the
operating objectives have been achieved.

A software tool that estimates or meas-
ures the execution time of a computer
program or portions of a computer program
either by summing the execution times of
the instructions in each path, or by
inserting probes at specific points in
the program and measuring the execution
time between probes.

Management Function

Configuration
Management

The process of identifying and defining
the configuration items in a system, con-
trolling the release and change of these
items throughout the system life cycle,
recording and reporting the status of
configuration items and change requests,
and verifying the completeness and cor-
rectness of configuration items.

111-12

^

TABLE 3-2, continued

Standards Auditor

Data Dictionary

MIL/SPEC Generator

A computer program used to examine source
code, which automatically determines
whether prescribed programming standards
and practices have been followed.

A collection of the names of . all data
items used in a software system, together
with relevant properties of those items:
for example, length of data item,
representation, etc. Useful as a stan-
dardization tool.

A computer program that verifies a pro-
gram's compliance with specified MIL/
SPECS.

Library Management

Project Control

Documentation
Management

Documentation
Template

Management of a software library, i.e.,
a controlled collection of software and
related documentation designed to aid in
software development, use, or mainte-
nance. Types include software develop-
ment library, master library, production
library, program library, and software
depository.

Control of project to ensure completion
of specified product on schedule and
within budget.

Management and control of technical data
or information, including computer list-
ings and printouts, in human-readable
form, that describe or specify the design
or details, explain the capabilities, or
provide operating instructions for using
the software to obtain desired results
from a software system.

A pattern used to simplify and speed
the preparation of documentation; data
entry may be limited to "filling in the
blanks".

111-13

Interface
Documentor

Data Base File
Manager

Documentation

TABLE 3-2, concluded

A computer program that helps document
and describe characteristics of the hard-
ware, software, or data base elements
with which the system or system component
must interface.

A computer program that facilitates
storage and retrieval of sets of data
fundamental to a system.

Text Editor

Editor, Syntax-
Directed

Graphics Generator

Text Formatter

Typesetter

Speller

On-Line Help

Menus

A computer program that permits selective
revision of computer-stored data.

Interactive text editor, adapted to a
specific programming language so that it
verifies correctness of syntax required
by that language as the programmer writes
his instructions.

Computer program that generates graphic
representations from instructions pro-
vided by operator.

Program which takes text material and
modifies it into prespecified format.

Program which takes written material and
prepares instruction code for use by
typesetting equipment.

Program which checks spelling of words in
text, to verify correctness.

Explanations or instructions, which the
programmer can call up with a keystroke,
and which then appear on the screen for
study. May include explanations, remind-
ers, and suggestions appropriate to the
function for which help is requested.

Lists of options available to programmer,
which appear on the screen. Programmer
makes selection from the options listed.

111-14

4^

2. Analysis using Tool Taxonomy of PIPS 99

In concluding that it is feasible today to build a HAPSE that

99: Houg82a; Houg82b]. The NBS taxonomy describes software tools
in terms of four tool functions;

• transformation;

• static analysis:

• dynamic analysis: and

• project management.

Each of the four functions is shown on a separate chart, (Figures
fZl * i LWiih sPeciflc features identified. For example, Fig-
ure 3-4, "Tool Technology-Static Analysis", is subdivided L
show these features of software tools: Auditing: Comparison-
Measures of Completeness: Completeness Checking: Consistency
Checking: Cross-Reference Checking: Data Flow Analysis: Error
Checking: Interface Analysis: Scanning: Statistical Analysis^
Structure Checking; Type Analysis; Units Analysis; and Input/
Output Specification Analysis.

ac
Across the top of figures 3-3 to 3-6 we show ten life cycle

tivities. These activities are:

- SYSTEM Management Management of Defense System
(which contains software components)

- SYSTEM Requirements Determine requirements for
defense system

- SOFTWARE Requirements Determine requirements for
software in defense system

- Software Design Allocate functions to software
modules, develop strategies
for coding and testing

- Code and Compile Write, compile, and debug
Software Modules individual modules

- Test Software Modules Test Modules separately
before integration

111-15

^

- Software Integration, Test software modules
Software System Test together

- Post-deployment Longest phase of system
Evolutionary life; Operational
Enhancement use and enhancement

- Documentation To aid in operational use
and subsequent enhancement
[This placement of Document-
ation is for convenience
only. It should not be taken
as implying that documentation
is delayed until the end of
the development cycle],

- Software To control software as it
Configuration changes during its many
Management successive versions

Tool Technology-"Transformation". Software tools take text
and data, then transform them in some way. Transformation tool
functions change text, code, or data from one form to another.
The left column of Figure 3-3 shows the most important of these
transformations. Some sort of tool function is needed in every
one of the life-cycle activities. In Figure 3-3, for example,
the most common transformations, editing and formatting, occur in
nearly every activity in the life cycle. Transformation tools
are used most in the four activities of software design; code and
compile: software integration and systems test: and post-deploy-
ment continuing development.

Tool Technology-"Static Analysis". Static Analysis tools are
used to audit, compare, and check for completeness, consistency,
and accuracy. They are needed for verifying program structure,
data flow and interfaces. These tools are indispensable aids in
analyzing code, requirements languages, design languages, and
other fixed formats such as graphics. Their outputs are error
reports, diagnostics, and other forms of documentation.

The Figure shows 15 functions of software tools. They are
applied most often in the activities involving system management,
determination of requirements, software design, code and compile,
and in post-deployment continuing development.

Tool Technology-"Dynamic Analysis". Figure 3-5 shows dynamic
analysis tools, which are used to analyze the behavior of spec-
ification languages and program code during and after execution.
As system requirements and software technology have become more
complex, these tools have become absolutely indispensable.
Figure 3-5 includes the tools of greatest value to programmers
and those assuring quality of the resulting software.

111-16

M

H
H
H
I

"~^~^^^ LIFE CYXLE

^"^\^ ACTIVITIES

TOOi FUNCTION ^^^-^^^

SYSTEM
MANAGEMENT

REQUIREMENTS

SOFTWARE
DESIGN

CODE AND
COMPILE

TEST MODULES

SOFTWARE
INTEGRATION
AND SYSTEMS

TFST

POST
DEPLOYMENT
CONTINUING

DEVELOPMENT

DOCUMENTATION

SOFTWARE
CONFIGURATION
MANAGEMENT

SYSTEM SOFTWARE

TRANSFORMATION • • • • • • • • •
EDITING • • • • • • •
FORMATTING • • • • • • •
INSTRUMENTATION • •
OPTIMIZATION •
RESTRUCTURING • •
TRANSLATION • • •

ASSEMBLY • • •
COMPILATION • • •
MACRO EXAMINE •
STRUCTURE PREPARING •

SYNTHESIS • •

SOURCEl TECHHION INTERMATION«L, IHC.

Figure 3-3. Tool Technology — "Transformation"

M
M
M
I
M
00

. ^^^ LIFE CVCLE

^"^^^ ACTIVITIES

TOOL FUNCTION ^^^.^

SYSTEM
MANAGEMENT

REQUIREMENTS

SOFTWARE
DESIGN

CODE AND
COMPILE

TEST MODULES

SOFTWARE
INTEGRATION

AND SYSTEMS
TEST

POST

DEPLOYMENT
CONTINUING

DEVELOPMENT

DOCUMENTATION
SOFTWARE

CONFIGURATION
MANAGEMENT SYSTEM SOFTWARE

STATIC ANALYSIS

AUDITING

•
•

•
•

•
•

•
•

•
COMPARISON

COMPLETE MEAS

COMPLETENESS CHKING

CONSISTENCY CHK

•

•
•

•

•
•

• •
 —

CROSS REFERENCE

DATA FLOW ANALYSIS

ERROR CHECKING

• •

INTERFACE ANALYSIS _
SCANNING

STATISTICAL ANALYSIS

STRUCTURE CHECKING

TYPE ANALYSIS

• •

UNITS ANALYSIS

I/O SPEC ANALYSIS • •

SOURCE) TECHNION INTERNATIONAL, IMC.

Figure 3-4. Tool Technology — "Static Analysis'

M
M
M
I
M

"^~-^^^ LIFE CYCLE

^~^^^^^ ACTIVITIEB

TOOL FUNCTION ^^""^^

SYSTEM
MANAGEMENT

REQUIREMENTS

SOFTWARE
DESIGN

CODE AND
COMPILE TEST MODULES

SOFTWARE
INTEGRATION
AND SYSTEMS

TEST

POST
DEPLOYMENT

CONTINUING
DEVELOPMENT

DOCUMENTATION
SOFTWARE

CONFIGURATION
MANAGEMENT SYSTEM SOFTWARE

DYNAMIC ANALYSIS # £
ASSERTION CHECKING

CONSTRAINT EVALUATION

COVERAGE ANALYSIS

•
•

•
•
•

•
•
•

•

RESOURCE UTILIZATION

SIMULATION • • •

• •

SYMBOLIC EXECUTION • • • •
TIMING

TRACING

BREAKPOINT CONTROL

•
•

,
•
•

DATA FLOW TIMING

PATH FOW TIMING

TUNING

REGRESSION TESTING

•
•
•
•

•
•
•
• •

SOURCE! TECHNION INTERNATIONAL, INC.

Figure 3-5. Tool Technology - "Dynamic Analysis"

M
M
M
I

^^^^^ LIFE CYCLE
^~^^^^ ACTIVITIES

TOOl FUNCTION ^^--^^

SYSTEM
MANAGEMENT

REQUIREMENTS

SOFTWARE
DESIGN

CODE AND
COMPILE

TEST MODULES

SOFTWARE
INTEGRATION
AND SYSTEMS

TEST

POST
DEPLOYMENT
CONTINUING

DEVELOPMENT

DOCUMENTATION

SOFTWARE
CONFIGURATION
MANAGEMENT SYSTEM SOFTWARE

MANAGEMENT • « •
CONFIGURATION CONTROL •
INFORMATION MANAGEMENT •

DATA DICTIONARY •
DOCUMENTATION MGT •
FILE MOT •
TEST DATA MGT •

PROJECT MGT •
COST ESTIMATION

RESOURCE ESTIMATION

SCHEDULING

TRACKING • • • • • • • •

BOURCEl TECHN10N INTERNATIONAL, INC.

Figure 3-6. Tool Technology -- "Management"

£

Tool Technoloqy-"Manaqement". The tools in Figure 3-6 aid
various levels of management in managing and controlling software
projects in development and post-deployment support. They
include tools for managing quality and consistency, as well as
tools for managing costs and schedules. For example, they
include the customary cost estimating, scheduling and tracking
tools. This category also includes tools used for configuration
management, documentation management, and data dictionaries.

3. Tool Functions Found in Typical Environments

Figure 3-6A shows tool capabilities found in four existing
environments, as well as those planned for the DoD APSE. High-
lights of the display are:

• None of the five environments has tools for the
software integration and systems test phase (usual-
ly done with simulation, and instrumented hardware/
software "test beds"), or for software configura-
tion management.

• The Boeing "ARGUS" and TRW "SPS" environments have
capabilities in all but software integration and systems
test phases. We note that one could argue that SPS (and
even ARGUS) supports these phases.

• The UNIX environment is well supplied with tools
for the programming ("code and compile"), documen-
tation, and continuing development phases.

• The ALS and DoD APSE plan for capabilities in each
life cycle phase in which the ARGUS and SPS systems now
have capability.

4. Prioritizing Tool Capabilities

How can we use the information presented in such detail in
figures 3-3 to 3-6? A survey of software professionals [Houg82a,
appendix] helped to assign priorities for the important software
tool capabilities. The respondents ranked tool functions accor-
ding to four priorities: minimal; required; important; and
useful. These responses, which we used in defining the HAPSE,
are indicated in Table 3-3, "Priorities for Tool Capabilities."

111-21

ol
ZZ-III

^3

C
h
(0

I

5

c
z X

S
M
5

CD
O

z
B
>
X s c n

> r o
0 o
>

r>"l i
ac /

30 / «=' /
S /

a Ac "/IS
/\\

• • • CONFIGURATION MANAGEMENT 1 >
• •

•

PROJECT CONTROL
FAULT REPORT
STANDARDS AUDITOR

5"

ii
2
H

• GRAPHICS GENERATOR

• REQUIREMENTS LANGUAGE 0
■< H
H
m
£

X

c c 1
• REQUIREMENTS TRACING

W)

f
m

z
(0

• • DESIGN SUPPORT
H

if
• • • • • COMPILER; ASSEMBLER ^ D • • • • • LINKER/LOADER

• • REPORT GENERATOR
• • • PREPROCESSOR GENERATOR PS • CONDITIONAL COMPILATION

CONTROL FLOW ANALYZER

m o

• STATEMENT EXECUTION MONITOR H
• INTERFACE SIMULATOR M

• • • SOURCE DEBUG s
0 FORMAL VERIFICATION SYSTEM

TEST CASE GENERATOR
INSTRUCTION LEVEL SIMULATOR
ENVIRONMENT SIMULATOR en

• ■IHULATION

INSTRUHENTED TEBT BED

S
O

F
T

W
A

R
E

IN

T
E

G
R

A
T

IO
N

A

N
D
 S

Y
S

T
E

M
S

T

E
S

T

• • GLOBAL CROSS REFERENCE
DISASSEMBLER <r O m

•
•

•
CALL STRUCTURE ANALYZER
TIMING/PERFORMANCE ANALYSIS
OPTIMIZATION/TUNING ANALYSIS
REUSABLE CODE LIBRARY

P
O

S
T

'L

O
Y

M
E

N
T

N

T
'N

U
IN

G

E
L

O
P

M
E

N
T

• MIL SPEC GENERATOR
a
O

• • • WORD PROCESSING 6
• TYPESETTER S
• TEXT PRIMITIVES 2
• • SPELLER

DOCUMENTATION TEMPLATES
INTERFACE DOCUMENTS

>
5
z

• ADA LIBRARY REUSABLE CODE
> 2 in
2 I O
> o 3

APPLICATION VERSION CONTROL
LIBRARY
DATA DICTIONARY £ c i
SPECIFICATION MANAGEMENT ill

• • • • DATA BASE FILE MANAGER
S c

• • • • EDITOR H H
• PRETTY PRINTER It • • FILE COMPARE

• • MAIL BOX o
IT

TABLE 3-3

Priorities for Tool Capabilities

Required Important Useful Tool Features Minimal

Transformation X
Formatting X
Optimization
Compilation X
Instrumentation
Editing X

Syntax direction

Input-Output
On-line Assistance
Error Assistance
On-Line Tutor
Definition Assistance
Menu Assistance

Static Analysis
Type Analysis
Interface Analysis
Statistical Profiling
Cross-Reference
Auditing

X
X
X

X
X
X

X

X

Completeness Checking X
Reference Analysis X

Dynamic Analysis X
Timing Analysis X
Tuning Analysis X
Tracing/Debugging X
Regression Testing X
Assertion Checking X
Coverage Analysis X

Management X
Configuration Control X
Information Management X
Ada Library Management X
Specification Management X
Data Dictionary Management X
Ada Package Management X
Test Management X

Project Management X
Cost Estimation X
Scheduling X
Tracking X

tssnj!x^ssrfmrK^"'k T"xonomv ^ TOO> F"tu'-,o'th- A-- *-"•"•»•"•
111-23

7

D. FOUR TYPES OF ENVIRONMENTS

In the previous section, we focused on software tool
technology, using the taxonomy of FIPS Publication 99. This
taxonomy is useful for undertanding the wide variety of functions
that software tools must satisfy in the software life cycle.

