
7 -R159 39 CODE SEQUENCE
PERFORMANCE ANALYVSIS USING12CROSS-CORRELATION PARAMETERS IN (U) RIR FORCE INST OF

TECH WRIGHT-PATTERSON RFB OH SCHOOL OF ENGI
UNCLASSIFIED R C GONDER JUN 85 RFIT/GEiENG/8SJ-i F/G 17/2 NLEEEEEEEEEIIEE
ElhEEEEEEEEEEE
EIEEEEEEEEEEEE
ElEEEEEEEEEllE
EEEEEEEEEEE~lE
ElEEEElhElhhEEllllllllllomlll

us
1:5 W* .0

IIL

MICROCOPY RESOLUTION TES -CHART

NATIO6AL SWBU41A-0F STANDAM-1963-A

's

0f)

I- ~OF 4

CODE SEQUENCE PERFORMANCE ANALYSIS
USING CROSS-CORRELATION PARAMETERS IN

PHASE-CODED MULTIPLE ACCESS

'I....COMMUNICATION SYSTEMS

THESIS

Richard C. Gouder
CPT, USA

AFIT/GE/ENG/ 85J-1

This document has been approved DTE1 E:
P, ic release and sale; its tEL~ l

dij!,ibutjon is unlimitedSP.

DEPARTMENT OF THE AIR FORCEA

'C AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright- Patterson Air Force Base, Ohio

85 091 05

.4 AFIT/GE/ENG/85J-1/

CODE SEQUENCE PERFORMANCE ANALYSIS
USING CROSS-CORRELATION PARAMETERS IN

PHASE-CODED MULTIPLE ACCESS
COMMUNICATION SYSTEMS

THESIS

Richard C. Gonder

CPT, USA

AFIT/GE/ENG/85J- 1

DT!C.
AELECT-:

~Y19M85

Approved for public release; distribution unlimited

AFIT/GE/ENG/85J-1

CODE SEQUENCE PERFORMANCE ANALYSIS USING

CROSS-CORRELATION PARAMETERS IN PHASE-CODED

MULTIPLE ACCESS COMMUNICATION SYSTEMS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Ac~eso

PTl

Richard C. Gonder

CPT, USA " : .; C~de3

June 1985

Approved for public release; distribution unlimited

°. o"

.N Acknowledgements

I would like to thank my advisor, Major Kenneth G. Castor of

the Air Force Institute of Technology, for proposing this thesis

topic and for his guidance. I would also like to express my

appreciation to my wife, Lora, for her encouragement and support

throughout the thesis effort.

iLL

ii

...* ~ .[

.

i" Contents

Page

Acknowledgements... V

List of Figures v

List of Tables .. vi

Abstract '0.. vii

I. Introduction .. ._ 0. . .I-. 0 . 0 . . .0 . 0. . .

II. Background .. .II-.0 0 0 - 0 .0. .0 . .. 0 0. .

The Code Division Multiple Access
System Model....................*. -3

Discrete Odd and Even Correlation Functions.... -7
Worst Case Analysis. -10
Concept of Code Analysis Algorithm............. -11
Spreading Sequence Code Generation -

Pseudonoise.......... 000 -13
Maximal Sequences.. 0000000-00.0.0-0 -14
Gold Code Generation -15
Kasami Code Generation -* -16

III0 Software Overview, o~oo..oo~~o .. s III-1

Program GenerateCodes...............o........ -1
GenLinear... 0. -3
GenGold... 0.0 0.....0060*..0 -3
GenKasamio... 0.0 0. -4
Program PartialCorrelate....................... -4
Program PhaseCorrelate -7
Program MassCorrelate......0 -9

IV. Code Performance Analysis 0 IV-1
Maximal Length Codes -*o..... oo ... -1
Gold Codes ... s -5

".Ka sam i Code s #..... -8

" Comparison of Maximal Gold and Kasami Codes.... -11

V. Software Performance........ V-i

SCorrelation Times6-0..... -1
Phase-Correlate Program Performace............. -2
Thresholding Process......................... -3
Mass-correlate Performace....................... -3

VI. Conclusions and Recommendations.0 OOVI-1

"J Bibliography. o . . .o. . .o o o . o o * . o. .oBIB-1
- .5..oo o oo-e oo o o oo o ooo.oo o oo o o

Appendix A: Performance Plots............................ A-i

Appendix B: Geeaeoe otae... .. B-i

Appendix C: PartialCorrelate Software.... 0................... C-i

Appendix D: PhaseCorrelate Software........0.0............0.. D-1

Appendix E: assCorrelate Softare.....0.0.....0...........*.. E-1

-ii

List of Figures

Figure Page

11-1. Phase Coded CDMA System odel.............. 11-4

11-2. Time Domain Analysis of Correlation Process 11-6

11-3. Discrete Correlation Example............. 11-8

11-4. Example Continuous Odd and Even Correlation..... 11-9

11-5. Even Correlation With Threshold........... 11-12

11-6. Amount of Code Exceeding Threshold as a
Function ofthe Threshold***............ 11-12

117 xml ierFebc SitRgse..... 11

11-8. Eenampl Linear Feedback Shift Register.,,# 11-14

III-I. Structure Chart for GenerateCodes Algorithm 111-2

111-2. Structure Chart for Partial Correlate

Algorithm 0... 006-0..... 00.... 0.....00.0. 111-5

111-3. Structure Chart for PhaseCorrelate Algorithm 111-8

*111-4. Structure Chart for MassCorrelate Algorithm III-10

Av

List of Tables
'. -.

Table Page

1. Code Generation Polynomials for Maximal
Length Code Sets IV-2

2. Code Generation Ploynomials fo Gold Code Sets.. IV-6

3. Code Generation Polynomials for Kasami Code
Sets ... o............0....0........................ IV-8

4. Code Generator Software Performance Times V-i

5. Correlation Software Performance Times......... V-2

I

I ,,i

Abstract

This -p-Lp- documents a technique to compare cross-

correlation parameters of binary sequences used for spread-

spectrum multiple-access communication systems, by performing a

thresholding process on the correlation functions. The

performance of Maximal length, Gold and Kasami code sequences is

measured and analyzed for code lengths ranging from 63 to 1023.

Comparisons of optimized codes versus unoptimized codes for each

type of code sequence are analyzed in terms of the thresholding

process. Comparisons are made of the performance of code

sequences and code sets at lengths of 63, 127, 255 and 1023.

The software used to analyze the codes is discussed in terms

of structure and performance, and is included as appendices in

the thesis.

The results of this investigation indicate that the

thresholding process can be used to evaluate binary sequence

performance. / "i 'i-' - .', . Ii

I.

4

vii

. . .-.....- -. . .,- -,. - . ,,..,.... .. , A.

I. Introduction

Problem

One of the most important problems in spread-spectrum

multiple-access communications is the selection of periodic

sequences which have good cross-correlation properties. Previous

efforts in (8,25) limit their evaluation of the code sequences to

the maximum peak, or a metric of the peak, of the cross-

correlation functions. The goal of this thesis effort is to

investigate the parameters used to evaluate cross-correlation

properties and to develop a robust technique which can be used to

evaluate cross-correlation properties. To establish a baseline,

calculations of parameters of known periodic sequences are

compared. Maximal length, Gold and Kasami Code Sequences are

used to do this.

Scope

The thesis effort is restricted to the phase-coded spread-

spectrum multiple-access systems as modeled in Chapter II. The

C.
known code sets, used for comparison, are limited to lengths less

than or equal to 1023.

Sequence of Presentation

The order of presentation in this thesis parallels the

approach to the problem. Chapter II is a review of the

literature and presents the background material necessary to

understand the code-division multiple-access model, the

correlation functions, the code analysis algorithm and the

I-11

construction of Maximal length, Gold and Kasami code sequences.

Chapter III gives an overview of the software developed in this

thesis effort. Chapter IV presents the analysis of the

performance of the code analysis algorithm for varying lengths of

Maximal length, Gold and Kasami codes and comparisons of these

code sets are made. Chapter V presents the actual performance of

the software developed in the thesis. Chapter VI presents the

conclusions and recommendations for further study. Appendix A

includes all the perfomance plots of the code performance

algorithms. Appendices B - E include all the documented software

used to generate the data needed to obtain the performance plots.

1-2

.
" ''"li@ ---m * ' - '%

II. Background

Spread Spectrum Communications is the term used to describe

a class of transmission techniques, in which the actual signal

bandwidth is much greater thau that which is actually required to

pass the information accross the channel (10:855), and the

transmitted bandwidth is not a function of the information

bandwidth (1:1). The modulated signal bandwidth should be 10 -

1000 times greater than the information bandwidth (2:1). Spread

Spectrum systems are divided into four catagories: 1) Direct

Sequence Modulation; 2) Frequency hopping; 3) Chirp Modulation;

4) Time Hopping and combinations of these four (2:1).

In Direct Sequence modulation or pseudonoise modulation a

digital code sequence is used to modulate a carrier. (1:2) This

code sequence must have a chip rate much faster than the bit rate

of the information sequence. This operation, in effect, spreads

the information over a larger bandwidth. The receiver uses the

same spreading code sequence to despread the signal to obtain the

original information signal which can then be demodulated as if

the the direct sequence modulation had never existed on the

carrier (2:2).

In Frequency Hopping, a carrier frequency is shifted through

a large bandwidth as dictated by a digital code sequence (1:2).

At any one instant of time, only one narrow band signal is trans-

mitted within the broad spectrum allocated for the system. This

contrasts sharply with the Direct spread system for it uses the

entire spectrum at any instant of time.

II-i

Worst Case Analysis

The discrete periodic correlations functions, 0(l) and e(),

as defined by Massey and Uhran (8:539), are undefined for non

integer values of 1. If we redefine the correlation functions as

follows:

e(t) = e() + [e(1) + e(,+1)] (r-) "

E() - @() + [G<l) + OU-1)] (,--)

where . = the integer part of T chips
and 0 (4 L chip times

then the discrete correlation functions are defined for the

entire region T (O,].I.

By the same rationale:

RIGHT(r) - RIGHT(1) + [RIGHT(t) + RIGHT(1+1)](T-1)

LEFT(T) - LEFT(J) + [LEFT(j) + LEFT(1+1)](r-1)

where I " the integer part of T chips
and 0 < L chip times

Now the continuous aperiodic correlation function can be

redefined as:

R k,i(T) - RIGHT(T) (2)

Rki(T) = LEFT(t) (3)

And the periodic correlation functions can be redefined as:

e(T) - RIGHT(T) + LEFT(T) (4)

9(1) = RIGHT(T) - LEFT(T) (5)

Subtituting equations 2 and 3 into equation 1, yields:

vJ'i('r) 4 A-[dj,.1RIGHT(r) + dJ,0LEFT(r)]cos(G-Wc T) (6)

It is obvious that v ji(Tj) is maximized when cos(ei-W i.

II-10

S --• . . - '- " - ..- . .. *
-

"

correlation functions. The actual odd and even periodic

functions are continuous linear functions between integer values

of chip times in the region (O,L), where L is the length of the

code sequences in chips. The only discontinuities occur at the

integer values of chips. It should be noted that the values

obtained using this procedure are unnormalized values that are

functions of the length of the codes The actual odd and even

continuous correlation functions are dipicted in Figure 11-4.

0

VS

. I% ' I

4)

I ' /

0 2 4 0 8
a;au

Figure 11-4. Example Continuous Odd and Even Correlation

11 -9

then the discrete even correlation value at that 1, can be deter-

mined by:

1) Determining the number of aggreements and disagreements in
Region 1.

2) Determine the LEFT Correlation - number of agreements -
number of disagreements in Region 1.

3) Repeat steps 1 and 2 for RIGHT correlation in Region 2.

Then the discrete even periodic correlation is:

e(() - RIGHT(±) + LEFT()

and the discrete odd periodic correlation is just:

e(j) - RIGHT(L) - LEFT(t)

To illustrate this procedure using p1 and P2' let the delay of d2

be I - 3 chip times. Then the agreements and disagreements for

the regions are shown in Figure 11-3.

10 11 0 1 1 1 1 0 1 1 0 1 1 1

0 1 0 1 1 0 1 1
D D D A A D D A

Region 2 Region 1

Figure 11-3. Discrete Correlation Example

It can be clearly seen from Figure 11-3, that the values for the

procedure given a time delay of I are as follows:

LEFT - -1
RIGHT - -1
0(3) - -2
e(3) - 0

It can be shown that both of the discrete correlation functions

define endpoints to line segments of the continuous periodic

11-8

i | I l l m m m n %

If the double frequency terms are removed by filtering (a good

assumption because w c is always much greater than 1/T in spread

spectrum multiple access systems) then the output of the ith

correlator becomes:

KZi M Aildi'oT +J 1l [d J,'lRJ'i (TJ) +dj'oRJ'i(,rJ)]cos(Oj'wcrJ)}Z A+ R)+ +

J*i

T
+ f n(t)pj(t)cos(wc t) dt

When evaluating code sets for their use in CDMA systems, the term

inside the summation is most important because that is where the

contribution of the jth signal to the ith correlator exists.

This term provides the amount of interference from the Jth user

in the ith user's communication channel. It will be defined as

this:

uj,i(j) - Ai[dj,.Rj,(j) + dj,oRj,i(j)] cos(ej- wj) (1)

Discrete Odd and Even Correlation Functions

For mathematical purposes, if the spreading sequences which

are bipolar NRZ signals, are mapped from [-1,1] into [1,01, then

the corelation of two codes can be done using modulo-2 arithmetic

with equivilent results. The use of this isomorphism makes the

problem easier to present as well as easier to apply to any

algorithm. As an example, given the two code sequences 2 and

represented in vector form as:

-1 = [1,0,1,1,01J,1~,1j

£2- [0,,0,1,1,0,1,11

and given a delay, 1, equal to an integer amount of chip times,

11-7

, . .--.. . r" ._ ...-... ".........".......... 9

If d , d then

.) vji(rJ)a x - dj o[RIGHT(j) + LEFT(j)] - djo 0 ('r) (7)

and if dj1o * d j,1 then

Vj,i(cj)max - dj, 0 [RIGHT(i) - LEFT(j)] - dj, 0 e(r j) (8)

Normally, encoded data sequences have the property that Pr(djl)

. Pr(dj = -1) = .5, then

Vi, i)max or

±e (je

Concept of the Code Analysis Algorithm

Figure 1I-5 displays the v() for d - 1, using the
jij max j,0

example presented earlier, with a threshold set at 1. If Tj is

considered to be uniformly random between the interval 0 - L

chips, then a threshold as displayed in the figure can be ad-

justed to characterize this function. Using the previous example

at a threshold - 1, the amount of the correlation function which

exceeds the threshold is depicted as the shaded region on the

figure. It is computed using similar triangle relationships to

be a value of 0.5 when normalized by the length of the code. If

the threshold moved from 0 to L in the unnormalized function, a

set of data, Threshold vs Amount Exceeding Threshold, can be

easily obtained. To include the effect of the sign of function

in Equations 7 and 8, a second threshold of equal magnitude and

opposite sign can be adjusted accordingly, to obtain a similar

data set. If the two data sets are summed, then the Threshold vs

I Il-li

Worst Case Analysis
iA

The discrete periodic correlation functions, e(1) and 0(1),

as defined by Massey and Uhran (8:539), are undefined for non

integer values of 1. If we redefine the correlation functions as

follows:

e(0) = 0(1) + [e(,) + 0(1+1)] (T-,t)
AA A

-(T 0(t) + [(t) + 0(1+1)](T-1)
where I - the integer part of v chips
and 0 (< L chip times

then the discrete correlation functions are defined for the

entire region T c[0, L].

By the same rationale:

RIGHT() - RIGHT(I) + [RIGHT(l) + RIGHT(1+1)](-1)

LEFT(T) - LEFT(1) + [LEFT(1) + LEFT(,L+1)](r-J)

where I - the integer part of T chips
and 0 4 T < L chip times

Now the continuous aperiodic correlation function can be

redefined as:

R k,i(T) - RIGHT('r) (2)

R- 1"r) - LEFT() (3)

And the periodic correlation functions can be redefined as:

0(T) - RIGHT(T) + LEFT() (4)

O(W) - RIGHT() - LEFT(W) (5)

Subtitutinq equations 2 and 3 into equation 1, yields:

- d RIGHT(J + d 0 LEFT(j)]cos(e- W') (6)

Y It Is obvious that v -V Is maximized when cos(e-ci) 1.

11-10I1

-*- ** .C p
-- *o~P ~ p -- I-

correlation functions. The actual odd and even periodic

functions are continuous linear functions between integer values

of chip times in the region (0,L), where L is the length of the

code sequences in chips. The only discontinuities occur at the

integer values of chips. It should be noted that the values

obtained using this procedure are unnormalized values that are

functions of the length of the codes. The actual odd and even

continuous correlation functions are dipicted in Figure 11-4.

0

.\q'

Even I
Odd

KU 4 1 8

towu

Figure 11-4. Example Continuous Odd and Even Correlation

S11-9

. .. . -.. . .. - - . 4* - s. - 7 -o * .o - i.,.. . - : _ - 1" " , ,

then the discrete even correlation value at that 1, can be deter-

mined by:

1) Determining the number of aggreements and disagreements in
Region 1.

2) Determine the LEFT Correlation - number of agreements -
number of disagreements in Region 1.

3) Repeat steps 1 and 2 for RIGHT correlation in Region 2.

Then the discrete even periodic correlation is:

e() - RIGHT(l) + LEFT(1)

and the discrete odd periodic correlation is just:

0(l) - RIGHT~t) - LEFT(A)

To illustrate this procedure using p, and P 2 1 let the delay of d2

be I - 3 chip times. Then the agreements and disagreements for

the regions are shown in Figure 11-3.

1 0 1 10 10 1 1 1 0 1 111

1 0 1 10 1 0

D D D A A DD A

Region 2 Region 1

Figure 11-3. Discrete Correlation Example

It can be clearly seen from Figure 11-3, that the values for the

procedure given a time delay of I are as follows:

LEFT - -1
RIGHT - -1
(3) -- 2
(-) 0

It can be shown that both of the discrete correlation functions

define endpoints to line segments of the continuous periodic

7I -"

......"- ...","..-...... -.. -... ... - ,--, . .--, -. -.., .".-.- .. .' -,,.-",.--- . '" -:' :.. '.'. ,: '....:

If the double frequency terms are removed by filtering (a good

assumption because w c is always much greater than 1/T in spread

spectrum multiple access systems), then the output of the ith

correlator becomes (letting Ai - 1, 1 - 1,2, ... ,K):

Zi " di,oT +Id R (v)+ dj, R}- Iose- +,

0 J., I- i 0 i
j*i

T
r-.+ f n(t)pj(t)cos(w ct) dtn dt

When evaluating code sets for their use in CDMA systems, the term

inside the summation is most important because that is where the

contribution of the jth signal to the ith correlator exists.

This term provides the amount of interference from the jth user

in the ith user's communication channel. It will be defined as

this:
A

V (- [dj _R ,(j) + d, 0k1 ,1 (1)] cos(9-w'r) (1)
i~i 1 11 J , i~ Jj c j

Discrete Odd and Even Correlation Functions

For mathematical purposes, if the spreading sequences which

are bipolar NRZ signals, are mapped from [-1,1] into [1,01, then

the correlation of two codes can be done using modulo-2 arith-

metic with equivilent results. The use of this isomorphism makes

the problem easier to present as well as easier to apply to any

algorithm. As an example, given the two code sequences y1 and Y2

represented in vector form as:

-1 C 10,1,1,0,O,1,1]

and given a delay, 1, equal to an integer amount of chip tines,

11-7

R: Rki(T) - f 0 k~ - 'Op i(t) dt (region 1)

-T

R k,i(.) -fpk(t - T)p1 (t) dt (region 2)

&P4 all 11

111-

-- ~~ -14 ". RI R- a., R .R .R , , P-T rva- rrw.r.-war~. ~.rpr2aw..

r(t) - n(t) + A d1(t)p1(t)cos(wct) +

K
J11 A pj(t - Tri) dj(t - Tj) cos(wct + ej - we~ j)

J*i

where A amplitude of the ith carrier
di (t) - polar NRZ message signal of the ith user
p (t) - polar NRZ spreading sequence of the ith user
a . phase of the ith carrier varying from 0 - 2: uniformly

- time delay of the ith user varying from 0 - T
uniformly

T - data symbol length in time duration
n(t) - additive white Gaussian noise with two-sided

spectral density N /2
o

If the received signal is input to the integrate and dump cor-

relator matched to the ith signal si(t), then the output of this

correlator at time T is given by:

T
Zi r(t)pi(t) cos(wct) dt00

To illustrate what is going on in the system at this point refer

to Figure 11-2 where the top diagram depicts the two data stream

bits, di,0 and d i 1 All of the other diagrams in this figure

are in time reference to the top diagram which, as mentioned

earlier, is in synchronization with the ith correlator. Diagram

5 depicts the kth data stream which is delayed by Tk which for

this example is equal to 3 chip times of the spreading sequences.

Diagram 4 depicts the product of the ith and kth spreading

sequences, Pk(t-.)pi(t), and is segmented in time into two

regions: Region 1, from t - 0 to t , and Region 2, from t -

tk to t = T. The integrations of these two regions in time

produce the continuous-time partial cross-correlation functions:

J11-5

L IM- ,--

d 1
2(t)

d 2(t)

n(t)

sk(t)
dk(t) 1

ck(t)

Figure II-I. Phase-coded CDMA System Model (12:797)

The data signal d k(t) Is modulated on the phase coded car-

rier ck (t) to produce the transmitted signal sk (t), each given

by: ck(t) - A k Pk(t) Cos(Wct + ek)

sk(t) - A k pk~(t) d k(t) cos(w ct + e k)

The received signal r(t) is given by

r(t) - (t) + A~ p (t d~ d(.t -)cos(W ct + 7j W I

If it is assumed that the ith correlator is synchronized

*with the ith signal, i.e. that T, 0 and the phases are

referenced to signal i, i.e. 0 - 0, then the received signal

at the ith correlator becomes:

11-4

situations where interference and multipath problems exist, there

. ,. are significant degradations in both the FDMA and TDMA systems.

For reasons such as these, code division multiple accessing

schemes have evolved. The CDMA systems allow system users to

r transmit simultaneously in time and occupy the same RF bandwidth

(1:93). Generally, the CDMA system operates asynchronously to

* eliminate system timing problems. However, the imperfect ortho-

gonality of the different spreading sequences reduces the capa-

city of the CDMA system. An important issue confronting system

designers is design of sets of spreading sequences that operate

- efficiently in this system. The correlation properties of these

sets of sequences have a major impact on the capacity of this

type of system and its overall performance.

The Code Division Multiple Access System Model

The basic model of the Code Division Multiple Access system

is depicted in Figure II-1. In this system, each of the K users

is given its own spreading code sequence which has "orthogonal

like" properties with the other assigned users. Because of the

fact that any user can initiate or terminate its traffic at any

time in an asynchronous system, it is more difficult to design

- and evaluate different code sets for use in the system. It is

- desireable to obtain code sets with good cross-correlation and

partial-correlation properties (12:795). This fact will become

evident as the model is explained in the following pages.

11-3

|%

Chirp Modulation is most commonly used in radar, which

transmits swept frequency pulses. The receiver uses a dispersive

filter to compress the signal into a narrower time slot, so it

behaves in the same way a high power pulse does (2:3).

In Time hopping, the transmission time and period is

controlled with the digital code sequence. When used by itself,

" Time hopping can be viewed as pulse modulation under code se-

quence control (2:3).

Spread Spectrum systems may offer any or combinations of the

* following benefits: 1) Simultaneous use of the spectrum by

multiple users; 2) Interference rejection caused by intentional

and unintentional sources such as jamming and multipath; 3) Low

• +density output signals providing a lower probability of intercep-

tion; 4) High resolution ranging; 5) Accurate universal timing;

and 6) Inherent message privacy (1,2).

The disadvantages of using spread spectrum are the increased

complexity of the system and increased difficulty in allocation

of frequencies (2:4).

The effort of this thesis is concentrated in the Direct

-.Sequence Spread Spectrum area and the advantage of multiple

access communications. Multiple access communications systems

-allow simultaneous access to the channel to many users. The

-, three most common multiple access techniques are time division

multiple access (TDMA), frequency division multiple access

(FDMA), and code-division multiple access (CDMA). TDMA and FDMA

*. separate the signals in time and frequency domains respectively.

CDMA employs spread spectrum techniques (SSMA), and provides

another way to separate the signals at the receiver (10:868). In

11-2

If d dj,l, and A= 1 then

- J'' ij)max dj1 [RIGHT(Tj) + LEFT() = dj 0e(G 1 (7)
v...r.. + -

and if d j,0 0 dj,, and A= 1 then

Vj,i(i)max = dj 0 oRIGHT(r j) - LEFT(j)] = d, 0 e(j) (8)

Normally, encoded data sequences have the property that Pr(d jl) =

- Pr(d -1) - .5, thenI

Vje(a)
V J'i(-Z J)Max = or

Concept of the Code Analysis Algorithm

Figure 11-5 displays the v,i (cJ)max for d ,0 - 1, using the

o example presented earlier, with a threshold set at 1. If -j is

considered to be uniformly random between the interval 0 - L

chips, then a threshold as displayed in the figure car. be ad-

- justed to characterize this function. Using the previous example

• at a threshold - 1, the amount of the correlation function

. exceeding the threshold is depicted as the shaded region on the

figure. It is com.puted using similar triangle relationships to

be a value of 0.5 when the length of the code is normalized. If

the threshold moved from 0 to L in the unnormalized function, a

set of data, Threshold vs Amount Exceeding Threshold, can be

easily obtained. To include the effect of the sign of function

in Equations 7 and 8, a second threshold of equal magnitude and

opposite sign can be adjusted accordingly, to obtain a similar

" data set. If the two data sets are summed, then the Threshold vs

d,€

_- II-l1

Cc

0M

NI

E

L
0a

FiueC-. Ee oreainwt hehl

C.

