

#### AFIT/GNE/PH/85M-4



AIRCREW DOSE AND ENGINE DUST INGESTION

Я

A

FROM NUCLEAR CLOUD PENETRATION

### THESIS

AFIT/GNE/PH/85M-4 Stephen P. Conners Capt USAF

Approved for Public Release: Distribution Unlimited

AFIT/GNE/PH/85M-4

# AIRCREW DOSE AND ENGINE DUST INGESTION FROM NUCLEAR CLOUD PENETRATION

#### THESIS

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the Requirements for the Degree of Master of Science

bу

Stephen P. Conners, B.S. Capt USAF

Graduate Nuclear Engineering

March 1985

in. :

· **--** ·



Approved for Public Release; Distribution Unlimited

#### Preface

This independent study began as an effort to perform a more detailed, more realistic, analysis of the factors contributing to aircrew radiation dose from a descending nuclear cloud. Military planners are interested in this problem both for strategic and command and control aircraft. Recent exposure of aircraft to volcanic dust clouds has also generated interest in predicting the dust mass characteristics of nuclear clouds. The dust as well as the radiation in a nuclear cloud will contribute to equipment degradation. Accordingly, this study was extended to include calculations of dust ingestion by the aircraft as well as well as dose to the aircrew.

This study is based on the AFIT Fallout Smear Code as modified by Hickman (Ref 10) and Kling (Ref 16) to allow airborne dose rather than ground dose to be determined.

The nuclear cloud model developed by this study allows various activity size distributions to be used. The distributions are affected by fractionation and target and weapon characteristics. The distributions are converted to 100 discrete equal activity groups, and each group's initial vertical and lateral locations in the nuclear cloud are determined by fits to an initial cloud computed by the DELFIC fallout code. Each group is then tracked as it falls using McDonald-Davies fall mechanics and as it expands laterally using a model suggested by the WSEG-10 fallout code.

I would like to acknowledge my gratitude to Dr. Charles J. Bridgman for help during this research. I am also indebted to my wife, Ceecy, for the patience and love given during this work.

i i

# <u>Contents</u>

.

아파리 가슴 아파 아파 아파 아파리 그는 아파 아파리에 가슴 아파리

| Prefac | : e                             | ii   |
|--------|---------------------------------|------|
| List o | of Figures                      | v    |
| List o | of Tables                       | vi   |
| Abstra | act                             | viii |
|        |                                 |      |
| Ι.     | Introduction                    | 1    |
|        | Background                      |      |
|        | Problem                         |      |
|        | Scope                           |      |
|        | Assumptions                     |      |
|        | Approach                        |      |
| II.    | Cloud Model                     | 6    |
|        | Background                      |      |
|        | Particle Size Distributions     |      |
|        | Initial Stabilized Clond        |      |
|        | Cloud Activity Distribution     |      |
|        | Late Time Cloud                 |      |
|        | Multiple Bursts                 |      |
| III.   | Dose Analysis                   | 35   |
|        | Beckground                      |      |
|        | Cabin Geometry                  |      |
|        | Sky-shine Shielding             |      |
|        | Sky-shine Dose Rate             |      |
|        | Cabin Dust Dose Rate            |      |
|        | Filters                         |      |
|        | Dose Results                    |      |
| IV.    | Mass Analysis                   | 62   |
|        | Background                      |      |
|        | Theory                          |      |
|        | Filter And Engine Ingestion     |      |
|        | Mass Results                    |      |
| ν.     | Conclusions and Recommendations | 70   |
|        | Conclusions                     |      |
|        | Recommendations                 |      |
| Biblic | ography                         | 73   |

| Appendix A: | Delfic Data                                | 76  |
|-------------|--------------------------------------------|-----|
| Appendix B: | Glossary of Program Terms                  | 86  |
| Appendix C: | Particle Size Program                      | 91  |
| Appendix D: | Aircraft Data and Program                  | 96  |
| Appendix E: | Menu Program                               | 99  |
| Appendix F: | Main Program                               | 111 |
| Appendix G: | Sample Activity Output                     | 122 |
| Appendix H: | Sample Single Burst Mass Output            | 130 |
| Appendix I: | Sample Multi Burst Output                  | 138 |
| Appendix J: | Sample Multi Burst Dust Ontput             | 146 |
| Appendix K: | Cylindrical Integration for Cabin Geometry | 154 |
| Vita        | • • • • • • • • • • • • • • • • • • • •    | 156 |

ſ

· • ·

## <u>List\_of\_Figures</u>

<u>Figure</u>

\_

4

Į.

1

6 6

<u>Page</u>

| 1  | Plot of Cumulative Activity Size Distributions | 12  |
|----|------------------------------------------------|-----|
| 2  | Plot of Cumulative Mass Size Distributions     | 13  |
| 3  | Initial Cloud                                  | 22  |
| 4  | Late Time Cloud                                | 22  |
| 5  | Smeared Cloud                                  | 26A |
| 6  | DELFIC Cloud Activity                          | 30  |
| 7  | NRDL-N61 Cloud Activity                        | 31  |
| 8  | TOR-C Cloud Activity                           | 32  |
| 9  | TOR-C Cloud Activity Linear Plot               | 33  |
| 10 | DELFIC Cloud Mass                              | 63A |
| 11 | NRDL-N61 Cloud Mass                            | 63E |
| 12 | TOR-C Cloud Mass                               | 63C |

ν

<u>List\_of\_Tables</u>

Table

0

 $\mathbf{k}$ 

(•

Page

| I    | Particle Number Size Distributions                   | 11  |
|------|------------------------------------------------------|-----|
| II   | DELFIC Equal Activity Groups                         | 14  |
| 111  | DELFIC Equal Mass Groups                             | 14  |
| IV   | NRDL-N61 Equal Activity Groups                       | 15  |
| v    | NRDL-N61 Equal Mass Groups                           | 15  |
| VI   | TOR-C Equal Activity Groups                          | 16  |
| VII  | TOR-C Equal Mass Groups                              | 16  |
| VIII | Aircraft Data                                        | 4 5 |
| IX   | Baseline Case Input Parameters                       | 48  |
| X    | Baseline Case- KC-135 in DELFIC Activity Cloud .     | 51  |
| XI   | KC-135 in NRDL-N61 Activity Cloud                    | 52  |
| XII  | KC-135 in TOR-C Activity Cloud                       | 53  |
| XIII | B-1B Without Filter in DELFIC Activity Cloud         | 54  |
| XIV  | B-1B With Filter in DELFIC Activity Cloud            | 55  |
| XV   | KC-135 in DELFIC Activity Cloud using 0.7 MeV $_r$ . | 56  |
| XVI  | KC-135 in DELFIC Activity Cloud, Sx=10, Sy=1         | 57  |
| XVII | KC-135 in DELFIC Activity Cloud, Sx=1, Sy=10         | 58  |

vi

B-52G in DELFIC Cloud ..... 59 XVIII E-4B in DELFIC Activity Cloud ..... XIX 60 EC-135 in DELFIC Activity Cloud ..... 61 XX Engine Data ...... 65 XXI KC-135 in DELFIC Dust Cloud ..... 67 XXII KC-135 in NRDL-N61 Dust Cloud ..... 68 XXIII KC-135 in TOR-C Dust Cloud ..... XXIV 69

vii

#### <u>Abstract</u>

A model of the nuclear cloud is generated, using any number and type of weapons and any desired dust size distribution. The cloud is propagated through the atmosphere for a given time, then penetrated by an aircrafc. The activity density in the cloud is converted to dose to the crew for a given path through the cloud. Radiation shielding and dust filters are included in the calculations. Alternatively, the cloud dust mass density can be converted to mass trapped in a filter or the cabin: or to the dust mass that has entered the engine.

Methods for determining particle size and altitude distributions are presented. The ionizing dose to the crewmember is computed for both sky-shine and the dust trapped in the cabin during cloud passage. A method of computing the shielding power of the crew compartment against sky-shine is presented. Given the air flow rate into a filter or engine, the mass of ingested dust is found. The nuclear cloud and aircraft models developed by this study are incorporated in a computer code oriented toward operational use. A significant feature of the code includes the ability to easily change the scenario with menu driven options.

viii

#### AIRCREW DOSE AND ENGINE DUST INGESTION FROM NUCLEAR CLOUD PENETRATION

#### I. Introduction

#### Background

1

Defense planners have expressed growing concern over the radiation exposure to strategic and Airborne Command Post aircraft in the event of a massive nuclear strike on the United States. Such aircraft may be required to penetrate nuclear clouds in the course of their wartime missions. A realistic estimate of the radiation dose to the aircrew penetrating the cloud is needed. In addition, recent experience with aircraft losing power while flying through volcanic ash clouds (Ref 13) has generated interest in determining the effects of dust inrestion on aircraft engines. Currently, experimenters are attempting to determine the tolerance of engines to dust ingestion (Ref 14). A realistic estimate of dust densities in a nuclear cloud is needed also to relate engine dust tolerance to the survivability of the aircraft.

Aircraft penetration of radioactive dust clouds is hazardous in at least four ways. First, the aircrew is exposed to ionizing radiation from the cloud through the aircraft's skin and by dust trapped in the cabin. Second, the aircrew may ingest or come in contact with the radioactive particles. Third, electronic equipment could malfunction if the ionizing dose rate is high enough. Fourth, if the dust density is high enough the aircraft's engines could fail or be degraded by ingestion of the dust particles. This study focuses on the first and last hazards. The second hazard can be nearly eliminated if the crew wears normal

equipment to prevent exposure of bare skin and uses oxygen masks to preclude inhalation of particles. An estimate of the dose to electronic equipment can be made by converting tissue dose to rad(Si).

#### Problem

No useable data on previous flights through radioactive clouds could be found (Ref 28, 29).<sup>1</sup> The problem addressed in this study is to determine the doses to hircrews for different size distributions of nuclear cloud dust particles and for different aircraft. For comparison purposes, the baseline case will be a one megaton burst, fission fraction of 0.5, DELFIC (Defense Land Fallout Information Code) default particle size distribution, a cross track wind shear of 1 (km/hr)/km, an 8-hour mission duration after cloud penetration, and a KC-135 aircraft.

The computer program developed for this study finds 100 equal activity-size groups for a given particle size distribution. The distribution is a function of the mean redius (rm) and standard deviation of the mean radius ( $\sigma_{rm}$ ). From the yield, the initial altitude distribution of the particles is determined: then the cloud is allowed to fall for a specified time. This allows the activity density at any altitude to be computed. Cabin dose, caused by the ingestion of particles at the aircraft's altitude, and sky-shine dose from the distributed cloud are computed from the activity density.

1. Manned B-29 in Operation Snapper (1952 surface burst) and F-80 drones in Operation Upshot-Knothole (1956 airbursts).

The dust mass density of the cloud is determined by the same method, if the equal activity-size groups are replaced by equal mass-size groups. The mass of dust trapped in a filter or passed through an engine can be found from the dust mass density.

#### Scope

This study highlights modeling of the nuclear cloud and aircraft likely to be exposed to the cloud. The initial nuclear cloud model is based on the AFIT Fallout Smear model (Ref 1). Changes to the model include finding new terms for the cloud horizontal distribution  $\sigma_0$  and the vertical normal distribution  $\sigma_z$ at stabilization time. The new terms are polynomials least-square fit to DELFIC predictions for  $\sigma_0$  and  $\sigma_z$  at cloud stabilization tirs. The horizontal expansion model of the cloud for later times is taken from the AFIT Smear Model as modified by Bridgman and Hickman (Ref 2).

The aircraft model uses a worst-case approximation for cabin dose, in that all of the dust that enters the cabin is assumed to stay there. However, allowance is made for particle removal from the air before entry into the pressurized cabin. This removal allows the effectiveness of known or proposed engine and filter designs to be considered. The same method is used to compute the mass of dust ingested by an engine or trapped in a filter.

A method of finding a realistic shielding factor for sky-shine radiation is developed to replace Kling's (Ref 10) approximation of a single 0.063 inch thick aluminum skin. This model is detailed enough so that the sky-shine dose can be considered a realistic estimate rather than a worst-case limit.

Speed, altitude, and payload for each aircraft used in this study were selected to reflect typical wartime missions. These parameters can be varied to allow for different missions or changed entirely to represent different aircraft.

Although other effects may be present, only tissue dose from external gamma radiation and dust ingestion in engines and filters are addressed in this report.

The crew dose and dust ingestion information provided by this study will allow planners to determine the threat to the aircraft if location, time of burst, yield and wind profiles are known. The aircraft's planned flight path or altitude can be changed to reduce the threat if required. The accompanying computer code also allows research into the effects of different particle size distributions, aircraft configurations, and types of filter.

#### Assumptions

Several explicit assumptions are made in this report. They are:

- The initial conditions for the stabilized cloud are those for DELFIC as shown in Appendix A.
- The activity density of the nuclear cloud does not vary significantly within five gamma mean free paths of the aircraft.
- 3. All of the gamma-rays have energies of 1 MeV.
- 4. All of the dust that enters the cabin is trapped and there is no internal shielding from the dust except by the air in the cabin.

5. The shielding factor for sky-shine (external) radiation can be

found by using an 'average' mass integral taken directly from the mass and surface area of the cabin and that all of the cabin mass has the gamma-ray cross section of aluminum.

These assumptions are discussed in more detail later in the text.

#### Approach

i i i i

> The development of the nuclear cloud model and a summary of the results for the baseline scenario in terms of activity density in Curies per vertical meter versus altitude at various times are presented in Chapter II. Also presented are results for larger and smaller particle size distributions. Nuclear clouds composed of more than one burst are examined.

> The mathematical development for the external dose from both trapped cabin dust activity and sky-shine is presented in Chapter III. The results for a single, one megaton ground burst are then presented in tabular form. These tables include the doses received and the particle contributing the most activity at the specified altitude for several different aircraft.

Treatments of nuclear cloud dust density, cabin air filters, and engine dust ingestion are in Chapter IV. Results for the same aircraft and nuclear clouds used in Chapter III are given.

Conclusions and recommendations are in Chapter V.

#### II. <u>Cloud Model</u>

#### Background

Ż

5

E

Ì

.

This chapter relies heavily on data computed by DELFIC. A brief description of this code will be given to clarify later discussion.

DELFIC is recognized as a benchmark against which other fallout codes are measured: however, its size, complexity and expense to run prevent easy use. DELFIC is constructed as a set of sequential modules. Here we are concerned only with the predicted initial, stabilized nuclear cloud. The modules of interest are Fireball, Cloud Rise, Interface, and Diffusive Transport. The cloud parameters at the end of Cloud Rise are printed at the beginning of the Diffusive Transport module.

A near surface nuclear burst generates a fireball that vaporizes a significant quantity of material from the target area. This vaporized soil mixes with vaporized weapon material, such as the weapon case, unburned fuel, and fission products, which are highly radioactive. The Fireball module models this phase of the burst. A default particle size distribution representing Nevada soil is built into DELFIC.

As the cloud rises, the vapors cool and the radioactive material is mixed in with condensed soil material. Fractionation occurs as materials condense at different temperatures: some of the radioactive material will be distributed throughout the volume while radioactive elements that melt at lower temperatures will condense on the surface of the particles. The number, size, and fractionation of the particles will be determined by the type of

weapon and the type of soil in the target area. The fractionation predicted by DELFIC along with the default particle number-size distribution produces the default activity-size distribution used in DELFIC. This phase is described by the Cloud Rise module.

Examination of DELFIC output for this study shows that cloud stabilization occurs in two steps. In the first step, vertical stabilization takes place. This happens when all particles have reached their maximum altitudes and the largest ones begin to fall back. This occurs from 3 to 6 minutes after the burst. The radius of the cloud that DELFIC predicts at this point is the value that Ruotanen (Ref 25) used to correct the standard deviation of the initial cloud radius,  $\sigma_0$ , for the WSEG model and is the value this study will use to determine  $\sigma_0$ .

In the second step, the cloud does not rise any further but continues to expand rapidly in the horizontal direction. This is due to the momentum of the toroidal circulation which began during step one. The end of this second step is what is usually referred to as the stabilized cloud. The record step ends at 5 to 15 minutes after the nuclear burst.

The DELFIC Interface module couples the stabilized cloud to the winds over the target and allows the cloud particles to be blown downwind in the Diffusive Transport module. Further sections of the code determine the location, activity, and dose of the fallout on the ground. In this study, we will use only the initial stabilized cloud. The parameters for this initial cloud are printed at the beginning of the Diffusive Transport section of a typical DELFIC printout.

DELFIC is a disc tosser code, so called because it subdivides

the particles in a cloud into monosize groups, models each group as a disc, then tracks each disc as it falls and is blown downwind. DELFIC is normally set to track 100 discs. Each disc is in turn composed of 20 wafers, each containing 5% of the monosize particle group. The radii and the altitudes for the top and bottom of each wafer are printed in the output. The DELFIC data used in this study are reproduced in Appendix A.

The cloud model used in this study will be presented in the following manner.

First, particle size distributions will be discussed and the distributions used in this study will be presented. The distributions are converted into 100 equal activity-size and 100 equal mass-size groups.

Second, the model of the DELFIC initial cloud will be presented. This includes the stabilization time and radius of the cloud. The rigid DELFIC discs are converted to the 'smeared' discs of the AFIT Fallout Smear model. The determination of initial altitude and vertical distribution of each particle size group are then considered.

Third, a description of the activity distribution in the cloud will be developed.

Fourth, cloud growth, cloud fall, and smearing by wind will discussed.

Finally, clouds consisting of multiple bursts will be considered.

#### Particle Size Distributions

Dust particles found in nuclear burst clouds have particle size distributions that have been found to fit the cumulative lognormal function as described in Bridgman and Bigelow (Ref 2). This function is given as:

$$F(r) = \frac{1}{\sqrt{2\pi} \beta r} erp \left[ -\frac{1}{2} \left[ \frac{\ln(rm) - a_n}{\beta} \right]^2 \right] [1/m] \quad (1)$$

where

Ţ

F

ł

 $a_{0} = \ln(rm)$   $\beta = \ln(\sigma_{rm})$  $a_{n} = a_{0} + n\beta^{3}$ 

A useful feature of cumulative lognormal functions is that different moments of the expression (represented by n) are also cumulative lognormal with the same slope. The value of n in this equation determines the type of distribution. A value of n = 3will create a volume distribution, and, if the particle density is uniform, a mass distribution. If n = 2 then Eq (1) will describe a surface area distribution. When n = 0, the original number-size distribution results.

The values in Table I are number-size distributions from Bridgman (Ref 3). Except for DELFIC they were computed from the experimentally determined cumulative lognormal activity-size distributions by using the 2.5 moment approximation suggested by Freiling, which is explained below.

Fractionation effects will cause refractory radionuclides to be distributed throughout the volume of the particles, while volatile nuclides will be deposited on the surface. The ratio of

volume deposition to surface deposition is difficult to determine experimentally or theoretically, but it must lie at a point between n = 2 (all surface) and n = 3 (all volume). As an approximation, Freiling suggested n = 2.5.

ł

Ú

17 J F 18 18 18 18 18

The activity-size distribution of a nuclear cloud is generally found directly by experiment. If that activity-size distribution is lognormal, then a lognormal number-size distribution can be computed, using Freiling's n = 2.5. The number-size distributions in Table I were all computed in this manner except for the DELFIC default distribution.

DELFIC activity-size distributions are found by DELFIC computing the fractionation of each decay chain of the fission products. Bridgman and Bigelow (Ref 2) found that the DELFIC activity-size distribution which results from this chain by chain calculation can be represented by the sum of two cumulative lognormal distributions:

$$F(r) = Fv clnf(n=3) + (1 - Fv) clnf(n=2)$$
 (2)

where the volume fraction Fv equals 0.68 and clnf(n) is the <u>c</u>umulative <u>log</u> normal function in Eq (1). This study uses Eq (2) to compute the DELFIC activity-size distribution. DELFIC is the only distribution in Table I to use this method.

| NAME     | rm(µm) | o<br>rm | SOURCE   | REMARKS        |
|----------|--------|---------|----------|----------------|
| TTAPS    | . 2 5  | 2       | Turco    | no tail        |
| NRDL-N61 | .00039 | 7.24    | Freiling | Nevada soil    |
| NRDL-C61 | .0103  | 5,38    | Freiling | Coral          |
| NRDL-D   | .01    | 5.42    | Polan    | Nevada Dynamic |
| DELFIC   | .204   | 4       | Polan    | Fv = .68       |
| USWB-HI  | 3.48   | 2.72    | Polan    | Hicap          |
| USWB-LO  | 3.84   | 3       | Polan    | Locap          |
| FORD-T   | 5.98   | 2.23    | Polan    |                |
| RANDWSEG | 10.6   | 2       | Polan    |                |
| NRDL-SII | 27.1   | 1,48    | Polan    | Saltwater II   |
| NRDL-SI  | 36.8   | 1,51    | Polan    | Saltwater I    |
| TOR-C    | 50.6   | 1.36    | Polan    | Coral          |

Particle Number-size Distributions

TABLE I

DELFIC was selected for the baseline case. NRDL-N61 and TOR-C were selected because they are extreme examples of 'small' and 'large' size distributions. Figures (1) and (2) plot the cumulative activity-size and mass-size fractions versus radius of the particle. Tables II through VII list the 100 equal activity and equal mass particle groups for these three distributions. They were generated by the program in Appendix C using Eq (1).



Figure 1.



ļ

13

### TABLE II

| DELFIC Mean rad | <u>lii in mic</u> | <u>rons of the</u> | <u>100 equal-</u> | <u>activity</u> g | roups |
|-----------------|-------------------|--------------------|-------------------|-------------------|-------|
| computed        | l from rm         | = .204: σ          | = 4: Fv =         | .68               |       |
| .473            | .904              | 1.27               | 1.62              | 1.97              |       |
| 2.32            | 2.68              | 3.04               | 3.41              | 3.80              |       |
| 4.19            | 4.60              | 5.02               | 5.45              | 5.89              |       |
| 6.35            | 6.83              | 7.32               | 7.82              | 8.35              |       |
| 8.89            | 9.45              | 10.0               | 10.6              | 11.2              |       |
| 11.8            | 12.5              | 13.2               | 13.9              | 14.6              |       |
| 15.4            | 16.1              | 17.0               | 17.8              | 18.7              |       |
| 19.5            | 20.5              | 21.4               | 22.4              | 23.5              |       |
| 24.5            | 25.6              | 26.8               | 28.0              | 29.2              |       |
| 30.5            | 31.8              | 33.2               | 34.7              | 36.2              |       |
| 37.7            | 39.4              | 41.1               | 42.8              | 44.7              |       |
| 46.6            | 48.6              | 50.7               | 52.9              | 55.1              |       |
| 57.5            | 60.1              | 62.7               | 65.5              | 68.4              |       |
| 71.4            | 74.7              | 78.1               | 81.7              | 85.5              |       |
| 89.5            | 93.8              | 98.4               | 103.              | 108.              |       |
| 113.            | 119.              | 126.               | 133.              | 140.              |       |
| 148.            | 157.              | 167.               | 177.              | 189.              |       |
| 202.            | 216.              | 232.               | 251.              | 272.              |       |
| 297.            | 326.              | 361.               | 403.              | 457.              |       |
| 529.            | 629.              | 782.               | 1064.             | 1917.             |       |
|                 |                   |                    |                   |                   |       |

0

•

TABLE III

| <u>DELFIC mean</u> | radi | <u>i in microns of</u>   | <u>the 100</u> | <u>equal-mass</u> | <u>groups</u> |
|--------------------|------|--------------------------|----------------|-------------------|---------------|
| computed           | from | $rm = .204: \sigma_{rm}$ | = 4: Fv        | = .68             |               |
| 1.83               | 3.21 | 4.30                     | 5.28           | 6.20              |               |
| 7.10               | 7.97 | 8.84                     | 9.71           | 10.5              |               |
| 11.4               | 12.3 | 13.2                     | 14.1           | 15.0              |               |
| 15.9               | 16.8 | 17.8                     | 18.7           | 19.7              |               |
| 20.7               | 21.7 | 22.8                     | 23.9           | 24.9              |               |
| 26.1               | 27.2 | 28.4                     | 29.6           | 30.8              |               |
| 32.0               | 33.3 | 34.7                     | 36.0           | 37.4              |               |
| 38.8               | 40.3 | 41.8                     | 43.4           | 44.9              |               |
| 46.6               | 48.3 | 50.0                     | 51.8           | 53.7              |               |
| 55.6               | 57.6 | 59.6                     | 61.7           | 63.9              |               |
| 66.2               | 68.5 | 71.0                     | 73.5           | 76.1              |               |
| 78.8               | 81.6 | 84.6                     | 87.6           | 90.8              |               |
| 94.1               | 97.6 | 101.                     | 105.           | 108.              |               |
| 113.               | 117. | 122.                     | 126.           | 132.              |               |
| 137.               | 143. | 149.                     | 155.           | 162.              |               |
| 169.               | 177. | 185.                     | 194.           | 203.              | •             |
| 214.               | 225. | 237.                     | 251.           | 265.              |               |
| 282.               | 300. | 320.                     | 343.           | 370.              |               |
| 400.               | 436. | 478.                     | 531.           | 596.              |               |
| 682                | 007  | 0 8 5                    | 1210           | 2311              |               |

### TABLE IV

| NRDL-N61 | <u>mean radii</u> | <u>in microns</u> | <u>of the 100</u> | <u>equal-activity</u> | groups |
|----------|-------------------|-------------------|-------------------|-----------------------|--------|
|          | computed          | from rm =         | .00039: orm       | = 7.24                |        |
| .043     | 2 .095            | 145               | 104               | 245                   |        |
| .296     | .350              | . 406             | .464              | . 524                 |        |
| . 587    | .652              | .720              | .790              | . 864                 |        |
| .940     | 1.02              | 1.10              | 1.18              | 1.27                  |        |
| 1.37     | 1.47              | 1.57              | 1.67              | 1.78                  |        |
| 1.90     | 2.02              | 2.14              | 2.27              | 2.41                  |        |
| 2.55     | 2.70              | 2,85              | 3.01              | 3.18                  |        |
| 3.36     | 3.54              | 3.73              | 3.93              | 4.14                  |        |
| 4.35     | 5 4.58            | 4.82              | 5.07              | 5.33                  |        |
| 5.61     | 5.89              | 6.19              | 6,51              | 6.84                  |        |
| 7.19     | 7.55              | 7.94              | 8,34              | 8.77                  |        |
| 9.22     | 9.70              | 10.2              | 10.7              | 11.2                  |        |
| 11.8     | 12.5              | 13.1              | 13.8              | 14.6                  |        |
| 15.4     | 16.3              | 17.2              | 18.2              | 19.2                  |        |
| 20.3     | 21.6              | 22.9              | 24.3              | 25.8                  |        |
| 27.5     | 29.3              | 31.3              | 33.4              | 35.8                  |        |
| 38.4     | 41.3              | 44.6              | 48.2              | 52.3                  |        |
| 57.0     | 62.3              | 68.4              | 75.5              | 83.9                  |        |
| 94.0     | 100.<br>252       | 121.              | 140.              | 166.                  |        |
| 201.     | 253.              | 340.              | 517.              | 1161.                 |        |

ĩ

ľ

### TABLE V

## <u>NRDL-N61 mean radii in microns of the 100 equal-mass groups</u> computed from rm = .00039: $\sigma_{rm} = 7.24$

|       |       |       | I D   |       |
|-------|-------|-------|-------|-------|
| .303  | .678  | 1.02  | 1.37  | 1.73  |
| 2.10  | 2.48  | 2.87  | 3.29  | 3.71  |
| 4.16  | 4.62  | 5.10  | 5.60  | 6.12  |
| 6.66  | 7.23  | 7.82  | 8.43  | 9.07  |
| 9.74  | 10.4  | 11.1  | 11.9  | 12.6  |
| 13.5  | 14.3  | 15.2  | 16.1  | 17.1  |
| 18.1  | 19.1  | 20.2  | 21.4  | 22.5  |
| 23.8  | 25.1  | 26.4  | 27.8  | 29.3  |
| 30.9  | 32.5  | 34.2  | 35.9  | 37.8  |
| 39.7  | 41.8  | 43.9  | 46.1  | 48.5  |
| 51.0  | 53.6  | 56.3  | 59.2  | 62.2  |
| 65.4  | 68.8  | 72.3  | 76.1  | 80.1  |
| 84.3  | 88.7  | 93.5  | 98.5  | 103.  |
| 109.  | 115.  | 122.  | 129.  | 136.  |
| 144.  | 153.  | 162.  | 172.  | 183.  |
| 195.  | 208.  | 222.  | 237.  | 254.  |
| 272.  | 293.  | 316.  | 342.  | 371.  |
| 404.  | 441.  | 485.  | 535.  | 595.  |
| 666.  | 752.  | 860.  | 996.  | 1177. |
| 1427. | 1797. | 2409. | 3651. | 8140. |

## TABLE VI

C

ŕ

.

1

| <u>TOR-C</u> mean | <u>radii in mica</u> | <u>cons of the</u> | <u>100 equal-a</u>                                                                     | ctivity groups |
|-------------------|----------------------|--------------------|----------------------------------------------------------------------------------------|----------------|
|                   | computed fr          | com rm = 50.       | $\begin{array}{l} \mathbf{6:} \ \mathbf{\sigma} \ = \ 1. \\ \mathbf{rm} \ \end{array}$ | 36             |
| 29.0              | 32.8                 | 35.0               | 36.7                                                                                   | 38.0           |
| 39.2              | 40.2                 | 41.1               | 42.0                                                                                   | 42.8           |
| 43.5              | 44.3                 | 44.9               | 45.6                                                                                   | 46.2           |
| 46.9              | 47.5                 | 48.0               | 48.6                                                                                   | 49.2           |
| 49.7              | 50.2                 | 50.8               | 51.3                                                                                   | 51.8           |
| 52.3              | 52.8                 | 53.3               | 53.8                                                                                   | 54.3           |
| 54.7              | 55.2                 | 55.7               | 56.2                                                                                   | 56.6           |
| 57.1              | 57.6                 | 58.1               | 58.5                                                                                   | 59.0           |
| 59.5              | 59.9                 | 60.4               | 60.9                                                                                   | 61.4           |
| 61.9              | 62.3                 | 62.8               | 63.3                                                                                   | 63.8           |
| <b>ύ4.3</b>       | 64.8                 | 65.3               | 65.8                                                                                   | 66.3           |
| 66.8              | 67.3                 | 67.9               | 68.4                                                                                   | 69.0           |
| 69.5              | 70.1                 | 70.6               | 71.2                                                                                   | 71.8           |
| 72.4              | 73.0                 | 73.6               | 74.3                                                                                   | 74.9           |
| 75.6              | 76.3                 | 77.0               | 77.7                                                                                   | 78.4           |
| 79.2              | 80.0                 | 80.8               | 81.6                                                                                   | 82.5           |
| 83.4              | 84.4                 | 85.4               | 86.4                                                                                   | 87.5           |
| 88.7              | 89.9                 | 91.2               | 92.7                                                                                   | 94.2           |
| 95.8              | 97.7                 | 99.7               | 102.                                                                                   | 104.           |
| 107.              | 111.                 | 117.               | 124.                                                                                   | 141.           |

· · · - - - - · · ·

TABLE VII

| <u> FOR-C mean</u> | <u>radii in mic</u> : | <u>rons of the</u> | <u>100 equal-r</u> | nass groups |
|--------------------|-----------------------|--------------------|--------------------|-------------|
|                    | computed from         | m rm = 50.6        | : σ = 1.30<br>rm   | 5           |
| 30.4               | 34.4                  | 36.7               | 38.4               | 39.8        |
| 41.1               | 42.1                  | 43.1               | 44.0               | 44.9        |
| 45.7               | 46.4                  | 47.1               | 47.8               | 48.5        |
| 49.1               | 49.8                  | 50.4               | 51.0               | 51.5        |
| 52.1               | 52.7                  | 53.2               | 53.8               | 54.3        |
| 54.8               | 55.3                  | 55.9               | 56.4               | 56.9        |
| 57.4               | 57.9                  | 58.4               | 58.9               | 59.4        |
| 59.9               | 60,4                  | 60.9               | 61.4               | 61.9        |
| 62.4               | 62.9                  | 63.3               | 63.8               | 64.3        |
| 64.8               | 65.4                  | 65.9               | 66.4               | 66.9        |
| 67.4               | 67.9                  | 68.5               | 69.0               | 69.5        |
| 70.1               | 70.6                  | 71.2               | 71.7               | 72.3        |
| 72.9               | 73.5                  | 74.1               | 74.7               | 75.3        |
| 75.9               | 76.6                  | 77.2               | 77.9               | 78.6        |
| 79.3               | 80.0                  | 80.7               | 81.5               | 82.2        |
| 83.0               | 83.9                  | 84.7               | 85.6               | 86.5        |
| 87.5               | 88.5                  | 89.5               | 90.6               | 91.8        |
| 93.0               | 94.3                  | 95.7               | 97.1               | 98.7        |
| 100.               | 102.                  | 104.               | 107.               | 109.        |
| 112                | 117                   | 1 2 2              | 130                | 148         |

#### Initial Stabilized Cloud

The initial cloud is modeled as an upright circular cylinder that resembles a tomato soup can, as in Figure 3. The DELFIC data for stabilization time and horizontal cloud radius as a function of yield were least-squares fit to a polynomial in ln(Y) for this study. The data taken from DELFIC to generate these fits are reproduced in Appendix A. The expressions to fit the DELFIC data are:

$$T_{vs} = 385.295 - 99.1476 (1nY) + 64.6314 (1nY)^{2}$$
  
- 8.21379 (1nY)<sup>2</sup> + .323598 (1nY)<sup>4</sup> [s] (3)

where  $T_{ys}$  is vertical stabilization time in seconds and Y is yield in kilotons: and

$$S_0 = 868.277 - 632.399 \ln Y + 625.132 (lnY)^4$$
  
- 112.586 (lnY)<sup>3</sup> + 7.16648 (lnY)<sup>4</sup> [m] (4)

where  $S_0$  is the cloud radius in meters at vertical stabilization time. This radius is assumed here to represent a 2 $\sigma$  distribution so that when finding  $\sigma_x$  and  $\sigma_y$  using the formulae for toroidal growth (discussed later in this section), the initial cloud horizontal distribution  $\sigma_0$  will be

$$\sigma_0 = \frac{S_0}{2} \tag{5}$$

The expressions for the time since burst and cloud radius at the end of horizontal stabilization step are given in Appendix A. In this study, no DELFIC information for times later than vertical cloud stabilization is used.

Hopkins (Ref 11) developed a fit for the vertical distribution of the cloud. Hopkins ran DELFIC with yields from 1 kiloton to 15 megatons and fitted particle size versus altitude to a linear function for each yield. The altitude used for this was the average center altitude of all of the wafers for a given particle size group. The slopes and intercepts were then fit to polynomials in logarithmic yield so that

$$z_0^{i} = I_m + 2 rm^{i} S_m [m]$$
 (6)

where  $rm^{i}$  is the mean radius of the particle size group in microns,  $z_{0}^{i}$  is the initial center altitude of each particle group distribution in meters,  $I_{m}$  is the (zero-radius) intercept in meters, and  $S_{m}$  is the slope in meters (of altitude) per micron (of radius). Hopkins found:

$$I_{m} = EXP\{7.889 + 0.34 (lnY) + .001226 (lnY)^{*} - .005227 (lnY)^{*} + .000417 (lnY)^{*}\}$$
(7)

 $S_{m} = -EXP\{1.54 - .01197 (1nY) + .03636 (1nY)^{2} - 0.0041 (1nY)^{2} + .0001965 (1nY)^{4}\}$ (8)

where Y is the yield in kilotons.

Hopkins developed the above equations using the DELFIC default particle size distribution. Many DELFIC runs were made with a variety of particle size distributions for this study. It was determined that Hopkins' size versus altitude function does

not change when different size distributions are used. This is discussed further in Appendix A.

Bridgman and Hickman (Ref 2) incorporated Hopkins' vertical cloud distribution into the AFIT Smear Code fallout model, and further assumed that the vertical distribution of each size group was gaussian with

$$\sigma_z^{i} = .18 z_0^{i} [m]$$
 (9)

i.e. the higher the particle, the larger its  $\sigma_z$ . Study of DELFIC data has shown that this approximation is valid only for yields above 1 megaton. Particles lofted by megaton size yields have a nearly constant  $\sigma_z$  at all altitudes, while sub megaton yields show a decreasing  $\sigma_z$  with increasing altitude. The DELFIC data for vertical particle distribution were incorporated in a polynomial least-squares fit to yield in a manner similar to Hopkins' fit for particle initial altitude,

$$\Delta z^{i} = I_{d} + 2 rm^{i} S_{d} [m] \qquad (10)$$

where  $\Delta z^{i}$  is the predicted vertical thickness of the i<sup>th</sup> monosize particle group and I<sub>d</sub> and S<sub>d</sub> are the intercept and slope. It was found that

$$S_{d} = 7 - EXP\{1.78999 - .048249 (1nY) + .0230248 (1nY)^{2} - .00225965 (1nY)^{2} + .000161519 (1nY)^{4}\} (11)$$

$$I_{d} = EXP\{7.03518 + .158914 (1nY) + .0837539 (1nY)^{2} - .0155464 (1nY)^{2} + .000862103 (1nY)^{4}\} (12)$$

The  $\sigma_{\perp}$  is then arbitrarily taken as

Ē

where

÷.

$$\sigma_{z}^{i} = \frac{1}{4} \Delta z^{i} \qquad [m] \qquad (13)$$

That is,  $\Delta z$  is assumed to be a 2 $\sigma$  distribution about a point midway between the top and bottom of the  $\Delta z$  function. Functions that independently fit particle size versus altitude for the upper and lower limits of each monosize particle group can be found in Appendix A. Hopkins' formulae Eq (7,8) are fits to the average altitude of the 20 wafer centers in each group.

#### Cloud Activity Distribution

The cloud takes 3 to 6 minutes to stabilize vertically at a height and diameter depending on weapon yield. The initial, stabilized, nuclear cloud is modeled as a right circular cylinder. The cylinder represents the limits of a  $2\sigma$  normal distribution in the lateral dimensions and the limit of the sum of the  $2\sigma$  normal distributions of the airborne particle groups in the vertical dimension. See Figure 3.

The activity in the cloud varies as a function of position and time. The vertical distribution of the different size groups is assumed to be that of DELFIC, as modeled by Hopkins. Each individual particle size group is assumed to be normally distributed both vertically and horizontally: and these spatial distributions are assumed to be independent of each other. Thus the activity density A''' at a point in the cloud is

$$A'''(x,y,z,t) = \int_0^{\infty} A_r'''(x,y,z,r,t) dr \quad [Ci/m^3] \quad (14)$$
  
$$A'''(x,y,z,r,t) \quad \text{is the specific activity density in}$$

Curies/ $m^3$ -micron. The three spatial dimensions are independent, thus separable. The horizontal distributions in (x, y) are assumed to be independent of particle size r so that

2

$$A_{r}''(x,y,z,t) = f(x,t) f(y,t) \int_{0}^{\infty} A_{r}'(z,r,t) dr [Ci/m3] (15)$$

where  $A_r'(z,r,t)$  is the specific activity in Curies per meter of altitude per micron of radius as a function of r and time t. The normalized horizontal distributions are of the form

$$f(x,t) = \frac{1}{\sqrt{2\pi} \sigma_{x}(t)} \exp \left\{ -\frac{1}{2} \left[ \frac{x - x_{0}}{\sigma_{x}(t)} \right]^{2} \right\} [1/m] (16)$$

$$f(y,t) = \frac{1}{\sqrt{2\pi} \sigma_y(t)} \exp \left\{ -\frac{1}{2} \left[ \frac{y - y_0}{\sigma_y(t)} \right]^2 \right\} \qquad [1/m] \qquad (17)$$

where the point  $x_0$ ,  $y_0$  is defined as the center of the cloud.

The integral in Eq (15) can be replaced by a summation over 100 discrete monosize particle groups.

$$\int_{0}^{\infty} A_{r}'(z,r,t) dr = \sum_{i=1}^{100} A^{i}_{i} f^{i}(z,t) [Ci/m]$$
(18)

where each group A<sup>i</sup> contains 1% of the total activity at unit time and the normalized vertical activity distribution for each group is

$$f^{i}(z,t) = \frac{1}{\sqrt{2\pi} \sigma_{z}} \quad orp \left[ -\frac{1}{2} \left[ \frac{z^{i} - z}{\sigma_{z}^{i}} \right]^{2} \right] \quad [1/m] \quad (19)$$

 $\sigma_x$ ,  $\sigma_y$ , and  $\sigma_z$  will be discussed later in this chapter.



Now, Eq (14) can be rewritten as

$$A'''(x,y,z,t) = f(x,t) f(y,t) \sum_{i=1}^{100} A^{i} f^{i}(z,t) [Ci/m^{3}] \qquad (20)$$

Note that this equation gives the activity density for any point in the cloud. If we set  $\Delta x = x - x_0 = 0$  and  $\Delta y = y - y_0 = 0$  in Eq (16,17), we have the activity at the horizontal cloud center as a function of altitude, which is the maximum activity density at any altitude.

Finally, activity is a function of time, as radioactive decay takes place. The Way-Wigner approximation is used:

$$A(t) = A_1 t^{-1.2}$$
 [Ci] (21)

where A(t) is the total activity in Curies at a given time t in hours since burst and where  $A_1$  is equal to 530 gamma megacuries per kiloton of fission yield at unit time (1 hour since burst) (Ref 8).

This completes our description of the initial stabilized cloud. In the next section we will consider horizontal cloud growth due to wind shear and toroidal cloud expansion, and vertical cloud growth as the particles fall to the ground.

Late Time Cloud

100 We define the term  $\sum_{i=1}^{100} A^i f^i(z,t)$  in Eq (20) as f(z,t), i=1 the (total) activity per vertical meter. Values for f(z,t) used in this study are shown in Figures 6-9. These vertical activity densities can be converted to Curies/meter<sup>3</sup> (the activity density) by evaluating f(x,t) and f(y,t) in Eq (16,17) for Eq (20). This requires that the horizontal size of the cloud, in terms of  $\sigma_{-}$  and  $\sigma_{-}$ , be found.

DELFIC output for this study included information only on the initial cloud conditions. No attempt was made to model the cloud in time. Therefore, the toroidal growth and wind shear terms incorporated in the AFIT Fallout Smear Code for  $\sigma_x$  and  $\sigma_y$  are retained.

1

Wind shear is the term representing the change in wind velocity with altitude normally observed in the atmosphere. The total wind shear is composed of two components. Directional shear is due to a change of wind direction with altitude, and speed shear is due to a change of wind speed with altitude. These two factors are summed in quadrature to obtain the total shear  $S_t$  in km/hr-km.

The upright circular cylinder used to describe the initial cloud is stretched in the direction of the total wind shear (due to the difference in velocity of the top and bottom of the cloud) until the cloud resembles a sardine can from above as depicted in Figure 4.

Fallout models designed to produce ground dose, such as WSEG or the AFIT Smear model, usually employ a single constant wind (assumed to be in the x direction) for simplicity in determining the fallout hotline. For this 'average' single constant wind, the speed shear term is applied to the downwind direction and the directional shear term is applied to the transverse (crosswind) direction. The directional shear used in WSEG and AFIT models is called S<sub>w</sub> and is given a value of 1 km/hr-km. The speed shear,

 $S_x$ , is ignored because any elongation of the cloud in the downwind direction will change the time of deposition, not the amount, of fallout. The cloud is transported downwind by the average wind velocity  $v_a$  and translated crosswind by the directional shear  $S_a$ .

Hickman (Ref 10), who developed an airborne dose model from the AFIT Smear model, and Kling (Ref 16), who refined Hickman's model, retained this interpretation of the single constant wind in their theses. In effect, the aircraft was held fixed at a point over the ground and the cloud passed it at velocity  $v_x$  equal to the aircraft cruise speed. Bridgman and Hickman (Ref 2) recognized that, for an airborne cloud penetration, the choice of a preferred coordinate system was arbitrary: relative to an aircraft penetrating the cloud, the wind could be from any direction. They arbitrarily assigned  $S_x$  equal to  $S_y$  and applied them to  $\sigma_x$  and  $\sigma_y$  respectively, as discussed later in this section.

That assumption of similar magnitudes for  $S_x$  and  $S_y$  can be improved upon. A typical wind has a speed shear of 8 to 10 km/hr-km, an order of magnitude larger than the directional shear of 1 km/hr-km proposed by WSEG.<sup>2</sup> This means that the cloud will be elongated much more in the downwind direction (due to speed shear)

#### 2. This can be verified by watching a typical summer thunderstorm, which has dimensions similar to a nuclear cloud (for similar reasons: the energy released in a thunderstorm is the same or greater than a nuclear burst). The main shaft of the thunderstorm resembles Figure 4 when seen from the side, stretching from west to east. During the storm's mature stage, the direction and speed of the stratospheric winds can be easily visualized as they 'blow off' the top cloud layers. This upper level wind velocity can be compared to that perceived at the surface (beyond the distance that the storm's gust front reaches) to obtain a feeling for the quantities involved.

than in the crosswind direction (due to directional shear). Because this downwind elongation was ignored by Hickman and Kling, the activity densities (and dose rates) inside their cloud models can be considered too high. In the next chapter, however, we will see that elongation of the cloud in the direction of penetration (assumed by Hickman and Kling to be downwind) will not affect dose. In this study, the motions of an aircraft are considered relative to the surrounding air, not the ground. The aircraft is allowed to penetrate the cloud at any altitude, direction, airspeed, or time after the burst. Thus speed as well as directional shear is required. Because we are concerned only with the cloud and the aircraft, we will ignore the ground and define the x axis as relative to the aircraft and in the direction of its velocity vector. Total shear will be broken down into its components relative to the aircraft direction, rather than relative to the wind direction. This is equivalent to choosing an aircraft cloud penetration angle relative to the wind direction (see Figure 5) by using the law of cosines.

These shears are defined as:

1

$$S_{1} = dV_{1}/dz [1/hr]$$
 (22)

$$S_{y} = dV_{y}/dz$$
 [1/hr] (23)

where S is wind shear and V is the wind velocity. The x and y coordinates are now referenced to the aircraft, where x is in the direction of the aircraft heading and y is at right angles to this.


Z

26A

The total shear  $S_t$  is equal to the square root of the sum of  $(S_x)^3$  and  $(S_y)^3$ . In this study, we will take  $S_y = 1/hr$  and  $S_x = 0/hr$  in the same sense that Hickman and Kling used, for comparison purposes. In the next chapter, we will see how penetration direction affects dose.

From WSEG, the empirical formulae relating shear to the standard deviation of the normal distributions are

$$(\sigma_{x})^{3} = (\sigma_{0})^{3} \{1 + (8TA)/TC\} + (\sigma_{z} S_{x} t)^{3} [m]$$
 (24)

$$(\sigma_{y})^{2} = (\sigma_{0})^{2} \{1 + (8TA)/TC\} + (\sigma_{z} S_{y} t)^{2} [m]$$
 (25)

where TA = t for times less than three hours and TA = 3 for times greater than three hours, and TC from WSEG is

$$TC = 12(H_c/304.8)/60 - \{2.5((H_c/304.8)/60)^2\} [1/hr]$$
 (26)

6.

Polan (Ref 24) incorporates a correction factor so that

TCP = TC 1.05732 (1 -.5 EXP{ -((
$$H_c/304.8$$
)/25)<sup>3</sup>}) [1/hr] (27)

TCP is the time constant for the toroidal growth term in this study. Toroidal growth is assumed to stop at the end of three hours.  $H_c$  is the cloud activity center height. In this study, the empirical  $H_c$  from WSEG is not used, but rather  $H_c$  is taken from Hopkins formula Eq (6) where  $rm^i$  for the median size particle group (i = 50) is selected.

The fall mechanics of the particles in each size group behave according to the equations of McDonald (Ref 18) and Davies (Ref 6) after Bridgman and Bigelow (Ref 1). An atmosphere with no vertical wind is assumed. The fall velocity of each group is found by this method and the distance fallen in an interval is

Π

$$z_{j}^{i} = z_{j-1}^{i} - v^{i}\Delta t$$
 [m] (28)

where  $z^{i}_{j}$  is the new altitude of the vertical distribution center of particle size group i and  $z^{i}_{j-1}$  is the altitude at the end of the previous interval.

The fall velocity  $v^i$  is determined by the atmospheric density and viscosity at altitude  $z^i_{j-1}$ . The initial altitude the particle falls from is given by Eq(6). The interval  $\Delta t$  must be small enough so that the atmospheric properties do not change significantly in the distance fallen during the interval.

It was determined by Hickman (Ref 10) and Kling (Ref 16) and confirmed in this study that at early times (less than about one hour) the cloud fall calculations are inaccurate with time intervals of less than 0.1 hour. Each interval uses a large amount of computer time. A variable  $\Delta t$  was found to reduce the amount of calculation needed. For times greater than one hour,  $\Delta t$  can be increased becaus the heaviest particles have already 'fallen out' and the remaining cloud settles more slowly with time. Also, particle groups more than 3 $\sigma$  away from the aircraft or more than  $3\sigma$  below ground level can be ignored. With these modifications, the cloud model can be advanced 48 hours from burst time in less than 35 minutes on a typical 8 bit home computer (Kaypro II).

Solutions for specific activity in Curies per vertical meter from Eq(20) for a variety of times and altitudes and the DELFIC default particle size distribution are shown in Figure 6.

Figures 7 and 8 show solutions for sizes weighted towards smaller (NRDL-N61) and larger (TOR-C) distributions.

المعارية المعارية

Note that both NRDL-N61 and TOR-C have larger specific activities than DELFIC at the vertical activity centers. This is balanced by lesser activities at other altitudes. It can be seen that for DELFIC and NRDL-N61, the settling rate of the dust through the atmosphere is unimportant compared to the rate at which the activity decays with time. In these cases, the vertical activity center remains near its initia! stubilized altitude until the activity has decayed to low levels. An aircraft may reduce its exposure by flying as far below or above the peak activity as feasible: although the latter is unlikely for megaton size yields.

Figure 8 for TOR-C shows that the large particles in this distribution settle very quickly compared to the decay rate: in this case, an aircraft may be better advised to stay high after about an hour after burst. This plot is presented again in Figure 9 with a linear activity scale so that the cloud fall may be more easily visualized.

These plots are presented based on a fission fraction of 1 so that activities for any desired fission fraction can be found by applying a simple multiplicative factor. Dose calculations in the next chapter will be carried out with a fission fraction of .5, which is more nearly representative of a one megaton burst.





•••

2222222222 AUGUSTERST THE CONSTRUCTION OF A DAY



.

ł

Q!

32

. . . . .



P ALK C LA

Ú

م مر بر 6.

### Multiple Bursts

Ĩ

.

Crandley (Ref 5) has shown that a multiburst attack on a limited area, such as a missile field, can be modeled by a simple burst amplification factor applied to the activity density of a single burst case.

For target field of dimensions Lx by Wy, attacked by a total of N = Nx  $\cdot$  Ny uniformly distributed equal yield bursts,

$$f(x,t_{a}) = \frac{\sqrt{N}}{Lx} \int_{-x}^{+x} \frac{1}{\sqrt{2\pi} \sigma_{x}(t_{a})} \exp \left\{ -\frac{1}{2} \left[ \frac{x - v_{x} t_{a}}{\sigma_{x}(t_{a})^{2}} \right]^{2} \right] dx \quad (29)$$

where z = Lz/2,  $v_x$  is the wind velocity, and a similar expression for  $f(y,t_x)$ . These reduce to

$$F_{\mathbf{X}} = \frac{N_{\mathbf{X}}}{L_{\mathbf{X}}} \sqrt{2\pi} \sigma_{\mathbf{X}}(t_{\mathbf{x}})$$
(30)

and

( ...

$$F_{y} = -\frac{N_{y}}{N_{y}} \sqrt{2\pi} \sigma_{y}(t_{a})$$
(31)

where the burst amplification factor F is multiplied by the single burst activity density in Eq (16) to produce the multiburst activity density. This factor can also be applied to the dust density in Chapter IV.

The next two chapters must be considered before results for multiburst dose and dust ingestion can be found. Appendices I and J present results for a multiburst attack of 300 one megaton weapons in a 150 km square field.

### III. Dose Analysis

### Background

.

· · ·

(•

There are four ways that an aircraft crew can be exposed to gamma radiation from a nuclear cloud. They are ground-shine, skin-shine, sky-shine, and exposure to the radioactive dust that enters with the air provided to pressurize and cool the cabin and equipment.

Ground-shine is disregarded in this study. Hickman and Kling have previously shown that ground-shine exposure to an aircraft is negligible for an aircraft flying a few gamma mean free paths above the ground. At sea level, the 1 MeV gamma mean free path is 120 meters. Hickman (Ref 10) has shown that for an aircraft flying 305 meters above the ground, the dose rate at the aircraft is equal to  $10^{-11}$  times the ground activity.

Skin-shine results from nuclear cloud particles attached to the outer skin of the aircraft. No quantifiable information on this phenomenon could be found. However, dust particles small enough to stay airborne for significant periods may not be able to penetrate the aerodynamic boundary layer outside the skin of the aircraft and attach to the skin in numbers large enough to cause a significant dose to the crew inside. Skin-shine will be disregarded as being beyond the scope of this study.

The baseline aircraft used to compute sky-shine and cabin dose in this study is a KC-135 aircraft. For simplicity, doses are computed for the center of the cabin. Note that the model used in this study is very different from those employed by

Hickman and Kling. Different cabin sizes fiding factors, and airflow rates are used. It should also be noted that the KC-135 and EC-135 aircraft are based on the Boeing 717 which is very different from a Boeing 707. The E-3 is bood the 707 not the KC-135. These differences will be discussed in more detail later.

### Cabin Geometry

₹....

The internal dimensions of the cabin are assumed to be a cylinder. Although a cylinder is a reasonable model for most aircraft cabins, some adjustments need to be made. For instance, the values used by Hickman and Kling for cabin radius and length result in a volume more than twice as large as the pressurized volume stated for the cabin, resulting in too much dose. Part of this is due to a too large radius, out the rest is due to the fact that in a KC-135 or EC-135 aircraft (Boeing 717, NOT 707) the floor is a pressure bulkhead. The entire circular cross section of the fuselage is not pressurized.

To allow for variations of the simplified cylindrical model compared to the real aircraft, a pseudolength is used for this model. This length represents the value obtained by dividing the pressurized volume of the cabin by the cross sectional area {pressurized volume/ $(\pi r^2)$  = pseudolength}. This is the cabin length that will be used for the cabin dose rate integral described later in this chapter. Length is chosen to vary rather than radius because radius is the most accurately known and least variable dimension, and because the cabin geometry factor is more sensitive to radius than length.

In the case of certain aircraft, such as the B-52 or B-1 with

square or triangular cabin cross sections, both length and radius must be adjusted to find a cylinder similar to the cabin configuration and having the same volume. Appendix D provides the data needed to evaluate a variety of aircraft. Numbers shown are for a typical operational wartime mission for each aircraft.

### <u>Sky-shine\_Shielding</u>

Attenuation of gamma rays by any material follows the formula

$$A = A_0 e^{-(\mu t / \rho) MI}$$
 [Ci] (32)

where  $A_0$  is the incident gamma activity,  $\mu_t/\rho$  is the gamma ray attenuation coefficient in m<sup>3</sup>/kg, MI is the mass integral in kg/m<sup>3</sup>, and A is the activity after passing through the shield. The dimensionless exponential term  $e^{-(\mu_t/\rho)}$  MI will be referred to as the gamma transmission factor T<sub>2</sub>.

The shielding model developed for this study finds the mass integral by dividing the mass of the cabin by the surface area of the cabin, resulting in the desired  $kg/m^3$  for the mass integral. This model-necessitates the assumptions:

- 1. The mass and area of the wings, tail, fuel, and in bombers the fuselage aft of the crew compartment are ignored.
- 2. The radiation from the distributed cloud is isotropic.
- 3. The cabin wall is homogeneous. It is composed of a single material (aluminum), which is evenly distributed with a single thickness.

Although these assumptions may seem quite limiting, in practice they are not. In fact, they are generally conservative. The wings and tail in the first assumption may provide a good

shield, but they subtend a small angle as observed from the cabin, thus contributing little to overall shielding. The amount of fuel carried in the fuselage (if any) varies with time, and is ignored for simplicity. The fuselage aft of the crew compartment on bomber type aircraft can be considered an infinite shield. The angle subtended by the shield is highly variable at different points within the cabin, however. The aft fuselage is also ignored for simplicity. These are conservative choices.

Isotropic radiation from the distributed cloud was assumed in the previous section and does not pose a problem.

In the last case, about 80% of typical aircraft structure and equipment is aluminum and most of the remainder is low atomic number material with similar cross sections for gamma rays in the 1 MeV range.

All mass, including equipment inside the cabin, is included in the shield. Numerical analysis of several worst case mass distributions in the cabin leads to the conclusion that any reduction in shielding due to anisotropic mass distribution would be similar in magnitude to the increase in shielding realized by using a cylindrical rather than the implied spherical geometry, thus justifying the assumptions. These factors are on the order of -15% and +15% for a KC-135 type aircraft. The third assumption implies a spherical geometry for the shield because we assume the attenuation to be uniform for walls of a single, constant, thickness. This implied geometry is conservative: For a fixed wall thickness, any enclosed volume will receive the least shielding from a sphere.

### Sky-shine Dose Rate

As the aircraft approaches the cloud, it will not be exposed to a significant amount of radiation until it is within a few gamma mean free paths of the cloud. Activity will rise until it reaches a peak at the center of the cloud, and will then fall off as the aircraft exits the cloud. There are three assumptions to be made at this point:

- The activity density of the cloud does not vary vertically within a few gamma mean free paths.
- 2. The lateral cloud dimensions are at least 5 gamma mean free paths.
- 3. The aircraft does not penetrate the cloud prior to stabilization.

These assumptions are needed so that the integration for dose rate can be carried out analytically. The first two assumptions establish that the cloud is homogeneous in the vicinity of the aircraft. These assumptions are unlikely to be violated except at times less than 1 hour and altitudes above 40,000 feet. Any aircraft violating the last assumption is likely to be destroyed either by prompt effects or by turbulence and debris in the rising fireball.

The activity density A'''(x,y,z,t) in Ci/m<sup>2</sup> for the nuclear cloud is given by Eq (20). An aircraft immersed in the cloud will experience a dose rate from sky-shine calculated from the spherical integral

$$D = C A'''(x,y,z,t) \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{S} \frac{\mu_{a}}{\rho} \frac{e^{-\mu_{t}s}}{4\pi s} \sin\theta d\phi d\theta ds (33)$$

where A'''(x,y,z,t) is the activity density in the cloud and s is the radial direction from the aircraft. C is a factor to convert activity to dose rate and has a value of 2131 [rem-kg/Ci-hr] for 1 MeV gamma rays. The term  $\mu_a/\rho$  is the tissue absorption coefficient, and  $\mu_a$  is the total attenuation coefficient of air.

The attenuation due to the self-shielding of dust suspended in the air is negligible and is ignored. Information on dust densities developed in the next chapter is found in Appendices H and J. Comparing dust density to air density indicates that self-shielding from dust amounts to less than 0.3% of the self-shielding due to air for a single 1 megaton burst.

Integrating Eq (33) allowing S to approach infinity, and allowing for cabin shielding with the gamma transmission factor T  $\gamma$  from Eq (32), the dose rate inside the cabin is

$$D = C T_{\gamma} A'''(x,y,z,t) \xrightarrow{\mu_{\alpha}} \mu_{\alpha} \qquad [rem/hr] \qquad (34)$$

where activity is still at unit time reference and must be converted to penetration time by the Way-Wigner decay formula.

If the aircraft flies completely through the cloud in the x direction with velocity  $v_x$  then the sky-shine dose inside the cabin will be

$$D = \int_{-\infty}^{+\infty} \dot{D}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{t}') d\mathbf{t}' = \int_{-\infty}^{+\infty} \dot{D}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{t}_{\mathbf{a}}) d\mathbf{x}/\mathbf{v} \quad [rom] \quad (35)$$

where  $dx = v_d t'$  and t' = 0 when  $t = t_a$ , the cloud penetration time. The cloud penetration time is defined as the time when the aircraft passes the cloud centerline,  $y = y_0$ .

3

D

Computing dose in this fashion assumes that the activity density profile in the cloud is constant with respect to both cloud expansion and activity decay with time. The cloud is therefore 'frozen' at time  $t = t_{\rm c}$  during the aircraft transit.

A rigorous treatment would have the activity density higher on the entry side of the cloud than on the exit side, since the cloud is expanding and activity is decaying during the time it takes the aircraft to transit the cloud. However, a numerical analysis for this study has shown that a rigorous treatment tends to average the doses received on each side of the cloud so that the cloud 'frozen' at  $t = t_a$  in this study results in doses within 1% of the more detailed treatment for typical cloud sizes and aircraft velocities.

Collecting and expanding terms from Eq ( 35 ), dose is

$$D = \frac{T_{\gamma}}{3600 \nabla_{\gamma}} \frac{C}{\mu_{\pm}} \frac{\mu_{\pm}}{\rho} f(y,t) A'(z,t) \int_{-\infty}^{+\infty} f(x,t) dx [rem] (36)$$

where the factor 3600 changes velocity from m/s to m/hr to match the conversion constant C. For an aircraft flying through the center of the cloud,  $x-x_0 = 0$  and  $y-y_0 = 0$ . From Eq (17), f(y,t) then reduces to  $(\sqrt{2\pi\sigma_y})^{-1}$ . From Eq (16), the above integral of f(x,t) is then just equal to unity, the value of the cumulative lognormal function integrated over all x.

Thus the dose is

$$D = \frac{T_{\gamma}}{3600 v_{x}} \frac{C}{\mu_{t}} \frac{\mu_{a}}{\rho} \frac{(1)}{\sqrt{2\pi} \sigma_{y}} A'(z,t) [rem] (37)$$

where A'(z,t) is the activity per vertical meter found in Eq (18). Figures 6 through 9 show the numerical results found for A'(z,t) in the cases used for this study.

### Cabin Dust Dose Rate

The aircraft flies through the cloud in the x direction sweeping out all of the activity at a given altitude. The activity in a unit cross section of the cloud projected along the x axis is A''(y,z,t), which might be described as an 'activity-integral' analogous to the 'mass-integral' MI.

$$A''(y,z,t) = f(y,t) A'(z,t) \int_{-\infty}^{+\infty} f(z,t) dx [Ci/m3] (38)$$

where f(y,t) is found from Eq (17) and A'(z,t) is found from Eq (18). The integral  $\int_{-\infty}^{+\infty} f(x,t)$  is again equal to 1.

The amount of activity that enters the cabin can be determined by finding an equivalent inlet area IA for the cabin. This is

$$IA_{cd} = \frac{\Omega}{v_x \rho_{air}} [m^3] \qquad (39)$$

where  $\Omega$  is the mass flow rate of air into the cabin from the engine compressor in kg/sec,  $\rho_{\rm air}$  is the air density at the Lircraft altitude in kg/m<sup>3</sup>, and  $v_{\rm x}$  is the aircraft velocity in m/sec.

The total amount of activity  $A_{cd}$  in Curies trapped in the cabin is the product of Eq (38) and Eq (39). It is the activity 'scooped out' from a tunnel that extends through the

cloud (Figure 4).

Ē

Note that because the mass flow rate of air,  $\Omega_y$  into the cabin is constant, a higher aircraft velocity will result in a smaller effective inlet area, reducing the amount of dust ingested. This is because the cloud is traversed in less time, therefore a smaller volume is ingested at the constant mass flow rate.

Further note that increasing the dimensions of the cloud (either by expansion with time or smearing by wind) in the x direction while aircraft velocity is constant will not change the amount of dust ingested because the integral  $-\infty \int_{\frac{1}{2}}^{+\infty} f(x,t) dx$  is constant: all of the dust in a cross section through cloud will be swept out, regardless of the particle location in the x direction. However, cloud expansion in the y direction (transverse to the aircraft's flight path) will reduce the amount of dust ingested because the value of f(y,t) in Eq (38) will decrease as  $\sigma_y$  increases.

We will assume that all of the dust that enters the cabin is trapped and stays suspended for the remainder of the flight. This assumption is not true, but is used due to the complexities of flow and settling in the cabin. This is a worst case approximation.

The dose rate at the center of a cylindrical cabin is

$$\hat{D} = C - \frac{A_{cd}}{PV} - \frac{\mu_{a}}{\rho} \int_{-H}^{+H} \int_{0}^{R} \int_{0}^{2\pi} -\frac{-\mu_{t} (r^{2} + z^{2})^{1/2}}{4\pi (r^{2} + z^{2})} r d\theta dr dz (40)$$

where C is a factor to convert activity to dose rate and has a value of 2131 [rem-kg/Ci-hr] for 1 MeV gamma rays. A is the unit time activity in Curies of the dust trapped inside the cabin

and PV is the pressurized volume of the cabin. The term  $A_{cd}/PV$  is the activity density in the cabin. The term  $\mu_{a}/\rho$  is the tissue absorption coefficient in  $m^{3}/kg$ , R is the radius of the cabin, H is one half the pseudolength of the cabin and the exponential term allows for self attenuation by the air inside the cabin:  $\mu_{t}$  is the total attenuation coefficient of air in  $m^{-1}$ . The cabin air is maintained at a pressure equivalent to an 8000 foot altitude when the aircraft is higher than 8000 feet by the aircraft pressurization system. For this reason,  $\mu_{t}$  for air at 8000 feet is used.

The integral of Eq (40) when evaluated results in a constant factor K which is dependent on the cabin geometry. This cabin geometry factor K has units of [m] and is a measure of how 'close' the distributed activity of the dust in the cabin is to a given point in the cabin. In this study, we compute dose to the center of the cabin. The above integral is solved numerically. A program to carry this out is found in Appendix K. Values of K for a variety of aircraft are found in Table VIII.

The unit time dose rate at the center of the cabin is

$$D = C K \frac{A_{cd}}{PV} \frac{\mu_a}{\rho} [rem/hr]$$
(41)

The dose is then

<u>\_\_\_\_</u>

$$D = D \int_{t}^{t_a + \Delta t} t \quad [rem] \quad (42)$$

where D is the unit time dose rate, t is the penetration time since burst, and delta t is the time remaining from cloud

penetration to mission completion. Doses for multiple cloud encounters can be obtained by summing the doses from each individual encounter. If this is done for multiple clouds in a single mission, care must be taken so that the mission time remaining from penetration time,  $\Delta t$ , is adjusted in each case so that the doses are computed for realistic exposure times, i.e.  $\Delta t$ equals mission duration minus the time between takeoff and cloud penetration for each cloud encountered during the mission.

The following table was computed using the above equations and the data for each aircraft found in Appendix D. It provides information on dose factors, airspeeds, and cabin sizes and airflow rates for a variety of typical aircraft on operational type missions.

### TABLE VIII

| Aircraft<br>Type | Gamma<br>Transmission<br>Factor T <sub>Y</sub> | Cabin<br>Geometry<br>Factor K<br>M | Velocity<br><sup>V</sup> x<br>M/S | Cabin Air<br>Mass Flow<br>Q<br>KG/MIN | Cabin<br>Pressurized<br>Volume<br>N° | Cabin<br>Radius<br>M |
|------------------|------------------------------------------------|------------------------------------|-----------------------------------|---------------------------------------|--------------------------------------|----------------------|
| B-1B             | . 5265                                         | 1.395                              | 279.2                             | 17                                    | 28.3                                 | 1.07                 |
| B-52G            | .4360                                          | 2.035                              | 231.5                             | 22                                    | 51.9                                 | 1.75                 |
| B-52H            | .4493                                          | 2.035                              | 231.5                             | 22                                    | 51.9                                 | 1.75                 |
| E-3              | .5808                                          | 2.505                              | 164.7                             | 61.5                                  | 356.1                                | 1.79                 |
| E-4B             | .5246                                          | 4.586                              | 164.7                             | 276                                   | 1686                                 | 3.28                 |
| EC-135           | .4537                                          | 2.468                              | 154.2                             | 50                                    | 244.2                                | 1.79                 |
| KC-135           | .7043                                          | 2.459                              | 231.5                             | 50                                    | 232.2                                | 1.79                 |

### AIRCRAFT DOSE DATA

### Filters

đ

Exposure to dust in the cabin can be prevented or reduced in several ways. Depressurizing the cabin during cloud transit would prevent dust entry. Mission requirements may prevent this. Another method is to use a filter to prevent larger particles from entering.

いと見るというない

.

Ì

ţ.

.....

Vr.

Smaller particles could be allowed to pass through, as the mean residence time for air in the cabin is on the order of 5 minutes and the small particles would be quickly flushed out. In this case, the dust in the cabin would contribute to dose only while the aircraft was inside the cloud. For this study, however, the small particles that pass through the filter will remain trapped in the cabin as a worst case for comparison purposes.

It is possible that centrifugal effects in the compressor section of the aircraft engine could reduce or increase the dust density in the cabin airflow prior to filtration. Engines currently undergoing testing for dust erosion effects may provide data on this (Ref 14').

This study will model filtration by subdividing the nuclear cloud into to two congruent clouds. One cloud consists only of those particles which are small enough to pass through the filter. The other cloud consists of the remaining larger particles. The activity scooped out of the 'small particle cloud' is assumed to be trapped in the cabin and will be used for cabin dose computations. The activity scooped out of the 'large particle cloud' is trapped in the filter. Sky-shine dose calculations use the summed activity of both clouds.

A filter studied by Rockwell for the B-1 bomber (Ref 15) will trap all particles with a radius greater than 10 microns. Thus a filter transmission factor for all groups greater than this size in Eq (18) would be 0, i.e., none of them enter the cabin.

Particles between 5 and 10 microns in radius are trapped with a 90% efficiency for a filter transmission factor of 0.1. All particles smaller than 5 micron. pass through the filter, for a filter transmission factor of 1.0.

It should be recognized that if a filter traps enough radioactive dust, it may present a hazard greater than unfiltered air would pose. Care must be taken that the filter is shielded or distant from the aircrew, ground crew, and electronics equipment.

If the filtering efficiency of engines and other parts of the cabin air supply system can be quantified, then a filter transmission factor for the entire system can be used.

Any filter has a limit to its capacity. The filter mentioned above will trap about 225 grams of dust before becoming clogged. After the filter is clogged, it must be bypassed and unfiltered air allowed into the cabin. The mass trapped in the filter for each cloud encounter can be determined as discussed in the next chapter.