1. Descriptions of Environments.

We now report on our survey of programming support environ-
ments. We found that contemporary environments can be
categorized into four definite types. We begin by defining the
four types and providing examples of environments that fit into
each type.

a. "PROGRAMMING" environments support the programming and
testing phases of the software life cycle. They usually support
only one programming language. Examples include: ALS [Army's
Ada language system]; Arcturus: and Smalltalk [Technion Inter-
national] .

b. "FRAMING" environments concentrate on the earliest tasks
in developing defense systems and software, the activities of
systems definition and software definition that occur before
programming can begin. Framing environments usually support only
one specific methodology. Examples of these include Riddle's
DREAM [RiddSl] and Wasserman's USE [Wass83]. Framing environ-
ments are typically used by research organizations and, for the
most part, have not migrated out of these organizations.

c. "GENERAL" environments support all phases of the
software life cycle. They sometimes include specific software
tools for some life cycle activities. They usually support more
than one programming language and do not require users to follow
one specific methodology. They tend to include a "toolbox" from
which users can choose a software tool to support specific
activities. Examples include: TRW's Software Productivity
System (SPS) [Boeh84], Boeing's ARGUS [Stuc83], UNIX, and the
French "Platine" system [HunkSl].

d. "METHODOLOGY-SPECIFIC" life cycle environments. This
type of environment would provide the greatest control, in terms
of conformity to a prescribed methodology for development and
support of software throughout the life cycle. Such environments
would be designed around, and dependent on, a specific method-
ology for developing and supporting software. No environment of
this type exists beyond the conceptual stage. In their "Method-
man I" report. Freeman and Wasserman surveyed 24 software devel-
opment methodologies. They found that six of the 24 support the
entire life cycle, but found no methodologies that have automated
support for the entire life cycle [Free82]. This situation
remains true in early 1985. The AJPO's "Methodman" work, still

111-24

7^

in the conceptual stage, is one effort directed toward defining a
methodology that could lead to development of a "METHODOLOGY-
SPECIFIC" life cycle environment.

2. "General" Environment Design is Required

0nly "General" environments are within the current [1985]
state of the art to support the entire software life cycle.
While a substantial amount of development is in process, we
believe it is improbable that a methodology-specific environment
can be developed sufficiently to be produced in quantity and
supplied as GFE by 1992. We conclude, therefore, that the HAPSE
must be a "General" environment. This means that, as in the
past, we will need to rely on management controls and military
standards to insure conformance to whatever software
development/support methodology is being used.

E TOOL FUNCTIONS

We concluded in section D that the GFE/Environment must be a
"General" type environment, because only "General" environments
are within the state of the art. In this section, we look at the
specific tool functions that are to be integrated into the
GFE/Environment.

1. Tool functions for GFE/HAPSE

What tools should be integrated in the GFE/Environment to
support software throughout the life cycle? We looked first at
the most important environments that exist today.

Figure 3-7 shows the tool selection in each of six contemp-
orary environments. Each of the six includes a different
combination of software tools. The environments are:

AIE Ada Integrated Environment

APS Full DoD APSE

ALS Army's Ada Language System

UNX UNIX

ARG Stucki's ARGUS (Boeing)

SPS TRW's Software Productivity System

The figure shows 23 types of software functions supported in one
or more of the six environments. An "X" indicates a function
supported by a specific software tool within the environment.
Shaded functions represent the minimum needed for the complete
life cycle.

111-25

7^

AIE APS ALS UNX ARG SPS

Requirements
- Requirements Tracing X
- Requirements Language

Design
- Design Support X

Implementation
- Compiler/Assembler X X X
- Linker/Loader X X

Checkout
- Statement Coverage Analyzer X X
- Debugger X X
- Cross-Reference X X
- Call Structure Analyzer X X
- Timer/Performance Analyzer X X

Management
• Configuration Manager X
- Library Management X X
- Project Control X
- Standards Auditor X

Documentation
- Graphics Generator
- MIL/SPEC Generator X
- Text Formatter X
- Typesetter
- Speller
- Editor X X

User Interface
- On-line Help X X
- Menus
- On-line Documentation

W

x
X
X

X
X

x
X
X

■m

M
X
X
X

X
X
X

X
X

n
X
X
X

X
X

%<

X
X
X

X
X
X

Figure 3-7. Types of Tools Included
in an Environment Vary Significantly,

111-26

r

2. Minimal tool functions required

The four groups of shaded tools indicate the minimum tools
necessary to support software development. The minimal groups of
software tools, shaded on the figure, are:

Compiler/Assembler;
Linker/Loader

Text Formatter

Editor

Definitions of these and other Software
Capabilities are given in Table 3-2.

Functions and Tool

3. Tool capabilities for subsequent HAPSE versions

The survey of software professionals (Table 3-3) helped to
assign priorities for the important software tool capabilities
[Houg82a3. These priorities, which we used in defining the
HAPSE, are indicated in Figure 3-8. Tool capabilities are added
systematically in evolutionary developments of the HAPSE. HAPSE
versions II to V, as discussed in chapter IV, contain the the
four minimal tools plus the following tool capabilities.

TOOL CAPABILITY

Requirements Tracing
Debugger
Cross-reference analyzer
Call structure analyzer
Configuration management
Standards auditor
On-line help

Design support
Statement Coverage Analyzer
Timer/Performance Analyzer
Project control
Syntax-directed editor
Menus

Requirements language
Graphics generator
MIL/SPEC generator
Typesetter
On-line documentation

Locked security controls

HAPSE II HAPSE III HAPSE IV

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X

HAPSE V

X
X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X

111-27

y b

Prioritization*

Tool Capabilities Minmal Required Important Useful

Requirements
Requirements Tracing
Requirements Language

Design
Design Support

Implementation
Compiler/Assembler
Linker/Loader I

Checkout
Statement Coverage Analyzer
Debugger
Cross-Referenca
Call Structure Analyzer
Timer/Performance Analyzer

Management
Configuration Management
Library Management
Project Control
Standards Auditor

Documentation
Graphics Generator
MIL/SPEC Generator
Text Formatter Jf
Typesetter
Speller
Editor X

-syntax-directed

User Interface
On-Line Help
Menus
On-Line Documentaion

X
X
X

b
b

•Priorities based on comments received from reveiwers of NBSIR-2626.
©Item not covered in NBSIR-262B: estimate supplied by Tochnion International.
bltem not covered in NBSIR-2626; estimate of future usefulness to DoD supplied by Technion International.

Figure 3-8. Priorities for Tool Capabilities.

111-28

7*

F. ENVIRONMENT TECHNOLOGY

In order to provide an Ada-based Environment as GFE in the
near future, the HAPSE must have four characteristics. It must:

1« Be portable, to different projects, hardware, and
organizations. Otherwise, HAPSE could not be expected
to be successful as GFE.

2 Support the entire system/software life cycle.

3. Be based on proven technology, so that all tools can be
integrated in HAPSE within seven years. There is time
for development, but not for new basic research.

4- Provide for common interfaces, to accommodate expansion
of functions and addition of software tools that have
not yet been developed. For example, tools incorpo-
rating "expert systems" or "artificial intelligence"
techniques, though not likely to be perfected within
seven years, are now being discussed.

We concluded that the constraints of time and cost mean that
the HAPSE must be built "on top of" an existing environment. We
found that others have reached the same conclusion:

1. Today's production environments are built "on top of"
existing environments. For example, Stucki's ARGUS
and TRWs SPS are built on top of a UNIX operating
system. The French "Platine" is built on top of the VAX
VMS operating system [HunkSl].

2. Many research environments are built on UNIX. Examples-
Wasserman's USE, Riddle's Joseph, and TOOLPACK [HunkSl]!

3. Programming environments are built "on top of"
lower-level environments. For example, the ALS
environment is built on top of the VAX/VMS or KAPSE.

111-29

-7/

1. Requirements for the Existing ("Underlying") Operating System

Some capabilities must be provided to the HAPSE by the
underlying operating system, the system on top of which the HAPSE
will be built. These capabilities include:

1. Database-Building Capability — to track documentation,
programs, and different versions of software.

2. Ada Interpreter — for debugging.

3. Editor Generator ("Syntax-Directed", or "Orientable"
Editor) ^ for Ada code and DoD-specific documentation.

4. File System -- for security and library handling.

5. Government Ownership -- to minimize the constraints of
time and cost for developing and building the HAPSE.

As indicated above, many operating systems are capable of
supplying these capabilities. UNIX and the VAX VMS are particu-
larly popular at this time. The UNIX software is of special
interest because, along with more than one hundred low level
software tools, it is in the public domain.

2. Overlying Requirements for the HAPSE

The requirements that must be visible to programmers are
those shown in Table 3-3 and Figure 3-8, Priorities for Tool
Capabilities." They are summarized in Figures 9A and 9B, using
the FIPS 99 taxonomy used in section B.

3. Defining the GFE/HAPSE

In this section we bring together into one definition the
material described in prior sections. Following the logic
described earlier in this chapter, we defined the GFE/HAPSE to
have the features and the priorities shown in Figures 3-9A and
3-9B. To minimize resource requirements for the HAPSE, we
defined it as being built on top of the UNIX operating system
(with immediate access to the many public domain software tools
in the UNIX environment).

111-30
%

REQUIRED IMPORTANT USEFUL
DYNAMIC ANALYSIS X — —

TIMING ANALYSIS —. X _

TUNING ANALYSIS — X _

TRACING/DEBUGGING X —

REGRESSION TESTING —. X

ASSERTION CHECKING mmm — X
COVERAGE ANALYSIS X -

TRANSFORMATION X ^^^

FORMATTING X mm.

OPTIMIZATION X .mm __
COMPILATION ^_ X ,

INSTRUMENTATION ^_ X _

EDITING X — __

SYNTAX DIRECTION m^m X _

INPUT/OUTPUT X — -
ON-LINE ASSISTANCE X — -

COMMAND ASSISTANCE X — -
ERROR ASSISTANCE X — -
ON-LINE TUTOR _ x
DEFINITION ASSISTANCE _ x
MENU ASSISTANCE X _

Figure 3-9A. Overlying Requirements for HAPSE

111-31

REQUIRED IMPORTANT USEFUL

MANAGEMENT X — —

CONFIGURATION CTRL X — —

INFORMATION MGT X — —

ADA LIBRARY MGT X — —

SPECIFICATION MGT — X —

DATA DICTIONARY MGT — X —

ADA PACKAGE MGT — — X
TEST MGT — X —

PROJECT MGT — X —
COST ESTIMATION — X —

SCHEDULING — X —

TRACKING — X -

STATIC ANALYSIS X ^^ _

TYPE ANALYSIS X _ —

INTERFACE ANALYSIS X — —
STATISTICAL PROFILING _ X

CROSS REFERENCE X — -

AUDITING X -
COMPLEXITY MEASUREMENT _ X

COMPLETENESS CHECKING _ X

CONSISTENCY CHECKING . X
STRUCTURE CHECKING X
REFERENCE ANALYSIS x

Figure 3-9B. Overlying Requirements for HAPSE

111-32

MAPS
the
We b
emph
need
for
lang
adva

The various interfaces are shown in Figure 3-10, "UNIX as a
E". Programmers and others using the HAPSE would see only
HAPSE and its software development and support capabilities.
elieve that this is important, to attain the DoD objective of
asizing use of the standard Ada language. The GFE/HAPSE may
to be designed so that users cannot defeat the requirement

exclusive use of the Ada language by programming in the "C"
uage rather than in Ada. This topic is one of several
ntages and disadvantages discussed in the next section.

<

Users

(User laterface)

HAPSl

Satisfies the 'Stoneman'

model for an APSE

•(UNmnterfacef^

UNIX (MAPSE)

\
(Procedure Calls)

UNIX Primitives (KAPSE)

((Machine Interface)

Machine

Figure 3-10. UNIX as a MAPSE.

Figure 3-10 shows the host computer (the "bare machine") as
the lowest level. Interface with the machine is provided by the
UNIX "primitives" ("write", "read to device", "interrupt signal",
etc.) functioning as a Kernel APSE ("KAPSE") at the next level
The next interface, from KAPSE to Minimal Ada Programming Support
Environment ("MAPSE"), is made by procedure calls. Above this
point, users see only the HAPSE and the Ada language. The HAPSE
interface with the UNIX MAPSE, though written in "C" (the UNIX
language), is hidden from users.

111-33

■<l

4. Advantages and Disadvantages of UNIX as a MAPSE

Technion researchers identified several advantages to using
the approach described above, as well as some disadvantages.
Both sets of factors must be reviewed by concerned USAF staff.

Advantages. The principle advantages of using UNIX as the
MAPSE are the low risk and low requirements for resources and
time. More than 100 UNIX low level software tools are estab-
lished and in the public domain [Kern84]. The UNIX file system
can be used to meet the HAPSE underlying requirements for
database capabilities. These and other important advantages are
highlighted below:

• UNIX "primitives" are small in number. This makes UNIX
portable, and would make the HAPSE portable.

• UNIX tools are large in number (over 100). These tools
can be used as building blocks for the HAPSE, reducing
development costs by a significant amount.

• UNIX interface. The UNIX "shell" is a programmable
command language. It features directed input and out-
put. These features make it possible to use tools as
"objects", in the same manner as a programmer uses
"variables". The result is a powerful tool for the
expert UNIX-user, but a tool that is terse and
"unfriendly".

• UNIX File System is an advantage. UNIX files are
defined as character strings. The file system itself is
hierarchical. These characteristics make it possible to
use the UNIX file system as an underlying database for
the HAPSE. The database is important for storing and
keeping track of the different products (and versions)
produced.

• Low Risk, because it has been done before. TRWs "SPS"
is the best example, since it functions in a true
production role.

111-34

S3

Disadvantages. The disadvantages of using UNIX are high-
lighted below.They stem from the same characteristics that make
UNIX advantageous for a GFE/HAPSE. UNIX is widely known, with
many users. Its strengths include use of "shell programming."
These features become disadvantages when considered in the light
of requirements for security.

• UNIX has poor security. However, it may be possible to
overcome this by blocking access to the UNIX shell.

• UNIX is primarily supported by programs written in the
"C" language, and "C" is not "Ada". This characteristic
may be acceptable for early versions of the HAPSE, use-
ful for prototypes. If required, the underlying en-
vironment could be reprogrammed in Ada for later HAPSE
versions.

• Performance will be slower than UNIX, since the over-
lying environment (HAPSE) will require additional
"processing overhead." However, the performance penalty
may not be significant: only minor performance degrada-
tion has been reported in the ARGUS and TRW "SPS"
systems built this way. Also, all of the UNIX features
may not be needed for the HAPSE; eliminating some
features might reduce the performance penalty.

• Size may not be adequate immediately for use on very
large system projects. The size range of projects
supported by UNIX has traditionally been small to
medium.

In Chapter IV we present a feasible schedule for implementa-
tion of the HAPSE. The schedule was designed with the above
advantages and disadvantages in mind, and allows time for review
of requirements that may be impacted by them.

111-35

CHAPTER FOUR

PROS AND CONS OF FURNISHING A STANDARD ENVIRONMENT AS GFE

In this chapter, we work with the HAPSE as defined in chapter
3, and identify the "pros" and "cons" of developing a standard
environment to be provided as GFE. We describe the research done
on Task 3 of this contract. In Task 1, we identified what an
integrated automated software development/support environment
would consist of. In Task 2 we identified the tools and methods
now available, looked at what tools need to be developed, and
defined the HAPSE. Results of Tasks 1 and 2 were described in
chapter 3.

Chapter 4 has three sections. In section A we describe
arguments for and against imposing the HAPSE as a standard GFE
environment for contractors to use in developing mission-critical
software.

Section B presents a plan for developing a GFE/HAPSE, using a
conventional development acquisition strategy. Finally, in sec-
tion C we discuss a primitive econometric model required to
compare the costs and benefits of implementing alternative en-
vironments. This is required because of the complex socio-tech-
nical situations in which the GFE/HAPSE will be used. it is
simply not possible to quantify — at least accurately enough to
make a $100 million decision -- without such a model.

A. PROS AND CONS

In this section, we summarize the arguments for and against a
USAF decision to provide a standard environment to contractors as
GFE.

