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PROCESSOR-SHARED TIME-SHARING MODELS IN HEAVY TPAFFIC

Donald P. Gaver
Patricia A. Jacobs

l. Introduction

j/ Processor sharing (PS) is a mathematically tractable approxi-
mation to time sharing, a procedure followed in many actual

ne 1,

t

computer systems. In effect, PS assigns to each job of

o~

t,

»2,...) present Ior processing l/ith of the tctal procassing

1}
[ aaed

i

th

effort; eguivalently, a single jcb with Markovian service rate

. completes processing in (t,t+&t) with probabilicy (u/i)3t + o(dt).
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o)
[
123
"
3
L

Cne advantage of PS is that shcert jobs are not tragpe
long jobs, as is possible in a FC-FS discipline. - 7 I
various mathematical results have been cbtainecd about ceartzin

grocessor sharing models. An early example was the paper of
Coffman et al. (1970). Recently extensive results have been ob-
tained for Markovian systems by D. Mitra (198l), and for non-
Markovian single-server Poisson arrival systems by T. Ctt (1984)
and V. Ramaswami (19&4).

This paper is a continuation of work reported in Gaver, Jacocbs,
and Latouche (1984), henceforth GJL, where emphasis was placed on
proposing and evaluating simple approximations to the distribution
of delay experienced by a particular "tagged" job approaching a
time-shared processor. In that paper it was shown that under heavy
traffic conditions, or if the tagged job duration became large,

then the distribution of tagged job response time (also called

sojourn time by others) approaches the normal or Gaussian

distribution.
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We first show that the analysis of our system and the problem

solution can naturally and conveniently be conducted in work time

rather than in ordinary clock time. Subsequently we focus upon
heavy-traffic approximations to the distribution of response time,

R(T), given the actual work (computer time) requirement, T.

N SIS f ¢ R, .

Specific models proposed and examined are (i) for a system of
many identical terminals that independently submit jobs or pro-
- grams according to the same Markovian process, and (ii) for a
system having two terminal types, each of which submits jobs in

a manner governed by its own Markov process. The methodology

¢ TR LA L,

extends to general k terminal types as well, and to other models.
The approximation solutions are evaluated for accuracy by
- means of Monte Carlo simulations.
"
|

cemned

anL Lt

: PRTRTRR - &
S
’ ‘ R R
“iu*“l.ution/ -
: INY ~IJ-LL D&Litv Cod&
: “iavail and/or
: !Uist cpecial

R P -'. - -" - -.. -‘_ -.‘ ~A’.~.. ‘}‘ h‘ -.. -‘_ -.. - -~ h“ LI L I PR S 4 - .. -~-‘- ".-.‘»'.‘.-
“a e .- . . - » . = et " .. -' .---.- -‘,_ - - - LI B

. . o . o o, e, PR Y D S S AP LR R CRTLI - -\- -~ .‘- -\-_- -
BRSPS Y ok PRI R P ‘-L-.“.‘L'.L.“‘:-A:L._'\L.-‘_. s "‘-A"'-n .a_.c_.r AT A S PR .A.-&_-P O T




........................

Vg™ w S et T T RSO AU SO RACHR LA S bt i At el Sadfed Sk -l e i A R ~

2. The Work-Time Concept

Imagine that a tagged job requiring T units of processing
approaches the computer. Assume that it arrives when the system
is in steady state. After that initial moment it undergoes
processing, at various rates governed by the amount of its
accompaniment, until T units of service or work are accumulated,
at which point it departs after a random delay of R(T). 1In
following the tagged job's delay, it turns out to be convenient to

measure time in terms of the amount of actual work or processing

that has been accomplished on the tagged job. Thus let {X(w),

w > 0} denote the number of programs or jobs undergoing service

at a moment when exactly w units of processing have been accomplished
on the tagged job. The instantaneous rate of accrual of clock or
response time at work time w is clearly X(w): if X(w) = 1 then

the tagged job is alone and response (clock) time and work time
advance at the same rate, while if X(w) = 17 the tagged job is
accompanied by 16 others and 17 units of response time accrue for
every single work time unit., It follows that

T
R(T) = [ X(w) dw . (2.1)
0

For the models to be considered, the process X(w) is a birth-
and-death, or simple Markov, process related to N(t), the number
of jobs in the system at clock time t; its transition rates,

after adjusting for tagged job entry, are seen to be

>
oot
o
o+
0

A(N-i)dt = A(N-i)idw = x‘i’dw
(2.2)

h =
(a4
(o7
(24
]
h =
[o})
(a4
[
h =4
-
Q.
£
]
=

dw




for 1 < i < N where N is the total number of terminals in the
system. The term idw is required to allow the work-time process
to advance appropriately in clock time. Henceforth we drop
the superscripts, allowing the context to imply the appropriate
rate.

The approach taken here invokes the work time concept
described above to facilitate calculations, first for a single

terminal or job type situation, but later on for a system with

mcre diversified traffic patterns.




3. Heavy Traffic Analysis of a Single Terminal Type Markovian

System

Suppose that N terminals have access to a single computer.
Each terminal has Markovian demand rate A, and expected service
time u'. Service times are assumed to be independently and
exponentially distributed. The discipline at the computer is
PS. It is clear that if N(t) is the number of terminals that
have submitted jobs that are undergoing service at the computer
at (clock) time t, then {N(t), t > 0} is a Markov process in
continuous time that is identical to the classical single repairman
problem; see Feller (1957), p. 416. This is so, since if
N(t) = i > 0, then each individual job or program receives (dt/i)
units of processing time in (t,t+dt), and hence departs with
probability u(dt/i) + o(dt), but the probability that some job
departs is iu(dt/i) + o(dt) = pudt + o(dt). It has been shown by
Iglehart (1965) and by Burman (1979) that under heavy traffic con-
ditions (N -~ =) one may approximate N(t) by a suitable Gaussian
process, namely the Ornstein-Uhlenbeck process. This fact alone
enables one to study the distribution of R(T), and to deduce

approximate normality; see GJL for a first analysis.

