

IRCREW DOSE AND ENGINE DUST INGESTION
FROM NUCLEAR CLOUD PENETRATION

THESIS
IT/GNE/PA/35M-4 Stephen P. Conners Capt

DSAF

This document has been appioved Irs public release and sale; its distribution is unlimited.

DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY
AIR FORCE WNSTITUTE OF TECHNOLOGY

Wrighr-Pafterson Air Force Base, Ohio

$$
85 \quad 09 \quad 1 \% \quad 081
$$ \\ \title{

AIRCREW DOSE AND ENGINE DOST INGESTION
 \title{ \section*{AIRCREW DOSE AND ENGINE DOST INGESTION FROM NUCLEAR CLOUD PENETRATION}

 FROM NUCLEAR CLOUD PENETRATION}}

TEES IS

AFIT/GNE/PB/85M-4
 Stephen P. Congers Capt OSAF

SE? 181385

A

AIRCREW DOSE AND ENGINE DOST INGESTION
 FROM NUCLEAR CLOUD PENETRATION

THESIS

$$
\begin{gathered}
\text { Presented to the Faculty of the School of Engineering } \\
\text { of the Air Force Institute of Technology } \\
\text { Air University } \\
\text { in Partial Fulfillment of the } \\
\text { Requirements for the Degree of } \\
\text { Master of Science }
\end{gathered}
$$

$$
\begin{gathered}
\text { by } \\
\begin{array}{c}
\text { Stephen P. Congers, B.S. } \\
\text { Capt } \\
\text { Graduate } \\
\text { Nuclear Engineering } \\
\text { March } 1985
\end{array}
\end{gathered}
$$

Preface

This independent stady began as an effort to performa more \therefore detailed, more realistic, analysis of the factors contributing to aircrem radiation dose from a descending noclear cloud. Military planners are interested in this problem both for strategic and command and control aircraft. Recent exfosire of aircraft to volcanic dust cloods tas also generated interestingredicting the dust mass characteristics of nuclear clonds. The dust as well as the radiation in a noslep riond will contribute to equipment degradation. Accordingly, this study was extended to include calcalations of dust ingestion by che aircraft as well as dose to the aircrew.

This stady is based on the AFIT Fallont Smear Code as modified by Hickman (Ref 10) and Kling (Ref 16) to allowairborne dose rather than ground dose to be deternined.

The noclear cloud model developed bg this stady allows varions activity size distributions to be ased. Thedistributions are affected by fractionation and target and weapon characteristics. The distributions are converted to 100 discrete equal activity groups, and each group's initiai vertical and lateral locations in the nuclear cloud are determined by fits to an initial cloud computsc by the DELFIC fallout code. Each group is then traiked as it falls osing McDonald-Davies fall mechanics and as it expunds laterally using a model saggested by the wSEG-10 fallout code.

I would like to acknowledge my gratitude to Dr. Charles J. Bridgman for help during this research. I am also indebted tomy mat wife, Ceecy, for the patience and love given during this work.

Contents

Page
Preface i i
List of Figures v
Listof Tables vi
Abstract viii
I. Introduction 1
Background
Problem
Scope
Assumptions
Approach
II. Clond Model 6
Background
Particle Size Distributions
Initial Stabilized Cloud
Cloud Activity Distribation
Late Time Cloud
Maltiple Bursts
III. Dose Analysis 35
BackgroundCabin Geometry
Sky-shine Shielding
Sky-shine Dose Rate
Cabin Dust Dose Rate
Filters
Dose Results
IV. Mass Analysis 62
Background
Theory
Filter And Engine Ingestion
Mass Results
V. Conclusions and Recommendations 70
Conclusions
Recommendations
Bibliography 73
Appendiz A: Delfic Data 76
Appendiz B: Glossary of Program Terms 86
Appendix C: Particle Size Program 91
Appendix D: Aircraft Data and Program 96
Apperdix E: Mena Program 99
Appendix F: Main Program 111
Appendiz G: Sample Activity Output 122
 130
Appendiz I: Sample Multi Burst Ontpat 138
Appendix J: Sample Multi Burst Dust Ontpat 146
Appendix K Cylindrical Integration for Cabin Geometry 154
Vita 156

List_of_Figaxes

1 Plot of Cumalative Activity Size Distributions 12
2 Plot of Cumalative Mass Size Distributions 13
3 Initial Clcud 22
4 Late Time Cloud 22
5 Smeared Cloud 26 A
6 DELFIC Cloud Activity 30
7 NRDL-N61 Clood Activity 31
8 TOR-C Cloud Activity 32
9 TOR-C Cloud Activity Linear Plot 33
0 10 DELFIC Cloud Mass 63 A
11 NRDL-N61 Cloud Mass 63 E
12 TOR-C Cloud Mass 63 C
Figure Page

List_of_Tables

I Particle Number Size Distributions 11
II DELFICEqualActivity Groups 14
III DELFIC Equal Mass Groups 14
IV NRDL-N61 Equal Activity Groups 15
v NRDL-N61 Equal Mass Groups 15
VI TOR-C Equal Activity Gronps 16
VII TOR-C Equal Mass Groups 16
VIII Aircraft Data 45
I I Baseline Case Input Parameters 48
6 X
Baseline Case- KC-135 in DELFIC Activity Cloud 51
XI KC-135 in NRDL-N61 Activity Cloud 52
XII KC-135 in TOR-C Activity Cloud 53
XIII B-1B Without Filter in DELFIC Activity Cloud 54
XIV B-IB With Filter in DELFIC Activity Cloud 55
XV KC-135 in DELFIC Activity Cloud asing 0.7 MeVr 56
XVI KC-135 in DELFIC Activity Cloud, $S x=10, S y=1$ 57
XVII KC-135 in DELFIC Activity Cload, $S x=1, S y=10$ 58
XVIII B-52G in DELFIC C1oud 59
XIX E-4B in DELFIC Activity Clond 60
XX EC-135 in DELFIC Activity Cloud 61
XXI Engine Data 65
XXII KC-135 in DELFIC Dust Clood 67
XXIII KC-135 in NRDL-N61 Dast C1oud 68
XXIV EC-135 in TOR-C Dast Cloud 69

Abstract

This stady evalaates the theat to aircraft and aircref. i. mombers from the dust and radiouctivity in a cloud generated by nuclear surface bursts.

A model of the nuclear cloud is generated, using any number and trpe of reapons and any desired dost size distribntion. The cloud is propagated through the atmosphere for a given time, then penetrated by an aircrafi. The activity density in the clond is converted to dose to the cref for a given path throggh theclond. Radiation shielding and dost filters are incloded in the calculations. Alternativelg, the cloud dost mass donsity can be convortod to mass trapped in a filter or the cabin: or to thednst wass that has entered the engine.

Methods for determining particle size and altitade distributions are presented. The ionizing dose to the cremember is compated for both sky-shine and the dast trapped in the cabin doring cloud passage. A method of computing the shielding power of the cref compartment against skg-shine is presented. Given the air flow rate into a filter or engine, the mass of ingested dist is found.

The nuclear cloud and aircraft models developed by this study are incorporated in a compoter code oriented tomard operational口se. A significant featore of the code includes the ability to easily change the scenario with menn driven options.

AIRCRET DOSE AND ENGINE DOST INGESTION FROM NOCLEAR CLODD PENETRATION

I. Introduction

Background

Defense planners have expressed growing concern over the radiation exposuro to strategic and Airborne Command Postaircraft in the ovent of massive nucloar strito on the Jinted Statos. Such aircraft may be required to penetrate nacloar clouds in the course of their wartime missions. A realistic estimate of the radiation dose to the arcref penetrating the cloud is necded. In addition, recent experience with aircraft losing power while flying through volcanic ash clouds (Ref 13) has generated interest in dotermining tio effects of dust ingestion on aircraftengines. Currentiy, experimenters are attempting to determine the tolerance of engines to dust ingestion (Ref 14). A realistic ostimate of dust densitios in anclear clond is noeded also to rolato ongine dust tolerance to the survivability of the aircraft.

Aircraft penetration of radioactive dust clouds is hazardous in at least four ways. First, the aircrew is exposed to ionizing radiation from the cloud throgh the aircraft's skin and by dust trappod in the cabin. Second, the aifcrem may ingest or come in contact with the radioactive particles. Third, eiectronic equipment could malfunction if the ionizing dose rate is high enough. Fourth, if the dust density is high enough the airciaft's engines conld fail or be degraded by ingestion of the dust particles. This study focases on the first and iast hazards. The second hazard can be nearly eliminated if the cref wears normal
equipment to prevent exposure of bare skin and nses oxgien masks to preclude inhalation of particles. An ostimate of the dose to electronic equipment can be mado by converting tissue dose to $\operatorname{rad}\left(S_{1}\right)$.

Problem

No useable data on previous flights through radioactive clouds conld be fonnd (Ref 28. 29) 1 The problom addressed in this study is to determine the doses to increws for different size distributions of nuclear clond dast particles and for different aircraft. For comparisor porposes, the baseline case wili be a one megaton burst, fission fraction of 0. 5 , DELFIC (Defense Land Fallout Information Code) defanlt particlo size distribution, a crosstrack wind shear of 1 (km/hr)/km, an 8-hour missionduration after cloud penetration, and a K C-135 aixcraft.

The compoter program developed for this stady finds 100 equal activity-size groups for a given particle size distributione Tho distribution is a function of the mean redius (rn) and standard
 altitude distribution of the particles is determined: then the cloud is allowed to fallfor a specified time. This allowshe activity density at any altitode to bo computed. Cabin dose. caused by the ingestion of particles at the alrcraft's altitudo. and sky-shine dose from the distributed clond are computed from the activity density.

1. Manned B-29 in Operation Snapper (1952 surface burst) and f-80 drones in Operation Opshot-Knothole (1956 airbursts).

The dust mass density of the clond is determined by the same wethod, if the equal actipity-size grorps are roplaced bp equal mass-size groups. The mass of dost trapped in a filter or passed through an onginc can be fonnd from the dist mass density.

Scope

This stady highlights modeling of the nuciear clond and dirctaft likely to bo exposed to the cloud. The initial naclear cloud model is basod on the AFIT Fallout Smear model (Ref 1). Changes to the model include finding now torms for the clocd horizoatal distribution σ_{0} and the vortical normal distribution σ_{z} atstabilization time. Tho net terms are polynomials loast-square fit to DELFIC prodictions for σ_{0} and σ_{z} at cloud stabilization tixg. The hoxizontal oxpansion model of the cloud for later times is taken from the AFIT Smear Model as modified by Bridgman and Hickman (Ref 2).

Tho aircraft modal usos worst-caso approzimation for cabin तoso, in that all of the dust that entersthocabin is assumed to stag there. Howevor, allowance is made for particlo removal from the air before entry into the pressurized cabin. This removal allows the effectiveness of known or proposed engine and filter designs to bo considered. The same method is usod to compute the mass of dast ingested by an ongino or trappodin afiter.

A method of finding a realistic shielding factor for sky-shine radiation is developed to replace Kling's (Ref 10) approximation of aingle 0.063 inch thick alumingm skin. This model is detailed enogh so that the sky-shine dose can be considered a realistic estimaterathor than a worstaselimit.

Spocd, altitude, and payload for oach aircraft used in this study were selocted to reflect typical wartime missions. These parameters can bo varied to allow for different missions or changed entiroly to represent different aircraft.

Although other effects may be present, only tissuc dose from external gamar radiation and dust ingestion in ongines and filters are addressed in this report.

The cret dose and dust ingestion information provided by this study will allow planners to determine the threato the arcraft if location, time of burst, yiold and wind profilos are known. The airciaft's planned flight path or altitude can be changed to reduce the threat if required. The accompanying computer code also allows research into the offects of different particle size distributions, aircraft configurations, and typos of filtor.

Assumptions

Several oxplicit assumpions are made inthis report. Ther are:

1. The initial conditions for the stabilized cloud are those for DELFIC as shown in Appondix A.
2. The activity density of the noclear cloud does not very significantly within fivo gamma moan froo paths of the aircraft.
3. All of the gammarays have onergies of 1 MoV .
4. All of the dast that ontersthocabin is trappodand there is no internal shiclding from tho dust except by tho air in the cabin.
5. Tho shielding factor for sty-shine (erternal) radiation can be
found by using an 'average' mass integral taken directly from tine mass and surface area of the cabin and that all of the cabin mass has the gammaray cross section of aluminum.

These assumptions are discussed in more detail later in the text.

Approach

The development of the nuclear clod model and a summary of the results for tho baseline scenario in termsofactivitydonsity in Curies ger vertical meter versus altitude at various times are presented in Chapter II. Also presented are results for larger and smaller particle size distributions. Nuclear clouds composed of more than one burst are examined.

The mathematical development for tho external dose from both trapped cabin dust activity andsy-shine is presented in Chapter
 prosontod in tabular form. These tables include tho doses received and the particle contributing the most activity at ho specified altitude for several different aircraft.

Treatments of anear cloud dust density, cabin air filters, and engine dust ingestion are in Chapter IV. Results for the same aixcraft and nuclear clouds usodin Chapter III aregivon.

Conclusions and recommendations are in Chapter V.

Backgronad

This chapter relies heavily on data compoted by DELFIC. A brief description of this code vill be givon to clarify later discrssion.

DELFIC is recognized as a bonchmark against which othor fallort codes aro measured: however, its size, complexity and oxpense to rin prevent oasy ose. DELFIC is constructed as a set of sequontial modules. Here ve are concerned only with the prodictod initial, stabilizod nuclear clond. Tho modolos of interest are firoball, Cloud Rise, Interface, and Diffusive Transport. The cloud parameters at the ond of Cloud Rise are printed at tho boginning of tho Diffusivo Transportmodulo.

A noar surfiso nucloar burst gogerates a fireball that vaporizos a significant quantity of material from the target aroa. This vaporizod soil mizes vith vaporized veapon material, such as tho weapon case, anburad fuel, and fission products, which axe highly radioactivo. Tho Firoball modulo mudels this phase of the burst. A dofant particlo fize distribution reprosonting Novada soil is built into DeLFIC.

As the cloud risos, the vapors cool and the radioactive material is mixed in with condonsed soil material. fractionation occurs as matorialy condense at difforont tomperaturos: some of the radioactivo material will bo distributod throughout the volume While radioactive cloments that molt at lower tomperaturos will condenso on tho surfaco of tho partiolos. Tho anmor, sizo, and fractionation of the particlos will bodotermined by the type of
weaponand the type of soil in the target area. The fractionation predicted by DELFIC along with the dafant particie namber-size distribution produces the defandtactivity-size distribution ased in DELFIC. This phase is described by the Cloud Rise modulo.

Eramination of DELFIC outpot for this stady shows that cloud stabilization occurs in two steps. In the first step, vertical stabilization takes placo. This happone when all particies have reachedtheirmaximamaltitados and the largest ones begin to fall back. This occurs from 3 to 6 minutes aftor the burst. The radins of tho clond that DELFIC prodicts at this point is the value thet luotanen (Eef 25) used to correct tho standard deviation of the initial cloud radins, σ_{0}, for the WSEG model and is the value this stady rill uso to determine σ_{0}.

In the eoond step, the cloud does not rise any firther but continues to expand rapidig in the horizontal direction. This is due to the mogentra of the toroidal oirculation which began diring step one. The ond of this second step is what is oitalif reforied to sthe stabilized cloud. Tho zecond stop ends at 5 to 15 minutes after tho nuoloar burst.

The DELPIC Interface modale conplos the stabilizod cloud to tho winds orer the target and allows tho cloud particies to be blown downwind in tho Diffosive Transport modale. furthor sections of the oode determine tho location, activity, and doso of the fallout on the ground. In this stady, wo will use only the initial stabilized cloud. The parameters for this initial clond are printod at the beginning of tho Diffusive Trangort section of a typical DELFIC printout.

DELFIC is a disc tossor codo, so oalled becango it subdivides
the particles in a clond into monosize gronps, models each gronp as a disc, then tracks oach disc as it falls and is blown down\#ind. DELFIC is normally set to track 100 discs. Each disc is in turn composod of 20 wafers, each containing 5% of the monosize particlo group. Tho radit and the altitudes for the top and bottom of each Tafor aro printed in the output. The DELFIC data nsod in this study aro reproduced in Appondix A.

The clond model used in this stady will be presented in the following manner.

First, particle size distributions will be discussed and the distributions \quad ised in this stady will bo prosented. Tho distributions are converted into 100 equal activity-gize and 100 -qual mass-sizegronps.

Socond, tho modol of tho DELRIC initial oloud will be presentod. This incindesthe stabilization time and radins of the cloud. The rigid DELFIC discs are converted to the \quad suared"
 inttial altitudo and vortical distribution of each particle size group are then considered.

Third, a description of tho activity distribution in the cloud will bo developod.

Fourth, cloud growth, cloud fall, and smearigg by vind will discussod.

Finally, clouds consisting of multiple bursts will be considorod.

Particle_Sizondistributions

Dast particles found in nuclear burst clouds have particie size distributions that have been fornd to fit the cumulative lognormal function as described in Bridgman and Bigolow (Ref 2) . This finction is given as:

$$
F(r)=\frac{1}{\sqrt{2 \pi} \beta I} \quad \operatorname{oxp}\left\{-\frac{1}{2}\left[\frac{\ln (r m)-a_{n}}{\beta}\right]^{2}\right\} \quad[1 / m] \quad(1)
$$

where

$$
\begin{aligned}
a_{0} & =\ln (r m) \\
\beta & =\ln \left(\sigma_{r m}\right) \\
a_{n} & =a_{0}+n \beta^{2}
\end{aligned}
$$

A usoful foature of cumalative lognormal functions is that different moments of the expression (represented by are also camalative lognormal with the same slope. The value of in in this equation determinos the typo of distribution. A alao of $\quad=3$ mill create a volume dixtribotion, and, if the particle donsity is
 describe a suface area distribition. When $n=0, \quad$ the original number-size distribution results.

The values in Table \quad are number-size distributions from Bridgman (Rof 3). Excopt for DELFIC thoy wero compatod from tho oxperimentally determinod cumulative lognormal activity-sizo distributions by asing the 2. moment apporimation sugested by Froiling, which is explained below.

Fractionation offects will carse refractory radionaclides to be distributed throughout the volume of the particles, while volatile auclides will be deposited on the sorface. The ratio of.
volome deposition to surface deposition is difficult to determine \therefore oxporimentally or theoretically, but it must lio at point between $n=2$ (all sirface) and $n=3$ (all volume). As an approximation, Freiling saggested $n=2.5$.

The activity-size distribution of a nuclear cloud is generally found directly by experiment. If that activity-size distribution is lognormal. then agnormal numer-size
 nouber-size distributions in Table rere all compoted in this manner except for the DELFIC defanit distribation.

DELFIC activity-size distributions are found by DELFIC computing the fractionation of each docay chain of the fission products. Bridgman and Bigelow (Ref 2) found that the DELFIC activity-size distsibution which results from this chain by chain calculation can be represented by the sum of two cumalife lognormal distributions:

```
F(r)=Fvclnf(n=3)+(1-F\nabla)clnf(n=2)
( 2 )
```

Where the volume fraction Fq equals 0.68 ant claf(n) is the
 Eq (2) to compate the DELFIC activity-size distribation. DELFIC is the only distribation in Tablol to use this method.

TABLE I

Particie Number-size Distribations

NAME

$$
r m(\mu m) \quad \sigma_{I m}
$$

SODRCE
REMARES

TTAPS	. 25	2	Tarco	notat1
NRDL-N61	. 00039	7.24	Froiling	Nerada soil
NRDL-C61	. 0103	5.38	Freiligg	Coral
NRDL-D	. 01	5.42	Polan	Nerada Dynamic
DELFIC	. 204	4	Polan	$\mathrm{FV}_{\mathrm{V}}=.68$
OSWB-HI	3.48	2.72	Poian	Hicap
USMB-LO	3.84	3	Polan	Locap
FORD-T	5.98	2.23	Polan	
RANDWSEG	10.6	2	Polan	
NRDL-SII	27.1	1.48	Polan	Saltwatox II
NRDL-S I	36.8	1.51	Polan	Saltwater I
TOR-C	50.6	1.36	Polan	Coral

DELFIC was selected for the baseline case. NRDL-N61 and TOR-C were selected becanse they are extreme examples of small' and ${ }^{\prime}$ arge' size distributions. Figures (1) and (2) plot the
 the particle. Tables II through VII list the 100 equal activity and equal mass particle groups for these threo distributions. They were generated by the program in Appondiz C asing Eq (1).

Figure 1. iumulative Activity-size Fractions used in this study

[^0]

.473	.904	1.27	1.62	1.97
2.32	2.68	3.04	3.41	3.80
4.19	4.60	5.02	5.45	5.89
6.35	6.83	7.32	7.82	8.35
8.89	9.45	10.0	10.6	11.2
11.8	12.5	13.2	13.9	14.6
15.4	16.1	17.0	17.8	18.7
19.5	20.5	21.4	22.4	23.5
24.5	25.6	26.8	28.0	29.2
30.5	31.8	33.2	34.7	36.2
37.7	39.4	41.1	42.8	44.7
46.6	48.6	50.7	52.9	55.1
57.5	60.1	62.7	65.5	68.4
71.4	74.7	78.1	81.7	85.5
89.5	93.8	98.4	103.	108.
113.	119.	126.	133.	140.
148.	157.	167.	177.	189.
202.	216.	232.	251.	272.
297.	326.	361.	403.	457.
529.	629.	782.	1064.	1917.

01

TABLE III

DELFIC mean radilin microns of the 100 equal-mass Reonps computedfromem=.204: $\sigma_{\text {Im }}=4: \mathrm{Fq}_{\mathrm{m}}=.68$

1.83	3.21	4.30	5.28	6.20
7.10	7.97	8.84	9.71	10.5
11.4	12.3	13.2	14.1	15.0
15.9	16.8	17.8	18.7	19.7
20.7	21.7	22.8	23.9	24.9
26.1	27.2	28.4	29.6	30.8
32.0	33.3	34.7	36.6	37.4
38.8	40.3	41.8	$4 . .4$	44.9
46.6	48.3	50.0	51.8	53.7
55.6	57.6	59.6	61.7	63.9
66.2	68.5	71.0	73.6	76.1
78.8	81.6	84.6	87.6	90.8
94.1	97.6	101.	105.	108.
113.	117.	122.	126.	132.
137.	143.	149.	155.	162.
169.	177.	185.	194.	203.
214.	225.	237.	251.	265.
282.	300.	320.	343.	370.
400.	436.	478.	531.	596.
682.	802.	985.	1318.	2311.

TABLE IV

NRDL-N61 mean radid in microns of the 100 equal-activity groups

 compated from rm $=.00039: \sigma_{\mathrm{rm}}=7.24$| .0432 | .095 | .145 | .194 | .245 |
| :--- | :--- | :--- | :--- | :--- |
| .296 | .350 | .406 | .464 | .524 |
| .587 | .652 | .720 | .790 | .864 |
| .940 | 1.02 | 1.10 | 1.18 | 1.27 |
| 1.37 | 1.47 | 1.57 | 1.67 | 1.78 |
| 1.90 | 2.02 | 2.14 | 2.27 | 2.41 |
| 2.55 | 2.70 | 2.85 | 3.01 | 3.18 |
| 3.36 | 3.54 | 3.73 | 3.93 | 4.144 |
| 4.35 | 4.58 | 4.82 | 5.07 | 5.33 |
| 5.61 | 5.89 | 6.19 | 6.51 | 6.84 |
| 7.19 | 7.55 | 7.94 | 8.34 | 8.77 |
| 9.22 | 9.70 | 10.2 | 10.7 | 11.2 |
| 11.8 | 12.5 | 13.1 | 13.8 | 14.6 |
| 15.4 | 16.3 | 17.2 | 18.2 | 19.2 |
| 20.3 | 21.6 | 22.9 | 24.3 | 25.8 |
| 27.5 | 29.3 | 31.3 | 33.4 | 35.8 |
| 38.4 | 41.3 | 44.6 | 48.2 | 52.3 |
| 57.0 | 62.3 | 68.4 | 75.5 | 83.9 |
| 94.0 | 106. | 121. | 140. | 166. |
| 201. | 253. | 340. | 517. | 1161. |

TABLE Y

.303	.678	1.02	1.37	1.73
2.10	2.48	2.87	3.29	3.71
4.16	4.62	5.10	5.60	6.12
6.66	7.23	7.82	8.43	9.07
9.74	10.4	11.1	11.9	12.6
13.5	14.3	15.2	16.1	17.1
18.1	19.1	20.2	21.4	22.5
23.8	25.1	26.4	27.8	29.3
30.9	32.5	34.2	35.9	37.8
39.7	41.8	43.9	46.1	48.5
51.0	53.6	56.3	59.2	62.2
65.4	68.5	72.3	76.1	80.1
84.3	88.7	93.5	98.5	103.
109.	115.	122.	129.	136.
144.	153.	162.	172.	183.
195.	208.	222.	237.	254.
272.	293.	316.	342.	371.
404.	441.	485.	535.	595.
666.	752.	860.	996.	1177.
1427.	1797.	2409.	3651.	8140.

TABLE VI

TOR-C mespradi in microns of the 100 equal-activity groups computed from rm $=50.6: \sigma_{\mathrm{rm}}=1.36$

29.0	32.8	35.0	36.7	38.0
39.2	40.2	41.1	42.0	42.8
43.5	44.3	44.9	45.6	46.2
46.9	47.5	48.0	48.6	49.2
49.7	50.2	50.8	51.3	51.8
52.3	52.8	53.3	53.8	54.3
54.7	55.2	55.7	56.2	56.6
57.1	57.6	58.1	58.5	59.0
59.5	59.9	60.4	60.9	61.4
61.9	62.3	62.8	63.3	63.8
64.3	64.8	65.3	65.8	66.3
66.8	67.3	67.9	68.4	69.0
69.5	70.1	70.6	71.2	71.8
72.4	73.0	73.6	74.3	74.9
75.6	76.3	77.0	77.7	78.4
79.2	80.0	80.8	81.6	82.5
83.4	84.4	85.4	86.4	87.5
88.7	89.9	91.2	92.7	94.2
95.8	97.7	99.7	102.	104.
107.	111.	117.	124.	141.

TABLE VII

TOR-C mean radii in microns of the 100 eqnal-mass gronps computed from rma $50.6: \sigma_{\mathrm{rm}}=1.36$

30.4	34.4	36.7	38.4	39.8
41.1	42.1	43.1	44.0	44.9
45.7	46.4	47.1	47.8	48.5
49.1	49.8	50.4	51.0	51.5
52.1	52.7	53.2	53.8	54.3
54.8	55.3	55.9	56.4	56.9
57.4	57.9	58.4	58.9	59.4
59.9	60.4	60.9	61.4	61.9
62.4	62.9	63.3	63.8	64.3
64.8	65.4	65.9	66.4	66.9
67.4	67.9	68.5	69.0	69.5
70.1	70.6	71.2	71.7	72.3
72.9	73.5	74.1	74.7	75.3
75.9	76.6	77.2	77.9	78.6
79.3	80.0	80.7	81.5	82.2
33.0	83.9	84.7	85.6	86.5
87.5	88.5	89.5	90.6	91.8
93.0	94.3	95.7	97.1	98.7
100.	102.	104.	107.	109.
113.	117.	122.	130.	148.

Initial Stabilized Cloud

The initial cloud is modeled as an aright circular cylinder chat resembles a tomato soup can, as in Figure 3 . The DELFIC data for stabilization time and horizontal cloud radians as a faction of yield were least -squares fit to a polynomial in lin (i) for this study. The data taken from DELFIC to generate these fits are reproduced in Appendix A. The expressions to fit the DELFIC data ar 8:

$$
\begin{aligned}
T_{\nabla s}= & 385.295-99.1476(1 n Y)+64.6314(1 n Y)^{2} \\
& -8.21379(1 n Y)^{3}+.323598(1 n Y)^{4}[\mathrm{~s}]
\end{aligned}
$$

(3)

Whore T_{q} is vortical stabilization time in seconds and \quad is field in kilotons: and

$$
\begin{align*}
S_{0} & =868.277-632.3991 n Y+625.132(1 n Y)^{2} \\
& -112.586(\operatorname{lnY})^{3}+7.16648(1 n Y) 4[n] \tag{4}
\end{align*}
$$

Where S_{0} is the cloud radios in meters at vertical stabilization time. This radios is assumed here to represent a $2 \boldsymbol{\sigma}$ distribution so that when finding σ_{x} and σ_{y} using tho formulae for toroidal growth (discussed later in this section), tho initial cloud horizontal distribution σ_{0} will be

$$
\begin{equation*}
\sigma_{0}=\frac{S_{0}}{2} \tag{5}
\end{equation*}
$$

The oppressions for the time since bursting cloud radius at the end of horizontal stabilization step are given in Appendix A.

