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I. INTRODUCTION

The Test and Evaluation Command (TECOM) funded the Experimental Design
and Analysis Branch, SECAD, BRL to develop procedures for planning durability tests
which allow testing an item beyond its required durability mission time so that statisti-
cal inferences concerning durability can be made with higher confidence. This report
gives recommended procedures to accomplish this goal, summarizes the assumptions
underlying these procedures, outlines the theory required for their development and
gives tables and sampling plans which are needed to implement them.

A durability test is conducted to collect data which is used to draw inferences con-
cerning the probability that a unit which is to be evaluated will be able to operate for a
minimum specified time, number of cycles, etc. without failure due to wearout. If one is
willing to agree that units wear out gradually, i.e., the physical properties of a system
gradually change with system usage and such changes adversely affect the effectiveness
of the system, then one is led to the class of statistical distributions which are said to
have an increasing failure rate. This is the class of distributions which have been used
for the work described in this report.

The theory which underlies the procedures presented in this report is described in
the appendices so that the mathematically inclined reader can satisfy his academic
curiosity. The main body of the report is concerned with application of the procedures.
The tables which are needed to use the procedures and listings of the computer pro-
grams which were used to construct these tables are given in the appendices.

II. PREVIOUS WORK

A durability life distribution function is a mathematical equation which is used to
calculate the probability that the durability life of a unit will be at least as large as a
value which is of interest to the engineer who is evaluating it. For sake of consistency
with the statistical literature, we will let F(T) be the durability life distribution func-
tion, i.e., F(T) is the probability that the durability life is less than or equal to T and
R(T) = 1-F(T) be the probability that durability life is greater than T. Clearly, the
form of F(T) depends on the tasks which a unit is required to perform. For example,
the F(T) for a vehicle which is required to ford streams and climb mountains would cer-
tainly differ from the F(T) for the same vehicle if it were only required to operate on
interstate highways.

There are many equations which are used for F(T). Each has special properties
which make it appropriate for use with a certain type of item. The two most commonly
used are the Weibull distribution and a special form of this distribution which is known
as the exponential distribution. The Weibull distribution has three parameters which
can be adjusted so that the function adequately characterizes the durability distribution
of many different types of equipment. If an engineer has sufficient knowledge about the
form of the durability life of an item to guide him to a reasonable selection of the form
of its durability distribution and sufficient data to estimate the parameters of his



postulated distribution, then he should use this information to determine whether the
unit satisfies its durability requirement.

Usually little is known about the functional form of F(T). Since durability tests are
almost always terminated before all units on test experience a durability failure, there is
seldom sufficient data to calculate good estimates of the parameters of F(T), even if its
form were known. This has led to the development of analytical techniques which
require little knowledge about the form of F(T).

The distribution free procedure, which requires minimal knowledge about the form
of F(T), is the one most frequently used today. For this procedure, a number of units,
N, are selected as typical of the production design configuration of the item to be
evaluated. These units are then tested under a specified set of test conditions for a
durability time T*, which is the durability life requirement for the item. The number of
units which survive the test, r, is used to calculate an estimate of the durability of the
item represented by the sample. Thus, since N units are tested and r of them survive
the test, the best estimate of durability is given r/N. The binomial distribution is used
to construct a lower confidence limit for this estimate. If one is willing to use Bayesian
procedures and postulate a uniform prior distribution for the binomial parameter, he
can improve this estimate, i.e., he can construct a lower confidence limit for durability
which is larger than the one found using the classical or frequentist approach to the
problem. The improvement attained via this Bayesian approach is equivalent to having
a sample size of N+1 with r+1 survivors using the frequentist approach (see Appendix
A).

The distribution free procedure requires a large value of N if reasonable lower
confidence limits for durability are needed. For example, if the appropriate requirement
document specifies that a durability of at least .80 relative to a mission time of 5000
miles must be demonstrated with 95% confidence, then a sample size of 14 units must
be tested for time T* = 5000 miles each, with no durability failures. If one durability
failure is to be allowed, a sample size of 22 units must be tested for the same number of
miles. If the item under evaluation had been a prototype vehicle, such sample sizes
would not have been at all practical -- sample sizes of one to three would be much more
reasonable.

This sample size problem can be circumvented to some degree if one tests for a
time 7 which is greater than T* and makes reasonable assumptions concerning the form
of F(T). This approach would permit one to make the same inferences about the dura-
bility of a system relative to the mission time T* with a smaller number of test units.
The only problem associated with this approach is the determination of "reasonable”
assumptions concerning the form of F(T).

Billings (1967) introduced a concept which he called a moderately distribution free
procedure. If F(T) is the probability distribution for durability life, then its first deriva-
tive with respect to T, f(T), is called the probability density function for durability life.
Billings showed that if f(T) is an increasing function of T during the test period, then
for any number, M, which is greater than one, the relationship F(MT) > MF(T) holds.

10



He used this relationship to develop a methodology which improves on the distribution
free lower confidence limit for durability when the actual test time for each unit is
greater than Tx. Billings' confidence limits can be improved by using Bayesian pro-
cedures. Though this work is mathematically interesting, it has not been used by test
engineers because there seems to be little practical justification for the assumption that
f(T) is increasing in T, especially if the actual test time is large relative to T*. For
further discussion of this, see Appendix D.

Barlow and Proschan (1981) consider the family of durability probability distribu-
tion functions which have an increasing failure rate (IFR). For these distributions one
need only assume that the item to be evaluated has the property that its remaining life
is decreasing with usage, i.e.,, things wear out. They prove that if a complex system
contains components which independently have IFR durability distributions, then the
system has an increasing failure rate average (IFRA) life distribution. An IFRA durabil-
ity distribution has the property that the average of the failure rate over time is increas-
ing. It can be shown that an IFR durability distribution is IFRA but an IFRA durabil-
ity distribution is not necessarily IFR. Aside from such generally accepted statements
as, 790% of the tire trouble occurs in the last 10% of tire life,” the mathematical proofs

given by Barlow and Proschan adequately justify the use of their procedures based on
IFRA distributions for durability testing at TECOM.

OI. THE IFRA FAMILY OF DURABILITY DISTRIBUTIONS

A distribution F(T) is said to have IFRA if - In[1-F(T)]/T is increasing in T, where
T is greater than zero. This mathematical statement, which leads to a useful procedure
for using survival data for equipment when test time exceeds durability requirement to
construct improved lower confidence bounds for durability, has a practical interpreta-
tion. Simply stated, a system which has IFRA has the property that, even though there
are brief periods during which it may be showing a slight decrease in failure rate due to
something like work hardening, its failure rate is increasing when averaged over time.
Mathematical developments which follow from the IFRA assumption are given in
Appendix B.

The concept of IFRA evolved from the fact that most complex systems have com-
ponents that wear out, i.e., are IFR. Barlow and Proschan (1967) proved that any rea-
sonable system built from components having either exponential or IFR durability dis-
tributions will have an IFRA distribution. It can also be shown that if each of the

independent components of a system has an IFRA distribution then the system has an
IFRA distribution.*

Barlow and Proschan (1981) give another interesting justification for the use of the
IFRA distributions. They prove that an IFRA distribution arises naturally when ran-
dom shocks occur, each independently causing random damage to a device, the damages

sTheorem 2.6, Barlow and Proschan (1981).
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accumulating until a critical threshold is exceeded, at which time the device fails. This
is called the cumulative damage model.

Thus, the IFRA distributions seem to be a natural for durability testing and are
totally consistent with the usual assumption that a unit which has been in the field for
several years is more likely to wear out tomorrow than-one which has been in the field
for several months.

All of the mathematical models which underlie the procedures given in the
remainder of this report are based on the assumption that the appropriate durability
probability distributions are IFRA.