3.1 Diffusion Approximation in Work Time.

Here is a diffusion process approximation for X(w). On the
basis of intuition write down the stochastic differential equation

for i(w), the approximation to X(w):

di(w) = A[N-i(w)]g(w)dw - u%(w)dw

(3.1)

+ VYAIN-X(w) JX(w) + uX(w) dB(w)




where {B(w), w > 0} is standard Brownian motion. The first
right-hand-side term represents infinitesimal drift of i(w),

while the second is the diffusion or infinitesimal variance term,
the form of which is obtained from the observation that arrival
and departure processes compete like independent Poisson processes

in short time periods. Now suppose that, as N » =,
X(w) = Nm(w) + /N 2(w) (3.2)

where m(w) is a deterministic function of time, and {Z(w),
w > 0} is a stochastic process, the properties of which must be

discovered. Substitute (3.2) into (3.1) to obtain
Ndm(w) +¥NdZ (w) = ) [N=Nm(w)=-yN2Z (w)] [Nm(w)+/NZ (w) ] dw

- u{Nm(w)+vNZ(w))dw (3.3)

+ YA [N=Nm(w) -vNZ (w) ] [Nm(w) +vNZ (w) ] +u [Nm(w) +VNZ (w) ] dB (w)

Next isolate terms of order N and vN; the result is, after

stipulating that A' = 1N, a constant as N » «,
omy: B L emw Im(w) - um(w) (3.4)

O(/N): dZ(w)

{3 [1-2m(w) ]-u}Z(w)dw

+ 73 [1-m(w) Im(w) +um(w) dB(w) ; (3.5)

the stochastic differential equation (3.5) is of Ornstein-

Uhlenbeck (0-U) form; see Arnocld (1974).
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Next obtain the approximate long-run mean as the solution
of (3.4) with dm/dw = 0, examining only the heavy-traffic

situation in which X' > u:

m(e) = 1 - f# , Aoy (3.6)
- B
= 1- %

If the above solution is used to define the stochastic

differential eguation parameters there results

dZz(w) = (=x'+u)2{w)dw + v2u(l - (u/A7)) dB(w) , (3.7)

which suggests that {Z(w)!} can be considered an 0-U process with |

constant coefficients; namely
dZ(w) = -pZ(w)dw + odB(w) , (3.8)

the solution to which is

w

zw) = z2(0e™ + o [ e PYB(uw) . (3.9)
0

The parameters p = (A'- p) and 02 = 2p(l=-u/2"). 3
!

3.2 Response Time Evaluation
Let J

R(T) = [ X(w)dw = [ [Nm(w) + /NzZ(w)]ldw (3.10)
0 0




approximate the response time; in this approximation R(T) is

normally distributed (Gaussian). First,
-~ T
E(R(M] = E[R(M] = N [ mwldw = N1-FoT (3.11)
0
Second,
- T
var[R(T)] = var[R(T)] = varl[/N [ Z(w)dw] (3.12)
0
T T T

N{E[ [ 2(w)dw [ Z(u)du)]-(E[ [ Z(w)dw]) %" ;
0 0 0

for ease of writing we have left the initial conditiocn 2Z(0)
implicit. 1In order to evaluate the above, recall that the ta:ged
job approaches the server when the latter is in equilibrium,
i.e., at t = », It may be shown that the diffusion approximation

for N(t), the number undergoing service at clock time t, is

~

N(t) = Na(t) + /N Y(t) (3.13)

where a(t) is a deterministic function of time and {Y(t)} is a
particular Ornstein-Uhlenbeck process. A similar analysis to

that leading to (3.6) and (3.7) yields

a(o) = 1-%, NA > u (3.14)
= 1 - %#

and

PAL
.....................




and u = 100, it follows from (3.6) that approximately

(10) (1 - %%%) = 6 jobs are being processed along with the

tagged job; thus the traffic is moderate in this case. When

N =10, x = 15, u = 100, then on the average 3.3 are being
processed with the tagged job; a rather light traffic case. When
N =25, A = 10, u= 100, then on the average 15 jobs are being
processed; again a moderate traffic case. The HT mean is

lower than the simulated mean for N = 10. For N = 25 it

agrees with the simulated mean. As mentioned before, the CLT mean
equals the true mean. The CLT standard deviation approaches

the simulation value as T becomes large, as anticipated. Also
as anticipated, the HT standard deviation is closer to the
simulated one for the moderate traffic cases than for the

light traffic case. 1In order to assess the degree of normality
of the distribution of R(T), the a-quantiles for each approxi-

mating normal distribution were computed. The relative

frequency of being less than or equal to each a-quantile was
computed using the simulated data. The results appear in
Tables 4-6. For N = 25, A = 10, u = 100, the HT approximation
appears to describe the data well for all values of T. For
N = 10, the HT approximation does better than the CLT for the
moderate traffic case of A = 25. For the light traffic case,
N =10, » = 15, both approximations do poorly for small T = 0.01,
the mean work request time. The CLT does well for
largqe T = 0.10, which is 10 times the average service time.

Note, however, that all simulations have been carried out
for modest system sizes, N. If N grows to say 50, or 100, the HT
approximations can be expected to improve correspondingly;

they are often not bad even at the level of N = 25,

22
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compute than those for the CLT. It is anticipated that the HT
approximation should be increasingly accurate as N becomes large

when heavy traffic conditions prevail, i.e. £ <1, It is

AN
inapplicable under other circumstances. We have conducted simu-
lations to assess these an:icipations. All simulations were
carried out on an IBM 3033 computer at the Naval Postgraduate
School using the LLRANDOMII random number generating package
(see Lewis and Uribe (1981)).

