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ABSTRACT

Optimum receivers for detecting binary signals in additive

colored Gaussian noise are analyzed and their performance evalu-

ated in terms of bit error probabilities (Pe). Implementation

and practical design implications of such receivers is discussed.

Evaluation of Pe for receivers that are optimum for additive

white Gaussian noise (WGN) environments but due to jamming or

"friendly" ECM interferers, must operate in a colored Gaussian

noise environment has been carried out. It was generally found

that such receivers do not perform significantly worse than

receivers specifically designed to operate in a colored noise

environment. Examples were considered in which the colored

noise interference was modeled as the output of a one-pole

filter driven by WGN. Additional work has been carried out on

the jamming of binary (colored noise) receivers using a

deterministic jammer model. While this modeling assumption

needs to be refined, it has been demonstrated that a power con-

strained jammer can seriously degrade the performance of a

receiver designed to operate in a colored noise environment.
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-I. INTRODUCTION

The theory of statistical signal detection and estimation

in the presence of colored noise is described in many text-

books [Refs. 1,2,.31. However, applications and practical

system design considerations as well as implementations based

on the developed theory are not often discussed.

There are some [Refs. 4,5,6] DOD research publications

which deal with signal reception in colored noise. None of

these publications uses colored noise thoery as developed in

textbooks or analyzes advantages and disadvantages of signal

designs that account for the presence of colored noise.

The goals of this thesis are to:

1. Discuss some practical applications that can be
derived from colored noise signal detection theory.

2. Analyze practical design implications of the theory.

3. Present advantages as well as disadvantages of using
theoretical results involving colored noise inter-
ferences as compared to results dealing with white
noise interference models.

Specifically, the following problems will be analyzed:

1. The design of a binary communication receiver in the
presence of colored noise interference when the signals
used to transmit the binary information are completely
known.

2. Design of an optimum signal set for a receiver opera-
tion under the same conditions as in 1. above.

3. Comparison of the performance of the receivers analyzed
in 1. and 2. above relative to an equivalent receiver
designed to operate in white noise interference.

12



4. Evaluation of the effect of an RF prefilter on the
performance of a binary communication receiver.

5. Evaluatien of the performance of receivers designed
$ for colored noise interference operating in the

presence of jammers.

This thesis is divided up as follows.

In Chapter II we present briefly colored noise theory and

the integral equations governing the receiver design. In

Chapter III we analyze Fredholm Integral Equations and the

techniques used for solving them for baseband signals and

bandpass signals. In Chapter IV we discuss receiver design

and performance in the presence of colored noise interference,

according to the rules of colored noise theory. We also com-

pare these results to the more conventional receiver designed

to operate in a white noise only environment. In Chapter V

we analyze the effect of using RF-preamplifiers in digital

receivers. In Chapter VI the sensitivity of this receiver is *

evaluated when operating in the presence of colored noise

interference and a deterministic jammer signal which is opti-

mum in a specific sense. Performance comparisons to equivalent

white noise environment receivers are presented. The Conclusions

and interpretations of the results obtained are presented in

Chapter VII.

31
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II. THEORY OF COHERENT SIGNAL DETECTION IN THE
PRESENCE OF COLORED NOISE

A. DETECTION IN THE PRESENCE OF WHITE GAUSSIAN NOISE

The design of coherent signal receivers in the presence

of additive white Gaussian noise (WGN) is widely dealt with

in the literature [Refs. 7,8,9,10]. The optimum receiver

(in the sense of producing minimum probability of error) for

discriminating between two different yet completely known

signals in additive WGN is shown in Fig. 2.1.

The receiver of Fig. 2.1 is optimum (i.e., minimum proba-

bility of error) when the received signal z(t) is either

Hypothesis H1 : z(t) = yl(t) + n(t) 0 < t < T

Hypothesis H0: z(t) = Y0 (t) + n(t) 0 < t < T

where Yl and y0 (t) are known deterministic signals and n(t)

is a sample function of a WGN process. For convenience we

define

Yd(t) = Yl(t) - Y0 (t)

The threshold level shown in Fig. 2.1 is given by [Refs.

7,8,9,10].

= 2 n (-P) + 1(s -E) (2.1)P 21 0

14



where

E. f y (t)dt i : o,1
0

N 0
and - is the two-sided power spectral density level of the

WGN interference. Also, P is the prior probability that signal

Yl(t) was sent.

If equiprobably and equal energy signals are transmitted,

then P = 1/2 and the threshold y becomes zero.

Assuming equiprobable signals, the performance of this

receiver is given by

P = ERFC.( EV/ ) (2.1A)

where

T 2 2

E =1 f [Y0 (t) + Y2(t)]dt = AVG Bit Energy
0

and

1 T
p = E f Y0 (t)yl(t)dt

0

The complementary function ERFC*(.) used throughout this thesis

is defined as

ERFC*(v) = j L. -x 2/2 dx
v

15
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For the so-called antipodal signals, yl(t) and y0 (t) are related

by

Yl(t) = -y0 (t)

Hence p = -1 and Eq. 2.1A becomes

P = ERFC, (V(2E)/N 0) (2.2)

It is important to notice that P e is independent of the

particular waveform shapes used. Equation (2.1A) demonstrates

that the signal-to-noise ratio (SNR) E/N0 and the normalized sig-

nal correlation coefficient p are the only factors affecting Pe.

Such will not be the case when the noise interference is colored.

B. DETECTION IN THE PRESENCE OF COLORED NOISE

In certain cases, the transmitted signals can encounter a

nonwhite colored Gaussian interference. The most common such

cases arise when:

1. Between the actual white noise source and the signal
processing part of the receiver, there are some
bandpass elements such as antennas or RF filters
which shape the noise spectrum so that it no longer
is white.

2. In addition to the desired signal at the front end of
the receiver, there is an interfering signal which
may be some ECM jammer or may be a "friendly" electronic
emitter causing interference in the communication
channel. In radar/sonar systems such interference is
frequently caused by multiple targets.

3. Multipath channel interferences arise which effectively
add a colored noise component to the channel.

16
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The basic decision model can now be specified as follows

Hypothesis H1 : z(t) = yl(t) + n w(t) + nc (t) 0 < t < T

Hypothesis H z(t) = Y0 (t) + n w (t) + nc (t) 0 < t < T

where n c(t) is the colored noise component and n w(t) is the

white noise component. Notice that a white noise component is

present in the model. It is appropriate to assume that the

interference contains also an independent white component due

to the fact that:

1. Practical systems always will contain a nonzero
thermal white noise component. Even shot noise which
is dominant in the optical range of the spectrum is
also practically a white noise.

2. As will be discussed in Appendix A, the white noise
component enables us to guarantee that our mathematical
solutions will be meaningful.

The conventional approach in the design of an optimum receiver

is to take "samples" of the received signal, express the joint

probability density function of these samples and then to

determine the limiting form as the samples are taken closer

together and their number increases to infinity. These opera-

tions become more difficult in the case of colored noise since

the samples may no longer be statistically independent [Refs.

1,2,101.

The approaches taken when colored noise interference is

present are to:

1. Introduce a "Whitening" filter to transform the inter-
ference into a white Gaussian noise so that use of

17
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the white Gaussian interference analysis to solve the
problem is possible [Refs. 1,2].

2. Use the Karhunen-Loeve expansion [Ref. 3].

The advantage of the Karhunen-Loeve expansion is that it

leads to a series of elements, the coefficients of which are

uncorrelated. These coefficients represent the signal "samples"

or components along the dimensions associated with each eigen-

function gi (t) .

Clearly both the "Whitening Filter" approach and the Karhunen-

Loeve expansion approach lead to exactly the same results.

C. DERIVATION OF THE OPTIMUM RECEIVER IN COLORED NOISE VIA

THE KARHUNEN-LOEVE EXPANSION METHOD

Let us assume that the noise is colored with covariance

function K v(t,u). We expand the noise covariance function in terms

of a set of orthogonal functions. We use the Karhunen-Loeve

expansion in which the orthogonal functions are the eigen-

functions of the integral equation

T
f K v(t,u)gi(u)du = Aigi(t) i = 1,2,... (2.3)0

We are now able to expand the received signal z(t), the signals

yi(t), i = 0,1, and the noise n(t) in the coordinate system

specified by the set {gi(t)}. That is

K
z(t) = £.i.m zig.(t) (2.4)

K-o i=l

18
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K
n(t) = £.i.m g ng.(t) (2.5)

K- i=l

K
yj = i.i.m Z Yjigi(t) = 0,1 (2.6)

K-oo i=l

where

T
Z.= f z(t)gi(t)dt i = 1,2,... (2.7)
1i 0

T
= f n(t)gi(t)dt i = 1,2,... (2.8)

T
Yji= f yj(t)gi(t)dt i = 1,2,... (2.9)

0 j= 0,1

It is reasonable to assume that the noise is zero mean. Then

E(ni) = 0 i = 1,2,... (2.10)

The covariance of n. and n. will become
i 3

T T
E(n.nj) = E[ f n(t)gi(t)dt. f n(u)gj(u)du]0 0

T T
0 f g(t) 0 K (tu) j(u) dudt (2.11)

02
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Substituting Eq. (2.3) into (2.11) yields

E(nin.) = X.. (2.12)

where 6ij is the Kroenecker delta. Equation (2.12) demonstrates

that the Karhunen-Loeve expansion leads to noise "samples"

that are statistically independent since the noise has been

assumed Gaussian.

We can now express the likelihood ratio test involving the

K signal "samples" as follows [Refs. 4,5,6]

2
K 1 1 (zi-Yli)

H exp{- - 2X. H

i=l /2>. (
A(zk(t)) =Y (2.13)

K 1 1 (zi-y0i) H
- exp{- Y 2X. 0

i=l 2-7 iT 

where y is the threshold defined by Eq. (2.1). Cancelling

common terms, taking the logarithm and letting K to infinity

yields the decision rule

'L00 Z . 00 I
"n(A(z(t))) = 1.(Y -Y i) - - i-Y i

i • _ 1 i  X1 0i

H1

< £n y (2.14)

H0

If equiprobable antipodal signals are used, then £n y = 0.

Expressing the likelihood ratio in terms of the signals z(t),

21
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Yl(t), and y0 (t) by using Equations (2.8), (2.9), (2.10),

respectively, yields

T T g.(t)g.(u)
f f [Yl(u)-y 0 (u)]z(t) 1 1 -t dugdt

0 0 i=l
+ 2- f[Y0t)0()-I~tYIU) [gi(t)gi(u) 1I

1 T T 00 ( u
+* f J [y(t)y0 (u)-y1 (t)y1 (u)I dudt 0

0 0 i< i
H0
(2.15)

We define

T Gh(t) -h0 (t) A hd(t) = g.(t)gi(u)

0 = = du
0 i= i

(2.16)

Substituting Eq. (2.16) in Eq. (2.15) yields the simplified

decision rule

H1
T T

z(t)hd (t)dt < T 0 (yl(t)hl(t)-y 0 (t)h0 (t)]dt _ y (2.17)

0 H0  0

where hd(t) is defined byEq. (2.16). The term on the right-hand

side of the inequality sign is a constant and may be considered

as a new threshold y'.

