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PROCESSOR-SHARED TIME-SHARING MODELS IN HEAVY TPAFFIC

Donald P. Gaver
Patricia A. Jacobs

1. Introduction

- Processor sharing (PS) is a mathematically tractable approxi-

mation to time sharing, a procedure followed in many actual
computer systems. In effect, PS assigns to each -ob of the i,

(i = 1,2,.) present for processing f/ith of the total processing

effort; equivalently, a single -Jcb with Markovian service rate

completes processing in (t,t~dt) with orcbabilitv (o/ift + o(dt).

Cne advantage of PS is that short jobs are not trapped behind

kong 3obs, as is possible in a FC-FS discipline.. -. ,

Various mathematical results have been obtained about certiin

processor sharing models. An early example was the paper of

Coffman et al. (1970). Recently extensive results have been ob-

tained for Markovian systems by 0. Mitra (1981), and for non-

Markovian single-server Poisson arrival systems by T. Ott (1984)

and V. Ramaswami (1984).

This paper is a continuation of work reported in Gaver, Jacobs,

and Latouche (1984), henceforth GJL, where emphasis was placed on

proposing and evaluating simple approximations to the distribution

of delay experienced by a particular "tagged" job approaching a
time-shared processor. In that paper it was shown that under heavy
traffic conditions, or if the tagged job duration became large,

then the distribution of tagged job response time (also called

sojourn time by others) approaches the normal or Gaussian

distribution.

[1



We first show that the analysis of our system and the problem

solution can naturally and conveniently be conducted in work time

rather than in ordinary clock time. Subsequently we focus upon

heavy-traffic approximations to the distribution of response time,

R(T), given the actual work (computer time) requirement, T.

Specific models proposed and examined are (i) for a system of

many identical terminals that independently submit jobs or pro-

grams according to the same Markovian process, and (ii) for a

system having two terminal types, each of which submits jobs in

a manner governed by its own Markov process. The methodology

extends to general k terminal types as well, and to other models.

The approximation solutions are evaluated for accuracy by

means of Monte Carlo simulations.

- ."-i .
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2. The Work-Time Concept

Imagine that a tagged job requiring T units of processing

approaches the computer. Assume that it arrives when the system

is in steady state. After that initial moment it undergoes

processing, at various rates governed by the amount of its

accompaniment, until T units of service or work are accumulated,

at which point it departs after a random delay of R(T). In

following the tagged job's delay, it turns out to be convenient to

measure time in terms of the amount of actual work or processing

that has been accomplished on the tagged job. Thus let {X(w),

w > 0} denote the number of programs or jobs undergoing service

at a moment when exactly w units of processing have been accomplished

on the tagged job. The instantaneous rate of accrual of clock or

response time at work time w is clearly X(w): if X(w) = 1 then

the tagged job is alone and response (clock) time and work time

advance at the same rate, while if X(w) = 17 the tagged job is

accompanied by 16 others and 17 units of response time accrue for

every single work time unit. It follows that

T
R(T) = J X(w) dw . (2.1)

0

For the models to be considered, the process X(w) is a birth-

and-death, or simple Markov, process related to N(t), the number

of jobs in the system at clock time t; its transition rates,

after adjusting for tagged job entry, are seen to be

Atdt = A (N-i) dt = X(N-i)idw = XWdw
1 1

(2.2)

Pwdt = Pdt = idw =Pdw

3
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for 1 < i< N where N is the total number of terminals in the

system. The term idw is required to allow the work-time process

to advance appropriately in clock time. Henceforth we drop

the superscripts, allowing the context to imply the appropriate

rate.

The approach taken here invokes the work time concept

described above to facilitate calculations, first for a single

terminal or job type situation, but later on for a system with

more diversified traffic patterns.

4
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3. Heavy Traffic Analysis of a Single Terminal Type Markovian
System

Suppose that N terminals have access to a single computer.

Each terminal has Markovian demand rate X, and expected service

time 4- . Service times are assumed to be independently and

exponentially distributed. The discipline at the computer is

PS. It is clear that if N(t) is the number of terminals that

have submitted jobs that are undergoing service at the computer

at (clock) time t, then {N(t), t > 0} is a Markov process in

continuous time that is identical to the classical single repairman

problem; see Feller (1957), p. 416. This is so, since if

N(t) = i > 0, then each individual job or program receives (dt/i)

units of processing time in (t,t+dt), and hence departs with

probability P(dt/i) + o(dt), but the probability that some job

departs is ip(dt/i) + o(dt) = Pdt + o(dt). It has been shown by

Iglehart (1965) and by Burman (1979) that under heavy traffic con-

ditions (N - -) one may approximate N(t) by a suitable Gaussian

process, namely the Ornstein-Uhlenbeck process. This fact alone

enables one to study the distribution of R(T), and to deduce

approximate normality; see GJL for a first analysis.

3.1 Diffusion Approximation in Work Time.

Here is a diffusion process approximation for X(w). On the

basis of intuition write down the stochastic differential equation

for X(w), the approximation to X(w):

dX(w) A [N-Xw)IXw)dw - (w)dw

(3.1)

+ -1X[N-X(w)]R(w) + ijk(w) dB(w)

5
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where {B(w), w > 0} is standard Brownian motion. The first

right-hand-side term represents infinitesimal drift of X(w),

while the second is the diffusion or infinitesimal variance term,

the form of which is obtained from the observation that arrival

and departure processes compete like independent Poisson processes

in short time periods. Now suppose that, as N -,

X(w) Nm(w) + /N Z(w) (3.2)

where m(w) is a deterministic function of time, and JZ(w),

w > 0} is a stochastic process, the properties of which must be

discovered. Substitute (3.2) into (3.1) to obtain

Ndm(w) +VNdZ (w) = k [N-Nm(w) -VNZ (w) ] [Nm(w) +VNZ (w) ]dw

- [ INm(w) wvNZ M 3 dw (3.3)

+ /X [N-Nm(w)-Y/NZ(w)] [Nm(w)+'NZ(w) ]u [Nm(w)+/NZ (w)] dB(w)

Next isolate terms of order N and / ; the result is, after

stipulating that A' =N, a constant as N -,

0(N) dm(w) 1 -m (w) jm(w) - ,jm(w) , (3.4)
dw

O(/N): dZ(w) = {'[l-2m(w)]-W}Z(w)dw

+ VA' [l-m(w)]m(w) + Wm(w) dB(w) ; (3.5)

the stochastic differential equation (3.5) is of Ornstein-

Uhlenbeck (0-U) form; see Arnold (1974).