1. Pro-HAPSE Arguments

a. The HAPSE will help the Air Force obtain large savings
in its developments of new software. Our estimate (dis-
cussed in chapter 5) is that potential savings of 66
percent can be obtained on new software and 82 percent
"?o^ai?tena?Ce of existing software. (See Figure 5-1,
HAPSE tools to enhance life-cycle productivity").

b. The HAPSE will increase the reliability and maintain-
ability of the software it produces because of the
standards that it will contain and enforce.

IV-1

sH

c. The HAPSE will provide continuing savings, resulting
from standardization of data and "reusable software
fragments. "

d. The HAPSE will improve the Air Force's ability to manage
its development and support projects, by providing
increased visibility of work as it is performed.

e. The HAPSE will provide a vehicle for increasing produc-
tivity for development and support of software systems.
This could result in quicker response to changed re-
quirements and reduced costs for the same levels of
software quality.

Arguments Against

a. The visible cost to the Government of developing, build-
ing, and constantly upgrading the HAPSE. This is really
more a matter of obtaining congressional commitments for
keeping the HAPSE at the state of the art level over a
period of ten or 15 years. Past experience indicates
that the Federal government's computer hardware and
software become obsolete rapidly, in part because of
congressional reluctance to continue funding at required
levels over an extended period [OMB78: BoozSlr Werl83].

b. If the environment's productivity lags behind the state
of the art available from contractors by more than a
year or so -- at the annual productivity increase rate
of 20 percent — much of the benefit of the HAPSE will
be negated.

c. The many points, highlighted in Figures 4-2 and 4-3, at
which unforeseen costs can be expected.

d. Contractors' policies for bidding on development proj-
ects may change if they believe they cannot count on
exclusive maintenance contracts for systems they
develop.

e. The lengthy duration of development, if the "conven-
tional" acquisition strategy is followed. As shown in
the next section, the basic HAPSE (HAPSE I) would
require 54 months after contract startup to be available
for release as GFE. HAPSE II, III, IV, and V — each
adding more tool capabilities -- would be developed in
parallel and would follow at intervals of six to nine
months. HAPSE V, with locked security controls and the
complete set of HAPSE tool capabilities, would be ready
for use as GFE in about 93 months (nearly eight years)
after contract startup.

IV-2

tf

B. PLAN FOR DEVELOPING AND IMPLEMENTING A GFE/ENVIRONMENT

This section describes the process and suggests a timetable
for developing and implementing a HAPSE, using an evolutionary
approach and a conventional acquisition and development strategy
The plan involves the activities shown in Figure 4-1 and
summarized in Table 4-1. Each of these activities is discussed
briefly in this section.

1. Evolutionary development of HAPSE in five versions

The plan is evolutionary, with five successively more capable
releases of the HAPSE. They have the following characteristics:

HAPSE I UNIX plus Minimal tool capabilities

HAPSE II HAPSE I, plus "Required" tool capabilities

HAPSE III HAPSE II, plus "Important" tool capabilities

HAPSE IV HAPSE III, plus "Useful" tool capabilities

HAPSE V HAPSE IV, plus locked security controls

Figure 4-1 shows the development plan and approximate schedule
for all five versions.

2. Development schedule

Work on phase I (boxes 1.1, 1.2, and 1.3), would be completed
at about 12 months after contract startup. Development of HAPSE
I would be begun at that time. The work of Phase II (boxes 2.1,
2.2, 2.3, and 2.4) would be conducted in parallel with the
development of HAPSE I. with this "head start", HAPSE I would
be ready for limited release (Beta test, box 5.1) in 30 months
u ! c°ntract startup. After evaluation and update (box 6.1) in

about 40 months, HAPSE I would be ready for general release as
GFE (box 7.1) in 54 months.

After completion of Phase II work (boxes 2.3 and 2.4) at
about 30 months after startup, the development of HAPSE II could
be started (box 3.2) at about 39 months after contract startup.

HAPSE II, integrating the "Required" tool capabilities, would
be in Beta test (box 5.2) at 60 months, and ready for general
release as GFE (box 7.2) at about 72 months.

HAPSE III, integrating with HAPSE I and HAPSE II the "Im-
portant" tool capabilities, would start (box 3.3) at 54 months,

(Lx 7 ^V?*11 ^u 5'3) at 66 months' and ready for release VDOX /.jj at 78 months.

IV-3

"t h

<
I

HAPSE II

ASSUMES:
120.000 tnstns
60 Work-Years

J L
12 It 24 30 39 S4 60 M 72 7t

TIME CCumuXA-felw nantti«.>

•7

CO

Figure 4-1. HAPSE Implementation Schedule
(Cumulative Months After Startup)

• *

Similarly, HAPSE IV, integrating the "Useful" tool
capabilities, would start (box 3.4) at 60 months, be in Beta test
(box 5.4) at 72 months, and ready for release (box 7.4) at 87
months after contract startup.

Most important for highly secure applications, HAPSE V, which
would add locked security controls for all tool capabilities of
HAPSE IV, would start (box 3.5) at 66 months, be in Beta test at
78 months, and ready for release as GFE in about 96 months after
contract startup.

The development plan in Figure 4-1 involves seven life cycle
phases.

1. Phase I Analysis and Evaluation

1.1 Contractor analyzes HAPSE Requirements; gets up to
speed, resolves outstanding issues

1.2 Develop and evaluate prototype user interface: develop
several prototype user interfaces, evaluate them under
simulated use conditions, and modify as appropriate
using feedback from users.

1.3 Evaluate existing software tools; determine which
tools may be selected from the public domain UNIX tools,
which need enhancement to meet Ada requirements, and
which, if any, need to be developed.

2. Phase II Specification

2.1 Specify user interface; specify HAPSE-to-user
interface, based on results of 1.2.

2.2 Specify UNIX/HAPSE tool interface; Specify
HAPSE-to-UNIX interface.

2.3 Specify database interface; specify "underlying" UNIX
database.

2.4 Specify tool functions; specify tools required by
HAPSE.

3. Phase III. Development of HAPSE Release.

4. Phase IV. Integration and Testing

5. Phase V. Limited Release (Beta Test)

6. Phase VI. Feedback, evaluation, update

7. Phase VII. Release, Installation, Training, etc.

IV-5

'

Table 4-1. SUMMARY OF HAPSE DEVELOPMENT SCHEDULE
(Showing Fig 4-1 box number, and months after startup)

HAPSE Integra- Release
Version Development tion, Test Beta Test as GFE

Phase I, (1.2, 1.3)
Analysis
& Eval. 12 months

Phase II, (2.1-2.4)
Specifi-
cation 30 months

HAPSE I (3.1) (4.1) (5.1) (7.1)

18 months 24 mos 30 mos 54 months

HAPSE II (3.2)

39 mos

(4.2) (5.2) (7.2)

54 mos 60 mos 72 mos

HAPSE III (3.3)

54 mos

(4.3) (5.3) (7.3)

60 mos 66 mos 78 mos

HAPSE IV (3.4)

60 mos

(4.4) (5.4) (7.4)

66 mos 72 mos 87 mos

HAPSE V (3.5)

66 mos

(4.5) (5.5) (7.5)

72 mos 78 mos 93 mos

IV-6

rt

C. ECONOMETRIC MODEL

The work described in previous chapters has convinced us that
the USAF may benefit substantially (conceivably by as much as
$100 million annually by 1990, more in out years) if it changes
the existing policy of unique environments for each defense sys-
tem. Projected savings accrue from: (a) reduction in the number
of unique environments supported by the Air Force; (b) increases
in the productivity of staff who actually use the standard en-
vironment! arid Tel increased reliability and maintainability of
the software produced by the standard environment. Quantifying
benefits in a meaningful manner requires substantially more rigor
than is possible without a model that considers such non-quanti-
tative factors as control strategy and organizational structure.
Chapter 5, Planning for Implementation, discusses similar phenom-
ena from the viewpoint of optimal implementation.

1. More quantification needed

The econometric model described below is intended to compare
the effectiveness and benefit/cost performance of several stan-
dard Ada programming support environments ("environments").
These alternative environments, which may be imposed as GFE or
mandatory standards for mission-critical software-intensive pro-
jects, are part of a "Technology Push" program to improve per-
formance of mission-critical systems. The environments include,
but are not limited to, JSSEE (Joint Services Software Engi-
neering Environment), ALS (the Army Ada Language System), the WIS
(WWMCCS Information System environment being developed by GTE),
the HAPSE (Hypothetical Ada Programming Support Environment) de-
fined in chapter 3, and continuation of the present policy of
non-standard environments or BAU (Business as Usual).

The primitive econometric model discussed below uses both
minimum time and cost required to provide quantitative support
for the FY 1986 Air Force decision on software support environ-
ments. Work to be done using the model includes these activi-
ties:

a. Prepare and validate an econometric model for implemen-
ting an Ada-based software support environment in contractor
and DoD organizations. Quantitative portions (sub-model), to
be adapted from the existing foundation of the "COCOMO" cost
estimating model, will be augmented by non-quantitative sub-
models that describe organizational, control strategy, and
policy behavior. Most of this work will consist of searches
of public literature.

IV-7

yo

b. Assuming typical software development/support workloads,
estimate effects of alternative control strategies by exer-
cising the model with various "control strategies" and "con-
straints on successful implementation".

c. Assuming typical software development/support workloads,
estimate effects of providing a standard environment to con-
tractors, by exercising the model for differences in con-
tracting strategy and contractor motivations.

d. Based on a sensitivity analysis of the work above, se-
lect strategies and prepare cost/benefit tables for imple-
menting environments under varied conditions. Alternatives
will include specific combinations of organizational struc-
ture, control strategies, and projected effects of software
tools on productivity. To the extent possible, these tables
should be consistent with present accounting data. Accura-
cies should be estimated, using standard statistical inferen-
tial techniques.

2. Background

This work is an important part of the STARS [Software Tech-
nology for Adaptable, Reliable Systems] program. The STARS
initiative is a systematic response to the DoD/USAF business
management problems that stem from their massive investments in
mission-critical computer software. Much of the software inven-
tory is obsolete and nearly all of it is difficult and expensive
to support. One estimate puts the 1990 cost for Post-Deployment
Software Support at $5 to $7 billion annually by 1990 [JLC84] .

Figure 4-2 depicts the process proposed to develop a parame-
ter-driven econometric model that can provide quantitative data
to Air Force decision makers as they make the business decision
regarding use of a standard software support environment as GFE.
It is followed by several detailed sub-models (figures 4-2A to
4-2D) .

Our recommendation is supported by statistical analyses of
the COCOMO software project database. We focused our analysis on
those project factors that demonstrably improve productivity in
developing and maintaining software. In our statistical analysis
we used correlation, multiple regression, and the important
review of the cause-effect relationships involved. The results
of the correlation analysis are given below, while the
cause-effect relationships are discussed in chapter 5.

IV-8

<
I

PURPOSE/GOALS^
OF STANDARD
ENVIRONMENT

(^ Vyyyyy*
DEFINE : T

r'HAPSE" I
I
I
I

^^
^DEFINE CONTROL^
% STRATEGIES -^

FOR USE OF ^

I
I
x
v $: CONSTRAINTS ^
\$ ON

^ SUCCESSFUL :
^IMPLEMENTATION^

^TECHNICAL MODEL ^
OF ENVIRONMENT ^

USE

^■..« ^IMPLEMENTATION "T LIFE-CYCLE
: COSTS/BENEFITS

ENVIRONMENT

ACCOUNTING MODEL

ggr^gg^g?

v

Figure 4-2. Model of Environment Implementation

The work shown in Figure 4-2, which culminates in an econo-
metric model capable of comparing performance of alternative
environments, began with the "Purpose and Goals of a Standard
Environment", shown at the top left. Both this and the next
block, "Define HAPSE", have been completed in the current
project.

3. Non-Quantitative Parameters

Most important in terms of the model's credibility are the
two following blocks, "Define Control Strategies for Use of
Environments" and identify "Constraints on Successful Imple-
mentation". They translate non-quantitative factors (such as
different control strategies and constraints stemming from
different Services' policy choices) into inputs usable by the
succeeding three blocks. Figure 4-2A includes examples af
factors treated in these blocks. The resulting non-quantitative
parameters are input to the "Technical Model of Environment Use".

4. Quantitative Parameters

This block, the most complex and detailed of the entire
series shown in Figure 4-2, consists of "effort multipliers" and
equations derived from the "COCOMO" software cost estimating
program [BoehSl]. Its output is used by the two blocks below it:
they translate its parametric output (work-months and elapsed
time required for given software project parameters) into
resource requirements. Their output, expressed in accounting
terms, shows resource costs by category and year for the 20 years
of a weapon system's life based on the parameters developed in
the previous blocks. The relationship of these blocks is
detailed in Figure 4-2B. An example of the output is shown in

Figure 4-2C.

The diamond shaped decision processes shown at the top right
side of Figure 4-2 represent decisions to continue iterating
until an organizationally "optimal" [though not a rigorous mathe-
matical optimum] solution is reached. The example at the top
right of Figure 4-2B, and in Figure 4-2D, show the functions of
these blocks.

IV-10
I-5

z
OF STANDARD
ENVIRONMENT ^

vysyyA
; DEFINE :
"HAPSE";

Reduce Proliferation of Environments
Reduce Life-cycle Support Costs of Software
Reduce Training Costs by Standardization
Reduce Costs for Maintaining Many Environments

• Provide Environment That Is - and Will Remain - "State-of- Practice"
• Increase Productivity of Software Development/Support
• Facilitate Planning for PDSS Early in System Design Process

<
i

wyyyypyyyy^
^DEFINE CONTROL^

STRATEGIES
K^ FOR USE OF
$ ENVIRONMENTS ^

• Standardize on Environment
for Software DEVELOPMENT?

• Standardize on Environment for
POST-DEPLOYMENT SOFTWARE SUPPORT?

• Standardize on INTERFACES?
• Combinations of Above?
• None of Above?

STANDARD ENVIRONMENT

OPTION DEVELOPMENT PDSS COMMENTS

1 NO NO STATUS QUO
2 YES NO JOVIAL
3 NO YES N/A
4 YES YES CMS 2, ALS
S AVBL AVBL USE DICTATED

BY COST/BENEFIT
TO PROGRAM

^^

^ CONSTRAINTS ^

2
ON

SUCCESSFUL

g
^IMPLEMENTATION^

Sub-Optimization
Different Needs of R&D/Support Communities
MANY Different Languages Being Supported
Different Organization of Services
Organization Dynamics within DoD
Political Dynamics Affecting DoD
Technology Stagnation
Vendor Self-interest

Figure 4-2A. Detail of Non-Quantitative Parameters.

*-^

<
I

Exercise for Many Combinations
of Factors that Affect
Econometric Results

• Builds on "COCOMO"
• Source of Projections for Input to Cost Accounting Model
• Models Effects of Software TECHNOLOGY Parameters
• More than 15 Parameters, Derived from 63-Project Database
• Permits Modelling of Environment Effects
• Consider Reliability, Maintainability,

and Enhancement Effects

• Different Strategies in
Army, Navy, AF

• Cost of Implementing in
Different Organizations

• Benefits of Implementing
in Different Organizations

• Benefits of Use During
Software Life-Cycle

^TECHNICAL MODEL ^
^ OF ENVSRONMENT '

USE

•t-^^JW**

ini^
: . ' :.. jfe ^ LIFE-CYCLE ^4

ORGANIZATIONS .. ^OF IMPLEMENTING

ACCOUNTING MODEL

^ ENVIRONMENT ^

• Development Costs for Sample Projects
• PDSS Costs for Sample Projects
• Differences in Costs
• Gov't-Owned vs. Contractor-Owned

Figure 4-2B. Detail of Quantitative Parameter Treatment.

