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1. Introduction

In numerical weather prediction, objective analysis is the

S process of combining information obtained from observations of

meteorological variables with that from the numerical prediction

process. The resulting "analyzed" values are used to prepare

weather maps, as well as to initialize the variables for the next

weather prediction cycle. The problem is inherently a multivar-

iate one since the -,ariables are not independent, e.g., pressure

heights are related to winds. The predicted values are on a

regular grid, and have errors which are spatially correlated.

The observed values are measured imperfectly, and occur at irreg-

ularly spaced (scattered) points (both in space and time). The

errors in the observations sometimes occur independently, with

zero mean, and in other cases, such as satellite observations,

are biased with correlated errors.

The traditional approach to the problem is a two step

process. The predicted values are treated as a first-guess and

interpolated from the grid to the observation points. The dif-w ference between the first-guess values interpolated to the obser-

vation points and the observed values, cdited the first-guess

error, is then interpolated back to the grid points as a correc-

tion to the first-guess values. The interpolation from grid-to-

observation points is the "easy" process, and has not received

much attention in the literature. The procedure generally usedl

is multilinear interpolation (e.g., Bergman, 1979, or Lorenc,

1.931), although recent investigations by the author (Franke,

1905) have demonstrated that appreciable error may occur in this
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step. The interpolation from observation-to-grid points is the

*hard" problem and has received widespread attention. Histor-

ically the favored scheme has been a weighted average scheme,

originally introduced by Cressman (1959), with a variation due to

Barnes (1973). Currently the method of choice is a statistical

scheme known in the meteorological literature as Optimum Interp-

olation (01), and in other disciplines by other names (e.g.,

Kriging in the mining and geology literature).

The interpolation process known as 01 has its roots in the

work of Weiner and Kolmogorov, and was introduced to the meteoro-

logical literature by Gandin (1963). The theory of the process

depends on it being applied to a random function with known

spatial statistics. In particular it is assumed that the spatial

covariance structure of the class of functions to which it is

applied is known. In addition it is necessary to know the error

statistics of the observation devices. If this is the case, then

the process yields the best answer possible in the sense that the

variance of the error is minimized over all functions in the

class. For meteorological purposes, this means the covariance

structure of an ensemble of realizations must be known, and then

the mean squired error over the entire ensemble is minirtiizt.

Using standard least squares methods, the variance of the expect-

ed error is easily computed, and much emphasis has been put on

this as an advantage of the method.

There have been numerous papers about the nultivariate ap-

plication of 01 to the objective analysis problem. These are of

an applications nature, and it is difficult to separate the

behavior of such schemes from that of the other involved
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processes. In studies of objective analysis using simulated data

to attempt to learn something about the properties of the scheme,

many simplifications are required. This study is no different.

The univariate (only one meteorological variable is treated, in

this case the 500 mb pressure height surface) application of 01

and other schemes is investigated. Because the generation of

simulated data with specified spatial correlation properties

requires the factorization of the correlation matrix for the

first guess error at the grid points, it is necessary to work

with a relatively small grid. Further, the problem of non-

synoptic observation of variables is not treated, rather all

observations are assumed made at the same time, the time at which

the particular realization occurs. Within the prescribed limita-

tions, the procedure used is valid and yields information about

the objective analysis process which should prove to be useful in

practice.

A somewhat different way of looking at the problem was

proposed by Wahba and Wendelberger (1980). See also Wendelberger

(1981). In their work, no first guess was necessary or assumed;

all data was considered to be observation values. Thus the

underlying field to be approximated was treated directly, rattlr

than saking a correction to the first-guess field. The overall

process involved the use of Laplacian smoothing splines and

generalized cross validation to determine a suitable value for

the smoothing parameter. If a first guess is available, with

known correlated errors, then ignoring this information is prob-

ably unwise. The first-guess can be used in the traditional

.manner, with the Laplacian smoothing splines applied to the

3
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first-guess error. It is also possible to apply the Laplacian

smoothing splines to all of the data. Thus, part of the invest-

igation reported here involved the use of Laplacian smoothing

splines and generalized cross validation for the smoothing par-

ameter in a scheme that approximates the underlying field direct-

ly, but that also makes use of all available data in a way that

accounts for the correlation of the errors. The program used was

a modified version of the program MSSP, available from the

Madison Academic Computing Center, University of Wisconsin.

