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I.  INTRODUCTION 

Plugging due to adiabatic shear is a prevalent mode of target failure in 
both rolled homogeneous armor targets and high hard armor targets.  It is 
therefore of considerable terminal ballistic interest to be able to accurately 
model this phenomenon.  This paper presents techniques and criteria developed 
to handle simulations of target plugging failure due to adiabatic shear and 
compares experiment and simulations for two impacts involving titanium alloy 
targets. . 

II.  SLIDING SURFACE TECHNIQUES 

A Lagrangian, dynamic impact code, EPIC-2, was utilized as the basis for 
this effort. Major modifications had been developed and implemented by the 
author to provide the mechanics necessary to handle deep penetration/ 

perforation of targets.  Splitting between target elements (triangles in 
EPIC-2) was utilized to simulate shearing failure (Figure 1) and total element 
failure was enabled to simulate the expected accompanying erosion in both 
projectile and target. An automatic dynamic relocation of sliding surfaces 
including the addition of new sliding surfaces, when appropriate, enabled both 
of these target failure techniques to carry a calculation to completion, i.e., 
through target perforation, if applicable. The beauty of these sliding 
surface techniques is that they provide the mechanics by which criteria may be 
tested for their capabilities in handling specific modes of target failure. 
These techniques were first successfully applied in conjunction with an 
equivalent strain criterion to handle the modeling of plugging failure due to 

3       ■ 
high strains. 

III.  APPROACH TO MODELING ADIABATIC SHEAR 

A. Constitutive Equations ' 

Prior to enabling splitting between elements, the impact of a steel 
cylinder against a Ti3l8 (6?A1, 4?V) target at a striking velocity of 455 m/s 

1. Johnson, Gordon R., "EPIC-2, A Computer Program for Elastic-Plastic Impact 
Computations in 2 Dimensions Plus Spin,"  US Army BRL Contract Report 
ARBRL-CR-00373, June, 1978.  (AD A058 786) 
2. Ringers, B. E., "New Sliding Surface Techniques Enable Lagrangian Code to 
Handle Deep Target Penetration/Perforation Problems," Computational Aspects 
of Penetration Mechanics, Lecture Notes in Engineering, Springer-Verlag, 19^3. 
3. Ringers, B. E., "Simulations of Ballistic Impact Situations Involving Deep 
Penetration and Perforation of Targets With a Lagrangian Impact Code," 
Proceedings of the Army Symposium on Solid Mechanics, 1982 - Critical 
Mechanics Problems in Systems Design, AMMRC MS 82-M, September 1982. 
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EDGE   OF   BLUNT   PROJECTILE 
SLAVE   SURFACE 

"SPLIT"   NODE 

"NEW"   NODE 

MASTER   SURFACE 

/ 

^ FRONTAL 
TARGET   SURFACE 

"NEXT"   NODE 

Figure 1. Splitting Between Elements. 

Tl  318  TARGET 

X 

X 

■04 .08 
R  AXIS   (m X 10->) 

NO  SIGN  OF SHEAR  BAND 
BY   10 MS 

12 

Tl 125  TARGET 
.32-1 

INCIPIENT SHEAR BAND 

BY lO/is 

Figure 2. Impact of Steel Cylinder vs Figure 3. Impact of Steel Cylinder vs 
Ti 318 Target at 455 m/s No Splitting Ti 125 Target at 350 m/s No Splitting 
Enabled. Enabled. 
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was simulated (Figure 2).  The Ti318 material is known to fail by adiabatic 
shear. Contrast these results with those for the impact of a similar steel 
cylinder against a Til25 (99% pure Ti) target at 350 m/s (Figure 3). 
Although the first case involved a much higher striking velocity, there is no 

sign of an incipient shear band by 10 x 10  s whereas in the second case 
plugging failure is due to high strains and an incipient shear band is 
demonstrated.  Such diverse results, and indeed an attempt with the same 
simulation techniques, indicated that adiabatic shear can not be successfully 
modeled utilizing only a linear elastic/plastic stress/strain relationship and 
an equivalent strain criterion, the combination which was successful in 
modeling plugging due to high strains for the Til25 target.  Ti318 has a 
considerably lower work hardening rate, a much higher yield strength, and a 
higher thermal softening rate than Til25 as evidenced by material tests 

4 
conducted by Wulf. 