We can get a different mathematical form for hd(t) by

multiplying Eq. (2.16) by K v(t,u) and then integrating over

the interval (0,T). We thus obtain

.22
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T T T
" f K v(tu)hd(u)du f f K (t,u)(yl(u) -y0 (u))im 0 vo 0 v

gi (t)gi(u)
* . dtdu

i=1 A. 1l

- Yl(t) - Y0 (t) . (2.18)

Therefore hd(u) is now defined by the integral equation

T

f K (t,u)hd(u)du Yl(t)-y 0 (t) (2.19)

An optimum receiver structure can now be obtained as a direct

consequence of the decision rule of Eq. (2.17). Eq. (2.19)

defines hd(t) implicitly and the receiver structure is shown

in Fig. 2.2. We refer to this receiver as a "Colored Noise

Receiver." Fig. 2.2 shows that this receiver is a correlation

detection receiver much like a "White Noise Receiver," except

that the correlating signal is no longer of the same form as

that of the transmitted signal but instead is given by the

solution to the integral equation of Eq. (2.19).

D. RECEIVER PERFORMANCE
N

The performance of a binary communication receiver can be

quantified as the probability of making an erroneous decision

labeled Pe" This involves finding the probabilities that the

23
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output, I, of the correlator (Fig. 2.2) exceeds or is exceeded

by the threshold given knowledge of which signal was trans-

mitted. This can be accomplished since I is a linear combina-

tion of a Gaussian noise and therefore is a Gaussian random

variable. Thus, P e is given by

P P{H }P{I>y'jH I + P{H }P{I<yJH I

=P{H f P{11H }dI + P{H f P{IjH }dI

where P{H 0} P{H 1 are the prior probabilities of sending signal

Yor yi, respectively. Since we assume equiprobable antipodal

=1signals, PH01=P{H 1} Iand y' as defined by Eq. (2.17) is

zero. Since IIH 0 and IIH 1 are Gaussian variables, their mean

and variance only need to be found in order to evaluate the

P.e The mean value of IjIH0 is given by

T T
E{11H} = E{ f [yO(t)+n(t)Ihd(t)dt} = fYQ(t)h d(t)dt

0 G

= n0  (2.21)

Similarly

T A
E{I1H1  f 3'yi(t)h (tdt = in1  (2.21A)

0

24



For antipodal signals, that is yo(t) =-yl(t), we have

= -m (2.22)1 0

It can be easily shown that the variance of random variable

I conditioned by H 0 or H 1 is given by

T
Var{IIH I=Var{IjH 0 E{[ 0f n(t)h d(t)dtI2] (2.23)

Eq. (2.23) can be written in the form

2 =2

2 2 T
a1  f dudtyd() t m (2.24A)P

From Eq. (2.21) and Eq. (2.24) and since y' =0 for antipodal

equiprobable signals, Pe becomes

2

P1 f 1 exp{- (Ii 1) dI
e 2 y7 2 -2

2 22ara7
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A change of variables in Eq. (2.25) and use of Eqs. (2.21-2.23)

yields

= ERFC,( 1Yd(t)hd(t)dt) = ERFC*( -2ml) (2.26)

Observe that the performance,.of the "Colored noise" receiver

does dependon the signal waveforms. For white noise inter-

ference Pe was shown to be-independent of thb signal waveforms.

See Eq. (2.2).)

E. OPTIMUM SIGNAL DESIGN

Since the performance of the receiver analyzed in the

previous sections depends on Yd(t), there may be an optimum

waveform set for minimum probability of error. From Eq. (2.26)

it is clear that by making Yd(t) large, Pe can be made small.

Thus, to make the optimization problem meaningful an energy

constraint is placed on the signal set. That is, with fixed

E = f (Y2(t) + Y2(t))dtT 0

T T
S T Yd (t)h d(t)dt - v[ f (y0(t)+yl(t))dt 2E) (2.27)

0 0

is to be maximized, where p is the Lagrange multiplier. It

then follows from the calculus of variations [Refs. 1,2] that
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the optimum signal set obeys

yl(t) = - Y0 (t) (2.28)

and

T
S f Kv (t,u)yl(u)du = A Yl(t) (2.29)

or equivalently

T
f K (tlu)yd (u)du = A Yd(t) (2.30)

0

There are many solutions to Eq. (2.30) and the one which

corresponds to the minimal X. should be chosen [Refs. 2,141.

F. SUMMARY

This chapter discusses the theory of designing a receiver

in the presence of colored noise interference. Figure 2.2

shows the block diagram of this receiver and reveals the fact

that this receiver is basically a correlation detection re-

ceiver. The only difference is that the correlating signal

hd(t) which is given by the solution of the integral equation

T
S(t,U) hd(u)du = yl(t) - y0 (t) = Yd(t) (2.19)

0 v
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must be used in place of Yd(t) as is done for an optimum

receiver operating in WGN interference. The performance of

this receiver assuming equiprobable antipodal signals is given

by equation

T
P = ERFC, (t)h (t)dr) (2.26)e 4*v 0J fYd t~d t6t

The performance depends heavily on the signal waveforms.

An optimum signal waveform set is given by the solution of

the integral equation

T 1

0f K v(tu)yd(u)du =X- yd (t) . (2.30)

The design procedure of a colored noise receiver will then

* consist of the following steps:

1. Identifying the environmental noise and formulating
its correlation function.

2. Solving Eq. (2.19) for the correlating signal hd(t)
when yl(t) and y0 (t) are known.

3. If yl(t) or y0 (t) are not given, then Eq. (2.30) must
be solved first for an optimal signal set and only
then can Eq. (2.19) be solved for the optimum
correlating signal.
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III. SOLUTION OF FREDHOLM INTEGRAL EQUATIONS

A. FREDHOLM INTEGRAL EQUATIONS

As demonstrated in the previous chapter, an important

step in the design of the colored noise receiver involves

solving an integral equation in order to obtain hd(t). That

is, a solution to the following equation must be found.

T
f K (t,u)hd(U)du = Yd(t) 0 < t < T (2.19)

0 v -h-u u--~t

This equation is called a Fredholm Equation of the First

Kind. The function K (t,u), namely the noise covariance, isv

called the kernel of the equation. If the kernel of Eq. (2.19)

contains singularities, or equivalently if the colored noise

contains an additive white noise component, then Kv (t,u)

takes on the mathematical form

. N1
K (t,u) = -6(t-u) + K (t,u) (*) (3.1)Sv 2c

which when substituted in Eq. (2.19), yields

NI  T
-- ha(t) + J Kc(t,u)hd(U)du = YW(t) 0 < t < T (3.2)0

(*)Throughout this thesis, 6(t) denotes the Dirac Delta
Function.
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A

This equation is called a Fredholm Equation of the Second

Kind.

The properties satisfied by these equations have been dis-

cussed and proved in many textbooks [Refs. 2,11,12]. We shall

state here only those properties that are important to the

present work.

Property 1: If the kernel does not contain singularities

(i.e., no white noise component) a finite square integrable

solution to the Fredholm I equation will not exist.

Property 2: In this case of kernel singularities, a

solution to the Fredholm I equation will exist only if we

allow it to contain singularity functions (impulses).

The solution will then be of the form

hd(t) = h (t) + I aihhi(t) + I b 6 (k)(t) (3.3)
d i k k

where h p(t) and hhi(t) are the particular and homogeneous

solutions, respectively, to a differential equation derived

from the Fredholm I equation and 6 (k) (t) is the k-th derivative

of 6 (t) [Ref. 1].

Property 3: The solution to Fredholm equations are at

best tedious to obtain and in many cases solutions are very

difficult or impossible to obtain. In two specific cases

there is a straightforward procedure for solving Fredholm II

equations.
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1. If the kernel is separable, the solution is quite

easy to obtain [Ref. 111.

2. If the noise power spectral density is a ratio

of two polynomials, a solution can be obtained

after following a specific procedure. This situa-

tion occurs when the colored noise is the steady

state response of a linear time invariant system

excited by white noise.

In this research, we shall deal only with Fredholm II equations

for the following reasons.

1. From a practical standpoint, we do not want to deal
with the problem of trying to generate impulse functions.

2. In real physical systems there will always be some
white noise component, however small, due to thermal
effects in the electronic circuitry. One is never able
to totally eliminate the white noise component.

Also, we will deal only with colored noise having a rational

spectra since it best models the output of real physical

systems.

B. GENERAL SOLUTION TO FREDHOLM II EQUATIONS FOR BASEBAND
SIGNALS

The Fredholm II equation of interest is

N1  T
- - hd(t) + f Kc (t,u)hd(U)du = d (t ) 0 < t < T (3.2)

We assume that:

1. The white noise component has power spectral density
level N1/2 watts/Hz.
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2. The noises are wide-sense stationary (W.S.S.)

3. The Power Spectral Density (P.S.D.) of the colored noise
can be expressed as a ratio of two polynomials that are
functions of the complex variables, namely

2Sc(S) = N(s2 )

c D(s)

(0,(s) and KQ(T) are a two sided Laplace transform
pal Multiplying both sides of the above equation byD(S5 ) yields

2 2D(s2)c (s) = N(s2 ) (3.4)c

Multiplication by s corresponds to differentiation with respect

to t in the time domain. So, Eq. (3.4) becomes

D(p 2)K c(t-u) = N(p2 )6 (t-u) (3.5)

2where p = d/dt. Operating on Eq. (3.2) with D(p2 ) yields

N1

D(p 2 ) [-[ hd(t)] + f hd(u)D(p 2) [K (t,u)ldu

= D(p [Yd(t) (3.6)

Substituting Eq. (3.5) in (3.6) and performing the integration

yields

D(p 2  (t) + N(p2 ) [h(t)] = D(p 2 )yd(t) (3.7)
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Eq. (3.7) is a differential equation that must be solved

completely. In this research we deal with a simple colored

noise model in which the output of a Ist order Butterworth

filter driven by white noise is taken as the source of colored

noise. Thus its P.S.D. is given by

2
c (s )  = - 2 (3.8)D(s 2 ) -s +2

Equivalently in the time domain

Kc(T) = caE8I- (3.9)

Substituting Eq. (3.8) into (3.7) yields

2 N 1 2D(p [-It d(t)] + 2aa8[hd(t)I = D[p ]yd(t)

Operating with D(p ) yields

- -- h(t) + ( 82 + 2 c8)hd(t) = -Yd(t) +8 yd(t) . (3.10)

Eq. (3.10) is a second order differential equation. Its

solution is of the form

ht) )h +(t) + K + Kh (3.11)

where h (t) is the particular solution and hl(t) and hh2 (t)

form the homogeneous solution. Substitution of Eq. (3.11)
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into Eq. (3.2) leads to two simultaneous equations that K

and K2 must satisfy. Solving for K1 and K2 explicitly gives

the complete solution.

A similar procedure must be applied when the noise is

modeled as the output of a higher order Butterworth filter.