6

. . . . .. . ° . - . . , . J ,- . . • . , . . ..



Next obtain the approximate long-run mean as the solution

of (3.4) with dm/dw = 0, examining only the heavy-traffic

situation in which X' > P:

m(M) = 1 A' > (3.6)

- 1- *

AN

If the above solution is used to define the stochastic

differential equation parameters there results

dZ(w) = (-A'+j)Z(w)dw + /2-ip( - (ti/A')) dB(w) , (3.7)

which suggests that {Z(w)} can be considered an O-U process with

constant coefficients; namely

dZ(w) = -pZ(w)dw + adB(w) , (3.8)

the solution to which is

w
Z(w) = Z(0)e -Pw + a f e-PUdB(u) (3.9)

0

2
The parameters W = (A'- ) and a =2

3.2 Response Time Evaluation

Let

T T
R(T) = f X(w)dw f [Nm(w) + /NZ(w)]dw (3.10)

0 0

7



approximate the response time; in this approximation R(T) is

normally distributed (Gaussian). First,

T
E[R(T)] E[R(T)] N f m(w)dw = N(l- )T (3.11)0A

Second,

T
Var[R(T)] Var[R(T)] = var[/N f Z(w)dw] (3.12)

0

T T T2

N{E[ f Z(w)dw f Z(u)du)]-(E[ / Z(w)dw]) 2

0 0 0

for ease of writing we have left the initial condition Z(O)

implicit. In order to evaluate the above, recall that the ta ed

job approaches the server when the latter is in equilibrium,

i.e., at t = . It may be shown that the diffusion approximation

for N(t), the number undergoing service at clock time t, is

N(t) = Na(t) + /N Y(t) (3.13)

where a(t) is a deterministic function of time and {Y(t)} is a

particular Ornstein-Uhlenbeck process. A similar analysis to

that leading to (3.6) and (3.7) yields

a(-) 1 -- !L , NA > j , (3.14)NA

= 1 - __

and

8



and L.' 100, it follows from (3.6) that approximately

100
(10) (1 = = 6 jobs are being processed along with the

tagged job; thus the traffic is moderate in this case. When

N = 10, X = 15, p = 100, then on the average 3.3 are being

processed with the tagged job; a rather light traffic case. When

N = 25, X = 10, i= 100, then on the average 15 jobs are being

processed; again a moderate traffic case. The HT mean is

lower than the simulated mean for N = 10. For N = 25 it

agrees with the simulated mean. As mentioned before, the CLT mean

equals the true mean. The CLT standard deviation approaches

the simulation value as T becomes large, as anticipated. Also

as anticipated, the HT standard deviation is closer to the

simulated one for the moderate traffic cases than for the

light traffic case. In order to assess the degree of normality

of the distribution of R(T) , the a-quantiles for each approxi-

mating normal distribution were computed. The relative

frequency of being less than or equal to each ca-quantile was

computed using the simulated data. The results appear in

Tables 4-6. For N = 25, A = 10, =100, the HIT approximation

appears to describe the data well for all values of T. For

N = 10, the HT approximation does better than the CLT for the

moderate traffic case of X = 25. For the light traffic case,

N = 10, X = 15, both approximations do poorly for small T =0.01,

the mean work request time. The CLT does well for

larqe T = 0.10, which is 10 times the average service time.

Note, however, that all simulations have been carried out

for modest system sizes, N. If N grows to say 50, or 100, the HiT

approximations can be expected to improve correspondingly;

they are often not bad even at the level of N =25.

22
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compute than those for the CLT. It is anticipated that the HT

approximation should be increasingly accurate as N becomes large

when heavy traffic conditions prevail, i.e. -- < 1. It is
XN

inapplicable under other circumstances. We have conducted simu-

lations to assess these anlicipations. All simulations were

carried out on an IBM 3033 computer at the Naval Postgraduate

School using the LLRANDOMII random number generating package

(see Lewis and Uribe (1981)).

Conditional response times given the number of jobs being

processed at the time of arrival of the tagged job were simu-

lated; the tagged job required T time units of processing. For

each initial condition, 500 replications were done. Sample

moments and relative frequencies were computed for each initial

condition giving conditional response time sample moments, and

selected response time relative frequencies, i.e., estimated

probabilities of response times in selected ranges. Uncondi-

tional sample moments and relative frequencies were then computed

by multiplying each conditional moment or relative frequency

by the appropriate stationary probability of there being j jobs

present at the time of arrival of the tagged job and then

summing over all possible j. The stationary probability is

of the form kA1T(j) where k is chosen so that the probabilities

sum to I (cf. Kelly (1979)). A detailed description of the

simulation program can be found in Pornsuriya [1984).

