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ABSTRACT

"-" A general model for the homogeneous case of the continuous response

- is proposed. The model is an expansion and generalization of the one

proposed by the author in 1974, in which the open response situation is

dealt with. In this generalized model, we deal with the closed response

situation, and it includes the model for the open response situation as a

special case. It also includes models for the open/closed and the closed/

open response situations as two special cases. The distinction among the

four response situations depends upon the probability assigned to each

of the two extreme values of the continuous response, i.e., the

probability zero corresponds to the word "open," and non-zero to "closed."
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I Introduction

Latent trait theory has been expanded and generalized in the past

couple of decades to include varieties of different situations. Although

it started from the simplest case, i.e., the dichomotomous response level

(e.g., Lord, 1952; Lazarsfeld, 1959; Rasch, 1960; Birnbaum, 1968), now it

includes varieties of cases such as the graded response level (e.g.,

Samejima, 1969, 1972), the nominal response level (e.g., Bock, 1972;

Samejima, 1972, 1981) and the continuous response level (e.g., Samejima,

1973, 1974). This expansion and generalization of the theory has

tremendously broadened the area of application of latent trait theory and

produced varieties of its methods. Researchers can select suitable

situations and appropriate models for their research and data, depending,

mainly, upon the manner with which the subject's response is given and

scored. Almost all the other areas of psychology, in addition to mental and

social attitude measurements which the latent trait model originally

stemmed from, are now included in the area of application. Marketing and

medicine (cf. Roche, Wainer and Thissen, 1975) are two examples of the new

areas which benefit from the expanded theory.

The distinction between the continuous response level and the

discrete response level has been made by the fact that in the former

situation the conditional distribution of the item score, given the latent

trait, is continuous, whereas in the latter it is discrete. Samejima has

proposed the homogeneous case of the continuous response model (Samejima,

1973), in which continuous item response distributions are solely observed.

In her paper, she distinguished two situations, i.e., the open response

situation and the closed response situation. The general model was

proposed, basically, for the open response situation.
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This clear twofold categorization may not always hold, however, for

psychometrics must deal with much complicated psychological reality,

including situations in which the item response distribution is partly

discrete and partly continuous. Take a cognitive process, for example. It

is rather customary that cognitive psychologists take the response latency

as a measure of the subject's performance. This is justified when the

required cognitive task is relatively uncomplicated, and the response latency

can be interpreted to have a straightforward relationship with the

cognitive process of interest. Suppose that in our experiment a relatively

simple problem is presented for the subject to solve, and the subject is

given a sufficiently long time for the task. In such a case we can apply a

model which belongs to the general continuous response model (Samejima,

1973), using the subject's response latency as the reversed continuous item

score. If we set a time limit for the problem solving in order to

facilitate the experiment, however, we may not be able to adopt such a

model, for our procedure assigns those who responded too slowly to a single

category of "no response." Distinct from all the other responses provided

by the response latency, we must consider that the conditional probability

assigned to this additional response category, given the latent trait, is

non-zero. The conditional distribution of the item score is, therefore,

partly discrete and partly continuous.

In the present paper, a general model in the closed response

situation will be proposed and discussed. This model deals with the mixture

of discrete and continuous item response distributions, and includes the

ge ier.0l model for tie open response situation as ftH special ratis.

It also Includes two more distinct situations, in which the response Is half

closed and half open. They will be introduced in the following section.

7"
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FIGURE 2-1

An Example of the Response Formats Which Allow
Continuous Responses

-.. '. .- , -.,'..,'.,i .-.- .-.-.. .-.- ,-' ' .--- - . . . ,.. .'.. '.' . , .. ...... ,;.,"..,. .



-4-

II Closed/Open and Open/Closed Response Situations

Let 0 be the unidimensional latent trait, or any hypothetical

construct, which assumes all real numbers. Let g (fl,2,...,n) be an

item, which is the smallest, concrete entity devised for measuring the

latent trait. The assumption that our latent space is unidimensional

implies that the conditional or local independence of the item responses,

given 6 , holds in the unidimensional latent space.

In the previous paper (Samejima, 1973), the open and closed

response situations are exemplified by a continuous response format,

which is illustrated as Figure 2-1. Suppose that the subject is asked

to check a point on a line segment illustrated in Figure 2-1, in accordance

with his judgment required for the task in item g . We call it the open

response situation if the subject is allowed to check any point of the

line segment except for the two endpoints. Let Zg be the continuous

item score, defined as the limiting case of the relative, graded item
*1

score, Yg , which is the raw item score x (= 0, , ... , m ) divided

by the full item score m . Thus in the open response situation we haveg

(2.1) 0 < Zg < 1

and z g can be considered as the relative distance from the lower

endpoint of the line segment illustrated in Figure 2-1. In the closed

response situation, the subject is allowed to check any point of the

line segment including the two endpoints. Thus we can write for this

situAt Ion

(2.2) ~0 z I

In addition to the above two situations, we can conceive of two

,..**-.. ..y .... ...*'. - -. ,.. -.. -....................................................... ........... ,,.n ..-



more situations, which are half open and half closed. Suppose that the

subject is allowed to check one of the endpoints of the response line

illustrated by Figure 2-1, but not the other. We can write for these

two situations

(2.3) 0 ' z < 1g

and

(2.4) 0 < z 1

respectively. Hereafter, we shall call the situation represented by (2.3)

the closed/open response situation, and the one indicated by (2.4) the

open/closed response situation. The illustration of the closed/open and

open/closed response situations by means of Figure 2-1 is rather schematic

than realistic. The reader may understand the implication of these two

half-open and half-closed situations better, if we say that the example of

response latency in the cognitive process, which was given in the preceding

section, belongs to the closed/open response situation.

We notice that, if, regardless of the instrurtions, the nature of the

item makes the subject refrain from checking either one of the two endpoints,

or both, the general model for the open response situation will still be

applicable in each of the other three situations. In addition, if the time

limit is extremely long in the example of response latency given in the

previous section, for instance, then the conditional probability assigned to

"'no response" will approach zero. In practice, however, it is more likely

that we set a shorter time limit, so the conditional probability assigned to

the lower endpoint becomes greater than zero. In fact, it is reported that

in certain spatial problem solvings those who took much longer times on

.. . .-, .- . . -.. :......... .. .. .. . ..........- "
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difficult items than on easy items appeared to be relying on nonspatial

skills (cf. Lohman and Kyllonen, 1983). Observations such as this support

the necessity of time limits. For simplicity, in the following sections, we

shall use the terms closed/open and open/closed response situations strictly

for cases in which the probability assigned to one of the endpoints is non-

zero, and the closed response situation indicates the case in which the

probabilities assigned to the two endpoints are both non-zero.

Thus we must deal with the conditional distribution of the item

score, given the latent trait e , which is partly discrete and partly

continuous. The distinction between the continuous response level and the

discrete response level can no longer be made in terms of the continuous and

discrete conditional distributions of the item score, given the latent trait.

In this paper, we define the continuous response level as the one on which

the conditional density of the item score, given the latent trait, is

positive for the specified interval of the item score, except, at most, for

an enumerable number of points. Thus the closed, the closed/open and the

open/closed response situations belong to the continuous response level, as

well as the open response situation, with positive infinity as the

conditional density at z M 0 or z = 1 , or both. It should also beg g

noted that any continuous response can be transformed to z which variesg

between 0 and I , regardless of the specified interval for which the

original response is defined, provided that we choose a suitable monotone

transformation.

III C:mnditlolnal I)strbutiori of the item Score

I,vt I'* ( ) be the conditional probability with which the suhble tZ

obtains the item score z or greater, given 0 A general mathematical
g
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form for P*z(e) in the homogeneous case of the continuous response
Zg9

model (Samejima, 1973) is given by

(3.1) P* () a0 Z g(t) dt

with

Sli P* (a) 0

(3.2) { g
lir P* (o) = 1

Z
g

where a (> 0) is the item discrimination parameter, b is the itemg Zg

response difficulty parameter, and Ty (.) is a specific continuous

function, which characterizes the model, and is positive almost everywhere.

The operating density characteristic, H (0) , has been defined, and itZg

can be written in the form

(3.) H(.1) = ag ,T gag(e-bz )}[-d bz 0 < z < 1g dZg Zg

In the open response situation, this operating density characteristic is

the density function of the conditional distribution of the item score

z , given 9 , w.lich solely characterizes the conditional distribution

of z , given f) , satisfying
g

(3.4) Hz9(H) dzg = 1

Let Pzg (1) be the conditional probabilty of Zg . given 0 • In

the more general case which includes all the four response situations

doqcrihed earlier, we adopt (3.1) through (3.3) with the modification

" " '" '""". ". " " : . . " - ' - " ' "i "" " " " "' -" "
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presented by dotted curves are the corresponding five examples of (3.18), in

which (z g) is specified by (3.21) instead of (3.20), with the same set of

parameter values. Since for k = 1 (3.21) coincides with (3.20), the

dotted curve for k = I is overlapping with the solid curve which is based

upon (3.20), and is not clearly visible in Figure 3-4.