IV. DESIGN OF EXPERIMENTS

The durability requirement for an item, given in terms of some measure appropri-
ate to the item, e.g., hours, cycles, miles, rounds, etc., should specify T, the required
durability life for the item, R*, the required durability relative to T*; and a level of
confidence at which R* must be demonstrated. Implicit in this requirement is the life
profile for the item and the definition of a durability failure. Further discussion of these
points can be found in Test Operations Procedure 1-2-502 (Reference 7).

If a durability test is to demonstrate the durability life of an item, two things must
be determined, the number of units to be tested, N, and the time on test for each unit,
7. Procedures for selecting N and 7 when the durability life of an item is IFRA are
given below. A brief discussion of the theory underlying the procedure is given in
Appendix B, and a more comprehensive derivation is given in Barlow and Gupta (1967).

Given a, the confidence coefficient, T*, and R*, Table F-1 can be used to select N,
the number of units to put on test, and 7, the test time for each surviving unit, so that
a 100(1 - a)% lower confidence llmxt for R(T*), denoted as R{a,T*), will be at least R#
provided that the test time is 7 and r units survive. It should be pointed out that each
unit must remain on test until it either fails or has operated for time 7.

Since 7 must be greater than Tx, we can write 7 = MT*, i.e., 7/T* = M, where M
is a number greater than one. This permits construction of a concise table which has
general application.

The use of Table F-1 to select a sample size is best illustrated with an example.
Suppose that there is a requirement that a new gun tube must demonstrate a durability
of at least .80 with 95% confidence when firing 2400 rounds of high velocity K.E.
ammunition. That is to say, the requirement is to demonstrate with 95% confidence
that the probability that tube life exceeds 2400 rounds is at least .80. Here a = .05,
T* = 2400 and R* = .80. Table F-1 gives sample sizes such that, if N units are each
tested for 2400M rounds and C = N - r units fail, then R(.05, 2400) is at least .80 with
at least 95% confidence. Of course, it is assumed that the R(T) for the gun tube is
IFRA.
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For this example o, T* and R(+2400) are all fixed and the test engincer is free to
select N, M and C in such a way that the durability requirements are satisfied and, at
the same time, the test can be run as cheaply as possible. If no durability failures are
allowed, i.e., C = 0 and M = 1.7, so that all units on test must fire MT*x = 1.7x2400
= 4080 rounds without a durability failure, then a sample of N = 8 gun tubes is
required. This means that a total of 84080 = 32640 rounds would be fired. It is of
interest to note that if the distribution free method were to be used for this demonstra-
tion, 2400 rounds would be fired from each of 14 gun tubes. That is, the number of
rounds fired would be 14x2400 = 33600, only 960 rounds more than with the IFRA
design. But six additional gun tubes would be required and this would also increase the
cost of the test.

Quite often the number of units available for test is fixed. If this were the case in
the above example and only N = 3 gun tubes were available for testing, then Table -1
reveals that, if C = 0, i.e., no durability failures would be allowed, then M must be
greater than 3, which is not recommended because extrapolation back from more than
three times the durability requirement is mathematically undesirable. In this case, the
test engineer would most likely request that the requirement for durability demonstrs-
tion with 959 confidence be changed to durability demonstration with 807% confidence.
The value of M from Table F-1 for this requirement is 2.6. Then 2.6x2400 = (210
rounds would be fired from each of the three gun tubes, and if there were no durability
failures, then the test would have demonstrated that the durability for a 2400 round
mission is at least .80 with 829 confidence.

V. ESTIMATION OF DURABILITY

The previous section gave procedures for selecting sample sizes so that, if C or less
failures were observed in a sample of N test units, a 100(1-a)% lower confidence limit
for durability would be at least as large as a stated requirement. After the test has been
completed and the resultant data becomes available for analysis, a better, i.e., higher,
lower confidence limit for durability can usually be constructed. Also, point estimates of
durability for any stated time requirement and time for which a specified durability is
predicted can be generated when C > 0. As before, the IFRA durability distribution
-assumption is made. Methodology for doing the above is given in this section.

When a durability test has been completed the evaluator knows the number of
units which were on test, the number of units which failed, the time at which each
failure occurred and the time at which the experiment was terminated. If the termina-
tion time is the same as the required durability mission, time, i.e., T* = 7, then the best

-

point estimate of R(T*) is given by R(T*) = r/N, no matter what form R(T) may have.

When 7 is greater than T* and R(T) is IFRA, we know that R(T) is bounded below
by the exponential durability distribution. That is to say, when 0 < T* < 7 then

R(T) > e‘T‘/a, where 8 is an appropriate estimate of the mean. of the bounding distribu-
tion. The maximum likelihood estimate for 6% is

# See Appendix C for the denvation of this result.
13
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gL [ ¢ N-C
9:-(—3—{2Ti+(1— )T}, (1)

C
where Y T is the total time on test for units which fail and {N - C)r is the total time
i=1 5
on test for units which survive. Thus # is the total test time for all units divided by the
number of durability failures.

It should be pointed out that 6, like many maximum likelihood estimates, is a
biased estimate of §. However, in this case the small positive bias seems desirable
because it tends to compensate for the conservative bound for R(T*) given by the
exponential durability distribution.

For example, suppose four units were on test, one failed at 1095 hours and the
remaining three were still operating at tChe test termination time of 2300 hours. Here
N=4, C=1, 7 = 2300 and § = % [ T+ (N-C)r] = 1005 + (3)2300 = 7995

i=1 =
hours. If T+ = 1800 hours then we would infer that R(T*) = R(1800) = ¢ 1890/7995 —

.80. However, if instead we have Tx = 1150 hours, then we would infer that R(1150) =
o-1150/7895 __ gn

|
!

Durability test data can also be used to construct lower confidence limits for dura-
bility. This is accomplished by constructing a lower confidence limit for the exponential
parameter, f, and using the exponential bound for the II'RA class of distributions. This
requires knowledge of the sampling distribution of 8.

The exact distribution of 8 was derived by Bartholomew (1963) for the case in
which C > 0. Unfortunately, the function derived by Bartholomew is mathematically
complex and can not be expressed in closed form. A number of approximations for the
distribution of # have been derived to circumvent this problem. If the test is termirated
at a fixed time, then we suggest using the approximation that 2C6/60 has the chi-square
distribution with 2C+1¥ degrees of freedom. This leads to the approximate
100(1 - )% lower confidence limit for 6:

B, = 2C0/x%_, (2C+1). (2)

If C=0, we use the binomial distribution to construct a lower confidence limit for
durability at time 7, set this equal to R(a,7), solve for 6, and use this solution to find
R(a,T*). A lower 100(1-a)% confidence limit for the binomial parameter P is given by
the solution of the equation

N
> (N PraP)Nr=a (3)

X==r

# There are many approximations for this confidence limit. The one which i1s most common involves the use of a chi-square
variate with 2C+2 degrees of freedom. Preliminary results from our study of the problem suggest that a cki-square with 2C-+1 d .1,
which has been considered by others, may be the best chi-square approximation. At this time we recommend usiug the chi-square
approximation with 2C+1 d.f. because it gave confidence limits which are closest to the exact limits in a recent monte-carls study.
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for Py. In this equation a is the confidence coefficient, r is the number of units surviv-
ing when the durability test is terminated, N is the number of units on test and Py, is
the lower confidence for durability. r = N when C = 0 so that the equation becomes

PLN = ) (4)
which has the solution
P, = a!/N. {5)

But, when we use the exponential bound for the IFRA class of distributions
P, = R(a,7) = /" = a!/N. This equation has the solution

6, = -Nr/In(e) . (6)
Substituting this solution in our equation for R(a,T*) leads to
Teln(a) To
R@,T¥) =e N = ¢hble™) (7)
I I
== ¥ Nr =a NM

where M = -,If—* is the ratio of test termination time to durability mission requirement

time. Of course, our requirement that 7 must be greater than or equal to T* dictates
that M must be greater than one. The above turns out to be a reasonably good approx-
imation which is adequate for a back-of-the-envelope analysis in many cases.