Simulated and approximating means and standard deviations

for various values of N, X, and w appear in Tables 1-3. Some

discussion of specific cases now follows. When N =10, X 25

21



m(c) = 1 + 7T(j)j

where 7 is the stationary distribution of {X(w); w > 0) and

a formula for evaluating o(c) is given in Keilson (1979). The

CLT normal approximation states that R(T) has a normal dis-

tribution with mean m(c)T and variance a(c) 2T. The CLT mean

is the true mean for R(T) under steady state (cf. GJL).

The CLT normal approximation should be increasingly accurate

as T becomes large, despite values of other system parameters,

including the number of terminals.

The derivation of the heavy traffic (or diffusion) approxi-

mation is detailed in Section 3. In summary, the HT approxi-

mation is that R(T) has a normal distribution with mean

N(I - - )T, <1
XN

and variance

NT 2 2 [1 1 i(1 e- pT)

P 2 T

where

2 =

NA

and

p = NX + 4i

The mean and variance of the HT approximation are easier to

20
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5. Simulation Studies of the Accuracy of the Normal Approxima-
tions to the Distribution of Response Time

In this section we use simulation to study the numerical

accuracy of normal approximations to the distribution of the

response time. Two continuous time Markov chain models were

simulated. In one there is a single terminal type; in the

second, a two-terminal type system is examined. Two normal

approximations were evaluated: one results from a central

limit theorem, and the other results from applying the previously

derived diffusion approximation to the Markov processes.

5.1 A Single Terminal Type Markovian System.

Let X(w) denote the number of other jobs undergoing service at

a moment when exactly w units of processing has been accom-

plished on the tagged job for the single terminal type

Markovian model of Section 3. Since {X(w); w > 0} is a Markov

process and

T
R(T) = f (X(w) +1) dw

0

it follows that there are constants m(c) and a(c) such that

R(T) - m(c)T

a(c) V_

converges in distribution to a standard normal distribution

as T - (cf. Keilson (1979), p. 121). Call this a central

limit theorem (CLT) for such a process. In this case

19



to the former drift matrix A of (4.21), and consider the system

dZ*(w) = A*Z*(w)dw + a*dB* (4.23)

the solution to which can be formally written out in terms of the

appropriate fundamental matrix, and computed in terms of eigen-

values and eigenvectors of the matrix A*. See e.g. Arnold

(1974), Chapter 8 and Coddington and Levinson (1955) for details.

A convenient way of formalizing the calculations is actually by

using Laplace transforms. Unfortunately, no truly simple

formulas result. Finally, the covariance matrix C(w) of the

components of Z*(w) satisfies the matrix differential equation

dC(w)
c- = (A*)C(w) + C(w) (A*) + (a) (a)

where ' denotes transpose; the initial conditions are provided

by the long-run distribution in clock time, or in view of (4.18),

of the work time process {Z} itself. It is the K+Is t diagonal

element of C(w), evaluated at w = T and multiplied by N that

provides the required approximate Var(R(T)].

18

.-... ,.,..•,..-,.-,.....,~ ~........ ..................... ...... ..... ..-............... ... .



T K K T~
R(T) = f I [Xi(w)dw] I f Xi(w)dw (4.19)

0 i=1 i=1 0

K T K T
=N I £. f mi (w)dw + IN I /'. f Zi(w)dw

i= 0 i=l 1 0

where it is understood that the initial condition for the

Zi (w) integrand in (4.19) is given by the approximate stationary

distribution from the clock time process. In view of (4.18),

this is equivalent to removing the initial condition by the

long-run distribution of the work time process itself.

Since the long-run situation is being discussed it is first

necessary to solve the steady-state version of (4.5)

K
0 XI(1-m i ) zkmk i = 1 ,2,...,K.(4.20)

k=lkk

Then the solution provides parameters for the long-run version

of (4.6); here written in matrix form

dZ(w) = A Z(w)dw + a dB (4.21)

Now to find the variance of R(T), append the row

K
dZkl (w) = Z (w)dw (4.22)

17
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• or

dt dt
dYi (t) =i{-Yi (e) S +/i(l-ai) aYk(t) }T-iYi(t)

+ /2Xi(l-a i) s  dBi(t) , (4.17)

and a direct comparison with the corresponding equation in work

time, (4.6), shows that the long-run behaviors of the two

processes {Zi(w)} and {Yi(t)} are identical except for a constant
1 1

time-scale change: for large w and t,

t

{Z (w)} and {Yi(-)} (4.18)

have the same probability law; i.e.,
finite-dimensional distributions and
limiting distribution.

A.3 Response Time

We discuss the response time under these conditions: a

tagged job approaches the processor when the latter has been

operating for some time, so the long-run clock time distribution

prevails; after arrival, the job remains present until the total

work time accumulated on the job is T, the requested service

time, giving

16



These equations closely resemble those describing the work time

approximation; again the semigroup approach is applicable.

If a long-run solution to the O(N) term exists in work time,

and consequently dmi/dw 0 as w - =, the result is the system

of equations for m i(c) mi

K
i(l-mi) k-_kmk - mi = 0 , (4.13)

where pi= i/pi = NXi/i. Now these same equations are satis-

fied by a presumed long-run solution in clock time, i.e., if

dai/dt 0 in (4.11); for ai(w) = ai:

K
Pi(l-a) - a.! [ £kak = 0 . (4.14)

k=l

Consequently the long-run solutions in work and clock time agree

at the O(N) term level; this means that the long-run mean number

present in both clock and work time agree:

E[Ni(t)] ~ Na(oo) = Nmi(w) ~ E(Xi(t)] . (4.15)

Next substitute these long-run results in the s.d.e. to see

that as t,w - =, Yi and Zi are essentially the same process.
K

Put S = z ak to simplify writing. Then
k=l 1

KYi(t) v"9Vkk (t )
1 t - k=l dt

dYi(t) = -AiYi(t)dt-W! --- dt + X.(l-ai)/Z i  t
1 11 S 1 1 1S

+ /2Xi(l-ai) dB. , (4.16)