For such a case (Nth order Butterworth filter), the noise

P.S.D. is

2N 2
82N N(s)

=c(S ) 2N 2N - (3.12)

() +s D(s)

Substituting Eq. (3.12) in Eq. (3.2) yields

N d 2N N1 2N 2N]

_ d2 N 2N
htMl +Y(t) - (8) (t) (3.13)ddt

There will now be 2N homogeneous solutions and a particular

solution. Substitution into the Fredholm II equation will
-4.

lead to 2N simultaneous equations from which the constants

associated with the homogeneous solutions must be determined.

The complete solution for the case in which Yd(t) is

rectangular or sinusoidal is worked out in detail in Appendices

A and B. The procedure is long and tedious so that for higher

order filters numerical techniques must be utilized.
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C. GENERAL SOLUTION TO FREDHOLM II EQUATIONS FOR
BANDPASS SIGNALS

In practice, the communication signals are baseband signals

which modulate a carrier prior to transmission. The received

signals can be modeled as

Hypothesis H: z(t) =y 11jt)cos wot + n(t) 0 < t < T

(3.14)

Hypothesis H 0 z(t) yo(t)cos wot + n(t) 0 < t < T

(t) Cos W t [y My t-yo M I Cos Wot (3.15)

where w0is the carrier frequency and yl(t), and yo(t) are

the baseband signals.

The Fredhoim II equation now becomes

N1- T.
1~ hd(t) + f K (tlu)hd udu = ~t owt(3.16)

where h(t), K(t-u) represent bandpass waveforms.

The bandpass autocorrelation function K c(t,u) can be ex-

pressed as

K c (t-u) =Kc kt-u) cos W 0(t-u) (3.17)

where K~ (t-u) is the baseband autocorrelation function.
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The solution of this equation follows the same procedure

as the one used in the solution of Eq. (3.2) but is consider-

ably more tedious.

In Appendix C, we prove that if the carrier frequency w

is much bigger than the bandwidth of the noise or the band-

width of the information signals, then the solution to Eq.

(3.16) is approximated by

hd(t) hd (t)cos W0 t (3.18)

where hd(t) is the solution to the Fredholm II (Baseband)

equation of Eq. (3.2).

Since in practical cases the carrier frequency is much

bigger than the bandwidth of the data or of the colored noise,

we will only solve the Fredholm II equation for baseband signals

and will use this solution as the solution for the bandpass

case using Eq. (3.18).
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IV. RECEIVER DESIGN AND PERFORMANCE IN THE
PRESENCE OF COLORED NOISE INTERFERENCE

A. INTRODUCTION

This chapter presents the analysis of a typical case in

which the communication receiver operates in an environment

which consists of colored noise interference. This interference

can be due to an ECM jammer, a 'friendly' electronic emitter,

or some multipath interference. This chapter presents the

design of the colored noise receiver which is optimized to

the presence of the interference. The performance of this

receiver is analyzed and compared to the performance of a

coherent digital communication receiver (designed for white

noise only interference) operating in the same environment.

The most important parameter in the design procedure is the

interference P.S.D. This fact creates problems when designing

a colored noise receiver whose function is to suppress hostile

interferences. However there are many applications in which

the P.S.D. of the colored noise is either known or can be

measured sufficiently accurately. A typical such application

occurs when a digital communication receiver has to operate on

board a ship or an aircraft in the presence of other friendly

emitters such as radars, ECM transmitters, or navigational

equipment. Those emitters whose characteristics are known,

often cause significant degradation in the quality of the

digital communication channel. Even multipath interference can
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be measured and modeled as colored noise interference whose

power spectral density or autocorrelation function are known.

The results of this chapter demonstrate that in such situations,

utilization of a colored noise receiver with "proper" signal

waveforms can improve the Pe performance.

B. THE MODEL

The system model consists of a digital coherent communica-

tion receiver operating in the presence of both colored noise

and additive white noise interference as shown in Fig. 4.1.

Both noises are assumed Gaussian.

The signals are binary, at baseband, and encounter baseband

interference. Extensions to bandpass signal analysis is

straightforward, given the results described in Chapter III,

Section C.

The colored noise source block diagram is shown in Fig. 4.2.

This is the typical block diagram of a noise jammer [Ref. 13].

The output P.S.D. of the colored noise source is

No
N c(f) = - H(f)H*(f) (4.1)

where H(f) is the transfer function of the amplifier chain.

For the sake of simplicity, we model the amplifier chain as a

one-stage amplifier of gain G followed by a first order Butter-

worth filter with 3 db bandwidth 2a. If the input to that

source is a white noise with P.S.D. level N6/2, then the output

P.S.D. is

38

:A,



Colored Noise

Signal -x dt >or -

Yl or Y0 n (t) h t) Y Yloz

4d0

Colored Noise
hite Noise Receiver

N1

2

Figure 4.1 Colored Noise Receiver and Colored
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, N6 2  2 N 0 222 2 2  (42)
-s +a62  +a 2

where

0 22- -7-G (4.3)

The P.S.D. can also be written in accordance with the nota-

tion of Appendix A as

2aa

c (s )  = 2 2 (4.4)
-s +8

where

-N

In the time domain, the autocorrelation of the colored noise

is given by

4. K (t) - a exp(- 8 Lii) (4.6)

and the power of the colored noise is given by

NO0
P = Kc(0) = = -- 8 (4.7)

One should notice that since a constant power source is

assumed, an increase in the bandwidth 6 must be accompanied by
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a drop in the gain G so that P. in Eq. (4.7) will remain

unchanged as 8 is varied. The colored noise receiver struc-

ture is shown in Fig. 4.1.

The input to the receiver is

Hypothesis H0: z(t) = y0 (t) + nc(t) + nw(t)
0( <0 <t <T

Hypothesis Hi: z(t) = Yl(t) + nc(t) + nw(t)

where ylM and y0 t) are defined as

Y0(t) (4.8)

'0 0 > t, t >T

A 0 < t < T

yl(t) = (4.9)

0 0 > t, t > T

and for convenience we define (as before)

Yd(t) = yl(t) - Y0 (t) (4.10)

C. RECEIVER DESIGN FOR RECTANGULAR PULSES

As discussed in Chapter II, the optimum receiver is (as

can be seen in Fig. 4.1) a correlation detection receiver.

The correlating signal, hd(t), is the solution of the

Fredholm II Integral equation
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N1  T
- -hd(t) + f K (t,u)hd(u)du Yd(t) (3.2)

2a - c d~ud dt

The detailed solution of Eq. (3.2) for the specific autocorre-

lation function and signals given by Eqs. (4.6) and (4.8), (4.9)

respectively, is worked out in Appendix A. The solution is

given by Eq. (A.13), namely

1 t) = C(I + Kl1 t + K2Yt) 0 < t < T (A.13)

where KI, K2, C, and y are constants defined by Eqs. (A.15),

(A.16), (A.17) respectively. Defining now

A N
m = + NI (4.11)

where No is given by Eq. (4.3) and N1/2 is the white noise

P.S.D. level and also defining

E = T (4.12)

where T is the length of the integration time in the receiver,

it is now possible to specify hd(t) in compact form. Observe

that the factor l/T can be interpreted as the bandwidth of

the receiver, so that E can be viewed as the ratio of the

interference bandwidth to the receiver bandwidth. Substituting

into the results of Appendix A the above definitions as well
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as the definition of a as given by Eq. (4.5), we can express

hd(t) as a function of A, NOA, N1 , ml, and E as follows

4AC N +N1  (4.13)

-Eml ml-1 -2
.' r (ml+l) [En, + ml-l -2Eml]

K1  m+ rn-i 12E1  (4.14)

L m1 -1 m1+l -'

ml+l -Em I(m 1-1) CE- + 1

K (4.15)
1+1 -2Em1 m1 -1M + -m+

1 1

+Smlt-SmltKt)= C + C + CK2e (4.16)
hd (t K1 + K2 6 4.6

Ignoring the constant of proportionality C, it is easy to

see that hd(t) is a function of m1 and E. Using Eqs. (4.7),

(4.11), (4.12), m1 can be written as

ml N + 1  $N 8IA2T - E

"" where

P. A 2T
JSR 1 ,2SNR - (4.18)14S

2 N

A 1
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The factor JSR is the ratio of the jamming power to signal

power. The factor SNR is the ratio of bit energy to white

noise power spectral density level. This factor can also be

interpreted as the signal to noise ratio. The product

(JSR) (SNR) represents implicitly the ratio of the interference

power to the white noise power at the input to the receiver.

It is independent of the signal power.

Figure 4.4 presents a plot of hd(t) as a function of time

normalized to T for (JSR) (SNR) = 1, and different values of

E. Figures 4.5 and 4.6 show similar plots for different

(JSR)(SNR) values with E as a parameter.

These figures show that decreasing the interference power

or increasing E tend to make the colored noise interference

less dominant in comparison to the white noise. Effectively

this makes the receiver behave very much like a white noise

receiver. It is not particularly difficult to design a system

whose output will be hd(t). Such an implementation is suggested

in Appendix D. Furthermore, there are now programmable signal

generators in the commercial market. However we should be

aware that hd(t) depends on:

1. The colored noise autocorrelation function, and signal
waveform.

2. The colored noise power relative to the white noise
power.

3. The colored noise bandwidth relative to receiver

bandwidth.

These factors must not only be known but must also remain time

independent, unless adaptive techniques are used. This would
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otherwise seriously complicate the electronic circuitry. These

hd(t) dependencies cause significant constraints on the application

and use of colored noise theory to receiver design problems.

D. RECEIVER DESIGN FOR OPTIMAL PULSES

Colored noise theory results demonstrate that the per-

formance of the optimal colored noise receiver, unlike the

white noise receiver, depends on signal waveforms y0 (t) and

yl(t). The optimal choice for y0 (t) and yl(t) is obtained as

a solution of the integral equation given by Eq. (2.30). W3

now assume that the model described in Section IV.B is valid

except that the binary communication signals are no longer

rectangular pulses but can be chosen by the system designer.

In other words the system designer has one more "degree of

freedom." In order to determine the optimum waveforms to

be utilized by the system designer, we solve the integral

equation of Eq. (2.30) for the case in which the kernel is

defined by Eq. (4.6). The solution is worked out in detail

in [Ref. 14] and consists of a set of cosines and sines of

frequencies bi which are the solutions

b.
(tan biT + --)(tan biT - = 0, i = 1,2,... (4.19)

There is an infinite number of solutions to Eq. (4.19). Since

antipodal signaling can be shown to be optimum, we choose

one solution for yl(t) and y0 (t) given by
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Yl(t) = A sinbt 0 < t < T

Y(tY- = -A sinbt 0 < t < T

(4.20)

Yd(t) = 2A sinbt 0 < t < T

Yl(ty = Y0 (t) = 0 t > T or t < 0

and analyze its effect on receiver design and performance.

Having specified Yd(t), the correlating signal hd(t) must be

found as a solution to

N0  T
- - hd(t) + f K (t-u)h (u)du = 2A sinbt . (4.21)

0 c d0

The detailed solution of Eq. (4.21) is worked out in- Appendix

B- The solution is given by Eq. (B.6), namely

hd(t) = 0 sinbt + CKICYt + CK2 -Yt (B.6)

0 <t <T

where K1 , K2, C, and y' are defined by Eqs. (B.8), (B.9), (B.5)

and (A.17) respectively. With mI and E defined by Eq. (4.11)

and Eq. (4.12) respectively, we can express hd(t) as a function

of A, No, NI , M 1, E, and b/8, the latter being the ratio of

the signal's frequency to the bandwidth of the interference.

