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Abstract. In this paper we proposwpevera4 implementations of Gaussian elimination for solving
banded linear systems on multiprocessors. Trhree simple architectures are considered: a multipro-
cessor ring, a grid array and a hypercube. 0tw complexity analysis fully accounts for communication
delays by using simple models where both latency and actual transfer times are incorporated. When
the number of processors is small relative to the bandwidth of the system a row interleaved imple-
mentation of Gaussian elimination algorithm is attractive. Otherwise, a two-dimensional grid is
essential for achieving higher speed-up. The hypercube architecture gives the smallest communi-
cation latency times.
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1. Itroduction

Symmetric, positive definite, banded linear systems constitute one of the most important
* classes of linear systems encountered in scientific computing. In this paper we propose and analyze

several implementations of Gauss elimination for dealing with such systems on parallel computers.
The implementations are developed and compared for three simple multiprocessor architectures,
namely a ring of processors, cf., Figure 1, a rectangular two-dimensional grid of processors, cf.,
Figure 2, and a hypercube of processors, cf., [13).

The banded linear systems treated in scientific computing are often very large with large
bandwidths. For problems arising from the discretization of elliptic partial differential equations
in two variables, the bandwidth of the matrix is usually of the order of VNY if the system is of
order N. For this reason we will be interested in cases where the number of processors is smaller
than the bandwidth of A, and in the less restrictive cases where it is smaller than the square of the
bandwidth. In either of these two cases there is inherent parallelism in the Gaussian elimination
algorithm that can be exploited and our focus will be on developing effective implementations of
this simple algorithm. We will not consider the case where the number of processors is very large

* compared to the bandwidth, such as for example when the matrix is tridiagonal. This case can be
treated by special techniques such as cyclic reduction 1 or a substructured banded eliminination

* [2, 11]. See [5] for a general discussion of this case.
The main assumptions on the architecture are that each processor iias its own memory and

* holds its share of the data. Data is moved from one processor by message passing using the local
links of the array. No data transfer is made via shared global memory, or via a bus.

In looking for effective parallel algorithms we are guided by both arithmetic efficiency and
communication efficiency. The timing models used for analyzing complexity assume that communi-
cation time is nonnegligible as compared with arithmetic. Moreover, for generality, a start-up time
is incorporated whenever estimating the time for performing either a data communication task or
an arithmetic task. We assume for the sake of simplicity of our analysis that communication and
arithmetic are not overlapped.

As will be seen, an important limiting factor in nearest neighbor arrays is the start-up in
* communication. Intuitively, when the number of processors increases, the packets of data which

are spread to a larger number of processors must travel distances that become larger and larger
while the packets become smaller. The result is an inevitable increase in data movement start-ups
and hence a serious obstacle to speed-up for very large number of processors. We are then lead
to the following paradoxical question: given an arbitrarily large number of processors is it best to
use all of the available processors or to "turn-off" a few of them and use only part of the available
computing power? Clearly, the question relates to one fixed algorithm otherwise an easy answer
would be to switch to a different method (if one exists) that will take better advantage of the large
number of processors.

We will see, for example, that for a class of implementations of Gaussian elimination on
multiprocessor rings or grids the best computing time is not realized for the maximum allowable
number of processors when N is large. Thus, the best time that can be achieved on a grid of
processors is of the order of 0 (01 3N) where v is the half-bandwidth of the matrix. These algorithms
can be termed lock-step algorithms, as they consist of executing the outer loops of Gauss' algorithm
in succession without overlapping them. A different approach, the wavefront implementation, will
also be described and compared with the simpler lock-step algorithms. Our comparison shows that
while the wavefront approach may be superior when the number of processors is large, this is not

* true for small number of processors.
We will compare the performance of the Gaussian elimination algorithms on the three different

architectures. In the case of a small number of processors, we may elect to map the ring into the
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Figure 1: An 8-processor ring.

grid or hypercube networks and use an algorithm that is efficient on the ring. In this case, it is not
a priori clear that the algorithms designed specifically for the grid or hypercube will outperform
the algorithm mapped from the ring. However, we will see that the performances are comparable
when the number of processors is small.

2. The three models and their properties

2.1. Description of the models
Consider the linear system Ax = ,where A is a real N x N matrix whose half-bandwidth

is v, i.e., we have ai = ,Vi,j : ji- ii > v, and whose total bandwidth is 2v. - 1. We will make
the important assumption that A is such that no pivoting is necessary in Gaussian elimination.
We would like to solve the above linear system on a multiprocesor consisting an ensemble of k
identical processors, each with its own memory sufficiently large to hold its equal share of the data.
The processors are interconnected according to one of the following three simple schemes:

1. The first architecture consists of a nearest neighbor interconnection ring, see Figure 1. The
processors are numbered consecutively from 1 to k. We assume that a vector of length m can
be sent from one processor to one of its neighbors via the local link in time equal to

POR + MTR, (2.1)

where OR is a constant latency time, and rR is the elemental transfer time of the local links, in
seconds per word. We assume that any processor can send (or receive) a data item from one
neighbor while sending (or receiving) another data item from the other neighbor.