### Dose Results

C

1

The output for the baseline case is presented in Table X. The next two tables will be the same, except that the DELFIC particle size distribution is replaced with the NRDL-N61 distribution of rm = .00039 micrometers and  $\sigma_{rm} = 7.24$  (Table XI). The TOR-C distribution of rm = 50.6 and  $\sigma_{rm} = 1.36$  is used for Table XII.

For comparison purposes, the baseline case in this study will be a one megaton burst, fission fraction of 0.5, DELFIC (Defense Land Fallout Information Code) default particle size distribution, a cross track wind shear of 1 (km/hr)/km, an 8 hour mission

duration after cloud penetration, and a KC-135 aircraft.

Table II contains the input parameters for the baseline

C 2 5 0 .

.0

( 9

### Table\_\_IX

## Baseline Case Input Parameters

31 Dec 1438 This is a dose report. CUSTOM SCENARIO: Baseline case - DELFIC and KC-135

WEAPON/TARGET DATA: Number of weapons ----- 1 Weapon yield ----- 1000 KT Fission fraction ----- 0.5 Dust fraction ----- 1/3 The size distribution input file is- DELFIC.RMA Rm = .204 : sigma Rm = 4 The soil density is ----- 2600 KG/M The aircraft specification file is - KC-135.SPC Aircraft velocity is ----- 231.5 M/S Time from cloud penetration to end of mission ----- 8 HR Wind shear X (along track) ----- 0 (KM/HR)/KM Wind shear Y (cross track) ----- 1 (KM/HR)/KM The output file will be named ----- A: BASELINE.DOP

Tables X and XI show that compared to DELFIC, an NRDL-N61 cloud will cause an increased dose at high altitudes, from 30% to 80% more, depending on the time since burst. Concurrently, the NRDL-N61 cloud has from 66% to 30% less dose at low altitudes. These effects are due to the large numbers of small particles in the NRDL-N61 distribution. The smaller particles are carried to higher altitudes and stay up longer, thereby adding to the activity density at high altitudes and subtracting from it at low altitudes. This can be seen by comparing Figure 7 to Figure 6. The dose is further increased at high altitude because the lower air density provides less attenuation.

Table XII shows the results for the TOR-C cloud (composed of relatively large particles) which causes similar doses compared to

DELFIC at early times, but at lower altitudes. Doses fall off very rapidly after the second hour at all altitudes. The dose at two hours is 30 percent less than DELFIC and at an altitude 4000 meters lower. These effects are caused by the rapid fall of the large particles and because the large particles start falling from a lower altitude. The aircrew dose is low because the cloud has fallen out of the air onto the ground. This can be easily visualized in Figure 9.

Tables XIII and XIV are for the B-1B in a DELFIC cloud, without and with a filter. The dose due to dust in the cabin is completely removed at low altitudes, and at high altitudes where there are particles too small for the filter to trap, the dose is reduced by 80%. As expected, the sky-shine dose does not change.

This study assumes a constant gamma ray energy of 1 MeV. It would be possible to make the gamma energy a function of time using data derived by Drinkwater (Ref 7), which gives gamma energies from 1.44 MeV at 0.27 hour to 0.5 MeV at 27 hours. A sample calculation, shown in table XV, carried out for a gamma energy of 0.7 MeV results in a shielding cross saction increase of 10%. Combined with the lower gamma energy, dose is reduced about 35%.

In the baseline case, we took wind shear  $3_x = 0$  and  $S_y = 1$ . If the nuclear cloud is stretched by wind shear in the x direction (the direction of penetration), the activity-integral and  $\sigma_y$  will not change and the dose will remain the same (see Eq ( 37 )). This is shown in Table XVI, where  $S_x = 10$  and  $S_y = 1$ : this represents a long, narrow cloud.

Table XVII shows the results if the aircraft in the last case

penetrates the cloud in the transverse direction. This is accomplished by setting  $S_x = 1$  and  $S_y = 10$ , so that the aircraft flies through a short, wide cloud. Both sky-shine and cabin dust dose are reduced by a factor of 5 at one hour and by a factor of 10 at eight hours. Dose is also inversely proportional to velocity, as shown for sky-shine in Eq (37) and for cabin dust in Eq (39).

en en la servición de la servic

Ē

(•

Tables XVIII to XX show the doses that can be expected for a B-52G, E-4B, and EC-135 respectively. They penetrate the same DELFIC cloud that the baseline KC-135 in Table X used. The sky-shine dose varies with the gamma transmission factor, aircraft velocity, and the transverse size of the cloud. The cabin dust dose varies with velocity, mass flow rate of air into the cabin, the cabin geometry factor K, and the transverse size of the cloud.

| Table | X |
|-------|---|
|-------|---|

# Baseline Case - DELFIC Cloud and KC-135

| **********                                                                                                                                                                                   | ***********                                                                                                                                                                                                           | ***********                                                                                                                                                                                                         | ************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *********************                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31 Dec 1438                                                                                                                                                                                  | CUSTOM SCEN                                                                                                                                                                                                           | ARIO: Baselin                                                                                                                                                                                                       | e - DELFIC and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 KC-135                                                                                                                                                                                                                                                                                         |
| time $(hr) = 1$                                                                                                                                                                              | deltat (hr)                                                                                                                                                                                                           | = .0967423 9                                                                                                                                                                                                        | Mairborne = 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) sigmax = 3958.03 M                                                                                                                                                                                                                                                                             |
| sigmav = 4355                                                                                                                                                                                | .52 M                                                                                                                                                                                                                 | 3 :                                                                                                                                                                                                                 | sigmay cloud d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | liameter = $26133.1 \text{ M}$                                                                                                                                                                                                                                                                   |
| Altitude                                                                                                                                                                                     | Cabin Dust                                                                                                                                                                                                            | Sky Shine                                                                                                                                                                                                           | Total Dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Prominent Particle                                                                                                                                                                                                                                                                               |
| M                                                                                                                                                                                            | REM                                                                                                                                                                                                                   | REM                                                                                                                                                                                                                 | REM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | microns radius                                                                                                                                                                                                                                                                                   |
| 12000                                                                                                                                                                                        | 3.62                                                                                                                                                                                                                  | 6.72                                                                                                                                                                                                                | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31.8                                                                                                                                                                                                                                                                                             |
| 10000                                                                                                                                                                                        | 1.71                                                                                                                                                                                                                  | 3.19                                                                                                                                                                                                                | 4.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55.1                                                                                                                                                                                                                                                                                             |
| 8000                                                                                                                                                                                         | .790                                                                                                                                                                                                                  | 1.46                                                                                                                                                                                                                | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78.1                                                                                                                                                                                                                                                                                             |
| 6000                                                                                                                                                                                         | .440                                                                                                                                                                                                                  | .817                                                                                                                                                                                                                | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103.                                                                                                                                                                                                                                                                                             |
| 4000                                                                                                                                                                                         | .275                                                                                                                                                                                                                  | .511                                                                                                                                                                                                                | .786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 126.                                                                                                                                                                                                                                                                                             |
| 2000                                                                                                                                                                                         | .180                                                                                                                                                                                                                  | .335                                                                                                                                                                                                                | .515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 157.                                                                                                                                                                                                                                                                                             |
| *********                                                                                                                                                                                    | **********                                                                                                                                                                                                            | **********                                                                                                                                                                                                          | **********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ********************                                                                                                                                                                                                                                                                             |
| 31 Dec 1438                                                                                                                                                                                  | CUSTOM SCEN                                                                                                                                                                                                           | ARIO: Baselin                                                                                                                                                                                                       | e - DELFIC and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d KC-135                                                                                                                                                                                                                                                                                         |
| time $(hr) = 2$                                                                                                                                                                              | deltat (hr)                                                                                                                                                                                                           | = .0967423                                                                                                                                                                                                          | Sairborne = 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1  sigmax = 4865.07  M                                                                                                                                                                                                                                                                           |
| sigmav = 6148                                                                                                                                                                                | .72 M                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                   | sigmay cloud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | diameter = $36892.3$ M                                                                                                                                                                                                                                                                           |
| Altitude                                                                                                                                                                                     | Cabin Dust                                                                                                                                                                                                            | Sky Shine                                                                                                                                                                                                           | Total Dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Prominent Particle                                                                                                                                                                                                                                                                               |
| М                                                                                                                                                                                            | REM                                                                                                                                                                                                                   | REM                                                                                                                                                                                                                 | REM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | microns radius                                                                                                                                                                                                                                                                                   |
| 12000                                                                                                                                                                                        | 1.44                                                                                                                                                                                                                  | 1.73                                                                                                                                                                                                                | 3.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.4                                                                                                                                                                                                                                                                                             |
| 10000                                                                                                                                                                                        | .702                                                                                                                                                                                                                  | .842                                                                                                                                                                                                                | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36.2                                                                                                                                                                                                                                                                                             |
| 8000                                                                                                                                                                                         | .332                                                                                                                                                                                                                  | .399                                                                                                                                                                                                                | .731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48.6                                                                                                                                                                                                                                                                                             |
| 6000                                                                                                                                                                                         | .196                                                                                                                                                                                                                  | .236                                                                                                                                                                                                                | .432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60.1                                                                                                                                                                                                                                                                                             |
| 4000                                                                                                                                                                                         | .133                                                                                                                                                                                                                  | .160                                                                                                                                                                                                                | .294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.7                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                              |                                                                                                                                                                                                                       |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                  |
| 2000                                                                                                                                                                                         | .0934                                                                                                                                                                                                                 | .112                                                                                                                                                                                                                | .205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 89.5                                                                                                                                                                                                                                                                                             |
| 2000                                                                                                                                                                                         | .0934<br>**********                                                                                                                                                                                                   | .112<br>***********                                                                                                                                                                                                 | .205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 89,5<br>********                                                                                                                                                                                                                                                                                 |
| 2000<br>••••••••••<br>31 Dec 1438                                                                                                                                                            | .0934<br>•••••••<br>CUSTOM SCEN                                                                                                                                                                                       | .112<br>*************<br>ARIO: Basclin                                                                                                                                                                              | .205<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.5<br>************************************                                                                                                                                                                                                                                                     |
| 2000<br>31 Dec 1438<br>time (hr) = 4                                                                                                                                                         | .0934<br>••••••<br>CUSTOM SCEN<br>deltat (hr)                                                                                                                                                                         | .112<br>**************<br>ARIO: Baselin<br>= .166667 %                                                                                                                                                              | .205<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.5<br>************************************                                                                                                                                                                                                                                                     |
| 2000<br>31 Dec 1438<br>time (hr) = 4<br>sigmay = 9500                                                                                                                                        | .0934<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M                                                                                                                                                                          | .112<br>*************<br>ARIO: Baselin<br>= .166667 %<br>3                                                                                                                                                          | .205<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.5<br>KC-135<br>sigmax = 5627.78 M<br>diameter = 57003.8 M                                                                                                                                                                                                                                     |
| 2000<br>31 Dec 1438<br>time (hr) = 4<br>sigmay = 9500<br>Altitude                                                                                                                            | .0934<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Dust                                                                                                                                                            | .112<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine                                                                                                                                                              | .205<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.5<br><b>d</b> KC-135<br><b>sigmax = 5627.78 M</b><br><b>diameter = 57003.8 M</b><br><b>Prominent Particle</b>                                                                                                                                                                                 |
| 2000<br>31 Dec 1438<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M                                                                                                                       | .0934<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM                                                                                                                                                     | .112<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM                                                                                                                                                       | .205<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.5<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius                                                                                                                                                                                           |
| 2000<br>31 Dec 1438<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000 -                                                                                                            | .0934<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.482                                                                                                                                             | .112<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.404                                                                                                                                               | .205<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.5<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4                                                                                                                                                                                   |
| 2000<br>31 Dec 1438<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000 -<br>10000                                                                                                   | .0934<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.482<br>.240                                                                                                                                     | .112<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.404<br>.200                                                                                                                                       | .205<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.5<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5                                                                                                                                                                           |
| 2000<br>31 Dec 1438<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000 -<br>10000<br>8000                                                                                           | .0934<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.482<br>.240<br>.116                                                                                                                             | .112<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.404<br>.200<br>.097                                                                                                                               | .205<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.5<br><b>d</b> KC-135<br><b>sigmax</b> = 5627.78 M<br><b>diameter</b> = 57003.8 M<br><b>Prominent Particle</b><br><b>microns radius</b><br>15.4<br>24.5<br>31.8                                                                                                                                |
| 2000<br>31 Dec 1438<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000 -<br>10000<br>8000<br>6000                                                                                   | .0934<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.482<br>.240<br>.116<br>.069                                                                                                                     | .112<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.404<br>.200<br>.097<br>.058                                                                                                                       | .205<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.5<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4                                                                                                                                                           |
| 2000<br>31 Dec 1438<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000 -<br>10000<br>8000<br>6000<br>4000                                                                           | .0934<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.482<br>.240<br>.116<br>.069<br>.046                                                                                                             | .112<br>ARIO: Baselin<br>= .1666667 %<br>3<br>Sky Shine<br>REM<br>.404<br>.200<br>.097<br>.058<br>.038                                                                                                              | .205<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.5<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6                                                                                                                                                   |
| 2000<br>31 Dec 1438<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000 -<br>10000<br>8000<br>6000<br>4000<br>2000                                                                   | .0934<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.482<br>.240<br>.116<br>.069<br>.046<br>.033                                                                                                     | .112<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.404<br>.200<br>.097<br>.058<br>.038<br>.028                                                                                                       | .205<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.5<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9                                                                                                                                           |
| 2000<br>31 Dec 1438<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000 -<br>10000<br>8000<br>6000<br>4000<br>2000                                                                   | .0934<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.482<br>.240<br>.116<br>.069<br>.046<br>.033                                                                                                     | .112<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.404<br>.200<br>.097<br>.058<br>.038<br>.028                                                                                                       | .205<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.5<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9                                                                                                                                           |
| 2000<br>31 Dec 1438<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000 -<br>10000<br>8000<br>6000<br>4000<br>2000<br>*****************************                                  | .0934<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.482<br>.240<br>.116<br>.069<br>.046<br>.033<br>CUSTOM SCEN                                                                                      | .112<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.404<br>.200<br>.097<br>.058<br>.038<br>.028<br>ARIO: Baselin                                                                                      | .205<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.5<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>d KC-135                                                                                                                               |
| 2000<br>31 Dec 1438<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000 -<br>10000<br>8000<br>6000<br>4000<br>2000<br>                                                               | .0934<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.482<br>.240<br>.116<br>.069<br>.046<br>.033<br>CUSTOM SCEN<br>deltat (hr)                                                                       | .112<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.404<br>.200<br>.097<br>.058<br>.038<br>.028<br>ARIO: Baselin<br>= .363636 %                                                                       | .205<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.5<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>d KC-135<br>sigmax = 5627.78 M                                                                                                         |
| 2000<br>31 Dec 1438<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000 -<br>10000<br>8000<br>6000<br>4000<br>2000<br>                                                               | .0934<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.482<br>.240<br>.116<br>.069<br>.046<br>.033<br>CUSTOM SCEN<br>deltat (hr)<br>5.6 M                                                              | .112<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.404<br>.200<br>.097<br>.058<br>.038<br>.028<br>ARIO: Baselin<br>= .363636 %<br>3                                                                  | .205<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.5<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 98613.5 M                                                                                 |
| 2000<br>31 Dec 1438<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000 -<br>10000<br>8000<br>6000<br>4000<br>2000<br>*****************************                                  | .0934<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.482<br>.240<br>.116<br>.069<br>.046<br>.033<br>CUSTOM SCEN<br>deltat (hr)<br>5.6 M<br>Cabin Dust                                                | .112<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.404<br>.200<br>.097<br>.058<br>.038<br>.028<br>ARIO: Baselin<br>= .363636 %<br>3<br>Sky Shine                                                     | .205<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.5<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 98613.5 M<br>Prominent Particle                                                           |
| 2000<br>31 Dec 1438<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000 -<br>10000<br>8000<br>6000<br>4000<br>2000<br>31 Dec 1438<br>time (hr) = 8<br>sigmay = 1643<br>Altitude<br>M | .0934<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.482<br>.240<br>.116<br>.069<br>.046<br>.033<br>CUSTOM SCEN<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM                                         | .112<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.404<br>.200<br>.097<br>.058<br>.038<br>.028<br>ARIO: Baselin<br>= .363636 %<br>3<br>Sky Shine<br>REM                                              | .205<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.5<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 98613.5 M<br>Prominent Particle<br>microns radius                                         |
| 2000<br>31 Dec 1438<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000 -<br>10000<br>8000<br>6000<br>4000<br>2000<br>*****************************                                  | .0934<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.482<br>.240<br>.116<br>.069<br>.046<br>.033<br>CUSTOM SCEN<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.130                                 | .112<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.404<br>.200<br>.097<br>.058<br>.038<br>.028<br>ARIO: Baselin<br>= .363636 %<br>3<br>Sky Shine<br>REM<br>.083                                      | .205<br>e - DELFIC and<br>airborne = 69<br>sigmay cloud<br>Total Dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061 | 89.5<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 98613.5 M<br>Prominent Particle<br>microns radius<br>11.2                                 |
| 2000<br>31 Dec 1438<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000 -<br>10000<br>8000<br>6000<br>4000<br>2000<br>*****************************                                  | .0934<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.482<br>.240<br>.116<br>.069<br>.046<br>.033<br>CUSTOM SCEN<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.130<br>.067                         | .112<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.404<br>.200<br>.097<br>.058<br>.038<br>.028<br>ARIO: Baselin<br>= .363636 %<br>3<br>Sky Shine<br>REM<br>.083<br>.042                              | .205<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.5<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 98613.5 M<br>Prominent Particle<br>microns radius<br>11.2<br>17.0                         |
| 2000<br>31 Dec 1438<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000 -<br>10000<br>8000<br>6000<br>4000<br>2000<br>*****************************                                  | .0934<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.482<br>.240<br>.116<br>.069<br>.046<br>.033<br>CUSTOM SCEN<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.130<br>.067<br>.033                 | .112<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.404<br>.200<br>.097<br>.058<br>.038<br>.028<br>ARIO: Baselin<br>= .363636 %<br>3<br>Sky Shine<br>REM<br>.083<br>.042<br>.021                      | .205<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.5<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 98613.5 M<br>Prominent Particle<br>microns radius<br>11.2<br>17.0<br>22.4                 |
| 2000<br>31 Dec 1438<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000 -<br>10000<br>8000<br>6000<br>4000<br>2000<br>*****************************                                  | .0934<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.482<br>.240<br>.116<br>.069<br>.046<br>.033<br>CUSTOM SCEN<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.130<br>.067<br>.033<br>.019         | .112<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.404<br>.200<br>.097<br>.058<br>.038<br>.028<br>ARIO: Baselin<br>= .363636 %<br>3<br>Sky Shine<br>REM<br>.083<br>.642<br>.021<br>.012              | .205<br>• - DELFIC and<br>airborne = 69<br>sigmay cloud<br>Total Dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061<br>• • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 89.5<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 98613.5 M<br>Prominent Particle<br>microns radius<br>11.2<br>17.0<br>22.4<br>26.8         |
| 2000<br>31 Dec 1438<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000 -<br>10000<br>8000<br>6000<br>4000<br>2000<br>*****************************                                  | .0934<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.482<br>.240<br>.116<br>.069<br>.046<br>.033<br>CUSTOM SCEN<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.130<br>.067<br>.033<br>.019<br>.013 | .112<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.404<br>.200<br>.097<br>.058<br>.038<br>.028<br>ARIO: Baselin<br>= .363636 %<br>3<br>Sky Shine<br>REM<br>.083<br>.642<br>.021<br>.012<br>8.58 E-03 | .205<br>• - DELFIC and<br>airborne = 69<br>sigmay cloud<br>Total Dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061<br>• • DELFIC an<br>airborne = 57<br>sigmay cloud<br>Total Dose<br>REM<br>.213<br>.109<br>.054<br>.032<br>.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89.5<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>d KC-135<br>sigmax = 5627.78 M<br>diameter = 98613.5 M<br>Prominent Particle<br>microns radius<br>11.2<br>17.0<br>22.4<br>26.8<br>30.5 |

٥

.

NRDL-N61 Cloud and KC-135

69

J

l

....

| *********                                                                                                                                         | ***********                                                                                                                                                                                                              | ********                                                                                                                                                                                                                            | **********                                                                                                                                                                                                                            | ****************                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30 Dec 1300                                                                                                                                       | CUSTOM SCENA                                                                                                                                                                                                             | RIO: NRDL-N61                                                                                                                                                                                                                       | and KC-135                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                       |
| time $(hr) = 1$                                                                                                                                   | deltat (hr)                                                                                                                                                                                                              | = .386969 %a                                                                                                                                                                                                                        | irborne = 97                                                                                                                                                                                                                          | sigmax = 3922.13 M                                                                                                                                                                                                                                                    |
| sigmay = $4329$ .                                                                                                                                 | 41 M                                                                                                                                                                                                                     | 3 s                                                                                                                                                                                                                                 | igmay cloud d                                                                                                                                                                                                                         | iameter = 25976.5 M                                                                                                                                                                                                                                                   |
| Altitude                                                                                                                                          | Cabin Dust                                                                                                                                                                                                               | Sky Shine                                                                                                                                                                                                                           | Total Dose                                                                                                                                                                                                                            | Prominent Particle                                                                                                                                                                                                                                                    |
| M                                                                                                                                                 | REM                                                                                                                                                                                                                      | REM                                                                                                                                                                                                                                 | REM                                                                                                                                                                                                                                   | microns radius                                                                                                                                                                                                                                                        |
| 12000                                                                                                                                             | 4 69                                                                                                                                                                                                                     | 8.70                                                                                                                                                                                                                                | 13.3                                                                                                                                                                                                                                  | 31.3                                                                                                                                                                                                                                                                  |
| 10000                                                                                                                                             | 1.46                                                                                                                                                                                                                     | 2.71                                                                                                                                                                                                                                | 4.17                                                                                                                                                                                                                                  | 52.3                                                                                                                                                                                                                                                                  |
| 8000                                                                                                                                              | .407                                                                                                                                                                                                                     | .757                                                                                                                                                                                                                                | 1.16                                                                                                                                                                                                                                  | 75.5                                                                                                                                                                                                                                                                  |
| 6000                                                                                                                                              | .176                                                                                                                                                                                                                     | .327                                                                                                                                                                                                                                | .503                                                                                                                                                                                                                                  | 94.0                                                                                                                                                                                                                                                                  |
| 4000                                                                                                                                              | 100                                                                                                                                                                                                                      | .185                                                                                                                                                                                                                                | .285                                                                                                                                                                                                                                  | 121                                                                                                                                                                                                                                                                   |
| 2000                                                                                                                                              | .061                                                                                                                                                                                                                     | .114                                                                                                                                                                                                                                | .176                                                                                                                                                                                                                                  | 140.                                                                                                                                                                                                                                                                  |
| ***********                                                                                                                                       |                                                                                                                                                                                                                          | ***********                                                                                                                                                                                                                         | **********                                                                                                                                                                                                                            | ****************                                                                                                                                                                                                                                                      |
| 30 Dec 1300                                                                                                                                       | CUSTOM SCEN                                                                                                                                                                                                              | ARIO: NRDL-N61                                                                                                                                                                                                                      | and KC-135                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                       |
| time $(hr) = 2$                                                                                                                                   | deltat (hr)                                                                                                                                                                                                              | = .386969 %a                                                                                                                                                                                                                        | irborne = 94                                                                                                                                                                                                                          | sigmax = 4806.59 M                                                                                                                                                                                                                                                    |
| sigmay = 6097                                                                                                                                     | <b>.57</b> 20                                                                                                                                                                                                            | 3 s                                                                                                                                                                                                                                 | igmay cloud d                                                                                                                                                                                                                         | iameter = 36585.4 M                                                                                                                                                                                                                                                   |
| Altitude                                                                                                                                          | Cau n Just                                                                                                                                                                                                               | Sky Shine                                                                                                                                                                                                                           | Total Dose                                                                                                                                                                                                                            | Prominent Particle                                                                                                                                                                                                                                                    |
| м                                                                                                                                                 | RE''                                                                                                                                                                                                                     | REM                                                                                                                                                                                                                                 | REM                                                                                                                                                                                                                                   | microns radius                                                                                                                                                                                                                                                        |
| 12000                                                                                                                                             | 2.13                                                                                                                                                                                                                     | 2.55                                                                                                                                                                                                                                | 4.68                                                                                                                                                                                                                                  | 22.9                                                                                                                                                                                                                                                                  |
| 10000                                                                                                                                             | .688                                                                                                                                                                                                                     | .825                                                                                                                                                                                                                                | 1.51                                                                                                                                                                                                                                  | 38.4                                                                                                                                                                                                                                                                  |
| 8000                                                                                                                                              | .204                                                                                                                                                                                                                     | .244                                                                                                                                                                                                                                | .448                                                                                                                                                                                                                                  | 52.3                                                                                                                                                                                                                                                                  |
| 6000                                                                                                                                              | .094                                                                                                                                                                                                                     | .113                                                                                                                                                                                                                                | .208                                                                                                                                                                                                                                  | 62.3                                                                                                                                                                                                                                                                  |
| 4000                                                                                                                                              | .057                                                                                                                                                                                                                     | .069                                                                                                                                                                                                                                | .127.                                                                                                                                                                                                                                 | 75.5                                                                                                                                                                                                                                                                  |
|                                                                                                                                                   |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                       |
| 2000                                                                                                                                              | .037                                                                                                                                                                                                                     | .044                                                                                                                                                                                                                                | .082                                                                                                                                                                                                                                  | 94.0                                                                                                                                                                                                                                                                  |
| 2000<br>••••                                                                                                                                      | .037<br>***********                                                                                                                                                                                                      | .044<br>***********                                                                                                                                                                                                                 | .082<br>**********                                                                                                                                                                                                                    | 94.0                                                                                                                                                                                                                                                                  |
| 2000<br>•••••••••••••••••<br>30 Dec 1300                                                                                                          | .037<br>CUSTOM SCEN                                                                                                                                                                                                      | .044<br>ARIO: NRDL-N61                                                                                                                                                                                                              | .082<br>************************************                                                                                                                                                                                          | 94.0                                                                                                                                                                                                                                                                  |
| 2000<br>**********************************                                                                                                        | .037<br>CUSTOM SCEN<br>deltat (hr)                                                                                                                                                                                       | .044<br>ARIO: NRDL-N61<br>= .386969 %a                                                                                                                                                                                              | .082<br>and KC-135<br>irborne = 90                                                                                                                                                                                                    | 94.0<br>************************************                                                                                                                                                                                                                          |
| 2000<br>30 Dec 1300<br>time (hr) = 4<br>sigmay = 9443                                                                                             | .037<br>CUSTOM SCENA<br>deltat (hr)<br>.7 M                                                                                                                                                                              | .044<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 si                                                                                                                                                                                      | .082<br>and KC-135<br>irborne = 90<br>gmsy cloud di                                                                                                                                                                                   | 94.0<br>sigmax = 5551.88 M<br>ameter = 56662.2 M                                                                                                                                                                                                                      |
| 2000<br>30 Dec 1300<br>time (hr) = 4<br>sigmay = 9443<br>Altitude                                                                                 | .037<br>CUSTOM SCEN/<br>deltat (hr)<br>.7 M<br>Cabin Dust                                                                                                                                                                | .044<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 si<br>Sky Shine                                                                                                                                                                         | .082<br>and KC-135<br>irborne = 90<br>gmay cloud di<br>Total Dose                                                                                                                                                                     | 94.0<br>sigmax = 5551.88 M<br>ameter = 56662.2 M<br>Prominent Particle                                                                                                                                                                                                |
| 2000<br>30 Dec 1300<br>time (hr) = 4<br>sigmay = 9443.<br>Altitude<br>M                                                                           | .037<br>CUSTOM SCENA<br>deltat (hr)<br>.7 M<br>Cabin Dust<br>REM                                                                                                                                                         | .044<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 si<br>Sky Shine<br>REM                                                                                                                                                                  | .082<br>and KC-135<br>irborne = 90<br>gmsy cloud di<br>Total Dose<br>REM                                                                                                                                                              | 94.0<br>sigmax = 5551.88 M<br>ameter = 56662.2 M<br>Prominent Particle<br>microns radius                                                                                                                                                                              |
| 2000<br>30 Dec 1300<br>time (hr) = 4<br>sigmay = 9443<br>Altitude<br>M<br>12000                                                                   | .037<br>CUSTOM SCENA<br>deltat (hr)<br>.7 M<br>Cabin Dust<br>REM<br>.800                                                                                                                                                 | .044<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 si<br>Sky Shine<br>REM<br>.669                                                                                                                                                          | .082<br>and KC-135<br>irborne = 90<br>gmsy cloud di<br>Total Dose<br>REM<br>1.46                                                                                                                                                      | 94.0<br>sigmax = 5551.88 M<br>ameter = 56662.2 M<br>Prominent Particle<br>microns radius<br>16.3                                                                                                                                                                      |
| 2000<br>30 Dec 1300<br>time (hr) = 4<br>sigmay = 9443<br>Altitude<br>M<br>12000<br>10000                                                          | .037<br>CUSTOM SCENA<br>deltat (hr)<br>.7 M<br>Cabin Dust<br>REM<br>.800<br>.270                                                                                                                                         | .044<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 si<br>Sky Shine<br>REM<br>.669<br>.226                                                                                                                                                  | .082<br>and KC-135<br>irborne = 90<br>gmay cloud di<br>Total Dose<br>REM<br>1.46<br>.496                                                                                                                                              | 94.0<br>sigmax = 5551.88 M<br>ameter = 56662.2 M<br>Prominent Particle<br>microns radius<br>16.3<br>25.8                                                                                                                                                              |
| 2000<br>**********************************                                                                                                        | .037<br>CUSTOM SCENA<br>deltat (hr)<br>.7 M<br>Cabin Dust<br>REM<br>.800<br>.270<br>.086                                                                                                                                 | .044<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 si<br>Sky Shine<br>REM<br>.669<br>.226<br>.072                                                                                                                                          | .082<br>and KC-135<br>irborne = 90<br>gmsy cloud di<br>Total Dose<br>REM<br>1.46<br>.496<br>.158                                                                                                                                      | 94.0<br>sigmax = 5551.88 M<br>ameter = 56662.2 M<br>Prominent Particle<br>microns radius<br>16.3<br>25.8<br>33.4                                                                                                                                                      |
| 2000<br>                                                                                                                                          | .037<br>CUSTOM SCENA<br>deltat (hr)<br>.7 M<br>Cabin Dust<br>REM<br>.800<br>.270<br>.086<br>.041                                                                                                                         | .044<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 si<br>Sky Shine<br>REM<br>.669<br>.226<br>.072<br>.034                                                                                                                                  | .082<br>and KC-135<br>irborne = 90<br>gmay cloud di<br>Total Dose<br>REM<br>1.46<br>.496<br>.158<br>.075                                                                                                                              | 94.0<br>sigmax = 5551.88 M<br>ameter = 56662.2 M<br>Prominent Particle<br>microns radius<br>16.3<br>25.8<br>33.4<br>41.3                                                                                                                                              |
| 2000<br>30 Dec 1300<br>time (hr) = 4<br>sigmay = 9443<br>Altitude<br>M<br>12000<br>10000<br>8000<br>                                              | .037<br>CUSTOM SCENA<br>deltat (hr)<br>.7 M<br>Cabin Dust<br>REM<br>.800<br>.270<br>.086<br>.041<br>.025                                                                                                                 | .044<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 si<br>Sky Shine<br>REM<br>.669<br>.226<br>.072<br>.034<br>.021                                                                                                                          | .082<br>and KC-135<br>irborne = 90<br>gmay cloud di<br>Total Dose<br>REM<br>1.46<br>.496<br>.158<br>.075<br>.046                                                                                                                      | 94.0<br>sigmax = 5551.88 M<br>ameter = 56662.2 M<br>Prominent Particle<br>microns radius<br>16.3<br>25.8<br>33.4<br>41.3<br>48.2                                                                                                                                      |
| 2000<br>**********************************                                                                                                        | .037<br>CUSTOM SCENA<br>deltat (hr)<br>.7 M<br>Cabin Dust<br>REM<br>.800<br>.270<br>.086<br>.041<br>.025<br>.016                                                                                                         | .044<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 si<br>Sky Shine<br>REM<br>.669<br>.226<br>.072<br>.034<br>.021<br>.014                                                                                                                  | .082<br>and KC-135<br>irborne = 90<br>gmsy cloud di<br>Total Dose<br>REM<br>1.46<br>.496<br>.158<br>.075<br>.046<br>.031                                                                                                              | 94.0<br>sigmax = 5551.88 M<br>lameter = 56662.2 M<br>Prominent Particle<br>microns radius<br>16.3<br>25.8<br>33.4<br>41.3<br>48.2<br>57.0                                                                                                                             |
| 2000<br>30 Dec 1300<br>time (hr) = 4<br>sigmay = 9443<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>2000                          | .037<br>CUSTOM SCENA<br>deltat (hr)<br>.7 M<br>Cabin Dust<br>REM<br>.800<br>.270<br>.086<br>.041<br>.025<br>.016                                                                                                         | .044<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 si<br>Sky Shine<br>REM<br>.669<br>.226<br>.072<br>.034<br>.021<br>.014                                                                                                                  | .082<br>and KC-135<br>irborne = 90<br>gmay cloud di<br>Total Dose<br>REM<br>1.46<br>.496<br>.158<br>.075<br>.046<br>.031                                                                                                              | 94.0<br>sigmax = 5551.88 M<br>ameter = 56662.2 M<br>Prominent Particle<br>microns radius<br>16.3<br>25.8<br>33.4<br>41.3<br>48.2<br>57.0                                                                                                                              |
| 2000<br>30 Dec 1300<br>time (hr) = 4<br>sigmay = 9443<br>Altitude<br>M<br>12000<br>10000<br>8000<br>-<br>6000<br>4000<br>2000<br>-<br>30 Dec 1300 | .037<br>CUSTOM SCENA<br>deltat (hr)<br>.7 M<br>Cabin Dust<br>REM<br>.800<br>.270<br>.086<br>.041<br>.025<br>.016<br>CUSTOM SCENA                                                                                         | .044<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 si<br>Sky Shine<br>REM<br>.669<br>.226<br>.072<br>.034<br>.021<br>.014<br>ARIO: NRDL-N61                                                                                                | .082<br>and KC-135<br>irborne = 90<br>gmay cloud di<br>Total Dose<br>REM<br>1.46<br>.496<br>.158<br>.075<br>.046<br>.031<br>and KC-135                                                                                                | 94.0<br>sigmax = 5551.88 M<br>iameter = 56662.2 M<br>Prominent Particle<br>microns radius<br>16.3<br>25.8<br>33.4<br>41.3<br>48.2<br>57.0                                                                                                                             |
| 2000<br>**********************************                                                                                                        | .037<br>CUSTOM SCENA<br>deltat (hr)<br>.7 M<br>Cabin Dust<br>REM<br>.800<br>.270<br>.086<br>.041<br>.025<br>.016<br>CUSTOM SCENA<br>deltat (hr)                                                                          | .044<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 si<br>Sky Shine<br>REM<br>.669<br>.226<br>.072<br>.034<br>.021<br>.014<br>ARIO: NRDL-N61<br>= .386969 %a                                                                                | .082<br>and KC-135<br>irborne = 90<br>gmsy cloud di<br>Total Dose<br>REM<br>1.46<br>.496<br>.158<br>.075<br>.046<br>.031<br>and KC-135<br>irborne = 84                                                                                | 94.0<br>sigmax = 5551.88 M<br>fameter = 56662.2 M<br>Prominent Particle<br>microns radius<br>16.3<br>25.8<br>33.4<br>41.3<br>48.2<br>57.0<br>sigmax = 5551.88 M                                                                                                       |
| 2000<br>**********************************                                                                                                        | .037<br>CUSTOM SCENA<br>deltat (hr)<br>.7 M<br>Cabin Dust<br>REM<br>.800<br>.270<br>.086<br>.041<br>.025<br>.016<br>CUSTOM SCENA<br>deltat (hr)<br>2 M                                                                   | .044<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 si<br>Sky Shine<br>REM<br>.669<br>.226<br>.072<br>.034<br>.021<br>.014<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 sig                                                                       | .082<br>and KC-135<br>irborne = 90<br>gmsy cloud di<br>Total Dose<br>REM<br>1.46<br>.496<br>.158<br>.075<br>.046<br>.031<br>and KC-135<br>irborne = 84<br>gmay cloud dia                                                              | 94.0<br>sigmax = 5551.88 M<br>lameter = 56662.2 M<br>Prominent Particle<br>microns radius<br>16.3<br>25.8<br>33.4<br>41.3<br>48.2<br>57.0<br>sigmax = 5551.88 M<br>ameter = 98411.9 M                                                                                 |
| 2000<br>**********************************                                                                                                        | .037<br>CUSTOM SCENA<br>deltat (hr)<br>.7 M<br>Cabin Dust<br>REM<br>.800<br>.270<br>.086<br>.041<br>.025<br>.016<br>CUSTOM SCENA<br>deltat (hr)<br>2 M<br>Cabin Dust                                                     | .044<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 si<br>Sky Shine<br>REM<br>.669<br>.226<br>.072<br>.034<br>.021<br>.014<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 sig<br>Sky Shine                                                          | .082<br>and KC-135<br>irborne = 90<br>gmay cloud di<br>Total Dose<br>REM<br>1.46<br>.496<br>.158<br>.075<br>.046<br>.031<br>and KC-135<br>irborne = 84<br>gmay cloud dia<br>Total Dose                                                | 94.0<br>sigmax = 5551.88 M<br>lameter = 56662.2 M<br>Prominent Particle<br>microns radius<br>16.3<br>25.8<br>33.4<br>41.3<br>48.2<br>57.0<br>sigmax = 5551.88 M<br>meter = 98411.9 M<br>Prominent Particle                                                            |
| 2000<br>**********************************                                                                                                        | .037<br>CUSTOM SCENA<br>deltat (hr)<br>.7 M<br>Cabin Dust<br>REM<br>.800<br>.270<br>.086<br>.041<br>.025<br>.016<br>CUSTOM SCENA<br>deltat (hr)<br>2 M<br>Cabin Dust<br>REM                                              | .044<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 si<br>Sky Shine<br>REM<br>.669<br>.226<br>.072<br>.034<br>.021<br>.014<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 sig<br>Sky Shine<br>REM                                                   | .082<br>and KC-135<br>irborne = 90<br>gmay cloud di<br>Total Dose<br>REM<br>1.46<br>.496<br>.158<br>.075<br>.046<br>.031<br>and KC-135<br>irborne = 84<br>gmay cloud dis<br>Total Dose<br>REM                                         | 94.0<br>sigmax = 5551.88 M<br>ameter = 56662.2 M<br>Prominent Particle<br>microns radius<br>16.3<br>25.8<br>33.4<br>41.3<br>48.2<br>57.0<br>sigmax = 5551.88 M<br>ameter = 98411.9 M<br>Prominent Particle<br>microns radius                                          |
| 2000<br>**********************************                                                                                                        | .037<br>CUSTOM SCENA<br>deltat (hr)<br>.7 M<br>Cabin Dust<br>REM<br>.800<br>.270<br>.086<br>.041<br>.025<br>.016<br>CUSTOM SCENA<br>deltat (hr)<br>2 M<br>Cabin Dust<br>REM<br>.244                                      | .044<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 si<br>Sky Shine<br>REM<br>.669<br>.226<br>.072<br>.034<br>.021<br>.014<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 sig<br>Sky Shine<br>REM<br>.155                                           | .082<br>and KC-135<br>irborne = 90<br>gmay cloud di<br>Total Dose<br>REM<br>1.46<br>.496<br>.158<br>.075<br>.046<br>.031<br>and KC-135<br>irborne = 84<br>gmay cloud dia<br>Total Dose<br>REM<br>.399                                 | 94.0<br>sigmax = 5551.88 M<br>lameter = 56662.2 M<br>Prominent Particle<br>microns radius<br>16.3<br>25.8<br>33.4<br>41.3<br>48.2<br>57.0<br>sigmax = 5551.88 M<br>meter = 98411.9 M<br>Prominent Particle<br>microns radius<br>11.2                                  |
| 2000<br>**********************************                                                                                                        | .037<br>CUSTOM SCENA<br>deltat (hr)<br>.7 M<br>Cabin Dust<br>REM<br>.800<br>.270<br>.086<br>.041<br>.025<br>.016<br>CUSTOM SCENA<br>deltat (hr)<br>2 M<br>Cabin Dust<br>REM<br>.244<br>.086                              | .044<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 si<br>Sky Shine<br>REM<br>.669<br>.226<br>.072<br>.034<br>.021<br>.014<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 sig<br>Sky Shine<br>REM<br>.155<br>.055                                   | .082<br>and KC-135<br>irborne = 90<br>gmsy cloud di<br>Total Dose<br>REM<br>1.46<br>.496<br>.158<br>.075<br>.046<br>.031<br>and KC-135<br>irborne = 84<br>gmay cloud dis<br>Total Dose<br>REM<br>.399<br>.141                         | 94.0<br>sigmax = 5551.88 M<br>lameter = 56662.2 M<br>Prominent Particle<br>microns radius<br>16.3<br>25.8<br>33.4<br>41.3<br>48.2<br>57.0<br>sigmax = 5551.88 M<br>ameter = 98411.9 M<br>Prominent Particle<br>microns radius<br>11.2<br>18.2                         |
| 2000<br>**********************************                                                                                                        | .037<br>CUSTOM SCENA<br>deltat (hr)<br>.7 M<br>Cabin Dust<br>REM<br>.800<br>.270<br>.086<br>.041<br>.025<br>.016<br>CUSTOM SCENA<br>deltat (hr)<br>2 M<br>Cabin Dust<br>REM<br>.244<br>.086<br>.029                      | .044<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 si<br>Sky Shine<br>REM<br>.669<br>.226<br>.072<br>.034<br>.021<br>.014<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 sig<br>Sky Shine<br>REM<br>.155<br>.055<br>.018                           | .082<br>and KC-135<br>irborne = 90<br>gmay cloud di<br>Total Dose<br>REM<br>1.46<br>.496<br>.158<br>.075<br>.046<br>.031<br>and KC-135<br>irborne = 84<br>may cloud dia<br>Total Dose<br>REM<br>.399<br>.141<br>.047                  | 94.0<br>sigmax = 5551.88 M<br>fameter = 56662.2 M<br>Prominent Particle<br>microns radius<br>16.3<br>25.8<br>33.4<br>41.3<br>48.2<br>57.0<br>sigmax = 5551.88 M<br>ameter = 98411.9 M<br>Prominent Particle<br>microns radius<br>11.2<br>18.2<br>22.9                 |
| 2000<br>**********************************                                                                                                        | .037<br>CUSTOM SCENA<br>deltat (hr)<br>.7 M<br>Cabin Dust<br>REM<br>.800<br>.270<br>.086<br>.041<br>.025<br>.016<br>CUSTOM SCENA<br>deltat (hr)<br>2 M<br>Cabin Dust<br>REM<br>.244<br>.086<br>.029<br>.014              | .044<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 si<br>Sky Shine<br>REM<br>.669<br>.226<br>.072<br>.034<br>.021<br>.014<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 sig<br>Sky Shine<br>REM<br>.155<br>.055<br>.018<br>9.12 E-03              | .082<br>and KC-135<br>irborne = 90<br>gmsy cloud di<br>Total Dose<br>REM<br>1.46<br>.496<br>.158<br>.075<br>.046<br>.031<br>and KC-135<br>irborne = 84<br>gmay cloud dia<br>Total Dose<br>REM<br>.399<br>.141<br>.047<br>.023         | 94.0<br>sigmax = 5551.88 M<br>fameter = 56662.2 M<br>Prominent Particle<br>microns radius<br>16.3<br>25.8<br>33.4<br>41.3<br>48.2<br>57.0<br>sigmax = 5551.88 M<br>ameter = 98411.9 M<br>Prominent Particle<br>microns radius<br>11.2<br>18.2<br>22.9<br>27.5         |
| 2000<br>**********************************                                                                                                        | .037<br>CUSTOM SCENA<br>deltat (hr)<br>.7 M<br>Cabin Dust<br>REM<br>.800<br>.270<br>.086<br>.041<br>.025<br>.016<br>CUSTOM SCENA<br>deltat (hr)<br>2 M<br>Cabin Dust<br>REM<br>.244<br>.086<br>.029<br>.014<br>8.94 E-03 | .044<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 si<br>Sky Shine<br>REM<br>.669<br>.226<br>.072<br>.034<br>.021<br>.014<br>ARIO: NRDL-N61<br>= .386969 %a<br>3 sig<br>Sky Shine<br>REM<br>.155<br>.055<br>.018<br>9.12 E-03<br>5.70 E-03 | .082<br>and KC-135<br>irborne = 90<br>gmsy cloud di<br>Total Dose<br>REM<br>1.46<br>.496<br>.158<br>.075<br>.046<br>.031<br>and KC-135<br>irborne = 84<br>gmay cloud dis<br>Total Dose<br>REM<br>.399<br>.141<br>.047<br>.023<br>.014 | 94.0<br>sigmax = 5551.88 M<br>iameter = 56662.2 M<br>Prominent Particle<br>microns radius<br>16.3<br>25.8<br>33.4<br>41.3<br>48.2<br>57.0<br>sigmax = 5551.88 M<br>imeter = 98411.9 M<br>Prominent Particle<br>microns radius<br>11.2<br>18.2<br>22.9<br>27.5<br>31.3 |

52

· · · ·

# Table XII

# TOR-C Cloud and KC-135

6.

1

**, 9** (

| **********                                                                                                                                          | ***********                                                                                                                                                                                                                              | ***********                                                                                                                                                                                                            | ***********                                                                                                                                                                                                                       | *********************                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30 Dec 1420                                                                                                                                         | CUSTOM SCEN                                                                                                                                                                                                                              | ARIO: TOR-C a                                                                                                                                                                                                          | nd KC-135                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                  |
| time $(hr) = 1$                                                                                                                                     | 1 deltat (hr)                                                                                                                                                                                                                            | = .386969 %                                                                                                                                                                                                            | airborne = 10                                                                                                                                                                                                                     | 0 sigmax = 3994.61 M                                                                                                                                                                                                                                             |
| sigmay = 439                                                                                                                                        | 4.87 M                                                                                                                                                                                                                                   | 3 :                                                                                                                                                                                                                    | sigmay cloud                                                                                                                                                                                                                      | diameter = $26369.2$ M                                                                                                                                                                                                                                           |
| Altitude                                                                                                                                            | Cabin Dust                                                                                                                                                                                                                               | Sky Shine                                                                                                                                                                                                              | Total Dose                                                                                                                                                                                                                        | Prominent Particle                                                                                                                                                                                                                                               |
| M                                                                                                                                                   | REM                                                                                                                                                                                                                                      | REM                                                                                                                                                                                                                    | REM                                                                                                                                                                                                                               | microns radius                                                                                                                                                                                                                                                   |
| 12000                                                                                                                                               | 2.64                                                                                                                                                                                                                                     | 4.90                                                                                                                                                                                                                   | 7.54                                                                                                                                                                                                                              | 32.8                                                                                                                                                                                                                                                             |
| 10000                                                                                                                                               | 3.67                                                                                                                                                                                                                                     | 6.81                                                                                                                                                                                                                   | 10.4                                                                                                                                                                                                                              | 54.3                                                                                                                                                                                                                                                             |
| 8000                                                                                                                                                | 2.79                                                                                                                                                                                                                                     | 5.18                                                                                                                                                                                                                   | 7.97                                                                                                                                                                                                                              | 75.6                                                                                                                                                                                                                                                             |
| 6000                                                                                                                                                | 1.25                                                                                                                                                                                                                                     | 2.32                                                                                                                                                                                                                   | 3.57                                                                                                                                                                                                                              | 99.7                                                                                                                                                                                                                                                             |
| 4000                                                                                                                                                | .366                                                                                                                                                                                                                                     | .680                                                                                                                                                                                                                   | 1.04                                                                                                                                                                                                                              | 124.                                                                                                                                                                                                                                                             |
| 2000                                                                                                                                                | .078                                                                                                                                                                                                                                     | .145                                                                                                                                                                                                                   | .223                                                                                                                                                                                                                              | 141.                                                                                                                                                                                                                                                             |
| *********                                                                                                                                           | **********                                                                                                                                                                                                                               | ***********                                                                                                                                                                                                            | ***********                                                                                                                                                                                                                       | ********************                                                                                                                                                                                                                                             |
| 30 Dec 1420                                                                                                                                         | CUSTOM SCEN                                                                                                                                                                                                                              | ARIO: TOR-C an                                                                                                                                                                                                         | nd KC-135                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                  |
| time $(hr) = 2$                                                                                                                                     | 2 deltat (hr)                                                                                                                                                                                                                            | = .386969 %                                                                                                                                                                                                            | airborne = 10                                                                                                                                                                                                                     | 0 sigmax = 4224.5 M                                                                                                                                                                                                                                              |
| sigmay = 619                                                                                                                                        | 0.69 M                                                                                                                                                                                                                                   | 3 :                                                                                                                                                                                                                    | sigmay cloud                                                                                                                                                                                                                      | diameter = $37144.2$ M                                                                                                                                                                                                                                           |
| Altitude                                                                                                                                            | Cabin Dust                                                                                                                                                                                                                               | Sky Shine                                                                                                                                                                                                              | Tclal Dose                                                                                                                                                                                                                        | <b>Prominent Particle</b>                                                                                                                                                                                                                                        |
| M                                                                                                                                                   | REM                                                                                                                                                                                                                                      | REM                                                                                                                                                                                                                    | REM                                                                                                                                                                                                                               | microns radius                                                                                                                                                                                                                                                   |
| 12000                                                                                                                                               | .337                                                                                                                                                                                                                                     | .405                                                                                                                                                                                                                   | .742                                                                                                                                                                                                                              | 29.0                                                                                                                                                                                                                                                             |
| 10000                                                                                                                                               | .745                                                                                                                                                                                                                                     | .893                                                                                                                                                                                                                   | 1.63                                                                                                                                                                                                                              | 38.0                                                                                                                                                                                                                                                             |
| 8000                                                                                                                                                | .996                                                                                                                                                                                                                                     | 1.19                                                                                                                                                                                                                   | 2.19                                                                                                                                                                                                                              | 51.8                                                                                                                                                                                                                                                             |
| 6000                                                                                                                                                | .890                                                                                                                                                                                                                                     | 1.06                                                                                                                                                                                                                   | 1.95                                                                                                                                                                                                                              | 64.8                                                                                                                                                                                                                                                             |
| 4000                                                                                                                                                | .573                                                                                                                                                                                                                                     | .687                                                                                                                                                                                                                   | 1.26                                                                                                                                                                                                                              | 79.2                                                                                                                                                                                                                                                             |
| 7000                                                                                                                                                | 281                                                                                                                                                                                                                                      | 227                                                                                                                                                                                                                    | <b>C1</b> 0                                                                                                                                                                                                                       | 04 0                                                                                                                                                                                                                                                             |
|                                                                                                                                                     |                                                                                                                                                                                                                                          | .33/                                                                                                                                                                                                                   | .019                                                                                                                                                                                                                              | 94.2                                                                                                                                                                                                                                                             |
| 404444444444                                                                                                                                        | .201<br>************************************                                                                                                                                                                                             | .33/<br>***********************************                                                                                                                                                                            | VIV<br>***********************************                                                                                                                                                                                        | 94.2<br>**************************                                                                                                                                                                                                                               |
| 30 Dec 1420                                                                                                                                         | CUSTOM SCEN                                                                                                                                                                                                                              | ARIO: TOR-C an = 386969 K.                                                                                                                                                                                             | .019<br>••••••••••••<br>nd KC-135                                                                                                                                                                                                 | 94.2<br>********************************                                                                                                                                                                                                                         |
| 30 Dec 1420<br>time (hr) = 4                                                                                                                        | CUSTOM SCEN<br>4 deltat (hr)<br>9 53 M                                                                                                                                                                                                   | .337<br>ARIO: TOR-C an<br>= .386969 %                                                                                                                                                                                  | nd KC-135<br>airborne = 84                                                                                                                                                                                                        | sigmax = 5704.79 M                                                                                                                                                                                                                                               |
| 30 Dec 1420<br>time (hr) = 4<br>sigmay = 953<br>Altitude                                                                                            | CUSTOM SCEN<br>4 deltat (hr)<br>9.53 M<br>Cabin Dust                                                                                                                                                                                     | .337<br>ARIO: TOR-C at<br>= .386969 %<br>3 :<br>Sty Shipe                                                                                                                                                              | nd KC-135<br>airborne = 84<br>sigmay cloud                                                                                                                                                                                        | sigmax = 5704.79 M<br>diameter = 57237.2 M                                                                                                                                                                                                                       |
| 30 Dec 1420<br>time (hr) = 4<br>sigmay = 953<br>Altitude<br>M                                                                                       | CUSTOM SCEN<br>4 deltat (hr)<br>9.53 M<br>Cabin Dust<br>REM                                                                                                                                                                              |                                                                                                                                                                                                                        | nd KC-135<br>airborne = 84<br>sigmay cloud<br>Total Dose<br>RFM                                                                                                                                                                   | sigmax = 5704.79 M<br>diameter = 57237.2 M<br>Prominent Particle                                                                                                                                                                                                 |
| 30 Dec 1420<br>time (hr) = 4<br>sigmay = 953<br>Altitude<br>M<br>12000                                                                              | CUSTOM SCEN<br>4 deltat (hr)<br>9.53 M<br>Cabin Dust<br>REM<br>8.21 E-03                                                                                                                                                                 | ARIO: TOR-C at<br>= .386969 %<br>3 3<br>Sky Shine<br>REM<br>6.86 E-03                                                                                                                                                  | nd KC-135<br>airborne = 84<br>sigmay cloud<br>Total Dose<br>REM                                                                                                                                                                   | sigmax = 5704.79 M<br>diameter = 57237.2 M<br>Prominent Particle<br>microns radius<br>29.0                                                                                                                                                                       |
| 30 Dec 1420<br>time (hr) = 4<br>sigmay = 953<br>Altitude<br>M<br>12000<br>10000                                                                     | CUSTOM SCEN<br>4 deltat (hr)<br>9.53 M<br>Cabin Dust<br>REM<br>8.21 E-03<br>.032                                                                                                                                                         | ARIO: TOR-C at<br>= .386969 %<br>3 3<br>Sky Shine<br>REM<br>6.86 E-03<br>.027                                                                                                                                          | nd KC-135<br>airborne = 84<br>sigmay cloud<br>Total Dose<br>REM<br>.015<br>.060                                                                                                                                                   | sigmax = 5704.79 M<br>diameter = 57237.2 M<br>Prominent Particle<br>microns radius<br>29.0<br>29.0                                                                                                                                                               |
| 30 Dec 1420<br>time (hr) = 4<br>sigmay = 953<br>Altitude<br>M<br>12000<br>10000<br>8000 -                                                           | CUSTOM SCEN<br>4 deltat (hr)<br>9.53 M<br>Cabin Dust<br>REM<br>8.21 E-03<br>.032<br>.076                                                                                                                                                 | ARIO: TOR-C an<br>= .386969 %<br>Sky Shine<br>REM<br>6.86 E-03<br>.027<br>.063                                                                                                                                         | .019<br>nd KC-135<br>airborne = 84<br>sigmay cloud<br>Total Dose<br>REM<br>.015<br>.060<br>.140                                                                                                                                   | sigmax = 5704.79 M<br>diameter = 57237.2 M<br>Prominent Particle<br>microns radius<br>29.0<br>29.0<br>32.8                                                                                                                                                       |
| 30 Dec 1420<br>time (hr) = 4<br>sigmay = 953<br>Altitude<br>M<br>12000<br>10000<br>8000 -<br>6000                                                   | CUSTOM SCEN<br>4 deltat (hr)<br>9.53 M<br>Cabin Dust<br>REM<br>8.21 E-03<br>.032<br>.076<br>.121                                                                                                                                         | ARIO: TOR-C and<br>= .386969 %<br>Sky Shine<br>REM<br>6.86 E-03<br>.027<br>.063<br>.101                                                                                                                                | .019<br>nd KC-135<br>airborne = 84<br>sigmay cloud<br>Total Dose<br>REM<br>.015<br>.060<br>.140<br>.223                                                                                                                           | sigmax = 5704.79 M<br>diameter = 57237.2 M<br>Prominent Particle<br>microns radius<br>29.0<br>29.0<br>32.8<br>41.1                                                                                                                                               |
| 30 Dec 1420<br>time (hr) = 4<br>sigmay = 953<br>Altitude<br>M<br>12000<br>10000<br>8000 -<br>6000<br>4000                                           | CUSTOM SCEN<br>4 deltat (hr)<br>9.53 M<br>Cabin Dust<br>REM<br>8.21 E-03<br>.032<br>.076<br>.121<br>.148                                                                                                                                 | ARIO: TOR-C and<br>= .386969 %<br>Sky Shine<br>REM<br>6.86 E-03<br>.027<br>.063<br>.101<br>.123                                                                                                                        | .019<br>airborne = 84<br>sigmay cloud<br>Total Dose<br>REM<br>.015<br>.060<br>.140<br>.223<br>.271                                                                                                                                | sigmax = 5704.79 M<br>diameter = 57237.2 M<br>Prominent Particle<br>microns radius<br>29.0<br>29.0<br>32.8<br>41.1<br>48.0                                                                                                                                       |
| 30 Dec 1420<br>time (hr) = 4<br>sigmay = 953<br>Altitude<br>M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000                                   | CUSTOM SCEN<br>4 deltat (hr)<br>9.53 M<br>Cabin Dust<br>REM<br>8.21 E-03<br>.032<br>.076<br>.121<br>.148<br>.151                                                                                                                         | ARIO: TOR-C and<br>= .386969 %<br>Sky Shine<br>REM<br>6.86 E-03<br>.027<br>.063<br>.101<br>.123<br>.126                                                                                                                | .019<br>airborne = 84<br>sigmay cloud<br>Total Dose<br>REM<br>.015<br>.060<br>.140<br>.223<br>.271<br>.277                                                                                                                        | sigmax = 5704.79 M<br>diameter = 57237.2 M<br>Prominent Particle<br>microns radius<br>29.0<br>29.0<br>32.8<br>41.1<br>48.0<br>55.2                                                                                                                               |
| 30 Dec 1420<br>time (hr) = 4<br>sigmay = 953<br>Altitude<br>M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000                                   | CUSTOM SCEN<br>4 deltat (hr)<br>9.53 M<br>Cabin Dust<br>REM<br>8.21 E-03<br>.032<br>.076<br>.121<br>.148<br>.151                                                                                                                         | ARIO: TOR-C and<br>= .386969 %<br>Sky Shine<br>REM<br>6.86 E-03<br>.027<br>.063<br>.101<br>.123<br>.126                                                                                                                | .019<br>nd KC-135<br>airborne = 84<br>sigmay cloud<br>Total Dose<br>REM<br>.015<br>.060<br>.140<br>.223<br>.271<br>.277                                                                                                           | sigmax = 5704.79 M<br>diameter = 57237.2 M<br>Prominent Particle<br>microns radius<br>29.0<br>29.0<br>32.8<br>41.1<br>48.0<br>55.2                                                                                                                               |
| 30 Dec 1420<br>time (hr) = 4<br>sigmay = 953<br>Altitude<br>M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000<br>**************************     | CUSTOM SCEN<br>4 deltat (hr)<br>9.53 M<br>Cabin Dust<br>REM<br>8.21 E-03<br>.032<br>.076<br>.121<br>.148<br>.151<br>CUSTOM SCEN                                                                                                          | ARIO: TOR-C and<br>= .386969 %<br>Sky Shine<br>REM<br>6.86 E-03<br>.027<br>.063<br>.101<br>.123<br>.126<br>ARIO: TOR-C and                                                                                             | .019<br>nd KC-135<br>airborne = 84<br>sigmay cloud<br>Total Dose<br>REM<br>.015<br>.060<br>.140<br>.223<br>.271<br>.277<br>nd KC-135                                                                                              | sigmax = 5704.79 M<br>diameter = 57237.2 M<br>Prominent Particle<br>microns radius<br>29.0<br>29.0<br>32.8<br>41.1<br>48.0<br>55.2                                                                                                                               |
| 30 Dec 1420<br>time (hr) = 4<br>sigmay = 953<br>Altitude<br>M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000<br>*****************************  | CUSTOM SCEN<br>4 deltat (hr)<br>9.53 M<br>Cabin Dust<br>REM<br>8.21 E-03<br>.032<br>.076<br>.121<br>.148<br>.151<br>CUSTOM SCEN<br>8 deltat (hr)                                                                                         | ARIO: TOR-C an<br>= .386969 %<br>Sky Shine<br>REM<br>6.86 E-03<br>.027<br>.063<br>.101<br>.123<br>.126<br>ARIO: TOR-C an<br>= .386969 %                                                                                | .019<br>nd KC-135<br>airborne = 84<br>sigmay cloud<br>Total Dose<br>REM<br>.015<br>.060<br>.140<br>.223<br>.271<br>.277<br>nd KC-135<br>airborne = 25                                                                             | sigmax = 5704.79 M<br>diameter = 57237.2 M<br>Prominent Particle<br>microns radius<br>29.0<br>29.0<br>32.8<br>41.1<br>48.0<br>55.2<br>sigmax = 5704.79 M                                                                                                         |
| 30 Dec 1420<br>time (hr) = 4<br>sigmay = 953<br>Altitude<br>M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000<br>*****************************  | CUSTOM SCEN<br>4 deltat (hr)<br>9.53 M<br>Cabin Dust<br>REM<br>8.21 E-03<br>.032<br>.076<br>.121<br>.148<br>.151<br>CUSTOM SCEN<br>8 deltat (hr)<br>59.7 M                                                                               | ARIO: TOR-C an<br>= .386969 %<br>Sky Shine<br>REM<br>6.86 E-03<br>.027<br>.063<br>.101<br>.123<br>.126<br>ARIO: TOR-C an<br>= .386969 %<br>3 :                                                                         | .019<br>nd KC-135<br>airborne = 84<br>sigmay cloud<br>Total Dose<br>REM<br>.015<br>.060<br>.140<br>.223<br>.271<br>.277<br>nd KC-135<br>airborne = 25<br>sigmay cloud                                                             | sigmax = 5704.79 M<br>diameter = 57237.2 M<br>Prominent Particle<br>microns radius<br>29.0<br>29.0<br>32.8<br>41.1<br>48.0<br>55.2<br>sigmax = 5704.79 M<br>diameter = 98758.1 M                                                                                 |
| 30 Dec 1420<br>time (hr) = 4<br>sigmay = 953<br>Altitude<br>M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000<br>*****************************  | CUSTOM SCEN<br>4 deltat (hr)<br>9.53 M<br>Cabin Dust<br>REM<br>8.21 E-03<br>.032<br>.076<br>.121<br>.148<br>.151<br>CUSTOM SCEN<br>8 deltat (hr)<br>59.7 M<br>Cabin Dust                                                                 | ARIO: TOR-C an<br>= .386969 %<br>Sky Shine<br>REM<br>6.86 E-03<br>.027<br>.063<br>.101<br>.123<br>.126<br>ARIO: TOR-C an<br>= .386969 %<br>Sky Shine                                                                   | .019<br>nd KC-135<br>airborne = 84<br>sigmay cloud<br>Total Dose<br>REM<br>.015<br>.060<br>.140<br>.223<br>.271<br>.277<br>nd KC-135<br>airborne = 25<br>sigmay cloud<br>Total Dose                                               | sigmax = 5704.79 M<br>diameter = 57237.2 M<br>Prominent Particle<br>microns radius<br>29.0<br>29.0<br>32.8<br>41.1<br>48.0<br>55.2<br>sigmax = 5704.79 M<br>diameter = 98758.1 M<br>Prominent Particle                                                           |
| 30 Dec 1420<br>time (hr) = 4<br>sigmay = 953<br>Altitude<br>M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000<br>*****************************  | CUSTOM SCEN<br>4 deltat (hr)<br>9.53 M<br>Cabin Dust<br>REM<br>8.21 E-03<br>.032<br>.076<br>.121<br>.148<br>.151<br>CUSTOM SCEN<br>8 deltat (hr)<br>59.7 M<br>Cabin Dust<br>REM                                                          | ARIO: TOR-C an<br>= .386969 %;<br>Sky Shine<br>REM<br>6.86 E-03<br>.027<br>.063<br>.101<br>.123<br>.126<br>ARIO: TOR-C an<br>= .386969 %;<br>3 :<br>Sky Shine<br>REM                                                   | nd KC-135<br>airborne = 84<br>sigmay cloud<br>Total Dose<br>REM<br>.015<br>.060<br>.140<br>.223<br>.271<br>.277<br>nd KC-135<br>airborne = 25<br>sigmay cloud<br>Total Dose<br>REM                                                | sigmax = 5704.79 M<br>diameter = 57237.2 M<br>Prominent Particle<br>microns radius<br>29.0<br>29.0<br>32.8<br>41.1<br>48.0<br>55.2<br>sigmax = 5704.79 M<br>diameter = 98758.1 M<br>Prominent Particle<br>microns radius                                         |
| 30 Dec 1420<br>time (hr) = 4<br>sigmay = 953<br>Altitude<br>M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000<br>*****************************  | CUSTOM SCEN<br>4 deltat (hr)<br>9.53 M<br>Cabin Dust<br>REM<br>8.21 E-03<br>.032<br>.076<br>.121<br>.148<br>.151<br>CUSTOM SCEN<br>8 deltat (hr)<br>59.7 M<br>Cabin Dust<br>REM<br>0                                                     | ARIO: TOR-C and<br>= .386969 %<br>Sky Shine<br>REM<br>6.86 E-03<br>.027<br>.063<br>.101<br>.123<br>.126<br>ARIO: TOR-C and<br>= .386969 %<br>3 :<br>Sky Shine<br>REM<br>0                                              | nd KC-135<br>airborne = 84<br>sigmay cloud<br>Total Dose<br>REM<br>.015<br>.060<br>.140<br>.223<br>.271<br>.277<br>nd KC-135<br>airborne = 25<br>sigmay cloud<br>Total Dose<br>REM<br>0                                           | sigmax = 5704.79 M<br>diameter = 57237.2 M<br>Prominent Particle<br>microns radius<br>29.0<br>32.8<br>41.1<br>48.0<br>55.2<br>sigmax = 5704.79 M<br>diameter = 98758.1 M<br>Prominent Particle<br>microns radius<br>29.0                                         |
| 30 Dec 1420<br>time (hr) = 4<br>sigmay = 953<br>Altitude<br>M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000<br>*****************************  | CUSTOM SCEN<br>4 deltat (hr)<br>9.53 M<br>Cabin Dust<br>REM<br>8.21 E-03<br>.032<br>.076<br>.121<br>.148<br>.151<br>CUSTOM SCEN<br>8 deltat (hr)<br>59.7 M<br>Cabin Dust<br>REM<br>0<br>1.44 E-04                                        | ARIO: TOR-C and<br>= .386969 %<br>Sky Shine<br>REM<br>6.86 E-03<br>.027<br>.063<br>.101<br>.123<br>.126<br>ARIO: TOR-C and<br>= .386969 %<br>Sky Shine<br>REM<br>0<br>9.18 E-05                                        | .019<br>nd KC-135<br>airborne = 84<br>sigmay cloud<br>Total Dose<br>REM<br>.015<br>.060<br>.140<br>.223<br>.271<br>.277<br>nd KC-135<br>airborne = 25<br>sigmay cloud<br>Total Dose<br>REM<br>0<br>2.35 E-04                      | sigmax = 5704.79 M<br>diameter = 57237.2 M<br>Prominent Particle<br>microns radius<br>29.0<br>29.0<br>32.8<br>41.1<br>48.0<br>55.2<br>sigmax = 5704.79 M<br>diameter = 98758.1 M<br>Prominent Particle<br>microns radius<br>29.0<br>29.0<br>29.0                 |
| 30 Dec 1420<br>time (hr) = 4<br>sigmay = 953<br>Altitude<br>M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000<br>*****************************  | CUSTOM SCEN<br>4 deltat (hr)<br>9.53 M<br>Cabin Dust<br>REM<br>8.21 E-03<br>.032<br>.076<br>.121<br>.148<br>.151<br>CUSTOM SCEN<br>8 deltat (hr)<br>59.7 M<br>Cabin Dust<br>REM<br>0<br>1.44 E-04<br>1.07 E-03                           | ARIO: TOR-C at<br>= .386969 %<br>Sky Shine<br>REM<br>6.86 E-03<br>.027<br>.063<br>.101<br>.123<br>.126<br>ARIO: TOR-C at<br>= .386969 %<br>Sky Shine<br>REM<br>0<br>9.18 E-05<br>6.84 E-04                             | .019<br>nd KC-135<br>airborne = 84<br>sigmay cloud<br>Total Dose<br>REM<br>.015<br>.060<br>.140<br>.223<br>.271<br>.277<br>nd KC-135<br>airborne = 25<br>sigmay cloud<br>Total Dose<br>REM<br>0<br>2.35 E-04<br>.002              | sigmax = 5704.79 M<br>diameter = 57237.2 M<br>Prominent Particle<br>microns radius<br>29.0<br>29.0<br>32.8<br>41.1<br>48.0<br>55.2<br>sigmax = 5704.79 M<br>diameter = 98758.1 M<br>Prominent Particle<br>microns radius<br>29.0<br>29.0<br>29.0<br>29.0<br>29.0 |
| 30 Dec 1420<br>time (hr) = -<br>sigmay = 953:<br>Altitude<br>M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000<br>***************************** | CUSTOM SCEN<br>4 deltat (hr)<br>9.53 M<br>Cabin Dust<br>REM<br>8.21 E-03<br>.032<br>.076<br>.121<br>.148<br>.151<br>CUSTOM SCEN<br>8 deltat (hr)<br>59.7 M<br>Cabin Dust<br>REM<br>0<br>1.44 E-04<br>1.07 E-03<br>3.35 E-03              | ARIO: TOR-C at<br>= .386969 %<br>Sky Shine<br>REM<br>6.86 E-03<br>.027<br>.063<br>.101<br>.123<br>.126<br>ARIO: TOR-C at<br>= .386969 %<br>Sky Shine<br>REM<br>0<br>9.18 E-05<br>6.84 E-04<br>2.13 E-03                | .019<br>nd KC-135<br>airborne = 84<br>sigmay cloud<br>Total Dose<br>REM<br>.015<br>.060<br>.140<br>.223<br>.271<br>.277<br>nd KC-135<br>airborne = 25<br>sigmay cloud<br>Total Dose<br>REM<br>0<br>2.35 E-04<br>.002<br>5.48 E-03 | <pre>sigmax = 5704.79 M<br/>diameter = 57237.2 M<br/>Prominent Particle<br/>microns radius<br/>29.0<br/>29.0<br/>32.8<br/>41.1<br/>48.0<br/>55.2<br/>**********************************</pre>                                                                    |
| 30 Dec 1420<br>time (hr) = -<br>sigmay = 953<br>Altitude<br>M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000<br>*****************************  | CUSTOM SCEN<br>4 deltat (hr)<br>9.53 M<br>Cabin Dust<br>REM<br>8.21 E-03<br>.032<br>.076<br>.121<br>.148<br>.151<br>CUSTOM SCEN<br>8 deltat (hr)<br>59.7 M<br>Cabin Dust<br>REM<br>0<br>1.44 E-04<br>1.07 E-03<br>3.35 E-03<br>6.27 E-03 | ARIO: TOR-C and<br>= .386969 %<br>Sky Shine<br>REM<br>6.86 E-03<br>.027<br>.063<br>.101<br>.123<br>.126<br>ARIO: TOR-C and<br>= .386969 %<br>Sky Shine<br>REM<br>0<br>9.18 E-05<br>6.84 E-04<br>2.13 E-03<br>3.99 E-03 | .019<br>airborne = 84<br>sigmay cloud<br>Total Dose<br>REM<br>.015<br>.060<br>.140<br>.223<br>.271<br>.277<br>airborne = 25<br>sigmay cloud<br>Total Dose<br>REM<br>0<br>2.35 E-04<br>.002<br>5.48 E-03<br>.010                   | sigmax = 5704.79 M<br>diameter = 57237.2 M<br>Prominent Particle<br>microns radius<br>29.0<br>32.8<br>41.1<br>48.0<br>55.2<br>sigmax = 5704.79 M<br>diameter = 98758.1 M<br>Prominent Particle<br>microns radius<br>29.0<br>29.0<br>29.0<br>29.0<br>29.0<br>32.8 |