Thus, the constants of Eq. (B.6) are given by
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b 2

- 4A((-F) +1] (4.22)
NO +91 + bN( .

b -Em -2Em 1

K [sin bT + () cos bT] (ml+1)E -( i)-1)r (4.23)
1b2 mi+1 rn-i 2Em1

11 = 1.3

+ (t) IJ-- -
.':' [i + (--)2 m rn-i mll - E l

b"- -Em1  b
2 01 -( ) (m+ 1 l) + (ml-l)E [sin bT + - cos bT]

m K =+ (4.24):.[i+(2- 2] mi +  2E I m-_l
1+ 1

Ignoring the constant of proportionality C, it can be seen

that hd(t) is a function of mi, E, and [Notice that
dS

sin bT can be expressed as sin( T) = sin(!!E).] The meaning

of the factors m I and E has been discussed previously. Fig.

4.7 is a plot of hdt) as a function of time normalized tod

T for (JSR)(SNR) = 1, b/5 = 1 and various values of E. Fig.

4.8 is a similar plot except that (JSR)(SNR) = 10. Figs. 4.9-

4.12 are repetitions of Figs. 4.7 and 4.8 for various values

of b/8.

E. PERFORMANCE OF THE "COLORED NOISE RECEIVER"

Once the colored noise receiver has been designed, its

performance must be evaluated. This section analyzes the

performance of the colored noise receiver designed for the

detection of rectangular binary signals.

The performance of a colored noise receiver with equi-

probable binary antipodal signals was derived in Chapter II.C,
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and its probability of error is given by Eq. (2.26), namely

1fT 1/2
P ERFC*(- 4 Yd (t)h d(t)dt) (2.26)

If we substitute Yd(t) as defined byEqs. (4.8) and (4.9) and

substitute h d(t) as defined by Eq. (4.16), we obtain

1 ,T 8A 2  am 1t 4K-am 1t 1/2
P ERFC*(- f jj- ( .4Klc 2K Cdt) (4.25)

am T

-EF 2A 2 T K 1 (C -1)

N (1 +
1 +K 2 (1 -E- 1 )T )1/2

Substituting Eqs. (4.12)-(4.16) in Eq. (4.25) yields

2(SNR) 2-m.l 4 2E m14.1) 1/2

(4.26)

observe that if E becomes unbounded, or equivalently if the

*l colored noise has such a large bandwidth that its P.S.D. level

is nearly zero for all frequencies, then the colored noise

receiver should reach the performance of the white noise

receiver. Indeed, letting E -~in Eq. (4.26) yields
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P = ERFC (2SNR)1 2  (4.27)
e (

where Eq. (4.27) is the same as Eq. (2.2) for the white noise

receiver.

Figs. 4.13 and 4.14 show the performance of this receiver

for SNR = 10 and SNR = 1 respectively, for various values of

JSR. It can be easily seen that as JSR increases, Pe increases

also. In fact, if we define P = 103 error/bit as the maximume

probability of error tolerable, looking at Fig. 4.12, one can

say that the receiver will not function properly for JSR

greater than-12db. These graphs show also the effect of

increasing E. Increasing E spreads the jamming power over

larger frequencies thus making the P.S.D. level lower at all

frequencies. This causes a decrease in the amount of channel

interference which in turn causes an improvement in the

receiver performance.

F. PERFORMANCE OF THE WHITE NOISE RECEIVER

In order to better understand the performance of the

colored noise receiver, it is desirable to compare its per-

formance to that of the coherent digital white noise receiver

when both operate under the same conditions. In other words,

we deal with the model described in Section B. However, the

colored noise receiver of Fig. 4.1 is replaced by the white

noise receiver of Fig. 4.3.
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The input to the receiver is

Hypothesis H0: z(t) = Y0 (t) + nc(t) + nw(t)

0w
0 <t <T

Hypothesis HI: z(t) = Yl(t) + nc(t) + n (t)
C w

where y0 (t) and yl(t) are assumed to be two antipodal signals.

The input signal z(t) is correlated with the signal yd(t)/2V s,

where E is the energy of each signal. That is,

T T2

= f y2(t)dt f y2(t)dt (4.28)
0 0

The receiver generates the statistic £, which is a Gaussian

random variable. Its mean under both hypotheses is given by

T
E[RIHII = E[- f yl(t) [y 1 (t) +nc (t) +nw (t) ]dtl

/s 0

T

1E- o td s (.9
S

E[XiH 0] = -V (4.30)

Eqs. (4.29) and (4.30) were derived under the assumption that

both noises are zero mean. This assumption is reasonable

given the physical sources of most noises.
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The conditional variance of i is given by

Var[t1H 11 = E[(L-E(ZlHI)) 21HI]

- E{(T y1 (t)

E{( _(y(t)+nc(t)+nw(t)dt -V'fdt (4.32)
s

f- fTfYl(t)Yl(T ) [E{nc(t)nc(T) }

s 0 0

+ E{n w(t)nw (T)} + E{n c(t)nw (T)}

+ E{fc (T)(n ( ]dt dT
c w

Since nc (t) and nw (t) are assumed to be statistically indepen-

dent zero mean random processes, we have

E[nc (T)n w(t)] = E[n c(t)n w(T)J = 0 (4.33)

Furthermore

N
Ein (t)n (i0] = - OtT (4.34)

c c 4

and

NO
E{nw(T)nw(t)} = --- (t-t) (4.35)
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Substituting Eqs. (4.33), (4.34), (4.35) into Eq. (4.32)

yields

0A 2j-t 1
Var[9.jH] f f 4 +A -2(-)d (4.36)

Performing the integration yields

Var[~.J!I + 2E-l + exp(-E)1  47

where E is defined by Eq. (4.12).

Applying the same procedure for the evaluation of

Var[R.1H0  we can easily show that

Var[ZIH 1] VarL[IH 0] . (4.38)

Knowing the statistical behavior of Z, the performance of the

receiver can now be derived. We obtain

P ERFC*{VN N (4.39)

e N

ERFC*f N~lepE

N E

The ratio N0/IN 1 can be written (using Eq. (4.18)) as
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2I
N0  4P, 4P .A2T

N 8N 1  NA2 T  4 (!i) -2) = -(JSR)(SNR) (4.40)
N 1 N _N A2 T A2 N1E

Substituting Eqs. (4.18) and (4.40) into Eq. (4.39) yields

ER.FC{'2 SNR
Pe ERFC, 2Ni (4.41)

e *Vl +4(JSR) (SNR) [E-1 +exp(-E)]/E 2

Eq. (4.41) specifies the performance of the white noise receiver

in the presence of colored noise interference as a function

of signal to noise ratio, jamming (or interference) power to

signal power, and E, which is defined by Eq. (4.12). As

previously stated, E is the ratio of interference bandwidth

to receiver bandwidth. Figs. 4.15 and 4.16 show the performance

of the white noise receiver for SNR = 10 and 1, respectively,

at various values of JSR and E. If we compare these figures

to Figs. 4.13, 4.14 which show the performance of the colored

noise receiver that has been optimized to the specific inter-

ference, we reach the conclusion that the performance of both

receivers is almost the same. In fact, due to the limited

resolution of the figures, one can hardly notice any differ-

ence in performance at all. In order to show the actual

differences in performance, Tables 4.1-4.5 present numerical

values for the performance of both receivers under various

conditions. The tables show that the colored noise receiver

always has better performance. However, this performance

improvement is in the order of a few percent in the best

cases.
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Table 4.1

SNR =-10.0 JSR =0.1

E P Colored P White Ratio of Pe e e

0.1 0.0043 0.0043 0.9997

0.5 0.0031 0.0031 0.9950

1.0 0.0021 0.0021 0.9859

1.5 0.0014 0.0015 0.9774

2.0 0.0010 0.0010 0.9712

2.5 0.0007 0.0008 0.9676

3.0 0.0006 0.0006 0.9661

3.5 0.0004 0.0004 0.9661

*4.0 0.0003 0.0003 0.9671

4.5 0.0003 0.0003 0.9689

5.0 0.0002 0.0002 0.9709

Table 4.2

SNR =10.0 JSR =1.0

E Pe Colored P eWhite Ratio ofP

*0.1 0.1594 0.1595 0.9993

0.5 0.1434 0.1450 0.9892

1.0 0.1249 0.1284 0.9728

1.5 0.1089 0.1136 0.9586

2.0 0.0952 0.1005 0.9477

2.5 0.0835 0.0889 0.9400

3.0 0.0736 0.0787 0.9348

3.5 0.0651 0.0698 0.9315

34.0 0.0577 0.0621 0.9298

4.5 0.0514 0.0553 0.9292

5.0 0.0459 0.0493 0.9294
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Table 4.3

SNR =10.0 JSR =10.0

E P Colored P eWhite Ratio of P

0.1 0.3733 0.3736 0.9991

0.5 0.3631 0.3657 0.9930

1.0 0.3511 0.3560 0.9865

1.5 0.3401 0.3465 0.9816

2.0 0.3298 0.3372 0.9780

2.5 0.3203 0.3283 0.9755

3.0 0.3114 0.3198 0.9738

3.5 0.3030 0.3115 0.9726

4.0 0.2951 0.3036 0.9719

4.5 0.2876 0.2960 0.9715

5.0 0.2805 0.2887 0.9713

Table 4.4

SNR =1.0 JSR =10.0

E Pe Colored P e White Ratio ofPe

0.1 0.3763 0.3763 0.9999

0.5 0.3681 0.3690 0.9978

1.0 0.3580 0.3600 0.9945

1.5 0.3484 0.3513 0.9917

2.0 0.3394 0.3429 0.9897

2.5 0.3311 0.3350 0.9884

3.0 0.3233 0.3274 0.9875

3.5 0.3161 0.3202 0.9871

4.0 0.3093 0.3134 0.9869

450.3029 0.3069 0.9870
5. .990.3008 0.9872
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Table 4.5

- SNR = 1.0 JSR = 1.0

E P Colored P White Ratio of Pe e e

-. 0.1 0.2033 0.2033 1.0000

0.5 0.1936 0.1937 0.9993

1.0 0.1826 0.1830 0.9979

1.5 0.1730 0.1735 0.9967

2.0 0.1647 0.1653 0.9959

2.5 0.1574 0.1582 0.9954

3.0 0.1512 0.1519 0.9952

3.5 0.1457 0.1464 0.9952

4.0 0.1410 0.1416 0.9954

4.5 0.1368 0.1374 0.9957
5.0 0.1330 0.1336 0.9960
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One must conclude that under the given conditions, the colored

noise receiver does not perform significantly better than the

white noise receiver. The next logical step is to choose r

optimum signals and determine whether the colored noise

receiver affords greater performance improvement over a white

noise receiver operating in the same environment.