Recht  demonstrated that low values of thermal conductivity, density, 
specific heat, and work hardening rate and high values of thermal softening 
rate and yield strength were conducive to adiabatic shear. The author's plan 
was to take into consideration the temperature rise due to the conversion of 
plastic deformation into heat. 

Johnson suggested expressing stress as the following analytic function 
of strain, strain rate and temperature for the Ti318 target material: 

-;,^. 0 = (A + B e"^) (1 + c In («A^) Kp _. .V .,; ,  .,     ;. 

where A,   B,  n,   and  C are material  parameters. 

S = 1-   (T- V/CTM- V 

and T, T„, and T., are present, room, and melting temperature respectively. 
R      M 

Johnson had utilized this form for the shear stress and had reasonable agree- 

ment with actual test data for several materials. 

The first expression is an isothermal relationship between stress and 
o 

strain. Lindholm had demonstrated that a logarithmic relationship between 
_4 -I 3 -I 

stress and rate held over a range of strain rates from 10  s  to 10 s  ; 

4. Wulf, G. L., "High Strain Rate Compression of Titanium and Some Titanium 
Alloys," Int. J. Mech. Sci., Vol. 21, 1979. 
5. Recht, R. F., "Catastrophic Thermoplastic Shear," Journal of Applied 
Mechanics, June, 1964, pp. 189-193. 
6. Johnson, Gordon R., Private Communication. 
7. Johnson, G. R., Hoegfeldt, J. M., Lindholm, U. S., and Nagy, A., "Response 
of Various Metals to Large Torsional Strains Over A Large Range of Strain 
Rates - Part 2; Less Ductile Metals," Journal of Engineering Materials and 
Technology, January, 1983, p. 48. 
8. Lindholm, U.S., "Some Experiments with the Split Hopkinson Pressure Bar," 
J. Mech. Phys. Solids, Vol. 12, 1964, p. 317. 



hence, the second expression.  K is a linear thermal softening expression 

and varies from K = 1 at room temperature to K = 0 at melting temperature. 

The author utilized data for titanium (6%A1, 4%V) published by Maiden 
9 and Green.    Specifically, curve fitting techniques were applied to the 

stress/strain curve for t=1.5s   ss*=ls    to determine the best 

values for A, B, and n assuming «„ = 1 s  .  C was then calculated applying the 

values of A, B, and n to the curve for  « = 20 s  .  It was assumed that 
thermal effects were not involved at such low strain rates; therefore K  = 1 
for these determinations. 

The values of material parameters A, B, n, and C (0., 1896.2, .095, 
.0226, respectively) and the melting temperature (1660° C) became user input 
parameters to this highly modified EPIC-2 code. For an individual target 
element, strength as a function of strain, strain rate and temperature was 
utilized only after the yield strength (1029 MPa) was reached, thereby 
retaining a linear elastic relationship. 

The adiabatic temperature rise is given by: 

y 
A T = 

PC.    I     ^ dy 
(10) 

where P = density. 

C = mean specific heat 
P 

T     =  Stress when the plastic strain is y . 

The author assumed constant stress for the increment of time involved 
and utilized a product of equivalent stress (? ), equivalent strain rate (T ) 
and the current time increment for the power input. 

Since estimates vary from 85% to almost 100% as to what proportion of the 
11  12  13 

work of plastic deformation is converted into heat  '   '    calculations 
utilizing both of these limits were performed. 