2. The second architecture consists of a two-dimensional grid of k processors arranged on a square
lip grid with Vk- processors on each side, see Figure 2. For convenience we assume that the

processors on each side of the grid are connected to those on the opposite side. We assume
~* these wrap around connections in order to yield more homogeneous complexity results. These

connections are not essential for the algorithms themselves. We will often use the term 2 - D
array for this scheme. Our assumptions are identical with those of the ring model but one
processor is now able to simultaneously communicate with four neighbors. We assume that

2
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Figure 2: A 4 x 4 multiprocessor grid.

the time required to send a vector of length m from one processor to one of its neighbors is
modeled by

mPG + mrG, 
(2.2)

where #G is the grid latency time, and TG is the grid elemental transfer time.

3. Finally, the third architecture consists of a hypercube, or n-cube k = 2" identical processors,
numbered from 0 to 2" - 1. The interconnection in the hypercube is such that there is a link
between two processors if and only if the binary representations of their numbers differ by one
and only one bit. Thus any node has exactly n neighbors. For example, the 8 nodes of the 3-
dimensional cube (n = 3) can be represented as the vertices of a three dimensional hypercube,
as is shown in Figure 3. We assume that, it takes the time

PH + mTH, (2.3)

to transfer a vector of length m from one processor to any number of its n neighbors. Moreover,
we assume as before that communication in all of the n directions can take place simultane-
ously.

In Ipsen, Saad and Schultz [3], the formula (2.1) was used for estimating communication times

in various Gaussian elimination implementations for solving dense linear systems. We remark that
latency times may be much larger than elemental transfer times.

For arithmetic computations, we assume that for all architectures a sequence of m pairs of
arithmetic operations involving an addition and a multiplication (such as the inner product of 2
m-vectors) takes the time

i" + mW, (2.4)

3
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Figure 3: 3-D view of the 3-cube.

in any of the k processors. Formula (2.4) allows for the case in which each node of the multiprocessor
can itself be a pipelined or vector machine, in which a sequence of operations is done more efficiently
if the number of operations is large. In case each processor is not a pipelined machine we have
-Y=0.

In order to simplify our analysis we will assume throughout the paper that one cannot overlap
arithmetic with communication in any processor. The reason for the non-overlapping assumption is
essentially pedagogical and can be justified as follows. Models where arithmetic and communication

can be overlapped, are more complicated to analyze. Yet observe that the execution time of an
algorithm in an environment where overlapping is assumed is within a factor of only two of that
same algorithm run in an environment where no overlapping is assumed. Indeed, consider any
algorithm and let tA be the total time required to perform its arithmetic and tT be the total time
required to perform its transfers. In the overlapping case, the total execution time tE will be at
least max{tA, tT} which represents the time with maximum overlapping. In the non-overlapping
case, it will be simply tA + tT which satisfies

(tA + tT) :_ maz{tA,iT} _5 tE :_ tA + T.

2.2. Data Transfer Operations In Gaussian Elimination
A particular data transfer operation which is essential in Gaussian elimination is that of sending

a vector of m elements from one processor to all the others or to a few neighboring processors. As
was pointed out in [12, 3], an efficient way of achieving this type of data movement, is to pipeline
the data as follows. Assume that the data is to be moved from Processor P to the sequence of i

4
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consecutive processors P2, P..Pi+,, i.e., through a path of length i and let us split the data into
p packets of equal size. Then in step 1 the first packet is sent from P1 to P2. In step 2, while
sending the first packet to P3 , P2 receives the second packet from P. Generally, at step j, the first
packet reaches P+l from Pi while the second packet follows from Pj- 1 to P, etc. The first packet
reaches Pi+l at the ith step and p - 1 more steps are needed for the remaining packets to reach
Pi+,, resulting in a total of (p - 1) + i steps and a time of

t(p) = (p - I + i)( + !r) (2.5)

where 8,,r stand for #R, -"R (ring) #G, rg (2-D array grid), or /,,rH (hypercube). We remark that
a ring can always be embedded in the 2-D array grid and hypercube. The above time is minimized

, for the optimal number of packets equal to

P*p pp(M'i) = i (- 1)m", (2.6)

and the corresponding optimal time is

t-,g(m,i) = + (2.7)

Note that since we must have 1 < p _< m, formula (2.6) is valid only when

1 m
m(i - 1) - '8 - -

This will always be the case if m is large enough with respect with the ratio r//3, which is usually
small. However, in case 1/[m(i - 1)]>r/,6 then the optimal number of packets is p = 1 and the
above timing formula becomes topt(m,i) = i(mr + P). When r/n>m/(i - 1) then the optimal
number of packets is p = m and the optimal time becomes top(m,i) = (m + i - 1)(r + /).

Formula (2.7) expresses the time in which a vector of size m can be moved along a chosen path
of length i between two processors. This may not be the best possible time to transfer data between
two processors because several parallel paths (i.e., paths that do not cross each other) can be used
simultaneously to perform the data transfer. For the ring there are two parallel paths between any
two processors, while for the 2-D grid there may exist up to four such paths. For the hypercube it
can be shown that n parallel paths exist between any two given nodes [8].

Suppose that we want to transfer a data block of size m from some processor to all the
processors in a ring. An efficient way of doing this operation is to pipeline the data in both
directions around the ring from the initial processor. Then to reach every processor, the data must
travel across only i = [(k - 1)/21 processors in each of the two directions of travel. Therefore,
broadcasting a vector of length rn in a ring requires the time:

(28troe&(mR)f V---R 1 + . (2.8)

Consider now the same operation of transferring a vector of length m from one processor to
all others in an n-cube. At first, let us describe a simple algorithm for sending one element from
one processor to all the other processors of the cube. The algorithm is based on the fact that any
n-cube is the union of two (n - 1)-cubes whose nodes are connected in a one-to-one fashion. In fact

5
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this constitutes a simple recursive definition of n-cubes. Specifically, all the nodes whose binary
number is of the form Oa where a is any (n - 1)-bit binary number representing the vertices of an
(n- 1)-cube are linked to the nodes whose numbers are la. This suggest the following algorithm for
sending one element from node 0 to all other nodes in an n-cube. The powers refer to concatenation.