CD

4~I4

threeholci a.fL

Fur 1-6AmountofCd Exceeding Threshold As h rvou xipeprdcspo

shown n Figue111-6

Spreading Code Sequence Generation

I - Pseudonoise (PN) sequences or Linear Feedback Shift Register

(LFSR) sequences are easily generated at the transmitter and the

" receiver. The LFSR, as shown in Figure 11-7 is composed of

binary storage elements, taps for reading storage contents, and a

device that performs the modulo-2 addition of the tapped storage

elements. The binary storage elements must be initially loaded

- with O's and 1's (not all 0). As the LFSR is clocked, the

modulo-2 addition device generates the output of the code gener-

ator as well as the input to the first binary storage location.

S, ICI
I

Figure 11-7. Example Linear Feedback Shift Register

This LFSR as also known as a Simple Shift Register Generator

(SSRG) because all feedback signals are returned to a single

input(l:30). If the initial loading of the generator is all O's

with the exception of the last position, then the output sequence

will not have any transient bits. The general form of the LFSR

is depicted in Figure 11-8 which has N storage locations and taps" - feeding into one summation device.

11-13

- -. ,-... *-**. ,° 2 . ''2''"2 .°,. "---" , . ' " " " - , '' ."...-%-/ ."-"o" . -',' ia'- a ' D eS,,"%.

ooutput C k

Figure 11-8. General Linear Feedback Shift Register (1:30).

The fundamental linear recursion relation which provides the code

sequence element Ck is written as:

N
Ck -. aiCk (refs 1,3)

k k'-

Maximal Sequences

Maximal length sequences are produced using the LFSR in

Figure II-8 using a primitive polynomial of degree N to designate

*- " which tap positions will be used. They have a maximal length

period of 2N - 1 chips. The maximal sequences have the following

properties:

N-1 N-11) Balance property - There are 2 ones and 2 -1 zeroes

2) Run property - In any period, half of the runs of l's or
O's is of length 1, 1/4 are of length 2, 1/8 are of
length 3 etc.

3) The autocorrelation function e(r) is

e() - (L - 0, L, 2L ...chips
-1 for T < 1 and T 4 L-1 chips
(v-£)(L-1) for -1 4 T 4 1, . -

integer part of T for
each period of the
function (refs 1,4,10).

11-14

Gold Code Generation

\ "\ Gold codes can be generated using one period of the output

sequences of two linear feedback shift registers, which have tap

assignments designated by preferred pair polynomials. The

preferred pair must be of degree N, such that N is not divisible

by 4. If the output sequences are modulo-2 added to one another

for each possible phase difference, then L different Gold se-

quences are produced. If the original two sequences are included

then this process yields a set of L+2 Gold sequences (ref

1,4,5,11). To illustrate by the following example:

f1 (x) - x 5 + x 2 + 1 is a primitive polynomial of degree 5

To obtain the preferred pair, Gold's theorem states that:

Given f (x) is a primitive polynomial of degree N such that

N is not divisible by 4 then let

(1 + 2 (N1)
/2 N odd

2 (N-2)/2
I + 2 N even

then f2 (x) is the minimal polynomial of a

In this example t - 1 + 2(5 "1) / 2 - 5
5

The minimal polynomial of a of degree 5 is:

Go s f2 (x) - x 5 x4 + x2 + x + 1

Gold's theorem also states that using a preferred pair of primi-

tive polynomials, of degree N, whose LFSR generator sequences are

maximal length with period L -2 N- 1, to produce a set, C, of

N
L + 2 sequences of length L - 2 - 1. The discrete even cross

correlation function:

f 1 + 2(N+1)/2 N oddI" e..J(k)I 2t2 " 2 /

le 21 + 2(N+2)/2 N even

11-15

and 0e (k) one of the three [-l,-t,t-2J
for k an integer in [0,L]

(refs 1,4,5,11).

For this example, Ieij(k)I - 1 + 2(5+1)I2 - 9, and the three

values that it obtains are [-1,-6, 8].

Kasami Code Generation

A set of Kasami codes can be generated using the maximal

length sequence generated in the LFSR of even length. Using the

decimation of this sequence by 2
N / 2 + 1 to produce a second

sequence with length 2N
/2 - 1. A third sequence of length L,

period 2N
/2 - 1, is produced by the second sequence. The

modulo-2 summation of the first and third sequence through the

2 N/ 2 - 2 different phase shifts of the third sequence will pro-

duce a set of 2 N/2 - 1 sequences. If the first sequence is

included in the set, then the entire Kasami set generated will

have 2N / 2 sequences (11:569). The following example will il-

lustrate this procedure: Given the maximal sequence generated by

the primitive polynomial x 6 + x + 1 is

11111101010110 111011010010011100010111100101000110000100000

the decimation by 9 yields the second sequence

1110010

the third sequence is made by the second to yield

111001011100101110010111001011100101110010111001011100101110010

The modulo addition through the 6 phase shifts produces 7

different sequences. The entire Kasami set includes the first

11-16

' " sequence for a total of 8 sequences. Like the Gold Sequences,

the discrete even autocorrelation and cross-correlation are 3
N/2 N/ 2 1 n

valued. However this set has [-1, (2N/2 + 1), 1 and

for this example have values [-1, -9, 7]. Hence the discrete

even cross-correlation function is

lei,(k~ < N/2
ej (k) < 2 + 1 N even only

.w

S.,

,.

11-17

..

S..
- - ' -

"." " "-- '' . - • - " , ' " . - o . ' . ' , ,. . . " • o . . . % % ' , ' - W , % - . . % * ' - . ,

III. Software Overview I
This chapter provides a general discussion of the software

designed in the thesis, in the order as the fully documented

programs appear in Appendices B, C, D, and E. This discussion is

presented at the structure-function level for understandability.

If the reader desires more detailed discussion of each module

presented here, he should refer to these Appendices. It should

be noted that the software was designed and tested using the

Turbo-Pascal Compiler, version 2.0, from Borland International.

This compiler accepts all standard Pascal types and identifiers

and has many non-standard types and identifiers available to the

user as well. For transportability purposes, the software was

- written such that few nonstandard types are used. When they

were used, a comment identifying its use, directly follows the

code as it appears in the appendices. It is worth noting that

the EOLN and EOF functions are performed differently in many

compilers, and for this reason, any modules performing character

I/0 may have to be modified accordingly. The programs were run

using the Berkely Pascal Compiler, and required additional proce-

dures for string I/0 because a string is a non-standard type.

Program GenerateCodes
C'

Figure 11I-1 depicts the structure of the code generating

program, GenerateCodes. It uses linear feedback shift registers

(LFSR's) constructed from an array of characters, l's and O's, to

generate Maximal Length Codes, Gold Codes, and Kasami Codes. The

outputted sequences are stored in user designated character

%L III-1

041

UU3

44 60

0

41

caa
93,

00

lu w '-4

0 aO

E-1-

~*S*.p~** .-. ~.- .5

files, with modified extensions for each code generated within a

code set (i.e. .001, .002, for the first and second code gener-

ated in a code set). The main module queries the user to deter-

mine which type of code to generate, and calls one of three

modules; LinearGenerator, GoldCodeGenerator, and KasamiGenerator.

Each of these performs most of the user 1/0 required to generate

the codes. They each make calls to LoadInput and Test, which

make tap assignments and validate the inputted filenames respect-

ively. The GoldCode Generator and the Kasami Generator use the

function GetRidOf to free the memory of linked lists, represent-

ing code-lists, that each generator no longer requires for gener-

ation.

GenLinear. The GenLinear module is called by the LinearGen-

erator after the input has been validated. It loads an array,

representing the LFSR, with all G's and a 1 in position CN, as

described in Chapter II. It calls module ModSumTaps to do the

modulo-2 addition of the array elements, identified by the tap

assignments, to produce the output bit, CK. CK is written to the

code file and is passed to the module ShiftRegister, which shifts

the contents of the LFSR by one position, and loads CK into the

CK-1 position. This procedure is continued until 2 - I bits

have been generated.

GenGold. The GenGold module is called by the GoldCode

Generator after the tap assignments have been made for two LFSR's

and the filename has been validated. The user identifies the

number of sequences he wants generated from 1 to 2N + 1. It

- produces two LFSR sequences in the same manner as the GenLinear

module, using modules ModSumTaps and ShiftRegister, but places

11-3

m", " ,'°..-"-" . "..."- "

the two output sequences into linked lists in memory, using

module Enque. The first two sequences generated are written to

code files with extensions .001 and .002 using the Writelist

module. The third sequence is generated by calling module Mod-

SumList which performs a modulo-2 addition of the two lists and

outputs the result into the third file. Module ShiftList is

called to perform a cyclic shift of the first code list. The

forth through the 2N + 1 sequence is generated by calling modules

ShiftList and ModSumList.

GenKasami. The GenKasami module is called when the module

Kasami- Generator has made the tap assignments for one LFSR and

validated the inputted filename. It generates an LFSR sequence

in the. same manner as the GenLinear module but stores the output

sequence in a linked list in memory. It calls module Decimate to

perform a decimation of the LFSR sequence by a factor N + 2,

and produce a second linked list in memory, using module Enque.

The second list is then used to produce a third list, with period

of the second list and length of the first list, using module

Enque. The first code sequence is generated by writing the first

list to file, with the extension .001, using module Writelist.

Successive sequences are generated using ModSumList and Shift-

List, as described previously. Depending on the user's input,

the GenKasami module will produce from 1 to 2N / 2 sequences.

Program PartialCorrelate

The PartialCorrelate program, as depicted in Figure 111-2,

will perform correlations on user designated code files composed

of ASCII l's and O's. The code files are read into linked-lists

111-4

...............................!-

'4.

04
41.

-. 4 0

"4 14

14.

a,4

44

4

aaa

A-4

$4 A4

4)4

00

using the module CreateList. The program has many options avail-

able to the user that are presented in a menu driven fashion. In

all options the actual discrete Odd, and Even correlation func-

tions are computed using the Correlate module, for each integer

value of tau in the interval [O,L]. The correlation function

values are placed into an ordered linked-list of records using

the module Enque. If the user desires, this list of data can be

written to file using the module Writelist. The module ShiftList

is only used when the user wants to evaluate different phase

shifts of the original codes. When called it will shift both

code files a designated number of bits before correlating. If

desired, the thresholding process, as described in chapter II,

can be performed on the correlation functions. The user has the

option of thresholding any or both of the correlation functions

using a positive threshold, negative threshold or both. The '

positive threshold process is performed in the CountUpper module,

while the negative threshold process is performed in the Count-

Lower module. The main module calls the modules, CountUpper and I
CountLower, and passes a specific threshold value to obtain a

value for the amount of the correlation function exceeding the

threshold. The threshold values passed in, vary from 0 to the

length of the codes, and are incremented a fixed amount until the

threshold value has reached the length of the code or the amount

exceeding the threshold goes to 0. During each cycle of this

process, the normalized threshold value and the amount of the

correlation function exceeding the threshold are written to a

user designated file. The modules DisposeOf and GetRidOf are

used to free the memory of the code lists and the correlation

111-6

lists, when their use is no longer needed.

Program PhaseCorrelate

The PhaseCorrelate program determines the best and worst

phases of the two inputted codes in terms of the Odd correlation

function. The structure of the program is shown in Figure 111-3.

The program reads the code sequences into linked-lists using the

module CreateList. The program will perform correlations of the

user designated code files using module Correlate, and determine

the minimum and maximum values of the Odd function for a certain

phase in module Minimax. The program repeats this process for

every phase shift of the code files, and uses module Enque to

place these values into another linked-list. The ShiftList mod-
S.

ule cyclically shifts the code lists appropriately for each phase

* prior to commencing the correlation process. After correlations

have been performed on all phase shifts of the code files, then

the module Maximinimize is called. This module will traverse the

linked-list of minimum and maximum Odd values to determine the

maximum and minimum spread for all phases. The main program will

then traverse the linked list and write the phase, maximum and

minimum Odd values for each phase shift that has a Maximum or

Minimum spread. Just as before, the DisposeOf and GetRidOf

modules free the memory used for the Data linked-lists, and code

lists, when no longer required in the program. The user has the

menu-driven option of performing off-peak autocorrelations or

total cross correlations. This program can easily be modified to

find the min and max of the even or odd correlation functions for

each phase, if desired.

111-7

detected.

Comparison of Maximal, Gold and Kasami Codes

Figures A-73 and A-74 show the maximum even and odd thresY-

olds obtained from the Mass-correlation algorithm for all three

un-optimized classes of codes of length 63. In the threshold

range 0.15 to 0.4, the Kasami set clearly has fewer peaks and

sub-peaks than either of the other sets of even correlations. In

terms of the even correlations, the Maximal set shows better

performance than the Gold set within this range. The odd correl-

ations are very similar in this range, with the Kasami set show-

ing a slightly better perforiance.

Figures A-75 and A-76 show the maximum even and odd thresh-

olds obtained from the Mass-correlation algorithm for the Linear

and Gold un-optimized classes of codes of length 127. In terms

of the even thresholds in the range 0.13 to 0.20, the Gold codes

show fewer peaks than the Maximal code set. The odd thresholds

show the odd correlation functions to be quite similar for both

Maximal and Gold code set over the entire range of threshold

values.

Figures A-77 and A-78 show the maximum even and odd thresh-

olds obtained from the Mass-correlation algorithm for the Linear

and Kasami un-optimized classes of codes of length 255. In the

threshold range of 0.07 to 0.2 of the even threshold functions,

the Kasami code set has fewer peaks than the Maximal set. In the

odd threshold functions, both the sets are similar for thresholds

above 0.1. Because of the equal importance of the even and odd

IV-l

number of sub-peaks in the threshold range of 0.1 and 0.13. The

odd correlations however, show variations below 0.32.

Length 255 Kasami. The odd and even cross-correlation func-

tions for Kasami code 2 and 3, of length 255, are shown in

Figures A-64 and A-65. The even correlation function is three

valued [15, -1, -17] atkd somewhat irregular while the odd correl-

ation is vary irregular with maximum peaks at + 46. The thresh-

old function for both is depicted in Figure A-66. Neither

threshold plot has significant values above 0.13, but the even

function shows more peaks below this threshold. The Mass-correl-

ation output of entire subset of 10 un-optimized Kasami code

sequences is plotted in Figures A-67 and A-68. There is some

variation in the number of sub-peaks region between 0.06 and 0.07

for the even correlations and the odd correlations show increas-

ing variations below the threshold of 0.15.

Length 1023 Kasami. Figures A-69 and A-70 show the output

of the Mass-correlate algorithm for the 8 un-optimized Kasami

codes of length 1023. There is no variation in the even correla-

tions above the threshold of 0.03 and minor fluctuations below

this value. The odd correlations show slight variations below

the threshold value of 0.06.

Comparison of Kasami Code Sets. Figures A-71 and A-72 show

the maximum even and odd thresholds obtained from the Mass-

correlate algorithm for the Kasami codes generated in Table 3.

As the length of the code increases, the performance dramatically

increases for both functions. The even functions clearly out-

performing the odd in terms of the number of peaks and sub-peaks

IV-10

i , --."', .', :,: .'' -' > '." ,,' :. - .' '" - - ::' f : 'v-b: ',', ,

Length 63 Kasami. Figures A-54 and A-55 show the even and

odd cross-correlation functions codes 2 and 3. The even function

is three valued [7, -1, -9], for integer values of tau. The odd

cross-correlation function is irregular with maximum peaks of

+ 17. Figure A-56 shows the threshold plots of this cross-

correlation for both functions, and obviously the odd function

has more peaks in a range above 0.11. It is worth noting that

the apparent discontinuities of the even threshold occur as the

threshold passes the three values mentioned earlier.

The off-peak odd auto-correlation of code 2 and the odd

cross-correlation of codes 2 and 3 were optimized in terms of

r
phase and maximum peaks and the resulting correlation functions

are depicted in Figures A-57 and A-58. The worst and best phase

of the odd auto and cross-correlation threshold functions are

plotted in Figures A-59 and A-60. In both cases, the odd correl-

ation functions show a significant difference in the number of

peaks and sub-peaks in the threshold range of 0.05 to 0.25. When

the even and odd cross-correlation are analyzed in Figure A-60,

it is apparent that the odd function has more peaks and sub-peaks

in the range between 0.15 and 0.25. When the minimum odd and

even cross-correlation functions are compared in Figure A-61 the

even function appears to provide more interference in the thresh-

old range of 0.15 to 0.21.

Figures A-62 and A-63 show the output of the Mass-correlate

algorithm for all 8 of the un-optimized codes of length 63. The

even correlations show little or no variation above a threshold

of 0.13 for the entire set, and substantial variation in the

IV-9

N
ft " - -".." - ' ..-. '' . ,ft' .'- .2 ., """ 2 -' ' "" .". "- ."-".'- . .- . "- . .- "-"- . "- ." -

threshold below a value of 0.15 which indicates that the even

correlation functions have greater variation in the number of
6

sub-peaks in this range.

Length 1023 Gold. Figures A-50 and A-51 show the output of

the Mass-correlate algorithm for the 8 un-optimized sequences in

the Gold subset of length 1023. There is little deviation across

the subset for both the even and odd threshold functions.

Comparison of Gold Code Sets. Figures A-52 and A-53 show

the maximum even and odd threshold functions obtained from the

Mass-correlate algorithm for all of the code sets defined in

Table 2. As the length of the code increases, the performance

increases significantly for both the even and odd threshold

functions.

Kasami Codes

The tap assignments used for the generation of Kasami code

sets are given by the polynomials in Table 3. Each polynomial

yields a set of 2N / 2 code sequences, of which the number used

for analysis is indicated in the table. Three different lengths

of Kasami code sets are analyzed; 63, 255, and 1023.

Table 3

Code Generation Polynomials for Kasami Code Sets
S.

Number

Length Polynomial Generated

63 [1,61 8

255 [2,3,4,81 10

1023 [3,101 8

IV-8

and odd functions within the set significantly vary in terms of

sub-peaks below a threshold of 0.28.

Length 127 Gold. Figures A-40 and A-41 show the even and

odd cross-correlation functions for codes 3 and 4, length 127

Gold code set. The even correlation function is three valued

(15, -1, -17] at integer values of tau. The odd correlation

function is irregular with max peaks at + 28. The threshold

algorithm plot in Figure A-42, of these two functions shows the

even function having fewer peaks above a threshold of 0.14 and

more sub-peaks below this threshold.

The off-peak odd auto-correlation of code 3 and the odd

cross-correlation of codes 3 and 4 were optimized in terms of

phase and maximum peaks and and yielded the correlation functions

in Figures A-43 and A-44. The worst and best phase of the odd

Q7 auto-correlation function was thresholded to provide the plot in

Figure A-45. It is apparent that there is a significant differ-

ence in the number of peaks and sub-peaks in threshold values

above 0.08. Figure A-46 shows similar results for the worst and

best phase of the odd cross-correlation function above a thresh-

old of 0.75. When the minimum odd and even cross-correlation

functions are compared in Figure A-47 the even function appears

to provide more interference below a threshold of 0.14.

Figures A-48 and A-49 show the output of the Mass-correla-

tion algorithm for the 10 un-optimized Gold codes in the subset

of length 127. The even functions show no variation above a 0.14

threshold while the odd functions begin varying at a threshold

value of 0.22. The even threshold varies much more than the odd

IV-7

Table 2

Code Generation Polynomials for Gold Code Sets

Number
Length Polynomial Generated

63 [1,6] 10

127 [3,7] 10

1023 [3,10] 8

plot of this cross correlation for both even and odd functions.

Both functions perform similarly between threshold values of 0.30

and 0.25. The odd function performs slightly better than the

even between 'threshold values of 0.15 and 0.25. This can be

attributed to fewer sub-peaks in the odd function.

The off-peak odd auto-correlation of code 3 and the odd

cross-correlation of codes 3 and 4 were optimized by varying the

phase and obtaining the minimum peak functions depicted in Fig-

ures A-33 and A-34. The worst and best phase of the odd auto and

cross-correlation functions is shown in Figures A-35 and A-36.

The difference between the worst and best phase is significant in

both cases, and indicates that optimization of phase relation-

ships will realize significant gains. Figure A-37 depicts the

optimized odd, and even cross-correlation functions in terms of

the threshold algorithm. This figure indicates that the even I

function has more peaks in the region above 0.18.

Figures A-38 and A-39 depict the output of the Mass-correla-

tion algorithm for ten of the un-optimized Gold codes in the set

of codes of length 63. These figures indicate that both the even

IV-6

Z Z

codes is plotted in Figures A-24 and A-25. There is little

variation above a threshold value of 0.15 for both even and odd

threshold plots. Below 0.15, the even threshold shows much more

variation than the odd threshold.

J.- Length 1023 Maximal. Figures A-26 and A-27 show the output

of the Mass-correlate algorithm for all 8 un-optimized Maximal

codes of length 1023. There is little variation above a thresh-

old of 0.075 for both the even and odd threshold plots. Below

0.075, the even threshold shows much more variation again.

Comparison of Maximal Code Sets. Figures A-28 and A-29

show the maximum even and odd thresholds obtained from the Mass-

correlate algorithm for all the Maximal code sets defined herein.

As the length of the code increases, the performance dramatically

- increases for both the even and odd threshold functions. The

,- gains made from shorter to longer code sets appear to gradually

decrease in magnitude as the order increases.

Gold Codes

The tap assignments used for the generation of Gold code

sets are given by the polynomials in Table 2. Each pair of

Npolynomials yields a set of 2 + 2 code sequences, of which the

number used for analysis is indicated in the table. Three dif-

ferent lengths of Gold code sets are analyzed; 63, 127, and 1023.

Length 63 Gold. Figures A-30 and A-31 depict the even and

odd cross-correlation functions for codes 3 and 4. The even

correlation function is three valued [15, -1, -17] at integer

values of tau. The odd cross-correlation function is irregular,

and has peaks of 19 and -18. Figure A-32 shows the threshold

IV-5

threshold functions of each is plotted in Figure A-13. For this

.-. , case the odd cross-correlation has more impact.

The optimization of the odd auto and cross-correlation of

code I and 2 produce the correlation functions shown in Figure

A-14 and 15. Figure A-16 shows the worst and best phase of the

auto-correlation function of code 1. Again, it shows a signifi-

cant difference between the worst and best odd auto-correlation.

Figure A-17 show similar results for the odd cross-correlation of

codes 1 and 2. The even threshold function in this figure as

well as Figure A-18 indicates that it has slightly less impact

than either the worst or best odd cross-correlation function for

thresholds above 0.14. As the threshold is lowered below 0.14,

the even cross-correlation has greater impact.

Figures A-19 and A-20 show the output of the Mass-correlate

algorithm for all 10 un-optimized codes of length 127. There is

little variation with threshold above 0.15. The variation in-

creases slightly below that threshold.

Length 255 Maximal. The odd and even cross correlation

functions for Maximal code 1 and 2 of Length 255, are shown in

Figures A-21 and A-22. The even function is 5 valued and ap-

pears to be more irregular than previous even cross-correlation

functions. The odd function is irregular and has more peaks

around 40 than the even function. Figure A-23 depicts the

threshold functions of both the even and odd cross-correlation.

Neither thrashold plot has significant values above 0.13, but the

even function shows more peaks below this threshold. The Mass-

correlation algorithm for the entire code set of 8 un-optimized

IV-4*. . . .* . . -; -

important. This portion of the function characterizes the peak

- as well as all of the significant sub-peaks. For this cross-

correlation, the even and odd functions are similar with the even

function ,providing slightly more interference on the ith correl-

ators received signal.

The off-peak odd auto-correlation of code 1 and the odd

cross-correlation of codes 1 and 2 were optimized in terms of

phase and maximum peaks and are depicted in Figures A-4 and A-5.

The worst and best phase of the odd auto-correlation threshold

functions is depicted in Figure A-6. All of the other phase

shifts of code 1 have threshold plots between these two. The

difference between the worst and best phase is significant in

terms of the odd auto-correlation. Figure A-7 shows the minimum

and maximum odd cross-correlation. The minimum threshold func-

tion reaches zero quicker than the maximum function ther.eby

providing slight improvement. When the minimum odd cross-correl-

ation is compared to the even cross-correlation function in

Figure A-8, the even function appears to provide more interfer-

ence.

Figures A-9 and A-10 show the output of the Mass-correlate

algorithm for all six of the un-optimized Maximal codes of length

63. These figures show little variation in the code set in terms

of peaks and sub-peaks over all the cross-correlations, but show

significant variations for lower thresholds (below 0.3).