9. Maiden, C. J., Green, S. J., "Compressive Strain-Rate Tests on Six 

Selected Materials at Strain Rates From 10  to 10  In/In/Sec," Transactions 
of the ASME, September, 1966, p. 496. 
10. Campbell, J. D. and Ferguson, W. G., "The Temperature and Strain-Rate 
Dependence of the Shear Strength of Mild Steel," Phil. Mag., Vol. 21, 1970, 
p. 63. 
11. Johnson, W. , Impact Strength of Materials, Edward Arnold Ltd., 1972. 
12. Rogers, Harry C, "Adiabatic Plastic Deformation," Ann. Rev. Mater. Sci., 
Vol. 9, 1979, p. 283. 
13. Titchener, A. L. and Bever, M. B., Progr. Metal Phys., Vol. 7, 1958. 
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B.  Development of Criteria Mandating Target Failure 

"If the rate of decrease in strength, resulting from the local increase 
in temperature, equals or exceeds the rate of increase in strength, due to the 
effects of strain-hardening, the material will continue to deform locally. 
This unstable process leads to the catastrophic condition known as adiabatic 

slip." - Recht.^ 

Webster defines "adiabatic" as occurring without loss or gain of heat. 
12 Rogers  notes that although the term "adiabatic" is misleading since heat is 

lost to the surroundings at a rapid rate, the heat loss is small relative to 
heat generation. The velocities involved in typical ballistic impacts result 

5    6-1 
in strain rates of 10 - 10 s  and the period of time (microseconds) means 
there is insufficient time for the heat generated by such strain rates to be 
dissipated by conduction; hence, adiabatic slip or shear. 

This, then, is the basis for the most important criterion in attempting 
to model adiabatic shear - when the rate of thermal softening overcomes the 
rate of strain hardening, i.e., when daldt   =  0. 

The following criteria were developed and utilized to simulate the 
adiabatic shear responsible for plugging failure: 

Criterion 1: An element initiates or furthers a split 
1) when the rate of thermal softening > rate of work hardening, and 
2) when, if furthering a split, it is associated with the "next" node, and 
3) when the magnitude of its shear stress > the magnitudes of its deviatoric 

axial and radial stresses, and 
4) when the direction of the split (Criterion 3) is not to a node with a 

higher z coordinate. 

Criterion 2: The node at which initial splitting occurs 
1) must belong to the element meeting Criterion 1, 
2) must suffer the highest force of all three nodes belonging to the same 

element, and 
3) must be a master node. 

Criterion 3:  The direction of the split is determined by the strain of the 
element meeting Criterion 1.  In general, if the magnitude of the axial strain 
> the magnitude of the radial strain, splitting is to the nearer radial node. 
Otherwise, splitting is to the node closer to the direction of radial strain. 

IV.  CASE I 

A. Experimental Results 

Woodward fired five shots of hardened, roller-bearing steel cylinders 

11 



14 
into Ti3l8 targets at normal obliquity.   Note the geometric and material 

properties for the first penetrator and target. Table 1.  The minimum velocity 
at which target perforation occurred was 441 + 14 m/s.  In every case the 
projectile fractured.  In one case plugging due to adiabatic shear occurred; 
the plug was pushed through the target but a small part of the projectile 
stayed in the target while the remainder rebounded (Figure 4a).  However the 
adiabatic shear band was so narrow that it took metallographic analysis (1000X 
magnification) to ascertain that it definitely was adiabatic shear.  In two 
other cases the projectile broke up and ricocheted and the plug was not 
pushed out; the shear band did not reach the rear surface of the target but 
did precede the crack (Figure 4b). 

B. Simulations and Comparisons 

The calculations to simulate this situation utilized a striking velocity / 
of 455 m/s. An axisymraetric deformation history of the calculation when 100$ 
plastic work was assumed converted to heat is shown in Figure 5. Axisymraetric 
blowups of the region of activity for the simulations assuming 100$ and 85$ 
conversions, respectively, are shown in Figures 6a and 6b. The corresponding 
patterns of elements which enabled splitting and the elements which totally 
failed are shown in Figures 7a and 7b.  Note that when 100$ plastic work was 
assumed converted to heat, the shear band reached the rear target surface at 