Fortunately, the computing power required to numerically integrate the exact pro-
bability density function of 8 is now generally available and exact lower confidence lim-
its for @ can be constructed. A computer program for this purpose has been written and
is available on the BRL CYBER computer for general use. A listing of this program is
given in Appendix E.

Given 6, the lower confidence limit for 6, then a bound for the lower confidence

limit for durability for time T* is given by
R(a,T+) = e T*/0 (8)

In the example above we had 7 = 2300, N = 4, C = 1 and 8 = 7995. The exact
80% lower confidence limit for # is §;, = 3053 so that a 90% lower confidence limit for
durability for time T* is

R(.10,T%) = ¢ T*/3053 (9)
For sake of comparison, we calculate the approximate lower confidence limit for 6 to be
2CH 2(1)(7995)
= = = 2558, 10
L x2g0 (2C+1) 8.25 o
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These exact and approximate bounds, R(a,T*), were calculated for several values of
T* and are shown in Table 1. Point estimates are included in the table as reference
points.

TABLE 1.

Point and interval estimates of durability; four
units on test, one failed at 1095 hours. Test
terminated at 2300 with three units surviving.

T+ | R(T%) | R(.10,T*) | R(.10,T%) | ERROR

500 94 .85 .82 -.03
1000 .88 72 .68 -.04
1500 .83 .61 .ab -.05
2000 78 .52 .46 -.06
2500 73 .44 .38 -.06

Inspection of Table 1 reveals that, for this example, the chi-square approximation
compares favorably, i.e., the error relative to the exact value is small. This table also
shows that the approximation is conservative, ie., R(.10,T%) < R(.10,T*). These are
not general properties of the approximation. They apply only to this specific example
and no attempt should be made to extend them to other problems. We are now con-
ducting a study which should identify the best procedure for constructing approximate
lower confidence limits for the exponential parameter when durability test data is avail-
able. We are also exploring the possibility-of constructing charts and/or tables which
can be used to find exact lower confidence limits for the exponential parameter without
recourse to a large computer.

Both the exact and approximate confidence given above exist only if one or more
durability failures occur during a test. This is a result of the fact that # is not defined
for C=0. If C==0 then a point estimate for durability exists only if Tx = 7 and, in this
case, 1t is unrealistically one.

If, as in the previous example, four units were on test and the test was terminated

after 2300 hours with all units surviving, then, for T* = 1150 we have M = 2 and
1

R(.10,1150) = (.1)® = .7499 . (11)
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VI. TABLE USAGE WITH EXAMPLES

The tables given in Appendices F, G and H are appropriate for items whose dura-
bility probability distribution functions have increasing failure rate average (IFRA). An
IFRA durability distribution has the property that the average of the failure rate over
time is increasing. The IFRA distributions seem to be appropriate for durability testing
since it seems natural that the likelihood of a failure increases as the amount of testing
increases and the items wear out. (See Section III for more details.)

A. Table F-1.

Table F-1 can be used to determine the number of items needed for a durability
test when the following items are specified: durability requirement, number of failures
allowed, desired confidence level and M. M is defined as: M = test time/durability cri-
terion. Time is a generic term used to represent miles, cycles, number of rounds, actual
time, or any other measure of operation sequence.

The tables have been generated for the following values:

Confidence Level: .95, .90, .80, .70, .60, .50
Durability: 50, .60, .70, .80, .90, .95
Number of Failures: 0,1, 2, 3, 4, 5, 10, 25
M: 1.0 to 2.0 by 0.1

2.0 to 3.0 by 0.2,

Suppose that we are interested in demonstrating that a truck has a durability pro-
bability of 0.80 after being driven for 5000 miles at a confidence level of 0.90. We
decide that we will accept one failure, given that the other trucks have been driven 8000
miles each. How many trucks do we need to test?

For this example:

_ test time T _ 8000
" durability criterion T 5000

R* = durability = 0.80
Confidence Level = 1 — a = 0.90
Number of Failures (C) =1

1.6

Go to the 10th page of Table F-1. Under the Durability column heading of .80, go
to the row for M = 1.6 and read the values 12 and .92. This indicates that if 12 trucks
are put on test for 8000 miles each and if at most one failure occurs, then our durability
is 0.80 with confidence of at least 0.92. Due to the discreteness of the data, the true
confidence level is higher than the stated confidence level.

17



Let's assume that it is learned that we cannot get 12 trucks but the durability
requirement has been reduced to 0.70. Then we can move to the left in the same row
and read under .70, 8 and .93. This indicates that if 8 trucks are put on test for 8000
miles each and no more than one failure occurs, then we can state that our durability is
0.70 with confidence of at least 0.93.

B. Table G-1.

Table G-1 can be used to determine M, the normalized test time for surviving
units, i.e., '

_ test time T (12)
_ durability criterion =~ Tx .

In order to find M, the following items need to be specified: confidence level, durability,
number of failures allowed and number of test units.

The tables have been generated for the following values:

Confidence Level: .90, .60, .70, .75, .80, .85, .90, .95, .99
Durability: .50, .60, .70, .75, .80, .85, .90, .95
Number of Failures: 0, 1

Number Test Items: 2 thru 10.

Suppose we have four tanks available for testing the durability of the gun tube.
The specifications for the gun tube state that the durability should be .70 after firing
1000 rounds with no more than one failure with confidence of .80. How many rounds
should we plan on shooting from each tank gun tube in order to meet the requirements?

For this example,

N = number of units on test = 4

C = number of failures allowed = 1
R* = durability = 0.70

Confidence Level = 1 - o = 0.80

_ test time _ T T (13)
o durability criterion =~ Tx 1000 .

Go to the 12th page of Table G-1. Under the Durability Column heading of 0.70,
go to the row for CONF = .80 and read M = 2.449. Then

7= 1000 ¢ M = 2449 . (14)

This indicates that 2449 rounds need to be fired from each gun tube, with no more
than one failure, in order to meet the specified conditions.
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C. Table H-1

Table H-1 can be used to determine the sample size required to demonstrate a
mean durability (i.e., the required durability life) with a certain minimum confidence
level. In order to use the tables the following items need to be specified. The
confidence level, the number of allowable failures and two of the following: M, 7 and Tx.

M= —,I—f;— (15)

Thus, if any two are known, the third can be calculated.

The tables have been generated for the following values:

Confidence Level: .95, .90, .80, .70, .60, .50
Number of Failures: 0 thru 10
M: 1.1 to 2.0 by 0.1

2.0 t0 3.0 by 0.2 .

Suppose that we wish to demonstrate that the mean durability of combat boots is
10 months with 95% confidence. We plan on testing the boots for 12 months and are
willing to allow up to six failures.

For this example:

test time 12
M= =-— =12
durability criterion 10

Confidence Level =1 - a = 0.95

C = number of allowable failures = 6 .

Go to the second page of Table H-1. Under the C=6 column, go to the row for
M = 1.2 and read N = 35 and true confidence = .95. (Due to the discreteness of the
data, the true confidence may be higher than the stated confidence level.) This indi-
cates that if we put 35 pairs of combat boots on test for 12 months and get no more
than 6 failures, the mean durability is equal to or greater than 10 months with at least a
95% confidence level.