Conditional response times given the number of jobs being
processed at the time of arrival of the tagged job were simu-
lated; the tagged job required T time units of processing. For
each initial condition, 500 replications were done. Sample
moments and relative frequencies were computed for each initial
condition giving conditional response time sample moments, and
selected response time relative frequencies, i.e., estimated
probabilities of response times in selected ranges. Uncondi-
tional sample moments and relative frequencies were then computed
by multiplying each conditional moment or relative frequency
by the appropriate stationary probability of there being j jobs
present at the time of arrival of the tagged job and then
summing over all possible j. The statiocnary probability is
of the form kAn(j) where k is chosen so that the probabilities
sum to 1 (cf. Kelly (1979)). A detailed description of the
simulation program can be found in Pornsuriya [1984].

Simulated and approximating means and standard deviations
for various values of N, A, and p appear in Tables 1-3. Some

discussion of specific cases now follows. When N = 10, X = 25

21
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m(c) = 1+ ) n(j)j

where m is the stationary distribution of {X(w); w > 0} and
a formula for evaluating o(c) is given in Keilson (1979). The
CLT normal approximation states that R(T) has a normal dis-
tribution with mean m(c)T and variance c(c)zT. The CLT mean
is the true mean for R(T) under steady state (cf. GJL).
The CLT normal approximation should be increasingly accurate
as T becomes large, despite values of other system parameters,
including the number of terminals.

The derivation of the heavy traffic (or diffusion) approxi-
mation is detailed in Section 3. In summary, the HT approxi-

mation is that R(T) has a normal distribution with mean

- B H
NQL - 5@T W <L
and variance
2
g -1, _ =T
NT —2‘[1 pT(l e )] ’
o
where
o* = - &
and
p = NI+ u

The mean and variance of the HT approximation are easier to

20
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5. Simulation Studies of the Accuracy of the Normal Approxima-
tions to the Distribution of Response Time

In this section we use simulation to study the numerical
accuracy of normal approximations to the distribution of the
response time. Two continuous time Markov chain models were
simulated. In one there is a single terminal type; in the
second, a two-terminal type system is examined. Two normal
approximations were evaluated: one results from a central
limit theorem, and the other results from applying the previously

derived diffusion approximation to the Markov processes.

5.1 A Single Terminal Type Markovian System.
Let X(w) denote the number of other jobs undergoing service at
a moment when exactly w units of processing has been accom-
plished on the tagged job for the single terminal type
Markovian model of Section 3. Since {X(w); w > 0} is a Markov
process and
T

R(T) = [ (X(w) +1) dw ,
0

it follows that there are constants m(c) and o(c) such that

R(T) - m(g)T
o(c) VT

converges in distribution to a standard normal distribution

as T - » (cf. Keilson (1979), p. 121). cCall this a central

limit theorem (CLT) for such a process. In this case
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to the former drift matrix A of (4.21), and consider the system
dz*(w) = A*2*(w)dw + g*dB* (4.23)

the solution to which can be formally written ocut in terms of the
appropriate fundamental matrix, and computed in terms of eigen-
values and eigenvectors of the matrix A*. See e.g. Arnold
(1974), Chapter 8 and Coddington and Levinson (1955) for details.
A convenient way of formalizing the calculations is actually by
using Laplace transforms. Unfortunately, no truly simple
formulas result. Finally, the covariance matrix C(w) of the

components of Z*(w) satisfies the matrix differential equation

dc (w)
—gu— = (AF)ICw) + C(w) (A*) ' + (g) (9) '

where ' denotes transpose; the initial conditions are provided
by the long-run distribution in clock time, or in view of (4.18),
of the work time process {2} itself. It is the K+15% diagonal
element of C(w), evaluated at w = T and multiplied by N that

provides the required approximate var[R(T)].

q
1
i
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T K K
R(T) = [ ] [X;(waw]l = ]

[ X (wdw (4.19)
0 i=1 i=1 0 1

K T K T
=N ]} %4 [ m.(w)aw + /N § /2, [ 2. (w)dw
i=1 0 . i=1 to :

where it is understood that the initial condition for the
zi(w) integrand in (4.19) is given by the approximate stationary
distribution from the clock time process. In view of (4.18),
this is eguivalent to removing the initial condition by the
long-run distribution of the work time process itself.

Since the long-run situation is being discussed it is first

necessary to solve the steady-state version of (4.5)

= ' - - i =
0 = AJ(1l-m) [ &m wymg, i =1,2,...,K.(4.20)

Then the solution provides parameters for the long-run version

of (4.6); here written in matrix form

dz(w) = A 2(w)dw + g dB (4.21)

Now to find the variance of R(T), append the row

K
az, (W) = izl/fz Z; (w)dw (4.22)

.......
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! ay. (t) =x.{-Y. (e)S +/71; (1-a.) If/z—y (£)}1SE -y, (¢) SE
; i itTh i N P S ~HMiti S
I + VX (T-a)s += as, (v) , (4.17)
/S
and a direct comparison with the corresponding equation in work
! time, (4.6), shows that the long-run behaviors of the two
processes {Zi(w)} and {Yi(t)} are identical except for a constant
. time-scale change: for large w and t,
i
: t
{zi(w)} and {Yi(ﬁg)} (4.18)
| have the same probability law; i.e.,
: finite-dimensional distributions and
limiting distribution.

l 4,3 Response Time
We discuss the response time under these conditions: a
tagged job approaches the processor when the latter has been
operating for some time, so the long=-run clock time distribution
prevails; after arrival, the job remains present until the total

work time accumulated on the job is T, the requested service

time, giving
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These equations closely resemble those describing the work time
approximation; again the semigroup approach is applicable.

If a long-run solution to the O(N) term exists in work time,
and consequently dmi/dw + Q as w + », the result is the system

of equations for mi(w) = m;s

S PV .V ", ., .