3.25 X 10" s implying a crack velocity of 1954 m/s.  (The sound speed of 
Ti3l8 z   1966 m/s.)  The plug was completely formed and was pushed 
approximately 1.5 mm past the rear target surface. The forward motion of the 

projectile stopped between 25 X 10" s and 30 X 10" s and the projectile is 

progressively rebounding at 30 x 10" s and 35 x 10" s. Note that several 
projectile and target elements were automatically totally failed, primarily 
on the basis of a minimum time increment violation.  (See Appendixes A and B 
for specifics on element failure.) There were some problems with overlap of 
elements on the same sliding surface with so much element failure; surface 
elements can not interfere with elements on another surface but there is no 
provision for checking interference between elements on the same surface. 
The speed histories of the projectile are shown in Figure 8, the 
depth-of-penetration histories in Figure 9- 

Distinctions between the results of simulations using 100$ and 85$ 
conversion of plastic work into heat, respectively, are almost negligible. 
In general, the shear band developed a little more slowly and rebound 
occurred a little later for 85$ conversion; the crack velocity was 1890 m/s. 
The results of the calculations are promising when compared with the 
experimental evidence with regard to the shape of the deformed rod, the 
total failure of part of the projectile, the formation of the plug, even the 
inward-directed angle toward the bottom of the incompletely-formed plug when 
the velocity is just under the limit velocity.  However, the crack velocities 

would seem to be unreasonably close to the sound speed of the material and , 

14. Woodward, R. L., Private Communication - experiments performed at 
Materials Research Laboratories, Australia. 
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MATERIAL 
PENETRATOR 1 
STEEL 

TARGET 1 
Ti 318 (Ti WITH 
6%AI.4*itV) 

PENETRATOR 2 
STEEL 

TARGET 2 
Ti 318 (Ti WITH 
6XAI,4XV) 

SHAPE BLUNT 50 mm SQUARE BLUNT 50 mm SQUARE 

MASS 3.34g — 3.34g — 

LENGTH 25.4m(n THICK 6.35mm 25.4 mm THICK 6mm 

DIAMETER 4.76 mm — 4.76 mm - 

DENSITY 7,39x10^fl/m^ 4,43xl0^g/m' 7.39xl0^kg/m^ 4.43xl0'kg/m' 

^Y 2290MPQ 

2500MPO 

1029MPa 

1209MPa 

2233MPa 1029MPa 

^'u 2500MPa 1209MPa 

«U —  ■ 
0.2 — 0.2 

SPECIFIC HEAT — 5.65x102j/k9*C — 5.65xloVlt9*C 

YOUNGS  MOD I.PSxlO'MPa 1.158 XIO'MPO 1.93xlO*MPa 1.158 X10'MPo 

Table 1.     Geometric and Material Properties Case  I  and  II. 

^PROJECTILE   PIECE 
/^  REBOUNDED 

lA 
/PROJECTILE   PIECE 
/   STUCK   IN   TARGET 

>-PLUG   PUSHED  OUT 

PLUGGING.   PERFORATION 

•<«^ SHEAR  BAND 
— CRACK 

INCIPIENT PLUGGING &  PROJECTILE REBOUND 

Figure 4a. Sketch of Experimental 
Results - Case I - Woodward. 

Figure 4b. Sketch of 
Incipient Plugging V„< V, 
- Woodward. 
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STEEL   CYLINDER   vs   Tl 318   TARGET 

0       4        8      12     16     20     24     28 
^ R    AXIS (mm) 

Vg     =   455 m/s 
ayCPENETRATOR)    = 2290 MPa 

TARGET THICKNESS = 6.35 mm 

8       12      16 
R    AXIS (mm) 

28 

PERFORATION (S 3.25^5 
REBOUND OF PENETRATOR 

BETWEEN 25 & 30^5 

Figure 5. Deformation History - Case I, 
100% Plastic Work Converted to Heat, 
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STEEL   CYLINDER   vs   Tl 318   TARGET 
BLOW UP OF REGION OF ACTIVITY 
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1 