Instead of determining N, Table H-1 could be used to determine test time if the fol-
lowing items were specified: C, 1 - a, durability criterion and N. For example, let’s set
up another boot test. Say N = 20, C = 8, 1 - « = .90 and we want the mean durabil-
ity equal to or greater than 12 months. Go to the fourth page of Table H-1. Under the
C=8 column, go down the column until N=20 is found, then read the M associated
with this value M=1.5. We can then calculate test time = M e durability criterion =
1.5 (12) = 18.
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Thus, if we put 20 pairs of boots on test for 18 months and observe no more than
eight failures, then the mean durability is equal to or greater than 12 with at least a
92% confidence level.
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APPENDIX A. DISTRIBUTION FREE (BINOMIAL) CONFIDENCE LIMITS

In a test to determine the durability of an item, N units are tested for a required
durability life, T, and the number of units which survive, r, is noted. The probability
that the durability life of a unit is less than or equal to T is given by the function F(T).
Thus, the probability that the durability life satisfies the requirement is
1 - F(T*) = R(T*). If no assumption concerning the mathematical form of R(T) is
made, a lower confidence limit for durability, R(T*), of a unit can be constructed using
the binomial distribution. Such a confidence interval is called ”distribution free”
because it does not depend on the distribution of T. That is, it is a valid interval no
matter what the function R(T) may be.

Two methods are commonly used to construct a distribution free lower confidence
limit for R(T). These are the classical or frequentist approach and the Bayesian
approach. Both methods are based on the probability statement,

P {R(T*) > R(a,T*)} =1-a, (A1)

where the confidence coefficient, , satisfies the condition 0 < a < .5. Thus, if @ = .05
the probability that the durability of a unit is greater than or equal to R(.05,T) is .95.

For the frequentist approach R(Tx) is considered to be an unknown constant so
that the probability that exactly r units in a sample of N have durability life greater
than or equal to T* is given by the binomial expression

() R(T#y (1 - R(T)N (A2)

and the probability that r or more units have durability life greater than or equal to Tx
is given by

33 (N) R(T) (1 - RN (A3)

i=r

A 100(1 -)% lower confidence limit for R(T*) is found by solving the equation
N : :
5 (Y) Re, T+ (1 R@THN = a (A4)

I=r
for R(a,T*). This leads to the probability statement, P{R(T*) < R(a,T*)} =a. Here
we claim that if R(T#*) is less than or equal to R(a,T*), it would be most unusual for r
“or more units to survive the test. For example, if @ = .05, the probability that r or
more units would survive the test if R(T*) < R(a,T*) is less than or equal to .05.

For the Bayesian approach to the problem R(T) is assumed to be a random variable
and a prior distribution is specified for it. The beta distribution is usually chosen for
the Bayesian prior distribution of the binomial parameter because of its desirable
mathematical properties. Like the binomial parameter, the beta random variable can
take on only values between zero and one; the distribution has two parameters, A and
B, which can be chosen so that it can take on a wide spectrum of shapes; and the
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mathematics required for constructing confidence limits are relatively simple.

In the absence of an understanding of the prior distribution of R(T*), the uniform
distribution is usually assumed. This is a special form of the beta distribution with
parameters A = B = 1. This implies that R(T*) is equally likely to take on any value
between zero and one, i.e.,

L R(T*))=1,; 0 <R(T¥ < 1
= 0 ; otherwise. (A5)

Similar to the frequentist approach
f (|R(To) = (N) R(T#y (1 -R(THN, =01, .., N (A6)

is the conditional distribution of r given R(Tx*). It follows that the joint distribution of
r and R(T,) is given by

f3 (r,R(T*)) = f; (R(T*)) f; (r| R(Tx)) (A7)
= (§) RO (1-RTDT 0 L peryy <4
r=0,1..,N
=0 Otherwise .

The marginal distribution of r is found by integrating equation (A7) with respect to
R(T#), i.e.,

1
o=/ () R(T#y (1 - R(T*)* dR(T) (A8)
=-I§I—1—-T ;r=20,1, ..., N.

It is interesting to note that we started with a continuous uniform marginal distribution
for R(T*) and found that r has a discrete uniform marginal distribution.

Bayes theorem specifies that the conditional distribution of R(T*) given r is
r3 (l‘,R(T*))

f5 (R(T*) I l‘) == f4 (l') (Ag)
(N) R(T#) (1 - RT)N
- 1
N+1
I (N+2) R(T*)r (1 _ R(T*))N—r

I (r+1) T (N-r+1)
which is a beta distribution with parameters A = r+1 and B = N-r+1. A Bayesian
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100(1 — a)% lower confidence limit for R(T*) is given by the solution of the integral
equation

R{e,T4) I (N+2)

{ T(r+1)7T (N-r+])

R(T*)" (1 - R(T*))NT = q . (A10)

If we integrate the left hand side of the equation (A10) by parts, we find that

R(a,Ts) I' (N+2) . n
{ T3 )T (N ) (= R(T) (A11)
= Nil (N;LI) R(e,T*)' (1 - R(a,T*))N ' = a .
i=r+1

Comparing equation (A4) with equation (All) reveals that the Bayesian lower
confidence limit for R(T*) when N units are tested and r units survive is the same as the
frequentist lower confidence limit for R(T*) when N+1 units are tested and r+1 units
survive. Thus, the additional assumptions for the Bayesian analysis with a uniform
prior distribution for R(T*) are equivalent to an increased frequentist sample size of one
unit which survives.
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APPENDIX B. INCREASING FAILURE RATE AVERAGE SYSTEMS

The failure rate for a durability distribution is defined to be
f(T)
1-KT) -

Clearly r(T) AT is the probability that an item which has survived to time T will
experience a durability failure at some time between T and T + AT. For example, if
f(T) = \e7T, i.e., the durability life has the exponential distribution, then R(T) = T
and r(T) AT = X\ AT. In this case, the probability of a durability failure in a time
interval of length AT depends only on AT and not on the time T. Thus, items with an
exponential durability life don't wear out. Their failure rate is constant over time.
Such items tend to operate without a durability failure until it experiences a random
external pulse or shock which induces failure.

(T) = (B1)

A durability distribution is said to have an increasing failure rate (IFR) if
i(T) < (T + AT) for all T and positive AT. Any item which wears out has IFR, i.e.,
the older it is the more likely it is to experience a durability failure during the next
hour, mile, cycle, etc.

A durability distribution is defined to have an increasing failure rate average
(IFRA) if the average value of r(T) increases over time. The average value of r(T) over
the interval from time 0 to time T is

T T
f(T)—_—Ti,-{r(t)dt=-,1F{l—_fi%)mdt= (B2)

A system consisting of two independent subsystems in parallel where the subsystems
have exponential durability with parameters A\, and X\, is an example of a system which
has IFRA durability but not IFR durability. For such a system,

F(T) = (1 - ™M) (1- ™),

{(T) = X e T (1 - ™) 4 2y e (1 - T (B3)
T (T) A T 4 Ag el (M + o) g e+ 2T
(T) = 1-F(T) - eMT + e T _ o+ 2T 2
and
'f(T) = —-r—}‘- In [1 = F(T)] —_ __% In [e—xxT 4 e—XgT _ e‘(xl'i' )\Q)T] . (B4)
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The failure rate and average failure rate for such a system with \; = .3 and )\, =
.7 are plotted on Figure B.1.

If a system has IFRA, then for any M satisfying the condition M > 1, T/M < T
and

_In (1 - F(T/M))

-~ (1-F(T) _-

rrm) = U HIAM) ¢ —h (L (m) (B5)
so that _
In (1 - F(T/M)M > In(1 - F(T)) (B8)
or M
[1 SF(T/M)| 2 1-K(T)
or M
[Rerw| > r(D), (87)

Equation (B7) can be used to construct a 100(1 — «)% lower confidence limit for
R(T*) under the IFRA model, where T* is a durability life requirement.