ALGORITHM: Hypercube Broadcast

(1) Start: Send data item from processor 0" to processor 0 -11.

(2) Loop: For j = 2,3,... n do
All processors numbered 0-j+laj, where ai is any (j - 1)-bit binary number move data
item in parallel to processor 0n-J laj.

i
Since there are n steps in the above algorithm, any given element can be transferred to all

others in an n-cube in a time n(GH + r). When sending a vector of length m it is clear that the
above idea of pipelining the data transfer can still be used. Since this will amount to pipelining
the data transfer in a path of length n, it is clear that formula (2.7) applies, i.e., the optimal time
for sending a vector of length m from one processor to all others in an n-cube is given by:

tBraoe (m,H) (V i + \/(nW -1)PH) 2 . (2.9)

3. Algorithms for the ring architecture.

The algorithms we develop in this section are valid only for the case when the number of
processors is smaller than the bandwidth of the problem (k < v.). We assume a ring interconnection.
However, it is clear that since a ring can be mapped into many other architectures these algorithms
have a fairly wide range of application whenever k :< v.

3.1. Interleaved Gaussian Elimination
In [3] several modified Gaussian elimination algorithms for solving dense linear systems have

been proposed. One of the more efficient algorithms, named Row-Scattered Gaussian elimination,
consists in interleaving the system across the processors and performing a slight variation of the
usual Gaussian algorithm.

In order to adapt this interleaved Gaussian elimination algorithm to banded linear systems,
we distribute the equations of Ax - f among the processors in the way shown in Figure 4. The ill
processor contains the N/k equations i, i + k, i + 2k, ..., i + N - k, where we assume for convenience
that N is a multiple of k.

Typically, at the ill step of Gaussian elimination, the pivoting row (of length v) is first sent to
all processors and then each processor eliminates those rows among the rows i+1, i+2, .. i+v- 1 that
it holds. There are at most [1 such rows in each processor. In order to keep the processors busy as
much as possible and to obtain k x k diagonal blocks that have the nice property of being diagonal
matrices, we employ the modification of the classical Gaussian elimination suggested in [31, i.e.,
eliminate the i-th variable not only rows i + 1, i + 2,..i + v - 1 but also in rows i - 1, i - 2,.., q, where
q -- [J. This will result in a matrix that is upper triangular, banded, and with diagonal k x k

6



diagonal blocks (referred to as DDB matrices). The resulting algorithm is referred to as Algorithm
RIBGE (Row-Interleaved Banded Gaussian Elimination) and is formally described below.

ALGORITHM RIBGE (Row-Interleaved Banded Gaussian Elimination)

For q = 1,2 .... N/k do:
For i = 1,2, .. .k do:

(1) Send pivot row: Send row number (q - 1)k + i from processor i to all other processors.

(2) Perform eliminations:

In each processor P,j = 1,2,..k do in parallel:

For h= (q- l)k+j, Step k, while {h < i + v and j # i} Do:

ah,, := ah,, - "Ihjaqk+i,*,

where 1Ihj = ah,(q-1)k+j/a(q-1)k+i,(q-1)k+i.

Let us estimate the time to perform the Gaussian elimination process. For each step i =

1, 2,..N - 1, we need

" to transfer a row of size v to all processors at a cost of (2.8):

" perform r i eliminations at the total cost of r 1 [vw + -y].

Summing up the above times for i = 1, 2, ..N - 1 results in the total of approximately

tT,R ft N VV + 7,+ R) (3.1)

for communication and
tA v- (3.2)

for arithmetic. These results will now be recast in a form that will be convenient for subsequent
comparisons.

Proposition 3.1. The total time required for performing the Row-Interleaved Banded Gaussian
elimination on a k-processor ring is approximately:

tRIDGE ft Nr! I1 (VW + ~Y) + NL'TR (I1+ I~KaR)2 (3.3)

k A[ 1(VW+ )]+[R+ V#RrR +

7 IL



A b

row 1 Processor 1
row 2 Processor 2

Lrow 3 Processor 3
row 4 Processor 4

row 5 Processor 1
row 6 Processor 2

r rwow 7 Processor 3
N row8 xProcessor 4

Figure 4: Row-wise interleaving of a banded linear system in
a 4 processor system.

where K V'7 _ and aR = V Nit •

The approximation (k- 1)/k f 1 has been made to derive (3.1) and (3.2). The above estimates
indicate that for large enough bandwidth the time for arithmetic is reduced by a factor of k, as
compared with the time on a single processor. When v _ k, then we cannot further speed-up the
arithmetic with the above algorithm, as is indicated by formula (3.3). Clearly, we will then be
doing better with k = v processors because of the increase of communication time.