Those are just some examples of the relationships between the

continuous item score z and the difficulty parameter b in theg Zg

closed/open response situation. In fact, we can conceive of many other

strictly increasing functions varying from zero to unity than (3.20) and

(3.21) for (z g) , and also many other strictly increasing functional

formulae which vary from b0  to positive infinity than (3.18) for the

relationship between z and b . Figure 3-4 suggests, however, that

even within the limitation of (3.18) with (3.20) or (3.21) for (z g) we

have varieties of curves which may fit our empirical findings well. In

practice, we may use the arc tangent transformation of (b z-b O )

where ^ indicates an estimate, and apply the method of moments for

fitting polynomials (Samejima and Livingston, 1979) to the transformed values

multiplied by (2/1) .

Figure 3-5 presents by a solid curve the operating density

characteristic H (") in the normal ogive model as a function of thez

continuous item score z for each of the thirteen fixed values of 0g'

i.e., -3.0, -2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5

and 3.5 , with the parameters, ag 1.0 and b0  -2.0 , using (3.18) as

the functional relationship between z g and bz  with the specification

of C-(z ) by (3.20) in which k = 1 and a = 1.0 . In the same figure,

also presonted by dotted curves are the corresponding operating density

charact~ristics in the logistic model, in which D = 1.7 Those graphs



-20-

14.0

a * I

12.0 -I

10.0 k=9:

k=7,

8.0O11
Ik=5

k=3
6.0

i, ,

cc 4.0
I *LU

a. 2.0 a I
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0.0 k33° =9_
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0.0 0.2 0.4 0.6 0.8 1.0

CONTINUOUS ITEM SCORE zq

FIGURE 3-4

Five Hypothetical Functional Relationships (Solid Line) between the
Continuous Item Score z and the Difficulty Parameter b

Which Are Given by bz  b0+ tan[(iv/2)z 9  for k = I, 3, 5, 7, 9,
g

with the Parameter, b0 =-2. 0 , and the Corresponding Relationships

(Dotted Line) Given by bz  = b + tan[(r/2){l-(l-z )k} ]

g gS
Closed/Open Response Situation.
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closed/open response situation may be

(3.18) bzg = b0 + tan[(7/2) (z g)]

where (zg) is any strictly increasing, continuous function of Zg

defined for 0 < z 1 , with the constraint

(=0 z -0

(3.19) (zg) 
g

gIjz- =I

Two examples of E(z ) are given by polynomials such that

k
(3.20) ,(z ) f aj zgJ

j=

and

k
(3.21) (Zg) - Z a.(l-z )j

j-l

with the constraints given by the right hand inequality of (3.16) and

k
(3.22) Z a. 1

J-1

Figure 3-4 presents by solid curves five examples of the above functional

relatlonship with (3.20) as (z ) and with b0 = -2.0 , where

k - 1 , 3, 5, 7, 9 and ' x=0 for .1 < k . I this flgure, It Is

obvious that b approaches positive infinity as z tends to unity, and

it approaches b0  as z tends to zero. In the same figure, also

-78
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with the same constraints given by (3.15) and (3.16). Five examples of

(3.17) with the same values of k and the coefficients aj are drawn by

dotted lines in Figure 3-3. Note that, in the first of the five examples,

(3.17) coincides with the linear function given by (3.11), and the dotted

line is overlapping with the solid line in Figure 3-3

We can see from (3.3) that, as far as T 9g.) is symmetric and

b = -bI , as is the case with the present examples, the operating density

characteristic, Hz (6) , which is based upon (3.14) for the relationship
g

between z g and b , assumes the same value as the corresponding

operating density characteristic based upon (3.17) with the same values of

coefficients, if we replace z by (l-z ) and 0 by -0 . This implies
g g

that the mirror images of the thirteen curves for H (0) with the axis ofZg

rotation at Zg = 0.5 in each of the four figures, Figures A-1-2 through

A-1-5, provide us with the operating density characteristics based upon each

of the four dotted curves in Figure 3-3 for the relationship between z g

and bzg , for 0 = -3.5, -2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5,

2.0, 2.5, 3.0 , in each of the two models.

In contrast to the observations made so far in the closed response

situation, neither in the closed/open response situation nor in the

open/closed response situation can the functional relationship between the

item score z and the difficulty parameter b be linear, nor can it beg Zg

approximated by a polynomial. This is obvious from (3.6) and from the fact

that, in the former situation, inequality holds only in the first formula

of (3.6), and it holds only in the second formula in the latter situation.

We must search In practice, therefore, for some other functional formulae in

each situation, after having observed the empirical function obtained between

z and the estimated b from our data. One suitable formula in theg 7g
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Five Hypothetical Functional Relationships (Solid Line)
between the Continuous Item Score z and the Difficultyg k

Parameter hz Which Are Given by bz = b+(bb)Z k

for k = 1, 3, 5, 7, 9 , with the Parameters, b0 = -2.0

and bI = 2.0 , and the Corresponding Relationships

(Dotted Line) Given by bzg = bl-(bl-bo)(1-Zg)k

Closed Response Situation.

.., ...... • .., ....... ..., ~~.. ,..... ....... ,........ .. ....... .................. .....



-16-

necessary, condition for the second constraint to hold is that

OL 0 for j = 1, 2, ... , k . We notice that the linear relationship

which we observed earlier is included by (3.14) with the specification,

k = 1 . Figure 3-3 illustrates the functional relationships between Zg

and b for five different polynomials in which k = 1, 3, 5, 7, 9 andZg

a 0 for J <k ,with b0 -- 2.0 and bI  2.0 . It is noted that

the resultant H (e) based upon the linear relationship shown in Figure 3-3Zg

has been given in Figure 3-2 for the thirteen different values of 0 , in

both the normal ogive and the logistic models. The corresponding sets of
r

H z(0) for the other four relationships between Zg and bzg I which are

shown in Figure 3-3, are presented in Appendix I as Figures A-1-2 through

A-1-5. In those figures, for convenience, the continuous item score Zg is

taken on the ordinate, and the operating density characteristic H (0) is

taken on the abscissa, and, because of the limitation of the space, some

curves are truncated. For the sake of comparison, Figure 3-2 is duplicated

as Figure A-I-i in Appendix I with the exchange of the ordinate and the

abscissa. It is noted that the middle term of (3.5) is not influenced by

the specific functional relationship between z and bg , so it is obvious
g zg

that the thirteen areas shown in Table 3-1 also represent those under the

thirteen curves shown in each of the four sets of graphs, Figures A-1-2

through A-1-5, in each of the two models, respectively.

We notice that, if we use a set of coefficients satisfying x 0

for j = 1, 2, ... , k, those specific polynomials defined by (3.14) with the

constraints, (3.15) and (3.16), are always convex. A set of concave

polynomials can be obtained under the same condition by

k
(3.17) b b I - a (l-z )J

zg J. . g...
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PO(,,) and Pl(6) for the specified latent trait e. From (3.1), (3.7)

and (3.8) we can see that this area assumes a maximal value at

0 - (bo+bl)/2 , provioed that T (-) is a symmetric and unimodal function,

as is the case with both the normal ogive and the logistic models which are

characterized by (3.9) and (3.10), respectively. Since we used b0 = -2.0 -

and b1 - 2.0 in our examples shown in Figure 3-2, it is obvious that this

area is at the maximum for 0 - 0.0 . Those areas for our thirteen examples

are shown in Table 3-1, in each of the two models.

The relationship between z and b can be any strictly

increasing function other than the linear function, with the constraint

that bzg s are a priori specified at zg = 0 and zg 1 . For

practical purposes, it may be appropriate to consider various strictly

increasing polynomials for approximations to such functional relationships.