Length 127 Maximal. Figures A-I and A-12 show the odd and

even cross-correlation functions for code 1 and 2, length 127

Maximal code set. Again the even function is three valued at

integer value of tau and the odd function is irregular. The

IV-3

• . • °." .- o . • ; +++ I I , ." . 7 L,- _1- . "- "l. , . . . -.z .,. ' , . ," - % "- i -.. + - .".",.. . ,

Table 1

Code Generation Polynomials for Maximal Length Code Sets

Length Polynomial Name

63 [1,6] 1
[1,2,5,6] 2
[2,3,5,6] 3
[5,6] 4
[1,4,5,6] 5
[1,2,3,6] 6

127 [3,7] 1
[1,2,3,7] 2
[1,2,4,5,6,7] 3
[2,3,4,7] 4
[1,2,3,4,5,7] 5
[2,4,6,7] 6
[1,7] 7
[1,3,6,7] 8
[2,5,6,7] 9
[4,7] 10

255 [2,3,4,8] 1
[3,5,6,8] 2
[1,2,5,6,7,8] 3
[1,3,5,8] 4
[2,5,6,81 5
[1,5,6,8] 6
[1,2,3,4,6,8] 7
[1,6,7,8] 8

1023 [3,10] 1
[2,3,8,10] 2
[3,4,5,6,7,8,9,10] 3
[1,2,3,5,6,10] 4
[2,3,6,8,9,10] 5
[1,3,4,5,6,7,8,10] 6
[7,10] 7
[2,7,8,10] 8

threshold function is due to the threshold passing through the

value + 1, and is common for most even cross-correlation func-

tions of linear codes. The odd cross-correlation threshold func-

tion has a more general slope and this can be attributed to the

irregularity of the odd function. In terms of the system model

in Chapter II, the lower part of the threshold functions are most

.IV-2

X IV. Code Performance Analysis

In this chapter, the performance of three classes of codes,

as measured by the algorithms presented in Chapter III, are

IK,. analyzed. The three classes analyzed are Maximal Length Codes,

Gold Codes and Kasami Codes. The performance of individual

codes within a code set are analyzed first, followed by a mea-

sure of the code set itself. This analysis is repeated for

varying length code sets for each code class. Then the different

length code sets are compared within each class. Finally, the

three classes are compared for varying lengths of code sets.

Appendix A contains all the figures referenced in this

chapter. This appendix contains actual even and odd correlation

functions for code sets, as well as plots from the thresholding

C algorithm (threshold plots).

Maximal Length Codes

The tap assignments used for the generation of Maximal

: length code sets are given by the polynomials in Table 1. Four

different lengths of Maximal length codes are analyzed; 63, 127,

255 and 1023.

Length 63 Maximal. Figures A-i and A-2 depict the even and

odd cross-correlation functions for codes 1 and 2. It should be

noted that the even correlation function is three valued [15, -1,

-17] at integer values of tau. The odd cross-correlation func-

tion is more erratic however, and has maximum peaks at 17 and -

19. Figure A-3 shows the threshold plot of this cross-correla-

:. tion for both functions. The apparent discontinuity of the even

IV-1

'I..1

44

.94

00

'4

040

4 41

4

'-W

'-4

1.

-5O

Program MassCorrelate

The structure of the MassCorrelate program is depicted in

Figure 111-4. It is similar to the PartialCorrelate structure,

with the exception of the modules DetermineName and Update

DataList. The program is much more limited in user options than

the PartialCorrelate program. This program is designed to calcu-

late both the Even and Odd correlation functions, and performs

both the positive and negative thresholding process on each to

determine the amount of the correlation function exceeding these

thresholds. However, this program will perform this process on

an entire code set rather than just two code sequences. All of

modules in this program that have the same names as those in the

PartialCorrelate program perform the same function. The Module

DetermineName is called to convert the entered filename extens-

ions to integer values, in order to set up looping controls

within the program, which perform correlations of pairs of code

sequences. Instead of writing the threshold and amount exceeding

threshold directly to an output file, this program will enter

this information into a datalist in memory using module Update-

DataList. Each record in the list contains fields for the

threshold value, the minimum, maximum and average value for both

even and odd functions. As each pair of code sequences is pro-

cessed, the fields of the data list are updated accordingly.

When all code sequences in the user defined code set have been

cross-correlated and thresholded, the program will write the data

list to a user designated file.

111-9

411

411

4I4

r41

cac
-i

4J

cc u
AS

0 10

41

41

'-4

toI
*-0

111-

cross-correlation functions, the Kasami set appears to show bet-

ter performance in the range above 0.1.

Figures A-79 and A-80 show the maximum even and odd thresh-

olds obtained from the Mass-correlation algorithm for all three

un-optimized classes of codes of length 1023. In the threshold

range 0.03 to 0.10 the Kasami set is clearly the best performer

in terms of the number of peaks in the even threshold functions.

In the same range the Maximal set slightly out-performs the Gold

Set. In the odd threshold functions of the same range, the three

sets are very similar. The Kasami set slightly out-performs the

other two followed by the Maximal and Gold sets.

.1

~IV-12

-J "i " r ; - . , , . - ,- .'. "- ,' .. ,- .' _ .. ' ,. .'' . -.- ' -- ,.".

V. Software Performance

This chapter discusses the performance of each of the

programs in terms of amount of computer runtime that is required

for typical inputs. All data presented in this chapter was

compiled using a Kaypro-2 micro-computer using a 2 MHz clock, and

having 64K memory capacity.

Program GenerateCodes

The code generation software has performance specifications

as listed in Table 4. Because the Gold and Kasami code

generators use a linear generator to set up for their respective

code generation, the times listed in their columns reflect a set

up time followed by the amount of time to generate each sequence

" in the code set.

Table 4

Code Generator Software Performance Times (Seconds)

Register
Length Maximal Gold Kasami

15 151 **
14 75 ** **
13 38 **
12 19 19/3 19/3
11 9 9/2.5 ---
10 4 4/2 4/2

9 2 2/1.5
8 1 1/1 1/1

--- Code generation not possible for this register length
** Insufficient amount of memory for generation set up

Correlation Times

The correlation process is used in the Partial-Correlate,

Phase-Correlate and the Mass-correlate programs, and has the run-

V-I

times listed in Table 5. Based on this data, the following

equation can be used to approximate the required runtime as a

function of the length of the code sequences to be correlated:

-4 2 2""R" Euntime - (1.326 x 10)L + (1.2 x 10-)L (secs)

Typical runtimes for the correlation process are listed in Table

5.

Table 5
Correlation Software Performance Times (Secs)

Code Len th Runtimes
63 2
127 3.5
255 14
511 48

1023 148
2047 570

Phase-Correlate Program Performance

The Phase-Correlate program must cycle through L correlation

processes to find the best phase performance ot each pair of

codes. For this reason, the runtime required for each pair of

sequences baloons rapidly. The runtime function can be

approximated as follows:

Runtime - (1.326 x 10-)L + (1.2 x 10-)L + OH (secs)

OH is the overhead time associated with storing the maximum peaks

for each phase, and is small relative to the other factors in the

equation. It is obvious that attempting to optimize an entire

code set for the best phase cross-correlation relationships would

S . be futile for any reasonable length. For this reason, heuristic

approaches must be used to *optimize* the performance of each

V-2

code set.

Thresholding Process

The thresholding algorithm runtime varies with the the

length of the code, correlation functions themselves, and the

number of threshold values required. All runs used in this

work, varied the threshold values from 0 to the highest peak in

the correlation function being thresholded. Generally the

threshold process (using approximately 150 thresholds) required

less time than the correlation process for all work in this

thesis. In order to shorten required runtimes, the threshold

region can be reduced to a smaller region of interest. At

worst, the runtime of this process is a linear function of length

of the code.

Mass-correlate performance

The Mass-correlate program performs (N - N)/2 correlations,

where N is the number of code sequences within the user defined

code set. The runtime for this program is a function of the

cross-correlations required, the length of the code sequences,

and the number of thresholds of interest, and is in the order of

2L This software can be improved by limiting the thresholds

used to a desired region of interest.

4.- ,...v-

'.-' ; /

.::, ;

V.''

V-

VI. Conclusions and Recommendations

Conclusions

From the analysis. of Chapter IV it can be concluded that the

thresholding algorithm can be used to effectively evaluate the

performance of binary code sequences in the phase-coded code-

division multiple-access (CDMA) model. The MassCorrelate program

will perform the thresholding algorithm on an entire code set of

binary sequences and can be used to evaluate the performance of

the set. The computing time required to run the MassCorrelate

program can be reduced significantly by reducing the region of

threshold interest as dictated by particular receiver specifica-

tions.

Recommeqdations

The following recommendations are proposed for further study

in this area:

1. Using algorithms for finding suboptimal sequence phases,

as outlined by Gahutu (25:22-26), and evaluating the performance

of these and any other optimization techniques, using the

thresholding algorithm.

2. Optimize the software in terms of memory requirements

and/or runtime to improve performance of the algorithms.

3. In order to reduce the runtime of the correlation

algorithm for long code sequences, it seems feasible to implement

this algorithm using discrete Fourier techniques on an array

processor.

4. Incorporating additional code generation capabilities

VI-I

V -r-

in the GenerateCodes program, to include other linear and non-

linear generators, so that these code sets can be evaluated byW W

the thresholding algorithm and compared with the Maximal length,

Gold and Kasami code sets.

h.-

VI -2

Bibliography

1. Castor, Kenneth G., Lecture materials distributed in EE 6.73,
Applications of Communications Technology - Spread Spectrum
Communications. School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB OH, September 1984.

2. Dixon, R.C., Spread Spectrum Techniques. New York: IEEE
Press, 1976.

3. Dixon, R.C., Spread Spectrum Systems. New York: John Wiley,
1976.

4. Gold, R., "Optimum Binary Sequences for Spread Spectrum
Multiplexing,' IEEE Transactions on Information Theory, IT-
13: 619 - 621 (ctober1967.

5. Gold, R., "Maximal Recursive Sequences with 3-Valued
Recursive Cross-correlation Functions," IEEE Transactions on
Information Theory, IT-14: 154 - 156 (January u .

6. Holmes, J. K., Coherent Spread Spectrum Systems. New York:
John Wiley, 1982.

7. Lin, Shu and Daniel J. Costello, Jr., Error Control Coding:

Fundamentals and Applications. Englewood Cliffs, New Jersey:
Prentice-Hall, Inc., 983.

8. Massey, J. L. and J. J. Urhan, Jr., "Sub-baud Coding,"
Proceedings of the 13th Annual Allerton Conference on Circuit
and Systems TheorTy:- - 547(October 19755.

9. Olsen, J. D., R. A. Scholtz, and L. R. Welch, "Bent Function
Sequences," IEEE Transactions on Information Theory, IT-28:
858 - 864 (November 1982).

10. Pickholtz, Raymond L., Donald L. Schilling and Laurence B.
Milstein, "Theory of Spread-Spectrum Communications--A
Tutorial," IEEE Transactions on Communications, COM-30: 855-
884 (May 1M.

11. Proakis, John G., Digital Communications. New York: McGraw-
Hill, Inc., 1983.

12. Pursley, Michael B., "Performance Evaluation for Phase-Coded
Spread-Spectrum Multiple-Access Communication - Part I:
System Analysis," IEEE Transactions on Communications,
COM-25: 795 - 799 (August 1977).

13. Pursley, Michael B. and Dilip V. Sarwate, "Performance
Evaluation Phase-Coded Spread-Spectrum Multiple-Access
Communication - Part II: Code Sequence Analysis," IEEE
Transactions on Communications, COM-25: 800 - 803 (August
T977).

BIB- 1 (

.14. Ristenblatt, Marlin P. and James L. Daws, Jr., "Performance

Criteria for Spread Spectrum Communications," IEEE
Transactions on Communications, COM-25: 756-76T-TAugust
1977).

15. Rowe, Harrison E., "Bounds on the Number of Signals with
Restricted Cross Correlation," IEEE Transactions on
Communications, COM-30: 174 - 182-May 1982.

16. Sarwate, Dilip V., "Bounds on Crosscorrelation and
Autocorrelation of Sequences," IEEE Transactions on
Information Theory, IT-25: 720 - 4 (November 197).

17. Sarwate, Dilip V. and Michael D. Pursley, "Crosscorrelation
Properties of Pseudorandom and Related Sequences,"
Proceedings of IEEE, Volume 68: 593 - 619 (May 1980).

18. Sarwate, Dilip V., "Cross-Correlation Properties of
Sequences with Applications to Spread-Spectrum Multiple
Access Communications," AFSOR Workshop in Communication
Theor and Applications, AFOSR 78-3715: 88 - 91 (August

19. Simon, Marvin K., Jim K. Omura, Robert A. Scholtz, and Barry
K. Levitt. Spread Spectrum Communications, Volume I.
Rockville, Maryland: Computer S cience Press, Inc., T985.

20. Spellman, Marc, "A Comparison Between Frequency Hopping and
Direct Spread PN as Antijam Techniques," IEEE Communications
Magazine, Volume 21: 26 - 33 (July 1983).-

21. Utlaut, W. F., "Spread Spectrum - Principles and Possible
Applications to Spectrum Utilization and Allocation," ITU
Telecommunications Journal, Volume 45: 20 - 32 (January
1978).

22. Viterbi, Andrew J., "Spread Spectrum Communications - Myths
and Realities," IEEE Communications Magazine, Volume 17: 11 -

18 (May 1979).

23. Welch, L. R., "Lower Bounds on the Maximum Cross Correlation
of Signals," IEEE Transactions on Information Theory, IT-20:
397 - 399 (May N74).

24. Yao, Kung, "Error Probability of Asynchronous Spread
Spectrum Multiple Access Communication Systems," IEEE
Transactions on Communications, COM-25: 803 - 809-August
1977).

25. Gahuto, David William Haguma, On Correlation Parameters for
Some Binary Sequences of Lengts 31 and 6for spread-Spec-
trus 4M4ltl Access Ciimunications MS9ss~iiii
Science Laboratory, University of Illinois at Urbana-Cham-
paign, Urbana, Illinois, May 1979.

BIB-2

Appendix A

Performance Plots

This appendix contains all the peformance plots of the data

obtained from the PartialCorrelate program and the MassCorrelate

program. Its order is parrallel to that of the order of

presentation in Chapter IV. All plots were obtained using the S

plotting package available on the VAX 11-780 SSC, and the HP 7220

plotter. Each plot that is obtained from the threshold algorithm

is normalized in terms of length of the code sequence. All plots

of actual correlation functions are unnormalized.

A-1

APPENDIX A

List of Figures

Figure Page

A-i Typical Even Cross Correlation Function of
Maximal Length Code of Length 63 A-8

A-2 Typical Odd Cross Correlation Function of
Maximal Length Code of Length 63 A-8

A-3 Typical Amount Exceeding Threshold vs Threshold of
Even and Odd Correlation Functions Maximal Length
Code of Length 63 A-9

A-4 Optimal Odd Auto-Correlation Function of Maximal
Codes 1 & 2, Length 63................0........... A-9

A-5 Optimal Odd Cross-Correlation Function of Maximal
Codes 1 & 2, Length 63 0.. A-10

A-6 Threshold Plot of Minimum and Maximum Odd Auto-
Correlation and Even Auto-Correlation of Maximal
Codes 1 & 2, Length 63. A-10

A-7 Threshold Plot of Minimum and Maximum Odd Cross-
Correlation and Even Cross-Correlation of Maximal
Codes 1 & 2, Length 63 *...... A-11

A-8 Threshold Plot of Minimum Odd Auto-Correlation,
Minimum Odd Cross-Correlation, and Even Cross-Cor-
relation of Maximal Codes 1 & 2, Length 63.....o.. A-11

A-9 Threshold Plot of Minimum, Maximum and Average
Even Correlation Functions from Mass-Correlation
Algorithm for Maximal Codes 1-6, Length 63........ A-12

A-10 Threshold Plot of Minimum, Maximum and Average
Odd Correlation Functions from Mass-Correlation
Algorithm for Maximal Codes 1-6, Length 63........ A-12

A-il Typical Even Cross Correlation Function of
Maximal Length Code of Length 127................. A-13

A-12 Typical Odd Cross Correlation Function of
Maximal Length Code of Length 127 A-13

A-13 Typical Amount Exceeding Threshold vs Threshold of
Even and Odd Correlation Functions Maximal Length
Code of Length 127 A-14

A-2

Figure Page

A-14 Optimal Odd Auto-Correlation Function of Maximal
Codes 1 & 2, Length 127 A-14

A-15 Optimal Odd Cross-Correlation Function of Maximal
Codes 1 & 2, Length 127 A-15

A-16 Threshold Plot of Minimum and Maximum Odd Auto-
Correlation and Even Auto-Correlation of Maximal
Codes 1 & 2, Length 127 A-15

A-17 Threshold Plot of Minimum and Maximum Odd Cross-
Correlation and Even Cross-Correlation of Maximal
Codes 1 & 2, Length 127 *.......... A-16

A-18 Threshold Plot of Minimum Odd Auto-Correlation,
Minimum Odd Cross-Correlation, and Even Cross-Cor-
relation of Maximal Codes 1 & 2, Length 127 A-16

A-19 Threshold Plot of Minimum, Maximum and Average
Even Correlation Functions from Mass-Correlation
Algorithm for Maximal Codes 1-10, Length 127 A-17

A-20 Threshold Plot of Minimum, Maximum and Average
Odd Correlation Functions from Mass-Correlation
Algorithm for Maximal Codes 1-10, Length 127 A-17

A-21 Typical Even Cross Correlation Function of
Maximal Length Code of Length 255 A-18

A-22 Typical Odd Cross Correlation Function of
Maximal Length Code of Length 255 A-18

A-23 Typical Amount Exceeding Threshold vs Threshold of
Even and Odd Correlation Functions Maximal Length
Code of Length 255 A-19

A-24 Threshold Plot of Minimum, Maximum and Average
Even Correlation Functions from Mass-Correlation
Algorithm for Maximal Codes 1-8, Length 255 A-19

A-25 Threshold Plot of Minimum, Maximum and Average
Odd Correlation Functions from Mass-Correlation
Algorithm for Maximal Codes 1-8, Length 255 A-20

A-26 Threshold Plot of Minimum, Maximum and Average
Even Correlation Functions from Mass-Correlation
Algorithm for Maximal Codes 1-8, Length 1023 A-20

A-27 Threshold Plot of Minimum, Maximum and Average
Odd Correlation Functions from Mass-Correlation
Algorithm for Maximal Codes 1-8, Length 1023 A-21

A-3

Figure Page

A-28 Threshold Plot of Maximum Even Correlation Func-
tions from Mass-Correlation Algorithm for Maximal
Codes of Length 63, 127, 255, 1023 A-21

A-29 Threshold Plot of Maximum Odd Correlation Func-
tions from Mass-Correlation Algorithm fpr Maximal
Codes of Length 63, 127, 255, 1023 A-22

A-30 Typical Even Cross Correlation Function of
Gold Code of Length 63 *........... A-22

A-31 Typical Odd Cross Correlation Function of
Gold Code of Length 63 A-23

A-32 Typical Amount Exceeding Threshold vs Threshold of
Even and Odd Correlation Functions Gold Code of
Length 63t..... o...... A-23

A-33 Optimal Odd Auto-Correlation Function of Gold
Codes 3 & 4, Length 63 A-24

A-34 Optimal Odd Cross-Correlation Function of Gold
Codes 3 & 4, Length 63 A-24

A-35 Threshold Plot of Minimum and Maximum Odd Auto-
Correlation and Even Auto-Correlation of Gold
Codes 3 & 4, Length 63 A-25

A-36 Threshold Plot of Minimum and Maximum Odd Cross-
Correlation and Even Cross-Correlation of Gold
Codes 3 & 4, Length 63............. A-25

A-37 Threshold Plot of Minimum Odd Auto-Correlation,
Minimum Odd Cross-Correlation, and Even Cross-Cor-
relation of Gold Codes 3 & 4, Length 63 A-26

A-38 Threshold Plot of Minimum, Maximum and Average
Even Correlation Functions from Mass-Correlation
Algorithm for Gold Codes 1-10, Length 63 A-26

A-39 Threshold Plot of Minimum, Maximum and Average
Odd Correlation Functions from Mass-Correlation
Algorithm for Gold Codes 1-10, Length 63 A-27

A-40 Typical Even Cross Correlation Function of
Gold Code of Length 127 A-27

A-41 Typical Odd Cross Correlation Function of
Gold Code of Length 127 A-28

A-42 Typical Amount Exceeding Threshold vs Threshold of
Even and Odd Correlation Functions Gold Code of
Length 127 A-28

A-4

Figure Page

A-43 Optimal Odd Auto-Correlation Function of Gold
Codes 3 & 4, Length 127 A-29

A-44 Optimal Odd Cross-Correlation Function of Gold
Codes 3 & 4, Length 127 A-29

A-45 Threshold Plot of Minimum and Maximum Odd Auto-
Correlation and Even Auto-Correlation of Gold
Codes 3 & 4, Length 127 A-30

A-46 Threshold Plot of Minimum and Maximum Odd Cross-
Correlation and Even Cross-Correlation of Gold
Codes 3 & 4, Length 127 A-30

A-47 Threshold Plot of Minimum Odd Auto-Correlation,
Minimum Odd Cross-Correlation, and Even Cross-Cor-
relation of Gold Codes 3 & 4, Length 127......o... A-31

A-48 Threshold Plot of Minimum, Maximum and Average
Even Correlation Functions from Mass-Correlation
Algorithm for Gold Codes 1-10, Length 127 A-31

A-49 Threshold Plot of Minimum, Maximum and Average
Odd Correlation Functions from Mass-Correlation
Algorithm for Gold Codes 1-10, Length 127 A-32

A-50 Threshold Plot of Minimum, Maximum and Average
Even Correlation Functions from Mass-Correlation
Algorithm for Gold Codes 1-8, Length 1023 A-32

A-51 Threshold Plot of Minimum, Maximum and Average
Odd Correlation Functions from Mass-Correlation
Algorithm for Gold Codes 1-8, Length 1023......... A-33

A-52 Threshold Plot of Maximum Even Correlation Func-
tions from Mass-Correlation Algorithm for Gold
Codes of Length 63, 127, 1023 A-33

A-53 Threshold Plot of Maximum Odd Correlation Func-
tions from Mass-Correlation Algorithm for Gold
Codes of Length 63, 127, 1023......... A-34

A-54 Typical Even Cross Correlation Function of
Kasami Code of Length 63 A-34

A-55 Typical Odd Cross Correlation Function of
Kasami Code of Length 63 A-35

A-56 Typical Amount Exceeding Threshold vs Threshold of
Even and Odd Correlation Functions Kasami Code of
Length 63 0. A-35

A-5

Figure Page

A-57 Optimal Odd Auto-Correlation Function of Kasami
Codes 2 & 3, Length 63 A-36

A-58 Optimal Odd Cross-Correlation Function of Kasami
Codes 2 & 3, Length 63 A-36

A-59 Threshold Plot of Minimum and Maximum Odd Auto-
Correlation and Even Auto-Correlation of Kasami
Codes 2 & 3, Length 63 A-37

A-60 Threshold Plot of Minimum and Maximum Odd Cross-
Correlation and Even Cross-Correlation of Kasami
Codes 2 & 3, Length 63............................ A-37

A-61 Threshold Plot of Minimum Odd Auto-Correlation,
Minimum Odd Cross-Correlation, and Even Cross-Cor-
relation of Kasami Codes 2 & 3, Length 63 A-38

A-62 Threshold Plot of Minimum, Maximum and Average
Even Correlation Functions from Mass-Correlation
Algorithm for Kasami Codes 1-8, Length 63 A-38

A-63 Threshold Plot of Minimum, Maximum and Average
Odd Correlation Functions from Mass-Correlation
Algorithm for Kasami Codes 1-8, Length 63 A-39

A-64 Typical Even Cross Correlation Function of
Kasami Code of Length 255 A-39

A-65 Typical Odd Cross Correlation Function of
Kasami Code of Length 255 o.................. A-40

A-66 Typical Amount Exceeding Threshold vs Threshold of
Even and Odd Correlation Functions Kasami Code of
Length 255 0.......... A-40

A-67 Threshold Plot of Minimum, Maximum and Average
Even Correlation Functions from Mass-Correlation
Algorithm for Kasami Codes 1-10, Length 255 A-41

A-68 Threshold Plot of Minimum, Maximum and Average
Odd Correlation Functions from Mass-Correlation
Algorithm for Kasami Codes 1-10, Length 255 A-41

A-69 Threshold Plot of Minimum, Maximum and Average
Even Correlation Functions from Mass-Correlation
Algorithm for Kasami Codes 1-8, Length 1023 A-42

A-70 Threshold Plot of Minimum, Maximum and Average
Odd Correlation Functions from Mass-Correlation
Algorithm for Kasami Codes 1-8, Length 1023 A-42

A-6

,~ ;ilin Odd Cross
---- Ave Odd Cross
. Max Odd Cross

XCY

5
4)

E

0.1 02 0.3 0.4
threshold as f(L)

Fig. A-25. Threshold Plot of Minimum, Maximum and Average
Odd Correlation Functions from Mass-Correlation
Algorithm for Maximal Codes 1-8, Length 255

-in Even Cross
X Ave Even Cross

I -- -- ------ .-Max Even Cross

4) \•

*Y4\.