If N units are tested for time 7 > T* and r units survive the test, then we can con-
struct a distribution free lower confidence limit (frequentist or Bayesian) for R(Tx)
which has the property

P { R(7) < R(a,7) } =u. (B8)
Since 7 > T* we can write T* = T/M, with M > 1. It then follows from equa-
tions (B7) and (B8) that
P { R(r/MM < R(a,7) ] <a (B9)
and |
P { R(7/M) = R(T*) < R(a,T*)!/M } <a, (B10)

that is, R(e,)"/M is an at least 100(1 — a)% lower confidence limit for durability relative
 to durability life requirement T*.

Similar arguments can be developed to construct confidence limits for the mean,
median and other quantiles of IFRA systems. Barlow and Proschan (1981) give an
excellent treatment of this subject.
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/
Figure Bl. Failure rate and average failure rate for a system consisting

of two independent subsystems with exponential durability
in parallel. In this case, both subsystems are IFR but
the system is IFRA because r(T) is increasing even though
r(T) is decreasing for T > 3.86.
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APPENDIX C. THE EXPONENTIAL DISTRIBUTION

The exponential distribution is one of the most useful probability distributions for
modeling in life testing. It adequately characterizes many realistic processes and. its
mathematical simplicity makes it easy to use. It also has the property that it bounds
the distributions which are in the IFR and IFRA families. These distributions are basic
to the theory of durability testing. It is this last property which makes it important to
the work described in this report.

For the sake of completeness, some of the mathematical properties of the exponen-
tial distribution are developed in this appendix. Examples which demonstrate the use of
exponential distribution theory are also given.

The user of the procedures developed in this report need not fret with the details
given in this appendix unless he is motivated by scientific curiosity. The remainder of
the report can be used without referring to this appendix.

A random variable, T, is said to have the exponential life distribution if its proba-
bility density function is of the form

f(T)#=—;—e‘T/”; T>0,0>0. (C1)

It follows from (C1) that the probability that a unit with an exponential life distri-
bution will fail at or before time T is given by the distribution function

T
F(T) = [ -10- e 4T = 1 - &1/, T >0. (C2)
0

The probability that the life of such a unit will be greater than T is
R(T)=1-F(T)=¢T/*. (C3)
In this report we often refer to R(T) as the durability function.

The mean of the exponéntial distribution is
o0
[ 5 em™ar=0; (C4)
0
and the variance is

[ Q-;—”ﬁ e T 4T = 6. (C5)
0

The qth quantile, T, is given by solving for T, in

# This probability density function is sometimes expressed in the form f(T) =X e‘XT. We chose the form (C1) so that the
expected value of T would be 0 rather than l/)\
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P{TSTq}=q=l—e'T“”, (C6)

which has solution Ty = -0In (1-q) = -In (1 - q). Thus, the median of the distribu-
tion is
Tg;=-01In (.5) = (.6931) 4, (C7)

that is, the median is less than the mean and the distribution has positive skewness, i.e.,
it is skewed right ( see Figure C1).

The important characterizations of durability life are 6, the average durability life;
R(T), the probability that the durability life of a randomly selected item will exceed
time T; and T, the q'th quantile of the durability life distribution. Recall, T, is that
life which will be exceeded with probability 1 - q.

Estimation of 6, R(T) and T, is somewhat of a problem in durability testing. In
the durability life problem feasible test time is usually short relative to the actual dura-
bility life of an item. That is, if a vehicle has an actual durability life of 100,000 miles
it is unlikely that it would be practical to test it that long. Practicality dictates the
selection of a test termination (truncation) time, 7. N items are tested until each either
operates for time 7 or suffers a durability failure. If C items fail, the total test time for
all items is

A=§]Ti+(N—C)r, (C8)

i=1

where T, is the failure time for the i'th failed item.

The likelihood function for our test with truncation at time 7 is

N-C
l=
= [% l e‘A/’ .
Now
In(L) =-CIn(8) - A/
so that
d C A
'd—0 ln(L) ;2— =0
and the maximum likelihood estimate of 6 is

0= A/C. (C10)

where A is given in relationship (C8). The above estimate of # can be used to estimate
other characteristics of durability life (see Table C-1).
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EXPONENTIAL DISTRIBUTION

1.0
O=mean="T -
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m f@)=Lled
\, —
0.4 -
ll-?.—'
0.0 T T T ' |
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Figure Cl. The exponential distribution. The medién is -In(.5)*6 =
.6931*%6, the mean is 6 and the area to the left of (below)
the mean is .6321*0.
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We have found that 8 , as defined above, is approximately distributed as a chi-
square variate with 2C + 1 degrees of freedom.® This approximation is used to give the
lower confidence limits in Table C-1.

Bartholomew (1963) derived the exact distribution of # when C 3£ 0. A computer
program which uses his results to construct exact lower confidence limits for 6 is given
in Appendix E.

Clearly, the maximum likelihood estimate of ¢ is not defined when C = 0 (see
Equation C10).

TABLE C-1. Estimates of durability distribution properties for time
truncated test with one or more failures.

PROPERTY (POINT) ESTIMATE# APPROX. L.C.L. [100(1-«)%)]
. 1 2A
Mean (Ave 0= —A 0 =
ave) 0 R
Durability
, . . -2 A ln(l - q)
q'th quantile T,=01In(1 - q) P =
h b le—a(2C 2 l)
of durability life
: - 2 A In(2)
Medi Tg=60In(2 Lo =
an 5 ( ) RT3 le_a (20 by 1)
durability life
. ~(1)x%o (2C + 1
Durability for test | R(7) = /i R(a,7) = exp [ (s 2}: )
time 7
, g ) 1/M
Durability for R(1/M) = /M = [R(T*)] R(a,T*) = [R(a,T*)]‘/M
mission time
T+ = 7/M

# Test truncated at time 7 with one or more durability failures. Durability mission time
isC T+ = 7/M, C = number of durability failures and A = total test time =

2 Ti + (N—C) 7.

=]

® There are many approximations for this confidence limit. The one which is most common involves the use of a chi-square
variate with 2C+2 degrees of freedom. Preliminary results from our study of the problem suggest that a chi-square with 2C-+1 df.,
which has been considered by others, may be the best chi-square approximation. At this time we recommend using the chi-aquare
approximation with 2C+1 d.f. because it gave confidence limits which are closest to the exact limits in & recent monte-carlo study.
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However, we can construct lower confidence limits by combining distribution free pro-
cedures (see Appendix A) with properties of the exponential distribution.

First, we note that a 100(1 - «)% distribution free lower confidence limit for R(7) is
given by the solution of the equation

N i N-i
> ) [Ren] [1-Ran] = (c11)
Thus, when C = 0,

| R(e, 7) = o'/N (C12)

We next take another approach to this problem. Assume that f, if it existed, has
the approximate chi-square distribution with 2C, rather than 2C+1 degrees of freedom
and that, if we had continued testing for time 7 > +6, § = 0, there would have been
one durability failure at that time. It is easy to show that x2,_, (2) = -2 In a. In this
case A = N 7. From Table C-1, we see that

R(a,r) = ¢ X'1e(2)/2A (C13)
— o-T(-2lna)/2Nr

1/N
—_ elna

= ol/N

which is the same as the distribution free lower confidence limit for R(7).

Using this approach, i.e., substituting -2 In a for x2, , (2C + 1) in Table C-1, leads
to the lower confidence limits for the case C = 0 which are given in Table C-2.
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TABLE C-2. Lower confidence limits for durability distribution properties
for a time truncated test with zero failures.

PROPERTY APPROXIMATE 100(1-a)% L.C.L.