We can write for such polynomials of degree k

k
(3.14) bz A b0 + Y aj ZgJ

g J.l

with the two constraints,

k
(3.15) E = 

ff bI - 0

J=l

and

k
(3.16) d bz g E j J c J-1> 0 0 < zg < 1

dz9g j=1

where strict inequality holds for all values of z between zero and unity,

except, at most, at an enumerable number of points. A sufficient, though not

.,...-.--=

•., . .- .. .- .. .- .- ,, .-- .- .- ...- - . . . .- - -. -. . . - . . . - . . • ," . - . . . - . ." . .... .
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Substituting (3.12) into (3.3) and rearranging, we have for the operating

density characteristic of Zg

(3.13) Hz (e) - a (b -bo) T {a [e-bo-(bl-bo)z]

It is obvious from (3.13) that the operating density characteristics,

H (0) , when considered as functions of zg , are identical for different

fixed values of 6 , except for the positions on the axis z . In

L'" addition, if T (.) is symmetric and unimodal, so is Hzg () , although it

may be truncated, and the modal point is (0-b0)/(b1-b0 ) , provided that e

is greater than, or equal to, bO . Figure 3-2 illustrates by solid lines

thirteen curves for H (0) in the normal ogive model with the parameters,
zg

ag 1.0 , ffi -2.0 and b 2.0 , in the closed response situation for
g b0  b

thirteen different values of e , i.e., -3.0 , -2.5 , -2.0 , -1.5 , -1.0 ,

-0.5 , 0.0 , 0.5 , 1.0 , 1.5 , 2.0 , 2.5 and 3.5 , when the linear

relationship between Zg and bzg holds. In the same figure, also presented

by dotted lines are the corresponding thirteen curves for Hz (9) following
g

the logistic model, with the same parameter values and with 1.7 substituting

for D in (3.10). It is well known (Birnbaum, 1968) that, if we use this

value for the scaling factor D , then P* (0) in the logistic model will
zg

become very close to the corresponding P (0) in the normal ogive model.
zg9

We can see in Figure 3-2 that each of the thirteen curves for H. (o) in

the logistic model is close to the corresponding curve in the normal ogive

model, although the former is a little steeper.

It is obvious from (3.5) that the area under the curve of the

operating density characteristic, H. (o) , depends upon the values oft.-g

' ...•.
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Figure 3-1 illustrates P*(G) and P*(o) when inequality holds in
0 1

each of the two formulae of (3.6), i.e., in the closed response situation.

Note that in Figure 3-1 the two c. rves for P*(o) and P*(6) are

identical, except for the position on the abscissa, as is the characteristic

of the homogeneous case (Samejima, 1972, 1973). In this example, the two

curves follow the normal ogive model, which is characterized by

(3.9) g(t) (21)-1/2 exp(-t2/2)

. with the parameters a 1.0 , b0 -- 2.6 and b, - 0.5 . If Yg(t)
g9

is defined by

(3.10) 9g(t) i D exp(-Dt) [l+exp(-Dt)]
- 2

*" where D is a scaling factor, we shall call the specified model the

logistic model.

It is obvious from (3.3) that the operating density characteristic,

H (0) , depends heavily upon the relationship between the item score
*Zg

Zg and the difficulty parameter bzg , as well as on the functional

formula 'V(.) For the purpose of illustration, let us consider the
g

case in which b is a linear function of the item score z We
z

can write

(3.11) bzg b + (bl-bO)Z
z g 0  (b 9oZ

" and from this we obtain

(3.12) d b b b
dz Zg 1 -0

g.
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of (3.4) into the form

(3.5) 1 (0) dzg= 1- [PO(e) + Pl(e)j k 1

where Po(e) and Pl(e) indicate P (0) for Zg -0 and Zg ,
0Z.

respectively. We can also write for the difficulty parameter b

i 0li bzg bO > -  
-

Zg "  
Zg

9= -

(3.6) l

We obtain from the definitions of P (0) and P* (0)

(0) z -

* (0 zg 0
(3.7) Pg(O) g

g P*(0) Zg =1,
"Zg

where

(3.8) Q* (0) = 1 - P* (0)
z °

It is noted that in the open response situation, P (0) = 0 and

P (0) = 0 throughout the whole range of 6 , and an equality holds in (3.5)

and in each formula of (3.6). In each of the other three situations, i.e.,

the closed response situation, the closed/open response situation and the

open/closed response situation, however, equality does not hold in one of the

formulae of (3.6), or in either of them, and the left hand side of (3.5)

becomes less than unity. In such cases the conditional distribution of the

Item score zg , given 0, is discrete at zg 0 or at zg 1, or both,

and continuous for 0< z <1.
g

- . . . . . . ....'..' .'._. ...... ....,,'¢ ' '¢_'#z .z ... ,.-.'£,t,,.',/._.-.. . . . . . . . . .. . . . . . . .-.. .-. ' -".. . .".. . .".. . . . . . .".-".. . . . .-.
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FIGURE 3-5

Operating Density Characteristic, Hz (e) , for Each of the Thirteen
g

Values of e , i.e., -3.0 , -2.5 ,-2.0 , -1.5 , -1.0 , -0.5
0.0 , 0.5 , 1.0 , 1.5 , 2.0 , 2.5 , and 3.5 , Following the
Normal Ogive Model with ag = 1.0 and b0  -2.0 with

bz :b 0 + tan [7 (/2 )zg] Represented by a Solid Curve.

Corresponding Thirteen Functions Following the Logistic Model
with D = 1.7 are also Drawn by Dotted Curves. Closed/Open

Response Situation.
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and four more sets of graphs with ak -1.0 for k 3, 5, 7, 9,

respectively, are given in Appendix II as Figures A-2-1 through A-2-5, with

the reversal of the abscissa and the ordinate.

It is obvious from (3.5) that, in the closed/open response

situation, the area under the operating density characteristic depends

solely upon the value of P0 (O) , and is independent of the particular

functional formula for the relationship between the continuous item score

z and the difficulty parameter b Thus in each model the five areas

shown in Figures A-2-1 through A-2-5 for each specific value of 0 are

equal. Those areas for the thirteen different values of 0 are also shown in

Table 3-1, in each of the normal ogive and the logisitc models.

Similarly, in the open/closed response situation, one useful

formula for the relationship between the continuous item score z and theg--

difficulty parameter b may beZg

(3.23) bzg b1 + tan[(-n/2) C(z )]

where C(z ) is any strictly decreasing, continuous function of Zg

defined for 0 < z 1 1 , with the constraintg

( iz =0
(3.24) (z ) gg -=0 Zg 1 D.

Again, for practical purposes, it may suffice if we consider polynomials
V.

such that

k
(3.25) (zg) = a cj(1-Zg)J

."" .2¢ €' .'-•","- € ."."" ".-. ' "" .' "-':'"" '."' . '' " " """ °' ° " ' " """ " ' " "" " ' ' " """g
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or

(3.26) (zg) = 1 - a zg

where k is the degree of polynomial and aj (-,2,...,k) is a

coefficient, with the constraints given by the right hand inequality

of (3.16) and (3.22)

Figure 3-6 presents by solid curves the five examples of the

I- ~function.1 relationships given by (3.23), with (3.25) for t(zg) , in whichI .-* "
b1  2.0 and ak - 1.0 for k - 1, 3, 5, 7, 9 , respectively. As we can

see in this figure, they are strictly increasing functions of z with

negative infinity and b1  as the two asymptotes. In the same figure, also

presented by dotted curves are the corresponding five difficulty parameter

functions based upon (3.26) instead of (3.25), specified by the same

set of parameter values. We notice that Figure 3-6 can be obtained by

rotating Figure 3-4 about the point (0.5, 0.0) by the angle w , the fact

that is implied in (3.18) and (3.23). Again for k - I , (3.26) coincidesH with (3.25), so the dotted curve for k i I is overlapping with the

corresponding solid curve based upon (3.25) in Figure 3-6. As we have seen

in the closed/open response situation, we find in Figure 3-6 that even

within the limitation of the functional formula given by (3.23) with (3.25)

or (3.26) for ((z ) we shall have varieties of curves which may fit our
9

empirical findings well, although it is just one example of many conceivable

functional relationships between the continuous item score z and the

difficulty paramenter bg in the open/closed response situation.

Figure 3-7 presents the operating density characteristic H (0) in
uz

the normal ogive model and that in the logistic model as functions of the

continuous Item score % by solid and dotted curves, respectively, for
Lg

..
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each of the thirteen fixed values of e , i.e., -3.0, -2.5, -2.0, -1.5,

-1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.5 , with the parameters,

a. 1.0 and b 2.0 , using (3.23) as the functional relationship

between zg and b z with the specification of (zg) by (3.25) for

k - 1 and a1 - 1.0 . As before, in the logistic model, 1.7 is used for

the scaling factor D . Those graphs and four more sets of graphs with

ak- 1.0 for k - 3, 5, 7, 9 , respectively, are given in Appendix III as

Figures A-3-1 through A-3-5, reversing the abscissa and the ordinate.

Formula (3.5) suggests that, in the open/closed response situation,

the area under the curve of the operating density characteristic, Hz ()

solely depends upon the value of Pl(e) , and again it is independent of the

particular functional formula for the relationship between zg and b

Thus, in each model, the areas shown in Figures A-3-1 through A-3-5 are

equal, provided that the fixed values of e are the same. The last two

columns of Table 3-1 present those areas for the thirteen different values

of 0 in the normal ogive and the logistic models.