-o

- I

t 0.05 . 2.15 0.20
threshold oe f(L)

Fig. A-26. Threshold Plot of Minimum, Maximum and Average
Even Correlation Functions from Mass-Correlation

Algorithm for Maximal Codes 1-8, Length 1023

A-20

- Even Cross
---- Odd Cross

thraohold as f(L)

Fig. A-23. Typical Amount Exceeding Threshold vs Threshold of
Even and Odd Correlation Functions Maximal Length

Code of Length 255

Min Even Cross
---- Ave Even Cross

• Max Even Cross
L

.

i

43 V
g V

0

1.0 0.1 0.2 0.2 3 0.34
threehold as f (L)

Fig. A-24. Threshold Plot of Minimum, Maximum and Average
Even Correlation Functions from Mass-Correlation

Algorithm for Maximal Codes -8, Length 255

A-19

C

>

10 50 100 150 200 250 300
tau

Fig. A-21. Typical Even Cross Correlation Function of
Maximal Length Code of Length 255

0

CY

050 100 150 200 250 30

tau

Fig. A-22. Typical Odd Cross Correlation Function or
Maximal Length Code of Length 255

A- 18

............s . .

*2 . , --. V ~ .'~J-~U7i

"------" Ivin Even Cross
wax zven Cross

---- Ave Even Cross

ti
%K

XCY

.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35

threahold as f(L)

Fig. A-19. Threshold Plot of Minimum, Maximum and Average
Even Correlation Functions from Mass-Correlation
Algorithm for Maximal Codes 1-10, Length 127

- Min Odd Cross
X cc Max Odd Cross

---. Ave Odd Cross
L V'

A-1

Jc

4)

thresholId as f (L)

Fig. A-20. Threshold Plot of Minimum, Maximum and Average
Odd Correlation Functions from Mass-Correlation
Algorithm for Maximal Codes 1-10, Length 127

A- 17

- jjmin Odd Cross

- - -- Max Odd Cross

- E.. ven Cross

rr

0

I

.0 0.05 0.10 0.15 0.20. 0.25
thre ehold as f(L)

Fig. A-17. Threshold Plot of Minimum and Maximum Odd Cross-
Correlation and Even Cross-Correlation of Maximal

Codes 1 & 2, Length 127

Mirn Odd Auto
0 ... Min Odd Cross

----- Even Cross

L

I .

C ,

0
XN

4I

0 0.0Z5 0. 10 0 .15 0. 20 0. 25 0. 30 0.35
thresho1d cis f (L)

. Fig. A-18. Threshold Plot of Minimum Odd Auto-Correlation,
Minimum Odd Cross-Correlation, and Even Cross-Cor-

relation of Maximal Codes 1 & 2, Length 127

A-16

L '.%

0

Cy

'0 20 40 150 so 100 120 140
ta~u

Fig. A-15. Optimal Odd Cross-Correlation Function of Maximal

Codes 1 & 2, Length 127

~Min, Max Odd Auto
-~Even Auto

-C CD

U,

10 0.05 0. 10 0.15 0. U 0.25
threshol1d as f (L)

Fig. A-16. Threshold Plot of Minimum and Maximum Odd Auto-
Correlation and Even Auto-Correlation of Maximal

Codes 1 & 2, Length 127

A- 15

Liu~'

-Even Cross
dOd Cross

.. [; ',

%t

* C

4I
E

.0 0.05 0.10 0.15 0.20 0.25

threshold as f(L)

Fig. A-13. Typical Amount Exceeding Threshold vs Threshold of

Even and Odd Correlation Functions Maximal Length
Code. of Length 127

,)

og

1, I A,

1 0 20 40 60 80 100 120 140

tau

Fig. A-14. Optimal Odd Auto-Correlation Function of Maximal
Codes 1 & 2, Length 127

A-14

°~ in jrrr ~ ~ 1 M =F U1 w Urr .n.wr~wr ,rr

V4In

.E I

ow

1i0 29 40 s9 89 190 120 140

taQu

Fig. A-11. Typical Even Cross Correlation Function of
Maximal Length Code of Length 127

-

p ,

LI I
00- I

M 2

10 20 4 0 8 100 120 140

Fig. A-12. Typical Odd Cross Correlation Function of
Maximal Length Code of Length 127

A-13

• -,__.__ _

- in Even Cross
. .. jWax Even Cross

--- Ave Even Cross

C. C.

a

E

D.0 0.0.2 0.3 0.4 0.5
thr-sho 1 d as f (L)

Fig. A-9. Threshold Plot of Minimum, Maximum and Average
Even Correlation Functions from Mass-Correlation

Algorithm for Maximal Codes 1-6, Length 63

_.M- in Odd Cross
N Max Odd Cross0 D .. Ave Odd Cross: .

Z CD
C V

0.2 Z0- •. ra

thr-eehold a f (L)

Fig. A-10. Threshold Plot of Minimum, Maximum and Average
'-.'- Odd Correlation Functions from Mass-Correlation

Algorithm for Maximal Codes 1-6, Length 63

A-12

-Min Odd Cross
iiax Odd Cross

.Even Cross

0

:,*

E -

-- "\

0 0. 05 0. 10 0.15 0.20 0.25 0.30
thr-eohold as f (L)

Fij. A-7. Threshold Plot of Minimum'and Maximum Odd Cross-
Correlation and Even Cross-Correlation of Maximal

Codes 1 &2, Length 63

* Min Odd Auto
. . . Min Odd Cross
--- Even Cross

¢ I I
L

X

s. 0

Xi

* .a

to 0.1 0.2 0.3 0.4 0.5
t.hreoho 1 d a. f(L)

Fig. A-8. Threshold Plot of Minimum Odd Auto-Correlation,
Minimum Odd Cross-Correlation, and Even Cross-Cor-

relation of Maximal Codes 1 & 2, Length 63

A-il

14M.

'- in I

In.,

14 I 10 ..2l0 30 40 50l so 70

Amtow

"*[! Fig. A-5. Optimal Odd Cross-Correlation Function of Maximal

Codes 1 & 2, Length 63

" "D
Even Auto

X oY

IlI
44

1.50 .05 0. 0 0.15 0. Z0 0 0

Fig. A-6. Threshold Plot of Minimum and Maximum Odd Auto- .Correlation and Even Auto-Correlation of Maximal
Codes 1 & 2, Length 63

A-10

U%

j:- Mx:O-1ut

-,,. .". " -" .". " . % :- " .. , .'. . "% j ''."',-. * "',, -',,,, ..- " -" -" . ," V .°-, .E v e n•.... . -" " " ". . " " ""Au t o • " - " ' " " "" i
• , " - ' - ' 4 " , 4 . . . r ., .' ,, - - . . ". : . I L. ,> -*: " "> ';" k '""--- k -' '- ' -': - " ;

0- Even
a - - - Udd

0)w
I C

0.

o. o. e5 010 I0.15 0. 20 L.25 0. 30 0. 35
threshold a. f (L)

Fig. A-3. Typical Amount Exceeding Threshold vs Threshold of Even
and odd Correlation Functions Maximal Length Code of Length 63

0

C

10 432 401 52 60, 701

Fig. A-.OtmlOdAuto-Correlation Function of Maximal
Code 1 &2, Length 63

A- 9

ini

SN M

I

0 M

i

CI

10 10 20 30 40 50 6o 70
tau

Fig. A-i. Typical Even Cross Correlation Function of Maximal
Length Code of Length 63

-..

4[,-a

CY

10 10 20 30 40 50 60 70
tau

Fig. A-2. Typical Odd Cross Correlation Function of Maximal
Length Code of Length 63

A-8

Figure Page

A-71 Threshold Plot of Maximum Even Correlation Func-
tions from Mass-Correlation Algorithm for Kasami
Codes of Length 63, 255, 1023 s............ A-43

A-72 Threshold Plot of Maximum Odd Correlation Func-
tions from Mass-Correlation Algorithm for Kasami
Codes of Length 63, 255, 1023 A-43

A-73 Threshold Plot of Maximum Even Correlation Func-
tions from Mass-Correlation Algorithm for Maximal,
Gold and Kasami Codes of Length 63 A-44

A-74 Threshold Plot of Maximum Odd Correlation Func-
tions from Mass-Correlation Algorithm for Maximal,
Gold and Kasami Codes of Length 63 A-44

A-75 Threshold Plot of Maximum Even Correlation Func-
tions from Mass-Correlation Algorithm for Maximal
and Gold Codes of Length 127 0...... A-45

A-76 Threshold Plot of Maximum Odd Correlation Func-
tions from Mass-Correlation Algorithm for Maximal
and Gold Codes of Length 127................... A-45

A-77 Threshold Plot of Maximum Even Correlation Func-
tions from Mass-Correlation Algorithm for Maximal
and Kasami Codes of Length 255 A-46

A-78 Threshold Plot of Maximum Odd Correlation Func-
tions from Mass-Correlation Algorithm for Maximal
and Kasami Codes of Length 255 A-46

A-79 Threshold Plot of Maximum Even Correlation Func-
tions from Mass-Correlation Algorithm for Maximal,
Gold and Kasami Codes of Length 1023 A-47

A-80 Threshold Plot of Maximum Odd Correlation Func-
tions from Mass-Correlation Algorithm for Maximal,
Gold and Kasami Codes of Length 1023..............0 A-47

A

" A- 7

:- ~ -- '.-;'¢- -. ¢--.-- ' . -. '.-,' *-. -*- .;' '- ',g'-:.': \ ' ,",'-.'°?,'.-i .. --- ' * .. ,

mS

% i,4in Odd Cross
-Ave Odd Cross

........Max Odd Cross

L

cc

C

I0
6,5

• 0.05 0.10 0.15 0.20

thr-eshold a* f(L)

Fig. A-27. Threshold Plot of Minimum, Maximum and Average

Odd Correlation Functions from Mass-Correlation
Algorithm for Maximal Codes 1-8, Length 1023

Even Maximal 63
0 Even Maximal 127

S--Even Maximal 255
S \"Even Maximal 1023L
Q

C

X J

to 0.1 0.2 0.3 0.4 0.5
thr-eehold ae F(L)

Fig. A-28. Threshold Plot of Maximum Even Correlation Func-
tions from Mass-Correlation Algorithm for Maximal

Codes of Length 63, 127, 255, 1023

-..

A-21

mm.

5,. U Odd IMaxirnal 63

.... Odd Maximal 127
X -'-Odd Maximal 255

Odd Maximal 1023

4 U)
E

i 0.1 0.2 0. 3 0. 4 0.5
*.hrashold ce f (L)

Fig. A-29. Threshold Plot of Maximum Odd Correlation F unc-
tions from Mass-Correlation Algorithm for Maximal

Codes of Length 63, 127, 255, 1023

>U)

'U i
-f I

ct~o

-Fig. A-30. Typical Even Cross Correlation Function of
Gold Code of Length 63

.5. A- 22

- I,

.0 V

N

L
0

C'.

1 0 10 20 30 40 50 so 70

Fig. A-31. Typical Odd Cross Correlation Function of

Gold Code of Length 63

---- Even Cross
" --- Odd Cross

-U

00 0.: [= 4t,,0
g -.

I-I* I

threhold ae f'<L.

Fig. A-32. Typical Amount Exceeding Threshold vs Threshold of
Even and Odd Correlation Functions Gold Code of Length 63

A-23

t.

:K--!, .K- .

& -::: :: ;:, : : .+:: ,:':-: *',: *, . .:;,::: .. : :14, ,''. ,': .':: : :--.- ':-' '-:- :::,:- :':,:-:"::;:,".- :'.'- :-:,';:-:: :;-:

.9-.4

""" -. - . - --.... -!-. _ _i , ' i

0'

" Fig. A-33. Optimal Odd Auto-Correlati ou Function of Gold_Codes 3 & 4, Length 63

-", I IV

'ii

-0 M

v V

I I

i 0 10 z 30 40 50 60 70

tau

Fig. A-34. Optimal Odd Cross-Correlation Function of GoldCodes 3 & 4, Length 63

A-24
C 'I

14, in, i~aX Odd AUto

Even Auto

_0

0
X

4)
0.20 0.5 03

0 005 10 .1

.- trsol sfL

Fig. A-5 hehlIlto
iiu n aiu d uo

Corlto n Ee uoCrelto
fGl

Coeo , egh6

Pig. -35. hreshld Plt of Minad ll Odd

SCD Max Odd Cross

.r~ MaxvOd Cross

4(D

S

0N
X

N

4)

E

.0 0.05 0.10 0.15 0.20 0.25 0.30

threshold as f(L)

Fig. A-36. Threshold Plot of minium and Maximum
d rS

Correlation and Even
Cross-Correlation

of Gold

Codes 3 &4, Length 63

-- ,--- - Min Odd Auto I
0 •. Min Odd Cross-- 11 ven Cross

C

I- L

0

Wi0 0.1 0.2 0.3 0.4 0.5

Fig. A-37. Threshold Plot of Minimum Odd Auto-Correlation,
Minimum Odd Cross-Correlation, and Even Cross-Correlation

of Gold Codes 3 & 4, Length 63

- Min Even Cross0 Max Even Cross

S---Ave Even Cross
L

C

.ai -- .
0

1. 0.1 0.2 0.3 0.4 0.5
thra.hold as f(L)

Fig. A-38. Threshold Plot of Minimum, Maximum and Average
Even Correlation Functions from Mass-Correlation

Algorithm for Gold Codes 1-10, Length 63

A-26

"-I W
' '

.
°

" -", '"" " ,, ","'- "'V /. '.) " ,:/ .'. y£" -%* -, .. " %" . % "

-I \ - viin Odd Cross

0 R~ax Odd Cross
----. Ave Odd Cross

4)(0 \ "

0

E

t 0.1 0.2 0.3 0.4 0.5
threshold as f (L)

Fig. A-39. Threshold Plot of Minimum, Maximum and Average
Odd Correlation Functions from Mass-Correlation

Algorithm for Gold Codes 1-10, Length 63

GN

ini

C.,

* I E

1 0 40 60 so 1zz 140 14

Fig. A-40. Typical Even Cross Correlation Function of
Gold Code of Length 127

A-27

lq i I II I

ii

HiIi
-0 20 4 o s 1 0 120 140

I I IIII

Fig. A-41. Typical Odd Cross Correlation Function of[

.I ,

Fi. A- . Typical oddt ECrodis Correatond FunTiro of

Gold Code of Length 127

A-2-

Even Cross
0 C Odd Cross

4)

ti.1

thr-osho 1d ce f <L)

Fig. A-42. Typical Amount Exceeding Threshold vs Threshold of
Even and Odd Correlation Functions Gold Code of Length 127

A- 28

.% s%

ir
F I. I p~ml d u~-o: e.ttnFnto £Gl

I , . t

-I31

0 20 40 60 10 1001 120 140

II

Fig. A-43. Optimal Odd Auto-Correlation Function of Gold
Codes 3 & 4, Length 127

1A

. 4-
K 0

"4 I '

10 20 40 650 so 100 120 140
ta@u

Fig. A-44. Optimal Odd Cross-Correlation Function of Gold
Code. 3 & 4, Length 127

A- 29

. ,Lf., w,ax Odd Auto
-- "- Even Auto

I

1. .50.10 0.15 0.20
throehold am f(L)

Fig. A-45. Threshold Plot of Minimum and Maximum Odd Auto-
Correlation and Even Auto-Correlation of Gold

Codes 3 & 4, Length 127

_* 'Min Odd Cross
O Max Odd Cross
I Even Cross

cn

03
XN

to0.05 0.10 0.15 0.20
threehoid -as f (L)

Fig. A-46. Threshold Plot of Minimum and Maximum Odd Cross-I
Correlation and Even Cross-Correlation of Gold

Codes 3 & 4, Length 127

A- 30

0-U Mi Uda Auto
0 C Min Odd Cross

*6

* w~ --- Even Cross

L

X (
MN

6, N

t 0.05 0.10 0.15 0.20 0.25 0. 30
threshold as f (L)

Fig. A-47. Threshold Plot of Minimum Odd Auto-Correlation,
Minimum Odd Cross-Correlation, and Even Cross-Cor-

relation of Gold Codes 3 & 4, Length 127

M1
- Min Even Cross

O Max Even Cross
'-I Ave Even Cross

is
LCD N

XN
4)

C N

0
I " I

4)

0 0.05 0.10 0.15 0.20 0.25 0.30
threashold as f(L)

Fig. A-48. Threshold Plot of Minimum, Maximum and Average
Even Correlation Functions from Mass-Correlation

Algorithm for Gold Codes 1-10, Length 127

A- 31

-.. * -.

* \.

S" - ±'in Oad Cross
. iax Odd Cross
Ave Odd Cross

L
C

6 '_ % .

lSl II I

1 0.05 0.10 0.15 0.20 0.25 0.30
threshold as -F(L)

Fig. A-49. Threshold Plot of Minimum, Maximum and Average
Odd Correlation Functions from Mass-Correlation

Algorithm for Gold Codes 1-10, Length 127

-Min Even Cross
CC- -Ave Even Cross
a -......Max Even Cross

| ..

0

XN

US

0' 0.02 0.04 0.06 0. 0e 0.10 0. 12 0.14
threshold as f(L)

Fig. A-50. Threshold Plot of Minimum, Maximum and Average
Even Correlation Functions from Mass-Correlation

Algorithm for Gold Codes 1-8, Length 1023

A-32

i ' >) < 7 : >. ,-.. ,:-.. ;,: .,,. - A-._ -.\',."-,..c ,-" -,-...-.".:.".. - •-< .' ,-.:- ... --.<

i4in Odd Cross

--- Ave Odd Cross
...... Max Odd Cross

L
-cc

C

IIX CY

.0

0 0.02 0.04 .06 0.0 8 0.10 0.12 0.14
threohold aos f L)

Fig. A-51. Threshold Plot of Minimum, Maximum and Average
Odd Correlation Functions from Mass-Correlation

Algorithm for Gold Codes 1-8, Length 1023

Gold Even 63
...................... Gold Even 127

-- Gold Even 1023
L

C

X0 I
4)

toZ 0.1 0. 2 0. 3 0.4 0.5
tkreso1ld as fP(L)

, i

Fig. A-52. Threshold Plot of Maximum Even Correlation Func-
tions from Mass-Correlation Algorithm for Gold

Codes of Length 63, 127, 1023

A-33

V Gold Odd 63
...............Gold Odd 127

~ --- Gold Odd 1023uS

X IY

iig~~ thr-ashold as f(L) 0405

Fig. A-53. Threshold Plot of Maximum Odd Correlation Func-
tions from Mass-Correlation Algorithm for Gold

Codes of Length 63, 127, 1023

gin I if

1 II

IL - I - - I -- t

Fig. A-54. Typical Even Cross Correlation Function of
Kasami Code of Length 63

A-34

'AD-Ri59 309 CODE SEgUENCt PERFORMANCE ANALY~.SIS USING 212
CROSS-CORRELATION PARAMETERS IN (U) AIR FORCE INST OF
TECH WRIGHT-PRTTERSON AFR OH SCHOOL OF ENGI

UNCLASSIFIED R C GONDER JUN 85 AFIT/GE/ENG/85J-i F/6 17/2 NL

EEEEEEEEEEEIIE
EEEEEEEEEEEEEE
ElEEEEEllEEEEE
mmEEll~lEEEEEI

EEE~llEEEEEEEE
EIIEEEEEEEEI

k. i i : '5

U.,

.0,

~MICROCOPY RESOLUTION TEST CHART

~NATION4AL BUREA"F STANDARDS- 1963-A

p,.

% b

.%--

, U.2F,

l / G ' -i Ilg 'l tl ' "T G ' ' ' ' ' ' - -.. . . --- ',-. '.,,r- '

J Is

"'- 111/ l l l

I i

C

10 10 20 30 40 50 s0 70

Fig. A-55. Typical Odd Cross Correlation Function of
Kasami Code of Length 63

- Even Cross

O D Odd Cross

0'

C
•4' 1) N

0
".' o N

0- 0. 05 0. 10 0. 15 0. 20 0. 25 0. 30
"> ~hreshol1d as fe(L)

" Fig. A-56. Typical Amount Exceeding Threshold vs Threshold of
U Even and Odd Correlation Functions Kasami Code of Length 63

"' A-35

XN
* N°

• . .- . . . - -. - - • , . . - " % , . , . ', .% % ,. , - ,, . ., . . / -- ,. , , ,,. ,o . : . -o . - , ,'. ' ,

. 0

- "-.,z.. us X

Kg,

II I ,,I p p
'0 10 20 30 40 50 60Z 70

Pig. A-57. Optimal Odd Auto-Correlation Function of Kasami
• . Codes 2 & 3, Length 63

-'-

0

N

..4

tO 10 20 30 40 50 60 70

tau

Fig. A-58. Optimal Odd Cross-Correlation Function of Kasami

Codes 2 & 3, Length 63

'i A- 36

;5-'''''"--,:.; -' , _G " " ,"'-;"'."."". . .- '" ,"-'" '.'-" "- ' ' "' ' , - " """:" :.. : ". "0, s -" .
, i.. .. ".:' -3-:- ° . .% . - ,- . . , . ., ., . - ' " - ' ,'- .. , -'-' . . " '. ,, " ' ,- .. , ,.'. L,' '. % . ,

Min Odd Cross
Max Odd Cross

S•" Even Cross

cN

4)(

0N

o
XN

W 0 0.05 0.10 0.15 0.20 0.25
thr-eshold a. f(L)

Fig. A-59. Threshold Plot of Minimum and Maximum Odd Auto-
Correlation and Even Auto-Correlation of Kasami

Codes 2 & 3, Length 63

< Min, Max Odd Auto

CD Even Auto

n L

X~ NY

-N

foN
N N

-. 0 0.0Z5 0.1 0 . 15 0. 20 0.25
thrashold as f (L)

Fig. A-60. Threshold Plot of Minimum and Maximum Odd Cross-
Correlation and Even Cross-Correlation of Kasami

: . Codes 2 & 3, Length 63

A-37

UIL

-N

0 Min Ocd Cross
-- Even Cross

C
.4

0

0.1 0.2 0.3 0.4 0.5
threshold as f(L)

Fig. A-61. Threshold Plot of Minimum Odd Auto-Correlation,
Minimum Odd Cross-Correlation, and Even Cross-Correlation

of Kasami Codes 2 & 3, Length 63

- - lMin Even Cross
* * Max Even Cross

I Ave Even Cross

C

0

4.

to 0-I 01 0.2 0.3 0.4 0.5

threashold as f (L)

-. ~.Fig. A-62. Threshold Plot of Minimum, Maximum and Average
Even Correlation Functions from Mass-Correlation

Algorithm for Kasami Codes 1-8, Length 63

A- 38

.~ Min Odd Cross
0 -Max Odd Cross
X - Ave Odd Cross

L

-C

a -Y

6 4-

"4) EDI:

E

" -. = -\

0 0.1 0.2 0.3 0.4 0.5
threshold as F(L)

Fig. A-63. Threshold Plot of Minimum, Maximum and Average
Odd Correlation Functions from Mass-Correlation

Algorithm for Kasami Codes 1-8, Length 63

U,

C-

V-

in
L

1 050 100 150 200 250 300

Fig. A-64. Typical Even Cross Correlation Function of
Kasami Code of Length 255

A- 39
C ra. .

4/.

I A I i. &

N

NF

Fig. A-6 . pclOdCosCreainFnto fi

C,,I
C

.o.

10 50 100 150 200 250 300
tau

Fig. A-65. Typical Odd Cross Correlation Function of
Kasami Code of Length 255

Even Cross
OD- Odd Cross4) Qi ., - _

C.

or%

43 M
EN

1 0.05 0.10 0.15 0.20Ithreehol d a. f(L)

Fig. A-66. Typical Amount Exceeding Threshold vs Threshold of
Even and Odd Correlation Functions Kasami Code of Length 255

A- 40! I.

Waxn Eve Cross0 Min~ Even Cross

Ave venCross

L

(0

0

XN-

6,

.0 0.05 0.10 0.15 0.20 0.25
threashold as f(L)

Fig. A-67. Threshold Plot of Minimum, Maximum and Average
Even'Correlation Functions from Mass-Correlation

Algorithm for Kasami Codes 1-10, Length 255

- Max Odd Cross
C- Min Odd Cross
4 Ave Odd Cross

t.

o

E

0 0.05 0.10 0. 15 0.20 0.25
threshold as f(L)

Fig. A-68. Threshold Plot of Minimum, Maximum and Average
Odd Correlation Functions from Mass-Correlation

Algorithm for Kasami Codes 1-10, Length 255

A-4 1

..