G. PERFORMANCE OF THE "COLORED NOISE RECEIVER" WITH

OPTIMUM WAVEFORMS

As has been demonstrated the colored noise receiver does

not perform significantly better than a white noise receiver

for the signal choice of the previous section. However, the

performance of a colored noise receiver, unlike that of a

white noise receiver, depends on the signal waveforms. In

this section we use the optimum signal waveforms derived in

Section D (Eq. (4.20)) and analyze the performance of the

receiver which is designed to match these waveforms.

The performance of the colored noise receiver with

equiprobable binary antipodal signals is given by

P = ERFC,(! f Y (t)h (t)dt) 1/2 (2.26)

where Yd(t) was defined by Eq. (4.20), namely

yd(t) = 2A sinbt . (4.20)
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The correlating signal hd(t) is defined by Eq. (B.6) and

repeated here for convenience

hd(t) = C sinbt + CK + CK EYt (B.6)

": where the constants C, KI, and K2 are defined by Eqs. (4.22),

(4.23), (4.24) respectively.

Substituting Eqs. (4.20) and (B.6) into the integral of

Eq. (2.26), yields

T 1/2
Pe ERFC,( 1  f 2A sinbt[C sinbt +CKICYt +CK2C-ItIdt )

(4.42)

Evaluating the integral yields

T sin 2bT K1E RFC*{ACI( 1+ybTb + 2[y sinbT-b cosbT]y2 +b

K E-T K -yT 1/21 2 2+ 2 + b2  2 (Y sinbT -b cosbT)] I+y2 +b2  y2 +b +b2

.4. (4.43)

We define a normalized frequency S,

Nb
E (4.44)

The normalized frequency S is the ratio of the signal frequency

to the noise bandwidth. Notice that when dealing with bandpass

71
* :4



V

signals, this is the ratio between the frequency of the

modulation to the noise bandwidth.

Using Eqs. (4.44) and (4.12), the factor bT can be

written as

bT= 8 T = bE . (4.45)

Also, using Eqs. (A.17) and (4.11) yields

yT = m aT = mE (4.46) V

Substituting Eqs. (4.46), (4.45), (4.44) and (4.22) into

Eq. (4.43) yields

22 T sin 2  -2,lEm2

2b 1 2 1 [ in RE-cs bE + be
ENml

0  
(1-si2E

N1

,

Sun 2K- E4.E 1 sinE .40xosE) t 2 (4.47

The signal energy E is given by

2
As T Elsin 2bE 1(4.48)

2bE

Substituting Eqs. (4.48) and (4.40) into Eq. (4.47) yields
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Pe ERFC* 2SNR F1 +2K, msinbE -~ U ooSEFePe= EF,4JSR)I(SN +1i 2 i b

E 5 E +E;2)(1  (.

2&E

+Kb - c (m, sinbE +FcosE) (.9
+22  2 2 snE

E(m1 +5) (1-

The constants KI, K2 are defined by Eqs. (4.23) and (4.24).

Eq. (4.49) is a rather formidable expression. It can be

calculated by a computer.

Figs. 4.17 and 4.18 show the performance of the colored

noise receiver matched to sinusoidal waveforms, for SNR = 10

and E = 1.0 as a function of T. They also show for comparison

purposes the performance of the colored noise receiver matched

to rectangular pulse waveforms. The important conclusion one

can draw is that by increasing 5, the performance of the

colored noise receiver matched to sinusoidal waveforms improves

significantly.

Consider the following numerical example by referring to

Fig. 4.17. For SNR = 10 and JSR = 1 the colored noise receiver

matched to rectangular pulses has Pe = 0.15. The colored

noise receiver matched to sinusoidal pulses has a Pe = 0.065

for the same JSR and SNR values and b = 1. This represents

a significant improvement however neither receiver can function

properly at such a high Pe" Increasing the signal frequency

up to S = 6 causes Pe to drop to a value of 10-3 . Now the
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latter receiver can operate properly even under severe

jamming conditions. Notice that in spite of the fact that

the signal frequency has been increased, the signal energy

collected by the receiver is not decreased by as much as that

of the interference. Thus receiver performance improves.

One must conclude that it is best to increase signal frequency

as much as possible until hardware constraints are reached.

Figs. 4.19 and 4.20 show data similar to that presented in

Fig. 4.17 except that now the interference bandwidth is much

smaller. Nevertheless, similar conclusions can be reached.

H. PERFORMANCE OF THE WHITE NOISE RECEIVER WITH SINUSOIDAL

PULSES

As was demonstrated in the previous section, the use of

sinusoidal optimum pulses significantly improved the per-

formance of the colored noise receiver in comparison to the

performance when rectangular suboptimum pulses are used. In

this section we evaluate the performance of the white noise

receiver with sinusoidal pulse signals in order to determine

9whether the improvement discussed above for the colored noise

receiver also occurs for the white noise receiver. The white

noise receiver performance in the presence of white noise is

independent of the signal waveform. However when an additional
,..

,* (colored) interference is introduced, the performance of the

receiver is affected by the signal waveforms as will be

demonstrated in the sequel.
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..

The inputs to the receiver are:

Hypothesis H0 : z(t) = Y0 (t) + nc(t) + nw(t)

O<t<T

Hypothesis H1 : z(t) = yl(t) + nc(t) + nw(t)

The signal waveforms are

Yl(t) = A sin bt

(4.50)

Y0 (t) = -A sin bt

so that

Yd(t) = 2A sin bt (4.51)

The energy per bit is given by

T T 2  T 2 2
Es = 0 yl(t)dt = y0 (t)dt = f A sin btdt

0 0 0

A2 T sin 2bT
=2[i - 2bT] (4.52)

The statistic k generated by the receiver has a conditional

mean given by Eqs. (4.29) and (4.30).

The conditional variance is given by substituting Eqs.

(4.33), (4.34), (4.35) and (4.50) into (4.32). Performing the
substitution yields
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T T NNVaW 1 2 sibtsnb _._ E-St-TI +2L. -T)IddVafiH] -f f A 2ibsnt

N T T 2N 0 1

2 -~+ f f A sib ib t-

2 4E 0

+' f sin bT E(TtdT]dt *(4.53)

t

Performing the integration and substituting Eq. (4.52) yields

N1 + 0 ~ sin bT
Var[ZIH 1 3 -2 2 2~ Y2 [l + snbT (4.54)

+ ib E( 2T

where E is defined by Eq. (4.12).

Applying the same procedure for Var[Z4H1 yields the

same result as Eq. (4.54). Thus

Var[2.JH] = Var[ZjH 0] (4.38)

The performance of the receiver can now be calculated

from
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E
Es (4.56)

e N 2o 2
SP2 sin bT

[i 2+b2  E sin 2bT, 1B l- 2bT )

2E s/NI
ERFC* NO N_2_2

1 221 sin bT
N, E2I sin 2bTI- +bE - 2bT 

Substituting Eq. (4.49) yields (4.57)

= RC*$2(SNR) 2457
+4(JSR)(SNR) 1 + sin 2bT' .'E + ( 2 I

Elsin 2bT

Eq. (4.57) specifies the performance of the white noise re-

ceiver with sinusoidal pulses in the presence of white and

colored noise interference, as a function of SNR, JSR, E

(defined by Eq. (4.12)), and (n-) which is the ratio of the

* . signal modulation frequency to the bandwidth of the inter-

- ference. Figures. 4.21-4.25 show a comparison of the perfor-

mance of the receivers analyzed. That is, the white noise

receiver and the colored noise receiver, both with sinusoidal

pulse waveform and with rectangular pulse waveform inputs.

By analyzing these figures, one can reach the following

conclusions:

1. For narrow-band interference like the one shown in

*" Fig. 4.21 (E = 0.1), the colored noise receiver matched to
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sinusoidal pulses performs much better than the white noise

receiver with a similar input. Let's define an improvement

factor, I,

P e,1
* P

Pe,2

where Pe,l is the performance of the former receiver and Pe,2

is the performance of the latter receiver.

Looking at Fig. 4.21, one can see that for low modulation

frequency (b), the improvement factor is significant and can

reach a value of 30. As the modulation frequency increases,

the improvement factor decreases. At very high modulation

frequencies both receivers have almost equal performance as

can be seen in Figures 4.23, 4.24, 4.25.

2. For low modulation frequencies, the white noise receiver

with sinusoidal pulse input performs worse than the white

noise receiver with rectangular pulse inputs.

3. When JSR increases without bound, both receivers are

driven into saturation and the improvement factor decreases

as can be seen from Fig. 4.22.

4. As the bandwidth of the interference increases, the

*improvement factor decreases as can be seen from Figures 4.21,

4.23, 4.25. However the colored noise receiver exhibits

better performance than the white noise receiver with similar

inputs.
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V. RF PREFILTER--COLORED NOISE THEORY ANALYSIS

A. INTRODUCTION

As discussed in Chapter II, a common source of nonwhite

Gaussian noise in the communication channel is the presence

of a bandpass element between the transmitter and the signal

processing sections of the receiver. The most common such

bandpass element is a low noise RF preamplifier used to

improve the sensitivity of the receiver.

In this chapter we analyze the effect of this RF preampli-

fier, using some of the methods and results previously derived.

The analysis will be done for two different cases.

1. The ideal case in which the noise figure of all the
elements in the receiver is equal to unity.

2. The more realistic case in which the receiver components
have noise figures that are greater than unity.

B. THE MODEL

In this chapter, two receivers will be analyzed and their
performances will be compared. The first receiver is a

binary coherent digital receiver. This receiver is optimum

for discriminating between signals received in an additive

white Gaussian noise environment. The input to this receiver

consists of the information signals with the additive white

Gaussian noise having P.S.D. level N0/2. This receiver is

described by Fig. 5.1. The second receiver is described by

Fig. 5.2. It consists of an RF preamplifier at the front end
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of the receiver. We assume that the preamplifier has a

transfer function given by

H(f) F2= f (5.1)

The input noise power spectral density level is N0/2. The

RF preamplifier produces a colored noise component due to

the white input noise, having power spectral density given by

N 0 G2  2
4c(s) = G (s =j2nf) (5.2)

It is reasonable to assume that at the input of the correlator

there is also an additive white Gaussian noise component due

to the front end thermal noise.- The total noise P.S.D. at

the input to the correlator is thus

NN 2
0 0 2 2

(s)= (S) + +-- - + 2  (5.3)

Observe that the information signals are distorted by the

preamplifier and therefore the output of the preamplifier no

longer psduces signals y0 (t),or yl(t), but rather y;(t) or yi(t).

Clearly y(t) and y;(t) are the result of convolving yl(t)

and y0 (t) respectively with the preamplifier impulse response.