53

·.•

# Table XIII

# DELFIC Cloud and B-1B

Ĩ

-

# WITHOUT CABIN AIR FILTER

| ***********                                                                                                                                                 | **********                                                                                                                                                                                                             | *********                                                                                                                                                                                                        | **********                                                                                                                                                                                                                                   | *******                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 Jan 1406                                                                                                                                                 | CUSTOM SCENA                                                                                                                                                                                                           | RIO: Baseline                                                                                                                                                                                                    | + B-1B with                                                                                                                                                                                                                                  | out filter                                                                                                                                                                                                                                                                                           |
| time $(hr) = 1$                                                                                                                                             | deltat (hr)                                                                                                                                                                                                            | = .0967423 %                                                                                                                                                                                                     | airborne = 90                                                                                                                                                                                                                                | ) sigmax = 3958.03 M                                                                                                                                                                                                                                                                                 |
| sigmay = 4355.                                                                                                                                              | .52 M                                                                                                                                                                                                                  | 3 s                                                                                                                                                                                                              | igmay cloud d                                                                                                                                                                                                                                | liameter = $26133.1 \text{ M}$                                                                                                                                                                                                                                                                       |
| Altitude                                                                                                                                                    | Cabin Dust                                                                                                                                                                                                             | Sky Shine                                                                                                                                                                                                        | Total Dose                                                                                                                                                                                                                                   | <b>Prominent Particle</b>                                                                                                                                                                                                                                                                            |
| M                                                                                                                                                           | REM                                                                                                                                                                                                                    | REM                                                                                                                                                                                                              | REM                                                                                                                                                                                                                                          | microns radius                                                                                                                                                                                                                                                                                       |
| 12000                                                                                                                                                       | 4.77                                                                                                                                                                                                                   | 4.16                                                                                                                                                                                                             | 8.94                                                                                                                                                                                                                                         | 31.8                                                                                                                                                                                                                                                                                                 |
| 10000                                                                                                                                                       | 2.26                                                                                                                                                                                                                   | 1.97                                                                                                                                                                                                             | 4.24                                                                                                                                                                                                                                         | 55.1                                                                                                                                                                                                                                                                                                 |
| 8000                                                                                                                                                        | 1.04                                                                                                                                                                                                                   | .909                                                                                                                                                                                                             | 1,95                                                                                                                                                                                                                                         | 78.1                                                                                                                                                                                                                                                                                                 |
| 6000                                                                                                                                                        | .580                                                                                                                                                                                                                   | .506                                                                                                                                                                                                             | 1.08                                                                                                                                                                                                                                         | 103.                                                                                                                                                                                                                                                                                                 |
| 4000                                                                                                                                                        | .362                                                                                                                                                                                                                   | .316                                                                                                                                                                                                             | .679                                                                                                                                                                                                                                         | 126.                                                                                                                                                                                                                                                                                                 |
| 2000                                                                                                                                                        | .237                                                                                                                                                                                                                   | .207                                                                                                                                                                                                             | .445                                                                                                                                                                                                                                         | 157.                                                                                                                                                                                                                                                                                                 |
| **********                                                                                                                                                  | ***********                                                                                                                                                                                                            | **********                                                                                                                                                                                                       | ***********                                                                                                                                                                                                                                  | *******                                                                                                                                                                                                                                                                                              |
| 12 Jan 1406                                                                                                                                                 | CUSTOM SCENA                                                                                                                                                                                                           | RIO: Baseline                                                                                                                                                                                                    | + B-1B with                                                                                                                                                                                                                                  | out filter                                                                                                                                                                                                                                                                                           |
| time $(hr) = 2$                                                                                                                                             | deltat (hr)                                                                                                                                                                                                            | = .0967423 %                                                                                                                                                                                                     | airborne = 81                                                                                                                                                                                                                                | sigmax = 4865.07 M                                                                                                                                                                                                                                                                                   |
| sigmay = 6148                                                                                                                                               | .72 M                                                                                                                                                                                                                  | 3 s                                                                                                                                                                                                              | igmay cloud o                                                                                                                                                                                                                                | liameter = $36892.3$ M                                                                                                                                                                                                                                                                               |
| Altitude                                                                                                                                                    | Cabin Dust                                                                                                                                                                                                             | Sky Shine                                                                                                                                                                                                        | Total Dose                                                                                                                                                                                                                                   | Prominent Particle                                                                                                                                                                                                                                                                                   |
| M                                                                                                                                                           | REM                                                                                                                                                                                                                    | REM                                                                                                                                                                                                              | REM                                                                                                                                                                                                                                          | microns radius                                                                                                                                                                                                                                                                                       |
| 12000                                                                                                                                                       | 1.90                                                                                                                                                                                                                   | 1.07                                                                                                                                                                                                             | 2.98                                                                                                                                                                                                                                         | 22.4                                                                                                                                                                                                                                                                                                 |
| 10000                                                                                                                                                       | .925                                                                                                                                                                                                                   | .521                                                                                                                                                                                                             | 1.44                                                                                                                                                                                                                                         | 36.2                                                                                                                                                                                                                                                                                                 |
| 8000                                                                                                                                                        | .438                                                                                                                                                                                                                   | .247                                                                                                                                                                                                             | .685                                                                                                                                                                                                                                         | 48.6                                                                                                                                                                                                                                                                                                 |
| 6000                                                                                                                                                        | .259                                                                                                                                                                                                                   | .146                                                                                                                                                                                                             | .405                                                                                                                                                                                                                                         | 60.1                                                                                                                                                                                                                                                                                                 |
| 4000                                                                                                                                                        | .176                                                                                                                                                                                                                   | .099                                                                                                                                                                                                             | .275                                                                                                                                                                                                                                         | 74.7                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                             |                                                                                                                                                                                                                        |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                      |
| 2000                                                                                                                                                        | .123                                                                                                                                                                                                                   | .069                                                                                                                                                                                                             | .192                                                                                                                                                                                                                                         | 89.5                                                                                                                                                                                                                                                                                                 |
| 2000                                                                                                                                                        | .123                                                                                                                                                                                                                   | .069                                                                                                                                                                                                             | .192                                                                                                                                                                                                                                         | 89.5                                                                                                                                                                                                                                                                                                 |
| 2000<br>12 Jan 1406                                                                                                                                         | .123<br>CUSTOM SCENA                                                                                                                                                                                                   | .069<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                     | .192<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                 | 89.5<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                         |
| 2000<br>12 Jan 1406<br>time (hr) = 4<br>tigmer = 9500                                                                                                       | .123<br>CUSTOM SCENA<br>deltat (hr)<br>64 M                                                                                                                                                                            | .069<br>ARIO: Baseline<br>= .156667 %s                                                                                                                                                                           | .192<br>+ B-1B with<br>airborne = 69                                                                                                                                                                                                         | 89.5<br>but filter<br>sigmax = 5627.78 M<br>liameter = 57003.8 M                                                                                                                                                                                                                                     |
| 2000<br>12 Jan 1406<br>time (hr) = 4<br>sigmay = 9500<br>Altitude                                                                                           | .123<br>CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust                                                                                                                                                             | .069<br>ARIO: Baseline<br>= .156667 %a<br>3 s                                                                                                                                                                    | .192<br>+ B-1B with<br>airborne = 69<br>sigmay cloud of<br>Total Dose                                                                                                                                                                        | 89.5<br>but filter<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle                                                                                                                                                                                                               |
| 2000<br>12 Jan 1406<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>W                                                                                      | .123<br>CUSTOM SCEN/<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM                                                                                                                                                      | .069<br>ARIO: Baseline<br>= .156667 %a<br>3 s<br>Sky Shine<br>RFM                                                                                                                                                | .192<br>+ B-1B with<br>airborne = 69<br>sigmay cloud of<br>Total Dose<br>REM                                                                                                                                                                 | 89.5<br>bot filter<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius                                                                                                                                                                                             |
| 2000<br>12 Jan 1406<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000                                                                             | .123<br>CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.636                                                                                                                                              | .069<br>ARIO: Baseline<br>= .156667 %a<br>3 s<br>Sky Shine<br>REM<br>.250                                                                                                                                        | .192<br>+ B-1B with<br>airborne = 69<br>sigmay cloud of<br>Total Dose<br>REM<br>.886                                                                                                                                                         | 89.5<br>bot filter<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4                                                                                                                                                                                     |
| 2000<br>12 Jan 1406<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000<br>10000 -                                                                  | .123<br>CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.636<br>.316                                                                                                                                      | .069<br>ARIO: Baseline<br>= .156667 %<br>Sky Shine<br>REM<br>.250<br>124                                                                                                                                         | .192<br>+ B-1B with<br>airborne = 69<br>sigmay cloud of<br>Total Dose<br>REM<br>.886<br>.441                                                                                                                                                 | 89.5<br>but filter<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5                                                                                                                                                                             |
| 2000<br>12 Jan 1406<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000<br>10000 -<br>8000                                                          | .123<br>CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.636<br>.316<br>.154                                                                                                                              | .069<br>ARIO: Baseline<br>= .156667 %<br>3 s<br>Sky Shine<br>REM<br>.250<br>.124<br>.060                                                                                                                         | .192<br>+ B-1B with<br>airborne = 69<br>sigmay cloud of<br>Total Dose<br>REM<br>.886<br>.441<br>.214                                                                                                                                         | 89.5<br>bot filter<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8                                                                                                                                                                     |
| 2000<br>12 Jan 1406<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000<br>10000 -<br>8000<br>6000                                                  | .123<br>CUSTOM SCEN/<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.636<br>.316<br>.154                                                                                                                              | .069<br>ARIO: Baseline<br>= .156667 %s<br>3 s<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035                                                                                                                | .192<br>+ B-1B with<br>airborne = 69<br>sigmay cloud of<br>Total Dose<br>REM<br>.886<br>.441<br>.214<br>.127                                                                                                                                 | 89.5<br>bot filter<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4                                                                                                                                                             |
| 2000<br>12 Jan 1406<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000<br>10000 -<br>8000<br>6000<br>4000                                          | .123<br>CUSTOM SCEN/<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.636<br>.316<br>.154<br>.091<br>.061                                                                                                              | .069<br>ARIO: Baseline<br>= .156667 %s<br>3 s<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024                                                                                                        | .192<br>+ B-1B with<br>airborne = 69<br>sigmay cloud of<br>Total Dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085                                                                                                                         | 89.5<br>bot filter<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6                                                                                                                                                     |
| 2000<br>12 Jan 1406<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000<br>10000 -<br>8000<br>6000<br>4000<br>2000                                  | .123<br>CUSTOM SCEN/<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.636<br>.316<br>.154<br>.091<br>.061                                                                                                              | .069<br>ARIO: Baseline<br>= .156667 %<br>3 s<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017                                                                                                 | .192<br>+ B-1B with<br>airborne = 69<br>sigmay cloud of<br>Total Dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061                                                                                                                 | 89.5<br>bot filter<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9                                                                                                                                             |
| 2000<br>12 Jan 1406<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000<br>10000 -<br>8000<br>6000<br>4000<br>2000                                  | .123<br>CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.636<br>.316<br>.154<br>.091<br>.061<br>.044                                                                                                      | .069<br>ARIO: Baseline<br>= .156667 %a<br>3 s<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017                                                                                                | .192<br>+ B-1B with<br>airborne = 69<br>sigmay cloud of<br>Total Dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061                                                                                                                 | 89.5<br>out filter<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9                                                                                                                                             |
| 2000<br>12 Jan 1406<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000<br>10000 -<br>8000<br>6000<br>4000<br>2000<br>***************************** | .123<br>CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.636<br>.316<br>.154<br>.091<br>.061<br>.044<br>CUSTOM SCENA                                                                                      | .069<br>ARIO: Baseline<br>= .156667 %<br>3 s<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017<br>ARIO: Baseline                                                                               | .192<br>+ B-1B with<br>airborne = 69<br>sigmay cloud of<br>Total Dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061<br>+ B-1B with                                                                                                  | 89.5<br>but filter<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>but filter                                                                                                                               |
| 2000<br>12 Jan 1406<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000<br>10000 -<br>8000<br>6000<br>4000<br>2000<br>                              | .123<br>CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.636<br>.316<br>.154<br>.091<br>.061<br>.044<br>CUSTOM SCENA<br>deltat (hr)                                                                       | .069<br>ARIO: Baseline<br>= .156667 %<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017<br>ARIO: Baseline<br>= .363636 %                                                                       | .192<br>+ B-1B with<br>airborne = 69<br>sigmay cloud of<br>Total Dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061<br>+ B-1B with<br>airborne = 57                                                                                 | 89.5<br>bot filter<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>bout filter<br>sigmax = 5627.78 M                                                                                                        |
| 2000<br>12 Jan 1406<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000<br>10000 -<br>8000<br>6000<br>4000<br>2000<br>***************************** | .123<br>CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.636<br>.316<br>.154<br>.091<br>.061<br>.044<br>CUCTOM SCENA<br>deltat (hr)<br>5.6 M                                                              | .069<br>ARIO: Baseline<br>= .156667 %<br>3 s<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017<br>ARIO: Baseline<br>= .363636 %                                                                | .192<br>+ B-1B with<br>airborne = 69<br>sigmay cloud of<br>Total Dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061<br>+ B-1B with<br>airborne = 57<br>sigmay cloud of                                                              | 89.5<br>bot filter<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>bout filter<br>sigmax = 5627.78 M<br>diameter = 98613.5 M                                                                                |
| 2000<br>12 Jan 1406<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000<br>10000 -<br>8000<br>6000<br>4000<br>2000<br>                              | .123<br>CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.636<br>.316<br>.154<br>.091<br>.061<br>.044<br>CUSTOM SCENA<br>deltat (hr)<br>5.6 M<br>Cabin Dust                                                | .069<br>ARIO: Baseline<br>= .156667 %a<br>3 s<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017<br>ARIO: Baseline<br>= .363636 %a<br>Sky Shine                                                 | .192<br>+ B-1B with<br>airborne = 69<br>sigmay cloud of<br>Total Dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061<br>+ B-1B with<br>airborne = 57<br>sigmay cloud of<br>Total Dose                                                | 89.5<br>Port filter<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>Pout filter<br>sigmax = 5627.78 M<br>diameter = 98613.5 M<br>Prominent Particle                                                         |
| 2000<br>12 Jan 1406<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000<br>10000 -<br>8000<br>6000<br>4000<br>2000<br>***************************** | .123<br>CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.636<br>.316<br>.154<br>.091<br>.061<br>.044<br>CUCTOM SCENA<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM                                         | .069<br>ARIO: Baseline<br>= .156667 %a<br>3 s<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017<br>ARIO: Baseline<br>= .363636 %a<br>3 s<br>Sky Shine<br>REM                                   | .192<br>+ B-1B with<br>airborne = 69<br>sigmay cloud of<br>Total Dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061<br>+ B-1B with<br>airborne = 57<br>sigmay cloud of<br>Total Dose<br>REM                                         | 89.5<br>Port filter<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>Prominent Particle<br>sigmax = 5627.78 M<br>diameter = 98613.5 M<br>Prominent Particle<br>microns radius                                |
| 2000<br>12 Jan 1406<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000<br>10000 -<br>8000<br>6000<br>4000<br>2000<br>***************************** | .123<br>CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.636<br>.316<br>.154<br>.091<br>.061<br>.044<br>CUCTOM SCENA<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.172                                 | .069<br>ARIO: Baseline<br>= .156667 %a<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017<br>ARIO: Baseline<br>= .363636 %a<br>Sky Shine<br>REM<br>.051                                         | .192<br>+ B-1B with<br>airborne = 69<br>sigmay cloud of<br>Total Dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061<br>+ B-1B with<br>airborne = 57<br>sigmay cloud of<br>Total Dose<br>REM<br>.223                                 | 89.5<br>Port filter<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>Prominent Particle<br>sigmax = 5627.78 M<br>diameter = 98613.5 M<br>Prominent Particle<br>microns radius<br>11.2                        |
| 2000<br>12 Jan 1406<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000<br>10000 -<br>8000<br>6000<br>4000<br>2000<br>***************************** | .123<br>CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.636<br>.316<br>.154<br>.091<br>.061<br>.044<br>CUCTOM SCENA<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.172<br>.088                         | .069<br>ARIO: Baseline<br>= .156667 %<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017<br>ARIO: Baseline<br>= .363636 %<br>3 %<br>Sky Shine<br>REM<br>.051<br>.026                            | .192<br>+ B-1B with<br>airborne = 69<br>sigmay cloud of<br>Total Dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061<br>+ B-1B with<br>airborne = 57<br>sigmay cloud of<br>Total Dose<br>REM<br>.223<br>.114                         | 89.5<br>Port filter<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>Prominent Particle<br>microns radius<br>11.2<br>17.0                                                                                    |
| 2000<br>12 Jan 1406<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000<br>10000 -<br>8000<br>6000<br>4000<br>2000<br>***************************** | .123<br>CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.636<br>.316<br>.154<br>.091<br>.061<br>.044<br>CUGTOM SCENA<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.172<br>.088<br>.043                 | .069<br>ARIO: Baseline<br>= .156667 %<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017<br>ARIO: Baseline<br>= .363636 %<br>Sky Shine<br>REM<br>.051<br>.026<br>.013                           | .192<br>+ B-1B with<br>airborne = 69<br>sigmay cloud of<br>Total Dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061<br>+ B-1B with<br>airborne = 57<br>sigmay cloud of<br>Total Dose<br>REM<br>.223<br>.114<br>.056                 | 89.5<br>Port filter<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>Prominent Particle<br>microns radius<br>11.2<br>17.0<br>22.4                                                                            |
| 2000<br>12 Jan 1406<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000<br>10000 -<br>8000<br>6000<br>4000<br>2000<br>***************************** | .123<br>CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.636<br>.316<br>.154<br>.091<br>.061<br>.044<br>CUSTOM SCENA<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.172<br>.088<br>.043<br>.026         | .069<br>ARIO: Baseline<br>= .156667 %<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017<br>ARIO: Baseline<br>= .363636 %<br>Sky Shine<br>REM<br>.051<br>.026<br>.013<br>7.81 E-03              | .192<br>+ B-1B with<br>airborne = 69<br>sigmay cloud of<br>Total Dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061<br>+ B-1B with<br>airborne = 57<br>sigmay cloud of<br>Total Dose<br>REM<br>.223<br>.114<br>.056<br>.033         | 89.5<br>Port filter<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>Prominent Particle<br>microns radius<br>11.2<br>17.0<br>22.4<br>26.8                                                                    |
| 2000<br>12 Jan 1406<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000<br>10000 -<br>8000<br>6000<br>4000<br>2000<br>***************************** | .123<br>CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.636<br>.316<br>.154<br>.091<br>.061<br>.044<br>CUSTOM SCENA<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.172<br>.088<br>.043<br>.026<br>.017 | .069<br>ARIO: Baseline<br>= .156667 %<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017<br>ARIO: Baseline<br>= .363636 %<br>Sky Shine<br>REM<br>.051<br>.026<br>.013<br>7.81 E-03<br>5.32 E-03 | .192<br>+ B-1B with<br>airborne = 69<br>sigmay cloud of<br>Total Dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061<br>+ B-1B with<br>airborne = 57<br>sigmay cloud of<br>Total Dose<br>REM<br>.223<br>.114<br>.056<br>.033<br>.023 | 89.5<br>ont filter<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>out filter<br>sigmax = 5627.78 M<br>diameter = 98613.5 M<br>Prominent Particle<br>microns radius<br>11.2<br>17.0<br>22.4<br>26.8<br>30.5 |

# Table XIV

ليت ا

# DELFIC Cloud and B-1B

# WITH CABIN AIR FILTER

| ***********                                                    |                                                                                                                                                                                                          | *********                                                                                                                                                                                                             | ***********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | **********************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14 Feb 1452                                                    | CUSTOM SCENA                                                                                                                                                                                             | RIO: Baseline                                                                                                                                                                                                         | B-1B with fil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| time $(hr) = 1$                                                | deltat (hr)                                                                                                                                                                                              | = .0967423 %                                                                                                                                                                                                          | airborne = 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sigmax = 3958.03 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| sigmax = 4355                                                  | .52 M                                                                                                                                                                                                    | 3 s                                                                                                                                                                                                                   | igmay cloud d:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ismeter = 26133.1 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Altitude                                                       | Cabin Dust                                                                                                                                                                                               | Sky Shine                                                                                                                                                                                                             | Total Dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Prominent Particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| M                                                              | REM                                                                                                                                                                                                      | REM                                                                                                                                                                                                                   | REM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | microns radius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12000                                                          | 850                                                                                                                                                                                                      | 4 16                                                                                                                                                                                                                  | 5 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10000                                                          | 166                                                                                                                                                                                                      | 1 97                                                                                                                                                                                                                  | 2 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8000                                                           | 011                                                                                                                                                                                                      | 000                                                                                                                                                                                                                   | 621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 78 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6000                                                           | .011                                                                                                                                                                                                     | . 303                                                                                                                                                                                                                 | \$06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4000                                                           | 0                                                                                                                                                                                                        | 316                                                                                                                                                                                                                   | . 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 105.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2000                                                           | 0                                                                                                                                                                                                        | .310                                                                                                                                                                                                                  | .310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                |                                                                                                                                                                                                          | .20/                                                                                                                                                                                                                  | .207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14 Eab 1457                                                    | CUSTON SCEN                                                                                                                                                                                              |                                                                                                                                                                                                                       | R_1R with fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1+~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $14 \ Feb \ 1452$                                              | daltat (h=)                                                                                                                                                                                              | - 0067422                                                                                                                                                                                                             | s D-10 with 11.<br>Laighagna - 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1}{2} \frac{1}{2} \frac{1}$ |
| (100)(11) - 2                                                  | 72 M                                                                                                                                                                                                     | 090/425 *                                                                                                                                                                                                             | iemen aland d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sigmax - 4005.07 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Altitude                                                       | Cabin Drat                                                                                                                                                                                               | J J J J J                                                                                                                                                                                                             | Totol Doco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Prominent Decticie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| M                                                              | Cabin Dust<br>DEM                                                                                                                                                                                        | DEM                                                                                                                                                                                                                   | DEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rionnent rarticle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| መ<br>1 ን ስ ስ ስ                                                 | 8.CM<br>409                                                                                                                                                                                              | 1 07                                                                                                                                                                                                                  | вел<br>1 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | microns radius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12000                                                          | .408                                                                                                                                                                                                     | 1.07                                                                                                                                                                                                                  | 1.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10000                                                          | .080                                                                                                                                                                                                     | .521                                                                                                                                                                                                                  | .002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8000                                                           | 5.88 E-03                                                                                                                                                                                                | .247                                                                                                                                                                                                                  | .203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4000                                                           | 0                                                                                                                                                                                                        | .140                                                                                                                                                                                                                  | .140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60.1<br>74 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4000                                                           | 0                                                                                                                                                                                                        | .099                                                                                                                                                                                                                  | .099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /4./                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2000                                                           | U                                                                                                                                                                                                        | .009                                                                                                                                                                                                                  | .009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| **************************************                         |                                                                                                                                                                                                          |                                                                                                                                                                                                                       | · D_1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ********************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 14 Feb 1452                                                    | CUSTOM SCEN                                                                                                                                                                                              | RIO: Baselind                                                                                                                                                                                                         | B-1B with fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14 Feb 1452<br>time (hr) = 4                                   | CUSTOM SCENA<br>deltat (hr)                                                                                                                                                                              | RIO: Baseline<br>= .166667 %a                                                                                                                                                                                         | B-1B with final states of the second states of the | <pre>************************************</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14 Feb 1452<br>time (hr) = 4<br>sigmay = 9500                  | CUSTOM SCENA<br>deltat (hr)<br>.64 M                                                                                                                                                                     | ARIO: Baseline<br>= .166667 %a<br>3 g                                                                                                                                                                                 | B-1B with fi<br>airborne = 69<br>sigmay cloud d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <pre>iter<br/>sigmax = 5627.78 M<br/>iameter = 57003.8 M<br/>Perminent Particle</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14 Feb 1452<br>time (hr) = 4<br>sigmay = 9500<br>Altitude      | CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust                                                                                                                                                       | ARIO: Baseline<br>= .166667 %a<br>3 s<br>Sky Shine                                                                                                                                                                    | B-1B with fi<br>airborne = 69<br>Sigmay cloud d<br>Total Dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lter<br>sigmax = 5627.78 M<br>iameter = 57003.8 M<br>Prominent Particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14 Feb 1452<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M | CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM                                                                                                                                                | RIO: Baseling<br>= .166667 %a<br>3 s<br>Sky Shine<br>REM<br>250                                                                                                                                                       | B-1B with fi<br>airborne = 69<br>sigmay cloud d<br>Total Dose<br>REM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>iter sigmax = 5627.78 M iameter = 57003.8 M Prominent Particle microns radius 16.4</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <pre>+************************************</pre>               | CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.167                                                                                                                                        | ARIO: Baseline<br>= .166667 %:<br>3 s<br>Sky Shine<br>REM<br>.250                                                                                                                                                     | B-1B with fi<br>airborne = 69<br>sigmay cloud d<br>Total Dose<br>REM<br>.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>ter sigmax = 5627.78 M iameter = 57003.8 M Prominent Particle microns radius 15.4 24.5</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <pre>+************************************</pre>               | CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.167<br>.033                                                                                                                                | ARIO: Baseline<br>= .166667 %<br>3 s<br>Sky Shine<br>REM<br>.250<br>.124                                                                                                                                              | B-1B with fi<br>airborne = 69<br>sigmay cloud d<br>Total Dose<br>REM<br>.417<br>.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>iter sigmax = 5627.78 M iameter = 57003.8 M Prominent Particle microns radius 15.4 24.5 31 8</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <pre>+************************************</pre>               | CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.167<br>.033<br>2.52 E-03                                                                                                                   | ARIO: Baseline<br>= .166667 %<br>3 s<br>Sky Shine<br>REM<br>.250<br>.124<br>.060                                                                                                                                      | B-1B with fi<br>airborne = 69<br>sigmay cloud d<br>Total Dose<br>REM<br>.417<br>.158<br>.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>iter sigmax = 5627.78 M iameter = 57003.8 M Prominent Particle microns radius 15.4 24.5 31.8 20.4</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <pre>+************************************</pre>               | CUSTOM SCEN/<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.167<br>.033<br>2.52 E-03<br>0                                                                                                              | ARIO: Baseline<br>= .166667 %<br>3 s<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024                                                                                                                      | B-1B with fi.<br>airborne = 69<br>sigmay cloud d<br>Total Dose<br>REM<br>.417<br>.158<br>.063<br>.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <pre>ter sigmax = 5627.78 M iameter = 57003.8 M Prominent Particle microns radius 15.4 24.5 31.8 39.4 46.6</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <pre>+************************************</pre>               | CUSTOM SCEN/<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.167<br>.033<br>2.52 E-03<br>0<br>0                                                                                                         | ARIO: Baseline<br>= .166667 %<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024                                                                                                                             | B-1B with fi.<br>airborne = 69<br>sigmay cloud d<br>Total Dose<br>REM<br>.417<br>.158<br>.063<br>.035<br>.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <pre>ter sigmax = 5627.78 M iameter = 57003.8 M Prominent Particle microns radius 15.4 24.5 31.8 39.4 46.6 50.0</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <pre>+************************************</pre>               | CUSTOM SCEN/<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.167<br>.033<br>2.52 E-03<br>0<br>0                                                                                                         | ARIO: Baseline<br>= .166667 %<br>3 9<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017                                                                                                              | B-1B with fi<br>airborne = 69<br>sigmay cloud d<br>Total Dose<br>REM<br>.417<br>.158<br>.063<br>.035<br>.024<br>.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>ter sigmax = 5627.78 M iameter = 57003.8 M Prominent Particle microns radius 15.4 24.5 31.8 39.4 46.6 52.9</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <pre>+************************************</pre>               | CUSTOM SCEN/<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.167<br>.033<br>2.52 E-03<br>0<br>0                                                                                                         | ARIO: Baseline<br>= .166667 %<br>3 9<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017                                                                                                              | B-1B with fi<br>airborne = 69<br>sigmay cloud d<br>Total Dose<br>REM<br>.417<br>.158<br>.063<br>.035<br>.024<br>.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>lter sigmax = 5627.78 M iameter = 57003.8 M Prominent Particle microns radius 15.4 24.5 31.8 39.4 46.6 52.9</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <pre>+************************************</pre>               | CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.167<br>.033<br>2.52 E-03<br>0<br>0<br>0<br>CUSTOM SCENA<br>deltat (hr)                                                                     | ARIO: Baseline<br>= .166667 %s<br>3 s<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017<br>ARIO: Baseline<br>= .262626 %s                                                                           | B-1B with fi.<br>airborne = 69<br>sigmay cloud d<br>Total Dose<br>REM<br>.417<br>.158<br>.063<br>.035<br>.024<br>.017 B-1B with fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <pre>iter sigmax = 5627.78 M iameter = 57003.8 M Prominent Particle microns radius 15.4 24.5 31.8 39.4 46.6 52.9 iter iter</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <pre>+************************************</pre>               | CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.167<br>.033<br>2.52 E-03<br>0<br>0<br>0<br>CUSTOM SCENA<br>deltat (hr)<br>5 6 M                                                            | ARIO: Baseline<br>= .166667 %<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017<br>ARIO: Baseline<br>= .363636 %                                                                                    | B-1B with fi.<br>airborne = 69<br>sigmay cloud d<br>Total Dose<br>REM<br>.417<br>.158<br>.063<br>.035<br>.024<br>.017<br>B-1B with fi<br>airborne = 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <pre>iter sigmax = 5627.78 M iameter = 57003.8 M Prominent Particle microns radius 15.4 24.5 31.8 39.4 46.6 52.9 iter sigmax = 5627.78 M iameter = 98613 5 M</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <pre>+************************************</pre>               | CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.167<br>.033<br>2.52 E-03<br>0<br>0<br>0<br>CUSTOM SCENA<br>deltat (hr)<br>5.6 M<br>Cabin Dust                                              | ARIO: Baseline<br>= .166667 %<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017<br>ARIO: Baseline<br>= .363636 %<br>3 3                                                                             | B-1B with fi<br>airborne = 69<br>sigmay cloud d<br>Total Dose<br>REM<br>.417<br>.158<br>.063<br>.035<br>.024<br>.017<br>B-1B with fi<br>airborne = 57<br>sigmay cloud d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <pre>lter sigmax = 5627.78 M iameter = 57003.8 M Prominent Particle microns radius 15.4 24.5 31.8 39.4 46.6 52.9 lter sigmax = 5627.78 M iameter = 98613.5 M Prominent Particle</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <pre>+************************************</pre>               | CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.167<br>.033<br>2.52 E-03<br>0<br>0<br>0<br>CUSTOM SCENA<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>PEM                                       | ARIO: Baseline<br>= .166667 %s<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017<br>ARIO: Baseline<br>= .363636 %s<br>Sky Shine<br>PEH                                                              | B-1B with fi<br>airborne = 69<br>sigmay cloud d<br>Total Dose<br>REM<br>.417<br>.158<br>.063<br>.035<br>.024<br>.017<br>B-1B with fi<br>airborne = 57<br>sigmay cloud d<br>Total Dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <pre>iter<br/>sigmax = 5627.78 M<br/>iameter = 57003.8 M<br/>Prominent Particle<br/>microns radius<br/>15.4<br/>24.5<br/>31.8<br/>39.4<br/>46.6<br/>52.9<br/>iter<br/>sigmax = 5627.78 M<br/>iameter = 98613.5 M<br/>Prominent Particle<br/>microns radius</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <pre>************************************</pre>                | CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.167<br>.033<br>2.52 E-03<br>0<br>0<br>0<br>CUSTOM SCENA<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>056                                | ARIO: Baseline<br>= .166667 %s<br>3 s<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017<br>ARIO: Baseline<br>= .363636 %s<br>Sky Shine<br>REM<br>051                                                | B-1B with fi<br>airborne = 69<br>sigmay cloud d<br>Total Dose<br>REM<br>.417<br>.158<br>.063<br>.035<br>.024<br>.017<br>B-1B with fi<br>airborne = 57<br>sigmay cloud d<br>Total Dose<br>REM<br>109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <pre>iter<br/>sigmax = 5627.78 M<br/>iameter = 57003.8 M<br/>Prominent Particle<br/>microns radius<br/>15.4<br/>24.5<br/>31.8<br/>39.4<br/>46.6<br/>52.9<br/>************************************</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <pre>+************************************</pre>               | CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.167<br>.033<br>2.52 E-03<br>0<br>0<br>CUSTOM SCENA<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.056<br>012                             | ARIO: Baseline<br>= .166667 %<br>3 9<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017<br>ARIO: Baseline<br>= .363636 %<br>3 9<br>Sky Shine<br>REM<br>.051<br>.026                                  | B-1B with fi<br>airborne = 69<br>sigmay cloud d<br>Total Dose<br>REM<br>.417<br>.158<br>.063<br>.035<br>.024<br>.017<br>B-1B with fi<br>airborne = 57<br>sigmay cloud d<br>Total Dose<br>REM<br>.108<br>.039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>iter<br/>sigmax = 5627.78 M<br/>iameter = 57003.8 M<br/>Prominent Particle<br/>microns radius<br/>15.4<br/>24.5<br/>31.8<br/>39.4<br/>46.6<br/>52.9<br/>************************************</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <pre>************************************</pre>                | CUSTOM SCEN/<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.167<br>.033<br>2.52 E-03<br>0<br>0<br>0<br>CUSTOM SCEN/<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.056<br>.012<br>0 5 E 04           | ARIO: Baseline<br>= .166667 %a<br>3 9<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017<br>ARIO: Baseline<br>= .363636 %a<br>Sky Shine<br>REM<br>.051<br>.026<br>.012                               | B-1B with fi<br>airborne = 69<br>sigmay cloud d<br>Total Dose<br>REM<br>.417<br>.158<br>.063<br>.035<br>.024<br>.017<br>B-1B with fi<br>airborne = 57<br>sigmay cloud d<br>Total Dose<br>REM<br>.108<br>.038<br>.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>iter sigmax = 5627.78 M iameter = 57003.8 M Prominent Particle microns radius 15.4 24.5 31.8 39.4 46.6 52.9 iter sigmax = 5627.78 M iameter = 98613.5 M Prominent Particle microns radius 11.2 17.0 22.4</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <pre>************************************</pre>                | CUSTOM SCEN/<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.167<br>.033<br>2.52 E-03<br>0<br>0<br>0<br>CUSTOM SCEN/<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.056<br>.012<br>9.5 E-04           | ARIO: Baseline<br>= .166667 %<br>3 9<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017<br>ARIO: Baseline<br>= .363636 %<br>3 9<br>Sky Shine<br>REM<br>.051<br>.026<br>.013<br>T 91 F 02             | B-1B with fi<br>airborne = 69<br>sigmay cloud d<br>Total Dose<br>REM<br>.417<br>.158<br>.063<br>.035<br>.024<br>.017<br>B-1B with fi<br>airborne = 57<br>sigmay cloud d<br>Total Dose<br>REM<br>.108<br>.038<br>.014<br>7 %1 E 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <pre>iter sigmax = 5627.78 M iameter = 57003.8 M Prominent Particle microns radius 15.4 24.5 31.8 39.4 46.6 52.9 ************************************</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <pre>************************************</pre>                | CUSTOM SCENA<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.167<br>.033<br>2.52 E-03<br>0<br>0<br>0<br>CUSTOM SCENA<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.056<br>.012<br>9.5 E-04<br>0      | ARIO: Baseline<br>= .166667 %<br>3 9<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017<br>ARIO: Baseline<br>= .363636 %<br>3 9<br>Sky Shine<br>REM<br>.051<br>.026<br>.013<br>7.81 E-03<br>5 2 E 02 | B-1B with fi<br>airborne = 69<br>sigmay cloud d<br>Total Dose<br>REM<br>.417<br>.158<br>.063<br>.035<br>.024<br>.017<br>B-1B with fi<br>airborne = 57<br>sigmay cloud d<br>Total Dose<br>REM<br>.108<br>.038<br>.014<br>7.81 E-03<br>6 22 E 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <pre>lter<br/>sigmax = 5627.78 M<br/>iameter = 57003.8 M<br/>Prominent Particle<br/>microns radius<br/>15.4<br/>24.5<br/>31.8<br/>39.4<br/>46.6<br/>52.9<br/>************************************</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <pre>************************************</pre>                | CUSTOM SCEN/<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.167<br>.033<br>2.52 E-03<br>0<br>0<br>0<br>CUSTOM SCEN/<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.056<br>.012<br>9.5 E-04<br>0<br>0 | ARIO: Baseline<br>= .166667 %<br>Sky Shine<br>REM<br>.250<br>.124<br>.060<br>.035<br>.024<br>.017<br>ARIO: Baseline<br>= .363636 %<br>Sky Shine<br>REM<br>.051<br>.026<br>.013<br>7.81 E-03<br>5.32 E-03<br>3.92 E-03 | B-1B with fi.<br>airborne = 69<br>sigmay cloud d<br>Total Dose<br>REM<br>.417<br>.158<br>.063<br>.035<br>.024<br>.017<br>B-1B with fi<br>airborne = 57<br>sigmay cloud d<br>Total Dose<br>REM<br>.108<br>.038<br>.014<br>7.81 E-03<br>5.32 E-03<br>3.92 E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>lter<br/>sigmax = 5627.78 M<br/>iameter = 57003.8 M<br/>Prominent Particle<br/>microns radius<br/>15.4<br/>24.5<br/>31.8<br/>39.4<br/>46.6<br/>52.9<br/>lter<br/>sigmax = 5627.78 M<br/>iameter = 98613.5 M<br/>Prominent Particle<br/>microns radius<br/>11.2<br/>17.0<br/>22.4<br/>26.8<br/>30.5<br/>34.7</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

55

.

## DELFIC Cloud and KC-135, using 0.7 MeV gamma rays

•

•

(•

•

| **********                                                                             | ********                                                                                                                                                      | **************                                                                                                                                                                                                                                                                                                                                                                     | ************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ********************                                                                                                          |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 26 Feb 0041                                                                            | CUSTOM S                                                                                                                                                      | CENARIO: DELFIC                                                                                                                                                                                                                                                                                                                                                                    | cloud: EC-135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : 0.7 MeV energy β xsec                                                                                                       |
| time $(hr) = 1$                                                                        | deltat (                                                                                                                                                      | hr) = .0967423                                                                                                                                                                                                                                                                                                                                                                     | %airborne = 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D sigmax = 3958.03 M                                                                                                          |
| sigmay = $4343$                                                                        | .43 M                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                  | sigmay cloud (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | diameter = $26060.6$ M                                                                                                        |
| Altitude                                                                               | Cabin Dus                                                                                                                                                     | t Sky Shine                                                                                                                                                                                                                                                                                                                                                                        | Total Dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prominent Particle                                                                                                            |
| М                                                                                      | REM                                                                                                                                                           | REM                                                                                                                                                                                                                                                                                                                                                                                | REM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | microns radius                                                                                                                |
| 12000                                                                                  | 2.66                                                                                                                                                          | 4.11                                                                                                                                                                                                                                                                                                                                                                               | 6.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.8                                                                                                                          |
| 10000                                                                                  | 1.26                                                                                                                                                          | 1.95                                                                                                                                                                                                                                                                                                                                                                               | 3.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55.1                                                                                                                          |
| 8000                                                                                   | .582                                                                                                                                                          | .898                                                                                                                                                                                                                                                                                                                                                                               | 1.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 78.1                                                                                                                          |
| 6000                                                                                   | .324                                                                                                                                                          | .500                                                                                                                                                                                                                                                                                                                                                                               | .825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 103.                                                                                                                          |
| 4000                                                                                   | .202                                                                                                                                                          | .312                                                                                                                                                                                                                                                                                                                                                                               | .515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 126.                                                                                                                          |
| 2000                                                                                   | .132                                                                                                                                                          | .205                                                                                                                                                                                                                                                                                                                                                                               | .338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 157.                                                                                                                          |
| ***********                                                                            | ********                                                                                                                                                      | *************                                                                                                                                                                                                                                                                                                                                                                      | ************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *********************                                                                                                         |
| 26 Feb 0041                                                                            | CUSTOM S                                                                                                                                                      | CENARIO: DELFIC                                                                                                                                                                                                                                                                                                                                                                    | cloud: KC-135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : 0.7 MeV energy β xsec                                                                                                       |
| time $(hr) = 2$                                                                        | deltat (                                                                                                                                                      | hr) = .0967423                                                                                                                                                                                                                                                                                                                                                                     | Sairborne = 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 sigmax = 4865.07 M                                                                                                          |
| sigmay = 6133                                                                          | .43 M                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                  | sigmay cloud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | diameter = $36800.6$ M                                                                                                        |
| Altitude                                                                               | Cabin Dus                                                                                                                                                     | t Sky Shine                                                                                                                                                                                                                                                                                                                                                                        | Total Dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>Prominent Particle</b>                                                                                                     |
| М                                                                                      | REM                                                                                                                                                           | REM                                                                                                                                                                                                                                                                                                                                                                                | REM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | microns radius                                                                                                                |
| 12000                                                                                  | 1.06                                                                                                                                                          | 1.06                                                                                                                                                                                                                                                                                                                                                                               | 2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.4                                                                                                                          |
| 10000                                                                                  | .517                                                                                                                                                          | .515                                                                                                                                                                                                                                                                                                                                                                               | 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36.2                                                                                                                          |
| 8000                                                                                   | .245                                                                                                                                                          | .244                                                                                                                                                                                                                                                                                                                                                                               | .489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48.6                                                                                                                          |
| 6000                                                                                   | .145                                                                                                                                                          | .144                                                                                                                                                                                                                                                                                                                                                                               | .289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60.1                                                                                                                          |
| 4000                                                                                   | .098                                                                                                                                                          | .098                                                                                                                                                                                                                                                                                                                                                                               | .196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74.7                                                                                                                          |
| 2000                                                                                   | .068                                                                                                                                                          | .068                                                                                                                                                                                                                                                                                                                                                                               | .137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 89.5                                                                                                                          |
| ***********                                                                            | ететон с                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                    | *************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ***************************                                                                                                   |
| 20 Feb 0041                                                                            |                                                                                                                                                               | LENARIU: DELFIC                                                                                                                                                                                                                                                                                                                                                                    | cloud: EC-133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : U./ MeV energy p isec                                                                                                       |
| time (dr) = 4                                                                          |                                                                                                                                                               | ΔΓ) = .10000; '                                                                                                                                                                                                                                                                                                                                                                    | NELIDOING = 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sigmax = 302/.70 m                                                                                                            |
| sigmay = 94/9                                                                          | .4 M<br>C-1 !- D                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                    | signay cloud a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1ameter = 300/0.4 M                                                                                                           |
| Altitude                                                                               |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                    | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | December of December 1 a                                                                                                      |
|                                                                                        |                                                                                                                                                               | t Sky Shine                                                                                                                                                                                                                                                                                                                                                                        | Total Dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prominent Particle                                                                                                            |
| л<br>12000                                                                             | REM                                                                                                                                                           | REM                                                                                                                                                                                                                                                                                                                                                                                | Total Dose<br>NEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Prominent Particle<br>microns radius                                                                                          |
| M<br>12000                                                                             | REM<br>.355                                                                                                                                                   | .247                                                                                                                                                                                                                                                                                                                                                                               | Total Dose<br>NEM<br>.603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Prominent Particle<br>microns radius<br>15.4                                                                                  |
| M<br>12000<br>10000                                                                    | .355<br>.176                                                                                                                                                  | .247<br>.122                                                                                                                                                                                                                                                                                                                                                                       | Total Dose<br>NEM<br>.603<br>.299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Prominent Particle<br>microns radius<br>15.4<br>24.5                                                                          |
| M<br>12000<br>10000<br>8000 -                                                          | .355<br>.176<br>.086                                                                                                                                          | .247<br>.122<br>.059                                                                                                                                                                                                                                                                                                                                                               | Total Dose<br>NEM<br>.603<br>.299<br>.145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>20.4                                                          |
| M<br>12000<br>10000<br>8000 -<br>6000                                                  | REM<br>.355<br>.176<br>.086<br>.051                                                                                                                           | .247<br>.122<br>.059<br>.035                                                                                                                                                                                                                                                                                                                                                       | Total Dose<br>NEM<br>.603<br>.299<br>.145<br>.086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4                                                          |
| M<br>12000<br>10000<br>8000 -<br>6000<br>4000                                          | REM<br>.355<br>.176<br>.086<br>.051<br>.034                                                                                                                   | .247<br>.122<br>.059<br>.035<br>.023                                                                                                                                                                                                                                                                                                                                               | Total Dose<br>NEM<br>.603<br>.299<br>.145<br>.086<br>.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6                                                  |
| M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000                                  | REM<br>.355<br>.176<br>.086<br>.051<br>.034<br>.024                                                                                                           | E SEY Shine<br>REM<br>.247<br>.122<br>.059<br>.035<br>.023<br>.017                                                                                                                                                                                                                                                                                                                 | Total Dose<br>NEM<br>.603<br>.299<br>.145<br>.086<br>.058<br>.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9                                          |
| M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000<br>**************************    | REM<br>.355<br>.176<br>.086<br>.051<br>.034<br>.024                                                                                                           | E SEY Shine<br>REM<br>.247<br>.122<br>.059<br>.035<br>.023<br>.017<br>ECENARIO: DELFIC                                                                                                                                                                                                                                                                                             | Total Dose<br>NEM<br>.603<br>.299<br>.145<br>.086<br>.058<br>.041<br>.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>**** ******************************** |
| M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000<br>***************************** | Custin Dus<br>REM<br>.355<br>.176<br>.086<br>.051<br>.034<br>.024<br>CUSTOM S<br>deltat (                                                                     | Exp         Ski hie           REM         .247           .122         .059           .035         .023           .017         .017           GCENARIO: DELFIC         .363636                                                                                                                                                                                                      | Total Dose<br>NEM<br>.603<br>.299<br>.145<br>.086<br>.058<br>.041<br>cloud: KC-135<br>Mairborne = 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>**** ******************************** |
| M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000<br>***************************** | Custin Dus<br>REM<br>.355<br>.176<br>.086<br>.051<br>.034<br>.024<br>CUSTOM S<br>deltat (<br>3.4 M                                                            | REM         .247           .122         .059           .035         .023           .017         .017           GCENARIO: DELFIC         hr) = .363636           hr) = .363636         .3                                                                                                                                                                                           | Total Dose<br>NEM<br>.603<br>.299<br>.145<br>.086<br>.058<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041 | Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>**** ******************************** |
| M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000<br>***************************** | Cabin Dus<br>REM<br>.355<br>.176<br>.086<br>.051<br>.034<br>.024<br>CUSTOM S<br>deltat (<br>3.4 M<br>Cabin Dus                                                | EXP         Shine           REM         .247           .122         .059           .035         .023           .017         .017           SCENARIO: DELFIC         hr) = .363636           hr) = .363636         .3           St         Sky Shine                                                                                                                                | Total Dose<br>NEM<br>.603<br>.299<br>.145<br>.086<br>.058<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.045<br>.041<br>.045<br>.041<br>.045<br>.041<br>.045<br>.041<br>.045<br>.041<br>.045<br>.045<br>.041<br>.045<br>.041<br>.045<br>.041<br>.045<br>.041<br>.045<br>.041<br>.045<br>.041<br>.045<br>.041<br>.045<br>.041<br>.045<br>.041<br>.045<br>.041<br>.045<br>.041<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045 | Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>***** ******************************* |
| M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000<br>***************************** | REM<br>.355<br>.176<br>.086<br>.051<br>.034<br>.024<br>CUSTOM S<br>deltat (<br>3.4 M<br>Cabin Dus<br>REM                                                      | SEY Shine           REM           .247           .122           .059           .035           .023           .017           SCENARIO: DELFIC           hr) = .363636           3           St <sky shine<="" td="">           REM</sky>                                                                                                                                            | Total Dose<br>NEM<br>.603<br>.299<br>.145<br>.086<br>.058<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.058<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.045<br>.041<br>.045<br>.041<br>.045<br>.041<br>.045<br>.041<br>.045<br>.041<br>.045<br>.041<br>.045<br>.041<br>.045<br>.041<br>.045<br>.045<br>.041<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045<br>.045 | Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>**** ******************************** |
| M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000<br>***************************** | Cabin Dus<br>REM<br>.355<br>.176<br>.086<br>.051<br>.034<br>.024<br>CUSTOM S<br>deltat (<br>3.4 M<br>Cabin Dus<br>REM<br>.096                                 | REM         .247           .122         .059           .035         .023           .017         .017           SCENARIO: DELFIC         hr) = .363636           hr) = .363636         .3           St         Sky Shine           REM         .050                                                                                                                                 | Total Dose<br>NEM<br>.603<br>.299<br>.145<br>.086<br>.058<br>.041<br>cloud: KC-135<br>Wairborne = 57<br>sigmay cloud<br>Total Dose<br>REM<br>.147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>**** ******************************** |
| M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000<br>***************************** | Cabin Dus<br>REM<br>.355<br>.176<br>.086<br>.051<br>.034<br>.024<br>CUSTOM S<br>deltat (<br>3.4 M<br>Cabin Dus<br>REM<br>.096<br>.049                         | REM         .247           .122         .059           .035         .023           .017         .017           SCENARIO: DELFIC         hr) = .363636           hr) = .363636         .3           St <sky shine<="" td="">         .3           REM         .050           .026         .026</sky>                                                                                | Total Dose<br>NEM<br>.603<br>.299<br>.145<br>.086<br>.058<br>.041<br>cloud: KC-135<br>%airborne = 57<br>sigmay cloud<br>Total Dose<br>REM<br>.147<br>.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>**** ******************************** |
| M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000<br>***************************** | REM<br>.355<br>.176<br>.086<br>.051<br>.034<br>.024<br>CUSTOM S<br>deltat (<br>3.4 M<br>Cab in Dus<br>REM<br>.096<br>.049<br>.024                             | REM         .247           .122         .059           .035         .023           .017         .017           SCENARIO: DELFIC         .363636           hr) = .363636         .3           St         Sky Shine           REM         .050           .026         .012                                                                                                           | Total Dose<br>NEM<br>.603<br>.299<br>.145<br>.086<br>.058<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.047<br>.045<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047<br>.047 | Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>**** ******************************** |
| M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000<br>***************************** | Cabin Dus<br>REM<br>.355<br>.176<br>.086<br>.051<br>.034<br>.024<br>CUSTOM S<br>deltat (<br>3.4 M<br>Cabin Dus<br>REM<br>.096<br>.049<br>.024<br>.024<br>.014 | Sky Shine           REM           .247           .122           .059           .035           .023           .017           SCENARIO: DELFIC           hr) = .363636           3           St Sky Shine           REM           .050           .026           .012           7.71                                                                                                  | Total Dose<br>NEM<br>.603<br>.299<br>.145<br>.086<br>.058<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.042<br>.041<br>.041<br>.045<br>.037<br>.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>**** ******************************** |
| M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000<br>***************************** | REM<br>.355<br>.176<br>.086<br>.051<br>.034<br>.024<br>CUSTOM S<br>deltat (<br>3.4 M<br>Cab in Dus<br>REM<br>.096<br>.049<br>.024<br>.014<br>9.92 E-C         | Sky Shine           REM           .247           .122           .059           .035           .023           .017           SCENARIO: DELFIC           hr) = .363636           .3           .5           .6           .017           SCENARIO: DELFIC           hr) = .363636           .3           .5           .050           .026           .012           7.71           .005 | Total Dose<br>NEM<br>.603<br>.299<br>.145<br>.086<br>.058<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.041<br>.045<br>.037<br>.022<br>.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>**** ******************************** |

# DELFIC Cloud and KC-135: $S_{\underline{x}} = 10$ , $S_{\underline{x}} = 1$

0.

.

. .

| **********                                                                                                                                                 | ***********                                                                                                                                                                                                                    | *********                                                                                                                                                                                                                   | **********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *******************                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 March 0503                                                                                                                                               | CUSTOM SCEN                                                                                                                                                                                                                    | ARIO: Baseli                                                                                                                                                                                                                | ne + Xshear =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10: Y  shear = 1                                                                                                                                                                                                                                                                                          |
| time $(hr) = 1$                                                                                                                                            | deltat (hr)                                                                                                                                                                                                                    | = .0967423                                                                                                                                                                                                                  | Sairborne = 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sigmax = 18319.7 M                                                                                                                                                                                                                                                                                        |
| sigmav = $4343$ .                                                                                                                                          | .43 M                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                           | sigmay cloud d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | iameter = 26060.6 M                                                                                                                                                                                                                                                                                       |
| Altitude                                                                                                                                                   | Cahin Dust                                                                                                                                                                                                                     | Sky Shine                                                                                                                                                                                                                   | Total dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Prominent Particle                                                                                                                                                                                                                                                                                        |
| M                                                                                                                                                          | REM                                                                                                                                                                                                                            | REM                                                                                                                                                                                                                         | REM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mictons radius                                                                                                                                                                                                                                                                                            |
| 12000                                                                                                                                                      | 3 62                                                                                                                                                                                                                           | 6 72                                                                                                                                                                                                                        | 10 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31 8                                                                                                                                                                                                                                                                                                      |
| 10000                                                                                                                                                      | 1 71                                                                                                                                                                                                                           | 3 10                                                                                                                                                                                                                        | 4 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55 1                                                                                                                                                                                                                                                                                                      |
| 8000                                                                                                                                                       | 790                                                                                                                                                                                                                            | 1 46                                                                                                                                                                                                                        | 2 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78 1                                                                                                                                                                                                                                                                                                      |
| 6000                                                                                                                                                       | 440                                                                                                                                                                                                                            | £17                                                                                                                                                                                                                         | 1 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103                                                                                                                                                                                                                                                                                                       |
| 4000                                                                                                                                                       | 275                                                                                                                                                                                                                            | 511<br>511                                                                                                                                                                                                                  | 786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 105.                                                                                                                                                                                                                                                                                                      |
| 2000                                                                                                                                                       | 190                                                                                                                                                                                                                            |                                                                                                                                                                                                                             | .700<br>515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 157                                                                                                                                                                                                                                                                                                       |
| *********                                                                                                                                                  |                                                                                                                                                                                                                                |                                                                                                                                                                                                                             | ***********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ************                                                                                                                                                                                                                                                                                              |
| 1 March 0503                                                                                                                                               | CUSTOM SCEN                                                                                                                                                                                                                    | MARIO: Baseli                                                                                                                                                                                                               | ne + Xshear =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10: $Y$ shear = 1                                                                                                                                                                                                                                                                                         |
| time $(hr) = 2$                                                                                                                                            | deltat (hr)                                                                                                                                                                                                                    | = .0967423                                                                                                                                                                                                                  | Sairborne = 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sigmax = 37665.1 M                                                                                                                                                                                                                                                                                        |
| sigmay = 6133                                                                                                                                              | .43 M                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                           | sigmay cloud d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | iameter = 36800.6 M                                                                                                                                                                                                                                                                                       |
| Altitude                                                                                                                                                   | Cabin Dust                                                                                                                                                                                                                     | Sky Shine                                                                                                                                                                                                                   | Total dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Prominent Particle</b>                                                                                                                                                                                                                                                                                 |
| M                                                                                                                                                          | REM                                                                                                                                                                                                                            | REM                                                                                                                                                                                                                         | REM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | microns radius                                                                                                                                                                                                                                                                                            |
| 12000                                                                                                                                                      | 1.44                                                                                                                                                                                                                           | 1.73                                                                                                                                                                                                                        | 3.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.4                                                                                                                                                                                                                                                                                                      |
| 10000                                                                                                                                                      | .702                                                                                                                                                                                                                           | .842                                                                                                                                                                                                                        | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36.2                                                                                                                                                                                                                                                                                                      |
| 8000                                                                                                                                                       | .332                                                                                                                                                                                                                           | .399                                                                                                                                                                                                                        | .731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48.6                                                                                                                                                                                                                                                                                                      |
| 6000                                                                                                                                                       | .196                                                                                                                                                                                                                           | .236                                                                                                                                                                                                                        | .432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60.1                                                                                                                                                                                                                                                                                                      |
| 4000                                                                                                                                                       | .133                                                                                                                                                                                                                           | .160                                                                                                                                                                                                                        | .294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.7                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                            |                                                                                                                                                                                                                                |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |
| 2000                                                                                                                                                       | .093                                                                                                                                                                                                                           | .112                                                                                                                                                                                                                        | .205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 89.5                                                                                                                                                                                                                                                                                                      |
| 2000                                                                                                                                                       | .093                                                                                                                                                                                                                           | .112                                                                                                                                                                                                                        | .205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 89.5                                                                                                                                                                                                                                                                                                      |
| 2000<br>**********************************                                                                                                                 | .093<br>CUSTOM SCE                                                                                                                                                                                                             | .112<br>•••••••••••••••••••••••••••••••••••                                                                                                                                                                                 | .205<br>****************<br>ne + Xshear =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 89.5<br>10: Y she = 1                                                                                                                                                                                                                                                                                     |
| 2000<br>**********************************                                                                                                                 | .093<br>CUSTOM SCE<br>deltat (hr)                                                                                                                                                                                              | .112<br>***********<br>VARIO: Baseli<br>= .166567 %                                                                                                                                                                         | .205<br>******************<br>ne + Xshear =<br>airborne = 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.5<br>10: Y she = 1<br>sigmax = 76487.8 M                                                                                                                                                                                                                                                               |
| 2000<br>**********************************                                                                                                                 | .093<br>CUSTOM SCE<br>deltat (hr)<br>.4 M                                                                                                                                                                                      | .112<br>WARIO: Baseli<br>= .166067 %<br>3 s                                                                                                                                                                                 | .205<br>ne + Xshear =<br>airborne = 69<br>igmay cloud di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 89.5<br>10: Y she = 1<br>sigmax = 76487.8 M<br>ameter = 56876.4 M                                                                                                                                                                                                                                         |
| 2000<br>**********************************                                                                                                                 | .093<br>CUSTOM SCE<br>deltat (hr)<br>.4 M<br>Cabin Dust                                                                                                                                                                        | .112<br>NARIO: Baseli<br>= .166067 %<br>3 s<br>Sky Shine                                                                                                                                                                    | .205<br>ne + Xshear =<br>airborne = 69<br>igmay cloud di<br>Total dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89.5<br>10: Y she = 1<br>sigmax = 76487.8 M<br>ameter = 56876.4 M<br>Prominent Particle                                                                                                                                                                                                                   |
| 2000<br>************************<br>1 March 0503<br>time (hr) = 4<br>sigmay = 9479<br>Altitude<br>M                                                        | .093<br>CUSTOM SCE<br>deltat (hr)<br>.4 M<br>Cabin Dust<br>REM                                                                                                                                                                 | .112<br>NARIO: Baseli<br>= .166067 %<br>3 s<br>Sky Shine<br>REM                                                                                                                                                             | .205<br>ne + Xshear =<br>airborne = 69<br>igmay cloud di<br>Total dose<br>REM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89.5<br>10: Y she = 1<br>sigmax = 76487.8 M<br>ameter = 56876.4 M<br>Prominent Particle<br>microns radius                                                                                                                                                                                                 |
| 2000<br>March 0503<br>time (hr) = 4<br>sigmay = 9479<br>Altitude<br>M<br>12000                                                                             | .093<br>CUSTOM SCE<br>deltat (hr)<br>.4 M<br>Cabin Dust<br>REM<br>.4829                                                                                                                                                        | .112<br>NARIO: Baseli<br>= .166067 %<br>3 s<br>Sky Shine<br>REM<br>.4040                                                                                                                                                    | .205<br>ne + Xshear =<br>airborne = 69<br>igmay cloud di<br>Total dose<br>REM<br>.886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 89.5<br>10: Y she = 1<br>sigmax = 76487.8 M<br>ameter = 56876.4 M<br>Prominent Particle<br>microns radius<br>15.4                                                                                                                                                                                         |
| 2000<br>**********************************                                                                                                                 | .093<br>CUSTOM SCE<br>deltat (hr)<br>.4 M<br>Cabin Dust<br>REM<br>.4829<br>.2402                                                                                                                                               | .112<br>NARIO: Baseli<br>= .166067 %<br>3 s<br>Sky Shine<br>REM<br>.4040<br>.2009                                                                                                                                           | .205<br>ne + Xshear =<br>airborne = 69<br>igmay cloud di<br>Total dose<br>REM<br>.886<br>.441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89.5<br>10: Y she = 1<br>sigmax = 76487.8 M<br>ameter = 56876.4 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5                                                                                                                                                                                 |
| 2000<br>**********************************                                                                                                                 | .093<br>CUSTOM SCE<br>deltat (hr)<br>.4 M<br>Cabin Dust<br>REM<br>.4829<br>.2402<br>.1169                                                                                                                                      | .112<br>NARIO: Baseli<br>= .166067 %<br>3 s<br>Sky Shine<br>REM<br>.4040<br>.2009<br>.0977                                                                                                                                  | .205<br>ne + Xshear =<br>pairborne = 69<br>igmay cloud di<br>Total dose<br>REM<br>.886<br>.441<br>.214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89.5<br>10: Y she = 1<br>sigmax = 76487.8 M<br>ameter = 56876.4 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8                                                                                                                                                                         |
| 2000<br>**********************************                                                                                                                 | .093<br>CUSTOM SCE<br>deltat (hr)<br>.4 M<br>Cabin Dust<br>REM<br>.4829<br>.2402<br>.1169<br>.0693                                                                                                                             | .112<br>NARIO: Baseli<br>= .166067 %<br>3 s<br>Sky Shine<br>REM<br>.4040<br>.2009<br>.0977<br>.0580                                                                                                                         | .205<br>ne + Xshear =<br>airborne = 69<br>igmay cloud di<br>Total dose<br>REM<br>.886<br>.441<br>.214<br>.127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89.5<br>10: Y she = 1<br>sigmax = 76487.8 M<br>ameter = 56876.4 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4                                                                                                                                                                 |
| 2000<br>**********************************                                                                                                                 | .093<br>CUSTOM SCE<br>deltat (hr)<br>.4 M<br>Cabin Dust<br>REM<br>.4829<br>.2402<br>.1169<br>.0693<br>.0464                                                                                                                    | .112<br>NARIO: Baseli<br>= .166067 %<br>3 s<br>Sky Shine<br>REM<br>.4040<br>.2009<br>.0977<br>.0580<br>.0388                                                                                                                | .205<br>ne + Xshear =<br>airborne = 69<br>igmay cloud di<br>Total dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 89.5<br>10: Y she = 1<br>sigmax = 76487.8 M<br>ameter = 56876.4 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6                                                                                                                                                         |
| 2000<br>**********************************                                                                                                                 | .093<br>CUSTOM SCE<br>deltat (hr)<br>.4 M<br>Cabin Dust<br>REM<br>.4829<br>.2402<br>.1169<br>.0693<br>.0464<br>.0335                                                                                                           | .112<br>NARIO: Baseli<br>= .166067 %<br>3 s<br>Sky Shine<br>REM<br>.4040<br>.2009<br>.0977<br>.0580<br>.0388<br>.0280                                                                                                       | .205<br>ne + Xshear =<br>airborne = 69<br>igmay cloud di<br>Total dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89.5<br>10: Y she = 1<br>sigmax = 76487.8 M<br>ameter = 56876.4 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9                                                                                                                                                 |
| 2000<br>March 0503<br>time (hr) = 4<br>sigmay = 9479<br>Altitude<br>M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000                                  | .093<br>CUSTOM SCE<br>deltat (hr)<br>.4 M<br>Cabin Dust<br>REM<br>.4829<br>.2402<br>.1169<br>.0693<br>.0464<br>.0335                                                                                                           | .112<br>NARIO: Baseli<br>= .166067 %<br>3 s<br>Sky Shine<br>REM<br>.4040<br>.2009<br>.0977<br>.0580<br>.0388<br>.0280                                                                                                       | .205<br>ne + Xshear =<br>airborne = 69<br>igmay cloud di<br>Total dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89.5<br>10: Y she = 1<br>sigmax = 76487.8 M<br>ameter = 56876.4 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9                                                                                                                                                 |
| 2000<br>March 0503<br>time (hr) = 4<br>sigmay = 9479<br>Altitude<br>M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000<br>***************************** | .093<br>CUSTOM SCEN<br>deltat (hr)<br>.4 M<br>Cabin Dust<br>REM<br>.4829<br>.2402<br>.1169<br>.0693<br>.0464<br>.0335<br>CUSTOM SCEN                                                                                           | .112<br>NARIO: Baseli<br>= .166.67 %<br>3 s<br>Sky Shine<br>REM<br>.4040<br>.2009<br>.0977<br>.0580<br>.0388<br>.0280<br>NARIO: Baseli                                                                                      | .205<br>ne + Xshear =<br>airborne = 69<br>igmay cloud di<br>Total dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89.5<br>10: Y she = 1<br>sigmax = 76487.8 M<br>ameter = 56876.4 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>10: Y shear = 1                                                                                                                              |
| 2000<br>**********************************                                                                                                                 | .093<br>CUSTOM SCEN<br>deltat (hr)<br>.4 M<br>Cabin Dust<br>REM<br>.4829<br>.2402<br>.1169<br>.0693<br>.0464<br>.0335<br>CUSTOM SCEN<br>deltat (hr)                                                                            | .112<br>NARIO: Baseli<br>= .166.67 %<br>3 s<br>Sky Shine<br>REM<br>.4040<br>.2009<br>.0977<br>.0580<br>.0388<br>.0280<br>NARIO: Baseli<br>= .363636 %                                                                       | .205<br>ne + Xshear =<br>airborne = 69<br>igmay cloud di<br>Total dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 89.5<br>10: Y she = 1<br>sigmax = 76487.8 M<br>ameter = 56876.4 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>10: Y shear = 1<br>sigmax = 154180 M                                                                                                         |
| 2000<br>**********************************                                                                                                                 | .093<br>CUSTOM SCE<br>deltat (hr)<br>.4 M<br>Cabin Dust<br>REM<br>.4829<br>.2402<br>.1169<br>.0693<br>.0464<br>.0335<br>CUSTOM SCE<br>deltat (hr)<br>3.4 M                                                                     | .112<br>NARIO: Baseli<br>= .166067 %<br>3 s<br>Sky Shine<br>REM<br>.4040<br>.2009<br>.0977<br>.0580<br>.0388<br>.0280<br>NARIO: Baseli<br>= .363636 %<br>3                                                                  | .205<br>ne + Xshear =<br>airborne = 69<br>igmay cloud di<br>Total dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061<br>ne + Xshear =<br>airborne = 57<br>sigmay cloud d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 89.5<br>10: Y she = 1<br>sigmax = 76487.8 M<br>ameter = 56876.4 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>10: Y shear = 1<br>sigmax = 154180 M<br>Hiameter = 98420.1 M                                                                                 |
| 2000<br>**********************************                                                                                                                 | .093<br>CUSTOM SCE<br>deltat (hr)<br>.4 M<br>Cabin Dust<br>REM<br>.4829<br>.2402<br>.1169<br>.0693<br>.0464<br>.0335<br>CUSTOM SCE<br>deltat (hr)<br>3.4 M<br>Cabin Dust                                                       | .112<br>NARIO: Baseli<br>= .166067 %<br>3 s<br>Sky Shine<br>REM<br>.4040<br>.2009<br>.0977<br>.0580<br>.0388<br>.0280<br>NARIO: Baseli<br>= .363636 %<br>3<br>Sky Shine                                                     | .205<br>ne + Xshear =<br>airborne = 69<br>igmay cloud di<br>Total dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.065<br>.061<br>.061<br>.065<br>.061<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.061<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.06 | 89.5<br>10: Y she = 1<br>sigmax = 76487.8 M<br>ameter = 56876.4 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>10: Y shear = 1<br>sigmax = 154180 M<br>Hiameter = 98420.1 M<br>Prominent Particle                                                           |
| 2000<br>**********************************                                                                                                                 | .093<br>CUSTOM SCE<br>deltat (hr)<br>.4 M<br>Cabin Dust<br>REM<br>.4829<br>.2402<br>.1169<br>.0693<br>.0464<br>.0335<br>CUSTOM SCE<br>deltat (hr)<br>3.4 M<br>Cabin Dust<br>REM                                                | .112<br>NARIO: Baseli<br>= .166067 %<br>3 s<br>Sky Shine<br>REM<br>.4040<br>.2009<br>.0977<br>.0580<br>.0388<br>.0280<br>NARIO: Baseli<br>= .363636 %<br>3<br>Sky Shine<br>REM                                              | .205<br>ne + Xshear =<br>airborne = 69<br>igmay cloud di<br>Total dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061<br>ne + Xshear =<br>airborne = 57<br>sigmay cloud d<br>Total dose<br>REM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89.5<br>10: Y she = 1<br>sigmax = 76487.8 M<br>ameter = 56876.4 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>10: Y shear = 1<br>sigmax = 154180 M<br>Hiameter = 98420.1 M<br>Prominent Particle<br>microns radius                                         |
| 2000<br>**********************************                                                                                                                 | .093<br>CUSTOM SCEN<br>deltat (hr)<br>.4 M<br>Cabin Dust<br>REM<br>.4829<br>.2402<br>.1169<br>.0693<br>.0464<br>.0335<br>CUSTOM SCEN<br>deltat (hr)<br>3.4 M<br>Cabin Dust<br>REM<br>.1305                                     | .112<br>NARIO: Baseli<br>= .166067 %<br>3 s<br>Sky Shine<br>REM<br>.4040<br>.2009<br>.0977<br>.0580<br>.0388<br>.0280<br>NARIO: Baseli<br>= .363636 %<br>3<br>Sky Shine<br>REM<br>.083                                      | .205<br>ne + Xshear =<br>airborne = 69<br>igmay cloud di<br>Total dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061<br>ne + Xshear =<br>airborne = 57<br>sigmay cloud d<br>Total dose<br>REM<br>.2137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 89.5<br>10: Y she = 1<br>sigmax = 76487.8 M<br>ameter = 56876.4 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>10: Y shear = 1<br>sigmax = 154180 M<br>Hiameter = 98420.1 M<br>Prominent Particle<br>microns radius<br>11.2                                 |
| 2000<br>**********************************                                                                                                                 | .093<br>CUSTOM SCEN<br>deltat (hr)<br>.4 M<br>Cabin Dust<br>REM<br>.4829<br>.2402<br>.1169<br>.0693<br>.0464<br>.0335<br>CUSTOM SCEN<br>deltat (hr)<br>3.4 M<br>Cabin Dust<br>REM<br>.1305<br>.0670                            | .112<br>NARIO: Baseli<br>= .166067 %<br>3 s<br>Sky Shine<br>REM<br>.4040<br>.2009<br>.0977<br>.0580<br>.0388<br>.0280<br>NARIO: Baseli<br>= .363636 %<br>3<br>Sky Shine<br>REM<br>.083<br>.042                              | .205<br>ne + Xshear =<br>airborne = 69<br>igmay cloud di<br>Total dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061<br>the + Xshear =<br>bairborne = 57<br>sigmay cloud di<br>Total dose<br>REM<br>.2137<br>.1097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89.5<br>10: Y she = 1<br>sigmax = 76487.8 M<br>ameter = 56876.4 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>10: Y shear = 1<br>sigmax = 154180 M<br>Hiameter = 98420.1 M<br>Prominent Particle<br>microns radius<br>11.2<br>17.0                         |
| 2000<br>**********************************                                                                                                                 | .093<br>CUSTOM SCEN<br>deltat (hr)<br>.4 M<br>Cabin Dust<br>REM<br>.4829<br>.2402<br>.1169<br>.0693<br>.0464<br>.0335<br>CUSTOM SCEN<br>deltat (hr)<br>3.4 M<br>Cabin Dust<br>REM<br>.1305<br>.0670<br>.0331                   | .112<br>NARIO: Baseli<br>= .166067 %<br>3 s<br>Sky Shine<br>REM<br>.4040<br>.2009<br>.0977<br>.0580<br>.0388<br>.0280<br>NARIO: Baseli<br>= .363636 %<br>3<br>Sky Shine<br>REM<br>.083<br>.042<br>.021                      | .205<br>ne + Xshear =<br>airborne = 69<br>igmay cloud di<br>Total dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.063<br>.061<br>.061<br>.063<br>.061<br>.063<br>.061<br>.063<br>.061<br>.063<br>.061<br>.063<br>.061<br>.063<br>.061<br>.063<br>.061<br>.063<br>.061<br>.063<br>.061<br>.063<br>.061<br>.063<br>.061<br>.063<br>.061<br>.063<br>.061<br>.063<br>.061<br>.063<br>.061<br>.063<br>.061<br>.063<br>.061<br>.063<br>.061<br>.063<br>.061<br>.063<br>.061<br>.064<br>.063<br>.064<br>.064<br>.065<br>.061<br>.064<br>.065<br>.061<br>.064<br>.065<br>.064<br>.065<br>.064<br>.064<br>.065<br>.064<br>.065<br>.064<br>.065<br>.064<br>.065<br>.064<br>.065<br>.064<br>.065<br>.064<br>.065<br>.064<br>.065<br>.064<br>.065<br>.064<br>.065<br>.064<br>.075<br>.065<br>.064<br>.065<br>.064<br>.075<br>.065<br>.064<br>.075<br>.065<br>.064<br>.075<br>.065<br>.064<br>.075<br>.065<br>.064<br>.075<br>.065<br>.064<br>.075<br>.065<br>.064<br>.075<br>.065<br>.064<br>.075<br>.075<br>.075<br>.075<br>.075<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.055<br>.05 | 89.5<br>10: Y she = 1<br>sigmax = 76487.8 M<br>ameter = 56876.4 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>10: Y shear = 1<br>sigmax = 154180 M<br>liameter = 98420.1 M<br>Prominent Particle<br>microns radius<br>11.2<br>17.0<br>22.4                 |
| 2000<br>**********************************                                                                                                                 | .093<br>CUSTOM SCEN<br>deltat (hr)<br>.4 M<br>Cabin Dust<br>REM<br>.4829<br>.2402<br>.1169<br>.0693<br>.0464<br>.0335<br>CUSTOM SCEN<br>deltat (hr)<br>3.4 M<br>Cabin Dust<br>REM<br>.1305<br>.0670<br>.0331<br>.0197          | .112<br>NARIO: Baseli<br>= .166.67 %<br>3 s<br>Sky Shine<br>REM<br>.4040<br>.2009<br>.0977<br>.0580<br>.0388<br>.0280<br>NARIO: Baseli<br>= .363636 %<br>3<br>Sky Shine<br>REM<br>.083<br>.042<br>.021<br>.012              | .205<br>ne + Xshear =<br>airborne = 69<br>igmay cloud di<br>Total dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.061<br>.063<br>.061<br>.063<br>.061<br>.063<br>.064<br>.054<br>.0543<br>.0323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89.5<br>10: Y she = 1<br>sigmax = 76487.8 M<br>ameter = 56876.4 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>10: Y shear = 1<br>sigmax = 154180 M<br>liameter = 98420.1 M<br>Prominent Particle<br>microns radius<br>11.2<br>17.0<br>22.4<br>26.8         |
| 2000<br>**********************************                                                                                                                 | .093<br>CUSTOM SCEN<br>deltat (hr)<br>.4 M<br>Cabin Dust<br>REM<br>.4829<br>.2402<br>.1169<br>.0693<br>.0464<br>.0335<br>CUSTOM SCEN<br>deltat (hr)<br>3.4 M<br>Cabin Dust<br>REM<br>.1305<br>.0670<br>.0331<br>.0197<br>.0134 | .112<br>NARIO: Baseli<br>= .166.67 %<br>3 s<br>Sky Shine<br>REM<br>.4040<br>.2009<br>.0977<br>.0580<br>.0388<br>.0280<br>NARIO: Baseli<br>= .363636 %<br>3<br>Sky Shine<br>REM<br>.083<br>.042<br>.021<br>.012<br>8.58 E-03 | .205<br>ne + Xshear =<br>airborne = 69<br>igmay cloud di<br>Total dose<br>REM<br>.886<br>.441<br>.214<br>.127<br>.085<br>.061<br>ne + Xshear =<br>airborne = 57<br>sigmay cloud do<br>Total dose<br>REM<br>.2137<br>.1097<br>.0543<br>.0323<br>.0220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 89.5<br>10: Y she = 1<br>sigmax = 76487.8 M<br>ameter = 56876.4 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>10: Y shear = 1<br>sigmax = 154180 M<br>liameter = 98420.1 M<br>Prominent Particle<br>microns radius<br>11.2<br>17.0<br>22.4<br>26.8<br>30.5 |

L

# DELFIC Cloud and KC-135: $S_x = 1$ , $S_y = 10$

۔ ۲

ŝ

Ţ

.