K
pi(l-mi)kzllkmk -m; = 0, (4.13)

where p; = xi/ui = in/ui. Now these same equations are satis-
fied by a presumed long-run solution in clock time, i.e., if

dai/dt + 0 in (4.11); for ai(w) = a,:

KR! N P

- K
- p;(L-ay) - a,/ z 23, = 0. (4.14)

4\ N

Consequently the long-run solutions in work and clock time agree
at the O(N) term level; this means that the long-run mean number

present in both clock and work time agree:
E[Ni(t)] ~ Nai(m) = Nmi(w) ~ E[xi(t)] . (4.15)

Next substitute these long~run results in the s.d.e. to see

RN | JHALRATA T

- that as t,w »> =, Yi and Zi are essentially the same process.
V. K
" Put § = ] f,a, to simplify writing. Then
k=1
D K
¥, () _ kzl'zkYk(t)
- - - ! -
in(t) = AiYi(t)dt ' ——§——dt + Ai(l ai)/zi 3 dt
: —— .
+ /le(l al) dBi ' (4.16)

15
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...................

Now invoke the HTN:

2
.
e
n

Niai(t) + /Ni Yi(t) ’

K
and again N = ] N+ =, with
NN - 2, 0<2 <1,

but

ui/N > ML 0 < Hi < =, Ai > ui
The result of isolating terms is
dai(t) ai(t)
- ——— = - - '
O(N) : I Ai(l ai(t)) i §
2.a, (t)
_ Yi(t)
O(vYN) : in(t) = -AiYi(t)dt-ui{ §
2, a, (t)

3 k=1 K K

- K

b~ —

- - kgl/nkyk(t) -

?‘ + 124 (t) — ;

. (1 2.a(t)

., - k=1

b

23

N a; (t)

+ Al(l-ai(t))ﬂxi K dBi(t)
L Lt .oa (t)
k=1 k7 k

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)
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dmi(w) K
O(N): —F— A (L-mg (W) ) Ly my (W) = u.m (w) (4.5)
k=1

K K
O(YN) : az, (w) Ai{-(szkmk(w))Zi(w)+/T;(l-mi(w))kil/T;Zk(w)}dw

- uizi(w)dw (4.6)

K
+ \/Ai(l-mi(w))killkmk(w)+uimi(w) B, (w)

for i=1,2,...,K. Thus (mi(w); w>0; i=12,...,K) must

be found by solving a system of ordinary first-order, but non-
linear differential equations, while (4.6) shows that

{z,(w; w>0, 1= 1,2,...,K} is a multivariate Ornstein-

Uhlenbeck process.

4.2 A Diffusion Model for the Clock Time Process.

In order to provide the initial conditions encountered by

the tagged job, it is necessary to study the clock-time process

Ni(t); see (3.13). The corresponding approximation has s.d.e.

S -~ -~ Ni(t)
:: le(t) = )\l(Nl-Nl(t))dt - ]Ji —f—-:—— dt
o N. (t)
- =1 K
(4.7)
N, (t)

+
$

P.

z
'-l-

]

2z
’.l.

t

&
'.J.

dBi(t) i=1,2,...,K.
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or Wiener processes. The work time process is a transformation

»
Lo e e

.
’
v,
”.
o

of the clock time process; in particular, the drift of the ith

component of the clock time process {Ni(t)} is seen to be

Ni(t)dt
Ay (N =N (E))dAE =

N

’ (4.2)
N, (£)

1
which exhibits the processor-sharing effect in the term multiply-
ing u;. Multiplication by the total in service, ZNét), converts
to the work time transition rates, in analogy with (2.2).

Now once again approximate by writing
X, (w) = N.m; (w) + /Ni Z,w), 1i=1,2,...,K; (4.3)

m, (w) and {Zi(w)} are to be determined, subject to the normaliza-
K
tion N = ] N > = but with
k=1

Ni/N - zi ’ 0 <2, <1, (4.4a)

and

NA, > AL, 0 < A!

[ ®© '
P Al (4.4b)

Conditions (4.3) and (4.4) are referred to as the heavy traffic

normalization (HTN). The result of isolating terms according to

order in (4.1) is:
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4. Heavy Traffic Analysis of a K-Terminal-Type Processor
Sharing System.

Consider the following natural extension of the previous
model. The processor is jointly utilized by K sets of terminals,
each generating distinctive job types. There are Ni terminals
in the ith set, and arrival rate and service rate are Ai and By
respectively. Again the discipline at the computer is PS. Of
course this is not the same as a situation in which all terminals
are the same, but Type j jobs occur with probability pj from each
terminal. The latter model can, however, be studied in an

analogous heavy-traffic manner, as can other interesting models.

4.1 A Diffusion Model for the Work-Time Process.

Let {Xi(w), i=1,...,K represent the number of jobs of all
types present at the computer at work time w. The present model
implies that {xi(w)} is a multivariate or vector-state birth and
death Markov process. We choose to study a diffusion approxima-
tion {ii(w)} to {xi(w)} that is described by the following system

of s.d.e.:

-~ ~ K ~ -~
dX, (w) A (NG =X, (W) (k £l>5< (W))aw - u, X, (w)dw

- -
Dl

’
LR N Bt ]

~ K ~ -
+ \/;i(Ni°xi(W)%<£l%<(W)'+“ixi(W) dBi(w) (4.1)

-~
)

o-‘_‘.:.‘?*:J."r. ‘.T‘:"'

&Q where {Bi(w)} are mutually independent standard Brownian motion

» \
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(T

T 2
2 ~20w ., 0 -2pw,, 1 -p (T-w)
2E[0[ (2(0) ‘e +35(1-e ))5(1-e ) &w

T
= 2?1 [ e7¥(1-e7 TV ) qu )
Y]

2 T
+ S [ (1-e72P%) (1-e7P (T ) gy
p 0

Now put E[Z(0)2] = E[Y(m)zl = /A = 02/2p to see that

2 T 2
nm = & [ -ePTWia = Sir-2a -
p= 0 p
2
«c 3Ty _ L _g°T
- 2[1 DT(l e )] -
[0}
Thus it follows that
R 2,1 -pT
var[R(T)] = Var[R(t)] = NT 15[1-ﬁ(1-e° )1 . (3.14)
P

To terms of order T this agrees with (4.10) of GJL; not surprisingly,
the additional factor in (3.14) can actually provide numerical
results superior to those of GJL.