IV Estimation of the Operating Density Characteristics

Estimation of the operating density characteristics can be classified

into two categories, one of which is the parametric estimation and the

other the non-parametric estimation. In the parametric estimation, some

specific model, like the normal ogive or the logistic model, is selected,

and then the item parameters of the operating density characteristics are

estimated. Sometimes the estimation is done concurrently with the

estimation of the individual parameter 0s of examinee s , and sometimes

they are conducted separately. In any case, the estimation of the operating

density characteristics is reduced to the item parameter estimation, and it

• .. - o. o °. .--. o- °'q = • .. .* • • °- • .... ....-......... "-....".-..........-.....-..".............."...'....°°..- .'., ..
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o.

becomes relatively simple. If we fail to choose an appropriate model,

or models, however, the whole research will become meaningless. For this

reason, model validation is an important and necessary procedure in the

parametric estimation, and it should be conducted at the end of each

stage of research. ,

We notice that, in the parametric approach, we can always reduce

the data based upon the continuous response level to those either upon the

graded or upon the dichotomous response level, by categorizing the continuous

responses into appropriate discrete response categories. Thus those

methods developed for the item parameter estimation on the dichotomous

response level (e.g., Lord, 1952, Bock and Aitkin, 1981) and their

variations developed for the graded response level, are directly applicable

in estimating the item parameters through P* (a) for selected values of

z 9 By adopting an appropriate set of values of Zg . we shall be able

to obtain the corresponding set of estimated b 's , and then by an
Zg

appropriate curve fitting we shall be able to obtain the estimated

difficulty parameter function. Since our data on the continuous response

level contain more information, in so doing we can also conduct a model

validation study, if we design our research appropriately.

In the non-parametric estimation of the operating density

characteristics, we assume no mathematical forms a priori, and try to

approach the operating density characteristics directly. Again, we can

reduce our data to those which are based upon the graded response level,

and those non-parametric methods developed for discrete responses (e.g.,

Levine, 1980, Samejima, 1977, 1981) can be applied, provided that we

have Old Test, or a set ot items whose operating characteristics or

operating density characteristics are already known. When we do not have

. .. . . . . . ... . . . . . . . . . . . ...'. . . ..".. ..'. . . . . . . . .... .-.-.,. . . ..-". , -"., g' :. . g d, '~a =& ;
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Old Test, we can select a certain number of items which have high content

validity out of all the items used in our research, and use this subset in

place of the Old Test. In so doing, we may assume several different models

for our "Old Test" items, estimate the item parameters using suitable

parametric methods, conduct model validation studies for each model, and

select a model which has the highest validity. We may end up with

selecting different models for different items. In such a case, as far as

each model satisfies the unique maximum condition (Samejima, 1969, 1972,

1973), we can still obtain the maximum likelihood estimate of the subject's

latent trait, or individual parameter, by using the basic functions

(Samejima, 1969, 1973) based upon those separate models.

In a half-open, half-closed response situation, or in the closed

response situation, there is another conceivable method, which is a

combination of the parametric approach and the non-parametric approach.

In the first situation, we can reduce our data to those on the dichotomous

response level by using the endpoint with a non-zero probability as one

category, and all the other responses as the other category. Then we can use

all the items thus dichotomized as the Old Test, searching a suitable model,

or models, in the same way described in the preceding paragraph. In the

second situation, we can reduce our data to those on the graded response level

with three response categories, using both endpoints as the lowest and highest

categories and all the other responses as the intermediate category, and follow

the same procedure. We can also think of many variations of this new method,

increasing the number of graded response categories by appropriate groupings.

The main difference between this new method and the preceeding one is

that in the new method we make use of all the items used in our research as

the Old Test, while in the other only a subset of items is used. In

. . . . .. . . .% . 2.
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FIGURE 5-3

Item Response Information Functions, Iz (a) , (Solid Line) and Item

g
Information Function. I () , (Dotted Line) in the Normal Ogive and

the Logistic Models, with ag = 1.0 , b0 = -2.0 , bI = 2.0 and

D = 1.7 In the Normal Ogive Model, the Horizontal Line Indicates
Common I (o) for All Item Scores , 0 < z < 1 , While in the

Logistic Model the Five Curves Identical in Shape Indicate Iz (e)

for zg = 0.1, 0.3, 0.5, 0.7, 0.9 , When the Functional Relationship

between z g and b z  is Linear, with the Two Dashed Curves as Those

in the Limiting Situations When z Tends to Zero and Unity,
gRespectively. Closed Response Situation.
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model, so that we have

= ag2 'gag(O-bo)}[-ag(e-bo) Q*(O)

+ gfag(O-bo)}] Q8(O)1-2 Zg -0

(5.16) IZ (0) - ag2  0 < Zg <1

= ag2 Tglag(O-bl)} [ag(-b 1 ) P*(e)

+ g{ag(O-bl))] [Pt(0)]-2 Zg =1

We can see from (5.16) that, for each and every value of Zg the item

response information function is positive for the entire range of 0 • The

uniqueness of the maximum likelihood estimate 8V is assured, therefore,

for each and every response pattern V in the normal ogive model. In

particular, the function assumes a constant, i.e., the square of the

discrimination parameter ag , for 0 < Zg < 1 . The upper graph of

Figure 5-3 presents by solid lines the item response information function

in the normal ogive model with the same parameter vaules used in

Figures 5-1 and 5-2. The horizontal line in Figure 5-3 represents the item -4

response information function for each and every continuous item score z -

which Is greater than zero and less than unity.

In the logistic model, we obtain from (5.14) and (5.15) for the

item response information function

= D2a 2 P*(B) Q*() Z= 0
g 0 0 g

(5.17) Iz (8) - 2D2a P* (0) Q*g(0) 0 < < 

= D2ag 2 P( 0) Q*(0) z •
9 1 1 g

Again, we can see that, for each and every value of z , the function is
9

.-
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situations, however, which include zg - 0 or zg 1 , or both, although

we can still use t(V) defined above for any response pattern which does

not include either zero or unity as its elements. It is also recalled

(Birnbaum, 1968) that a sufficient statistic, t*(V) = uZV ag ug , exists

in the logistic model on the dichotomous response level where z g is

replaced by the binary item score ug * Although the basic functions for

Zg M 0 and Zg 1 shown in (5.14) are identical with the corresponding

functions for ug 0 and ug -1 on the dichotomous response level with

the replacement of P*(e) by P*(e) , a simple sufficient statistic does

not exist, even though t*(V) can be used for any response pattern which

solely consists of 0 and I . In general, the maximum likelihood

estimation of the individual parameter must be conducted numerically

through the basic functions for each response pattern.

For the item response information function, Izg( ) , we can write,

in general,

(5.15) Izg(0 = -() log Pz(0) = -'- Azg(0)

= ag[(. T g{ag(-bo) })Q8(0)
g g g 0-b)1) 2 ][Q8(O)]

[ 2 g {ag (0-bg T (ag(0-bz-g eg Z
+ (" g{ag(0-bg)})2 a(0-b - 2  0 < Zg < 1

ae g g(Oz 9 I[41 {agg( zg)'}

-ag[( a (g{ag(0-bl)}) Pt( )

- ag(Tg[a (0-bl))) 2][P(0)]-2 Zg

By virtue of (5.13) this function can be specified for the normal ogive

mo "'.°'." .,.-. -' -'o-' "' -'.- ".'. .-.",.".-.........................................."..."....-.....-..-....-,*. .-. " %"-."-.'



-46-

Zg which are not illustrated here. Note that all these linear functions for

0 < zg < 1 are densely located between the two dashed lines representing

the two limiting situations where z tends to zero and unity,g '

respectively. The second graph of Figure 5-2 illustrates the basic

functions in the logistic model with the same parameter values as those

adopted in the normal ogive model, with the scaling factor, D - 1.7 , for

each of the seven item scores, Zg M 0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0

Again in this figure, the reader can imagine the curves for the basic

functions for different values of z which are not drawn there, and all ofg

which are densely located between the two dashed curves representing the two

limiting situations where zg tends to zero and unity, respectively.

It is obvious from (5.12) that, unlike the operating density

characteristic, the basic function Az (0) does not depend upon the

functional relationship between Zg and bzg , and those functions are

identical for the same values of bZ regardless of the difficulty
9

parameter function. In both the normal ogive and the logistic models,

moreover, the basic functions for 0 < z g < 1 are identical in shape

except for the positions on the abscissa, and, therefore, the functional

relationship between Zg and bzg solely affects the position of each

curve on the abscissa. The four sets of examples of basic functions

resultant from the four different functional relationships between z and
g

bzg , which are provided by the four solid curves in Figure 3-3, are given

in Appendix V as Figure A-5, for both the normal ogive and the logistic

models.