<
I

WORK-MONTHS OF EFFORT |
SOFTWARE
PRODUCT
CHARACT-
ERISTICS

[DEVELOPMENT PHASE POST-DEPLOYMENT SUPPORT PHASE

JSSEE ALS HAPSE
WIS
(GTE

PHOENIX)
JSSEE ALS HAPSE

WIS
(GTE

PHOENIX)

a

b

c ■

d

e

f

Figure 4-2C. EXAMPLE: Comparison of Model Output

<
I

PURPOSE/GOALS ^
OF STANDARD
ENVIRONMENT

• How Much Does the Strategy Reduce the NUMBER of DIFFERENT ENVIRONMENTS

• What Will Be the Net Savings for Support of MCCR Software
(After Additional Costs for HAPSE?)

• How Well Will Environment Maintain State-of-Practice Over Next Decade?

Needed?

-3

Figure 4-2D. Detail of Result Comparison

• *

• I

5. Model builds on "COCOMO" research

The proposed model could be completed in a few months, be-
cause the underlying development work needed for this effort has
already been done, much of it by Barry Boehm of TRW. In Boehm's
Software Engineering Economics, he describes the derivation and
presents equations that resulted from TRWs analysis of data from
63 "well managed" software development projects. Of these pro-
jects, 34 involved systems similar to those in mission-critical
systems for which the HAPSE will be used. Technion International
analyzed data for these 34 projects, using correlation, multiple
regression, and other statistical techniques. The dependent var-
iables (i.e., required work-months, task duration, and productiv-
ity) may be improved by optimizing the HAPSE design (for example,
by using particular software tools or programming practices).
The correlation coefficients between the dependent and indepen-
dent variables are tabulated in the Correlation Matrix shown in
Table 4-2.

Extension for Po3t-1979 History. It is necessary to add data
for projects completed since 1979, and data from the answers to
questions shown in figures 4-2A to 4-2D. The proposed work
builds on the equations and underlying research of the public-
domain "COCOMO" software estimating system. The "COCOMO" soft-
ware project database, which includes 63 projects completed
during the years 1964 to 1979, is a resource which provides con-
sistent descriptions for projects done during a 15-year period
characterized by rapid evolution in the practice of software
development. However, it does not include any software pro-
grammed in Ada (since no Ada compilers were available during the
time covered). The proposed work must add data on more recent
projects (from the NASA software engineering lab files, RADC, and
other sources), extend the existing COCOMO equations with this
data, and improve their credibility for the purposes of comparing
software environments. This task will permit us to project the
effects of: (a) Ada- language environments and programming; (b)
use of integrated automated software tools; and (c) use in
subsequent post- deployment software support (PDSS) life cvcle
activities. '

Validity of Approach. The proposed approach is feasible, as
demonstrated by the results obtained from our analysis of the
existing "COCOMO" project database. The significant results are
highlighted in Table 4-2, "Correlation Matrix". The left hand
column of that table shows the independent variables, available
for each project in the COCOMO software project database, which
exhibit statistically significant relationships with three de-
pendent variables of vital interest in this study. "Indepen-
dent variables can be manipulated to influence "dependent" vari-
ables, such as measures of programming output. The next three

IV-15

columns tabulate the "significance level" (i.e., the probability
of a true correlation, at the customary .01 and .05 levels) of
project variables with three output measures. The three depen-
dent output measures are:

- ACTUAL work-months required for a project

- Productivity (Average number of Delivered source
instructions per work-month required for the project

- ACTUAL duration of project, in months

The numbers shown identify relationships for which statist-
ically significant correlation coefficients were found. For ex-
ample, the entry ".01" shows that the odds against the relation-
ship occurring by chance alone are one out of 100. Similarly,
".05" shows odds of five out of 100. Thus we can infer that the
entries constitute genuine relationships that can credibly be
used in developing an econometric model. Results show highly
significant correlations (at better than the .01 level) between
programmer productivity [expressed as delivered source instruc-
tions per work-month] and: (a) time [year a project was com-
pleted]; (b) use of "modern programming practices"; and (c) three
characteristics (TIME, STOR, and DATA) of the ""virtual machine"
(the hardware and support software) that comprise the target com-
puter. Both "time" and "use of modern programming practices" can
be used to improve programming productivity. The "virtual ma-
chine" and "required reliability" are functions of the defense
system, however, and cannot be as directly influenced by the pro-
ductivity improvement effort.

Other significant correlations (at the .05 level) exist be-
tween programmer productivity and: (d) use of software tools";
(e) programmers' experience with the language used"; and (f) vol-
atility during the project of the "virtual machine" (hardware and
software) used as the target computer. Finally, the analysis
partially validates COCOMO's assumption of the multiplicative
effects of the effort multipliers [PI, or the product of 15
effort multipliers for the project]. The Correlation Matrix
shows significance levels for each of the "COCOMO" independent
variables analyzed. [BoehSl, table on pp. 495-7].

Productivity increase. The significant correlation of YEAR
with all three independent variables suggests exponential in-
creases in productivity of the processes of software development
and support during the years 1970-1979. During that decade, both
hardware vendors and the independent software industry supplied
programming support software packages, usually targeted toward
the highest volume hardware systems (such as IBM 360/370/30XX).

IV-16
<fl

Table 4-2. CORRELATION MATRIX
34 Selected COCOMO Embedded Software Projects

Project Variables
ITEM Definition

Delivered
ACTUAL Source Duration,
Work-Months Instructions ACTUAL Dev,
Reg'd perWork-Month Time,Months

YEAR 1970-1979

MODP Modern Programming
Practices Used

TIME Time Constraint of
target computer

STOR Main Storage Con-
straint of target
computer

DATA Database Size, rela-
tive to program in
target computer

TOOL Software Tools Used
LEXP Experience with

programming
language used

VIRT Volatility of "virtual
machine" used as
target computer

RELY Reliability required

CPLX Complexity of
project

RVOL Volatility of Req'ts
TURN Development

Computer
turnaround time

TYPE Computer used in
development (maxi
■ 3; mini= 1)

PCAP Programmer
capability

PI Product of the 15
Effort Multipliers
for the Project

PROJ Project Type (Control,
System, Scientific,
Human-machine inter-
action. Support)

LANG (Pascal,APL,PL/I;
Fortran; Jovial:
Machine Language)

.01

.05

nificance Level)

.01 .01

.01 .05

.01 _

01

,05

,01

.05

.05

.05

.05

.05

.05

.01

.05

.01

No correlations in sample data

No correlations in sample data

IV-17

l&o

During the time that they became more useful> programming produc-
tivity (in terms of delivered source instructions per work month)
increased at rates of more than 20 percent annually. (We do not
infer that this annual improvement was caused by software pack-
ages or programing environments alone. During these years,
enormous improvements occurred in acceptance of higher order
languages such as COBOL, in memory size, and displacement of
batch programming and test operations with interactive pro-
gramming techniques. Matsumoto et. al. reported a comparable
improvement — 14 percent annually — for the years 1976-1980 in
a Toshiba "soft- ware factory" that stressed reusability of code
[MatsSl].

Figure 4-3, "Programming Productivity Increases Exponential-
ly", demonstrates that productivity grew for both "small" and
"large" projects producing software of the sort embedded in
mission-critical weapon systems. Some of the technological
changes are indicated on the chart, in roughly the time periods
in which they became effective. The points on Figure 4-3 through
which the regression lines pass are:

Year 13 "Large" Projects 17 "Small" Projects

1970 31.6 DSI/WM 27.7 DSI/WM
1971 39.9 34.5
1972 50.3 42.9
1973 63.5 53.3
1974 80.5 66.3
1975 101.2 82.5
1976 127.7 102.7
1977 161.1 127.7
1978 203.3 158.9
1979 256.6 197.6

1980 323.8 (Projected) 245.9 (Projected)

1985 1039 (Projected) 734 (Projected)

1990 3328 (Projected) 2189 (Projected)

In summary, Technion's analysis has confirmed the steady
exponential improvement over time [variable, YEAR] as well as
productivity growth by use of improved programming practices
[MODP]. For the years 1970-79 the correlations are statistically
significant. We infer that the relationship with YEAR simply
represents the effects of all the changes that took place during
this time period, and has no inherent causative property. For
example, the decade saw great improvements in hardware speed and
memory size, in programming languages, and in development
methodologies. We do, however, expect to see a continuation of

IV-18

10 I

6000

||i
^ = 5 Q 3 O
O O 5
a: <o _

UJ a.
E B
>

1000-

500-

30 MCCR-LIKE SOFTWARE PROJECTS

26.2%
13"LARQE" PROJECTS
(SIZE-60 < 1200 KOSII

Ada Enmronments

Ada

3328 .
/

/

/ /«•

/ y/ JSxpert System

' /

y / Ada Compilers
Software Tool Box / S

' /
/

/
246

Ap^voajdhes

Reusable Code

Software
Tools

100 —

50 —

10-

31.6

24.4%
17 "SMALL" PROJECTS
(SIZE-10 < 50KDSI)

Affordable
Large Memories

Interaetvoe
Progranrring and

Testing

27.7

Batah Programming and Testing

1970 1986
T-
1990 1976 1960

Figure 4-3. Software Productivity Increases Exponentially.

The reader is advised that technical agreement has not been
reached on metrics to measure productivity. These curves are
"least squares semi-log" lines, derived from statistical analysis
of the "COCOMO" project database of "well-managed" projects.
The curves show delivered source instructions (DSI) per work-
month (W-M), or DSI/W-M.

IV-19
h>

the trend in these other technologies which will result in con-
tinued growth in productivity over the next decade. Therefore, to
be realistic, the econometric model must include terms for annual
programmer cost and continuing increase in productivity.

Required additions to project database. The project data
base used for the statistical analysis was sufficient for Tech-
nion to suggest projections of improved productivity to the 1992
time frame. However, the data base must be enhanced to support
credible inferences. A model based only on data for the years
1970 to 1979 would hardly be convincing for projections to 1992.
Credibility of the model's results must be increased, by over-
coming the incompleteness of data used in the analyses. Specific
data deficiencies (that can be addressed by obtaining additional
data that already exist) include:

a. Lack of data for any projects after 1979. This can be
addressed by adding data available through the Software
Engineering Laboratory at the NASA Goddard Space Flight
Center, Rome Air Development Center, and other sources.

b. Lack of data to permit detailed analysis of enhancement
and maintenance activities, or "post-deployment software
support (PDSS)", which is especially important for the
GFE decision.

c. Lack of Effort Multipliers applying to use of Ada
(although some of the projects were coded in similar
HOLs).

d. Lack of Effort Multipliers relating to specific "modern
programming practices", use of "reusable code fragments"
and specific "software tools".

e. Lack of an Effort Multiplier that applies to productiv-
ity improvement gained by using an integrated program-
ming support environment. The environment is expected
to improve productivity by multiplying the individual
benefits of: (1) an integrated set of software tools;
(2) modern programming practices: (3) higher order lan-
guages; (4) libraries of "reusable code fragments"; and
(5) hardware that provides response time short enough
and memory capacity large enough to avoid interfering
with programmers' trains of thought.

With the model updated in this way, it will be possible to
investigate effects of alternative control strategies by incl-
uding the factors from study of the "control strategies" and
"constraints on successful implementation" described in Figure
4-2A, and the "implementation in different organizations" from

IV-20

io:

Figure 4-2B. This would focus on comparing features of such
environments as the Joint Services Systems Engineering Environ-
ment (JSSEE), the Army's Ada Language System (ALS), the en-
vironment to be developed by GTE for WIS, the "HAPSE" defined in
this project, and the default policy, "Business As Usual". Some
of the comparisons sought are indicated in Figure 4-2C, "Example:
Comparison of Model Output".

Based on the resulting econometric model, it will be possible
to estimate the costs and benefits of the different organization
strategies for impleraentating environments, and to select altern-
atives. Using these alternatives, it will be possible to com-
pute the cost/benefit table for the various environment and soft-
ware applications. To help in calibrating the model, looking at
net long-term cost/benefit results of various alternatives might
be done most easily at Tinker AFB, using typical AFSC strategies
and project workload mixes.

Similarly, it will be possible to investigate further the
pros and cons of providing a HAPSE to contractors as GFE, with
the focus on decreasing risks of the GFE approach that arise from
differences in contracting strategy. The model could be used to
address questions concerned with vendors' motivations, including
both economic and cost issues and those relating to vendors' mar-
ket shares and vested interests in their own technology. It
would consider areas outside the COCOMO model, such as technical
risk (the technological effects of not having a HAPSE as GFE, or
of having a HAPSE with inadequate reliability), cause-effect re-
lationships that impede vendors' ability to accept and use pro-
ductively environments for which they are not reimbursed direct-
ly. It would address technology trends (the natural acceptance
of technological change over time), the inter-relationships of
modern programming practices, software tools, software develop-
ment methodologies, and reusable code. Finally, and most impor-
tant for DoD and the Air Force, the ability of a standard HAPSE
to be continually improved at a rate adequate to maintain parity
with theindustry'sincreases Tn productivity (rather than to
fall behind, with obsolescent hardware or methodologies, which
has happened in the past).

6. Form of Econometric Model

The general form of the proposed model is presented below.
Because such a model was not envisioned when Technion began its
work, and thus was not fully funded, we present what is obviously
only a preliminary sketch. The presentation probably omits terms

IV-21

w

that will be needed to present a picture complete enough for
decision-making purposes. Determination of measures and units,
and ways to build on the COCOMO effort multipliers/ will be early
tasks in the future preparation of the model.

NETBEN = SWCOST Current

- ENVCOST

SWCOST GFEEnv

- DIFF [CTLOHDT TRAINCOST; PERSCOST*PRODY;

RELCOST: MAINTCOST: REQVOL]

Where

Workload Constant for each comparison, chosen to
typify software workload ranges found in
typical USAF defense systems or contractor
"software factories" (expressed in lines of
code per year, over a defense system life
cycle of from ten to 15 years).

NETBEN

SWCOST^
Current

SWCOST^,,,, GFEEnv

ENVCOST

CTLOHD

Net benefit to the
completing the assumed
cost (See figure 4-2D)

Government from
workload at lower

Software
practices

cost to Gov't using current

Software cost to Government using the GFE
Environment (including a pro rata share of
ENVCOST)

costs incurred for initial development, plus
annual costs for continuing development
and support of the GFE/Environment

Cost of organizations and procedures for
control of software development/support
practices (See figures 4-2A, 4-2B)

TRAINCOST ■ Cost of training users (both gov't and con-
tractor) in effective use of the GFE/En-
vironment (See figure 4-2A)

PERSCOST = Cost of personnel who use the GFE/Enviro-
nment

IV-22

102

PRODY Productivity of personnel, in measures such
as source code instructions per work-year
(quality, reliability, and maintainability
being held constant) (See figure 4-2B, and
tables 4-2 and 5-1)

RELCOST = Cost for reliability of software produced
(See figure 4-2B)

MAINTCOST = Cost for maintainability of software pro-
duced (See figure 4-2B)

REQFNS ■ Cost of adapting to requirements imposed on
software by the defense system of which
software is a component (See tables 4-2 and
5-1; and COCOMO variables VIRT, RELY, CPLX,
and RVOL)

IV-23

I**

CHAPTER FIVE

PLANNING FOR IMPLEMENTATION

This chapter has three sections. Section A lists various
functions performed during the software life cycle, and ident-
ifies functions for which software tools promise the greatest
improvements in productivity.

Section B depicts the most important assumptions and the
chain of cause-effect links that must be satisfied before
successful implementation can be completed. Section C identifies
those assumptions and cause-effect links for which additional
data are required. Sections B and C overlap with the econo-
metric model described in chapter 4, beginning on page IV-7.

A. FOCUSING ON HAPSE TOOLS TO
ENHANCE LIFE-CYCLE PRODUCTIVITY

Selecting expanded sets of "tools" for the HAPSE can help
USAF improve its effectiveness in development and support of de-
fense systems, including those that happen to contain software.