The form of the heavy traffic approximation, namely the limit-
ing normal form with parameters (3.1l1l) and (3.14), can be more
rigorously validated by use of the theory of convergence of
suitably normalized sequences of semigroups of transformations;

see Burman (1979). Details appear in an appendix to this paper.
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E[Y(x)] = 0, Var [Y (») ] (3.15)
see GJL for a derivation; (3.13) provides the initial condition
for evaluating moments of R(T), using (3.10). Identify 2z(0),
the initial value of the work time noise process Z(w), with Y(w).
T
According to (3.9), this implies that E[ [ 2Z(w)dw] = 0. 1In order
0

to compute the Var (R(T)] it is next necessary to evaluate the

following integral:

T T
E( / 2(w)daw [ 2Z(u)dul
0 0

I(T)

2 T T
o = E[2 [ 2(w)daw [ E[2(u)]|2Z(w)] du)
2 0 w
T T g (4=w)
= 2E[ [ z(waw [ 2z(we P Wigy) (3.16)
0 w
T

= 2E[ [ zwawz(w)i(l-eT TV,
0

T - -
= 2E[ [ EW? 20120 - TV gy
0

Lt

-
.

Square (3.9) and take the expectation to see that, condition-
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TABLE 1

Simulated Mean and Standard Deviation for R(T)
and Their Approximating Values

N =10, X =15, u = 100

TIME T Mean Std. Dev.
0.01 Simulation .0404 0172
(.0002)*
CLT .0404 .0323
HT .0333 .0238
0.025 Simulation .1005 .0375
(.0005)
CLT .1010 .0510
HT .0833 .0535
0.05 Simulation .2016 .0622
(.0010)
CLT .2019 .0722
HT .1667 .0919
0.10 Simulation .4029 .0940
(.0015)
CLT .4039 .1020
HT .3333 .1462

* The standard error of the estimate of the mean
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TABLE 2

Simulated Mean and Standard Deviation for R(T)
and Their Approximating Values

N =10, A = 25, p = 100

TIME T Mean Std. Dev.
0.01  simulation .0606 .0503
(.0002) *
cLT .0605 .0245
HT .0600 .0160
0.025 Simulation .1507 .0315
(.0004)
CLT .1513 .0288
HT .1500 .0314
0.05 Simulation .3021 .0497
(.0008)
k CLT .3027 .0548
E} KT .3000 .0481
< Simulation .6036 .0748
(.0012)
CLT .6053 .0776
HT .6000 .0706

*
Standard Error for the Estimate of the mean
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. TABLE 3

b

, Simulated Mean and Standard Deviation for R(T)
! and Their Approximating Values

X N =25, \ = 10, u = 100

TIME T Mean Std. Dev.
0.01 Simulation .1498 .0812
(.0002) *
CLT .1500 .0390
HT .1500 .0254
2 0.025 Simulation .3759 .0503
: (.0006)
é CLT .3750 .0617
E HT .3750 .0497
: 0.05 Simulation .7506 .0804
- (.0010)
E T .7500 ' .0872
é HT .7500 .0760
; 0.0625 Simulation .9381 .0909
(.0011)
CLT .9375 .0975
HT .9375 .0863

*
The standard error of the estimate of the mean
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TABLE 4
Simulated Probability (Relative Frequency) that the

Response Time is Less than or Equal to the Approximating
o~Quantile

N =10, A = 15, u = 100

- TIME a: .10 .25 .50 .75 .90 .95 99
I:.
-_ 0.01 CLT 0.00 .12 .50 .89 1.0 1.0 1.0
& HT 0.00 .10 .36 .68 .91 .97 1.0
g
b 0.025 CLT 0.04 .21 .49 .81 .97 .99 1.0
52 HT 0.00 .09 .33 .67 .91 .98 1.0
-
%
E 0.05 CLT 0.08 .23 .49 .77 .94 .98 1.0
S
f: HT 0.0 .07 .30 .65 .92 .97 1.0
! 0.10 CLT 0.10 .24 .48 .76 .92 .97 1.0
. HT 0.00 .04 .24 .60 .89 .97 1.0
@
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TABLE 5

Simulated Probability (Relative Freguency) that the
Response Time is Less than or Equal to the Approximating

a~Quantile

N =10, »x =25, yu

a: .10 .25 .50 .75

CLT .04 .15 .45 .85

HT .11 .22 .43 .72

5 CLT .08 .19 .45 .80

HT .10 .22 .44 .73

CLT .09 .22 .45 .77

HT .11 .22 .44 .71

CLT .10 .24 .47 .76

HT .11 .23 .45 .70

T T T T e A T T T R Y Y T TR T T T T

.....

= 100

.90

1.0

.91

.98

.92

.95

.91

.93
.89

.95

1.0

.98

1.0

.98

.99

.97

.98

.95

PRACT A N Sl Ml Ol Sl Rl A Al A

.99

1.0
1.0

1.0

1.0

1.0




TABLE 6

Simulated Probability (Relative Frequency) that the

Response Time is Less than or Equal to the Approximating
a=-Quantile

HT

CLT

HT

HT

CLT

HT

N

.10

.03

.11

.07

.11

.09

11

.09

.11

25, A

.25

.15

.23

.19

.23

.21

.24

.22

.24

10,

.50

.46

.46

.46

.46

.46

.46

.47

.47

H

.75

.86

.73

.80

.73

.78

.73

.73

100

.90

.99

.91

.96

.91

.94

.91

.93

.90

.95

1.

0

.97

.99

.97

.98

.96

.98

.96

.99

1.0

1.0
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5.2 Simulation Results for Markovian Model with Two-Terminal
Types.