Section 2 gives an outline of the goals of this study,

background information about the methods of objective analysis

considered, and aspects of the schemes investigated. The results

of the study are given and discussed in Section 3. Finally, the

implications of the results and conclusions about approaches to

objective analysis, and suggestions for further study are given

in Section 4.

2. Goals of the study

This study had two principal goals: (1) To investigate the

efficacy of generalized cross validation '(GCV) in determining the

smoothing parameter used in Laplacian smoothing splines (LSS),

and (2) To test the possibility of treating first-guess values

and observed values in a unified met',od with LJSS. The smoothing

parameter value must be given in order to use LSS, and Wahba and

Wendelberger (1980~) have indicated that GCV might be a good way

to choose the value. In this study I performed simulations to

determine if GCV could adapt properly to particular realizations

in an ensemble with specified error statistics.

4
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The advantage of a unified scheme for both first-guess and

observed values is that it potentially makes it possible to

obtain better analyses where the observations are sparse compared "

to the grid or correlation distances. The LSS method used in

this investigation was the scheme proposed by Wahba and

Wendelberger (1980), which is described more fully in

Wendelberger (1981, 1982). The general framework of this study

follows that of a previous investigation (Franke, 1985).

A brief description of the setting in which the numerical

experiments were performed follows. An underlying function to be

approximated was chosen. The simulated pressure height field

described by Koehler (1979) was used, at the 500 mb level, with

random values for two parameters, e0 (chosen uniformly distri-

buted on [-112.5 0 ,-82.5 0 ), and AS (chosen uniformly distributed

on E-15°,15°)). One possible realization of the field is shown

in Figure 4. The underlying field was then evaluated on a rec-

tangular grid. Normally distributed first-guess errors with

specified spatial covariance were generated and added to the

field values to obtain the first-guess values. Then, the under-

lying field was evaluated at a set of observation points, and

normally distributed independent observation errors with speci-

fied variance were added to these values to obtain observation

values. An objective analysis scheme was then applied using the

first-guess and observation values to obtain estimates of the

underlying field at the grid points; these are called the ana-

lyzed values of the field. The errors in the analyzed values

were then computed. After repeating the process for many reali-

zations, estimates of the root-mean-square error was obtained.
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In order to avoid edge effects, rms errors for the first-guess

and analyzed values were tabulated only over the interior grid°

points. In a previous study (Franke, 1985), this process was

used to obtain simulated results using various objective analysis

schemes, under various assumptions about parameters in statisti-

cal schemes and other methods. In the current study this process

is the starting point for investigations indicated above.

The approach taken for 01 is to view the approximation as a

linear combination of the spatial covariance functions for the

observation points,

F(P) : akC(P,Pk)
k=1

Here C(P,Q) is the stationary, isotropic covariance function for

the first-guess error, F(P) is the approximating function, the

observation points are Pk' with first guess values Fk,

k=l,...,No, and the ak satisfy the system of equations

No7
N0  2

ak (C (Pi,Pk) + 6 r Fi t N
k=i k ik k )=F.i1.,N 0 .k=l1-

The rk denote the standard deviation of the observation errors at

Pk.

One of the practical difficulties of the method is the

specification of a suitable covariance structure. Not only is

this important from the standpoint of modeling the process prop-

erly, but also from the standpoint of obtaining meaningful

estimates of the mean squared error. In fact, these estimates

6
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hold only when the covariance structure is known. When a parti-

cular structure is assumed, with parameter values being estimated

from a time history or otherwise specified inexactly, these

estimates may differ substantially from the actual values

(Franke, 1985). As a matter of terminology, it is noted that

when the process is applied using empirically derived, or assumed

covariance functions, the scheme is called "statistical inter-

polation" in the meteorology literature. It is easily observed

that the accuracy of the scheme is closely related to a somewhat

nebulous quantity which I will refer to as the "correlation

distance". This quantity indicates something about the distance

at which the spatial correlation in the first-guess values drops

below a certain level. If the distance from observation points

to the analysis point (a grid point, in this case) is greater

than the correlation distance, then the scheme cannot perform

well, and in fact may only improve the value slightly. Thus the

performance of the method is strongly dependent on the first-

guess errors being correlated, the the higher the correlation,

the better.