1. Independent variables for software

Boehm's "COCOMO" model uses 15 different "Effort Multipliers"
for estimating resource requirements for software projects. I n
Figure 5-1, "Graphic Illustration of Relationships in Table 1,"
all 15 effort multipliers of these are depicted in schematic
format.

Our statistical analysis identified the variables with the
greatest effect on resource requirements and project duration.
The effort multipliers for TOOL, MODP, and Libr promise the most
short term improvement. Their effects yield the greatest
reduction in resource requirement. Table 5-1, "HAPSE Tools To
Enchance Life-Cycle Productivity", lists the effort multipliers
for both new software development and for the "integration and
test" phase, which is used here as a proxy for maintenance of
existing software. Note that the effort multipliers are less
than 1.00, indicating a reduction in resources required and
leading to an improvement in performance. Page references in
[BoehSl] explain each variable. As shown at the bottom of Table
5-1, under current conditions reductions are estimated to be 66
percent for NEW software and 82 percent for maintenance of
existing software.

V-l

I 01

Table 5-1 "HAPSE" TOOLS TO ENHANCE LIFE-CYCLE PRODUCTIVITY

PROJECT VARIABLE

Computer Attributes

'COCOMO" Effort Multiplier

NEW Software Maintenance [BoehSl, pp.]

STOR Improved Main Storage,
Target Computer

TURN Development Computer
Response Time

Personnel Attributes

VEXP Experience with
Target computer
["Virtual Machine"]

LEXP Programmers'
Experience with
Language used

Project Attributes

MODP Modern Programming
Practices Used

TOOL Software Tools Used

Libr Reusable Code
Libraries
[Boeh84, p. 33]

87

,87

.90

.95

.91

.83

.70

.80

.90

.90

.92

.83

.70

.50

413+

417

439

442

452

459

PI Product of Effort
Multipliers*

Net Savings Projected
for HAPSE [1.00 - PI]

34 .18

66 percent

498

82 percent

V-2

(^S

Table 5-1, Continued

OTHER COST DRIVERS THAT MIGHT BE
ENHANCED TO IMPROVE PRODUCTIVITY

PROBABLE Improvement

Libr Use of Existing Software Fragments, from Library. Use
of such "reusable code fragments" in new development
will have benefits throughout the software's life.

TIME Availability of Time on Target Machine. Ability to test
software immediately after coding helps to improve pro-
grammers effectiveness. This variable can be addressed
by making a target machine available early in develop-
ment.

PCAP Programmer Capability. May be improved by adding
software tools with abilities developed by the most
capable programmers.

POSSIBLE Improvement

RELY Required Degree of Reliability of software in the de-
fense system. For mission-critical systems, the
needed reliability is usually quite high.

RVOL Volatility of Requirements that software must satisfy.
Improvement in productivity would come with reduced
frequency of change ("volatility") of requirements.

VIRT "Virtual Machine Volatility" (Target Machine). Reducing
the "volatility", or amount of change to the target
hardware or operating system, improves productivity of
the software development and support.

ACAP Analyst Capability. May be improved by adding, in the
form of tools, capabilities developed by the analysts.

AEXP Analyst Experience. Added tools may help shorten
analysts' learning time.

Function of Total Weapon System

SCED Required Schedule for Completion of software.

CPLX Complexity of Software Product.

DATA Size of run-time data base that must be accessed, rela-
tive to the size of programs processed at run-time by
the target machine.

V-3

f(ri

I

■»>■••■■■>

■+{ (MM)AC

OS/

«»■■■■■»«

TD£V)Ar ^f (TD£V)AC

•■•■<■■>■■■'

i.Ml.M.

n(EM) = 0.18-*-| MAINTENANCE

0.81
rm

cn

(PCAI

ATTMBUUS

im

-HYfAR

-*4TVPi

(EM) = 0 34-

1^0,9:

oei
ca

[)9£

m
083

0.91

82% SAVINGS
^••■•^•••'■i

(MM) AC

••••»»»♦♦•

ED
•**•••■<«■

OS/ ^-ftVi:
tin

>:¥:: ^SSSS

ED
ATTWaUTES

NEW SOFTWARE
66% SAVINGS

EFFORT MULTIPLERS (EM)

SOFTWARE FACTORY MODEL
Computer System Parameter Interdependencles

Figure 5-1. Graphic Illustration of Relationships in Table 5-1,

B. ASSUMPTIONS AND CAUSE-EFFECT CHAIN LEADING TO
SUCCESSFUL IMPLEMENTATION OF THE GFE APPROACH

1. Introduction

Post-mortem reviews of complex programs often reveal that the
assumptions made were incomplete or incorrect. For a program as
important as the GFE/Environment we need to verify to the extent
possible, the reasonableness of the assumptions and expected
results for cause-effect transactions.
Projecting results in graphic form is a useful research tool for
this purpose. It is particularly useful for analyzing complex
programs that involve economic and organizational considerations
as well as technical aspects.

The cause-effect chain — a distant cousin of decision
analysis — is such a tool. The cause-effect chain is most used
for analyzing projects that require successful negotiation of a
series of steps before they can be completed. The chain's use-
fulness comes from its helpfulness for identifying and making
explicit the assumptions made at each step, and the reasonable-
ness of the results expected from each successive action in the
chain.

2. Implementing the GFE/Environment

Figure 5-2 shows the chain of assumptions and cause-effect
relationships for the GFE/Environment. It begins with "Generic
standards are Valuable" and ends with "Lower Cost to DOD for New
Software". The three rows of boxes crossing the figure show the
assumptions and cause-effect relationships for: (1) use of a
single standard programming language (top row): (2) use of a GFE/
Environment (middle row): and (3) the resulting effect on a
defense system project that contains hardware, software, facili-
ties, data, and people (bottom row).

Quantifying Assumptions. The four shaded boxes at the left,
and the one near the middle of the figure, represent basic
assumptions that are made (sometimes implicitly) and seldom
questioned. The three dashed boxes at the right represent
results desired from the project. Throughout the figure, each
pair of boxes connected by an arrow represents a cause-effect
transaction that is assumed to be effective.

We show 27 numbered boxes on the figure. It is possible to
quantify or measure at points associated with those 27 boxes,
then to include the measurements in the equations of an econo-
metric model. In Table 5-2 we indicate the box numbers, and
indicate the type of information for those points that is
required by an econometric model. We also show Technion Inter-
national's estimates of expected ranges of data.

V-5

1*1

C. POINTS AT WHICH ADDITIONAL DATA ARE NEEDED

Keyed to Figures 5-2 and 5-3, and Table 5-2, this section
details the data required, and gives a range of probable values.
Figure 5-3 shows excerpts from the flow of Figure 5-2, with more
emphasis on blocks affecting the implementation of a HAPSE-like
environment. Table 5-2 shows specific data points and indicates
the ranges of values expected.

Quantification is needed at these points in Figures 5-2
and 5-3:

1. Language

What is the improvement in programmer productivity, both
for development and for subsequent enhancement/maint-
enance of software, associated with use of one standard
programming language? (Box 3)

What is the incremental expense of training programmers
in the one standard language, to the skill level at
which they are able to implement the language's special
features in their work? (Box 5)

- What are the net benefits to programmers of using the
language? (Box 6)

- What are the net benefits to contractors from having
their programmers use the language?(Box 7)

- To what degree are reliability and maintainability
enhanced by having software written in the standard
language? (Box 8)

2. Environment

What are the benefits of a standard integrated automated
environment [HAPSE], in terms of improved productivity
in development, reduced time to complete testing, and
improved productivity in subsequent enhancement/main-
tenance of software? (Box 12)

What will be the cost of designing a HAPSE, building it,
and providing it as GFE to contractors? (Box 13)

What will be the cost of training programmers in use of
the HAPSE? (Box 14)

V-6

,*>

UNOHtLYINQ
mMttnam DESIRED

RESULTS

<
I

(UNOMDS
ONESTXMMRO

SOFTWUK
UNGUAGES

■♦ VAUIMUFOR
HmOnKNTMB
LRCTCUtW-
nnofwunm
srsja SOFTWARE

' i
t

i

ttmmtsH*
termeiim

1
1

WnwsTOou _^ STAMMWD

uttMmu -
WTHMTEGRATED

tt AUTOUTEOSOFT.
- i WAflE TOOLS K

¥*LU*BU

1 M

■ANY USERS
ACCEPT 0N£

STAftjAK! SOFT-
WAKLAWMUQE

HMJECTSHAVE
ENOUGH TK

ANORMOSTD
SUPPORT TRAtMG
OFPROGMMEK

MSTANOAMi
LANGUAGE

I
LEAIM. ACCEPT, AND

STANOAIV
BMWMBITCAN

aEMLTAND
PWVIOB) PHOMPTLr

II

PWXSMNMBB
LEAflN, ACC9T, AND
USEENVnONMSIT
ARBITIUMMG

14

USE OF GFE SOFTWARE
SUPPORT (HAPSE)
SCOHPATaU

WITH:

In dWtiwit

PnoaRAMNMG
PROoocnvmr
■VROVESFOR

OEVaOPMBITAND
BMANCaENT/IUMT.

II

/. ENHANCED S,
/OBEUAaUTYANDy
^■AKTANIAaUTTy

CONTIllCigRJKWl

wnmtaisfATw,
'. ****** '■■' *^
ItTlDfWO*

//LOWER COST TO-O
•V OgOFOR -V

^niiiir ■■■■■■■ ^y

atnauBtcwn
WnwBW*

CONSTRAINTS CN
TOTAL WEAPON
SrSTEMOTECT

SOFTWARE COWONENTi
OF SYSTEM

It

CAN CONTROL
SOFTWARE:

Comptoidly
• "¥<

WOWIMOVES
PERFORMANCE OF
TOTAL WEAPON

SYSTEN

I

PWOUCTWTY
MPROVaFOR

UFECYCU SUP-
PORT OF MnWME

tTANDMD

iww—r».
PROVE UK OF

NEWEST TECHNOLOGY

v;o«i«ie«MTV
/< FOR SOFTWARES

RaiAHUTY
ANDHMNTAM-

ASR1TY Of TOTAL
WEAPON SYSTEM

BINPROVED

n

PERFORMANCE
OF TOTAL WEAPON

SYSTEM B NPROVEO

27

NPROVU
REUAOJTIYOR

MAMTAMAMJTY
OVERUFE-CVCLE

OF TOTAL WEAPON
SYSTEM

IS

Figure 5^-2 - Assumptions and Causal Chain — GFE/HAPSE

Vo

UNDERLYINa
AS8UMPTIOM«

i

mm ONISTMMin ttmms SOFTWMi mmweu UNGUiWEa
""• VMUHUKM

DEVELOPMENT MD
UR-CTCUSW-

ramOFKAMM
SmEMSOnwME

i i
t

l

tjummrtu
mmmm

MtVMU
1 1

1

MmMKToeu ^ STMQMD

MTMMU
WITH WTraUTH)

« MiTowTasan-
WMKTOOUK

VM.UMU

•I

LEAIM, ACCEPT, AND
USELMQUAQE

ITMeMD
BIVKMBnCM

K MIT MB

11

HtOaWKIU
LEMN, ACCEPT, MO
UKENVmMKHT
AnERTRAMNO

M

LEXP-PnOGDAWMQ
LMQUAGE EVBVBKX
■MOMIPKOUCTIVITT

TOa-SOFTVAME TOO. EXPERKNCE
MPWWES PMOUCTNITT

MOOP-USE OF MOOQM
PWXmMMG PMCTKES
■PDOVES PMOUCTTnTT

vEXP-apBBKE mm "vnruAi
(TMOCT) HACHME-
MPROVU PROOUCINTT

TURN-SHORT RESPONSE TME
(TURNMoay T«q
MPIWVES PHOOUCTNII (

USR-USE OF REUSAM. CODE
■PROVES PMNcmm

DESIRED
RESULTS

/. ENHANCEO ->
/OAEUAaUTTANDy
'>','«"MIARWTTy

PKOUCTIVIIT
■MOVES RM

DCVaOPMnTANO
BMANCENBtT/IUMT

^g
OoOfOBNEW />-

V" OiOfai ->
ymmmmm,
XFOH SOFTWARE/;

Figure 5-3. Causal Chain - Programming Support Environment,

-X.

,
.

What are the incremental costs and benefits of having
contractors use the GFE, instead of their customary
software production facilities? (Box 15)

How much lower will be the cost to DoD for development
of NEW software? (Box 9)

How much lower will be the cost to DoD for subsequent
enhancement and continuing development of software?
(Box 10)

3• System Containing the Software

What is the likelihood that characteristics of the
weapon system (which drive the software development and
maintenance efforts) are compatible with the design of
the HAPSE and the environment in which it is used [e.g.,
system budget, schedule, required reliability, complex-
ity, and volatility of requirements on software]? (Boxs
19 and 20).

What will be the effect of the resulting software on
reliability and maintainability of the defense system
over its life cycle? (Box 22).

What will be the effect of the resulting software on the
performance of the weapon system? (Box 27).

V-9

//^

Table 5-2. DATA REQtJIRED BY ECONOMETRIC MODEL

Figs 5-2,-3
box number;

(N/a)

(5)

Data Required

GPE/HAPSE continues
to be improved, and
overcomes pressures
toward obsolescence,

Additional Funding
needed by contractors
to train their people
in using HAPSE.

Range of Probable Values

HAPSE continues to provide
productivity improvements
amounting to at least 27
percent per year after
its deployment.

$1000 - $5000 per
programmer to be trained
(one to five weeks each).

"Learning Curve" effects:
includes initial loss of
productivity, followed by
shift to more favorable
GFE/HAPSE learning curve,
with long-term gain.

(4):
(12)

(6);
(14)

(13)

(15)

Productivity is
raised, by language
and software tools
used in HAPSE.

Programmers Learn,
accept, and use HAPSE
after training.

Standard Environment
can be built and
provided promptly.

Productivity improves
for Initial Develop-
ment as well as for
post-deployment enhance-
ment/maintenance of
software.

Ada language produces
8-10 machine-language
instructions per Ada
language instruction.

Set of integrated,
automated software tools
helps programmers produce
better products and
becomes part of their
normal "tool kits".

Yes, within 5 years.
Development cost depends
on development strategy.
Additional annual direct
support cost will also be
significant.

Productivity increases
by factor of two to four.

■

V-10

H to

■■ .'
'

TABLE 5-2, concluded

(17)

(25)

(26);
(8)

(9)

(10)

Contractors have
adequate staff, with
motivation, training,
and ability to perform
duties using GFE/HAPSE.

GFE/HAPSE aids in
transition and use of
latest technology on
AFSC MCCR projects.

GFE/HAPSE use gives
improved reliability,
maintainability, and
effectiveness of
weapon system.

GFE/HAPSE lowers costs
for developing new
software.

GFE/HAPSE lowers time
and costs for post-
deployment modifica-
tions of fielded soft-
ware.

From 25 to 50 percent of
contractors' project
staff have adequate moti-
vation, training, and
ability to use GFE/HAPSE.

Range of values, from
plus 5HZI percent (net help)
to minus 25 percent
(net interference) with
transition.

Range of values, from
zero to doubling of RMA
with accompanying
decreases in PDSS costs.

Two-fourfold increase in
productivity, with greater
reliability and maintain-
ability of new software
products.

Doubled productivity
in post-deployment
enhancement/change of
operational software.

Estimates for Data Range were made by Technion International, and
are based on a wide variety of published and unpublished reports.
However, data in the right column should be used for no purpose
other than to plan data collection efforts.

V-ll

117

SELECTED BIBLIOGRAPHY

(AlfoBl) Alford, M. W. / and Davis/ C. G. " Experience with the Software
Development System". In Software Engineering Environmental H.
Hunke, Editor, North-Holland, 1981.