Thus using an ever larger number of processors will not always speed-up the algorithm i.e.,
there is an upper limit beyond which it is ineffective to use more processors. This suggests that
there is an optimal number of processors which can be obtained by trying to minimize the timing
formula (3.3) with respect to the parameter k. Unfortunately, this function of k is complicated and
its exact minimum even if available might be difficult to exploit and interpret. In order to simplify
the expression we first replace the term r(v - 1)/ki by the approximation v/k. We call 1R1BGE the
resulting right hand side of (3.3). A second simplification is realized by using an upper and lower
bound for the term corresponding to communication time, namely

VrR + k OR :- \V/' + O _ 2vrR + k)R R. (3.4)

8



Note that a similar expression haz been used in [3]. The upper bound simply corresponds to non-
optimal pipeling of data transfers, whereby one splits the data into k packets instead of the optimal
Iuopt packets as given by (2.6).

Thus the time tRIBGE is bounded above by L

!RIBGE :5 I(k) N N (VW + Y) + 2 vr + -O)(3.5)

2Y

By differentiating the above function with respect to k and equating the result to zero, we find that
the minimum of the above upper-bound is achieved at

k*=v + "R (3.6)

Substituting k* in (3.5) we get the optimal time

t(k*) = 2Nv [V(w + y/V)SR+ rR]. (3.7)

Denoting by kpt the value of k for which the minimum of tRIBGE is achieved, we have

min tRIBGE = tRIBCE(kopt) S iRIBGE(k*) < t(k). (3.8)
k

A similar argument can be used for the lower bound

tRIBGE 2! 1(k) N L (VW + 7) + (VT1R + 2 OR)], (3.9)

the minimum of which is achieved for

k. 2v (w +Yv) (3.10)

and has the value
t(k) =2NV (w + "ylv),6R + jTR •(3.11) .

Moreover,
min tRIBGE = tRIBGE(k.p) t(kopj) > 1(k.). (3.12)

k

Grouping the two bounds (3.8) and (3.12) we get the following result.

Proposition 3.2. The approximate minimum time in which Algorithm RIBGE can be performed
on a multiprocessor ring with an arbitrary number of processors is such that

2Nv [ ( + /-1/a R + -rR] S Mi [RIBGE S 2Nv [V(w.+ Yv)OR+TR] (3.13)

This result indicates that, for large values of v, the optimal time is nearly linear in v.

9
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A b

Processor 1
Processor 2

B1  Processor 3
Processor 4
Processor 1
Processor 2
Prceso2
Processor 4

Figure 5: DDB banded upper triangular system resulting
from interleaved Gaussian elimination in a 4-processor sys-
tem.

3.2. Solution of the Resulting Triangular Systems
The upper triangular systems resulting from the Gaussian elimination algorithm described in

Section 3.1 have the form depicted in Figure 5. Each diagonal block is a k x k diagonal matrix,
while the off-diagonal blocks B1 are dense. The solution algorithm for such a system can be adapted
from [3] in a straightforward way. The algorithm starts by solving the bottom right k x k block
system. Note that since the diagonal blocks are diagonal matrices, this amounts to one single
arithmetic division in each processor with each processor winding up with one component of x,
the bottom k-dimensional block of the solution. In a general step j, we first need to deliver those
just computed k components to each processor. This can be achieved by rotating the data x~
one element at a time around the ring, and requires a total time of

k(19R + 7R)-

10



Then we perform the vector operation:

bi  bi - Bi ii (3.14)

where :ij is the vector consisting of the v components following those of the jih block xj. while
Bj is the rectangular matrix of size k x v in block position jj + 1. The vector operation (3.14)

*-. consists in k independent vector operations each of length v. Neglecting the cost of solving the
diagonal systems, the arithmetic time for a typical step is therefore

-. t+ vW.

Summing the above times over the m - N/k steps, we get that the total time for solving the system
comes to

tT,R = N(OR + TR) (3.15)

for communication and = N (3.16)
k

for arithmetic. Observe that neither time increases as the number of processors k increases. Thus,
it always pays to us as many processors as possible. Note, however, that for large v the total time
for solving the triangular system is small as compared with the time for Gaussian elimination.

4. The block interleaving algorithm for grid arrays

For convenience we define P = v1 and consider the c x ic grid of processors of Figure 2. We
number the processors with two indices as they would be numbered in a matrix: processor Pj is
the processor located at the intersection of the i3 h row of the grid (starting from top) and the j1h

column (starting from left). We partition A into square sub-matrices A09 of size 1 x and for
simplicity we assume that A is a block-banded matrix of block-bandwidth ic i.e., we have Aij = 0
if ji - jj > x. Note that for a general banded matrix of half-bandwidth v this assumption is always
satisfied by redefining v to be Vnw = 4[V/(-IC 1)1.

We proceed in two steps to assign the matrix to the processors:

1. We partition A into square sub-blocks of size v x v.

2. Each v x v sub-block is itself partitioned into square blocks of size P x [ each. This partitioning
is then mapped naturally onto the grid of processors, i.e., the (i,j) sub-block of each v x v
block is assigned to the processor numbered (i, j). Clearly we need only store the nonzero
sub-blocks.