The scheme proposed by Wahba and ;Jendelberger (198;J) is

based on the use of LSS. These functions were first introducedi

as interpolation functions by Hlarder and Desmarais (1972), and

were later developed more fully by Duchon (1976, 1977) and

M~einguet (1979, 1979a). The generalization to smoothing and

their application to the objective analysis problem was by Wahba

and Wendelberger. The functions obtain their name, and are

characterized by minimization of a functional related to the

iterated Laplacian, M.

7
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Here X is a smoothing parameter, and the order of the LSS m (>l)

determines the smoothness of the function in terms of the number

of continuous derivatives it must have. The No vector Al is

differences between the approximation values and the data values,

and is the covariance matrix between the errors in the data

taken over an ensemble of realizations. In the context of the

objective analysis problem being considered, the solution of the

problem can be shown to be a function of the form

No
H(P) : _ A k  B (P,Pk ) + - b ij  OicJ

k=1 i+j< m

where the independent variables are taken to be longitude, e, and

latitude, 6, and the data points are (Pk,Hk) with Pk = (9k,$0)

k=l,...,N o . The basis functions for the approximation depend on

the number of independent variables. For the case of two inde-

pendent variables the basis functions can be taken to be B(P,Q) =

I IP-Q 1 2 m- 2 logl IP-QI I, where I 1-Q1 I is the distance in degrees

between points ? and Q. The coefficients Ak, and those of the

polynomial Zbiji j , satisfy the system of equations
i+j<m

N0 + " J ~ .N
Ak  ((B (P + + Z bij n=1 f ,".,No

k=1 
i+j< m

No
F i b = 0 i +j< m-A k k

k=1
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Grid #Obs cd GCV2 GCV3 GCV4 NGCV2 NGCV3 NGCV4 0I

13x9 36 10 18.44 25.70 136.4 6.64 6.82 6.37 6.29

13x9 36 7.5 6.94 6.60 7.79 j
13x9 36 5 8.82 7.05 6.50 8.47 6.84 6.48 11.59

13x9 36 0 8.43 6.15 5.95 7.09 5.94 5.75 30.30

8x6 16 10 9.67 9.60 9.42 6.28 6.17 6.25 6.14

8x6 16 5 10.83 8.09 7.91 8.58 7.43 7.07 10.66

3x6 16 0 9.22 8.11 8.23 7.52 6.87 6.95 30.00

5x5 4 10 13.94 12.55 10.80 8.76 8.64 8.63 8.22

5x5 4 5 12.55 10.25 11-11 11.42 10.01 9.96 13.71

5x5 4 2.5 13.93 12.13 14.31 11.87 9.19 10.64 23.36

TABLE 2: rms errors in the corrected grid values obtained with
various simulation runs. GCVm denotes GCV was used to estimate
the smoothing parameter for the Laplacian smoothing spline of
order in. NGCVm denotes GCV was not used with the Laplacian
smoothing spline of order m. 01 denotes the error estimate from
,Optimum Interpolation for the corresponding parameters. Other
2arameters used were rg = 30, r) = 10.
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Type Aambdab rms error rms error rms error
A=Ax b  m = 2 m = 3 m = 4

Unified GCV 13.94 12.55 10.80
cd = 10 25-6,25-5,25-4 8.76 8.64 8.63

Unified GCV 12.55 10.25 11.11
cd = 50 25-6,25-5,25-4 11.42 10.01 9.96

Unified GCV 13.93 12.13 14.31
cd = 2.50 25-6,1-3,1-3 11.87 9.19 10.64

Table 1C: rms errors of the analyzed values for GCV and non-GCV
simulations on the 5x5 grid with 4 observation points. Specified
error parameters were rg = 30, ro = 10.