Mean (Ave.) 6, = A/lna
Durability
q'th quantile | T,=Ah(l-q)/lnha

of reliability life

Median durability | T = - A In(2)/ln o
life

Durability for test | R(e,7) = a!/N
time 7

Durability for R(a,T*) = o ™
mission time

T+ = 7/M
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APPENDIX D. BILLINGS' MODERATELY DISTRIBUTION FREE PROCEDURE
Billings (1967) placed the requirement
Ti(T) > F(T); 0<T<LT, (D1)

on the durability probability distribution and density functions. A pictorial representa-
tion of this assumption is given in Figure D1.

If (D1) is satisfied, then it follows that, on the interval (0, T)

o2 T (D2)
and for any number M > 1,
T amar ' ar .
r FT) — 1 T
so that
In F(MT) - In F(T) > In (MT) - In(T) (D4)
or, equivalently,
e 3
which leads to p M
F(MT) 2F(T) . (D6)

Billings used equation (D8) to construct confidence bounds on durability life for a
stated durability life requirement, Tx.

Suppose each of N units is tested until it fails or for time MTx, whichever comes
first. The probability that any particular unit will experience a durability failure during
the test is F(MTx). If Y units fail during the test then a 100(1 — @)% upper coniidence
limit for F(MT#%) is given by the solution of the equation

Y
o) (¥) Fy (M= [1 _Fy (MT*)] = (D7)
for Fyy (MTx).

If Fy (MTH*) is the solution of (D7) then we can make the probability statement
"y p { F (MT%) > Fy (MT+) } =9 (D3)
Since M/F(T*) < F(MT#%) it follows that

p {MF(T*) > Fy (MT*)} <a (D9)
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f(TO)

Figure D1.

Illustration of a durability distribution
for which T£(T) > F(T) for all T satisfying
0 < T< T,. Here T f(TO) is the area under
the rectangle bounded by the axes and the
dashed lines and F(T,) is the area in the
hatched region under "the curve.
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—P {F(T*) > Fy (MT*)/M}

P {1 _F(T¥) < 1-Fy (MT*)/M}
so that

P {R(T*) <1-Fy (MT*)/M} <a. (D10)

e o TCl
£ {
Thus, 1 - Fy (MT*)/M = R(aT*) is at least a 100(1 - @)% lower confidence limit

for R(T*), which is the probability that the durability life is a randomly selected unit
that will exceed the requirement, T*.

4, : ) — X
M(L?/" ‘6‘#-1 Aq { [A ) .

For the special case in which no units fail during the test time MT*, Y = 0 and
equation (D7) had the form

N
[1 _Fy (MT*)] —a (D11)
so that
Fy (MT*) =1 - o/N, (D12)

It follows from equation (D10) that 1 - (1 - a'/N)/M is an at least 100(1 - )%
lower confidence limit for R(T*).

Billings (1968) uses equation (D7) to refine the probability statement made in equa-
tion (D10) when Y > 0. This work leads to the relationship

P {R(T*) < Kka' Fy (MT*)} <a, | (D13)

where k > 1 depends on N and a. The details of this work, which are mathematically
tedious, are not given here.
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APPENDIX E. LISTINGS OF COMPUTER PROGRAMS

AND THETA(NOT)

ALPHA = PROB ( THETA .GE. THETA(NOT) )

C

C THIS PROGRAM FINDS THE LOWER CONFIDENCE LIMIT (THETA)
C FOR A DURABILITY STUDY GIVEN :

c ALPHA

c SAMPLE SIZE (N)

c TERMINATION TIME (T)

c

c

c

C

PROGRAM CONF (INPUT,OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT,TAPES)

DIMENSION IRAY(6), THETA(1)
REAL EPS,EPS2,ETA .
INTEGER NSIG,NO,ITMAX,IER
COMMON ALPHA,N,T, THENOT
EXTERNAL F
DATA IRAY/6s -0/

C—SET PRINT LIMIT TO ZERO
IRAY(4) = 0

C——ALPHA = PR(THETA HAT .GE. THETA NOT) =

C—1/ (1-EXP(-N+T/THETA)) [SUM FROM K=1 TO N|(COMB(NK) *
C—[SUM FROM I=0 TO K|(COMB(K,I) * (-1)sI *
C—EXP(-T/THETA(N-K+1)) *

C—INTEGRAL FROM X TO INF OF P(CHIss2 W 2K DF) D(CHI*s2) 2K

WRITE (6,100)

100 FORMAT (' ALPHA LEVEL')
READ (5,*) ALPHA
WRITE (6,110)

110 FORMAT (' SAMPLE SIZE')
READ (5,%) N
WRITE (6,120)

120 FORMAT (' TRUNCATION TIME')
READ (5,) T
WRITE (6,130)

130 FORMAT (' THETA(NOT)')
READ (5,%) THENOT

EPS =00

NSIG = 4

XL = THENOT/20
XR =10
ITMAX= 100

C—--CALL SYSTEMC TO INHIBIT PRINTING OF ERROR 115
C——AND START ERROR SUMMARY ACCUMULATION

51



CALL SYSTEMC(115,IRAY)
CALL ZFALSE (F EPS,NSIG,XL,XR XAPP,ITMAX,IER)
WRITE (6,600) XAPP,ALPHA,N, T, THENOT

600 FORMAT (' THE LOWER CONFIDENCE LIMIT = ' F12.5//
¢ FOR  ALPHA = 'JF6.4/

o N = ' 15/
. T = 'F12.5/
#  THETA(NOT) = 'F12.5)
STOP
END

c
REAL FUNCTION F(THETA)
REAL THETA

REAL A,B,T X,DF P ,IERR,FACT1,FACT2,SUM1,SUM2, TEETHE,VALUE
REAL PROD1,PROD2,Z,ALPHA, THENOT, TOTAL,EPF EPF2 ETA
INTEGER N,K,I,NN,KK,II,NSIG,ITMAX,NO

COMMON ALPHA,N, T, THENOT

A =1/ (1-EXP(-NsT/THETA) )
TEETHE = -T / THETA

C——-SUM2 = [SUM FROM K=1 TO N|(COMB(NK)
C—|SUM FROM I=0 TO K|(COMB(K,]) & (-1)#s] »
C—EXP(-T/THETA(N-K+]))

SUM2 = 0
FACT2 = 1.0
PROD2 = 0
NN=N
DO 10K = 1,N
FACT2 = FACT2 * NN/K

SUM1 = 0
PRODI = 0
KK = K
DO 201 = 0K
IF (1 EQ. 0) THEN
FACT1 = 1
ELSE
FACT1 = FACTI * KK/I
KK = KK - 1
END IF
PRODI = FACTI # (-1)s+] + EXP(TEETHE * (N-K+1I))

C—2Z = 1-(INT(FROM X TO INF) OF P(CHI*+2 W DF=2K) D(CHI+*2) DK)
DF = 2¢K

VALUE = THENOT - T/K * (N-K+1)
IF (VALUE LE. 0) THEN

52



Z=1
ELSE
IF (THETA .LT. 0) THEN
Z=1
GO TO 50
ELSE
END IF
X = 2¢K/THETA * (VALUE)
CALL MDCH(X,DF,P,IERR)
Z=1-P
WRITE(6,*) Z
END IF

50  PRODI = PROD1+ 7
SUMI = SUMI + PROD1

20 CONTINUE
PROD2 = FACT2 + SUM1
SUM2 = SUM2 + PROD2
NN = NN-1

10 CONTINUE

F = (A * SUM2) - ALPHA

RETURN
END
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PROGRAM USED TO GENERATE TABLE F-1

THIS PROGRAM GIVES A TABLE OF THE SAMPLING PLAN FOR THE
DURABILITY OF IFRA DISTRIBUTIONS

INPUTS ARE:
DESIRED CONFIDENCE LEVEL (DCL) AND NUMBER OF FAILURES (C)

(oNoNoNoNeoNe!