In other words, relative to the partitioning of A into sub-matrices of size [ x , the submatrix
Aj belongs to processor Pn(),n(j), where

1l(i) 1 + Mod(i,#c) and 11(j) 1 + Mod(j,oK). (4.1)

Moreover, the element aii of A belongs to processor P.(0,(J), where

7r(i) = c and (j) n(r 1) (4.2)

This is illustrated for ic = 4 in Figure 6. With this scattering of the data each row of the matrix

is distributed among the x nodes of one row of the grid and each column is also distributed among

11



i,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4 2,1

3,1 3,2 3,3 3,4 3,1 3,2

4,1 4,2 4,3 4,4 4,1 4,2 4,3

1,2 1,3 1,4 1,1 1,2 1,3 1,4

LA 2,4 2,1 2,2 2,3 2,4 2,1

3,4 3,1 3,2 3,3 3,4 3,1 3,2

4,1 4,2 4,3 4,4 4,1 4,2 4,3

1,2 1,3 1,4 1,1 1,2 1,3 1,4

2,3 2,4 2,1 2,2 2,3 2,4 2,1

3,4 3,1 3,2 3,3 3,4 3,1 3,2

4,1 4,2 4,3 4,4 4,1 4,2 4,3

1,2 1,3 1,4 1,1 1,2 1,3 1,4

2,3 2,4 2,1 2,2 2,3 2,4

3,4 3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

Figure 6: Block interleaving of a banded system in a 4 x 4
processor grid.

the nodes of one column of the grid. In order to avoid confusion between the rows and columns
of the matrix and those of the multiprocessor grid, we will refer to the rows (resp., columns) of
the grid as the grid-rows (resp., grid-columns). With this terminology, the Gaussian Elimination
algorithm can naturally be implemented as follows:

12
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ALGORITHM BIGGE (Banded Interleaved Grid Gaussian Elimination)

For i = 1,2,...N- I do:

(1) Normalize row: Send ai,i to all processors of the same grid-row and divide the ith row by
aii, in each of these processors.

(2) Broadcast normalized pivot row vertically: All processors containing part of row i, i.e.,
processors (7r(i), *) send their part of the pivot row to all processors (h, *),h = 1,2,..,c,h 9
7r(i) of the same grid-column.

(3) Broadcast column of multipliers horizontally: Processors containing part of column i, i.e.,
processors (*, ir(i)) send their part of the colun.n of multipliers to all processors (*,1),l =
1,2,..Pc,l 7r(i) of the same grid-row.

(4) Perform eliminations: Using the multipliers and the pivot row, each processor performs its
part of the i'h step of Gaussian elimination.

The following result estimates the time of executing algorithm BIGGE.

Proposition 4.1. f < v, the total time for performing Algorithm BIGGE is approximately

tBIGGE N + + N-rc [11+ cKaG (4.3)
1C

where aeG

Proof. First, we discuss the time for data communication. We will neglect the lower order cost
of communicating the element a 3 to processors (wr(i),*) in step (1). Steps (2) and (3) can be

. overlapped according to our assumptions (if not just double the communication time in the above
result). Hence, steps (2) and (3) are essentially two overlapped broadcast operations, one in a
vertical ring of r. processors and the other in a vertical ring of K processors. By virtue of formula
(2.8), both steps (2) and (3) can therefore be accomplished in a total time of

.tT(i) ft +L (4.4)

Summing the above times over the N - 1 steps, we get the total time for data communication.
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Second, we discuss the time for arithmetic. Again we can neglect the cost of arithmetic
operations of step (1) as they are of lower order. In the elimination step (4) each processor performs

Sconsecutive operations of the form row :-- row - scalar * row, where row is a row of length -

Hence, according to formula (2.4) the total arithmetic time for step i is

tA(i) = -)

and for N - 1 steps this comes to approximately:

tA = N [)W +

Adding the communication and the arithmetic times we get the total of (4.3).
I

A disappointing, but expected result, is that when the number of processors gets sufficiently
large, the total execution time increases due to the larger number of start-ups in communication
as is reflected by the last term of (4.3).

This raises the question of the optimal nunber of processors. Given an arbitrarily large number
of processors (up to km,z = v2) is it best to use all of the available processors or to "turn-off" a few

*of them and use only part of the available computing power? Although this seems counterintuitive,
we show that in general, fewer than v 2 processors must be used in order to get the maximum
speed-up. For this purpose let us expand the total time (4.3) in terms of the variable x M . We
obtain

tBIGGE gt t(x) _ NV [X2 W+ h +,G)x +I # +N 2_,r6G(45
1  2 x I +

7 Jv

Note that the last term is constant with respect to the variable x. We would like to minimize
the expression in (4.5) with respect to the real variable x. However, an attempt to do so would
immediately lead to a third degree equation which would be difficult to solve. Fortunately, we
can derive an approximate solution which will be shown to be nearly optimal. The near optimal
solution is obtained by discarding the first degree term in x in (4.5), i.e., we seek the minimum of
the following lower bound of t(x):

j(X) = N [x2W + ] + "-NV rG'. (4.6)

Differentiating with respect to x, it is found that the minimum of t(x) is reached for

S.1/3 (4.7)

Substituting in (4.6) we get

- 2t(x.) = ' 3  + NV ro Vx, t. = 3Nwx. + N-,vrG,6. (4.8)

Note that the restriction 1 :< i _< v2 translates into the restriction < x < v.

The next proposition establishes that for large v, the time t. is nearly equal to the minimum
of t(X).
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Proposition 4.2. Let topj be the minimum of t(x), x >_ 0, and let t. be defined by (4.8). Then

-topt - t. 4 ( + r(4.)

Proof. By definition

to t (, t(x. (x) + N(-y + G)x. =_ t* + N(-y + rG)x.. (4.10)

If x is the value of x for which t(z) is minimum, we also have:

tope = t(Xa) (x) _ t_(.) = t.. (4.11)

From (4.10) and (4.11) we get
0<top( - to < x* 4.2

S(4.12)

The relation between t. and x. given by (4.8) yields

4 1
<, -- (4.13)

t. 3wx. 3 (4W,)2/.3,61/3.,1/3

This, together with (4.12), gives (4.9).