In this stady, no DELFIC information for times later than vortical clond stabilization is ased.

Hopkins (Ref 11) developed a fit for the vertical distribution of the cloud. Hopking ran DELFIC with yields from l kiloton to 15 megatons and fitted particle size versus altitude to a linear Ennctionforeach yield. The altitude used for this was the avorage center altitade of all of the wafor for aivor particle size group. The slopes and intercepts were then fit to polynomials in logarithmic giold so that

$$
\begin{equation*}
z_{0}^{i}=I_{m}+2 r m^{i} S_{m} \quad[m] \tag{6}
\end{equation*}
$$

Where rit is the mean radits of the particle size group in mictons, $z_{0}{ }^{i}$ is tho initial conter altitudo ofoach particiegroup distribution in meters, $I_{\text {m }}$ is the (zero-radins) intercept in meters, and $S_{\text {m }}$ is the slope in moters (of altitude) pormicron (of rading). Hopkins found:

$$
\begin{array}{r}
I_{\mathrm{m}}=\operatorname{EXP}\left(7.889+0.34(1 n Y)+.001226(1 n Y)^{2}\right. \\
\left.-.005227(1 n Y)^{3}+.000417(1 n Y)^{4}\right\} \\
S_{\mathrm{m}}=-\operatorname{EXP}\left\{1.54-.01197(1 n Y)+.03636(1 n Y)^{2}\right. \\
\left.-0.0041(\ln Y)^{2}+.0001965(1 n Y)^{4}\right\} \tag{8}
\end{array}
$$

Where $\begin{aligned} & \text { is the gield in kilotons. }\end{aligned}$
Hopkifs developed tho above equations uging the DELFIC default particle size distribution. Many DELFIC runs wore made With a variety of particle size distributions for this study. It Was determined that Hopkins' size versas altitude function does
not change vhon different size distritutions aro used. This ls discustod further in Appendiz A.

Bridgman and $\operatorname{Hickman}($ Ref 2) incorporated Bopzins' vortioal cloud distribution into the AFIT Smear Code fallont model, and further assumed that tho vortical distributionof oach sizo group was ganssian with

$$
\begin{equation*}
\sigma_{2}^{1}=.18 z_{0}^{i} \quad[m] \tag{9}
\end{equation*}
$$

i.e. tho higher tho particlo, the largor its of Stidy of DeLFIC data has shon that this appoximetion is palid onfy for giolds above l megaton. Particias loftod by megaton izo giolds havo a
 a docroasing of with inoroaging altitudo. Tho DELPIC data for vertical particle distribution wore facorporated in a golynomial least-squaros fit to gioldin a manger similar to Hopkigso ift for partiole initial altitudo,

$$
\Delta z^{1}=I_{d}+2 r m_{d}^{i} S_{d} \quad[m] \quad(10)
$$

Whoro Δz^{1} is tho prodiotod vortioal thioknoss of the i h monosize
 found that

$$
\begin{align*}
S_{d}=7- & \operatorname{EXP}\left(1.78999-.048249(1 n Y)+.0230248(1 n Y)^{2}\right. \\
& \left.-.00225965(1 n Y)^{2}+.000161519(1 n Y)^{4}\right) \tag{11}\\
I_{d}= & \operatorname{EXP}\left(7.03518+.158914(1 n Y)+.0837939(1 n Y)^{2}\right. \\
& \left.-.0155464(1 n Y)^{2}+.000862103(1 n Y)^{4}\right\}
\end{align*}
$$

The σ_{z} is then arbitrafily taken as

$$
\begin{equation*}
\sigma_{z}^{1}=\frac{1}{4} \Delta z^{1} \quad[z] \tag{13}
\end{equation*}
$$

That is, Δz is assumed to bo a 2 distribution about point midway betwoon the top and bottom of tho Δz function. functions that indopondontig fit particlo sizo vorans altitude for the upper and lowet limits of each monosizo partiole gropp can bo found in Appondix A. Hopkins' formulac Eq(7.8) arofits totho average altitude of the 20 wafor centors in onch group.

Chond Aotivity Distribution

The cloud takes 3 to minotes to atabilizo verticaily at a holght and diagoter dogonding on roapon yiold. Tho initial, stabilizod. nuclezr cloud is modoled as agt ciroular

 tho 2 onormal distributions of tho alrorno particio groups in the Fortioaldimension. Soe Pignte 3.

The activity in tho olond varios as anotion of position and time. The vertioal distribution of the differont size groupa is assumed to be that of DELPIC, as modeled by Hopkins, Each individual partiolo blzo group is asumod to bo normally distributed both vortioaliy and horizontally: and these satial
 tho activity donsity $A^{\prime \prime \prime}$ at a point in tho oloud is

$$
A^{\prime \prime \prime}(x, y, z, t)=\int_{0}^{\infty} A_{r} \prime^{\prime \prime}(x, y, z, r, t) d r \quad\left[C i / m^{2}\right](14)
$$

Whore $A^{\prime \prime \prime}(x, j, z, r, t)$ tho apocifio activity donitity in

Curies/a'-micron. The threo spatial dimensions are indepondent, thus soparable. The horizontal distributions in (x,y) are asamed to be independent of particlesize sothat

$$
A_{r}^{\prime} \prime \prime(x, y, z, t)=f(x, t) f(y, t) \int_{0}^{\infty} A_{r}^{\prime}(z, r, t) d r \quad[C i / m](15)
$$

Whore $A_{f}^{\prime}(z, r, t)$ sitho spocific activity in Curios por motor of altitado por micron of radias as fuction of and timet. Tho normalized horizontal distributions are of the form
$f(x, t)=\frac{1}{\sqrt{2 \pi} \sigma_{z}(t)} \quad \exp \left[-\frac{1}{2}\left[\frac{x-x_{0}}{\sigma_{x}(t)}\right]^{2}\right\} \quad[1 / m] \quad(16)$
$f(y, t)=\frac{1}{\sqrt{2 \pi} \sigma_{y}(t) .} \quad \exp \left\{-\frac{1}{2}\left[\frac{y-y_{0}}{\sigma_{y}(t)}\right]^{2}\right\} \quad[1 / m] \quad(17)$
$($
where the point x_{0}, y_{0} fi definod as tho oontor of the oloud.
The integralin Eq (i5) oan be reploced bye sumation ofer 100 diserete monosize partiolegroups.

$$
\int_{0}^{\infty} A_{r}^{\prime}(z, x, t) d x=\sum_{i=1}^{100} A_{i}^{i}(z, t) \quad[C i / m]
$$

where oach group A^{i} containe 1% of the total activity at unit time and the normalized vertioal activity distribution for oach group i:

$$
f^{i}(z, t)=\frac{1}{\sqrt{2 \pi} \sigma_{z}} \quad 0 x p\left\{-\frac{1}{2}\left[\frac{z^{1}-z}{\sigma_{z}{ }^{1}}\right]^{2}\right\} \quad[1 / m](19)
$$ σ_{z}, σ_{y}, and σ_{z} will bo discussod lator in this chaptor.

Figure 3. Initial Cloud

Figure 4. Late Time Cloud

Nov, Eq (14) can berevittenas

$$
\begin{equation*}
A^{\prime \prime \prime}(x, y, z, t)=f(x, t) f(y, t) \sum_{i=1}^{100} A^{i} f^{i}(z, t) \quad\left[C i / m m^{\prime}\right] \tag{20}
\end{equation*}
$$

Note that this equation gives the activity density for any point in the cloud. If we set $\Delta x=x-x_{0}=0$ and $\Delta y=y-y_{0}=0$ in Eq (16, 17), we hare the activity at the horizontal cloud center as agnation of altitude, which is thomaximam activity density at any altitude.

Finally, activity is function of time, as radioactive decay takes place. The Way -Wigner approximation is used:

$$
A(t)=A_{1} t^{-1.2}[C i] \quad(21)
$$

where $A(t)$ is the total activity in Curies at given time t in
 per kiloton of fission field at unit time (1 hour since burst) (Ref 8) .

This completes our description of the, initial stabilized cloud. In the next section we will consider horizontal cloud growth due to wind shear and toroidal cloud expansion, and vertical cloud growth as the particles fall to tho ground.

LattㅗㄹTime_C1오므
100
We define the term $\sum_{i=1} A^{i} f^{i}(z, t)$ in $E q(20)$ as $f(z, t)$,
the (total) activity per vertical meter. Values for f(z,t) used in this study are shown in figures 6-9. These vortical activity densities can be converted to Caries/meter (the activity density)
by evaluating $f(x, t)$ and $f(y, t)$ in $B q(16,17) f o r e q(20)$ (This requires that the horizontal sizo of the cloud, in terms of σ_{y} and σ_{y}, be found.

DELFIC ontpat for this stady included information only on the initlal cloud conditions. No attempt was made to model the cloud in time. Therefore, the toroidal growth and wind shear terms incorporated in the AFIT Fallout Smear Code for ar and aro retained.

Tind shear is the term representing the change in wind velocity with altitude normally observed in the atmospere. The total rind shear is composed of two components. Diroctional shear is due to a change of wind difection with aititude, and sped shear is due to ahange of wind spoed with altitnde. These two
 km/hr-km.

The apright circilar cylinder usod to describe the initial clond is stretched in tho direction of the total wind sher (due to the difference in velocity of the top and bottom of the eloud) antil the cloud resemblos a sardinecan from above as depicted in Figure 4.

Falloat models designed to prodace ground dose, such as WSEG or the AFIT Smear model, osually omploy a single constant wind (assumed to be in the x dicection) for simplicity in determining the fallout hotline. For this 'average' single constant wind, the speed shear term is applied to the downoind direction and the directional shear term is applied to the transurse (crossind) direction. The directional shear ased in WSEG and AFIT models is called S_{y} and is given a value of 1 km/hr-kin. The speed shear,
S_{g} is ignorod because ang elongation of the cloudin the downind diroction will change the time of deposition, not the amont, of fallout. The cloud is transported downind by the average wind Velocity ∇_{z} and translated crosswind by the directional shear S_{y}.

Hickman (Ref 10), who dereloped an airborio dose model from the AFIT Smear model, and Kifng (Ref 16), who refined Hickman's model, retained this interpretation of the singloconstant wind in their theses. In effect, the aircraft was held fixed at a point over the ground and the cloud passod it at relocity p_{y} oqual to the aircraft cribe speed. Bridgman and Hickman (Ref 2) recognized that, for an airborne clond penetration, the choice of a preferred coordinate system was arbitrary: relative to an aircraft penetrating the cloud, the wind could bo from any direction. They arbitrarily assigned S_{x} equal to S_{y} and appifed them to σ_{x} and σ_{y} respectively, as discossod later in this soction.

That assumption of similar magititudes for S_{z} and S_{y} can be improved \quad pon. A typical wind has a sped shoar of 8 to 10 km/hr-km, an order of magnitude larger than the directional shear of 1 km/hr-km proposed by $\operatorname{HSEG}{ }^{2}$ This means that the cicud will be Olongated much more in the downwind direction (due to speed shoar)
2. This can be verified by watching typical sommer thaderstorm, which has dimensions similar to a noclear clond for similar reasons: the energy released in athoritorm is the same or greater than a naclear burst). The main shaftof the thonderstorm resembles Figure 4 when seen from the side, stretching from west to east. Daring the storm's matarestage, the direction and speed of the stratospheric winds can be easily visualized as they blow off' the top cloud layers. This npper level wind velocity call be compared to that perceived at the surface (beyond the distance that the storm's gast froft reaches) to obtain a feeling for the quantities involved.
than in the crossind direction (due to directional shear).
 the activity densities (and dose rates) inside their cloud models can be considered too high. In the next ohapter, however, we wil see that elongation of the clond in the direction of penetration (assumed by Hickman and Kifig to be downwind) will not affect dose.

In this stody, the motions of an aircraftare considered relative to the surrounding air, not the gronad. Tho aircraft is allowed to ponetrate the cload at any altitade, difection, airspeod, or time aftor the burst. Thus spoed as well as directional shear is required. Becanse were concerned only ith the cloud and the aircraft, wo willignore the ground and define tho axis as relative to the aircraft and in the direction of its velocity vector. Total shear will be brokea down into its components relative to the aircraft direction, rather than relative to the wind direction. This is oquipalent tochoosing an eircraft cloud penetration angle relative to the wind direction (seefignre 5) by using tho law of cosines.

These shears are defined as:

$$
\begin{align*}
& S_{y}=d V_{y} / d z \quad[1 / h r] \tag{22}\\
& S_{y}=d V_{y} / d z \quad[1 / h r] \tag{23}
\end{align*}
$$

where S is wind shear and V is the wind velocity. The and y coordinatos are now referenced to the arcraft, where is in the direction of tho aircraft heading and y is at right angles to this.

Vertical Axis: Activity Density
Horizontal Axes: Position

Figure 5. Penetration of Late Time Cloud

The total shear S_{t} is oqual to the square root of tho sum of $\left(S_{y}\right)^{2}$ and $\left(S_{y}\right)^{2}$. In this stady, we will take $S_{y}=1 / h y$ and $S_{y}=$
 purposes. In the next chapter, we will seo hom penetration direction affects dose.

From WSEG, the eapirical formalae relating shear to the standard deviation of the normal distributions are

$$
\begin{aligned}
& \left(\sigma_{z}\right)^{2}=\left(\sigma_{0}\right)^{2}\{1+(8 T A) / T C\}+\left(\sigma_{2} S_{y} t\right)^{2}[m] \\
& \left(\sigma_{y}\right)^{2}=\left(\sigma_{0}\right)^{2}\{1+(8 T A) / T C\}+\left(\sigma_{z} S_{y} t\right)^{2} \quad[m]
\end{aligned}
$$

Where $T A=t$ for times less than three hours and TA $=3$ for times greater than threa hours, and TC from WSEG is

$$
T C=12\left(\mathrm{H}_{\mathrm{c}} / 304.8\right) / 60-\left\{2.5\left(\left(\mathrm{H}_{\mathrm{c}} / 304.8\right) / 60\right)^{2}\right\} \quad[1 / \mathrm{hr}] \quad(26)
$$

Polan (Ref 24) incorporates a coryection factor so that

$$
T C P=T C 1.05732\left(1-.5 \operatorname{EXP}\left(-\left(\left(H_{c} / 304.8\right) / 25\right)^{n}\right)\right)[1 / h I](27)
$$

TCP is the time constant for the toroidal growith term in this stody. Toroidal growth is assumed to stop at the end of throo hours. $\quad g_{c}$ is tho cloud activitg center height. In this stady, the ompirical H_{c} from WSEG is not used, but rather H_{c} is taken from Hoptins formala Eq (6) whore rmi for tho median size particlegroup (i=50) is selected.

The fall mechanics of the particles in each size group belave according to the equations of McDonald (Ref 18) and Davies (Ref 6) after Bridgman and Bigelow (Ref 1). An atmospheremithrovertical wind is assumed.

The fall velocity of each group is found by this method and tho distance fallen in an interval is

$$
\begin{equation*}
2_{j}^{i}=2_{j-1}^{i}-\nabla^{i} \Delta t \quad[m] \tag{28}
\end{equation*}
$$

where $z^{i} j$ is the new altitade of the vertical distribntion center of particle size groupiand z_{j-1}^{i} is the altitade at the ond of the provious interval.

The fall velocity ∇^{i} is determined by the atmospheric density and \quad iscosity at altitudo z_{j}^{i}, The initial altitude the particle falls from is given by Eq(6). 2ho interval Δ must be small onough so that the atmosphoric properties do not chango significantly in the distancefallen doring the interval.

It as detormined by Hickman (Ref 10) and Kifig (Ref 16) and confirmed in this stady that at early times (less then aboat one hour) the cloud fall calculations are inaccirate oith time intervals of less than 0.1 hour. Each interval uses arge amount of computor time. A variable Δ tas found to roduce tho amount of calcolation needed. For times greator than one hory, \quad tan be increased becans the heaviest particles have already fallen out and the remaining cloud settles more slowly wish time. Also, particle groups more than $3 \boldsymbol{\sigma}$ anay from tho aircraft or more than 30 below ground level can be ignored. With these modifications, the cloud model can be advanced 48 hours fromburst time in less than 3 s mingtes on a typical 8 bit home compater (Kayprofl).

Solntions for specific ectivity in Corios per vertical meter fromeq(20) for a variety of timos and altitudes and the DELFIC default particle size distribution are shorn in figure 6 .

Figures 7 and 8 show olotions for sizes weighted towards maller (NRDL-NG1) and largor (TOR-C) distributions.

Note that both NRDL-N61 and TOR-C bave larger specific activitios than DELFIC at the vertical activity centers. This is balanced by lossor activitios at other altitudos. It oan bo seon that for DELFIC and NRDI, N61, tho setting rate of the dost thry \cdots the atmosphere is onimportant compared to the rate at Which the activity decays with time. In theso cases, the vortical activity center romains near its initia! stobilized altituce until the activity has decayed to low levels. An aircraft mag redace its exposire by flying as far below or above the peak activity as foasible: althongh the lattor is unlikely for megaton size yields.

Figure 8 for TOR-C show that the large particles in this distribution settle very quickly compared co the decay rate: in this case, an aircraft may be better adrised to stay high after abont an bonr aftor burst. This plot is presented again in Figare 9 witha lincar activity scale so that the cloud fall may be more asily visualizod.

These plots are presented based on a fission fraction of 1 so that activities for any desired fission fraction can be fonnd by apylying a simple maltiplicativo factor. Doso calculations in the next chapter will be carried out with a fission fraction of. 5 , which is more nearly representative of ane megaton burst.
\therefore

FIGIRE 9 - IUR-C RCTIVITr - Dive MEBATOU

Mndtiole_Bneste

Crandiey (Ref 5) hes shown that a mitiburst attack on a limitoderoa, suchas missile fiold, oan bomodolod by aimplo burst amplification factor appliod to tho activity density of a singleburstcaso.
 of $\mathrm{N}=\mathrm{Nz}$ (Ny uniforgig distributed oqualyiold bursts,
$f\left(z, t_{a}\right)=-\frac{\sqrt{N}}{L z} \int_{-z}^{+z} \frac{1}{\sqrt{2 \pi} \sigma_{z}\left(t_{a}\right)} 0 x p\left\{-\frac{1}{2}\left[\frac{z-v t_{a}}{\sigma_{z}\left(t_{a}\right)^{2}}\right]^{2}\right\} d z(29)$
where z Li/2, ∇_{x} ti the wind volooity, and aimilar

$$
\begin{equation*}
F_{z}=\frac{N_{z}}{L_{z}} \sqrt{2 \pi} \sigma_{z}\left(t_{t}\right) \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{y}=\frac{N_{y}}{\nabla_{y}} \sqrt{2 \pi} \quad \sigma_{y}\left(t_{z}\right) \tag{31}
\end{equation*}
$$

Wherotho burst amidfioationfactor fismultipliod by thosingio burst aotivity donstiy in Eq (16) to produco tho maltiburst activity donstiy. This factor oan also be apiled to the dust donsity in Chaptor IV.

Tho next two ohspters mat be considofod bofore resita for multiburat dose and dust ingestion oan be fond. Appendioos and J prosent rosults for andiburst atask of 300 one mogaton Woapong in a 150 km atarefiold.

III. Dose Analysis

Background

 gama radiation from a aciear clord. They are groond-shine, skin-shinc. sky-shino, and exposire to the radioactive dust that onters with the air providod to prosiurize and cool the cabin and equipment.

Grond-shine is distegardodin this stady. Hickman and King

 above tho groand. At soa levol, the 1 MoV gammaman froo path is
 flying 305 meters above the ground, the dose rate athe ircraft is equel to 10^{-11} times the ground actipity.

Skin-shine results from nuciear cloud particies atiached to the outer skin of the arcraft. No quatifiable information on this phenomenon could be forad. However, dust particios small
 ponetrate the acrodyamic boandary layer outside the skin of the
 Eigificant dose to the crem inside. Skin-shine will be disregarded as being beyond the scope of this study.

Tho baseline aircraft osed to compato sky-shine and cabin dose in this tudy is KC-i3s aircraft. For simplicity, doses aro computod for the conter of the cabin. Note that the model used in this stady is vory difforont from thoso omployod by

Abstract

Hickman and Kiing. Difforent cabin sizes. fing inetors, and alyflow rates are used. It should aler be noted thet the KC-135 and EC-135 aircraft are based on the Booigg 717 ahich is vory differont from a Booing 707. Tho E-3 is ha d the 707 not the KC-135. These differences will be discussedin moredetsil later.

Cabin Geometry

The internal dimensions of the cabin are assumed to be a cylindor. Although a cylindor is a reasonable model for most aircraft cabias, some adjustmonts need to be made. For instanco, the values used by Hickman and King for cabin radias and length result in a volume more than twioo as largo as the pressurized volume stated for the cabin, rositing in toomech doso. Part of this is dueto too large radias, unt tho rest is due to the fact that in a KC-135 or EC-135 aireraft (Booing 717, NOT 707) tho floor is aressire bulkhead. The entire circular cross section of the fusolage is not pressurized.

To allow for variations of the simplified cylindrical modol comparod to the real aircraft, poudolength is used for this model. This length represeats the value obtained by dividing the pressurized volume of the cabin by the cross soctional area \{pressurized volume/(πr^{2}) $=$ psendolength\}. This is tho cabin length that will be used for the cabin dose rate integral described later in this chapter. Longth is chosen to vary rathor than radias becanzo radias is the most accarately knownandeast variablo dimonsion, and because tho cabin goometry factor is more sensitive to radins than length.
In the case of certain aircraft, such as the B-52 or B-1 with
square or triangular cabin cross sections, both length and radios most be adjustod to find eylindor similaf to tho cabin configuration and having the same volume. Appendiz D providesthe data neoded to evaluate a variety of aircraft. Numbers shomare for a typical operational wartime mission for each aircraft.

Sky-shine Shielding

Attonuation of gamma rays by any material follows the formala

$$
\begin{equation*}
A=A_{0} e^{-\left(\mu_{t} / \rho\right) M I}[C i] \tag{32}
\end{equation*}
$$

where A_{0} is the incident gammactivity, μ_{t} / ρ is the gammay ray attenation coofficient in $\mathrm{m}^{2} / \mathrm{kg}$, MI is the mass integral in kg/m ${ }^{2}$, and A is the activity after passing through the shiold. The dimensionless exponential term $e^{-\left(\mu_{t} / \rho\right)} \mathrm{MI}$ will be referred to as the gamma transmission factor $\mathbf{T}_{\boldsymbol{\gamma}}$.

The shiolding model developed for this stody finds the mass integral by dividing the gass of the cabin by the arface area of the cabin, resulting in tho dosired kg/me for the mess integral. This model-necessitates the assumptions:

1. The mass and area of the wing, tail, fiel, and in bombers the fosolage aft of the craw compartmont are ignored.
2. The radiation from the distributed cloudis isotropic.
3. Tho cabin wall is homogeneons. It is composed of a single material (aluminum), which iseronly distributedwithesingle thickness.

Although these assumptons may socm quite limiting, in practice they are not. In fact, they are generally conservative.

The wings and tail in thefirst assumpion may provide a good
shield, but they subtend amallangle as oberved from the cabin, thos contributing little to overall shielding. The amont of facl
carifed in tho fuselage (if any) varics with time, and is ignored for simplicity. Tho frselage aft of the crew compartmont on bomber type arcraft can be considered an infinito shield. The angle subtended by the shiold is highly pariable at different points within the cabing howerer The aft fuselage is also ignored for simplicity. These areconservative choices.

Isotropic radiation from the distributod clond was asmed in the provious section and does not pose a problem.

In the last caso, about 80\% of typical aiferaft structro and oquipmont is alomingm and most of the romainder is low atomic number material with imilar cross sections for gamatrays in the 1 MoV range.

All mass, including equipment inside the cabing is included in the shiold. Narerical enalysis of several vorst case mass distributions in the cabin leads to the concinsion that ang reduction in shielding due to anisotropic mass distribrtion wond be similar in magnitide to the increase in shielding realized by using a cylindrical rathor than tho impliod spherical goometry, thos justifying the assumptions. These factors are on the order of - 15% and $+15 \%$ for $\mathrm{KC}-135$ typo arcraft. Thethird assumpion implios a sherical goometry for the shield becauso we assumethe attenation to bo uniform for walls of singe, constat, thickness. This implied goometry is consorpative: For a fixed Wall thickness, any enclosed volume will recoive tho least shielding from a sphere.

Sky-shing Dose Rate

As the arcraft approaches the cloud, it will not be oxposed to a significant monnt of radiation untilit is within a fen gamma mean free paths of the cloud. Activity will rise antil it reaches a peak at the center of the cloud, and will then fall off as the aifcrafterits the cloud. There are three assumptions to be made et this point:

1. The activity density of the clood does not vary vertically Within a few gamma mean free paths.
2. The lateral cloud dimensions aro at least gammaman free paths.
3. The aircraft does not penetrate the cloud prior to stabilization.

Those assumptions are necded so that the integration for dose rate ean be carifed out analytically. The first two assumpions establish that the cloud is homogegeors in the vicinity of the aircraft. Theso assuptions are anlikely to bo violeted orcept at times less than 1 hour and altitudes above 40,000 feot. Any aircraft riolating the last assumtion is likely to be dostroyod either by prompteffects or by turbalence and dobris in the rising fireball.

The activity density $A^{\prime \prime \prime}(x, y, z, t)$ in $C i / m$ for thenacloar clood is givon by Eq (20) . An aircraft immersed in the cloud willexporience a doso rate from sty-shino calculated from the spherical intogral
$\dot{D}=C A, \cdots(x, y, z, t) \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{s} \frac{\mu_{a}}{e^{-\mu_{t} s} s^{2}} \underset{4 \pi s^{2}}{s i n \theta d \phi d \theta d s \quad(33)}$
where $A \cdot \cdots(x, y, z, t)$ is the activity donsity in tho cloud and s is the radial direction from the arcraft. \quad is a factor to convert activity to dose rate and has alue of 2131 [rem-kg/Ci-hr] for 1 MoV gamma rays. The term $\mu_{\text {a }} / \rho$ is tho tissine absorption coefficient, and μ_{t} is the total attenation coefficient of air.

The stencation due to the self-shielding of dist sisponded in the air is negligtblo and is ignored. Information on dust densities developed in the next chapter is foundin Appendioes H and J. Comparing dust donsity to air donsity indicates that self-shielding from dust amonnts to less than 0.3\% of the solf-shielding due to aif for a single megaton burst.

Intograting Eq (33) allowing S to approach infinity, and
 from Eq (32), the dose rate inside the cabin is

$$
\dot{D}=C T_{\gamma} A \cdots(x, y, 2, t) \quad \frac{1}{\mu_{t}} \mu_{\rho}^{\mu_{a}} \quad[r e m / h r] \quad(34)
$$

where activity is still at unit time reference and must be converted to penetration tme by tho ing-Tigner decay formala.

If the aircraft flies completely through the cloud in the x direction with velocity ∇_{I} then the skyshine dose inside the cabin will be
$D=\int_{-\infty}^{+\infty} \dot{D}\left(x, y, z, t^{\prime}\right) d t^{\prime}=\int_{-\infty}^{+\infty} \dot{D}\left(x, y, z, t_{a}\right) d x / \nabla_{z} \quad[r 0 m] \quad(35)$
 time. The cloud penetration time is defined as tho time when the
aircraft passes the cloud centerline, $y=y_{0}$.
Computing dose in this fashion assums that the activity donsity profile in the cloud is constant with respect to both cloud expansion and activity decay with time. Tho ciond is therefore 'frozon' at time $=t$ daring the aircraft transit.

