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THE LINDHARO, NIELSEN AND SCHARFF METHOD OF

OBTAINING APPROXIMATE CROSS SECTIONS

INTRODUCTION

Classical scattering theory gives an exact expression for generating a

differential cross section (Go5O), or, equivalently, the relation between

scattering angle and impact parameter, from a known interparticle

potential. Conversely, if one has an exact cross section there is an exact

inversion process tnat yields the potential that is the counterpart of that

cross section.

Linahard, Nielsen and Scharff (LNS) developed an approximate method to

generate a cross section from a potential and used this method (Li68) to

generate cross sections from both power law potentials ana the Thomas-Fermi

potential. Their Thomas-Fermi cross section is widely used in atomic

scattering and radiation damage calculations.

Given the approximations that make up the LNS method, there is an

inversion procedure that generates the original potential from the

approximate cross section.

In the following sections we describe the three approximations that make

up the LNS method and the corresponding inversion process. We furnish

several examples, including one that demonstrates the utility of starting

with a cross section and using the simplified inversion process to generate

the approximate potential corresponding to that cross section.

Manuscript approved May 21, 1985.
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EXACT SCATTERING RELATIONS

Consider a particle of energy E, Charge Zle and mass M1 interacting

with a stationary particle of charge Z2e and mass M2 with the

interaction represented by the potential V(r). If we write the potential in

the form

V(r) = A C(x) (2-1

x = ra,

where a is some characteristic length, then the classical relation between
the angle through which the impinging particle scatters and its impact

parameter is given by (Go5O)

4=9 -2p f -r r-2  i C~r/a) p 2 r2 ]-1/ 2  (2-2

0

. where p is the impact parameter, ro is the distance of closest approach

(the largest root of the radical in Eq. (2-2)), and c is the dimensionless

energy

* £=Ec /A= E [M2/(M1+M2)] I A = E I EL , (2-3

I* where E is the center of mass energy corresponding to lab energy E and
C

the Lindhard energy unit is

EL = A (MI+M 2 )/M2 . (2-4

(For the Coulomb interaction A=ZZze 2/a and C(x)=x-.)

The relation between the energy T transferred in a collision and the

scattering angle is

T =Tm sin 2 9/2, (2-5

where

I2
• 2
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Tm 4 MI M2  (2-6Tm = E - yE (-
(MI + M2 )

is the maximum kinetically allowed energy transfer.

The differential cross section is given by

da = 2 w p dp - -2w a. sin e do . -aT dT . (2-7

LINDHARD-NIELSEN-SCHARFF SCATTERING RELATIONS

From a desire to simplify their atomic scattering and radiation damage

calculations, Lindhard, Nielsen and Scharff (LNS) (Li68) made a series of

approximations Lo the relations between the energy, impact parameter,

scattering angle and cross section. They started by invoking the momentum

approximation 'm', which gives the scattering angle as a function of energy

and impact parameter to be (Le63)

i00-P/ dC~r/aj ( 2_ p2)-112 (3-1

em f -plc dr ar (r

(We will use the notation of identifying letters in single quotes to

indicate which approximations are being used.)

Instead of the energy transfer T they use the reduced variable

2 2 2 n2

m= TT= 2 sin e12 . (3-2

They then define what they call the wide angle approximation w', which

consists of the using the relation

2 C2 2/4 (3-3

mw m

to replace e, wherever it appears, by 2n/c. Upon using this expression in

Eq. (3-1) we obtain

3
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nmw - (pia) dx L x2  (pla)2 ]-112 dx (3-4

Equation (3-4) provides a functional relationship between the impact

parameter and the reduced energy transfer that can be used to obtain the

cross section. The advantage of the LNS method is that the differential

cross section depends on only one variable (either t or p/a); ordinarily

there would be an explicit dependence on both p and E. LNS now write

do = 2wpdp= 2w p(n) S-() dn= a2 -2  f(n) dn, (3-5

which aefines tne function f(n) as

2 - dpn)2 a2 dp) -I

f(n) = - 2 n a 2 P(n) dp(n) =- n a L • (3-6

We will call f(n) the kernel of the cross section.

The last approximation is what we might call the kinematical correction

'k', which insures that T*yE as p*O. This is not the case with expression

(3-4), which yielas as arbitrarily large value of n as p+O. We cure this

problem when evaluating Eq. (3-4) by replacing p by

p = [p2 + p2]1/2  (3-7
0

where p0 has the value such that n-c when p=0. Thus the expression for n

becomes

n - nmw(. 2+2 ),1/2 (-

nmwk(P) = nw(p po) ) . (3-8

The approximation 'k' need only be invoked when explicit use is being maae

of the impact parameter. When working with the differential cross section

as a function of n, the impact parameter does not appear.