In this subsection we describe the results of a simulation
of the general K-type Markovian model of Section 4, in the
case of K = 2 sets of terminals. As in Section 4 let ii(w)
represent the number of other jobs of type i being processed when
the tagged job has acquired exactly w units of processing.
As before the response time for the tagged job regquiring T
units of work is

T — -_—
R(T) = 0[ [X (W) + X (w) + 1] aw .

The process {(fl(w),ié(w); w > 0} is Markovian. Hence
again R(T) satisfies a central limit theorem as T » «.
The normal approximation for the distribution of R(T) result-
ing from the central limit theorem will again be referred to as
CLT.

The mean term (m1'+m2)T for the heavy traffic approximation
was computed by solving the system of equations (4.20) for
my and m, . The variance term for the approximation was computed
by solving the system of stochastic differential equations (4.23)
as detailed in Arncld (Corollary (8.2.4)]. The fundamental
matrix (Arnold [p. 129]) was found by computing Laplace
transforms of the system of defining differential equations
and then inverting the solution. The approximating variance
term was found by computing the variance of the solution of

the s.d.e. As in the case of one-terminal type, it is a
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linear combination of exponentials and constant terms. Its

exact form is uninformative and will not be given here.

Conditional response times, given the number of jobs of
each type being processed at the time of arrival of the tagged
job, were simulated. The tagged job was always taken to be
a Type 1 job. For each initial condition, 300 applications
were carried out. Sample moments and probabilities (relative
frequencies) were computed for each initial condition giving
conditional sample moments and probabilities (relative fre-
quencies). Unconditional sample moments and probabilities
were computed in a similar manner to that in the one-terminal
type simulation; see Pornsuriya [1984].

Values of the simulated means and standard deviations and
their approximating values for R(T) for various cases in which
N, = 5 and N, = 5 appear in Tables 7-10. Once again the CLT
mean is the true steady state mean for R(T). The means and
standard deviations of R(T) for each T differ surprisingly
little for the four cases. This suggests that perhaps the
two-type terminal model can often be satisfactorily approxi-
mated by a one-type model in which the arrival rate and service
rates are the average arrival and service rates in the two-type

model. Values of the simulated means and standard deviations

and their approximating values for the approximate one-type
model with N = 10, A = 25 and py = 75 appear in Table 1ll1l. The

values for the approximate one--type model are acceptably

close to those for the two~-type model. Note that the quality




of the HT approximation is generally quite good, even though

the system sizes Ny and N, can hardly be called "large."
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TABLE 7

Simulated Means and Standard Deviations for R(T)
and Their Approximating Values

N, = 5, N, = 5, kl =20, x, = 30, By = 50, u, = 100
TIME T Mean std. Dev.
0.01 Simulation 0.0713 0.0135
(0.0001) *
CLT 0.0707 0.0204
HT 0.0710 0.0132
0.025 Simulation 0.1783 0.0263
(0.0003)
CLT 0.1766 0.0322
HT 0.1775 0.0253
0.0375 Simulation 0.2664 0.0353
(0.0005)
CLT 0.2650 0.0395
HT 0.2663 0.0325
0.050 Simulation 0.3570 0.0414
(0.0005)
CLT 0.3533 0.0456
HT 0.3550 0.0384
0.0625 Simulation 0.4439 0.0478
(0.0006)
CLT 0.4416 0.0510
HT 0.4438 0.0435

*
Sstandard error of the estimate of the mean
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TABLE 8

T,

Simulated Means and Standard Deviations for R(T)
and Their Approximating Values
=5, N2 = 30, 5 = 20, = 100, Wy =
TIME T Mean Std. Dev.
0.01 Simulation 0.0710 0.0137
(0.0001) *
CLT 0.0716 0.0204
HT 0.0710 0.0132
0.025 Simulation 0.1777 0.0268
(0.0003)
CLT 0.1789 0.0322
HT 0.1775 0.0253
0.0375 Simulation 0.2672 0.0351
(0.0004)
CLT 0.2684 0.0395
HT 0.2663 0.0325
0.050 Simulation 0.3567 0.0419
(0.0005)
CLT 0.3578 0.0456
HT 0.3550 0.0384
0.0625 Simulation 0.4461 0.0476
(0.0006)
CLT 0.4473 0.0510
HT 0.4438 0.0435

*
standard error of the estimate of the mean
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TABLE 9

Simulated Means and Standard Deviations for R(T)
and Their Approximating Values

N, = 5, N, = 5, Ay =10, A, = 40, By = 25, Hy = 125
TIME T Mean std. Dev.
0.01 Simulation 0.0717 0.0134
(0.0001)*
CLT 0.0717 0.0237
HT 0.0720 0.0133
0.025 Simulation 0.1788 0.0280
(0.0004)
CLT 0.1793 0.0375
HT 0.1799 0.0271
0.0375 Simulation 0.2690 0.0376
(0.0005)
CLT 0.2684 0.0459
HT 0.2699 0.0359
0.0500 Simulation 0.3588 0.0456
(0.0006)
CLT 0.3585 0.0530
4T 0.3599 0.0433
0.0625 Simulation 0.4481 0.0527
(0.0007)
CLT 0.4481 0.0529
HT 0.4498 0.0496

%*
standard error of the estimate of the mean

.................................................................