Paper presents a methodology and supporting environment for
developing very large, complex, real-time systems. The
environment emphasizes importance of discovering errors early in
the development process. The methodology consists of four major
tasks: (1) Data Processing Systems Engineering (DPSE) -
translate systems objectives into a consistent, complete set of
subsystem functional and performance requirements (uses
techniques based on verification graphs, petri nets, finite state
machines, and graph models of decomposition for expressing
requirements), (2) Software Requirements Engineering Methodology
(SREM) - express functional and performance requirements as a
graph model in Requirements Statement Language (RSL) and analyze
with the Requirements Engineering Validation System (REVS), (3)
process design engineering - translate requirements into a
process design language, verify design, and evolve the design
into code, (4) verification and validation - perform at all
stages.

(Arth83) Arthur, Lowell Jay. Prograrnmer Productivity: Myths, Methods and
Murhphology. New York: John Wiley. 1983.

Book describes software productivity improvement methods used by
a unit of American Telephone and Telegraph company. Reusable
code is an important element in the program described.

(Bam82) Barnard, P., Hammond, N., MacLean, A., and Morton, J. "Learning
and Remembering Interactive Commands." In Proceedings of Human
Factors in Computer Systems, Washington, D. C. Chapter, ACM,
Gaithersburg, MD, 1982.

Paper presents an experiment to determine how the choice of
command names influences interactive performance of users by
measuring access to an on-line help system. The authors propose
that help assistance is a relatively passive cognitive strategy
for learning and that it leads to less efficient operation
retention if commands have general names.

(Bars84) Barstow, D. R., et al. Interactive Programming Environments.
New York: McGraw-Mill Inc. 1984.

Book is a collection of papers by authorities in the field of
interactive programming environments. It presents developments
to about 1982 from the fields of programming , methodology,
artificial intelligence and software engineering. The book
educates the reader to save time and increase productivity using
interactive prograrraning environments.. The book discusses UNIX,
LISP and PASCAL with reference to interactive environments.

Biblio-1

iff

■

(Basi84)

(BayeSl)

Basili, V. R., and Perricone, B.T. "Software Errors and
Complexity: An Empirical Investigation." Communications of the
ACM, Vol. 27, No. 1, Jan 1984, pp. 43-52.

Bayer, M.,
Laboratory.'
Editor, North-Holland, 1981.

et. al. "Software Development in the CDL2
In Software Engineering Environments, H. Hunke,

Paper describes a programming environment that supports the CDL2
programming language. The components of the system include a
command interpreter, a dedicated editor/with formatting and
cross-reference, a program database (underlies all tools), a file
system (underlies the program database), a local and global
analyzer, an intermodule interface checker, a local and global
optimizer, a segment builder, an abstract code-generator, and a
concrete code generator. The paper includes an in-depth
discussion of the system architecture.

(BoehSl) Boehm, Barry W. Software Engineering Economics. Englewood
Cliffs: Prentice-Hall, 1981.

Book presents a highly detailed description of the COCOMO cost
estimating system. It also gives a 63 project database, from
which the COCOMO equations were derived.

(Boeh84) Boehm, Barry W. et. al. "A Software Development Environment for
Improving Productivity." In Computer, Vol. 17, No. 6, June 1984.

Paper presents the background and status of TRW's Software
Productivity System (SPS). The background includes discussion of
a 1980 software productivity study and TRW corporate motivation
for the study (e.g., increased demand of software, limited supply
of software engineers, rising software expectations, reduced
hardware costs). Based on an internal assessment, an external
assessment, and a quantitative assessment, the productivity study
recommends that TRW initiate a long range effort to develop a
software development environment. In the short term, the study
recommends the development of a prototype environment. The
architecture and components of the prototype that was developed
(called SPS-1) include: the work environment (improved office
conditions), the hardware (a network of VAX's, LSI-ll/23's,
terminals, and communication equipment), a master project
database (composed of a hierarchical file system, a source code
control system, and a relational database), general utilities
(menu, screen editor, forms package, date/time, report writer),
office automation and project support (tool catalog, mail system,
text editor/formatter, calendar, forms management, interoffice
correspondence package), and software development tools
(requirements traceability tool, SREM (AlfoBl), program design
language, Fortran-^ analyzer). Experience with the use of the
prototype shows a definite improvement in productivity and also
that immediate access to a good set of tools has the highest
payoff.

Biblio-2

m

(BoozSl) Booz, Allen and Hamilton, Inc. "Final Report: Defense Acqui-
sition Study." Washington, D.C., 1981.

This is the official document describing the USAF "Acquisition
Improvement Project", headed by Col. Don Sawyer. Among other
matters, the report describes the delays in acquisition of ADP-
related equipment caused by multiple levels of required review
and approval within the Air Force. The report differentiates
delays caused by duplicative internal procedures (which routinely
exceed a year). USAF has the potential ability to control these
delays by modifying its review and approval procedures. Study
isolated internal USAF variables from factors such as congress-
ional directives over which USAF has little direct influence.

(BranSl) Branstad, Martha A., Adrion, W. Richards, and Cherniavsky, John
C. "A view of Software Development Support Systems." In
proceedings of NEC, Chicago, IL, October, 1981.

Paper presents views and examples of support environments and
proposes four classes of support levels. The views include the
toolbox approach, the VHLL (very high level language) approach,
and the software development support system approach (an
integrated system with an underlying database). Examples include
PWB/Unix, Interlisp, Howden's environments (Howd82), and the Ada
Programming Support Environment (APSE). The proposed four
classes of support levels are: Dl (what most operating systems
provide), D2 (the capabilities of Dl plus integration with an
underlying database), D3 (D2 plus support for the entire life
cycle), and D4 (D3 plus features that are current research
topics). Extensions of each level are also proposed for critical
applications.

(BranSla) Branstad, Martha A., and Adrion, W. Richards, Editors. NBS
Programming Environment Workshop Report. National Bureau of
Standards, NBS SP 500-78, June 1981.

Report presents the results of the Programming Environment
Workshop, Rancho Santa Fe, CA, April 1980. The goals of the
workshop were to assess the current technology, indicate needed
standards for tools, develop guidance for near term environment
development, and determine future research directions. The
workshop attendees were divided into four groups: (1)
contemporary software development environments, (2) software
environment research - the next five years (3) advanced
development support systems, and (4) high level language
programming environments. The results of each of the four groups
is reported by their respective leaders, W. Howden (Howd82), L.
Osterweil (DsteSl), T. Standish, and M. Zelkowitz.

Biblio-3

iXO

(Broo75) Brooks, Frederick P.,
Software Engineering.
1975.

■ h

Jr. The Mythical Man-Month; Essays on
Reading, Massachusetts: Addison-Wesley,

Book is an early collection of essays describing development of
software as seen by the responsible manager. Brooks managed
development and support of IBM's OS/360 system, and his examples
are drawn from that experience. Many of his insights are
portable to other software projects, such as those in defense
systems.

(Buxt80) Buxton, J. "Requirements for Ada Programming Support Environment:
STONEMAN." U.S. Department of Defense, Washington, D.C.,
February 1980.

Report lays out the requirements for Ada environments. The
general requirements include support for the entire lifecycle,
integration of tools, and exploitation of modern hardware. The
more specific requirements include: the Ada Programming Support
Environment (APSE)/Minimal APSE (MAPSE)/Kernal APSE (KAPSE)
model, database support, and tool support at the different
APSE/MAPSE/KAPSE levels. The APSE/MAPSE/KAPSE model is a four
level model where level 0 is the host level, level 1 (KAPSE) is a
standard interface to level 0 that supports database
interactions, communications, and run-time, level 2 (MAPSE) is a
minimal tool set (editor, translator, linker, debugger,
configuration manager), and level 3 (APSE) is a set of tools for
full support (life cycle, documentation, and management support).

(Buxt80a) Buxton, J. "An Informal Bibliography on Programming Support
Environments." In ACM Sigplan Notices, Vol. 15, No. 12, December
1980.

Bibliography with brief notes and commentary on 40 papers that
deal primarily with architectures of programming support
envirronments. Included with the bibliography are short
summaries of the following proposed and existing programming
support environments: Cheatham's PDS Model, Cooprider's Thesis,
CADES, C-MESA, Softech's MSEF, Stenning's Foundation System
Model, and Tichy's Model.

(Camp84) Campbell, Roy H., and Kirslis, Peter A. "The SAGA Project: A
System for Software Development." In Proceedings of the ACM
Sigsoft/Sigplan Software Engineering Symposium on Practical
Software Development Environments, Gaithersburg, MD, April 1984.
Authors discuss the SAGA Project and its current status. The
project proposes to develop a lifecycle support environment for
small to medium size projects. At the heart of the system is a
proposed language-oriented editor generator that can synthesize a

Biblio-4

io I

(Cast84)

(Cowe83)

language-oriented editor for each life cycle language (i.e.,
requirements language, design language, implementation language,
etc.). The current system is UNIX based and includes a prototype
for a language-oriented editor (implementation language),
prototype version control components, and a production
documentation tool.

Castor, Virginia L., et. al. "Evaluation and Validation (E&V)
Team Public Report", Vol. I., Interim Technical Report for Period
1 October 1983-30 September 1984. AFWAL TO 85-1016. Wright-
Patterson AFB, Ohio, 45433-6543.

Report is a coJlection of papers developed during the year and
dealing with the U.S.A.F. research into use of software devel-
opment and support environments.

Cowell, Wayne R., and Osterweil, Leon J. "The Toolpack/IST
Progrararning Environment." In Proceedings of SoftFair, (IEEE
Order No. 83CH1919-0), July 1983. '

The paper discusses a portable, Fortran-oriented programming
environment. The architecture of the environment includes a
conmand interpreter, tool fragments (commands may invoke several
tool fragments), and a virtual file system (files created by
tools can be recreated by tools). The tools in the environment
include: data flow analyzer, program instrumenter and debugger,
documentation generation aid, program formatter, syntax-con-
trolled editor, macro processor, text formatter, program
structurer, Ratfor processor, portability checker, program
transformer, and various file-handling utilities.

Cox, Brad J. "The Message/Object Programming Model." In
Proceedings of SoftFair, (IEEE Order No. 83CH1919-0), July 1983.

A tutorial on object-oriented programming, the paper discusses
the operator/operand model and the message/object model. It then
presents a case study developed on Smalltalk-80.

(Deli84) Delisle, Norman M., Menicosy, David E., and Schwartz, Mayer D.
"Viewing a Programming Environment as a Single Tool." In
Proceedings of the ACM Sigsoft/Sigplan Software Engineering
Symposium on Practical Software Development Environments,
Gaithersburg, MD, April 1984.

Paper presents an interactive programming environment called
Magpie. The user of Magpie deals with two states, the status of
the source code and the status of execution. The environment
features overlapping windows, a mouse pointing device, pop-up
menus, a browsing capability, language-directed editing,
incremental compiling, and debugging capabilities.

(Cox83)

Biblio-5

{£P

(Fair80) Fairley, Richard E. "Ada Debugging and Testing Support
Environments." In Proceedings of the ACM-Sigplan Symposium on
the Ada Prograitming Language, December 1980 (see SIGPLAN Notices,
Vol. 15, No. 11, November 1980).

A review of the requirements specified in (Buxt80) and a
discussion of the issues associated with them. Analysis
considerations, source level support and debugging, KAPSE
consideration, and data abstractions are covered.

(FeilSl) Feiler, Peter H., and Medina-Mora, Raul. "An Incremental
Programming Environment." In Proceedings of the 5th
International Conference on Software Engineering, (IEEE Order No.
81CH1627-9), March 1981.

Paper reviews the support required by programming ennvironments
and the traditional method for providing this support (i.e.,
editing, translation, linking, loading, and debugging). It then
presents the Incremental Programming Environment which features
syntax-directed editing, common representation, incremental
program translation, and language oriented debugging. This is
followed by a discussion of design and implementation issues for
such an environment.

(FIPS99) National Bureau of Standards. FIPS PUB 99. "Guideline: A
Framework for the Evaluation and Comparison of Software
Development Tools." March 1983.

Guideline presents a framework (a taxonomy) for identifying,
discussing, classifying, evaluating, and comparing software
development tools and environments. The taxonomy includes almost
100 features that are presented in a hierarchy. At the top
level, features are divided into input/output categories or
function categories. The functions include transformation,
static analysis, dynamic analysis, and management. The appendix
includes a set of event sequences for the acquisition of tools.

(Fisc84)

(Fox82)

Fischer, C. N., et. al. "The Poe Language-Based Editor Project".
In Proceedings of the ACM Sigsoft/Sigplan Software Engineering
Symposium on Practical Software Development Environments,
Gaithersburg, MD, April 1984.

Paper presents an overview of POE, a Pascal programming
environment, and presents some of the technical issues associated
with the development of the environment.

Fox, Joseph M., Software and Its Development, Englewood Cliffs,
Prentice-Hall, 1982. ~~

Seldom does a successful manager write a book: most seem to be
action people, who prefer to manage rather than to analyze and

Biblio-6

/^S

describe what ie actually involved in managing software through
its life cycle. In this book, the author draws on his experience
with software development and support in large systems. His
vantage point was that of manager of IBM's Federal Systems
Division. His account differs from most literature; in that he
reports the system and software life cycle as it appears from the
top, not as he imagines it or wishes it were. His insights are
extremely valuable for those who wish to understand the "big
picture".

{Fran84) Frankel; S. "Introduction to Software Packages."
Publication 500-114. April 1984.

NBS Special

(FSTC83)

This report introduces use of applications software packages and
directs potential users to sources of information. A review of
the benefits of such a usage is made and use of software pellets
versus in-house development is discussed.

 . "Software Tool Evaluation and Selection Guidelines."
Report OIT/FSTC-83/016. August 1983.

(FSTC83a) U. S. General Services Administration, Office of Software
Development and Information Technology/ Federal Software Testing
Center. "Programmer Productivity Aid Catalog." Report
OSD/FSTC-83/017, Sept. 30, 1983.

Report lists over 100 productivity
1983. "The productivity aids that
address the system life cycle areas
and application generation), testing
and project management. A single
only one phase of the life cycle
phases. . . . These products have
by FSTC. . ." {pp i-ii). Many of
than 1000 users. (Also see Houg82a)

aids that were available in
are included in this catalog
of design, development (code
, maintenance, documentation,
aid may have application in
or may be used in several
not been tested or validated
the products listed have more

(GA081) U. S. General Accounting Office. Federal Agencies Maintenance of
Computer Programs; Expensive and Undermanaged." AFMD-81-25,
Feb. 26, 1981.

(GA083) . Greater Emphasis on Testing Needed to Make Computer
Software More Reliable and Less Costly. GAO/IMTEC-84-2, October
27, 1983.

This paper reports on a survey of federal agencies (in which
USAF organizations are included). The survey shows that more
than 60 percent of computer programs are modified because
requirements have changed. About 80 percent of programs reported
were modified in some way each year.

Biblio-7

119

(GutzSl) Steve Gutz, Anthony I. Wasserman, and Michael J. Spier.
"Personal Development Systems for the Professional Programmer."
In Computer; Vol. 14, No. 4, April 1981.

This paper reviews the problems with existing development
environments, proposes a programmer's personal machine, and
examines the advantages and disadvantages of such a machine. The
proposed programmer's personal machine consists of: (1) an
intelligent terminal with 1 Meg local storage, CPU and address
space equivalent to a 32-bit mini, graphics capability, (2) hard
disk (40 Megs) and floppy disk, (3) networking capability (with
other PPBS's), (4) audio input/output, (5) pointing device
(mouse, tablet, or light pen), and (6) capability to add more
memory and other devices (e.g. a quality printer). The potential
advantages of such a machine include constant response time, a
comprehensive set of tools, less dependence on a single machine,
integration of software development and office automation. The
potential disadvantages include tool expense, training expense,
communications, device dependence.

