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' /Introduction

. The process of scientific discovery in a complex interplay of many activities, ranging
pfrom the discovery of empirical laws through the construction of structural models to ex-

plain those laW In an earlier paper, we forwarded the BACON system as one model for
the discovery oYquantitative empirical laws (Langley, Bradshaw, and Simon, 1983). Else-
where, we dsc. ibed STAHL and DALTON, two systems which address the problem
of fo t1lating structural models (Langley, Zytkow, Simon, and Bradshaw, 1983).

, his-paperis.ewplper on the discovery of qualitative empirical laws and concepts.Ix- ,O primary examples will come from the history of chemistry, and wme model of the
I qualitative discovery process is an Al system named GLAUBER. After describing the

system and providing some examples of its operation in the domain of chemistry, wo-/)*/

_$2w consider GLAUBER's relation to some other Al discovery systems that operate on
the tasks of conceptual clustering and language acquisition.- However, let us first review
briefly some events from the history of science, since it was qtr interest in this area that

led us to construct GLAUBER. - < -

Upon examining the history of science, one finds that the discovery of quantitative laws
is generally preceded by the discovery of qualitative relations. Thus, early physicists noted
that colliding objects tended to change velocities before they determined the exact form of

• . this relationship. Similarly, plant and animal breeders knew that certain traits were passed
*; on to offspring long before Mendel formulated the quantitative principles of inheritance.

One of the best examples of this trend may be found in the history of chemistry, where
early scientists discovered qualitative laws of reaction decades before numerical relations
were determined. In particular, the history of the theory of acids and bases provides us
with useful insights into the discovery of qualitative concepts and laws.

By the 17th and 18th Centuries, chemists had made considerable progress in classifying
substances on the basis of qualitative properties. During this period, researchers focused on
features such as the taste and texture of substances, as well as their interactions with other
substances. Thus, they knew that the substance we now call hydrochloric acid had a sour
taste, and that it combined with ammonia to form ammonium chloride, NH4 Cl (though the
structure of this compound was of course not known). Moreover, they knew that sulfuric
acid also tasted sour, and that it also combined with ammonia to form ammonium sulfate,
(NH4) 2 S0 4. From facts like these, the early chemists defined classes such as acids, alkalis,

, and salts, and formulated laws involving these terms, such as "acids taste sour" and "acids
react with alkalis to form salts". Eventually, they came to view both alkalis and metals as

" special cases of the more abstract concept of a base, and arrived at the more general law
- that "acids react with bases to form salts". Although some exceptions to these statements
. were known, chemists found the laws sufficiently general to use in making predictions, as

well as in classifying new substances. We shall see that the two processes - defining classes
like acid and alkali, and formulating laws involving these classes - play a central role in
our model of the qualitative discovery process.
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The GLAUBER System

Our interest in the discovery of qualitative empirical laws has led us to design and
implement an Al system concerned with this process. Since our main examples derive
from the history of early chemistry and the theory of acids and bases, we have named the
system after Johann Rudolph Glauber (1604-1670), a 17th Century German chemist who
played an important role in the development of this theory. Let us begin by considering
the form of data input to the system, along with the types of laws that it generates. We
will then turn to the mechanisms GLAUBER uses to transform data into laws.1 After we
have described the system in the abstract, we will examine its operation on some of the
data that were available to the early chemists.

GLAUBER's Representation of Data

The GLAUBER system represents data using a predicate-argument notation similar to
that used in semantic networks. Each fact or observation contains a predicate followed by
one or more labeled arguments. An example will help clarify the representational scheme.

Suppose GLAUBER 2 observes that the chemical hydrogen-chloride (HCI) reacts with
ammonia (NH3 ) to form ammonium chloride (NH4CI). This fact would be represented
by the proposition (reacts inputs {HCl NH3 } outputs {NH4 C}). Here the predicate is
reacts, which takes two arguments - the inputs and outputs of the reaction. GLAUBER
represents the values of these attributes as sets (denoted by curly brackets), in which
the order of elements is not significant. Thus, the proposition (reacts inputs (NH 3 HCI}
outputs {NH 4CI)) would be considered identical to the above fact. In our examples, we
will use symbols like HCl and NH3 for the sake of clarity. GLAUBER does not know the
meaning of these symbols or the internal structure of chemicals like ammonia. Its behavior
would not change is we used symbols like G00013 instead.