2    ; B 
1 
4 

1 
5       ( 

1     1      1 
b       7       8 o

 

=   455 m/s 
(TyCPENETRATOR)    = 2290 MPa 

TARGET THICKNESS = 6.35 mm 

R   AXIS (mm) 

PERFORATION @i 3.25^5 
REBOUND OF PENETRATOR 
BETWEEN 25 & 30 ^is 

Figure 6a.    Axisymmetric Blowup of Region o£ Activity - Case I, 
100% Plastic Work Converted to Heat, 
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a Y(PENETRATOR)    = 2290 MPa 

TARGET THICKNESS = 6.35 mm 
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REBOUND OF PENETRATORO) 25 MS 

Figure 6b,    Axisymmetric Blowup o£ Region of Activity - Case I, 
851 Plastic Work Converted to Heat, 
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PATTERN OF ELEMENTS REACHING da/de^O 
AND INITIATING OR FURTHERING SPLIT 

(Xyl 
V 

PENETRATOR 
c=    455 m/s 
- 2290MPO 

X X X EDGE OF  PROJECTILE 
y   AT  IMPACT 

/- FRONTAL 
TTARGET SURFACE 

z 

—» R X X X 
X ^E 
X rO" 0.35 ,is 

C^0.48/u 
X X ^ 0.50 /« 

 0.64 /*s 

X X  -0.78/ts 

^ 1.01 /J.S 

X X 
j^ V M _ 1.26/IS 

INDICATES 
AN ELEMENT X ^ /\. 

 1.37 /IS 

FAILED X X  1.54 /IS 

y 
(^ 

_-—-1.56/1$ 

X )>i 
__—'1.65/(s 

 2.40/ts 

X 1^9 0  JO ii I 

r^ 
X hv/ \/ 3 09 fts [px /\ 

X X X B^" 
•? *>*; j. ■ pk, 

Figure 7a.  Pattern of Elements Enabling 
Split - Case I.  100% Plastic Work 
Converted to Heat. 

PATTERN OF ELEMENTS  REACHING da/dt=Q 
AND INITIATING OR FURTHERING SPLIT 

Vs •    455 m/$ 
o-y (PENETRATOR )= 2290 MPa 

t, 

INDICATES 
AN ELEMENT 

TOTALLY 
FAILED 

EDGE OF PROJECTILE 
y    AT IMPACT 

/FRONTAL 
/TARGET SURFACE 

3.36/1$ 

Figure 7b.  Pattern of Elenents Enabling 
Split - Case I.  857o Plastic Work Converted 
to Heat. 



?6 

Z  5 
O 

^4 

^ 
TARGET   1   THICKNESS 

100%   PLASTIC  WORK  CONVERTED  TO   HEAT 

10 15 20 

TIME   (/is) 

Figure 8.  Speed Histories - Case I. 

500 r 

100%   PLASTIC  WORK 

CONVERTED  TO   HEAT 

10      15      20 
TIME (/is) 

Figure 9.  Depth of Penetration Histories - Case I. 
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the jaggedness of the splitting pattern detracts from the results of the 
simulation. A calculation was made utilizing the stress/(strain, strain rate, 
temperature) relationship with splitting disabled; the instability worked its 
way down through a "bandwidth" of elements; it was not as localized as might 
be expected. 

Of more concern, perhaps, is the placement of the split, not directly 
under the edge of the projectile. This is the result of a built-in bias in 
the method.  The forces on a node are based on the stresses of the elements 
sharing that node. The forces on a node under the edge of the projectile will 
depend upon the high stresses of the elements under the projectile as well as 
the lower stresses of the elements outside the projectile periphery whereas 
the forces on an inner node will be based on the stresses of elements, all of 
which are directly under the impact. The nodal accelerations calculated for 
these inner nodes will be higher and will similarly affect the nodal 
velocities and, in turn, the element strain rates, strains, and stresses. 
Therefore the elements vertically aligned close to, but not directly under, 
the edge of the projectile will attain prescribed failure criteria earlier 
than those aligned with the edge. This bias and the jagged splitting pattern 
would, of course, not be as noticeable if the grid resolution was much finer. 