Min Even Cross

---- Ave Even Cross
_C Max Even Cross

qr

X I

E

to 0.02 0.04 0.0 0e .0 0 .10o 0.12 0.14
threshold cs f(L)

Fig. A-69. Threshold Plot of Minimum, Maximum and Average
Even Correlation Functions from Mass-Correlation

Algorithm for kasami Codes 1-8, Length 1023

Min Odd Cross

0 ---- Ave Odd Cross
Max Odd Cross

C

* V

0 31

I 4IE

.0 Z 0.02 0.04 0. 6 5.8 0. 10 0.12 0.14
thr*ehold as f(L)

Fig. A-70. Threshold Plot of Minimum, Maximum and Average
Odd Correlation Functions from Mass-Correlation

: - Algorithm for Kasami Codes 1-8, Length 1023

A-42

-~~ r r. *~ .. ' ** * *. ~A S A ~ *, ~ . *. * * *

Kasam± Even 63
...... Kasami Even 255

Kasami Even 1023

o

E1
,, _ I~ ~ I

0 0.1 0.2 0.3 0.4 0.5
threshold as f(L)

Fig. A-71. Threshold Plot of Maximum Even Correlation Func

tions from Mass-Correlation Algorithm for Kasami
Codes of Length 63, 255, 1023

zS

, Kasami Odd 63
.OD Kasami Odd 255

*u" ' Kasami Odd 1023

L

X IN

E
I

to 0.1 0.2 0.3 0.4 0.5

threohold as f(L)

Fig. A-72. Threshold Plot of Maximum Odd Correlation Func-
tions from Mass-Correlation Algorithm for Kasami

* -':. Codes of Length 63, 255, 1023

A-43

.,.+, - .'. % C , C > I,% 4. " "-,- , * * .1 Y Z# . -,e. € + . , -/. .J '*". ,.. ,,.;"...,.. .' '-'

- Maximal Even 63
-. Gold Even 63

-•,. Kasami Even 63
L
-C

0 •
X r

E

I I

to0.1 0.2 0.3 0.4 0.5
threshold as f (L)

Fig. A-73. Threshold Plot of Maximum Even Correlation Func-
tions from Mass-Correlation Algorithm for Maximal,

Gold and Kasami Codes of Length 63

Maximal Odd 63

. . -......Gold Odd 63
--.--Kasami Odd 63

L-

XCD

0

E

.00.1 0.2 0.3 0.4 0.5
threshold as f(L)

Fig. A-74. Threshold Plot of Maximum Odd Correlation Func-
tions from Mass-Correlation Algorithm for Maximal,

Gold and Kasami Codes of Length 63

A-44

-" "aximal Even 127

0"... Gold Even 127

!C.
Gfo

0

.,

C

S0.05 0.10 0.15 0.20 0.25 0.30 0. 35
threshold as f (L)

Fig. A-75. Threshold Plot of Maximum Even Correlation Func-
tions from Mass-Correlation Algorithm for Maximal

and Gold Codes of Length 127

Maximal Odd 127

...... Gold Odd 127

"t
C .

tco

.Z 0. 05 0. 10 0. 15 0. 20 0. 25 0. 30 0. 35
throshold as f(L)

Fig. A-76. Threshold Plot of Maximum Odd Correlation Func-
tions from Mass-Correlation Algorithm for Maximal

and Gold Codes of Length 127

A-45

............"-...'.-. ''-.': -'" '. ." " .- ',. '" .. "-" "'" .-"" ' -'..' '" .. -".".-."" .' "" ".

Kiaxia Even 255
.............................iasaia Even 255

L

i 0
X N

t2

'.0 0.1 0.2 0.3 0.4
threhold as f(L)

Fig. A-77. Threshold Plot of Maximum Even Correlation Func-
tions from Mass-Correlation Algorithm for Maximal

and Kasami Codes of Length 255

- Maximal Odd 255
........................... Kasami Odd 255

-C

o

X N

4)
E

1.0 0.1 0.2 0.3 0.4
thr-eshold asa f (L)

Fig. A-78. Threshold Plot of Maximum Odd Correlation Func-
tions from Mass-Correlation Algorithm for Maximal

and Kasami Codes of Length 255

A- 46

begin
M : 0;
L :1;
while (M < N) and (L<16383) do begin

L : 2* L;
M :M + 1;

end; (*while loop*)
for I:- 1 to N do

Regl(I]:- '0';
Regl[N]:" '1';
M:= 1;
while M < L do begin

ModSumTaps(Tapl ,N,Regl ,CK);
Enque(Listl,Backl,CK);
ShiftRegister(Regl ,N,CK);
M:" M + 1;

end; (*while loop*)
for 1:- 1 to N do

Regl[I]:" '0';
Regl[N]:= '1';
M:= 1;
while M < L do begin

ModSumTaps(Tap2 ,NRegl,CK);
Enque(List2,Back2,CK);
ShiftRegister(Reg1 ,N,CK);
M':" M + 1;

end; (*while loop*)
writeln('How many codes do you want generated? You may choose');
writeln('from 1 to ',L+1,1 Please input number');
readln(Limit);
if Limit >- 1 then begin

Filename:- Name + '.001';
writeln(Filename);
WriteList(Listl, Filename);

end; (*if*)
if Limit >- 2 then begin

Filename:- Name + '.002';
writeln(Filename);
WriteList(List2,Filename);

end; (*if*)
Limit:- Limit - 2;
X:= 1;
while (X < L) and (X <- Limit) do begin

str(X+2:3,st);
if st[l] - ' ' then st[l]:- '0';
if st[2] ' ' then st[2]: '0';
Filename:- Name + '.' + st;
writeln(Filename);
ModSumList(LIstl ,List2,Filename);
ShiftList(Listl);
X:- X+I;

end (*while loop*)
end; (*procedure GenGold*)

B-13

"' *' ** ' •:.-." :- - . . .'< <- - U *. "&i .i . -'. ..., ,. -. -- --- 'L -" ..

G e n G o 1 d

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER A.21
(* DESIGN DATE: Dec 84 LAST UPDATE: 4 Jan 85

C' DESCRIPTION: This procedure constructs and manipulates two linked
C' lists representing the outputs of two LFSR's. The shifting and
C' modulo-2 addition of the lists are required ta produce Gold codes. *)
(' The user has the option of producing 1 to the maximum number of
C' unique gold codes the registers will produce and stores the codes *)
(' in text files with the same name and different extensions.

(* CALLING ARGUMENTS: Name-string of characters representing the file ')
the user desires to store output

C' Tapl-Tap assignments for LFSR
C' N-Length of LFSR used to generate code

(' INTERNAL VARIABLES: IM,X-counters used for looping
L-Length of LFSR sequences

C' Limit-Max number of Gold Codes to be produced *)
(' CK-output of LFSR after addition of taps assigned*)

Codedta-Text file variable for storage of output ')
C' st-string of character represen-:ing filename ex-

tensions for storage of output
C' Regl-LFSR array contents
C' Backl,Back2-pointers to end of lists
C' Filename-string of 12 characters w/extension

C' CONSTANTS: None

(* FILES USED: Codedta-storage of outputted code

C' MODULES CALLED: ModSumTaps
Enque

C* ShiftRegister
(* ModSumList
(* ShiftList
C' WriteList

procedure GenGold(Name:Word; N:integer; Tapl,Tap2:RegStructure;
var Listl, List2:dataptr);

var Limit,I,M,L,X:integer;
CK:Binary;
Codedata: text;
at: string[3];
Regl: RegStructure;
Backl,Back2:dataptr;
Filename:NameArray;

B-12

D ec im at e

CDESIGNER: Richard C. Gander MASTER THESIS WORK
(ADVISOR: MAJ Ken Castor MODULE NUMBER A.311
CDESIGN DATE: Feb 85 LAST UPDATE: 14 Mar 85

CDESCRIPTION: This procedure decimates a linked list representing a
C' maximal sequence of length Length, at decimates by a factor of '

N+2 to produce a sequence of length L. It then uses the second *
sequence to produce a third sequence of period L, length Length. *

CCALLING ARGUMENTS: Listl,List2,List3-pointers to beginning of lists *
C' Backl,Back2,Back3-pointers to ends of lists

L-Length of sequence two
C' Length-length of sequence three

CINTERNAL VARIABLES: P,ptr-pointer used to traverse the list
CountK-counters used to do process

CCONSTANTS: None

CFILES USED: None

CMODULES CALLED Enque

procedure Decimate(var Listi ,Backl ,List2,Back2 ,List3 ,Back3: dataptr;
L,Length:integer);

var P,Ptr:dataptr;
Count ,K: integer;

begin
P:- Listi;
EnqueCList2,Back2,PA.info);
Count: -1;
repeat

for K:- 1 to (L+2) do
P:- P^.next;

Enque(List2 ,Back2 ,P" . info);
Count:- Count + 1;

until Count - L+1;
Count:- 0;
while(Count < Length) do begin

P:- List2;
repeat

Enque(List3,Back3,P^.info);
Count:- Count + 1;
P:- P .next;

until CP.next - nil);
end(*vhile Count*)

end; (*Procedure Decimate*)

B-11

(* G e t R i d 0 f *

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER A.03
(* DESIGN DATE: Jan 85 LAST UPDATE: 14 Jan 85

(* DESCRIPTION: This procedure releases a linked list from memory allo- *)

cation

(* CALLING ARGUMENTS: List-pointer to beginning of linked list

(* INTERNAL VARIABLES: P,ptr-pointer used to traverse the list

(* CONSTANTS: None

(* FILES USED: None

(* MODULES CALLED: None

procedure GetRidOf(var List:dataptr);

var P,ptr:dataptr;•

Ibegin
P:- List;
ptr:-P;
while P^.next <> nil do begin

ptr:- P-.next;
dispose(P);
P:-ptr;

end (*while loop*);
dispose(P);
List:- nil;

end; (*procedure GetiidOf*)

B-10

" --". "' " .'- "' ' ' ' f.'" " - ;" " " " ". . ' . . " _ ' - "_" " "

(* W r i t e L i s t *

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER A.07
(* DESIGN DATE: Dec 84 LAST UPDATE: 10 Dec 84

(* DESCRIPTION: This procedure traverses a linked list of records and *)
outputs the information in the records in file Codedta.

C' CALLING ARGUMENTS: List-pointer to beginning of linked list
C' Filename-string of char identifying file to be *)

written to

(* INTERNAL VARIABLES: P-pointer used to traverse the list

(C CONSTANTS: None(**
(* FILES USED: Writes to Codedta*

(* MODULES CALLED: None

procedure WriteList(List: dataptr;Filename :1ameArray);

var P:dataptr;
Codedta: text;

begin
assign(Codedta,Filename);
rewrite(Codedta);
P:-List;
while P <> nil do begin

write(Codedta,P^.info);
P:- P^.next;

end; (*while loop*)
close(Codedta);

end;

B-9

%[

"" (* M o d S u m L i s t *

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER A.06

" (*'DESIGN DATE: Dec 84 LAST UPDATE: 4 Jan 1985

(* DESCRIPTION: This procedure traverses two Linked Lists of binary data *)
(and performs a bit by bit modulo-2 sumation of the lists and writes *)

,? (* the result into the text file, Codedta.

"" (* CALLING ARGUMENTS: Listl,List2-pointer values indicating the first *)
C (record of each linked list or records
(*C' Filename-string of characters indicating name of *)

file output should be stored in
,.. (*

C* INTERNAL VARIABLES: PIP2-pointers used for traversing the lists
(*C' bit-used for result of modulo-2 addition of two *)
(* records

(' CONSTANTS: None

C' FILES USED: writes to Codedta*

(* MODULES CALLE: None

procedure ModSumList(Listl:dataptr;List2:dataptr;Filename:NameArray);

var P1,P2 : dataptr;
Bit:binary;
Codedta: text;

*begin

assign(Codedta,Filename);
rewrite(Codedta);
P1:- Listl;
P2:- List2;
while Pl^.next <> nil do begin

if PlA.info - P2-.info then
Bit:- '0'

else
Bit:- '1';

write(Codedta,Bit);

P1:- Pl^.next;
P2:- P2^.next; "

end(*while loop*);
if Pl^.info - P2^.info then

Bit:- '0'
else

p Bit:- 'I';
write(Codedta,Bit);
close(Codedta);

end (*procedure ModSumList*);

B-8

iZ

S h i f t L i s t

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER A.08
(* DESIGN DATE: Dec 84 LAST UPDATE: 12 Dec 84

(* DESCRIPTION: This procedure takes a linked list of records and places *)
(* the first record at the end of the list.

C* CALLING ARGUMENTS: List-pointer to the first record in the linked *)
(*C' list

C* INTERNAL VARIABLES: FirstP-pointers used for traversing the list *)
(* and assigning a new beginning of the list

(* CONSTANTS: None

C' FILES USED: None

C' MODULES CALLD: None

procedure ShiftList(var List :dataptr);

var First,P:dataptr;

begin
First:- List;
P:- List;
while P^.next <> nil do

P:- PA.next;
First:- First .next;
P-.next:" List;
List.next:- nil;
List:- First;

end; (*procedure ShiftList*)

B-7

(* E n q u e *

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
- (* ADVISOR: MAJ Ken Castor MODULE NUMBER A.09

(* DESIGN DATE: Dec 84 LAST UPDATE: 12 Dec 1984

(* DESCRIPTION: This procedure takes an inputted value (Bit) and places *)
(* it in a record, and then places the record at the bottom of the list *)
(* identified by the calling argument List. It updates the calling mod- *)
(* ule of the pointer values for the front and back of the list.

(. ... *

(* CALLING ARGUMENTS: List-pointer indicating the beginning of the list *)
Back-pointer indicating the end of the list

(* Bit-the data value to be placed in the linked list*)
("

(* INTERNAL VARIABLES: P-temporary pointer used for traversing the list "1
N(*'""

(* CONSTANTS: None

(* FILES USED: None

(* MODULES CALLED: None

procedure Enque(var List: dataptr;var Back:dataptr; Bit: binary);

var P: dataptr;

begin
if List - nil then begin

New(P);
List:- P;
P .info:- Bit;
Back:- P;
Back^ .next:- nil;

end
else begin

New(P);
P .info:- Bit;
BackA.next:- P;
Back:- P;
Back^ .Next:- nil;

end (*if then else*)
end; (*procedure Enque*)

B-6

(DESIGNER: Richard C. Gander MASTER THESIS WORK
* *ADVISOR: MA.J Ken Castor MODULE NUMBER A.04

(DESIGN DATE: Nov 84 LAST UPDATE: 15 Nov 1984

(DESCRIPTION: This procedure takes the contents of an LPSR and shifts *
* (* it to the right one position. It Loads the first position with the *
* (~ value CK (input parameter).

* (~ CALLING ARGUMENTS: C-Array representing the LFSR values
N-Length or the LFSR

(* UK-value to be input to first position of LPSR *
(* after shifting the register one position

(INTERNAL VARIABLES: I--used as a counter

(~CONSTANTS: None

(F ILEFS USED: None

(~MODULES CALLED: None

procedure ShiftRegister~var C:RegStructure; N:integer; CK:biziary);

var I:integer;

begin
I:- N;
repeat

until 1< 2;
CLlj:- CII;

end (*Procedure ShiftRegister*);

B-5

,z,

(DESIGNER: Richard C. Gander MASTER THESIS WORK
(ADVISOR: MAJ Ken Castor MODULE NUMBER A.05
(DESIGN DATE: Nov 84 LAST UPDATE: 15 Nov 84

(DESCRIPTION: This procedure takes an LFSR and its designated tap. and *
(*performs a modulo 2 addition of the contents of the register as des-*)
(*ignated, by the taps and produces the result-CK

* (* CALLING ARGUMENTS: T-Tap assignments
N-Length of LFSR

* 1-Register array
CR-output character of the operation

(INTERNAL VARIABLES: I-used as a counter

(~CONSTANTS: None

r* ILES USED: None

* (* MUDuLS uALLED: None

procedure ModSumTaps(T:RegStructure; N:integer;

R:RegStructure;var CK:binary);

var I :integer;

begin
CR '0';

repeat
I:- I + 1;
if T(I] - '1' then begin

if CR - R[I] then
CR :- '0'

else CR :- I1'
end; (*if*)

until I - N;
end; (*procedure ModSumTaps*)

B-4

(DESIGNER: Richard C. Gander MASTER TkHESIb WORK
(ADVISOR: MAJ Ken Castor MODULE NUMBER A.01
(~DESIGN DATE: Nov 84 LAST UPDATE: 15 Nov 84

* (*DESCRIPTION: This procedure loads the tap assignments for an LFSR and *
returns the loading to the calling module.

(~CALLING ARGUMENTS: N-Length of the register
T-array of taps that are assigne~d in modtu.e -
Identifier-String of characters used to comumuni- *

cate with the u~ser

(INTERNAL VARIABLES: I-Counting variable

(CONSTANTS: None

r* ILES USED: None

(~MODULES CALLED: None

procedure Loadlnput(N:iuteger; var T:RegStructure; Identifier:Sting3O);

var I: integer;

begin
I:-i;
while I <-N do begin

T[I]:- '0';

end; (*while loop*)
writeln('Nov Select the positions for the ',Identifier,

...when complete');
writeln('input value greater than 15');

* readln(I);
while 1< 16 do begin

T[I] :- 1';
readln(I)

end (*while loop*);
end; (*procedure Loadlnput*)

B-3

(* T e s t *

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER A.02

(* DESIGN DATE: Nov 84 LAST UPDATE: 15 Nov 84

(* DESCRIPTION: This procedure Tests to insure that the filename is a
(* valid one for an 8-bit CPM machine. If correct it will return a
(* flag - true. With minor errors it will also correct them. If the *)

error is not recoverable it will return a flag - false.

(* CALLING ARGUMENTS: Name- 8-letter string
flag- Boolean indicating validity of Name

(* INTERNAL VARIABLES: I-counting variable
Len-Length of the string Name
ch--used to change the case of Name

(* CONSTANTS: None

(* FILES USED: None)
o-. (.*)

(* MODULES CALLED: None *)

procedure Test(var Name:Word; var flag:boolean);

var I,Len: integer;
ch: char;

begin
I:- 1;
Len:- Length(Name);
while (I <- Len) and flag do begin

if Name[I] in ['A'..'Z','a'..'z','O'..'9',':'] then begin
flag:- true;
if Name[I] in ['a'..'z'] then begin

ch:- chr(ord(Name[I]) -32);
Name[I]:- ch;

end; (*if*)
end (*front clause of if*)

else flag:- false;
I:- I + 1;

end; (*while loop*)
end; (*procedure Test*)

B-2

.'. n V W(, .. * .. w X

(* G e n e r a t e C o d e s *

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER A.0
(* DESIGN DATE: Nov 1984 LAST UPDATE: 4 Mar 1985

(* DESCRIPTION: This program will generate codes using linear feedback *)
(~shift registers (LFSR) and store the coues in ASCII text files as

(* designated by the user for further manipulation. It can be used for *)
(g generating Maximal Length Codes, Gold Codes and Kasami codes provided*)
(* the user identifies the appropriate tap assignments for each. This *)
(* version is limited to register lengths of 15 because it was written *)
(* tor an 8-bit machine.

(* CALLING ARGUMENTS: Std Input, Output

(* INTUERNAL VARIABLES:
ch-character input to the program from user

(* CONSTANTS: None

(* FILES USED: User designatdd Filename for code storage

(*MODULES CALLED: LinearGenerator
GoldCodeGenerator
KasamiGenerator

- . program GenerateCodes(input,output);

type Binary -101-.1;
RegStructure - array [1..15] of Binary;
NameArray - string[12];
Word - string[8];
String3O - string[30];
dataptr - data;

data - record
info: Binary;
next: dataptr;
end;(*record*)

var ch: char;

B-1

...% •... , ... %..-... , ' .. .

"Maximal Even 1023
X O -\... Gold Even 1023

Kasami Even 1023

4)

' "4

E
o

I.......
f. 0.05 0.10 0.15 0720

threshold as f(L)

Fig. A-79. Threshold Plot of Maximum Even Correlation Func-
tions from Mass-Correlation Algorithm for Maximal,

Gold and Kasami Codes of Length 1023

O Maximal Odd 1023

...... Gold Odd 1023

----- Kasami Odd 1023

X (\

0.05 0.10 0.15 0.20
threshold as f (L)

Fig. A-80. Threshold Plot of Maximum Odd Correlation Func-tions from Mass-Correlation Algorithm for Maximal,

-' Gold and Kasami Codes of Length 1023

A-47

:.0-

"'" (* G e n L i n e a r *

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER A.11
(* DESIGN DATE: Nov 84 LAST UPDATE: 4 Jan 85

(* DESCRIPTION: This procedure produces a sequence of bits from an LFSR *)
(* and writes the sequence into file Codedta. Maximum length of LFSR *)
(* is 15 positions.

(CALLING ARGUMENTS: Filename-string representing storage file
N-Length of LFSR
Tapl-array of tap assignments

(* INTERNAL VARIABLES: M-counter for looping
L,Leng-Length of output sequence
Maxi-Number of ones in output sequence
CK---Output of generator at each clock cycle
Maxi-number of ones generated in code

(* CONSTANTS: None

(* FILES USED: Writes to Codedta

i (* MODULES CALLED: ModSumTap's
ShiftRegister

procedure GenLinear(Filename:Namearray;N:integer;var Tap 1:RegStructure);

var MaxiM,L,Leng:integer;
Codedta: text;
CK: Binary;
Regl:RegStructure;

begin
Leng:= 0;
M : 0;
L : 1;
while (M < N) do begin

L : 2 * L-
M :M + 1;

'J end; (while loop*)
for M:- 1 to N do

Regl[M]:" '0';
Regl[N]:" '1';
L:L- 1;
Maxi:- 0;

~M :- 0;
--- assign(Codedta,Filename);

rewrite(Codedta);

B-14

-A ,FAX- .,% . . .' . % ' . % W J " " " " " " % ' - " " " , 4 , , ' : " . " . " . ' '

- - ~ - I '~ -- WZ W7

while (M < L) do begin
ModSumTaps(Tapl ,N,Regl ,CK);
Leng :- Leng + 1;
Shiftaegister(Regl ,NCK);
write(Codedta,CK);
if CK - '1' then
Maxi:-n Maxi + 1;
M M + +1

end; (*while loop*)
close(Codedta);
writeln('Length of code is 1,Leng,' #of ones is M, axi);

end(*procedure GenLinear*);

B-15

* k.---2. *.--W

.>'.- " (*G e n K a s a m i *

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER A.3.1
(* DESIGN DATE: Nov 84 LAST UPDATE: 4 Jan 85

(* DESCRIPTION: This procedure produces a sequence of bits from an LFSR *)
(* and places the sequence into a linked list in memory. It then dec- *)

i(* imates this sequence to produce a second sequence. The second se-
(* quence is used to produce a third sequence of the period of the se-
(* cond that is the same length of the first. Then the procedure modu-*)
(* lo-2 sums the first sequence with phase shifts of the third to pro- *)
(* duce the set of Kasami Sequences. The first sequence must by a mux-*)
(* sequence for the generator to produce Kasami sequences.

C(* ALLING ARGUMENTS: Name- representing storage file
N-Length of LFSR
Tapl-Tap assignments for LFSR
Listl,List2,list3-pointers to fronts of lists
Backl,Back2,Back3-pointer to ends of lists of se-

quences used to generate Kasami Sequences

(* INTERNAL VARIABLES: Length-Length of sequence one
L-Decimating factor
Limit--maximum number of Kasami Sequences that *)

can be produced in this configuration
. *Regl--array representing LFSR producing seq 1

Filename-Filename w/extension added for output *)
sequences

CK-output of LFSR produces seq 1
I,K,M,X-counters used in procedure
st-string of length 3 used as filename extension *)
L,Leng--Length of output sequence

"" (* CONSTANTS: None

. (FILES USED: Writes to Codedta

(* MODULES CALLED: ModSumTaps
ShiftRegister
Enque

* (Decimate
Writelist
ShiftList

ModSumList

procedure GenKasami(Name:Word; N:integer; Tapl:RegStructure;
var ListI, List2,List3,Backl,Back2,Back3:dataptr);

B-16

. ..-.......

var Length,K,L-imit,I,M,L,X:integer;
CK:Binary;
Codedata~ffle of char;
st: string[3];
Regi: RegStructure;
Filename: NameArray;

begin

Length -. 1;
while (M < N) and (Length<16383) do begin

Lenpth :- 2 * Length;
M :- M + 1;

end; (*while loop*)
Length: -Length-i;

L:- 1;
while (M< N/2) do begin

L:- 2 * L;

end(*while loop*);
L:- L -1;
for 1:- 1 to N do

Regl[I]:- '0';
Regl[N]:- 1';
M:- 1;
while M <- Length do begin

ModSumTaps(Tapl ,N,Regl ,CK);
Enque(Listl ,Backl ,CK);
ShiftRegister(Regl ,N,CK);
M:- M + i;

end; (*while loop*)
Decimate(Listl,Backl ,List2,Back2,List3,Back3,L,Length);
M:- 1;
writeln('Hov many codes do you want generated? You may choose');
writeln('from 1 to ',L,' Please input number');
readln(Limit);
if Limit >- 1 then begin

Filename:-n Name + '.001';.
writeln(Pilename);
WriteList(Listi, Filename);

end; (*if*)
Limit:-n Limit - 1;
X:in 1;
while (X < L) and (X <- Limit) do begin

str(X+1:3,st);
if st~l] - I I then st~l]:- '0';
if st[2] - I I then st[2]:- '0';
Filename:- Name + '.' + st;
writeln(Filename);
ModSumT-istCListl ,List3,Filename);
ShiftList(Listl);
X:- X+1;

* .~ end; (*while loop*)
end; (*procedure GenKasaini*)

B-i17

. ~ .- .. .