TABLE 10

Simulated Means and Standard Deviations for R{(T)
and Their Approximating Values

Ny, = 5, N, 5, Al = 40, Az = 10, My = 125, My = 25
TIME T Mean Sstd. Dev.
0.01 Simulation 0.0725 0.0138
(0.0001) *
CLT 0.0724 0.0249
HT 0.0720 0.0133 ‘
0.025 Simulation 0.1816 0.0290 1
(0.0004) ]
CLT 0.1810 0.0394
HT 0.1799 0.0271
0.0375 Simulation 0.2717 0.0389
(0.0005)
CLT 0.2714 0.0482
HT 0.2699 0.0359
0.0500 Simulation 0.3622 0.0472
(0.0006)
CLT 0.3619 0.0557 %
HT 0.3599 0.0433
0.0625 Simulation 0.4522 0.0557
(0.0008) L
CLT 0.4524 0.0623
HT 0.4498 0.0496

*
Standard error of the estimate of the mean
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TIME T

0.025

0.0375

0.0500

0.0625

TABLE 11

Simulated Means and Standard Deviations for R(T)

and Their Approximating Values
for the One-Type Model

N

Simulation

CLT
HT

Simulation

CLT
HT

Simulation

CLT
HT

Simulation

CLT
HT

Simulation

CLT

HT

= 25, u =

Mean

.0701
.0002)*

.0701
.0700

.1766
.0005)

.1752
.1750

.2620
.0008)

.2628
.2625

.3501
.0009)

.3504
.3500

.4388
.0011)

.4380

.4375

75

Std. Dev.

0.0139

0.0206
0.0135

0.0263

0.0325
0.0258

0.0361

0.0398
0.0330
0.0430

0.0460
0.0390

0.0478

0.0514

0.0441

*
Standard error of the estimate of the mean
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Choose the functions m, so that they satisfy the system of
differential equations (4.5). Let N » », Then for £ in the

above class of functions, the operator converges to vyield
P g Y

K K ¢
A_f(z) = i£1 f;i{xi@(l-mi(w)) jzl /Tszj - Az j£1 2 ymy (W) =py 2}
L § g g i }
5 PAAI(l-m, 2.m, .m,
+ 5 igl £y, i (dmmy () <j£l My (W) uym, (W)

The operator A_ is the infinitesimal operator of the diffusion
whose stochastic differential equation is (4.6) [cf. Arnold
(1974), page 152]. The Trotter-Kato theorem can now be applied

to assert that the semigroups converge [cf. Burman (1979)].
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N
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,...,zK)Ai(N)

Agf(2)

1
+ f(zl,...,zi - /If/ﬁ""'zK)ui(N)}
i

K
+ f(zl,...zi,...,zK)[— jgl(kj(N) + uj(N))]

K
) fé YL /N m'(w) . (A-8)
J ]

=1

Note that no specific normalization has been utilized up to
this point. Now, however, invoke the HTN of (4.6) and utilize

(A-6) and (A-7) specifically; allowing N to become large,

K A, (N) =u, (N) A, (N) +u, (N)
Af(z) -~ ] (g, X L 2
i=1 %i TN 1 i
- f;i /zi /N mi(w)} (A=9)
K _ . K
- 121 fzi{/N[Ai/zi(l-mi(w)) j£1 zjmj(w) - ui/E;mi(w)
— K K
-/zimi(w)] + xi/I;(l-mi(w»(jzl/zjzj)-xizi jzl zjmj(w)
- oz, +oN Y%y 4 L If £" {A!(l-m, (w))
Hi%i PR TR S

“172yy,

K
x jzl R,mj(w) + uimi(w) + O(N

N e N N N Y Y Y Y Y T Y N Y N N VY

A |




K

. 1 )
£(z) = lim[ | {f(2y,...,2, + -V /Nm!(W)A,...,z ), (N)A
AN A0 j=1 1l i /TI/E i i K' 71
1 '
+ f(zl,...,zi4-’/_#'_7/ﬁ - /Ez/ﬁmi(w)A,...,zK)ui(N)A}
1
+ f(zl-ﬁz/ﬁmi(w)A,...,zK-/T;/ﬁmI'((w)A)
K
x (1 - igl{(xi(n) + u; (N))A})
- £( (8) 15 4
21'22""'2K) + 0 3 (A-4)
where for simplicity (and generality) we abbreviate
K —
A (N = Ai[Ni- Nimi(w)-/N—izi](jzl(ijj (w)+/szj)) (A-5)
e o
(A;N) [2; (1-m; (w)) = — z; 1 (N jil(zjmj(w) + = z5))
(A-6)
and
a2
ui(N) = “i(Nimi(w) + /ﬁzi) ~ uiN(limi(W) + 75; zi) (A=7)

Upon passage to the limit via Taylor series expansion it is

seen that




processes {Xi(w);N}: if Ayf » A f in sup norm for a suitable
K

class of test functions (e.g. £(z): TR" > R, m-timescontinuously

1
differentiable, m > 3, that vanish identically outside a bounded

subset of'RK and further such that the functions, £, together with their
first and second derivatives do not increase faster than some

fixed power of z) it can be concluded that the semigroups

converge, and hence the Markov probability transition functions
themselves converge.

We now proceed with the formal calculation of the limiting

generator for our normalized process. Invoke (4.4) so

N N
X.(w) - N.m, (w) X, (w) = N&.m, (w)
ziw) = il = 2 r1 (A-1)
N, N %
By definition, for z = (zl,zz,...,zK) and £ in the above class
_ . N N - 1
Agf(z) = Lim{E[£(Z7(w+d)) |27 (W) =2z] - £(2)}% . (A=2)
A~+0
Given Z?(w) =2z, and Ci(w,w+A) represents the change in xﬁ(w),
.’ XY (W) + C, (w,w+d) = N.m (w+d)
Zi(w+A) = = =
VN,
i
Ci(w)
= + 2, - VN, mi(w)A+ o(a) . (A=3)
. i i
i
Consequently, for z such that z, > -YN.m,(w)4A - L
= i i'i N
i




APPENDIX
i HEAVY TRAFFIC APPROXIMATION BY CONVERGENCE-
_I OF-SEMIGROUPS METHODOLOGY

The purpose of this appendix is to outline a mathematical
framewerk upon which the heavy traffic approximations of this
paper may be rigorously based. The approach is to use an
analytical thecry of convergence of semigroups of operators
apparently first applied to queueing problems by Burman (19279)
in a regrettably unpublished thesis. See also Lehoczky and
Gaver (198l1) where the technique is used to obtain results

concerning a data-voice traffic sharing multichannel system.