It should be recalled (SameJima, 1973, 1974) that a sufficient

statistc, t(V) = . a 2bzg , exists in the normal ogive model in the

open response situation. It is not the case with the other three response

....''."'""""''....'....................-..............-.'..-..,..... ..... ' .--. "....'.-..:.
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&0 Normal Ogive Model
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FIGURE 5-2

Basic Function Ag O) ,for Each of the Seven Values of the Item Score,

0.0 ,0.1 , 0.3 , 0.5 , 0.7 , 0.9 and 1 .0 ,Following the Normal Ogive
and the Logistic Models, with ag = 1.0 ,b= -2.0 ,b1  2.0 and

D =1.7 , When the Linear Relationship Holds between the Item Score
z g and the Difficulty Parameter bzg Closed Response Situation.

- - - * ~. . .---
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example, this proportion increases as Zg increases, and, in contrast, if

it is given by one of the four dotted curves in Figure 3-3, the proportion

decreases as z increases. The operating density characteristics fori." g

the first four cases are illustrated in Appendix IV as Figures A-4 for the

same set of five values of z , in both the normal ogive and the logistic

g

models. From (3.16), it is obvious that this proportion in the limiting
k

situation where z tends to unity is a E a j . In our example,g i-lijJ. nou xape

therefore, this value equals k for k - 3, 5, 7, 9 , and those curves are

drawn by dashed lines in Figure A-4. It is also obvious from (3.16) that this

proportion in the other limiting situation is zero, so those curves are
t-

degenerated to the line overlapping the abscissa and are not shown in

Figure A-4. We notice that the corresponding sets of operating

characteristics obtainable from the functional relationships given by

dotted curves in Figure 3-3 are mirror images of those shown in Figure A-4

with e - 0.0 as the axis of rotation.

The examples shown so far for the closed response situation are

relatively simple ones, in which -L b is either constant or a monotone

function of z • Formula (3.14) includes many other more complicated
g

relationships, however, and we can conceive of varieties of different

configurations of the curves for the operating density functions in sizes and

in relative positions on the abscissa.

The first graph of Figure 5-2 presents the basic functions in the

normal ogive model with the same item parameters, ag 1.0 , b0  -2.0

and b1 - 2.0 , for the same set of selected item scores, zg 0.1

0.3 , 0.5 , 0.7 , 0.9 , when b is the linear function of zg given by
zg

(3.11), together with those for zg M 0.0 and for zg - 1.0 . It will be

easy for the reader to picture Lhe basic functions for any other value of

* . . .



-42-

Norml Ogtys Model
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FIGURE 5-1

Operating Density Characteristic, Hz (e) , as a Function of e for Each
g

of the Five Values of the Item Score, 0.1 , 0.3 , 0.5 , 0.7 , and 0.9,
Following the Normal Ogive and the Logistic Models, with ag = 1.0

b - -2.0 , b1 - 2.0 and D = 1.7 , When the Linear Relationship Holds
* between the Item Score zg and the Difficulty Pai b . The

Additional Two Curves Are Those in the Limiting Situations Where zg

Tends to Zero and Unity, Respectively. Closed Response Situation.

k
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The two asymptotes of the basic function are zero and -Da for z = 0
Da and -Da for 0 <z 1 1 and Da and zero for Zg g

respectively.

The upper graph of Figure 5-1 presents five examples of the

* 'operating density characteristic, H. () , of the continuous item response
g

Zg in the normal ogive model with the item parameters ag - 1.0 b0 - -2.0

and b 1 2.0 , for zg = 0.1, 0.3, 0.5, 0.7, 0.9 in the closed response

situation, where the difficulty parameter bz is given as the linear

function of zg . In the same graph, also presented by dashed lines are

- those in the two limiting cases where z tends to zero and unity,

respectively. The corresponding five operating characteristics and those

in the two limiting cases in the logistic model with the same set of item

parameters and the scaling factor, D - 1.7 , are shown in the lower graph

of Figure 5-1. We can see that the results are very close to those in the

' •. normal ogive model.

As is obvious from (3.9), (3.10) and (3.13), in each model, those

curves for the operating density characteristics for different values of z g

are identical except for the positions on the abscissa, and proportional by
the ratio of a (bl-b 0 )  to the curve representing T , i.e., the normal

.- .density or the logistic density function, with ag-1  as the dispersion

" parameter and b0 + (bl-bO)Zg as the location parameter. Note, however,

this is a special case in which b is the linear function of zg In

general, although the curve for Hz (0) is proportional to the one

representing yg() with a as the dispersion parameter and as

the location parameter, the ratio of the proportionality is a (- b)
g dz 9Z

which is a function of zg . If the functional relationship between Zg

and bzg is given by one of the four solid curves in Figure 3-3, for

""""." ' " "? .'" 2""-"i- ";"-"....""......"......"."...'"'"-.-."-".-".".........'..-..-.....'-..-."-..-........ "'"............"......- "..- "
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between z and the item difficulty parameter bz for each item g are

known or well estimated.

In the normal ogive model, which is characterized by (3.9), we can see

that the basic function takes the form

-(2f1/2 a exp[-a 2(0-bo)2/21 [Q*( )]-1 Zg = 0

(5.13) Azg g zg) 0<Z <

(2Tr)-/2ag exp[-ag 2 (0-bl) 2 /2] [P*(O)] - I  Zg - 1

This function is strictly decreasing in 0 for all the values of z , and,

in particular, for 0 < z g < 1 it is a linear function with the slope -ag2

which intercepts the abscissa at 0 - b . The two asymptotes of this
Z g

basic function are zero and negative infinity for zg M 0 , positive and

negative infinities for 0 <z <1 . and positive infinity and zero for
9

z - 1 , respectively.
g

The basic function in the logistic model, which is specified by

(3.10), is obtained from (5.12) and (3.10), so that we have

- -Da P*(o) zg 0

(5.14) A (0) - Da [I1-2P* (0)] 0< z < 1
z g g Zg g

= Da Q*(6) z - I

We can see that this basic function in the logistic model is also strictly

decreasing in 0 throughout the entire range of 0 for each and every item

score z , as is the case with the normal ogive model. Unlike in the". g

normal ogive model, however, it is not a linear function for 0< Zg < I

although it intercepts the abscissa at the same point, i.e., 0 - bz

" .. . " ".Z • .

i --
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(5.11) log LV(e) - E -.2 log P (0) 0

treating z as if it had a discrete distribution. We notice that the

term under the summation sign in this equation is the basic function Az (e)

- of the item response z . From this and (5.9), (3.1), (3.3), (3.7) and

• ., (3.8) we can write for the general form of the basic function in the closed

response situation

-. " -ag g{ag(e-bo)) [Q*() ] l Zg -0

(5.12) A (0) ff [- 'g{a (0-b ) }I Tgag( 0-bzg))]l 0 <z <1

ag 'g{ag(0-bl)}[P~(0)]- zg -1

whose middle line is identical with (5.2). In the closed response

situation, and also in the closed/open and the open/closed response

. situations, therefore, we can see that the basic function A (e) given byZg

(5.2) is also valid for any value of zg which satisfies O<zg <1

We can see from (5.12) that for z = 0 the basic function is,', g

S"negative and for zg = I it is positive, throughout the entire range of 0

except, at most, at an enumerable number of points. It has been shown

(Samejima, 1972) in a somewhat different context that, if Yg() follows

one of the formulae such as (3.9) and (3.10), those three functions in

"- (5.12) are strictly decreasing in 0 , the fact that leads to the unique

maximum for the likelihood function LV(O) for each and every response

pattern V The unique maximum likelihood estimate of the individual

parameter of the subject whose response pattern is V can be obtained

through (5.11) and (5.12), therefore, provided that the item discrimination

parameter ag for each item g and the functional relationship

..- . . . . . .

• °%" " o o• % *o • d
w-

' =' -=, % " % % "o , •° °' ,• ,* % , , " " '. ', " % • • % . • -,. . '...," -
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p.i

(5.7) xg)- log I- P: (6)]

= - VYg% ag(0-bxg)l] [ Vg{ag(i-bx ))}]-
d" g

which is identical with (5.2) with the replacement of the item response

difficulty parameters b1  by b •

An alternative way of deriving (5.2) in the framework of the closed
r..

response situation may be as follows. Since we can write for the operating

density characteristic, H (6) , as the limiting situation such that,, Zg

P* (e) -P
(5,8) H lim z(- z& +Az A

z Azg*o AZ

by using z and Az instead of yg and Ay , we could replace Pzg(0)
gg (

for any value of z between zero and unity by H (0) dz • From this

and (3.7), we can write

(5.9) PZg((3) H zg(0) dZg9 0 < zg9 < 1"-
{:P*(O) z - .