4
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TOTAL CROSS SECTION AND STOPPING POWER

The total cross section corresponding to expression (2-7) woula be

2 r dp p a 2 a e dn n-2 f(n) , (4-1

but the total cross section is infinite for the infinite range potentials

that we consider. One can avoid this problem by imposing a maximum allowed

impact parameter or a cutoff on the energy transfer allowed at low

energies.

The stopping power, which is the energy loss per unit path length, is

given by

S(E) = 2 f dp p T(p) = 2 TEL f dn f(n) . (4-2

The stopping power is finite, even for infinite range potentials.

We can use Eq. (3-v) to obtain relations between the impact parameter

and the reduced energy transfer; within the spirit of the LNS approximations

these relations are the inverses of (3-4) and (3-8). For the 'mw' case we

have

q 2 p2/a2 00 dn n- 2 f(n) (4-3
q

and for the 'Imwk' case

q2  dn f(n) • (4-4

q

The latter result is the more meaningful physically, but we will have neea

of Eq. (4-3) when we examine the inverse relations that generate potentials

from approximate cross sections.

5
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EXACT INVERSION

Just as we can calculate the scattering angle from the potential using

Eq. (2-2), there is an inverse relation that yields the interaction when the

scattering angle is furnished as a function of the impact parameter. Firsov

(Fi53, To72) established that if we define w as

2 = x2 [1 - V(r)/E c (5-i

where Ec is the center of mass energy (Eq. (2-3)), then the interaction

separation x is related to e(p) by

x(w) = w expL f dp 2G( 2 (5-2
(q - 2 )

By using Eqs. (5-1,2) one can obtain V(r). If one uses the exact inversion

procedure on an approximate cross section, the resulting interaction will be

energy cepenaent. Robinson (Ro69) shows this effect using the LNS cross

section.

IMPACT EXPANSION INVERSION

The equivalent to the Firsov procedure when one is using the momentum

approximation 'i' to relate the scattering angle to the energy and impact

parameter is the expression (Sm66, To72)

V(r) f 00 dp p m) (6-1
rf (p2 -r 2)

In reducea form, this becomes

J 0 em(q)

dp zx p(q -x )

2 00 2 sin-1

- dp (q2 -x2  )7 
(6-2

6
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and upon invoking the wide angle approximation we nave

4 00 nmw (q)
C(x) = W dq(q2 - x2 )i/7 " (6-3

One can easily show that Eq. (3-4) ana Eq. (6-3) form an inversion pair (by

using Eq. (3-4) to substitute for nmw in Eq. (6-3), interchanging the

oraer of integration, and evaluating the resulting integral), as do Eq.

(3-1) and Eq. (6-2). Finally, if one has the 'mwk' version of n, one uses

C dq nmwk( (q2-qo)I(6-4
C(x) = q 2 _x2 2 (6-4

One should be consistent in using these approximations when inverting to

obtain a potential.

AN EXAMPLE: THE INVERSE SQUARE POTENTIAL

Let us assume an inverse square scattering potential, given by

V(r) = A2 x-2  (7-1

Eq. (2-2) yields the exact scattering angle and reducea energy transfer

e = i [1 - q(q2 + ii€)-/11 2  (7-2

n = e cos wql(2(q 2+1c)) .

In the momentum approximation the energy transfer becomes

nm = e sin w/(4eq2) (7-3

With the the use of the wide angle ana kinematic approximations the reduced

energy transfer becomes

nmw = w/(4qz) (7-4

7
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and

nmwK= c/(1+4eq2 1) (7-5

respectively.

We can compare the various approximations for tne inverse square

potential by evaluating the exact potential that corresponds to each of the

approximate energy transfer relations, that is, to each approximate cross

section. We use the exact inversion in the form of Eq. (5-1) ana

1 F 2 sin-1 rn/)

x(w) = w exp[ j dq 2 (7-6w(q 2 _ 2 ) 112 ]  " 7-

2
Of course, if we use the exact expression (7-2) we obtain C(x)=x- . For

the others, we can make expansions in 1/x2 , thus obtaining the results in

the form

C(x) = E b m x 2
m

2  (77

m=U

The first few coefficients bm for the three approximations are given in

Table 1.

..............................mee.me...mommomoemeem~o~e~m.omeeme..ommmeme*.

Table I

Coefficient bm of E-m x-2m-2 in Eq. (7-7)

Inaex Exact Approximation

Value 'm' 'mw' 'mwk'

0 1 1 1 1

1 0 .500uO .b000 -.02360

2 0 .66667 .72150 .00329

3 0 1.12500 1.28949 -.00071

4 0 2.13333 2.58358 .00019

...................................... ......
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We see that the combined 'mwk' approximation gives a cross section whose

corresponding potential more closely agrees with the exact cross section

than do the other approximations. In this regaro we should mention that for

the Coulomb potential, the 'mwk' approximation is identical to the exact

cross section.