The receiver described in Fig. 5.2 is optimum for dis-

criminating between y6(t) and yi(t) provided hd(t) is appro-

priately chosen. The autocorrelation function of the total

noise is given by
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0 0  2
K (T) 2 76 (T) + -4OG exp(-aITI)

The power of the colored noise component is given by

Observe that unlike the model of Chapter IV, Pc is no longer

constant. When 8 changes, P is changed also.C

C. RECTANGULAR PULSE RECEIVER DESIGN

Assume the input signals to the RF preamplifier to be

A a 0 <t <T

Yl(t) = (5.5)

0 T <t, t <0

S-A 0 <t _T

I 0 T < t, t0t < 056

so that

i 2A 0 <t <T

Yd(t) = (5.7)
t0 T < t, t < 0

Since the impulse response of the preamplifier is

h(t) = GE u (t)
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- '. then

n -a
2AG(1 -E - ) 0 < t < T

yA(t) = (5.8)

0 t < 0, t > T

where

Yd(t) = h(t) * yd(t)

The correlating signal in the colored noise receiver is the

solution to the integral equation

N 0 T N G2
2 hj t) + -4 G exp(-aIt-ul)hd(u)du y'.(t) 2AG( -

(5.9)

The solution to this Fredholm equation is somewhat more compli-

cated than the one worked out in Appendix A due to the fact

that the function on the right hand side of the integral

equation is no longer a constant whose derivatives are zero,

but rather an exponential function. The detailed solution

to Eq. (5.9) is worked out in Appendix E.

The correlating signal hd(t) is given by

+ mlt - m.t
hd(t) = C + CKIE + CK2C (5.10)

where
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Z~L.

4AG
C N (+G (5.11)

N 0 (1 )G

M = + +G 2  (5.12)
1

1EmI  ml-1 -2Em 1
(ml+1) [E - C+

K = (5.13)
ml+l ml- -2Em 1

11ml-i m+lE

1 1
-EmI  ml+l

(ml-l) [ 1 l1

K2 = m ml-l 1 (5.14)
42 rn-i m___1 -2Em

Ignoring the constant of proportionality, it is easy to see

that hd(t) is a function of G and E only. Recall that G is

the gain of the preamplifier and E is the ratio of the preampli-

fier bandwidth to the receiver bandwidth.

Fig. 5.3 shows a plot of hd(t) versus time normalized

to the pulse width, for various values of E and G = 20 db.

In practical design, however, the preamplifier bandwidth will

not be much different than the correlator bandwidth. Fig. 5.4

shows again hd(t) for various values of E with G = 0 db. The

white noise component in this case is dominant causing the

correlating signal hd(t) to be almost flat. This is in agree-

ment with known results on the correlation operation for

receivers operating in white noise interference only with

constant pulse input.
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D. RECEIVER PERFORMANCES--THE IDEAL CASE

In this section the performance of the receivers shown

in Figs. 5.1 and 5.2 is analyzed.

The performance of the colored noise receiver with equi-

probable binary signals is given by Eq. (2.26).

OERFC( fT 1/2 (2.26)

e y (t)h d (t)dt)

If we substitute y'(t) as given by Eq. (5.8) and hd(t) as

given by Eqs. (5.10)-(5.14), we get

P ERFC,(T f 8A2G2 ( - ) (1 +K C  +K 2  )dt)

4 10 TN 0( +G2 (

(5.15)

Evaluating the integral yields

2 mlE (m-l) E -m1 E
2A (;2T - l- EE ____ _____KC-1 1-

Pe =  M M*C (1 +_. E m 1 E -E(ml1)-i

-E (m1+1) 1/2
+1(2€ E(+ 1 )- (5.16)

Since A2 T/N0 can be interpreted as the SNR, we obtain

2SN RG2 ( -E + (m 1 - +K 1--mlE

Pe = (1 E(rT-l-l)- 2
-+)E l1 +i) ]1/2

, E(% _+z1)

+ K2 (5.17)
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where K1 and K2 are defined by Eqs. (5.13) and (5.14). The

white noise receiver performance for equiprobable antipodal

signals is given by

Pe = ERFC,[/2-SNR]

Fig. 5.5 shows a performance comparison between the two re-

ceivers for G = 50. It is clear that both receivers perform

equally as well. The addition of the preamplifier did not

improve the performance of the receiver of Fig. 5.2.

E. RECEIVER PERFORMANCES--PRACTICAL CASE

In the previous section we assumed the system analyzed

consisted of only ideal components. These components didn't

contribute any noise to the overall system.

In this section we discard this assumption and instead

work with practical elements, so that the white noise receiver

has an input noise figure NFI. We may thus state that the

power spectral density level due to the input white Gaussian
N

noise is no longer N0/2 but rather - NF Therefore, the

performance of the white noise receiver for equiprobable

antipodal signals is

P = ERFC,[,(2SNR/NF1]Pe

The preamp receiver has also a non-unity noise figure asso-

ciated with it, which we denote NF2 . Since the receiver input
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stage is assumed to be a low noise preamplifier (otherwise

there is no benefit in utilizing this preamplifier), we can

assume that

NF 2  < NF1

The performance of the colored noise receiver is no longer

given by Eq. (5.17) but must be modified accordingly to yield

= E~ 2SNR 2  -E lE +.. (5 1~ (ml-l) E

N 0(NF1 +F2Gm 1E E (m1-l)

E -E (ro.+l) 11/2

+ K 1-C + )Cj (5.18)

Fig. 5.6 shows the performance of the two receivers analyzed

in this section. It is clear that utilization of a low noise

preamplifier improvedsignificantly the performance of the

colored noise receiver. However it must be pointed out that

if we design a receiver which consists of white noise re-

ceiver and a preamplifier, .ts performance would almost be the

same as the performance of the colored noise correlator with

preamplifier as described in Fig. 5.6. The major contribution

to improved performance is due to the low noise amplifier and

not due to the specific correlator used in the system.
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VI. JAMMING THE COLORED NOISE RECEIVER

A. INTRODUCTION

In previous chapters the design and performance of re-

ceivers operating in an environment consisting of colored

noise interference were analyzed. The interference was

assumed known and the receiver was optimized to the presence

of that interference. In this chapter the model is expanded

by considering the presence of a hostile jammer attempting to

jam the communication channel. The jammer is hostile in the

sense that its parameters are not known to the receiver designer.

The main purpose here is to find the optimal jammer waveform

that causes maximum damage to a communication channel of the

type analyzed in previous chapters and to determine whether

the colored noise receiver is more or less sensitive than

a white noise receiver to jamming signals.

B. THE MODEL

The system model is described in Fig. 6.1. It consists

of a digital coherent communication receiver operating in

the presence of:

1. Colored noise interference

2. Additive white Gaussian noise

3. Jamming signal.

The digital information is transmitted via binary, baseband

signals that encounter baseband interference and jamming.
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Extensions to bandpass signal analysis is straightforward

in light of the results described in Chapter III, Section C.

The P.S.D.-of the colored noise interference is assumed

to be the same as in Chapter IV. Specifically, the colored noise

P.S.D. used here is given by Eq. (4.2). Also the signals yl(t)

and y0 (t) are defined by Eqs. (4.8) and (4.9). The jammer is

assumed to be deterministic and its specific waveshape will

be determined in the solution to the optimization problem.

C. DERIVATION OF THE OPTIMAL JAMMING WAVEFORM

The decision process due to the presence of a jammer

becomes

Hypothesis H0: z(t) y0 (t) + nc(t) + n (t) + nj(t) (6.1)

0w)

0 < t <T

Hypothesis H1 : z(t) yl(t) + nc(t) + n (t) + nj(t) (6.2)
wj

Observe that n. (t) is modeled here as a deterministic waveform.J

The signals y0 (t) and yl(t) are assumed to be antipodal. The

energies of the signals are given by

T T
f 2 f T263Es  0 y (t)dt 0 y (t)dt (6.3)

The receiver generates the statistic £ which is a Gaussian

random variable. Its conditional mean is given by
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T
E[91H I ] = E{ f hd(t)[Yl(t) +nc(t) + t) +nw(t)]dt}

T
J h(t) [yl(t) + n.(t)Idt = mI  (6.4)0 d

and similarly

TA

E[Y.IH 0 ] = f hd(t)[yo(t) + nj(t)]dt = m0  (6.5)

The conditional variance of k is given by

Var{.1H I } = Var{.1H 0 } = E 0 [ hd(t) [nw(t)+nc (t)ldt

- Y 2 (6.6)

Note that since the jammer waveform is modeled as determinis-

tic, it does not affect the variance of the statistic X.

This would not be the case if the jammer waveform were a

sample function of a random process. The receiver threshold

y for antipodal equiprobable signals is equal to zero as

previously demonstrated (see Eq. (2.1)).

Define now

T
f Yd (t)hd(t)dt (6.7)

0
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2
From Eq. (2.23), we know that 2E = a£. Introducing the short-
hand notation

T
(hd,n) = hd (t) n (t)dt (6.8)

the performance of the receiver of Fig. 6.1 can be shown

to be given by

e f 0 __-x 2/2dx + [-E-(hdn1)]/o£ 1 -X /2Pe_ (hd, nj) ]/I lax 2-F 27 d

(6.9)
1 [ -d~n ) 1 +(h ,n.)
-ERFC[ I + IERFtC4 I-

1

where P{H 0} = P{H 1  =T has been assumed.

Define

AL (hd,n)

and differentiate Pe with respect to a. This yields

2 2 2 2

e- C EC

L " " 2 sinh /V2 a (6.11)
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Since is non-negative, it is clear that

8Pe > 0 a > 0

a-e 0 0 = 0 (6.11)
9a 0

< 0 a < 0

Therefore a = 0 is a minimum point of Pe' and by making

ji as large as possible, Pe is maximized, because Eq. (6.11)

shows that Pe is monotonic in lIl.

From the Cauchy-Schwarz inequality, it can be seen

that

= (hdlnj) _ 1h dIl • njI (6.12)

with equality holding if

n.(t) = K hd(t) (6.13)

where K is an arbitrary constant.

The energy Enj of the jammer is given by (from Eq. (6.13))

T
E K 2 f h2(t)dt = K2.11h1 2  (6.14)Enj d0d

0

Therefore, we must have

Jnj
K = (6.15)
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and the optimum jammer that is energy constrained is given

by

nj(t) = n hd(t) (6.16)
SIlhdl

This derivation is valid for both a white noise and a colored

noise coherent receiver. The only difference is in hd(t).

For a white noise receiver, hd(t) is proportional to Yd(t).

Therefore the waveform of the optimum jammer will be related

to the waveforms used to transmit the binary information.

However for the colored noise receiver, hd(t) is no longer

directly related to the signals yl(t) and y0 (t). Thus the

optimum jammer may have a waveshape that has no resemblance

to the waveforms used to transmit the binary information. It

is clearly feasible to implement an optimum jammer against

a white noise receiver. All that must be done is to transmit

the difference of the signal waveforms, or use a repeater

channel [Ref. 151. However it is almost impossible to opti-

mize a jammer against a colored noise receiver unless all the

details about the correlator receiver being used are known.

D. PERFORMANCE OF THE WHITE NOISE RECEIVER WITH OPTIMAL

JAMMING

In order to properly evaluate the effect of jamming on

colored noise receivers, it is necessary to first evaluate

the effect of jamming on white noise receivers. The results

on the latter can then be used as a reference, to which results
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on the former can be compared. We assume here the model

described in Fig. 6.1 with the only difference being that

now a white noise receiver is used in place of the colored

noise receiver. That is, hd(t) must be replaced by Yd(t).