15



C-- Now invoke the HTN:

Ni (t) = Nia i (t) + /iiYi(t) , (4.8)

K
and again N= Nk *,with

k-i

N N - . , <. <i1, (4.9)

but

INi 0 < P! < P! > (4.10)

The result of isolating terms is

""-dai (t) a i (t)

O(N): dt = Xi(l-ai(t)) - i K (4.11)

iKI z (kak)(t)-_ .. k=l

O(N): dY.(t) = -xiYi(t)dt-!'{ K
1 11 1 K

" [ £ aak ( t )

• k-i

K
,T./t ky (t)

+ i(t ) k-i }dt

I .(t)

+ K (1a1))W dB. (t) (4.12)
K 2
( 2. k t(t)

-"~ kk,

k-1

14
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0(N. dm (w) K
O(N) dw = (l-mi(w)) I k -(iwmi(w) (4.5)dw i i k=l k

K K
o(V ): dZi(w) A!{-( [_lmk(w))Ziw)f./ ll-mi(w)) I V7 Zk (w)}dw

1 1 kM'wl) 1 ~

- iZ i (w) dw (4.6)

K
+ g 1 (l-mi(w))k__ £kmk(w)+Vimi(w) dBi(w)

for i = 1,2,...,K. Thus (mi(w); w > 0; i = 1,2,...,K) must

be found by solving a system of ordinary first-order, but non-

linear differential equations, while (4.6) shows that

{Zi(w); w > 0, i = 1,2,...,K} is a multivariate Ornstein-

Uhlenbeck process.

4.2 A Diffusion Model for the Clock Time Process.

In order to provide the initial conditions encountered by

the tagged job, it is necessary to study the clock-time process

Ni(t); see (3.13). The corresponding approximation has s.d.e.

N i(t)
dNi(t) = Ai(Ni Ni(t))dt P i K dt

k N (t)
k= 1

(4.7)~ d..(t)

N dB (t) i =1,2,.,KViNiNit)( 1 +iK ~ i '

[ Nk(t)
k=l

13
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or Wiener processes. The work time process is a transformation

of the clock time process; in particular, the drift of the ith

component of the clock time process {Ni(t)} is seen to be

Ni (t)dt
Xi(Ni -Ni(t))dt - 1 (4.2)

kI Nk(t)
k =1

which exhibits the processor-sharing effect in the term multiply-

ing pi. Multiplication by the total in service, ZNi(t), converts

to the work time transition rates, in analogy with (2.2).

Now once again approximate by writing

Xi(w) = Nimi(w) + /Si Zi(w) ' i = 1,2,...,K; (4.3)

mi(w) and KZi(w)} are to be determined, subject to the normaliza-

tionN= N k but with
k =1

Ni/N _ .0 < Z 1 , (4.4a)

and

NA. ! 0 < A! < X, A! > i (4.4b)

Conditions (4.3) and (4.4) are referred to as the heavy traffic

- normalization (HTN). The result of isolating terms according to

order in (4.1) is:

129--. ' ". " 2 •'.'.""-" "'" ".""



4. Heavy Traffic Analysis of a K-Terminal-Type Processor

Sharing System.

Consider the following natural extension of the previous

model. The processor is jointly utilized by K sets of terminals,

each generating distinctive job types. There are Ni terminals

in the ith set, and arrival rate and service rate are A i and Ui

respectively. Again the discipline at the computer is PS. Of

course this is not the same as a situation in which all terminals

are the same, but Type j jobs occur with probability Pj from each

terminal. The latter model can, however, be studied in an

*" analogous heavy-traffic manner, as can other interesting models.

4.1 A Diffusion Model for the Work-Time Process.

Let {Xi(w), i = 1,...,K} represent the number of jobs of all

types present at the computer at work time w. The present model

implies that {Xi (w) is a multivariate or vector-state birth and

death Markov process. We choose to study a diffusion approxima-

tion (Xi (w)} to {Xi (w)} that is described by the following system

of s.d.e.:

K-
dXi (w) = Xi (Ni-Xi (w))( I X (w))dw - iXi (w) dwk=l

(w)) [ (w) +iXi(w) dBi (w) (4.1)
k=l

i = 1,2,...,K

where {B (w)} are mutually independent standard Brownian motion

, , --'>: ..... .... . .. .. . . .- .'._ , . . .. ... ..,,.... .. : .., ,.. ............



f 2 ,  -a2pw,1 (T-w) d,

I(T) = 2E[ T (Z(0) 2e + -e )(l-e - )
0

! 2E[Z(0) 2 1 r fTe-2pw(l-e-p(T-w))dw]
p

S2 T -2pw -p(T-w)

p 0

Now put E[Z(0) 2 = E[Y(-) 2 = P/X' = 2/2p to see that

I(T) = 2 T [21e-0 (T-w) ]dw = 2-[T -1(1 e-pT H
p 0 p

c o 2T pT
:" = [1I- L(i - e-PT

2--p

Thus it follows that

">', 2

Var[R(T)] z Var[R(t)] = NT y -(1 -a ] T (3.14)
P

To terms of order T this agrees with (4.10) of GJL; not surprisingly,

the additional factor in (3.14) can actually provide numerical

results superior to those of GJL.

The form of the heavy traffic approximation, namely the limit-

ing normal form with parameters (3.11) and (3.14), can be more

rigorously validated by use of the theory of convergence of

suitably normalized sequences of semigroups of transformations;

see Burman (1979). Details appear in an appendix to this paper.