PROGRAM BARLOW (INPUT,OUTPUT, TAPES==INPUT, TAPE6=OUTPUT, TAPES, TAPEY)
DIMENSION NTOTAL(20,20), TRUECL(20,20), TIME(16),DUR(6)
INTEGER C

REAL P,DCL,PDF,CDF,TCDF R,T1
NTOTAL = TOTAL SAMPLE NUMBER
TRUECL = TRUE CONFIDENCE LEVEL
TIME = THE MULTIPLE OF TIME THAT IS MULTIPLIED BY
DURABILITY CRITERION TO GET TOTAL TEST TIME
DUR = DURABILITY CRITERION

Q aaoaaaad

INPUT VALUES FOR TIME AND DURABILITY CRITERION:

DATA TIME/1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,
+ 2.0,2.2,2.4,2.6,2.8,3.0/
DATA DUR/.50,.60,.70,.80,.90,.95/

WRITE (6,100)
100 FORMAT ('DESIRED CONFIDENCE LEVEL ')
READ (5,%) DCL
WRITE (6,110)
110 FORMAT ('NO. OF FAILURES ')
READ (5,%) C

C TABLE SET-UP

WRITE (9,120) DCL,C

120 FORMAT ('T’,25X,'SAMPLING PLAN FOR THE DURABILITY OF IFRA’
+' DISTRIBUTIONS",//,37X,” DESIRED CONFIDENCE LEVEL —
+F3.2,/,37X,’ NUMBER OF FAILURES (C) = ',I1,//)
WRITE (9,130)

130 FORMAT (1X,98(-'))
WRITE (9,140)

140 FORMAT (' ,10X,",30X,'DURABILITY ’,44X,":")
WRITE (9,203)
WRITE (9,150) (DUR(M),M=1,6)

150 FORMAT (' ',10X,"",5X,5(F3.2,11X),F3.2,7X,""')
WRITE (9,190)

190 FORMAT (': Ms »85(-')")
WRITE (9,170)
WRITE (9,180)

170 FORMAT (' : : 5N TRUE )N TRUE ‘)

180 FORMAT (' : 5  CL. ')’  CL. ?)
WRITE (9,130)
WRITE (9,203)

C
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FOR EACH MULTIPLE OF TIME AND EACH DURABILITY CRITERION,

THE NUMBER OF TEST ITEMS (SAMPLE SIZE) AND TRUE CONFIDENCE

C
C
C LEVEL ARE CALCULATED.
C

PDF =0
CDF =0
PPP = 1-DCL

DO 101 = 1,16
T1 = TIME(])
N=C+1

DO20J =16
R = DUR(J)
P = 1- (R**T1)
55  CALL BINOM (PDF,CDF,N,P,C)
IF (CDF LE. PPP) THEN
TCDF = 1-CDF
NTOTAL(L,J) = N
TRUECL(],J) = TCDF
ELSE
N = N+1
GO TO 55
END IF
20 CONTINUE
10 CONTINUE

C THE NUMBER OF UNITS AND THE TRUE CONFIDENCE LEVEL
C ARE PRINTED IN THE TABLE

I=1I1
= J-1
DO 401l =11
WRITE (9,200) TIME(II),(NTOTAL(IL, JJ), TRUECL(IL, JJ), JJ=1,J)
200 FORMAT (' 7,2X,F4.1,4X,"",1X,6(14,2X,F4.2,4X),”’)
WRITE (9,203)
203 FORMAT (’ :',10X,"’,85X,"’")
40 CONTINUE
WRITE (9,203)
WRITE (9,205)
205 FORMAT (1X,98(-"))
WRITE (9,210)
210 FORMAT (1X,/, *+ M = TEST TIME/DURABILITY CRITERION'/////)
STOP
END

C  THIS SUBROUTINE FINDS THE PROBABILITY DENSITY FUNCTION
C AND CUMMULATIVE DENSITY FUNCTION GIVEN THE SAMPLE SIZE
C (N), THE P-VALUE, AND THE NUMBER OF FAILURES (C).

SUBROUTINE BINOM (PDF,CDF,N,P,C)

REAL PDF,CDF,P
INTEGER C
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PDF = (1-P)s*N
CDF = PDF
IF (C .NE. 0) THEN
P1 = P/(1-P)
DO 30K = 1,C
PDF = PDF * (N-K+1) * P1/K
CDF = CDF + PDF
CONTINUE
ELSE
END IF

RETURN
END
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[oNo]

Q aQaaaad

C

C

PROGRAM USED TO GENERATE TABLE G-1

THIS PROGRAM CREATES A FILE THAT WILL LIST A TABLE OF
A SAMPLING PLAN FOR THE MEAN OF IFRA DISTRIBUTIONS.

NTOTAL = NUMBER OF TEST ITEMS ( SAMPLE NUMBER )

TRUECL = TRUE CONFIDENCE LEVEL

TIME = MULTIPLE OF TIME THAT THE DURABILITY CRITERION
IS MULTIPLIED BY TO OBTAIN THE TOTAL TEST TIME

FAILURE = C = NUMBER OF FAILURES ALLOWED IN A SAMPLE

C RANGES FROM 0 TO 5
PROGRAM BARLOW (INPUT,OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT, TAPES TAPE9)
DIMENSION NTOTAL(20,20), TRUECL(20,20), TIME(15), FAILURE(11)
INTEGER C,FAILURE
REAL P,DCL,PDF,CDF,TCDF,R,T1,A,L
DATA TIME/1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,
+ 2.0,2.2,2.4,2.6,2.8,3.0/
DATA FAILURE/0,1,2,3,4,5,6,7,8,9,10/
INPUT THE DESIRED CONFIDENCE LEVEL

WRITE (6,100)

100 FORMAT ('DESIRED CONFIDENCE LEVEL ’)

READ (5,+) DCL
WRITE THE TITLE AND COLUMN HEADINGS

WRITE (9,120) DCL

120 FORMAT ('1',25X,"SAMPLING PLAN FOR THE MEAN OF IFRA’,

+' DISTRIBUTIONS’,//,37X,’ DESIRED CONFIDENCE LEVEL =,
+F3.2,//)
WRITE (9,130)

130 FORMAT (1X,98(-"))

WRITE (9,140) (FAILURE(M),M=1,6)

140 FORMAT (' ,10X,":",2X,’C = "12,12X,4(12,12X),12,7X,"’)

WRITE (9,150)

150 FORMAT (' : F(TIME)* -,85("-'),""")

WRITE (9,170)
WRITE (9,180)

170 FORMAT (' : : " 5(TEST TRUE ’),TEST TRUE :')
180 FORMAT (' : .’ 6CITEMS CL. ),%)

WRITE (9,130)
WRITE (9,190)

190 FORMAT (' ,10X,"",85X,"")

C
C

PDF = PROBABILITY DENSITY FUNCTION
CDF = CUMMULATIVE DENSITY FUNCTION

PDF =0
CDF =0
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DO 101=1,15
T1 = TIME(I)

A=1-DCL
DO 20L = A,1,.1
F = 1-L-EXP(-L*T1)
IF (F .GT. 0) THEN
GO TO 35
ELSE
A=L-.1
B=L
GO TO 25
END IF
35 CONTINUE
20 CONTINUE

C FINDW

25 CALL W1(A,B,T1,W)
FOR EACH VALUE OF THE NUMBER OF FAILURES, C, FIND
THE TRUE CONFIDENCE LEVEL, TCDF, SUCH THAT TCDF

IS GREATER THAN OR EQUAL TO THE DESIRED CONFIDENCE
LEVEL, DCL.

oNoNoNo!