0.

| ******                     | **********       | ********                      | ************                     | ******************                    |
|----------------------------|------------------|-------------------------------|----------------------------------|---------------------------------------|
| 1 March 0618               | CUSTOM SCEN      | ARIO: Baseli                  | ne + X shear =                   | 1: Y shear = 10                       |
| time $(hr) = 1$            | deltat (hr) :    | = .0967423                    | %airborne = 90                   | sigmax = 4355.52 M                    |
| sigmay = 18604             | .2 M             | 3                             | sigmay cloud d                   | liameter = $111625$ M                 |
| Altitude                   | Cabin Dust       | Sky Shine                     | Total dose                       | Prominent Particle                    |
| M                          | REM              | REM                           | REM                              | microns radius                        |
| 12000                      | .8086            | 1.50                          | 2.30                             | 31.8                                  |
| 10000                      | .3870            | ,718                          | 1.10                             | 55.1                                  |
| 8000                       | .1795            | .333                          | .512                             | 78.1                                  |
| 6000                       | .1010            | .187                          | .288                             | 103.                                  |
| 4000                       | .0636            | .118                          | .181                             | 126.                                  |
| 2000                       | .0422            | .078                          | .120                             | 157.                                  |
| 1 March 0618               | CUSTON SCEN      | 8************<br>Adio, Receli | ***************                  | ##8################################## |
| f march 0018 time (hr) = 2 | deltet (hr)      | = 0067473                     | NG + A SHUBI -<br>Baishasna = 81 | -1.1 = 51001 - 10                     |
| (11) = 2                   | OCTUAL (HI) -    | 0907423                       | signer cloud d                   | $s_{1} = 0148.72$ M                   |
| Altitude                   | Cabin Duct       | Stw Shine                     | Total dose                       | Prominent Particle                    |
| M                          | REM              | RFM                           | REM                              | microne radine                        |
| 12000                      | 2302             | 2761                          | 5064                             | 22.4                                  |
| 10000                      | .1121            | 1344                          | .2465                            | 36.2                                  |
| 8000                       | .0533            | 0639                          | 1172                             | 48.6                                  |
| 6000                       | .0316            | .0379                         | .0696                            | 60.1                                  |
| 4000                       | .0215            | .0258                         | .0474                            | 74.7                                  |
| 2000                       | .0151            | .0181                         | .0333                            | 89.5                                  |
| *****                      | *********        | *********                     | **********                       | ******************                    |
| 1 March 0618               | CUSTOM SCEN      | ARIO: Baseli                  | ne + X shear =                   | = 1: Y shear = 10                     |
| time $(hr) = 4$            | deltat (hr)      | = .166667 🐐                   | airborne = 69                    | sigmax = 9500.64 M                    |
| sigmay = 76750             | .9 M             | 3                             | sigmay cloud d                   | liameter = $460505$ M                 |
| Altitude                   | Cabin Dust       | Sky Shine                     | Total dose                       | Prominent Particle                    |
| M                          | REM              | REM                           | REM                              | microns radius                        |
| 12000                      | .059             | .049                          | .1091                            | 15.4                                  |
| 10000                      | .029             | .024                          | .0543                            | 24.5                                  |
| 8000                       | .014             | .012                          | .0264                            | 31.8                                  |
| 6000                       | .0088            | 7.16 E-03                     | .0157                            | 39.4                                  |
| 4000                       | 5.7 E-03         | 4.80 E-03                     | .0105                            | 46.6                                  |
| 2000                       | 4.15 E-03        | 3.47 E-03                     | .0076                            | 52.9                                  |
| 1 March 0618               | CUSTOM SCEN      | ARIO: Baseli                  | ne + X shear =                   | = 1: Y shear = 10                     |
| time $(hr) = 8$            | deltat (hr)      | = .363636 %                   | airborne = 57                    | sigmax = 16435.6 M                    |
| sigmay = 15452             | 3 M              | 3 8                           | igmay cloud di                   | lameter = $927139$ M                  |
| Altitude                   | Cabin Dust       | Sky Shine                     | Total dose                       | Promiment Particle                    |
| M                          | REM              | REM                           | REM                              | microns radius                        |
| 12000                      | .013             | 8,83 E-03                     | .022                             | 11.2                                  |
| 10000                      | 7.12 E-03        | 4.54 E-03                     | .011                             | 17.0                                  |
| 8000                       | .003             | 2.24 E-03                     | 5.77 E-03                        | 22.4                                  |
| 6000                       | 2 10 1-03        | 1.34 E-03                     | 3.44 E-03                        | 26 8 ·                                |
|                            | <b>D.10</b> E 00 | 1101 0 00                     | 0111 2 00                        | 20.0                                  |
| 4000                       | 1.43 E-03        | 9.13 E-04                     | 2.34 E-03                        | 30.5                                  |

## DELFIC Cloud and B-52G

.

(•

----

| ******            | **********   |                                    | ***********    | ******                |
|-------------------|--------------|------------------------------------|----------------|-----------------------|
| 12 Jan 1549       | CUSTOM SCENA | RIO: baseline                      | + B-52G        |                       |
| time $(hr) = 1$   | deltat (hr)  | 0967423 %                          | airborne = 90  | sigmax = 3958.03 M    |
| sigmay = $4355$ . | 52 M         | 3 s                                | igmay cloud d: | iameter = 26133.1 M   |
| Altitude          | Cabin Dust   | Sky Shine                          | Total Dose     | Prominent Particle    |
| M                 | REM          | REM                                | REM            | microns radius        |
| 12000             | 5.91         | 4.16                               | 10.0           | 31.8                  |
| 10000             | 2.80         | 1.97                               | 4.78           | 55.1                  |
| 8000              | 1.29         | .908                               | 2.19           | 78.1                  |
| 6000              | .719         | .506                               | 1.22           | 103.                  |
| 4000              | .449         | .316                               | .766           | 126.                  |
| 2000              | .294         | .207                               | .502           | 157.                  |
| 14 Ten 1640       | CUSTON SCENA | 98898888888888888<br>DTO: Sereling | 52C            |                       |
| 12  Jan  1347     | deltat (hr)  | = .0967423                         | bairborne = 81 | sigmax = 4865.07 M    |
| sigmax = $6148$   | .72 M        | 3 4                                | igmay cloud d  | iameter = $36892.3$ M |
| Altitude          | Cabin Dust   | Sky Shine                          | Total Dose     | Prominent Particle    |
| M                 | REM          | REM                                | REM            | microns radius        |
| 12000             | 2.36         | 1.07                               | 3.43           | 22.4                  |
| 10000             | 1.14         | . 521                              | 1.66           | 36.2                  |
| 8000              | .543         | .247                               | .790           | 48.6                  |
| 6000              | .321         | .146                               | .467           | 60.1                  |
| 4000              | .218         | .099                               | .317           | 74.7                  |
| 2000              | .152         | .069                               | .221           | 89.5                  |
| **********        | ************ | **********                         | ************   | *******               |
| 12 Jan 1549       | CUSTOM SCENA | RIO: baseline                      | e + B-52G      |                       |
| time $(hr) = 4$   | deltat (hr)  | = .166667 %                        | airborne = 69  | sigmax = 5627.78 M    |
| sigmay = 9500     | .64 M        | 3 1                                | sigmay cloud d | iameter = 57003.8 M   |
| Altitude          | Cabin Dust   | Sky Shine                          | Total Dose     | Prominent Particle    |
| M                 | REM          | REM                                | REM            | microns radius        |
| 12000             | .788         | .250                               | 1.03           | 15.4                  |
| 10000             | .392         | .124                               | .516           | 24.5                  |
| 8000              | .190         | .060                               | .251           | 31.8                  |
| 6000              | .113         | .035                               | .149           | 39.4                  |
| 4000              | .075         | .024                               | .100           | 46.6                  |
| 2000              | .054         | .017                               | .072           | 52.9                  |
| ***********       | ***********  | *********                          | ***********    | ********************* |
| 12 Jan 1549       | CUSTOM SCENA | RIO: baseline                      | e + B-52G      |                       |
| time (hr) = 8     | deltat (hr)  | = .363636 %                        | airborne = 57  | sigmax = 5627.78 M    |
| sigmay = 1643     | 5.6 M        | 3                                  | sigmay cloud d | iameter = 98013.5 M   |
| Altitude          | Cabin Dust   | Sky Shine                          | Total Dose     | Prominent Particle    |
| M                 | REM          | REM                                | KEM            | microns radius        |
| 12000             | .213         | .051                               | .204           | 11.2                  |
| 10000             | .109         | .026                               | .135           | 17.0                  |
| 8000              | .054         |                                    | .067           | 22.4                  |
| 6000              | .032         | 7.80 E-03                          | .040           | 20.8<br>20.6          |
| 4000              | .022         | 5.31 E-03                          | .027           | 30.5                  |
| 2000              | .015         | 3.82 E-03                          | .019           | 54.7                  |

59

Table XIX

L

Ľ

.

DELFIC Cloud and E-4B

,

1

.

•

•

Í

0•

2

| *********                                   |                                                                                   | *********                                                                                      |                                                                                              | *******                                                                                                                    |
|---------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 12 JAN 1756                                 | CUSTOM SCENA                                                                      | RIO: Baseline                                                                                  | e + E-4B                                                                                     |                                                                                                                            |
| time $(hr) = 1$                             | deltat (hr)                                                                       | = .0967423 9                                                                                   | <b>ba</b> irborne = 90                                                                       | sigmax = 3958.03 M                                                                                                         |
| sigmay = 4355                               | .52 M                                                                             | 3 :                                                                                            | sigmay cloud d                                                                               | iameter = 26133.1 M                                                                                                        |
| Altitude                                    | Cabin Dust                                                                        | Sky Shine                                                                                      | Total Dose                                                                                   | <b>Prominent Particle</b>                                                                                                  |
| M                                           | REM                                                                               | REM                                                                                            | REM                                                                                          | microns radius                                                                                                             |
| 12000                                       | 7.41                                                                              | 7,03                                                                                           | 14.4                                                                                         | 31.8                                                                                                                       |
| 10000                                       | 3.51                                                                              | 3.34                                                                                           | 6.85                                                                                         | 55.1                                                                                                                       |
| 8000                                        | 1.61                                                                              | 1.53                                                                                           | 3.15                                                                                         | 78.1                                                                                                                       |
| <b>60</b> 00                                | .901                                                                              | .856                                                                                           | 1.75                                                                                         | 103.                                                                                                                       |
| <b>40</b> 00                                | .563                                                                              | .535                                                                                           | 1.09                                                                                         | 126.                                                                                                                       |
| 2000                                        | .369                                                                              | .350                                                                                           | .720                                                                                         | 157.                                                                                                                       |
|                                             | **************************************                                            | *************                                                                                  | ************                                                                                 | *********************                                                                                                      |
| 12 JAN 1756                                 | CUSTOM SCENA                                                                      | RIO: Baselin                                                                                   | e + E-4B                                                                                     |                                                                                                                            |
| time $(hr) = 2$                             | deltat (hr)                                                                       | = .0967423                                                                                     | bairborne = 81                                                                               | sigmax = 4805.07 M                                                                                                         |
| sigmay = 0148                               | .72 M                                                                             | 3 :                                                                                            | sigmay cloud d                                                                               | 1ameter = 30892.3 M                                                                                                        |
| ALCITUde                                    | Cabin Dust                                                                        | Sky Shine                                                                                      | IOTAL DOSS                                                                                   | Prominent Particle                                                                                                         |
| M<br>10000                                  | KEM<br>C OC                                                                       | REM<br>1 21                                                                                    | KEM<br>4 70                                                                                  | microns radius                                                                                                             |
| 12000                                       | 2.90                                                                              | 1,81                                                                                           | 4,/5                                                                                         | 22.4                                                                                                                       |
| 10000                                       | 1.43                                                                              | .881                                                                                           | 2.31                                                                                         | 30.2<br>A9 C                                                                                                               |
| 6000                                        | .081                                                                              | .41/                                                                                           | 1.09                                                                                         | 40.0                                                                                                                       |
| 4000                                        | .403                                                                              | . 24 /                                                                                         | .030                                                                                         |                                                                                                                            |
| 4000                                        | . 2/3                                                                             | .107                                                                                           | .441                                                                                         | /4./<br>20.6                                                                                                               |
| 2000                                        | .191<br>• <b>********</b> *                                                       | , , , , , , , , , , , , , , , , , , ,                                                          | ,300<br>*************                                                                        | C+U000000000000000000000000000000000000                                                                                    |
| 12 JAN 1756                                 | CUSTOM SCENA                                                                      | RIO: Baselin                                                                                   | e + E-4B                                                                                     |                                                                                                                            |
| time $(hr) = 4$                             | deltat (hr)                                                                       | = .166667 %                                                                                    | airborne = t2                                                                                | sigmax = 5627.78 M                                                                                                         |
| sigmay = $9500$                             | .64 M                                                                             | 3                                                                                              | signay cloud A                                                                               | indstor = 57003.8 M                                                                                                        |
| Altitude                                    | Cabin Dust                                                                        | Sky Shine                                                                                      | TOTAL DOSO                                                                                   | Prominent Particle                                                                                                         |
| M                                           | REM                                                                               | REM                                                                                            | RCM                                                                                          | microns radius                                                                                                             |
| 12000                                       | .988                                                                              | .423                                                                                           | 1.41                                                                                         | 15.4                                                                                                                       |
| 10000                                       | .491                                                                              | .210                                                                                           | .702                                                                                         | 24.5                                                                                                                       |
| 8000                                        | .239                                                                              | .102                                                                                           | .341                                                                                         | 31.8                                                                                                                       |
| <b>600</b> 0                                | .141                                                                              | .060                                                                                           | .202                                                                                         | 39.4                                                                                                                       |
| <b>400</b> 0                                | .095                                                                              | .040                                                                                           | .135                                                                                         | 46.6                                                                                                                       |
| 2000                                        | .068                                                                              | .029                                                                                           | .098                                                                                         | 52.9                                                                                                                       |
| ***********                                 | **********                                                                        | **********                                                                                     | ************                                                                                 | *****************                                                                                                          |
| 12 JAN 1756                                 | CUSTOM SCEN                                                                       | ARIO: Baselin                                                                                  | e + E-4B                                                                                     |                                                                                                                            |
| time (hr) $= 8$                             |                                                                                   |                                                                                                |                                                                                              |                                                                                                                            |
| sigmay = 1043                               | deltat (hr)                                                                       | = .363636 %                                                                                    | airborne = 57                                                                                | sigmax = 5627.78 M                                                                                                         |
|                                             | deltat (hr)<br>5.6 M                                                              | = .363636 %                                                                                    | airborne = 57<br>sigmay cloud d                                                              | sigmax = 5627.78 M<br>liameter = 98613.5 M                                                                                 |
| AILILUUG<br>V                               | deltat (hr)<br>5.6 M<br>Cabin Dust                                                | = .363636 %<br>3<br>Sky Shine                                                                  | airborne = 57<br>sigmay cloud d<br>Total Dose                                                | sigmax = 5627.78 M<br>liameter = 98613.5 M<br>Prominent Particle                                                           |
| M                                           | deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM                                         | = .363636 %<br>3<br>Sky Shine<br>REM                                                           | airborne = 57<br>sigmay cloud d<br>Total Dose<br>REM<br>254                                  | sigmax = 5627.78 M<br>liameter = 98613.5 M<br>Prominent Particle<br>microns radius                                         |
| M<br>12000                                  | deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.267                                 | = .363636 %<br>3<br>Sky Shine<br>REM<br>.087                                                   | airborne = 57<br>sigmsy cloud d<br>Total Dose<br>REM<br>.354                                 | sigmax = 5627.78 M<br>liameter = 98613.5 M<br>Prominent Particle<br>microns radius<br>11.2                                 |
| M<br>12000<br>10000                         | deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.267<br>.137                         | = .363636 %<br>3<br>Sky Shine<br>REM<br>.087<br>.044                                           | airborne = 57<br>sigmay cloud d<br>Total Dose<br>REM<br>.354<br>.182                         | sigmax = 5627.78 M<br>liameter = 98613.5 M<br>Prominent Particle<br>microns radius<br>11.2<br>17.0                         |
| M<br>12000<br>10000<br>8000                 | deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.267<br>.137<br>.067                 | = .363636 %<br>3<br>Sky Shine<br>REM<br>.087<br>.044<br>.022                                   | airborne = 57<br>sigmay cloud d<br>Total Dose<br>REM<br>.354<br>.182<br>.090                 | sigmax = 5627.78 M<br>liameter = 98613.5 M<br>Prominent Particle<br>microns radius<br>11.2<br>17.0<br>22.4                 |
| M<br>12000<br>10000<br>8000<br>6000         | deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.267<br>.137<br>.067<br>.040         | = .363636 %<br>3<br>Sky Shine<br>REM<br>.087<br>.044<br>.022<br>.013                           | airborne = 57<br>sigmay cloud d<br>Total Dose<br>REM<br>.354<br>.182<br>.090<br>.054<br>027  | sigmax = 5627.78 M<br>liameter = 98613.5 M<br>Prominent Particle<br>microns radius<br>11.2<br>17.0<br>22.4<br>26.8<br>20.5 |
| M<br>12000<br>10000<br>8000<br>6000<br>4000 | deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.267<br>.137<br>.067<br>.040<br>.027 | = .363636 %<br>3<br>Sky Shine<br>REM<br>.087<br>.044<br>.022<br>.013<br>8.99 E-03<br>6 46 E-02 | airborne = 57<br>sigmay cloud d<br>Total Dose<br>REM<br>.354<br>.182<br>.090<br>.054<br>.037 | sigmax = 5627.78 M<br>liameter = 98613.5 M<br>Prominent Particle<br>microns radius<br>11.2<br>17.0<br>22.4<br>26.8<br>30.5 |

60

. . . . .

# DELFIC Cloud and EC-135

.

.

. .

| ***********                                                                                                                    | ••••                                                                                                                                                                                                                 | ********                                                                                                                                                                                                            | ***********                                                                                                                                                                                                                  | **********************                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13 Jan 0926                                                                                                                    | CUSTOM SCEN                                                                                                                                                                                                          | ARIO: Baselin                                                                                                                                                                                                       | e + EC-135                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                          |
| time $(hr) = 1$                                                                                                                | deltat (hr)                                                                                                                                                                                                          | = .0967423                                                                                                                                                                                                          | Mairborne = 9                                                                                                                                                                                                                | 0 sigmax = 3958.03 M                                                                                                                                                                                                                                                     |
| sigmay = $4355$                                                                                                                | .52 M                                                                                                                                                                                                                | 3                                                                                                                                                                                                                   | sigmay cloud                                                                                                                                                                                                                 | diameter = 26133.1 M                                                                                                                                                                                                                                                     |
| Altitude                                                                                                                       | Cabin Dust                                                                                                                                                                                                           | Sky Shine                                                                                                                                                                                                           | Total Dose                                                                                                                                                                                                                   | Prominent Particle                                                                                                                                                                                                                                                       |
| Ж                                                                                                                              | REM                                                                                                                                                                                                                  | REM                                                                                                                                                                                                                 | REM                                                                                                                                                                                                                          | microns radius                                                                                                                                                                                                                                                           |
| 12000                                                                                                                          | 5.18                                                                                                                                                                                                                 | 6.50                                                                                                                                                                                                                | 11.6                                                                                                                                                                                                                         | 31.8                                                                                                                                                                                                                                                                     |
| 10000                                                                                                                          | 2.46                                                                                                                                                                                                                 | 3.08                                                                                                                                                                                                                | 5.54                                                                                                                                                                                                                         | 55.1                                                                                                                                                                                                                                                                     |
| 8000                                                                                                                           | 1.13                                                                                                                                                                                                                 | 1.41                                                                                                                                                                                                                | 2.55                                                                                                                                                                                                                         | 78.1                                                                                                                                                                                                                                                                     |
| 6000                                                                                                                           | .631                                                                                                                                                                                                                 | .790                                                                                                                                                                                                                | 1.42                                                                                                                                                                                                                         | 103.                                                                                                                                                                                                                                                                     |
| 4000                                                                                                                           | .394                                                                                                                                                                                                                 | .494                                                                                                                                                                                                                | .888                                                                                                                                                                                                                         | 126.                                                                                                                                                                                                                                                                     |
| 2000                                                                                                                           | .258                                                                                                                                                                                                                 | .323                                                                                                                                                                                                                | .582                                                                                                                                                                                                                         | 157.                                                                                                                                                                                                                                                                     |
| ********                                                                                                                       | ***********                                                                                                                                                                                                          | ********                                                                                                                                                                                                            | ***********                                                                                                                                                                                                                  | *****************                                                                                                                                                                                                                                                        |
| 13 Jan 0926                                                                                                                    | CUSTOM SCEN                                                                                                                                                                                                          | ARIO: Baselin                                                                                                                                                                                                       | e + EC-135                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                          |
| time $(hr) = 2$                                                                                                                | deltat (hr)                                                                                                                                                                                                          | = .0967423                                                                                                                                                                                                          | %airborne = 8                                                                                                                                                                                                                | 1 sigmax = 4865.07 M                                                                                                                                                                                                                                                     |
| sigmay = 6148                                                                                                                  | .72 M                                                                                                                                                                                                                | 3                                                                                                                                                                                                                   | signay cloud                                                                                                                                                                                                                 | diameter = $36892.3$ M                                                                                                                                                                                                                                                   |
| Altitude                                                                                                                       | Cabin Dust                                                                                                                                                                                                           | Sky Shine                                                                                                                                                                                                           | Total Dose                                                                                                                                                                                                                   | Prominent Particle                                                                                                                                                                                                                                                       |
| М                                                                                                                              | REM                                                                                                                                                                                                                  | REM                                                                                                                                                                                                                 | REM                                                                                                                                                                                                                          | microns radius                                                                                                                                                                                                                                                           |
| 12000                                                                                                                          | 2.07                                                                                                                                                                                                                 | 1.67                                                                                                                                                                                                                | 3.75                                                                                                                                                                                                                         | 22.4                                                                                                                                                                                                                                                                     |
| 10000                                                                                                                          | 1.00                                                                                                                                                                                                                 | .814                                                                                                                                                                                                                | 1.82                                                                                                                                                                                                                         | 36.2                                                                                                                                                                                                                                                                     |
| 8000                                                                                                                           | .476                                                                                                                                                                                                                 | .385                                                                                                                                                                                                                | .862                                                                                                                                                                                                                         | 48,6                                                                                                                                                                                                                                                                     |
| 6000                                                                                                                           | .282                                                                                                                                                                                                                 | .228                                                                                                                                                                                                                | .510                                                                                                                                                                                                                         | 60.1                                                                                                                                                                                                                                                                     |
| 4000                                                                                                                           | .191                                                                                                                                                                                                                 | .155                                                                                                                                                                                                                | .346                                                                                                                                                                                                                         | 74.7                                                                                                                                                                                                                                                                     |
|                                                                                                                                |                                                                                                                                                                                                                      |                                                                                                                                                                                                                     |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                          |
| 2000                                                                                                                           | ,133                                                                                                                                                                                                                 | .108                                                                                                                                                                                                                | .242                                                                                                                                                                                                                         | <b>89.5</b>                                                                                                                                                                                                                                                              |
|                                                                                                                                | ,133<br>•••••••                                                                                                                                                                                                      | .108                                                                                                                                                                                                                | .242                                                                                                                                                                                                                         | 89.5<br>******                                                                                                                                                                                                                                                           |
| 2000<br>13 Jan 0926                                                                                                            | CUSTOM SCEN                                                                                                                                                                                                          | .108<br>••••••<br>ARIO: Baselin                                                                                                                                                                                     | .242<br>•••••••••••<br>• + EC-135                                                                                                                                                                                            | 89.5                                                                                                                                                                                                                                                                     |
| 2000<br>13 Jan 0926<br>time (hr) = 4                                                                                           | .133<br>CUSTOM SCEN<br>deltat (hr)                                                                                                                                                                                   | .108<br>ARIO: Baselin<br>= .166667 %                                                                                                                                                                                | .242<br>••••••••••••<br>• + EC-135<br>airborne = 69                                                                                                                                                                          | 89.5<br>************************************                                                                                                                                                                                                                             |
| 2000<br>13 Jan 0926<br>time (hr) = 4<br>sigmay = 9500                                                                          | .133<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M                                                                                                                                                                          | .108<br>ARIO: Baselin<br>= .166667 %<br>3                                                                                                                                                                           | .242<br>••••••••••••<br>• + EC-135<br>airborne = 69<br>sigmay cloud                                                                                                                                                          | 89.5<br>sigmax = 5627.78 M<br>diameter = 57003.8 M                                                                                                                                                                                                                       |
| 2000<br>13 Jan 0926<br>time (hr) = 4<br>sigmay = 9500<br>Altitude                                                              | .133<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Dust                                                                                                                                                            | .108<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine                                                                                                                                                              | .242<br>•••••••••••••••••••••••••••••••••••                                                                                                                                                                                  | 89.5<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle                                                                                                                                                                                                 |
| 2000<br>13 Jan 0926<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M                                                         | .133<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Duat<br>REM                                                                                                                                                     | .108<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM                                                                                                                                                       | .242<br>•••••••••••••••••••••••••••••••••••                                                                                                                                                                                  | 89.5<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius                                                                                                                                                                               |
| 2000<br>13 Jan 0926<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000<br>12000                                       | .133<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Duat<br>REM<br>.691                                                                                                                                             | .108<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.390                                                                                                                                               | .242<br>•••••••••••••••••••••••••••••••••••                                                                                                                                                                                  | 89.5<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4                                                                                                                                                                       |
| 2000<br>13 Jan 0926<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000<br>10000                                       | .133<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Duat<br>REM<br>.691<br>.344                                                                                                                                     | .108<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.390<br>.194                                                                                                                                       | .242<br>••••EC-135<br>airborne = 69<br>sigmay cloud<br>Total Dose<br>REM<br>1.08<br>.538                                                                                                                                     | 89.5<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5                                                                                                                                                               |
| 2000<br>**********************************                                                                                     | .133<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Duat<br>REM<br>.691<br>.344<br>.167                                                                                                                             | .108<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.390<br>.194<br>.094                                                                                                                               | .242<br>•••••••••••••••••••••••••••••••••••                                                                                                                                                                                  | 89.5<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8                                                                                                                                                       |
| 2000<br><b>13</b> Jan 0926<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000<br>10000<br>8000 -<br>6000              | .133<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.691<br>.344<br>.167<br>.099                                                                                                                     | .108<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.390<br>.194<br>.094<br>.056                                                                                                                       | .242<br>•••••••••••••••••••••••••••••••••••                                                                                                                                                                                  | 89.5<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4                                                                                                                                               |
| 2000<br>13 Jan 0926<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000<br>10000<br>8000 -<br>6000<br>4000             | .133<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Dust<br>REM<br>.691<br>.344<br>.167<br>.099<br>.066                                                                                                             | .108<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.390<br>.194<br>.094<br>.056<br>.037                                                                                                               | .242<br>•••••••••••••••••••••••••••••••••••                                                                                                                                                                                  | 89.5<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6                                                                                                                                       |
| 2000<br>13 Jan 0926<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000     | .133<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Duat<br>REM<br>.691<br>.344<br>.167<br>.099<br>.066<br>.048                                                                                                     | .108<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.390<br>.194<br>.094<br>.056<br>.037<br>.027                                                                                                       | .242<br>• + EC-135<br>airborne = 69<br>sigmay cloud<br>Total Dose<br>REM<br>1.08<br>.538<br>.262<br>.155<br>.104<br>.075                                                                                                     | 89.5<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9                                                                                                                               |
| 2000<br>13 Jan 0926<br>time (hr) = 4<br>sigmay = 9500<br>Altitude<br>M<br>12000<br>10000<br>8000 -<br>6000<br>4000<br>2000<br> | .133<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Duat<br>REM<br>.691<br>.344<br>.167<br>.099<br>.066<br>.048<br>CUSTOM SCEN                                                                                      | .108<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.390<br>.194<br>.094<br>.094<br>.056<br>.037<br>.027<br>ARIO: Baselin                                                                              | .242<br>• + EC-135<br>airborne = 69<br>sigmay cloud<br>Total Dose<br>REM<br>1.08<br>.538<br>.262<br>.155<br>.104<br>.075<br>• + EC-135                                                                                       | 89.5<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9                                                                                                                               |
| 2000<br>**********************************                                                                                     | .133<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Duat<br>REM<br>.691<br>.344<br>.167<br>.099<br>.066<br>.048<br>CUSTOM SCEN<br>deltat (hr)                                                                       | .108<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.390<br>.194<br>.094<br>.056<br>.037<br>.027<br>ARIO: Baselin<br>= .363636 %                                                                       | .242<br>• + EC-135<br>airborne = 69<br>sigmay cloud<br>Total Dose<br>REM<br>1.08<br>.538<br>.262<br>.155<br>.104<br>.075<br>• + EC-135<br>airborne = 57                                                                      | 89.5<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>sigmax = 5627.78 M                                                                                                         |
| 2000<br>**********************************                                                                                     | .133<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Duat<br>REM<br>.691<br>.344<br>.167<br>.099<br>.066<br>.048<br>CUSTOM SCEN<br>deltat (hr)<br>5.6 M                                                              | .108<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.390<br>.194<br>.094<br>.056<br>.037<br>.027<br>ARIO: Baselin<br>= .363636 %<br>3                                                                  | .242<br>•••••••••••••••••••••••••••••••••••                                                                                                                                                                                  | 89.5<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>sigmax = 5627.78 M<br>diameter = 98613.5 M                                                                                 |
| 2000<br>**********************************                                                                                     | .133<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Duat<br>REM<br>.691<br>.344<br>.167<br>.099<br>.066<br>.048<br>CUSTOM SCEN<br>deltat (hr)<br>5,6 M<br>Cabin Dust                                                | .108<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.390<br>.194<br>.094<br>.056<br>.037<br>.027<br>ARIO: Baselin<br>= .363636 %<br>3<br>Sky Shine                                                     | .242<br>•••••••••••••••••••••••••••••••••••                                                                                                                                                                                  | 89.5<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>sigmax = 5627.78 M<br>diameter = 98613.5 M<br>Prominent Particle                                                           |
| 2000<br>**********************************                                                                                     | .133<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Duat<br>REM<br>.691<br>.344<br>.167<br>.099<br>.066<br>.048<br>CUSTOM SCEN<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM                                         | .108<br>ARIO: Baselin<br>= .166667 %<br>.390<br>.194<br>.094<br>.056<br>.037<br>.027<br>ARIO: Baselin<br>= .363636 %<br>.3<br>Sky Shine<br>REM                                                                      | .242<br>•••••••••••••••••••••••••••••••••••                                                                                                                                                                                  | 89.5<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>sigmax = 5627.78 M<br>diameter = 98613.5 M<br>Prominent Particle<br>microns radius                                         |
| 2000<br>**********************************                                                                                     | .133<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Duat<br>REM<br>.691<br>.344<br>.167<br>.099<br>.066<br>.048<br>CUSTOM SCEN<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.186                                 | .108<br>ARIO: Baselin<br>= .166667 %<br>.390<br>.194<br>.094<br>.094<br>.056<br>.037<br>.027<br>ARIO: Baselin<br>= .363636 %<br>.3<br>Sky Shine<br>REM<br>.080                                                      | .242<br>•••••••••••••••••••••••••••••••••••                                                                                                                                                                                  | 89.5<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>sigmax = 5627.78 M<br>diameter = 98613.5 M<br>Prominent Particle<br>microns radius<br>11.2                                 |
| 2000<br>**********************************                                                                                     | .133<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Duat<br>REM<br>.691<br>.344<br>.167<br>.099<br>.066<br>.048<br>CUSTOM SCEN<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.186<br>.096                         | .108<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.390<br>.194<br>.094<br>.056<br>.037<br>.027<br>ARIO: Baselin<br>= .363636 %<br>3<br>Sky Shine<br>REM<br>.080<br>.041                              | .242<br>• + EC-135<br>airborne = 69<br>sigmay cloud<br>Total Dose<br>REM<br>1.08<br>.538<br>.262<br>.155<br>.104<br>.075<br>• + EC-135<br>airborne = 57<br>sigmay cloud<br>Total Dose<br>REM<br>.267<br>.137                 | 89.5<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>sigmax = 5627.78 M<br>diameter = 98613.5 M<br>Prominent Particle<br>microns radius<br>11.2<br>17.0                         |
| 2000<br>**********************************                                                                                     | .133<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Duat<br>REM<br>.691<br>.344<br>.167<br>.099<br>.066<br>.048<br>CUSTOM SCEN<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.186<br>.096<br>.047                 | .108<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.390<br>.194<br>.094<br>.094<br>.056<br>.037<br>.027<br>ARIO: Baselin<br>= .363636 %<br>3<br>Sky Shine<br>REM<br>.080<br>.041<br>.020              | .242<br>• + EC-135<br>airborne = 69<br>sigmay cloud<br>Total Dose<br>REM<br>1.08<br>.538<br>.262<br>.155<br>.104<br>.075<br>• + EC-135<br>airborne = 57<br>sigmay cloud<br>Total Dose<br>REM<br>.267<br>.137<br>.068         | 89.5<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>sigmax = 5627.78 M<br>diameter = 98613.5 M<br>Prominent Particle<br>microns radius<br>11.2<br>17.0<br>22.4                 |
| 2000<br>**********************************                                                                                     | .133<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Duat<br>REM<br>.691<br>.344<br>.167<br>.099<br>.066<br>.048<br>CUSTOM SCEN<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.186<br>.096<br>.047<br>.028         | .108<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.390<br>.194<br>.094<br>.056<br>.037<br>.027<br>ARIO: Baselin<br>= .363636 %<br>3<br>Sky Shine<br>REM<br>.080<br>.041<br>.020<br>.012              | .242<br>• + EC-135<br>airborne = 69<br>sigmay cloud<br>Total Dose<br>REM<br>1.08<br>.538<br>.262<br>.155<br>.104<br>.075<br>• + EC-135<br>airborne = 57<br>sigmay cloud<br>Total Dose<br>REM<br>.267<br>.137<br>.068<br>.040 | 89.5<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>sigmax = 5627.78 M<br>diameter = 98613.5 M<br>Prominent Particle<br>microns radius<br>11.2<br>17.0<br>22.4<br>26.8         |
| 2000<br>**********************************                                                                                     | .133<br>CUSTOM SCEN<br>deltat (hr)<br>.64 M<br>Cabin Duat<br>REM<br>.691<br>.344<br>.167<br>.099<br>.066<br>.048<br>CUSTOM SCEN<br>deltat (hr)<br>5.6 M<br>Cabin Dust<br>REM<br>.186<br>.096<br>.047<br>.028<br>.019 | .108<br>ARIO: Baselin<br>= .166667 %<br>3<br>Sky Shine<br>REM<br>.390<br>.194<br>.094<br>.056<br>.037<br>.027<br>ARIO: Baselin<br>= .363636 %<br>3<br>Sky Shine<br>REM<br>.080<br>.041<br>.020<br>.012<br>8.30 E-03 | .242<br>•••••••••••••••••••••••••••••••••••                                                                                                                                                                                  | 89.5<br>sigmax = 5627.78 M<br>diameter = 57003.8 M<br>Prominent Particle<br>microns radius<br>15.4<br>24.5<br>31.8<br>39.4<br>46.6<br>52.9<br>sigmax = 5627.78 M<br>diameter = 98613.5 M<br>Prominent Particle<br>microns radius<br>11.2<br>17.0<br>22.4<br>26.8<br>30.5 |
#### IV. Mass Analysis

بالمستحيث والمشاعدة والمنابعة المرابعة والمنابع والمتحاط والمتحاط والمنابع والمنابع والمنابع والمنابع والمنابع المحالية والمنابع وا

#### Background

đ

l

9

There are two reasons why it is important to determine the mass of dust ingested by an aircraft. The first is that any filter designed to prevent radioactive dust from entering the cabin will eventually clog when exposed to enough dust. When this point is reached, the filter will be bypassed and unfiltered air will enter the cabin.

The second reason is that aircraft engines may be degraded or disabled by excessive amounts of dust. Recent experience with volcanic ash orbits (Ref 13) shows that erosion of turbine blades and glass-14. deposits of melted dust may drastically increase fuel consumption or cause engine failure.

## Theory

· • -

Determining the mass of dust ingested by the cabin, an air filter, or the engines in an aircraft, is identical in principle to the method described in Chapters II and III. The only changes needed are to substitute mass and mass densities for unit time activities and activity densities so that Eq (14) and Eq (18) are replaced by

$$M'''(x,y,z,t) = \int_{0}^{+\infty} M_{r}'''(x,y,z,r,t) dr [KG/m3]$$
 (43)

and

$$\int_{0}^{+\infty} M_{r}'(z,r,t) dr = \sum_{i=1}^{100} M^{i} f^{i}(z,t) [KG/m] \qquad (44)$$

where the equal activity-size particle groups are replaced by equal mass-size particle groups. The mass density of the cloud is defined as mass of rock per unit volume of air with units of  $kg/m^3$ . Figures 10, 11 and 12 show mass density versus altitude in the cloud in the same manner that Figures 6, 7, and 8 depicted activity density versus altitude. Note that the mass density decreases at a much slower rate than the activity density. This is because the radioactivity is decaying with time as well as settling out.<sup>3</sup>

The total amount of mass initially lofted in the nuclear cloud depends on the target material, the height of burst, and the yield. A common rule of thumb is 1/3 ton of dust per ton of yield. This study found a least-squares fit polynomial to DELFIC default Nevada soil predictions for mass of dust lofted: this relationship is

> $DF = .204731 - .0240532 \ln Y + .00139148 (1nY)^{*}$ - 4.88467x10<sup>-1</sup> (1nY)<sup>3</sup> + 8.62805x10<sup>-1</sup> (1nY)<sup>4</sup> (45)

where Y is yield in kilotons and DF is dust fraction, the ratio tons dust/tons yield so that total dust mass in kilotons equals the dust fraction times the yield in kilotons. DELFIC predicts a dust fraction from .1 to .2 depending on yield, for the default Nevada soil surface burst. This study will use a dust fraction of 1/3 because dust fractions for other soils were not found and because it is defense conservative.

<sup>3.</sup> It is also possible to determine the mass fraction in each activity-size group or the activity fraction in each mass size group so that the calculations need be done only once. DELFIC operates in this manner. This is not done here.

DELFIC EQUAL MASS GROUPS RM = .204UM SIGMA= 4 17.50 OUST FRACTION = 1/3 15.00-12.50 **#10** C D F E\ B 10.00ì. ALTITUDE (M) : . 7.50-5.00-A 1 hr B 2 hr C 4 hr D 8 hr E 16hr F 32hr 2.50-.00 10.00 . 00 20.00 30.00 40.00 \* (0<sup>3</sup> CLOUD MASS (KG/M) Figure 10.- BASELINE - DELFIC MASS - ONE MEGATON

()

•

63a



63B

(

TOR-C EQUAL MASS GROUPS RM=E0.6UM SIGNA=1.73 17.50 DUST FRACTION = 1/3 ٦, 15.00-12.50-**\***10 10.00-ALTITUDE (M) B 7.5û-C 5.00i D 1 2.50-A l hr B 2 hr C 4 hr D 8 hr E 16hr £ . 00 -5.55 - 3 10.00 20.00 30.00 . 00 DUST MASS (KG/M) Figure 12. TOR-C MASS - ONE MEDATON -

6

••••

#### Filter And Engine Ingestion

Ű

The mass of dust ingested into the cabin or trapped in a filter depends on the mass flow rate of air into the cabin. As before, the effective inlet area is

IA<sub>cd</sub> = 
$$\frac{\Omega}{\nabla_{\mathbf{x}} \rho_{air}}$$
 [m<sup>2</sup>] (39)

where  $\Omega$  is the mass flow rate. The mass of dust is the product of the above equation and the mass integral of the airborne dust. The dust mass integral is found by the same method as the 'activity-integral' in Eq ( 38 ), where the activity densities are replaced by mass densities so that

$$M''(y,z,t) = f(y,t) M'(z,t) \int_{-\infty}^{+\infty} f(x,t) dx [kg/m2] (46)$$

where M'(z,t) is given by Eq (44).

Engines may be affected both by dust density and by the total mass of dust ingested. The peak dust density is found in the center of the cloud in the same manner that activity densities were found in Chapters II and III. The amount of dust passing through an engine is found by substituting the mass flow of air into the engine for the mass flow of air to the cabin. Note that the physical inlet area of the engine is not used. If the dust entering the core section of a turbofan engine is desired, the total mass flow of the engine must be divided by the bypass ratio. Data for the engines used for the aircraft in this study are found in the following table.

## TABLE IXI

#### ENGINE\_DATA

| Aircraft<br>Type | Engine<br>Type | Mass<br>Flow<br>KG/S | Bypass<br>Ratio |  |
|------------------|----------------|----------------------|-----------------|--|
| B-1B             | F-101-GE-102   | 161                  | 2.3             |  |
| B-52G            | J57-P-43WB     | 83                   | 0               |  |
| B-52H            | TF-33-P-3      | 204                  | 1.4             |  |
| E-3              | TF-33-P        | 204                  | 1.4             |  |
| E-4B             | CF-6-50E2      | 729                  | 4.3             |  |
| EC-135           | J57-P- WB      | 83                   | 0               |  |
| KC-135           | J57-₽- ₩B      | 83                   | 0               |  |

The above flow rates are for each engine at unsugmented military rated thrust and standard (sea level) conditions.

Mass flow scales directly as thrust to a good approximation. If the percent thrust used for cruise speed at the penetration altitude is known, this percentage can be multiplied by the mass flow of the engine at sea level. This will result in a more realistic (and lower) mass flow through the engine. This refinement was not included in this study to simplify the treatment of the many different altitudes and aircraft examined: the percentage will vary for both these parameters.

#### Mass Results

Tables XXII, XXIII, and XXIV give the results for dust ingestion using the equal mass groups for the same DELFIC, NRDL-N61, and TOR-C clouds and initial conditions used in

Chapter III.

سيس

The amount of dust trapped in the cabin in Table XXII is much less than the capacity of the filter mentioned in Chapter III. It would appear that there is little danger of clogging the filter unless a large multiple burst cloud is encountered or a single cloud is entered many times.

Although no reliable quantitative data could be found on engine dust tolerance, the amount of dust ingested in these cases appears to be minimal. Earlier times and multiburst cloud results are given in Appendices G and I.

# TABLE XXII

# DELFIC Dust Cloud and KC-135

| ***********                                                                                                                                       | *********                                                                                                                                                                                                                                | **********                                                                                                                      | ***********                                                                                                                                                                                                                                                                                                   | ***********                                                                                                                                                                                                                       | *********                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13 Jan 0959                                                                                                                                       | CUSTOM SCEN                                                                                                                                                                                                                              | ARIO: Baselin                                                                                                                   | e DELFIC dust.                                                                                                                                                                                                                                                                                                | KC-135.Dust H                                                                                                                                                                                                                     | Fraction=1/3                                                                                                                                                                                                         |
| time $(hr) = 1$                                                                                                                                   | deltat (hr)                                                                                                                                                                                                                              | = .0967423                                                                                                                      | Sairborne = 85                                                                                                                                                                                                                                                                                                | sigmax = 399                                                                                                                                                                                                                      | 4.78 M                                                                                                                                                                                                               |
| sigmay = $4389$ .                                                                                                                                 | .7 M                                                                                                                                                                                                                                     | 3 sigmav c                                                                                                                      | loud diameter =                                                                                                                                                                                                                                                                                               | 26338.2 M                                                                                                                                                                                                                         | Prominent                                                                                                                                                                                                            |
| Altitude                                                                                                                                          | Cloud Dens                                                                                                                                                                                                                               | Filtered Dus                                                                                                                    | t Cabin Dust                                                                                                                                                                                                                                                                                                  | Engine Dust                                                                                                                                                                                                                       | Particle                                                                                                                                                                                                             |
| M                                                                                                                                                 | mg/M <sup>3</sup>                                                                                                                                                                                                                        | Kg                                                                                                                              | Kg                                                                                                                                                                                                                                                                                                            | Kg                                                                                                                                                                                                                                | microns r                                                                                                                                                                                                            |
| 12000                                                                                                                                             | 235.                                                                                                                                                                                                                                     | <b>2</b><br>U                                                                                                                   | .027                                                                                                                                                                                                                                                                                                          | 2.71                                                                                                                                                                                                                              | 32.0                                                                                                                                                                                                                 |
| 10000                                                                                                                                             | 185.                                                                                                                                                                                                                                     | 0                                                                                                                               | .016                                                                                                                                                                                                                                                                                                          | 1.61                                                                                                                                                                                                                              | 53.7                                                                                                                                                                                                                 |
| 8000                                                                                                                                              | 129.                                                                                                                                                                                                                                     | 0                                                                                                                               | 8.84 E-03                                                                                                                                                                                                                                                                                                     | .883                                                                                                                                                                                                                              | 76.1                                                                                                                                                                                                                 |
| 6000                                                                                                                                              | 97.0                                                                                                                                                                                                                                     | 0                                                                                                                               | 5.28 E-03                                                                                                                                                                                                                                                                                                     | . 527                                                                                                                                                                                                                             | 101.                                                                                                                                                                                                                 |
| 4000                                                                                                                                              | 77.3                                                                                                                                                                                                                                     | 0                                                                                                                               | 3.39 E-03                                                                                                                                                                                                                                                                                                     | .339                                                                                                                                                                                                                              | 126.                                                                                                                                                                                                                 |
| 2000                                                                                                                                              | 63.4                                                                                                                                                                                                                                     | 0                                                                                                                               | 2.26 E-03                                                                                                                                                                                                                                                                                                     | .226                                                                                                                                                                                                                              | 155.                                                                                                                                                                                                                 |
| *********                                                                                                                                         | *********                                                                                                                                                                                                                                | *********                                                                                                                       | ***********                                                                                                                                                                                                                                                                                                   | **********                                                                                                                                                                                                                        | ********                                                                                                                                                                                                             |
| 13 Jan 0959                                                                                                                                       | CUSTOM SCEN                                                                                                                                                                                                                              | ARIO: Baselin                                                                                                                   | e DELFIC dust,                                                                                                                                                                                                                                                                                                | KC-135, Dust H                                                                                                                                                                                                                    | Fraction=1/3                                                                                                                                                                                                         |
| time $(hr) = 2$                                                                                                                                   | deltat (hr)                                                                                                                                                                                                                              | = .0967423                                                                                                                      | Sairborne = 73                                                                                                                                                                                                                                                                                                | sigmax = 492                                                                                                                                                                                                                      | 24.79 M                                                                                                                                                                                                              |
| sigmay = 6198                                                                                                                                     | .22 M                                                                                                                                                                                                                                    | 3 sigmay                                                                                                                        | cloud diameter                                                                                                                                                                                                                                                                                                | = 37189.3 M                                                                                                                                                                                                                       | Prominent                                                                                                                                                                                                            |
| Altitude                                                                                                                                          | Cloud Dens                                                                                                                                                                                                                               | Filtered Dus                                                                                                                    | t Cabin Dust                                                                                                                                                                                                                                                                                                  | Engine Dust                                                                                                                                                                                                                       | Particle                                                                                                                                                                                                             |
| M                                                                                                                                                 | mg/M^3                                                                                                                                                                                                                                   | Kg                                                                                                                              | Kg                                                                                                                                                                                                                                                                                                            | Kg                                                                                                                                                                                                                                | microns r                                                                                                                                                                                                            |
| 12000                                                                                                                                             | 101.                                                                                                                                                                                                                                     | 0                                                                                                                               | .014                                                                                                                                                                                                                                                                                                          | 1.44                                                                                                                                                                                                                              | 21.7                                                                                                                                                                                                                 |
| 10000                                                                                                                                             | 83.4                                                                                                                                                                                                                                     | 0                                                                                                                               | 8.96 E-03                                                                                                                                                                                                                                                                                                     | .894                                                                                                                                                                                                                              | 36.0                                                                                                                                                                                                                 |
| 8000                                                                                                                                              | 60.6                                                                                                                                                                                                                                     | 0                                                                                                                               | 5.11 E-03                                                                                                                                                                                                                                                                                                     | .510                                                                                                                                                                                                                              | 48.3                                                                                                                                                                                                                 |
| 6000                                                                                                                                              | 48.9                                                                                                                                                                                                                                     | 0                                                                                                                               | 3.28 E-03                                                                                                                                                                                                                                                                                                     | .328                                                                                                                                                                                                                              | 61.7                                                                                                                                                                                                                 |
| 4000                                                                                                                                              | 42.6                                                                                                                                                                                                                                     | 0                                                                                                                               | 2.30 E-03                                                                                                                                                                                                                                                                                                     | .230                                                                                                                                                                                                                              | 73.5                                                                                                                                                                                                                 |
| 2000                                                                                                                                              | 37.4                                                                                                                                                                                                                                     | 0                                                                                                                               | 1 65 E-03                                                                                                                                                                                                                                                                                                     | 164                                                                                                                                                                                                                               | 87 6                                                                                                                                                                                                                 |
|                                                                                                                                                   |                                                                                                                                                                                                                                          | •                                                                                                                               | ±100 0 00                                                                                                                                                                                                                                                                                                     | +104                                                                                                                                                                                                                              |                                                                                                                                                                                                                      |
| ******                                                                                                                                            | *********                                                                                                                                                                                                                                | *********                                                                                                                       | **********                                                                                                                                                                                                                                                                                                    | **********                                                                                                                                                                                                                        | *******                                                                                                                                                                                                              |
| 13 Jan 0959                                                                                                                                       | CUSTOM SCEN                                                                                                                                                                                                                              | ************<br>ARIO: Baselin                                                                                                   | e DELFIC dust,                                                                                                                                                                                                                                                                                                | KC-135,Dust                                                                                                                                                                                                                       | ************<br>Fraction=1/3                                                                                                                                                                                         |
| **************************************                                                                                                            | CUSTOM SCEN<br>deltat (hr)                                                                                                                                                                                                               | •••••<br>ARIO: Baselin<br>= .166667 %                                                                                           | e DELFIC dust,<br>airborne = 57                                                                                                                                                                                                                                                                               | KC-135,Dust  <br>sigmax = 570:                                                                                                                                                                                                    | Fraction=1/3<br>5.15 M                                                                                                                                                                                               |
| 13 Jan 0959<br>time (hr) = 4<br>sigmay = 9544                                                                                                     | CUSTOM SCEN<br>deltat (hr)<br>.24 M                                                                                                                                                                                                      | ARIO: Baselin<br>= .166667 %<br>3 sigmay                                                                                        | e DELFIC dust,<br>airborne = 57<br>cloud diameter                                                                                                                                                                                                                                                             | KC-135,Dust 1<br>sigmax = 5703<br>= 57265.5 M                                                                                                                                                                                     | Fraction=1/3<br>5.15 M<br>Prominent                                                                                                                                                                                  |
| 13 Jan 0959<br>time (hr) = 4<br>sigmay = 9544<br>Altitude                                                                                         | CUSTOM SCEN<br>deltat (hr)<br>.24 M<br>Cloud Dens                                                                                                                                                                                        | ARIO: Baselin<br>= .166667 %<br>3 sigmay<br>Filtered Dus                                                                        | e DELFIC dust,<br>airborne = 57<br>cloud diameter<br>t Cabin Dust                                                                                                                                                                                                                                             | KC-135, Dust 1<br>sigmax = 570<br>= 57265.5 M<br>Engine Dust                                                                                                                                                                      | Fraction=1/3<br>5.15 M<br>Prominent<br>Particle                                                                                                                                                                      |
| 13 Jan 0959<br>time (hr) = 4<br>sigmay = 9544<br>Altitude<br>M                                                                                    | CUSTOM SCEN<br>deltat (hr)<br>.24 M<br>Cloud Dens<br>mg/M <sup>3</sup>                                                                                                                                                                   | ARIO: Baselin<br>= .166667 %<br>3 sigmay<br>Filtered Dus<br>Kg                                                                  | e DELFIC dust,<br>airborne = 57<br>cloud diameter<br>t Cabin Dust<br>Kg                                                                                                                                                                                                                                       | KC-135, Dust 1<br>sigmax = 570<br>= 57265.5 M<br>Engine Dust<br>Kg                                                                                                                                                                | Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r                                                                                                                                                         |
| **************************************                                                                                                            | CUSTOM SCEN<br>deltat (hr)<br>.24 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>41.6                                                                                                                                                           | ARIO: Baselin<br>= .166667 %<br>3 sigmay<br>Filtered Dus<br>Kg<br>0                                                             | e DELFIC dust,<br>airborne = 57<br>cloud diameter<br>t Cabin Dust<br>Kg<br>.006                                                                                                                                                                                                                               | KC-135, Dust I<br>sigmax = 570<br>= 57265.5 M<br>Engine Dust<br>Kg<br>.684                                                                                                                                                        | Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r<br>15.9                                                                                                                                                 |
| 13 Jan 0959<br>time (hr) = 4<br>sigmay = 9544<br>Altitude<br>M<br>12000<br>10000                                                                  | CUSTOM SCEN<br>deltat (hr)<br>.24 M<br>Cloud Dens<br>mg/M <sup>^</sup> 3<br>41.6<br>35.4                                                                                                                                                 | ARIO: Baselin<br>= .166667 %<br>3 sigmay<br>Filtered Dus<br>Kg<br>0<br>0                                                        | e DELFIC dust,<br>airborne = 57<br>cloud diameter<br>t Cabin Dust<br>Kg<br>.006<br>4.41 E-03                                                                                                                                                                                                                  | KC-135, Dust I<br>sigmax = 570<br>= 57265.5 M<br>Engine Dust<br>Kg<br>.684<br>.440                                                                                                                                                | Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r<br>15.9<br>24.9                                                                                                                                         |
| <pre>************************************</pre>                                                                                                   | CUSTOM SCEN<br>deltat (hr)<br>.24 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>41.6<br>35.4<br>26.7                                                                                                                                           | ARIO: Baselin<br>= .166667 %<br>3 sigmay<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0                                              | e DELFIC dust,<br>airborne = 57<br>cloud diameter<br>t Cabin Dust<br>Kg<br>.006<br>4.41 E-03<br>.002                                                                                                                                                                                                          | KC-135, Dust I<br>sigmax = 570:<br>= 57265.5 M<br>Engine Dust<br>Kg<br>.684<br>.440<br>.261                                                                                                                                       | Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r<br>15.9<br>24.9<br>32.0                                                                                                                                 |
| 13 Jan 0959<br>time (hr) = 4<br>sigmay = 9544<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000                                                  | CUSTOM SCEN<br>deltat (hr)<br>.24 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>41.6<br>35.4<br>26.7<br>21.8                                                                                                                                   | ARIO: Baselin<br>= .166667 %<br>3 sigmay<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0                                    | e DELFIC dust,<br>airborne = 57<br>cloud diameter<br>t Cabin Dust<br>Kg<br>.006<br>4.41 E-03<br>.002<br>.001                                                                                                                                                                                                  | KC-135, Dust I<br>sigmax = 570:<br>= 57265.5 M<br>Engine Dust<br>Kg<br>.684<br>.440<br>.261<br>.169                                                                                                                               | Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r<br>15.9<br>24.9<br>32.0<br>38.8                                                                                                                         |
| <pre>13 Jan 0959 time (hr) = 4 sigmay = 9544 Altitude M 12000 10000 8000 6000 4000</pre>                                                          | CUSTOM SCEN<br>deltat (hr)<br>.24 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>41.6<br>35.4<br>26.7<br>21.8<br>18.9                                                                                                                           | ARIO: Baselin<br>= .166667 %<br>3 sigmay<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | e DELFIC dust,<br>airborne = 57<br>cloud diameter<br>t Cabin Dust<br>Kg<br>.006<br>4.41 E-03<br>.002<br>.001<br>1.19 E-03                                                                                                                                                                                     | KC-135, Dust I<br>sigmax = 570:<br>= 57265.5 M<br>Engine Dust<br>Kg<br>.684<br>.440<br>.261<br>.169<br>.118                                                                                                                       | Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r<br>15.9<br>24.9<br>32.0<br>38.8<br>46.6                                                                                                                 |
| 13 Jan 0959<br>time (hr) = 4<br>sigmay = 9544<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>2000                                  | CUSTOM SCEN<br>deltat (hr)<br>.24 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>41.6<br>35.4<br>26.7<br>21.8<br>18.9<br>17.3                                                                                                                   | ARIO: Baselin<br>= .166667 %<br>3 sigmay<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | e DELFIC dust,<br>airborne = 57<br>cloud diameter<br>t Cabin Dust<br>Kg<br>.006<br>4.41 E-03<br>.002<br>.001<br>1.19 E-03<br>8.85 E-04                                                                                                                                                                        | KC-135, Dust I<br>sigmax = 570<br>= 57265.5 M<br>Engine Dust<br>Kg<br>.684<br>.440<br>.261<br>.169<br>.118<br>.088                                                                                                                | Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r<br>15.9<br>24.9<br>32.0<br>38.8<br>46.6<br>53.7                                                                                                         |
| 13 Jan 0959<br>time (hr) = 4<br>sigmay = 9544<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>2000                                  | CUSTOM SCEN<br>deltat (hr)<br>.24 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>41.6<br>35.4<br>26.7<br>21.8<br>18.9<br>17.3                                                                                                                   | ARIO: Baselin<br>= .166667 %<br>3 sigmay<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | e DELFIC dust,<br>airborne = 57<br>cloud diameter<br>t Cabin Dust<br>Kg<br>.006<br>4.41 E-03<br>.002<br>.001<br>1.19 E-03<br>8.85 E-04                                                                                                                                                                        | KC-135, Dust I<br>sigmax = 570:<br>= 57265.5 M<br>Engine Dust<br>Kg<br>.684<br>.440<br>.261<br>.169<br>.118<br>.088                                                                                                               | Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r<br>15.9<br>24.9<br>32.0<br>38.8<br>46.6<br>53.7                                                                                                         |
| <pre>13 Jan 0959 time (hr) = 4 sigmay = 9544 Altitude M 12000 10000 8000 6000 4000 2000 **************************</pre>                          | CUSTOM SCEN<br>deltat (hr)<br>.24 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>41.6<br>35.4<br>26.7<br>21.8<br>18.9<br>17.3<br>CUSTOM SCEN                                                                                                    | ARIO: Baselin<br>= .166667 %<br>3 sigmay<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | e DELFIC dust,<br>airborne = 57<br>cloud diameter<br>t Cabin Dust<br>Kg<br>.006<br>4.41 E-03<br>.002<br>.001<br>1.19 E-03<br>8.85 E-04                                                                                                                                                                        | KC-135, Dust I<br>sigmax = 570:<br>= 57265.5 M<br>Engine Dust<br>Kg<br>.684<br>.440<br>.261<br>.169<br>.118<br>.088<br>KC-135, Dust                                                                                               | Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r<br>15.9<br>24.9<br>32.0<br>38.8<br>46.6<br>53.7<br>Fraction=1/3                                                                                         |
| 13 Jan 0959<br>time (hr) = 4<br>sigmay = 9544<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>2000<br>**************************    | CUSTOM SCEN<br>deltat (hr)<br>.24 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>41.6<br>35.4<br>26.7<br>21.8<br>18.9<br>17.3<br>CUSTOM SCEN<br>deltat (hr)                                                                                     | ARIO: Baselin<br>= .166667 %<br>3 sigmay<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | e DELFIC dust,<br>airborne = 57<br>cloud diameter<br>t Cabin Dust<br>Kg<br>.006<br>4.41 E-03<br>.002<br>.001<br>1.19 E-03<br>8.85 E-04<br>e DELFIC dust,<br>airborne = 43                                                                                                                                     | KC-135, Dust I<br>sigmax = 570:<br>= 57265.5 M<br>Engine Dust<br>Kg<br>.684<br>.440<br>.261<br>.169<br>.118<br>.088<br>KC-135, Dust I<br>sigmax = 570                                                                             | Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r<br>15.9<br>24.9<br>32.0<br>38.8<br>46.6<br>53.7<br>Fraction=1/3<br>5.15 M                                                                               |
| <pre>13 Jan 0959 time (hr) = 4 sigmay = 9544 Altitude M 12000 10000 8000 6000 4000 2000 **************************</pre>                          | CUSTOM SCEN<br>deltat (hr)<br>.24 M<br>Cloud Dens<br>mg/M <sup>3</sup> 3<br>41.6<br>35.4<br>26.7<br>21.8<br>18.9<br>17.3<br>CUSTOM SCEN<br>deltat (hr)<br>2.4 M                                                                          | ARIO: Baselin<br>= .166667 %<br>3 sigmay<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | e DELFIC dust,<br>airborne = 57<br>cloud diameter<br>t Cabin Dust<br>Kg<br>.006<br>4.41 E-03<br>.002<br>.001<br>1.19 E-03<br>8.85 E-04<br>the DELFIC dust,<br>airborne = 43<br>cloud diameter                                                                                                                 | KC-135, Dust I<br>sigmax = 570:<br>= 57265.5 M<br>Engine Dust<br>Kg<br>.684<br>.440<br>.261<br>.169<br>.118<br>.088<br>KC-135, Dust I<br>sigmax = 570<br>= 98774.5 M                                                              | Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r<br>15.9<br>24.9<br>32.0<br>38.8<br>46.6<br>53.7<br>Fraction=1/3<br>5.15 M<br>Prominent                                                                  |
| <pre>13 Jan 0959 time (hr) = 4 sigmay = 9544 Altitude M 12000 10000 8000 6000 4000 2000 **************************</pre>                          | CUSTOM SCEN<br>deltat (hr)<br>.24 M<br>Cloud Dens<br>mg/M <sup>3</sup> 3<br>41.6<br>35.4<br>26.7<br>21.8<br>18.9<br>17.3<br>CUSTOM SCEN<br>deltat (hr)<br>2.4 M<br>Cloud Dens                                                            | ARIO: Baselin<br>= .166667 %<br>3 sigmay<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | e DELFIC dust,<br>airborne = 57<br>cloud diameter<br>t Cabin Dust<br>Kg<br>.006<br>4.41 E-03<br>.002<br>.001<br>1.19 E-03<br>8.85 E-04<br>DELFIC dust,<br>airborne = 43<br>cloud diameter<br>t Cabin Dust                                                                                                     | KC-135, Dust I<br>sigmax = 570:<br>= 57265.5 M<br>Engine Dust<br>Kg<br>.684<br>.440<br>.261<br>.169<br>.118<br>.088<br>KC-135, Dust<br>sigmax = 570<br>= 98774.5 M<br>Engine Dust                                                 | Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r<br>15.9<br>24.9<br>32.0<br>38.8<br>46.6<br>53.7<br>Fraction=1/3<br>5.15 M<br>Prominent<br>Particle                                                      |
| 13 Jan 0959<br>time (hr) = 4<br>sigmay = 9544<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>2000<br>***************************** | CUSTOM SCEN<br>deltat (hr)<br>.24 M<br>Cloud Dens<br>mg/M <sup>3</sup> 3<br>41.6<br>35.4<br>26.7<br>21.8<br>18.9<br>17.3<br>CUSTOM SCEN<br>deltat (hr)<br>2.4 M<br>Cloud Dens<br>mg/M <sup>3</sup>                                       | ARIO: Baselin<br>= .166667 %<br>3 sigmay<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | e DELFIC dust,<br>airborne = 57<br>cloud diameter<br>t Cabin Dust<br>Kg<br>.006<br>4.41 E-03<br>.002<br>.001<br>1.19 E-03<br>8.85 E-04<br>DELFIC dust,<br>airborne = 43<br>cloud diameter<br>t Cabin Dust<br>Kg                                                                                               | KC-135, Dust I<br>sigmax = 570:<br>= 57265.5 M<br>Engine Dust<br>Kg<br>.684<br>.440<br>.261<br>.169<br>.118<br>.088<br>KC-135, Dust I<br>sigmax = 570<br>= 98774.5 M<br>Engine Dust<br>Kg                                         | Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r<br>15.9<br>24.9<br>32.0<br>38.8<br>46.6<br>53.7<br>Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r                                         |
| 13 Jan 0959<br>time (hr) = 4<br>sigmay = 9544<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>2000<br>***************************** | CUSTOM SCEN<br>deltat (hr)<br>.24 M<br>Cloud Dens<br>mg/M <sup>A</sup> 3<br>41.6<br>35.4<br>26.7<br>21.8<br>18.9<br>17.3<br>CUSTOM SCEN<br>deltat (hr)<br>2.4 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>17.1                               | ARIO: Baselin<br>= .166667 %<br>3 sigmay<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | e DELFIC dust,<br>airborne = 57<br>cloud diameter<br>t Cabin Dust<br>Kg<br>.006<br>4.41 E-03<br>.002<br>.001<br>1.19 E-03<br>8.85 E-04<br>te DELFIC dust,<br>airborne = 43<br>cloud diameter<br>t Cabin Dust<br>Kg<br>2.82 E-03                                                                               | KC-135, Dust I<br>sigmax = 570:<br>= 57265.5 M<br>Engine Dust<br>Kg<br>.684<br>.440<br>.261<br>.169<br>.118<br>.088<br>KC-135, Dust I<br>sigmax = 570<br>= 98774.5 M<br>Engine Dust<br>Kg<br>.281                                 | Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r<br>15.9<br>24.9<br>32.0<br>38.8<br>46.6<br>53.7<br>Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r<br>11.4                                 |
| 13 Jan 0959<br>time (hr) = 4<br>sigmay = 9544<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>2000<br>***************************** | CUSTOM SCEN<br>deltat (hr)<br>.24 M<br>Cloud Dens<br>mg/M <sup>3</sup> 3<br>41.6<br>35.4<br>26.7<br>21.8<br>18.9<br>17.3<br>CUSTOM SCEN<br>deltat (hr)<br>2.4 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>17.1<br>15.2                       | ARIO: Baselin<br>= .166667 %<br>3 sigmay<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | e DELFIC dust,<br>airborne = 57<br>cloud diameter<br>t Cabin Dust<br>Kg<br>.006<br>4.41 E-03<br>.002<br>.001<br>1.19 E-03<br>8.85 E-04<br>e DELFIC dust,<br>airborne = 43<br>cloud diameter<br>t Cabin Dust<br>Kg<br>2.82 E-03<br>1.89 E-03                                                                   | KC-135, Dust I<br>sigmax = 570:<br>= 57265.5 M<br>Engine Dust<br>Kg<br>.684<br>.440<br>.261<br>.169<br>.118<br>.088<br>KC-135, Dust I<br>sigmax = 570<br>= 98774.5 M<br>Engine Dust<br>Kg<br>.281<br>.139                         | Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r<br>15.9<br>24.9<br>32.0<br>38.8<br>46.6<br>53.7<br>Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r<br>11.4<br>16.8                         |
| 13 Jan 0959<br>time (hr) = 4<br>sigmay = 9544<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>2000<br>***************************** | CUSTOM SCEN<br>deltat (hr)<br>.24 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>41.6<br>35.4<br>26.7<br>21.8<br>18.9<br>17.3<br>CUSTOM SCEN<br>deltat (hr)<br>2.4 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>17.1<br>15.2<br>11.8                 | ARIO: Baselin<br>= .166667 %<br>3 sigmay<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | e DELFIC dust,<br>airborne = 57<br>cloud diameter<br>t Cabin Dust<br>Kg<br>.006<br>4.41 E-03<br>.002<br>.001<br>1.19 E-03<br>8.85 E-04<br>e DELFIC dust,<br>airborne = 43<br>cloud diameter<br>t Cabin Dust<br>Kg<br>2.82 E-03<br>1.89 E-03<br>.001                                                           | KC-135, Dust I<br>sigmax = 570:<br>= 57265.5 M<br>Engine Dust<br>Kg<br>.684<br>.440<br>.261<br>.169<br>.118<br>.088<br>KC-135, Dust I<br>sigmax = 570<br>= 98774.5 M<br>Engine Dust<br>Kg<br>.281<br>.139<br>.115                 | Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r<br>15.9<br>24.9<br>32.0<br>38.8<br>46.6<br>53.7<br>Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r<br>11.4<br>16.8<br>21.7                 |
| 13 Jan 0959<br>time (hr) = 4<br>sigmay = 9544<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>2000<br>***************************** | CUSTOM SCEN<br>deltat (hr)<br>.24 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>41.6<br>35.4<br>26.7<br>21.8<br>18.9<br>17.3<br>CUSTOM SCEN<br>deltat (hr)<br>2.4 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>17.1<br>15.2<br>11.8<br>9.81         | ARIO: Baselin<br>= .166667 %<br>3 sigmay<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | e DELFIC dust,<br>airborne = $57$<br>cloud diameter<br>t Cabin Dust<br>Kg<br>.006<br>4.41 E-03<br>.002<br>.001<br>1.19 E-03<br>8.85 E-04<br>e DELFIC dust,<br>airborne = 43<br>cloud diameter<br>t Cabin Dust<br>Kg<br>2.82 E-03<br>1.89 E-03<br>.001<br>7.64 E-04                                            | KC-135, Dust I<br>sigmax = 570:<br>= 57265.5 M<br>Engine Dust<br>Kg<br>.684<br>.440<br>.261<br>.169<br>.118<br>.088<br>KC-135, Dust I<br>sigmax = 570<br>= 98774.5 M<br>Engine Dust<br>Kg<br>.281<br>.139<br>.115<br>.076         | Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r<br>15.9<br>24.9<br>32.0<br>38.8<br>46.6<br>53.7<br>Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r<br>11.4<br>16.8<br>21.7<br>26.1         |
| <pre>13 Jan 0959 time (hr) = 4 sigmay = 9544 Altitude M 12000 10000 8000 6000 4000 2000 **************************</pre>                          | CUSTOM SCEN<br>deltat (hr)<br>.24 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>41.6<br>35.4<br>26.7<br>21.8<br>18.9<br>17.3<br>CUSTOM SCEN<br>deltat (hr)<br>2.4 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>17.1<br>15.2<br>11.8<br>9.81<br>8.75 | ARIO: Baselin<br>= .166667 %<br>3 sigmay<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | e DELFIC dust,<br>airborne = 57<br>cloud diameter<br>t Cabin Dust<br>Kg<br>.006<br>4.41 E-03<br>.002<br>.001<br>1.19 E-03<br>8.85 E-04<br>t Cabin Dust<br>t Cabin Dust<br>E DELFIC dust,<br>airborne = 43<br>cloud diameter<br>t Cabin Dust<br>Kg<br>2.82 E-03<br>1.89 E-03<br>.001<br>7.64 E-04<br>5.49 E-04 | KC-135, Dust I<br>sigmax = 570:<br>= 57265.5 M<br>Engine Dust<br>Kg<br>.684<br>.440<br>.261<br>.169<br>.118<br>.088<br>KC-135, Dust I<br>sigmax = 570<br>= 98774.5 M<br>Engine Dust<br>Kg<br>.281<br>.139<br>.115<br>.076<br>.054 | Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r<br>15.9<br>24.9<br>32.0<br>38.8<br>46.6<br>53.7<br>Fraction=1/3<br>5.15 M<br>Prominent<br>Particle<br>microns r<br>11.4<br>16.8<br>21.7<br>26.1<br>30.8 |

1

ļ

1

ļ

.