20



Type Lambda rms error rms error rms error I
(Ab=Axl0b) m = 2 m = 3 m = 4

No first-guess GC_ 8.65 7.63 8.42
cd = 0 5J,52,2-1 8.55 7.44 7.63

Corrections to GC 7.16 7.44 7.63
first-guess 3 ,1 1,i0  6.77 6.82 7.18

Cd - 10 °

Unified GC 18.44 25.70 136.42
10°  6.64 6.37 6.37

cdi

Unified GC' 6.94
cd = 7.50 - 6.60

Unified GCV 8.82 7.05 6.50
cd = 50 25-6,25-5,25-4 8.47 6.84 6.48

Unified GCV 8.43 6.15 5.95
cd = 00 25-6,25-5,25 -4 7.09 5.94 5.75

Table 1A: rms errors of the analyzed values for GCV and non-GCV
simulations on the 13x9 grid with 36 observation locations.
Specified error parameters were rg = 30, ro = 10.

Type Lambda rms error rms error rins error
(Ab=Axl~b) m = 2 in = 3 m = 4

No first-guess GCy 10.10 9.75 10.86
cd = 10 1 - 1- I  9.80 8.79 9.85

Corrections to GCy 7.00 7.58 10.39
first-guess i- ,5- 1, 1 6.48 6.60 8.25

cd = 100

Unified GCY 9.67 9.60 9.42
c d = 100 2- ,3-4,8 - 3 6.28 6.17 6.25

Unified GC - 10.83 8.09 7.91
cd = 50 5 ,4-,25- 4  8.58 7.43 7.07

Unified GCY 9.22 8.11 8.23
0  4- ,4-4,4-3 7.52 6.37 6.95

Table 1B: rms errors of the analyzed values for GCV and non-GCV
simulations on the 3x6 grid with 16 observation points.
Specified error parameters were rg = 30, ro = 10.
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1983). This may be possible for LSS when a smoothing parameter

is specified. While the simulation program is available and

gives very good results (as can be seen in Figures 17-19 for 01),

Seaman's approach requires considerably less computation.

All simulations reported on here were univariate. In its

current practical applications 01 is applied in a multivariate

setting. As noted by Wahba and Wendelberger, LSS is also appli-

cable in the multivariate setting, but the method has not been

rigorously tested, since they computed only a small number of

examples. There is no reason to suspect that LSS will perform

*' any less well, compared to 01, in this setting than it does in

the univariate case. It is necessary to perform some comparable

analyses for the two methods to verify this, however, and such a

study is anticipated in the near future.
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general applicability and would be similar, independent of the

source of the data. Nonetheless, the results will be discussed

in terms of the setting in which they were performed. It is

apparent that the routine, day-to-day use of GCV is not a suit-

able, nor cost effective way, to determine the smoothing param-

eter for LSS. On the other hand, it does seem to be useful to

determine a single suitable value to use for all realizations in

Vsome particular ensemble. No effort was made to determine the

optimum value of X to use for any set of realizations in our

simulation, although in some cases a set was run with more than

one value of X. The results indicated that the "eye-ball" av-

* erage used was a good value, although it could be improved on if

there is access to the actual errors. In practice, of course,

this is not the case.

The use of LSS in a unified sense to treat both first-guess

and observations in the same manner looks promising in regions

wnere the observations are sparse. My investigation here is not

really complete, however, and some additional work is necessary

to verify the apparent conclusion that can be made. In partic-

ular, the simulations had perfect knowledge of the statistical

characteristics of both the first-guess and observation error,

and in practice this is impossible. An investigation of the

* sensitivity of both statistical interpolation and LSS to erro-

neous specification of the statistical characteristics of the

errors is planned. In addition to this, several sets of grids

with sparse observations will be used in the study. For statis-

tical interpolation it is possible to find the rins errors ovo3r a

given ensemble of realizations without simulation (see Seaman,



correlated first-guess errors (the more strongly correlated, the

better), 01 cannot be very successful in regions where the dist-

ance between observation points is a significant fraction of the

* correlation distance (or perhaps, where the density of

observation points per unit of correlation distance area is

* small). This behavior is seen in the last column of Table 2,

- which also summarizes the results for m-4 on the 3 grids used in

the simulations. Observe that no correction can be expected to

be made if the first-guess errors are uncorrelated (Cd = 0). The

relationship is complex, as is seen through the inversion of the

* system of equaions for the coefficients in the approximation, and

could be expected to depend heavily on distances to several

* nearby observation points as well as the first-guess grid size.