10
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E[Y(w)l = 0, Var[Y(o)] = -- (3.15)NA A

see GJL for a derivation; (3.13) provides the initial condition

for evaluating moments of R(T), using (3.10). Identify Z(0),

the initial value of the work time noisp process Z(w), with Y(-).
T

According to (3.9), this implies that E[ f Z(w)dw] = 0. In order
0

to compute the Var(R(T)J it is next necessary to evaluate the

following integral:

T T
I (T) = E[ f Z (w) dw f Z (u) dul

0 0

T T
= E[2 f Z(w) dw f E[Z((u) IZ(w)I du]

0 w

T T
= 2E[ f Z(w)dw f Z(w)e-(uW)du] (3.16)

0 w

T
2El f Z(w)dwZ(w)(1 -e -p CTw))]

0 P

T 2 Z( )1 i -e -  (T-w))dw]= 2E[ T E [Z (w) Z(0) L(l e

0 P

Square (3.9) and take the expectation to see that, condition-

ally on Z(0),

9
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TAB LE 1

Simulated Mean and Standard Deviation for R(T)

and Their Approximating Values

N =10, X =15, j±=100

TIME T Mean Std. Dev.

0.01 Simulation .0404 .0172
(.0002) *

CLT .0404 .0323

HT .0333 .0238

0.025 Simulation .1005 .0375
(.0005)

CLT .1010 .0510

HT .0833 .0535

0.05 Simulation .2016 .0622

(.0010)

CLT .2019 .0722

HT .1667 .0919

0.10 Simulation .4029 .0940
(.0015)

CLT .4039 .1020

HT .3333 .1462

*The standard error of the estimate of the mean
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TABLE 2

Simulated mean and Standard Deviation for R(T)
and Their Approximating values

N =10, X = 25, .i=100

TIME T Mean Std. Dev.

0.01 Simulation .0606 .0503

(.0002) *

CLT .0605 .0245

HT .0600 .0160

0.025 Simulation .1507 .0315

(.0004)

CLT .1513 .0288

HT .1500 .0314

0.05 Simulation .3021 .0497
(.0008)

CLT .3027 .0548

hT.3000 .0481

0.10 Simulation .6036 .0748
(.0012)

CLT .6053 .0776

HT .6000 .0706

Standard Error for the Estimate of the mean

42



TABLE 3

Simulated Mean and Standard Deviation for R(T)
and Their Approximating Values

N = 25, X = 10, = 100

TIME T Mean Std. Dev.
0.01 Simulation .1498 .0812

(.0002) *

CLT .1500 .0390

HT .1500 .0254

0.025 Simulation .3759 .0503
(.0006)

CLT .3750 .0617

HT .3750 .0497

0.05 Simulation .7506 .0804
(.0010)

CLT .7500 .0872

HT .7500 .0760

0.0625 Simulation .9381 .0909
(.0011)

CLT .9375 .0975

HT .9375 .0863

The standard error of the estimate of the mean
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TABLE 4

Simulated Probability (Relative Frequency) that the
Response Time is Less than or Equal to the Approximating

c-Quantile

N = 10, X = 15, = 100

TIME a: .10 .25 .50 .75 .90 .95 .99

0.01 CLT 0.00 .12 .50 .89 1.0 1.0 1.0

HT 0.00 .10 .36 .68 .91 .97 1.0

0.025 CLT 0.04 .21 .49 .81 .97 .99 1.0

HT 0.00 .09 .33 .67 .91 .98 1.0

0.05 CLT 0.08 .23 .49 .77 .94 .98 1.0

HT 0.0 .07 .30 .65 .92 .97 1.0

0.10 CLT 0.10 .24 .48 .76 .92 .97 1.0

HT 0.00 .04 .24 .60 .89 .97 1.0
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TABLE 5

Simulated Probability (Relative Frequency) that the
Response Time is Less than or Equal to the Approximating

c-Quantil e

N = 10, A = 25, = 100

TIME 1: .10 .25 .50 .75 .90 .95 .99

0.01 CLT .04 .15 .45 .85 1.0 1.0 1.0

HT .11 .22 .43 .72 .91 .98 1.0

0.025 CLT .08 .19 .45 .80 .98 1.0 1.0

HT .10 .22 .44 .73 .92 .98 1.0

0.05 CLT .09 .22 .45 .77 .95 .99 1.0

HT .11 .22 .44 .71 .91 .97 1.0

0.10 CLT .10 .24 .47 .76 .93 .98 1.0

HT .11 .23 .45 .70 .89 .95 1.0

'a2
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TABLE 6

Simulated Probability (Relative Frequency) that the
Response Time is Less than or Equal to the Approximating

c-Quantile

N =25, X = 10, ~. 100

TIME a: .10 .25 .50 .75 .90 .95 .99

0.01 CLT .03 .15 .46 .86 .99 1.0 1.0

HT .11 .23 .46 .73 .91 .97 1.0

0.025 CLT .07 .19 .46 .80 .96 .99 1.0

HT .11 .23 .46 .73 .91 .97 1.0

0.05 CLT .09 .21 .46 .78 .94 .98 1.0

HT .11 .24 .46 .73 .91 .96 1.0

0.0625 CLT .09 .22 .47 .77 .93 .98 1.0

HT .11 .24 .47 .73 .90 .96 1.0
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5.2 Simulation Results for Markovian Model with Two-Terminal
Types.

In this subsection we describe the results of a simulation

of the general K-type Markovian model of Section 4, in the

case of K = 2 sets of terminals. As in Section 4 let X.(w)

represent the number of other jobs of type i being processed when

the tagged job has acquired exactly w units of processing.

As before the response time for the tagged job requiring T

units of work is

T
R(T) = f [XI(w) + X2 (w) + 11 dw

0

The process {(Xl (w),X 2 (w); w > 0} is Markovian. Hence

again R(T) satisfies a central limit theorem as T -.