At first glance, GLAUBER's representation may seem identical to BACON's attribute-
value scheme, save that sets can occur as values. However, note that the same symbols can
occur in the arguments of other propositions, and this possibility makes for a significant
difference. To see this, assume that GLAUBER inputs the fact given above, (reacts inputs
{HCl NH3) outputs (NH 4 CI}). Now suppose that the system observes a second reaction,
say (reacts inputs {HCI KOH} outputs {KCI}). The occurrence of HCl in both propositions
establishes a relation between the two facts of a sort that could not occur in a simpler
attribute-value representation (eg. as in the BACON system). We will see later that
GLAUBER takes advantage of such relations in its discovery process.

1 The current version of GLAUBER differs from the earlier version described by Langley, Zytkow,

Simon, and Bradshaw (1983). Although the state descriptions are very similar in the two systems,
both the operators and the search control differ considerably.

2 Neither the current nor the previous versions of GLAUBER perform experiments. Rather,
they input a list of facts or observations provided by the programmer, and search for qualitative
laws that summarize these data.

2
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Relations (in term, of shared symbols) can also occur between facts involving different
predicates. For iWamne, the observation that hydrogen-chloride tastes sour would be
represented as (has-quality object (HCI) tastes (sour)). This fact provides another piece
of information about the substance HCI that can be used in generating laws. An alternative
representation of this information would use a sour" predicate with the single argument

aobjecta.

GLAUBER's Representation of Laws

Given a set of facts, GLAUBER's goal is to find a set of laws that summarize the

observed data. Theme laws should have the same form as the original facts, but specific
substances should be replaced by names that denote abstract daue8 of substances, pro-
viding generality. For instance, the qualitative law (reacts inputs (acid alkali) outputs
(salt)) has the same form as (reacts inputs {HCI NaOH) outputs {NaCI)), but HCI has

*;. been replaced by the class name acid, NaOH has been replaced by the name alkali, and
NaCl has been replaced by salt. In order for such a law to have predictive power and make
contact with the data, each class name must denote a non-empty list of substances. Thus,
the class of acids might contain the substances HCI and HNOs, KOH and NaOH might be
alkalis, while NaCI, KCI, NaNO3, and KNO3 might be classified as salts.

However, the proposition (reacts inputs (acid alkali) outputs (salt)) contains some
inherent ambiguity. Should this statement be interpreted to mean that "every acid com-

*. bines with every alkali to form every salt"? Hopefully not, since this statement does not
- hold. In this case, we would like to say that "every acid combines with every alkali to

form some salt" or that "every salt is a product of some acid and some alkali". Theme two
*" statements are independent and complementary, and both relations generally hold (with
*- some exceptions) for acids, alkalis, and salts. In order to distinguish between these quite
*" different senses, we must employ some form of quantifiers.

We will use the universal quantifier V to modify classes in which all of the members
satisfy a given law, and we will use the existential quantifier 3 to modify classes for which
this is not the case. Thus, we can represent the statement "every acid combines with
every alkali to form some salt" as "V a E acid V k E alkali 3 s E salt (reacts inputs (a
k} outputs (s))". In the examples below, we will omit the subset notation, and write
simpler expressions such as "V acid V alkali 3 salt (reacts inputs (acid alkali) outputs
(salt))". Similarly, the statement that "all acids taste sour" would be represented by "V
acid (has-quality object (acid) taste (sour))".

It is important to note that the same class name may occur in different laws. Taken
together, all laws that mention a given class provide an intensional definition of that class.
This definition complements the extensional definition, since it can lead to predictions
that go beyond the observed data. Also, the set of laws associated with a class is quite
similar to the characterizations produced by many Al systems for learning from examples.
We will return to this similarity later in the chapter. Note that current system does not
have an explicit description of its goal state. Rather, GLAUBER knows it has achieved

• -...-.:- .-.. , ..-. %: .-. -... ., - .- . ..... .. .'. % % _---. ...-. .... '-' . . . ... .-...3_



its goal state when it generates some description that adequately summarizes the data it
has observed.

GLAUBER's Discovery Method

The GLAUBER system inputs a set of observations and attempts to formulate a set
of general laws that summarize these data. GLAUBER's discovery process can be usefully
viewed in terms of search through a space of laws or hypotheses. Such a problem space is
defined by the initial states from which search begins, by the operators used to generate
new states, and by the test used to determine when the goal has been reached. We have
already examined the first and last of these components, so let us now turn to GLAUBER's
operators for proposing candidate laws.