The phenomenon is more clearly illustrated by Figures 17-19,

which graphically shows some of the data of Table 2. Figure 17

* shows the rms errors as a function of correlation distance for

unified LSS for m-4 with and without GCV, and for 01 from simnula-

tions, along with the expected rms error from 01. Figures 19 and

19 show the corresponding data for the 8x6 grid and the 5x5 grid,

* again with m=4.

* 4. Conclusions

This investigation has been primarily concerned with the

performance of generalized cross validation in conjunction with

* its use to determine the smoothing parameter for Laplacian

* smoothing splines applied to the objective analysis problem in

numerical weather prediction. While the simulations performed

* have been within that context, I feel that the results have

14



parameter which might possibly be related to the minimum value of

the function is the value of the smoothing parameter, however

* Figure 9 again shows no particular evidence of correlation. None

* of the available parameters seem to be indicative of "extreme"

* cases, and in particular are not detectable either from the GCV

value or the smoothing parameter value. The one exception to

that is the extreme point which is shown on the boundary, which

does correspond to a very small value of the smoothing parameter,

X. This implies that little smoothing was applied for this

particular realization. The case also corresponds to a relative-

ly small value of the ratio of rms first-guess error to rins

observation error.

Figures 11-16 show the corresponding plots for realizations

incorporating uncorrelated first-guess error (correlation dist-

ance cd = 0), again for the 13x9 grid. Except for there being no

cases giving really poor performance of GCV in these realiza-

tions, the behavior is basically the same as Figures 5-10. The

only evidence of correlated values is between the rms errors of

the analyzed values with and without GCV. Other plots for varia-

tions in correlation distances, smoothness parameters, grids and

observation point sets support these results.

The relative constancy of the the rms errors obtained by the

*LSS as the correlation distance is varied, as opposed to the

rapid increase in errors obtained by 01 as the correlation dist-

ance decreases is thought provoking. One is easily convinced

* that since 01 is based on the idea of a correction to first-g~uess]

errors and since the successful application of 01 dJepend1s on

1.3



variation of the rme errors in the analyzed values but the errors

do not tend to increase greatly as correlation distance is de-

creased. The last result is discussed in more detail later.

In addition to the tabulation shown, a number of plots of

various parameters versus rms error in the analyzed values for

some of the sets of GCV realizations were made. Some of those

are reproduced here, showing a typical range of behavior. In

Figures 5-10, the simulations were on the 13x9 grid (Figure 1),

with a correlation distance of cd = 7.50, and smoothness parame-

-. ter m = 4. One point is off the graph area and its projection

onto the boundary is shown. Figure 5 shows the rms errors of the

analyzed values for the non-GCV simulations versus the rms errors

of the analyzed values for the corresponding GCV simulations.

These appear to be correlated fairly well. The total rms error

is smaller for analyses using a specified smoothing parameter

- value than for those obtained using GCV. Figures 5-i show

scatter diagrams of first-guess rms error, observation error,

ratio of rms first-guess to rms observation error, log X, and GCV

%4A. function value, respectively, versus the rms error in the ana-

lyzed values obtained with GCV. No correlation between these

sets of values is apparent, and in particular the GCV function

value does not seem to be correlated with the actual rms errors

in the analyzed values. Thus it would appear that while compu-

AM_ ting the GCV function gives one something to minimize, in this

problem it is not true that the minimum of it corresponds to a

minimum in the rms error of the analyzed values. This is further

borne out by the generally smaller errors are obtained by speci-

fying a constant value for the smoothing parameter. The other

L 12
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Table 1 shows the results of LSS simulations with several