" " (*G o 1 d C o d e G e n e r a t o r *

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER A.2
(* DESIGN DATE: Dec 84 LAST UPDATE: 4 Jan 85

(* DESCRIPTION: This procedure does most of the program/user interaction *)
(* to generate Gold codes. Reads in Length of LFSR, Tap assignments and *)
(* Filename for storage.

(* CALLING ARGUMENTS: None

(* INTERNAL VARIABLES: Regl-array representing LFSR
Tapl,Tap2-Tap assignments for two LFSR's used to *)

produce two linear Sequences
N-length if LFSR's
Name-user inputted filename for storage of Gold *)

sequences...w/o extension
(* Listl,List2-pointers to front of LFSR sequences *)

Backl,Back2-pointers to end of LFSR sequences *)
Flag-boolean used for control
ch-character used for user I/O

(* CONSTANTS: None

(* FILES USED: None

(* MODULES CALLED: Test
LoadInput
GenGold
GetRidOf

procedure GoldCodeGenerator;

var Regl,Tapl,Tap2 : RegStructure;
N : integer;
Name: Word;
ch: char;
Flag: boolean;
Listl,List2,Backl,Back2: dataptr;

begin
repeat
Listl:- nil;
List2:- nil;
writeln('Input the length of the two registers.

..2 - 15 please ');
readln(N);
while (N < 2) or (N > 15) do begin

writeln('range must be 2 to 15 please');

B-18

.-. -.. - . . . - - - - • . . , , " . . -:.

-1QIN ;

1,, b'..s I T I - I , T I - M, , ,M E M

readln(N)
end; (*while loop*)

-. LoadInput(N,Tapl'Taps for register number V);
b'. -,- LoadInput(N,Tap2,'Taps for register number 2');

writeln('What file do you want to store the sequence
generated');

writeln('No more than 8 characters in filename');
repeat

Flag:- true;
readln(Name);
Test(Name,Flag) ;
if not Flag then begin

writeln('Invalid Input Please try again');
writeln('No Special Characters on Inputted Name');

end; (*if statement*)
until Flag;
writeln('Code will be stored in file ',Name);
GenGold(Name ,N,Tapl ,Tap2 ,Listl ,List2);
writeln;
writeln('Do you wish to generate any other Gold codefiles?');
writeln('If so, input Y if not, input N');
readln(ch);
GetRidOf(Listl);
GetRidOf(List2);
until (ch - 'N') or (ch wnu);

end; (*of procedure GoldCodeGenerator*)

--19

'-pL

- ,.. ,)

" "" (*L i a e a r G e n e r a to r *

(* DESIGNER: Richard C. Gander MASTER THESIS WORK
(* ADVISOR: M&J Ken Castor MODULE NUMBER A.1
(* DESIGN DATE: Nov 84 LAST UPDATE: 4 Dec 84

(* DESCRIPTION: This procedure does most of the user/program interaction *)
(* required to produce a sequence from a single LFSR. The Length of *)
(* The LFS, tap assignments and Filename for storage are obtained *)

(* here.

(* CALLING ARGUMENTS: None

(* INTERNAL VARIABLES: Tapl-tap assignment for LFSR
N-length of LFSR
Filename-string for output filename w/ext
Name-string for output filename w/o ext
Flag-boolean used for control
lch-character used for user I/O

(* CONSTANTS: None

FIL S USED: None

MODULES CALLED: LoadInput
Test *)

(* GenLinear *)

procedure LinearGenerator;

var Tapi : RegStructure;
N : integer;
Filename: NameArray;
Name: Word;
ch: char;
Flag: boolean;

begin
repeat
writeln('Input the length of the linear shift register');
writeln('Length should be between 2-15 please');
readln(N);
while (N < 2) or (N > 15) do begin

writeln('range must be between 2 to 15..please enter again');
readln(N); ,.

end(*while loop*);
LoadInput(N,Tapl,'Taps for the shiftregister');
writeln('What file do you want to store the sequence

generated?');
vriteln('No more than 8 characters in the filename');

B-20
I

d'ip. -.--. '. - •-. b- ..- .-..-.. +.-..-.-....... -........ Pt..,-

','- -' + '.."." . ."- .- -"v -. ' .. " - - -,.' .',. -+.-. ,. ."..+ ."- . ." . ."-" . ."-"-. -. . .""V - -""'1.,', -"',>

repeat
Flag:- true;
readln(Name);
Test (Name ,Flag) ;
if not Flag then begin

writeln('Invalid input... .Please try again');
writeln('No special characters in filename');

end;(*if*)
until Flag;Ii Filename :- Name + '.DTA';
writeln('Code will be stored in file ',Fileniame);
GenLinear(Filename,N,Tapl);
writeln('Do you wish to generate any Linear shift codefiles?');
writeln('If so, input Y ... if not, input N');
readln(ch);

end; l (rcedr INe r Generato')
nti (*rcedur Li'n')r Genratr*

B.-2 1

eel~~~I r, '1 ,.r .1

* DESIGN DATE: Jan 85 LAST UPDATE: 9 Mar 85

(* DESCRIPTION: This procedure does st of the user/program interaction*)
(* required to produce a set of Kasami codes. The Length of the LFSR,)
(* tap assignments and Filename for storage are obtained here.

(* CALLING ARGUMENTS: None

(* INTERNAL VARIABLES: Tapl--tap assignment for LFSR
N-length of LFSR
Name-string for output filename w/o ext
Flag-boolean used for control
ch-character used for user I/O
Regl-Register array for LFSR
Listl,List2,List3-pointers to sequences used to *)

generate Kasami Sequences
Backl,Back2,Back3-pointers to ends of sequences *)

(* CONSTANTS: None

(* FILES USED: None

(* MODULES CA D: LoadInput
Test
GenKasami, GetRidOf

procedure KasamiGenerator;

var Regl,Tapl : RegStructure;
N : integer;
Name: Word;
ch: char;
Flag: boolean;
Listi ,List2,List3,Backl,Back2,Back3: dataptr;

begin
repeat
Listl:" ail;
List2:= nil;
Backl: = nil;
Back2: - nil;
List3:- nil;
Back3:- nil;
writeln('This generation uses one linear sequence and its

decimation to produce');
writeln('the desired code set');

B-22

writeln('Input the length of the register ... 2 - 15 please')
readin (N);
while (N < 2) or (N > 15) or odd(N) do begin

writeln('range must be 2 to 14 and an even integer please');
readln(N)

end; (*while loop')
Loadlnput(N,Tapl,'Taps for register number 1');
writeln('What file do you want to store the sequence generated');
writeln('No more than 8 characters in filename');
repeat

Flag:- true;
readln(Name);
Test(Name,Flag);
if not Flag then begin

writeln('Invalid Input Please try again');
writeln('No Special Characters on Inputted Name');

end; ('if statement')
until Flag;
writeln('Code will be stored in file ',Name);
GenKasaui(Name,N,Tapl,Listl,List2,List3,Backl ,Back2,Back3);
writein;
writelu('Do you wish to generate any other Kasami codefiles?');
writeln('If so, input Y if not, input N');
readln(ch);
GetRid~f (List 1);
GetRid~f(List2);
Get~id~f(List3);

until (ch - WN) or (ch - n)
end; (*of procedure KasamiGenerator*)

B-23

M A I N P R 0 G R A M

begin (*Main program*)
writeln('This program generates code sequences of Linear shift

registers');
writeln('and stores them in designated files for further

manipulation');
writeln('You have the option to generate Maximal codes using the

Linear');
writeln('Shift register option with appropriate input for tap

asignments');
writeln('or you can produce gold codes using two linear shift

registers');
writeln('and inputting the appropriate taps as dictated by the

preferred');
writeln('pair polynomials');
writeln;
writeln('UNFORTUNATELY the software does not catch improper tap

assignments');
writeln('for maximal or gold code sequences, Therefore you must

insure that');
writeln('your assignments are correct...Check a book if necessary!');
writeln;
writeln('Would you like to generate any codefiles at this time?');
writeln('Input Y for yes or N for no');
readln(ch);
while (ch - 'Y') or (ch - 'y') do begin

writeln('Which type of code would you like to generate at this
time?');

writeln('Input L for Linear shift register code generation');
writeln('Input G for Gold code generation');
writeln('Input K for Kasami Generation');
readln(ch);
case ch of

L' 1' : begin
ClrScr;
LinearGenerator;

end;

tG#' g' : begin
ClrScr;
GoldCodeGenerator;

end;

'K' , : begin
ClrScr;
KasamiGenerator;

end;
end; (*case*)

B-24

writeln('Would you like to generate any more codefiles YIN 7');
readln(ch);

end(*while loop*);
end.(*of program GenerateCodes*)

B-25

(* P a r t i a 1 C o r r e 1 a t e *

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK

(* ADVISOR: MAJ Ken Castor MODULE NUMBER B.0
(* DESIGN DATE: Jan 1985 LAST UPDATE: 1 Apr 1985

(* DESCRIPTION: This program will perform correlations on user designa- *)
(* code files composed of ASCII l's and O's. The options offered by *)
(* the porgram in a menu driven fashion, are to produce the periodic *)
(* odd and even correlation functions. Other options performed are the *)
(* thresholding of the Odd, Even functions. This process will produce *)

(* data that can be plotted, threshold vs amount exceeding threshold. *)
(* The user is given the option of which thresholding process positive, *)
(* negative or both. All manipulation of data is done dynamically with *)
(* pointers, so that the program needs no modification when larger mem-
(* ory devices are used. The size of the memory of the machine used is *)
(* the only limitation on the length of the input codes..

(* CALLING ARGUMENTS: Std Input, Output, Designated Text File

(* INTERNAL VARIABLES:
Phase-the phase shift of desired process
PctRight,PctLeft---used for output of thresholding values
Sumleven,Sum2even,Sumlodd,Sum2odd-used temp storage values *)

for thresholding process
Threshold-actual threshold passed into threshold process
DataList,Back-pointers used to create/manipulate output data *)
Resultfile,Codedta-File variable for file I/O

C* Result,Filenal,Filena2: string for filename with extension *)
(* Name-User-inputted filename for storage of the code

ch-character input to the program from user
FlagA,FlagB,FlwgE,stop-booleans used to control processes *)

performed as set by user's response to menus
C* Listl,List2 used to identify the beginning of linked lists *)

representing the codes to be correlated

C* CONSTANTS: None

C' FILES USED: User designated Filename for code readin and data output *)

C* MODULES CALLED: CreateList
C* ShiftList

Correlate
Writelist

C* CountUpper
CountLower

C (DisposeOf
C(GetRidOf

C-i

program PartialCorrelate(input, output);

type
Name -string[12];
pointer - ^ datarecord;
datarecord

record
data: char;
next: pointer

end; (*of record*)
dataptr -info;
info -

record
Even: real;
Odd: real;
nexti: dataptr

end; (*record*)

var
Phase, Delay, J, N: integer;
ListI, List2: pointer;
DataList, Back: dataptr;
Result, Filenal, Filena.2: Name;
Resultfile, Codedta: text;
PctB~ight, PctLeft, PctEven, PctOdd,

ip Sumleven, Sum2even, Sumlodd, Sum2odd, Threshold: real;
cli: char;
FlagA, FlagB, FlagE, stop: boolean;

c-2

wr -ln--Evnfncinony)

writeln('B-Odde function only');

writeln('E-both of the above');
writein;
writeln('Select one please');
FlagA :false;
FlagB :false;
readln(ch);
case ch of

'A', 'a't
begin

FlagA :true;
writeln('Even function selected')

end;

begin
FlagB true;
writeln('Odd function selected')

end;

'' 'e'
begin

FlagA true;
FlagB :true;
FlagE :true;
writeln('AUl selected')

end
end; (*case*)
writeln('You have a choice of -)

writeln(' U-using upper Threshold only');
writeln(' L-using lower Threshold only');
writeln(' B-using both Threshold');
writeln('please select one');
readln(ch);
Threshold :- 0;
stop :- false;
writeln('WORKING ON Threshold ALGORITHM');
Sumieven :- 0;
Sum2even :0;
Sumlodd :0;
Sum2odd :0;
while (Threshold <- N) and not stop do begin

case ch of
out t qu :

begin
CountUpper(DataList, Threshold,

Sumieven, Sumlodd)
end;

C-i16

M A I N P R O G R A M

begin
writeln('This program allows you to do correlations of ASCII code files');
writeln('representing the pseudorandom sequences. You may get output of');
writeln('the actual Odd and Even correlation function, Right and Left ');
writeln('Partial correlations or the threshold functions of any or all of');
writeln('of these four.');
writeln('The Phase of the codefiles may be varied from 0 to L');
writeln;
writeln('Do you want to do any correlations at this time?..Y/N');
readln(ch);
if (ch - 'y') or (ch - 'Y') then begin

repeat
writeln('enter the first file you wish to correlate');
readln(Filenal);
writeln('now enter the second Filename');
readln(Filena2);
writeln('Enter phaseshift desired for run...0 to length');
readln(Phase);
writeln('What of the following options do you desire?');
writeln('A - a listing of actual correlation functions');
writeln('B - a listing of Threshold functions');
readln(ch);
CreateList(Filenal, Listl, N);
CreateList(Filena2, List2, N);
for J :- 1 to Phase do begin

ShiftList(Listl);
ShiftList (List2)

end; (*for loop*)
DataList :- nil;
Back :- nil;
Correlate(DataList, Back, Delay, Listl, List2, N);
repeat

writeln('Where do you want to store the output?');
readln(Result);
assign(Resultfile ,Result);
rewrite(Resultfile);
case ch of

'A'. 'a':
begin

Writelist(DataList, Resultfile)
end;

'B' , 'b':

begin
ClrScr;
writeln('You have the choice of the following listings

for Threshold functions:');

C-15

.....................................-
. .

* * * * * * N*V******* T% I* EMT L7 * '

(* W r i t e 1 1 s t *

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER B.4
(* DESIGN DATE: Nov 1984 LAST UPDATE: 14 Mar 1985

(* DESCRIPTION: This procedure takes a linked list of data and writes *)
(* the data fields, even, odd, right and left to the designated file, as*)
(* well as the chip location from 0 to L, the length of the list.

(* CALLING ARGUMENTS: List-pointer to front of datalist
OutFile-string for output filename

(* INTERNAL VARIABLES:
P-temporary pointer used to traverse list
K--Counter used as chip position in list

(* CONSTANTS: None

(* FILES USED: Writes to OutFile

C' MODULES CALLED: None

procedure Wrieelist(List: dataptr; var OutFile: text);

var
K: integer;
P: dataptr;

begin
K : 0;
P : List;
while P 0 il do begin

writeln(OutFile, K, ',', P .Even: 5: 2, ,', P-.Odd: 5: 2);
K : K+ 1;
P :- P .nextl

end (*while loop*)
end; (*procedure Writelist*)

C-14

R (-Ptrl^.Even -Thresh) I(-Ptrl-.Even + Ptr2^.Even);
Counti :- Counti + R

end
end (*if*); (*if FlagA*)
if FlagB then begin

if (-Ptr1^.Odd < Thresh) and (-Ptr2^.Odd >- Thresh) then begin
R :- (-Ptr2A.Odd - Thresh) / (-Ptr2-.Odd + Ptr1'^.Odd);
Count2 :- Count2 + R

end; (*if*)
if (-Ptrl^.Odd >- Thresh) and (-Ptr2-.Qdd >- Thresh) then begin

Count2 :- Count2 + 1
end; (*if*)
if (-Ptr1^.Odd >- Thresh) and (-Ptr2^.Odd < Thresh) then begin

R :- (-PtrlA.Odd - Thresh) I(-PtrI'.Odd + Ptr2A.Odd);
Count2 :- Count2 + R

end
end (*if*); (*if FlagB*)
Ptrl :- Ptr2;

until Ptr1A.next1 - nil
end; (*Procedure CountLower*)

C-13

* C o un t L o we r

C' DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER B.6
C* DESIGN DATE: Jan 1985 LAST UPDATE: 26 Jan 1985

C* DESCRIPTION: This procedure takes a data linked list representing the*)
(* the even an odd correlation functions, and determines what amount of *)
C' of each curve lies below the negative threshold. It utilizes the *)
C* fact that from one data record to the next, I chip time elapses.
C* Essentially a similar triangle operation using the correlation values*)
(* from one point to the next, and the threshold.

(' CALLING ARGUMENTS: List-pointer to front of datalist
C' Thresh-threshold value

Countl,Cout2-Counters used to add amount of curve*)
(' exceeds the threshold for each function

C* INTERNAL VARIABLES:
Ptrl,Ptr2-temp pointer used to do the process

C' R-temp storage location used with counter

C' CONSTANTS: None

C' FILES USED: None

(' MODULES CALLED: None

procedure CountLower(List: dataptr; Thresh: real;
var Countl, Count2: real);

var
Ptrl, Ptr2: dataptr;
R: real;

begin
Counti : 0;
Count2 : 0;
Ptrl :- List;
repeat

Ptr2 :- Ptrl'.nextl;
if FlagA then begin

if (-PtrlA.Even < Thresh) and (-Ptr2^.Even >- Thresh) then begin
R :- (-Ptr2A.Even - Thresh) / (-Ptr2^.Even + PtrV'.Even);
Countl :- Countl + R

end; (*if*)
if (-Ptrl.Even >- Thresh) and (-Ptr2^.Even >- Thresh) then begin

-. Countl :- Countl + 1
' end; (*if*)

if (-Ptrl.Even >- Thresh) and (-Ptr2.Even < Thresh) then begin

C-12

R :(Ptrl^.Even - Thresh) I(Ptr1-.Even - Ptr2^.Even);
Counti :- Counti + R

end; (*if*)
end; (*if Flag A*)
if FlagH then begin

if (Ptr1^.Odd < Thresh) and (Ptr2^.Odd >- Thresh) then begin
R :- (Ptr2^.Odd - Thresh) / (Ptr2'.Odd - Ptrl^.Odd);
Count2 :- Count2 + R

end; (*if*)
if (Ptrl^.Odd >- Thresh) and (Ptr2VXOdd >- Thresh) then begin

Count2 :- Count2 + 1
end; (*if*)
if (Ptrl^.Odd >- Thresh) and (Ptr2 .Odd < Thresh) then begin

R. :- (Ptrl^.Odd - Thresh) /(Ptrl^.Odd -Ptr2^.Odd);

Count2 :- Count2 + R
end

end (*if*); (*if FlagB*)
Ptrl :- Ptr2;

until PtrlA.nextl - ail
end; (*procedure CountUpper*)

c-11

".-'. T(. *)j.

C o u n t U p p e r

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER B.5
(* DESIGN DATE: Jan 1985 LAST UPDATE: 26 Jan 1985

(* DESCRIPTION: This procedure takes a data linked list representing the*)
(* the even and odd correlation functions, and determines what amount of*)
(* each function lies above the inputted threshold. It utilizes the *)
(* fact that from one data record to the next, 1 chip time elapses.
(* Essentially a similar triangle operation using the correlation values*)

from one point to the next, and the threshold.

(' CALLING ARGUMENTS: List-pointer to front of datalist
(* Thresh-threshold value
(* Countl,Count2--Counters used to add amount of curve*)

exceeds the threshold for each function

(* INTERNAL VARIABLES:
(' Ptrl,Ptr2-temp pointer used to do the process
(* R-temp storage location used with counter

(' CONSTANTS: None

(' FILES USED: None

(C MODULES CALLED: None

procedure CountUpper(List: dataptr; Thresh: real;
var Countl, Count2: real);

var
Ptrl, Ptr2: dataptr;
R: real;

begin

Countl : 0;
Count2 : 0;
Ptrl :- List;
repeat

Ptr2 :- PtrlA.nextl;
if FlagA then begin

if (Ptr1'.Even < Thresh) and (Ptr2^.Even >- Thresh) then begin
R :" (Ptr2^.Even - Thresh) / (Ptr2-.Even - Ptrl^.Even);
Countl :- Countl + R

end; (*if*)
if (Ptrl'.Even >- Thresh) and (Ptr2^.Even >- Thresh) then begin

Countl :- Countl + 1
end; (*if*)
if (Ptrl.Even >- Thresh) and (Ptr2A.Even < Thresh) then begin

C-1O

if Ptrl.data - Ptr2.data then
Ri Agree :- Agree + 1

else

•DisAgree :- DisAgree + 1;
Ptrl : Ptrl.next;
fPtr2 :-dPtr2A.next

"-' end; (*while Loop*)
. RightCor :- Agree - DisAgree;

Agree :- 0;
DisAgree :- 0;
Ptrl :- Listl;while Ptr2 0> nil do begin

if Ptrl.data - Ptr2^.data then
Agree :- Agree + 1

. else

KDisAree :- DiAgree + 1;
' Ptrl :-PtrlA.next;

Ptr2 : Ptr2next
end; (*while Loop*)
LeftCor :- Agree - DisAgree;
Eve : LeftCor + ii;htCor;
Odd :" ightCor - LeftCor;
Enqur(DataList, Back, Odd, Even);
K :- K + 1;
Delay :- Delay + 1

end; (*while loop*)
Agree :- 0;

SDiDgrAgree :- 0;
Ptrl : I 1sti;
Ptr2 : List2;
While Ptr2 0 nil do beginif PtrlA.data -Ptr2A.data then

~~Agree :- Agree + 1 "
~else

DisAgree :- DisAgree + 1;
,' Ptrl I PtrlAonext;

Ptr2 :-Ptr2^.next
end; (*while Loop*)
LeftCor :- Agree - DisAgree;

Even : LeftCor;
Odd :--LeftCor;
RightCor :- 0;
Enque(DataList, Back, Odd, Even)

end; (*procedure correlate*)

I.

C-9

...............................
Z? ?L,.

(* C o r r e 1 a t e *

(* *)'.~%1 ~ ,z ~.XE

DESIGNER: Richard C. Gonder MASTER THESIS WORK
ADVISOR: MAJ Ken Castor MODULE NUMBER B.1,¢: (*DESIGN DATE: Jan 1985 LAST UPDATE: 14 Jan 1985 *

':: (*DESCRIPTION: This procedure takes the 2 Linked Lists of characters *

representing codesets and determines the even, odd, right and left *)
(* correlation functions at discrete values. It places the determined *)
(* values at corresponding positions in a third linked list

(* CALLING ARGUMENTS: DataList,Back-pointers to front and rear of output*)
Datalist

Delay-offset of lists during correlation cycle(TAU)*)

Listl,List2-pointers for front of codelists
N-Length of List

(* INTERNAL VARIABLES:
C* Ptrl,Ptr2-temp pointer used to do the process
C* LeftCor, RightCor-partial corelations values used to de-
(* termine the even and odd correlation functions

Even,Odd-discrete correlation values
Agree,Disagree-used as counters during correlation process *)

(* Count,K-counters used in process

(* CONSTANTS: None

(* FILES USED: None

C' MODULES CALE: Enque

procedure Correlate(var DataList, Back: dataptr; Delay: integer;
Listi: pointer; List2: pointer; N: integer);

var
LeftCor, RightCor, Even, Odd: real;
Count, Agree, DisAgree, K: integer;
Ptrl, Ptr2: pointer;

begin
K :- 1;
while K <- N do begin

Ptrl : Listl;
Ptr2 : List2;
Agree : 0;
DisAgree : 0;
for Count : 2 to K do

Ptrl :- PtrlA.next;
while Ptrl <> nil do begin

C-8

S hi f t L i s t

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER B.3
(* DESIGN DATE: Jan 1985 LAST UPDATE: 14 Jan 1985

(* DESCRIPTION: This procedure merely takes the first record of the

(* linked list and places it at the end of the list.

(* CALLING ARGUMENTS: List-pointers to front of list

(* INTERNAL VARIABLES:
(*P,Ptr-temp pointer used to do the process

(* CONSTANTS: None

(* FILES USED: None

(* MODULES CALLED: None

procedure ShiftList(var List: pointer);

var
First, P: pointer;

begin
First :- List;
P :- List;
while P .next <> nil do

P : P^.next;
First : First'.next;
P .next :- List;
List*.next :- nil;
List :- First

end; (*procedure ShiftList*)

C-7

(* DESIGNER: Richard C. Gnder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER B.8
(* DESIGN DATE: Jan 1985 LAST UPDATE: 14 Jan 1985

(* DESCRIPTION: This procedure releases a linked list from memory
(* allocation. Specifically used on output data lists destruction.

(* CALLING ARGUMENTS: List-pointers to front of list

(* INTERNAL VARIABLES:
, *P,Ptr-temp pointer used to do the process

(* CONSTANTS: None

(F PILES USED: None

(* MODULES CALLED: NoneC(* -*
procedure GetRidOf(var List: dataptr);

var
P, ptr: dataptr;

begin
P : List;
ptr :- P;
while P .nextl <> nil do begin

ptr :- P^.nextl;
dispose(P);
P :- ptr

end (*while loop*);
dispose(P);
List :- nil

end; (*procedure GetRid0f*)

3 C-6
;Q7

(*(* D i s p o s e 0 f **

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER B.7
(* DESIGN DATE: Jan 1985 LAST UPDATE: 14 Jan 1985

(* DESCRIPTION: This procedure releases a linked list from memory
(* allocation. Specifically used on input data lists destruction.