The normal approximation for the distribution of R(T) result-

ing from the central limit theorem will again be referred to as

CLT.

The mean term (mi1 +m 2)T for the heavy traffic approximation

was computed by solving the system of equations (4.20) for

m and m 2 . The variance term for the approximation was computed

by solving the system of stochastic differential equations (4.23)

as detailed in Arnold [Corollary (8.2.4)]. The fundamental

matrix (Arnold [p. 1291) was found by computing Laplace

transforms of the system of defining differential equations

and then inverting the solution. The approximating variance

term was found by computing the variance of the solution of

the s.d.e. As in the case of one-terminal type, it is a

29
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linear combination of exponentials and constant terms. Its

exact form is uninformative and will not be given here.

Conditional response times, given the number of jobs of

each type being processed at the time of arrival of the tagged

job, were simulated. The tagged job was always taken to be

a Type 1 job. For each initial condition, 300 applications

were carried out. Sample moments and probabilities (relative

frequencies) were computed for each initial condition giving

conditional sample moments and probabilities (relative fre-

quencies). Unconditional sample moments and probabilities

were computed in a similar manner to that in the one-terminal

type simulation; see Pornsuriya [19841.

Values of the simulated means and standard deviations and

their approximating values for R(T) for various cases in which

N1 = 5 and N2 = 5 appear in Tables 7-10. Once again the CLT

mean is the true steady state mean for R(T). The means and

standard deviations of R(T) for each T differ surprisingly

little for the four cases. This suggests that perhaps the

two-type terminal model can often be satisfactorily approxi-

mated by a one-type model in which the arrival rate and service

rates are the average arrival and service rates in the two-type

model. Values of the simulated means and standard deviations

and their approximating values for the approximate one-type

model with N = 10, A = 25 and w = 75 appear in Table 11. The

values for the approximate one--tvpe model are acceptably

close to those for the two-type model. Note that the quality

30



of the HT approximation is generally quite good, even though

the system sizes N1and N 2 can hardly be called "large."
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TABLE 7

Simulated Means and Standard Deviations for R(T)
and Their Approximating Values

N1 = 5, N2 = 5, X1 =20, X2 = 30, 1 = 50, 12 = 100

TIME T Mean Std. Dev.

0.01 Simulation 0.0713 0.0135
(0.0001) *

CLT 0.0707 0.0204

HT 0.0710 0.0132

0.025 Simulation 0.1783 0.0263
(0.0003)

CLT 0.1766 0.0322

HT 0.1775 0.0253

0.0375 Simulation 0.2664 0.0353
(0.0005)

CLT 0.2650 0.0395

HT 0.2663 0.0325

0.050 Simulation 0.3570 0.0414
(0.0005)

CLT 0.3533 0.0456

HT 0.3550 0.0384

0.0625 Simulation 0.4439 0.0478
(0.0006)

CLT 0.4416 0.0510

HT 0.4438 0.0435

Standard error of the estimate of the mean
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TABLE 8

Simulated Means and Standard Deviations for R(T)
and Their Approximating Values

N 1= 5, N 2 = 5, X 30, X 2=20 i1 1'P2=5

TIME T Mean Std. Dev.

0.01 Simulation 0.0710 0.0137
(0.0001) *

CLT 0.0716 0.0204

HT 0.0710 0.0132

0.025 Simulation 0.1777 0.0268

(0.0003)

CLT 0.1789 0.0322

HT 0.1775 0.0253

0.0375 Simulation 0.2672 0.0351
(0.0004)

CLT 0.2684 0.0395

HT 0.2663 0.0325

0.050 Simulation 0.3567 0.0419

(0.0005)

CLT 0.3578 0.0456

HT 0.3550 0.0384

0.0625 Simulation 0.4461 0.0476
(0.0006)

CT0.4473 0.0510

HT 0.4438 0.0435

Standard error of the estimate of the mean
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TABLE 9

Simulated Means and Standard Deviations for R(T)
and Their Approximating Values

N1 = 5, N 2 = 5, X1 = 10, X2 = 40, , = 25, 2 = 125

TIME T Mean Std. Dev.

0.01 Simulation 0.0717 0.0134
(0.0001) *

CLT 0.0717 0.0237

HT 0.0720 0.0133

0.025 Simulation 0.1788 0.0280
(0.0004)

CLT 0.1793 0.0375

HT 0.1799 0.0271

0.0375 Simulation 0.2690 0.0376
(0.0005)

CLT 0.2684 0.0459

HT 0.2699 0.0359

0.0500 Simulation 0.3588 0.0456
(0.0006)

CLT 0.3585 0.0530

HT 0.3599 0.0433

0.0625 Simulation 0.4481 0.0527
(0.0007)

CLT 0.4481 0.0529

HT 0.4498 0.0496

Standard error of the estimate of the mean
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TABLE 10

Simulated Means and Standard Deviations for R(T)
and Their Approximating Values

N 1 = 5, N2 = 5, X1 = 40, A2 = 10, = 125, 2 = 25

TIME T Mean Std. Dev.

0.01 Simulation 0.0725 0.0138
(0.0001) *

CLT 0.0724 0.0249

HT 0.0720 0.0133

0.025 Simulation 0.1816 0.0290
(0.0004)

CLT 0.1810 0.0394

HT 0.1799 0.0271

0.0375 Simulation 0.2717 0.0389
(0.0005)

CLT 0.2714 0.0482

HT 0.2699 0.0359

0.0500 Simulation 0.3622 0.0472
(0.0006)

CLT 0.3619 0.0557

HT 0.3599 0.0433

0.0625 Simulation 0.4522 0.0557
(0.0008)

CLT 0.4524 0.0623

HT 0.4498 0.0496

Standard error of the estimate of the mean
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TABLE 1

Simulated Means and Standard Deviations for R(T)
and Their Approximating Values
for the One-Type Model

N = 10, X = 25, ± = 75

TIME T Mean Std. Dev.