A similar argument was used in [7] to analyse the communication complexity of the Gaussian
elimination algorithm.

The proposition asserts that the minimum time for performing Algorithm BIGGE, is of the
form O(NV213 ), i.e. the best speed-up is of the order of 0A/3 , instead of O(v 2) as might have
been expected. The reason why the best possible speed-up cannot be achieved is due to the term
that increases with k in tBIGGE, i.e., to communication start-up times. If the successive steps of
Gaussian elimination are overlapped then it is possible to reduce the effect of start-up. Thus, for
a large number of processors, better algorithms can be found as will be seen in Section 6.
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Figure 7: 3-D view of the 4-cube.

5. Gaussian elimination for the hypercube multiprocessor

The hypercube 113] is a popular ensemble architecture. The n-cube multiprocessor consists
of 2" nodes that are numbered by n-bit binary numbers, from 0 to 2" - 1. The interconnection is
such that there is a direct link between two processors if and only if their binary representations
differ by one and only one bit. In the case n = 3, the 8 nodes can be represented as the vertices
of a three-dimensional cube, see Figure 3. When i -= 4 the three-dimensional representation
shown in Figure 7 is quite useful. In Figure 7, a 4-cube is obtained by joining all nodes of an
inner-3-cube with their geometrical counterparts of an outer-3-cube. Some general results on the
topology of hypercubes are discussed in [8] while reference [9] examines communication problems
in a hypercube multiprocessor.
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5.1. The Hypercube Banded Gaussian Elimination
For this section we assume that n is even. The number of processors, denoted by k, is of

the form k = 2n and, as in Section 4, we define K = -0 = 2n/2. In order to be able to derive an
analogue of Algorithm BIGGE for the hypercube, we first map a 1C x C grid into the n-cube and then
map the algorithm onto the defined grid. However, we will try to exploit the more advantageous
interconncetion features of the hypercube, when moving data in algorithm BIGGE.

To map 2-D a grid into n-cubes, we make the important observation that an n-cube can be
viewed as a "cross-product" of two "-cubes. Indeed, we can consider the n-bit binary label of
any n-cube node as the result of concatenating two 1-bit binary numbers, say bi and cj. In other
words, we can write any node number as aij = bi A cj, where A denotes the concatenation, and
bi, cj are the first and second bits of the node number. From the properties of the n-cube it can
be easily seen that when bj is fixed the resulting 21 nodes obtained by varying the second part of
the binary number, i.e., by varying ci, form an "-cube, i.e., a sub-cube of the n-cube. Similarly,
when we fix the second part ci and let bj vary, we obtain another j-subcube.

This defines in a natural way the n-cube as a cross-product of the two n-cubes. We refer to
a vertical plane as an i-cube defined as the set of all aij where j is fixed. A horizontal plane is
defined likewise by fixing i and letting j vary. This is illustrated in Figure 7 where the 4 horizontal
planes are numbered with one of the four binary numbers 00, 01, 11, 10 (in this order) from bottom
to top. Then the vertical planes defined by the 4 vertical trapezes are in turn successively numbered
00, 01, 11, 10. Each node of the 4-cube is the only intersection point of a horizontal plane and a
vertical plane. Note that this numbering is by no means unique.

Let us now assume, as was done in Section 4, that the matrix A is a block-banded matrix
of block-bandwidth #, where each block is of size v/ic, i.e., we have Ai = 0 if ji - Ji > 1. If
we partition A into sub-matrices of size x , then the submatrix A3d is assigned to the node
numbered h(i)Ah(j), where h(i) =_ Binary[Mod(i, K)]. The distribution of Figure 6 is still valid but
the processors on the same block-column, now form an n-cube while those of the same block-row
form another n-cube.

The only difference with the grid algorithm is that communication is faster because of the
richer interconnections of the subcubes. In what follows we will make the assumption that a node
can be crossed simultaneously by two streams of data, one going vertically, i.e., traveling in the
vertical plane of the node, while the other travels in the horizontal plane of the node. It is not
necesseary to rewrite the algorithm as it is identical with Algorithm BIGGE. We refer to the new
algorithm as the Hypercube Banded Gaussian Elimination (HBGE).

We now estimate the time required to perform Algorithm HBGE. The time for performing
arithmetic operations is identical with that of BIGGE, i.e., it is given by

taH E = N + "Y . (5.1)

In order to estimate the time required for the communication tasks, all we need to know is
the time for moving a vector of length m from one processor to all others in an n-cube, as this
is the only important transfer operation of the algorithm, which takes place in steps (2) and (3)
(simultaneously). This was examined in detail in Section 2.2, and as a result we infer the following
Proposition.
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" Proposition 6.1. The total time required to perform Algorithm HBGE on a hypercube of k S o€
. processors where # is a power of 2, is approximately

tHBGE N [( W + ") - + N!-H ( + Vs)(5.2)

=N W + + N [ rH + 2 TSH ogH +  gI02K]

where &H

Note that ag has been chosen of this form in order to be consistent with previous results.