AN EXAMPLE: THE POWER LAW KERNEL

There are cases in which we start with a cross section directly, rather

than calculating one from a potential. Consider the kernel

1-21nfn(n) = B n (8-1

By using the relation (4-3) we have00
q2 ss -2  1 s -2 /n  n -2/n
q ds s B s T B n (8-2

or

n B ]n/2 (8-3

2 q

as the relation between the impact parameter and reduced energy transfer.

Upon using the inversion formula (6-3) we fina

4 nn/ -n w/2 n-1

Cn(x) = x da sin (8-4

The various constants, including the integral, don't interest us, but we see

that our kernel is equivalent to a power law x-n potential. We note that

for the Coulomb potential, for which C1 (x)=x
- 1 , B will have the value

B=1/2 and f1(n):i/(2n).

The point of this exercise is to illustrate that we can start with some

simple form for the cross section and use the inversion relations to

determine the equivalent potential, within the LNS approximations.

9



AN EXAMPLE: A SIMPLE KERNEL FOR A FINITE RANGE POTENTIAL

Assume the kernel

f(n) = (1/2) q2/(B+n)3 (9-1

We see that for large values of n, corresponding to nigh momentum transfers,

this f(n) tends toward the Coulomb kernel. By using the relation (4-3) we

have

q (1/4) (8+n) -2  (9-2

or

n =1/2q (9-3

°* as the relation between the impact parameter and reduced energy transfer.

We see that zero energy transfer (n=O) corresponds to a maximum value of the

*impact parameter of

xm  1I(20) . (9-4

Upon using the inversion formula (6-3) we find

* C(x) = x- [21w] [cos - y - y ln((l+(1-y2 )"2 )/y)] (9-5

- where

y=x/x m . (9-6

°Note that upon setting s to zero (y=O) one recovers the reduced Coulomb

potential C(x)=l/x. The quantities in square brackets in Eq. (9-5)

_. constitute the finite range screening factor for the Couloio interaction.

In Fig. I we illustrate the effect of this screening factor. Rather

than set o to different values directly, we will choose various values of

Xm=lI(2o). For atomic scattering problems a typical screening radius

10
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Fig. 1: The interactonic screening factor corresponding to the kernel

f(n) =(1/2) n 2/(B~n) 3for three values of xm 1(2)



L
'.

(Eq. (2-1)) is a=0.01 nm, so that Xm=100 corresponds to a cutoff radius of

1.0 nm. Figure 1 shows the screening factor for three potentials derived

from the cross section (9-1), using values of Xm= 5, 30, and 100.

If one had a simple, finite range, pnenomenological potential with

-' Coulomb behavior at small separations, one could fit that potential by

adjusting a (or x ), obtaining in the process a simple cross sectionm
corresponding to that potential. This same procedure can be used to fit a

. wide variety of phenomenological potentials with forms whose corresponding

-' cross sections are simple (Mu85).

NUMERICAL EVALUATION

When using numerical methods to evaluate the inversion integrals, it is

advantageous to modify formula (6-3) by a change of variable (from q to n)

and an integration by parts. This yields

C(x) = J dn (q2 2 1) n+' (10-1
fo ~ qq

where q and q' are functions of n. The variable n is implicitly given by

x = dn n-2 f(n) (10-2

and the function q(n) is

q2 = as s-2 f(s); (1o-3

q' is simply

Sq n f(n) / (2q) (10-4

so that

12
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C(x)=i dn (q2  x2)I/2  )+ (10-5
qo 21nq

The inversion proceoure consists of:

a) Choosing some value for nx and using Eq. (10-2) to determine

the corresponding value of x.

b) Choosing a set of integration points for the numerical

integration of Eq. (10-5) and using Eq. (10-3) to determine the

corresponding value of q.

Often, if the kernel f(n) is some simple form, then the integral (10-3)

can be done exactly. If Eq. (10-3) must be evaluated numerically, then

one can use the form

q2  x2 + X dn n 2 f(n) (10-6

DISCUSSION

To extend the discussion of the last two sections, many radiation damage

• .calculations, such as Boltzmann transport theory calculations, use a cross

-. section directl) without any reference to the potential. For such numerical

work a simple cross section can save computer time.

Our earlier treatment of the Moliere potential serves as an example.

The Moliere is an approximation to the Thomas-Fermi interaction that has an

exponential tail instead of the Thomas-Fermi's x-4 dependence at large

separations (Mo49, To72a, Ro69).

In order to generate a useful cross section we (Mu78, Mu8O):

a) Used the LNS procedure to generate the kernel fM(n)

corresponding to the Moliere potential.

b) Created an approximate fit to fM(n) that was expeditious for

machine calculations.

c) Used the approximate inversion procedure to examine the aeviation

(within the LNS approximations) of the potential corresponding to

our fit and the Moliere potential.

13
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This method allowed us to find a simple form for the cross section that
* reproduced the Moliere potential to within six per cent.

The simplicity of the LNS inversion pairs generally makes it easy
to create a usable fit to the cross section corresponding to a given
atom-atom interaction.

14
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