In addition to the predicate and attributes that GLAUBER's laws share with the
facts on which they are based, these laws involve two additional structures - the abstract
classes referred to in each law, and the quantifiers placed on each class in each law. Not
surprisingly, GLAUBER employs one operator for defining classes and a second operator
for proposing qantifiers. We will call the first of these the FORM-CLASS operator, and
the second the DETERMINE-QUANTIFIER operator. Let us consider each in turn, and
then consider how they are combined to produce an effective search process.

As its name implies, the operator FORM-CLASS proposes abstract classes for use in
qualitative laws. Recall that at the outset, GLAUBER has a set of propositions that vary
in terms of their predicates, attributes, and values. Like most operators, FORM-CLASS
can be instantiated in many different ways. In this case, each instantiation corresponds to
a different combination of predicate, attribute, and value, and leads to different potential
classes. For instance, based on the fact (reacts inputs {HCI NaOH} outputs {NaCl})
described earlier, it would propose three separate sets of classes. The first instantiation
is based on the triple (reacts, inputs, HCl) and would propose one class corresponding to
the second input and another corresponding to the output. Another instantiation of the
FORM-CLASS operator is based on the triple (reacts, inputs, NaOH), while a third is
based on the triple (reacts, outputs, NaCl).

Each such triple can be used to define one or more extensional classes based on the
facts in which that triple occurs. For example, suppose GLAUBER observes the following
reactions:

(reacts inputs {HCI NaOH} outputs {NaCI})
(reacts inputs (HCl KOH} outputs {KCI})
(reacts inputs {HNO 3 NaOH} outputs {NaNOs})
(reacts inputs {HNO KOH} outputs {KNO3})

Given these data, the triple (reacts, inputs, HCI) defines two classes, A = (NaOH, KOH}
and B = {NaCl, KCI}, while the triple (reacts, inputs, NaOH) defines two different classes,
C = (HCI, HNO3} and D = (NaCl, NaNO}. Analogous classes (each with two elements)
are defined by the triples (reacts, inputs, HNO3) and (reacts, inputs, KOH). In contrast,

4
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the triple (reacts, outputs, NaCI) defines two single-element classes, E - {HCl} and F -
(NaOH), since the substance NaCI occurs as the output of the reacts predicate in only one
fact. The three other triples involving the output attribute also define classes containing
one element.

When GLAUBER is presented with a set of facts, its first step is to form tentative
classes based on all observed triples, in the manner just described. Some of these classes
are based on many observations, while others are based on only one or a few. GLAUBER
selects the instantiation (triple) of FORM-CLASS that covers the most data, and retains
the classes associated with this choice for further processing. The system also substitutes
the names of these classes into propositions containing members of those classes; this
leads to a smaller set of more abstract propositions. For instance, if the triple (reacts,
inputs, HCI) were selected for the above data, two abstract propositions would result -
(reacts inputs (HCl A} outputs {B}) and (reacts inputs {HNOa A} outputs {B}). Note
that although the classes A and B were based on facts involving the substance HCl, the
substitution process leads to their inclusion in facts involving the substance HNO3 . Thus,
after the FORM-CLASS operator has been applied, GLAUBER has not only a set of

- initial abstract classes; it also has a set of propositions that refer to those classes. We may
view these abstract propositions as candidate laws or patterns.

However, in their current form these patterns do not include quantifiers, and this is
the role of the operator DETERMINE-QUANTIFIER. This operator iterates through
the newly generated propositions, determining whether each class mentioned in a pattern
should be existentially or universally quantified. If a single class was introduced, then this
class is universally quantified in the proposition on which this class was based. In this
case, the level of quantification is not an issue, since this is tautologically determined by
the manner in which the classes were defined.

However, if N classes are introduced, then N instantiations of the pattern result, each
containing one universally quantified class and with the quantifiers for the remaining classes
undetermined. For instance, in the above example, two variations on the reaction pattern
would be formulated - V A ? B (reacts inputs (A NaOH} outputs {B)) and V B ? A (reacts
inputs {A NaOH) outputs {B}). The first of these states that all members of class A react
with at least one member of the class B; the second states that all members of class B
can be formed by at least one member of A in reaction with NaOH. The first quantifier in
each law follows from the class definition, but the second quantifier must be determined
empirically.