The likelihood function, Lv(O) , for the response pattern V , or the

vector of n item responses, is given by

(5.10) Lv(O) - IT P z (e)

by virtue of the conditional independence of the n item scores z given
8

( 0-From (5.9) and (5.10) we can write for the likelihood equation

- ;..--.-.--.-'---..--."~.-

. .,. . . . . . .....- .* ,, . - . - - ... .. -,. . ...- . ... ,,- -.- , - •,
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homogeneous case of the graded response level. To follow this logic, It

may be helpful to go back to the rationale which leads to the definition of

H zg(6) (cf. Samejima, 1973). Let yg be the relative graded item score,

which is defined by

(.)Yg ' -- ..-.- '.."'" 2 , 1 ,,. .L .( 5 .3 ) ,, 1 2

9 m m m m,.. g mg g mg

and Ay be the increment in y , so that
g g

* - (5.4) Ay-1
g mg

Thus we can consider the continuous item response z as the limiting
g

situation of the relative graded item score yg when Ay tends to zero.

U The operating characteristic, P (), of the graded item response x to
xg g

-; Z item g is given by

(5.5) P xg M PX (e) Pt +l(e
YP(O) - Pyg+Ayg)(O)

,'" '"= Pyg(e)
Yg

where

(5.6) P* (0) = g X ' (t dt = P* (0)
Yg -00 g Xg

which is the counterpart of (3.1) on the continuous response level. The

asymptotic basic function is defined by

. SS S * *-
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genera., 'le choice of a method should depend upon the nature of our data, -_

including the configuration of the characteristics of our items, the sample

size of subjects, and so forth.