(* CALLING ARGUMENTS: List-pointers to front of list

(* INTERNAL VARIABLES:

P,Ptr-temp pointer used to do the process

(* CONSTANTS: None

(* FILES USED: None

(* MODULES CALLED: None

procedure DisposeOf(var List: pointer);

w var
P, ptr: pointer;

begin
P : List;
ptr :- P;
while P^.next <> nil do begin

ptr :- P-.next;
dispose(P);
P :- ptr

end (*while loop*);
dispose(P);
List :- nil

end; (*procedure DisposeOf*)

C-5

,,. - -..-- .-- *-V-

(*DESIGNER: Richard C. Gander MASTER THESIS WORK
(~ADVISOR: MAJ Ken Castor MODULE NUMBER B.1.1
(~DESIGN DATE: Nov 1984 LAST UPDATE: 14 Dec 1984

(DESCRIPTION: This procedure enque a data record representing the
* (*values of the even, odd, right and left correlation functions at a *

(*discrete value in an ordered linked list.

(CALLING ARGUMENTS: List,Back-pointers to front and rear of list
Odd,Even-values of correlation functions

INflTERNAL VARIBLES: *
* (* P-temp pointer used to do the process *

(CONSTANTS: None

(FILES USED: None

* (~ MODULES CALLED: None

procedure Enque(var List, Back: dataptr; Odd, Even: real);

var
P: dataptr;

begin
if List - nil then begin

nev(P);
List :- P;
P%.Even :mEven;
P^.Odd :Odd;
Back :- P;
BackA.nextl :- nil

end else begin
new(P);
P^.Even :Even;
P^.Odd :Odd;
Back^.aext1 P;

q Back :-P;
Back^.nextl nil

end (*if then else*)
end; (*procedure Enque*)

C-4

* 1 a. . . I -* I '

*C r e a t e L i s t

(* DESIGNER: Richard C, Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER B.2
(* DESIGN DATE: Jan 1985 LAST UPDATE: 4 Jan 1985

(* DESCRIPTION: This procedure will read in a file of char, placing each*)
(* character into a linked list. It terminates at the EOF of the file *)
(* read.

(* CALLING ARGUMENTS: Filename-string of char
List-pointer to the beginning of linked list
K-number of characters read into list

(* INTERNAL VARIABLES:
P,ptr-used to construct list
bit-temp location for character read

(* CONSTANTS: None

(* FILES USED: User designated Filename for code storage

(* MODULES CALLED: None

procedure CreateList(Filename: Name; var List: pointer; var K: integer);

var
P, ptr: pointer;
bit: char;

begin
assign(Codedta,Filename);
reset (Codedta);

. new(P);
List : P;
ptr : P;

while not eof(Codedta) do begin
read(Codedta, bit);
K :- K + 1;
P^.data :- bit;
ptr^.next :- P;
ptr :- P;
new(P)

end; (*while loop*)
close(Codedta);
ptr^.next :- nil;

end; (*procedure CreateList*)

C-3,* ' -:., ". * * . ** .

begin
CountLower(DataList, Threshold,

Sum2even, Sum2odd)"._ end;

else
CountUpper(DataList, Threshold,

Sumleven, Sumlodd);
CountLower(DataList, Threshold,

Sum2even, Sum2odd)
end; (*case*)
PctEven : (Sumleven + Sum2even) / N;

Pct0dd : (Sumlodd + Sum2odd) / N;
write(Resultfile, Threshold / N: 5: 4);
if FlagA then

write(Resultfile, ', PctEven: 8: 7);
if FlagB then

writeCResuitfile, ',I, PctOdd: 8: 7);
write(Threshold / N: 5: 4);
if FlagA then

write(',', PctEven: 8: 7);
if FlagB then

write(',', PctOdd: 8: 7);
writeln;
writeln(Resultfile);
if Threshold / N > 0.10 then

Threshold : Threshold + N / 100
else

Threshold:- Threshold + N /500;
if not FlagE and FlagA and (PetEven - 0.0) then

stop :- true;
if not FlagE and FlagB and (PctOdd - 0.0) then

stop :- true;
if FlagE and (PctEven - 0.0) and (PctOdd - 0.0) then

stop :- true
end

end
end (*while loop*) (*B -option*); (*case*)
close(Resultfile);
writeln('Do you want any other files listed with this

dataset of codes?');
writeln('What of the following options do you desire?');

. writeln('A - a listing of all actual correlation functions');
writeln('B - a listing of Threshold functions');
writeln('N - None, You want to leave this mode');
readln(ch)

* until (ch - 'n') or (ch - 'N');
DisposeOf(List2);
Dispose0f(Listl);
GetRidOf(DataList);
writeln('do you wish to do any more correlations?..Y/N');
readln(ch)

until (ch - 'N') or (ch - 'n')
"-,end (*if y/n*)

end. [PartialCorrelate]

-.
'- 'C- 17

.- .;. . ,.-. ... ,.
*+ .- * -"-:. ... -* . - ,* * * -.......-.. ,...... .. -.. <....•......
. % ',. - , ,-+-J ,,'.', 4"' - - .,- - •'.,' - , " " .- ." " " . --.- -,. .

(* P h a s e C o r r e 1 a t e *

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: M&J Ken Castor MODULE NUMBER D.1*
(* DESIGN DATE: Jan 1985 LAST UPDATE: 1 Apr 1985

(* DESCRIPTION: This program will perform correlations on user designa- *)
(* code files composed of ASCII l's and 0's, and determine the minimum *)
(* and maximum values of the Odd correlation function for L different *)
(* phases of the code file. For each phase, this program will shift *)
(* both code files and compute the Odd function. It then determines the*)
(* minimum and maximum values of Odd function for that phase, and plases*)
(* this information into a list. Once all the phases have been cycled *)
(* through, a listing of all of the phases where the maximum and minimum*)
(* spreads of the Odd function, as well as their max and min values, is *)
(* written to a user designated file. It will perform off-peak autocor- *)
(* relation and total cross-correlation of codes as determined by user
(* input.

(* CALLING ARGUMENTS: Std Input, Output, Designated Text File

(* INTERNAL VARIABLES:
(* J-used as counter for control

N-Length of codefiles in characters
Phasemax,Phasemin-Value of Maximum and Minimum spread for *)

(** for Odd function for all phase shifts
Look,DataList,Back-pointers used to create/manipulate data *)

lists to obtain outputted data file
Resultfile,Codedta-File variable for file I/O

(* Result,Filenal,Filena2: string for filename with extension *)
ch-character input to the program from user
FlagA-boolean used to control process
Listl,List2 used to identify the beginning of linked lists *)

representing the codes to be correlated
K,S--used to set correlation process for off-peak-autocorrel- *)

ation or complete-cross-correlation *

(* CONSTANTS: None

(* FILES USED: User designated Filename for code readin and data output *)(* *)__

(* MODULES CALLED: CreateList
(* ShiftList

Correlate
(* DisposeOf
e. GetRidOf
(C Maximinimize

D-1

program PhaseCorrelate(input,output);

type Name - string[l2];
pointer - ^datarecord;
datarecord - record

data : char;
next : pointer;
end; (*of record*)

dataptr - ^info;
info - record

MinOdd : real;
MaxOdd : real;
nexti : dataptr;
end (*record*);

var KJ,N,S: integer;
Listl1,List2: pointer;
Look ,DataListBack: dataptr;
Result,Filenal ,Filen&2: Name;
Resuitfile ,Codedta: Text;
Phasemax, Phaseuin: real;
ch: char;
Flagk: boolean;

D-2

% '

5 " .. . ix ,. " - . F , . = - a . t- - - -. fl .T. 7 5 '- W 7 . : r r , y -. , ri r: ,r g

V..

- -- (*C r e a t e L i t *

' (* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER D.2
(* DESIGN DATE: Jan 1985 LAST UPDATE: 4 Jan 1985

(* DESCRIPTION: This procedure will read in a file of char, placing each*)
(* character into a linked list. It terminates at the EOF of the file "1
(* read.

(* CALLING ARGUMENTS: Filename-string of char
List-pointer to the beginning of linked list
K-number of characters read into list

(* INTERNAL VARIABLES:
P,Ptr-used to construct list
bit-tep location for character read

(* CONSTANTS: None

(* FILES USED: User designated Filename for code storage

(* MODULES CALLED: None

procedure CreateList(Filename: Name; var List: pointer; var K: integer);

var
P, Ptr: pointer;
bit: char;

, begin
assign(Codedta,Filename);
reset(Codedta);
new(P);
List : P;

• .Ptr : P;
K := 0;
while not eof(Codedta) do begin

read(Codedta, bit);
K :- K + 1;

* P^.data :- bit;
Ptr .next : P;
Ptr :- P;
new(P)

end; (*while loop*)
close(Codedta);
PtrA.next: - nil;

end; (*procedure CreateList*)

D-3

.., , , . , ,... . ,.. 7 S.' ,., -.

En qu e

(DESIGNER: Richard C. Gander MASTER THESIS WORK
CADVISOR: MAJ Ken Castor MODULE NUMBER D.4.1
CDESIGN DATE: Nov 1984 LAST UPDATE: 14 Dec 1984

CDESCRIPTION: This procedure enques a data record representing the *
C'values of the Minimum and Maximum Odd values for a phase of the Odd *
C'correlation function. The list is ordered by phase, from 0 to L.

CCALLIN ARGUMENTS: List,Back-pointers to front and rear of list
C' MinOdd,MaxOdd--min and max values of Odd function '
C' for a particular phase

CINTERNAL VARIABLES:
P-temp pointer used to do the process

CCONSTANTS: None

C FILES USED: None

CMODULES CALLED: None

procedure Enque~var List, Back:dataptr; MinOdd, MaxOdd:real);

var P: dataptr;

begin
if List - nil then begin

New(P);
List:- P;
PA.MaxOdd:- MaxOdd;
P'.MinOdd:- MinOdd;
Back:- P;
BackA%.nextl:in nil;

end
else begin

New(P);
P%.MaxOdd:- MaxOdd;
P^.MinOdd:- MinOdd;

* Back^.next1:- P;
Back:- P;
Back^.nextl:- nil;

end ('if then else')
end; ('procedure Enque*)

D-4

D is p o se0f

(DESIGNER: Richard C. Gander MASTER THESIS WORK
(ADVISOR: MAJ Ken Castor MODULE NUMBER D.5
(~DESIGN DATE: Jan 1985 LAST UPDATE: 14 Jan 1985

(DESCRIPTION: This procedure releases a linked list from memory
(*allocation.

(CALLING ARGUMENTS: List-pointers to front of list

(INTERNAL VARIABLES:

P,Ptr-temp pointer used to do the process

(~CONSTANTS: None

y (~ FILES USED: None

(~MODULES CALLED: None

procedure DisposeOf(var List:pointer);

var P,Ptr:pointer;

begin
P:- List;
Ptr :-P;
while P~.next 0> nil do begin

dispose(P);
P:inPtr;

end (*while loop*);
dispose(P);
List:- nil;

end; (*procedure Dispose~f*)

D-5

2% -

(* G e t R i d 0 f *

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER D.6
C* DESIGN DATE: Jan 1985 LAST UPDATE: 14 Jan 1985

(* DESCRIPTION: This procedure releases a linked list from memory
(* allocation.

C* CALLING ARGUMENTS: List-pointers to front of list
(* INTERNAL VARIABLES:

P,Ptr-temp pointer used to do the process

C* CONSTANTS: None

C* FILES USED: None

C* MODULES CA.LE: None

procedure GetRid0f(List:dataptr);

var P,Ptr:dataptr;

begin
P:- List;
Ptr:-P;
while P.nextl <> nil do begin

Ptr:- P^.nextl;

dispose(P);
P:-Ptr;

end (*while loop*);
dispose(P);
List:- nil;

end; (*procedure GetRidOf*)

D-6

-. p

SS h i f t L i s t

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
* ADVISOR: MJ Ken Castor MODULE NUMBER D.3
(* DESIGN DATE: Jan 1985 LAST UPDATE: 14 Jan 1985

(* DESCRIPTION: This procedure merely takes the first record of the
((linked list and places it at the end of the list.

C' CALLING ARGUMENTS: List-pointers to front of list
INTRNA VARIABLES: *

P,First-temp pointer used to do the process

(* CONSTANTS: None

(* FILES USED: None

(* MODULES CALLED: None

procedure ShiftList(vat List:pointer);

var First,P:pointer;

begin
First:- List;
P:- List;
while P-.next <> nil do

P:- P%.next;

First:- First.next;
P .next:- List;
List.next: nil;
List:- First;

end; (*procedure ShiftList*)

L

D-7

h ; .":,-: • . s : ::: ::-;.: , - '-.. ''''.:'. - ''-'.. .=. ...-."."-"- --,- - .. '/" ..,'. .L- ;-,~t -.N ;

(* M i n i M a x *

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER D.4.2
(* DESIGN DATE: Jan 1985 LAST UPDATE: 14 Jan 1985

(* DESCRIPTION: This procedure merely takes in the values min, max and *)
(* Temp, and sets Min or Max to Temp when it is less than Min or greater*)
(* than Max.

C* CALLING ARGUMENTS: Temp-input value
Min-input set to temp when temp is less than Min *)
Max-input set to temp when temp is greater than *)

(* INTERNAL VARIABLES: None

(* CONSTANTS: None

(* FILES USED: None

(* MODULES CALLED: None

procedure Minimax(Temp:real;var Min,Max:real);

begin
if Temp < Min then

Min:- Temp;
if Temp > Max then

Max:- Temp;
end; (*procedure Minimax*)

D-8

(* ~C o r r e 1 a t e * i

(* *)b.t 'LW ~ SVU.~ W

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER D.4
(* DESIGN DATE: Jan 1985 LAST UPDATE: 14 Jan 1985

C* DESCRIPTION: This procedure takes the 2 Linked Lists of characters *)
(* representing codesets and determines the odd correlation function at *)
C' discrete values. It determines the maximum and minimum Odd function *)
(* values and places these values in a linked list of records.

C'j

C' CALLING ARGUMENTS: Start,Stop-values setting region over which cor-
(* relation is performed.
C* Listl,List2-pointers for front of codelists
(* N-Length of List

(* INTERNAL VARIABLES:
C* Ptrl,Ptr2-temp pointer used to do the process
(* " LeftCor, RightCor-partial corelations values used to de-

termine odd correlation value
(* Odd-discrete correlation values *)

AgreeDisagree-used as counters during correlation process *)
CountK-counters used in process
MinOddMaxOdd-represent min/max Odd value for each correl- *)

C* ation phase

C* CONSTANTS: None

C' FILES USED: None

(* MODULES CALLED: Enque(* Mini-air*
(* *)

procedure Correlate(Listl :pointer; List2:pointer; N:integer;
var Start,Stop:integer);

var MinOdd,MaxOdd,Leftcor,Rightcor,Odd, :real;
Count ,Agree ,DisAgree ,K: integer;
Ptrl, Ptr2 :pointer;

begin
MinOdd:" N;
MaxOdd :- -N;
while Start <- Stop do begin

Ptrl:" Listl;
7. Ptr2 :- List2;

Agree:- 0;
DisAgree:- 0;

D-9

-A- . ." ,'. ',, .' . ." . . , " - , '- '% -"

for Count:- 2 to Start do
-~ Ptrl:- Ptrl^.next;

while Ptrl 0> nil do begin
if Ptr1^.data - Ptr2^.data then

Agree:- Agree + 1
else DisAgree:- DisAgree + 1;
Ptrl:-Ptrl^.next;
Ptr2:-Ptr2^ .next;

end;(*while Loop*)
RightCor:- (Agree-DisAgree);
Agree:- 0;
DisAgree:- 0;
Ptrl:- Listi;
while Ptr2 0> nil do begin

if Ptrl'.data - Ptr2^.data then
Agree:- Agree + 1

else DisAgree:- DisAgree + 1;
Ptrl:-PtrlA .next;
Ptr2 :-Ptr2 . next;

end; ('while Loop*)
LeftCor:- (Agree-DisAgree);
Odd:- ftightCor - LeftCor;
Minimax(Odd ,MiuOdd ,MaxOdd);
Start:-Start + 1;

end; (*while loop')
Enque(DataList ,Back ,MinOdd ,MaxOdd);

eud;('procedure correlate)

D-10

(* M a x i m i a i m i z e *

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER D.7
(* DESIGN DATE: Jan 1985 LAST UPDATE: 12 Feb 1985 *)

(* DESCRIPTION: This procedure takes a linked list of min and max values*)
(* representing each phase shifted correlation function, and determines *)
(* the maximum and minimum difference for all phases. It will write *)
(* these values to the screen.

(* CALLING ARGUMENTS: DataList-pointer to front of list of records
Phasemax,Phasemin-output value of Minumum and

maximum spread. *)
N-Length of List

(* INTERNAL VARIABLES:

Ptr-temp pointer used to do the process *)

(* CONSTANTS: None

(* FILES USED: None

(* MODULES CALLED: None

procedure Maximinimize(Datalist:dataptr; var Phasemax, Phasemin:real;
N: integer) ;

var Ptr: dataptr;

begin
Phasemax: -N;
Phasemin :- N;
Ptr :-datalist;
while PtrA.nextl 0 nil do begin

if (PtrA.MaxOdd -Ptr'.MinOdd) > Phasemax then
Phasemax: - Ptr .MaxOdd-Ptr^ .MinOdd;

if (PtrA.MaxOdd -Ptr^.MinOdd) < Phasemin then
Phasemin:- Ptr .MaxOdd-PtrA .MinOdd;

Ptr:- PtrA.nextl;
end;(*while loop*)
writeln('min spread is ',Phasemin:5:3,' max spread is ',

Phasemax:5:3);
end; (*procedure MaxiMinimize*)

D-11

'.- •",-o -.'. -"" " , . """"" -. """ , ."-"" . . ". 2 . "" -. , "' ' ".'-.-,, " - . -"."," . - . .
r," " - ,, . • . _r . / _ ._ - " - .. =%j-., a, ,-.za,,:,,, ,,--. " a , c ',,

'-" -'
- 1 ,,- ,-,. C,

MAIN PROGRAM

begin
FlagA:in false;
writeln('Select A--for off peak minimax of autocorrelation');
writeln('Select B--for crosscorrelation minimax procedure');
readln(ch);
DataList:- nil;
Back:- nil;
case ch of

'A't 'a' :begin
FlagAm true;
writeln('Autocorrelation selected--enter filename of

code');
readln(Fileia 1);
CreateList(filenal ,Listi ,N);
CreateList(filenal ,List2 ,N);
w'riteln('enter filename where you would like to store

results');
readlnCResult);
ClrScr;
GoToXY(22,14);
write('WORKING ON PHASE SHIFT OF)
for J:- 0 to N-i do begin

GoToXY(48,14);
write(J);
W: 2;
S:- N-i;
CorrelateCListi ,List2 ,N,K,N);
ShiftList(Listi);
ShiftList(List2);

end;(*for loop*)
end;

'B' , b' :begin
FlagA:- true;
writeln('Cross cor:relation selected. .Enter the first

code filename');
readln(fileual);
writeln('Now enter the second filename');
readln(filena2);
writelnC'enter filename where you would like to store

results');
readln(Result);
CreateList(filenai ,Listi ,N);
CreateList(filena2 ,List2 ,N);
ClrScr;
GoToXY(22,14);
WR.ITE('WORKING ON PHASE SHIFT OF')
for J:- 0 to N-i do begin

D-12

GoToXY(48, 14);
write(J);
K:- 1;
S:- N;
Correlate(Listl ,List2 ,N,K, S);
ShiftList(Listl);
ShiftList(List2);

end;(*for loop*)
end; (*B select*)

end;(* case*)
writeln;writeln;
if flagA then begin

Dispose~f(List2);
Dispose~f (List 1);
assign(Resultfile,Result);
rewrite (Resuitfile);
Maximinimize(Datalist ,PhasemaxPhasemin,N);
Look:-Datalist;
J: iO;
while Look 0> nil do begin

if Look^.MaxOdd - Look^.MinOdd - Phasemax then
writeln(Resultfile, 'phasemaz', ',Look^.MinOdd:5:2,' to

Look'.MaxOdd:5:2);4.
if LookA.MaxOdd - LookMinOdd - Phasemin then

writeln(Resultfile, 'phasemin ',J,' ',Look^.MinOdd:5:2,' to
Look^ .MaxOdd:5:2);

Look:-Look' .nextl;
J:in J+1;

end(*while loop*);
close(Resultfile);

end (*if flagA*)
end.

D-13

C ou ntL o we r

(~DESIGNER: Richard C. Gander MASTER THESIS WORK
(~ADVISOR: MAJ Ken Castor MODULE NUMBER E.6
(~DESIGN DATE: Jan 1985 LAST UPDATE: 26 Jan 1985

(~DESCRIPTION: This proc.edure takes a data linked list representing the*)
(*the Odd and Even correlation functions, and determines what percent- *
(~age of these functions lie below the inputted threshold.

(~CALN ARGUMENTS: List-pointer to front of datalist
Thresh-threshold value
Counti ,Count2--used to add amount of each function *
that exceeds the threshold

(INTERNAL VARIABLES:
Ptrl,Ptr2-temp pointer used to do the process *
R-temp storage location used with counter

(~CONSTANTS: None

(FILES USED: None

(MODULES CALLED: None

procedure CountLower(List: dataptr; Thresh: real; var Counti,
Count2: real);

var
P'trl, Ptr2: dataptr;
R: real;

begin
Counti 0;
Count2 :0;
Ptrl :- List;
repeat

if (-Ptr1A.Even < Thresh) and (-Ptr2^.Even >- Thresh) then begin
R :- (-Ptr2'.Even - Thresh) / (-Ptr2-.Even + PtrlA.Even);
Counti :- Counti + R

end; (*if*)
if (-Ptr1A.Even >- Thresh) and (-Ptr2^.Even >- Thresh) then begin

Counti :- Counti + 1
end; (*if*)
if C-Ptr1A'.Even >- Thresh) and (-Ptr2A.Even < Thresh) then begin

R :- (-Ptrl".Even - Thresh) /(-Ptr1'A.Even + Ptr2A.Even);
Counti Counti + R

end;

E- 14

if (PtrlV.Odd < Thresh) and (Ptr2^.Odd >- Thresh) then begin
R :- (Ptr2^.Odd - Thresh) / (Ptr2^.Odd - Ptrl^.Odd);
Count2 :- Count2 + R

end; (*if*)
if (Ptrl^.Odd >- Thresh) and (Ptr2^.Odd >- Thresh) then begin

Count2 :- Count2 + 1
end; (*if*)
if (Ptrl^.Odd >- Thresh) and (Ptr2^.Odd < Thresh) then begin

R :- (Ptrl.Odd - Thresh) / (Ptrl.Odd- Ptr2^.Odd);
Count2 :- Count2 + R

end;
Ptrl :- Ptr2;

until Ptrl^.Nextl - nil
end; (*procedure CountUpper*)

E-13

"" (* C o u n t U p p e r *

C(***)
(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER E.5
(* DESIGN DATE: Jan 1985 LAST UPDATE: 26 Jan 1985

(* DESCRIPTION: This procedure takes a data linked list representing the*)
(* the Even and Odd correlation functions, and determines what amount *)
(* of these functions lie above the inputted threshold.

(* CALLING ARGUMENTS: List-pointer to front of datalist
Thresh-threshold value
Countl,Count2-used to add amount of curve that *)

exceeds the threshold

* NITERNAL VARIABLES:
(* Ptrl,Ptr2-temp pointer used to do the process

(--temp storage location used with counter

(* CONSTANTS: None

C' FILES USED: None

_5 C MODULES CALLED: None

procedure CountUpper(List: dataptr; Thresh: real; var Countl,
Count2: real);

var
Ptrl, Ptr2: dataptr;
R: real;

begin
Countl : 0;
Count2 : 0;
Ptrl :- List;
repeat

Ptr2 :- Ptrl^ .N ex t l ;

if (Ptr1.Even < Thresh) and (Ptr2%.Even >- Thresh) then begin
R :- (Ptr2A.Even - Thresh) / (Ptr2'.Even - Ptrl.Even);
Countl :- Countl + R

end; (*if*)
if (Ptrli.Even >- Thresh) and (Ptr2^.Even >- Thresh) then begin

Countl :- Countl + 1
end; (*if*)
if (PtrlP.Even >- Thresh) and (Ptr2^.Even < Thresh) then begin

R :- (PtrIA.Even - Thresh) I (Ptrl.Even - Ptr2^.Even);
Countl : Countl + R

end;

E-12

I -q-[-!~q W W -l-" V

DisAgree :- DisAgree + 1;.- Ptrl :-Ptrl^.Next;

Ptr2 : Ptr2 .Next
end; (*while Loop*)
RightCor :- Agree - DisAgree;
Agree :- 0;
DisAgree :- 0;
Ptrl :- Listl;
while Ptr2 <> nil do begin

if Ptrl.data - Ptr2^.data then
Agree :- Agree + 1

else
DisAgree :- DisAgree + 1;

Ptrl :-Ptrl%.Next;
Ptr2 : Ptr2%.Next

end; (*while Loop*)
LeftCor :- Agree - DisAgree;
Even : LeftCor + RightCor;
Odd : RightCor - LeftCor;
Enque(DataList, Back, Odd, Even);
K :- K + 1;

end; (*while loop*)
Agree:- 0;
DisAgree:- 0;
Ptrl : Listl;
Ptr2 : List2;
while Ptr2 <> nil do begin

if Ptrl.data - Ptr2^.data then
Agree :- Agree + 1

else
DisAgree :- DisAgree + 1;

Ptrl :-PtrV^.next;

Ptr2 :- Ptr2A.next;
end; (*while loop*)
LeftCor :- Agree - DisAgree;
Even : LeftCor;
Odd :--LeftCor;
Enque(DataList, Back, Odd, Even)

end; (*procedure correlate*)

E-11

(* C o r r e 1 a t e *)

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER E.1
(* DESIGN DATE: Jan 1985 LAST UPDATE: 14 Jan 1985

C' DESCRIPTION: This procedure takes the 2 Linked Lists of characters *)
(* representing codesets and determines the Even and Odd correlation *)
C* functions at discrete values. It places the determined values at *)
C' corresponding positions in a third linked list.