A similar issue arises when the FORM-CLASS operator generates additional patterns
by substituting class names for substances in other facts. In these cases, all of the quan-
tifiers must be tested against observations. For example, the pattern (has-quality object
{A) taste {sour)) might hold for all members of A, or for only a few members of this class.
Thus, the DETERMINE-QUANTIFIER operator examines the known facts, and decides
on the appropriate quantifier. If more than one class is involved, the possibility of multiple
forms of the pattern must be considered. Thus, if a law were formed by substituting both

5
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A and B for members of these classes, GLAUBER might decide on a single law in which
both were universally quantified, a single law in which both were existentially quantified,
or two laws involving both existential and universal quantifiers.

Once GLAUBER has applied the FORM-CLASS and DETERMINE-QUANTIFIER
operators, it has a revised set of facts and laws to which these operators can be applied
recursively. The FORM-CLASS operator may apply to laws as well as to facts, provided
these laws have identical quantifiers.3 For example, given the two laws V A 3 B (reacts
inputs (A NaOH) outputs (B)) and V A 3 C (reacts inputs {A KOH) outputs {C)), this
operator would generate the more abstract law V A3 D (reacts inputs {A E} outputs {D}).
In addition, it would define the class E to have the members NaOH and KOH, and define
the class D with the classes B and C as subsets. DETERMINE-QUANTIFIER would then
proceed to decide on the generality of this law, and the process would be repeated on the
revised set of facts and laws. GLAUBER continues this alternation between finding laws
and determining their generality until the goal state has been reached - a set of maximally
general laws that account for as many of the original facts as possible.

This process can be viewed as a form of hill-climbing through the space of possible
lhws and classes. At each point in the search, GLAUBER applies all instantiations of the
appropriate operator and selects the best result. Thus, the system carries out a one-step
"look-ahead" to determine the best course of action. GLAUBER's search control does not
include backup capability, since its evaluation functions are sufficiently powerful to direct
search down acceptable paths. Although hill-climbing methods are susceptible to local
maxima, we have not encountered problems of this sort in our runs with chemical data.

To summarize, GLAUBER determines which classes to define by conslering all known
* substances and classes, and selecting that (predicate, attribute, value) triple occurring in

the largest number of facts or laws. Thus, if two facts having the predicate reacts and the
symbol NaOH in the inputs slot, the triple (reacts, inputs, NaOH) would receive a score
of two. In the case of laws, GLAUBER uses the total number of facts covered by those
laws. GLAUBER indexes its facts and laws in terms of their arguments, so these scores
are easily computed for each substance and class. Once this has been done, the system
applies the FORM-CLASS operator to those facts containing the highest scoring value,

* with the constraint that existentially quantified classes are not considered.

In determining the placement of universal and existential quantifiers, GLAUBER ex-
amines the facts (or lower level laws) on which the current law is based. The system

• generates all of the laws/facts that would comply with a universal quantifier for a given
class, and if enough of these have been observed (or inferred), then the universal quantifier
is retained for that class; otherwise an existential quantifier is used. Thus, the system can
be viewed as looking ahead one step in order to determine which move is most desirable.

* A certain percentage of the predicted facts must be observed for GLAUBER to generalize

SFor the sake of consistency, one might view all initial facts as universally quantified. Thus, the
proposition (reacts inputs (HCI NaOH) outputs (NaCI)) could be rewritten as V HCI V NaOH V
NaCI (reacts inputs {HCI NaOH) outputs (NaCl)).

6
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~ (reacts inputs (HC1 HNO2} outputs (salt)).