ļ

Í

· · · · ·

• • •

5

، ۲

# TABLE XXIII

# NRDL-N61 Dust Cloud and KC-135

.

ŧ

| ***********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | **********                                                                                                                                                                                                                                            | ***********                                                                                                                                | ***********                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                             | **********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11 Jan 2207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CUSTOM SCENA                                                                                                                                                                                                                                          | RIO: NRDL-N61                                                                                                                              | Dust Cloud.KC-                                                                                                                                                                                                                                                                                         | -135.Dust Fra                                                                                                                                                                                                                               | action=1/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| time $(hr) = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | deltat (hr)                                                                                                                                                                                                                                           | = .0967423 <b>%</b> a                                                                                                                      | irborne = 81                                                                                                                                                                                                                                                                                           | sigmax $\approx 39^{\circ}$                                                                                                                                                                                                                 | 73.99 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| elamuy $\approx 4360$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21 M                                                                                                                                                                                                                                                  | 3 sigmay cl                                                                                                                                | lond diameter :                                                                                                                                                                                                                                                                                        | = 26161 - 3 N                                                                                                                                                                                                                               | Prominent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Altitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Clond Dens                                                                                                                                                                                                                                            | Filtered Dust                                                                                                                              | Cabin Dust                                                                                                                                                                                                                                                                                             | Engine Dust                                                                                                                                                                                                                                 | Particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                       | Villected Dust                                                                                                                             | Re Re                                                                                                                                                                                                                                                                                                  | Engine Dust                                                                                                                                                                                                                                 | microne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 254                                                                                                                                                                                                                                                   | <u>∿</u> ¥                                                                                                                                 | 020                                                                                                                                                                                                                                                                                                    | 2 01                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150                                                                                                                                                                                                                                                   | 0                                                                                                                                          | .029                                                                                                                                                                                                                                                                                                   | 1 26                                                                                                                                                                                                                                        | 50.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130.                                                                                                                                                                                                                                                  | 0                                                                                                                                          | .013                                                                                                                                                                                                                                                                                                   | 1.30<br>(190                                                                                                                                                                                                                                | 76 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ys.a                                                                                                                                                                                                                                                  | 0                                                                                                                                          | 0.39 E-03                                                                                                                                                                                                                                                                                              | .038                                                                                                                                                                                                                                        | 70.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 08.0                                                                                                                                                                                                                                                  | 0                                                                                                                                          | 3.09 E-03                                                                                                                                                                                                                                                                                              | .300                                                                                                                                                                                                                                        | 103.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 55.0                                                                                                                                                                                                                                                  | 0                                                                                                                                          | 2.40 E-03                                                                                                                                                                                                                                                                                              | .239                                                                                                                                                                                                                                        | 129.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40.2                                                                                                                                                                                                                                                  | U                                                                                                                                          | 1.04 E-03                                                                                                                                                                                                                                                                                              | .104                                                                                                                                                                                                                                        | 100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11 T 2207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CUSTON SCEN                                                                                                                                                                                                                                           | DTO NODI NEI                                                                                                                               | Dat Clard FC                                                                                                                                                                                                                                                                                           | -125 Duct Er                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11 Jan 2207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                       |                                                                                                                                            | $\frac{1}{1}$                                                                                                                                                                                                                                                                                          | -133,Dust Fr                                                                                                                                                                                                                                | $\frac{1}{2} \frac{1}{2} \frac{1}$ |
| time (df) = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                       | 030/423 702                                                                                                                                | lirborne = /1                                                                                                                                                                                                                                                                                          | - 36020 M                                                                                                                                                                                                                                   | Naninant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| sigmay = 0155.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       | 5 Sigmay C                                                                                                                                 |                                                                                                                                                                                                                                                                                                        | = 30920 M                                                                                                                                                                                                                                   | Prominent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Altitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cloud Dens                                                                                                                                                                                                                                            | Filtered Dust                                                                                                                              | Labin Dust                                                                                                                                                                                                                                                                                             | Engine Dust                                                                                                                                                                                                                                 | Particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <u>Б</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ≥g/M 3                                                                                                                                                                                                                                                | Δg                                                                                                                                         | A g                                                                                                                                                                                                                                                                                                    | Lg                                                                                                                                                                                                                                          | microns r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 122.                                                                                                                                                                                                                                                  | 0                                                                                                                                          | .017                                                                                                                                                                                                                                                                                                   | 1.73                                                                                                                                                                                                                                        | 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77.3                                                                                                                                                                                                                                                  | 0                                                                                                                                          | 8.25 E-03                                                                                                                                                                                                                                                                                              | .823                                                                                                                                                                                                                                        | 35.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.3                                                                                                                                                                                                                                                  | 0                                                                                                                                          | 3.88 E-03                                                                                                                                                                                                                                                                                              | .387                                                                                                                                                                                                                                        | 48.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34.8                                                                                                                                                                                                                                                  | 0                                                                                                                                          | .002                                                                                                                                                                                                                                                                                                   | .232                                                                                                                                                                                                                                        | 62.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29.9                                                                                                                                                                                                                                                  | 0                                                                                                                                          | 1.60 E-03                                                                                                                                                                                                                                                                                              | .160                                                                                                                                                                                                                                        | 76.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26.1                                                                                                                                                                                                                                                  | 0                                                                                                                                          | 1.14 E-03                                                                                                                                                                                                                                                                                              | .114                                                                                                                                                                                                                                        | 88.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26.1<br>***********                                                                                                                                                                                                                                   | 0<br>•••••••                                                                                                                               | 1.14 E-03                                                                                                                                                                                                                                                                                              | .114<br>**********                                                                                                                                                                                                                          | 85.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2000<br>••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.1<br>CUSTOM SCEN/                                                                                                                                                                                                                                  | 0<br>RIO: NRDL-N61                                                                                                                         | 1.14 E-03<br>Dust Cloud, KC                                                                                                                                                                                                                                                                            | .114<br>••••••••••<br>-135,Dust Fr                                                                                                                                                                                                          | 85.7<br>***********<br>action=1/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2000<br>11 Jan 2207<br>time (hr) = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26,1<br>CUSTOM SCEN/<br>deltat (hr)                                                                                                                                                                                                                   | 0<br>RIO: NRDL-N61<br>= .181818 %a:                                                                                                        | 1.14 E-03<br>Dust Cloud,KC<br>irborne = 60                                                                                                                                                                                                                                                             | .114<br>•••••••••••<br>-135,Dust Fr<br>sigmax = 566                                                                                                                                                                                         | 85.7<br>action=1/3<br>1.43 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2000<br>11 Jan 2207<br>time (hr) = 4<br>sigmay = 9493.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.1<br>CUSTOM SCEN/<br>deltat (hr)<br>12 M                                                                                                                                                                                                           | 0<br>IRIO: NRDL-N61<br>= .181818 %a:<br>3 sigmay c                                                                                         | 1.14 E-03<br>Dust Cloud, KC<br>irborne = 60<br>loud diameter                                                                                                                                                                                                                                           | .114<br>-135,Dust Fr<br>sigmax = 566<br>= 56958.7 M                                                                                                                                                                                         | 88.7<br>action=1/3<br>1.43 M<br>Prominent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2000<br>11 Jan 2207<br>time (hr) = 4<br>sigmay = 9493.<br>Altitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26.1<br>CUSTOM SCEN/<br>deltat (hr)<br>12 M<br>Cloud Dens                                                                                                                                                                                             | 0<br>RIO: NRDL-N61<br>= .181818 %a:<br>3 sigmay c<br>Filtered Dust                                                                         | 1.14 E-03<br>Dust Cloud, KC<br>irborne = 60<br>loud diameter<br>Cabin Dust                                                                                                                                                                                                                             | .114<br>-135,Dust Fr<br>sigmax = 566<br>= 56958.7 M<br>Engine Dust                                                                                                                                                                          | 88.7<br>action=1/3<br>1.43 M<br>Prominent<br>Particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2000<br>11 Jan 2207<br>time (hr) = 4<br>sigmay = 9493.<br>Altitude<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.1<br>CUSTOM SCEN/<br>deltat (hr)<br>12 M<br>Cloud Dens<br>mg/M <sup>3</sup> 3                                                                                                                                                                      | 0<br>IRIO: NRDL-N61<br>= .181818 %a:<br>3 sigmay c<br>Filtered Dust<br>Kg                                                                  | 1.14 E-03<br>Dust Cloud, KC<br>irborne = 60<br>loud diameter<br>Cabin Dust<br>Kg                                                                                                                                                                                                                       | .114<br>-135,Dust Fr<br>sigmax = 566<br>= 56958.7 M<br>Engine Dust<br>Kg                                                                                                                                                                    | 88.7<br>action=1/3<br>1.43 M<br>Prominent<br>Particle<br>microns r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2000<br>11 Jan 2207<br>time (hr) = 4<br>sigmay = 9493.<br>Altitude<br>M<br>12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26.1<br>CUSTOM SCEN/<br>deltat (hr)<br>12 M<br>Cloud Dens<br>mg/M <sup>3</sup> 3<br>57.3                                                                                                                                                              | 0<br>ARIO: NRDL-N61<br>= .181818 %a:<br>3 sigmay c<br>Filtered Dust<br>Kg<br>0                                                             | 1.14 E-03<br>Dust Cloud, KC<br>irborne = 60<br>loud diameter<br>Cabin Dust<br>Kg<br>9.39 E-03                                                                                                                                                                                                          | .114<br>-135,Dust Fr<br>sigmax = 566<br>= 56958.7 M<br>Engine Dust<br>Kg<br>.9371                                                                                                                                                           | 85.7<br>action=1/3<br>1.43 M<br>Prominent<br>Particle<br>microns r<br>16.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2000<br>11 Jan 2207<br>time (hr) = 4<br>sigmay = 9493.<br>Altitude<br>M<br>12000<br>10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.1<br>CUSTOM SCEN/<br>deltat (hr)<br>12 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>57.3<br>36.7                                                                                                                                                        | 0<br>RIO: NRDL-N61<br>= .181818 %a:<br>3 sigmay c<br>Filtered Dust<br>Kg<br>0<br>0                                                         | 1.14 $E-03$<br>Dust Cloud, KC<br>irborne = 60<br>loud diameter<br>Cabin Dust<br>Kg<br>9.39 $E-03$<br>4.53 $E-03$                                                                                                                                                                                       | .114<br>-135,Dust Fr<br>sigmax = 566<br>= 56958.7 M<br>Engine Dust<br>Kg<br>.9371<br>.4526                                                                                                                                                  | 85.7<br>action=1/3<br>1.43 M<br>Prominent<br>Particle<br>microns r<br>16.1<br>25.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2000<br>11 Jan 2207<br>time (hr) = 4<br>sigmay = 9493.<br>Altitude<br>M<br>12000<br>10000<br>8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.1<br>CUSTOM SCEN/<br>deltat (hr)<br>12 M<br>Cloud Dens<br>mg/M <sup>3</sup> 3<br>57.3<br>36.7<br>22.3                                                                                                                                              | 0<br>RIO: NRDL-N61<br>= .181818 %a:<br>3 sigmay c<br>Filtered Dust<br>Kg<br>0<br>0<br>0                                                    | 1.14 E-03<br>Dust Cloud, KC<br>irborne = 60<br>loud diameter<br>Cabin Dust<br>Kg<br>9.39 E-03<br>4.53 E-03<br>2.17 E-03                                                                                                                                                                                | .114<br>-135,Dust Fr<br>sigmax = 566<br>= 56958.7 M<br>Engine Dust<br>Kg<br>.9371<br>.4526<br>.2167                                                                                                                                         | 88.7<br>action=1/3<br>1.43 M<br>Prominent<br>Particle<br>microns r<br>16.1<br>25.1<br>32.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2000<br>11 Jan 2207<br>time (hr) = 4<br>sigmay = 9493.<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.1<br>CUSTOM SCEN/<br>deltat (hr)<br>12 M<br>Cloud Dens<br>mg/M <sup>3</sup> 3<br>57.3<br>36.7<br>22.3<br>16.6                                                                                                                                      | 0<br>RIO: NRDL-N61<br>= .181818 %a:<br>3 sigmay c<br>Filtered Dust<br>Kg<br>0<br>0<br>0<br>0<br>0                                          | 1.14 E-03<br>Dust Cloud, KC<br>irborne = 60<br>loud diameter<br>Cabin Dust<br>Kg<br>9.39 E-03<br>4.53 E-03<br>2.17 E-03<br>1.28 E-03                                                                                                                                                                   | .114<br>-135, Dust Fr<br>sigmax = 566<br>= 56958.7 M<br>Engine Dust<br>Kg<br>.9371<br>.4526<br>.2167<br>.1285                                                                                                                               | 88.7<br>action=1/3<br>1.43 M<br>Prominent<br>Particle<br>microns r<br>16.1<br>25.1<br>32.5<br>39.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2000<br>11 Jan 2207<br>time (hr) = 4<br>sigmay = 9493.<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.1<br>CUSTOM SCEN/<br>deltat (hr)<br>12 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>57.3<br>36.7<br>22.3<br>16.6<br>13.9                                                                                                                                | 0<br>RIO: NRDL-N61<br>= .181818 %a:<br>3 sigmay c<br>Filtered Dust<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                | 1.14 E-03<br>Dust Cloud, KC<br>irborne = 60<br>loud diameter<br>Cabin Dust<br>Kg<br>9.39 E-03<br>4.53 E-03<br>2.17 E-03<br>1.28 E-03<br>8.67 E-04                                                                                                                                                      | .114<br>-135, Dust Fr<br>sigmax = 566<br>= 56958.7 M<br>Engine Dust<br>Kg<br>.9371<br>.4526<br>.2167<br>.1285<br>.0865                                                                                                                      | 88.7<br>action=1/3<br>1.43 M<br>Prominent<br>Particle<br>microns r<br>16.1<br>25.1<br>32.5<br>39.7<br>46.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2000<br>11 Jan 2207<br>time (hr) = 4<br>sigmay = 9493.<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.1<br>CUSTOM SCEN/<br>deltat (hr)<br>12 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>57.3<br>36.7<br>22.3<br>16.6<br>13.9<br>12.4                                                                                                                        | 0<br>RIO: NRDL-N61<br>= .181818 %a:<br>3 sigmay c<br>Filtered Dust<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                      | 1.14 E-03<br>Dust Cloud, KC<br>irborne = 60<br>loud diameter<br>Cabin Dust<br>Kg<br>9.39 E-03<br>4.53 E-03<br>2.17 E-03<br>1.28 E-03<br>8.67 E-04<br>6.29 E-04                                                                                                                                         | .114<br>-135, Dust Fr<br>sigmax = 566<br>= 56958.7 M<br>Engine Dust<br>Kg<br>.9371<br>.4526<br>.2167<br>.1285<br>.0865<br>.0628                                                                                                             | 88.7<br>action=1/3<br>1.43 M<br>Prominent<br>Particle<br>microns r<br>16.1<br>25.1<br>32.5<br>39.7<br>46.1<br>53.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2000<br>11 Jan 2207<br>time (hr) = 4<br>sigmay = 9493.<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.1<br>CUSTOM SCEN/<br>deltat (hr)<br>12 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>57.3<br>36.7<br>22.3<br>16.6<br>13.9<br>12.4                                                                                                                        | 0<br>iRIO: NRDL-N61<br>= .181818 %a:<br>3 sigmay c<br>Filtered Dust<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 1.14 E-03<br>Dust Cloud, KC<br>irborne = 60<br>loud diameter<br>Cabin Dust<br>Kg<br>9.39 E-03<br>4.53 E-03<br>2.17 E-03<br>1.28 E-03<br>8.67 E-04<br>6.29 E-04                                                                                                                                         | .114<br>-135,Dust Fr<br>sigmax = 566<br>= 56958.7 M<br>Engine Dust<br>Kg<br>.9371<br>.4526<br>.2167<br>.1285<br>.0865<br>.0628                                                                                                              | 88.7<br>action=1/3<br>1.43 M<br>Prominent<br>Particle<br>microns r<br>16.1<br>25.1<br>32.5<br>39.7<br>46.1<br>53.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2000<br>11 Jan 2207<br>time (hr) = 4<br>sigmay = 9493.<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>2000<br>11 Jan 2207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.1<br>CUSTOM SCEN/<br>deltat (hr)<br>12 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>57.3<br>36.7<br>22.3<br>16.6<br>13.9<br>12.4<br>CUSTOM SCEN/                                                                                                        | 0<br>RIO: NRDL-N61<br>= .181818 %a:<br>3 sigmay c<br>Filtered Dust<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  | 1.14 E-03<br>Dust Cloud, KC<br>irborne = 60<br>loud diameter<br>Cabin Dust<br>Kg<br>9.39 E-03<br>4.53 E-03<br>2.17 E-03<br>1.28 E-03<br>8.67 E-04<br>6.29 E-04<br>Dust Cloud, KC                                                                                                                       | .114<br>-135, Dust Fr<br>sigmax = 566<br>= 56958.7 M<br>Engine Dust<br>Kg<br>.9371<br>.4526<br>.2167<br>.1285<br>.0865<br>.0628<br>-135, Dust Fr                                                                                            | 88.7<br>action=1/3<br>1.43 M<br>Prominent<br>Particle<br>microns r<br>16.1<br>25.1<br>32.5<br>39.7<br>46.1<br>53.6<br>action=1/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2000<br>11 Jan 2207<br>time (hr) = 4<br>sigmay = 9493.<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>2000<br>11 Jan 2207<br>time (hr) = 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.1<br>CUSTOM SCEN/<br>deltat (hr)<br>12 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>57.3<br>36.7<br>22.3<br>16.6<br>13.9<br>12.4<br>CUSTOM SCEN/<br>deltat (hr)                                                                                         | 0<br>ARIO: NRDL-N61<br>= .181818 %a:<br>3 sigmay c<br>Filtered Dust<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 1.14 E-03<br>Dust Cloud, KC<br>irborne = 60<br>loud diameter<br>Cabin Dust<br>Kg<br>9.39 E-03<br>4.53 E-03<br>2.17 E-03<br>1.28 E-03<br>8.67 E-04<br>6.29 E-04<br>Dust Cloud, KC<br>irborne = 50                                                                                                       | .114<br>-135, Dust Fr<br>sigmax = 566<br>= 56958.7 M<br>Engine Dust<br>Kg<br>.9371<br>.4526<br>.2167<br>.1285<br>.0865<br>.0628<br>-135, Dust Fr<br>sigmax = 566                                                                            | 88.7<br>action=1/3<br>1.43 M<br>Prominent<br>Particle<br>microns r<br>16.1<br>25.1<br>32.5<br>39.7<br>46.1<br>53.6<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2000<br>11 Jan 2207<br>time (hr) = 4<br>sigmay = 9493.<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>2000<br>*****************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.1<br>CUSTOM SCEN/<br>deltat (hr)<br>12 M<br>Cloud Dens<br>mg/M <sup>3</sup> 3<br>57.3<br>36.7<br>22.3<br>16.6<br>13.9<br>12.4<br>CUSTOM SCEN/<br>deltat (hr)<br>2.3 M                                                                              | 0<br>RIO: NRDL-N61<br>= .181818 %a:<br>3 sigmay c<br>Filtered Dust<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  | 1.14 $E-03$<br>Dust Cloud, KC<br>irborne = 60<br>loud diameter<br>Cabin Dust<br>Kg<br>9.39 $E-03$<br>4.53 $E-03$<br>2.17 $E-03$<br>1.28 $E-03$<br>8.67 $E-04$<br>6.29 $E-04$<br>Dust Cloud, KC<br>irborne = 50<br>loud diameter                                                                        | .114<br>-135, Dust Fr<br>sigmax = 566<br>= 56958.7 M<br>Engine Dust<br>Kg<br>.9371<br>.4526<br>.2167<br>.1285<br>.0865<br>.0628<br>-135, Dust Fr<br>sigmax = 566<br>= 98474 M                                                               | 88.7<br>action=1/3<br>1.43 M<br>Prominent<br>Particle<br>microns r<br>16.1<br>25.1<br>32.5<br>39.7<br>46.1<br>53.6<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2000<br>11 Jan 2207<br>time (hr) = 4<br>sigmay = 9493.<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>2000<br>*****************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.1<br>CUSTOM SCEN/<br>deltat (hr)<br>12 M<br>Cloud Dens<br>mg/M <sup>3</sup> 3<br>57.3<br>36.7<br>22.3<br>16.6<br>13.9<br>12.4<br>CUSTOM SCEN/<br>deltat (hr)<br>2.3 M<br>Cloud Dens                                                                | 0<br>RIO: NRDL-N61<br>= .181818 %a:<br>3 sigmay c<br>Filtered Dust<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  | 1.14 $E-03$<br>Dust Cloud, KC<br>irborne = 60<br>loud diameter<br>Cabin Dust<br>Kg<br>9.39 $E-03$<br>4.53 $E-03$<br>2.17 $E-03$<br>1.28 $E-03$<br>8.67 $E-04$<br>6.29 $E-04$<br>Dust Cloud, KC<br>irborne = 50<br>loud diameter<br>Cabin Dust                                                          | .114<br>-135, Dust Fr<br>sigmax = 566<br>= 56958.7 M<br>Engine Dust<br>Kg<br>.9371<br>.4526<br>.2167<br>.1285<br>.0865<br>.0628<br>-135, Dust Fr<br>sigmax = 566<br>= 98474 M<br>Engine Dust                                                | 88.7<br>action=1/3<br>1.43 M<br>Prominent<br>Particle<br>microns r<br>16.1<br>25.1<br>32.5<br>39.7<br>46.1<br>53.6<br>action=1/3<br>1.4. M<br>Prominent<br>Particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2000<br>11 Jan 2207<br>time (hr) = 4<br>sigmay = 9493.<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>2000<br>11 Jan 2207<br>time (hr) = 8<br>sigmay = 16412<br>Altitude<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.1<br>CUSTOM SCEN/<br>deltat (hr)<br>12 M<br>Cloud Dens<br>mg/M <sup>3</sup> 3<br>57.3<br>36.7<br>22.3<br>16.6<br>13.9<br>12.4<br>CUSTOM SCEN/<br>deltat (hr)<br>2.3 M<br>Cloud Dens<br>mg/M <sup>3</sup> 3                                         | 0<br>RIO: NRDL-N61<br>= .181818 %a:<br>3 sigmay c<br>Filtered Dust<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  | 1.14 $E-03$<br>Dust Cloud, KC<br>irborne = 60<br>loud diameter<br>Cabin Dust<br>Kg<br>9.39 $E-03$<br>4.53 $E-03$<br>2.17 $E-03$<br>1.28 $E-03$<br>8.67 $E-04$<br>6.29 $E-04$<br>Dust Cloud, KC<br>irborne = 50<br>loud diameter<br>Cabin Dust<br>Kg                                                    | .114<br>-135, Dust Fr<br>sigmax = 566<br>= 56958.7 M<br>Engine Dust<br>Kg<br>.9371<br>.4526<br>.2167<br>.1285<br>.0865<br>.0628<br>-135, Dust Fr<br>sigmax = 566<br>= 98474 M<br>Engine Dust<br>Kg                                          | 88.7<br>action=1/3<br>1.43 M<br>Prominent<br>Particle<br>microns r<br>16.1<br>25.1<br>32.5<br>39.7<br>46.1<br>53.6<br>action=1/3<br>1.4. M<br>Prominent<br>Particle<br>microns r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2000<br>11 Jan 2207<br>time (hr) = 4<br>sigmay = 9493.<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>2000<br>11 Jan 2207<br>time (hr) = 8<br>sigmay = 16412<br>Altitude<br>M<br>12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.1<br>CUSTOM SCEN/<br>deltat (hr)<br>12 M<br>Cloud Dens<br>mg/M <sup>3</sup> 3<br>57.3<br>36.7<br>22.3<br>16.6<br>13.9<br>12.4<br>CUSTOM SCEN/<br>deltat (hr)<br>2.3 M<br>Cloud Dens<br>mg/M <sup>3</sup> 3<br>27.5                                 | 0<br>RIO: NRDL-N61<br>= .181818 %a:<br>3 sigmay c<br>Filtered Dust<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  | 1.14 $E-03$<br>Dust Cloud, KC<br>irborne = 60<br>loud diameter<br>Cabin Dust<br>Kg<br>9.39 $E-03$<br>4.53 $E-03$<br>2.17 $E-03$<br>1.28 $E-03$<br>8.67 $E-04$<br>6.29 $E-04$<br>Dust Cloud, KC<br>irborne = 50<br>loud diameter<br>Cabin Dust<br>Kg<br>4.49 $E-03$                                     | .114<br>-135, Dust Fr<br>sigmax = 566<br>= 56958.7 M<br>Engine Dust<br>Kg<br>.9371<br>.4526<br>.2167<br>.1285<br>.0865<br>.0628<br>-135, Dust Fr<br>sigmax = 566<br>= 98474 M<br>Engine Dust<br>Kg<br>.448                                  | 88.7<br>action=1/3<br>1.43 M<br>Prominent<br>Particle<br>microns r<br>16.1<br>25.1<br>32.5<br>39.7<br>46.1<br>53.6<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2000<br>11 Jan 2207<br>time (hr) = 4<br>sigmay = 9493.<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>2000<br>11 Jan 2207<br>time (hr) = 8<br>sigmay = 16412<br>Altitude<br>M<br>12000<br>10000<br>10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.1<br>CUSTOM SCEN/<br>deltat (hr)<br>12 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>57.3<br>36.7<br>22.3<br>16.6<br>13.9<br>12.4<br>CUSTOM SCEN/<br>deltat (hr)<br>2.3 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>27.5<br>18.0                             | 0<br>RIO: NRDL-N61<br>= .181818 %a:<br>3 sigmay c<br>Filtered Dust<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  | 1.14 E-03<br>Dust Cloud, KC<br>irborne = 60<br>loud diameter<br>Cabin Dust<br>Kg<br>9.39 E-03<br>4.53 E-03<br>2.17 E-03<br>1.28 E-03<br>8.67 E-04<br>6.29 E-04<br>Dust Cloud, KC<br>irborne = 50<br>loud diameter<br>Cabin Dust<br>Kg<br>4.49 E-03<br>2.23 E-03                                        | .114<br>-135, Dust Fr<br>sigmax = 566<br>= 56958.7 M<br>Engine Dust<br>Kg<br>.9371<br>.4526<br>.2167<br>.1285<br>.0865<br>.0628<br>-135, Dust Fr<br>sigmax = 566<br>= 98474 M<br>Engine Dust<br>Kg<br>.448<br>.222                          | 88.7<br>action=1/3<br>1.43 M<br>Prominent<br>Particle<br>microns r<br>16.1<br>25.1<br>32.5<br>39.7<br>46.1<br>53.6<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2000<br>11 Jan 2207<br>time (hr) = 4<br>sigmay = 9493.<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>2000<br>11 Jan 2207<br>time (hr) = 8<br>sigmay = 16412<br>Altitude<br>M<br>12000<br>10000<br>8000<br>8000<br>12000<br>10000<br>8000<br>12000<br>12000<br>10000<br>8000<br>12000<br>12000<br>12000<br>10000<br>8000<br>10000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>800      | 26.1<br>CUSTOM SCEN/<br>deltat (hr)<br>12 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>57.3<br>36.7<br>22.3<br>16.6<br>13.9<br>12.4<br>CUSTOM SCEN/<br>deltat (hr)<br>2.3 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>27.5<br>18.0<br>11.1                     | 0<br>RIO: NRDL-N61<br>= .181818 %a:<br>3 sigmay c<br>Filtered Dust<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  | 1.14 E-03<br>Dust Cloud, KC<br>irborne = 60<br>loud diameter<br>Cabin Dust<br>Kg<br>9.39 E-03<br>4.53 E-03<br>2.17 E-03<br>1.28 E-03<br>8.67 E-04<br>6.29 E-04<br>Dust Cloud, KC<br>irborne = 50<br>loud diameter<br>Cabin Dust<br>Kg<br>4.49 E-03<br>2.23 E-03<br>1.08 E-03                           | .114<br>-135, Dust Fr<br>sigmax = 566<br>= 56958.7 M<br>Engine Dust<br>Kg<br>.9371<br>.4526<br>.2167<br>.1285<br>.0865<br>.0628<br>-135, Dust Fr<br>sigmax = 566<br>= 98474 M<br>Engine Dust<br>Kg<br>.448<br>.222<br>.107                  | 88.7<br>action=1/3<br>1.43 M<br>Prominent<br>Particle<br>microns r<br>16.1<br>25.1<br>32.5<br>39.7<br>46.1<br>53.6<br>action=1/3<br>1.4. M<br>Prominent<br>Particle<br>microns r<br>11.1<br>17.1<br>22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2000<br>11 Jan 2207<br>time (hr) = 4<br>sigmay = 9493.<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>2000<br>11 Jan 2207<br>time (hr) = 8<br>sigmay = 16412<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>6000<br>8000<br>6000<br>8000<br>6000<br>8000<br>6000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>80 | 26.1<br>CUSTOM SCEN/<br>deltat (hr)<br>12 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>57.3<br>36.7<br>22.3<br>16.6<br>13.9<br>12.4<br>CUSTOM SCEN/<br>deltat (hr)<br>2.3 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>27.5<br>18.0<br>11.1<br>8.29             | 0<br>RIO: NRDL-N61<br>= .181818 %a:<br>3 sigmay c<br>Filtered Dust<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  | 1.14 E-03<br>Dust Cloud, KC<br>irborne = 60<br>loud diameter<br>Cabin Dust<br>Kg<br>9.39 E-03<br>4.53 E-03<br>2.17 E-03<br>1.28 E-03<br>8.67 E-04<br>6.29 E-04<br>Dust Cloud, KC<br>irborne = 50<br>loud diameter<br>Cabin Dust<br>Kg<br>4.49 E-03<br>2.23 E-03<br>1.08 E-03<br>6.41 E-04              | .114<br>-135, Dust Fr<br>sigmax = 566<br>= 56958.7 M<br>Engine Dust<br>Kg<br>.9371<br>.4526<br>.2167<br>.1285<br>.0865<br>.0628<br>-135, Dust Fr<br>sigmax = 566<br>= 98474 M<br>Engine Dust<br>Kg<br>.448<br>.222<br>.107<br>.0639         | 88.7<br>action=1/3<br>1.43 M<br>Prominent<br>Particle<br>microns r<br>16.1<br>25.1<br>32.5<br>39.7<br>46.1<br>53.6<br>action=1/3<br>1.4. M<br>Prominent<br>Particle<br>microns r<br>11.1<br>17.1<br>22.5<br>26.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2000<br>11 Jan 2207<br>time (hr) = 4<br>sigmay = 9493.<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>2000<br>11 Jan 2207<br>time (hr) = 8<br>sigmay = 16412<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>2000<br>10000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>4000<br>8000<br>6000<br>8000<br>6000<br>8000<br>6000<br>8000<br>6000<br>8000<br>6000<br>8000<br>6000<br>8000<br>6000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8 | 26.1<br>CUSTOM SCEN/<br>deltat (hr)<br>12 M<br>Cloud Dens<br>mg/M <sup>3</sup> 3<br>57.3<br>36.7<br>22.3<br>16.6<br>13.9<br>12.4<br>CUSTOM SCEN/<br>deltat (hr)<br>2.3 M<br>Cloud Dens<br>mg/M <sup>3</sup> 3<br>27.5<br>18.0<br>11.1<br>8.29<br>7.02 | 0<br>RIO: NRDL-N61<br>= .181818 %a:<br>3 sigmay c<br>Filtered Dust<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  | 1.14 E-03<br>Dust Cloud, KC<br>irborne = 60<br>loud diameter<br>Cabin Dust<br>Kg<br>9.39 E-03<br>4.53 E-03<br>2.17 E-03<br>1.28 E-03<br>8.67 E-04<br>6.29 E-04<br>Dust Cloud, KC<br>irborne = 50<br>loud diameter<br>Cabin Dust<br>Kg<br>4.49 E-03<br>2.23 E-03<br>1.08 E-03<br>6.41 E-04<br>4.37 E-04 | .114<br>-135, Dust Fr<br>sigmax = 566<br>= 56958.7 M<br>Engine Dust<br>Kg<br>.9371<br>.4526<br>.2167<br>.1285<br>.0865<br>.0628<br>-135, Dust Fr<br>sigmax = 566<br>= 98474 M<br>Engine Dust<br>Kg<br>.448<br>.222<br>.107<br>.0639<br>0436 | 88.7<br>action=1/3<br>1.43 M<br>Prominent<br>Particle<br>microns r<br>16.1<br>25.1<br>32.5<br>39.7<br>46.1<br>53.6<br>action=1/3<br>1.4. M<br>Prominent<br>Particle<br>microns r<br>11.1<br>17.1<br>22.5<br>26.4<br>30.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

#### TABLE XXIV

)

Ł

TOR-C Dust Cloud and KC-135

| **********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ***********                                                                                                                                                                                                                               | ***********                                                                                                                                               |                                                                                                                                                                                                                                                                                               | ***********                                                                                                                                                                                                                        | **********                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 JAN 0107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CUSTOM SCEN                                                                                                                                                                                                                               | ARIO: TOR-C Dr                                                                                                                                            | ust Cloud, KC-13                                                                                                                                                                                                                                                                              | 5.Dust Fract                                                                                                                                                                                                                       | ion = 1/3                                                                                                                                                                                    |
| time $(hr) = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | deltat (hr)                                                                                                                                                                                                                               | = .386969 %                                                                                                                                               | airborne = 100                                                                                                                                                                                                                                                                                | sigmax = 39                                                                                                                                                                                                                        | 98.88 M                                                                                                                                                                                      |
| sigmay = $4396$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.15 M                                                                                                                                                                                                                                    | 3 sigmay o                                                                                                                                                | cloud diameter                                                                                                                                                                                                                                                                                | = 26376 9 M                                                                                                                                                                                                                        | Prominent                                                                                                                                                                                    |
| .ltitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cloud Dens                                                                                                                                                                                                                                | Filtered Dust                                                                                                                                             | t Cabin Dust                                                                                                                                                                                                                                                                                  | Engine Dust                                                                                                                                                                                                                        | Particle                                                                                                                                                                                     |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r ′M^3                                                                                                                                                                                                                                    | Kg                                                                                                                                                        | Kg                                                                                                                                                                                                                                                                                            | Kg                                                                                                                                                                                                                                 | microns r                                                                                                                                                                                    |
| 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 186                                                                                                                                                                                                                                       | 0                                                                                                                                                         | .021                                                                                                                                                                                                                                                                                          | 2.15                                                                                                                                                                                                                               | 30.4                                                                                                                                                                                         |
| 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 369.                                                                                                                                                                                                                                      | 0                                                                                                                                                         | .032                                                                                                                                                                                                                                                                                          | 3.21                                                                                                                                                                                                                               | 54.3                                                                                                                                                                                         |
| 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 386.                                                                                                                                                                                                                                      | 0                                                                                                                                                         | .026                                                                                                                                                                                                                                                                                          | 2.64                                                                                                                                                                                                                               | 75.9                                                                                                                                                                                         |
| 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 236.                                                                                                                                                                                                                                      | 0                                                                                                                                                         | .012                                                                                                                                                                                                                                                                                          | 1.28                                                                                                                                                                                                                               | 98.7                                                                                                                                                                                         |
| 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 94.1                                                                                                                                                                                                                                      | 0                                                                                                                                                         | 4.14 E-03                                                                                                                                                                                                                                                                                     | .413                                                                                                                                                                                                                               | 122.                                                                                                                                                                                         |
| 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.2                                                                                                                                                                                                                                      | Ō                                                                                                                                                         | 9.76 E-04                                                                                                                                                                                                                                                                                     | .0974                                                                                                                                                                                                                              | 148.                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | **********                                                                                                                                                                                                                                | **********                                                                                                                                                | **********                                                                                                                                                                                                                                                                                    | ********                                                                                                                                                                                                                           | **********                                                                                                                                                                                   |
| 12 JAN 0107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CUSTOM SCEN                                                                                                                                                                                                                               | ARIO: TOR-C D                                                                                                                                             | nst Cloud, KC-13                                                                                                                                                                                                                                                                              | 5, Dust Fract                                                                                                                                                                                                                      | ion = 1/3                                                                                                                                                                                    |
| time $(hr) = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 deliat (hr)                                                                                                                                                                                                                             | = .386969 %                                                                                                                                               | aitborne = 100                                                                                                                                                                                                                                                                                | sigmax = 49                                                                                                                                                                                                                        | 31.45 M                                                                                                                                                                                      |
| sigmay = 6178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.95 M                                                                                                                                                                                                                                    | 3 sigmay o                                                                                                                                                | cloud diameter                                                                                                                                                                                                                                                                                | = 37073.7 M                                                                                                                                                                                                                        | Prominent                                                                                                                                                                                    |
| Altitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cloud Dens                                                                                                                                                                                                                                | Filtered Dust                                                                                                                                             | t Cabin Dust                                                                                                                                                                                                                                                                                  | Engine Dust                                                                                                                                                                                                                        | Particle                                                                                                                                                                                     |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/M <sup>3</sup>                                                                                                                                                                                                                         | Kg                                                                                                                                                        | Κg                                                                                                                                                                                                                                                                                            | Kg                                                                                                                                                                                                                                 | microns r                                                                                                                                                                                    |
| 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25.8                                                                                                                                                                                                                                      | 0                                                                                                                                                         | 3.68 E-03                                                                                                                                                                                                                                                                                     | .367                                                                                                                                                                                                                               | 30.4                                                                                                                                                                                         |
| 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80.9                                                                                                                                                                                                                                      | 0                                                                                                                                                         | 8.71 E-03                                                                                                                                                                                                                                                                                     | .869                                                                                                                                                                                                                               | 38.4                                                                                                                                                                                         |
| 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 148.                                                                                                                                                                                                                                      | 0                                                                                                                                                         | .012                                                                                                                                                                                                                                                                                          | 1.25                                                                                                                                                                                                                               | 51.5                                                                                                                                                                                         |
| 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 179.                                                                                                                                                                                                                                      | 0                                                                                                                                                         | .012                                                                                                                                                                                                                                                                                          | 1.20                                                                                                                                                                                                                               | 64.3                                                                                                                                                                                         |
| 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 154.                                                                                                                                                                                                                                      | 0                                                                                                                                                         | 8.38 E-03                                                                                                                                                                                                                                                                                     | .836                                                                                                                                                                                                                               | 79.3                                                                                                                                                                                         |
| 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100.                                                                                                                                                                                                                                      | 0                                                                                                                                                         | 4.42 E-03                                                                                                                                                                                                                                                                                     | . 442                                                                                                                                                                                                                              | 94.3                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                           |                                                                                                                                                           |                                                                                                                                                                                                                                                                                               | • • • •                                                                                                                                                                                                                            |                                                                                                                                                                                              |
| **********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | **********                                                                                                                                                                                                                                | **********                                                                                                                                                | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                       | *********                                                                                                                                                                                                                          | *********                                                                                                                                                                                    |
| 12 JAN 0107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CUSTOM SCEN                                                                                                                                                                                                                               | JARIO: TOR-C D                                                                                                                                            | ust Cloud, KC-13                                                                                                                                                                                                                                                                              | 5,Dust Fract                                                                                                                                                                                                                       | ion = 1/3                                                                                                                                                                                    |
| 12 JAN 0107<br>time (hr) = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CUSTOM SCEN<br>4 deltat (hr)                                                                                                                                                                                                              | UARIO: TOR-C D<br>= .386969 %                                                                                                                             | ust Cloud, KC-13<br>airborne = 80                                                                                                                                                                                                                                                             | 35,Dust Fract<br>sigmax = 571                                                                                                                                                                                                      | ion = 1/3<br>3.77 M                                                                                                                                                                          |
| 12 JAN 0107<br>time (hr) = 4<br>sigmay = 9522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CUSTOM SCEN<br>doltat (hr)<br>L.07 M                                                                                                                                                                                                      | UARIO: TOR-C D<br>= .386969 %<br>3 sigmay (                                                                                                               | ust Cloud, KC-13<br>airborne = 80<br>cloud diameter                                                                                                                                                                                                                                           | 35,Dust Fract<br>sigmax = 571<br>= 57126.4 M                                                                                                                                                                                       | ion = 1/3<br>3.77 M<br>Prominent                                                                                                                                                             |
| 12 JAN 0107<br>time (hr) = 4<br>sigmay = 9523<br>Altitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CUSTOM SCEN<br>deltat (hr)<br>L.07 M<br>Cloud Dens                                                                                                                                                                                        | ARIO: TOR-C D<br>= .386969 %<br>3 sigmay o<br>Filtered Dus                                                                                                | ust Cloud, KC-13<br>airborne = 80<br>cloud diameter<br>t Cabin Dust                                                                                                                                                                                                                           | 5,Dust Fract<br>sigmax = 571<br>= 57126.4 M<br>Engine Dust                                                                                                                                                                         | ion = 1/3<br>3.77 M<br>Prominent<br>Particle                                                                                                                                                 |
| 12 JAN 0107<br>time (hr) = 4<br>sigmay = 9521<br>Altitude<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CUSTOM SCEN<br>deltat (hr)<br>L.07 M<br>Cloud Dens<br>mg/M <sup>3</sup> 3                                                                                                                                                                 | LARIO: TOR-C D<br>= .386969 %<br>3 sigmay o<br>Filtered Dus<br>Kg                                                                                         | ust Cloud, KC-13<br>airborne = 80<br>cloud diameter<br>t Cabin Dust<br>Kg                                                                                                                                                                                                                     | 5,Dust Fract<br>sigmax = 571<br>= 57126.4 M<br>Engine Dust<br>Kg                                                                                                                                                                   | ion = 1/3<br>3.77 M<br>Prominent<br>Particle<br>microns r                                                                                                                                    |
| 12 JAN 0107<br>time (hr) = 4<br>sigmay = 9521<br>Altitude<br>M<br>12060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CUSTOM SCEN<br>deltat (hr)<br>L.07 M<br>Cloud Dens<br>mg/M <sup>^</sup> 3<br>.717                                                                                                                                                         | ARIO: TOR-C D<br>= .386969 %<br>3 sigmay o<br>Filtered Dus<br>Kg<br>O                                                                                     | ust Cloud, KC-13<br>airborne = 80<br>cloud diameter<br>t Cabin Dust<br>Kg<br>1,18 E-04                                                                                                                                                                                                        | 5,Dust Fract<br>sigmax = 571<br>= 57126.4 M<br>Engine Dust<br>Kg<br>.012                                                                                                                                                           | ion = 1/3<br>3.77 M<br>Prominent<br>Particle<br>microns r<br>30.4                                                                                                                            |
| 12 JAN 0107<br>time (hr) = 4<br>sigmay = 9521<br>Altitude<br>M<br>12060<br>10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CUSTOM SCEN<br>doltat (hr)<br>L.07 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>.717<br>4.20                                                                                                                                                   | ARIO: TOR-C D<br>= .386969 %<br>3 sigmay o<br>Filtered Dus<br>Kg<br>0<br>0                                                                                | ust Cloud, KC-13<br>airborne = 80<br>cloud diameter<br>t Cabin Dust<br>Kg<br>1.18 E-04<br>5.24 E-04                                                                                                                                                                                           | 5, Dust Fract<br>sigmax = 571<br>= 57126.4 M<br>Engine Dust<br>Kg<br>.012<br>.052                                                                                                                                                  | ion = 1/3<br>3.77 M<br>Prominent<br>Particle<br>microns r<br>30.4<br>30.4                                                                                                                    |
| 12 JAN 0107<br>time (hr) = 4<br>sigmay = 9521<br>Altitude<br>M<br>12060<br>10000<br>8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CUSTOM SCEN<br>doltat (hr)<br>L.07 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>.717<br>4.20<br>13.3                                                                                                                                           | <pre>(ARIO: TOR-C Do<br/>= .386969 %;<br/>3 sigmay o<br/>Filtered Dus<br/>Kg<br/>0<br/>0<br/>0<br/>0</pre>                                                | ust Cloud, KC-13<br>airborne = 80<br>cloud diameter<br>t Cabin Dust<br>Kg<br>1.18 E-04<br>5.24 E-04<br>1.30 E-03                                                                                                                                                                              | 5, Dust Fract<br>sigmax = 571<br>= 57126.4 M<br>Engine Dust<br>Kg<br>.012<br>.052<br>.130                                                                                                                                          | ion = 1/3<br>3.77 M<br>Prominent<br>Particle<br>microns r<br>30.4<br>30.4<br>34.4                                                                                                            |
| 12 JAN 0107<br>time (hr) = 4<br>sigmay = 9521<br>Altitude<br>M<br>12060<br>10000<br>8000<br>6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CUSTOM SCEN<br>doltat (hr)<br>1.07 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>.717<br>4.20<br>13.3<br>28.2                                                                                                                                   | <pre>ARIO: TOR-C Do<br/>= .386969 %;<br/>3 sigmay o<br/>Filtered Dus<br/>Kg<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</pre>                                     | ust Cloud, KC-13<br>airborne = 80<br>cloud diameter<br>t Cabin Dust<br>Kg<br>1.18 E-04<br>5.24 E-04<br>1.30 E-03<br>2.19 E-03                                                                                                                                                                 | 5, Dust Fract<br>sigmax = 571<br>= 57126.4 M<br>Engine Dust<br>Kg<br>.012<br>.052<br>.130<br>.219                                                                                                                                  | ion = 1/3<br>3.77 M<br>Prominent<br>Particle<br>microns r<br>30.4<br>30.4<br>34.4<br>41.1                                                                                                    |
| 12 JAN 0107<br>time (hr) = 4<br>sigmay = 9521<br>Altitude<br>M<br>12060<br>10000<br>8000<br>6000<br>4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CUSTOM SCEN<br>doltat (hr)<br>1.07 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>.717<br>4.20<br>13.3<br>28.2<br>45.4                                                                                                                           | ARIO: TOR-C D<br>= .386969 %<br>3 sigmay o<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                       | ust Cloud, KC-13<br>airborne = 80<br>cloud diameter<br>t Cabin Dust<br>Kg<br>1.18 E-04<br>5.24 E-04<br>1.30 E-03<br>2.19 E-03<br>2.85 E-03                                                                                                                                                    | 5, Dust Fract<br>sigmax = 571<br>= 57126.4 M<br>Engine Dust<br>Kg<br>.012<br>.052<br>.130<br>.219<br>.284                                                                                                                          | ion = 1/3<br>3.77 M<br>Prominent<br>Particle<br>microns r<br>30.4<br>30.4<br>34.4<br>41.1<br>47.8                                                                                            |
| 12 JAN 0107<br>time (hr) = 4<br>sigmay = 9521<br>Altitude<br>M<br>12060<br>10000<br>8000<br>6000<br>4000<br>2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CUSTOM SCEN<br>doltat (hr)<br>1.07 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>.717<br>4.20<br>13.3<br>28.2<br>45.4<br>50.4                                                                                                                   | ARIO: TOR-C D<br>= .386969 %<br>3 sigmay o<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                        | ust Cloud, KC-13<br>airborne = 80<br>cloud diameter<br>t Cabin Dust<br>Kg<br>1.18 E-04<br>5.24 E-04<br>1.30 E-03<br>2.19 E-03<br>2.85 E-03<br>3.08 E-03                                                                                                                                       | 5, Dust Fract<br>sigmax = 571<br>= 57126.4 M<br>Engine Dust<br>Kg<br>.012<br>.052<br>.130<br>.219<br>.284<br>.308                                                                                                                  | ion = 1/3<br>3.77 M<br>Prominent<br>Particle<br>microns r<br>30.4<br>30.4<br>34.4<br>41.1<br>47.8<br>55.3                                                                                    |
| 12 JAN 0107<br>time (hr) = 4<br>sigmay = 9521<br>Altitude<br>M<br>12060<br>10000<br>8000<br>6000<br>4000<br>2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CUSTOM SCEN<br>doltat (hr)<br>1.07 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>.717<br>4.20<br>13.3<br>23.2<br>45.4<br>60.4                                                                                                                   | <pre>ARIO: TOR-C Do<br/>= .386969 %;<br/>3 sigmay o<br/>Filtered Dus<br/>Kg<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</pre> | ust Cloud, KC-13<br>airborne = 80<br>cloud diameter<br>t Cabin Dust<br>Kg<br>1.18 E-04<br>5.24 E-04<br>1.30 E-03<br>2.19 E-03<br>2.85 E-03<br>3.08 E-03                                                                                                                                       | 5, Dust Fract<br>sigmax = 571<br>= 57126.4 M<br>Engine Dust<br>Kg<br>.012<br>.052<br>.130<br>.219<br>.284<br>.308                                                                                                                  | ion = 1/3<br>3.77 M<br>Prominent<br>Particle<br>microns r<br>30.4<br>30.4<br>34.4<br>41.1<br>47.8<br>55.3                                                                                    |
| 12 JAN 0107<br>time (hr) = 4<br>sigmay = 9521<br>Altitude<br>M<br>12060<br>10000<br>8000<br>6000<br>4000<br>2000<br>12 JAN 0107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CUSTOM SCEN<br>doltat (hr)<br>1.07 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>.717<br>4.20<br>13.3<br>23.2<br>45.4<br>60.4<br>CUSTOM SCEN                                                                                                    | AARIO: TOR-C D<br>= .386969 %<br>3 sigmay o<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                        | ust Cloud, KC-13<br>airborne = 80<br>cloud diameter<br>t Cabin Dust<br>Kg<br>1.18 E-04<br>5.24 E-04<br>1.30 E-03<br>2.19 E-03<br>2.85 E-03<br>3.08 E-03<br>ust Cloud, KC-13                                                                                                                   | 5, Dust Fract<br>sigmax = 571<br>= 57126.4 M<br>Engine Dust<br>Kg<br>.012<br>.052<br>.130<br>.219<br>.284<br>.308<br>5, Dust Fract                                                                                                 | ion = 1/3<br>3.77 M<br>Prominent<br>Particle<br>microns r<br>30.4<br>30.4<br>34.4<br>41.1<br>47.8<br>55.3                                                                                    |
| 12 JAN 0107<br>time (hr) = 4<br>sigmay = 9523<br>Altitude<br>M<br>12060<br>10000<br>8000<br>6000<br>4000<br>2000<br>12 JAN 0107<br>time (hr) = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CUSTOM SCEN<br>d oltat (hr)<br>L.07 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>.717<br>4.20<br>13.3<br>23.2<br>45.4<br>60.4<br>CUSTOM SCEN<br>B deltat (hr)                                                                                  | AARIO: TOR-C D<br>= .386969 %<br>3 sigmay o<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                        | ust Cloud, KC-13<br>airborne = 80<br>cloud diameter<br>t Cabin Dust<br>Kg<br>1.18 E-04<br>5.24 E-04<br>1.30 E-03<br>2.19 E-03<br>2.85 E-03<br>3.08 E-03<br>ust Cloud, KC-13<br>airborne = 20                                                                                                  | 5, Dust Fract<br>sigmax = 571<br>= 57126.4 M<br>Engine Dust<br>Kg<br>.012<br>.052<br>.130<br>.219<br>.284<br>.308<br>5, Dust Fract<br>cigmax = 571                                                                                 | ion = 1/3<br>3.77 M<br>Prominent<br>Particle<br>microns r<br>30.4<br>30.4<br>34.4<br>41.1<br>47.8<br>55.3<br>••••••••••••••••••••••••••••••••••                                              |
| 12 JAN 0107<br>time (hr) = 4<br>sigmay = 9523<br>Altitude<br>M<br>12060<br>10000<br>8000<br>6000<br>4000<br>2000<br>12 JAN 0107<br>time (hr) = 4<br>sigmay = 1642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CUSTOM SCEN<br>d oltat (hr)<br>L.07 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>.717<br>4.20<br>13.3<br>23.2<br>45.4<br>60.4<br>CUSTOM SCEN<br>B deltat (hr)<br>29 7 M                                                                        | AARIO: TOR-C D<br>= .386969 %<br>3 sigmay 6<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                        | ust Cloud, KC-13<br>airborne = 80<br>cloud diameter<br>t Cabin Dust<br>Kg<br>1.18 E-04<br>5.24 E-04<br>1.30 E-03<br>2.19 E-03<br>2.85 E-03<br>3.08 E-03<br>ust Cloud, KC-13<br>airborne = 20<br>cloud diameter                                                                                | <pre>5, Dust Fract sigmax = 571 = 57126.4 M Engine Dust</pre>                                                                                                                                                                      | ion = 1/3<br>3.77 M<br>Prominent<br>Particle<br>microns r<br>30.4<br>34.4<br>41.1<br>47.8<br>55.3<br>••••••••••••••••••••••••••••••••••                                                      |
| 12 JAN 0107<br>time (hr) = 4<br>sigmay = 9523<br>Altitude<br>M<br>12060<br>10000<br>8000<br>6000<br>4000<br>2000<br>12 JAN 0107<br>time (hr) = 4<br>sigmay = 1642<br>Altitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CUSTOM SCEN<br>d oltat (hr)<br>L.07 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>.717<br>4.20<br>13.3<br>28.2<br>45.4<br>60.4<br>CUSTOM SCEN<br>B deltat (hr)<br>29 7 M<br>Cloud Dens                                                          | ARIO: TOR-C D<br>= .386969 %<br>3 sigmay o<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                         | ust Cloud, KC-13<br>airborne = 80<br>cloud diameter<br>t Cabin Dust<br>Kg<br>1.18 E-04<br>5.24 E-04<br>1.30 E-03<br>2.19 E-03<br>2.85 E-03<br>3.08 E-03<br>ust Cloud, KC-13<br>airborne = 20<br>cloud diameter<br>t Cabin Dust                                                                | <pre>5, Dust Fract sigmax = 571 = 57126.4 M Engine Dust</pre>                                                                                                                                                                      | ion = 1/3<br>3.77 M<br>Prominent<br>Particle<br>microns r<br>30.4<br>34.4<br>41.1<br>47.8<br>55.3<br>••••••••••••••••••••••••••••••••••                                                      |
| 12 JAN 0107<br>time (hr) = 4<br>sigmay = 9523<br>Altitude<br>M<br>12060<br>10000<br>8000<br>6000<br>4000<br>2000<br>12 JAN 0107<br>time (hr) = 4<br>sigmay = 1642<br>Altitude<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CUSTOM SCEN<br>deltat (hr)<br>L.07 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>.717<br>4.20<br>13.3<br>28.2<br>45.4<br>60.4<br>CUSTOM SCEN<br>B deltat (hr)<br>29 7 M<br>Cloud Dens<br>mg/M <sup>3</sup>                                      | ARIO: TOR-C D<br>= .386969 %<br>3 sigmay o<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                         | ust Cloud, KC-13<br>airborne = 80<br>cloud diameter<br>t Cabin Dust<br>Kg<br>1.18 E-04<br>5.24 E-04<br>1.30 E-03<br>2.19 E-03<br>2.85 E-03<br>3.08 E-03<br>ust Cloud, KC-13<br>airborne = 20<br>cloud diameter<br>t Cabin Dust<br>Kg                                                          | <pre>5, Dust Fract sigmax = 571 = 57126.4 M Engine Dust Kg .012 .052 .130 .219 .284 .308 35, Dust Fract cigmax = 571 = 98578.3 M Engine Dust Kg</pre>                                                                              | ion = 1/3<br>3.77 M<br>Prominent<br>Particle<br>microns r<br>30.4<br>30.4<br>34.4<br>41.1<br>47.8<br>55.3<br>••••••••••<br>ion = 1/3<br>3.77 M<br>Prominent<br>Particle<br>microvs r         |
| 12 JAN 0107<br>time (hr) = 4<br>sigmay = 9523<br>Altitude<br>M<br>12060<br>10000<br>8000<br>6000<br>4000<br>2000<br>12 JAN 0107<br>time (hr) = 4<br>sigmay = 1642<br>Altitude<br>M<br>12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CUSTOM SCEN<br>deltat (hr)<br>L.07 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>.717<br>4.20<br>13.3<br>28.2<br>45.4<br>60.4<br>CUSTOM SCEN<br>B deltat (hr)<br>29 7 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>0                                 | ARIO: TOR-C D<br>= .386969 %<br>3 sigmay o<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                         | ust Cloud, KC-13<br>airborne = 80<br>cloud diameter<br>t Cabin Dust<br>Kg<br>1.18 E-04<br>5.24 E-04<br>1.30 E-03<br>2.19 E-03<br>2.85 E-03<br>3.08 E-03<br>ust Cloud, KC-13<br>airborne = 20<br>cloud diameter<br>t Cabin Dust<br>Kg<br>0                                                     | <pre>5, Dust Fract sigmax = 571 = 57126.4 M Engine Dust     Kg     .012     .052     .130     .219     .284     .308 35, Dust Fract cigmax = 571 = 98578.3 M Engine Dust     Kg     0</pre>                                        | ion = 1/3<br>3.77 M<br>Prominent<br>Particle<br>microns r<br>30.4<br>30.4<br>34.4<br>41.1<br>47.8<br>55.3<br>••••••••••<br>ion = 1/3<br>3.77 M<br>Prominent<br>Particle<br>microvs r<br>30.4 |
| 12 JAN 0107<br>time (hr) = 4<br>sigmay = 9523<br>Altitude<br>M<br>12060<br>10000<br>8000<br>6000<br>4000<br>2000<br>12 JAN 0107<br>time (hr) = 4<br>sigmay = 1642<br>Altitude<br>M<br>12000<br>10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CUSTOM SCEN<br>deltat (hr)<br>1.07 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>.717<br>4.20<br>13.3<br>28.2<br>45.4<br>60.4<br>CUSTOM SCEN<br>B deltat (hr)<br>29 7 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>0<br>.018                         | ARIO: TOR-C D<br>= .386969 %<br>3 sigmay o<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                         | ust Cloud, KC-13<br>airborne = 80<br>cloud diameter<br>t Cabin Dust<br>Kg<br>1.18 E-04<br>5.24 E-04<br>1.30 E-03<br>2.19 E-03<br>2.85 E-03<br>3.08 E-03<br>ust Cloud, KC-13<br>airborne = 20<br>cloud diameter<br>t Cabin Dust<br>Kg<br>0<br>2.24 E-06                                        | 35, Dust Fract<br>sigmax = 571<br>= 57126.4 M<br>Engine Dust<br>Kg<br>.012<br>.052<br>.130<br>.219<br>.284<br>.308 35, Dust Fract<br>cigmax = 571<br>= 98578.3 M<br>Engine Dust<br>Kg<br>0<br>2.24 E-04                            | ion = 1/3<br>3.77 M<br>Prominent<br>Particle<br>microns r<br>30.4<br>30.4<br>34.4<br>41.1<br>47.8<br>55.3<br>************************************                                            |
| 12 JAN 0107<br>time (hr) = 4<br>sigmay = 9523<br>Altitude<br>M<br>12060<br>10000<br>8000<br>6000<br>4000<br>2000<br>12 JAN 0107<br>time (hr) = 4<br>sigmay = 1642<br>Altitude<br>M<br>12000<br>10000<br>8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CUSTOM SCEN<br>deltat (hr)<br>L.07 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>.717<br>4.20<br>13.3<br>28.2<br>45.4<br>60.4<br>CUSTOM SCEN<br>B deltat (hr)<br>29 7 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>0<br>.018<br>.223                 | ARIO: TOR-C D<br>= .386969 %<br>3 sigmay o<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                         | ust Cloud, KC-13<br>airborne = 80<br>cloud diameter<br>t Cabin Dust<br>Kg<br>1.18 E-04<br>5.24 E-04<br>1.30 E-03<br>2.19 E-03<br>2.85 E-03<br>3.08 E-03<br>ust Cloud, KC-13<br>airborne = 20<br>cloud diameter<br>t Cabin Dust<br>Kg<br>0<br>2.24 E-06<br>2.18 E-05                           | S, Dust Fract<br>sigmax = 571<br>= 57126.4 M<br>Engine Dust<br>Kg<br>.012<br>.052<br>.130<br>.219<br>.284<br>.308 S, Dust Fract<br>cigmax = 571<br>= 98578.3 M<br>Engine Dust<br>Kg<br>0<br>2.24 E-04<br>2.18 E-03                 | ion = 1/3<br>3.77 M<br>Prominent<br>Particle<br>microns r<br>30.4<br>30.4<br>34.4<br>41.1<br>47.8<br>55.3<br>************************************                                            |
| 12 JAN 0107<br>time (hr) = 4<br>sigmay = 9523<br>Altitude<br>M<br>12060<br>10000<br>8000<br>6000<br>4000<br>2000<br>12 JAN 0107<br>time (hr) = 4<br>sigmay = 1642<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CUSTOM SCEN<br>deltat (hr)<br>L.07 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>.717<br>4.20<br>13.3<br>28.2<br>45.4<br>60.4<br>CUSTOM SCEN<br>B deltat (hr)<br>29 7 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>0<br>.018<br>.223<br>1.10         | ARIO: TOR-C D<br>= .386969 %<br>3 sigmay o<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                         | ust Cloud, KC-13<br>airborne = 80<br>cloud diameter<br>t Cabin Dust<br>Kg<br>1.18 E-04<br>5.24 E-04<br>1.30 E-03<br>2.19 E-03<br>2.85 E-03<br>3.08 E-03<br>ust Cloud, KC-13<br>airborne = 20<br>cloud diameter<br>t Cabin Dust<br>Kg<br>0<br>2.24 E-06<br>2.18 E-05<br>8.57 E-05              | S, Dust Fract<br>sigmax = 571<br>= 57126.4 M<br>Engine Dust<br>Kg<br>.012<br>.052<br>.130<br>.219<br>.284<br>.308 S, Dust Fract<br>'igmax = 571<br>= 98578.3 M<br>Engine Dust<br>Kg<br>0<br>2.24 E-04<br>2.18 E-03<br>.008         | ion = 1/3<br>3.77 M<br>Prominent<br>Particle<br>microns r<br>30.4<br>30.4<br>34.4<br>41.1<br>47.8<br>55.3<br>************************************                                            |
| 12 JAN 0107<br>time (hr) = 4<br>sigmay = 9523<br>Altitude<br>M<br>12060<br>10000<br>8000<br>6000<br>4000<br>2000<br>12 JAN 0107<br>time (hr) = 4<br>sigmay = 1642<br>Altitude<br>M<br>12000<br>10000<br>8000<br>6000<br>4000<br>10000<br>8000<br>6000<br>4000<br>10000<br>8000<br>6000<br>4000<br>10000<br>12 JAN 0107<br>time (hr) = 4<br>12 JAN 0107<br>12 JAN 0107<br>time (hr) = 4<br>12 JAN 0107<br>12 JAN 0107<br>10 JA | CUSTOM SCEN<br>deltat (hr)<br>L.07 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>.717<br>4.20<br>13.3<br>28.2<br>45.4<br>60.4<br>CUSTOM SCEN<br>B deltat (hr)<br>29 7 M<br>Cloud Dens<br>mg/M <sup>3</sup><br>0<br>.018<br>.223<br>1.10<br>2.83 | ARIO: TOR-C D<br>= .386969 %<br>3 sigmay o<br>Filtered Dus<br>Kg<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                         | ust Cloud, KC-13<br>airborne = 80<br>cloud diameter<br>t Cabin Dust<br>Kg<br>1.18 E-04<br>5.24 E-94<br>1.30 E-03<br>2.19 E-03<br>2.85 E-03<br>3.08 E-03<br>ust Cloud, KC-13<br>airborne = 20<br>cloud diameter<br>t Cabin Dust<br>Kg<br>0<br>2.24 E-06<br>2.18 E-05<br>8.57 E-05<br>1.78 E-04 | S, Dust Fract<br>sigmax = 571<br>= 57126.4 M<br>Engine Dust<br>Kg<br>.012<br>.052<br>.130<br>.219<br>.284<br>.308 S, Dust Fract<br>'igmax = 571<br>= 98578.3 M<br>Engine Dust<br>Kg<br>0<br>2.24 E-04<br>2.18 E-03<br>.008<br>.017 | ion = 1/3<br>3.77 M<br>Prominent<br>Particle<br>microns r<br>30.4<br>30.4<br>34.4<br>41.1<br>47.8<br>55.3<br>************************************                                            |

0•

\_

4

4

\_\_\_\_

7

#### V. Conclusions and Recommendations

#### <u>Conclusions</u>

۲

C

 $\hat{\mathbf{n}}$ 

D

9

(•

This study has extended the calculation of aircrew dose to a wide variety of strategic aircraft. An improved model of the aircraft cabin was developed to allow better estimates of shielding from external gamma rays and dose rates for internal gamma rays. A 22% increase in the shielding factor and a 16% decrease in the cabin geometry factor reduce the aircrew dose due to sky-shine and cabin dust by proportionate amounts, compared to Kling's KC-135 model.