0.1 Simulation 0.0701 0.0139
(0.0002) *

CLT 0.0701 0.0206

HT 0.0700 0.0135

0.025 Simulation 0.1766 0.0263
(0.0005)

CLT 0.1752 0.0325

HT 0.1750 0.0258

0.0375 Simulation 0.2620 0.0361
(0.0008)

CLT 0.2628 0.0398

HT 0.2625 0.0330

0.0500 Simulation 0.3501 0.0430
(0.0009)

CLT 0.3504 0.0460

HT 0.3500 0.0390

0.0625 Simulation 0.4388 0.0478
(0.0011)

CLT 0.4380 0.0514

HT 0.4375 0.0441

Standard error of the estimate of the mean
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Choose the functions mi so that they satisfy the system of

differential equations (4.5). Let N - -. Then for f in the

above class of functions, the operator AN converges to yield

K K K
A f(z) =il f'{X!i'F(1-mi(w)) IV/i.z. - Xz. z j J(w)-pizi}i0 Z 1 j=l I J1

K K
+f {A' l-m i (w))( 1 .. (w)) +P M(w)}i=l Z. i j =i m

The operator A. is the infinitesimal operator of the diffusion

whose stochastic differential equation is (4.6) [cf. Arnold

(1974), page 152]. The Trotter-Kato theorem can now be applied

to assert that the semigroups converge [cf. Burman (1979)].
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K1
A Nf (z) z {f(z11 ....z.i + W.., )XK(N)

+ f (Z11.. z. - 1K )i(N)

K

1 K j=ljJ

K
- f' V7X I-Nm'(w) .(A-8)

Note that no specific normalization has been utilized up to

this point. Now, however, invoke the HTN of (4.6) and utilize

(A-6) and (A-7) specifically; allowing N to become large,

K I .(N) - Pi(N) 1 X.i(N) +4.p.i (N)
ANf(z) - {fi 1 + 7Tf (z.) XN

1

-f, VT-. V/ m! (w)} (-9
z. 1 1(A9

K K
Sf' {NX/(lm(w)) Z 2.m.(w) - i./Fm.(w)
i z i 1 1 1 =1 I1 .11

K K
-/z.m!(w)] + X./Tlm(w))( /IZ..) -X! z. ~ .

Pi +jZ 4o(N 
1 /2  + K

1 1 ) + f" {)!(l-m .(w))

K -1/2
9 .ni(w) + Pi m.i(w) + O(N')}
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K
ANf(z) = 0imi [ {f(zl'''z +K i

1
A1 £/-,m (w A .. Z ) () }

+ f(z 1 , ... ,z i  ) 1AK

1

1 ~w) 1.. 1 K K K

K
( ( -( {(Xi(N) + pi(N))AI)

i=l 11

f(zlz 2 ,...,zK) + O()1 (A-4)

where for simplicity (and generality) we abbreviate

K
Xi(N) = Xi[Ni - Nimi(w)-- Nz]( (N m (w)+VN .z)) (A-5)

V? K /
(XiN) [.i (l-mi(w)) - z. I(N I (Zj mj(w) + _ z.))

1 1 1 j=l VNJ

(A-6)

and

Pi(N) = ui(Nimi(w) + z i ) - piN(imi(w) + - z i ) . (A-7)

Upon passage to the limit via Taylor series expansion it is

seen that
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processes {Xi(w);N}: if ANf Af in sup norm for a suitable

class of test functions (e.g. f(z): 7K 0 T 1 m-timescontinuously

differentiable, m > 3, that vanish identically outside a bounded

subset of TK and further such that the functions, f, together with their

first and second derivatives do not increase faster than some

fixed power of z) it can be concluded that the semigroups

converge, and hence the Markov probability transition functions

themselves converge.

We now proceed with the formal calculation of the limiting

generator for our normalized process. Invoke (4.4) so

x N (w) - N.m. (w) XN (w) - NZ.m. (w)
ZN(w) = 1 1 i 1 i i i (A-l)

1 1

By definition, for z = (zl, 2,...,z K) and f in the above class

N N 1

A.f(z) - lim{E[f(z N(w++A))IZ N(w) =z] - f(z)}! . (A-2)
A-0A

Given ZN(w) = zi and C. (w,w+A) represents the change in XN(w),1 1 1 1 '

XN (w) + C. (w,w+A) - N.m. (w+A)
Z. (w+A) =
1

c. (w)
+ z. - N. m! (w + o(A) . (A-3)

11

Consequently, for z such that z. > -N1Fm. (w)A
1 1 1
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APPENDIX

HEAVY TRAFFIC APPROXIMATION BY CONVERGENCE-
OF-SEMIGROUPS METHODOLOGY

The purpose of this appendix is to outline a mathematical

framewerk upon which the heavy traffic approximations of this

paper may be rigorously based. The approach is to use an

analytical theory of convergence of semigroups of operators

apparently first applied to queueing problems by Burman (1979)

in a regrettably unpublished thesis. See also Lehoczky and

Gaver (1981) where the technique is used to obtain results

concerning a data-voice traffic sharing multichannel system.

The theory of semigroups of operators is introduced in Feller

(1971), and detailed in Dynkin (1965); the convergence ideas

are discussed in Trotter (1974) and Kato (1976). The basic

notion is that the state variable of a process, say the work

time process of Section 4.1, {Xi(w;N), w > 01, is one of a

sequence of birth and death Markov processes indexed by system
size N. Given such a sequence of Markov processes, <fXi(w;N)}>

1

each with its appropriate state space, SN, it is desired to

show that the corresponding sequence of probability transition

functions converges to that of some limiting process that has

K
state space S ; in the present case S. = +R The limiting

process under the normalization of {X(w;N)} chosen will be a

particular diffusion process, namely, in the present heavy

traffic situation the multivariate Ornstein-Uhlenbeck.