TABLE 1
States generated by GLAUBER in discovering acids and alkcalis

Initial state Si:

(reacts inputs (Hal N&OH) outputs (NaCi)) (has-quality object (NaCi) taste (salty))
(ratsipus(HlKO)output. (KCl)) (has-quality object (KCI) taste (salty))

-. (react. inputs {HN0 3 NaOH) output. (NaN03)) (h"as-ult Object (NaN0a) taste (salty))
(react. input. (HN03O H (1) output. (KNO 3 )) (h"as-uaiy Object {KNO,) taste (saltY))p(has-quality object (HCI) taste {so=)) (has-quality object (NaOH) taste (bitter))
(has -quality Object (HNO,) taste (sour)) (has-qality object (KOH) taste (bitter))

FORM-CLASS and DETERMINEQUANTIFIER lead to state 83.
suits: (NaG!, KCl, NaNO3, KNO3)
3 salt (react. input. (HCI NaOH) outputs (salt)) (has-quality object (HCI) taste (sour)

* 3 salt (react. input. (HCl KOH1) output. (salt)) (has-quality object (HN03) taste (sour))
3 asl (reacts input. (HN03 NaOH) output. (salt)) (has-quality object (NaOH) taste (bitter))
3 salt (react. input. (HNO 3 KOH) outputs (salt)) (has-uality object (KO0H) taste (bitter))

* V salt (has-uality object (salt) taste (salty))

- FORM-CLASS and DETERMINE-QUANTIFIER lead to state SS:
*dltr~ (NaG!, KCl, NaN03, KNO5)
scidr. {HCl, HNO8)

* V acid 3 salt (react. input. (acid NaOH) outputs (salt))
* V acid 3 salt (react. input. (acid KOH) outputs (salt))

V salt (has-uality object (salt) taste (salty))
* V acid (has-uality object (acid) taste (sour))
* (has-quality object (NaOH) taste (bitter))
* (has-quality object (KOH) taste (bitter))

- FORM-CLASS and DETERMINE-QUANTIFIER lead to final state S7:
* .aitvg (N&CI. KCl, NaNO3, KNO3)
* ecidr. (Hl, HNO5)
* olkalir (NaOH, KOH)

- V alkali V acid 3 salt (react. inputs (acid alkali) output. (salt))
V salt (has-uality object (salt) taste (salty))
V acid (has-uality object (acid) taste (sour))
N alkali (has-uality object (alkali) taste (bitter))

7
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Rediscoverbng the Concepts of Acids and Alkalis

Now that we have described GLAUBER in the abstract, let us examine its behavior
given a particular set of facts as input. These facts are presented at the top of Table 1,
and are very similar to facts known by 17th Century chemists before they formulated the
theory of acids and bases.4 As in our earlier examples, they consist of information about
the tastes of substances and the reactions in which substances take part. As we shall see,
GLAUBER arrives at a set of laws and classes very similar to those proposed by the early
chemists. The data in the table are intentionally simplified for the sake of clarity. However,
we have tested the system on larger sets of data, as well as sets with less regularity.

Given the twelve facts as inputs, GLAUBER begins by examining various (predicate,
attribute, value) triples, and determin'ng -- .hich of these occurs in the greatest number
of facts. It notes that the symbols HQ', HNO 3, NaOH, and KOH are each arguments of
the inputs slot for two facts involving the reacts predicate. Similarly, the symbols sour
and bitter each occur as arguments of the taste slot in two has-quality facts. However,
the highest scoring symbol is salty, which occurs in four has-quality facts as the value for
taste.5 This triple is selected, and these four facts are replaced by the law (has-quality

object (salt) taste (salty)), which has the same form as the original propositions, but in
which the differing values of the object slot have been replaced by the class name "salt".
In addition, the four substances NaCl, KCI, NaNO3 , and KNO3 are stored as members of
the new class.

In addition to proposing this law, the FORM-CLASS operator generates four addi-
tional patterns by substituting the symbol "salt" for members of this class into other
facts. Thus, the facts (reacts inputs {HCI NaOH) outputs (NaCl)) and (reacts inputs

.- (HCl KOH) outputs (KCI)) are replaced by (reacts inputs (HCI NaOH) outputs {salt))
and (reacts inputs (HCl KOH) outputs {salt)). Similarly, the facts (reacts inputs {HNOs
NaOH) outputs {NaNO3)) and (reacts inputs {HNO3 KOH) outputs {KNOa)) are re-
placed by (reacts inputs {HNO3 NaOH} outputs (salt}) and (reacts inputs {HNOs KOH}
outputs (salt)).

Although the first of these laws, (has-quality object {salt} taste {salty)), is guaranteed
to be universally quantified by the manner in which the salt class was defined, the generality
of the other laws must be empirically determined. For example, if the law (reacts inputs

4 One might question whether these are facts or rather summaries of yet lower level observations,
such as the reactions and tastes of particular objects. Indeed, one could present GLAUBER with
such lower level data, and hope it would form classes corresponding to substances like HCI and
KOH. The presence of additional features such as color and weight would surely aid this process.
Although we have not tested this prediction, we believe that given such information, GLAUBER
would be able to generate the "data in Table I from lower level observations.