V.  CASE II 

A. Experimental Results 

The second case for which simulations were calculated was experimental 
1 5 

work only recently conducted by Woodward, Baxter, and Scarlett.  A blunt 
steel cylinder with corners ground to a radius of .25 mm impacted a Ti3l8 
target at normal obliquity with a striking velocity of 247 m/s.  Results 
(Figure 10) indicate very little plug compression and the separation of a plug 
from the remaining target material at several places, but not everywhere, 
along the band. Woodward, et al., noted that examinations of sections 
parallel to the plane of the plate showed the separate nucleation of very 
narrow shear bands and their independent propagation to the rear surface 
despite joining circumferentially in several positions. They also noted an 
initial acceleration phase during which compression takes place preceding the 
formation of the adiabatic shear band. 

This case differed from the first case in the significantly lower 
striking velocity (247 m/s vs 455 m/s), the lower hardness of the projectile 
(2233 MPa vs 2290 MPa), and the different target thickness (6 mm vs 6.35 mm). 

^'  Simulations and Comparisons 

These simulations utilized a striking velocity of 247 m/s and the 

15. Woodward, R. L., Baxter, B. J. and Scarlett, N. V. Y., "Mechanisms of 
Adiabatic Shear Plugging Failure in High Strength Aluminum and Titanium 
Alloys," 3rd International Conference on Mechanical Properties of Materials 
At High Rates of Strain," Oxford, April, 1984. 
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Figure 10.  Section of Ti 318 
- Case II. (15) 
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geometric and material properties noted for the second penetrator and target 

in Table 1. The axisymraetric deformation history for 1005? conversion of 
plastic work to heat is shown in Figure 11; blowups of the region of activity 
are shown in Figures 12a and 12b for the 10055 and 85%  conversions, respec- 
tively. Very jagged splitting patterns are evident for the simulations in 
Figure 13.  Only two projectile elements were totally failed due to a minimum 
time increment violation before projectile rebound occurred for the 10055 
conversion simulation.  The shear band in this case did not reach the rear 

target surface until 8.28 x 10" s, implying a crack velocity of 725 m/s.  A 

plug was completely formed and extends slightly («.3 mm) from the rear of the 
target.  There was no discernible plug compression; the projectile began to 

rebound by 20 x 10" s.  The speed and depth-of-penetration histories for both 
simulations are shown in Figures 1H and 15. Again the simulation performed 
with 85? plastic work converted to heat produced similar results.  Note, 
however, that although the speed and depth of penetration histories are 
similar for the 100? and 85%  conversions for both calculations there is one 
noticeable difference. Whereas at a striking velocity of 455 m/s the 100? 
conversion of plastic work to heat generally resulted in a slightly higher 
velocity and slightly greater depth of penetration than with 8556 conversion 
during penetration, at 24? m/s, a little less than the minimum velocity for 
perforation, the results would seem to be the reverse of this. Splitting, in 
general, proceeded a little faster with 100? conversion until the last couple 
of layers but rebound also started to occur earlier limiting the depth of 
penetration more but rebounding at a slightly higher speed (it.48 m/s for 100? 
conversion vs 3 m/s for 85? conversion). 

Comparison between the more detailed experimental results in this case 

and the simulations is most interesting - the correspondingly slower formation 
of a plug which was not ejected, the highly jagged pattern in the simulation 
coincidentally reflecting the areas of separation and nonseparation (due 
possibly to subsequent welding) of plug from the remaining target. 

Again the placement of the split is biased toward the axis. The small, 

but discernible, compression of the plug and the significant indentation of 
the target in the experiment was not matched in the simulations.  It was 
thought that if the simulation was allowed a longer plug acceleration period 
before splitting was enabled, target compression might result (as occurred 
with the Til25 target in Figure 3). However, the calculation performed with 
splitting disabled indicated no noticeable compression of the target elements 

by 10 x 10"^ s. ■  ■ -  . 