The receiver performance without jamming (however with noise

interference) has been evaluated in Chapter IV, Section F.

A statistic X is generated by the receiver of Fig. 6.1, where

the conditional moments of the statistic are given by Eqs.

(4.29), (4.30), (4.31) and repeated here for convenience.

E[1H1 1 = E (4.29)

E[.JH 0  = -Vs (4.30)

HVarf2. N1 NO0 E-l+exp(-E))Var[£1JHl -- Va[10] -2- +-2- E

C 2 (4.31)

Observe that E is defined by Eq. (4.12).

The performance of this receiver is given by Eq. (4.39),

namely

-- 21 E E

N ERFC*{4
""P =EFC ERFCR{F, { } (4.39)Se 1 0.E-l+exp (-E) 1  2

R+ - t]Vo

for equiprobable signals. Here again the deterministic jammer

affects the conditional means of k but not its conditional

variances.
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We now obtain

E[L9H I] = f hd(t)[yl(t) +nj(t)]dt
0

T T
= f hd(t)yl(t)dt + f hd(t)nj (t) dt (6.17)

o 0

T T
E[9,H 0] = - f hd(t) Yl(t)dt + f hd(t)nj(t)dt (6.18)

0 0

Substituting the optimum jammer, derived in Section C and

given by Eq. (6.16), yields

T Yd(t) T y d (t)
E[LIH1 ] = J Yl(t)dt + f Yd(t) 1 Yd(t) dt

o 2E - 0 d 2V

= -/+ 'rT (6.19)

S Sl

= n -

Recall that for the white noise receiver hd(t) = Y(t)/2VE/s.

The performance of the white noise receiver becomes

P e=  ERC. a .7 E,[-=[= s(1 + n)] + s RC[ (1 n) (6.20)

kP- kE V -E
5 5

Observe that if no jammer is present, Eq. (6.20) takes on

the form of the Pe for a white noise receiver in the presence
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of noise interference only. The jammer effect can be seen from

the introduction of the (1 ±-) factors.

E. PERFORMANCE OF THE COLORED NOISE RECEIVER IN THE
PRESENCE OF JAMMING

The performance of the colored noise receiver in the

presence of jamming was derived in Section C and the receiver

p is given by Eq. (6.9), namely

1 + (h d'n) 1 - (h d'nj

P ERFC,[ ] + 1 ERFC,[ ] (6.9)

We assume that the model described in Section B is valid in

the foregoing analysis.

The performance of the receiver inFig. 6.1 when no jammer is

present was analyzed in Chapter IV and its Pe given by Eq.

(4.26), namely

Pe = E C (/V 2) = EC2SR (1 + 2-(m +J-4C -2C ( m 1L ) 1/2

-i+ (JSR) (SNR) Em l

= 2SR f, 1/2 (6.21)

I+(JSR)(SNR 4f

where E and ml were defined in Eq. (4.12) and Eq. (4.17) respectively

and JSR is the ratio of interference power to signal power. In

order to evaluate the performance of the receiver analyzed

i110
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above under jamming conditions, the factor (hdonj) must be

evaluated for various jamming waveforms. The analysis will

be carried out for two different cases.

1. The jammer has the same waveshape as the information
signal waveforms (i.e., rectangular pulses).

2. The jammer has been optimized according to the results
of Section D.

Case 1:

The jammer waveform is given by

nj(t) = n jE Yl(t) (6.22)

s

Substituting Eq. (6.22) into Eq. (6.8) yields

T T !E-.
(hd,n j ) 0 hd(t)nj(t0t = f a Yl(t)hd(t)dt0 0 /

s

ViTT
- nj f T yl(t)hd(t)dt (6.23)

S0
s

Substituting Eq. (6.7) into Eq. (6.23) yields

(hdnj) = (6.24)

s

Furthermore, substitution of Eq. (6.21) and Eq. (6.24)

into Eq. (6.9) yields finally
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pe ERFC*,- + VEn/E + - ERFC /72(1 - EnjE s) ]

- 1 2SNR f(Em)1+
S+ (JSR) (SNR)+

+ ~- RFC~(2SNRf I (E,m I ) ( -VT7)+/ 4( -C VEnj/E s )  (6.25)
2 C 1 + (JSR) (SNR) 4u s

Analysis and simulation carried out on Eq. (6.25) reveals

that this receiver performs at almost the same level as the

white noise receiver analyzed in Chapter IV, Section F. The

performance of the white noise receiver without jammer is

given by Eq. (4.39). Its performance is almost the same as

that of the colored noise receiver without jammer whose per-

formance is given by Eq. (6.21). This fact was demonstrated

by the numerical results presented in Tables 4.1-4.5.

When the jammer is introduced, the arguments of the error

function for bcth receivers has to be modified by the same

factor (1 ± En//s). Therefore the performance of the twonj 5

receivers under jamming conditions remains almost identical.

Case 2:

The optimum waveform jammer analyzed in Section D is

given by Eq. (6.16). Substituting Eq. (6.16) into Eq. (6.8)

yields

T(hd nj) f nJ-hd(t)hd(t)dt = /n 1h (6.26)do IlhdI n d
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Substituting now the appropriate hd(t) which is given by

Eqs. (4.13)-(4.16) yields

~-2Em 1

VE n= 2SNP 2 -Em 1  2l1-e 1(h2s, [l + 2K E + 1K
(hd'nj) 1 4(JSR)(SNR) 2 2  Em1sE E

K2(1 -EEm1 ) 1/2

Em1  (6.27)

where K2 is defined by Eq. (4.15).

Equation (6.27) can be written in the form

(hd~nj) = E . 2SNR (6.28).- = E n I + 4(JSR) (SNR) "ff2 (E 1 m(

S E

Substituting Eq.s (6.28), (6.21) into Eq. (6.9), yields the

performance of the colored noise receiver in the presence of

the optimum jammer. This result is

= 1  [ 2SNRfl (S'ml - i n /f 2 (Eml))

4(JSR) (SNR) (__fE _

E s 1

1 SNRf lE 1 ,, 1 . . 2 (EVI'mi)

+ 1 ERFC 4(JSR) (SNR) + Enj _ fP(El,ml) )] (6.29)
fE

where f1 and f2 are defined by Eqs. (6.21) and (6.28)

respectively.

In Figures 6.2-6.5, a comparison between the performance

of the colored noise receivers analyzed under the two jamming
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conditions is shown. The pertinent equations are Eq. (6.29)

and Eq. (6.25). All results are a function of the jammer

to signal energy ratio, Enj/E s , denoted as JSR*. The figures

show that the optimum jammer (n.(t) = Khd(t)) causes much more

damage to the receiver performance than the suboptimum jammer

(n.(t) = Kyd(t)). If one tries to determine what JSR value is

required to cause the receiver to operate at a certain P

it can be seen that when the optimal jammer is used, less

jamming power is needed (.somewhere between 6-12 db less

jammer power) than if the suboptimum jammer of Case 1 is

used.
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VII. CONCLUSION

This thesis presents several applications of the theory

of signal detection in the presence of colored noise. In

it, the analysis of practical design implications of the

theory is carried out and the evaluation of the performance

of receivers designed according to this theory is undertaken.

The design of a digital receiver operating in a colored noise

environment requires the solution of a specific Fredholm

integral equation. In order to solve the Fredholm integral

equation, the designer must have available an analytical

expression for the autocorrelation function of the colored

noise and also know the signal waveforms being used to trans-

mit the digital information. Once this information is avail-

able, solution of the Fredholm integral equation must be

attempted. As discussed in Chapter III, analytical solutions

do not always exist. Even if solutions do exist, the proce-

-. dure for solving the integral equation is at best tedious.

In most of the work undertaken, a relatively simple case in

which the colored noise was the output of an amplifier stage

followed by a first order Butterworth filter was analyzed.

This leads to an analytical expression for the noise autocorre-

lation for which the solution of the integral equation exists

and is tractable. Several cases were presented in Appendices

A-E.
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The receiver structure and correlator signal waveform

were derived in Chapter IV for the cases in which the binary

information was transmitted using either rectangular or sinu-

soidal pulses. As shown in Appendix D, the design of such a

receiver was quite feasible once the noise autocorrelation

was specified and an analytical solution to the Fredholm

integral equation was obtained. Next, the performance of this

receiver was evaluated and compared to that of a white noise

receiver operating in the same environment. The results

showed that both receivers performed almost identically with

only a few percent difference in receiver error probabilities

when rectangular pulses were used for signaling. Only when

optimum sinusoidal pulses were used in place of the rectangular

pulses, a major improvement in the performance of the colored

noise receiver in comparison to the performance of the white

noise receiver was achieved. Low noise preamplifiers used to

improve receiver sensitivity are also a source of colored

noise. The effect such preamplifiers have on practical re-

* ceivers was discussed in Chapter V. The conclusion of such

* analysis indicated again that receivers designed to operate

in a colored noise environment do not perform significantly

better than white noise receivers, operating in a similar

environment. Improvement is achieved only due to the fact

that the low noise preamplifier isolates the front-end of the

receiver from the "noisy" correlator.

Although these results were obtained using a first order

Butterworth filter amplifier excited by white noise as a
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model for the colored noise source, it is reasonable to expect

(based on the results of Ref. 16) that using a more compli-

cated model for the colored noise generation will not change

significantly the results and the conclusions obtained.

The ECM vulnerability of the colored noise receiver
versus that of the white noise receiver was analyzed in

Chapter VI. Both receivers were found to be equally sensi-

tive to a deterministic waveform jammer. However when the

jammer used an optimum waveform which was related to the

signals used in the correlation operation in the receivers, a

significant deterioration in the performance of the colored

noise receiver was observed. It must be noted however that

the jammer waveform designer has in practice almost no chance

to accurately determine what this optimum waveform should be

and how to appropriately use it.

This thesis has demonstrated the relative robustness

of the white noise receiver. In most practical cases, even

when colored noise interferences are present, the white noise

receiver performs nearly as well as the colored noise receiver

designed for specific interference models. Only in very

special cases in which optimum signal waveforms were used to

transmit the binary information did the colored noise receiver

perform better than a white noise receiver.

Table 7.1 presents a quantitative summary of the perfor-

mances of the colored noise receivers and white noise receivers.

Table 7.2 presents the effect of jammers on the performances

of the white noise and the colored noise receiver.
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Table 7.1

The Receiver P

SNR = 10, JSR = 1, E = 1

White noise receiver rectangular
pulses 0.129

Colored noise receiver rectangular
pulses 0.125

Colored noise receiver sinusoidal
pulses b = i(*) 0.07

Colored noise receiver sinusoidal
pulses b = 4 0.01

Colored noise receiver sinusoidal
pulses b = 8 0.00045

White noise receiver sinusoidal
pulses b = 1 0.28

White noise receiver sinusoidal
pulses b = 4 0.03

White noise receiver sinusoidal
pulses b 6 0.002

(*) E is defined by Eq. (4.44) and is the ratio of the signal
frequency to interference noise bandwidth.