5 Note that had we represented taste information using predicates like sour, bitter, and salty,
• " GLAUBER would not have formulated this class. Since the system's heuristics look for shared

values, substances' tastes must be stored as values instead of predicates.

-. ...... ......... . .. ................. ..... .



{HCl NaOH} outputs {salt}) were universally quantified over the clas of salts, then four
facts would be predicted. Since only one of these predictions has been observed, GLAUBER
includes an existential quantifier rather than a universal one. The same decision is made
for the other laws formed by substitution, leading to the laws and facts shown in the second
section of the table.

Given this new state of the world, GLAUBER again determines which triple occurs in
the greatest number of propositions. In this case, the set of alternatives is slightly different
from that on the earlier cycle, since the class name "salt" has replaced the individual
members of that class. Given the current set of facts and laws, six symbols tie for the
honors - NaOH, KOH, HCI, HNO3 , sour, and bitter. For example, the first of these occurs
in the laws 3 salt (reacts inputs {HCI NaOH) outputs {salt)) and 3 salt (reacts inputs
{HNO 3 NaOH) outputs {salt}), while the second occurs in the laws 3 salt (reacts inputs
{HCI KOH) outputs {salt)) and 3 salt (reacts inputs (HNO3 KOH) outputs {salt}). The
salt symbol actually occurs in all four of these laws, but this class is existentially quantified
in each of the laws, and so is not considered. Since all of the viable options involve two
laws (each based on one fact), GLAUBER selects one of them at random. Let us follow the
course events take when the system chooses the pair of facts involving the symbol NaOH.

Based on these facts, the FORM-CLASS operator generates the law (reacts inputs
{acid NaOH} outputs {salt)), and defines the new class "acid" as containing the elements
HCI and HNO3 . Two additional patterns result from substitution - (reacts inputs {acid
KOH) outputs {salt}) and (has-quality object (acid} taste {sour}) - each replacing two
directly observed facts. After substitution, GLAUBER has four laws and two facts in
memory. However, the system must still determine the generality of its new laws. The
DETERMINE-QUANTIFIER operator proceeds to consider the predictions made by each
law when universally quantified over the new class of acids. Since all of the predicted facts
have been observed, the universal quantifier is retained for each of the new laws, giving
the set of facts and laws shown in the third section of the table.

At this point, only five symbols remain to be considered - NaOH, KOH, bitter, and
the classes salt and acid. The first two occur only in single laws, while the third occurs
in two analogous facts. The class name salt appears in two analogous laws, but is ignored
due to its existential quantifier. However, the class name acid occurs in two analogous
laws which are based on two facts apiece, giving acid a score of four.

As a result, the two laws are passed to the FORM-CLASS operator and a higher level
pattern - (reacts inputs {acid alkali) outputs {salt)) - is formed on this basis. In addition,
the class "alkali" is defined as having the members NaOH and KOH. A second pattern -
(has-quality object {alkali} taste {bitter)) - is formed by substitution, and both laws are
universally quantified over the new class, the first by definition and the second empirically.
At this point, GLAUBER has reached its goal of specifying a general set of laws that
summarize the original data. The final laws are shown in the fourth section of Table 1,
and are very similar to those proposed by the early chemists.

When GLAUBER is given reactions involving metals as well as alkalis, it defines the
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broader class of bae. (containing both metals and alkalis as members), and arrives at the
central tenet that-acid. combine with bases to form salts. As in the example above, the
subclass of alkalis is identified by its taste, while the subclass of metals is set apart by its
shiny color. Other than these differences, the overall discovery process is very similar to
that described for the simpler task.

Limitations of the System

In its present form, GLAUBER has some important limitations, and these should be
remedied in future versions of the system. The first problem revolves around the program's
treatment of quantifiers and their order. Readers with background in logic will recall that
V x 3 y P(x, y) is not equivalent to 3 y V x P(x, y); the second formula is more specific
than the first, and thus makes stronger claims. Although GLAUBER can arrive at laws
of the second form, this occurs only if it happens to define classes in a certain order; the
system does not find maximally specific laws in all cases that it should.