Additions to the nuclear cloud model as suggested by Bridgman and Bigelow (Ref 1) have allowed the effects of different particle size distributions to be considered. The differences are significant. Comparing doses at the maximum dose altitudes due to clouds composed primarily of small (NRDL-N61) and large (TOR-C) particles, the NRDL-N61 cloud caused 30% more dose to the aircrew at one hour for both sky-shine and cabin dust. After 4 hours, the differences in dose reached an order of magnitude: the total dose is small, however, due to decay of activity with time.

A simple extrn ion to the cloud model allows dust densities and the mass of dust ingested by an engine or a filter to be found. Differences in the dust densities between the NRDL-N61 and TOR-C clouds were reversed compared to the doses at early times. At one hour, the TOR-C cloud had a 50% greater dust density. The rapid fallout of the larger particles in the TOR-C cloud reduces the cloud density much more rapidly, however, so that after 4 hours the densities are similar and after 8 hours only 20% of the

original cloud was still airborne. Fifty percent of the NRDL-N61 cloud was still aloft at 8 hours.

Addition of a filter to the cabin air rupply made a major difference to the dose due to the dust traped in the cabin and demonstrated that filters need not stop sub-micron particles to be effective. For an 8 hour mission, a filter stopping particles larger than 20 microns trapped 80% of the cabin dust dose at 37,000 feet for 1 hour after the burst, and trapped all of it below 20,000 feet at any time. Since the smaller particles that pass through the filter are less likely to settle out in the cabin, the filter should be even more effective than these calculations showed.

Comparison of air density with dust densities likely to be found in a megaton size nuclear cloud indicates that self-shielding of the dust is  $ne_k$  where The dust density is only 0.3% of the air density, and gamma cross sections are similar. Thus the attenuation due to air is much larger than any attenuation due to dust.

Splitting the single wind shear into two components allowed the aircraft to penetrate the late time cloud in any direction. After 1 hour of a typical wind ( $S_t = 10.05$ ), penetrating the cloud along the major axis will result in 5 times as much dose as penetrating along the minor axis. After 8 hours, there will be a factor of 10 difference in dose. The increase in dose is due equally to sky-shine and cabin dust dose. Aircraft required to orbit an area downwind of a target area could follow a long, narrow racetrack at right angles to the prevailing wind, thereby minimizing dose.

#### **Recommendations**

R

1

There are six recommendations to be made. First, the constant gamma ray energy assumption of 1 MeV could be replaced by a time dependent energy. This would involve making all of the absorption and attenuation coefficients variables as well. Doses would be increased at early times and decreased at late. times.

Second, the airflow through the cabin could be modeled to determine what size particles could be expected to stay suspended long enough to be removed from the cabin by the outgoing air. Patrick (Ref 20) suggests a method for doing this.

Third, equipment and structure inside the cabin could be modeled to account for shielding from the dust trapped in the cabin.

Fourth, aircraft engines could be tested to determine whether the dust densities predicted to exist in a nuclear cloud would degrade engine operation and thus be a concern for determining survivability of the aircraft.

Fifth, a more realistic wind model could be developed.

Last, an algorithm to adjust engine thrust (thus mass flow and engine dust ingestion) with altitude and airspeed could be added so that a more realistic engine mass ingestion could be found.

#### <u>Bibliography</u>

- Bridgman, C.J. and W.S. Bigelow. "A New Fallout Prediction Model," <u>Health Physics</u>, <u>42</u> (2): 205-218 (August 1982).
- 2. Bridgman, C.J. and B.E. Hickman. <u>Aircraft Penetration of</u> <u>Radioactive Clouds</u>. School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB OH, 1982.
- Bridgman, C.J. Unpublished paper. School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB OH, 1982.
- 4. Brodsky, A.B. Editor <u>CRC Handbook of Radiation Measurement and</u> <u>Protection. Volume I: Physical Science and Engineering Data</u>. CRC Press, Inc. West Palm Beach FL.
- 5. Crandley, J.F. <u>A Multiburst Fallout Model for Operational Type</u> <u>Studies</u>. MS Thesis, Wright-Patterson AFB OH: Air Force Institute of Technology, March 1981.
- Davies, C.N. "Definitive Equations for the Fluid Resistance of Spheres," <u>The Proceedings of the Physical Society, London</u>, <u>57</u>: 259-270 (July 1945).
- 7. Drinkwater, R.B. <u>Gamma Radiation from Fission Products</u>. MS Thesis, Wright-Patterson AFB OB: Air Force Institute of Technology, March 1974.
- Glasstone, S. and P.J. Dolan. <u>The Effects of Nuclear Weapons</u> (3rd Ed). Washington DC: U.S. Government Printing Office, 1977.
- Gogolin, J. <u>DELFIC (AFIT Version) Operator's Manual</u>. Wright-Patterson AFB OH: Air Force Institute of Technology, 15 June 1984.
- 10. Hickman, B.E. <u>Aircrew Ionizing Doses from Radioactive Dust</u> <u>Cloud Generated by Nuclear Burst</u>. MS Thesis, Wright-Patterson AFB OH: Air Force Institute of Technology, March 1982.
- 11. Hopkins, A.T. <u>A Two Step Method To Treat Variable Winds In</u> <u>fallout Smearing Codes</u>. MS Thesis, Wright-Patterson AFB OH: Air Force Institute of Technology, March 1982.
- Klement, A.W. Jr. <u>Radioactive Fallout from Nuclear Weapons</u> <u>Tests</u>. Proceedings of the Second Conference, Germantown MD, 3-6 November, 1964.
- 13. O'Lone, R.G. "Volcanic Eruption Disrupts Air Traffic," <u>Aviation Week and Space Technology</u>, p. 18, 26 May 1980
- 14. Personal conversation, Col. R. Justice, US Air Force Strategic Air Command, Offut AFB, NE. 31 October, 1984.

- Powell, W.C. III. "Radiation Threat From Nuclear Dust In The ECS Particle Filter," TFD-82-890 Rockwell International Los Angeles, CA 16 December, 82.
- 16. Kling, T.R. <u>Airborne Penetration of Radioactive Clouds</u>. MS Thesis, Wright-Patterson AFB OH: Air Force Institute of Technology, March 1983.
- 17. McBahan, J.T., <u>et al.</u> <u>Sensitivity of Fallout Predictions to</u> <u>Initial Conditions and Model Assumptions</u>. Science Applications, Inc., McLean VA, 15 June 1974 (AD A002 464).
- 18. McDonald, J.E. "An Aid to Computation of Terminal Fall Velocities of Spheres," <u>Journal of Meteorology</u>, <u>17</u>: 463-465 (August 1960).

- 19. McMaster, N. <u>et al.</u> <u>Compilation of X-Ray Cross Sections</u> <u>UCRL-50174 Sec. II Rev. I</u>. Lawrence Radiation Laboratory, Livermore CA 1969.
- 20. Patrick, R.P., <u>et al</u>. <u>Aircraft Penetration of Clouds</u> <u>Generated by Nuclear Bursts</u>. Kirtland AFB NM: Air Force Weapons Laboratory, 1973 (AFWL-TR-73-82).
- Patrick, R.P., <u>et al.</u> <u>Cockpit Air Filtration Requirements for</u> <u>the B-1 in a Nuclear Dust Environment</u>. <u>Kirtland AFB NM</u>: Air Force Weapons Laboratory, 1973 (AFWL-TR-73-83).
- 22. Patrick, R.P. "Potential Crew Hazards Due to Radioactive Cloud Penetrations," <u>Aviation, Space and Environmental</u> <u>Medicine</u>, <u>46</u> (3): 281-289 (March 1975).
- 23. Patrick, R.P. and G.D. Arnett. <u>Aircraft Ionizing Doses and</u> <u>Dose Rates from Radioactive Clouds and Fallout</u>. Kirtland AFB NM: Air Force Weapons Laboratory, 1976 (AFWL-TR-75-214).
- 24. Polan, M. <u>An Analysis of the Fallout Prediction Models</u> <u>Presented at the UNSRDL-DASA Fallout Symposium of September</u> <u>1962. Vol. 1. Analysis, Comparison and Classification of</u> <u>Models</u>, UNSRDL-TRC-68, U.S. Naval Radiological Defense Laboratory, San Francisco CA 94135, 8 September 1962.
- 25. Pugh, G.E. and R.J. Galiano. <u>An Analytical Model of Close-In</u> <u>Deposition of Fallout for Use in Operational Type Studies</u>. WSEG Research Memorandum No. 10, Weapon Systems Evaluation Group, The Pentagon, Washington DC, 15 October 1959 (AD 261 752).
- 26. Routanen, N.H. <u>An Improvement to the WSEG Fallout Model Low</u> <u>Yield Prediction Capability</u>. MS Thesis, Wright-Patterson AFB OH: Air Force Institute of Technology, December 1978.
- 27. <u>U.S. Standard Atmosphere, 1976</u>. NOAA. US Government Printing Office, Washington DC, 1976.

- 28. Capasco, N.S., et al, <u>Radioactive Particle Studies Inside an</u> <u>Aircraft</u>, WT-717, US Army Chemical and Radiological Laboratories, February 1956.
- 29. Ort, F.G, and M.J. Schumchyk,<u>Evaluation of a Filtration</u> <u>System for Pressurized Aircraft</u>,US Army Chemical and Radiological Laboratories, November 1952.

ŧ., .

#### APPENDIX A

#### DELFIC Data

This Appendix contains data and polynomials least-squares fit to data predicted by DELFIC for an initial nuclear cloud. Only data that appeared to be potentially useful for this study were extracted and reduced. Do not consider this study or this Appendix to be a complete summary of DELFIC. The raw data in this Appendix represents less than 1% of all data in a typical DELFIC printout. The term "DELFIC default" refers not only to the particle size distribution used (see Chapter II), but to the winds, fission fraction of the weapon, type of soil, and other variables. See Chapter II for more inf -mation<sup>\$\vee\$</sup>DELFIC. See Gogelin (Ref 9) for further details and information \$\vee\$ to run DELFIC.

The modules of interest for this study are Fireball, Cloud Rise, Interface, and Diffusive Transport. The data from them are presented below in no particular order. All times are in seconds, all altitudes are in meters, all masses are in kilograms, all particle diameters are in microns. Note that DELFIC assigns the smallest group number to the largest size group. The programs in this study use the opposite convention. Also note that this study refers to particle size in terms of radius. DELFIC refers to particle sizes by diameter.

The data presented here are for the:

- 1. Altitudes of the top and bottom, and the thickness of each disc for every ten particle size groups at vertical stabilization time.
- 2. Time since burst and radius of the cloud at vertical stabilization.
- 3. Time since burst and radius of the cloud at horizontal stabilization.
- 4. Time of solidification of the surface material evaporated in the fireball, and mass of dust airborne at solidification time.

## Al. Particle Size versus Altitude at vertical stabilization time

DELFIC divides a particle size distribution into 100 equal mass-size groups. Each group is modeled as a disc, and each disc is subdivided into 20 wafers. Among other things, DELFIC prints the altitude of the top and bottom of each wafer for the initial cloud at vertical stabilization time. Each wafer and each disc may overlap adjoining wafers or discs. This data is printed at the beginning of the Diffusive Transport module.

DELFIC predicts the same altitude for a given size particle for all of the particle size distributions tested; DELFIC default, NRDL-N61, TTAPS, and TOR-C (Ref 3) (see Table I).

To limit the emount of data to be handled, altitude information was extracted for every tenth particle size group rather than for all 100 groups. The data extracted from DELFIC follows. BB refers to the altitude of the bottom of the lowest wafer in a particle size group. TT refers to the altitude of the top of the highest wafer in a particle size group. DeltaZ is the difference of these altitudes computed by this study.

| PRIMARY DATA - | from DELFI   | C default fitche | es and printou                                          | Jt          |
|----------------|--------------|------------------|---------------------------------------------------------|-------------|
| initial cloud  | height data  | *****            | e nie nie die nie die die die die die die die die die d | *********** |
| 1. kr 20 Oct   | 84 Delfic    | default Rm=_407  | sigma = 4 si                                            | lica soil   |
| Delfic group   | diameter     | BB               | TT                                                      | DeltaZ      |
| 10             | 799.84       | 0                | 0                                                       | 0           |
| 20             | 427.59       | 0                | 1181                                                    | 0           |
| 30             | 273.97       | 508.3            | 1886                                                    | 1377.7      |
| 40             | 187.75       | 1057             | 2369                                                    | 1312        |
| 50             | 132.13       | 1426             | 2682                                                    | 1256        |
| 60             | 93.105       | 1663             | 2895                                                    | 1232        |
| 70             | 64.063       | 1846             | 3043                                                    | 1197        |
| 80             | 41.447       | 1957             | 3135                                                    | 1178        |
| 90             | 22.824       | 2021             | 3189                                                    | 1168        |
| 100            | 3.6513       | 2050             | 3212                                                    | 1162        |
| *****          | ********     | *****            | ********                                                | ******      |
| 10, kt 20 0d   | t 84 Delfic  | default Rm=.40   | 7 sigma = 4 s                                           | ilica soil  |
| Delfic group   | diameter     | BB               | TT                                                      | DeltaZ      |
| 10             | 799.84       | 0                | 2583                                                    | 0           |
| 20             | 427.59       | 1663             | 4269                                                    | 2606        |
| 30             | 273.97       | 2721             | 5199                                                    | 2478        |
| 40             | 187.75       | 3357             | 5747                                                    | 2390        |
| 50             | 132.13       | 3785             | 6095                                                    | 2310        |
| 60             | 93.105       | 4062             | 6334                                                    | 2272        |
| 70             | 64.063       | 4272             | 6494                                                    | 2222        |
| 80             | 41.447       | 4400             | 6595                                                    | 2195        |
| 90             | 22.824       | 4474             | 6652                                                    | 2178        |
| 100            | 3.6513       | 4505             | 6677                                                    | 2172        |
| *****          | ********     | *****            | **** <del>******</del>                                  | *******     |
| 100, kt 20 (   | Oct 84 Delfi | c default Rm=.4  | 07 sigma = 4                                            | silica soil |
| Delfic group   | diameter     | BB               | TT                                                      | DeltaZ      |
| 10             | 799.84       | 1015             | 5676                                                    | 4661        |
| 20             | 427.59       | 3755             | 8384                                                    | 4629        |
| 30             | 273.97       | 5139             | 9786                                                    | 4647        |
| 40             | 187.75       | 5980             | 10600                                                   | 4620        |
| 50             | 132.13       | 6543             | 11110                                                   | 4567        |
| 60             | 93.105       | 6921             | 11470                                                   | 4549        |
| 70 -           | 64.063       | 7195             | 11700                                                   | 4505        |
| 80             | 41.447       | 7365             | 11840                                                   | 4475        |
| 90             | 22.824       | 7470             | 11930                                                   | 4460        |
| 100            | 3.6513       | 7 505            | 11960                                                   | 4455        |
| *****          | ******       | *****            | ****                                                    | ****        |
| 1000, k+ 20    | Oct 84 Delf  | ic default Rm=.  | 407 sigma = 4                                           | silica soil |
| Delfic group   | diameter     | BB               | TT .                                                    | DeltaZ      |
| 10             | 799.84       | 2269             | 8646                                                    | 6377        |
| 20             | 427.59       | 5653             | 12460                                                   | 6807        |
|                |              |                  |                                                         |             |
| 30             | 273.97       | 7412             | 14980                                                   | 7568        |

6.

70

Ļ

132.13

93.105

64.063

41.447

22.824

3.6513

**0**0

0

9221

| alianda alianda da alianda da                      |                                        |                                                                                    | An alla alla alla alla alla alla alla al | 1. A                                            |
|----------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------|
|                                                                                  | 0 0/ D. 16!-                           |                                                                                    | *************                            | ************                                    |
| 15000, Kt 20                                                                     | UCE 64 Delric                          | derault Km=.4                                                                      | U/ \$18ma = 4 8:                         | LLICA SOLL                                      |
| Deffic group                                                                     |                                        | DD<br>0107                                                                         | 11                                       | Deltaz                                          |
| 10                                                                               | /99.84                                 | 818/                                                                               | 19020                                    | 10833                                           |
| 20                                                                               | 42/.59                                 | 12530                                                                              | 28610                                    | 16080                                           |
| 30                                                                               | 273.97                                 | 14900                                                                              | 32620                                    | 17720                                           |
| 40                                                                               | 187.75                                 | 16360                                                                              | 34830                                    | 18470                                           |
| 50                                                                               | 132.13                                 | 17350                                                                              | 36070                                    | 18720                                           |
| 60                                                                               | 93.105                                 | 17980                                                                              | 36790                                    | 18810                                           |
| 70                                                                               | 64.063                                 | 18430                                                                              | 37210                                    | 18780                                           |
| 80                                                                               | 41.447                                 | 18670                                                                              | 37450                                    | 18780                                           |
| 90                                                                               | 22.824                                 | 18810                                                                              | 37610                                    | 18800                                           |
| 100                                                                              | 3.6513                                 | 18810                                                                              | 37610                                    | 18800                                           |
|                                                                                  |                                        |                                                                                    |                                          |                                                 |
| ******                                                                           | *****                                  | *****                                                                              | *****                                    | ********                                        |
| **************************************                                           | ************************************** | **************************************                                             | **************************************   | **************************************          |
| **************************************                                           | ************************************** | **************************************                                             | **************************************   | **************************************          |
| **************************************                                           | ************************************** | **************************************                                             | **************************************   | <pre>************************************</pre> |
| **************************************                                           | ************************************** | **************************************                                             | **************************************   | **************************************          |
| **************************************                                           | ************************************** | **************************************                                             | **************************************   | <pre>************************************</pre> |
| **************************************                                           | ************************************** | **************************************                                             | **************************************   | <pre>************************************</pre> |
| **************************************                                           | ************************************** | <pre>************************************</pre>                                    | **************************************   | <pre>************************************</pre> |
| *******************<br>50000, kt 5<br>Delgrp<br>10<br>20<br>30<br>40<br>50<br>60 | ************************************** | <pre>************************************</pre>                                    | **************************************   | <pre>************************************</pre> |
| **************************************                                           | ************************************** | tefault Rm=.40<br>BB<br>7847<br>12390<br>14890<br>16440<br>17490<br>18220<br>18650 | **************************************   | **************************************          |
| **************************************                                           | ************************************** | <pre>************************************</pre>                                    | **************************************   | **************************************          |
| **************************************                                           | ************************************** | <pre>************************************</pre>                                    | **************************************   | <pre>************************************</pre> |
| **************************************                                           | ************************************** | <pre>************************************</pre>                                    | **************************************   | <pre>************************************</pre> |

Values for the 50 MT burst were not incorporated into the polynomial fits; Hopkins' data covers 1 to 15000 kt only and yields larger than this will be uncommon in any event.

Following a method developed by Hopkins (Ref 11), for each yield a linear least-squares fit was obtained for particle diameter in microns versus altitude in meters. Deviations from linearity were quite small, with deviations in altitude typically less than 1%. DeltaZ was fitted in the same manner as altitude. The least-squares linear fits to the above data follow.

# 

#### TOP OF TOP WAFER

- ·

. . . . . .

.

ì

۴.,

Ū

 **( )** 

| YIELD (kt) | <pre>slope(m/micron)</pre> | intercept(m) |
|------------|----------------------------|--------------|
| 1          | -5.01902                   | 3316.48      |
| 10         | -5.87268                   | 6820.28      |
| 100        | -8.7145                    | 12182.5      |
| 1,000      | -12.582                    | 18456.3      |
| 15,000     | -23.9386                   | 38680        |
| 50,000     | -33.4709                   | 51809.4      |

# BOTTOM OF BOITOM WAFER

| YIELD (kt) | <pre>slope(m/micron)</pre> | intercept(m) |
|------------|----------------------------|--------------|
| 1          | -5.91157                   | 2171.19      |
| 10         | -6.95509                   | 4656.53      |
| 100        | -9.19309                   | 7703.61      |
| 1,000      | -10.7505                   | 10608.7      |
| 15,000     | -14.0467                   | 19077.2      |
| 50,000 _   | -14.8734                   | 19348.4      |

## DELTA Z

| YIELD (kt) | slope(m/micron) | intercept(m) |
|------------|-----------------|--------------|
| 1          | +1.01059        | 1135.89      |
| 10         | +1.08241        | 2163.75      |
| 100        | +0.260011       | 4503.59      |
| 1,000      | -1.8315         | 7847.69      |
| 15,000     | -9.89187        | 19603.5      |
| 50,000     | -18.5842        | 32454.3      |

The natural log of each of the above slopes and each of the above intercepts were least-squares fit to a polynomial in ln(Y), the natural log of the yield in kilotons. The values for slope were combined with additive factors to make them non-negative so that the logs could be taken. This method of fit was used because it gave the smallest errors of all the methods tried.

1

Values for the 50 MT bursts were not incorporated into the polynomial fits; Hopkins<sup>4</sup> data covers 1 to 15000 kt only and yields larger than this will be uncommon in any event.

Slopes and Intercepts for the various fits are identified by subscripts. The subscript T identifies the fit to the Top of the top wafer, b identifies the fit to the bottom wafer, and d refers to the fit of the DeltaZ for each group. These polynomials are given below.

Also included below is the polynomial fit used by Hopkins. Hopkins found the center altitude for each of the twenty wafers in each group, then averaged them to obtain an (average) center altitude for the group. These polynomials are identified by the subscript m.

#### TOP OF TOP WAFER

The altitude of the top of the disc is the altitude of the topmost wafer in the disc.

 $S_{T} = -EXP \{1.61324 - .0682128 (lnY) + .0843986 (lnY)^{2} - .0123826 (lnY)^{3} + .000634405 (lnY)^{4} \}$ 

 $I_{T} = EXP \{8.10667 + .302301 (lnY) + .0191831 (lnY)^{2} - .00748407 (lnY)^{3} + .000518155 (lnY)^{4} \}$ 

BOTTOM OF BOTTOM WAFER

The altitude of the bottom of the disc is the altitude of the lowest disc in the wafer.

 $S_{b} = -EXP \{1.77691 - .0325444 (lnY) + .0679667 (lnY)^{2} - .0114241 (lnY)^{3} + .000590821 (lnY)^{4} \}$ 

 $I_{b} = EXP \{7.68304 + .372472 (lnY) - .0107429 (lnY)^{2} - .0039146 (lnY)^{3} + .000358551 (lnY)^{4} \}$ 

DELTA Z The thickness of the disc , DeltaZ, is the difference in x = ln(Y)altitudes of the top and bottom of the disc.  $S_{d} = 7 - EXP \{1.78999 - .048249 x + .0230248 x^{2}\}$  $-.00225965 x^{3} + .000161519 x^{4}$  $I_d = EXP (7.03518 + .158914 (lnY) + .0837539 (lnY)^2$  $-.0155464 (1nY)^3 + .000862103 (1nY)^4$ DISC CENTER ALTITUDE Altitude of the average center of a mono-size particle disc. The average center is determined by averaging the center heights of the wafers of which the disc is composed. (Ref 11)  $s_{m} = - EXP \left\{ 1.574 - .01197 (lnY) + .03636 (lnY)^{2} \right\}$  $-.0041 (1nY)^3 + .0001965 (1nY)^4$  $I_{m} = EXP \{7.889 + .34 (lnY) + .001226 (lnY)^{2}$  $-.005227 (lnY)^3 + .000417 (lnY)^4$ The altitude for a given particle size for any of the above fits is found by using the equation below. It will typically return values within 5% of the original data listed above. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* PARTICLE SIZE VS INITIAL ALTITUDE 1 KT TO 15,000 KT Particle Altitude Z = INTERCEPT + 2 (Particle Radius) (SLOPE) where the particle radius is in micrometers and the altitude is in meters, and the yield for the intercepts and slopes is given in kilotons.

A2. Time since burst and radius of the cloud at vertical stabilization.

| yield (RT) | RADIUS (M) | TIME (SEC) |
|------------|------------|------------|
| 1          | 856.6      | 347.1      |
| 10         | 1612       | 347.0      |
| 100        | 3324       | 313.2      |
| 1,000      | 5651       | 845.2      |
| 15,000     | 13680      | 162.9      |
| 50,000     | 22850      | 166.2      |

DELFIC raw data for vertical cloud stabilization

# POLYNOMIAL FITS FOR VERTICAL CLOUD STABILIZATION 1 KT TO 50,000 KT

Vertical Stabilization Time (seconds)

 $T_{g} = 385.295 - 99.1476 (lnY) + 64.6314 (lnY)^{2}$  $- 8.21379 (lnY)^{3} + .323598 (lnY)^{4}$ 

# Vertical Stabilization Radius (meters)

(see Eq (5) to convert radius to sigma radius) $\tilde{S}_0 = 868.277 - 632.399 (1nY) + 625.132 (1nY)^2$  $- 112.586 (1nY)^3 + 7.16648 (1nY)^4$ 

シント・シー しまとう

「「たちなたたいでしたい」ということになるためたんと言い

| YIELD (KT) | RADIUS (M) | TIME (SEC) |
|------------|------------|------------|
| 1          | 902.8      | 382.1      |
| 10         | 1788       | 424.5      |
| 100        | 5213       | 610.7      |
| 1000       | 16620      | 845.2      |
| 15000      | 52330      | 850.4      |
| 50000      | 110000     | 918.7      |

Ç

DELFIC raw data for vertical cloud stabilization

Horizontal Stabilization Time (seconds)

 $T_{h} = 385.295 - 99.1476 (lnY) + 64.6314 (lnY)^{2} - 8.233598 (lnY)^{4} + .323598 (lnY)^{4}$ 

 $\frac{\text{Horizontal Stabilization Radius (meters)}}{(\text{see Eq ( 5 ) to convert radius to sigma radius)}}$   $S_{h} = \text{EXP } \{6.08948 + .0546004 (1nY) + .136646 (1nY)^{2}$   $- .0173576 (1nY)^{3} + 7.42803E-4 (1nY)^{4}\}$ 

| Yield | Condensation | Mass       | Dust               |
|-------|--------------|------------|--------------------|
| KT    | SEC          | KG         | ton dust/ton yield |
| 1     | 2.3278       | 9.0287e+5  | .204732            |
| 10    | 3.6658       | 6.8862e+6  | .156150            |
| 100   | 5.8238       | 5.2521e+7  | .119095            |
| 1000  | 9.4618       | 4.0058e+8  | .090835            |
| 15000 | 17.4996      | 4.3693e+9  | .066052            |
| 50000 | 21.9029      | 1.2641e+10 | .05733             |

## Delfic Raw Data For Dust Mass

(•

Solidification Time (seconds)

 $T_{\text{solid}} = 2.31466 + .786315 (1nY) - .149574 (1nY)^{2} + .035455 (1nY)^{3} - .001189 (1nY)^{4}$ 

Dust Fraction

 $DF = .204731 - .0240532 (lnY) + 1.39148E-3 (lnY)^{2}$  $- 4.88467E-05 (lnY)^{3} + 8.62805E-7 (lnY)^{4}$ 

# Appendix B

# Glossary of Program Terms

2

**(**•

| ACCELLG           | 9.80665 m/s <sup>1</sup>                    |
|-------------------|---------------------------------------------|
| ACTIVITY .REPORTS | menu control variable                       |
| ACTSIZE.REPORT\$  | menu control variable                       |
| AIRCRAFT.FILE\$   | name of aircraft specification program      |
| AIRCRAFT\$        | name of aircraft to report on               |
| ALPHA             | cumulative log normal distribution term     |
| ANS\$             | menu control variable                       |
| ANSWER\$          | meru control variable                       |
| AR(G)             | activity of a particle group at an altitude |
| ,DOP              | dose report file name extant                |
| .MOP              | dust report file name extant                |
| Al.PERCENT        | unit time activity of a particle group      |
| RM                | mean radius of a dust particle              |
| .RMA              | equal activity group file extant            |
| .RMM              | equal mass group file extant                |
| .SPC              | sircraft specification file extant          |
| BETA              | cumulative log normal distribution term     |
| BOMB.DENSITY      | density of multiple bombs in target area    |
| BURST.AMP.FACTOR  | factor for multiple bursts                  |
| CABIN.ACTIVITY    | total cabin activity                        |
| CABIN.AR          | activity due to a given group               |
| CARTN DOCE        | dogo due to transed duct in anhin           |

CABIN.DOSE.RATE at the center of the cabin CABIN .GEOMETRY dimensionless factor for dust dose CABIN.SUM.ACTIVITY.PER.METER activity density of "unfiltered" cloud DATE .TIME\$ date stamp for files DCF dose conversion factor DELAY menu control variable DELFIC default particle size distribution DELFIC.DOP default output file name for dose report DELTAT time interval for cloud fall DELTAX aircraft miss distance to cloud center DELTAY aircraft miss distance to cloud center DINTERCEPT formula for thickness of particle group DOSE to aircrew in rem DSLOPE formula for thickness of particle group DUST .DOSE\$ menu control variable - dust or dose report? ENGINE .MASS .FLOW air mass flow through engine ETAZ viscosity of air at altitude z FALL.VELOCITY of a particle FF fission fraction of weapon FIELD .WIDTH width of target area for multiple bursts FILTER.ACTIVITY total filter activity FILTER AR filter activity due to a single group FILTER .CAPACITY dust mass that will clog filter FILTER.SUM.ACTIVITY.PER.METER activity density of "filtered" cloud FILTER.TX.FACTOR fraction of a dust size that goes through F۷ fraction of activity inside a dust particle FX gaussian term for horizontal distribution FY gaussian term for horizontal distribution

Ľ

FZ gaussian term for altitude distribution gammas that make it through cabin walls GAMMA .TX .FACTOR GAMMA . MFP mean free path of a gamma ray in air GAUSSIANZM contribution of a partice group at an altitude G.AT.Z gravity at altitude z HC initial activity center altitude HOW .MANY .TIMES the number of report times HR time in hours INPUT .FILE\$ name of an input file INTERVAL time between report times LAST .AREA used in trapezoidal integration LAST.TIME.STOP the last time a report was made LASTG largest particle group still airborne LK atmospheric temperature lapse rate of the cabin MASS MASS.FLOW of air into the cabin of the aircraft cabin MASS.INTEGRAL MASS .REPORT\$ menu control variable MASS\_SIZE.REPORT\$ menu control variable MAXG group that adds the most activity at altitude gamma ray energy in MeV MEV Hopkins formula for initial altiude of particle MINTERCEPT Hopkins formula for initial altiude of particle MSLOPE MSN.TIME.REM time from cloud penetration to landing tissue absorption crossection MUARHO MUT.Z13 gamma ray transmission coefficient for aluminum MUTRHO gamma ray cross section for air at altitude z NUMBER.BOMBS number of weapons in multiple burst problem

للالتدايد المتركين المناكر المتركين كمنايا والالالا المتعامينا الترايف

**またになるためで、とうくくいうなないたいないないです。** 

OUTPUT .FILE\$ name of output file to be created interval counter for cloud fall loop PART.TIME PER(G) % activity at an altitude due to group G 3.14159 PI PRESSURE, VOLUME volume of aircraft pressurized cabin PV.AREA area of aircraft pressurized cabin PV.MASS mass of aircraft pressurized cabin ΡZ atmospher ic pressure at altitude z RADIUS radius of dust particle REYNOLDS .NUMBER dimensionless RHOAIRZ airdensity at altitude z RHOFALLOUT target material density SHARP\$ tag denoting multiple burst is too early SHEAR variation of wind speed with altitude SIGMA .RM particle cumulative log normal distribution horizontal normal distribution of cloud SIGMAX horizontal normal distribution of cloud SIGNAY SIGMAZ vertical normal distribution of cloud SIZE .LABEL\$ report label for size groups SKYSHINE.DOSE dose to crew due to immersion in cloud STAB.TIME time of cloud vertical stabilization STAR\$ tag denoting gamma mfp > .2 sigmax SUM.ACTIVITY.PER.METER activity density for all groups at an altitude time for toroidal growth TA TC time constant for toroidal growth counter for cloud fall loop TIME TIME .STOP one of the output report times TK atmospher ic temperature in degrees K

| TRANSIT.TIME | time to cross a multiple burst cloud   |
|--------------|----------------------------------------|
| TRAP.CENTER  | center of trapezoid of integration     |
| TZ           | atmospher jic temperature lapse rate   |
| VAC          | True Air Speed of aircraft in m/s      |
| WHICHI       | menu selection command                 |
| WHICH\$      | menu selection command                 |
| WIND.SHEAR.X | longitudinal component of wind         |
| WIND.SHEAR.Y | crosswind component of the wind        |
| YIELDKT      | yield of weapon in kilotons            |
| ZAC          | height of aircraft                     |
| WORST.ALT    | estimat ed worst penetration altitude  |
| ZAC.HI       | highest penetration altitude           |
| ZAC.LO       | lowest penetration altitude            |
| ZAC.STEP     | distance between penetration altitudes |
| Z.STEPS      | the number of altitudes to be reported |
| ZM(G)        | altitude of particle in group G        |

0•

.

Appendix C

#### Particle Size Program

This program will compute 100 equal activity groups and 100 equal mass groups from the rm and  $\sigma_{rm}$  of a number size distribution. Examples of some number size distributions that have been proposed for nuclear clouds are given in Table I. See Chapter II for details.

The program is menu driven and easy to use. Simply input the requested data at the prompts; both the activity size and mass size groups will be computed and stored in a disk file. The program can be used by itself or called by the menu program in Appendix E.

```
8000 '2, 2.5, 3 moment
```

8010 'compute size (um) of 100 equal activity and equal mass groups 8020 'given Rm, sigma Rm, and volume fraction, find equal activity 8030 'and equal mass size groups from the number size distribution 804v '28 Dec 84 Capt Conners

8050 DIM RM(100)

8060 INPUT "What is the date and Lime"; DATE.TIME\$

8070 GOSUB 8991 : print header

8080 PRINT "Select a number size distribution from the following list:" 8090 PRINT

| 8100 | PRINT | # |   |          | Rm         | Sigma Rm" |
|------|-------|---|---|----------|------------|-----------|
| 8110 | PRINT | " |   | mic      | crometers" |           |
| 8120 | PRINT | " | 1 | NRDL-N61 | .00039     | 7,24"     |
| 8130 | PRINT | " | 2 | NRDL-C61 | .0103      | 5.38"     |
| 8140 | PRINT | " | 3 | NRDL-D   | .01        | 5.42"     |

| 8150                 | PR  | INT   | **       | 4          |     | TOR-   | - N       |             | .079        |            | 4.48"                  |
|----------------------|-----|-------|----------|------------|-----|--------|-----------|-------------|-------------|------------|------------------------|
| 8160                 | PR  | INT   | <b>1</b> | 5          |     | DELI   | FIC       |             | .204        |            | 4"                     |
| 8170                 | PR  | INT   | **       | 6          |     | USWI   | B-HI      |             | 3.48        |            | 2.72"                  |
| 8180                 | PR  | INT   | tt       | 7          |     | USWI   | B-LO      |             | 3.84        |            | 3"                     |
| 8190                 | PR  | INT   | 11       | 8          |     | FORI   | D-T       |             | 5.98        |            | 2.23"                  |
| 8200                 | PR  | INT   | ••       | 9          |     | RANI   | WSEG      |             | 10.6        |            | 2"                     |
| 8210                 | PR  | INT   | 11       | 10         |     | NRDI   | L-SII     |             | 27.1        |            | 1.48"                  |
| 8220                 | PR  | INT   | 11       | 11         |     | NRDI   | L-SI      |             | 36.8        |            | 1.51"                  |
| 8230                 | PR  | INT   | 11       | 12         |     | TOR-   | -C        |             | 50.6        |            | 1.36"                  |
| 8240                 | PR  | INT   | "        | 13         |     | othe   | er"       |             |             |            |                        |
| 8250                 | IN  | PUT   | WHI      | СН         | 2   |        |           |             |             |            |                        |
| 8260                 | IF  | WHI   | СНХ      | =          | 0   | THEN   | WHICHZ    | =           | 5           | : defau    | lt distribution        |
| 8270                 | IF  | WHI   | CHZ      | <          | 1   | OR WE  | lich7 >   | 13          | THEN 8070   |            |                        |
| 8280                 | IF  | WHI   | СНХ      | 2          | 1   | THEN   | DFILE\$   | =           | "NRDL-N61"  | :RM=.00039 | SIGMA.RM=7,24          |
| 8290                 | IF  | WHI   | CHZ      | =          | 2   | THEN   | DFILE\$   | =           | "NRDL-C61"  | :RM=.0103  | :SIGMA.RM=5.38         |
| <b>83</b> 0 <b>0</b> | IF  | WHI   | CHZ      | 2          | 3   | THEN   | DFILE\$   | Ŧ           | "NRDL-D"    | :RM=.01    | SIGMA.RM=5.42          |
| 8310                 | IF  | WHI   | CH X     | =          | 4   | THEN   | DFILE\$   | *           | "TOR-N"     | :RM=.079   | :SIGMA.RM=4.48         |
| 8320                 | IF  | WHI   | CHZ      | =          | 5   | THEN   | DFILE\$   | 12          | "Delf IC"   | :RM=.204   | :SIGMA.RM=4            |
| 8330                 | IF  | WHI   | CHZ      | =          | 6   | THEN   | DFILE\$   | =           | "USWB-HI"   | :RM=3.48   | :SIGMA.RM=2.72         |
| 8340                 | IF  | WHI   | СНХ      | =          | 7   | THEN   | DFILE\$   | æ           | "USWB-LO"   | :RM=3.84   | :SIGMA.RM=3            |
| 8350                 | IF  | WHI   | СНХ      | <b>1</b> 2 | 8   | THEN   | DFILE\$   | 91          | "FORD-T"    | :RM=5.98   | :SIGMA.RM=2.23         |
| 8360                 | IF  | WHI   | СНХ      | Ŧ          | 9   | THEN   | DFILE\$   | *           | "RANDWSEG"  | :RM=10.6   | :SIGMA.RM=2            |
| 8370                 | IF  | WHI   | CHZ      |            | 10  | ) THEN | I DFILES  | <b>,</b>    | "NRDL-SII"  | :RM=27.1   | :SIGMA.RM=1.48         |
| 8380                 | IF  | WHI   | СНХ      | =          | 11  | THEN   | I DFILES  | ) =         | "NRDL-SI"   | :RM=36.8   | :SIGMA.RM=1.51         |
| 8390                 | IF  | WHI   | СНХ      | 3          | 12  | ? THEN | ↓ DFILE\$ | \$ <b>•</b> | "TOR-C"     | :RM=50.6   | :SIGMA.RM=1.36         |
| 840 <b>0</b>         | IF  | WHI   | CHZ      | æ          | 13  | THEN   | 1 8430    |             |             |            |                        |
| 8410                 | PRI | INT   | "Di      | stı        | tit | outior | ı select  | ed          | is: "DFILES | 5" Rm ="RM | 1" Sigma Rm ="SIGMA.RM |
| 8420                 | FOI | ישת נ | T .V     | _          | 1   | TO 30  | )0 .NEV1  |             |             | 2/00       |                        |

C

8450 INPUT "MUST BE UPPER CASE: output file name (SOURCE)"; DFILE\$ 8460 INPUT "mean radius of particle (Rm) (microns)"; RM 8470 INPUT "sigma of mean radius"; SIGMA.RM 8480 OUTPUT.DFILE\$ = DFILE\$+".RMA" 8510 PI = 3.141598520 ALPHAO = LOG(RM)8530 BETA = LOG(SIGMA.RM)8540 SQR2PI.BETA = SQR(2\*PI)\*BETA : 'increase compute speed 8545 ALPHA(0) = ALPHA0 : 'used to produce equal number size distributions  $8550 \text{ ALPHA}(2) = \text{ALPHA}0 + 2 \times \text{BETA}^2$ :'≓area size 8560 ALPHA(1) = ALPHAO + 2.5\*BETA^2 : '=activity size by Frieling approx  $8570 \text{ ALPHA}(3) = \text{ALPHAO} + 3 \times \text{BETA}^2$ : =mass size 8580 FV = .68: for DELFIC activity 8590 N = 18600 'continue 8610 R = 0: dummy for A(R) 8620 RADIUS = 0: radius of particle in um 8630 AREA = 0:'initial area under curve at 0 radius 8640 LAST.A(R) = 0 : initial activity at 0 radius 8650 G = 1: 'group # counter 8660 DELTAR = .01 :'initial dr 8670 TRAP.CENTER = .005 : 'half a hundredth; center of 1% activity increment
```
8700 RADIUS = RADIUS + DELTAR
8710 A(R) = EXP(-.5*((LOG(RADIUS)-ALPHA(N))/BETA)^2)/(SOR2PI.BETA*RADIUS)
8720 IF RIGHT(DFILE_{6}) = "DELFIC" AND N = 1
THEN A(R) = (FV/(SOR2PI.BETA*RADIUS))*EXP(-.5*((LOG(RADIUS)-ALPHA(3))/BETA)^2)
     + ((1-FV)/(SOR2PI.BETA*RADIUS))*EXP(-.5*((LOG(RADIUS)-ALPHA(2))/BETA)^2)
8730 LAST AREA = AREA
8740 AREA = AREA + (A(R) + LAST.A(R))*DELTAR*.5 : 'trapezoidal integration
8750 LAST.A(R) = A(R)
8760 IF AREA < TRAP.CENTER GOTO 8700 : 'is curve area = to 17? if not, go back
8770 RM(G)=(TRAP.CENTER-LAST.AREA)*DELTAR/(AREA-LAST.AREA) + (RADIUS - DELTAR)
8780 IF G > 1 THEN DELTAR = (RM(G)-RM(G-1))*.1
8790 G = G + 1
8800 TRAP.CENTER = .01*G - .005
8810 IF G <= 100 GOTO 8700
8840 OPEN "O", #1, OUTPUT.DFILE$
8850 FOR G = 1 TO 100 STEP 5
8860 PRINT#1,RM(G);RM(G+1);RM(G+2);RM(G+3);RM(G+4)
8870 NEXT G
8880 PRINT#1,"Rm = ";RM;"; sigma Rm = ";SIGMA.RM
8890 PRINT#1," " :PRINT#1," "
8900 IF N=1 THEN T$="activity" ELSE T$="mass"
8910 PRINT#1, "Mean radii in microns of the 100 equal "T$" groups"
8920 PRINT#1,0UTPUT.DFILE$"; computed from rm = ";RM;"; sigma rm = ";SIGMA.RM
8930 PRINT#1, "using inverse transform alpha = "N")"
8940 PRINT#1, "from the program SIZE.BAS 28 Dec 84 by Capt. Conners"
8950 PRINT#1.DATE.TIME$
```

8960 CLOSE

# Aircraft Data

## And Sample Specification Program

An Aircraft Specification Frogram must be constructed to input the nec\_essary information about the aircraft into the main program. The minimum data needed for a variety of aircraft are listed in the BASIC AIRCRAFT DATA table below. From this, the data listed in the DERIVED AIRCRAFT DATA table must be computed by the user or the user's program. A sample program is included for the B-1B bomber. A similar program must be constructed for each aircraft desired. The program must start at line 7000 and the program name must have an .SPC file name extension.

The cabin geometry factor K can be computed using the program in Appendix K.

# BASIC AIRCRAFT DATA

| Aircraft | Cabin<br>Mass | Cabin<br>Area | Pressure<br>Volume | Mass<br>Flow | @30,000<br>feet | Radius |
|----------|---------------|---------------|--------------------|--------------|-----------------|--------|
|          | KG            | M 2           | M3                 | KG/MIN       | MACH            | M      |
| B-1B ··· | 11,511        | 107.9         | 28.3               | 17           | .85             | 1.07   |
| B-52G    | 11,262        | 81.6          | 51.9               | 22           | .72             | 1.75   |
| B-52H    | 10,854        | 81.6          | 51.9               | 22           | .72             | 1.75   |
| E-3      | 36,949        | 408.8         | 356.1              | 61.5         | .53             | 1.79   |
| E-4B     | 137,551       | 1,282         | 1686.0             | 276          | .53             | 3.28   |
| EC-135   | 40,750        | 310           | 244,2              | 50           | .50             | 1.79   |
| KC-135   | 18,073        | 310           | 232.2              | 50           | .72             | 1.79   |

### DERIVED AIRCAPT DATA

| Aircraft | Mass     | Transmission       | Poeudo | Geometry    | Velocity |
|----------|----------|--------------------|--------|-------------|----------|
|          | Integral | ractor             | Length | ractor<br>V | N/C      |
|          | KG/M 2   | <sup>⊥</sup> gamma | п      | ĸ           | n/ 5     |
| B-1B     | 106.63   | .5265              | 7.9    | 1.395       | 279.2    |
| Б-52G    | 138.06   | .4360              | 5.4    | 2.035       | 231.5    |
| B-52H    | 133.06   | .4493              | 5.4    | 2.035       | 231.5    |
| E-3      | 90.38    | .5808              | 35.4   | 2.505       | 164.7    |
| E-4B     | 107.29   | .524               | 50     | 4.586       | 164.7    |
| EC-135   | 131.45   | .4537              | 24.3   | 2.468       | 154.2    |
| RC-135   | 58.30    | .7043              | 23.1   | 2.459       | 231.5    |

\*\*\*\*\*\*\*\*\*

7010 '4 dec Capt. Conners for Dr. Bridgman 7030 VAC = 279.2 : 'M/S TAS M.85 @30,000' 7040 PRESSURE.VOLUME = 28.34 :'M<sup>3</sup> crew and forward avionics 7050 MASS.FLOW = 17.01 :'KG/min range 11.34 to 22.68 depending on altitude, temperature, and leak rates. Source uses 21.64 kg/min. : KG/S bypass ratio = 2.3 7055 engine.mass.flow = 161 7070 PV.MASS = 11511.1 : 'KG to station 542" 7080 PV.AREA = 107.9:'M<sup>2</sup> wetted area to station 542" 7090 MASS.INTEGRAL = PV.MASS/PV.AREA : 'KG/M^2 7100 MJT.213 = 6.01271E-03: M^2/KG for aluminum at 1 MeV 7110 'ausume average gamma = 1 MeV and fuselage materials have similar gamma ray crossections (low z). Total error in MUT estimated to be -0/+107based on the .7 and 1 MeV xsec of A1, C, O. See RB Drinkwater gne/ph/74-3 7120 gamma.tx.factor = EXP(-MUT.Z13\*MASS.INTEGRAL) 7125 \_abin.geometry = 1.39961 : space integral of cabin 7130 'since all fuel is carried aft of the crew compartment, it is part of 7140 'an infinite shield and does not contribute to gamma.tx.factor

7150 'source: phone calls to George Clark, RI 16 Nov 84; letter 3 Dec 84; 7155 'visit to B-1 SPO at WPAFB 16 Nov 84 7170 'filter routine 7190 FOR G = 1 TO 100 7210 IF RM(G) < 5 THEN filter.tx.factor(G) = 11 7220 IF  $RM(G) \ge 5$  AND  $RM(G) \le 10$  THEN filter.tx.factor(G) = .1 7230 IF RM(G) > 10 THEN filter.tx.factor(G) = 0 7235 filter.tx.factor(G) = 17240 NEXT G 7250 FILTER.CAPACITY = .225 : 'KG 7260 'trap 225 g dust defined by m(R)=6.5-ln(R) AND l0microns<= R <= 80microns 7270 'filter.tx.factor=1 for none trapped;=0 if all trapped; =.1 if 90% trapped 7280 'source: TFD-82-890 "Radiation Threat From Nuclear Dust In The ECS Particle Filter", W.Clark Powell III, Rockwell International 16 Dec 82, pl3 7300 chain"DOSE",4000,ALL

计学校 计算机 化氯化合物 化化合物 化合物合物 化合物合物 化合物合物合物

באלי שנינייישייניניייינייי איז

Л

Appendix E

### Menu Program

This program prompts the user for all the data necessary for the main program to compute dose to the aircrew or the dust ingested by the aircraft. To save memory and increase the speed of the main program, many housekeeping functions are accomplished by this part of the code. The program is written in Microsoft Basic version 5.02. No exotic software or machine dependent functions are used so that the code is highly portable.

The code is heavily documented; out of 40K of code, about 12K is documentation. The program is laid out in modules and is structured to prevent impediments in following the program flow. Long logical lines are broken up into a series of shorter physical lines. A semicolon : separates logical lines on a single physical line, and an apostrophe ' is a short form of rem, the BASIC remark statement.

The program is run by entering BASIC and LOADing the menu program. The menu program takes over at this point and prompts the user for all necessary input. All other programs are called automatically by the CHAIN statement. All programs and data files must be on the same disk or the filename calling the CHAINed program or data file must be preceeded by the drive designator.

1000 ON ERROR GOTO 3810

1010 'master menu for dose and dust program
1020 'set up default scenario or accept user inputs
1030 '

1040 '2,7,8,20 dec 84 Capt. Conners for Dr. Bridgman

1050 PRINT CHR\$(26) :'clear screen 1060 PRINT "AIRCREW RADIATION DOSE AND DUST DENSITY PROGRAM" :PRINT 1070 PRINT "Version 8.0-----28 Dec 1984" 1080 PRINT "Created by Capt. Stephen P. Conners for Dr. Bridgman" 1090 PRINT STRING\$(10,13) 1100 PRINT "All keyboard entries must be terminated by <CR>" :PRINT 1110 INPUT "Enter the current date and time"; DATE.TIME\$ :PRINT 1120 PRINT "Do you wish to:" 1130 PRINT "1 Use the standard scenario" 1140 PRINT "2 Create your own scenario" : PRINT 1150 INPUT WHICHZ : IF WHICHZ = 2 THEN 2320 1160 IF WHICH  $\overline{z}$  < 0 OR WHICH  $\overline{z}$  > 1 THEN 1120 1190 WHICH\$ = "DEFAULT OPTION FOR STANDARD SCENARIO" 1200 YIELDKT = 1000: 1 megaton 1210 NUMBER.BOMBS = 1 : fission FRACTION 1220 FF = .51230 DF = .333333: dust FRACTION 1/3 ton of dust per ton of yield 1240 SIZE\$ = "DELFIC" : 'size distribution rm=.2035, sigma=4. 1250 DUST.DOSE\$ = "dose" : select crew dose, not dust density output 1260 ACTIVITY.REPORT\$ = "n" 1270 ACTSIZE.REPORT\$ = "n" 1280 INPUT.FILE\$ = SIZE\$ + ".RMA" 1290 RHOFALLOUT = 2600: 'KG/M<sup>3</sup> density of silicate rock 1310 AIRCRAFT\$ = "KC-135" 1320 AIRCRAFT.FILE\$ = AIRCRAFT\$ + ".SPC"

ala dia dia dia dia dia dia dia dia dia

1350 MSN.TIME.REM = 8: HR crew is exposed to cabin dust for 8 hours after encounter 1360 HOW.MANY.TIMES = 41370 TIME.STOP(1) = 1: HR 1380 TIME.STOP(2) = 21390 TIME.STOP(3) = 41400 TIME.STOP(4) = 8 $1420 \ 2.STEPS = 6$ 1430 ZAC.HI = 12000 1440 ZAC.L0 = 2000 : **^**M 1450 ZAC.STEP = 20001460 WIND SHEAR X = 0: (KM/HR)/KM for computing sigma x : (KM/HR)/KM for computing sigms y 1470 WIND.SHEAR.Y = 1 1490 OUTPUT.FILE\$ = "DELFIC.DOP" 1500 PRINT CHR\$(26) : PRINT WHICH\$ : PRINT 1510 PRINT "WEAPON/TARGET DATA:" 1520 PRINT "Number of weapons ------"NUMBER.BOMBS 1530 IF NUMBER.BOMBS > 1 THEN PRINT "Width of target field -----"FIELD.WIDTH/1000"KM 1540 PRINT "Weapon yield -----"YIELDKT"kt" 1550 PRINT "Fission fraction -----"FF 1560 PRINT "Dust fraction -----"DF 1570 PRINT "The size distribution input file is- "INPUT.FILE\$ 1580 PRINT "The soil density is ------"RHOFALLOUT"KG/M^3" :PRINT 1590 PRINT "AIRCRAFT DATA:"

1600 PRINT "The aircraft specification file is - "AIRCRAFT.FILE\$ :PRINT 1610 FOR DELAY = 1 TO 1500 :NEXT DELAY 1620 PRINT CHR\$(26) :PRINT WHICH\$ :PRINT 1630 PRINT "TIME DATA:" 1640 PRINT "Time from cloud penetration" 1650 PRINT "to end of mission -----"MSN.TIME.REM"HR" :PRINT 1660 PRINT "Reporting times:" 1670 FOR T = 1 TO HOW.MANY.TIMES 1680 PRINT TIME.STOP(T)"HR" 1690 NEXT T 1700 FOR DELAY = 1 TO 1500 :NEXT DELAY 1710 PRINT CHR\$(26) :PRINT WHICH\$ :PRINT 1720 PRINT "WIND AND ALTITUDE DATA:" 1730 PRINT "Wind shear X (along track) -----"WIND.SHEAR.X"(KM/HR)/KM" 1740 PRINT "Wind shear Y (cross track) -----"WIND.SHEAR.Y"(KM/HR)/KM" 1750 PRINT : PRINT "Reporting altitudes:"  $1760 \text{ ZAC} = \text{ZAC} \cdot \text{HI} + \text{ZAC} \cdot \text{STEP}$ 1770 FOR Z = 1 TO Z.STEPS 1780 ZAC = ZAC - ZAC.STEP1790 PRINT ZAC"M" 1800 NEXT Z 1810 FOR DELAY = 1 TO 1500 :NEXT DELAY 1820 PRINT CHR\$(26) : PRINT WHICH\$ : PRINT 1830 PRINT "The output file will be named ----- "OUTPUT.FILE\$ :PRINT 1840 PRINT DATE.TIME\$ 1850 DIM RM(100), ZM(111), GAUSSIANZM(101), AR(101), PERCENT. 25(101), PER(101), SIGMAZ(101), CABIN.AR(101), FILTER.AR(101), FILTER.TX.FACTOR(101) 1860 DIM SUM.ACTIVITY.PER.METER(Z.STEPS),A3(Z.STEPS),CABIN.ACTIVITY(Z.STEPS),

· ፋት የት የት የት የትንት የትለት። አለት የለአ

)

102

CABIN.DOSE(Z.STEPS), SKYSHINE.DOSE(Z.STEPS), GAMMA.MFP(Z.STEPS),

STAR\$(2.ST<sup>PS</sup>), CABIN.SUM.ACTIVITY.PER.METER(2.STEPS)

1870 DIM FILTER.SUM.ACTIVITY.PER.METER(Z.STEPS), FILTER.ACTIVITY(Z.STEPS), MAXG(Z.STEPS),ENGINE.MASS(Z.STEPS)

1960 PRINT "Now loading "INPUT.FILE\$

1970 OPEN "I", #2, INPUT.FILE\$

1980 FOR G = 1 TO 100

1990 INPUT#2,RM(G) : radii in UM of 100 =activity groups

2000 ZM(G) = MINTERCEPT+MSLOPE\*2\*RM(G) : 'METERS altitude of ""

2010 SIGMAZ(G) = (DINTERCEPT+DSLOPE\*2\*RM(G))/4 : 'M DeltaZ/2 = 2 sigma

2020 NEXT G

2030 INPUT#2,SIZE.LABEL\$

2040 CLOSE#2

2130 TC=TC\*1.05732\*(1!-.5\*EXP(-((HC/304.8)^2))/(25^2)): correction from Polan 2160 Al.PERCENT=5.3E+08\*YIELDKT\*FF/100 : 'unittime activity in CURIES/group 2170 ACCELLG = 9.80665 : 'M/S<sup>2</sup> acceleration due to gravity 2180 LASTG = 100: initially 100 -size groups are used  $2190 \ LOG10 = LOG(10)$ : used to convert ln to log 2200 MASS1\_PERCENT = DF\*YIELDKT\*(1000\*2000\*.4535923700000003#)/100 : 'KG/group 2210 MEV = 1:'Ev\*le6 :'M^2/KG tissue absorption xsection @1 MeV 2220 MUARHO = .003062230 MUT = 6.73015E-03 : "M<sup>2</sup>/KG air xsection (Std Atm) @1 MeV 2240 DCF=3.7E+10\*1.6E-11\*3600\*MUARHO\*MEV : dose conversion factor 2250 SQR2PI = SQR(2\*3.14159)2260 STAB.TIME = (385.295-99.1476\*X+64.6314\*X^2-8.21379\*X^3+.323598\*X^4)/3600 : HRS time for cloud stabilisation 2270 TIME = STAB.TIME : 'minimum time is cloud stab time : minimum time is cloud stab time 2280 TIME.STOP = STAB.TIME 2300 PRINT "Now loading "AIRCRAFT\$" specifications file." 2310 CHAIN AIRCRAFT.FILE\$,7000,ALL 2330 INPUT "What is the title for your scenario"; WHICE\$ 2340 WHICH\$ = "CUSTOM SCENARIO: " + WHICH\$ 2360 GOSUB 3610 : print header 2370 PRINT : PRINT "Do you want a:" 2380 PRINT "1 Crew dose report" 2390 PRINT "2 Dust density report" : PRINT 2400 INPUT "(Default = 1 (dose))", WHICHZ

2410 IF WHICHZ = 1 OR WHICHZ = 0 THEN DUST.DOSE\$ = "dose" :GOTO 2440 2420 IF WHICHZ = 2 THEN DUST.DOSE\$ = "dust" :GOTO 2500 2430 GOTO 2780 2440 PRINT "You have selected a crew dose report" : PRINT 2450 INPUT "Do you wish an activity report (y/n)";ANS\$ 2460 IF ANS\$ = "N" OR ANS\$ = "n" THEN ACTIVITY.REPORT\$ = "n" 2465 PRINT 2470 INPUT "Do you wish a prominent particle report (y/n)";ANS\$ 2480 IF ANS\$ = "N" OR ANS\$ = "n" THEN ACTSIZE.REPORT\$ = "n" 2490 GOTO 2530 2500 PRINT "You have selected a dust density report" : PRINT 2502 INPUT "Do you wish a cloud mass report (y/n)"; ANS\$ 2504 IF ANS\$ = "N" OR ANS\$ = "n" THEN MASS.REPORT\$ = "n" 2506 PRINT 2510 INPUT "Do you wish a prominent particle report (y/n)";ANS\$ 2520 IF ANS\$ = "N" OR ANS\$ " "n" THEN MASS.SIZE.REPORT\$ = "n" 2540 GOSUB 3610 : print header 2550 PRINT : PRINT "What is the weapon yield in KILOTONS?" 2560 INPUT "(Default = 1000 kt)", YIELDKT 2570 IF YIELDKT = 0 THEN YIELDKT = 1000 2580 PRINT : PRINT "How MANY weapons created the cloud?" 2590 INPUT "(Default = 1)", NUMBER.BOMBS 2600 IF NUMBER.BOMBS = 0 THEN NUMBER.BOMBS = 1 2610 IF NUMBER. pol'BS > 1 THEN GOSUB 3720 2620 IF NUMBER.BOMBS < 1 THEN 2580 2630 PRINT :PRINT "What is the fission FRACTION of the weapon?" 2640 INPUT "(Default = .5)", FF

2650 IF FF < 0 OR FF > 1 THEN 2630 2660 IF FF = 0 THEN FF = .52670 PRINT : PRINT "What is the dust FRACTION of the weapon?" 2680 INPUT "(Default = DELFIC prediction)",DF 2690 IF DF < 0 OR DF > 1 THEN 2670 2700 X = LOG(YIELDKT)2710 IF DF = 0THEN DF = .204731-.0240532\*X+1.39148E-03\*X^2-4.88467E-05\*X^3+8.62805E-07\*X^4 2730 GOSUB 3610 : print header 2740 PRINT "What is the size distribution input FILE NAME?" 2750 INPUT "(Default = DELFIC)", SIZE\$ 2760 IF SIZE\$ = "" THEN SIZE\$ = "DELFIC" 2770 IF DUST.DOSE\$ = "dose" THEN INPUT.FILE\$ = SIZE\$ + ".RMA" 2780 IF DUST.DOSE\$ = "dust" THEN INPUT.FILE\$ = SIZE\$ + ".RMM" 2790 PRINT : PRINT "What is the soil density in KG/M<sup>3</sup>?" 2800 INPUT "(Default = 2600 KG/M^3)", RHOFALLOUT 2810 IF RHOFALLOUT = 0 THEN RHOFALLOUT = 2600 2830 GOSUB 3610 : print header 2840 PRINT "Select an aircraft from the following list:" :PRINT 2850 PRINT " 1 B-1B" 2860 PRINT " 2 B-52G" 2870 PRINT " 3 B-52H" 2880 PRINT " 4 E-3" 2890 PRINT " 5 E-4B" 2900 PRINT " EC-135" 6 2910 PRINT " 7 KC-135"

2920 PRINT " 8 other" 2930 INPUT WHICHZ 2940 IF WHICHZ = 0 THEN WHICHZ = 7 : default aircraft 2950 IF WHICHZ < 1 OR WHICHZ > 8 THEN 2830 2960 IF WHICHZ = 1 THEN AIRCRAFT\$ = "B-1B" 2970 IF WHICH  $\overline{z}$  = 2 THEN AIRCRAFT = "B-52G" 2980 IF WHICH Z = 3 THEN AIRCRAFT S = "B-52H"2990 IF WHICH Z = 4 THEN AIRCRAFT S = "E-3"3000 IF WHICHZ = 5 THEN AIRCRAFT\$ = "E-4B" 3010 IF WHICHZ = 6 THEN AIRCRAFT\$ = "EC-135" 3020 IF WHICHZ = 7 THEN AIRCRAFT\$ = "KC-135" 3030 IF WHICHZ = 8 THEN 3860 3040 PRINT "Aircraft selected is: "AIRCRAFT\$ 3050 FOR DELAY = 1 TO 300 :NEXT DELAY 3060 AIRCRAFT.FILE\$ = AIRCRAFT\$ + ".SPC" 3080 DIM TIME.STOP(10) 3090 GOSUB 3610 : print header 3100 ERASE TIME.STOP 3110 PRINT "How many cloud encounters do you wish to examine?" 3120 INPUT "(Default = 4)", HOW.MANY.TIMES 3130 IF HOW.MANY.TIMES=0 THEN HOW.MANY.TIMES = 4 :DIM TIME.STOP(HOW.MANY.TIMES) :TIME.STOP(1) = 1: TIME.STOP(2) = 2:TIME.STOP(3) = 4: TIME.STOP(4) = 8:GOT0 3220 3140 DIM TIME.STOP(HOW.MANY.TIMES) 3150 PRINT "Please enter time in HOURS since burst in increasing order." 3160 PRINT

3170 FOR E = 1 TO HOW.MANY.TIMES 3180 PRINT "What is time"E"?" :INPUT TIME.STOP(E) 3190 IF TIME.STOP(E) < .15THEN PRINT "Time must be exceed .15 HR to allow cloud stabilization" :PRINT "and the Way-Wigner decay approximation." :GOTO 3150 3200 IF TIME.STOP(E) < TIME.STOP(E-1) THEN 3150 3210 NEXT E 3.220 PRINT "The following times will be used:" 3230 FOR E = 1 TO HOW.MANY.TIMES :PRINT TIME.STOP(E)"HR" :NEXT E 3240 INPUT "Is this acceptable (y/n)";ANSWER\$ 3250 IF ANSWER\$ = "N" OR ANSWER\$ = "n" THEN 3090 3260 PRINT 3270 PRINT "How many HOURS from encounter time to end of mission ?" 3280 INPUT "(Default = 8 Hr)", MSN.TIME.REM 3290 IF MSN.TIME.REM = 0 THEN MSN.TIME.REM = 8 3310 GOSUB 3610 : print header 3320 PRINT "All altitudes are in METERS" : PRINT 3330 INPUT "What is the HIGHEST penetration altitude you wish to use"; ZAC.HI 3340 INPUT "What is the LOWEST penetration altitude you wish to use"; ZAC.LO 3350 INPUT "What altitude INCREMENT do you wish to use"; ZAC.STEP 3360 IF ZAC.HI = 0 THEN ZAC.HI = 12000 : ZAC.LO = 2000 : ZAC.STEP = 2000 3370 IF ZAC.STEP = 0 THEN 3310 3380 Z.STEPS = INT(((ZAC.HI-ZAC.LO)/ZAC.STEP)+1.49999) 3400 GOSUB 3610 : print header 3410 PRINT "The following altitudes will be used:" :PRINT 3420 ZAC = ZAC.HI + ZAC.STEP

3430 FOR Z = 1 TO Z.STEPS :ZAC = ZAC - ZAC.STEP :PRINT ZAC"M" :NEXT Z 3440 INPUT "Is this acceptable (y/n)";ANSWER\$ 3450 IF ANSWER\$ = "N" OR ANSWER\$ = "n" THEN 3310 3470 GOSUB 3610 : print header 3480 PRINT "Wind shear is given in (KM/HR)/KM" 3490 PRINT "What is the wind shear in X (along track)" 3500 INPUT "(Default = 0)"; WIND.SHEAR.X 3510 PRINT "What is the wind shear in Y (cross track)" 3520 INPUT "(Default = 1)"; WIND.SHEAR.Y 3530 IF WIND.SHEAR.Y = 0 THEN WIND.SHEAR.Y = 1 3540 IF WIND.SHEAR.Y = 1 THEN INPUT "Do you want Y shear to be 0?(y/n)", ANSWER\$ 3550 IF ANSWER\$ = "Y" OR ANSWER\$ = "y" THEN WIND.SHEAR.Y = 0 3560 PRINT : PRINT "What is the output FILE NAME" 3565 IF DUST.DOSE\$ = "dose" THEN D\$ = ".D" ELSE D\$ = ".M" 3570 PRINT "(Default is "SIZE\$;D\$"OP)" 3580 INPUT OUTPUT.FILE\$ 3590 IF OUTPUT.FILE\$="" AND DUST.DOSE\$="dose" THEN OUTPUT.FILE\$=SIZE\$ + ".DOP" 3595 IF OUTPUT.FILE\$="" AND DUST.DOSE\$="dust" THEN OUTPUT.FILE\$=SIZE\$ + ".MOP" 3600 GOTO 1500 3620 PRINT CHR\$(26) : clear screen 3630 PRINT WHICH\$ :PRINT 3640 PRINT "All file names MUST be in UPPERCASE!" 3650 PRINT "Hit <CR> to insert the default value for any input." 3660 PRINT 3670 RETURN

C

6

(

3690 PRINT "This option currently unimplemented." :FOR DELAY = 1 TO 700 :NEXT DELAY :GOTO 2740 3710 PRINT "This option currently unimplemented." :FOR DELAY = 1 TO 700 :NEXT DELAY :GOTO 2830 3730 PRINT 3740 PRINT "The target field is assumed to be square." 3750 INPUT "What is its width in KILOMETERS?", FIELD. WIDTH 3760 IF FIELD.WIDTH < .1 THEN 3740 3770 FIELD.WIDTH = FIELD.WIDTH\*1000 : 'convert KM to METERS 3780 BOMB, DENSITY = NUMBER, BOMBS/FIELD.WIDTH 3790 RETURN 3800 IF ERR = 53 AND ERL = 1970 THEN CHAIN"SIZE",8000,ALL 3810 IF ERR = 53 AND ERL = 2310 THEN PRINT "This file does not exist on the specified disk drive." 3820 IF ERR = 53 AND ERL = 2310 THEN FRINT "You must create and/or place the specified file on the correct drive." :'Hey, you! 3830 PRINT STRING\$(10,7) 3840 ON ERROR GOTO 0 3850 END 3860 PRINT "This option currently unimplemented" 3870 FOR DELAY = 1 TO 1500 : NEXT DELAY 3880 GOTO 2820