A rigorons treatment wonld have the activity density higher on the ontry side of the cloud than on the exit side, since the cloud is orpanding and activity is decaging diring the time it takes the aircraft to transit the cloud. However, a numerical analysis for this stody has shown that aigorous treatment tends to average the doses received on each side of the ciond so that the cloud 'frozen' at $t=t$ in $t h i s$ study resilts in doses within 15 of tho more dotallod troatment for typical cioud sizes and airctaft पelocities.

Collocting and orpanding terms fromeq (35), dose is
$D=\frac{T_{r}}{3600 \nabla_{x}} \frac{C}{\mu_{t}} \frac{\mu_{g}}{\rho} f(y, t) A^{\prime}(z, t) \int_{-\infty}^{+\infty} f(x, t) d x[r e n](36)$ Whore the factor 3600 changes velocity from m/stom/hr tomatch the conversion constant C. For an ircraft flying through the center of the cloud, $x-x_{0}=0$ and $y-y_{0}=0$. Fromeq (17), $f(y, t)$ then reduces to ($\left.\sqrt{2 \pi} \sigma_{y}\right)^{-1}$. From Eq (16), the above integral of $f(x, t)$ is then just equal to unity, the value of the cumalative lognormal fanction integrated over ally.

Thos the dose is
$D=\frac{T_{Y}}{3600 V_{I}} \frac{C}{\mu_{t}} \frac{\mu_{a}}{\rho} \frac{(1)}{\sqrt{2 \pi} \sigma_{y}} \quad A^{\prime}(2, t) \quad[r e m]$
(37)

Where $A^{\prime}(z, t)$ is the activity per vertical meter found in Eq (18). Figures 6 through 9 show tho numerical results found - for $A^{\prime}(z, t)$ in tho cases used for this study.

Cobia Dust Dose Rate

The aircraft files through the cloud in the refection swooping ont all of the activity at given altitude. The activity in unit cross action of the cloud projected along the x axis is $A^{\prime \prime}(y, x, t)$, mich might be described as an 'activit y-integral' analogous to tho 'mass-intogral' MI.

$$
A^{\prime \prime}(y, z, t)=f(y, t) A^{\prime}(z, t) \int_{-\infty}^{+\infty} f(z, t) d x \quad\left[C i / m^{3}\right] \quad(38)
$$

Where $f(y, t)$ is found from $E q(17)$ and $A \cdot(z, t)$ is found from

The among of activity that enters the cabin can be determined by finding an equivalent inlet area lad for the cabin. This is

$$
\begin{equation*}
I_{c d}=\frac{0}{\nabla_{I} \rho_{a i r}} \quad\left[n^{2}\right] \tag{39}
\end{equation*}
$$

where a is the mas flow rate of air into the cabin from the engine compressor in kg/soc, ρ air is the air density at the
 m/sec.

Tho total amount of activity A cd in Curios trapped in tho cabin is tho product of Eq (38) and Eq (39). It is the activity $\operatorname{scooped}$ out' from a tunnel that extends through the
clood (Figure 4).
Note that bocase the mas flow rate of air, dinto the cabin is constant. \quad higher aircraft velocity will resultin amaller effoctive inlet area, reducing the amonat of dustingested. This is because the cloud is traversed in less time, therefore a smaller volume is ingested at the constant mass flowrato.

Firther note that increasing the dimensions of the cloud (oither by oxpaision with time or smearig by wind in the x direction vile airciaft rolocity is conatant will not chafothe amonit of dust ingested because the integral - $\quad f^{+\infty} f(x, t) d x$ is constant: all of the dust in across section throughvoloud will bo siopt out, regerdiess of the particle location in the x direction. However, cloud expangion in the y direction (transporso to the aircraftis flight path) will reduce tho amont of dust ingested becauso the value of f(y,t) in Eq (38) vill decrease as σ_{y} increases.

Wo vill assume that all of the dust that onters the cabin is trappodand stays suspended for the remander of thefight. This assomption is not trio, but is asod due to tho complexitios of flow and settifg in the cabin. This is arst case approzimation.

The dose rate at tio centor of cylindrical cabin is $\dot{D}=c \frac{A_{c d}}{P V} \frac{\mu_{B}}{\rho} \int_{-H}^{+H} \int_{0}^{R} \int_{0}^{2 \pi} \frac{0^{-\mu_{t}\left(r^{2}+z^{2}\right)^{1 / 2}}}{4 \pi\left(r^{2}+z^{2}\right)} r d \theta d r d z(40)$
where C is $a \operatorname{factor}$ to convert activity to dose rate and bas a value of 2131 [rom-kg/Ci-hr] for 1 MeV gamma rays. Acdistho unit time activity in Curios of the dust trappodinside the cabin
and PV is the pressurized volume of tho cabin. The torm Acd $/ P V$ is

 1s one balf the psendolength of the cabin and the orponential term allovs for selfattenation by tho air insido tho cabin: μ_{t} is the total attonation coofficient of air in min m^{-1}. The cabin air is maintainod at pressure equivalont to an 8000 foot altitude when tho aixcraft is highor than 8000 fect by the aircraft pressorization system. For this reason, μ_{t} for air at 8000 fect is used.

Tho integral of Eq (40) when ofaluatod results in a constant factor which is dependent on the cabingeometry. This oabingoometry factor kag units of [m] and is a mesireof hov 'oloso' thodistributod activityof thodostinthocabin is to a given point in tho cabin. In this study, wo compute dose to the conter of tho cabin. The above integral is solvod anmorically. A program to cary this out is found in AppondixG. Valuos of for a variety of aifcraft are fond tn Table VIII.

The unit time doso rate atheconter of the oabin is

$$
\begin{equation*}
\dot{D}=C K \frac{A_{c d}}{P V} \frac{\mu_{a}}{\rho} \quad[r e m / h r] \tag{41}
\end{equation*}
$$

The dose is then

$$
\begin{equation*}
D=\dot{D} \int_{t^{-1.2} d t \quad[t 0 m]}^{t \Delta t} \tag{42}
\end{equation*}
$$

 time since burst, and delta t is the time romaining from cloud
penetration to mission completion. Doses for maniple cloud encounters can be obtaliod by fuming the doses from on oh $\because \quad$ individual encounter. If this is done for mitiplo clouds in a single mission, care must bo taken so that the mission time remaining from penetration time, Δt, is adjustodin each case so that the doses are computed for realisticexposiretimes, iso. \quad t equals mission duration minus the time botwoon takeoff and cloud penetration forearm cloud onoontored during the ais sion.

The following table was computed is ing the above equations and the data for each aircraft found in Appendix D. It provides information on dose factors, aixspoods, and cabin sizes and airflow rates for variety of typioal aircraft on operational type missions.

TABLE VIII

AIRCRAET_DOSE_DATA

Filters

Exposure to dust in tho cabin can bo proventodor roducedin several ways. Depressurizing the cabin during cloud transit would
provent dust oatry Mission roquiroants may proventhis. Another method is to iso filter to prevat largor particles from - titering.

Safler particles could be allowed to pass throgh, as the mos residence time for air in the oabin is on the ordor of f minatos and the salif particios woid be quiokiy finshod ont. In this caso, the dust in the cabin would oontibute to dose only While the aiforaft wis inside the oloud. Fox this stady, hoverer, tho sasil partiolos that pass through the filter will roain tripped in the cabin as worst caso for comparison priposes.

It is posibio that contrifugal effocts in the coprosior

 ourrentig ondergoing testing for dist ofosion effocts may profide data onthis (Rof 14).

This stady vill model filtration by abdividing the gutoar clond fito to tro ofgruent olouds. Ong cload consists only of
 filtor. The other cloud oonsists of the remaining larger particles. The actipity sooopod out of the imall particio oloud' is asamed to be trapped in the cabin and will be isod for oabin doso comptations. The activity sooped out of the ifike partiolo oload' is trappod in tho filtor. Sypahine dose calcalations ase the ammed aotivity of both olouds.

A filter studied by Rockwell for the B-1 bomber (Rof 15) will trap all particles with a radius groator than 10 miorons. Thas a
 in Eq (18) would be 0 , i.e.. none of them ontor the oabin.

Paritolon botwoon sad 10 microns in radias are trapped with a 90\% officionoy for a filtor transisston fator of 0.1. All particles gallor than 5 mictont pass through tho filtor, for a filter transinselon factor of 1.0.

It shonld bo rooggized that if a filtor trapg onough radioactive dust, itmay present anzard greator than unfiltorad aif roold pose. Care ast be takenthet the ifiter is sheldedor

If the filtering officienog of ongines and other parta of the cabin aif supply syter can bo quantified, then ailter

Any filter has a linit to its cayacity. Thefilter montionod above will trap aboct 225 gram of dust before beooning clogeod. After the filtor is ologsod, it mot bo byassod and unfiltorod alf lloved into tho oabin. The mass trappod in the filter for
 chapter.

Desengenits

 noxt two tablos will bo tho same oxoopt that tho DELFIC partiolo sizo distribution is repleood with the NRDL-NGI diatyibotion of

For comparison parposes, the baseline ose in thitetady will be ane mogaton burst, fisston fraction of o, 5 , DELPIC (Dofoase Land Fellogt Informetion Codol defantipertiolo sizedistribution, a cross track wind shear of (km/hr)/km, an bour mision
duration aftor cloud ponotration，and aC－13s aircraft．
Table IX oontatas the input paraseters for the beseline
$\because \quad 0.80$.

I＇ble IX

Bencitne Caso Inpot Pargmoters

31 Dec 1438
This is a dose roport．
CUSTOM SCENARIO：Basoline caso－DELFIC and KC－135
IEAPON／TARGET DATA：

Weapon yiold－－－－－－－－－－－－－－－－－－－－－－－－－1000 ET

The stze distsibation ingot ilie is－DELFIC．RMA

Rm＝．204：1gma Ra＝4

Tho soil donsity is－－－ー－ー－ーーーーー－ー－ 2600 KG／M
The alforaft spoilioation itio is－EC－135．SPC

Tine from cloud ponetration

Tind shear（alons traok）－－ー－ー－ー－ 0 （EM／ER）／EM

The output ille 111 be namod－aー－ー－A：BASRLINB，DOP

Tables I and $X I$ how that compafod to DELFIC，an NRDL－N6I olond will couse an inoresed dose at high altitudos，from 30\％to 80\％more，deponding on tho time sinco burst．Concuriantiy，the NRDL－N61（1oud hes from 66\％to 30\％less dose at lom altitudos．
 tho NRDL－N61 distribution．The smaller particles are oartiod to hisher altitudes and stay up longer，thereby adding to tho aotivity donsity at highaititudes and ubtraoting frogit at low altitudes．This can be soon by comparing Figare 7 to fignre 6 ． Tho dose is furthor increased at high altitude becaso the lower air density provides loss attennation．

Table XII shows the rosults for tho TOR－C cloud（composed of relatively largepartiolos）which oanses simiar dosos oompared to

DELFIC at oarly times, but at lower altitudes. Dosos fall off very rapidiy after the second hour at allatitides. The doso at two hours is 30 percent less than DELFIC and at an altitade 4000 meters lower. Theso effects are cansed by the rapid fallof the 1arge particles and becane the large particleg atart falifig from a lower altitado. The aircrew dose is low becansethe cloud has fallen out of the ait onto the ground. This can be easily Vigualized in Figure 9.

Tablos XIII and XIV are for the B-1B in a DELFIC oloud, Withort and with filter. The dose dae to dust in the cabin is completely romoved at low altitudes, and at high altitades where there aro particios too smallfor the filtor to trap, the dose is reducod by 80\%. As expected, the sy-shino dose does not ohange.

This stady assumes a constant gama ray onergy of 1 MoV. It world bo possible to gake the gama onergy angeton of time using dete derived by Drigkvater (iof 7), wioh gives gama onergies from 1.44 MoV at 0.27 hour to 0.5 Mov at 27 hours. A

 10\%. Combined with the lower games onofgy, doso is reduced about 35\%.
 If tho nuclear oloud is stretched by wind shear in the adifoction (tho direotion of penctration), tho activity-intogral and oy will not ohage and tio doso will romain tho same (soo Eq(37)). This
 long, naryow cloud.

Table XVII ghows the results if tho aireraft in tho lest ose
penetrates the cioud in the transiorse directione This is
 flies through a short, wide cloud. Both sky-shine and cabin dist dose are reduced by a factor of 5 at one hour and by anctor of 10 at eight hours. Dose is also inversoly proportional to
 in Eq (39).

Tables IVIII to $X X$ show the doses that can be expeoted for a B-52G, E-4B, and EC-135 respectively. They penetrate the same DELFIC cloud that the baseline $K C-135$ in Table X esede The sky-shine dose varies with the sammeransmission factor, aircraft velocity, and the transorse size of tho oloud. The cabin dist dose varios with volocity, mass flow rato of air intothe obin, the cabin geonetry factor \quad, and the transierse sizo of the oloud.

Table X

Baseline Case - DELFIC Cloud and KC-135

31 Dec 1438 CUSTOM SCENARIO: Baselino - DELFIC and KC-135
time $(\mathrm{hr})=4$ deltat $(\mathrm{hr})=.166667$ hairborne $=69$ sigmaz $=5627.78 \mathrm{M}$
sigmay $=9500.64 \mathrm{M} \quad 3$ sigmay cloud diameter $=57003.8 \mathrm{M}$

Altitude	Cabin Dust	Sky Shine	Total Dose	Prominent Particle
M	REM	REM	REM	microns radius
12000	.482	.404	.886	15.4
10000	.240	.200	.441	24.5
8000	.116	.097	.214	31.8
6000	.069	.058	.127	39.4
4000	.046	.038	.085	46.6
2000	.033	.028	.061	52.9

31 Dec 1438 CUSTOM SCENARIO: Baseline - DELFIC and KC-135
time (hr) $=8$ deltat $(\mathrm{hr})=.363636$ Gairborne $=57$ sigmaz $=5627.78 \mathrm{M}$
sigmay $=16435.6 \mathrm{M} \quad 3$ sigmay cloud diameter $=98613.5 \mathrm{M}$

Altitude	Cabin Dust	Sty Shine	Total Dose	Prominent Particle
M	REM	REM	REM	microns radias
12000	.130	.083	.213	11.2
10000	.067	.642	.109	17.0
8000	.033	.021	.054	22.4
6000	.019	.012	.032	26.8
4000	.013	$8.58 \mathrm{E}-03$.022	30.5
2000	$9.68 \mathrm{E}-03$	$6.17 \mathrm{E}-03$.015	34.7

NRDL-N61 Cloud and KC-135

* 30 Dec 1420 COSTOM SCENARIO: TOR-C and KC-135
time $(\mathrm{hr})=8$ deltat (hr) $=.386969$ \%airborno $=25$ sigmax $=5704.79 \mathrm{M}$
sigmay $=16459.7 \mathrm{M} \quad 3$ sigmay cloud diameter $=98758.1 \mathrm{M}$

| Altitude | Cabin Dust | Sky Shine | Total Dose | Prominent Particle |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M | REM | REM | REM | microns radias |
| 12000 | 0 | 0 | 0 | 29.0 |
| 10000 | $1.44 \mathrm{E}-04$ | $9.18 \mathrm{E}-05$ | $2.35 \mathrm{E}-04$ | 29.0 |
| 8000 | $1.07 \mathrm{E}-03$ | $6.84 \mathrm{E}-04$ | .002 | 29.0 |
| 6000 | $3.35 \mathrm{E}-03$ | $2.13 \mathrm{E}-03$ | $5.48 \mathrm{E}-03$ | 29.0 |
| 4000 | $6.27 \mathrm{E}-03$ | $3.99 \mathrm{E}-03$ | .010 | 32.8 |
| 2000 | $9.35 \mathrm{E}-03$ | $5.96 \mathrm{E}-03$ | .015 | 35.0 |

Table XIII

DELFIC Clond spd B-1B
FITHOUT CABIN AIR FILTER

12 Jan 1406 CLISTOM SCENARIO: Baseline + B-1B without filter
time $(\mathrm{hr})=8$ deltat $(\mathrm{hr})=.363636$ \%airborne $=57$ sigmax $=5627.78 \mathrm{M}$
sigmay $=16435.6 \mathrm{M} \quad 3 \mathrm{sigmay}$ cloud diameter $=98613.5 \mathrm{M}$

Altitude	Cabin Dast	Sky Shine	Total Dose	Prominent Particle
M	REM	REM	REM	microns radias
12000	.172	.051	.223	11.2
10000	.088	.026	.114	17.0
8000	.043	.013	.056	22.4
6000	.026	7.81	$E-03$.033
4000	.017	5.32	E-03	.023
2000	.012	3.82	$E-03$.016

DELFIC C1ond and KC-135, nsing 0.7 MeV gamma rays

DELFIC Clond and $\mathrm{KC}-135: \mathrm{S}_{\underline{x}}=10, \mathrm{~S}=1$

0

DELFIC Cloud and $X C-135: S_{x}=1, S_{Y}=10$

1 March 0618 COSTOM SCENARIO: Baseline + Z shear = 1: I shear = 10 time $(h r)=2$ deltar $(h r)=.0967423$ 大airborne $=81$ sigmax $=6148.72 \mathrm{M}$ sigmay $=37913.8 \mathrm{M} \quad 3$ sigmay cloud diamoter $=227483 \mathrm{M}$
Altitude Cabin Dust Sky Shine Total dose Prominent Particle

M	REM	REM	REM	microns radios
12000	. 2302	. 2761	. 5064	22.4
10000	. 1121	. 1344	. 2465	36.2
8000	. 0533	. 0639	. 1172	48.6
6000	. 0316	. 0379	. 0696	60.1
4000	. 0215	. 0258	. 0474	74.7
2000	. 0151	. 0181	. 0333	89.5

1 March 0618 COSTOM SCENARIO: Baseline + X shear =1: Y shoar = 10
time (hr) $=4$ deltat (hr) $=.166667$ hairborae $=69 \mathrm{sigmax}=9500.64 \mathrm{M}$
sigmay $=76750.9 \mathrm{M} \quad 3 \mathrm{sigmay} \mathrm{c}$ loud diameter $=460505 \mathrm{M}$
Altitude Cabin Dast Sky Shine Total doso Prominont Particle

M	REM	REM	REM	microns radius
12000	. 059	. 049	. 1091	15.4
10000	. 029	. 024	. 0543	24.5
8000	. 014	. 012	. 0264	31.8
6000	. 0088	$7.16 \mathrm{E}-03$. 0157	39.4
4000	5.i E-03	$4.80 \mathrm{E}-03$. 0105	46.6
2000	$4.15 \mathrm{E}-03$	$3.47 \mathrm{E}-03$. 0076	52.9

1 March 0618 CDSTOM SCENARIO: Baseline + X stesr = 1 : \mathbb{I} shear = 10
time $(h r)=8$ deltat $(h r)=.363636$ itairborne $=57$ sigmax $=16435.6 \mathrm{M}$
sigmay $=154523 \mathrm{M} \quad 3$ sigmay clood diameter a 927139 M

Altitude	Cabin Dast	Sky Shine	Total dose	Prcsiaent Particle
M	RFM	REM	REM	microns radius
12000	.013	$8.83 \mathrm{E}-03$.022	11.2
10000	$7.12 \mathrm{E}-03$	$4.54 \mathrm{E}-03$.011	$17 . \mathrm{C}$
8000	.003		$2.24 \mathrm{E}-03$	$5.77 \mathrm{E}-03$
6000	2.10	$\mathrm{~L}-03$	$1.34 \mathrm{E}-03$	$3.44 \mathrm{E}-03$
4000	$1.43 \mathrm{E}-03$	$9.13 \mathrm{E}-04$	$2.34 \mathrm{E}-03$	26.8
2000	$1.03 \mathrm{E}-03$	$6.56 \mathrm{E}-04$	$1.68 \mathrm{E}-03$	34.7

DELFIC Clond and B-52G

12 Jan 1549				
time (hr)	- 4 deltat (h	. 166667	\%airborat = 69	sigmax $=5627.78 \mathrm{M}$
sigmay $=9500.64 \mathrm{M}$ (3 sigmay m loud diameter $=57003.8 \mathrm{M}$				
Altitude	Cabin Dust	Sky Shine	Total Doso	Prominent Particlo
M	REM	REM	REM	microns radius
12000	. 788	. 250	1.03	15.4
10000	. 392	. 124	. 516	24.5
8000	. 190	. 060	. 251	31.8
6000	. 113	. 035	. 149	39.4
4000	. 075	. 024	. 100	46.6
2000	. 054	. 017	. 072	52.9

Table XIX

DELFIC Cloud and E-4B

DELFIC Cloud and EC-135

IV. Mess Aralpsis

Beckerongd

There are two reasons why it is important to determino the mass of dust ingestod by an aircaft. Tho first is that any filter designod to prevent radioactivo dust fromentering the
 point is reachod, the filter will be bypassed and unfiltered ait will onter the cabin.

Tho second resson is that aifcraft engines may bedogradodor disablod by cxcessive mounts of dast. Rocont oxperionce vith
 and glass-1t. deposits of melted dost may drastically increaso fucl consomption or cato ongine failure.

Theory
Dotermining the mas of dust ingestod by tho cabin, an air filter, or the ongines in an aircift, le identical in prinoiple to tho method described in Chapters II and III. The oniy changes noedod are to substitutomas and mass densitios for onit timo activitios and activity densitios so that Eq (14) and Eq (18) aro roplacod by

$$
\begin{equation*}
M, M(x, y, z, t)=\int_{0}^{+\infty} M_{r}, \cdots(x, y, z, r, t) d r \quad\left[K G / m^{3}\right] \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{+\infty} M_{r}^{\prime}\left(z, r, t ; d r=\sum_{i=1}^{100} M^{i} f^{i}(z, t) \quad[K G / m]\right. \tag{44}
\end{equation*}
$$

Where tho equal activity-sizo particle groups are roplaced by oqual mass-sizoparticlo groups. Tho mass donsity of thoclond is
dofined as mass of rock per unit volune of air with units of kg/m. Figures 10 , 11 and 12 show mass density versus altitude in the clond in the same manner that figares 6, 7 , and 8 depicted activity density versus altitude. Note that the mass density docreases at a meh sorer rate than the activity donsity. This is bocause the radioactivity is docaying with timo as woll as settilig out. ${ }^{3}$

Tho total mongt of mass initialiy loftod in the nucioar cloud depends on the target material, the height of bust, and the yiold. A common ralo of thowb is $1 / 3$ ton of dist por ton of yield. This stody found least-squacs fit polynomial to DELFIC dofaglt Novada soil prediotions for mass of dust lofiod: this rolationship is

$$
\begin{aligned}
D F= & .204731-.02405321 n Y+.00139148(1 n Y)^{3} \\
& -4.88467 \times 10^{-3}(1 \Omega Y)^{2}+8.62805 \times 10^{-9}(1 \Omega Y)^{4}(45)
\end{aligned}
$$

whore I is giold in kilotons and DF is dost fraction, tho ratio tons dostions yieldso that total dust mass in kilotons equals the dust fraction times tho giold in kilotons. DELFIC predicts a dist fraction from. 1 to . 2 deponding on giold, for the defant
 1/3 because dust fractions for other soils refe not found and becanse it is dofonse onservative.
3. It is also posciblo to determine tho mass fraction in oach activity-size group or the activity fraction in each mass sizo groap so that the colculations naed bo done only once. DELFIC oporates in this manner. This is not done here.
figure 10.- EASELiNE - oelfic mass - one megaton

Rilter And Engine Ingestion

The mass of dist ingested into the cabin or trapod in a filter depends on tho mas flow rato of air into the cabin. As before, the offective inlet area is

$$
\begin{equation*}
\mathrm{IA}_{\mathrm{cd}}=\frac{0}{v_{z} \rho_{a i r}} \quad\left[\mathrm{~m}^{2}\right] \tag{39}
\end{equation*}
$$

Where Ω is the mass flow rate. The mass of dust is tho product of the abovo oquation and the mas tategral of the airborno dust. The dust mass intogral is found by the same method as the 'activity-integral' in Eq (38), where the activity densities are repleced by mass donsitios so that

$$
M \cdot(y, z, t)=f(y, t) M \cdot(z, t) \int_{-\infty}^{+\infty} f(x, t) d x \quad\left[z g / m^{2}\right] \quad(46)
$$

where M'(z,t) is given by Eq (44).
Engines may be afected both by dust donsity and by tho total mass of dust ingested. The peat dust density is found in the conter of the clodi in the same manner that activity densitios vere fonnd in Chapters II and III. The amonit of dist pasing through an ongine is found by subtituting the mas flow of air into the engine for the mass flow of air to the cabin. Note that the physical inlet areaf of ofogine is not usod. If the dust ontering the core soction of turbofan engine is desired, the total mass flow of tho engine must bo divided by the bypass ratio. Data for tho ongines usod for tho aircraftin this study are found in the following table.

TABLE XXI

ENGINE DATA

Aircraft	Engine	Mass	Bypass
Type	Type	Flow	Ratio
		GG/S	

B-1B	F-101-GE-102	161	2.3
B-52G	J57-P-43WB	83	0
B-52H	TF-33-P-3	204	1.4
E-3	TF-33-P	204	1.4
E-4B	CF-6-50E2	729	4.3
EC-135	J57-P- WB	83	0
KC-135	J57-P- WB	83	0

The above flow rates are for each engine at naggonted military rated thrastandstandard (sea lovel) conditions.

Hess flow scales directly as thrist to good appoximation. If the percent thrist used for criforgood at the penetration altitude is known, this percentage can be miltipliad by the mass flow of the ongine at soa lovel. This will rosith in a more realistic (and lover) mass flow throngh the ongine. This refinement was not incioded in this stady to simplify the treatment of the many differont altitndes and aircraferamined: the percentage will vary for both these parameters.

Mass Results

Tablos XXII, XXIII, and XXIV give the resalts for dust ingestion usiag the equal mass groups for the same Delfic. NRDL-N61, and TOR-C clouds and initial conditions nsed in

Chapter III.
The amont of dust trapped in the cabin in Table XXII is mach
less than the capacity of the filter mentioned in Chapter IIf. It woid appor that there is little danger of aloging thefiler ualess a large maltiple borst cloud is encountorod or aingle cloud is entered many times.

Althongh rofiable quatitative data could be fond on engine dast tolerance, the amont of dast ingested in these cases appears to be minimal. Earlier timos and matibarst ciond resalts are given in Appendices G and I.

TABLE XXII

DELFIC Dost Cloud and KC-135

 time (hr) $=2$ deltat (hr) $=.0967423$ Dairborne $=73$ sigmar $=4924.79 \mathrm{M}$ sigmay $=6198.22 \mathrm{M} \quad 3$ sigmay clond diameter $=37189.3 \mathrm{M}$ Prominent Altitude Cloud Dens Filtered Dust Cabin Dust Engine Dust Particie

M	$\mathrm{mg} / \mathrm{M}^{\wedge}$		K_{g}	Kg	gg	microns \mathbf{r}
12000	101.	0	.014	1.44	21.7	
10000	83.4	0	$8.96 \mathrm{E}-03$.894	36.0	
8000	60.6	0	$5.11 \mathrm{E}-03$.510	48.3	
6000	48.9	0	$3.28 \mathrm{E}-03$.328	61.7	
4000	42.6	0	$2.30 \mathrm{E}-03$.230	73.5	
2000	37.4	0	$1.65 \mathrm{E}-03$.164	87.6	

NRDL-N61 Dust Cloud and EC-135

11 Jan 2207 CDSTOM SCENAR10: NRDL-N61 Dust Cloud, KC-135, Dust Fraction=1/3 time (hr) $=1$ deitat $(h r)=.0967423$ 勾airborne $=81$ sigmax $=3973.99 \mathrm{M}$ sigmay $=4360.21 \mathrm{M} \quad 3$ sigmay cload diameter $=26161.3 \mathrm{M}$ Prominent Altitade Cload Dens Filtered Dust Cabin Dast Engine Dust Particle

M	$m g / M_{3}$	$\mathrm{K}_{\mathbf{g}}$	K_{8}	K_{8}	microns r
12000	254.	0	. 029	2.91	30.9
10000	158.	0	. 013	1.36	53.6
8000	93.8	0	6.39 E-03	. 638	76.1
6000	68.0	0	$3.69 \mathrm{E}-03$. 368	103.
4000	55.0	0	$2.40 \mathrm{E}-03$. 239	129.
2000	46.2	0	$1.64 \mathrm{E}-03$. 164	153.