For instance, consider the third stage in Table 1, in which GLAUBER defined the
cla "acid" and formulated the tautological law V acid 3 salt (reacts inputs (acid NaOH)
outputs (salt}). Although this "law" was guaranteed to hold by the manner in which acids
were defined, it was possible that an even stronger law held. This would occur if the same
salt had been the output for every acid-NaOH reaction that had been observed, and could
have been represented as 3 salt V acid (reacts inputs (acid NaOH) outputs {salt}). In
fact, this more specific law did not describe the data, but one can imagine such cases and
future versions of GLAUBER should be able to handle them.

A second problem related to the order of quantifiers involves complementary laws, such
as V x 3 y P(x, y) and V y 3 x P(x, y). We have seen that such laws are considered when
two classes are defined in the same step, but there are other cases in which one would like
this to occur. For example, Table I summarizes GLAUBER's discovery of the law V alkali
V acid 3 salt (reacts inputs {acid alkali} outputs {salt}). This states that all acids and
alkalis react to form some salt. However, the original data also support the complementary

-. law V salt 3 alkali 3 acid (reacts inputs {acid alkali} outputs {salt)), which states that all
salts are the product of a reaction between some acid and some alkali. GLAUBER could

-_= have generated this law had its heuristics taken it down an alternative path (first defining
acids, then alkalis, and finally salts), but the existing version could never generate both
laws in the same run.

Another difficulty relates to the system's evaluation function for directing the search
through the space of classes and laws. The current version iterates through the set of
(predicate, attribute, value) triples, and selects that triple which occurs in the greatest
number of facts. This leads GLAUBER to prefer large classes to small ones, which in turn
leads to laws with greater generality, in the sense that they cover more of the observed

*. facts. However, recall that once GLAUBER defines a new class on the basis of some law,
it then creates additional laws by substituting the clas for its members in other facts.
This suggests a broader definition of generality, including all facts predicted by any law
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* involving the new class. This analysis leads to two methods for preferring one clas over
another. The most obvious approach involves computing the percentage of predictions

%"* that ae actually borne out by observations; we shall call this the predictive power of a
claw and its associated laws. The second method involves computing the total number of
facts predicted by a cla and its related laws; we shall call this the predictive potential of
the cla.

Obviously, a law that predicts a few observed reactions but predicts many unobserved
ones is undesirable; this suggests that predictive power should be used to weed out grossly
unacceptable classes. However, given roughly equal scores on this dimension, sets of laws
with greater predictive potential should be preferred, since these lead to many predictions
which, if satisfied, will lead to an increase in predictive power. One way to implement this
scheme would have GLAUBER generate the potential classes and their associated laws,
in order to determine their predictive power and potential. The system would then have
to consider whether these laws should be existentially or universally quantified in order to
maximize their scores. In other words, the system would have to apply the FORM-CLASS
operator in all possible ways, and then apply the DETERMINE-QUANTIFIER operator
in all possible ways, in order to determine the best path to follow. This is equivalent
to doing a two-step look-ahead in the search tree, and would involve considerably more
computation time than the current simple strategy. The details of this scheme remain to
be elaborated, but the basic idea of defining classes that account for the most data seems
a plausible approach.

However, in order to implement this strategy, we-would first have to deal with two other
limitations of the current system. The distinction between predictive power and predictive
potential makes sense only if one can test predictions, and the testing of predictions makes
sense only if such predictions can fail. This means that GLAUBER must be able to
represent negated facts or "failed" observations. For instance, if the substance KOH were
added to the alkali class based solely on its taste, we might predict that KOH would react
with every acid to produce some salt. This abstract prediction can be stated V acid 3 salt
(reacts inputs (acid KOH) outputs (salt)).

If we also know that the substances HCl and HNO3 are acids, then two more specific
predictions can be made - 3 salt (reacts inputs {HCI KOH) outputs (salt)) and 3 salt
(reacts inputs {HNOs KOH) outputs {salt)). These predictions can be tested by combining
the pairs of chemicals, seeing if they react, and seeing whether the output satisfies the

• " definition of a salt. If the substances fail to react, we must represent this information in
. some format that GLAUBER can use, such as - 3 substance (reacts inputs {HCI KOH)
*. outputs (substance)), or (reacts inputs {HCI KOH) outputs { ). The exact representation

matters little, as long as GLAUBER knows how to interpret it. Nearly any representation
- is preferable to the current scheme, in which the system cannot distinguish between failed
o reactions and those which has simply not been observed.