Appendix F

#### Main Program

4000 'DOSE .BAS

4010 'MegaCi/m at a given alt at a given time after burst 4020 'find MCi/m^2 & MCi/m^3, compute skyshine and dust dose for crew 4030 'using sigmaz(G) = dslope and dintercept 4040 '15,16 Dec 84 Capt Stephen P. Conners for Dr. Bridgman 4050 PRINT "US Standard Atmosphere (Mid Latitude, Spring/Fall). No vertical winds." 4060 GOSUB 5120 : print output header 4070 IF DUST.DOSE\$ = "dust" THEN AI .PERCENT = MASSI .PERCENT : 'for dust report 4080 GOTO 6200 : 'main program; subroutines first for speed 4110 IF ZM(G) < 0 THEN RHOAIRZ = 1.22473 :ETAZ = 1.78938E-05 :GOTO 4250 4120 IF ZM(G) < 11000 THEN TK=288.15:PK=101300!:LK=~.006545 :ZK=0 :GOTO 4200 4130 IF ZM(G) < 20000 THEN TK=216.65:PK=22690 :LK=0 :ZK=11000 :GOTO 4200 4140 IF ZM(G) < 32000 THEN TK=216.65:PK=5528 :LK=.001 :ZK=20000 :GOTO 4200 4150 IF ZM(G) < 47000! THEN TK=228.65: PK=888.8 : LK=.0028 : 2K=32000 : GOTO 4200 4160 IF ZM(G) < 52000! THEN TK=270.65:PK=115.8 :LK=0 :ZK=47000!:GOTO 4200 4170 IF ZM(G) < 71000! THEN TK=270.65:PK=115.8 :LK=-.00283:ZK=52000!:GOTO 4200 4180 IF ZM(G) < 848521 THEN TY=214.65:PK=3.956 :LK=-.002 :ZK=710001:GOTO 4200 4190 IF ZM(G) >= 84852! THEN PRINT "Cloud MUCH too high! zm = "ZM(G):END 4200 IF LK = 0 THEN TZ=TK : PZ=PK\*EXP((-.034164\*(ZM(G)-ZK))/TK):GOTO 4230 4210  $TZ=TK + LK*(ZM(G) - ZK) : PZ=PK*(TK/TZ)^{(.034164/LK)}$ :'if LK <> 0 4220 'tz = temperature in degrees K : pz = pressure in TORR

4230 RHOAIRZ=(28,964/8314)\*(PZ/TZ) : 'density KG/M<sup>3</sup> 4240 ETAZ=(TZ)^1.5\*1.458E-06/(TZ+110.4) : 'dynamic viscosity KG/M-S 4250 RETURN 4290 IF ZM(G) <0 THEN G.AT.Z = ACCELLG:GOTO 4310: realistic settling rate@zm=0 4300 G.AT.2=ACCELLG\*6370.95^2/(6370.95+ZM(G)/1000)^2 : correct g for altitude 4310 Q = 32\*RHOAIR2\*RHOFALLOUT\*G.AT.2\*(RM(G))^3/(3\*ETAZ^2) : 'q=Re^2\*Cd  $4320 \ LOG10.Q = LOG(Q)/LOG10$ 4330 IF Q < 140 THEN REYNOLDS.NUMBER = Q/24- 2.3363E-04\*Q^2 + 2.0154E-06\*Q^3 - 6.9105E-09\*Q^4 4340 IF Q >= 140 THEN REYNOLDS.NUMBER =  $10^{(-1.29536 + .986*(LOG10.Q))}$ .046677\*(LOG10.Q)<sup>2</sup> + .0011235\*(LOG10.Q)<sup>3</sup>) 4350 IF Q > 4.5E+07 THEN PRINT "q too large = "Q 4360 FALL.VELOCITY = REYNOLDS.NUMBER\*ETAZ/(2\*RHOAIRZ\*RM(G)) : m/s 4370 FALL.VELOCITY = FALL.VELOCITY\*(1 + 1.165E-07/(RHOAIRZ\*RM(G))) 4380 'correction for drag "slip" at high altitude 4390 ZM(G) = ZM(G) - FALL.VELOCITY\*DELTAT\*3600 : 'new altitude after deltat 4400 RETURN 4430 IF TIME > 3! THEN TA = 3! ELSE TA = TIME 4440 SIGMAX = SQE((SIGMA0^2)\*(1!+(8!\*TA)/TC)) + (SIGMAZ(MAXG(Z.STEP))\*WIND.SHEAR.X\*TIME)^2)  $4450 \text{ SIGMAY} = \text{SQR}((\text{SIGMA0}^2) * (11 + (81 * TA) / TC))$ + (SIGMAZ(MAXG(Z.STEP))\*WIND.SHEAR.Y\*TIME)^2) 4460 DELTAY = 0: 'M fly through center of cloud deltay = y1 - y0 in meters 4470 FX = 1 : by definition 4480 FY =  $EXP(-.5*((DELTAY/SIGMAY)^2))/(SOR2PI*SIGMAY)$ 

4490 IF NUMBER.BOMBS = 1THEN BURST.AMP.FACTOR = 1 ELSE BURST.AMP.FACTOR = BOMB.DENSITY\*(SQR2PI\*SIGMAY) 4500 CABIN.SUM.ACTIVITY.PER.METER(Z.STEP) = CABIN.SUM.ACTIVITY.PER.METER(Z.STEP)\*BURST.AMP.FACTOR 4510 FILTER.SUM.ACTIVITY.PER.METER(Z.STEF) = FILTER.SUM.ACTIVITY.PER.METER(Z.STEP)\*BURST.AMP.FACTOR 4520 CA2 = CABIN.SUM.ACTIVITY.PER.METER(Z.STEP)/(SQR2PI\*SIGHAY) 4530 FA2 = FILTER.SUM.ACTIVITY.PER.METER(2.STEP)/(SQR2PI\*SIGMAY) 4540 A3(2.STEP) = (CA2 + FA2)/(SQR2PI\*SIGMAX)4550 G=111 : 2M(G) = ZAC : GOSUB 4090 : 'us std atm; fetch rhoairz 4560 CABIN.ACTIVITY(Z.STEP) = CA2\*(MASS.FLOW/60)/(RHOAIRZ\*VAC) 4570 FILTER.AC11VITY(Z.STEP) = FA2\*(MASS.FLOW/60)/(RHOAIRZ\*VAC) 4580 ENGINE\_MASS(2.STEP) = (CA2 + FA2)\*(ENGINE\_MASS\_FLOW)/(RHOAIRZ\*VAC) 4590 CABIN.DOSE.RATE=DCF\*CABIN.ACTIVITY(2.STEP)\*CABIN.GEOMETRY/PRESSURE.VOLUME 4600 CABIN.DOSE(2.STEP) = 5\*CABIN.DOSE.RATE\*(TIME^-.2-(TIME+MSN.TIME.REM)^-.2) 4610 MUTRHO = MUT\*RHOAIRZ : M<sup>2</sup>/KG air cross section at Z 4620 CAMMA.MFP(Z.STEP) = 1/MUTRHO4630 IF GAMMA.MFP(2.STEP) < .2\*SIGMAX THEN STAR(z.STEP) = ""ELSE STAR(2.STEP) = "\*"4640 FZ = (CABIN.SUM.ACTIVITY.PER.METER(Z.STEP) + FILTER.SUM.ACTIVITY.PER.METER(Z.STEP)) 4650 D1 = DCF\*(FZ/MUTRHO)\*(FY/(VAC\*3600)) 4660 SKYSHINE\_DOSE(Z.STEP) = D1\*(TIME^-1.2)\*GAMMA.TX.FACTOR 4670 IF NUMBER.BOMBS = 1 THEN RETURN : else .680 'BURST.AMP.FACTOR = BOMB.DENSITY\*(SQR2PI\*SIGMAY) 4690 IF SIGMAY < (FIELD.WIDTH/1000)/SQR(NUMBER.BOMBS) THEN SHARP\$ = "#" 4730 DELTAX = 0 : Fly through center of cloud 4740  $FX = EXP(-.5*((DELTAX/SIGMAX)^2))/(SQR2PI*SIGMAX)$ 4750 TRANSIT.TIME = (2\*2\*SIGMAX)/(VAC\*3600) : 'HRS to cross 2 sigma cloud

ĩ

4760 SKYSHINE.DOSE(Z.STEP) = D1\*GAMMA.TX.FACTOR\*(FX\*VAC\*3600)\*5\* ((TIME-TRANSIT.TIME/2)^-.2-(TIME+TRANSIT.TIME/2)^-.2) : The overlapped gaussians create a cloud with little horizontal variation 4770 RETURN 4800 'activities are at unit time 4810 ZAC = ZAC.HI + ZAC.STEP: start at zac.hi 4820 FOR Z.STEP = 1 TO Z.STEPS4830 ZAC = ZAC - ZAC.STEP 4840 CABIN.SUM.ACTIVITY.PER.METER = 0 4850 FILTER.SUM.ACTIVITY.PER.METER = 0 4860 FOR G = 1 TO LASTG4870 IF ABS(ZAC - ZM(G)) > 3\*SIGMAZ(G) THEN GOTO 4960 4880 IF ABS(ZAC-ZM(G)) < ABS(ZAC-ZM(G-1)) THEN MAXG(Z.STEP) = G : top down!  $4890 \text{ GAUSSIANZM}(G) = \text{EXP}(-.5*((ZAC-ZM(G))/SIGMAZ(G))^2)/(SQR2PI*SIGMAZ(G))$ 4900 'gaussian part of zm(G) contributing to activity at ZAC 4910 AR(G) = A1.PERCENT\*GAUSSIANZM(G)4920 CABIN.AR(G) = AR(G)\* FILTER.TX.FACTOR(G) 4930 FILTER.AR(G) = AR(G)\*(1-FILTER.TX.FACTOR(G)) 4940 CABIN.SUM.ACTIVITY.PER.METER= CABIN.SUM.ACTIVITY.PER.METER + CABIN.AR(G) 4950 FILTER.SUM.ACTIVITY.PER.METER=FILTER.SUM.ACTIVITY.PER.METER +FILTER.AR(G) 4960 NEXT G 4970 CABIN.SUM.ACTIVITY.PER.METER(Z.STEP) = CABIN.SUM.ACTIVITY.PER.METER 4980 FILTER.SUM.ACTIVITY.PER.METER(Z.STEP) = FILTER.SUM.ACTIVITY.PER.METER 4990 IF ZAC = WORST.ALT THEN GOSUB 5030 : compute % activity 5000 GOSUB 4410 : compute dose 5010 NEXT Z.STEP 5020 RETURN

5050 FOR G = 1 TO LASTG 5060 PER(G) = (AR(G)/(CABIN.SUM.ACTIVITY.PER.METER)+ FILTER.SUM.ACTIVITY.PER.METER))\*100 5070 IF PER(G) > PER(G-1) AND ZM(G) < 0 THEN PER(G) = PER(G-1)5080 PERCENT.25(G) = INT(PER(G) \* 4 \* 100) / 1005090 IF PERCENT.25(G) > 255 THEN PERCENT.25(G) = 255 : max basic line length 5100 NEXT G 5110 RETURN 5140 OPEN "O", #1, OUTPUT.FILE\$ 5150 PRINT#1, DATE.TIME\$ :PRINT#1, "This is a "DUST.DOSE\$" report." 5160 PRINT#1, WHICH\$ : PRINT#1," " 5170 PRINT#1, "WEAPON/TARGET DATA:" 5180 PRINT#1, "Number of weapons -----"NUMBER.BOMBS :IF NUMBER.BOMBS > 1 THEN PRINT#1, "Width of target field -----"FIELD.WIDTH/1000"KM 5190 PRINT#1, "Weapon yield -----"YIELDKT"KT" 5200 PRINT#1,"Fission fraction -----"FF 5210 PRINT#1,"Dust fraction -----"DF 5220 PRINT#1,"The size distribution input file is- "INPUT.FILE\$ 5230 PRINT#1," "SIZE.LABEL\$ :PRINT#1." " 5240 PRINT#1,"The soil density is ------"RHOFALLOUT"KG/M^3" 5250 PRINT#1," " 5260 PRINT#1, "The aircraft specification file is - "AIRCRAFT.FILE\$ 5270 PRINT#1,"Aircraft velocity is -----"VAC"M/S" 5280 PRINT#1," " 5290 PRINT#1,"Time from cloud penetration"

5300 PRINT#1,"to end of mission ------"MSN.TIME.REM"HR" 5310 PRINT#1." " 5320 PRINT#1, "Wind shear X (along track) -----"WIND.SHEAR.X"(KM/HR)/KM" 5330 PRINT#1, "Wind shear Y (cross track) -----"WIND.SHEAR.Y"(KM/HR)/KM" 5340 PRINT#1," " 5350 PRINT#1,"The output file will be named ----- "OUTPUT.FILE\$ :PRINT#1." " 5360 RETURN 5380 IF DUST.DOSE\$ = "dust" THEN GOTO 5800 : print mass report 5400 PRINT#1,STRING\$(78,42) 5410 'activities are in unit time and must be converted before printing 5420 PRINT#1.DATE.TIME\$" "WHICH\$ 5430 PRINT#1,"time (hr) ="TIME;SEARP\$" deltat (hr) ="DELTAT" %airborne = "LASTG" signax ="SIGMAX"M" 5440 PRINT#1,"sigmay ="SIGMAY"M 3 sigmay cloud diameter = "2\*3\*SIGMAY"M" 5450 PRINT#1,"Altitude","Cabin Dust","Sky Shine","TotalDose","Prominent Particle" REM "," microns radius" 5460 PRINT#1," M"," REM"," REM", " 5470 ZAC = ZAC.HI + ZAC.STEP 5480 FOR Z.STEP = 1 TO Z.STEPS  $5490 \text{ ZAC} = \text{ZAC} - \text{ZAC} \cdot \text{STEP}$ 5500 PRINT#1,ZAC,CABIN.DOSE(Z.STEP),SKYSHINE.DOSE(Z.STEP),CABIN.DOSE(Z.STEP) +SKYSHINE.DOSE(Z.STEP); STAR\$(Z.STEP), RM(MAXG(Z.STEP))\*1E+06 5510 NEXT Z.STEP 5520 IF STAR(1) = "\*" THEN PRINT#1, "\* Skyshine may be inaccurate due to large gamma mean free path (mfp >.2sigmax)" : 'only highest alt need be tested because if it occurs at some altitude, it will occur for any higher altitude 5530 IF SHARP\$ = "#" THEN PRINT#1,"# Dose inaccurate because burst field has not yet coalesced." ELSE PRINT#1,""

5540 IF ACTIVITY.REPORT\$ = "n" THEN 5690 5560 PRINT#1, STRING\$(78,45) :PRINT#1, DATE.TIME\$" "WHICH\$ 5570 PRINT#1,"time (hr) ="TIME;SHARP\$" deltat (hr) ="DELTAT" %airborne = "LASTG" sigmax ="SIGMAX"M" 5580 PRINT#1,"Altitude,","Cloud Act","Filter Act","Cabin Act", "Prominent Particle" 5590 PRINT#1," M"," MCi/M"," Ci"," Ci","microns r" 5600 ZAC = ZAC.HI + ZAC.STEP 5610 FOR Z.STEP = 1 TO Z.STEPS 5620 ZAC = ZAC - ZAC.STEP 5630 PRINT#1,ZAC, (CABIN.SUM.ACTIVITY.PER.METER(Z.STEP) +FILTER.SUM.ACTIVITY.PER.METER(2.STEP))\*(TIME^-1.2)/1E+06, FILTER.ACTIVITY(2.STEP), CABIN.ACTIVITY(2.STEP), RM(MAXG(2.STEP))\*1E+06 5640 NEXT Z.STEP 5650 PRINT#1, "For Group #", "size (microns)", "Altitude (M)" 5660 FOR G = 10 TO LASTG STEP 10 5670 PRINT#1,G,RM(G)\*1E+06,ZM(G) 5680 NEXT G 5690 IF ACTSIZE.REPORT\$ = "n" THEN 5790 5710 PRINT#1, STRING\$(78,45) :PRINT#1, DATE.TIME\$" "WHICH\$ 5720 PRINT#1, "The graph shows percent of total cloud activity for eachgroup at the maximum activity penetration altitude of "WORST.ALT"meters (1/4% per star)" 5730 PRINT#1, "Group#"; " Size", " Altitude", "PERCENT of Total Activity" 5740 PRINT#1." 11 . 11 "CHR\$(197)"M "," 1" "0 1 1 1 1 5 | | | 10 | 1 5750 FOR G = 1 TO LASTG 5760 PRINT#1,G; RM(G)\*1E+06, ZM(G), STRING\$(PERCENT.25(G), 42) 5770 NEXT G 5780 PRINT#1," 11.11

. .

"0 i 1" 5790 RETURN 5810 PRINT#1,STRING\$(78,42) :PRINT#1,DATE.TIME\$" "WHICH\$ 5820 PRINT#1,"time (hr) ="TIME; SHARP\$" deltat (hr) ="DELTAT" %airborne = "LASTG" sigmax ="SIGMAX"M" 5830 PRINT#1,"sigmay ="SIGMAY"M 3 sigmay cloud diameter = "2\*3\*SIGMAY"M" 5840 PRINT#1, "Altitude", "Cloud Dens", "Filter Mass", "Cabin Mass", "Engine Mass"; "Prom Part" mg/M^3"," ";"microns r" 5850 PRINT#1," M" " Kg"," Kg"," Kg 5860 ZAC = ZAC.HI + ZAC.STEP 5870 FOR Z.STEP = 1 TO Z.STEPS 5880 ZAC = ZAC - ZAC.STEP 5890 PRINT#1, ZAC, A3(Z.STEP)\*(1000\*1000), FILTER, ACTIVITY(Z.STEP), CABIN.ACTIVITY(Z.STEP), ENGINE.MASS(Z.STEP);" ";RM(MAXG(Z.STEP))\*1E+06 5900 NEXT Z.STEP 5910 IF MASS.REPORT\$ = "n" THEN 6080 5930 PRINT#1, STRING\$(78,45) :PRINT#1, DATE.TIME\$" "WHICH\$ 5940 PRINT#1,"time (hr) ="TIME; SHARP\$" deltat (hr) ="DELTAT" Zairborne = "LASTG" sigmax ="SIGMAX"M" 5950 PRINT#1,"sigmay ="SIGMAY"M 3 sigmay cloud diameter = "2\*3\*SIGMAY"M" 5960 PRINT#1,"initial dust lofted = "MASS1.PERCENT\*100"Kg", dust now airborne ="MASS1.PERCENT\*LASTG"Kg" 5970 PRINT#1,"Altitude","Cloud Mass" 5980 PRINT#1," M"," Kg/M" 5990 ZAC = ZAC.HI + ZAC.STEP 6000 FOR 2.STEP = 1 TO 2.STEPS6010 ZAC = ZAC - ZAC.STEP 6020 PRINT#1,ZAC,(CABIN.SUM.ACTIVITY.PER.METER(Z.STEP)

-

```
+ FILTER.SUM.ACTIVITY.PER.METER(Z.STEP))
6030 NEXT Z.STEP
6040 PRINT#1, "For Group #", "size (microns)", "Altitude (M)"
6050 FOR G = 10 TO LASTG STEP 10
6060 PRINT#1,G,RM(G)*1E+06,ZM(G)
6070 NEXT G
6080 IF MASS.SIZE.REPORT$ = "n" THEN 6180
6100 PRINT#1,STRING$(78,45) :PRINT#1,DATE.TIME$"
                                       "WHICHS
6110 PRINT#1, "The graph shows percent of total cloud mass for each group at
the maximum density penetration altitude of "WORST.ALT"meters (1/4% per star)"
6120 PRINT#1,"Group#";" Size"," Altitude","PERCENT of Total Mass"
6130 PRINT#1."
                   "CHR$(197)"M "."
               5 | | | 10 |
                                     1 11
"0
        1 1
  1
     6140 FOR G = 1 TO LASTG
6150 PRINT#1,G;RM(G)*1E+06,ZM(G),STRING$(PERCENT.25(G),42)
6160 NEXT G
        1," ";" "," ",
| | 5 | | | 10 | | <sup>10</sup>
6170 PRINT#1."
     1
"0
  - 1
6180 RETURN
6220 \text{ FOR } \text{G} = 1 \text{ TO } 100
6230 \text{ RM}(G) = \text{RM}(G) * .000001
                             : convert micrometers to METERS
6240 NEXT G
6260 \text{ G=}90 : z90 = zm(90) : ZM(90)=0
6270 GOSUB 4090 :GOSUB 4260 : find fall.velocity of 1 hr group at lowest alt
```

6275 zm(90) = z90

6280 INTERVAL = TIME.STOP(1) - TIME.STOP

6290 DELTAT = INTERVAL/INT(INTERVAL/(1400/(FALL.VELOCITY\*3600))) :'find the largest deltat that will not cause the largest particle to fall more than 1400 meters; also, deltat must be an integral divisor of interval.

6300 '1400 meters is chosen because empirical testing has shown that this is the largest distance a particle can fall without significantly affecting the result.

6310 IF DELTAT < .1 OR DELTAT > 100 THEN DELTAT = INTERVAL/8

6330 IF YIELDKT < 10000 THEN ZSHIFT = 1000 ELSE ZSHIFT = 2000

6340 IF TIME <= 2 THEN WORST.ALT = HC ELSE WORST.STEP = HC - ZSHIFT

6350 'yield and time correction factors empirical from vertact for delfic

6360 '(worst case means maximum Ci/m; might not be maximum dose)

6370 IF DUST.DOSE\$ = "dust" THEN WORST.ALT = 2M(50)

6380 ZAC = ZAC.HI + ZAC.STEP

6390 FOR Z.STEP = 1 TO Z.STEPS

6400 ZAC = ZAC - ZAC.STEP

6410 IF ABS(ZAC-WORST.ALT) <= .5\*ZAC.STEP THEN WORST.STEP = 2.STEP :WORST.ALT = ZAC :GOT0 6440

6420 NEXT Z.STEP

6430 WORST.STEP = 1

6460 FOR T = 1 TO HOW.MANY.TIMES

6470 LAST.TIME.STOP = TIME.STOP

6480 TIME.STOP = TIME.STOP(T)

6490 PRINT "Now computing for time ="TIME.STOP"hr"

6500 INTERVAL = TIME.STOP - LAST.TIME.STOP

6510 IF FALL.VELOCITY\*DELTAT\*3600 < 1400

THEN DELTAT = INTERVAL/INT(INTERVAL/(1400/(FALL.VELOCITY\*3600))) :IF DELTAT<.1 OR DELTAT>100 THEN DELTAT = INTERVAL/8 :'if the largest size group falls<1400 meters in deltat, compute larger deltat 6520 G = 16530 WHILE G <= LASTG 6540 FOR PART.TIME = 1 TO INTERVAL/DELTAT 6550 GOSUB 4090 : 'us std atm 6560 GOSUB 4260 : cloud fall  $\circ$ 570 IF ZM(G) < -3\*SIGMA2(G) THEN LASTG = G-1:FOR CC = G TO LASTG :ZM(CC) = -100000!:NEXT CC : skip drift down if > 3 sigma underground 6580 NEXT PART.TIME 6590 G = G + 16600 WEND :'g <= lastg 6610 TIME = TIME + INTERVAL 6620 GOSUB 4780 : sum gaussians for each altitude 6630 GOSUB 5370 : print output 6640 NEXT T 6650 PRINT#1,CHR\$(12) :'form feed 6660 CLOSE 6670 PRINT STRING\$(10,7) : awaken operator 6680 PRINT "Computations complete. File is stored in "OUTPUT.FILE\$ 6690 END

#### Appendix G

#### Sample Single Burst Dose Output - Full Report

14 Feb 1556 This is a dose report. CUSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; one 1MT bomb WEAPON/TARGET DATA: Number of weapons ----- 1 Weapon yield ----- 1000 KT Fission fraction ----- 1 Dust fraction ----- .333333 The size distribution input file is- DELFIC.RMA Rm = .204 ; sigma Rm = 4 The soil density is ----- 2600 KG/M<sup>3</sup> The aircraft specification file is - B-1B.SPC Aircraft velocity is ----- 279.2 M/S Time from cloud penetration to end of mission ----- 8 HR Wind shear X (along track) ----- 0 (KM/HR)/KM Wind shear Y (cross track) ----- 1 (KM/HR)/KM The output file will be named ----- B: GAPP.DOP \*\*\*\*\*\*\*\*\*\*\* 14 Feb 1556 CUSTOM SCENARIO: B 1B; WITH filter; DELFIC cloud; one 1MT bomb time (hr) = .15 deltat (hr) =-9.50774E-03 %airborne = 98 sigmax = 2977.15 M 3 sigmay cloud diameter = 17898 M sigmay = 2983.01 M Prominent Particle Cabin Dust Sky Shine TotalDose Altitude REM microns radius М REM REM 62.6788 \* 17000 3.89241 58.7864 .473992 16000 7.05376 118.791 125.845 \* .473992 187.335 197.188 \* 15000 9.85256 .473992 14000 10.6072 231.806 242.413 \* .473992 13000 8.80336 226.604 235.407 42.8646 176.928 182.56 126.317 12000 5.6323 202.228 11000 2.77723 112.437 115.214 63.3916 272.629 1.09192 62.2996 10000 .331339 30.981 31.3123 326.279 9000 15.2599 403.868 8000 .0777644 15.1821 7000 7.64285 7.64285 457.979 0 4.65089 4.65089 529.291 6000 0 3.12039 529.291 5000 0 3.12039 629.064 4000 0 2.17059 2.17059 1.49812 0 629.064 3000 1.49812 2000 0 1.24043 1.24043 782.496 1.1288 782.496 1000 0 1.1288 0 .72757 .72757 782.496 0 \* Skyshine may be inaccurate due to large gamma mean free path (mfp >.2sigmax)

| •           | ***********  |                    |                |                          |
|-------------|--------------|--------------------|----------------|--------------------------|
| 14 Feb 1556 | CUSTOM SC    | ENARIO: B-1B; WI   | TH filter; DEI | FIC cloud; one 1MT bomb  |
| time (hr) = | .15 deltat   | (hr) = -9.50774E - | 03 %airborne   | = 98 sigmax = 2977.15 M  |
| Altitude,   | Cloud Act    | Filter Act         | Cabin Act      | Prominent Particle       |
| M           | MCi/M        | Ci                 | Ci             | microns r                |
| 17000       | 123.019      | 9.06398            | 3.00584        | .473992                  |
| 16000       | 291.046      | 18.9426            | 5.44714        | .473992                  |
| 15000       | 537.382      | 30.8546            | 7.60847        | .473992                  |
| 14000       | 778.527      | 39.4025            | 8.1912         | .473992                  |
| 13000       | 890.88       | 39.7273            | 6.79824        | 42.8646                  |
| 12000       | 814.094      | 31.9767            | 4.34945        | 126.317                  |
| 11000       | 605.527      | 20.9404            | 2.14466        | 202.228                  |
| 10000       | 379.584      | 11.9479            | .843216        | 272.629                  |
| 9000        | 213.261      | 6.10505            | .255871        | 326.279                  |
| 8000        | 117.655      | 3.05709            | .0600522       | 403.868                  |
| 7000        | 66.4701      | 1.5692             | 0              | 457.979                  |
| 6000        | 45.2521      | .954904            | 0              | 529.291                  |
| 5000        | 33.8754      | .640669            | 0              | 529.291                  |
| 4000        | 26.2107      | .445659            | 0              | 629.064                  |
| 3000        | 20.0758      | .30759             | 0              | 629.064                  |
| 2000        | 18.392       | .254681            | 0              | 782.496                  |
| 1000        | 18.4828      | .231761            | 0              | 782.496                  |
| 0           | 13.1261      | .149382            | 0              | 782.496                  |
| For Group # | size (mic:   | cons)              | Altitude (M)   |                          |
| 10          | 3.80268      | 13593.3            |                |                          |
| 20          | 8.35085      | 13509.8            |                |                          |
| 30          | 14.6576      | 13401.4            |                |                          |
| 40          | 23.5162      | 13262.6            |                |                          |
| 50          | 36.2252      | 13084.8            |                |                          |
| 60          | 55.1961      | 12844.3            |                |                          |
| 70          | 85.5478      | 12480.7            |                |                          |
| 80          | 140.637      | 11797.8            |                |                          |
| 90          | 272.629      | 9955.32            |                |                          |
|             |              |                    |                |                          |
| 14 Feb 1556 | CUSTOM S     | CENARIO: B-1B; WI  | TH filter; DE  | LFIC cloud; one 1MT bomb |
| The graph s | hows percent | of total cloud a   | ctivity for ea | ach group at             |
| the maximum | activity per | netration altitud  | le of 13000 me | eters (1/4% per star)    |
| Group#Si    | ze Altitude  | PERCENT of I       | Cotal Activity |                          |
| uM          | M            | 0                  | 5              |                          |
| 1.473992    | 13657.2      | ****               |                |                          |
| 2.904308    | 13648.8      | ****               |                |                          |
| 3 1.27327   | 13641.6      | ****               |                |                          |
| 4 1.62603   | 13634.8      | ****               |                |                          |
| 5 1.97515   | 13628.1      | ****               |                |                          |
| 6 2.32639   | 13621.3      | ****               |                |                          |
| 7 2.68294   | 13614.5      | ****               |                |                          |
| 8 3.04692   | 13607.6      | ****               |                |                          |
| 9 3.41978   | 13600.5      | ****               |                |                          |
| 10 3 80.26  | 9 12502 2    | ****               |                |                          |

· .--

.

. F

.

. . . .

· · ·

(•

| 11  | 4.19655            | 13585.9 | ****                  |
|-----|--------------------|---------|-----------------------|
| 12  | 4-60222            | 13578.3 | *****                 |
| 12  | 5 02020            | 12570.5 | ماد مادماد مادماد     |
| 13  | 5.02038            | 135/0.5 |                       |
| 14  | 5.451/1            | 13562.5 | ****                  |
| 15  | 5.89686            | 13554.3 | ****                  |
| 16  | 6.35641            | 13545.9 | ****                  |
| 17  | 6.83698            | 13537.2 | *****                 |
| 18  | 7 32119            | 13528 3 | *****                 |
| 10  | 7 0476             | 12510.2 | ىلەرلەر بەرمەرمەر     |
| 17  | 7.02/0             | 13313.4 | *****                 |
| 20  | 0.33003            | 13509.8 | *****                 |
| 21  | 8.89157            | 13500.2 | ****                  |
| 22  | 9.45039            | 13490.3 | ****                  |
| 23  | 10.028             | 13480.2 | ****                  |
| 24  | 10.625             | 13469.8 | *****                 |
| 25  | 11 2422            | 13459 1 | *****                 |
| 26  | 11 8803            | 13//9 1 | ale ale ale de la com |
| 20  | 12 5/01            | 12490.1 | *****                 |
| 21  | 12.5401            | 13430.9 |                       |
| 28  | 13.2223            | 13425.4 | *****                 |
| 2.9 | 13.9278            | 13413.5 | ****                  |
| 30  | 14.6576            | 13401.4 | *****                 |
| 31  | 15.4124            | 13389   | *****                 |
| 32  | 16.1934            | 13376.3 | *****                 |
| 33  | 17 0015            | 13363 2 | *****                 |
| 33  | 17 9379            | 12260 0 | ****                  |
| 34  | 1/.03/0            | 13347.9 | *****                 |
| 55  | 18./035            | 13336.2 | *****                 |
| 36  | 19.5996            | 13322.2 | *****                 |
| 37  | 20.5276            | 13307.8 | ****                  |
| 38  | 21.4887            | 13293.1 | *****                 |
| 39  | 22 - 4844          | 13278   | *****                 |
| 40  | 23.5162            | 13262.6 | *****                 |
| 41  | 26 5856            | 13266 9 | -                     |
| 7.0 |                    | 13240.0 | ****                  |
| 42  | 25.6944            | 13230.0 | *****                 |
| 43  | 26.8444            | 13214   | *****                 |
| 44  | 28.0374            | 13197   | *****                 |
| 45  | 29.2756            | 13179.5 | ****                  |
| 46  | 30.5611            | 13161.6 | *****                 |
| 47  | 31 8962            | 13143.2 | *****                 |
| 48  | 33 2835            | 13124 3 | *****                 |
| 40  | 34 7755            | 1210/ 9 |                       |
| 47  | 34.7233            | 13104.8 |                       |
| 50  | 30.2252            | 13084.8 | *****                 |
| 51  | 37.7855            | 13064.1 | ****                  |
| 52  | 39.4098            | 13042.8 | ****                  |
| 53  | 41.1016            | 13020.7 | *****                 |
| 54  | 42.8646            | 12998   | ****                  |
| 55  | 44 7032            | 12974-4 | *****                 |
| 56  | 46 . 6215          | 12950   | ****                  |
| 50  | 49 6914            | 1202/ 7 |                       |
| 51  | 40.0240<br>50 7175 | 19000 7 |                       |
| 20  | 50./1/5            | 12090./ |                       |
| 29  | 52.906             | 128/1.8 | ****                  |
| 60  | 55.1961            | 12844.3 | ****                  |

Ĩ

P

•

5

| 61 | 57.5948 | 12816.1 | *****  |
|----|---------|---------|--------|
| 62 | 60.109  | 12787.3 | *****  |
| 63 | 62.7472 | 12757.7 | *****  |
| 64 | 65.5178 | 12726.7 | *****  |
| 65 | 68.4309 | 12692.1 | ****   |
| 66 | 71.4967 | 12651.7 | *****  |
| 67 | 74.7277 | 12612.4 | ****   |
| 68 | 78.1363 | 12570.9 | *****  |
| 69 | 81.7377 | 12527   | *****  |
| 70 | 85.5478 | 12480.7 | *****  |
| 71 | 89.5848 | 12431.5 | ****   |
| 72 | 93.8697 | 12379.3 | ****   |
| 73 | 98.4248 | 12323.7 | *****  |
| 74 | 103.277 | 12264.3 | *****  |
| 75 | 108.456 | 12200.7 | ****   |
| 76 | 113.995 | 12132.3 | ****   |
| 77 | 119.933 | 12058.6 | ****   |
| 78 | 126.317 | 11978.9 | ****   |
| 79 | 133.198 | 11892.2 | ****   |
| 80 | 140.637 | 11797.8 | . **** |
| 81 | 148.708 | 11694.4 | ****   |
| 82 | 157.495 | 11580.3 | ****   |
| 83 | 167.101 | 11454   | ****   |
| 84 | 177.652 | 11313.2 | ***    |
| 85 | 189.298 | 11155.7 | ***    |
| 86 | 202.228 | 10977.5 | ***    |
| 87 | 216.678 | 10774.8 | **     |
| 88 | 232.947 | 10542.1 | **     |
| 89 | 251,428 | 10272.1 | **     |
| 90 | 272.629 | 9955.32 | *      |
| 91 | 297.255 | 9578.12 | *      |
| 92 | 326.279 | 9121.48 |        |
| 93 | 361.108 | 8557.42 |        |
| 94 | 403.868 | 7842.96 |        |
| 95 | 457.979 | 6908.04 |        |
| 96 | 529.291 | 5631.13 |        |
| 97 | 629.064 | 3776.22 |        |
| 98 | 782.496 | 896.84  |        |
|    |         |         | 0      |

...

(•

1

| | | 5 |

| 10 |

1 1

ł

1

| ***************            |                 |                |                |                            |
|----------------------------|-----------------|----------------|----------------|----------------------------|
| 14 Feb 1556                | CUSTOM SCEN     | ARIO: B-1B; WI | TH filter; DEL | LFIC cloud; one 1MT bomb   |
| time $(hr) = 1$            | deltat (hr)     | = .10625 %ai   | rborne = 90 a  | sigmax = 3958.03 M         |
| sigmay = 4343              | .43 M           | З в            | igmay cloud di | iameter = 26060.6 M        |
| Altitude                   | Cabin Dust      | Sky Shine      | TotalDose      | Prominent Particle         |
| M                          | REM             | REM            | REM            | microns radius             |
| 17000                      | 1.15023         | 2,59592        | 3.74614 *      | .473992                    |
| 16000                      | 2.09225         | 5.1946         | 7.28685 *      | .473992                    |
| 15000                      | 2.93373         | 8.14236        | 11.0761        | .473992                    |
| 14000                      | 3.17099         | 10.1127        | 13.2837        | .473992                    |
| 13000                      | 2.64601         | 10.1119        | 12.7579        | 17.0015                    |
| 12000                      | 1.70168         | 8.33252        | 10.0342        | 31.8962                    |
| 11000                      | .843251         | 5.89719        | 6.74044        | 42.8646                    |
| 10000                      | .333273         | 3.95198        | 4.28525        | 55.1961                    |
| 9000                       | .101657         | 2.61766        | 2.71931        | 65.5178                    |
| 8000                       | .0239879        | 1.81552        | 1.83951        | 78.1363                    |
| 7000                       | 0               | 1.31614        | 1.31614        | 89.5848                    |
| 6000                       | 0               | 1.01115        | 1.01115        | 103.277                    |
| 5000                       | 0               | .793417        | .793417        | 113.995                    |
| 4000                       | 0               | .631872        | .631872        | 126.317                    |
| 3000                       | 0               | .508593        | .508593        | 140.637                    |
| 2000                       | 0               | .414059        | .414059        | 157.495                    |
| 1000                       | 0               | .338848        | .338848        | 167.101                    |
| 0                          | 0               | .278331        | .278331        | 189.298                    |
| <b>• • • • • • • • • •</b> | . h. in convers |                |                | free noth (mfn > 2 gigmer) |

[-|-

K

ŀ

(•

· · · ·

Skyshine may be inaccurate due to large gamma mean free path (mfp >.2sigmax)

| <b></b>                                     |               |                |               |                |              |
|---------------------------------------------|---------------|----------------|---------------|----------------|--------------|
| 14 Feb 1556                                 | CUSTOM SCEN   | ARIO: B-1B; WI | TH filter; D  | ELFIC cloud; o | one IMT bomb |
| time (hr) = 1                               | deltat (hr)   | = .10625 %ai   | rborne = 90   | sigmax = 395   | 8.03 M       |
| Altitude,                                   | Cloud Act     | Filter Act     | Cabin Act     | Prominent      | Particle     |
| M                                           | MCi/M         | Ci             | Ci            | microns r      |              |
| 17000                                       | 8.02132       | 3.18426        | 2.00859       | .473992        |              |
| 16000                                       | 18.7928       | 6.73761        | 3.65361       | .473992        |              |
| 15000                                       | 34.4885       | 11.1649        | 5.12305       | .473992        |              |
| 14000                                       | 50.1508       | 14.6921        | 5.53736       | .473992        |              |
| 13000                                       | 58.6231       | 15.6072        | 4.62061       | 17.0015        |              |
| 12000                                       | 56.4814       | 13.6967        | 2.97156       | 31.8962        |              |
| 11000                                       | 46.7546       | 10.3242        | 1.47253       | 42.8646        |              |
| 10000                                       | 35.4182       | 7.32352        | .58198        | 55.1961        |              |
| 9000                                        | 26.4852       | 5.05882        | .177519       | 65.5178        |              |
| 8000                                        | 20.6628       | 3.58987        | .0418891      | 78.1363        |              |
| 7000                                        | 16.7965       | 2.63278        | 0             | 89.5848        |              |
| 6000                                        | 14.4225       | 2.02269        | 0             | 103.277        |              |
| 5000                                        | 12.6149       | 1.58714        | Ó             | 113.995        |              |
| 4000                                        | 11.1662       | 1.26399        | 0             | 126.317        |              |
| 3000                                        | 9.96142       | 1.01738        | Ō             | 140.637        |              |
| 2000                                        | 8,96404       | .828279        | Õ             | 157.495        |              |
| 1000                                        | 8.09427       | .677828        | Õ             | 167.101        |              |
| 0                                           | 7.31141       | .556771        | õ             | 189.298        |              |
| For Group #                                 | size (micron  | g)             | Altitude (    | M)             |              |
| 10                                          | 3.80268       | 13573.5        |               |                |              |
| 20                                          | 8.35085       | 13420.4        |               |                |              |
| 30                                          | 14.6576       | 13133.9        |               |                |              |
| 40                                          | 23.5162       | 12595.6        |               |                |              |
| 50                                          | 36.2252       | 11615.5        |               |                |              |
| 60                                          | 55,1961       | 9937.44        |               |                | • •          |
| 70                                          | 85.5478       | 7302.32        |               |                |              |
| 80                                          | 140.637       | 3084.51        |               |                |              |
| 90                                          | 272.629       | -4810.92       |               |                |              |
| / V<br>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |               |                |               |                |              |
| 14 Feb 1556                                 | CUSTOM SCEN   | ARIO: B-1B: W  | TH filter: D  | ELFIC cloud:   | one IMT bomb |
| The graph sho                               | ws percent of | total cloud a  | activity for  | each group at  |              |
| the maximum a                               | ctivity penet | ration altitud | le of 13000   | meters (1/4%   | per star)    |
| Group#Size                                  | Altitude      | PERCENT of 7   | Total Activit | <b>v</b>       | <b>,</b>     |
| uM                                          | M             | 0 1 1          |               |                | 10           |
| 1 .473992                                   | 13656.6       | *****          |               |                | • • •        |
| 2 .904308                                   | 13647.2       | *****          |               |                |              |
| 3 1,27327                                   | 13638.9       | *****          |               |                |              |
| 4 1.62603                                   | 13630.6       | *****          |               |                |              |
| 5 1,97515                                   | 13622.2       | ******         |               |                |              |
| 6 2,32639                                   | 13613.4       | ******         |               |                |              |
| 7 2.68294                                   | 13604.2       | *****          |               |                |              |
| 8 3.04602                                   | 13594.5       | *****          |               |                |              |
| Q 3 41079                                   | 13584.3       | *****          |               |                |              |
| J J 417/0                                   | 13573 5       | ****           |               |                |              |
| TO J.00700                                  |               |                |               |                |              |

an anna an an an an an an an anna an an

•

ī

19

| 11   | 4,19655 | 13562   | ****** |
|------|---------|---------|--------|
| 12   | 4.60222 | 13549.9 | ****** |
| 13   | 5.02038 | 13537   | ****** |
| 14   | 5.45171 | 13523.3 | ****** |
| 15   | 5.89586 | 13508.7 | *****  |
| 16   | 6.35641 | 13493.2 | ****** |
| 17   | 6.83098 | 13476.6 | ****** |
| 18   | 7.32119 | 13459.1 | ****** |
| 19   | 7.8276  | 13440.4 | ****** |
| 20   | 8.35085 | 13420.4 | *****  |
| 21   | 8.89157 | 13399.2 | ****** |
| 22   | 9.45039 | 13376.6 | ****** |
| 23   | 10.028  | 13352.6 | ****** |
| 24   | 10.625  | 13327   | ****** |
| 25   | 11.2422 | 13299.7 | ****** |
| 26   | 11.8803 | 13270.6 | ****   |
| 27   | 12.5401 | 13239.6 | ****** |
| 28   | 13,2223 | 13206.6 | ****** |
| 29   | 13,9278 | 13171.4 | ****** |
| 30   | 14.6576 | 13133.9 | ****** |
| 31   | 15.4124 | 13094   | ****** |
| 32   | 16.1934 | 13051.5 | ****** |
| 33   | 17.0015 | 13006.2 | ****** |
| 34   | 17.8378 | 12958   | *****  |
| 35   | 18.7035 | 12906.6 | ****** |
| 36   | 19.5996 | 12851.9 | ****** |
| 37   | 20.5276 | 12793.6 | ****** |
| 38   | 21.4887 | 12731.7 | ****** |
| 39   | 22.4844 | 12665.7 | ****** |
| 40   | 23.5162 | 12595.6 | ****** |
| 41   | 24.5856 | 12521.1 | ****** |
| 42   | 25.6944 | 12442   | ****** |
| 43   | 26.8444 | 12357.9 | ****** |
| - 44 | 28.0374 | 12268.8 | ****** |
| 45   | 29.2756 | 12174.4 | ****** |
| 46   | 30.5611 | 12074.5 | ****** |
| 47   | 31.8962 | 11968.8 | *****  |
| 48   | 33.2835 | 11857.2 | *****  |
| 49   | 34.7255 | 11739.5 | *****  |
| 50   | 36.2252 | 11615.5 | *****  |
| 51   | 37.7855 | 11484.9 | ****   |
| 52   | 39.4098 | 11347.7 | *****  |
| 53   | 41.1016 | 11203.5 | ****   |
| 54   | 42.8646 | 11051.9 | ****   |
| 55   | 44.7032 | 10892.3 | ***    |
| 56   | 46.6215 | 10723.4 | ****   |
| 57   | 48.6246 | 10545.6 | ***    |
| 58   | 50.7175 | 10355.9 | ***    |
| 59   | 52.906  | 10154.1 | **     |
| 60   | 55.1961 | 9937.44 | **     |

6•

| 61 | 57.5948 | 9705.86  |
|----|---------|----------|
| 62 | 60.109  | 9463.34  |
| 63 | 62.7472 | 9221.43  |
| 64 | 65.5178 | 8987.47  |
| 65 | 68.4309 | 8742.13  |
| 66 | 71.4967 | 8483.64  |
| 67 | 74.7277 | 8208.73  |
| 68 | 78.1363 | 7921.02  |
| 69 | 81.7377 | 7619.13  |
| 70 | 85.5478 | 7302.32  |
| 71 | 89.5848 | 6968.98  |
| 72 | 93.8697 | 6620.18  |
| 73 | 98.4248 | 6253.74  |
| 74 | 103.277 | 5868.45  |
| 75 | 108.456 | 5463.14  |
| 76 | 113.995 | 5036.52  |
| 77 | 119.933 | 4585.97  |
| 78 | 126.317 | 4112.48  |
| 79 | 133.198 | 3612.63  |
| 80 | 140.637 | 3084.51  |
| 81 | 148.708 | 2525.55  |
| 82 | 157.495 | 1933     |
| 83 | 167.101 | 1303.91  |
| 84 | 177.652 | 634.534  |
| 85 | 189.298 | -78.9946 |
| 86 | 202.228 | -843.808 |
| 87 | 216.678 | -1682.04 |
| 88 | 232.947 | -2605.78 |
| 89 | 251.428 | -3650.72 |
| 90 | 272.629 | -4810.92 |

•

0 1 1 1 5 1 1 1 10 1 1

I
### Appendix H

### Sample Single Burst Dust Output - Full Report

14 Feb 1540 This is a dust report. CUSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; one lMT bomb WEAPON/TARGET DATA: Number of weapons ----- 1 Weapon yield ----- 1000 KT Fission fraction ----- .5 Dust fraction ----- .333333 The size distribution input file is- DELFIC.RMM Rm = .204 ; sigma Rm = The soil density is ----- 2600 KG/M<sup>3</sup> The aircraft specification file is - B-1B.SPC Aircraft velocity is ----- 279.2 M/S Time from cloud penetration to end of mission ----- 8 HR Wind shear X (along track) ----- 0 (KM/HR)/KM Wind shear Y (cross track) ----- 1 (KM/HR)/KM The output file will be named ----- B:HAPP.DOP \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* CUSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; one 1MT bomb 14 Feb 1540 time (hr) = .15 deltat (hr) =-9.50774E-03 %airborne = 97 sigmax = 2984.51 M 3 sigmay cloud diameter = 17.941.1 M sigmay = 2990.18 M Cloud Dens Filter Mass Engine MassProm Part Altitude Cabin Mass M microns r  $mg/M^3$ Kg Kg Kg 4.68404E-03 4.6579E-04 2.9246 17000 96.0304 1.83114 239.548 6.2311 16000 .0101235 8.4865E-04 1.83114 15000 466.649 .0170645 1.19152E-03 10.3676 1.83114 1.28914E-03 13.5712 1.83114 14000 .022608 715.181 13000 .0237215 1.07498E-03 14.082 43.4013 868.852 11.7188 126.928 6.9087E-04 12000 846.547 .0199445 3.42125E-04 7.98073 203.969 11000 674.985 .0137109 4.76257 265.922 10000 455.84 .0082512 1.35056E-04 9000 276.339 4.45783E-03 4.11434E-05 2.55497 343.731 9.69034E-06 1.34096 400.475 8000 163.329 2.35157E-03 0 .718694 436.194 7000 98.2576 1.26553E-03 0 .44178 531.013 67.5878 7.77917E-04 600C .295862 0 531.013 5000 50.5038 5.20975E-04 0 .208872 596.673 39.6719 3.67796E-04 4000 3000 31.9375 2.66809E-04 0 .151521 682.738 682.738 0 .115573 2000 26.9662 2.0351E-04 .0932903 1000 24.0379 1.64272E-94 0 802.408 17.8357 1.10625E-04 0 .0628238 802.408 0

- **-** -

| 14 Rob 1540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CUSTON SCRI          | NAPTO BAIRS                    | JTTH filtor, DRIFIC a | loud: one INT home               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------|-----------------------|----------------------------------|
| time $(hr) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15 deltat ()         | (a(10, b=10, 1)) = -9 = 507741 | $\frac{111}{7-03}$    | 2000, 000  min 2084 51  M        |
| $\frac{1}{2} = \frac{1}{2} = \frac{1}$ | 12 W 12 W            | 3                              | sigman cloud diamete  | r = 17941 1 M                    |
| initial dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{1}{1000} = 3$ | 02395F+08 Kg                   | dust now sirbo        | $r_{10} = 2.93323 r_{10}8 K_{0}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cloud Mass           | 223332+00 Kg                   | dust now aribo        | The - 2.33323E+00 Kg             |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ro/M                 |                                |                       |                                  |
| 17000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5400 47              |                                |                       |                                  |
| 16000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13471.5              |                                |                       |                                  |
| 15000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26243                |                                |                       |                                  |
| 16000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2024J<br>60210 7     |                                |                       |                                  |
| 13000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40219.7              |                                |                       |                                  |
| 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40052.0              |                                |                       |                                  |
| 11000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37026 3              |                                |                       |                                  |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J/320.J<br>25606 5   |                                |                       |                                  |
| 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15510 5              |                                |                       |                                  |
| 9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13310.3              |                                |                       |                                  |
| 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 91/U.19<br>5516 00   |                                |                       |                                  |
| /000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3310.02              |                                |                       |                                  |
| 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3/93.01              |                                |                       |                                  |
| 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2034.20              |                                |                       |                                  |
| 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1701 44              |                                |                       |                                  |
| 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/91.44              |                                |                       |                                  |
| 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1512.6               |                                |                       |                                  |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 134/.80              |                                |                       |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000.09              | `                              |                       |                                  |
| For Group #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | size (micro          | ns)                            | Altitude (M)          |                                  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.58                | 134/0.6                        |                       |                                  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19./693              | 13319.5                        |                       |                                  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30.8404              | 13157.7                        |                       | · • •                            |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 44.9982              | 12970.6                        |                       |                                  |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 63.9711              | 12744.1                        |                       |                                  |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90.8408              | 12416.3                        |                       | ·                                |
| 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 132.016              | 11907.1                        |                       |                                  |
| 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 203.969              | 10953.3                        |                       |                                  |
| 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 370.042              | 8410.07                        |                       |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                                |                       |                                  |
| 14 Feb 1540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CUSTOM SCE           | NARIO: B-1B;                   | WITH filter; DELFIC o | loud; one IMT bomb               |
| The graph sh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ows percent o        | f cotal cloud                  | mass for each group   | at                               |
| the maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | density penet:       | ration altitu                  | de of 12000 meters (  | 1/4% per star)                   |
| Group <b>∓</b> Siz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e Altitude           | PERCENT of                     | Total Mass            |                                  |
| UM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M                    | 0 1 1                          |                       |                                  |
| 1 1.83114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13630.8              | <b>***</b>                     |                       |                                  |
| 2 3.21367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13604.4              | ****                           |                       |                                  |
| 3 4.30037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13583.9              | ***                            |                       |                                  |
| 4 5.28023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13565.7              | ****                           |                       |                                  |
| 5 6.20587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13548.6              | ***                            |                       |                                  |
| 6 7.10111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13532.3              | ****                           |                       |                                  |
| 7 7.9791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13516.5              | ****                           |                       |                                  |
| 8 8.84808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13501                | ****                           |                       |                                  |
| 9 9.71369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13485.7              | ****                           |                       |                                  |
| 10 10.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13470.6              | ***                            |                       | •                                |

6.

| 11       | 11.4502            | 13455.5  | ****  |
|----------|--------------------|----------|-------|
| 12       | 12.3266            | 13440.5  | ****  |
| 13       | 13.2115            | 13425.5  | ****  |
| 14       | 14.1066            | 13410.6  | ****  |
| 15       | 15.0134            | 13395.6  | ****  |
| 16       | 15.9334            | 13380.5  | ****  |
| 17       | 16.8678            | 13365.4  | ****  |
| 18       | 17.8178            | 13350.2  | ****  |
| 19       | 18.7846            | 13334.9  | ****  |
| 20       | 19.7693            | 13319.5  | ****  |
| 21       | 20.7729            | 13304    | ****  |
| 22       | 21.7967            | 13288.4  | ****  |
| 23       | 22.8416            | 13272.7  | ****  |
| 24       | 23.9087            | 13256.8  | ****  |
| 25       | 24,9991            | 13240.7  | ****  |
| 26       | 26.1139            | 13224.5  | ****  |
| 27       | 27.2543            | 13208.1  | ****  |
| 28       | 28.4213            | 13191.6  | ****  |
| 29       | 29.6162            | 13174.8  | ****  |
| 30       | 30,8404            | 13157 7  | ****  |
| 31       | 32.0949            | 13140 5  | ****  |
| 32       | 33,3813            | 13123    | ****  |
| 33       | 34,7007            | 13105 2  | ****  |
| 34       | 36 0549            | 13087 1  | ****  |
| 35       | 37 4452            | 13068 6  | ***** |
| 36       | 38 8732            | 13049 8  | ***** |
| 37       | 40.3407            | 13030.6  | ***** |
| 38       | 40.0407            | 13011 1  | ***** |
| 39       | 43,4013            | 12991    | ***** |
| 40       | 44,9982            | 12970.6  | ***** |
| 41       | 46 6422            | 12949 7  | ***** |
| 42       | 48.3356            | 12928 3  | ***** |
| 43       | 50 0805            | 12920.5  | ***** |
| 44       | 51 8797            | 12884 3  | ***** |
| 45       | 53 7356            | 12861 8  | ****  |
| 46       | 55 6511            | 17838 0  | ***** |
| 47       | 57 6201            | 12030.7  | ***** |
| 47       | 50 67291           | 12013.7  | ***** |
| 40<br>70 | 61 7856            | 12758 5  | ***** |
| 47<br>50 | 63 6711            | 12700.5  | ***** |
| 50       | 66 7222            | 12744,1  | ***** |
| 52       | 49 5759            | 12/10.3  | ***** |
| 52       | 71 004             | 12090.3  | ***** |
| 54       | 73 522             | 1203/ .9 | ***** |
| 55       | 75.322             | 1202/ .1 | ***** |
| 55       | 78 8/09            | 12562 2  | ***** |
| 50       | 10.0472<br>81 6200 | 12202.2  | ***** |
| יר<br>גם | 8/ 4030            | 12/02 2  | ****  |
| 50       | 04.0037            | 12476.2  | ***** |
| 72       | COC0+10            | 12433    | ***** |
| 00       | 90.0408            | 12410.3  | ***** |

•

Ċ

Ĭ

| 61 | 94.1597 | 12375.8 | ** | ***  |   |   |   |   |   |   |   |     |   |
|----|---------|---------|----|------|---|---|---|---|---|---|---|-----|---|
| 62 | 97.6242 | 12333.5 | ** | ***  |   |   |   |   |   |   |   |     |   |
| 63 | 101.244 | 12289.2 | ** | ***  |   |   |   |   |   |   |   |     |   |
| 64 | 105.031 | 12242.8 | ** | ***  |   |   |   |   |   |   |   |     |   |
| 65 | 108.996 | 12194.1 | ** | ***  |   |   |   |   |   |   |   |     |   |
| 66 | 113.153 | 12142.8 | ** | ***  |   |   |   |   |   |   |   |     |   |
| 67 | 117.516 | 12088.7 | ** | ***  |   |   |   |   |   |   |   |     |   |
| 68 | 122.102 | 12031.6 | ** | ***  |   |   |   |   |   |   |   |     |   |
| 69 | 126.928 | 11971.2 | ** | ***  |   |   |   |   |   |   |   |     |   |
| 70 | 132.016 | 11907.1 | ** | **** | 7 |   |   |   |   |   |   |     |   |
| 71 | 137.386 | 11839.2 | ** | **** | r |   |   |   |   |   |   |     |   |
| 72 | 143.065 | 11766.9 | ** | ***  |   |   |   |   |   |   |   |     |   |
| 73 | 149.079 | 11689.6 | ** | ***  |   |   |   |   |   |   |   |     |   |
| 74 | 155.463 | 11606.9 | ** | ***  |   |   |   |   |   |   |   |     |   |
| 75 | 162.252 | 11518.1 | ** | ***  |   |   |   |   |   |   |   |     |   |
| 76 | 169.487 | 11422.3 | ** | ***  |   |   |   |   |   |   |   |     |   |
| 77 | 177.217 | 11319.1 | ** | ***  |   |   |   |   |   |   |   |     |   |
| 78 | 185.497 | 11207.3 | ** | ***  |   |   |   |   |   |   |   |     |   |
| 79 | 194.389 | 11085.9 | ** | ***  |   |   |   |   |   |   |   |     |   |
| 80 | 203.969 | 10953.3 | ** | ***  |   |   |   |   |   |   |   |     |   |
| 81 | 214.324 | 10808   | ** | ***  |   |   |   |   |   |   |   |     |   |
| 82 | 225.559 | 10648.3 | ** | ±*   |   |   |   |   |   |   |   |     |   |
| 83 | 237.799 | 10471.8 | ** | **   |   |   |   |   |   |   |   |     |   |
| 84 | 251.192 | 10275.6 | ** | **   |   |   |   |   |   |   |   |     |   |
| 85 | 265.922 | 10056.4 | ** | *    |   |   |   |   |   |   |   |     |   |
| 86 | 282.217 | 9809.62 | ** | *    |   |   |   |   |   |   |   |     |   |
| 87 | 300.358 | 9529.92 | ** |      |   |   |   |   |   |   |   |     |   |
| 88 | 320.709 | 9210.09 | ** |      |   |   |   |   |   |   |   |     |   |
| 89 | 343.731 | 8840.96 | *  |      |   |   |   |   |   |   |   |     |   |
| 90 | 370.042 | 8410.07 | *  |      |   |   |   |   |   |   |   | · - |   |
| 91 | 400.475 | 7900.48 |    |      |   |   |   |   |   |   |   |     |   |
| 92 | 436.194 | 7288.29 |    |      |   |   |   |   |   |   |   |     |   |
| 93 | 478.866 | 6538.93 |    |      |   |   |   |   |   |   |   |     |   |
| 94 | 531.013 | 5599.73 |    |      |   |   |   |   |   |   |   |     |   |
| 95 | 596.673 | 4385.95 |    |      |   |   |   |   |   |   |   |     |   |
| 96 | 682.738 | 2752.28 |    |      |   |   |   |   |   |   |   |     |   |
| 97 | 802.408 | 541.882 |    |      |   |   |   |   |   |   |   |     |   |
|    | -       |         | 0  | 1    | 1 | I | 1 | 5 | 1 | 1 | I | 10  | l |
|    |         |         |    |      |   |   |   |   |   |   |   |     |   |

0 (

133

1

ł

| ****            | *******         | ****            | *****          | ******       | ******       |
|-----------------|-----------------|-----------------|----------------|--------------|--------------|
| 14 Feb 1540     | CUSTOM SCENA    | RIO: B-1B; WITH | H filter; DELF | IC cloud;    | one 1MT bomb |
| time $(hr) = 1$ | deltat (hr)     | = .10625 %air   | borne = 85 si  | gmax = 399   | 4.78 M       |
| sigmay = 4378   | .37 M           | 3 si            | gmay cloud dia | meter = $26$ | 270.2 M      |
| Altitude        | Cloud Dens      | Filter Mass     | Cabin Mass     | Engine Ma    | ssProm Part  |
| M               | mg/M^3          | Kg              | Kg             | Kg           | microns r    |
| 17000           | 22,7993         | 1.32932E-03     | 3.07228-04     | .929394      | 1.83114      |
| 16000           | 56.6174         | 2.90802E-03     | 5.63101E-04    | 1.97125      | 1.83114      |
| 15000           | 110,898         | 5.01159E-03     | 7.95494E-04    | 3.29785      | 1.83114      |
| 14000           | 173.446         | 6.89122E-03     | 8.66153E-04    | 4.40542      | 1.83114      |
| 13000           | 221.131         | 7.71939E-03     | 7.27852E-04    | 4.7972       | 16.8678      |
| 12000           | 235.488         | 7.21194E-03     | .0004714       | 4.36338      | 32.0949      |
| 11000           | 218.207         | 5.84564E-03     | 2.35215E-04    | 3.45333      | 43.4013      |
| 10000           | 185.638         | 4.47778E-03     | 9.35721E-05    | 2.59607      | 53.7356      |
| 9000            | 153.775         | .0033223        | 2.87353E-05    | 1.90306      | 66.2332      |
| 8000            | 128.932         | 2.48813E-03     | 6.82243E-06    | 1.41689      | 76.1352      |
| 7000            | 110.215         | 1.90005E-03     | 0              | 1.07904      | 87.6583      |
| 6000            | 56.7 <b>586</b> | 1.49065E-03     | 0              | .846539      | 101,244      |
| 5000            | 25.9754         | .0011871        | 0              | .674155      | 113.153      |
| 4000            | 77.1518         | 9.57393E-04     | 0              | .543704      | 126.928      |
| 3000            | 69.6583         | 7.7892E-04      | 0              | .442349      | 143.065      |
| 2000            | 63.237          | 6.38787E-04     | 0              | .362768      | 155.463      |
| 1000            | 57.5372         | 5.26304E-04     | 0              | .298888      | 169.487      |
| 0               | 52.3251         | 4.34401E-04     | 0              | .246697      | 185.497      |

Ţ

ß

6.

| 14 Feb 1540     | CUSTOM SCENAL   | RIO: B-1B; WITH filter: DELFIC cloud: one 1MT bomb |
|-----------------|-----------------|----------------------------------------------------|
| time $(hr) = 1$ | deltat (hr)     | 10625 %airborne = 85 sigmax = 3994.78 M            |
| sigmay = 4378.  | 37 M            | 3 sigmay cloud diameter = 26270.2 M                |
| initial dust lo | ofted = $3.023$ | 395E+08 Kg dust now airborne = 2.57035E+08 Kg      |
| Altitude (      | Cloud Mass      | 5                                                  |
| M               | Kg/M            |                                                    |
| 17000           | 2546.49         |                                                    |
| 16000           | 6323.67         |                                                    |
| 15000           | 12386.3         |                                                    |
| 14000           | 19372.4         |                                                    |
| 13000           | 24664.8         |                                                    |
| 12000           | 26230.3         |                                                    |
| 11000           | 24280.7         |                                                    |
| 10000           | 20637.6         |                                                    |
| 9000            | 17076.3         |                                                    |
| 8000            | 14304.9         |                                                    |
| 7000            | 12215.8         |                                                    |
| 6000            | 10711.5         |                                                    |
| 5000            | 9507.85         |                                                    |
| 4000            | 8521.78         |                                                    |
| 3000            | 7683.29         |                                                    |
| 2000            | 6967.52         |                                                    |
| 1000            | 6331.85         |                                                    |
| 0               | 5750.36         |                                                    |
| For Group #     | size (microns   | ) Altitude (M)                                     |
| 10              | 10.58           | 13328.9                                            |
| 20              | 19.7693         | 12841.3                                            |
| 30              | 30.8404         | 12052.5                                            |
| 40              | 44.9982         | 10866.5                                            |
| 50              | 63.9711         | 9118.46                                            |
| 60              | 90.8408         | 6866.34                                            |
| 70              | 132.016         | 3697.73                                            |
| 80              | 203.969         | -944.286                                           |
|                 |                 |                                                    |
| 14 Feb 1540     | CUSTOM SCENA    | RIO: B-1B; WITH filter; DELFIC cloud; one 1MT bomb |
| The graph show  | s percent of    | total cloud mass for each group at                 |
| the maximum de  | nsity penetra   | tion altitude of 12000 meters (1/4% per star)      |
| Group# Size     | Altitude        | PERCENT of Total Mass                              |
| uM              | M               | 0       5       10                                 |
| 1 1.83114       | 13625.7         | ****                                               |
| 2 3.21367       | 13590           | ****                                               |
| 3 4.30037       | 13559           | *****                                              |
| 4 5.28023       | 13528.8         | ****                                               |
| 5 6.20587       | 13498.3         | *****                                              |
| 6 7.10111       | 13467           | *****                                              |
| 7 7.9791        | 13434.7         | ****                                               |
| 8 8.84808       | 13401           | ****                                               |
| 9 9.71369       | 13365.8         | *****                                              |
| 10 10.58        | 13328.9         | ****                                               |

) (

.