DO30J =16
C = FAILURE(J)
P = 1-EXP(-W * T1)
IF(CEQON=1

360  CALL BINOM (PDF,CDF,N,P,C)

IF (CDF LE. (1-DCL)) THEN
TCDF = 1 - CDF
NTOTAL(,J) = N
TRUECL(I,J) = TCDF

ELSE
N=N+1
GO TO 360

END IF

30 CONTINUE
10 CONTINUE

C  WRITE THE TABLE INPUT: TOTAL TIME/DURABILITY REQUIREMENT,
C TEST ITEMS (SAMPLE SIZE), AND TRUE CONFIDENCE LEVEL.

=11
J= 11
DO 401l = 1]
WRITE (9,200) TIME(II),(NTOTAL(IL,JJ), TRUECL(II, JJ), JJ=1,J)
200 FORMAT (' ,2X,F4.1,4X,',1X,6(14,2X,F4.2,4X),”")
WRITE (9,190)
40 CONTINUE
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WRITE(9,190)
WRITE (9,210)

210 FORMAT (1X,98(-'))

WRITE (9,220)

220 FORMAT (1X,/,’ * F(TIME) = TEST TIME/DURABILITY CRITERION’//)

C

STOP
END

COMPUTES W. INPUT VALUES ARE A B,T1.

SUBROUTINE W1 (A,B,T1,W)
REAL A,B,T1,W
IF (ABS(1-A-EXP(-A*T1)) .GT. 1E-09 ) THEN
IF ( ABS(1-B-EXP(-B*T1)) .GT. 1E-09 ) THEN

350 D = (A+B)/2

oNoNo!

IF (ABS(A-B) .LT. 1E-09) THEN
W=A
ELSE
F = 1.D - EXP(-D*T1)
IF ( ABS(F) .LT. 1E-09) THEN
W=D
ELSE
IF (F .GT.0) THEN
A=D
ELSE
B=D
END IF
GO TO 350
END IF
END IF
ELSE
W =B
END IF
ELSE
W=A
END IF
RETURN
END

COMPUTES THE CUMULATIVE DISTRIBUTION FUNCTION AND
PROBABILITY DENSITY FUNCTION USING THE BINOMIAL.
INPUT VALUES ARE N, P, C.

SUBROUTINE BINOM (PDF,CDF,N,P,C)
REAL PDF,CDF P
INTEGER C
PDF = (1-P)s+N
CDF = PDF
IF (C .NE. 0) THEN
P1 = P/(1-P)
DO 50K = 1,C
PDF = PDF * (N-K+1) * P1/K
CDF = CDF + PDF
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50  CONTINUE

ELSE

END IF

RETURN

END

THIS IS PAGE TWO OF THE TABLE FOR 'SAMPLING PLAN FOR
THE MEAN OF IFRA DISTRIBUTIONS’

C RANGES FROM 6 TO 10

loNoNoNoNo!

PROGRAM BARLOW (INPUT,OUTPUT, TAPES=INPUT, TAPE6=0UTPUT, TAPES, TAPE9)
DIMENSION NTOTAL(20,20), TRUECL(20,20), TIME(15),FAILURE(11)

INTEGER C,FAILURE

REAL P,DCL,PDF,CDF,TCDF R,T1,A,L

DATA TIME/1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,
+ 2.0,2.2,2.4,2.6,2.8,3.0/
DATA FAILURE/0,1,2,3,4,5,6,7,8,9,10/

WRITE (6,100)
100 FORMAT ('DESIRED CONFIDENCE LEVEL ')
READ (5,+) DCL

WRITE (9,120) DCL

120 FORMAT ('1",22X,’SAMPLING PLAN FOR THE MEAN OF IFRA’,
+' DISTRIBUTIONS',//,31X,' DESIRED CONFIDENCE LEVEL == ’,
+F3.2,//)
WRITE (9,130)

130 FORMAT (1X,84(-")
WRITE (9,140) (FAILURE(M),M=7,11)

140 FORMAT (' :,10X,"",2X,'C == " 12,12X,3(12,12X),12,7X,"")
WRITE (9,150)

150 FORMAT (' : F(TIME)s ,71(-"),"?)
WRITE (9,170)
WRITE (9,180)

170 FORMAT (' : : »J4(TEST TRUE ’)’TEST TRUE )

180 FORMAT (' : : 5(ITEMS CL. '),"")
WRITE (9,130)
WRITE (9,190)

190 FORMAT (' :',10X,":",71X,"")

C
C

PDF =0
CDF =0

DO10]I=1,15
T1 = TIME(I)

A =1-DCL
DO 20L = A,1,.1
F = 1-L-EXP(-L+T1)
IF (F .GT. 0) THEN
GO TO 20
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ELSE
A=L-1
B=1L
GO TO 25

END IF

20 CONTINUE

25 CALL W1(A,B,T1,W)

DO 30 J = 7,11
C = FAILURE(J)
P = 1-EXP(-W * T1)
IF(C EQ6N=1
360  CALL BINOM (PDF,CDF N,P,C)

IF (CDF LE. (1-DCL)) THEN
TCDF = 1- CDF
NTOTAL(,J) =N
TRUECL(],J) = TCDF

ELSE
N=N+1
GO TO 360

END IF

30 CONTINUE
10 CONTINUE

=1
I=1J1
DO 401 = 1,1
WRITE (9,200) TIME(II),(NTOTAL(1L,J3), TRUECL(1, J3),J3=7,J)
200 FORMAT (* ',2X,F4.1,4X,"",1X,5(14,2X,F4.2,4X),"’)
WRITE (9,190)
40 CONTINUE

WRITE (9,190)
WRITE (9,210)
210 FORMAT (1X,84(-'))
WRITE (9,220)
220 FORMAT (1X,/, * F(TIME) = TEST TIME/DURABILITY CRITERION'//)
STOP
END

SUBROUTINE W1(A,B,T1,W)
REAL A,B,T1,W
IF (ABS(1-A-EXP(-A*T1)) .GT. 1E-09 ) THEN
IF ( ABS(1-B-EXP(-BsT1)) .GT. 1E-09 ) THEN
350 D = (A+B)/2
IF (ABS(A-B) .LT. 1E-09) THEN
W=A
ELSE
F = 1-D - EXP(-D*T1)
IF ( ABS(F) .LT. 1E-09) THEN
W=D
ELSE
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IF (F .GT. 0 ) THEN
A=D
ELSE
B=D
END IF
GO TO 350
END IF
END IF
ELSE
W=8
END IF
ELSE
W=A
END IF
RETURN
END

SUBROUTINE BINOM (PDF,CDF,N,P,C)
REAL PDF,CDF,P
INTEGER C
PDF = (1-P)ssN
CDF = PDF
IF (C .NE. 0) THEN
P1 = P/(1-P)
DO 50K = 1,C
PDF = PDF * (N-K+1) * P1/K
CDF = CDF + PDF
CONTINUE
ELSE
END IF
RETURN
END
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PROGRAM USED TO GENERATE TABLE H-1

PROGRAM BARLOW (INPUT,OUTPUT, TAPES=INPUT, TAPE6==OUTPUT,TAPES, TAPE)
DIMENSION TIME(20,20), CONF(9),DURAB(8),CC(2),NN(9)

REAL P,CDF MR

INTEGER N,C,NN,CC

THIS PROGRAM GIVES A TABLE OF A SAMPLING PLAN FOR
THE MISSION TIME FOR IFRA DISTRIBUTIONS.

THIS IS DONE SIMPLY BY INPUTTING SAMPLE SIZE (N) AND
NUMBER OF FAILURES (C). :

TIME <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>