." 6. Pipelining and the wavefront approach for the grid architecture

As was observed in the previous sections, when the number of processors is large compared
to the half-bandwidth v, the loss of efficiency appears to be nonnegligible due to communication
overhead. Thus, while one expected a speed-up of the order of v2 using the maximum allowable
number of processors, k = v 2 , we were only able to achieve a speed-up of the order of 0A/ 3 . The
reason for this inefficiency is that those algorithms do not pipeline the successive steps of Gaussian
elimination. When a column or a row of information is broadcast, some processors are idle waiting
for the information to reach them and since the number of processors is large the information will
travel a long way across processors leading to important idle times. It is shown in this section that
it is vital in this situation to resort to pipelining, i.e., to employ an algorithm of finer granularity
and overlap the successive steps of the elimination as much as possible. There are a variety of ways
of achieving this for the Gaussian elimination algorithm.

A systematic way of pipelining in Gaussian elimination is the so-called wavefront approach,
which is well-known in the context of algorithms for systolic architectures [6]. We describe here
an adaptation of this approach for solving banded linear systems. The algorithm can be viewed as
a simple implementation of the banded LU factorization described in pages 280-285 of 16], which
seems to have been known for a long time [10].

Put in very simple terms, the wavefront approach consists in performing the elimination by
skew-diagonals, a skew-diagonal of A being the set of elements a,, such that i + j is equal to some
constant. In other words, all computations relative to an elimination step of Gauss' algorithm are

performed simultaneously on the elements of the matrix that are on the same skew-diagonal. The
basic idea of the wavefront approach is that we can overlap several consecutive such computations
which are referred to as waves. To describe the algorithm in its simplest form, we initially assume
that k = v2 , i.e., each box of Figure 6, represents a processor which contains one nonzero element
of A. For the following discussion, we refer to both Figure 6 for the matrix assignment and Figure
8 for an illustration of the successive steps. A general step will consist of a communication task
and a computation task. In the very first step of the algorithm, processor (1, 1) sends the element
al, downward to processor (2,1), which then uses this information to compute the multiplier

12,1 -- a2,1/ai,i. In the second step, this multiplier is now transferred to the processor (2,2) to
the right. Simultaneously, processor (2, 1) passes on the element a, that it has received in step
1, downward to processor (3, 1), while processor (1,2) transmits the element al,2 downward to
processor (2,2). After these data transfers, processors (1,3), (2,2), and (3, 1) perform in parallel

the elimination work corresponding to the first row of the matrix, on the elements al,s, a2,2 and
. a3,1. Thus, processor (1,3) is actually idle (no work is done on the first row which is the pivot
- row), processor (2,2) computes the new element a2,2 resulting from the elimination of row 1, using
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the data a2,2, al,2, and 12,1 and processor (3, 1) computes the multiplier 13,1 a3,1/al,1. One can
distinguish the formation of a first wave of computations.

In the next step (step 3) this wave propagates to the right by transferring the multipliers
/i,1, i - 2, 3 to the eastern neighbors and the first row elements downward to the southern neighbors.
The elimination corresponding to the first row is then performed on the fourth skew diagonal and
the new multiplier 14,1 = a4,1/a1,1 is formed in processor (4, 1). A general step consists of trans-
ferring the multipliers lik to the right and the pivot row elements downward, and then performing
arithmetic, i.e., computing the reduced elements. At the fourth step, the second wave correspond-
ing to the elimination by the second row can be started. Indeed, the last task of the elimination of
row 1 has just been completed on the elements a2,2 and a2,3 and therefore the multiplier 13,2 can
be computed in processor (3,2). Here, we need to send not only the elements of the first wave to
the right but also the element al,2 downward from processor (2,2) to processor (3,2).

It is easy to deduce the following steps. The first 8 steps of the algorithm are illustrated in
Figure 8 for the case v = 4. A new wave appears every three steps and dies off after a total of
2(v - 1) steps. If we refer to a front as the set of the concurrently active waves, the wavefront
consists of a total of v - 2 waves, dealing with v - 2 consecutive pivot rows, at the high regime of
the pipelining, i.e., after the first 2v - 2 steps and before the last v - 1 steps.

New waves appear in steps 1,4,7,... 3(i - 1) + 1,.... The wave carrying the information for
the elimination by row i, i.e. for forming the matrix AM , appears in step 3(i - 1) + 1. In particular,
for i = N, we would be starting a fictious wave corresponding to the elimination of row N, while
finishing the work on element a' by the previous wave. In other words the algorithm stops in step

3(N - 1) + 1 = 3N - 2. A comparison with previous work on (dense) wavefront factorization reveals
that the method requires exactly the same number of steps [10]. Therefore, the only difference with
the dense case is that we are using a smaller number of processors, because of the bandedness of
the matrix.

With the assignment of Figure 6, the active processors are performing the same amount of work
at any given step. Typically, in the same wave, some processors will be performing an elimination
of the form

a = a' - likakj (6.1)

while (at most one) will compute a new multiplier lik. Looking at communication patterns each
step requires simultaneous nearest neighbor communication whereby any processor of the same
wave sends multipliers eastward and pivot-row elements southward. These data transfers can be
overlapped. As a result, each step costs a total of -y+w for arithmetic and #c+rG for communication.
Therefore, the wavefront algorithm for factoring a banded matrix requires a total of

(3N -2) [-y + w+c + To].

A remarkable fact is that this number does not depend on the bandwidth of the matrix. However,
any complexity result based on this observation is deceiving since the number of processors required
to achieve this time increases like the square of the half-bandwidth. It is unlikely that the problems
encountered in nature will exactly fit some priviledged number k of processors of a given config-
uration. A less unrealistic goal is to solve any problem by choosing a solution method according
to various parameters of that problem, such as its size and its bandwidth in the present case. For
example, if the number of processors is much larger than 2, one might use a cyclic reduction type
algorithm [4], or a substructured Gaussian elimination method [1] which are not considered here.