different processes. The objective analysis processes used were

(1) the Wahba and Wendelberger method with no first-guess and cd

l 1o0, (2) the correction to first-guess method with LSS applied

to the first-guess error and cd = 100, and (3) the unified scheme

with various correlation distances specified. For the 13x9 and

8x6 grids, the three values, m=2, 3, and 4 were used. Wahba and

Wendelberger had previously reported that for similar data, m=4

or 5 seemed to be appropriate. The simulations performed here

indicate that for the particular underlying function used, m=3 or

4 is best. Though not discernable from the table, the GCV func-

tion generally was found to have multiple local minima, especial-

ly for the larger data sets when the first-guess errors were

highly correlated (large Cd). The results for m=4 and cd = 100

are not completely reliable since three of the cases failed in

the determination of the smoothing parameter using GCV, and five

others gave very poor results. The failures were probably caused

by inexact computations of the square root of the correlation

matrix in the LSS program, because the correlation matrix is

poorly conditioned with respect to the precision used in the

computations (double precision (REAL*8) on an IBM computer). 'Io

failures occurred when the smoothing parameter was specified.

The principal results to be drawn from Table 1 are: makinj

corrections to the first-guess field always gave better analyzed

valuesi than not using the first-guess field, the unified scheme

(without GCV) gave better analyzed values than the no first-guess

process, and decreasing the correlation distance results in somde

ii .1
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gressive correlation models approximate the actual first-guess

error data better than Gaussian functions, and have other re-

quired properties needed in the multivariate case, as well.

However, the overall results of this study would probably be

altered only slightly by use of other correlation functions and

distance in kilometers.

3. Results of the study

A number of simulations with different grid and observation

point sets, correlation distances, and order of the LSSI were

computed. A table giving the parameters of most of these simula-

tions, including the resulting rms errors of the estimated grid

point values is given in Table 1. All simulations used values of

30 m and 10 mn for the standard deviations of the first-guess and

observation errors, respectively.

The efficacy of the generalized cross validation (GCv) pro-

cess as a scheme for choosing the smoothing parameter wag one of

the primary points investigated. An attempt was made to deter-

mine if the rms error resulting from the choice of smoothing

parameter by GCV were related to any other parameters in the

particular realization. With given parameters, a set of 50 (or

100, for the 3x6 and 5x5 grids) realizations were generated, and

the rins errors of the analyzed values at the grid points, along

* with the rms first-guess and observation errors, the smoothing

parameter value, and the GCV function value were tabulated. The

realizations were then repeated using a smoothing parameter value

U. determined from an eye-ball average of the X values obtained

through GCV over all realizations in the particular ensemble.



.4

Before the system of equations can be solved for the coef-

ficients the smoothing parameter X must be specified. Wahba and

Wendelberger (1980) show how to choose this smoothing parameter

using GCV. In simple cross validation X is selected to mini-

mize the square of the errors in the scheme measured by sequen-

tially predicting the value at each data point when it is omitted

- from the set, then summing over all data points. This turns out

" - to be an unreasonably expensive calculation, and GCV is a proce-

dure for estimating the minimizing parameter in the particular

realization.

Since Optimum Interpolation (01) is typically used in met-

eorological analysis, the performance of LSS and GCV was measured

relative to that of 01. In the ensemble mean-squared error

sense, 01 must perform at least as well as any other scheme based

on making corrections to a first-guess field. As was shown in

Franke (1985), the simulation program yields rms errors which

compare very favorably with the predicted values from the scheme,

so it was not necessary to run the simulations for 01. The

simulations for 01 are quite inexpensive to compute, however, and

some were run as a check of the simulation program. In all the

simulations, the spatial covariance of the first-guess errors

were assumed to be Gaussian,

C(P,Q) = rexp(-(I IP-Ql I/cd)2 ).

Here cd is a parameter, referred to in the sequel as the correla-

tion distance, and r2 is the variance of the first-guess error.
g

The use of Gaussian correlation functions and distance in degrees

is not necessarily the best assumption that could be made. For

example, recent work by Thiebaux (1985) has shown that autore-

9
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