V Estimation of the Latent Trait or Individual Parameter

When the item parameters are known, or well estimated, the

estimation of the individual parameter, or the point of the latent trait

0 at which the subject is located, can be performed through the maximum

likelihood estimation. It is well-known that, when a simple sufficient

statistic for the response pattern V or a sequence of n item scores

which is given by

p°.,

(5.1) V = (zI , z2, ... zg ... Zn),

exists, this process of maximum likelihood estimation becomes relatively

simple and straightforward. If a simple sufficient statistic does not

exist, however, we will have to use the basic function (Samejima, 1969,

1972, 1973) and follow the numerical process to obtain the maximum

likelihood estimate for each response pattern V

It has been shown (Samejima, 1973) that the basic function, A (e)• Zg

in the open response situation is given by

(5.2) A (0) - log ( ) f ga C0-b )[{a (0-b )1]-1Zg Hzg . {g( -zg )  g bZg,

for any value of item response z which is greater than zero and less

than unity. It has also been pointed out that this function is the same as

the asymptotic basic function, Ax (u) , (Samejima, 1972) defined in the

~~~~~. . . . . . .. .... .-. . -... . . -.'



-50-

positive throughout the entire range of 0 , and the unique maximum

condition is satisfied. Unlike in the normal ogive model, however, it does

not assume a constant for any z between zero and unity, and, in fact,
g

it indicates a unimodal curve with the modal point at 0 - b . The lower
Zg

graph of Figure 5-3 presents the item response information function in the

logistic model with the same set of parameter values and the scaling factor

that we used in Figures 5-1 and 5-2 for Zg M 0.0, 0.1, 0.3, 0.5, 0.7,

0.9, 1.0 , when the functional relationship between Zg and b is

linear. In the same graph, those in the two limiting situations where Zg

tends to zero and unity, respectively, are drawn by dashed lines. Again,

the functional relationship between zg and b solely affects the

position of the curve for I (0) on the abscissa, as is expected from the
Zg

basic functions in the logistic model. The four sets of results obtained

from the functional relationships between zg and b which are

9Zg

provided by the four solid curves in Figure 3-3 are given in Appendix VI .

as Figure A-6. Note that they are for the logistic model only.

The item information function, Ig () , is defined as the

conditional mean of the item response information function, given .

(Samejima, 1969, 1972, 1973), for which we can write

(5.18) Ig(0) f I 0 (0)[l-P*(O)] + fIzg() Hzg(6) dZg + 1i(0) P*(e)-

where 10(e) and I(e) indicate the item response information function

Iz (8) for Zg = 0 and zg M 1 , respectively. This function is drawn

by a dotted line in each graph of Figures 5-3 and A-6.

We have observed so far the basic function and the item response

information function in the closed response situation, and specified the
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formulae for the normal ogive and the logistic models. It should be

noted that those formulae in the open response situation (Samejima, 1973)

are included by the corresponding set of formulae in the closed response

situation, for we can obtain the former set simply by adopting the middle

formulae of (5.12) through (5.17) , ignoring the first and third ones.

Similarly, in the closed/open and che open/closed response situations, we

can take the first two and the last two formulae of each of the six sets of

formulae, (5.12) through (5.17), ignoring the third and the first ones,

respectively. Thus (5.12) through (5.17) represent the basic functions and

* the item response information functions in all the four response situations.

As for the item information function, Ig(0) , we notice that the middle term

of the right hand side of (5.18) provides us with the item information

function in the opei cesponse situation. In the closed/open and the

open/closed response situations, it is given by the first two and the last

two terms of the right hand side of (5.18), ignoring the last and the first

terms, respectively. Thus we can write

(5.19) 1g(0) - I0(e){l-P*(e)) + 1zg(6) H 8 (0) dzg

for the closed/open response situation, and

(5.20) Ig(0) = (0) Hg(0) dz + I1(0) P*(e)

for the open/closed response sitaution.

Figure 5-4 illustrates the operating density characteristics It (0)

in the normal ogive and the logistic models in the closed/open response

I. .situation, with the item parameters a. 1.0 and b -2.0 , and the

g0

.>i'"&* . .:



-52-

~ Normal Ogive model
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FIGURE 5-4

Operating Density Characteristic, H (Ce) ,As a Function of e for

Each of the Five Values of the Item Score, 0.1 , 0.3 , 0.5 ,0.7
and 0.9 , Following the Normal Ogive and the Logistic Models, with
ag = 1.0 ,b = -2.0 and D = 1.7 , When the Functional Relationship
between the Item Score zg9 and the Difficulty Parameter bzg Is

Given by b2  b0 + tan[(ir/2)z ).The Additional Curve is
zg g

the One in the Limiting Situation Where z9Tends to Zero.
Closed/Open Response Situation.
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scaling factor D - 1.7 in the latter model, for the five selected item

K- scores, 0.1, 0.3, 0.5, 0.7, and 0.9 . The difficulty parameter function

.* adopted here is given by

U: (5.21) bzg = b0 + tan [(jr/2)z

which is shown in Figure 3-4 as the solid curve marked with k = I . As

was observed in the closed response situation, this operating density

characteristic is proportional to Tg(,) with ag 1 as the dispersion

" parameter and b as the location parameter with a g(d! bz ) as the
g gdz g

ratio of proportionality. Since in this example the derivative of the

:-' .. difficulty parameter function is given by (-n/2) sec2 [(r/2)Z ] and it

increases with z ,the area under the curve of Hz (0) in Figure 5-4

increases as zg grows larger, both in the normal ogive and in the logistic

model. In fact, the area approaches infinity as z tends to unity and,

therefore, b tends to infinity, the tendency that is hinted by the

truncated curves for Hz (0) for zg M 0.9 in the two graphs of

. Figure 5-4. On the other hand, when the continuous item score z tends

to zero and, therefore, b tends to b0 , the ratio of proportionality

* approaches (i/2)a , and this limiting case of H (0) is shown by a

dashed curve in Figure 5-4 in each of the normal ogive and the logistic

models. The areas under the curves for the same value of zg across the

. two graphs of Figure 5-4 are equal. Similar sets of six curves for the

operating density characteristics H. (0) both in the normal ogive and
9

In the logistic model are given in Appendix VII as Figure A-7 with the

difficulty parameter function,

S . . * . . . . . . . .. . * . .°
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(5.22) bzg b0 + tan (/2) z k

for k - 3, 5, 7, 9, respectively, which are also shown by solid curves in

Figure 3-4. Since the derivative of this function is given by

(5.23) d b (i/2) k k- sec2[(/2) ki. Zg g..,2 Z

the area under the curve for Hz (0) decreases with k for a fixed value

of z , as we can see in Figure A-7. Unlike the case where k - 1 , whichg

is shown in Figure 5-4, the ratio of proportionality approaches zero as z.

tends to zero, so the dashed curve for the limiting case is degenerated to

a line overlapping the abscissa in each of the eight graphs of Figure A-7.

Figure 5-5 presents the basic function A (0) for each of the six
Zg

values of the item score, 0.0 , 0.1 , 0.3 , 0.5 , 0.7 and 0.9 , in the

normal ogive model and in the logistic model, respectively, with a g 1.0

b 0 - -2.0 and D - 1.7 , when the difficulty parameter function is

given by (5.21), in the closed/open response situation. As we can see from

the middle lines of (5.13) and (5.14), and (5.21), when Zg tends to zero

the basic function approaches -ag2(e-b0 ) and Dag[1-2Po(0) ] in the

normal ogive model and in the logistic model, respectively, and those curves

are drawn by dashed lines in Figure 5-5. In the other limiting case where

z tends to unity, Az (a) approaches positive infinity in the normal
gg

ogive model and Da in the logistic model. Similar sets of six curves
9

for the basic function A (0) are given in Appendix VIII as Figure A-8,
Zg

for the four cases which correspond to those shown in Appendix VII, in both

the normal ogive and the logistic models. As is expected from the middle

lines of (5.13) and (5.14), and (5.22), for any fixed value of z , as k

g



-55--

8.0 Normal Ogive Model

* 6.0

4.0

2.
z I-

2-

,6-4.0 z =0. 7

*-6.0 z99.

-40 -&o -2.0 -1.0 0.0 1.0 2.0 3.0 4.0
LATENT TRAIT 0

FIGURE 5-5
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0.0 , 0.1 , 0.3 , 0.5 , 0.7 and 0.9 ,Following the Normal Ogive and
the Logistic Models, with ag = 1.0 b = -2.0 and D = 1.7 , When

the Functional Relationship between the Item Score z g and the
Difficulty Parameter b~ Is Given by b~ b0 + tant(1T/2)z)
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Closed/Open Response Situation.
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grows larger the curves get closer to the one for the limiting case where Zg

tends to zero, and sometimes they are indistinguishable in vision from the

dashed curve in the limiting case.

Figure 5-6 presents the item response information function Iz (0)

by solid lines and the item information function I (a) by a dotted line

in each of the normal ogive and the logistic models, with the same

parameters, scaling factor, difficulty parameter function and fixed values

of z as were used in Figures 5-4 and 5-5, together with the limitingi:- g

case of I ( ) where zg tends to zero which is drawn by a dashed line.Zgg

We can see from (5.16) that in the normal ogive model the horizontal line

in the upper graph of Figure 5-6 indicates the item response information

function for each and every value of Zg in the interval (0,1) , so this

includes the five cqses where zg M 0.1, 0.3, 0.5, 0.7, 0.9 , and the

one in the limiting case where z g tends to zero also overlaps this line.

In the logistic model, those six curves are separated, but identical in shape.

In both models the item response information for z M 0.0 is less thang

the one in the limiting case where z tends to zero, the result which

stems from the fact that this item score deals with the discrete part of

the conditional item score distribution. We notice that the upper graph of

Figure 5-6 is valid regardless of the differences in the difficulty

parameter function that we adopt. The same is not true with the lower graph,

however, since the item response information function in the logistic

model depends upon the difficulty parameter b , as is obvious from the.i'" Zg

middle line of (5.17). The four sets of results in the logistic model

using the same four difficulty parameter functions, that were used in both

Appendices VII and VIII, are shown in Appendix IX as Figure A-9.

In the open/closed response situation, those characteristics are

i~

. .- , -
1 % .
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more or less reversed. Figure 5-7 illustrates the operating characteristics

HZ (6) in the normal ogive and the logistic models in the open/closed

situation, with the item parameters ag = 1.0 and b 1 2.0 , and the

scaling factor D - 1.7 in the latter model, for the five item scores, 0.1,

0.3 , 0.5 , 0.7 and '0.9 . The difficulty parameter function adopted in

this illustration is given by

(5.24) bzg b + tan [(-w/2)(l-zg)k ]

for k = 1 , which is shown in Figure 3-6 as one of the five solid curves.

Again those operating density characteristics are proportional to Wi (.)

with a as the dispersion parameter and bz as the location parameter

with ag(d  bzg) as the ratio of proportionality. We can see from (5.24)

that the derivative of the difficulty parameter function in this

example is given by

(5.25) d.g b = (a/2) k (1-Zg)kI sec2[(-w/2)(l-z )k1]
dzg 9Zg g

It is obvious from (5.25) that this derivative decreases with Zg , having

the two asymptotes, i.e., positive infinity and (w/2) for k - I and

positive infinity and zero for k > I , when z tends to zero and unity,

respectively. Thus the ratio of proportionality also decreases with z ,