C' CALLING ARGUMENTS: DataList,Back-pointers to front and rear of output*)
C' Datalist
(* Listl,List2-pointers for front of codelists
C' N-Length of List

(' INTERNAL VARIABLES:
C' PtrlPtr2-temp pointer used to do the process
C' LeftCor, RightCor-partial corelations values used to de-
C' termine the Even and Odd values
C' Even,dd,-discrete correlation values
C' Agree,Disagree-used as counters during correlation process *)

Count,K-counters used in process

C' CONSTANTS: None

(' FILES USED: None

(' MODULES CALLED: Enque

procedure Correlate(var DataList ,Back:dataptr;Listl ,List2:pointer;
N: integer);

var
LeftCor, RightCor, Even, Odd:-real;
Count, Agree, DisAgree, K: integer;
Ptrl, Ptr2: pointer;

begin
K :- 1;
while K <- N do begin

Ptrl : Listl;
Ptr2 : List2;
Agree : 0;
DisAgree :- 0;
for Count :- 2 to K do

Ptrl :- PtrlA.Next;
while Ptrl 0 nil do begin

if Ptrl.data - Ptr2^.data then
-Agree : Agree + 1
else

E-10

..- F *)l W v

(* S h i f t L i e t *

(* DESIGNER: Richard C. Goander MASTER THESIS WORK
(' ADVISOR: MAJ Ken Castor MODULE NUMBER E.3
(* DESIGN DATE: Jan 1985 LAST UPDATE: 14 Jan 1985

(* DESCRIPTION: This procedure merely takes the first record of the
(* linked list and places it at the end of the list.

(* CALLING ARGUMENTS: List-pointers to front of list *)

C' INTERNAL VARIABLES:
C' PPtr-temp pointer ;ed to do the process *)

(* CONSTANTS: None

(* FILES USED: None

C* MODULES CALLED: None

procedure ShiftList(var List: pointer);

* var
First, P: pointer;

begin
First :- List;
P :- List;
while P .Next 0 nil do

P : PA.Next;
First : First^.Next;
P".Next :- List;
List".Next :- nil;
List :- First

end; (*procedure ShiftList*)

E-9

%', .'. -, , " ,', ",,-.? ',, ,' ,.. .-. ,., D'2 'C-,,* , .-- '.*- , " .: '-:"-" , Z , . ' , m q , ,'
•

' ," " ""

, . . -' . - -WW 'Y'. W WWWW.. . . =WWUW UW 1W V ; = :

SG e t R i d 0 f

C' DESIGNER: Richard C. Gonder MASTER THESIS WORK *)

C* ADVISOR: MAJ Ken Castor MODULE NUMBER E.8
C* DESIGN DATE: Jan 1985 LAST UPDATE: 14 Jan 1985

C* DESCRIPTION: This procedure releases a linked list from memory
C' allocation. Specifically used on input data lists destruction.

(* CALLING ARGUMENTS: List-pointers to front of list *)

C* INTERNAL VARIABLES: P,Ptr-pointers used to do process

(* CONSTANTS: None

(* FILES USED: None(* , .*) "

C* MODULES CALLED: None

procedure GetRidOf(var List: dataptr);

var P,Ptr: dataptr;

begin
P:- List;
Ptr:- P;
while P .nextl <> nil do begin

Ptr:- P .nextl;
dispose(P);
P:- Ptr;

end; (*while loop*)
dispose(P);
List:- nil;

end; (*procedure GetRidOf*)

E-8

* -~. *,*.
- . - . . - .- - .. - - .. - . - -

o ", V

(* DESIGN DATE: Jan 1985 LAST UPDATE: 14 Jan 1985

(* DESCRIPTION: This procedure releases a linked list from memory
* (* allocation. Specifically used on input data lists destruction.

CCALLING ARGUMENTS: List-pointers to front of list

(* *)

CINTERNAL VARIABLES: P,Ptr-pointers used to do process

(CONSTANTS: None

F(LES USED: None

(' MODULES CALLE None

procedure DisposeOf(var List: pointer);

var PPtr: pointer;

begin
P:-n List;
Ptr:- P;
while P .next 0> nil do begin

Ptr:n P^.next;
dispose(P);
P:- Ptr;

end; (*while loop*)
dispose(P);
List:- nil;

end; ('Procedure Dispose~f*)

E-7

(* *) ~*

while(P <0 ail) and (ABS(P^.thresh -thresh) > 0.0005)do begin
Ptr:- P;
P:- P Next;

end; (*while loop*)
if P - nil then begin (*record not found*)

new(P);
PtrA.Next:in P;

A if Number > 1 then begin
P^.mineven:- 0.0;
P .aveeven:- PetEven/Number;
P^.minodd:- 0.0;
P' .aveodd:- PctOdd/Number;

end
else begin

PT mineven:in PctEven;
PA aveeven:-PetEven;

P^ .minodd:- Pctodd;
P^ .aveodd:-iPctOdd;

end;(*if Number then else*)
P .maxeven:- PctEven;
PAmaxodd:- Pct~dd;
P .thresh:- thresh;
P .Next :- nil

end (*front clause of if*)
* else begin

Ptr:in P;
if Pct~ven < P'A.mineven then PA'.mineven:- PctEven;
if PctEven > P"anaxeven. then PA.maxeven:m Pet~ven;
P .aveeven :((P-.aveeven * (Number-i) + PctEven)/Number);

* if Pct~dd < P^.minodd then P .minodd:- PctOdd;
- * if PctOdd > P^.-A-odd then P .-axodd:- PctOdd;

P".aveodd :- ((PA .aveodd *(Number-i) + Pctodd)/Number);
end (*if then el.se*)

end (*if then else*)
end; (*UpdateData*)

I- E-6

SU p d a t e D a t a L i s t

(* *)

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(' ADVISOR: MAJ Ken Castor MODULE NUMBER E.10
C* DESIGN DATE: Mar 1985 LAST UPDATE: 4 Apr 1985

C' DESCRIPTION: This procedure takes the values of Threshold, PctEven ')
C' and PctOdd from the thresholding process. It finds the record that *)
(* has stored Minimum, Maximum and Average values for a specific thresh-*)
C' old value, for both the Odd and Even functions, and updates these *)
C' fields with the appropriate info. If a record is not found, it cre-
(* ates the record and places appropriate intial values in the fields. *)

(' CALLING ARGUMENTS: List-pointer to front of list
C' Even,Odd-real values of correlation functions
(' Thresh-value of threshold
(' Number-Number of thresholding processes already ')
(*C' accomplished

(' INTERNAL VARIABLES:
C' Ptr,P-temp pointers used to do the process
(*).

C' CONSTANTS: None
(.'
(' FILES USED: None

C' MODULES CALLED: None

* procedure UpdateDataList(var List : Pctptr; Number:integer; PctEven,

PctOdd, Thresh: real);

var
Ptr,P: Pctptr;

begin
P:- List;
if List - nil then begin

new(P);
List:" P;
PA.mineven:- PctEven;
P .maxeven:- PctEven;
P^.aveeven: PctEven;
P^.minodd:- PctOdd;
P .mayodd:- PctOdd;
PA.aveodd:- PctOdd;
P .thresh:- thresh;

; PA.Next :- nil
end (*first clause*)
else begin

E-5

(* E n q u e *

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER E.11
(* DESIGN DATE: Nov 1984 LAST UPDATE: 14 Dec 1984

(* DESCRIPTION: This procedure enques a data record representing the *)
(* values of the Odd and Even correlation functions at a discrete
(* value in an ordered linked list.

(* CALLING ARGUMENTS: List,Back-pointers to front and rear of list
Even,Odd-values of correlation functions

(* INTERNAL VARIABLES:
P-temp pointer used to do the process

(* CONSTANTS: None

(* FILES USED: None

(* MODULES CALLED: None

procedure Enque(var List, Back: dataptr; Odd, Even: real);

var
P: dataptr;

begin
if List - nil then begin

new(P);
List :- P;
P .Even : Even;
P .Odd : Odd;
Back :- P;
BackA.Nextl :- nil

end else begin
new(P);
P .Even : Even;
P^.Odd : Odd;
BackA.Nextl : P;
Back :- P;
Back%.Next1 : nil

end (*if then else*)
end; (*procedure Enque*)

E-4

•/ .T._. ". .,. . '", . ..''' " -.- "_ ' .' , / ;"": .i:::.''(.._(- , ." ' , " .: r "i" ?_": ' . ..,. ' . ..

Cr e at eL is t

(DESIGNER: Richard C. Gander MASTER THESIS WORK
CADVISOR: MAJ Ken Castor MODULE NUMBER E.2
CDESIGN DATE: Jan 1985 LAST UPDATE: 4 Jan 1985

CDESCRIPTION: This procedure will read in a file of char, placing each*)
* C' character into a linked list. It terminates at the EOF of the file '

(*read.

CCALLING ARGUMENTS: Filename-string of char
C' List-pointer to the beginning of linked list

K-number of characters read into list

CINTERNAL VARIABLES:
C'P,ptr-used to construct list
(' bit-temp location for character read

CCONSTANTS: None

* . C'FILES USED: User designated Filename for code storage

C~MODULES CALLED None

procedure CreateList(Filename: Name; var List: pointer; var K: integer);

var
P, ptr: pointer;
bit: char;

begin
assign(Codedta,Filename);
reset CCodedta);
new(P);
List :P;
ptr :P;
K : 0;
while not eof(Codedta) do begin

read(Codedta, bit);
K -K+1
P^.data - bit;
ptr^.Next :- P;
ptr :- P;
nev(P)

end; ('while loop*)
U close(Codedta);

dispose(P);
ptrA.Next:m nil;

end; (*procedure CreateList*)

E-3

program MassCorrelate(input, output);

type
Name - string[14];
SO3 string(3];
StlO - string[1O];
pointer -datarecord;
datarecord-

record
data: char;
Next: pointer

end; (*of record*)
dataptr -Ainfo;
info -

record
Even: real;
Odd: real;
Nexti: dataptr

end; (*record*)

* Pctptr -Ainfol;
infol-

record
thresh: real;
mineven: real;
maxeven: real;
aveeven: real;
minodd: real;
me odd: real;
aveodd: real;
Next: Pctptr

end; (*record*)

var
Number,Outside,Inside,Startfile,StopFile,Phase,J,N: integer;
Listi, List2: pointer;
DataList, Back: dataptr;
PctList: Pctptr;
Result, Filenal, Filena2: Name;
StI,St2: St3;
CodeName: StlO;
Resuitfile, Codedta: text;
PctEven, PctOdd, S,

'5 Sumleven, Sum2even, Sumlodd, Sum2odd, Threshold: real;
A ch: char;

Stop: boolean;

E-2

'-.-.-

-- (* M a s s C o r r e 1 a t e *

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER E.0
(* DESIGN DATE: Jan 1985 LAST UPDATE: 1 Apr 1985

(* DESCRIPTION: This program will perform correlations on user designs- *)
(* ted codesets consisting of files composed of ASCII l's and O's. The *)
(* Codeset is identified by the user, and bounded by the extensions i.e.*)
(* NAME.001 NAME.005. If these are the user inputted filenames, the *)
(* program will do the cross correlations of all pairs of codes in this *)
(* codeset. It determines the pct out of threshold function for each *)
(* pair, in terms of the even and odd correlation function and stores *)
(* the minimum, maximum and average value for each threshold value.
(* When the process is completed, these values are writteu to the user
(* identified output file.

(* CALLING ARGUMENTS: Std Input, Output, Designated Text File

(* INTENAL VARIABLES:
Phase-the phase shift of desired process
PctEven,PctOdd-used for output of thresholding values
Sumleven,Sum2even,SumlOdd,Sum2Odd-temp storages values for *)

thresholding process
Threshold-actual threshold passed into threshold process
DataList,Back-pointers used to create/manipulate the thresh *)

old functions
Resultfile,Codedta-File variable for file I/O
(Result,Filenal,Filena2: string for filename with extension ')
CodeName-User-inputted filename for storage of the code
ch-character input to the program from user
Listl,List2 used to identify the beginning of linked lists

representing the codes to be correlated
PctList-used to identify beginning of compiled output data *)
Stop-boolean used to stop correlation process
Stl,St2-string expressions for filename extensions
Startfile,Stopfile-used to store integer value of filename *)

extensions which bound the entire process
Number-represents the number of cycles the program has ac-

plished and is used to determine the average values *)
S(*Inside,Outside-used to control looping structures

(* CONSTANTS: None

(* FILES USED: User designated Filename for code readin and data output *)

(* MODULES CALLED: CreateList, UpdateDataList, GetRidOf
ShiftList, Correlate, DetermineName
Writelist, CountUpper, FixList, CountLower, DisposeOf*)

E-1

-. ;.%-%

if (-Ptr1'^.Odd < Thresh) and (-Ptr2'^.Odd >- Thresh) then begin
R :- (-Ptr2^.Odd - Thresh) / (-Ptr2^.Odd + Ptrl'.Odd);
Count2 :- Count2 + R

end; (*if*)
if (-Ptr1A.Odd >- Thresh) and (-Ptr2A.Odd >- Thresh) then begin

Count2 :- Count2 + 1
end; (*if*)
if (-PtrlA.Odd >- Thresh) and (-Ptr2^.Odd < Thresh) then begin

R :- (-Ptr1A.Odd - Thresh) /(-Ptr1A.Odd + Ptr2A.Odd);
Count2 :- Count2 + R

end;
Ptrl :- Ptr2;

until PtrlA.Next1 = nil
end; (*Procedure CountLower*)

qI-

E-15

" (* W r i t e 1 1 s t *

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER E.4
(* DESIGN DATE: Nov 1984 LAST UPDATE: 14 Mar 1985

(* DESCRIPTION: This procedure takes a linked list of data and writes *)
(* the data fields, mineven, minodd, maxeven, maxodd, aveeven, aveodd *)
(* and Threshold, to the designated file.

(* CALLING ARGUMENTS: List-pointer to front of datalist
OutFile-string for output filename

(* INTERNAL VARIABLES:
P-temporary pointer used to traverse list
K-Counter used as chip position in list

(* CONSTANTS: None

(* FILES USED: Writes to OutFile

(* MODULES CALLED: None

procedure Writelist(List: Pctptr; var OutFile: text);

var
K: integer;
P: Pctptr;

begin
P :- List;
GoToXY(20,14);
writeln('WRITING THE OUTPUT FILE NOW
while P <> nil do begin

write(OutFile, P-.thresh:5:4, 1' ,P.mineven: 8: 7, ''s
P^.maxeven: 8: 7,',', PA.aveeven: 8: 7);

writeln(OutFile, ',',P^.minodd: 8: 7, 1,1, Pmaxodd: 8: 7,',',
P^.aveodd: 8: 7);

P :- P^.Next
end (*while loop*)

end; (*procedure Writelist*)

E-16

l 'i "'" (*D e t e r m i n e N a m e *

(* DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER E.9
(* DESIGN DATE: Mar 1985 LAST UPDATE: 14 Mar 1985

(* DESCRIPTION: This procedure takes two strings representing filenames *)
(* with extensions, and separates the extensions from the filenames. It *)
(* then converst the extension strings to integer values, Startfile and *)
(* Stopfile. It should be noted that the function calls in this module *)

are not standard and the Module may need to be modified for different*)
(* systems.

(C CALLING ARGUMENTS: Filenal,Filena2-strings representing filenames *)
Startfile,Stopfile-integer value of filename ex-

tensions

C* INTERNAL VARIABLES:
Stl,St2-strings representing filename extensions

(* K,I-temp storage for character positions in strings

"' CONSTANTS: None

C' FILES USED: None

-' MODULES CALLE: None

procedure DetermineName(var Filenal,Filena2:Name; var Startfile,
StopFile:integer; var CodeName:stlO);

var KI:integer;
Stl,St2: St3;

begin
I:-n pos('.',filenal);
St1:- copy(Filenal,I+1,I+4);
St2:- copy(Filena2,I+1,I+4);
CodeName: copy(Filenal,l,I);
val(Stl,Startfile,K);
val(St2,Stopfile,K);

end; (*procedure DetermineName*)

E-17

- - , , -.. . . .- .- , - - - . -. . -, .. , .. , . '. '>- ., .. . - - .. . - ,. -.-.- .. .

(**DESIGNER: Richard C. Gonder MASTER THESIS WORK
(* ADVISOR: MAJ Ken Castor MODULE NUMBER E.10.1
(* DESIGN DATE: Mar 1985 LAST UPDATE: 4 Apr 1985

(* DESCRIPTION: This procedure takes a linked list of minimums maximums *)
(* and averages, after a thresholding process has been completed on one*)
(* set of even and odd functions, and places appropriate values in the *)
(* records that were not updated during the the thresholding process *

(* CALLING ARGUMENTS: List-pointer to front of list
Thresh-value of threshold
Number-Number of thresholding processes already *)

accomplished

(* INTERNAL VARIABLES:
P-temp pointers used to do the process

(* CONSTANTS: None

(* FILES USED: None

C* MODULES CALLED: None

procedure FixList(Thresh:real; Number:integer; List:Pctptr);

var P: Pctptr;

begin
P :- List;
while (P 0 nil) and (P .thresh 0 Thresh) do

P :- P.next;
while P 0 nil do begin

P .aveodd : P'.aveodd * (Number - 1) / Number;
P^.minodd : 0.0;
P^.aveeven : P^.aveeven * (Number - 1) / Number;
P^.mineven : 0.0;
P :- PA.next;

end; (*while loop*)
end; (*procedure FixList*)

A..

E-18

• . ' - - . . '" ", "'- "

* C(**)
*~M A (I MA N PROGRAM

begin
PctList:-nil;
writeln('This program allows you to do correlations of ASCII code files');
writeln('representing a set of pseudorandom sequences. You input only');
writeln('the first and last codefile in the set identified by its

extension');
writeln('and the program does the crosscorelation and threshholding');
writeln('procedure on each pair. It will determine the minimum,');
writeln('maximum and average values of the Threshold process and writes

the');
writeln('results to the desired file');
writeln;
writeln('Do you want to do any correlations at this time?..Y/N');
readln(ch);
if (ch - 'y') or (ch - '') then begin
repeat

writeln('enter the first file you wish to correlate');
writeln('with extension .. i.e. .001, .002 etc');
readln(Filenal);
writeln('now enter the second Filename w/extentsion');
readln(Filena2);
writeln('Enter phaseshift desired for run...0 to length');
readln(Phase);
writeln('enter the file to write results');
readln(Result);
DetermineName(Filenal,Filena2,Startfile,StopFile,CodeName);
Number:- 1;
ClrScr;
for Outside:- (Startfile) to (Stopfile -1) do begin

str(Outside:3,stl);
if st1[1] - ' ' then stl[l]:- '0';
if stl[2] - ' ' then stl[2]:- '0';
Filenal:- CodeName + stl;
CreateList(Filenal, Listl, N);
for J :- 1 to Phase do

ShiftList(Listl);
for Inside:- (Outside + 1) to Stopfile do begin

str(Inside:3,st2);
if st2[1] - ' ' then st2[1]:- '0';
if st2[21 - ' ' then st2[2]:- '0';
Filena2:- CodeName + st2;
CreateList(Filena2, List2, N);
for J :- 1 to Phase do

ShiftList(List2);
DataList :- nil;

- /Back :- nil;
" Correlate(DataList, Back, Listl, List2, N);

E-19

- ..6.

Threshold :- 0;
-~ stop :- false;

GoToXY(20,14);
writeln('WORXING ON ',filenal,' and ',filena2);
Sumleven 0;
Sum2even :0;
Sumlodd :0;
Sum2odd :0;
while (Threshold <- N) and not stop do begin
CountUpper(DataList, Threshold, Sumleven,Sumlodd);
CountLover(DataList, Threshold,Sum2even,Sum2odd);
PctEven :~(Sumleven + Sum2even) / N;
PctOdd :(Sumlodd + Sum2odd) / N;
S:- Threshold/N;
UpdateDataList(PctList, Number, PctEven, PctOdd, S);
if Threshold / N > 0.10 then

Threshold :Threshold + N /100
else

Threshold :Threshold + N /500;
if (PetEven - 0.0) and (Pet~dd -0.0) then

stop :- true;
end(*vhile loop*);
FixList (Threshold/N ,Number ,PetList);
Getftidof(DataList);
Dispose~f(List2);
Number:- Number + 1;

end (*or, Inside loop*);
Disposeof(Listl);

end;(*for Outside Loop*)
assigu(Resuitfile ,Result);
rewrite(Resultfile);
Writelist CPctlist ,Resultfile);
elose(Resultfile);
Mark(Petlist);
Release(PetList);
ClrScr;
writeln('Do you want to do any other codesets? YIN');
readln(ch);
until (ch - IN') or (ch In)

end(*if*)
end. CPartialCorrelate1

E-20

VI TA

Captain Richard C. Gonder was born on 4 February 1954 in San

Antonio, Texas. He graduated from high school in Williamsville,

New York in 1972, and accepted an appointment to the United

States Military Accademy at West Point, New York. He graduated

from the Military Accademy in 1976 with a Bachelor of Science

Degree and a Commission in the United States Army Signal Corps.

After completion of the Signal Officer Basic Course at Fort

Gordon, Georgia, he was assigned as a Signal Communications

Officer in the 7th Infantry Division at Fort Ord, California.

After completion of the Signal Officer Advanced Course in 1980,

he served as Assistant Operations Officer at the 2d Signal

Brigade in Mannheim, West Germany, and as Commander of the 324th

Signal Company in Karlsruhe, West Germany, until entering the

School of Engineering, Air Force Institute of Technology, in May

1983.

Permanent address: 1432 Point Drive

Sioux Falls, SD 57103 " .

S.%

". ::.

SECURITY CLASSIFICATIOOFTSPAEC-

REPORT DOCUMENTATION PAGE
REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2e. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/A VAI LABILITY OF REPORT

2b. OECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GE/ENG/85J-1

6s. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Schol f Eginerig (fi applicable)

Schol o EngneeingAFIT/ENG

6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

go. NAME OF FUNDING/SPONSORING ~ Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION j(If applicable)

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS. _____________

PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO. NO. NO. NO.

11. TITLE iInclude Security Classification)

See Box 19
12. PERSONAL AUTHOR(S)

pRichard C. Gonder, CPT, USA
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo.. Day) 15. PAGE COUNT

MS Thesis IFROM _____TO ____ 1985 June 181
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TIERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB. GR. Radio Communications, Code-Division Multiple-
17 021 Access, Spreading Sequences, Pseudonoise

SequencesV
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: CODE SEQUENCE PERFORMANCE ANALYSIS USING CROSS-
CORRELATION PARAMETERS IN PHASE-CODED MULTIPLE ACCESS
COMMUNICATION SYSTEMS

Lurved fat WeIII fteel RAW AM W4

Thesis Advisor: Kenneth G. Castor, hajor, USAF WE 7OAV
D)eon Jot Research ad proitsslonal Developmneg
"l frce laslitute of Technology (111 66

Wirighl-paneeeoe AFB O0l 4S433

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRiACT SECURITY CLASSIFICATION

:JUNCLASSiriED/UNLIMITED CJSAME AS RPT. C DTIC USERS C3UNCLASSIFIED

22 ME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

f KenethG. Castor, Major, USAF5125204AI/N
DO FORM 1473,83 APR EDITION OF I1JAN 73 IS OBSOLETE. UT CASSITT

SECURITY CLASSIFICATION OF THIS PAGE

-1 If
,f~~ % % % . ***

UNCLACCIFIED

SECURITY CLASSIFICATION OF THIS PAGE

71

This paper documents a technique to compare cross-correl-
ation parameters of binary sequences used for spread-spectrum
multiple-access communication systems, by performing a threshold-
ing process on the correlation functions. The performance of
Maximal length, Gold and Kasami code sequences is measured and
analyzed for code lengths ranging from 63 to 1023. Comparisons
of optimized codes versus unoptimized codes for each type of code
sequence are analyzed in terms of the thresholding process.
Comparisons are made of the performance of code sequences and
code sets at lengths of 63, 127, 255 and 1023.

The software used to analyze the codes is discussed in terms
of structure and performance, and is included as appendices in
the thesis.

The results of this investigation indicate that the thresh-
olding process can be used to evaluate binary sequence perform-
ance.

UIr

SECURITY CLASSIFICATION OF THIS PAGE

FILMED

11-85

DTIC
1.41