11 Jan 2207 CUSTOM SCENARIO: NRDL-N61 Dust Cloud, KC-135,Dust Fraction=1/3 time $(\mathrm{hr})=2$ deltat $(\mathrm{hr})=.0967423$ \%airborne $=71$ sigmar $=4891.03 \mathrm{M}$ sigmay $=6153.33 \mathrm{M} \quad 3 \mathrm{sigmay}$ cloud diameter $=36920 \mathrm{M} \quad$ Prominent Altitude Cload Dens Filtered Dust Cabin Dast Engine Dast Particle

K	$0.8 / M_{3}$	$\mathbf{K}_{\mathbf{g}}$	$\mathbf{X}_{\mathbf{g}}$	$\mathbf{Z}_{\mathbf{g}}$	microns 5
12000	122.	0	. 017	1.73	22.5
10000	77.3	0	8.25 E-03	. 823	35.9
8000	46.3	0	$3.88 \mathrm{E-03}$. 387	48.5
6000	34.8	0	. 002	. 232	62.2
4000	29.9	0	$1.60 \mathrm{E}-03$. 160	76.1
2000	26.1	0	$1.14 \mathrm{E}-03$. 114	88.7

11 Jan 2207 COSTOM SCENARIO: NRDL-N61 Dust Cloud, KC-135, Dust Fraction=1/3 time $(h r)=4$ deltat $(h r)=.181818$ कairborne $=60$ sigmax $=5661.43 \mathrm{M}$ sigmay $=9493.12 \mathrm{M} \quad 3 \mathrm{sigmay} \mathrm{clond}$ diameter $=56958.7 \mathrm{M}$ Prominent Altitude Cloud Dens Filtered Dost Cabin Dast Engine Dast Particle

11 Jan 2207 CUSTOM SCENARIO: NRDL-N61 Dust Cloud, KC-135,Dust Fraction=1/3 time $(\mathrm{hr})=8$ deltat $(\mathrm{hr})=.363636$ 勾airborne $=50$ sigmax $=5661.4, \mathrm{M}$ $\operatorname{sigmay~}=16412.3 \mathrm{M} \quad 3 \mathrm{sigmay} \mathrm{c}$ loud diamet.er $=98474 \mathrm{M}$ Prominent Altitude Cloud Dens Filtered Dast Cabin Dust Engine Dast Particle

TOR-C Dust Cloud and KC-135

12 JAN 0107 CUSOM SCENARIO: TOR-C Dust Cloud, XC-135,Dust Fraction $=1 / 3$ time $(\mathrm{hr})=2$ delat $(\mathrm{hr})=.386969$ Sairborne $=100$ sigmax $=4931.45 \mathrm{M}$ sigmay $=6178.95 \mathrm{M} \quad 3 \mathrm{sigmay}$ cloud diameter $=37073.7 \mathrm{M}$ Prominent Altitude Cloud Dens Filtered Dast Cabin Dast Engine Dost Particie

12 JAN 0107 CUSTOM SCENARIO: TOR-C Dust Cloud, KC-135, Dust Fraction a $1 / 3$ time $(h r)=4$ deltat $(h r)=.386969$ sairborne $=80$ sigmar $=5713.77 \mathrm{~m}$ sigmay $=9521.07 \mathrm{M} \quad 3 \mathrm{sigmay}$ cloud diameter $=57126.4 \mathrm{M}$ Prominent Altitude Cload Dens Filtered Dust Cabin Dast Engine Dust Particle

12 JAN 0107 COSTOM SCENARIO: TOR-C Dost Cloud.KC-135, Dust Fraction $=1 / 3$ tiwe (hr) $=8$ deltat $(\mathrm{hr})=.386969$ sairborne $=20$ cig7ax $=5713.77 \mathrm{M}$ sigmay $=164297 \mathrm{M} \quad 3$ sigmay cloud diameter $=98578.3 \mathrm{M}$ Prominent Altitude Cload Dens Filtered Dust Cabin Dust Engine Dust Particie $M \quad \mathrm{mg}_{\mathrm{g}} / \mathrm{M}^{\wedge} 3 \mathrm{E}$
12000
10000
8000
6000
$4000 \quad 2.83 \quad 0$
$2000 \quad 5.41$
$\mathbf{I}_{\mathrm{g}} \quad \mathbf{X}_{\mathrm{g}} \quad \mathbf{K}_{\mathrm{g}}$ microos \mathbf{r}

V. Conclusions and Recommendations

Conclusions

This study has extended the calculation of aircrev dose to a wide variety of strategic aircraft. An improved model of tae aircraft cabin was doveloped to allov better ostimates of shiciding from oxteral gama rays and doso rates for interial
 decreaso in tho cabin geometry factor roduce the arcrov dose ofe to sky-shino and cabin dust by proportionate amonats, compared to Kling's KC-135 model.

Additions to the nuclear cloud model as gagested by Bridgman and Bigolot (Rof 1) have allowed the offects of different particle size distributions to be considord. Tal differences are significant. Comparing doses at the maxioxa ioso altitudes dueto clonds compoaed primarily of mall (NRDL-NG1) and large (TOR-C) particles, the NRDL-N61 cloud censed 30% more dose tothe ifcrov at one hour for bothestinine and cabin dust. After 4 hora, tho differences in dose reached an order of manitude: the total dose is small, however, due to decay of activity with time.

A simple extrif ion to the cload model allows dust donsitios and tho mass of dast ingestod by angine or filter to be found. Differencos in tho dust densities betroon the NRDL-N6i and TOR-C clonds wore revorsed compared to the doses at early times. At one bour, the TOR-C cloud bad a 50 greator dust deasity. The rapid fallout of the larger particles in tho TOR-C cloud reduces the cloud density mach moro rapidig. howevor, so that aftor 4 hourg the deasities are similar and after 8 hours only 20% of the
original cloud mas still arborne. Fifty percont of the NRDL-N6I cloud was stillaloftat hours.

Addition of a filter to the cabin sit ipply made a majof difference to tho dose dne to the dnst try...itin the obin and demonstrated that filters need not stop sub-micron particies t, be effoctive. For an 8 hour mission, filter stopping particles larger than 20 microns trappod 80% of the cabin dust dose at 37,000 foot for 1 hour after the burst, ar: trapped all of it below 20,000 feot at any time. Since the saller particles that pass through the filter are less likelg to settio ont in the cabin, the filter should be oven more offective than these calculations showed.

Comparison of air donsity with dast donsitios likely to be foond in megaton sizo noclear cloud indiuatos that self-shiolding of tho dust is not kina ino dust donsity is only 0.3\% of the air denstig, tnd gama crose sections are similar. Thus tho attenation due to air is mach larger than ang attonuation due to dast.

Splitifig the single vind shear into two components allowed tho aircraft to ponotrate the late timo cloud in any direction. Aftor 1 hour of a typical wind $\left(S_{t}=10.05\right)$, penetrating tho cloud along themajor axis will resilt in 5 times as moth dose as ponetrating along the minor aris. After 8 bours, there vill be a factor of 10 differenco in dose. The increase in dose is due equally to sky-shine and cabin dust dose. Aircraft required to orbit an area downoind of argot area could follow a long. natrow racetrack at tight agles to the provailing wind, thoreby minimizing doge.

Recommendations

There are six recommendations to be made. First, tho constant gamma ray energy assumption of love could be replaced by a time dependent energy. This would involve making all of the absorption and attenuation coefficients variables as wold. Doses would be increased at early times and decreasodat later times.

Second, tho irfion through tho cabin could bo modeled to determine what size particles could be expected to stay suspended long enough to be removed from the cabin by tho outgoing air. Patrick (Ref 20) suggests method for doing this.

Third, equipment and structure inside tho cabin could be modeled to account for shielding from the dust indeed in the cabin.

Fourth, aircraft engines could be tested to determine whether the dust densities predicted to exist in nuclear cloud world degrade engine operation and thus be concern for determining survivability of the aircraft.

Fifth, more realistic wind model could be developed.
Last, an algorithm to adjust engine thrust (thus mas flow and engine dust ingestion) with altitude and airspeed conf be added so that more realistic engine mass ingestion could be found.

Bibliography

1. Bridgman, C.J. and W.S. Bigelow. "A New Fallout Prediction Model," Health Physics, 42 (2): 205-218 (August 1982).
2. Bridgman, C.J. and B.E. Bickman. Aircraft Penetration of Radioactive Clouds. School of Engineering, Air Force Institute of Technology, Wright-Paterson AFB OH, 1982.
3. Bridgman, C.J. Unpublished paper. School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB OH, 1982.
4. Brodsky, A.B. Editor CRC Bandbook of Radiation Measurement and Protection. Volume I: Pbysical Science and Engineering Data. CRC Press, Inc. West Palm Beach FL.
5. Crandey, J.F. A Multiburst Fallout Model for Operational Type Studies. MS Thesis, Wright-Patterson AFB OH: Air Force Institute of Technology, March 1981.
6. Davies, C.N. "Lefinitive Equations for the Fluid Resistance of Spheres," The Proceedings of the Physical Society, London, 57: 259-270 (July 1945).
7. Drinkuater, R.B. Gama Radiation from Fission Products. MS Thesis, Wright-Patterson AFB OB: Air Force Insticute of Techoology, March 1974.
8. Glasstone, S. and P.J. Dolan. The Effectb of Nuclear Weapons (3rd Ed). Washington DC: \quad. S. Governmeat Printing office, 1977.
9. Gogolin, J. DElPIC (APIT Version) Operator g Manual. Wright-Patterson AFB OB: Air Force Institute of Technology, ls June 1984.
10. Hickman, B.E. Aircrew Ionizing Doses from Radioactive Dust Cloud Generated by Nuclear Burst. MS Thesis, Wright-Patterson AFB OH: Ait Force Institute of Technology, March 1982.
11. Hopkins, A.T. A Two Step Method To Treat Variable Winds In Fallout Smearing Codes. MS Thesis, Wright-Patterson AFB OH: Air Force Institute of Technology, March 1982.
12. Klement, A.W. Jr. Radigactive Fallout from Nuclear Weapong Tests. Proceedings of the Second Conference, Germantown MD, 3-6 Nove aber, 1964.
13. O'Lore, R.G. "Volcanic Eruption Distupts Air Traffic," Avietion Wepk and Space Technology, p. 18, 26 May 1980
14. Personal conversation, Col. R. Justice, US Air Force Strategic Air Command, Offut AFB, NE. 31 October, 1984.
15. Powell, W.C. III. "Radiation Threat from Nuclear Dust In The ECS Particle Filter," TFD-82-890 Rockwell Interational Los Angeles, CA 16 December, 82.
16. Rling, T.R. Airborne Penetration of Radioactize clouds. Thesis, Wright-Patterson $A F B$ OH: Air Force Institute of Technology, March 1983.
17. McBaban, J.T., et al. Sensitivity of Fallout Prediction ta_{o} Initial Conditions and Model Assumptions, Science Applications, Inc., MoLean $\nabla A, 15$ June 1974 (AD A002 464).
18. McDonald, J.E. "An Aid to Computation of Terminal Fall Velocities of Spheres," Journal of Meteorology, 17: 463-465 (August 1960).
19. McMaster, N. et al. Compilation of X-Ray Cross Sections UCRL-50174 Sec. II Rev. I. Lawrence Radiation Laboratory, Livermore CA 1969.
20. Patrick, R.P., et al. Aircraft Penetration of Clouds Generated by Nuclear Bursts. Rirtland AFB NM: Air Force Weapons Laboratory, 1973 (AFWL-TR-73-82).
21. Patrick, R.P., et al. Cockpit Air Piltration Requirements for the B-1 in a Nuclear Dust Environment. Rirtand AFB NM: Air Force Weapons Laboratory, 1973 (AFWL-TR-73-83).
22. Patrick, \quad. P. "Potential Crew Hazards Due to Radioactive Cloud Penetrations," Aviation, Space and Enyironmentel Medicine, 46 (3): 281-289 (March 1975).
23. Patrick, R.P. and G.D. Arnett. Aircraft Ionizing Doses and Dose Rates from Radioactiye Clouds and Fallout. Rirtland AFB NM: Air Force Weapons Laboratory, 1976 (APWL-TR-75-214).
24. Polan, M. An Analgis of the Fallout Prediction Models Presented at the UNSRDL-DASA Fallout Symposium of September 1962, Vol. 1 . Analysis, Comparison and Classification of Modela, UNSRDL-TRC-68, U.S. Maval Radiological Defense Laboratory, San francisco CA 94135, 8 September 1962.
25. Pugh, G.E. and R.J. Galiano. An Analytical Model of Clinge-In Deposition of Fallout for UBe in Operafional Iype Studies. WSEG Research Memorandum No. 10 , Weapon systems Evaluation Group, The Pentagon, Washingion DC, 15 October 1959 (AD 261 752).
26. Routanen, N.H. An Improvement to the WSEG Pallout Model Low Yield Prediction Capability. MS Thesis, Wright-Patteston AFB OH: Air Force Institute of Technology, December 1978.
27. U.S. Standard Atmosphere, 1976. NOAA. OS Government Printing Office, Washington [C, 1076.
28. Caparco, N.S., et al, Radioactive Particle Studies Inside an Aircraft, WT-717, \quad S Army Chemical and Radiological Laboratories, February 1956.
\because
29. Ort, F.G, and M.J. Schumchyk, Evaluation of a Filtration System for Pressurized Aircraft, DS Army Chemical and Radiological Laboratories, November 1952.

APPEND IX A

DELFIC Data

This Appendix contains data and polynomials least-squares fit to data predicted by DELFIC for an initial nuclear cloud. Only data that appeared to be potentially useful for this studywere extracted and reduced. Do not consider this study or this appendix to be a complete summary of DELFIC. The r aw data in this Appendix represents less than 1% of all data in a typical DELFIC printout. The term "DELFIC default" refera not only to the particle size distribution used (see Chapter II), but to the winds, fission fraction of the weapon, type of soil, and other variables. See Chapter II for more inf mation ${ }^{\circ} \mathrm{DELFIC}$. See Gogain (Ref 9) for further details and information $\quad *$ to run DELFIC.

The modules of interest for this study are Fireball, Cioud Rise, Interface, and Diffusive Transport. The ciata from them are presented below in no particular order. All times are in seconds, all altitudes are in meters, all masses are in kilograms, all particle diameters are in microns. Note that DELPIC assigns the smallest group number to the largest size group. The programs in this study use the opposite convention. Also note that this study refers to particle size in terma of radius. DELFIC refers to particle sizes by diameter.

The data presented here are for the:

1. Altitudes of the top and bottom, and the thickness of each disc for every ten particle size groups at vertical stabilization time.
2. Time since burst and radius of the cloud at vertical stabilization.
3. Time since burst and radius of the cloud at borizontal stabilization.
4. Time of solidification of the surface material evaporated in the fireball, and mass of dust airborne at solidification time.

Al. Particle Size versus Altitude at vertical stabilization time
DELPIC divides a particle size distribution into 100 equal mass-size groups. Each group is modeled as a disc, and each disc is subdivided into 20 wafers. Among ocher things, DELFIC prints the altitude of the top and bottom of each wafer for the initial cloud at vertical stabilization time. Each wafer and each disc may overlap adjoining wafers or discs. This data is printed at the beginning of the Diffusive Transport module.

DEIFIC predicts the same altitude for a given size particle for all of the particle size distributions tested; DELFIC default, NRDL-N61, TTAPS, and TOR-C (Ref 3) (see Table I).

To limit the amount of data to be handled, altitude information was extracted for every tenth particle size group rather than for all 100 groups. The data extracted from DELPIC follows. BB refers to the altitude of the bottom of the lowest wafer in a particle size group. TT refers to the altitude of the top of the highest wafer in a particle size group. Deltaz is the difference of these altitudes computed by this study.

PRIMARY DATA - from DELPIC default fitches and printout initial cloud height data

lo, kt 20	Oct 84 Delfic	default	Rm=. 407	sigma	$=4$ silica soil
Delfic group	diameter	BB	TT	DeltaZ	
10	799.84	0	2583	0	
20	427.59	1663	4269	2606	
30	273.97	2721	5199	2478	
40	187.75	3357	5747	2390	
50	132.13	3785	6095	2310	
60	93.105	4062	6334	2272	
70	64.063	4272	6494	2222	
80	41.447	4400	6595	2195	
90	22.824	4474	6652	2178	
100	3.6513	4505	6677	2172	

**

100, kt 20	Oct 84 Delf	fault	sigma	a soil
Delfic group	diameter	BB	TT	Delta2
10	799.84	1015	5676	4661
20	427.59	3755	8384	4629
30	273.97	5139	9786	4647
40	187.75	5980	10600	4620
50	132.13	6543	11110	4567
60	93.105	6921	11470	4549
70	64.063	7195	11700	4505
80	41.447	7365	11840	4475
90	22.824	7470	11930	4460
100	3.6513	7505	11960	4455

Values for the 50 MT burst were not incorporated into the polynomial fits; Hopkins data covers 1 to 15000 kt only and yields larger than tins will be uncommon in any event.

Following a method developed by Hopkins (Ref ll), for each yield a linear least-squares fit was obtained for particle diameter in microns versus altitude in meters. Deviations from linearity were quite small, with deviations in altitude typically less than 1%. Deltaz was fitted in the same manner as altitude. The least-squares linear fits to the sbove data follow.

TOP OF TOP WAFER

YIELD (kt)	slope(m/micron)	intercept(m)
1	-5.01902	3316.48
10	-5.87268	6820.28
100	-8.7145	12182.5
1,000	-12.582	18456.3
15,000	-23.9386	38680
50,000	-33.4709	51809.4

BOTTOM OF BOITOM WAFER

YIELD (kt)	slope(m/micron)	intercept (m)
I	-5.91157	2171.19
10	-6.95509	4656.53
100	-9.19309	7703.61
1,000	-10.7505	10608.7
15,000	-14.0467	19077.2
50,000	-14.8734	19348.4

DELTA Z

YIELD (kt)	slope(m/micton)	intercept(m)
1	+1.01059	1135.89
10	+1.08241	2163.75
100	+0.260011	4503.59
1,000	-1.8315	7847.69
15,000	-9.89187	19603.5
50,000	-18.5842	32454.3

The raturai log of each of the above slopes and each of the above intercepts were least-squares fit to a polynomial in $\ln (Y)$, the natural log of the gield in kilotons. The values for slope were combined with additive factors to make them non-negative so that the logs could be taken. This method of fit was used because it gave the smallest errors of all the methods tried.

Talues for the 50 MT bursts were not incorporated into the polynomial fits; Hopkins data covers lo 15000 kt only and gields larger than this will be uncommon in any event.

Slcpes and Intercepts for the various fits are identified by subscripl:s. The subscript T identifies the f it to the Top of the top wafer, b identifies the fit to the bottom wafer, and refers to the fit of the DeltaZ for each group. These polynomials are given below.

Also included below is the polynomial fit used by Hopkins. Hopkins found the center altitude for each of the twenty wafers in each group, then averaged them to obtain an (average) center altitude for the group. These polynomials are identified by the subscript m.

TOP OF TOP WAFER

The altitude of the top of the disc is the altitude of the topmost wafer in the disc.

$$
\begin{array}{r}
S_{T}=-\operatorname{EXP}\left\{1.61324-.0682128(\ln Y)+.084398 €(\ln Y)^{2}\right. \\
\left.-.0123826(\ln Y)^{3}+.000634405(\ln Y)^{4}\right\} \\
I_{T}=\operatorname{EXP}\left\{8.10667+.302301(\ln Y)+.0191831(\ln Y)^{2}\right. \\
\left.-.00748407(\operatorname{lnY})^{3}+.000518155(\ln Y)^{4}\right\}
\end{array}
$$

BOTTOM OF BOTTOM WAFER

The altitude of the bottom of the disc is the altitude of the lowest disc in the wafer.

$$
\left.\begin{array}{rl}
S_{b}=-\operatorname{EXP}\left\{1.77691-.0325444(\ln Y)+.0679667(\ln Y)^{2}\right. \\
& \left.-.0114241(\ln Y)^{3}+.000590821(\ln Y)^{4}\right\}
\end{array}\right] \begin{aligned}
I_{b}=\operatorname{EXP}\{7 . & 68304+.372472(\ln Y)-.0107429(\ln Y)^{2} \\
& \left.-.0039146(\ln Y)^{3}+.000358551(\ln Y)^{4}\right\}
\end{aligned}
$$

DELTA 2

The thickness of the disc, Deltaz, is the difference in altitudes of the top and bottom of the disc.
$x=\ln (y)$

$$
\begin{aligned}
& S_{d}=7-\operatorname{EXP}\left\{1.78999-.048249 x+.0230248 x^{2}\right. \\
&\left.-.00225965 x^{3}+.000161519 x^{4}\right\} \\
& I_{d}= \operatorname{EXP}\left\{7.03518+.158914(\ln Y)+.0837539(\ln Y)^{2}\right. \\
&\left.-.0155464(\ln Y)^{3}+.000862103(\ln Y)^{4}\right\}
\end{aligned}
$$

DISC CENTER ALTITUDE

Altitude of the average center of mono-size particle diac. The average center is determined by averaging the center heights of the wafers of which the disc is composed. (Ref ll)

$$
\begin{array}{r}
S_{\mathrm{I}}=-\operatorname{EXP}\left\{1.574-.01197(\ln Y)+.03636(\ln Y)^{2}\right. \\
\left.-.0041(\ln Y)^{3}+.0001965(\ln Y)^{4}\right\} \\
I_{\mathrm{II}}=\operatorname{EXP}\left\{7.889+.34(\ln Y)+.001226(\ln Y)^{2}\right. \\
\left.-.005227(\ln Y)^{3}+.000417(\ln Y)^{4}\right\}
\end{array}
$$

The altitude for a given particle size for any of the above fits is found by using the equation below. It will topically return values within 5% of the original data listed above.

particle size vs initial altitude
1 RT TO $15,000 \mathrm{RT}$

Particle Altitude $2=$ INTERCEPT + 2 (Particle Radius) (SLOPE)

where the particle radius is in micrometers and the altitude is in meters, and the yield for the intercepts and slopes is given in kilotons.

A2. Time since burst and radius of the cloud at vertical stabilization.

DELFIC raw data for vertical cloud stabilization

yield (RT)	RADIUS (M)	TIME (SEC)
1	856.6	347.1
10	1612	347.0
100	3324	313.2
1,000	5651	845.2
15,000	13680	162.9
50,000	22850	166.2

 POLYNOMIAL FITS FOR VERTICAL CLOUD STABILIZATION 1 KT TO 50,000 KT

Vertical Stabilization Time (seconds)

$$
T_{\mathrm{s}}=385.295-99.1476(\ln \mathrm{Y})+64.6314(\ln \mathrm{Y})^{2}
$$

$$
-8.21379(\ln \mathrm{Y})^{3}+.323598(\ln \mathrm{Y})^{4}
$$

Vertical Stabilization Radius (meters)

$$
\text { (see } E_{q}(5) \text { to convert radius to sigma radius) }
$$

$$
\ddot{s}_{0}=868.277-632.399(\ln Y)+625.132(1 \mathrm{n} \mathrm{Y})^{2}
$$

$$
-112.586(\ln Y)^{3}+7.16648(\ln Y)^{4}
$$

DELFIC raw data for vertical cloud stabilize		
YIELD (RT)	RADIUS (M)	TIME (SEC)
1	902.8	382.1
10	1788	424.5
100	5213	610.7
1000	16620	845.2
15000	52330	850.4
50000	110000	918.7

 POLYNOMIAL FITS FOR HORIZONTAL CLOUD STABILIZATION 1 RT TO 50,000 RT
 (Cloud Rise module termination)

Horizontal Stabilization Time (seconds)

$$
T_{h}=385.295-99.1476(\ln Y)+64.6314(\ln Y)^{2}
$$

$$
-8.21, \Rightarrow(1 \mathrm{ZY})^{3}+.323598(1 \pi Y)^{4}
$$

Horizontal Stabilization Radius (meters) (see Eq (5) to convert radius to sigma radius)

$$
S_{h}=\operatorname{EXP}\left\{0.08948+.0546004(1 \mathrm{nY})+.136646(\operatorname{lnY})^{2}\right.
$$

$$
\left.-.0173576(\ln \mathrm{Y})^{3}+7.42803 \mathrm{E}-4(1 \mathrm{aX})^{4}\right\}
$$

Delfic Raw Data For Dust Mass

Field	Condensation Time SEC	Mass	Dust Fraction
KT	2.3278	$9.0287 e+5$	KG
1	3.6658	$6.8862 e+6$.204732
10	5.8238	$5.2521 e+7$.156150
100	4.4018	$4.0058 e+8$.090835
1000	17.4996	$4.3693 e+9$.066052
15000	21.9029	$1.2641 e+10$.05733

 POLYNOMIAL FITS FOR DUS'T MASS AND SOLIDIFICATION TIME 1 RT TO 50,000 RT
 (Fireball module)

Dust Fraction

$$
\begin{aligned}
D F= & .204731-.0240532(\operatorname{lnY})+1.39148 \mathrm{E}-3(\ln \mathrm{Y})^{2} \\
& -4.88467 \mathrm{E}-05(\ln \mathrm{Y})^{3}+8.62805 \mathrm{E}-7(\operatorname{lnY})^{4}
\end{aligned}
$$

Glossary of Program Terms

accellg

ACTIVITY,REPGKT\$

ACTSIZE.REPORT\$
AIRCRAFT.FILES
AIRCRAFT\$

ALPHA

ANS
ANSWERS
AR (G)
.DOP
.MOP
A1. PERCENT
RM
.RMA
. RMM
.SPC
BETA
BOMB.DENSITY
BURST .AMP .FACTOR
CABIN ACTIVITY

CABIN.AR

CABIN.DOSE
$9.80665 \mathrm{~m} / \mathrm{s}^{2}$
menu control variable
menu control variable
name of aircraft specification program
name of aircraft to report on
cumulative \log normal distribution term
menu control variable
Шesu control variable
activity of a particle group at an altitude
dose report file name extant
dust report file name extant
unit time activity of a particle group
mean radius of a dust parcicle
equal activity group file extant
equal mass group file extant
aircraft specification file extant
cumulative log normal distribution term
density of multiple bombs in target area
factor for multiple bursts
total cabin activity
activity due to a given group
dose due to trapped dust in cabin

ABIN.DOSE.RATE	at the center of the cabin
CABIN GEOMETRY	dimensionless factor for dust dose
CABIN.SUM.ACTIVITY.PER METER	activity density of "unfiltered" cloud
DATE.TIME\$	date stamp for files
DCF	dose conversion factor
delay	menu control variable
DELFIC	default particle size distribution
DELFIC.DOP	default output file name for dose report
deltat	time interval for cloud fall
Deltax	aircraft miss distance to cloud center
DELTAY	aircraft iniss distance to cloud center
DINTERCEPT	formula for thickness of particle group
DOSE	to aircrew in rem
DSLOPE	formula for thickness of particle group
DUST . DOSES	menu control variable - dust or dose report?
ENGINE.MASS.FLOW	air mass flow through engine
etaz	viscosity of air at altitude z
FALL. PELOCITY	of a particle
FF	fission fraction of weapon
FIELD.WIDTH	width of target area for multiple bursts
FILTER.ACTIVITY	total filter activity
FILTER.AR	filter activity due to a single group
FILTER.CAPACITY	dust mass that will clog filter
FILTER.SUM.ACTIVITY.PER.METER	activity densicy of "filtered" cloud
FILTER.TX.FACTOR	fraction of a dust size that goes through
FV	fraction of activity inside a dust particle
FX	gaussian term for horizontal distribution
FY	gaussian term for horizontal distribution

GAMMA.TX.FACTOR

GAMMA .MFP
GAUSSIAN2M
G.AT.Z

日C
HOW.MANY.TIMES

ER
INPUT.FILE\$
INTERVAL

LAST .AREA
LAST.TIME.STOP
LASTG
LR
MASS
MASS.FLOW
MASS . INTEGRAL
MASS .REPORT\$
MASS.SIZE.REPORTS
MAXG
MEV
MINTERCEPT
MSLOPE

MSN.TIME.REM
MUARHO
MUT . 213
MUTRHO
NOMBER.BOMBS
gaussian term for altitude distribution
gamas that make it through cabin walls
mean free path of a gamma ray in air contribution of a partice group at an altitude gravity at altitude z
initial activity center altitude
the number of report times
time in hours
name of an input ifle
time between report times
used in trapezoidal integration
the last time a report was made
largest particle group still airborne
atmospheric temperature lapse rate
of the cabin
of air into the cabin
of the aircraft cabin
menu control variable
menu control variable
group that adds the most activity at altitude gamma ray energy in MeV

Hopkins formula for initial altitude of particle Hopkins formula for initial altiude of particle time from cloud penetration to landing tissue absorption crossection gama ray transmission coefficient for aluminum gamma ray cross section for air at altitude z number of weapons in multiple burst problem

OUTPUT.FILE\$
PART.TIME
PER(G)

PI
PRESSURE. VOLUME
PV.AREA
PV.MASS
PZ
RADIDS
REYNOLDS .NUMBER
RHOAIRZ
RHOFALLOUT
SHARPS

SHEAR

SIGMA.RM
SIGMAX

SIGRiAY
SIGMAZ
SIZE .LABELS
SKYSHINE.DOSE
STAB.TIME
STARS
SUM.ACTIVITY.PER.METER
TA
TC
TIME
TIME STOP
TK
name of output file to be created interval counter for cloud fall loop \% activity at an altitude due to group G 3.14159
volume of aircraft pressurized cabin area of aircraft pressurized cabin mass of aircraft pressurized cabin atmospher ic pressure at altitude z radius of dust particle dimensionless
airdensity at altitude z
target material density
tag denoting multiple burst is too early variation of wind speed with altitude particle cumulative $10 g$ normal distribution horizontal normal distribution of cloud horizontal normal distribution of cloud vertical normal distribution of cloud report label for size groups dose to crew due to immersion in cloud time of cloud vertical stabilization tag denoting gama mfp $>.2$ sigmax activity density for all groups at an altitude time for toroidal growth
time constant for toroidal grewth counter for cloud fall loop one of the output report times
atmospher ic cemperature in degrees \mathbb{R}

TRANSIT.TIME
TRAP.CENTER
T2
VAC
WHICu\%
WHICES
WIND.SEEAR.X
WIND.SEEAR.Y
fieldrt
ZAC
WORST.ALT
ZAC. AI
ZAC.LO
ZAC.STEP
2. STEFS

ZM(G)
time to cross a multiple burst cloud center of trapezoid of integration atmospher ic temperature lapse rate True Air Speed of aircraft in m / s menu selection command menu selection command longitudinal component of wind crosswind component of the wind gield of weapon in kilotons
height of aircraft estimat ed worst penetration altitude highest penetration altitude lowest penetratior eltitude distance between penetration altitudes the number of altitudes to be reported altitude of particle in group G

Appendix C

Particle Size Program

This program will compute 100 equal activity groups and 100 equal mass groups from the rm and $\sigma_{r m}$ of a number size distribution. Examples of some number size distributions that have been proposed for nuclear clouds are given in Table I. See Chapter II for details.