R The theory of semigroups of operators is introduced.in Faller
:§ (1971), and detailed in Dynkin (1963); the convergence ideas
El are discussed in Trotter (1974) und Kato (1976). The basic
i! notion is that the state variable of a process, say the work
g; time process of Section 4.1, {Xi(w;N), w > 0}, is one of a
Sﬂ sequence of birth and death Markov processes indexed by system
' size N. Given such a sequence of Markov processes, </ Xi(w;N) }>
% each with its appropriate state space, SN' it is desired to

show that the corresponding sequence of probability transition

!; functions converges to that of some limiting process that has
; state space S_; in the present case S = IRf. The limiting
1$ process under the normalization of {X(w;N)} chosen will be a
Ej particular diffusion process, namely, in the present heavy
traffic situation the multivariate Ornstein-Uhlenbeck.

EE The Trotter-Kato theory of convergence deals with the
!: convergence of infinitesimal operators Ay of the normalized
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TABLE 15

Simulated Probability (Relative Frequency) that the
Response Time is Less than or Equal to the Approximating
a=-Quantiles

N, =5, N, =5, A, = 40, A = 25

1 = 10,

2 Wy = 125, u,

TIME T as 0.10 0.25 0.50 0.75 0.90 0.95 0.99

0.0100 CLT 0.024 0.116 0.445 0.907 1.0 1.0 1.0

HT 0.110 0.228 0.433 0.710 0.905 0.973 1.0

F 0.0250 CLT 0.054 0.164 0.435 0.820 0.993 1.0 1.0
HT 0.112 0.219 0.422 0.682 0.901 0.967 1.0

0.0375 CLT 0.070 0.186 0.428 0.795 0.981 0.999 1.0

HT 0.113 0.224 0.414 0.693 0.899 0.967 0.999

0.050 CLT 0.075 0.182 0.439 0.784 0.972 0.998 1.
HT 0.110 0.216 0.422 0.689 0.896 0.969 1.0

0.0625 CLT 0.083 0.200 0.443 0.765 0.959 0.997 1.0

HT 0.118 0.222 0.427 0.683 0.891 0.958 1.0




TIME T

0.010

0.0250

0.0375

0.0500

0.0625

TABLE 14

Simulated Probability (Relative Frequency) that the
Response Time is Less than or Equal to the Approximating
a-Quantiles

CLT

HT

CLT

HT

CLT

HT

CLT

HT

CLT

HT

0.10

0.027

0.110

0.061

0.121

0.068

0.117

0.081

0.117

0.085

0.121

5, A

0.119

0.230

0.178

0.236

0.191

0.239

0.189

0.232

0.199

0.237

1

= 10,

0.447

0.458

0.451

0.464

0.441

0.451

0.430

0.444

0.442

0.456

A, = 40,
2

0.75

0.906

0.737

0.824

0.734

0.790

0.725

0.776

0.729

0.772

0.737

M1

0.90

1.0

0.931

0.991
0.930

0.979

0.927

0.975

0.935

0.960
0.923

1.0
0.982

0.999
0.985

0.999

0.983

0.997

0.985

0.995

0.979

= 25, By = 125

0.99




..................................................

TABLE 13
Simulated Probability (Relative Frequency) that the

Response Time is Less than or Equal to the Approximating
a-Quantiles

= 30, A, = 20,

2 = 100, My = 50

My
TIME T a: 0.10 0.25 0.50 0.75 0.90 0.95 0.99

0.0100 CLT 0.049 0.159 0.457 0.869 0.998 1.0 1.0

HT 0.124 0.229 0.442 0.718 0.919 0.979 1.0

0.0250 CLT 0.078 0.194 0.462 0.809 0.978 0.997 1.0

HT 0.113 0.228 0.442 0.717 0.916 0.973 0.999

0.0375 CLT 0.088 0.204 0.455 0.787 0.962 0.995 1.0

HT 0.111 0.224 0.432 0.702 0.909 0.965 0.999

0.0500 CLT 0.088 0.212 0.459 0.771 0.955 0.989 1.0
HT 0.111 0.226 0.434 0.696 0.898 0.961 0.998

0.0625 CLT 0.093 0.212 0.465 0.773 0.945 0.986 1.0
HT 0.110 0.222 0.432 0.705 0.889 0.954 0.997

...........................................................................
.......................................
.............................................................
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TIME T

0.010

0.0250

0.0375

0.0500

0.0625
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TABLE 12

Simulated Probability (Relative Frequency) that the
Response Time is Less than or Equal to the Approximating
a=-Quantiles

o

CLT

HT

CLT

HT

CLT

HT

CLT

HT

CLT

HT

0.041
0.109

0.062

0.103

0.079

0.118

0.075

0.106

0.081
0.115

Al = 20, Az
0.25 0.50
0.137 0.433
0.221 0.443
0.170 0.425
0.223 0.438
0.191 0.429
0.229 0.447
0.181 0.417
0.222 0.431
0.198 0.436
0.238 0.451

0.838
0.719

0.765

0.708

0.754

0.713

0.724

0.693

0.745

0.719

M1

0.998

0.915

0.969

0.911

0.952
0.905

0.939

0.897

0.932

0.898

= 50,

UZ =

1.0
0.977

0.997

0.975

0.991

0.969

0.986

0.965

0.980

0.960

1.0
0.999

1.0

0.998

1.0

0.997
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To assess the gquality of the normal approx.mation to the
distribution of R(T) for the two-type model, the a-quantiles
for each two-type approximating normal distribution were
computed. The relative frequency of being less than or equal
to each n-quantile was then computed, using the simulated
data. The results appear in Tables 12-15. From the heavy
traffic approximation to the mean it follows that approximately
7 jobs are being processed with the tagged job. Thus, all
the cases considered are really moderate traffic cases. The
tables indicated that the HT approximation tends to describe
the quantiles better than does the CLT. However, as is

expected, the CLT improves with larger T.
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