as we can see in Figure 5-7. Note that the area under each curve

represents this ratio of proportionality, as is the case with those in the

closed response and the closed/open response situations. In the same

figure also presented by dashed lines are the operating densit,

characteristics in the limiting case where Zg tends to unity, whose
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Nov.11 Ogive Model
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g.0. 7
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~o~o case

-40 -3.0 -2.0 -1. 0.0 1.0 2.0 3.0 4.0
LATENT TRAIT 0

&0. Logistic Model
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4046.0 Zg0*

i4.0

z = 0.7

j2. 290. limiting

case
~0.010 2. 30

-40 -3.0 -2.0 -1. 0.0 10 20 30 4.0
LATENT TRAIT 0

FIGURE 5-7

Operating Density Characteristic, IHZg9 () ,As a Function of e for

Each of the Five Values of the Item, Score, 0.1 , 0.3 , 0.5 ,0.7, I

and 0.9 Following the Normal Ogive and the Logistic Models, with

ag = 1 .0 b, = 2.0 and D = 1.7 , When the Functional Relationship
between the Item Score zg9 and the Difficulty Parameter bzg Is

Given by b~ b1 + tan[(-n/2)(l-z )).The Additional Curve Is
zg g -9

the One in the Limiting Situation Where z Tends to Unity.
g

Open/Closed Response Situation.
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area equals (7/2) , in the normal ogive and the logistic models. The

corresponding sets of six curves for the operating density characteristics

zg (0) are shown in Appendix X as Figure A-10, with the difficulty

parameter function given by (5.24) for k = 3, 5, 7, 9 , respectively, in

both the normal ogive model and the logistic model. Since in those cases

Hz (0) in the limiting case where zg tends to unity is degenerated to

the line overlapping the abscissa, the dashed curves are not visible in

those eight graphs. From (5.25) we can find that the ratio of

proportionality of the curve decreases with k for a fixed value of zg

as is shown in Figure A-1O.

The basic function A (0) for each of the six values of zg is

shown in Figure 5-8 in each of the normal ogive model and the logistic

model, with the same item parameters, scaling factor and difficulty

parameter function that were adopted in Figure 5-7, in the open/closed

response situation. In the same figure, also presented by dashed lines are

the basic functions in the limiting case where zg tends to unity, i.e.,

-a 2 (0-b,) and Da [l-2P*(O)] , in the two models, respectively. In the
-ag 1

other limiting case where Zg tends to zero, Az (0) approaches negative
g

infinity in the normal ogive model and -Da in the logistic model, as is
g

obvious from the middle lines of (5.13) and (5.14). The corresponding sets
of six solid curves for the basic function Az (6) and the dashed curve for

the limiting case are drawn in Figure A-Il of Apendix XI, for the four cases

where the difficulty parameter function is given by (5.24) with k = 3 , 5

7 , 9 , respectively, in both the normal ogive and the logistic models.

Dashed curves are practically invisible in these eight graphs because of

their closeness to one or more curves for A z(0) for larger values of zg

Figure 5-9 presents the item response information function 1 (0)

.. '. .'' -. .'" "--" ' ...............".."-"--.-.-- . .--.- ...'. . . . . . . . ..".". ..". . . ..-. .. 'li i ~i- . -. " '" ". - .
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8.0 Normal Ogive Model

4.0

2.0
0

zgl.
~0.0

161

-4.0in

-6.0Zg0.

-4030 -. -. .0 2. 3.0.

LATENT TRAIT e

FIGURE 5-8

Basic Function, Az (e) , for Each of the Six Values of the Item Score,
9

0.1 , 0.3 , 0.5 ,0.7 , 0.9 and 1.0 , Following the Normal Ogive and
the Logistic Models, with ag = 1 .0 , b 20and D=1.7 , When the
Functional Relationship between the Item Score z and the Difficulty

Parameter b~ Is Given by b~ = b1+ tan[?-,r/2)(l-zg
g g

Open/Closed Response Situation.
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8.0 Logistic Model

6.01

4.0

z 9 -. 5 z 9 =.7 z 9 0.9

z2.0

z
~0.0
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-6.0

-8.0 8
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LATENT TRAIT 0

FIGURE 5-8 (Continued)



-77-

APPENDIX I (Continued)

o UM

CDC

49-

o 0 4

0 0

U,0
00

co 4'

0

In E

U, In

W" 0inU OWo SI KWU

CwNJ



-76- a-

APPENDIX I (Continued)

a.-.

.)-.

o CD .0

P-4°
N -

4j m

o qr

4J 4.
0Y r- 4.) r-

U Ul

..-

1. " N' .

06 ..-

am a

4n-,-.

".". " .i"' ," " 7, "" "". ,"" " " .' " . ""." " . '" . ',"," ",. ,", '"-" "."' ".".". .",". .:," ",'.".-,'""-.-' .



APPENDIX I (Continued)

CD%
*0 0

En E 0

o0
0 - M

o 0o

cm z
MIA

0., 0

4 1 t
E

00

WAM la SI'lo"J4-I



-74-CA1

APPENDIX I (Continued)

oo

o I0

a) 0.

o 00

to0.

0~,~

o 8.

0,

0~h ro 0 ,

C4C

0 0S0.

C -L

&A MW



-73-

APPENDIX I (Continued)

'a
In

c; cJ
4J

0

4J 0
a U 0

oac
o0

UU

0.0

2 0

o A wOWAU



Ct.N. 0. . . . .- - f-- TV 1 - 7- *

-72-

APPENDIX I (Continued)

c;0

0-

o~C 0 04

0A -

0i r-

4JJ 0m 0 4

4J 0

occn 4

= 00

0 C.
LA- 0

C 4j

P-E

4, 0 4.) .. .....

m cu
06..

RAO=~~~~ mm WO "+xa



. .. .- .'..-. .-. .. . .

5 -71-

APPENDIX I (Continued)

ell

o InI

CD w

o*' 0 ,,

0

cciu0

U.,

ICD

. ~~ ..... . .... ... . . . ... . ..I ." I ~ 1 i l l I l l l l l l " , 1 I I " i 1 I I I n - I ...... i I l i I i

VON "-. " . -" " .,



-70-

APPENDIX I

r*. Uo . .-

CC

0 _
./ s o / -' o'o-

a,
, C .

L. a

4J w

"44m

4J4. '
06 0 0 0-

R I.- " I. - -

W0 /I" U "'1

Im I m cmc ,

N a

o~ *- =a-

"ew

m c-- / II . ..'

,I ................................

0 0 0 , a.0L 0

No MW WKNLMWM wSomu

;di-



-69-

I APPENDICES

• .w .'*.



-68-

-

[14] Samejima, F. A method of estimating item characteristic functions
using the maximum likelihood estimate of ability. Psychometrika, -_

1977, 42, 163-191.

[15] Samejima, F. Final Report: Efficient methods of estimating the
operating characteristics of item response categories and
challenge to a new model for the multiple-choice item. Final
Report of N00014-77-C-0360, Office of Naval Research, 1981.

[161 Samejima, F. and Livingston, P. S. Method of moments and the least
squares solution for fitting a polynomial. Office of Naval
Research Report, 79-2, 1979. "-

..

,-

I-

-. . ....- ,. . .- . - _. , • -- - - . ..-.- i---- ...-. .. ,. . . . . . . . . . . ..= - -



-67-

References

[i] Birnbaum, A. Some latent trait models and their use in inferring
an examinee's ability. In F. M. Lord and M. R. Novick,

. Statistical theories of mental test scores. Chapter 17-20.
Reading, Mass.: Addison-Wesley, 1968.

[21 Bock, R. D. Estimating item parameters and latent ability when
responses are scored in two or more nominal categories.
Psychometrika, 37, 1972, 29-51.

[3] Bock, R. D. and Aitkin, M. Marginal maximum likelihood estimation
of item parameters: application of an EM algorithm.

- Psychometrika, 46, 1981, 443-459.

[4] Lazarsfeld, P. F. Latent structure analysis. In S. Koch (Ed.),
Psychology: A study of a science. Vol. 3. New York: McGraw-
Hill, 1959, 476-542.

[5] Levine, M. Appropriateness measurement and the formula-score
method: overview, intercorrelations and interpretations.

* Paper presented at the ONR Conference on Model-Based
Psychological Measurement, 1980 , Iowa City, Iowa.

[6] Lohman, D. F. and Kyllonen, P. C. Individual differences in
solution strategy on spatial tasks. In R. F. Dillon and
R. R. Schmeck (Ed.), Individual differences in cognition.
Chapter 4. New York, N.Y.: Academic Press, 1983.

[7] Lord, F. M. A theory of test scores. Psychometric Monograph,
S No. 7, 1952.

[81 Rasch, G. Probabilistic models for some intelligence and
attainment tests. Copenhagen: Nielson and Lydiche, 1960.

[9] Roche, A., Wainer, H., and Thissen, D. Skeletal Maturity: The
Knee Joint as a Biological Indicator. New York: Plenum
Medical Book Company, 1975.

[10] Samejima, F. Estimation of ability using a response pattern of
" graded scores. Psychometrika Monograph, No. 17, 1969.

[11] Samejima, F. A general model for free-response data.
Psychometrika Monograph, No. 18, 1972.

*- [12] SameJima, F. Homogeneous case of the continuous response level.
Psychometrika, 1973, 38, 203-219.

V 113] Samejima, F. Normal ogive model on the continuous response level
in the multidimensional latent space. Psychometrika, 1974,
39, 111-121.



-66-

Two specific models, i.e., the normal ogive model and the logistic model,

have been proposed and investigated in each of the three response

situations. It is left to the researcher to decide which model to choose

for his or her own research. It should be emphasized, however, that the

failure in the selection of an appropriate model will necessarily lead to

the failure of research. The example of the response latency in cognitive

psychology given in earlier chapters may be helpful in such a decision making.

The models proposed here will further be expanded and generalized to

include situations in which any finite or enumerable set of z between 0

and 1 deals with the discrete part of the conditional distribution of the

item response z g given the latent trait 9 • When necessities come, the

rationale presented in the present paper is ready to be expanded and

generalized further. In such a situation the general model in the closed

response situation will become a special case of the even larger framework.

. . . . . . .."

. . . . . . . . . . . .'

"°~------------
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and the item information function I (e) by solid lines and a dotted

line, respectively, in each of the normal ogive and the logistic models,

* with the same parameters, scaling factor, difficulty parameter function and

six fixed values of zg as we used in Figures 5-7 and 5-8. As was the case

with the closed response and the closed/open response situations, in the normal

ogive model, the item response information function for each and every value

of zg in the interval (0,1) has the identical horizontal line shown in

the upper graph of Figure 5-9, and, therefore, this single curve serves for

all the five values of Zg , i.e., 0.1 , 0.3 , 0.5 , 0.7 and 0.9

It should also be noted that this graph is valid across different

difficulty parameter functions. The item response information function in

the limiting case where z tends to unity is overlapping the solid

horizontal curve in the normal ogive model, and shown by a dashed curve in

the logistic model, in Figure 5-9. In each model, the item response

information function for zg = 1.0 is less than the one in the limiting

case, where zg tends to unity, for the entire range of Q as was the case

• "with the closed/open response situation with the replacement of unity by

zero. Similar sets of eight curves in the logistic model, obtained by

changing k to 3 , 5 , 7 and 9 in the difficulty parameter function

L given by (5.24), respectively, are shown in Figure A-12 of Appendix XII.

VI Discussion and Conclusions

A generalization of the model for the open response situation in the

homogeneous case of the continuous response level has been conducted to

create a new general model for the closed response situation, which also

includes the closed/open response situation and the open/closed response

situation, as well as the open response situation itself, as special cases.

-.-. . -.
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~1.5 Nor-i Ogivo Model

1.5 __ _ _ _ _ _ _ _ __
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LATENT TRAIT 9
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z 1.5 9 9W.

0 1.9
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0.0g
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LATEN4T TRAIT 0

FIGURE 5-9

Item Response Information Functions, 1~ Ce) , (Solid Line) and Item
z9

Information Function, 1 (0) , (Dotted Line) in the Normal Ogive and

the Logistic Models, with ag = 1.0 ,bi = 2.0 and D = 1.7

In the Normal Ogive Model , the Horizontal Line Indicates Common
IZg (e) for All Item Scores, 0 < zg9 < 1 , While in the Logistic

Model the Five Curves Identical in Shape Indicate I (e) for

z= 0.1, 0.3, 0.5, 0.7, 0.9 , When the Functional Relationship

between zg9 and bz Is Given by b z = b1 + tan[(-7r/2)(l-zg) '

9g
with the Dashed Curve as the One in the Limiting Situation
Where z9Tends to Unity. Open/Closed Response Situation.
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