The progran is menu driven and easy to use. Simply input the requested data at the prompts; both the activity size and mass esize groups will be computed and stored in a disk file. The program can be used by itself or called by the menu program in Appendix E.

8000 ², 2.5, 3 moment
8010 compute size (um) of 100 equal activity and equal mass groups 8020 'given Rm_{m}, sigma Rm , and volume fraction, find equal activity 8030 'and equal mass size groups from the number size distribution $804 u^{-28}$ Dec 84 Capt Conners

8050 DIM RM(100)

8060 INPUT "What is the date and time";DATE.TIMES
8070 GOSUB 8991 :'print header
8080 PRINT "Select a number saze distribution from the following list:"
8090 PRINT

8100 PRINT "	Rm	Sigma Rm"	
8110 PRINT "		micrometers"	
8120 PRINT "	1	NRDL-N61	.00039
8130 PRINT "	2	NRDL-C61	.0103

8150	PRINT "	4	TOR-N	. 079		4.48'
8160	PRINT "	5	DELFIC	. 204		4"
8170	PRINT "	6	USWB-HI	3.48		$2.72{ }^{\prime \prime}$
8180	PRINT "	7	USWB-LO	3.84		$3 "$
8190	PRINT "	8	FORD-T	5.98		2.23 "
8200	PRINT "	9	RANDWSEG	10.6		2"
8210	PRINT "	10	NRDL-SII	27.1		1.48"
8220	PRINT "	11	NRDL-S I	36.8		1.51 "
8230	PRINT "	12	TOR-C	50.6		1.36 "
8240	PRINT "	13	other"			
8250	INPUT W	ICE\%				
8260	IF WHIC	\%	THEN WHICE\%		: 'defau	lt distributioa
8270	IF WHIC	<	OR WEICHZ	N 8070		
8280	IF WHIC		THEN DFILE	L-N61"	:RM=. 00039	: S I GMA . RM=7.24
8290	IF WHIC	\%	THEN DFILE	L-C61"	: RM=.0103	: SIGMA.RM=5.38
8300	IF WHIC	6	THEN DFILE	L-D'	$: R M=.01$: S IGMA.RM=5.42
8310	IF WEIC	\%	THEN DEIL		$: R M=.079$: SIGMA . RM $=4.48$
8320	IF WHIC	$7=$	THEN DFILE	FIC"	:RM=. 204	: SIGMA.RM=4
8330	IF WEICE		THEN DFILE	WB-HI"	$: \mathrm{RM}=3.48$: S IGMA . RM=2.72
8340	IF WHICE	\%	THEN DFILE	NB-L0"	:RM=3.84	: S IGMA.RM=3
8350	If WHICH	\%	THEN DFILE	D-T'	$: R M=5.98$: SIGMA . RM=2.23
8360	IF WHICH	\%	THEN DEILE	DWSEG"	: $R M=10.6$: SIGMA. RM=2
8370	IF WHICH	=	THEN DFILE	DL-SII'	:RM=27.1	: SIGMA . RM=1.48
8380	IF WHICE	\% $=$	THEN DFILE	DL-SI'	:RM $=36.8$: SIGMA.RM=1.51
8390	IF WHICH	\% $=$	THEN DFILE	R-C'	$: R M=50.6$:SIGMA. RM=1.36
8400	IF WHICH	\% $=$	THEN 8430			
8410	PRINT "D	istr	ution selec	"DFILE	" $\mathrm{Rm}=$ "R	'" Sigma Rm ${ }^{\prime \prime}$
8420	FOR DEL	$Y=$	TO 300 : NEX	: GOTO	480	

```
8430 ' input section *************************************************************
8440 `****************************************************************************
```

8450 INPUT "MUST BE UPPER CASE: output file name (SOURCE)";DFILES
8460 INPUT "mean radius of particle (Rm) (microns)"; RM
8470 INPUT "sigma of mean radius"; SIGMA.RM
8480 OUTPUT.DFLLES = DFILE\$+".RMA"

8510 PI $=3.14159$
8520 ALPHAO $=\operatorname{LOG}(\mathrm{RM})$
8530 BETA $=$ LOG(SIGMA.RM)
$8540 \operatorname{SQR} 2 P I . \operatorname{BETA}=\operatorname{SQR}(2 * \mathrm{PI}) * B E T A$:'increase compute speed
8545 ALPhA $(0)=$ alpian :'used to produce equal number size distributions
8550 ALPHA(2) $=$ ALPEA $0+2{ }^{*}$ bETA^2 \quad 'rarea size
8560 ALPHA(1) = ALPHAO + 2.5*BETA^2 : 'ractivity size by Frieling approx

$8580 \mathrm{FV}=.68 \quad:$ 'for DELFIC activity
$8590 \mathrm{~N}=1$
8600 'cont inue
$8610 \mathrm{R}=0 \quad: \quad$ 'dummy for $A(R)$
8620 RADIUS $=0 \quad: \quad$ 'radius of particle in um
8630 AREA $=0 \quad$:'initial area under curve at 0 radius
8640 LAST. $A(R)=0 \quad: \quad$ initial activity at 0 radius
8650 G $=1 \quad:$ 'group $\#$ counter
8660 DELTAR $=.01 \quad$:'initial dr
8670 TRAP.CENTER $=.005$:'half a hundredth; center of 1% activity increment
8680 - compute radius of each 100 equal activity groups ****: :*****************


```
8700 RADIUS = RADIDS + DELTAR
8710 A(R) = EXP(-.5*((LOG(RADIUS)-ALPHA(N))/BETA)^2)/(SQR2PI.BETA*RADIOS)
8720 IF RIGET$(DFILE$,6) = "DELFIC" AND N = 1
THEN A(R)=(FV/(SQR2PI.BETA*RADIUS))*EXP(-.5*((LOG(RADIUS)-ALPBA(3))/BETA)~2)
    +((1-FV)/(SQR2PI . BETA*RADIUS))*EXP(-.5*((1.0G(RADIOS)-ALPEAA(2))/BETA)^2)
8730 LAST.AREA = AREA
8740 AREA = AREA + (A(R) + LAST.A(R))*DELTAR*.5 :'trapezoidal integration
8750 LAST.A(R)=A(R)
8760 IF AREA < TRAP.CENTER GOTO 8700 :'is curve area m to 1%? if not, go back
8770 RM(G)=(TRAP.CENTER-LAST.AREA)*DELTAR/(AREA-LAST.AREA) + (RADIUS - DELTAR)
8780 IF G > 1 THEN DELTAR = (RM(G)-RM(G-1))*.1
8790 G=G + 1
8800 TRAP.CENTER a .01*G - . .005
8810 IF G <m 100 GOTO 8700
8820 'store 100 rm's in a disk file *********************************************
8830 "***************************************************************************
8840 OPEN "O",A1,OUTPUT .DEILES
8850 FOR G = . TO 100 STEP 5
8860 PRINT*1,RM(G);RM(G+1);RM(G+2);RM(G+3);RM(G+4)
8 8 7 0 ~ N E X T ~ G ~
8880 PRINT俱,"Rm = ";RM;"; sigma Rm = ";SIGMA.RM
8890 PRINT#1," " :PRINT非1," "
8900 IF N=1 THEN T$="activity" ELSE T$="mass"
8910 PRINT|l, "Mean radii in microns of the 100 equal "T$" groups"
8920 PRINT#1,OUTPUT .DFILES"; computed from rm = ";RM;"; sigma rm m ";SIGMA.RM
8930 PRINT#l,"using inverse transform alpha = "N")"
8940 PRINT\1,"from the program SIZE.BAS 28 Dec 84 by Capt. Conners"
8950 PRINT誛,DATE.TIMES
8960 CLOSE
```

8970 IF $N=1$ THEN $N=3$ ELSE PRINT STRING\$(10,7) :CHAIN"MENU",1000,ALL
8980 OUTPUT.DFILES = DFILES + ".RMM"
8990 GOTO 8600

8992 PRINT CHR\$(26) :'clear screea
8993 PRINT WHICHS :PRINT
8994 RETURN
0.

Aircraft Data

And Sample Specification Program

An Aircraft Specification Program must be coustructed to input the necessary information about the aircraft into the main program. The minimum data needed for a variety of aircraft are listed in the BASIC AIRCRAFT DATA table belov. From this, the data listed in the DERIVED AIRCRAFT DATA table must be computed by the user or the user's program. A sample program is included for the B-lB bomber. A similar program must be constructed for each aircraft desired. The program must atart at line 7000 and the program name must have an .SPC file name extension.

The cabin geometry factor R can be computed using the program in Appendix K.

BASIC AIRCRAFT DATA

Aircraft	Cabin Mase RG	Cabin Area $\mathrm{M}^{\boldsymbol{a}} 2$	Pressure Volume M^{\wedge}	Mas 8 Flow RG/MIN	$\begin{aligned} & \text { @ } 30,000 \\ & \text { feet } \\ & \text { MACH } \end{aligned}$	Radius M
B-1 B	11,511	107.9	28.3	17	. 85	1.07
B-52G	11,262	81.6	51.9	22	. 72	1.75
B-52H	10,854	81.6	51.9	22	. 72	1.75
E-3	36,949	408.8	356.1	61.5	. 53	1.79
E-4B	137,551	1,282	1686.0	276	. 53	3.28
EC-135	40,750	310	244.2	50	. 50	1.79
RC-135	18,073	310	232.2	50	. 72	1.79

DERIVED EIRCAFT DATA

Aircraft	Mass Integral RG/M2	Traqaision Factor I'	Poeudo Leugth M	Genmetry Factor R	Velocity

```
7000 'Prograli B-1B.SPC specification fregram **********************************
7010 -4 dec Capt, Conners for Dr. Bridgman
7020 'activity deasity *****x*******x***************************ッ**************
7030 VAC = 279.2 : 'M/S TAS H.85 @30,000'
7040 PRESSURE.VOLUME = 28.34 :'M"3 crew and forward avionics
7050 MASS.FHOW = 17.01 :'RG/min
range 11.34 to 22.68 dependirg on aliitude, teaperature, ard leak =ates.
Source uses 21.64 kg/min.
7055 eagive.mass.flow = 161 :'RG/8 bypass ratio = 2.3
7060 'shielding fact.or ********************************************************
7070 PV,MASS = 11511.1 :'KG to gtation 542"
7080 PV.AREA = 107.9 :'M^2 wetted area to atation 542"
7090 MASS.TNTEGRAL = PV.MASS/PV.AREA :'RG/M^2
7100 MIJT.213=6.01271E-03 :'M^2/RG for aluminum at 1 MeV
7110 ausume average gamma m l MeV and fuselage materiale have oimilar
gamma ray croseections (low 2). Total error in MUT estimaced to be - 0/+10%
based on the . }7\mathrm{ and 1 MeV xsec of Al, C, O. See RB Drinkwater gne/ph/74-3
7120 gamma.tX.factor = EXP(-MUT.213*MASS.INTEGRAL)
7125 -abin.geometry = 1.39961 :'space integral of cabia
7130 'since all fuel is carried aft of the crew compartment, it is part of
7140 'an infinite shield and does not contribute to gamma.tx.factor
```

```
7150 'source: phone calls to George Clark, RI 16 Nov 84; letter 3 Dec 84;
7155 'visit to B-1 SPO at WPAFB 16 Nov 84
7160 "****************************************************************************
7170 'filter routine
7190 FOR G = 1 TO 100
7210 IF RM(G) < 5 THEN filter.tx.factor(G) = 11
7220 IF RM(G) >= 5 AND RM(G) <= 10 THEN filter.tx.factor(G) = . . 
7230 IF RM(G) > 10 THEN filter.tx.factor(G) = 0
7235 filter.tx.factor(G)=1
7240 REXT G
7250 FILTER.CAPACITY = .225 :'RG
7260 "trap 225 g dust defined by m(R)=6.5-1n(R) AND 10microne<m R <= 80microns
7270 'filter.tx.factor=1 for none trapped;=0 if all trapped; =.1 if 90%trapped
7280 'source: TFD-82-890 "Radiation Threat Prom Nuclear Dust In The ECS
Particle Filter", W.Clark Powell III, Rockwell International 16 Dec 82, pl3
7300 chain"DOSE",4000,ALL
```

Menu Program
This program prompts the user for all the data necessary for the main program to compute dose to the aircrew or the dust ingested by the aircraft. To save memory and increase the speed of the main program, many housekeeping functions are accomplished by this part of the code. The progrem is written in Microsoft Basic version 5.02. No exotic software or machine dependent functions are used so that the code is highly portable.

The code is heavily documented; out of 40 of code, about $12 R$ is documentation. The program is laid out in modules and is structured to prevent impediments in following the program flow. Long logical lines are broken up into a series of shorter pingical lines. A semicolon : separates logical lines on a single physical line, and an apostrophe' is a siort form of rem, the BASIC remark statement.

The program is run by entering BASIC and LOADing the menu program. The menu program takes over at this point and prompts the user for all necessary input. All other programs are called automatically by the CHAIN statement. All programs and data files must be on the same disk or the filename calling the CHAINed program or data file must be preceeded by the drive designator.

1000 ON ERROR GOTO 3810
1010 'master menu for dose and dust program 1020 'set up default scenario or accept user inputs 1030

1040 ², $7,8,20 \mathrm{dec} 84$ Capt. Conners for Dr. Bridgman

```
1050 PRINT CERS(26)
                                    :'clear screen
1060 PRINT "AIRCREW RADLATION DOSE AND DUST DENSITY PROGRAM" :PRINT
1070 PRINT "Version 8.0---------------------------------------
1080 PRINT "Created by Capt. Stephen P. Conners for Dr. Bridgman"
1090 PRINT STRING$(10,13)
1100 PRINT "All keyboard entries must be terminated by <CR>" :PRINT
1110 INPUT "Enter the current date and time";DATE.TIMES :PRINT
1120 PRINT "Do you wish to:"
1130 PRINT "1 Ose the standard scenario"
1140 PRINT "2 Create your own scenario" :PRINT
1150 INPOT WHICE% :IF WHICE% = 2 THEN 2320
1160 IF WHICH% < O OR WHICE% > 1 THEN 1120
1170 `default scenario ***********************************************************
1180 'bomb design/target data ***************************************************
1190 WEICB$ = "DEFAOLT OPTION FOR STANDARD SCENARIO"
1200 YIELDRT = 1000 :'1 megaton
1210 NUMBER.BOMBS = 1
1220 FF = . 5 :`fission FRACTION
1230 DF = . }333333\mathrm{ :'dust FRACTION
1/3 ton of dust per ton of yield
1240 SIZE$ = "DELFIC" :`size distribution rm=.2035, sigms=4.
1250 DUST.DOSES = "dose" :`select crew cose, not dust density output
1260 ACTIVITY.REPORT$ = "n"
1270 ACTSIZE.REPORT$ = "n"
1280 INPOT.FILE$ = SIZR$ + ".RMA"
1290 RHOFALLOUT = 2600 :'KG/M`3 density of silicate rock
1300 `ircraft type ****************************************************************
1310 AIRCRAFT$ = "KC-135"
1320 AIRCRAFT.FILES = AIRCRAFT$ + ".SPC"
```

1350 MSN.TIME.REM $=8 \quad$: '日R crew is exposed to cabin dust
for 8 hours after encounter
1360 HOW.MANY.TIMES $=4$
1370 TIME.STOP (1) $=1$: ‘眼

1380 TIME.STGP(2) $=2$
1390 TIME. $\operatorname{STOP}(3)=4$
1400 TIME. $\operatorname{STOP}(4)=8$
1410 'reporting altitudes and winds ***)
1420 2.STEPS $=6$
$1430 \mathrm{ZAC} . \mathrm{BI}=12000$
1440 2AC.LO $=2000 \quad: ’ M$
1450 2AC.STEP $=2000$
1460 WIND.SHEAR. $X=0 \quad:^{\prime}(R M / B R) / R M$ for computing sigma x
1470 WIND.SAEAR.Y = $1 \quad:^{\prime}(\mathrm{KM} / \mathrm{HR}) / \mathrm{KM}$ for computing sigma y

1490 OUTPUT.FILES = "DELFIC.DOP"
1500 PRINT CHRS(26) :PRINT WHICES :PRINT
1510 PRINT "WEAPON/TARGET DATA:"

1530 IF NUMBER.BOMBS > 1

1570 PRINT "The size distribution input file is- "INPUT.fILE

1590 PRINT "AIRCRAFT dATA:"

```
1600 PRINT "The aircraft specification file is - "AIRCRAFT.FILES :PRINT
1610 FOR DELAY = 1 TO 1500 : NEXT DELAY
1620 PRINT CHR$(26) :PRINT WHICES :PRINT
1630 PRINT "TIME DATA:"
1640 PRINT "Time from cloud penetration"
1650 PRINT "to end of mission ------------------"MSN.TIME.REM"HR" :PRINT
1660 PRINT "Reporting times:"
1670 FOR T = 1 TO HOW.MANY.TIMES
1680 PRINT TIME.STOP(T)"ER"
1690 NEXT T
1700 FOR DELAY = 1 TO 1500 :NEXT DELAY
1710 PRINT CHR$(26) :PRINT WEICHS :PRINT
1720 PRINT "WIND AND ALTITUDE DATA:"
1730 PRINT "Wind shear X (along track) --------"WIND.SHEAR.X"(RM/ER)/RM"
1740 PRINT "Wind shear Y (cross track) --\infty------"WIND.SHEAR.Y"(RM/GR)/RM"
1750 PRINT :PRINT "Reporting altitudes:"
1760 ZAC = ZAC.BI + ZAC.STEP
1770 FOR 2 = 1 TO Z.STEPS
1780 2AC = 2AC - 2AC.STEP
1790 PRINT 2AC"M"
1800 NEXT Z
1810 FOR DELAY = 1 TO 1500 :NEXT DELAY
1820 PRINT CHR$(26) :PRINT WHICE$ :PRINT
1830 PRINT "The output file will be named ------ "OUTPUT.RILE$ :PRINT
1840 PRINT DATE.TIME$
1850 DIM RM(100),2M(111),GAUSSIANZM(101),AR(101),PERCENT.25(101), PER(101),
SIGMAZ(101),CABIN.AR(101),FILTER.AR(101),FILTER.TX .FACTOR(101)
1860 DIM SUM.ACTIVITY.PER.METER(Z.STEPS),A3(z.STEPS),CABIN.ACTIVITY(Z.STEPS),
CABIN.DOSE(Z.STEPS),SRYSHINE.DOSE(Z.STEPS),GAMMA,MFP(Z.STEPS),
```

```
1870 DIM FILTER.SUM.ACTIVITY.PER.METER(Z.STEPS),FILTER.ACTIVITY(Z.STEPS),
MAXG(2.STEPS),ENGINE .MASS(Z.STEPS)
1880 'DELFIC initial c loud parameters *****************************************
1890X=LOG(YIELDKI)
1900MSLOPE=-EXP(1.54 -.01197*X +.03636*X^2 -.0041*X^3+.0001965*X^4)
1910 MINTERCEPT=EXP(7.889 +.34*X +.001226*X^2 -.005227*X^3 +.000417*X^4)
1920 DSLOPEa7-EXP(1.79-.048249*R+.0230248*X^2-2.25965E-03**^3+1.61519E-04*X^4)
1930 DINTERCEPT=EXP(7.0352+.15892* X +.083754**^2 -.0155464*** 3+8.62103E-04**^4)
1940 * compute initial alt for esch mactivity or group **************************
1950 *****************************************************************************
1960 PRINT "Now loading "INPOT.FILE$
1970 OPEN "I",&2,INPUT.PILE$
1980 FOR G = 1 TO 100
1990 INPUT#2,RM(G) : 'radii in UM of 100 -activity groups
2000 2M(G) = MINTERCEPI+MSLOPE*2*RM(G) : 'METERS altitude of "", ""
2010SIGMAZ(G)=(DINTERCEPT+DSLOPE*2*RM(G))/4 :'M De1taZ/2 = 2 sigma
2020 NEXT G
2030 INPUT悉2,SIZE.LABELS
2040 CLOSE&2
2050 'WSEG functions **************************************************************
2060 'Y = LCG(YIELDRT/1000) :'ln yield megatona
```



```
2080'SIGMA0 = EXP((.7+Y/3)-3.25/(41+(Y+5.4)~2))*1609.34 :'M
2090 'DELFIC functions **********************************************************
2100 HC= 2M(50) : 'M to amctivity altitude
2110 SIGMAO = (868.277-632.399*X+625.132* X^2-112.586**^3+7.16648**^4)/2
:'delfic radius = 2 sigma .:. 1 sigma = delfic radius/2
2120 TC = 12*(HC/304.8)/60-(2.5*((HC/304.8)/60)~2) : 1/HR
```

2130 TC=TC*1.05732*(1!-.5*EXP(-((BC/304.8)~2))/(25^2)):"correction from Polan

 2160 Al.PERCENT $=5.3 E+08 * Y$ IEIDRT*FF/100 : © unittime activity in CURIES/group 2170 ACCELLG $=9.80665 \quad:$ 'M/S^2 acceleration due to gravity 2180 LASTG $=100 \quad:$ 'initially $100-$ size grcups are used 2190 LOG10 $=\operatorname{LOG}(10) \quad:$ 'used to convert la to 108 2200 MASS1. PERCENT $=$ DF*YIELDRI*(1000*2000*. $4535923700000003 *) / 100: ~$ RG/group $2210 \mathrm{MEV}=1 \quad:{ }^{\circ} \mathrm{Ev} \mathrm{E}^{2} \mathrm{le} 6$ 2220 MUARHO $=.00306 \quad: \quad{ }^{\prime}{ }^{\wedge} 2 / R G$ tissue absorption xsection $@ 1 \mathrm{MeV}$ 2230 MUT $=6.73015 \mathrm{E}-03 \quad:{ }^{\top} \mathrm{M}^{\wedge} 2 / \mathrm{KG}$ air xsection (Std Atm) © MeV 2240 DCF=3.7E+10*1.6E-11*3600*MUARHO*MEV : © dose conversion factor $2250 \operatorname{SQR2PI}=\operatorname{SQR}(2 * 3.14159)$
 :'眼S time for cloud stabilisation
2270 TIME $=$ STAB.TIME $\quad:$ 'minimum time is cloud stab time
2280 TIME. STOP $=$ STAB.TIME \quad 'minimum time is cloud stab time