As a consequence we now assume that the number of processors is less than v2 . The above
algorithm can be generalized by simply partitioning the matrix in blocks of size E each. The block
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t=1 t=2 t=3 First wave Second wave

x x x A x x x x First wave
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141 -X x x x x x a42 --+X x x x

x X X X X X X X X X

x x x x X X X X

Steps I to S Step 4

x x x x Second wave x x x x Second wave/ /
x x x x-- x First wave x x x x x- First wave

x x a33 2--*x x x x x a34 --+X x

x /41/4 2 / 41--+

1 42 --*a43--+X x x x x a43--'a44 --"X x

4/4 /4/4--- x x
x-x x x x l62-x--- x x x

X X X X X X X X

Step 5 Step 6

x x x x Third wave x x x x/
x x x x x Second wave x x x x x Third wave

x x x x+a2-- X x x x x x- x Second wave

x x 143-a 44 -- X x x x x .a4-'a -'X4 2 / j / 12/i _
x --+ a53--+X x x x 13 -; a54--X x

4 / 4
X X X X x--* X X X

Step 7 Step 8

Figure 8: Wavefront algorithm for a banded linear system.
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matrix resulting from this partitioning is of block-size N/(v/K) - - The adaptation of the
wavefront method is straightforward. The multipliers, now matrices of size E, require multiplying
the inverse of a matrix by another matrix, in each wavefront step. Likewise, the typical operation
(6.1) becomes a matrix operation. It can be seen that each step is dominated by the cost of the
matrix multiplication, i.e., by the time (E)2 (-y + !w). Each step of communication on the other

hand requires a time of )5 + (+)2 ro. Summing up over the 3Nic/v - 2 steps of the algorithm, we
find an approximate total time of

tW,B1ock - 3 + -W) +'8G +(T]

or,

t g',Block _ 3N [V (, + V)+ KG+ V
A quick comparison with the ring and the grid algorithms of the previous sections indicates that for
small values of K, the wavefront algorithm will be about three times slower. However, the wavefront
algorithm allows us to increase the number of processors to v 2 and still attain linear speed-up.

It is important to say a few words about the solution of the resulting triangular system. A
wavefront-like method has been devised for solving (dense) triangular systems in [3]. The method
called TCB/G (Triangular system solution by Column - Blocks/Greedy) consists of sweeping from
bottom to top by marching along skew diagonals. The method can be easily adapted to banded
linear systems with essentially no modification to it, except for the fact that the processors are now
assigned in a manner that accounts for bandedness. In contrast with the LU factorization there
is only one wave moving and the total number of scalar steps is 2N - 1. Therefore, the time for
solving the triangular system by this wavefront method is comparable with the time to perform
the Gaussian reduction to triangular form. The obvious reason is that processors are idle during
most of the algorithm.

7. Summary of results and conclusion

The complexity results of four Gaussian elimination algorithms are summarized in Table 1.
The optimal time for the ring shown in the table is in reality the upper bound given by (3.13). For
Algorithm HBGE the optimal time is difficult to compute. The time shown in the table is an upper
bound obtained by letting = -, i.e., by using the maximun possible number of processors. This
will be nearly optimal in general as the total time is the sum of a decreasing function of r and a
logarithmicly increasing function of k.

To conclude, we can make the following observations:

" The time for performing arithmetic is the same for the first three methods and three times as
long for the fourth method for v large enough.

" The time for communication shows a decrease by a factor of \5 when passing from a linear ring
to a grid. This interesting property is due to the fact that the bandwidth in the vertical and
horizontal directions is multiplied by V0 . Also latency times are reduced because the diameter
of the grid is of the order of v times smaller than that of the ring.

" For the hypercube topology the latency term is of the form N 0log2 k. The consequence of this
is that the deterioration of efficiency due to communication overhead grows much more slowly
than that of the ring or the grid.

" For a large number of processors, in all methods which do not use pipelining (i.e., the first
three methods) the degradation in performance due to communication overhead is important
and the wavefront approach is to be preferred, as is reflected by the last column of the table.
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Method t
Arithm tComm top t  j

RIBGE Nr1(vw + w -) NvrR [1 + Kc] 2Nv [/(W + /v)OR+rR]

BIGGE N q2,+ E]N~rG [1 + K&a] 
2  3Nw 1 3 [~2/3 + NNIv' 7G

HBGE N N() ]T -gv ~]
) + "y N TH [1 + 2 a] 2  N [(w + -y) + T H + O3Hlog2(v)]

WFGE 3NE [-y + Ew] 3N [EI8+ Er] 3N[-Y +w+ 0+ r]

Note :a = \/. where r,8 are either -rR,fiR (ring) or ra,C (grid), or TH, OH (cube).

Table 1: Timings for parallel Gaussian elimination algorithms

" For small number of processors the wavefront method does not perform as well as the simpler
nonpipelined methods.

" The optimal times in which a banded linear system can be solved by the nonpipelined Gaussian
elimination, if we had an arbitrarily large number of processors, is of the form O(Nv) for the
ring, O(Nv2 / 3) for the 2-grid and O(Nlog2 (v)) for the cube. Comparing with the O(NV2 ) time
of a single processor, we observe that the important change takes place when passing from the
2-D grid architecture to the hypercube architecture.
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