Table 7.2

The Receiver P P
e e

Jammer waveform equals Optimal jammer
signal waveform SNR = 10, JSR = 1

SNR = 10, JSR = 1, E = 0.1 E = 0.1
JSR* = -5 db JSR* = -5 db

* White noise receiver
rectangular pulses 0.05 0.05

Colored noise re-
ceiver rectangular
pulses 0.05 0,4

* JSR* is related to the jammer and defined as E n/E s , namely
the ratio of interference energy to signal
energy.
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APPENDIX A

DETAILED SOLUTION OF A FREDHOLM II EQUATION FOR COLORED
NOISE WITH RATIONAL SPECTRA AND RECTANGULAR PULSES

The Fredholm II equation to be solved is

hd(t) + f Kc(t-u)hd(U)du = Yd(t) 0 < t < T (A.1)

The noise is assumed to be a sample function from a W.S.S.

process whose P.S.D. is given by

2
2aB = N(sc(S) (A.2)

-s +a D(s)

The autocorrelation function corresponding to this P.S.D.

is given by

K (T) - a- T I  (A.3)* cm

The signal Yd(t) is defined by

2A 0 < t < T

Yd(t) = 
(A.4)

0 t < 0,t>T

Equation (A.2) can be written as follows

D(S2 = N(s 2) =2a (A.5)
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Multiplying cs) by D(s corresponds to operating on K ct)
C C

with D(p 2 ) in the time domain where p is the derivative

operator.

Eq. (A.5) can be written as

D(p2 )[K c(t)] = 2aO6(t) (A.6)

Operating with D(p 2 ) on Eq. (A.1) yields

N T
D(p2) 2 -hd(t) + f D(p ) [Kc(t-a)hd(0)]da = D(p 2Yd(t)] (A.7)0

Substituting Eq. (A.6) in Eq. (A.7) and performing the

operation specified by D(p ), yields the differential equation

.N 1NI.. ) N 1 B2 " 2y
- -hd(t) + -(- hd t) + 2 LBhd(t) = -Yd(t) + (t) (A.8)

Substituting Yd(t) as defined by Eq. (A.4) yields

-- 1ht) + V*2h~t) = A 0 < t < T (A.9)

where

0*2 N1 2= - + 2aO

Eq. (A.9) is a differential equation. Its particular solution

is given by a constant C, where
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C = ( ) 2A (A.10)

Its homogeneous solution is

K lYt + K 2E-yt (A.11)

where

Y= 2/TN 8* (A.12)

The complete solution is of the form

1dt) = C + CKIEt + CK2C-Yt (A.13)

where the constants K1 and K2 are obtained by plugging this
solution into the Fredholm II equation.

This process is very long and tedious and involves a

great deal of algebraic manipulations. At the end of this

process two linear equations are obtained which define K1

and K2, namely

-K 1  K2  11 +B 2 - 1

(A.14)

K CyT K 2-yT1 21

The simultaneous solution of Eq. (A.14) is
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K1  -17 +8)2 E:yT (y - y)2 E - yT

(A. 15)

12 2 yT2 T
.(y +)(y-.) + ( + ) T

K2 (+82y 7 T - (-)2 - T

where

c (-)2 2A = 2A (A.16)c.-26*+ 2N1

and

y NJ./ (NI 0220

a 8 41 +N 0/IN1  (A.17)
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_ APPENDIX B

DETAILED SOLUTION OF A FREDHOLM II EQUATION FOR COLORED
NOISE WITH RATIONAL SPECTRA AND SINUSOIDAL PULSE INPUT

The Fredholm II equation to be solved is

N1  T
1 hd(t) + f Kc(t-u)hd(u)du = yd(t) 0 < t < T (B.1)0

The colored noise P.S.D. and autocorrelation function are

the same as defined in Appendix A, Eqs. (A.2), (A.3). The

signal is however different and is defined as

$ 2A sinbt 0 < t < T

Yd(t) = (B.2)

0 0 > t, t > T

The procedure outlined in Appendix A, Eqs. (A.5)-(A.8) is

. applicable here. Using Eq. (A.8) and using Yd(t) as derived

by Eq. (B.2) yields

1 h +8~ )sin bt
- - hd(t) + 0*2hdlt = 2Alb 2  2 (B.3)

The homogeneous solution is not affected by the sinusoidal

driving function in this equation. Thus, the homogeneous

solution is given by Eq. (A.11). The particular solution is

given by
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h (t) =C sin bt (B. 4)

p

where c is given by

C =N 1 2 ~ 2 (B.5)

The complete solution is therefore

h~t) C Csin bt +CK&t + CK CY O<t <T (B.6)d 1 2

where the constants K 1 and K2 are obtained by plugging this

solution into the Fredhoim II equation. This process is very

long and tedious and involves a great deal of algebraic

manipulations. At the end of this process two linear equations

are obtained which define K1 and K, namely

-K K
-K1 K2 = -b

Y+ 'Y"a 2 +b2

(B.7)

K1  C -y 2 -8sinbT +b cosbT]
Y Y y+ 8 +b2

The solution for K 1 and K 2 is
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() 1 )E-2yT + (sin bT +- cosbT) (Y) yT

K1 [ 1 (B.8)+ b 2  8 - 2YT  +i

:+ 1
b --

b(I +i) + (sin bT +(d)cos bT) (y-1) ET(
K2 _ (B. 9)

+ ) 80 - e-2yT

_ 8

8 -- +
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APPENDIX C

THE FREDHOLM II EQUATION FOR BANDPASS SIGNALS

The Fredholm II equation for bandpass signals and spectra

is given by

N T 
-T hd(t) + f Kc (t-u)hd(U)du = Yd(t) 0 < t < T (C.1)0

where

Yd(t) = Yd(t) cos w0t (C.2)

K c (t) = K c (t) cos W0t (C.3)

We assume that the solution of Eq. (C.1) is of the form

hd(t) = hd(t) cos w0 t (C.4)

and check the conditions under which this assumption is valid.

Substituting Eqs. (C.2), (C.3), and (C.4) into Eq. (C.1) yields

N T
-1-ht) cos w0 t + K(t-u)cos 0(t-u)hd(u) cos W0 udu0

d- Y(t) cos w0 t (C.5)
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ev Meml 31.I
Using trigonometric identities yields the following equation

N 1  T oK tuuu
-fhAt)cos wot + fCos W0t tu d)d

0I
+ f Cos W 0(t-2u)K c(t-u)h d(u)du0I

=Yd tM cos W 0t (C.6)

* We now denote

T

Cos Wo(t2u)Kc(tu)hd(u)du a ct) (C.7)

and check the conditions under which adt) is negligible. We

may write

h*(t) h h(t)[u(t) - u(t-T)I (C.8)

Substituting hA(t) in Eq. (C.7) enables changing the limitsI

f Kc (t-u) cos W (t-2u)h*(u)du a ct) (C.9)]

Taking the Fourier transform of Eq. (C.9) yields

Flat(t)] f f KC (t-u) cos W (t-2u)ha(u)E7)wdudt (C.10)
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.-.*" :with

t-u =a(C.1)

*substituting in Eq. (C.10) yields

F{ct(t)} = 0 h*(u)[ J K (a)cosw0(a-u)e-3jWGdale-3jUdu

:- (C.12)

The expression inside the parenthesis is the Fourier transform

of Kc (a)cos w0 (a-u) and is given by the convolution of the

Fourier transform of K (a) and cos w0 (a-u). Performing the

convolution yields

1 j 0 U 1 j 0u(.)( cl-W0)e + ( W + )e (C.13)

where c() is the P.S.D. or equivalently the Fourier Transform

of K (t).

Substituting Eq. (C.13) into Eq. (C.12) yields

F-"(t) f hd (u)) -( W) 0

3w U
0 jWU (.4+ " + c(W +W 0 )c -JUdu (C.14)

Evaluating the integral yields

2W + 0 (W +W )H*(w W (C.15)

132

% . . . . . - - -



a.

Eq. (C.15) is a cross product of two low pass functions at

high frequencies. If

o T

-. then Eq. (C.15) represents a negligible small value. Under

these conditions, a(t) is a small number.

The bandpass Eq. (C.6) can be written as

)N T
-2- d(t) cos 0 t + cos W0t J Kc(t-u)hd(U)du = yd(t)cos w0t2 d0 0 c dt-o ~

(C.16)

The solution to Eq. (C.16) is the solution to the lowpass

equation multiplied by cos w0t.

The conclusion is that if the communication channel

center frequency is much bigger than the channel bandwidth,

then the solution to Eq. (C.1) can be written as a solution

to a baseband equation multiplied by cos w0t where w is

the channel center frequency.

13
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- APPENDIX D

BLOCK DIAGRAM OF A SIGNAL GENERATOR FOR hd(t)

A suggested block diagram for generatirg hd(t) in the

correlator unit is shown in Fig. D.I.

The desired waveform is sampled at a high enough rate.

The samples are digitized and stored in the PROM. When the

sync pulse is received, the proper addresses of the PROM are

read sequentially and the output is converted to an analog

signal hd(t). The PROM can store several waveforms for

various types of transmission signals or interferences.
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- APPENDIX E

DETAILED SOLUTION OF THE FREDHOLM II EQUATION GIVEN BY EQ. (5.9)

The Fredholm II equation to be solved is

°I

N 0 T

0 < t T

where

K T ae = -4G 2 6 (E.2)
C

The solution follows the procedure shown in Appendix A

except that Yd is no longer a constant and therefore modifica-

tion to the particular solution will be necessary. The

procedure of Appendix A is applicable here up to Eq. (A.8),

so that our starting point is

N 0N 0 2  2
h + --=- --- = y(t) + 2a h'd (E.3)- -- (t) + t) + 2 aSht) -Ydt) + ydt)

Substituting Yd(t) as defined by Eq. (E.1) yields

N- -- t) + a*2h=t) 2A8 2  (E.4)
a 2A E4

5%

9%

where
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2 N 02 NO 02 NO N22 N 02
a -*- + 2aa 2 2 G -- (1 +G (E.5)

The homogeneous solution to Eq. (E.4) is

CK Iyt + CK2 -Yt (E.6)

where y is given by

y = 2/N 0 8" = 8 G = 8m, (E.7)

The particular solution is given by

2 4AG
C 2AG = -A- (E.8)

N0 (1 +G

The complete solution therefore is

hd(t) = C + CK1 Yt + CK 2-Yt

The next step is to plug this solution into Eq. (E.1). This

substitution leads to two equations that must be solved for

K1 , and K2, that is,

-K1  K2 1

(E.9)

K IyT K2-yT 1
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The simultaneous solution to these equations is
n

1 "yT 2 _2(Y - (y -8 - ] -82
K T (E.10)yT(y+8) - (y -B) 2 - y T

1 2 2 -yT
K2  (Y -8 )2(y T - (Y+_)ET (E.1)

22 yT 2 "T
(Y + ) E (y-8

Substituting Eq. (E.7) into Eqs. (E.10) and (E.11), and

introducing the notation

E = 8T

yields

-Em m -1 -2Em

K =(m 1 ) 1 (E.12
. 1 ml+l m1- 1-2Ea1 (

11

-Em ml1
(ml 1 l) [c 1 - M1

K -(E.13)
2-

m1 +1 m1-1 -2Em 1
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