2300 PRINT "Now loading "AIRCRAFTS" specifications file."
2310 CBAIN AIRCRAFT. FILE $\$, 7000$, ALL

2330 INPUT "What is the titie for your scenario"; WHICBS
2340 Whicas = "CUSTOM SCENARIO: " + WEICBS

2360 GOSUB 3610 : ${ }^{\circ}$ print header
2370 PRINT :PRINT "Do you want a:"
2380 PRINT " $1 \quad$ Crew dose report"
2390 PRINT "2 Dust density report" :PRINT
2400 INPUT "(Default = 1 (dose))", WHICB\%
2410 IF WAICH\% = 1 OR WHICA\% = 0 TEEN DUST.DOSES = "dose" :GOTO 2440
2420 IF WGICEZ $=2$ THEN DUST.DOSE\$ = "dust" :GOTO 2500
2430 GOTO 2780
2440 PRINT "You have selected a crew dose report" :PRINT
2450 INPUT "Do you wish an activity report (y / n)";ANS
2460 IF ANS $=$ " N " OR ANS $=$ " n " THEN ACTIVITY.REPORT\$ = " $\mathrm{n} "$
2465 PRINT
2470 INPUT "Do you wish a prominent particle report (y / n)";ANS
2480 IF ANS $\$=" \mathrm{~N} "$ OR ANS $=" \mathrm{n} "$ THEN ACTSI2E.REPORT $=" \mathrm{n} "$
2490 GOTO 2530
2500 PRINT "You have selected a dust density report" :PRINT
2502 INPUT "Do you wish a cloud mass report (g / n)";ANS
2504 IF ANS = "N" OR ANS $=$ = " n " THEN MASS.REPORTS = " $\mathrm{n} "$
2506 PRINT
2510 INPUT "Do you wish a prominent particle report (y/nj";ANS\$
2520 IF ANS $=$ " N " OR ANS A : " n " THEN MASS.SIZE.REPORTS = " $\mathrm{n} "$
2530 'bomb screen
2540 GOSUB 3610 : 'print header
2550 PRINT :PRINT "What is the weapon yield in RILOTONS?"
2560 INPUT "(Default = 1000 kt)",YIELDRT
2570 IF YIELDRT $=0$ THEN YIELDRT 1000
2580 PRINT :PRINT "How MANY weapons created the cloud?"
2590 INPUT "(Default = 1)", NUMBER.BOMBS
2600 IF NOMBER.BOMBS $=0$ THEN NUMBER.BOMBS $=1$
2610 IF NUMBER.मn:'sS > 1 THEN GOSUB 3720
2620 IF NUMBER. BOMBS < 1 THEN 2580
2630 PRINT :PRINT "What is the fission FRACTION of the weapon?"
2640 INPUT "(Default = .5)", FF

```
2650 IF FF < O OR FF > 1 THEN 2630
2660 IF FF=0 THEN FF = . 5
2670 PRINT :PRINT "What is che dust FRACTION of the weapon?"
2680 INPOT "(Default = DELFIC prediction)",DF
2690 LF DF < O OR DF > 1 THEN }267
2700 X = LOG(YIEIDRT)
2710 IF DF = 0
THEN DF = . 204731-.0240532*X+1.39148E-03*X^2-4.88467E-05* \^3+8.62805E-07* X^4
2720 soil 8creen **************************************************************
2730 GOSUB 3610 :'print header
2740 PRINT "What is the size distribution input FILE NAME?"
2750 INPUT "(Default = DELFIC)",SIZE$
2760 IF SIZES = "" THEN SIZE$ = "DELFIC"
2770 IF DUST.DOSES = "dose" THEN INPUT.FILES = SIZES + ".RMA"
2780 IF DOST.DOSES = "dust" THEN INPUT.FILES = SIZES + ".RMM"
2790 PRINT :PRINT "What is the soil density in KG/M^3?"
2800 INPUT "(Default = 2600 RG/M^3)",RHOFALLOUT
2810 IF RHOFALLOUT = O THEN RHOFALLOUT = 2600
2820 `aircraft screen ***********************************************************
2830 GOSUB 3610 : 'print header
2840 PRINT "Select an aircraft from the following list:" :PRINT
2850 PRINT " 1 B-1B"
2860 PRINT " 2 B-52G"
2870 PRINT " 3 B-52H"
2880 PRINT " 4 E-3"
2890 PRINT " 5 E-4B"
2900 PRINT " 6 EC-135"
2910 PRINT " 7 KC-135"
```

```
2920 PRI|T " 8 other"
2930 INPUT WHICH%
2940 IF WHICH% = 0 THEN WHICB% = 7 : default aircraft
2950 IF WHICEZ < 1 OR WHICH% > 8 THEN 2830
2960 IF WHICE% = 1 THEN AIRCRAFT$ = "B-1B"
2970 IF WHICHZ = 2 'HEN AIRCRAFT$ = "B-52G"
2980 IF WHICH% = 3 THEN AIRCRAFT$ = "B-52H"
2990 IF WHicEZ = 4 taEN aIRCRAFT$ = "e-3"
3000 IF WHICEZ = 5 TEEN AIRCRAFT$ = "E-4B"
3010 IF WHICH% = 6 THEN AIRCRAFT$ = "EC-135"
3020 IF WHICEZ = 7 THEN AIRCRAFT$ = "RC-135"
3030 IF WHICHE = 8 THEN 3860
3040 PRINT "Aircraft selected is: "AIRCRAFTS
3050 FOR DELAY = 1 TO 300 :NEXT DELAY
3060 AIRCRAFT.FILES = AIRCRAFT$ + ".SPC"
3070 `time screen ****************************************************************
3080 DIM TIME.STOP(10)
3090 COSUB 3610 :'print header
3100 ERASE TIME.STOP
3110 PRINT "How many cloud encounters do you wish to examine?"
3120 INPUT "(Default = 4)",HOW.MANY.timeS
3130 IF HOW.MANY.TIMES=0 THEN HOW.MANY.TIMES = 4
:DIM TIME.STOP(HOW.MANY.TIMES)
:TIME.STOP(1) = 1
:TIME.STOP(2)=2
:TIME.STOP(3) - 4
:TIME.STOP(4) = 8
:GOTO 3220
3140 DIM TIME.STOP(HOW.MANY.TIMES)
3150 PRINT "Please enter time in HOURS since burst in increasing order."
3160 PRINT
```

```
            3170 FOR E = 1 TO HOW.MANY.TIMES
            3180 PRIN: "What is time"E"?" :INPUT TIME.STOP(E)
            3190 IF TIME.STOP(E) < . }1
            THEN PRINT "Time must be exceed . }15\mathrm{ HR to allow cloud stabilization"
            :PRINT "and the Way-Wigner decay approximation." :GOTO 3150
            3200 IF TIME.STOP(E) < TIME.STOP(E-1) THEN }315
                    3210 NEXT E
                    3.220 PRINT "The following times will be used:"
                    3230 FOR E = 1 IO HOW MANY .TIMES
                    :PRINT TIME.STOP(E)"HR"
                    :NEXT E
                    3240 INPUT "Is this acceptable (y/n)";ANSWERS
                    3250 IF ANSWERS = "N" OR ANSWERS = "n" THEN 3090
```

3260 PRINT
3270 PRINT "How many HOURS from encounter time to end of mission ?"
3280 INPUT "(Default = 8 Hr)", MSN.TIME.REM
3290 IF MSN.TIME.REM $=0$ THEN MSN.TIME.REM $=8$

3310 GOSUB 3610 : 'print header
3320 PRINT "All altitudes are in METERS" :PRINT
3330 INPUT "What is the $\operatorname{BIGBEST}$ penetration altitude you wish to use"; ZAC. HI
3340 INPUT "What is the LOWEST penetration altitude you wish to use"; ZAC.LO
3350 INPrIT "What altitude INCREMENT do you uish to use"; ZAC.STEP
3360 IF ZAC. $\mathrm{BI}=0$ THEN ZAC.HI $=12000: Z A C . L O=2000: Z A C . S T E P=2000$
3370 IF ZAC.STEP $=0$ TEEN 3310
3380 2.STEPS $=\operatorname{INT}(($ (ZAC. HI-ZAC.LO' : ZAC.STEP $)+1.49999)$
3390
3400 GOSUB 3610 :"print hesder
3410 PRINT "The following altitudes will be used:" :PRINT
$3420 \mathrm{ZAC}=\mathrm{ZAC} . \mathrm{HI}+\mathrm{ZAC} . \mathrm{STEP}$

3430 FOR $2=1$ TO 2.STEPS
: ZAC = ZAC - ZAC.STER
:PRINT ZAC"M"
: MEXT Z
3440 INPUT "Is this acceptable (y / a)"; ANSWER\$
3450 LF ANSWER $\$=" \mathrm{~N} "$ OR ANSWERS = "n" THEN 3310

3470 GOSUB 3610 : "print header
3480 PRINI "Wind shear is given in (KM/HR)/RM"
3490 PRINT "What is the wind shear in X (along track)"
3500 INPUT "(Default - 0)"; WIND.SHEAR. X
3510 PRINT "What is the wind shear in Y (cross track)"
3520 INPUT "(Default =1)"; WIND.SHEAR.Y
3530 IF WIND.SHEAR. $Y=0$ THEN WIND.SHEAR. $Y=1$
3540 IF WIND.SHEAR. $Y=1$ THEN INPUT "Do you want I shear to be $0 ?(g / n)$ ", ANS WERS
3550 IF ANSWERS = "Y" OR ANSWERS = " $\mathrm{y}^{\prime \prime}$ THEN WIND.SUEAR.Y = 0
3560 PRINT : PRINT "What is the output FILE NAME"
3565 IF DUST.DOSES = "dose" THEN DS = ". D" ELSE D\$ = ". M"
3570 PRINT "(Default is "SIZES;D\$"OP)"
3580 INPUT OOTPOT.FILES
3590 IF OUTPUT.FILE\$』"" AND DUST.DOSE\$="dose" 'IHEN OUTPCT.FILESmSI2ES \& ".DOP"
3595 IF OUTPUT.FILES="" AND DUST.DOSES="dust" THEN OUTPUT.FILES=SIZES + ".MOP"
3600 GOTO 1500

3620 PRINT CERS(26) :'clear screen
3630 PRINT WHICBS :PRINT
3640 PRINT "All :ile names MUST be in UPPERCASE!"
3650 FRINT "Hit <CR to inaert the default value for any input."
3660 PRINT
3670 RFITURN

```
3680 `create non-delfic size files ******************************************
3690 PRINT "This option currently unimplemented."
:POR DELAY = 1 TO 700 :NEXT DELAZ :GOTO 2740
3700 'create other aircraft files ************************************************
3710 PRINI "This option currently unimplemented."
:POR DELAY = 1 TO 700 :NEXT DELAY :GOTO 2830
3720 `number.bombs subroutine ***************************************************
3730 PRINT
3740 PRINT "The target field is assumed to be square."
3750 INPU'i "What is its width in RILOMETERS?",FIELD.WIDTH
3760 IF FIELD.WIDTH < .l THEN }374
3770 FIELD.WIDTH = FIELD.WIDTH*1000 : 'convert KM to METERS
3780 BOMB.DENSTTY = NUMBER.BOMBS/PIELD.WIDTH
3790 RETURN
3800 IR ERR = 53 AND ERL = 1970
THEN CBAIN"SIZE",8000,ALL
3810 IF ERR = 53 AND ERL = 2310
THEN PRINT "This file does not exist on the opecified disk drive."
3820 IF ERR = 53 AND ERL = 2310
THEN FRINT "You must create and/or place the specified file on the correct drive."
3830 PRINT STRING$(10,7) :`Bey, you!
3840 ON ERROR GOTO O
3850 END
3&60 PRINT "This option currently unimplemented"
3870 FOR DELAY = 1 TO 1500 : NEXT DELAY
3880 GOTO 2820
```


Main Prosrsm

4000 'DOSE . BAS
4010 'MegaCi/mat a given alt at a given time after burst 4020 ©find $M C i / m^{\wedge} 2 \& M C i / m ³$, compute skyshine and dust dose for crew 4030 -using sigmaz $(G)=$ dslope and dintercept 4040 15,16 Dec 84 Capt Stephen P. Conners for Dr. Bridgman 4050 PRINT "US Standard Atmosphere (Mid Latitude, Spring/Pall). No vertical winds."

4060 GOSDB $5120 \quad$:'print output header
4070 IP DOST. DOSE $=$ "dust" THEN AI.PERCENT = MASSI.PERCENT :'for dust report 4080 GOTO $6200 \quad:$ 'main program; subroutines first for speed

4090 - US std atmosphere ***

4110 IF $2 M(G)<0$ THEN RHOALR2 $=1.22473 \quad$:ETAZ $=1.78938 \mathrm{E}-05$:GOTO 4250 $4120 \mathrm{IF} \mathrm{ZM}(\mathrm{G})<11000 \mathrm{THEN}$ TK=288.15:PK=101300!:LK=.006545:2X=0:60T04200 4130 IF $2 M(G)<20000$ THEN TK=216.65:PK=22690 :LK=0 $:$ ZK=11000 :GOT0 4200 4140 IF $\operatorname{ZM}(G)<32000$ THEN TR=216.65:PR=5528 :LK=.001 : KK=20000:GOTO 4200
 4160 IF $2 \mathrm{ZM}(\mathrm{G})<520001$ THEN TK $-270.65: \mathrm{PK}=115.8: \mathrm{LK}=0 \quad: 2 \mathrm{O}=470001:$ GOTO 4200 $4170 \mathrm{IF} \mathrm{ZM}(\mathrm{G})<710001$ THEN TK=270.65:PK=115.8:LK=-.00283:2K=520001:GOTO 4200
 4190 IF $Z M(G)>=84852!$ THEN PRINT "Cloud MUCH too high! $2 m=" \mathrm{ZM}(\mathrm{G}): E N D$ 4200 IF LK $=0$ THEN TZ-TK :PZ-PK*EXP($(-.034164 *(Z M(G)-Z K)) / T K) \quad:$ GOTO 4230 $4210 \mathrm{TZ}=\mathrm{TK}+\mathrm{LK} *(\mathrm{ZM}(\mathrm{G})-\mathrm{ZK}): \mathrm{PR}=\mathrm{PK} *(\mathrm{TK} / \mathrm{TZ})^{\wedge}(.034164 / \mathrm{LR}) \quad:$ if LK 《 0 4220 'tz = temperature in degrees $K \quad:^{\prime \prime} p z=$ pressure in TORR

4260 ' cloud fall computations **

 4290 IF $Z M(G)<0$ THEN G.AT.Z $=$ ACCELLG: GOTO 43100° realistic setting rate@zmo

 4320 LOG10.Q $=\operatorname{LOG}\left(Q^{\circ}\right) / L O G 10$

4330 IF $Q<140$ THEN REYNOLDS.NUMBER $=Q / 24$
$-2.3363 \mathrm{E}-04 * \mathrm{Q}^{\wedge} 2+2.0154 \mathrm{E}-06 * \mathrm{Q}^{-3}-6.9105 \mathrm{E}-09 * \mathrm{Q}^{-4}$
4340 IF $Q>=140$ THEN REYNOLDS .NUMBER $=10^{*}(-1.29536+.986 *(L O G 10 . Q)$ $-.046677 *\left(\right.$ LOG10.Q) $\left.{ }^{\wedge} 2+.0011235 *(\text { LOG10.Q })^{\wedge} 3\right)$

4350 IF $Q>4.5 E+07$ THEN PRINT "q too large $=" Q$
4360 FALL.VELOCITY = REYNOLDS.NUMBER*ETAZ/(2*RHOAIR2*RM(G)) : ${ }^{\circ} \mathrm{m} / \mathrm{s}$
4370 FALL.VELOCITY = FALL.VELOCITY*(1 + 1.165E-07/(RHOAIRZ*RM(G)))
4380 "correction for drag "slip" at high altitude
$4390 \mathrm{ZM}(\mathrm{G})=\mathrm{ZM}(\mathrm{G})-\mathrm{PALL} . \mathrm{VELOCITY} \mathrm{DELTAT}^{\mathrm{D}} 3600$: new altitude after deltat
4400 RETURN

4420 "**

4430 IF TIME $>3!$ THEN TA $=31$ ELSE TA $=$ TIME
4440 SIGMAX = SQB. (SIGMAO~2)*(11+(8!*TA)/TC)

4450 SIGMAY = SQR((SIGMA0^2)*(11+(81*TA)/TC)

+ (SIGMAZ (MAXG(2.STEP))*WIND.SHEAR.Y*TIME) ^2)
4460 DELTAY - $0 \quad$: M Ely through center of cloud
deltay = yl - y0 in meters
4470 FX $=1$:'by definition
4480 FY = EXP(-.5*((DELTAY/SIGMAY)~2))/(SQR2PI*SIGMAY)

```
4490 IF NDMBER.BOMBS = 1
THEN BURST.AMP.FACTOR = 1
ELSE BORST.AMP.FACTOR = BOMB.DENSITY*(SQR2PI*SIGMAY)
4500 CABIN.SUM.ACTIVITY.PER.METER(Z.STEP) =
    CABIN.SUM.ACTIVITY .PER.METER(Z.STEP)*BURST .AMP.FACTOR
4510 FILTER.SUM.ACTIVITI.PER.METER(Z.STEF)=
FILTER.SUM.ACTIVITY .PER.METER(Z .STEP)*BURST .AMP.FACTOR
4520 CA2 = CABIN.SUM.ACTIVITY.PER.METER(2.STEP)/(SQR2PI*SIGAAY)
4530 FA2 = FILTER.SUM.ACTIVITY.PER.METER(2.STEP)/(SQR2RI*SIGMAY)
4540 A3(Z.STEP)=(CA2 + FA2)/(SQR2PI*SIGMAX)
4550 G=111 : ZM(G) = ZAC :GOSUB 4090 :'us std atm; fetch rhoairz
4560 CABIN.AOTIVITY(Z.STEP) = CA2*(MASS.FLOW/60)/(RHOAIRZ*VAC)
4570 FILTER.AC2IVITY(Z.STEP) = FA2*(MASS.FLOW/60)/(RHOAIRZ*VAC)
4580 ENGINE.MASS(2.STEP)=(CA2 + FA2)*(ENGINE.MASS.FLOW)/(RHOAIRZ*VAC)
4590 CABIN.DOSE.RATE=DCF*CABIN .ACTIVITI(2.STEP)*CABIN .GEOMETRY/PRESSURE .VOLUME
4600 CABIN.DOSE(Z.STEP)=5*CABIN.DOSE.RATE*(TIME^-.2-(TIME+MSN.TIME.REM)^-. 2)
4610 MUTRHO = MUT*RHOAIRZ : M^2/KG air cross section at Z
4620 CAMMA.MFP(Z.STEP)=1/MUTRHO
4630 IF GAMMA.MFP(2.STEP) < .2*SIGMAX
THEN STARS(Z.STEP)=""
ELSE STARS(Z.STEP)="*"
4640 FZ = (CABIN.SUM.ACTIVITY.PER.METER(Z.STEP)
+ FILTER.SUM.ACTIVITY.PER.METER(Z.STEP))
4650 D1 = DCF*(FZ/MUTRHO)*(FY/(VAC*3600))
4660 SRYSHINE.DOSE(Z .STEP) = DL*(TIME^-1.2)*GAMMMA.TX.FACTOR
4670 IF NUMBER.BOMBS = 1 THEN RETURN ;'else
`,680 'BORST.AMP .FACTOR = BOMB.DENSITY*(SQR2PI*SIGMAY)
4690 IF SIGMAY < (FTELD.WTDTH/1000)/SQR(NOMBER.BOMBS) THEN SHARPS = "&"
4730 LELTAX = 0 :'Fly through center of cloud
4740 FX=EXP(-.5*((DELTAX/SIGMAX) 2 2))/(SQR2PI*SIGMAX)
4750 TRANSIT.TIME =(2*2*SIGIAX)/(VAC* 3600) :'HRS to cross 2 sigms cloud
```

4760 SKYSHINE.DOSE (Z.STEP) = D1*GAMMA.TX.FACTOR*(FX*VAC*3600)*5* ($\left(\right.$ ITME-TRANSIT.TIME/2)^-.2-(TIME+TRANSIT.TIME/2) ${ }^{\wedge}-.2$)
: 'The overlapped gaussians create a cloud with little horizontal variation
4770 RETURN
4780° compute \& sum the gaussian at A / C alt for each group ******************

4800 'activities are st unit time
4810 ZAC $=\mathrm{ZAC} . \mathrm{BI}+2 \mathrm{ZAC.STEP} \quad:$ 'start at zac.hi
4820 FOR 2.STEP $=1$ TO 2.STEPS
4830 ZAC $=$ ZAC - ZAC.STEP
4840 CABIN.SUM.ACTIVITY.PER.METER $=0$
4850 PILTER.SUM.ACTIVITY .PER.METER $=0$
4860 FOR $G=1$ TO LASTG
4870 IF $\operatorname{ABS}(2 A C-2 M(G))>3 * S I G M A Z(G)$ THEN GOTO 4960
4880 IP ABS (ZAC-2M(G)) < ABS (2AC-ZM(G-1)) THEN MAXG(2.STEP) = G : 'top down!
$4890 \operatorname{GADSSIANZM}(G)=\operatorname{EXP}(-.5 *((2 A C-2 M(G)) / S I G M A Z(G)) \wedge 2) /(S Q R 2 P I * S I G M A Z(G))$
4900 'gausian part of $\mathrm{zm}(\mathrm{G})$ contributing to activity at ZAC
$4910 \operatorname{AR}(G)=A 1 . P E R C E N I * G A U S S I A N Z M(G)$
$4920 \operatorname{CABIN} . \operatorname{AR}(\mathrm{G})=\operatorname{AR}(\mathrm{G}) * \quad$ FILTER.TX.FACTOR(G)
$4930 \operatorname{PILTER} . \operatorname{AR}(G)=\operatorname{AR}(G) *(1-\operatorname{FILTER} . \operatorname{TX} . \operatorname{FACTOR}(G))$
4940 CABIN.SUM.ACTIVITY.PER.METER= CABIN.SDM.ACTIVITY.PER.METER + CABIN.AR(G)
4950 FILTER.SUM.ACTIVITY.PER.METER=FILTER.SUM.ACTIVITY.PER.METER +FILTER.AR(G)
4960 NEXT G
4970 CABIN.SUM.ACTIVITY.PER.METER(2.STEP) $=$ CABIN.SUM.ACTIVITY.PER.METER
4980 FILTER.SUM.ACTIVITY .PER.METER (Z.STEP) $=$ FILTER.SUM.ACTIVITY.PER.METER
4990 IF ZAC = WORST .ALT THEN GOSUB 5030 : 'compute \%activity
5000 GOSUB 4410 :'compute dose
5010 NEXT 2.STEP
5020 RETURN

```
5030 'compute percent activity ************************************************
5040 "***************************************************************************
5050 FOR G = 1 TO LASTG
5060 PER(G)=(AR(G)/(CABIN.SUM.ACTIVITY.PER.METER
+ FILIER.SUM.ACTIVITY.PER.METER))*100
5070 IF PER(G) > PER(G-1) AND ZM(G) < O THEN PER(G) = PER(G-1)
5080 PERCENT.25(G)=1NT(PER(G)*4*100)/100
5090 IF PERCENT.25(G) > 255 THEN PERCENT.25(G) = 255 : %max basic line length
5100 NEXT G
5110 RETURN
5120 print header *************************************************************
5130 `***************************************************************************
5140 OPEN "0", #1,OUTPUT.FILES
5150 PRINT#1,DATE.TIME$ :PRINT#1,"This is a "DUST.DOSE$" report."
5160 PRINT#1,WBICB$ :PRINT#1," "
S170 PRINT#1,"WEAPON/TARGET DATA:"
5180 PRINT#1,"Number of weapons -------------------"NUMBER.BOMBS
:IF NUMBER.BOMBS > 1
THEN PRINT#1,"Width of target field -------------"FIELD.WIDTH/1000"RM
5190 PRINT#1,"Weapon gield -----------------------------_IELDRT"KT"
5200 PRINT#1,"Fission fraction -------------------------
5210 PRINT#1,"Dust fraction --------------------------"DF
5220 PRINT#1,"The size distribution input file is- "INPUT.FILES
5230 PRINT#1," "SIZE.LABEL$ :PRINT#1," "
5240 PRINT#l,"The soil density is --------------------RHOFALLOUT"RG/M^3"
5250 PRINT#1," "
5260 PRINT#1,"The aircraft specification file is - "AIRCRAFT.FILES
5270 PRINT&1,"Aircraft velocity is --------------"VAC"M/S"
5280 PRINT#1," "
5290 PRINT\1,"Time from cloud penetration"
```


5310 PRINT\#1," "

5330 PRINT $\# 1$, "Wind shear Y (cross track) ---------"WIND.SHEAR.Y"(KM/日R)/KM"
5340 PRINT\#1," "
5350 PRINT\#1,"The output file will be named --...- "OUTPUT.files :PRINT\#1," "
5360 RETURN

5380 IF DUST.DOSES = "dust" TEEN GOTO 5800 :"print mass report

5400 PRINT 11 , STRING $\$(78,42)$
5410 'activities are in unit time and must be converted before printing 5420 PRINT\#1,DATE.TIMES" "WBICB\$

5430 PRINT\#1,"time (hr) ="TIMR;SEARPS" deltat (hr) ="DELTAT" \%airborne = "LASTG" signax ="SIGMAX"M"

```
5440 PRINT#1,"sigmay ="SIGMAY"M
"2*3*SIGMAY"M"
```

5450 PRINT\#1,"Altitude","Cabin Dust","Sky Shine","TotalDose","Prominent Particle"
5460 PRINT\#1," $M^{\prime \prime}, "$ REM"," REM"," REM "," microns radius"
$5470 \mathrm{ZAC}=\mathrm{ZAC} \mathrm{HI}+.\mathrm{ZAC} . \mathrm{STEP}$
5480 FOR 2.STEP $=1$ TO 2.STEPS
5490 2AC = ZAC - ZAC.STEP
5500 PRINT\#1,ZAC, CABIN.DOSE(Z.STEP),SRYSHINE DOSE (Z.STEP), CABIN.DOSE(2.STEP)
+SKYSHINE .DOSE (Z.STEP) ; STARS(Z.STEP) , RM(MAXG(Z.STEP))*1E+06
5510 NEXT Z.STEP
5520 If STAR\$(1) = "*" TBEN PRINT\#1,
"* Skyshine may be inaccurate due to large gama mean free path (mfp >.2sigmax)"
:'only highest alt need be tested because if it occurs at some altitude,
it will occur for any higher altitude
5530 IF SHARPS = "\#" THEN
PRINTA1,"\# Dose inaccurate because burst field has not yet coalesced." ELSE
PRINT\#1,""

```
5550 'print activity report *****************************************************
5560 PRINT$1,STRING$(78,45) :PRINT#1,DATE.TIMES" "WRICE$
5570 PRINT#1;"time (hr) ="TIME;SHARPS" deltat (hr) ="DELTAT" Zairborne =
"LASTG" вigmax ="SIGMAX"M"
5580 PRINT#1,"Altitude,","Cloud Act","Filter Act","Cabin Act",
"Prominent Particle"
5590 print#1," M"," MCi/M"," Ci"," Ci","microns r"
5600 ZAC = 2AC.BI + 2AC.STEP
5610 FOR Z.STEP = 1 TO 2.STEPS
5620 ZAC = ZAC - ZAC.STEP
5630 PRINT#1,ZAC,(CABIN.SUM.ACTIVITY.PER,METER(Z.STEP)
+FILTER.SUM.ACTIVITY .PER.METER(2.STEP))*(TIME^-1.2)/1E+06,
FILTER.ACTIVITY(Z.STEP),CABIN .ACTIVITY(Z .STEP) ,RM(MAXG(Z.STEP))*1E+06
5640 NEXT 2.STEP
5650 PRINT&1,"For Group &","size (microns)","Altitude (M)"
5660 FOR G = 10 TO LASTG STEP 10
5670 PRINT#1,G,RM(G)*1E+06,2M(G)
5680 nEXT G
5690 IF ACTSIZE.REPORTS = "a" THEN 5790
5700 'print actsize vs alt report **********************************************
5710 PRINT#1,STRING$(78,45) :PRINT#1,DATE.TIME$" "WHICES
5720 PRYNT#1,"The graph shows percent of total cloud activity for eachgroup at
the maximum activity penetration altitude of "WORST.ALT"meters (1/4% per star)"
5730 PRINT#1,"Group#";" Size"," Altitude","PERCENT of Total Activity"
```



```
5750 FOR G = 1 TO LASTG
5760 PRINT\1,G;RM(G)*1E+06,ZM(G),STRINGS(PERCENT.25(G),42)
5770 next g
5780 PRINT#1," ";" "," ",
```

```
5800 'print density report ******************************************************
5810 PRINT#1,STRING$(78,42) :PRINT#1,DATE.TIME$" "WHICB$
5820 PRINT#1,"time (hr) ="TIME;SHARP$" deltat (hr) ="DELTAT" %airborne =
"LASTG" sigmax ="SIGMAX"M"
5830 PRINT#1,"sigmay ="SIGMAY"M 3 sigmay cloud diameter =
"2*3*SIGMAY"M"
5840 PRINT&1,"Altitude","Cloud Dens","Filter Mass","Cabin Mass","Engine Mass";
"Prom Part"
5850 PRLNT#1," M"," mg/M^3"," Kg"," Kg"," Kg ";"microns r"
5860 ZAC = 2AC.HI + 2AC.STEP
5870 FOR Z.STEP = 1 TO Z.STEPS
5880 ZAC = ZAC - ZAC.STEP
5890 PRINT#1,2AC,A3(2.STEP)*(1000*1000),FILTER.ACTIVITY(z.STEP),
CABIN.ACTIVITY(Z.STEP),ENGINE.MASS(2.STEP);" ";RM(MAXG(Z.STEP))*1E+06
5900 NEXT 2.STEP
5910 IF MASS.REPORTS = "n" THEN 6080
5920 "print mass report *********************************************************
5930 PRINT#1,STRING$(78,45) :PRINT#1,DATE.TIME$" "WHICH$
5940 PRINT#1,"time (hr) ="TIME;SHARP$" deltat (br) ="DELTAT" %airborne =
"LASTG" sigmax ="SIGMAX"M"
5950 PRINT#1,"sigmay ="SIGMAY'M 3 sigmay c`nud diameter =
"2*3*SIGMAY"M"
5960 PRINT#1,"initial dust lofted = "MASSI.PERCENT*100"Rg",
" dust now airborne ="MASSI.PERCENT*LASTG"Kg"
5970 PRINT#1,"Altitude","Cloud Mass"
5980 PRINT#1," M"," Kg/M"
5990 ZAC = ZAC.HI + ZAC.STEP
6000 FOR 2.STEP = 1 TO Z.STEPS
6010 ZAC = ZAC - ZAC.STEP
6020 PRINT#1,ZAC,(CABIN.SUM.ACTIVITY.PER.METER(2.STEP)
```

```
+ FILTER.SUM.ACTIVITY.PER.METER(2.STEP))
6030 NEXT Z.STEP
6040 PRINT#l,"For Group &","size (microns)","Altitude (M)"
6050 FOR G = 10 TO LASTG STEP 10
6060 PRINT*1,G,RM(G)*1E+06,ZM(G)
6 0 7 0 ~ N E X T ~ G ~
6080 IF MASS.SIZE.REPORT$ = "n" THEN 6180
6090 'print mass size vs alt report ******************************************
6100 PRINT$1,STRING$(78,45) :PRINT#1,DATE.TIME$" "WHICE$
6110 PRINT#i,"The graph shows percent of total cloud mass for each group at
the maximum density penetration altitude of "WORST.ALT"meters (1/4% per star)"
6120 PRINT#1,"Group*";" Size"," Altitude","PERCENT of Total Mass"
```



```
6140 FOR G = 1 TO LASTG
6150 PRINT#1,G;RM(G)*1E+06,ZM(G),STRING$(PERCENT.25(G),42)
6160 NEXT G
6170 PRINT#1,"
"0 | | i | 5' | 1 '1 1 '101 1 1 i'.
6180 RETURN
```



```
6200 main program ******************************t******************************
```



```
6220 FOR G = 1 TO 100
6230 RM(G) = RM(G)*.000001 :'convert micrometers to METERS
6 2 4 0 ~ N E X T ~ G ~
6250 'find initial delta t. ******************************************************
6260G=90:290=2m(90):ZM(90)=0
6270 GOSUB 4090 :GOSUB 4260 : 'find fall.velocity of l hr group at lowest alr
```

6280 INTERVAL $=$ TIME.STOP(1) - TIME.STOP
6290 DELTAT = INTERVAL/INT(INTERVAL/(1400/(FALL.VELOCITY*3600)))
: find the largest deltat that will not cause the largest particle to fall more than 1400 meters; also, deltat must be an integral divisor of interval.