(Guya84) Guyard, Jacques, and Jacquot, Jean-Pierre. "MAIDAY: An
Environment for Guided Programming with a Definitional Language."
In Proceedings of the 7th International Conference on Software
Engineering, (IEEE Order No. 84CH2011-5), March 1984.

Paper discusses an environment under development that is oriented
around an object-oriented language and an algorithm design
methodology. The environment enforces the methodology through a
set of control functions. The user views a development session
through a set of windows that present the development level,
messages, the object being defined, objects remaining to be
defined, the stored algorithm, and the current command.

(HaH80) Hall, Dennis E., Scherrer, Deborah K., and Sventek, Joseph S. "A
Virtual Operating System." In Communications of the ACM, Vol.
23, No. 9, September 1980. ""

Paper presents a UNIX-like environment that can be implemented on
top of a vendor-supplied operating system to make in-effect a
virtual operating system. The environment consists of four
layers: (1) the vendor-supplied operating system (the innermost
layer), (2) the virtual machine (consisting of primitives such as
opening and closing files, reading and writing to files), (3)
utilities (a set of tools written in portable Fortran including
Kernighan and Plauger's Software Tools), and (4) an integrated
command interface.

Biblio-8

(HausSl) Hausen, Hans-Ludwig, and Mullerburg, Monika. "Conspectus of
Software Engineering Environments." In Proceedings of the 5th
International Conference on Software Engineering/ (IEEE Order No.
81CH1627-9), March 1981.

A paper which discusses the issues associated with the coverage
of software engineering environments. The issues include support
for full life cycle development, quality assurance, product
control, management, specific applications, specific
methodologies, and representation schemes. Also discussed are
issues related to the integration of tools and motivations for
developing environments. The appendix defines the criteria that
must be met for a system to be considered an environment. These
include: a software engineering orientation, the use of at least
one recognized scientific concept, applicability to more than one
life cycle phase, and some level of tool integration. The
authors present short siOTmaries of environments that they feel
meet these criteria. They include AIDES, APSE, ARGUS, ASSET,
CADES, CDL2-Lab, COSY, DREAM, Gandalf, Gypsy, HDM, ISES,
PWB/UNIX, SDEM/SDSS, REVS, and SEE.

(HechSl) Hecht, H. Final Report: A survey of Software Tools Usage.
NBS Special Publication 500-82. November 1981, p. 53.

This special Publication from NBS/ICST comprises a software tool
usage study as a part of an effort to develop methodologies and
standards for software quality control. The report gives a
survey of software tool usage and an analysis of the findings.

(Hech82) Hecht, H., and Houghton, R., Jr. "The Current Status of Software
Tool Usage." Proceedings of COMPSAC 82, November 82.

(Hech82a) Hecht, H. The Introduction of Software Tools. -w. NBS Special
Publication 500-91. September 1982, p.

This special NBS/ICST publication discusses specific needs for
software tools in programming for management information systems
and for Scientific applications. Steps for the successful
introduction of tools are discussed and measures are described to
deal with organizational obstacles and difficulties posed by
existing computer installations.

(Houg82a) Houghton, Raymond C, Jr. Software Development Tools. National
Bureau of Standards (NBS) Special Publication 500-88. March
1982.

Data base of more than 400 software tools, classified according
to the PIPS99 taxonomy. Appendices printe the database in
different sorts, such as language written in, and hardware that
tools are intended for. Data in this data base are current as of
1982. Data base is updated and maintained by RADC, but not
classified according to the FIPS99 taxonomy.

Biblio-9

^

■

(Houg82b) . "A Taxonomy of Tool Features for the Ada Programming
Support Environment (APSE)". National Bureau of Standards, NBSIR
82-2625, December 1982.

A review of the APSE (Buxt80), the ALS (WolfSl), and the AIE (the
Navy's Ada Integrated Environment) based on (PIPS99). The
taxonomy includes a comparison of features in the areas of
management, static analysis, dynamic analysis, transformation,
and input/output. A set of underlying tool primitives is defined
that support these features.

(Houg84a) "Help Systems: A Conspectus." In Communications of
the ACM, Vol. 27, No. 2, February 1984.

Paper discusses online assistance that is provided by various
types of environments. It includes a discussion of the types of
assistance and the issues associated with the development of
online help systems.

(Houg84b) . "Comparing Software Development Methodologies for
A Study Plan." National Bureau of Standards. NBSIR Ada:

84-2827

The study outlines the Support Systems Task Area of the DoD STARS
Program on the Software Developmental Methodolgoies and Ada. The
report treats the methodology as a "black box" in an effort to
simiplify the earlier model that was partitioned to design and
corrective implementation phases.

(Howd82) Howden, William E. "Contemporary Software Development
Environments". In Communications of the ACM. Vol. 25, No. 5,
May 1982.

Paper proposes four levels of tool support that could be provided
by software engineering environments. For each level, the type
of project, the estimated cost, and the support provided is
detailed. For example, environment I has an estimated cost of
$35K and is for medium-sized projects, while environment IV has
an estimated cost of $3M and is for large scale projects.
Requirements, design, coding, verification, and management tools
and techniques are presented for each environment level.

(Huff81) Huff, Karen E. "A Database Model for Effective Configuration
Management in the Programming Environment." In Proceedings of
the 5th International Conference on Software Engineering. IEEE
Order No. 81CH1627-9. March 1981.

Paper addresses configuration mangement issues (i.e.,
configuration identification and configuration control) in a
software engineering environment and presents a model for
effectively handling them.

Biblio-10

\9l

(HunkSl) Hunke/ E., Editor. Software Engineering Environments.
Amsterdam: North-Holland. 1981.

Book contains the proceedings of a symposium held at Lahnstein/
Federal Republic of Germany, June 1980. Some of the papers
include (Snow81), (RiddSl), (AlfoSl), and (MatsSl). Papers
related to some in the book are (Tayl84)/ (Stu83), (Buxt80), and
(KernSl). Other papers discuss issues and tools related to
software engineering environments including functional aspects of
environments/ computer aided design, support for concurrent and
distributed systems, human factors, description languages,
productivity, formal verification, performance, system
decomposition, and version control. The book concludes with a
bibliography by Hausen, Mullerburg, and Riddle that contains more
than 350 citations from 1968 to 1980.

(Ichb84) Ichbiah, J., "Ada: Past, Present, Future." In Communications of
the ACM. Vol 27, Number 10, October 1984, pp. 991-997.

The article decribes the genesis, conception and reality of Ada
and is outlined in the form of an interview with the Principle
Designer of Ada.

(IEEE82) "An American National Standard-IEEE Standard Glossary of Software
Engineering Terminology." ANSI/IEEE Std 729-1983. Sponsored by
the Software Engineering Technical Committee of the IEEE Computer
Society, and approved by the American National Standards Insti-
tute, 1982.

The terminology developed and presented in this report is a
representation of a consensus on the subject within the Institute
as well as those outside of IEEE with similar interests. The
"Glossary" documents the increasing amounts of new terms and new
meanings that are being adopted for existing terms. Its purpose
is to "promote clarity and consistency in the vocabulary of soft-
ware engineering" and serve as a useful reference for software
engineers. This version has little terminology dealing with
software development environments, but does present descriptions
of some software tools.

(Kem81) Kemighan, Brian W., and Mashey, John R. "The UNIX Programming
Environment." In Computer. Vol. 14, No. 4, April 1981.

A paper which extols the benefits of the UNIX programming
environment. It reviews the underlying interface, i.e., the
hierarchical file system and the seven primitive functions:
open, create, read, write, seek, close, and unlink. It reviews
the overlying interface (the user interface), i.e., available
tools, input/output redirection, and various operators available
to the user. It then discusses how a user can avoid programming
by building a shell procedure of simpler tools available on the

■

Biblio-11

1 £ ^

system. Finally, the attributes of the system are discussed,
e.g., support for medium size projects, support primarily for the
latter stages of software development, loose integration of tools
and facilities, general support for all applications.

(Kern84) Kernighan, Brian W., and Pike, Rob. The UNIX Programming
Environment. Englewood Cliffs: Prentice-Hall. 1984.

Book presents a more detailed account of the UNIX programning
environment, suitable for reference.

(Klum85) Klumpp, A. R. "Space Station Flight Software: HAL/S or Ada." In
Computer. March 1985, pp. 20-28.

Paper presents pros and cons to NASA of programming in Ada as
opposed to HAL/S. Conclusion is that Ada is feasible for new
software.

(Kuo83) Kuo, Jeremy, Ramanathan, Jay, Soni, Dilio, and Suni, Markku. "An
Adaptable Software Environment to Support Methodologies." I n
Proceedings of SoftFair, (IEEE Order No. 83CH1919-0), July 1983.

Paper describes an environment that can be tuned to support
different software development methodologies. The control
mechanism is based on the gathering of project data through a
forms-based interface. The forms are defined at the start of
development.

(Lebl84) Leblang, David B., and Chase, Robert P., Jr. "Computer-Aided
Software Engineering in a Distributed Workstation Environment."
In Proceedings of the ACM Sigsoft/Sigplan Software Engineering
Symposium on Practical Software Development Environments.
Gaithersburg, MD, April 1984.

Paper discusses an Apollo-based distributed software engineering
environment. Because instances of the system can be running at
various nodes in the environment, the system consists primarily
of managers that keep track of what is going on. The managers
include: A history manager (source code control), a config-
uration manager (version control), a task manager (tracks
interrelationships among development products), monitor manager
(watches user defined dependencies), and an advice manager
(tracks general project information).

(Ledg82) Ledgrad, M. P., and Singer, A. "Scaling Down Ada." Communi-
cations of the ACM. Vol 25, Number 2, February 1982, pp.
121-125.

This article stresses that through Ada is an ambitious
programming language its size and complexity plague its technical
success. The paper gives means of streamlining the language and
providing an authorized subset in an effort to scale it down.

Biblio-12

iai

(Love83) Love/ Tom. "Experiences with Smalltalk-80 for Application
Development.'' In Proceedings of SoftFair. IEEE Order No.
83CH1919-0. July 1983.

Paper extols the benefits of the single-user, single language
environment called Smalltalk-80. An example is presented of a
graphics program that was developed using the object-oriented
development methodology that is supported by the system. The
"mode-less" user interface and the performance benefits of the
interface structure and mouse are also discussed.

(Mage84) Magel, Kenneth. "Principles for Software Environments." In ACM
Software Engineering Notes. Vol. 9, No. 1. January 1984.

Paper lists and discusses a set of environment principles that
include the following: generality (full life cycle support),
adaptability (portability), user orientation (designed for a
specific coranunity), tailorability (adaptable to many types of
interface devices), extensibility (new tools can be added),
consistency (consistent use from part of the system to another),
unification (user can anticipate how unfamiliar tools will
operate), abstraction (hide as many details as possible),
aggregation (bigger tools from smaller ones), incremental
preparation, efficiency, predictability, subsetable, ability to
group resources, and recoverability.

(MatsSl) Matsumoto, Y,, et. al. "SWB System: A Software Factory." In
Software Engineering Environments. H. Hunke, Editor. North-
Holland, 1981.

Paper discusses a large scale software factory that consists of
three physical buldings, 2000 employees, a methodology, a
software environment, and management and quality control. The
software products are for critical applications (nuclear power
stations) and there is an emphasis on using reusable code. The
software environment consists of a number of tools and techniques
that erapphasize the latter part of the life cycle (language and
library processors, editors, debuggers, etc.). The plans for the
environment include the addition of tools for the front end
(SADT, design languages, etc.).

(MetzSl) Metzger, J. J.. and Dniestrowski, A. "PLATINE: A Software
Engineering Environment". In Proceedings of SoftFair. IEEE
Order No. 83CH1919-0. July 1983.

Paper describes an environment that consists of a methodology
(the PLATINE methodology) and a set of tools (the PLATINE tools).
The environment supports the entire life cycle, is adaptable to
product size, supports different types of users, and supports

Biblio-13

12*
..■^

host/target development. The methodology consists of defining a
software structure hierarchy (software structuration) which
produces typed abstract objects which are then associated with
elements (source; listing, binary, map, nomenclature, or status).
The methodology also includes the production of software (merging
of the elements), project management, and evolution. The user
interface consists of a command language and a set of full screen
panels. The tools include LSTR (specification of real time
embedded systems, derived from PSL/PSA), SDL (system design
representation), Metacomp (YACC like), EPCS (a project management
tool based on DEC's project control system), a formatter (DEC's
runoff), a screen editor (DEC's EDT), documentor (editor from
source code), mail (DEC's), crossrf (data dictionary cross
reference), complex (a complexity measure), a configuration
controller, and a comparator.

(Myer85) Myers, W. "An Assessment of the Competitiveness of the United
States Software Industry." In Computer. March 1985, pp. 81-92.

(OsteSl) Osterweil, Leon. "Software Environment Research: Directions for
the Next Five Years." In Computer, Vol. 14, No. 4, April 1981.

Paper discusses research issues associated with software
engineering environments, in particular, the breadth of scope and
applicability, user friendliness, reusability of internal
components, tight integration of tool capabilities, and use of a
central database. A five-year research plan is presented which
includes studies of existing support systems, tool fragment
studies, data base studies, construction, and test beds for
configuring environments.

(Oste82) . "Toolpack - An Experimental Software Development
Environment Research Project". In Proceedings of the 6th
International Conference on Software Engineering, (IEEE Order No
82CH1795-4), September 1982.

An implementation of (OsteSl). Paper presents an environment
under development that concentrates on tight integration of tool
capabilities (use of tool fragments) and an underlying central
database (virtual file system). See also (Cowe83).

(Pari84) Parikh, Girish.
Priority. Reston, Virginia

Programmer Productivity; Achieving an Urgent
Reston Publishing Company. 1984.

Biblio-14

»3/

(Phis79) Phistef/ Montgomery, Jr. Data Processing Technology and
Economics. 2nd ed. Santa Monica, Calif.: Digital Press, 1979.

In this unique book, the author has collected nearly 700 pages of
technical and economic history relating to data processing
hardwre and software. The author's careful economic interpreta-
tion of technical data (through 1978) is the most thorough and
complete in the public domain. His analysis shows clear trends
that probably remain true in the 1980s.

(PrenSl) Prentice, Dan. "An Analysis of Software Development Environ-
ments". In ACM Sigsoft Software Engineering Notes, Vol. 6, No.
5, October 1981.

A paper which emphasizes the problems. The issues discussed
include lack of hardware support, high cost, user resistance to
change, and poor user interfaces.

(Ridd81) Riddle, W. E. "An Assessment of Dream." In Software Engineering
Environments. H. Hunke, Editor, North-Holland, 1981.

Paper reviews the DREAM system. DREAM is oriented to the
development of concurrent systems using DREAM Design Notation
(DDN), a language that can be used to model a total system
including hardware, software, and wetware (people, etc.). The
model reflects the externally observable characteristics of a
system and is an adequate basis for preparing implementation
plans. The DREAM system tools include a data base core that
stores DON fragments, bookkeeping tools (entry and retrieval),
and decision-making tools for paraphrasing (a re-structured
presentation), extraction (simulation), and consistency checking.
The paper concludes with lessons learned and problems for the
future.

(Ridd83) . "The Evolutionary Approach to Building the Joseph
Software Development Environment." In Proceedings of SoftFair,
(IEEE Order No. 83CH1919-0), July 1983.

Paper reviews an effort to build an environment that was cut
short due to the closing of Cray Labs. The Joseph environment
was 30% completed. The paper includes a user scenario of the
proposed environment which includes capabilities to view database
information, extract database information, perform notation-
directed editing, analyze changes, and deposit information into
the database. The paper then discusses the work that was
accomplished which includes a layered environment with UNIX at
the core, a set of integrated tools in the next layer (the

Biblio-15

/*x

■

crypt), and a requirements definition tool and a design
definition tool in the outer layer (pharaoh and oasis). Pharaoh
and oasis include viewing, notation-directed editing, and version
control capabilities of requirements and design specifications.
They use a notation that consists of keywords and description
fragments.