VI.  CONCLUSIONS     '-'-' ; 

This paper presented simulations of target plugging failure due to 
adiabatic shear utilizing finite element techniques, a stress/(strain, strain 
rate, temperature) relationship, and the monitoring of the instability which 
occurs when thermal softening overwhelms work hardening.  Simulations and 
comparisons with two experiments indicate considerable promise for the method; 
plugging was correctly predicted in the simulations and results were 
consistent between calculations - a much higher striking velocity producing 

21 



STEEL   CYLINDER  vs   Tl 318   TARGET 

-I 1 1 r 
0  4   8  12  16 20 24  28    0  4  8  12  16  20 24  28 

R AXIS (mm) " AXIS (mm) 

Vs =   247 m/s PERFORATION  (gb 8.28 pts 
cry (PENETRATOR)   = 2233MPa       REBOUND OF PENETRATOR @<20fis 
TARGET THICKNESS =       6 mm 

Figure 11.  Deformation History - Case II. 
100"/ Plastic Work Converted to Heat, 

22 



STEEL   CYLINDER   vs   TI318   TARGET 
BLOW UP OF REGION OF ACTIVITY 

1 —r 
2 3 

1        1     ~i— 
4       5       6 

R   AXIS (mm) 

-r- 
7 

—1— 
8 

—r- 
9 

—1 
10 

Vs = 247 m/s 
OTy (PENPTRATOR) =2233MPa 
TARGET YMJCXNESS =        6 mm 

1 1 r 
3       4       5       6       7 

R   AXIS (mm) 

PERFORATION  (p» 8.28 pjs 
REBOUND OF PENETRATOR @<20MS 

Figure 12a,    Axisymmetric Blowup of Region of Activity - Case II, 
1001 Plastic Work Converted to Heat. 

23 



E 
_E 

X 
< 

E 

< 

STEEL   CYLINDER   vs   TI318   TARGET 
BLOW UP OF REGION OF ACTIVITY 

T 
3      4       5       6 

R   AXIS (mm) 

1 
10 

1 r 
3       4       5       6       7 

R   AXIS (mm) 

Vs = 247 m/s 
0-Y (PENETRATOR) =2233MPa 
TARGET ThlCKNESS =        6 mm 

10 

PERFORATION  (9)    5.2/js 
REBOUND OF PENETRATOR @ >30MS 

Figure   12b.     Axisynnetric   Blowup  of   Region  of  Activity 
857o  Plastic  Work  Converted   to  Heat. 

Case   II, 

24 



PATTERN OF ELEMENTS  REACHING da/d€=0 
AND INITIATING OR FURTHERING SPLIT 

247m/s 

PATTERN OF ELEMENTS REACHING dtr/dt=0 
AND INITIATING OR FURTHERING SPLIT 

Vs=     247 m A 
(TYIPENETRATOR) = 2 233MPO 

EDGE  OF  PROJECTILE 

Figure I3a.  Pattern of Elements Enabling 
Split - Case II. 100% Plastic Work 
Converted to Heat. 

Figure 13b.  Pattern of Elements Enabling 
Split - Case II.  857o Plastic Work 
Converted to Heat. 



500 

_ 400 
v> 

2 300 
o. </) 

^ 200 r u 
Ui 
—» 
o a: 
"^ 100 - 

N 
- X, 
- ^v 100% PLASTIC WORK 

^*Vs^ CONVERTED  TO HEAT 

85%   PLASTIC  WORK ^ ) 
CONVERTED  TO  HEAT—' 

—I          - L.._ .„.,„,, 1, ,..„. •' ■"■! 