The Trotter-Kato theory of convergence deals with the

0 convergence of infinitesimal operators AN of the normalized
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* TABLE 15

Simulated Probability (Relative Frequency) that the
Response Time is Less than or Equal to the Approximating

c-Quantiles

N1 = 5, N2 = 5, X = 40, k2 = 10, i = 125, = 25

TIME T a: 0.10 0.25 0.50 0.75 0.90 0.95 0.99

0.0100 CLT 0.024 0.116 0.445 0.907 1.0 1.0 1.0

HT 0.110 0.228 0.433 0.710 0.905 0.973 1.0

0.0250 CLT 0.054 0.164 0.435 0.820 0.993 1.0 1.0

HT 0.112 0.219 0.422 0.682 0.901 0.967 1.0

0.0375 CLT 0.070 0.186 0.428 0.795 0.981 0.999 1.0

HT 0.113 0.224 0.414 0.693 0.899 0.967 0.999

0.050 CLT 0.075 0.182 0.439 0.784 0.972 0.998 1.:'

HT 0.110 0.216 0.422 0.689 0.896 0.969 1.0

0.0625 CLT 0.083 0.200 0.443 0.765 0.959 0.997 1.0

HT 0.118 0.222 0.427 0.683 0.891 0.958 1.0

J."
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TABLE 14

Simulated Probability (Relative Frequency) that the
Response Time is Less than or Equal to the Approximatinga-Quantiles

N1 = 5, N 2 = 5, = 10, 2= 40, i 25, -p2 125

TIME T a 0.10 0.25 0.50 0.75 0.90 0.95 0.99

0.010 CLT 0.027 0.119 0.447 0.906 1.0 1.0 1.0

HT 0.110 0.230 0.458 0.737 0.931 0.982 1.0

0.0250 CLT 0.061 .0.178 0.451 0.824 0.991 0.999 1.0

HT 0.121 0.236 0.464 0.734 0.930 0.985 1.0

0.0375 CLT 0.068 0.191 0.441 0.790 0.979 0.999 1.0

HT 0.117 0.239 0.451 0.725 0.927 0.983 1.0

0.0500 CLT 0.081 0.189 0.430 0.776 0.975 0.997 1.0

HT 0.117 0.232 0.444 0.729 0.935 0.985 1.0

0.0625 CLT 0.085 0.199 0.442 0.772 0.960 0.995 1.0

HT 0.121 0.237 0.456 0.737 0.923 0.979 1.0

40
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TABLE 13

Simulated Probability (Relative Frequency) that the
Response Time is Less than or Equal to the Approximating

a-Quantiles

N 1 = 5, N2 = 5, X 1 = 30, X 2 = 20, ji = 100, P = 50

TIME T a: 0.10 0.25 0.50 0.75 0.90 0.95 0.99

0.0100 CLT 0.049 0.159 0.457 0.869 0.998 1.0 1.0

HT 0.114 0.229 0.442 0.718 0.919 0.979 1.0

0.0250 CLT 0.078 0.194 0.462 0.809 0.978 0.997 1.0

HT 0.113 0.228 0.442 0.717 0.916 0.973 0.999

0.0375 CLT 0.088 0.204 0.455 0.787 0.962 0.995 1.0

HT 0.111 0.224 0.432 0.702 0.909 0.965 0.999

0.0500 CLT 0.088 0.212 0.459 0.771 0.955 0.989 1.0

HT 0.111 0.226 0.434 0.696 0.898 0.961 0.998

0.0625 CLT 0.093 0.212 0.465 0.773 0.945 0.986 1.0

HT 0.110 0.222 0.432 0.705 0.889 0.954 0.997

........................... 7..........................



TABLE 12

Simulated Probability (Relative Frequency) that the
Response Time is Less than or Equal to the Approximating

a-Quantiles

N1 = 5, N2 = 5, 1 = 20, X2 = 30, = 50, 112 = 100

TIME T C: 0.10 0.25 0.50 0.75 0.90 0.95 0.99

0.010 CLT 0.041 0.137 0.433 0.838 0.998 1.0 1.0

HT 0.109 0.221 0.443 0.719 0.915 0.977 1.0

0.0250 CLT 0.062 0.170 0.425 0.765 0.969 0.997 1.0

HT 0.103 0.223 0.438 0.708 0.911 0.975 1.0

0.0375 CLT 0.079 0.191 0.429 0.754 0.952 0.991 1.0

HT 0.118 0.229 0.447 0.713 0.905 0.969 0.999

0.0500 CLT 0.075 0.181 0.417 0.724 0.939 0.986 1.0

HT 0.106 0.222 0.431 0.693 0.897 0.965 0.998

- 0.0625 CLT 0.081 0.198 0.436 0.745 0.932 0.980 1.0

HT 0.115 0.238 0.451 0.719 0.898 0.960 0.997
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To assess the quality of the normal approxi.mation to the

distribution of R(T) for the two-type model, the a-quantiles

for each two-type approximating normal distribution were

computed. The relative frequency of being less than or equal

to each a-quantile was then computed, using the simulated

data. The results appear in Tables 12-15. From the heavy

traffic approximation to the mean it follows that approximately

7 jobs are being processed with the tagged job. Thus, all

the cases considered are really moderate traffic cases. The

tables indicated that the HT approximation tends to describe

the quantiles better than does the CLT. However, as is

expected, the CLT improves with larger T.

37
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