6300 ' 1400 meters is chosen because empirical testing has shown that this is the largest distance a particle can fall without significantly affecting the result.

6310 If DELTAT < . 1 OR DELTAT > 100 Then deltat = INTERVAL/8
6320 'find worst case altitude to to plot Zactivity vs rm ***************r****
6330 IF YIELDKT < 10000 TBEN ZSBIFT = 1000 ELSE ZSHIFT = 2000
6340 IF TIME < $=2$ TEEN WORST.ALT $=$ EC ELSE WORST.STEP $=$ HC $-2 S H I F T$
6350 yield and time correction factors empirical from vertact for delfic
6360° (worst case means maximum Ci / m; might not be maximum dose)
6370 IF DUST. DOSES $=$ "dust" THEN WORST.ALT $=2 M(50)$
$63802 A C=2 A C . B I+2 A C . S T E P$
6390 FOR 2.STEP $=1$ TO Z.STEPS
$6400 \mathrm{ZAC}=\mathrm{ZAC}-\mathrm{ZAC} . \mathrm{STEP}$
6410 IF ABS (ZAC-WORST.ALT) <= .5*ZAC.STEP
THEN WORST.STEP = 2.STEP
: WORST.ALT = ZAC
: GOTO 6440
6420 NEXT 2.STEP
6430 WORST.STEP $=1$

6460 FOR T $=1$ TO HOW.MANY .TIMES
6470 LAST.TIME.STOP $=$ TIME.STOP
6480 TIME.STOP $=$ TIME. $\operatorname{STOP}(T)$
6490 PRINT "Now computing for time $=$ "TIME.STOP"hr"
6500 INTERVAL $=$ TIME.STOP - LAST.TIME.STOP
6510 IF FALL.VELOCITY*DELTAT*3600<1400

```
THEN DELTAT = INTERVAL/INT(INTERVAL/(1400/(FALL.VELOCITY*3600)))
    :IF DELTAT<.1 OR DELTAT>100 THEN DELTAT = INTERVAL/8
    :'if the largest size group falls<l400 meters in deltat, compute larger deltat
6520 G = 1
6530 WHILE G <= LASTG
6540 FOR PART.TIME = 1 TO INTERVAL/DELTAT
6550 GOSOB 4090 : Us std atm
6 5 6 0 ~ G O S U B ~ 4 2 6 0 ~ : ~ ' c l o u d ~ f a l l ~
0570 IF ZM(G) < -3*SIGMAZ(G)
TBEN LASTG = G-1
:FOR CC = G TO LASTG
:ZM(CC) = -1000001
:NEXT CC
:'skip drift down if > 3 sigma underground
6580 NEXT PART.TIME
6590G=G + 1
6600 WEND :'g<= lastg
6610 TIME = TIME + INTERVAL
6620 COSUB 4780 : 'sum gaussians for each altitude
6 6 3 0 \text { GOSUB 5370 : 'print output}
6640 NEXT T
6650 PRINT&1,CER$(12) :'form feed
6 6 6 0 \text { CLOSE}
6670 PRINT STRING$(10,7) :'awaken operator
6680 PRINT "Computations complete. File is stored in "OUTPUT.fILES
6 6 9 0 \text { END}
```


Appendix G
 Sample Single Burst Dose Output - Full Report

14 Feb 1556
This is a dose report.
CUSTAM SCENARLO: B-1B; WITH filter; DELFIC cloud; one lMT bomb

```
WEAPON/TARGET DATA:
Number of weapons -------------------- 1
Weapon yield -------------------------- 1000 RT
Fission fraction -------------------- 1
Dust fraction -----------------..--- . . 3333:33
The size distribution input file is- DELFIC.RMA
                                    Rm=.204; gigms Rm=4
The soil density is ----------------- }2600\textrm{KG}/\mp@subsup{\textrm{M}}{}{\wedge}
The aircraft specification file is - B-1B.SPC
Aircraft velocity is ---m------------ 279.2 M/S
Time from cloud penetration
to end of mission ---m------m------- }8\mathrm{ HR
Wind shear & (along track) ---m----- 0 (RM/ER)/RM
Wind shear Y (cross track) --------- 1 (KM/ER)/RM
The output file will be named ------ B:GAPP.DOP
```


14 Feb ! 556 COSTCM SCENARIO: B 1B; WITB filter; DELFIC cloud; one LMT bomb time $(\mathrm{hr})=.15$ deltat $(\mathrm{hr})=-9.50774 \mathrm{E}-03$ \%airborne $=98$ sigmax $=2977.15 \mathrm{M}$ sigmay $=2983.01 \mathrm{M} \quad 3$ sigmay cloud diameter $=17898 \mathrm{M}$

Altitude	Cabin Dust	Sky Shine	TotalDose	Prominent Particle
M	REM	REM	REM	microns radius
17000	3.89241	58.7864	$62.6788 *$.473992
16000	7.05376	118.791	$125.845 *$.473992
15000	9.85256	187.335	$197.188 *$.473992
14000	10.6072	231.806	$242.413 *$.473992
13000	8.80336	226.604	235.407	42.8646
12000	5.6323	176.928	182.56	126.317
11000	2.77723	112.437	115.214	202.228
10000	1.09192	62.2996	63.3916	272.629
9000	.331339	30.981	31.3123	326.279
8000	.0777644	15.1821	15.2599	403.868
7000	0	7.64285	7.64285	457.979
6000	0	4.65089	4.65089	529.291
5000	0	3.12039	3.12039	529.291
4000	0	2.17059	2.17059	629.064
3000	0	1.49812	1.49812	629.064
2000	0	1.24043	1.24043	782.496
1000	0	1.1288	1.1288	782.496
0	0	.72757	$.7 \dot{2} 757$	782.496

* Skyshine may be inaccurate due to large gamma mean free path (mfp >. 2sigmax)

11	4.19655	13585.9	*****
12	4.60222	13578.3	*****
13	5.02038	13570.5	*****
14	5.45171	13562.5	*****
15	5.89686	13554.3	*****
16	6.35641	13545.9	*****
17	6.8? 698	13537.2	*****
18	7.321 .9	13528.3	*****
19	7.8276	13519.2	*****
20	8.35085	13509.8	*****
21	8.89157	13500.2	*****
22	9.45039	13490.3	*****
23	10.028	13480.2	*****
24	10.625	13469.8	**t**
25	11.2422	13459.1	*****
26	11.8803	13448.1	*****
27	12.5401	13436.9	*****
28	13.2223	13425.4	*****
29	13.9278	13413.5	*****
30	14.6576	13401.4	*****
31	15.4124	13389	*****
32	16.1934	13376.3	*****
33	17.0015	13363.2	*****
34	17.8378	13349.9	*****
35	18.7035	13336.2	*****
36	19.5996	13322.2	*****
37	20.5276	13307.8	*****
38	21.4887	13293.1	*****
39	22.4844	13278	*****
40	23.5162	13262.6	*****
41	24.5856	13246.8	*****
42	25.6944	13230.6	*****
43	26.8444	13214	*****
44	28.0374	13197	*****
45	29.2756	13179.5	*****
46	30.5611	13161.6	*****
47	31.8962	13143.2	*****
48	33.2835	13124.3	*****
49	34.7255	13104.8	*****
50	36.2252	13084.8	*****
51	37.7855	13064.1	*****
52	39.4098	13042.8	*****
53	41.1016	13020.7	*****
54	42.8646	12998	*****
55	44.7032	12974.4	*****
56	46.6215	12950	*****
57	48.6246	12924.7	*****
58	50.7175	12898.7	*****
59	52.906	12871.8	*****
60	55.1961	12844.3	*****

61	57.5948	12816.1	*****
62	60.109	12787.3	*****
63	62.7472	12757.7	*****
64	65.5178	12726.7	*****
65	68.4309	12692.1	*****
66	71.4967	12651.7	*****
67	74.7277	12612.4	*****
68	78.1363	12570.9	*****
69	81.7377	12527	*****
70	85.5478	12480.7	*****
71	89.5848	12431.5	*****
72	93.8697	12379.3	*****
73	98.4248	12323.7	*****
74	103.277	12264.3	*****
75	108.456	12200.7	*****
76	113.995	12132.3	****
77	119.933	12058.6	****
78	126.317	11978.9	****
79	133.198	11892.2	****
80	140.637	11797.8	****
81	148.708	11694.4	****
82	157.495	11580.3	****
83	167.101	11454	****
84	177.652	11313.2	***
85	189.298	11155.7	***
86	202.228	10977.5	***
87	216.678	10774.8	**
88	232.947	10542.1	**
89	251.428	10272.1	**
90	272.629	9955.32	$*$
91	297.255	9578.12	$*$
92	326.279	9121.48	
93	361.108	8557.42	
94	403.868	7842.96	
95	457.979	6908.04	
96	529.291	5631.13	
97	629.064	3776.22	
98	782.496	896.84	

	11	4.19655	13562	*******
	12	4.60222	13549.9	*******
	13	5.02038	13537	*******
	14	5.45171	13523.3	*******
\because	15	5.89586	13508.7	*******
	16	6.35641	13493.2	*******
	17	6.83098	13476.6	*******
	18	7.32119	13459.1	*******
	19	7.8276	13440.4	*******
	20	8.35085	13420.4	*******
	21	8.89157	13399.2	*******
	22	9.45039	13376.6	*******
	23	10.028	13352.6	*******
	n'	10.625	13327	*******
	-5	11.2422	13299.7	*******
	26	11.8803	13270.6	*******
	27	12.5401	13239.6	*******
	28	13.2223	13206.6	*******
	29	13.9278	13171.4	*******
	30	14.6576	13133.9	*******
	31	15.4124	13094	*******
	32	16.1934	13051.5	*******
	33	17.0015	13006.2	*******
	34	17.8378	12958	*******
	35	18.7035	12906.6	*******
	36	19.5996	12851.9	*******
	37	20.5276	12793.6	*******
	38	21.4887	12731.7	*******
	39	22.4844	12665.7	*******
0	40	23.5162	12595.6	*******
	41	24.5856	12521.1	*******
	42	25.6944	12442	*******
	43	26.8444	12357.9	*******
	44	28.0374	12268.8	*******
	45	29.2756	12174.4	*******
	46	30.5611	12074.5	*******
	47	31.8962	11968.8	******
	48	33.2835	11857.2	******
	49	34.7255	11739.5	******
	50	36.2252	11615.5	******
	51	37.7855	11484.9	*****
	52	39.4098	11347.7	*****
	53	41.1016	11203.5	*****
	54	42.8646	11051.9	****
	55	44.7032	10892.3	****
	56	46.6215	10723.4	****
	57	48.6246	10545.6	***
	58	50.7175	10355.9	***
	59	52.906	10154.1	**
	60	55.1961	9937.44	**

61	57.5948	9705.86	$* *$
62	60.109	9463.34	\star
63	62.7472	9221.43	\star
64	65.5178	8987.47	$*$
65	68.4309	8742.13	\star
66	71.4967	8483.64	
67	74.7277	8208.73	
68	78.1363	7921.02	
69	81.7377	7619.13	
70	85.5478	7302.32	
71	89.5848	6968.98	
72	93.8697	6620.18	
73	98.4248	6253.74	
74	103.277	5868.45	
75	108.456	5463.14	
76	113.995	5036.52	
77	119.933	4585.97	
78	126.317	4112.48	
79	133.198	3612.63	
80	140.637	3084.51	
81	148.708	2525.55	
82	157.495	1933	
83	167.101	1303.91	
84	177.652	634.534	
85	189.298	-78.9946	
86	202.228	-843.808	
87	216.678	-1682.04	
88	232.947	-2605.78	
89	251.428	-3650.72	
90	272.629	-4810.92	

Sample Single Burst Dust Output - Full Report

14 Feb 1540					
This is a dust report.					
CUSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; one IMT bomb					
heapon/Target data:					
Number of weapons -------------------1					
Weapon yield -----------------------1000 RT					
Fission fraction ------------------. . 5					
Dust fraction ----------------------. 333333					
The size distribution input file is- DELFIC.RMM					
The soil density is ---------------2600 $26 / \mathrm{M}^{\wedge} 3$					
The aircraft specification file is - B-1B.SPC					
Aircraft velocity is --------------279.2 $/ \mathrm{S}$					
Time from cloud penetration					
Wind shear 8 (along track) --------- 0 ($\mathrm{KM} / \mathrm{HR}$)/KM					
Hind shear P (cross track) --------1 (RM/ER)/RM					
The output file will be camed ------ B: EAPP.DOP					
14 Feb 1540 COSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; one lMT bomb time (hr) $=.15^{\circ}$ deltat (hr) $=-9.50774 \mathrm{E}-03$ \%airborae $=97$ sigmax $=2984.51 \mathrm{M}$ sigmay $=2990.18 \mathrm{M}$ 3 sigmay cloud diameter $=17.941 .1 \mathrm{M}$					
Alt itude	Cloud Dens	Filter Mass	Cabin Mass	Engine Ma	sProm Part
M	mg/M^3	$\mathrm{Kg}^{\text {R }}$	Kg		
17000	96.0304	4.68404E-03	4.65798-04	2.9246	1.83114
16000	239.548	. 0101235	8.4865E-04	6.2311	1.83114
15000	466.649	. 0170645	$1.19152 \mathrm{E}-03$	10.3676	1.83114
14000	715.181	. 022608	$1.28914 \mathrm{E}-03$	13.5712	1.83114
13000	868.852	. 0237215	$1.07498 \mathrm{E}-03$	14.082	43.4013
12000	846.547	. 0199445	$6.9087 \mathrm{E}-04$	11.7188	126.928
11000	674.985	. 0137109	3.42125E-04	7.98073	203.969
10000	455.84	. 0082512	$1.35056 \mathrm{E}-04$	4.76257	265.922
9000	276.339	$4.45783 \mathrm{E}-03$	$4.11434 \mathrm{E}-05$	2.55497	343.731
8000	163.329	$2.35157 \mathrm{E}-03$	$9.69034 \mathrm{E}-06$	1.34096	400.475
7000	98.2576	1.26553E-03	0	. 718694	436.194
600C	67.5878	$7.77917 \mathrm{E}-04$	0	. 44178	531.013
5000	50.5038	$5.20975 \mathrm{E}-04$	0	. 295862	531.013
4000	39.6719	3.67796E-04	0	. 208872	596.673
3000	31.9375	$2.66809 \mathrm{E}-04$	0	. 151521	682.738
2000	26.9662	2.03518-04	0	. 115573	682.738
1000	24.0379	$1.64272 \mathrm{E}-04$	O	. 0932903	802.408
	17.8357	1.10625E-04	0	. 0628238	802.408

	11	11.4502	13455.5	****
	12	12.3266	13440.5	****
	13	13.2115	13425.5	****
	14	14.1066	13410.6	****
\because	15	15.0134	13395.6	****
	16	15.9334	13380.5	****
	17	16.8678	13365.4	****
	18	17.8178	13350.2	****
	19	18.7846	13334.9	****
	20	19.7693	13319.5	****
	21	20.7729	13304	****
	22	21.7967	13288.4	****
	23	22.8416	13272.7	****
	24	23.9087	13256.8	****
	25	24.9991	13240.7	****
	26	26.1139	13224.5	****
	27	27.2543	13208.1	****
	28	28.4213	13191.6	****
	29	29.6162	13174.8	****
	30	30.8404	13157.7	****
	31	32.0949	13140.5	****
	32	33.3813	13123	****
	33	34.7007	13105.2	****
	34	36.0549	13087.1	****
	35	37.4452	13068.6	*****
	36	38.8732	13049.8	*****
	37	40.3407	13030.6	*****
	38	41.8495	13011.1	*****
	39	43.4013	12991	****
P.	40	44.9982	12970.6	****
	41	46.6422	12949.7	*****
	42	48.3356	12928.3	*****
	43	50.0805	12906.5	*****
	44	51.8797	12884.3	*****
	45	53.7356	12861.8	*****
	46	55.6511	12838.9	*****
	47	57.6291	12815.7	*****
	48	59.6728	12792.2	*****
	49	61.7856	12768.5	*****
	50	63.9711	12744.1	*****
	51	66.2332	12718.5	*****
	52	68.5758	12690.3	*****
	53	71.004	12657.9	**
	54	73.522	12627.1	*****
	55	76.1352	12595.2	*****
	56	78.8492	12562.2	*****
	57	81.6698	12527.9	*****
	58	84.6039	12492.2	*****
	59	87.6583	12455	*****
	60	90.8408	12416.3	*****

	61	94.1597	12375.8	*****
	62	97.6242	12333.5	*****
	63	101.244	12289.2	*****
	64	105.031	12242.8	*****
\therefore	65	108.996	12194.1	*****
	66	113.153	12142.8	*****
	67	117.516	12088.7	*****
	68	122.102	12031.6	*****
	69	126.928	11971.2	*****
	70	132.016	11907.1	******
	71	137.386	11839.2	******
	72	143.065	11766.9	*****
	73	149.079	11689.6	*****
	74	155.463	11606.9	*****
	75	162.252	11518.1	*****
	76	169.487	11422.3	*****
	77	177.217	11319.1	*****
	78	185.497	11207.3	*****
	79	194.389	11085.9	*****
	80	203.969	10953.3	*****
	81	214.324	10808	*****
	82	225.559	10648.3	****
	83	237.799	10471.8	****
	84	251.192	10275.6	****
	85	265.922	10056.4	***
	86	282.217	9809.62	***
	87	300.358	9529.92	**
	88	320.709	9210.09	**
	89	343.731	8840.96	*
0.	90	370.042	8410.07	*
	91	400.475	7900.48	
	92	436.194	7288.29	
	93	478.866	6538.93	
	94	531.013	5599.73	
	95	596.673	4385.95	
	96	682.738	2752.28	
	97	802.408	541.882	

	11	11.4502	13290.3	＊＊＊＊え＊＊＊
	12	12.3266	13249.7	＊＊＊＊＊＊＊＊
	13	13.2115	13207.1	＊＊＊＊＊＊＊＊
	14	14.1066	13162.3	＊＊＊＊＊＊＊＊
\because	15	15.0134	13115.3	＊＊＊＊＊＊＊＊
	16	15.9334	13065.8	＊＊＊＊＊＊＊＊
	17	16.8678	13013.8	＊＊＊＊＊＊＊＊
	18	17.8178	12959.1	＊＊＊＊＊＊＊＊
	19	18.7846	12901.7	＊＊＊＊＊＊＊＊
	20	19.7693	12841.3	＊＊＊＊＊＊＊＊＊
	21	20.7729	12778	＊＊＊＊＊＊＊＊＊
	22	21.7967	12711.4	＊＊＊＊＊＊＊＊＊
	23	22.8416	12641.7	＊＊＊＊＊＊＊＊＊
	24	23.9087	12568.5	＊＊＊＊＊＊＊＊＊
	25	24.9991	12491.8	＊＊＊＊＊＊＊＊＊
	26	26.1139	12411.5	＊＊＊＊＊＊＊：k
	27	27.2543	12327.5	＊＊＊＊＊＊＊＊＊
	28	28.4213	12239.8	＊＊＊＊＊＊＊＊＊
	29	29.6162	12148.1	＊＊＊＊＊＊＊＊＊
	30	30.8404	12052.5	＊＊＊＊＊＊＊＊＊＊
	31	32.0949	11952.9	＊＊＊＊＊＊＊＊＊＊
	32	33.3813	11849.3	＊＊＊＊＊＊＊＊＊
	33	\＄4．7007	11741.5	＊＊＊＊＊＊＊＊＊
	34	36.0549	11629.6	＊＊＊＊＊＊＊＊＊
	35	37.4452	11513.5	＊＊＊＊＊＊＊＊＊
	36	38.8732	11393.2	＊＊＊＊＊＊＊＊＊
	37	40.3407	11268.5	＊＊＊＊＊＊＊＊＊
	38	41.8495	11139.4	＊＊＊＊＊＊＊＊＊
1	39	43.4013	11005.5	＊＊＊＊＊＊＊＊
（	40	44.9982	10866.5	＊＊＊＊＊＊＊＊
	41	46.6422	10721.6	＊＊＊＊＊＊＊＊
	42	48.3356	10571.5	＊＊＊＊＊＊＊
	43	50.0805	10414.4	＊＊＊＊＊＊＊
	44	51.8797	10249.3	＊＊＊＊＊＊
	45	53.7356	10076．2	＊＊＊＊＊＊
	46	55.6511	9893.3	＊＊＊＊＊
	47	57.6291	9702.54	＊＊＊＊＊
	48	59.6728	9505.04	＊＊＊＊
	49	61.7856	9306.29	＊＊＊＊
	50	63.9711	9118．46	＊＊＊
	51	66.2332	8927.23	＊＊＊
	52	68.5758	8729.88	＊＊
	53	71.004	8524.63	＊＊
	54	73.522	8310.94	＊
	55	76.1352	8089.71	＊
	56	78.8492	7861.08	＊
	57	81.6698	7624.8	＊
	58	84.6039	7380.54	
	59	87.6583	7128.02	
	60	90.8408	6866.34	

61	94.1597	6596.72
62	97.6242	6317.82
63	101.244	6029.23
64	105.031	5730.49
65	108.996	5421.24
66	113.153	5100.92
67	117.516	4769.05
68	122.102	4424.04
69	126.928	4067.66
70	132.016	3697.73
71	137.386	3313.33
72	143.065	2914.9
73	149.079	2500.2
74	155.463	2068.61
75	162.252	1619.14
76	169.487	1150.56
77	177.217	661.687
78	185.497	151
79	194.389	-383.061
80	203.969	-944.286
81	21.4 .324	-1545.16
82	225.559	-2191.07
83	237.799	-2880.13
84	251.192	-3637.58
85	265.922	-4445.72

Sample Multi Burst Dose Output - Full Report

14 Feb 1621
This is a dose report.
CUSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; 300 IMT bombs
Weapon/target data:

The size distribution input file is- DELFIC.RMA
$\mathrm{Rm}_{\mathrm{m}}=.204$; $\mathrm{sigma} \mathrm{Rm}_{\mathrm{m}}=4$

The aircraft specification file is - B-1B.SPC
Aircraft velocity is --------------2 $279.2 \mathrm{~m} / \mathrm{s}$
Time from cloud penetration

Wind shear X (along track) --.......- () (KM/日R)/KM
Wind shear Y (cross track) -------- 1 (RM/日R)/KM
The output file will be namid -..- -- B:IAPP.DOP

11	4.19655	13585.9	*****
12	4.60222	13578.3	*****
13	5.02038	13570.5	*****
14	5.45171	13562.5	*****
15	5.89686	13554.3	*****
16	6.35641	13545.9	
17	6.83098	13537.2	*****
18	7.32119	13528.3	*****
19	7.8276	13519.2	*****
20	8.35085	13509.8	*****
21	8.89157	13500.2	*****
22	9.45039	13490.3	
23	10.028	13480.2	*****
24	10.625	13469.8	
25	11.2422	13459.1	
26	11.8803	13448.1	
27	12.5401	13436.9	*****
28	13.2223	13425.4	*****
29	13.9278	13413.5	*****
30	14.6576	13401.4	*****
31	15.4124	13389	*****
32	16.1934	13376.3	*****
33	17.0015	13363.2	*****
34	17.8378	13349.9	*****
35	18.7035	13336.2	*****
36	19.5996	13322.2	****
37	20.5276	13307.8	*****
38	21.4887	13293.1	*****
39	22.4844	13278	****
40	23.5162	13262.6	
41	24.5856	13246.8	*****
42	25.5944	13230.6	*****
43	26.8444	13214	*****
44	28.0374	13197	****
45	29.2756	13179.5	****
46	30.5611	13161.6	**
47	31.8962	13143.2	
48	33.2835	13124.3	
49	34.7255	13104.8	
50	36.2252	13084.8	****
51	37.7855	13064.1	****
52	39.4098	13042.8	****
53	41.1016	13020.7	****
54	42.8646	12998	
55	44.7032	12974.4	
56	46.6215	12950	
57	48.6246	12924.7	
58	50.7175	12898.7	
59	52	12	

60	55.1961	12844.3	*****
61	57.5948	12816.1	****
62	60.109	12787.3	**
63	62.7472	12757.7	**
64	65.5178	12726.7	**
65	68.4309	12692.1	**
66	71.4967	12651.7	*
67	74.7277	12612.4	**
68	78.1363	12570.9	**
69	81.7377	12527	**
70	85.5478	12480.7	*****
71	89.5848	12431.5	*
72	93.8697	12379.3	*****
73	98.4248	12323.7	*****
74	103.277	12264.3	****
75	108.456	12200.7	*****
76	113.995	12132.3	****
77	119.933	12058.6	****
78	126.317	11978.9	****
79	133.198	11892.2	****
80	140.637	11797.8	****
81	148.708	11694.4	****
82	157.495	11580.3	****
83	167.101	11454	****
84	177.652	11313.2	***
85	189.298	11155.7	***
86	202.228	10977.5	***
87	216.678	10774.8	**
88	232.947	10542.1	**
89	251.428	10272.1	**
90	272.629	9955.32	*
91	297.255	9578.12	*
92	326.279	9121.48	
93	361.108	8557.42	
94	403.868	7842.96	
95	457.979	6908.04	
96	529.291	5631.13	
97	629.064	3776.22	
98	782.496	896.84	