10 15 

TIME   (^s) 

20 25 30 

E 

z 
g 
< a: 
t- 

Z 

O 
I 
(— 
o. 
LU 
Q 

7 

6 

5 

4   - 

Figure 14.    Speed Histories - Case II, 

^TARGET  2  THICKNESS 

85%   PLASTIC  WORK  CONVERTED  TO  HEAT 

100%   PLASTIC WORK  CONVERTED  TO  HEAT 

10 15 
TIME   (^s) 

20 30 

Figure 15. Depth of Penetration Histories - Case II, 

26 



and dislodging a plug whereas the lower velocity produced a plug more slowly 
which remained tightly lodged in the target. There remains a problem in 
accommodating the plug compression; more accurate material behavior 
descriptions at high strain rates are required. 

It is imperative that criteria which indicate promise in modeling target 
failure modes be incorporated with available simulation techniques and 
predictions utilizing such must be tested against experimental evidence. 
Simulations which can handle only partial penetration of a target or which 
utilize untested failure criteria can betray penetrator and armor designers. 

A comparison of the results at 10  s, splitting disabled, shown in Figures 16 
would seem to imply that the Ti318 material is tougher than the Til25 material 
when, in truth, experimental results indicate the the Ti318 material is easier 
to defeat by kinetic energy penetrators.  Ti318 has a much higher static 
strength but its failure mechanism, adiabatic shear, requires far less 

16 
energy. 

The true ballistic worth of these techniques will soon be ascertained 
when they are applied to impacts involving rolled homogeneous armor and high 
hard armor.  The extrapolation of these techniques to model other target 
failure situations such as piercing and to model oblique impacts with plane 
strain simulations is also planned. 

16.  Woodward, R. L., "The Penetration of Metal Targets Which Fail By 
Adiabatic Shear Plugging,"  Int. J. Mech. Sci. , Vol. 20. 
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APPENDIX A 
CRITERIA FOR TOTAL ELEMENT FAILURE 

All elements were automatically enabled to totally fail under the 
circumstances discussed below: 

1. Minimum time increment violation - A minimum time increment is user 
assigned, and is based on the time required to travel across the shortest 
dimension of the triangular element at the sound speed of the material. When 
a dimension of an element gets too small for the time increment utilized, the 
choice is to lower the minimum time increment or totally fail the element so 
that it is no longer processed. 

This is a sensitive situation.  Lowering the minimum time increment can 
enable the element to be processed for a longer period of time but it can also 
allow abnormally high pressures to develop, which, in turn, cause unreasonably 
high nodal forces and velocities.  EPIC-2 checks the kinetic energy; if the 
kinetic energy of the impact situation increases by more than 105S, a 
calculation is automatically stopped. 

The assumption was made that a reasonable time increment was utilized so 
the element is totally failed if it violates the minimum time increment. This 
is the usual reason for totally failing an element. 

However, after several elements in an area have totally failed for this 
reason, there is an adverse effect on nearby elements which results in their 
total failure due to either - 

2. Negative sound speed for an element, implying a severely reduced 
volume, or 

3. Negative area for an element, which results when two nodes reverse 
position with regard to the third node. 

Element failure also requires dynamic relocation of the sliding surfaces. 
See Appendix B for the details.  It is also possible to totally fail elements 

on an equivalent strain basis, as was done in the original version of EPIC-2. 
The difference is that master elements are now allowed to fail as well. 
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APPENDIX B 
PROCEDURE FOR HANDLING FAILED ELEMENTS 

The procedure for handling a failed element depends on its position with 
respect to a particular sliding surface; it is a master or slave element on 
that surface, or neither. 

For master and slave elements (m/s elements) the following procedures 
apply: 

1. A m/s element with two consecutive nodes on a m/s surface has its 
third node inserted in the surface, 

2. A m/s element with three consecutive nodes on a m/s surface has its 
midnode removed from the m/s surface, 

3. A m/s element with four consecutive nodes on a m/s surface (the first 
node is also the last node) has all nodes removed except for the first. 

A non m/s element that has failed is kept in reserve and, after another 
element is totally failed, is checked for m/s status until it becomes a m/s 
element and is handled above. 

A check is also made for duplicated straight line segments which result 
after some patterns of element failure, i.e. the m/s surface contains node A, 
node B, and node A again sequentially. In this case, nodes A and B are 
removed from the m/s surface. 
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