(Rube83) Rubenstein, Hurt L., and Carpenter, Richard A. "The Index
Development Environment Workbench." In Proceedings of SoftFair,
(IEEE Order No. 83CH1919-0), July 1983.

Paper presents a methodology and an associated environment for
building application systems (informations systtems for business
applications). The methodology divides an application system
into a dialogue manager, a database processer, an output
processor, an action processer, an extended data dictionary, and
a control monitor. The environment includes facilities for data
dictionary specification, structured graphics, screen definition,
output processing (for developing mock-ups), defining control
between components, and generic data entry. An example of the
use of the system is presented.

(Sava82) Savage, Ricky E., Habinek, James K., and Barnhart, Thomas W.
"The Design, Simulation, and Evaluation of a Menu Driven User
Interface." In Proceedings of Human Factors in Computer Systems,
Washington, D.C. Chapter, ACM, Gaithersburg, MD, 1982.

Paper discusses experiments relating to the user interface of an
environment. An analysis of human errors led to the design of a
system that provided an extensive hierarchy of menus for the
inexperienced user and a variety of shortcuts to system functions
for the experienced user.

(Shne80) Shneiderman, B. Software Psychology; Human Factors in Computer
and Information Systems. Cantoridge, Mass.: Winthrop. 1980.

Book discusses a broad range of issues related to human factors
in computers. Of particular interest to the developers of
software engineering environments are the chapters on interactive
interface issues and designing interactive systems. These
chapters cover the user interface (control), response time, text
editing, menu selection, error handling), the goals for
interactive system (simplicity, power, user satisfaction,
reasonable cost), and the design process (from a human factors
standpoint).

(Silv85) Silverman, Barry G. "Software Cost and Productivity Improve-
ments: An Analogical View." Computer. May 1985, pp. 86-96.

Biblio-16

l&

(Skel82) Skelly, P. G. "The ACM Position on Standardization of the Ada
Language." In Communications of the ACM. Vol 25, Number 2,
February 1982, pp. 118-120.

(Snow81) Snowdon, R. A, "CADES and Software System Development." In
Software Engineering Environments. H. Hunke, Editor. North-
Holland, 1981.

A review of one of the early large scale software engineering
environments. The paper presents a history of CADES dating back
to the early 1970^. CADES was established to provide a
mechanism by which information relating to the structural model
of a system could be made available to system designers early in
the development process. Underlying CADES is a hierarchical
database called Pearl. The establishment of CADES led to the
development of a structural modeling methodology: Isolate
functions, data, and constraints, produce data tree, produce
function (holon) tree, consider next level of detail, code in
Systems Description Language (SDL), and compile. Although CADES
was developed to support the earlier phases of development, the
author claims that CADES solutions are always sought for
development or production problems and there is an increasing
trend towards support for implementation.

(Solo84) Soloway, Elliot. "A Cognitively-Based Methodology for Designing
Languages/Environments/Methodologies." In Proceedings of the ACM
Sigsoft/Sigplan Software Engineering Symposium on Practical
Software Development Environments. Gaithersburg, MD, April 1984.

Paper discusses issues relating to use of an environment. In
particular, the author claims that environments should be
developed based on a methodology that derives design implications
based on tested hypotheses of why software developers work the
way they do.

(StenSl) Stenning, Vic, et, al. "The Ada Environment:
In Computer, Vol. 14, No,. 6, June 1981.

A Perspective."

A paper that reviews the objectives (i.e., life-cycle support,
open-ended environment, support for Ada, configuration control,
project team support, portability, and host characteristics) and
the architecture (i.e., the KAPSE/MAPSE/APSE approach, the
database, KAPSE functions, the user interface, intertool
interfaces, and tools) of the Ada Programming Support Environment
(APSE).

Biblio-17

/W

(Stuc83) Stucki, Leon G. "What about CAD/CAM for software? The ARGUS
concept." In Proceedings of SoftFair. IEEE Order No.
83CH1919-0. July 1983.

Paper proposes that software can be developed using a CAD/CAM
approach with the aid of a softvare engineering environment. An
overview of such an environment (ARGUS) is presennted. ARGUS is
a micro-based environment that was built on top of UNIX. Argus
is menu driven with a single key stroke approach. Six toolboxes
are available at the top level; they are the management toolbox
(scheduling tools, action item tracking tool, electronic spread
sheet, and phone list update and retrieval system), the
designer's toolbox (kernel CAD/CAM capabilities with a
graphics/forms based approach), the programmer's toolbox
(language-based, project-specific code template capability
provided by a customizable editor and language specific syntax
generation macros), the verifier's toolbox (analysis tools), and
general/utility tools (general editing and communication tools).
A noted CAD/CAM feature of ARGUS is the automatic projection of
data to documentation and code templates from the underlying
database.

(Stue84) Stuebing, H. G. "A Software Engineering Environment (SEE) for
Weapon System Software." In IEEE Transactions on Software
Engineering, Vol. SE-10, No. 4, July 1984.

Paper presents a large scale environment called FASP that is
hosted on multiple, large scale commercial computers. FASP
primarily supports the latter stages of software development, but
the extension to the requirements and design phase is discussed.
The author attributes a two-fold increase in lines per month to
FASP and an increase in software quality due to the tools,
standards, and testing associated with the environment. The
environment includes an underlying database made up of libraries:
Source library, object library, test library, interface library,
production data library, and documentation library. The system
is command driven where the commands consist of lower level
system commands (command procedures). Testing is supported by
the ATA (Automated Testing Analyzer) and there is support for
multilanguages and multitarget computers.

Biblio-18

lit

{Taj84)

(Tayl84)

Tajima, Denji, and Matsubara, Tomoo. "Inside the
Software Industry." Computer. March 1984, pp. 34-43.

Japanese

Taylor, Richard N. and Standish. Thomas A. "Steps to an Advanced
Ada Programming Environment." In Proceedings of the 7th
International Conference on Software Engineering. IEEE Order No
84CH2011-5, March 1984.

Paper presents a research environment for exploring concepts and
issues related to software engineering environments in general
and the Ada programming language in particular. The environment
called Arcturus currently includes interactive Ada (a Pascal
superset), template assisted editing, performance measurement
(histograms or color), mixed compilation and interpretation, and
an Ada program design language. Some concepts and issures being
explored include complexity (does it scale up?), AVOS (Ada
Virtual Operating System, i.e. an Ada command language), user
interface issures (an Ada shell), mixing interpretation and
compilation, layered architecture (i.e., device level, user
interface level, tool level, foundation level), and analysis,
testing, and debugging of tasking programs.

(TeitSl) Teitelman, Warren, and
Programming Environment."
1981.

Masinter, Larry. "The
In Computer, Vol. 14, No.

Interlisp
4, April

Paper presents a look at the Interlisp environment. Interlisp is
an environment for users of Lisp (a non-procedural list
processing language). The environment is very much language
dependent and is intended for use by Lisp experts. Some
representative facilities in Interlisp include: File package,
masterscope (help analyze the scope of a change), DWIM
(do-what-I-mean spelling corrector), iterative expressions, and
the programmer's assistant.

(TeitSla) Teitelbaum, T., and Reps, T. "The Cornell Program Synthesizer:
A Syntax-Directed Programming Environment." In Conmunicatibns of
the ACM, Vol. 24, No. 9, September 1981.

Paper discusses an interactive programming environment with
facilities to create, edit, execute, and debug programs written
in a subset of PL/l. Editing is syntax-directed with underlying
tree structures, predefined templates, and phrases to fill the
templates. Execution of programs can be gear-shifted forward or
backward with various controls on speed.

(Teit84) Teitelman, W., "A Tour Through Cedar." In Proceedings of the 7th
International Conference on Software Engineering. IEEE Order No.
84CH2011-5. March 1984.

Paper presents the facilities of the programming environment
called Cedar. The Cedar environment emphasizes the use of

Biblio-19

/^

parallel operation, multiple windows on a screen, and user
interaction with a mouse pointing device. The environment
supports the use of an "industrial strength" pascal-like
programming language. The tour makes stops at the display
(bitmapped and object-oriented with the use of icons), viewer
window package (supports multiple levels of windows which are
tiled on the screen), whiteboards (work windows), tioga editor
and document preparation system (supports tree structured
documents, editing with the mouse, syntax-directed templates),
user executive (programming interface), interpreter (for
debugging), automatic storage management (garbage collector),
rope (string) interface, bug tracker, electronic mail, support
for parallelism, and icon editor (pixel oriented, graph editor).

(Tomo84) Tomoharu, Mohri, et. al. "PDAS: An Assistant for Detailed
Design and Implementation of Programs." In Proceedings of the
7th International Conference on Software Engineering, (IEEE Order
No. 84CH2011-5), March 1984.

Paper presents an environment that uses a forms-oriented approach
to standardize document format and to prevent inconsistencies
between documents and programs. There are 10 types of forms for
design which are based on a forms-oriented language. The system
structure consists of a forms-oriented editing subsystem, a
document generation subsystem, a program construction subsystem
(generation is based on module algorithm descriptions), a design
database, and a component database (interchangable program
components). An interesting aspect of the environment is
automatic Japanese to English translation from algorithm
descriptions.

(WassSl) Wasserman, Anthony I. Tutorial; Software Development
Environments. IEEE Order No. EH0187-5. 1981.

Tutorial is a reference collection of 39 papers including most of
the landmark papers on software engineering environments.

(Wass83) . "The Unified Support Environment: Tool Support for
the USE Software Engineering Methodology". In Proceedings of
SoftPair, (IEEE Order No. 83CH1919-0), July 1983.

Paper presents an overview of the USE Software Engineering meth-
odology and the tools in the environment that support it. The
methodology involves users in the early stages of development and
addresses user interactions with information systems. The tools
in the USE environment include: The TROLL relational database
(underlies and is used by other tools), RAPID (rapid prototyping
tool oriented to the development of information systems), PLAIN
(a procedural language oriented to the development of information
systems), FOCUS (screen-oriented editor and browser, and IDE (a
software management and control tool).

Biblio-20

iy *

(Werl83) Werling, P R Alternative Models of Organizational Reality
The Case of Public Law B9-:-)06 I ^a Sg^jg %&) ff^f-

sihZlTfTut^Tt^ ? ^ V™*™^ of Southern California acnooi or Public Administration. 1983.

This dissertation addressed two major issues. In the first, the
economic aspect of computing, the author demonstrates that
computing cost/performance improved by more than 30 percent
annually over the years 1958-1980. During these years/a new
generation of computing technology was bom every five years.

In the second, the author questions why the Federal government
fell farther and farther behind the state of the art aftir
enactment of the Brooks Act in 1966. By 1980 Federal computers
averaged five years older than those in the private sector, and
were much less productive economically. The difficulties were
traced to fundamental discrepancies among three models of
organizational reality that describe behavior of separate groups
of public servants: a) the General Accounting Office and
regulatory agencies exhibit expectations and behavior
that correspond to the "classical management" model taught in
business schools; b); Authors of legislation and implercentinq
procedures function as though guided by the "adversary
proceedings" model (taught in law schools); and (c) Those in
operating agencies act in accordance with the "organizational
process model, taught in the school of hard knocks.

Tests of 7 substantive hypotheses showed that the "classical
management model" is useful for the first estimate of results,
while the 'organizational process" and "adversary proceedings"
models provide valuable insights for anticipating disfunctions in
implementation.

(Wert82) Wertz, Haralch "The Design of an Integrated, Interactive, and
Incremental Programming Environment." In Proceedings of the 6th
QO^™1

?"
31

Conference on Software Engineering. IEEE Order No.

82CH1795-4. September 1982.

A paper that presents the details of a proposed environment that
integrates editing, executing, and annotating programs.

(Wino79) Winograd, T "Beyond Prc^ramming Languages." Communications of
the ACM. 22:7 (July 1979), pp. 391-401. L

Paper analyses the shortcomings of programming languages as thev
exist currently, and gives possible directions for future

££?-?**. ll ^"^ OUt that just as hi1her level languages
enabled the programmer to escape the intricacies of machine order
code, the environmental approach can provide a better means to
understand and manipulate complex systems.

Biblio-21

1*9

(WirtSl) Wirth, N. "Lilith: A Personal Computer for the Software
Engineer." In Proceedings of the 5th International Conference on
Software Engineering, (IEEE Order No. 81CH1627-9), March 1981.

Paper discusses the development, features, and architecture of
the Lilith programming environment for Modula-2. The system
provides a high bandwidth between the user and the system partly
through the use of a mouse pointing device and the hardware
structure. The display is suitable for text, diagrams, or
graphics.

(WolfSl) Wolfe, Martin I., et. al. "The Ada Language System." In
Computer, Vol. 14, No. 6, June 1981.

Paper discusses the Ada Language System which io currently under
development at SofTech. The system will provide capabilities at
the MAPSE level (Buxt80). Issues relating to the development of
an Ada compiler are also discussed.

(Zelk84) Zelkowitz, M. V., et al. "Software Engineering Practices in the
U. S. and Japan." In Computer, June 1984, pp. 57-65.

Paper gives the results of an in-depth survey of 30 companies and
reveals the actual goings-on in software production. Results
show that through practices are 10 years behind research, the
tools available can narrow this gap.

Biblio-22

BIBLIOGRAPHY CROSS REFERENCE A

Categorization of References

Overview of software engineering environments;
(Bars84) (BranSl)
(BranSla) (Buxt80a)
(FIPS99) (Fisc84)
(Fran845 (Genr83)
(HausBl) (Howd82)
(HunkBl) (OsteBl)
(WassBl) i

Issues in building software engineering environments:
(Barn82) (GutzBl)
{Houg34) (Huff81)
(Mage84) (Pren81)
(Sava82) (Shne80)
(Solo84)

General software engineering environments:
(Boeh84)
(KemBl)
(Lebl84)
(Metz83)
(Stuc83)
(Tomo84)

(Hal180)
(Kuo83)
(MatsBl)
(Ridd83)
(Stue84)

Systems development environments:
(AlfoBl) (RiddSl)
(Rube83) (SnowBl)
(Wass83)

Programming
(BayeSl)
(Camp84)
(Cox83)
(Fair80)
(Fisc84)
(Houg82)
(Oste82)
(Tayl84)
(TeitBla)
(Vfert82)
(WOlf81)

environments:
(Buxt80)
(Cowe83)
(Del184)
(FeilBl)
(Guya84)
(Love83)
(StenBl)
(TeitSl)
(Teit84)
(WirtBl)

Biblio-23
ftjr

BIBLIOGRAPHY CROSS REFERENCE B

General References on
Software Engineering Environnvents

1. Branstad, Martha A. and Adrion, W. Richards, editors. "NBS Prograurening
Environment Workshop Report". National Bureau of Standards, NBS
SP 500-78, June 1981.

2. Hunke, H., Editor, Software Engineering Environments, North Holland,
1981.

3. Proceedings of the 5th International Conference on Software
Engineering, (IEEE Order No. 81CH1627-9), March 1981.

4. Proceedings of the 6th International Conference on Software
Engineering, (IEEE Order No. 82CH1795-4), September 1982.

5. Proceedings of the 7th International Conference on Software
Engineering, (IEEE Order No. 84CH2011-5), March 1984.

6. Proceedings of the ACM Sigsoft/Sigplan Software Engineering Sympsium on
Practical Software Development Environments, Gaithersburg, MD., April
1984.

|
7. Proceedings of SoftFair, (IEEE Order No. 83CH1919-0), July 1983.

8. Wasserraan, Anthony I., Guest Editor, Special Issue on Programning
Environments, Computer, Vol. 14, No. 4, April 1981.

9. Wasserman, Anthony I., Tutorial: Software Development Environments,
(IEEE Order No. EH0187-5), 1981.

.

Biblio-24

W