11	4.19655	13562	＊＊＊＊＊＊＊
12	4.60222	13549.9	＊＊＊＊＊＊＊
13	5.02038	13537	＊＊＊＊＊＊＊
14	5.45171	13523.3	＊＊＊＊＊＊＊
15	5.89686	13508.7	＊＊＊＊＊＊＊
16	6.35641	13493.2	＊＊＊＊＊＊＊
17	6.83098	13476.6	＊＊＊＊＊＊＊
18	7.32119	13459.1	＊＊＊＊＊＊＊
19	7.8276	13440.4	＊＊＊＊＊＊＊
20	8.35085	13420.4	＊＊＊＊＊＊＊
21	8.89157	13399.2	＊＊＊＊＊＊＊
22	9.45039	13376.6	＊＊＊＊＊＊＊
23	10.028	13352.6	＊＊＊＊＊＊＊
24	10.625	13327	＊＊＊＊＊＊＊
25	11.2422	13299.7	＊＊＊＊＊＊＊
26	11.8803	13270.6	＊＊＊＊＊＊＊
27	12.5401	13239.6	＊＊＊＊＊＊＊
28	13.2223	13206.6	＊＊＊＊＊＊＊
29	13.9278	13171.4	＊＊＊＊＊＊＊
30	14．65\％．	13133．9	＊＊＊大＊＊＊
31	15．4i 2	13094	＊＊＊＊＊＊＊
32	16.1934	13051.5	＊＊＊＊＊＊＊
33	17.0015	13006.2	＊＊＊＊＊＊＊
34	17.8378	12958	＊＊＊＊＊＊＊
35	18.7035	12906.6	＊＊＊＊＊＊＊
36	19.5996	12851.9	＊＊＊＊＊＊＊
37	20.5276	12793.6	＊＊＊＊＊＊＊
38	21.4887	12731.7	＊＊＊＊＊＊＊
39	22.4844	12665.7	＊＊＊＊＊＊＊
40	23.5162	12595.6	＊＊＊＊＊＊＊
41	24.5856	12521.1	＊＊＊＊＊＊＊
42	25.6944	12442	＊＊＊＊＊＊＊
43	26.8444	12357.9	＊＊＊＊＊＊＊
44	28.0374	12268.8	＊＊＊＊＊＊＊
45	29.2756	12174.4	＊＊＊＊＊＊＊
46	30.5611	12074.5	＊＊＊＊＊＊＊
47	31.8962	11968.8	＊＊＊＊＊＊
48	33.2835	11857.2	＊＊＊＊＊＊
49	34.7255	11739.5	＊＊＊＊＊＊
50	36.2252	11615.5	＊＊＊＊＊＊
51	37.7855	11484.9	＊＊＊＊＊
52	39.4098	11347.7	＊＊＊＊＊
53	41.1016	11203.5	＊＊＊＊＊
54	42.8646	11051.9	＊＊＊＊
55	44.7032	10892.3	＊＊＊＊
56	46.6215	10723.4	＊＊＊＊
57	48.6246	10545.6	＊＊＊
58	50.7175	10355.9	＊＊＊
59	52.906	10154.1	＊＊
60	55.1961	9937.44	＊＊

	61	57.5948	9705.86
	62	60.109	9463.34
	63	62.7472	9221.43
	64	65.5178	8387.47
	65	68.4309	8742.13
二	66	71.4967	8483.64
	67	74.7277	8208.73
	68	78.1363	7921.02
	69	81.7377	7619.13
	70	85.5478	7302.32
	71	89.5848	6968.98
	72	93.8697	6620.18
	73	98.4248	6253.74
	74	103.277	5868.45
	75	108.456	5463.14
	76	113.995	5036.52
	77	119.933	4585.97
	78	126.317	4112.48
	79	133.198	3612.63
	80	140.637	3084.51
	81	148.708	2525.55
	82	157.495	1933
	83	167.101	1303.91
	84	177.652	634.534
	85	189.298	-78.9946
	86	202.228	-843.808
	87	216.678	-1682.04
	88	232.947	-2605.78
	89	251.428	-3650.72
6	90	272.629	-4810.92

$$
\begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 5 & 1
\end{array}
$$

Appendix J

Sasmple Multi Burst Dust Output - Full Report

14 Feb 1642
This is a dust report.
COSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; 300 1MT bombs
WEAPON/TARGET DATA:

Weapon gield ------------------------1000 RT
Fission fraction ---------------------1
Dust fraction ----------------------- . 333333
The size distribution input file is- DELFIC.RMM
$\mathrm{Rm}_{\mathrm{m}}=.204$; sigma $\mathrm{Rm}_{\mathrm{m}}=4$
The soil density is -..............-2 $2600 \mathrm{RG} / \mathrm{M}^{\wedge} 3$
The aircraft specification file is - B-1B.SPC
Aircraft velocity is --n-----------2 $279.2 \mathrm{M} / \mathrm{S}$
Time from cloud penetration

Wind shear I (along track) ----.---- 0 ($\mathrm{KM} / \mathrm{BR}$)/RM
Wind shear Y (cross track) ----....-- 1 ($\mathrm{KM} / \mathrm{BR}$)/RM
The output file will be named --..-- B:JAPP.MOP

14 Feb 1642 COSTOM SCENARIO: B-1B; WITG filter; DELPIC cloud; 3001 MT bomb time (hr) $=.15$ deltat (hr) $=-9.50774 \mathrm{~B}-03$ Zairborne $=97$ sigmax $=2984.51 \mathrm{M}$ sigmay $=2990.18 \mathrm{M} \quad 3$ sigmay cloud diameter $=17941.1 \mathrm{M}$ Altitude Cloud Dens Filter Mass Cabin Mass Engine MassProm Part | M |
| :---: |
| 000 |

17000 mg/m^3 1443.77 3601.49 7015.86 16000 15000 14000
13000 10752.4
13060.4 . 356577

12000
12720.5

11000
10000 9000 8000 7000 6000 5000
4000 3000 2000 1000 0

Kg

. 0704225
. 152202
. 256557
. 299693
Rg_{8}
$7.00295 \mathrm{E}-03$
. 0127591 .0179139
.0193816
.0161589
.0103813
5.13924E-03 $2.02824 \mathrm{E}-03$ $0.17697 \mathrm{E}-04$
$1.45453 \mathrm{E}-04$.0352973 1.45453E-04 .01899320 .01167120 $7.81628 \mathrm{E}-030$ 5.51691E-03 $4.00102 \mathrm{E}-03$ $\begin{array}{ll}3.05179 \mathrm{E}-03 & 0 \\ 2.46252 \mathrm{E}-03 & 0\end{array}$ $1.65832 \mathrm{E}-030$

Rg	8
43.97	1.83114
93.6817	1.83114
155.872	1.83114
204.037	1.83114
211.677	43.4013
176.091	126.928
119.883	203.969
71.5232	265.922
38.3585	343.731
20.128	400.475
10.7863	436.194
6.62811	531.013
4.43888	531.013
3.13306	596.673
2.27218	682.738
1.73312	682.738
1.39847	802.408
. 941762	802.408

11	11.4502	13455.5	****
12	12.3266	13440.5	****
13	13.2115	13425.5	****
14	14.1066	13410.6	****
15	15.0134	13395.6	****
16	15.9334	13380.5	****
17	16.8678	13365.4	****
18	17.8178	13350.2	****
19	18.7846	13334,9	****
20	19.7693	13319.5	****
21	20.7729	13304	****
22	21.7967	13288.4	****
23	22.8416	13272.7	****
24	23.9087	13256.8	****
25	24.9991	13240.7	****
25	26.1139	13224.5	****
27	27.2543	13208.1	****
28	28.4213	13191.6	****
29	29.6162	13174.8	****
30	30.8404	13157.7	****
31	32.0949	13140.5	****
32	33.3813	13123	****
33	34.7007	13105.2	****
34	36.0549	13087.1	****
35	37.4452	13068.6	*****
36	38.8732	13049.8	*****
37	40.3407	13030.6	*****
38	41.8495	13011.1	*****
39	43.4013	12991	*****
40	44.9982	12970.6	*****
41	46.6422	12949.7	*****
42	48.3356	12928.3	*****
43	50.0805	12906.5	*****
44	51.8797	12884.3	*****
45	53.7356	12861.8	*****
46	55.6511	12838.9	*****
47	57.6291	12815.7	*****
48	59.6728	12792.2	*****
49	61.7856	12768.5	*****
50	63.9711	12744.1	*****
51	66.2332	12718.5	*****
52	68.5758	12690.3	*****
53	71.004	12657.9	*****
54	73.522	12627.1	*****
55	76.1352	12595.2	*****
56	78.8492	12562.2	*****
57	81.6698	12527.9	*****
58	84.6039	12492.2	*****
59	87.6583	12455	*****
60	90.8408	12416.3	*****

14 Feb 1642 CDSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; 300 1MT bombs time (hr) = 1 deltat (hr) = . 10625 Zairborne $=85$ sigmax $=3994.78 \mathrm{M}$ sigmay $=4378.37 \mathrm{M} \quad 3$ sigmay cloud diameter $=26270.2 \mathrm{M}$ Altitude Cloud Dens Filter Mass Cabin Mass Engine MassProm Part M
17000
16000
15000
14000
13000
12000
11000
10000
9000
8000
7000
6000
5000
4000
3000
$20 n 0$
1000
0 $\mathrm{mg} / \mathrm{M}^{\wedge} 3$
508.615 1263.04 2473.95 3869.29 4926.36 5239.02 4849.64 4121.99 3410.69 2857.15
2439.88
2139.43
1899.02
1.702 .07
1534.6
1391.64
1264.67
1148.53

Rg

$6.85355 \mathrm{E}-03$
Kg_{g} microns r .0296549 .0125618 20.7332 1.83114 .064873 $\begin{array}{lr}.0125618 & 43.9754 \\ .0177461 & 73.5695\end{array}$ 1.83114 . 1118 .153732 .0193224 98.2776 1.83114 .171973 .0162151 106.872 1.83114
. 160447 .0104874 97.0741 16.8678 .129919 $5.22764 \mathrm{E}-03$ 76.749 G 32.0949 . 0994262 2.07771E-03 57.6442 43.4013 $\begin{array}{ll}.0736875 & 6.37338 \mathrm{E}-04 \\ .0551374 & 1.51186 \mathrm{E}-04\end{array}$ 42.2092 53.7356 $\begin{array}{ll}.0551374 & 1.51186 \mathrm{E}-04 \\ .0420624 & 0\end{array}$ 31.3985 66.2332
76.1352 23.887387 .6583 $18.7179 \quad 101.244$
$14.8907 \quad 113.153$ $11.9948 \quad 126.928$ $9.74512 \quad 143.065$ $7.98332 \quad 155.463$ $6.5696 \quad 169.487$ $5.41497 \quad 185.497$

11	11.4502	13290.3	********
12	12.3266	13249.7	********
13	13.2115	13207.1	********
14	14.1066	13162.3	********
15	15.0134	13115.3	********
16	15.9334	13065.8	********
17	16.8678	13013.8	********
18	17.8178	12959.1	********
19	18.7846	12901.7	********
20	19.7693	12841.3	*********
21	20.7729	12778	*********
22	21.7967	12711.4	*********
23	22.8416	12641.7	*********
24	23.9087	12568.5	*********
25	24.9991	12491.8	*********
26	26.1139	12411.5	*********
27	27.2543	12327.5	*********
28	28.4213	12239.8	*********
29	29.6162	12148.1	*********
30	30.8404	12052.5	********
31	32.0949	11952.9	********
32	33.3813	11849.3	*********
33	34.7007	11741.5	*********
34	36.0549	11629.6	********
35	37.4452	11513.5	*********
36	38.8732	11393.2	*********
37	40.3407	11268.5	*********
38	41.8495	11139.4	*********
39.	43.4013	11005.5	********
40	44.9982	10866.5	********
41	46.6422	10721.6	********
42	48.3356	10571.5	*******
43	50.0805	10414.4	*******
44	51.8797	10249.3	******
45	53.7356	10076.2	******
46	55.6511	9893.3	*****
47	57.6291	9702.54	*****
48	59.6728	9505.04	****
49	61.7856	9306.29	****
50	63.9711	9118.46	***
51	66.2332	8927.23	***
52	68.5758	8729.88	**
53	71.004	8524.63	**
54	73.522	8310.94	*
55	76.1352	8089.71	*
56	78.8492	7861.08	*
57	81.6698	7624.8	*
58	84.6039	7380.54	
59	87.658 .3	7128.02	
60	90.8408	6866.34	

	61	94.1597	6596.72
	62	97.6242	6317.82
	63	101.244	6029.23
	64	105.031	5730.49
	65	108.996	5421.24
-	66	113.153	5100.92
4	67	117.516	4769.05
	08	122.102	4424.04
	69	126.928	4067.66
	70	132.016	3697.73
-	71	137.386	3313.83
,	72	143.065	2914.9
	73	149.079	2500.2
	74	155.463	2068.61
	75	162.252	1619.14
	76	169.487	1150.56
	77	177.217	661.687
	78	185.497	151
	79	194.389	-383.061
	80	203.969	-944.286
	81	214.324	-1545.16
	82	225.559	-2191.07
	83	237.799	-2880.13
1	84	251.192	-3637.58
	85	265.922	-4445.72

Cglindrical Integration Program for Cabin Geometry Factor R

This program takes the pseudolength and radius of a cylinder (in meters) that represents the cabin of an aircraft and computes the spatial integral for the center of the cabin. It includes the self attenuation of the air in the cabin. The integration intervals are automatically computed by a method found to give results within 5% of using . 1 meter intervals.

10 'mult'ole integral algorithm 4.4 20 'Bur : Paires, Regnolds, NUMERICAL ANALYSIS, 2ed ed. 30^{\prime} I. i. proximate Indouble integral $((f(x, y) d y d x))$ with limits 40 - of integration from a to for x and from c to d for g. 50 "

60 'Input: endpoints $a, b, c, d:$ positive integers M, n.
70 'Output: approximation J. 80°

90 'Limits of integration
100 DEF FNXY $=\operatorname{EXP}\left(-M U T \star S Q R\left(Y^{\wedge} 2+X^{\wedge} 2\right)\right) \star Y /\left(Y^{\wedge} 2+X^{\wedge} 2\right)$

110 MUT $=6.48072 \mathrm{E}-03$: ' $^{\prime}$ for cabin air at 8000 feet
120 INPUT "pseudolength, radius"; B,D
$125 b=b / 2$
$130 A=0: C=0$
$140 M=\operatorname{IN}:(2 * D)$
145 IF $M<5$ THEN $M=5$
$150 \mathrm{~N}=\operatorname{INT}(8 * B)$
1.55 IF $\mathrm{N}<10$ THEN $\mathrm{N}=10$

```
160 日 = (B-A)/(2*N)
170 FOR I = 1 TO 2*N+1
180 X = A+I*日
190 BX = (D-C)/(2*M)
200 Y = C :LL = FNXY
210 Y = D :OL = FNXY
220 R1 = LL + OL :R2 = 0 :R3 = 0
230 FOR J = 1 TO 2*M-1
240 Y = C + J* BX :Z = - FNXY
250 IF J = 2*(J\2)
THEN R2 = K2 + Z
ELSE K3 = K3 + Z
260 NEXT J
270L=(R1 + 2*R2 + 4*R3)*EX/3
280 IF I=0 OR I=2*M
THEN Jl=Jl+L
ELSE IF I=2*(I\2)
THEN J2=J2+L
ELSE J3= J3+L
290 NEXT I
300 J = (J1 + 2*J2 + 4*J3)*⿴/3
310 PRINT "The Cabin Geometry Factor K is:";J
320 END
```

Yita
Stephen P. Corners was born 9 November 1954 to an Air Force family at Vright-Patterson AFB, Ohio. Hegretrapatariety of Air Force Bases and completod bigh school at Rogersille.
 an ARROTC scholarship. He gradaatedwitha B.S. in Physics in May of 1976 . He ras oalled to active duty in December 1976, assigned to Undergraduate Navigator Training School at Mather AFB, California. Ho continued his training at the Eiectronic Tarfare School there. After comploting B-52 Combat Cret Training School at Castie AFB, California, he was assignod to the 325 th Bomb Squadron at Fairchild AFB, Fashington as Eioctronic Tarfare Officer. He \quad pgradod to instractor statos ia Fobrary of 1982 . In Joly of 1984 he completed work leading to an additional AFSC for Aircraft Maintaince Officer. Captatn Connors wes assigned to the Air Force Institute of Technology's mater's degree program in Naclear Effoct: in July of 1984.

REPORT DOCUMENTATION PAGE

16. SUPPLEMENTAFYNOTATION

19. ASSTRACT (COntinue on reverse if necessary and identify by block numbert

Title: AIRCREW DOSE AND ENGINE DUST INGESTION from nuclear cloud penetration

Thesis Chairman: Dr. Charles J. Bridgman
Professor of Nuclear Engineering Department of Engineering Physics

Abstract continued on reverse.
20. OISTRIBUTIONIAVAILABILITY OF ABSTRACT

जिंClASSIFIEOIUNLIMITED X SAME AS RPT. D OTIC USERS
220. NAME OF RESPONSIBLE INOIVIOUAL

Dr. Charles J. Bridgman
21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED

Abstract

This study evaluates the threat to aircraft and aircrew members from the dust and radioactivity in a cloud generated by nuclear surface bursts.

A model of the nuclear cloud is generated, using any number and type of weapons and any desired dust size distribution. The cloud is propagated through the atmosphere for a given time, then penetrated by an aircraft. The activity density in the cloud is converted to dose to the crew for a given path through the cloud. Radiation shielding and dust filters are included in the calculations. Alternatively, the cloud dust mass density can be converted to mass trapped in a filter or the cabin: or to the dust mass that has entered the engine.

Methods for determining particle size and altitude distributions are presented. The ionizing dose to the crewnember is computed for both sky-shine and the dust trapped in the cabin during cloud passage. A method of computing the shielding power of the crew compartment against sky-shine is presented. Given the air flow rate into a filter or engine, the mass of ingested dust is found.

The nuclear cloud and aircraft models developed by this study are incorporated in a computer code oriented toward operational use. A significant feature of the code includes the ability to easily change the scenario with menu driven options.

AIRCREW DOSE AND ENGINE DUST INGESTION from nuclear cloud penetration

by Capt. Stephen P. Conners

Thesis date: March 85 DTIC number: ADA 159246
Change 1 date: 1 May 86 ******************************* $1.1,29$ May 86
NOTE: Many of the colons in the text should be semicolons; the problem was that the greek printwheel used to print the thesis did not have a semicolon available. Other slight irregularities are due to this problem.

Add "ch l" next to all changes
ritle page: below name block, add: CHANGE l-1MAY 86
page i: below "March 1985", add: CHANGE 1-1MAY 86
page iv:
change "Sample Activity Output" to "Sample Single Burst Activity Output"
change "Sample Multi Burst Output" to "Sample Multi Burst Activity Output"
roze 9:
paragraph 1, line 3: change "in" to "by"
in Eq l, in the first term after "wheren, add after ln(rm):
" [rm is the mean radius of a distribution]"
in Eq 1 , in the second term after "where", add after $\ln \left(\sigma_{r m}\right)$:
"[$\sigma_{r m}$ is the standard deviation of the mean radius of a dismribution]"
page 10: Add the following note at the bottom of the page. "NOTE: Nomenclature used here for lognormal functions follows that used by DELFIC. A statisticiar would be more comfortable with the following equivalent terms:
particle size distribution: radius distribution volume distribution: surface area distribution: surface area distribution with respect to radius"
page 12: in Figure 1, the line for DELFIC was not plotted
properly; DELFIC is the sum of two cumulative log normals, and is therefore not a straight line on this graph. The maximum deviation of the proper line is no more than $1 / 8^{\prime \prime}$ left of the existing line at midpoint. The proper line can be found by plotting data from Table II on Figure 1.

17: Equation 3 is incorrect; the equation given is actually the horizontal stabilization time, $T_{\text {hs }}$, which is also found on
page 85. The correct expressions for Equation 3 follow:
"For 1 to 10 RT :

$$
\begin{equation*}
T_{V s}=347.0[s] \tag{3.1}
\end{equation*}
$$

$$
\text { For } \begin{aligned}
& 10 \text { to } 15,000 \mathrm{KT}: \\
& \mathrm{T}_{\mathrm{vs}}=368.384-37.0093(\ln Y)+21.7003(\ln Y)^{2} \\
&-4.8593(\ln Y)^{3}+0.288199(\ln Y)^{4}[\mathrm{~s}](3.2)
\end{aligned}
$$

For 15,000 to $50,000 \mathrm{KT}$:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{vs}}=164.0[\mathrm{~s}] \tag{3.3}
\end{equation*}
$$

page 28: paragraph 3, line 4: change "less" to "more"

page 39:

paragraph 1, line 5: change "three" to "two"
paragraph l, line 7: change assumption l. to read:
"1. The activity density of the cloud does not vary vertically or laterally within five gamma mean free path lengths."
paragraph 1, line 9: delete assumption 2.
paragraph 1, line 11: change assumption "3." to "2."
paragraph 2, line 2: change "two assumptions" to "assumption"
paragraph 2, line 3: change "establish" tc "establishes"
page 44: paragraph 2, line 7: add the following sentance:
" (An analytical solution is also available in Appendix K.)"
page 45:
Table VIII: after "Cabin Radius M" add a column as follows:

n	Analytical Cabin Geometry Factor
B-1B	1.53
$\mathrm{~B}-52 \mathrm{G}$	2.20
$\mathrm{~B}-52 \mathrm{H}$	2.20
$\mathrm{E}-3$	2.69
$\mathrm{E}-4 \mathrm{~B}$	4.86
$\mathrm{EC}-135$	2.65
$\mathrm{KC}-135$	$2.65^{\prime \prime}$

page 51: see below
page 67: see below
page 70: add:
NOTE
Tables X through $X X$ and Tables XXII through XXIV were created using the horizontal cloud stabilization time rather than the vertical cloud stabilization time. The text of the thesis correctly uses the results of the vertical cloud stabilization time for comparisons. No major differences in output
between the two cases (vertical or horizontal stabilization time)
will be noted for the Time $=1 \mathrm{hr}$ cases used in the text of the thesis. At very early times computed by the user, there would be differences. This problem is fixed by changing Equation 3 (above, page 17) and changing Appendix A2. and Appendix E (below, pages 84, 104).
page 73: paragraph 14, line 2: change "Offut" to "Offutt"
page e4: in the first table, change the line that reads
" 1,000
-1,000
5651
845.2" ${ }^{\prime \prime}$ to
change the equation for Vertical stabilization Time (seconds) to:
${ }^{\circ}$ For 1 to 10 KT :
$\mathrm{T}_{\mathrm{Vs}}=347.0[\mathrm{~s}]$

$$
\begin{aligned}
\text { For } 10 \text { to } 15,000 \mathrm{KT}: & \\
\mathrm{T}_{\text {vs }}=368.384-37.0093(\ln Y) & +21.7003(\operatorname{lnY})^{2} \\
& -4.8593(\operatorname{lnY})^{3}+.288199(\operatorname{lnY})^{4}[s]
\end{aligned}
$$

For 15,000 to 50,000 KT:

$$
\mathrm{T}_{\mathrm{vs}}=164.0[\mathrm{~s}]
$$

page 85: line 2: change "vertical" to "horizontal"
page 88: line 13: change "largest particle" to "largest size particle"
page 90:
line 7: change definition to read "component of wind
along track"
line 8: change definition to rear ' Omponent of wind across track"
line 14: change "distance" to "vertical distance"
page 91: paragraph 2, line 3: change "a disk file" to "disk files"
page 98: line 7235 must be deleted or commented out if the filter described in lines 7210,7220 , and 7230 is to be used. Line 7235 overwrites the variable filter.tx.factor (G) with the factor 1 (none are trapped) when it is desired to run the case without a filter.
page 100:
add line 1045: "1045 'change 1, 1 May 85 by Capt. Conners"
replace line 1070 with the following line:

add line 1165: "1165 'ELSE CONTINUE $\quad:^{\prime}($ WHICH\% $=1) \quad n$
add at the end of 1 ine 1220: " : 'number of bombs"
add at the end of line 1230: " - see text for justification"
page 101:
line 1370: change ${ }^{\text {r }}{ }^{\prime} \mathrm{HR}^{\prime \prime}$ to ":'HR since burst"
line 1430: add ":'M" to the end of the line
line l450: add ": M " to the end of the line
page 104:
add line 2245:
"2245 Units - 3.7E+10 Curies/sec - 1.6E-11 J/MEV - $3600 \mathrm{sec} / \mathrm{hr}{ }^{7}$
replace line 2260 with the following lines:
" 2260 IF KT >= 1 OR KT <= 10 THEN STAB.TIME $=347.0 / 3600$
2261 IF KT > 10 OR RT < 15000 THEN
STAB.TIME $=$ (368.384-37.009 $\left.3 * X+21.7003 * X^{\wedge} 2-4.8593 * X^{\wedge} 3+.288199 * X^{\wedge} 4\right) / 3600$
2262 IF KT $>=15000$ ORKT <= 50000 THEN STAB.TIME $=164.0 / 3600$
:'HRS time for vertical cloud stabilization - CHANGE 1-1 MAY 86"
page 106: add to end of line 27l0: ":'DELFIC prediction, Nevada soil"
page 113: add to end of line 4650: ": 'unit time dose, no shielding"
page 115: add line 5145:
" 5145 PRINT\#1, "DUST/DOSE ver 8.1 , 1 May 86 by Capt. Stephen P. Conners"
page ll7: line 5650: change the third comma (,) to a semicolon (;)
page 119: line 6040: change the third comma (,) to a semicolon (;)
page 120:
line 6340: change "ELSE WORST.STEP" to "ELSE WORST.ALT"
line 6470: add to end of line: ":'penetration time"
page 121:
change line 6510 from
n:IF DELTAT<.1 OR DELTAT>100 THEN DELTAT = INTERVAL/8"
to
": IF DELTAT < . 1 THEN DELTAT = INTERVAL :'to reduce compute time :IF DELTAT > 100 THEN DELTAT = INTERVAL/8"
add to end of line 6530
":'for each group (disc)..."
add to end of line 6540
": 'for each deltat"
add to end of line 6550
": 'let cloud fall"
add to end of line 6570
": 'get rid of grounded groups"
add to end of line 6610
": 'advance time to next penetration/stop time"
add to end of line 6620
": 'find activity and dose, or mass, etc."
page 154: add to beginning of line l: "Kl."
page 155: add below the last line:
"Note that a Cabin Geometry Factor K can be computed for a point other than the middle of the cylinder. Determine the distance from the desired point to each end of the cylinder; call these two distances D1 and D2. The program is then run twice using using Dl and D2 for the pseudolength, producing results Kl and R2. The aggregate R factor is then ($\mathrm{K} 1+\mathrm{R} 2$)/2. Further note that the less central the point is, the less reliable the assumption of uniform distribution of mass around the cabin.

82. Analytical Solution for Cabin Geometry Factor K

2 Lt. Peter Vanden Bosch of the USAF School of Aerospace Medicine has developed an analytic solution for the cylindrical cabin integral contained in Eq 40. The solution to this equation is the term K in Eq 41.
$K=-\frac{1}{2} \quad H \ln \left(H^{2}+R^{2}\right)+R \tan ^{-1}(H / R)-H \ln (H)$
$+-\left.\frac{1}{2}\right|_{-} ^{-} u H\left(H^{2}+R^{2}\right) \cdot 5+U R^{2} \ln \left[H+\left(H^{2}+R^{2}\right) \cdot 5\right]-u H^{2}-U R^{2} \ln (R)$ i
$+-\frac{1}{4} u^{2} R^{2} H$
for a cylinder of radius R and length H.
Non-central cylinder locations can be determined by the same method noted above.
page 156:
paragraph 1, line 13: change "1984" to "1983"
paragraph 1, line 13: change "1984" to "1983"
add: "Current address is: Capt. Stephen P. Conners
Chief Physicist
544 SIW/DIA Offutt AFB, NE 68113-5000

Current telephone is: 402-294-4666, AUTOVON 271-4666"
NOTE: A clarification of the lognormal distribution alyuments in DELFIC and a derivation of the analytical solution of the cylinderical cabin integral are available at the above address.

Post this change at the back of the thesis.

[^0]: Figure 2. Cumulative Mass-size Fractions used in this stidy