Y

| 11 | 11.4502         | 13290.3 | *****    |
|----|-----------------|---------|----------|
| 12 | 12.3266         | 13249.7 | *******  |
| 13 | 13,2115         | 13207.1 | *******  |
| 14 | 14.1066         | 13162 3 | *******  |
| 15 | 15.0134         | 13115.3 | *****    |
| 16 | 15,9334         | 13065.8 | *******  |
| 17 | 16.8678         | 13013.8 | ******   |
| 18 | 17.8178         | 12959 1 | ******   |
| 10 | 18 7846         | 12001 7 |          |
| 20 | 10 7603         | 12861 3 | ****     |
| 20 | 20 7729         | 12778   | ****     |
| 22 | 21 7967         | 12711 4 |          |
| 22 | 22.7307         | 12/11.4 | ******   |
| 23 | 22.0410         | 12041./ | ****     |
| 24 | 23.5007         | 12/01 0 | *******  |
| 25 | 24.7771         | 12471.0 |          |
| 20 | 20.1139         | 14411.7 | *******  |
| 2/ | 2/.2043         | 12327.5 |          |
| 20 | 28.4213         | 12239.8 |          |
| 29 | 29.0102         | 12148.1 | ******** |
| 30 | 30.8404         | 12052.5 | *******  |
| 31 | 32.0949         | 11952.9 | *******  |
| 32 | 33.3813         | 11849.3 | ******** |
| 33 | 34.7007         | 11741.5 | ******   |
| 34 | 36.0549         | 11629.6 | *******  |
| 35 | 37.4452         | 11513.5 | *******  |
| 36 | 38.8732         | 11393.2 | ******   |
| 37 | 40.3407         | 11268.5 | *******  |
| 38 | 41.8495         | 11139.4 | ******   |
| 39 | 43.4013         | 11005.5 | *******  |
| 40 | 44.9982         | 10866.5 | ******   |
| 41 | 46.6422         | 10721.6 | *******  |
| 42 | 48.3356         | 10571.5 | ******   |
| 43 | 50.0805         | 10414.4 | ******   |
| 44 | 51.8797         | 10249.3 | *****    |
| 45 | 53.7356         | 10076.2 | *****    |
| 46 | 55.6511         | 9893.3  | *****    |
| 47 | 57.6291         | 9702.54 | *****    |
| 48 | <b>59.6</b> 728 | 9505.04 | ****     |
| 49 | 61.7856         | 9306.29 | ****     |
| 50 | 63.9711         | 9118.46 | ***      |
| 51 | 66.2332         | 8927.23 | ***      |
| 52 | 68.5758         | 8729.88 | **       |
| 53 | 71.004          | 8524.63 | **       |
| 54 | 73.522          | 8310.94 | *        |
| 55 | 76.1352         | 8089.71 | *        |
| 56 | 78.8492         | 7861.08 | *        |
| 57 | 81.6698         | 7624.8  | *        |
| 58 | 84.6039         | 7380.54 |          |
| 59 | 87.6583         | 7128.02 |          |
| 60 | 90.8408         | 6866.34 |          |

**( )** 

| 61 | 94.1597 | 6596.72  |
|----|---------|----------|
| 62 | 97.6242 | 6317.82  |
| 63 | 101.244 | 6029.23  |
| 64 | 105.031 | 5730.49  |
| 65 | 108.996 | 5421.24  |
| 66 | 113.153 | 5100.92  |
| 67 | 117.516 | 4769.05  |
| 68 | 122.102 | 4424.04  |
| 69 | 126.928 | 4067.66  |
| 70 | 132.016 | 3697.73  |
| 71 | 137.386 | 3313.83  |
| 72 | 143.065 | 2914.9   |
| 73 | 149.079 | 2500.2   |
| 74 | 155.463 | 2068.61  |
| 75 | 162.252 | 1619.14  |
| 76 | 169.487 | 1150.56  |
| 77 | 177.217 | 661.687  |
| 78 | 185.497 | 151      |
| 79 | 194.389 | -383.061 |
| 80 | 203.969 | -944.286 |
| 81 | 214.324 | -1545.16 |
| 82 | 225.559 | -2191.07 |
| 83 | 237.799 | -2880.13 |
| 84 | 251.192 | -3637.58 |
| 85 | 265.922 | -4445 72 |

כ

D

0 | | | | 5 | | | | 10 | | |

· •

### Appendix I

## Sample Multi Burst Dose Output - Full Report

14 Feb 1621 This is a dose report. CUSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; 300 1MT bombs WEAPON/TARGET DATA: Number of weapons ----- 300 Width of target field ----- 150 KM Weapon yield ----- 1000 KT Fission fraction ----- 1 Dust fraction ----- .333333 The size distribution input file is- DELFIC.RMA Rm = .204 ; sigma Rm = The soil density is ----- 2600 KG/M<sup>3</sup> The aircraft specification file is - B-1B.SPC Aircraft velocity is ----- 279.2 M/S Time from cloud penetration to end of mission ---- 8 HR Wind shear X (along track) ----- () (KM/HR)/KM Wind shear Y (cross track) ------ 1 (KM/HR)/KM The output file will be named ---- B: IAPP.DOP CUSTOM SUFWARIO: B-1B; WITH filter; DELFIC cloud; 300 1MT bombs 14 Feb 1621 time (hr) = .15 deltat (hr) =-9.50774E-03 %airborne = 98 sigmax = 2977.15 M 3 sigmay cloud diameter = 17898 M sigmay = 2983.01 M Prominent Particle TotalDose Altitude Cabin Dust Sky Shine М REM REM REM microns radius 1407.91 1466.29 \* .473992 17000 58.3781 16000 2950.8 \* .473992 105.792 2845.01 4634.39 \* .473992 15000 147.768 4486.62 .473992 5710.77 \* 14000 159.086 5551.69 13000 132.007 5426.07 5558.08 42.8646 4235.02 4319.45 126.317 12000 84.4263 2690.48 2732.1 202.228 11000 41.6165 1506.7 272.629 10000 1490.34 16.3577 745.939 740.976 326.279 9000 4.96265 364.17 403.868 363.006 1.16438 8000 457.979 182.706 182,706 7000 0 0 111.154 111.154 529.291 6000 529.291 5000 0 74.5758 74.5758 0 51.8589 51.8589 629.064 4000 3000 0 35.7926 35.7926 629.064 29.622 782.496 2000 0 29.622 782.496 26.9561 1000 0 26.9561 782.496 17.3747 17.3747 0 Ω \* Skyshine may be inaccurate due to large gamma mean free path (mfp >.2sigmax)

| 14 Feb 1621                                    | CUSTOM S     | CENARIO: B-1B; WIT   | TH filter; DEL                       | FIC cloud; 300 1MT bombs |
|------------------------------------------------|--------------|----------------------|--------------------------------------|--------------------------|
| time (hr) =                                    | .15 deltat   | (hr) = -9.50774E - ( | 3 Zairborne                          | = 98 sigmax - 2977.15 M  |
| Altitude,                                      | Cloud Act    | Filter Act           | Cabin Act                            | Prominent Particle       |
| M                                              | MCi/M        | Ci                   | Ci                                   | microns r                |
| 17000                                          | 1845.03      | 135.941              | 45.0815                              | .473992                  |
| 16000                                          | 4365.1       | 284.1                | 81.6959                              | .473992                  |
| 15000                                          | 8059.62      | 462.755              | 114.111                              | .473992                  |
| 14000                                          | 11676.3      | 590.956              | 122.851                              | .473992                  |
| 13000                                          | 13358.8      | 595.716              | 101.94                               | 42.8646                  |
| 12000                                          | 12203        | 479.321              | 65.1968                              | 126.317                  |
| 11000                                          | 9073.77      | 313.791              | 32.1376                              | 202.228                  |
| 10000                                          | 5686.42      | 178.988              | 12.6319                              | 272.629                  |
| 9000                                           | 3194.12      | 91.4386              | 3.83232                              | 326.279                  |
| 8000                                           | 1761.67      | 45.7743              | .899172                              | 403.868                  |
| 700 <b>0</b>                                   | 995.074      | 23.4914              | 0                                    | 457.979                  |
| 6000                                           | 677.265      | 14.2916              | 0                                    | 529.291                  |
| 5000                                           | 506.996      | 9.58857              | 0                                    | 529.291                  |
| 4000                                           | 392.153      | 6.66776              | 0                                    | 629.064                  |
| 3000                                           | 300.365      | 4.60202              | 0                                    | 629.064                  |
| 2000                                           | 275.044      | 3.80864              | 0                                    | 782.496                  |
| 1000                                           | 276.403      | 3.46588              | 0                                    | 782.496                  |
| 0                                              | 196.295      | 2.23395              | 0                                    | 782.495                  |
| For Group #                                    | size (mic    | rons)                | Altitude (M)                         |                          |
| 10                                             | 3.80268      | 13593.3              | -                                    |                          |
| 20                                             | 8.35085      | 13509.8              |                                      |                          |
| 30                                             | 14.6576      | 13401.4              |                                      |                          |
| 40                                             | 23.5162      | 13262.6              | •                                    |                          |
| 50                                             | 36.2252      | 13084.8              |                                      |                          |
| 60                                             | 55.1961      | 12844.3              |                                      | · • •                    |
| 70                                             | 85.5478      | 12480.7              |                                      |                          |
| 80                                             | 140.637      | 11797.8              |                                      |                          |
| 90                                             | 272.629      | 9955.32              |                                      |                          |
| # <b>~~~</b> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |              |                      | ہ خد قد حذ نہ ہو جو جو جو جو جو بی ب |                          |
| 14 Feb 1621                                    | CUSTOM S     | CENARIO: B-1B; WI    | TH filter; DEL                       | FIC cloud; 300 1MT bombs |
| The graph s                                    | hows percent | of total cloud a     | ctivity for ea                       | ich group at             |
| the maximum                                    | activity pe  | netration altitude   | e of 13000 me                        | eters (1/4% per star)    |
| Group# _Si                                     | ze Altitude  | PERCENT of To        | otal Activity                        | -                        |
| - uM                                           | M            | 0                    | 5                                    |                          |
| 1 .473992                                      | 13657.2      | ***                  |                                      | -                        |
| 2.904308                                       | 13648.8      | ****                 |                                      |                          |
| 3 1.27327                                      | 13641.6      | ****                 |                                      |                          |
| 4 1.62603                                      | 13634.8      | ****                 |                                      |                          |
| 5 1.97515                                      | 13628.1      | ****                 |                                      |                          |
| 6 2.32639                                      | 13621.3      | ****                 |                                      |                          |
| 7 2.68294                                      | 13614.5      | ****                 |                                      |                          |
| 8 3.04692                                      | 13607.6      | ****                 |                                      |                          |
| 9 3.41978                                      | 13600.5      | *****                |                                      |                          |
| 10 3.8026                                      | 8 13593.3    | *****                |                                      |                          |

Ø.•

| 11 | 4.19655 | 13585.9 | ***** |
|----|---------|---------|-------|
| 12 | 4.60222 | 13578.3 | ***** |
| 13 | 5.02038 | 13570.5 | ***** |
| 14 | 5.45171 | 13562.5 | ***** |
| 15 | 5.89686 | 13554.3 | ***** |
| 16 | 6.35641 | 13545.9 | ***** |
| 17 | 6.83098 | 13537.2 | ***** |
| 18 | 7.32119 | 13528.3 | ***** |
| 19 | 7.8276  | 13519.2 | ***** |
| 20 | 8.35085 | 13509.8 | ***** |
| 21 | 8.89157 | 13500.2 | ***** |
| 22 | 9.45039 | 13490.3 | ***** |
| 23 | 10.028  | 13480.2 | ***** |
| 24 | 10.625  | 13469.8 | ****  |
| 25 | 11.2422 | 13459.1 | ***** |
| 26 | 11.8803 | 13448.1 | ***** |
| 27 | 12.5401 | 13436.9 | ***** |
| 28 | 13.2223 | 13425.4 | ***** |
| 29 | 13.9278 | 13413.5 | ***** |
| 30 | 14.6576 | 13401.4 | ****  |
| 31 | 15.4124 | 13389   | ***** |
| 32 | 16.1934 | 13376.3 | ***** |
| 33 | 17.0015 | 13363.2 | ***** |
| 34 | 17.8378 | 13349.9 | ***** |
| 35 | 18.7035 | 13336.2 | ***** |
| 36 | 19.5996 | 13322.2 | ***** |
| 37 | 20.5276 | 13307.8 | ***** |
| 38 | 21.4887 | 13293.1 | ***** |
| 39 | 22.4844 | 13278   | ***** |
| 40 | 23.5162 | 13262.6 | ***** |
| 41 | 24.5856 | 13246.8 | ****  |
| 42 | 25.6944 | 13230.6 | ****  |
| 43 | 26.8444 | 13214   | ***** |
| 44 | 28.0374 | 13197   | ***** |
| 45 | 29.2756 | 13179.5 | ***** |
| 46 | 30.5611 | 13161.6 | ***** |
| 47 | 31.8962 | 13143.2 | ***** |
| 48 | 33.2835 | 13124.3 | ***** |
| 49 | 34.7255 | 13104.8 | ***** |
| 50 | 36.2252 | 13084.8 | ***** |
| 51 | 37.7855 | 13064.1 | ***** |
| 52 | 39.4098 | 13042.8 | ***** |
| 53 | 41.1016 | 13020.7 | ***** |
| 54 | 42.8646 | 12998   | ***** |
| 55 | 44.7032 | 12974.4 | ***** |
| 56 | 46.6215 | 12950   | ***** |
| 57 | 48.6246 | 12924.7 | ****  |
| 58 | 50.7175 | 12898.7 | ***** |
| 59 | 52.906  | 12871.8 | ****  |

•

| 60 | 55.1961 | 12844.3 | ****  |   |   |   |   |   |   |   |   |     |   |  |
|----|---------|---------|-------|---|---|---|---|---|---|---|---|-----|---|--|
| 61 | 57.5948 | 12816.1 | ****  |   |   |   |   |   |   |   |   |     |   |  |
| 62 | 60.109  | 12787.3 | ***** |   |   |   |   |   |   |   |   |     |   |  |
| 63 | 62.7472 | 12757.7 | ****  |   |   |   |   |   |   |   |   |     |   |  |
| 64 | 65.5178 | 12726.7 | ****  |   |   |   |   |   |   |   |   |     |   |  |
| 65 | 68.4309 | 12692.1 | ****  |   |   |   |   |   |   |   |   |     |   |  |
| 66 | 71.4967 | 12651.7 | ****  |   |   |   |   |   |   |   |   |     |   |  |
| 67 | 74.7277 | 12612.4 | ****  |   |   |   |   |   |   |   |   |     |   |  |
| 68 | 78.1363 | 12570.9 | ****  |   |   |   |   |   |   |   |   |     |   |  |
| 69 | 81.7377 | 12527   | ****  |   |   |   |   |   |   |   |   |     |   |  |
| 70 | 85.5478 | 12480.7 | ****  |   |   |   |   |   |   |   |   |     |   |  |
| 71 | 89.5848 | 12431.5 | ***** |   |   |   |   |   |   |   |   |     |   |  |
| 72 | 93.8697 | 12379.3 | ****  |   |   |   |   |   |   |   |   |     |   |  |
| 73 | 98.4248 | 12323.7 | ****  |   |   |   |   |   |   |   |   |     |   |  |
| 74 | 103.277 | 12264.3 | ****  |   |   |   |   |   |   |   |   |     |   |  |
| 75 | 108.456 | 12200.7 | ****  |   |   |   |   |   |   |   |   |     |   |  |
| 76 | 113.995 | 12132.3 | ****  |   |   |   |   |   |   |   |   |     |   |  |
| 77 | 119.933 | 12058.6 | ****  |   |   |   |   | • |   |   |   |     |   |  |
| 78 | 126.317 | 11978.9 | ****  |   |   |   |   |   |   |   |   |     |   |  |
| 79 | 133.198 | 11892.2 | ****  |   |   |   |   |   |   |   |   |     |   |  |
| 80 | 140.637 | 11797.8 | ****  |   |   |   |   |   |   |   |   |     |   |  |
| 81 | 148.708 | 11694.4 | ****  |   |   |   |   |   |   |   |   |     |   |  |
| 82 | 157.495 | 11580.3 | ****  |   |   |   |   |   |   |   |   |     |   |  |
| 83 | 167.101 | 11454   | ****  |   |   |   |   |   |   |   |   |     |   |  |
| 84 | 177.652 | 11313.2 | ***   |   |   |   |   |   |   |   |   |     |   |  |
| 85 | 189.298 | 11155.7 | ***   |   |   |   |   |   |   |   |   |     |   |  |
| 86 | 202.228 | 10977.5 | ***   |   |   |   |   |   |   |   |   |     |   |  |
| 87 | 216.678 | 10774.8 | **    |   |   |   |   |   |   |   |   |     |   |  |
| 88 | 232.947 | 10542.1 | **    |   |   |   |   |   |   |   |   |     |   |  |
| 89 | 251.428 | 10272.1 | **    |   |   |   |   |   |   |   |   | • • | - |  |
| 90 | 272.629 | 9955.32 | *     |   |   |   |   |   |   |   |   |     |   |  |
| 91 | 297.255 | 9578.12 | *     |   |   |   |   |   |   |   |   |     |   |  |
| 92 | 326.279 | 9121.48 |       |   |   |   |   |   |   |   |   |     |   |  |
| 93 | 361.108 | 8557.42 |       |   |   |   |   |   |   |   |   |     |   |  |
| 94 | 403.868 | 7842.96 |       |   |   |   |   |   |   |   |   |     |   |  |
| 95 | 457.979 | 6908.04 |       |   |   |   |   |   |   |   |   |     |   |  |
| 96 | 529.291 | 5631.13 |       |   |   |   |   |   |   |   |   |     |   |  |
| 97 | 629.064 | 3776.22 |       |   |   |   |   |   |   |   |   |     |   |  |
| 98 | 782.496 | 896.84  |       |   |   |   |   |   |   |   |   |     |   |  |
|    |         |         | 0     | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | 10  | 1 |  |
|    |         |         |       |   |   |   |   |   |   |   |   |     |   |  |

**(**..

| ****            | ******         | *****         | ********    | ******                    |
|-----------------|----------------|---------------|-------------|---------------------------|
| 14 Feb 1621     | CUSTOM SCENARI | O: B-1B; WITH | filter; DE  | LFIC cloud; 300 1MT bombs |
| time (hr) = 1   | deltat (hr) =  | .10625 Zairb  | orne = 90   | sigmax = 3958.03 M        |
| sigmay = 4343.4 | 43 M           | 3 sig         | may cloud d | iameter = 26060.6 M       |
| Altitude        | Cabin Dust S   | ky Shine      | TotalDose   | <b>Prominent Particle</b> |
| M               | REM            | REM           | REM         | microns radius            |
| 17000           | 25.4727        | 91.7404       | 117.213 *   | .473992                   |
| 16000           | 46.3348        | 183.578       | 229.913 *   | .473992                   |
| 1 5000          | 64.97          | 287.753       | 352.723     | .473992                   |
| 14000           | 70.2242        | 357.387       | 427.611     | .473992                   |
| 13000           | 58,5092        | 356.816       | 415.325     | 17.0015                   |
| 12000           | 37.5767        | 293.627       | 331.203     | 31.8962                   |
| 11000           | 18.6022        | 207.601       | 226.204     | 42.8646                   |
| 10000           | 7.34381        | 138.968       | 146.311     | 55.1961                   |
| 9000            | 2.23797        | 91.9615       | 94.1994     | 65.5178                   |
| 8000            | .52749         | 63.7091       | 64.2366     | 78.1363                   |
| 7000            | 0              | 46.1374       | 46.1374     | 89.5848                   |
| 6000            | 0              | 35.4026       | 35.4026     | 103.277                   |
| 5000            | 0              | 27.7528       | 27.7528     | 113,995                   |
| 4000            | 0              | 22.078        | 22.078      | 126.317                   |
| 3000            | 0              | 17.7481       | 17.7481     | 140.637                   |
| 2000            | 0              | 14.4278       | 14.4278     | 157.495                   |
| 1000            | 0              | 11.7971       | 11.7971     | 167.101                   |
| 0               | 0              | 9.67145       | 9.67145     | 189.298                   |
| * Skyshine may  | be inaccurate  | due to large  | gamma mean  | free path (mfp >.2sigmax) |

()

.

•

| •               |               |                 |               |                          |      |
|-----------------|---------------|-----------------|---------------|--------------------------|------|
| 14 Feb 1621     | CUSTOM SCEN   | ARIO: B-1B; WI  | TH filter; D  | ELFIC cloud; 300 IMT bo  | appa |
| time $(hr) = 1$ | deltat (hr)   | = .10625 %ai    | rborne = 90   | sigmax = 3958.03 M       |      |
| Altitude,       | Cloud Act     | Filter Act      | Cabin Act     | Prominent Particle       |      |
| M               | MCi/M         | Ci              | Ci            | microns r                |      |
| 17000           | 177.639       | 70.5181         | 44.482        | .473992                  |      |
| 16000           | 416.183       | 149.21          | 80.9124       | .473992                  |      |
| 15000           | 763.778       | 247.255         | 113.454       | .473992                  |      |
| 14000           | 1110.63       | 325.368         | 122.63        | .473992                  |      |
| 13000           | 1296.29       | 345.11          | 102.172       | 17.0015                  |      |
| 12000           | 1247.23       | 302.454         | 65.6186       | 31.8962                  |      |
| 11000           | 1031.41       | 227.752         | 32.4843       | 42.8646                  |      |
| 10000           | 780.456       | 161.377         | 12.8242       | 55.1961                  |      |
| 9000            | 583.069       | 111.369         | 3.90807       | 65.5178                  |      |
| 8000            | 454.372       | 78.9406         | .921134       | 78.1363                  |      |
| 7000            | 368.973       | 57.835          | 0             | 89.5848                  |      |
| 6000            | 316.435       | 44.3786         | 0             | 103.277                  |      |
| 5000            | 276.511       | 34.7892         | 0             | 113.995                  |      |
| 4000            | 244.489       | 27.6756         | 0             | 126.317                  |      |
| 3000            | 217.833       | 22.2479         | 0.            | 140.637                  |      |
| 2000            | 195.733       | 18.0857         | 0             | 157.495                  |      |
| 1000            | 176.592       | 14.7881         | 0             | 167.101                  |      |
| 0               | 159.204       | 12.1235         | 0             | 189.298                  |      |
| For Group #     | size (micror  | 15)             | Altitude (    | (M)                      |      |
| 10              | 3.80268       | 13573.5         |               |                          |      |
| 20              | 8.35085       | 13420.4         |               |                          |      |
| 30              | 14.6576       | 13133.9         |               |                          |      |
| 40              | 23.5162       | 12595.6         |               |                          |      |
| 50              | 36.2252       | 11615.5         |               |                          |      |
| 60              | 55.1961       | 9937.44         |               | · • •                    |      |
| 70              | 85.5478       | 7302.32         |               |                          |      |
| 80              | 140.637       | 3084.51         |               |                          |      |
| 90              | 272.629       | -4810.92        |               |                          |      |
|                 |               |                 |               |                          |      |
| 14 Feb 1621     | CUSTOM SCEN   | WARIO: B-1B; WI | TH filter; I  | DELFIC cloud; 300 1MT be | ombs |
| The graph sho   | ws percent of | total cloud a   | activity for  | each group at            |      |
| the maximum a   | ctivity penet | ration altitud  | le of 13000   | meters (1/4% per star)   |      |
| Group# Size     | Altitude      | PERCENT of 7    | Cotal Activit | t y                      |      |
| uM              | М             | 0               | 5             |                          | 1    |
| 1.473992        | 13656.6       | *****           |               |                          |      |
| 2 .904308       | 13647.2       | ****            |               |                          |      |
| 3 1.27327       | 13638.9       | *****           |               |                          |      |
| 4 1.62603       | 13630.6       | ******          |               |                          |      |
| 5 1.97515       | 13622.2       | ******          |               |                          |      |
| 6 2.32639       | 13613.4       | ******          |               |                          |      |
| 7 2.68294       | 13604.2       | ******          |               |                          |      |
| 8 3.04692       | 13594.5       | ******          |               |                          |      |
| 9 3,41978       | 13584.3       | *****           |               |                          |      |
| 10 3.80268      | 13573.5       | *****           |               |                          |      |

and the second statement of the second statement of the second statement of the second statement of the second

.

(•

-

| 11  | 4 10655            | 13569     | والمروقة والمروق والمروق والمروقة |
|-----|--------------------|-----------|-----------------------------------|
| 12  | 4.19099<br>6 60222 | 13540 0   | ******                            |
| 12  | <b>4.00</b> 222    | 13549.9   | ******                            |
| 10  | 5.02038            | 1353/     | ******                            |
| 14  | 5.451/1            | 13523.3   | ******                            |
| 15  | 5.89686            | 13508.7   | ******                            |
| 16  | 6.35641            | 13493.2   | ******                            |
| 17  | 6.83098            | 13476.6   | ******                            |
| 18  | 7.32119            | 13459.1   | ******                            |
| 19  | 7.8276             | 13440.4   | ******                            |
| 20  | 8.35085            | 13420.4   | ******                            |
| 21  | 8.89157            | 13399.2   | ******                            |
| 22  | 9.45039            | 13376.6   | ******                            |
| 23  | 10.028             | 13352.6   | ******                            |
| 24  | 10.625             | 13327     |                                   |
| 25  | 11.2422            | 13200 7   | ****                              |
| 26  | 11 8803            | 13270 4   | ****                              |
| 27  | 12.5600            | 13270.0   | ******                            |
| 20  | 12.0401            | 13239.0   | *******                           |
| 20  | 13.2223            | 13200.0   | ******                            |
| 29  | 13.92/8            | 131/1.4   | ******                            |
| 30  | 14.02              | 73133.9   | ******                            |
| 31  | 15.4               | 13094     | ******                            |
| 32  | 16.1934            | 13051.5   | ******                            |
| 33  | 17.0015            | 13006.2   | ******                            |
| 34  | 17.8378            | 12958     | *******                           |
| 35  | 18.7035            | 12906.6   | ******                            |
| 36  | 19.5996            | 12851.9   | ******                            |
| 37  | 20.5276            | 12793.6   | ******                            |
| 38  | 21.4887            | 12731.7   | *****                             |
| 39  | 22.4844            | 12665.7   | ******                            |
| 40  | 23,5162            | 12595 6   | *******                           |
| 41  | 24.5856            | 12521 1   | ****                              |
| 42  | 25.6944            | 12442     | ****                              |
| 43  | 26 8444            | 12357 0   | *****                             |
| 44  | 20.0444            | 11160 0   |                                   |
| ~~  | 20.03/4            | 12200.0   | ******                            |
| 4)  | 27.2/30            | 121/4.4   | ******                            |
| 40  | 30.3011            | 120/4.5   | ******                            |
| 47  | 31.8962            | 11968.8   | *****                             |
| 48  | 33.2835            | 11857.2   | ******                            |
| 49  | 34.7255            | 11739.5   | *****                             |
| 50  | 36.2252            | 11615.5   | *****                             |
| 51  | 37.7855            | 11484.9   | *****                             |
| 52  | 39.4098            | 11347.7   | *****                             |
| 53  | 41.1016            | 11203.5   | *****                             |
| 54  | 42.8646            | 11051.9   | ****                              |
| 55  | 44.7032            | 10892.3   | ****                              |
| 56  | 46.6215            | 10723.4   | ****                              |
| 57  | 48.6246            | 10545_6   | ***                               |
| 58  | 50.7175            | 10355.9   | ***                               |
| 59  | 52,906             | 10154 1   | **                                |
| 60  | 55,1961            | 9937 44   | **                                |
| ~ ~ | ~~~~               | JJJ/ • 44 |                                   |

ストロンは、そのためのでは、「「ためやくやく」」「「ためやからの」」「ためではない」「「ためたん」」「ためやない」「「ためはないのない」」「たいないない」」「ためではない」「「たん」」「ためでは、「、

0

.

. - .

- -

| 61 | 57.5948 | 9705.86  | ** |   |   |   |   |   |   |   |   |     |   |
|----|---------|----------|----|---|---|---|---|---|---|---|---|-----|---|
| 62 | 60.109  | 9463.34  | *  |   |   |   |   |   |   |   |   |     |   |
| 63 | 62.7472 | 9221.43  | *  |   |   |   |   |   |   |   |   |     |   |
| 64 | 65.5178 | 8987.47  | *  |   |   |   |   |   |   |   |   |     |   |
| 65 | 68.4309 | 8742.13  | *  |   |   |   |   |   |   |   |   |     |   |
| 66 | 71.4967 | 8483.64  |    |   |   |   |   |   |   |   |   |     |   |
| 67 | 74.7277 | 8208.73  |    |   |   |   |   |   |   |   |   |     |   |
| 68 | 78.1363 | 7921.02  |    |   |   |   |   |   |   |   |   |     |   |
| 69 | 81.7377 | 7619.13  |    |   |   |   |   |   |   |   |   |     |   |
| 70 | 85.5478 | 7302.32  |    |   |   |   |   |   |   |   |   |     |   |
| 71 | 89.5848 | 6968.98  |    |   |   |   |   |   |   |   |   |     |   |
| 72 | 93.8697 | 6620.18  |    |   |   |   |   |   |   |   |   |     |   |
| 73 | 98.4248 | 6253.74  |    |   |   |   |   |   |   |   |   |     |   |
| 74 | 103.277 | 5868.45  |    |   |   |   |   |   |   |   |   |     |   |
| 75 | 108.456 | 5463.14  |    |   |   |   |   |   |   |   |   |     |   |
| 76 | 113.995 | 5036.52  |    |   |   |   |   |   |   |   |   |     |   |
| 77 | 119.933 | 4585.97  |    |   |   |   |   |   |   |   |   |     |   |
| 78 | 126.317 | 4112.48  |    |   |   |   |   |   |   |   |   |     |   |
| 79 | 133.198 | 3612.63  |    |   |   |   |   |   |   |   |   |     |   |
| 80 | 140.637 | 3084.51  |    |   |   |   |   |   |   |   |   |     |   |
| 81 | 148.708 | 2525.55  |    |   |   |   |   |   |   |   |   |     |   |
| 82 | 157.495 | 1933     |    |   |   |   |   |   |   |   |   |     |   |
| 83 | 167.101 | 1303.91  |    |   |   |   |   |   |   |   |   |     |   |
| 84 | 177.652 | 634.534  |    |   |   |   |   |   |   |   |   |     |   |
| 85 | 189.298 | -78.9946 |    |   |   |   |   |   |   |   |   |     |   |
| 86 | 202.228 | -843.808 |    |   |   |   |   |   |   |   |   |     |   |
| 87 | 216.678 | -1682.04 |    |   |   |   |   |   |   |   |   |     |   |
| 88 | 232.947 | -2605.78 |    |   |   |   |   |   |   |   |   |     |   |
| 89 | 251.428 | -3650.72 |    |   |   |   |   |   |   |   |   |     |   |
| 90 | 272.629 | -4810.92 |    |   |   |   |   |   |   |   |   | • • |   |
|    |         |          | 0  | 1 | 1 | 1 | 1 | 5 | I | 1 | 1 | 10  | 1 |

Ł

I

された。2011年の大学校は1911年大学校のためには1912年のためための1911年のないでは、1911年のためでは、1911年の大学校ではないではないです。1911年の大学校では、1911年の大学校

•

6.

### Appendix J

## Sample Multi Burst Dust Output - Full Report

14 Feb 1642 This is a dust report. CUSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; 300 1MT bombs

WEAPON/TARGET DATA: Number of weapons ----- 300 Width of target field ----- 150 KM Weapon yield ----- 1000 KT Fission fraction ----- 1 Dust fraction ----- .333333 The size distribution input file is- DELFIC.RMM Rm = .204 ; sigma Rm = The soil density is ----- 2600 RG/M<sup>3</sup> The aircraft specification file is - B-1B.SPC Aircraft velocity is ----- 279.2 M/S Time from cloud penetration to end of mission ----- 8 HR Wind shear X (along track) ----- 0 (KM/HR)/KM Wind shear Y (cross track) ----- 1 (KM/HR)/KM The output file will be named ----- B: JAPP.MOP

#### \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

CUSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; 300 1MT bombs 14 Feb 1642 time (hr) = .15 deltat (hr) =-9.50774E-03 %airborne = 97 sigmax = 2984.51 M sigmay = 2990.18 M 3 signay cloud diameter = 17941.1 M Cabin Mass Engine MassProm Part Cloud Dens Filter Mass Altitude microns r Kg М  $mg/M^3$ Kg Kg .0704225 7.00295E-03 43.97 1.83114 17000 1443.77 93.6817 1.83114 .0127591 16000 3601.49 .152202 .256557 .0179139 155.872 1.83114 15000 7015.86 204.037 1.83114 .339901 .0193816 14000 10752.4 .356577 .0161589 211.677 43.4013 13000 13060.4 .0103813 176.091 126.928 12000 -12720.5 .299693 203.969 .205959 5.13924E-03 119.883 10139.3 11000 2.02824E-03 71.5232 265.922 .123915 10000 6845.7 343.731 6.17697E-04 38.3585 9000 4148.75 .0669267 1.45453E-04 20.128 400.475 .0352973 8000 2451.58 436.194 .0189932 0 10.7863 7000 1474.67 531.013 .0116712 0 6.62811 6000 1014.03 531.013 757.719 7.81628E-03 0 4.43888 5000 595.075 5.51691E-03 0 3.13306 596.673 4000 682.738 0 2.27218 3000 478.929 4.00102E-03404.381 1.73312 682.738 3.05179E-03 0 2000 1.39847 802.408 2.46252E-03 0 1000 360.34 802.408 0 .941762 267.367 1.65832E-03 0

| 14 Rob 16   |                            | CENADIA. P.1P.         |                                 |             | 2. 200 1WT Lasks                                                |
|-------------|----------------------------|------------------------|---------------------------------|-------------|-----------------------------------------------------------------|
| 14 Feb 10   | = 15 delege                | $(L_{m}) = 0.50776$    | WIIG IIICEF;<br>F.O.2 . Toinhom | DETEIC CION | $a_{1}$ SUO IMI DOMDS                                           |
|             | 2000 18 M                  | ( <u>ar) =-3.30//4</u> | L-UJ Adirbor                    | ne = 9/ 81  | gmax = 2904.51  M                                               |
| signay -    | 4770.10 M                  | ) 012050,00 P-         | Bigmay cloud                    | clameter -  | -2022220000 = -2022220000 = -200222220000 = -200222220000000000 |
|             | lust loited =              | -                      | dust n                          | ow airborne | = 2.93323E+08  kg                                               |
| Altitude    |                            | 8                      |                                 |             |                                                                 |
| M           | Kg/M                       |                        |                                 |             |                                                                 |
| 1/000       | 81193.6                    |                        |                                 |             |                                                                 |
| 16000       | 202537                     |                        |                                 |             |                                                                 |
| 15000       | 394551                     |                        |                                 |             |                                                                 |
| 14000       | 604685                     |                        |                                 |             |                                                                 |
| 13000       | 734341                     |                        |                                 |             |                                                                 |
| 12000       | 714974                     |                        |                                 |             |                                                                 |
| 11000       | 569712                     |                        |                                 |             |                                                                 |
| 10000       | 384553                     |                        |                                 |             |                                                                 |
| 9000        | 232984                     |                        |                                 |             |                                                                 |
| 8000        | 137645                     |                        |                                 |             |                                                                 |
| 7000        | 82785.3                    |                        |                                 |             |                                                                 |
| 6000        | 56907.3                    |                        |                                 |             |                                                                 |
| 5000        | 42523 ·                    |                        |                                 |             |                                                                 |
| 4000        | 33388.2                    |                        |                                 |             |                                                                 |
| 3000        | 26864.2                    |                        |                                 |             |                                                                 |
| 2000        | 22682.6                    |                        |                                 |             |                                                                 |
| 1000        | 20205.1                    |                        |                                 |             |                                                                 |
| 0           | 14991.9                    |                        |                                 |             |                                                                 |
| For Group   | <b>size</b> (mic           | rons)                  | Altitude                        | (M)         |                                                                 |
| 10          | 10.58                      | 13470.6                |                                 |             |                                                                 |
| 20          | 19.7693                    | 13319.5                |                                 |             |                                                                 |
| 30          | 30.8404                    | 13157.7                |                                 |             |                                                                 |
| 40          | 44.9982                    | 12970.6                |                                 |             |                                                                 |
| 50          | 63.9711                    | 12744.1                |                                 |             |                                                                 |
| 60          | 90.8408                    | 12416.3                |                                 |             |                                                                 |
| 70          | 132.016                    | 11907.1                |                                 |             |                                                                 |
| 80          | 203.969                    | 10953.3                |                                 |             |                                                                 |
| 90          | 370.042                    | 8410.07                |                                 |             |                                                                 |
|             |                            |                        | *****                           |             |                                                                 |
| 14 Feb 16   | 542 CUSTOM S               | CENARIO: B-1 B:        | WITH filter:                    | DELFIC clor | d: 300 IMT bombs                                                |
| The grant   | shows percent              | of total cloud         | mass for esc                    | h group at  |                                                                 |
| the maxim   | mum density nen            | etration altitu        | de of 12000                     | meters (1/4 | 7 ner star)                                                     |
| Ground      | Size Altitude              | PERCENT AF             | Total Mass                      |             | w her orgen                                                     |
| oroup.      | W M                        |                        |                                 | 1 1         |                                                                 |
| וראון       | 14 13630 R                 | <u>√</u> 1 1<br>★★★★   |                                 |             |                                                                 |
| 2 2 2 2 2 2 |                            | ****                   |                                 |             |                                                                 |
| 3 4 301     | 137 13593 G                | ****                   |                                 |             |                                                                 |
| J 4.JU(     | 102 12565 7                | ****                   |                                 |             |                                                                 |
| 5 L 201     | 14J 13J0J./<br>507 126/0 4 | ****                   |                                 |             |                                                                 |
|             | 13340.0                    | ****                   |                                 |             |                                                                 |
| 0 /.IU      | LII 10004.0                | ****                   |                                 |             |                                                                 |
| / /.୬/      |                            |                        |                                 |             |                                                                 |
| 0 0.048     |                            | ****                   |                                 |             |                                                                 |
| 9 9./1      |                            | ***                    |                                 |             |                                                                 |
| 10 10.      | oo 13470.6                 | ****                   |                                 |             | •                                                               |

• • • •

(

•

| 11  | 11.4502 | 13455.5  | ****  |
|-----|---------|----------|-------|
| 12  | 12.3266 | 13440.5  | ****  |
| 13  | 13.2115 | 13425.5  | ****  |
| 14  | 14.1066 | 13410.6  | ****  |
| 15  | 15.0134 | 13395.6  | ****  |
| 16  | 15.9334 | 13380.5  | ****  |
| 17  | 16.8678 | 13365.4  | ****  |
| 18  | 17.8178 | 13350.2  | ****  |
| 19  | 18,7846 | 13334.9  | ****  |
| 20  | 19,7693 | 13319.5  | ****  |
| 21  | 20.7729 | 13304    | ****  |
| 22  | 21.7967 | 13288.4  | ****  |
| 23  | 22.8416 | 13272.7  | ****  |
| 24  | 23.9087 | 13256.8  | ****  |
| 25  | 24,9991 | 13240.7  | ****  |
| 25  | 26.1139 | 13224.5  | ****  |
| 27  | 27.2543 | 13208.1  | ****  |
| 28  | 28.4213 | 13191.6  | ****  |
| 29  | 29.6162 | 13174.8  | ****  |
| 30  | 30,8404 | 13157.7  | ****  |
| 31  | 32.0949 | 13140.5  | ****  |
| 32  | 33.3813 | 13123    | ****  |
| 33  | 34,7007 | 13105.2  | ****  |
| 34  | 36.0549 | 13087.1  | ****  |
| 35  | 37.4452 | 13068.6  | ****  |
| 36  | 38.8732 | 13049.8  | ***** |
| 37  | 40,3407 | 13030.6  | ***** |
| 38  | 41.8495 | 13011.1  | ***** |
| 39  | 43,4013 | 12991    | ****  |
| 40  | 44,9982 | 12970.6  | ***** |
| 41  | 46.6422 | 12949.7  | ***** |
| 42  | 48.3356 | 12928.3  | ***** |
| 43  | 50,0805 | 12906.5  | ***** |
| 44  | 51.8797 | 12884.3  | ***** |
| 45  | 53,7356 | 12861.8  | ***** |
| 46  | 55.6511 | 12838.9  | ***** |
| 47  | 57.6291 | 12815.7  | ***** |
| 48  | 59.6728 | 12792.2  | ***** |
| 49  | 61,7856 | 12768.5  | ****  |
| 50  | 63.9711 | 12744.1  | ***** |
| 51  | 66.2332 | 12718.5  | ***** |
| 52  | 68,5758 | 12690.3  | ***** |
| 53  | 71.004  | 12657.9  | ****  |
| 54  | 73.522  | 12627.1  | ***** |
| 55  | 76,1352 | 12595.2  | ***** |
| 56  | 78.8492 | 12562.2  | ***** |
| 57  | 81.6698 | 12527 -9 | ***** |
| 58  | 84,6039 | 12492.2  | ***** |
| 59  | 87.6583 | 12455    | ***** |
| 60  | 90,8408 | 12416.3  | ***** |
| ÷ • |         |          |       |

ļ

6.

(

148

| 61 | 94.1597 | 12375.8 | ***** |
|----|---------|---------|-------|
| 62 | 97.6242 | 12333.5 | ***** |
| 63 | 101.244 | 12289.2 | ***** |
| 64 | 105.031 | 12242.8 | ***** |
| 65 | 108.996 | 12194.1 | ***** |
| 66 | 113.153 | 12142.8 | ***** |
| 67 | 117.516 | 12088.7 | ***** |
| 68 | 122.102 | 12031.6 | ***** |
| 69 | 126.928 | 11971.2 | ***** |
| 70 | 132.016 | 11907.1 | ***** |
| 71 | 137.386 | 11839.2 | ***** |
| 72 | 143.065 | 11766.9 | ****  |
| 73 | 149.079 | 11689.6 | ***** |
| 74 | 155.463 | 11606.9 | ***** |
| 75 | 162.252 | 11518.1 | ***** |
| 76 | 169.487 | 11422.3 | ***** |
| 77 | 177.217 | 11319.1 | ****  |
| 78 | 185.497 | 11207.3 | ****  |
| 79 | 194.389 | 11085.9 | ***** |
| 80 | 203.969 | 10953.3 | ****  |
| 81 | 214.324 | 10808   | ***** |
| 82 | 225.559 | 10648.3 | ****  |
| 83 | 237.799 | 10471.8 | ****  |
| 84 | 251.192 | 10275.6 | ****  |
| 85 | 265.922 | 10056.4 | ***   |
| 86 | 282.217 | 9809.62 | ***   |
| 87 | 300.358 | 9529.92 | **    |
| 88 | 320.709 | 9210.09 | **    |
| 89 | 343.731 | 8840.96 | *     |
| 90 | 370.042 | 8410.07 | *     |
| 91 | 400.475 | 7900.48 |       |
| 92 | 436.194 | 7288.29 |       |
| 93 | 478.866 | 6538.93 |       |
| 94 | 531.013 | 5599.73 |       |
| 95 | 596.673 | 4385.95 |       |
| 96 | 682.738 | 2752.28 |       |
| 97 | 802.403 | 541.882 |       |
|    |         |         | 0     |

(•

|    |   |   |   |   |   |   |   | . <b>.</b> |   |   |
|----|---|---|---|---|---|---|---|------------|---|---|
|    |   |   |   |   |   |   |   |            |   |   |
|    |   |   |   |   |   |   |   |            |   |   |
| ı. | , | Ŧ | 5 | t | t | 1 | 1 | 101        | I | 1 |

|               | مله | بال طوط، بله | مله | ملوميك ملوميل ملوعك ملومكو ملوميك | والمرحلة والدرافة والدرولة والدرولة والدرولة والدرولة |
|---------------|-----------------------------------------|--------------------------------------------------|-----------------------------------------|-----------------------------------|-------------------------------------------------------|
| 1/ 7-1 16/0   |                                         | ARTO, R 18. UTM                                  |                                         | 70 . 1. 4.                        | 300 110 L - L                                         |
| 14 FED 1042   | CUSIOM SCEN                             | AKIO: B-IB; WIT                                  | H TIITER; DELF                          | IC cloud;                         | SUU IMI DOMD                                          |
| time (hr) =   | l deltat (hr)                           | = .10625 %air                                    | borne = 85 si                           | gmax = 399                        | 4.78 M                                                |
| sigmay = 437  | '8.37 M                                 | <b>3 si</b> ;                                    | gmay cloud dia                          | meter = $26$                      | 270.2 M                                               |
| Altitude      | Cloud Dens                              | Filter Mass                                      | Cabin Mass                              | Engine Ma                         | ssProm Part                                           |
| M             | mg/M^3                                  | Kg                                               | Kg                                      | Kg                                | microns r                                             |
| 17000         | 508.615                                 | .0296549                                         | 6.85355E-03                             | 20.7332                           | 1.83114                                               |
| 16000         | 1263.04                                 | .064873                                          | .0125618                                | 43.9754                           | 1.83114                                               |
| 150 <b>00</b> | 2473.95                                 | .1118                                            | .0177461                                | 73.5695                           | 1.83114                                               |
| 14000         | 3869.29                                 | .153732                                          | .0193224                                | 98.2776                           | 1.83114                                               |
| 13000         | 4926.36                                 | .171973                                          | .0162151                                | 106.872                           | 16.8678                                               |
| 12000         | 5239.02                                 | .160447                                          | .0104874                                | 97.0741                           | 32.0949                                               |
| 11000         | 4849.64                                 | .129919                                          | 5.22764E-03                             | 76.7499                           | 43.4013                                               |
| 10000         | 4121.99                                 | .0994262                                         | 2.07771E-03                             | 57.6442                           | 53.7356                                               |
| 9000          | 3410.69                                 | .0736875                                         | 6.37338E-04                             | 42.2092                           | 66.2332                                               |
| 8000          | 2857.15                                 | .0551374                                         | 1.51186E-04                             | 31.3985                           | 76.1352                                               |
| 7000          | 2439.88                                 | .0420624                                         | 0                                       | 23.8873                           | 87.6583                                               |
| 6000          | 2139.43                                 | .0329598                                         | 0                                       | 18.7179                           | 101.244                                               |
| 5000          | 1899.02                                 | .0262206                                         | 0                                       | 14.8907                           | 113.153                                               |
| 4000          | 1702.07                                 | .0211214                                         | 0                                       | 11.9948                           | 126.928                                               |
| 3000          | 1534.6                                  | .0171599                                         | 0                                       | 9.74512                           | 143.065                                               |
| 2009          | 1391.64                                 | .0140576                                         | 0                                       | 7.98332                           | 155.463                                               |
| 1000          | 1264.67                                 | .0115682                                         | 0                                       | 6.5696                            | 169,487                                               |
| 0             | 1148.53                                 | 9.53506E-03                                      | 0                                       | 5.41497                           | 185.497                                               |

| 14 Feb 1642            | CUSTOM SCE      | NARIO: B-1B: V | ATH filter: DEL | FIC cloud              | 300 1MT bombs   |
|------------------------|-----------------|----------------|-----------------|------------------------|-----------------|
| time $(hr) = 1$        | l deltat (hr    | ) = .10625 Za  | irborne = 85 s  | iomax = 3              | 994.78 M        |
| sigmav = 4378          | 8.37 M          | 3              | sigmay cloud di | ameter =               | 26270.2 M       |
| initial dust           | lofted = 3      | 02395E+08 Kg   | dust now        | airborne (             | 2.57035E+08 Kg  |
| Altitude               | Cloud Mass      |                |                 |                        |                 |
| M                      | Ko/M            |                |                 |                        |                 |
| 17000                  | 56807.9         |                |                 |                        |                 |
| 16000                  | 141070          |                |                 |                        |                 |
| 15000                  | 276318          |                |                 |                        |                 |
| 14000                  | 432166          |                |                 |                        |                 |
| 13000                  | 549483          |                |                 |                        |                 |
| 12000                  | 583557          |                |                 |                        |                 |
| 11000                  | 539637          |                |                 |                        |                 |
| 10000                  | 458245          |                |                 |                        |                 |
| 9000                   | 378747          |                |                 |                        |                 |
| 8000                   | 317000          |                |                 |                        |                 |
| 7000                   | 270428          |                |                 |                        |                 |
| 6000                   | 236843          |                |                 |                        |                 |
| 5000                   | 210009          |                |                 |                        |                 |
| 4000                   | 188002          |                |                 |                        |                 |
| 3000                   | 169266          |                |                 |                        |                 |
| 2000                   | 153332          |                |                 |                        |                 |
| 1000                   | 120175          |                |                 |                        |                 |
| 1000                   | 196990          |                |                 |                        |                 |
| V<br>Rom Crown #       | 120220          |                | Albinuda (M)    |                        |                 |
| for Group +            | 812e (micro     | 12220 0        | Altitude (M)    |                        |                 |
| 10                     | 10.3602         | 13328.9        |                 |                        | •               |
| 20                     | 19./093         | 12841.3        |                 |                        |                 |
| 30                     | 30,8404         | 12052.5        |                 |                        | · • •           |
| 40                     | 44.9982         | 10800.5        |                 |                        |                 |
| 50                     | 63.9/11         | 9118.46        |                 |                        |                 |
| 60                     | 90.8408         | 6866.34        |                 |                        |                 |
| /0                     | 132.016         | 3697.73        |                 |                        |                 |
| 80                     | 203.969         | -944.286       |                 |                        |                 |
| 14 Eab 1642            | <br>CTIETON 607 | NADIA. 8.18. 1 |                 | EIC aland              | · 200 1Wm banks |
| The graph sh           | CUSION SCE      | f total cloud  | mage for each a | FIC CIOUU              | , JOU INI DOMDS |
| the graph and          | donaity ponot   | ration altitud | LASS 101 CACI & | roup at $\frac{1}{47}$ |                 |
|                        | a Altituda      | DEPOENT of     | Total Maga      | eis (1/4%              | per scar/       |
| - 3100pt - 3120        |                 |                |                 |                        |                 |
| 1 1 9311/              | 13625 7         |                |                 | 1 1 1                  |                 |
| 2 2 21267              | 13500           | ******         |                 |                        |                 |
| 2 3.21307              | 12550           | *****          |                 |                        |                 |
| 3 4,3003/<br>/ 5 10022 | 13639 0         | *****          |                 |                        |                 |
| 4 J.20U2J              | 13740 3         | ******         |                 |                        |                 |
| J 0,2038/              | 13478.3         | *******        |                 |                        |                 |
|                        | 1340/           | *****          |                 |                        |                 |
| / /.9/91               | 13434./         | ******         |                 |                        |                 |
| 5 5.848U8              | 13401           | ******         |                 |                        |                 |
| 9 9./1369              | 8.69551         | ****           |                 |                        |                 |
| 10 10.58               | 11128.9         | *****          |                 |                        |                 |

sessed from the second from the second from the second from the second for the second from the second from the second freezest of the second from the second freezest of t

| 11  | 11.4502 | 13290.3 | ******* |
|-----|---------|---------|---------|
| 12  | 12.3266 | 13249.7 | ******  |
| 13  | 13.2115 | 13207.1 | ******  |
| 14  | 14,1066 | 13162.3 | ******  |
| 15  | 15.0134 | 13115.3 | ******* |
| 16  | 15.9334 | 13065.8 | ******  |
| 17  | 16.8678 | 13013.8 | ******  |
| 18  | 17.8178 | 12959.1 | ******* |
| 19  | 18.7846 | 12901.7 | ******* |
| 20  | 19.7693 | 12841.3 | ******* |
| 21  | 20.7729 | 12778   | ******* |
| 22  | 21.7967 | 12711.4 | ******* |
| 23  | 22.8416 | 12641.7 | ******* |
| 24  | 23.9087 | 12568.5 | ******  |
| 25  | 24.9991 | 12491.8 | ******  |
| 26  | 26.1139 | 12411.5 | ******* |
| 27  | 27.2543 | 12327.5 | ******  |
| 28  | 28.4213 | 12239.8 | ******  |
| 29  | 29.6162 | 12148.1 | *****   |
| 30  | 30.8404 | 12052.5 | ******  |
| 31  | 32.0949 | 11952.9 | ******* |
| 32  | 33.3813 | 11849.3 | ******  |
| 33  | 34,7007 | 11741.5 | ******* |
| 34  | 36.0549 | 11629.6 | ******  |
| 35  | 37,4452 | 11513.5 | ******* |
| 36  | 38.8732 | 11393.2 | ******* |
| 37  | 40.3407 | 11268.5 | ******* |
| 38  | 41.8495 | 11139.4 | ******  |
| 39. | 43.4013 | 11005.5 | ******* |
| 40  | 44.9982 | 10866.5 | ******* |
| 41  | 46.6422 | 10721.6 | ******* |
| 42  | 48.3356 | 10571.5 | ******  |
| 43  | 50.0805 | 10414.4 | ******  |
| 44  | 51.8797 | 10249.3 | *****   |
| 45  | 53.7356 | 10076.2 | *****   |
| 46  | 55.6511 | 9893.3  | ****    |
| 47  | 57.6291 | 9702.54 | ****    |
| 48  | 59.6728 | 9505.04 | ****    |
| 49  | 61.7856 | 9306.29 | ****    |
| 50  | 63.9711 | 9118.46 | ***     |
| 51  | 66.2332 | 8927.23 | ***     |
| 52  | 68.5758 | 8729.88 | **      |
| 53  | 71.004  | 8524.63 | **      |
| 54  | 73.522  | 8310.94 | *       |
| 55  | 76.1352 | 8089.71 | *       |
| 56  | 78.8492 | 7861.08 | *       |
| 57  | 81.6698 | 7624.8  | *       |
| 58  | 84.6039 | 7380.54 |         |
| 59  | 87.6583 | 7128.02 |         |
| 60  | 90.8408 | 6866.34 |         |

152

| 61 | 94.1597 | 6596.72  |
|----|---------|----------|
| 62 | 97.6242 | 6317.82  |
| 63 | 101.244 | 6029.23  |
| 64 | 105.031 | 5730.49  |
| 65 | 108.996 | 5421.24  |
| 66 | 113.153 | 5100.92  |
| 67 | 117.516 | 4769.05  |
| 68 | 122.102 | 4424.04  |
| 69 | 126.928 | 4067.66  |
| 70 | 132.016 | 3697.73  |
| 71 | 137.386 | 3313.83  |
| 72 | 143.065 | 2914.9   |
| 73 | 149.079 | 2500.2   |
| 74 | 155.463 | 2068.61  |
| 75 | 162.252 | 1619.14  |
| 76 | 169.487 | 1150.56  |
| 77 | 177.217 | 661.687  |
| 78 | 185.497 | 151      |
| 79 | 194.389 | -383.061 |
| 80 | 203.969 | -944.286 |
| 81 | 214.324 | -1545.16 |
| 82 | 225.559 | -2191.07 |
| 83 | 237.799 | -2880.13 |
| 84 | 251.192 | -3637.58 |
| 85 | 265.922 | -4445.72 |

. - .

6 🛾

| 0 | 1 | ł | I | 1 | 5 | I | 1 | 1 | 1 | 10 | I |  |
|---|---|---|---|---|---|---|---|---|---|----|---|--|
|   |   |   |   |   |   |   |   |   |   |    |   |  |

. .

# Cylindrical Integration Program for Cabin Geometry Factor K

This program takes the pseudolength and radius of a cylinder (in meters)that represents the cabin of an aircraft and computes the spatial integral for the center of the cabin. It includes the self attenuation of the air in the cabin. The integration intervals are automatically computed by a method found to give results within 5% of using .1 meter intervals.

10 'mult'ple integral algorithm 4.4

20 Bur : Faires, Reynolds, NUMERICAL ANALYSIS, 2ed ed.

30 'I. c proximate I=double integral ((f(x,y) dy dx)) with limits

40 ' of integration from a to b for x and from c to d for y.

50 1

60 'Input: endpoints a,b,c,d: positive integers M,n.

70 'Output: approximation J.

80 1

90 'Limits of integration

100 DEF FNXY =  $EXP(-MUT*SQR(Y^2+X^2)) *Y/(Y^2+X^2)$ 

110 MUT = 6.48072E-03 : for cabin air at 8000 feet

120 INPUT "pseudolength, radius"; B,D

125 b = b/2

130 A = 0 : C = 0

140 M = INT(2\*D)

145 IF M < 5 THEN M = 5

150 N = INT(8\*B)

155 IF N < 10 THEN N = 10

```
160 H = (B-A)/(2*N)
170 FOR I = 1 TO 2 \times N + 1
180 X = A + I * H
190 HX = (D-C)/(2*M)
200 Y = C : LL = FNXY
210 Y = D : UL = FNXY
220 \text{ K1} = \text{LL} + \text{UL} : \text{K2} = 0 : \text{K3} = 0
230 FOR J = 1 TO 2 \pm M - 1
240 \Upsilon = C + J*HX : Z = •FNXY
250 IF J = 2*(J\setminus 2)
THEN K2 = K2 + Z
ELSE K3 = K3 + 2
260 NEXT J
270 L = (R1 + 2*K2 + 4*K3)*HX/3
280 IF I=0 OR I=2*M
THEN J1=J1+L
ELSE IF I=2*(I\setminus 2)
THEN J2=J2+L
ELSE J3=J3+L
290 NEXT I
300 J = (J1 + 2*J2 + 4*J3)*H/3
310 PRINT "The Cabin Geometry Factor K is:";J
320 END
```

•

Stephen P. Conners was born 9 November 1954 to an Air Force family at Wright-Patterson AFB, Ohio. He grew up at a variety of Force Bases and completed high school at Rogersville, Air Pennsylvania. He entered Duquesne University in August 1972 with an AFROTC scholarship. He graduated with a B.S. in Physics in May of 1976. He was called to active duty in December 1976, assigned to Undergraduate Navigator Training School at Mather AFB, California. He continued his training at the Electronic Warfare School there. After completing B-52 Combat Crew Training School at Castle AFB, California, he was assigned to the 325th Bomb Squadron at Fairchild AFB, Washington as an Electronic Warfare Officer. He upgraded to instructor status in February of 1982. In July of 1984 he completed work leading to an additional AFSC for Aircraft Maintaince Officer. Captain Conners was assigned to the Air Force Institute of Technology's master's degree program in Nuclear Effects in July of 1984.

Vita

UNCLASSIFIED

AD- A159246

Construction of the second sec

Characterization and the second of the second se

|                         |                                                                        |                                                                 | REPORT DOCUMI                                                                               | ENTATION PAGE                                                                      | *<br>E                                                                                       |                                                                                   |                 |  |  |  |
|-------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------|--|--|--|
| 1. REPOR                | T SECURITY CLASS                                                       | FICATION                                                        |                                                                                             | 16. RESTRICTIVE M                                                                  | ARKINGS                                                                                      |                                                                                   |                 |  |  |  |
| UNCL                    | ASSIFIED                                                               |                                                                 |                                                                                             |                                                                                    |                                                                                              |                                                                                   |                 |  |  |  |
| 20. SECUR               | TY CLASSIFICATIO                                                       | DN AUTHORITY                                                    |                                                                                             | Approved for public release:                                                       |                                                                                              |                                                                                   |                 |  |  |  |
| 26. DECLA               | SSIFICATION/DOW                                                        | NGRADING SCH                                                    | DULE                                                                                        | Distributio                                                                        | on unlimited                                                                                 |                                                                                   |                 |  |  |  |
| 4. PERFOR               | MING ORGANIZAT                                                         | ION REPORT NU                                                   | MBER(S)                                                                                     | 5. MONITORING OR                                                                   | GANIZATION REP                                                                               | PORT NUMBER                                                                       | 5)              |  |  |  |
| AFIT                    | /GNE/PH/85M-                                                           | 4                                                               |                                                                                             |                                                                                    |                                                                                              |                                                                                   |                 |  |  |  |
| GA NAME                 | OF PERFORMING O                                                        | RGANIZATION                                                     | Bb. OFFICE SYMBOL<br>(If applicable)                                                        | 7. NAME OF MONITORING ORGANIZATION                                                 |                                                                                              |                                                                                   |                 |  |  |  |
| Scho                    | ol of Engine                                                           | ering                                                           | AFIT/EN                                                                                     | 1                                                                                  |                                                                                              |                                                                                   |                 |  |  |  |
| 6c AODAE<br>Air<br>Wrig | Force Instit<br>ht-Patterson                                           | ute of Tech<br>AFB, OH 45                                       | nology<br>433                                                                               | 7b. ADDRESS (City, )                                                               | State and ZIP Code                                                                           | )                                                                                 |                 |  |  |  |
| Se. NAME<br>ORGAI       | OF FUNDING/SPON<br>NIZATION                                            | SORING                                                          | 8b. OFFICE SYMBOL<br>(If applicable)                                                        | 9. PROCUREMENT                                                                     | INSTRUMENT IDE                                                                               | NTIFICATION N                                                                     | UMBER           |  |  |  |
| Sc. ADDRE               | ESS (City, State and 2                                                 | IP Code)                                                        |                                                                                             | 10. SOURCE OF FUN                                                                  | NDING NOS.                                                                                   |                                                                                   |                 |  |  |  |
|                         |                                                                        |                                                                 |                                                                                             | PROGRAM<br>ELEMENT NO.                                                             | PROJECT<br>NO.                                                                               | TASK<br>NO.                                                                       | WORK UNIT       |  |  |  |
| 11. TITLE<br>See        | (Include Security Cla<br>box 19                                        | dification)                                                     |                                                                                             | -                                                                                  |                                                                                              |                                                                                   |                 |  |  |  |
| 12. PERSO               | NALAUTHORS                                                             | re BS (                                                         | antain USAF                                                                                 | •                                                                                  |                                                                                              |                                                                                   |                 |  |  |  |
| TYPE                    | OF REPORT                                                              | 136. TIME                                                       | COVERED                                                                                     | 14. DATE OF REFOI                                                                  | RT (Yr., Mo., Day)                                                                           | 15 PAGE C                                                                         |                 |  |  |  |
| MS T                    | hesis                                                                  | FROM_                                                           | то                                                                                          | 1985 March                                                                         |                                                                                              | 170                                                                               |                 |  |  |  |
| 16. SUPPL               |                                                                        |                                                                 |                                                                                             |                                                                                    |                                                                                              | ·                                                                                 |                 |  |  |  |
| 17.                     | COSATI COD                                                             | ES                                                              | 18. SUBJECT TERMS (                                                                         | Continue on reverse if no<br>Dust Clouds                                           | ecemary and identif:<br>Radiation                                                            | y by block numbe<br>Nama ne Ai                                                    | n<br>r Filters. |  |  |  |
| 01                      | 02                                                                     | SUB. GH.                                                        | Aircraft Engin                                                                              | es, Radiation                                                                      | Shielding,                                                                                   | Vulnerabil                                                                        | ity, Bomber     |  |  |  |
|                         | -                                                                      |                                                                 | Aircraft, Airc                                                                              | raft Cabins, F                                                                     | Pressurized                                                                                  | <u>Cabins,</u>                                                                    |                 |  |  |  |
| Titl<br>Thes            | e: AIRCREW<br>FROM NUC                                                 | DOSE AND EN<br>LEAR CLOUD<br>Dr. Charl<br>Professo<br>Departmen | GINE DUST INGEST<br>PENETRATION<br>es J. Bridgman<br>r of Nuclear Engi<br>nt of Engineering | ION<br>ineering<br>g Physics                                                       | Approved for Put<br>Not E. WOLA<br>Deck for Resear<br>Air Force Institut<br>Wright-F dierson | Fig release: IAW<br>Fer 19<br>ch and Profession<br>of Technology (<br>AFB OH 3543 | AFR 199-1.      |  |  |  |
| Abs                     | tract continu                                                          | ied on reve                                                     | rse.                                                                                        |                                                                                    |                                                                                              |                                                                                   |                 |  |  |  |
|                         |                                                                        |                                                                 |                                                                                             |                                                                                    |                                                                                              |                                                                                   |                 |  |  |  |
| 20. DIST R              | BUTION/AVAILAB                                                         | ILITY OF ABSTR                                                  | ACT                                                                                         | 21. ABSTRACT SEC                                                                   | URITY CLASSIFIC                                                                              | ATION                                                                             |                 |  |  |  |
| 20. DISTR               | IBUTION/AVAILAB                                                        | ILITY OF ABSTR                                                  | ACT                                                                                         | 21. ABSTRACT SEC<br>UNCLASSIFIE                                                    | ED                                                                                           | ATION                                                                             |                 |  |  |  |
| 20. DISTR               | IBUTION/AVAILAB                                                        | ILITY OF ABSTR                                                  | ACT                                                                                         | 21. ABSTRACT SEC<br>UNCLASSIFIE<br>22b TELEPHONEN<br>(Include Are Co               | ED<br>HUMBER<br>odei                                                                         | ATION<br>22c OFFICE SYN                                                           | MBOL            |  |  |  |
| 20. DISTR               | IBUTION/AVAILAB<br>IFIED/UNLIMITED<br>E OF RESPONSIBLE<br>Charles J. [ | ILITY OF ABSTR<br>IX SAME AS RP<br>INDIVIDUAL<br>Bridgman       | ACT                                                                                         | 21. ABSTRACT SEC<br>UNCLASSIFIE<br>22b TELEPHONE N<br>(Include Are Co<br>513-255-2 | URITY CLASSIFIC<br>ED<br>HUMBER<br>ode;<br>2012                                              | ATION<br>22c OFFICE SYN<br>AFIT/ENP                                               | MBOL            |  |  |  |

Ì

-

ļ

Ĭ

Č.

-

3

• • • • • • •

0.

### SECURITY CLASSIFICATION OF THIS PAGE

Block 19 continued.

## Abstract

This study evaluates the threat to aircraft and aircrew members from the dust and radioactivity in a cloud generated by nuclear surface bursts.

A model of the nuclear cloud is generated, using any number and type of weapons and any desired dust size distribution. The cloud is propagated through the atmosphere for a given time, then penetrated by an aircraft. The activity density in the cloud is converted to dose to the crew for a given path through the cloud. Radiation shielding and dust filters are included in the calculations. Alternatively, the cloud dust mass density can be converted to mass trapped in a filter or the cabin: or to the dust mass that has entered the engine.

Methods for determining particle size and altitude distributions are presented. The ionizing dose to the crewmember is computed for both sky-shine and the dust trapped in the cabin during cloud passage. A method of computing the shielding power of the crew compartment against sky-shine is presented. Given the air flow rate into a filter or engine, the mass of ingested dust is found.

The nuclear cloud and aircraft models developed by this study are incorporated in a computer code oriented toward operational use. A significant feature of the code includes the ability to easily change the scenario with menu driven options.

# <u>UNCLASSIFIED</u>

SECURITY CLASSIFICATION OF THIS PAGE

ĩ

Ē

| ₹<br>•<br>•                                                                                                    | yle                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ·                                                                                                              | CHANGE 1<br>to                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                | AIRCREW DOSE AND ENGINE DUST INGESTION<br>FROM NUCLEAR CLOUD PENETRATION                                                                                                                                                                                                                                                                                         |
| Ň N                                                                                                            | by Capt. Stephen P. Conners                                                                                                                                                                                                                                                                                                                                      |
| Thesi<br>Chang                                                                                                 | s date: March 85 DTIC number: ADA 159 246<br>e l date: 1 May 86 ***********************************                                                                                                                                                                                                                                                              |
| NOTE:<br>was t<br>semic                                                                                        | Many of the colons in the text should be semicolons; the problem<br>hat the greek printwheel used to print the thesis did not have a<br>olon available. Other slight irregularities are due to this problem.                                                                                                                                                     |
| Add "                                                                                                          | ch l" next to all changes                                                                                                                                                                                                                                                                                                                                        |
| Title                                                                                                          | page: below name block, add: CHANGE 1 - 1MAY 86                                                                                                                                                                                                                                                                                                                  |
| page                                                                                                           | i: below "March 1985", add: CHANGE 1 - 1MAY 86                                                                                                                                                                                                                                                                                                                   |
| page                                                                                                           | iv:<br>change "Sample Activity Output" to "Sample Single Burst<br>Activity Output"                                                                                                                                                                                                                                                                               |
|                                                                                                                | change "Sample Multi Burst Output" to "Sample Multi Burst<br>Activity Output"                                                                                                                                                                                                                                                                                    |
| <b>Figure</b>                                                                                                  | 9:<br>paragraph 1, line 3: change "in" to "by"                                                                                                                                                                                                                                                                                                                   |
| il de la compañía de | in Eq 1, in the first term after "where", add after ln(rm):<br>[rm is the mean radius of a distribution]"                                                                                                                                                                                                                                                        |
| р<br>а<br>4 п                                                                                                  | in Eq 1, in the second term after "where", add after ln(o):<br>[o is the standard deviation of the mean radius of a distribution]"                                                                                                                                                                                                                               |
| page                                                                                                           | 10: Add the following note at the bottom of the page.<br>"NOTE: Nomenclature used here for lognormal functions<br>follows that used by DELFIC. A statistician would be more<br>comfortable with the following equivalent terms:                                                                                                                                  |
|                                                                                                                | particle size distribution: radius distribution<br>volume distribution: volume distribution with respect to radius<br>surface area distribution: surface area distribution with respect<br>to radius"                                                                                                                                                            |
| page                                                                                                           | 12: in Figure 1, the line for DELFIC was not plotted<br>properly; DELFIC is the sum of two cumulative log normals, and is<br>therefore not a straight line on this graph. The maximum<br>deviation of the proper line is no more than 1/8" left of the<br>existing line at midpoint. The proper line can be found by<br>plotting data from Table II on Figure 1. |
| <b>**</b> *                                                                                                    | 17: Equation 3 is incorrect; the equation given is actually<br>the horizontal stabilization time, T <sub>hs</sub> , which is also found on                                                                                                                                                                                                                       |

```
page 85. The correct expressions for Equation 3 follow:
    "For 1 to 10 KT:
          T_{vs} = 347.0 [s]
                                                                (3.1)
     For 10 to 15,000 KT:
          T_{ys} = 368.384 - 37.0093 (lnY) + 21.7003 (lnY)^2
                         -4.8593 (lnY)<sup>3</sup>+ 0.288199 (lnY)<sup>4</sup> [s] (3.2)
     For 15,000 to 50,000 KT:
          T_{vs} = 164.0 [s]
                                                                (3.3)"
page 28: paragraph 3, line 4: change "less" to "more"
page 39:
     paragraph 1, line 5: change "three" to "two"
     paragraph 1, line 7: change assumption 1. to read:
     "1. The activity density of the cloud does not vary
     vertically or laterally within five gamma mean free path
     lengths."
     paragraph 1, line 9: delete assumption 2.
     paragraph 1, line 11: change assumption "3." to "2."
     paragraph 2, line 2: change "two assumptions" to "assumption"
     paragraph 2, line 3: change "establish" to "establishes"
page 44: paragraph 2, line 7: add the following sentance:
     "(An analytical solution is also available in Appendix K.)"
page 45:
     Table VIII: after "Cabin Radius M" add a column as follows:
                  Analytical Cabin
                  Geometry Factor
                           K.
     B-18
                 1.53
     B-52G
                  2.20
                 2.20
     B~52H
                 2.69
     E-3
                  4.86
     E - 4B
     EC-135
                  2.65
     KC-135
                  2.65"
page 51:
          see below
page 67:
          see below
          add:
page 70:
                                NOTE
     Tables X through XX and Tables XXII through XXIV were
     created using the horizontal cloud stabilization time rather than
     the vertical cloud stabilization time. The text of the thesis
     correctly uses the results of the vertical cloud stabilization
     time for comparisons. No major differences in output
     between the two cases (vertical or horizontal stabilization time)
```

「「「いいい」」という。

will be noted for the Time = 1 hr cases used in the text of the thesis. At very early times computed by the user, there would be differences. This problem is fixed by changing Equation 3 (above, page 17) and changing Appendix A2. and Appendix E (below, pages 84, 104). page 73: paragraph 14, line 2: change "Offut" to "Offutt" page 24: in the first table, change the line that reads 845.2" to "1,000 5651 "1,000 5651 202.7 change the equation for <u>Vertical stabilization Time (seconds)</u> to: "For 1 to 10 KT:  $T_{vs} = 347.0$  [s] For 10 to 15,000 KT:  $T_{ys} = 368.384 - 37.0093 (lnY) + 21.7003 (lnY)^2$ -4.8593 (lnY)<sup>3</sup> + .288199 (lnY)<sup>4</sup> [s] For 15,000 to 50,000 KT:  $T_{vs} = 164.0$  [s] " page 85: line 2: change "vertical" to "horizontal" page 88: line 13: change "largest particle" to "largest size particle" page 90: line 7: change definition to read "component of wind along track" line 8: change definition to read 'component of wind across track" line 14: change "distance" to "vertical distance" page 91: paragraph 2, line 3: change "a disk file" to "disk files" page 98: line 7235 must be deleted or commented out if the filter described in lines 7210, 7220, and 7230 is to be used. Line 7235 overwrites the variable filter.tx.factor(G) with the factor 1 (none are trapped) when it is desired to run the case without a filter. page 100: add line 1045: "1045 'change 1, 1 May 86 by Capt. Conners" replace line 1070 with the following line: ----l May 86" "1070 PRINT "Version 8.1-----add line 1165: "1165 'ELSE CONTINUE :'(WHICH% = 1) add at the end of line 1220: " : 'number of bombs" add at the end of line 1230: " - see text for justification"

\*\*\*\*\*

page 101: line 1370: change ":'HR" to ":'HR since burst" line 1430: add ":'M" to the end of the line line 1450: add ":'M" to the end of the line page 104: add line 2245: "2245 'Units - 3.7E+10 Curies/sec - 1.6E-11 J/MEV - 3600 sec/hr" replace line 2260 with the following lines: "2260 IF KT >= 1 OR KT <= 10 THEN STAB.TIME = 347.0/36002261 IF KT > 10 OR KT < 15000 THEN STAB.TIME = (368.384-37.0093\*X+21.7003\*X<sup>2</sup>-4.8593\*X<sup>3</sup>+.288199\*X<sup>4</sup>)/3600 2262 IF KT >= 15000 OR KT <= 50000 THEN STAB.TIME = 164.0/3600 :'HRS time for vertical cloud stabilization - CHANGE 1 - 1 MAY 86" page 106: add to end of line 2710: ":'DELFIC prediction, Nevada soil" page 113: add to end of line 4650: ":'unit time dose, no shielding" page 115: add line 5145: "5145 PRINT#1, "DUST/DOSE ver 8.1, 1 May 86 by Capt. Stephen P. Conners" page 117: line 5650: change the third comma (,) to a semicolon (;) page 119: line 6040: change the third comma (,) to a semicolon (;) page 120: line 6340: change "ELSE WORST.STEP" to "ELSE WORST.ALT" line 6470: add to end of line: ":'penetration time" page 121: change line 6510 from ":IF DELTAT<.1 OR DELTAT>100 THEN DELTAT = INTERVAL/8" to ":IF DELTAT < .1 THEN DELTAT = INTERVAL :'to reduce compute time :IF DELTAT > 100 THEN DELTAT = INTERVAL/8" add to end of line 6530 ":'for each group (disc)..." add to end of line 6540 ":'for each deltat" add to end of line 6550 ":'let cloud fall" add to end of line 6570 ":'get rid of grounded groups" add to end of line 6610 ":'advance time to next penetration/stop time"

# add to end of line 6620 ":'find activity and dose, or mass, etc."

page 154: add to beginning of line l: "Kl."

page 155: add below the last line:

"Note that a Cabin Geometry Factor K can be computed for a point other than the middle of the cylinder. Determine the distance from the desired point to each end of the cylinder; call these two distances Dl and D2. The program is then run twice using using Dl and D2 for the pseudolength, producing results Kl and K2. The aggregate K factor is then (Kl + K2)/2. Further note that the less central the point is, the less reliable the assumption of uniform distribution of mass around the cabin.

## K2. Analytical Solution for Cabin Geometry Factor K

2 Lt. Peter Vanden Bosch of the USAF School of Aerospace Medicine has developed an analytic solution for the cylindrical cabin integral contained in Eq 40. The solution to this equation is the term K in Eq 41.

$$K = -\frac{1}{2} - H \ln(H^{2} + R^{2}) + R \tan^{-1}(H/R) - H \ln(H)$$
  
+  $-\frac{1}{2} - \left[ -\frac{1}{2} u H (H^{2} + R^{2}) \cdot 5 + u R^{2} \ln[H + (H^{2} + R^{2}) \cdot 5] - u H^{2} - u R^{2} \ln(R) \right]$   
+  $-\frac{1}{4} - u^{2} R^{2} H$ 

for a cylinder of radius R and length H.

Non-central cylinder locations can be determined by the same method noted above.

### page 156:

paragraph 1, line 13: change "1984" to "1983"

paragraph 1, line 13: change "1984" to "1983"

add: "Current address is: Capt. Stephen P. Conners - Chief Physicist

> 544 SIW/DIA Offutt AFB, NE 68113-5000

> > SHELL MINING

Current telephone is: 402-294-4666, AUTOVON 271-4666"

NOTE: A clarification of the lognormal distribution arguments in DELFIC and a derivation of the analytical solution of the cylinderical cabin integral are available at the above address.

Post this change at the back of the thesis.