In addition, GLAUBER must be able to design and run simple experiments, and this
in turn requires the system to distinguish between independent and dependent terms.
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For each predicate, GLAUBER must know the attributes (and values) over which it has
experimental control, and which attributes it can only observe. In the case of the reacts
predicate, one has control over all values of the inputs attribute, while the values of the
outputs attribute can only be observed. For the has-quality predicate, one has control
over the object being tasted, but the resulting taste can only be noted. Assuming such
knowledge, one can easily imagine GLAUBER generating a simple factorial design (similar
to that used by BACON), and using it to gather an initial set of observations. However,
after some tentative classes and laws had been formulated, these could be used to generate
predictions, and these in turn could lead directly to new experiments. Depending on the
results on these forays, some laws might be rejected in favor of others, which would lead
to yet other predictions and experiments.

This proposal suggests still other modifications to GLAUBER. The current implemen-
tation assumes that all data are present at the outset, and the system puts these data to
good use in directing search through the space of laws. However, the existing version of
GLAUBER is unable to respond to new data, even if these disconfirm the hypotheses it
has formed. Given a data-gathering scheme like that just described, a revised version of
the system might employ more incremental discovery methods. This might operate in the
following fashion.

The revised GLAUBER would begin by selecting some predicate that involves only one
independent term, such as the has-quality predicate, and apply this to various substances.
Based on the resulting observations, the system would define initial classes and form some
tentative laws, such as V acid (has-quality object {acid) taste (sour)). Since only one
predicate has been observed, the initial classes will have only one associated law. After
this trial period, GLAUBER can run experiments using different predicates such as reacts,
in the hope that its initial classes will lead it to further regularities.

Based on its initial classes, the system could form a number of experimental templates,
such as (reacts inputs (acid acid) outputs {?}), (reacts inputs {a~id alkali) outputs {?}),
and (reacts inputs (acid salt) outputs {?}), as well as others. Each of these can be instan-
tiated to produce specific experimental combinations, and the results can be examined. In
many cases, no reaction will occur and the responsible template will be abandoned after
a few instances. In this case, only one template leads to interesting results - not only do
acids combine with alkalis, but the generated substance usually seems to be a salt. This
law would thus be added to the intensional definition for each of the classes involved. As
more data are gathered, GLAUBER may find substances that combine with alkalis to form
salts, but which have no sour taste. If this occurs often enough, the reacts law may become
more central to the definition of acids than the law involving taste. This would seem to be
a more plausible account of the actual historical development than that provided by the
current version of GLAUBER.

The incremental acquisition of data would require yet another revision - it would
force us to replace GLAUBER's simple hill-climbing strategy with a more robust search
method. At any given point, one set of classes and laws may best summarize the data
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that have been obh ,ved. However, as predictions are tested and sometimes disconfirmed,
and as new (possibly unexpected) observations are made, the current hypotheses may
become untenable and alternative accounts may become preferable. Future incarnations
of GLAUBER should employ a version of the best-first search, in which old options are
retained for expansion as new evidence becomes available.

GLAUBER's Relation to Other Discovery Systems

Before concluding, we should spend some time examining GLAUBER's relation to
other machine learning and discovery systems. Such an analysis will serve two related
functions. First, it will help identify the location of GLAUBER's discovery teak within the
space of learning tasks that have been studied, and second, it will clarify the location of
GLAUBER's methods within the space of learning and discovery techniques. We will start
by addressing the first of these two issues.

The Task of Conceptual Clustering

Within the machine learning literature, researchers have identified a variety of distinct
learning tasks. These include learning from examples, language acquisition, learning search
heuristics, and conceptual clustering. Langley and Carbonell (1984) provide an overview of
these learning tasks and the relation between them. In the following pages we will focus on

"- the task of conceptual clustering, since this comes closest to the discovery task confronting
• -the GLAUBER system.

Michalski (1980) is responsible for the term "conceptual clustering", and were the first
to clearly formulate the class of discovery tasks denoted by this term. They proposed

-the notion of conceptual clustering as an alternative to traditional statistical methods for
numerical taxonomy and cluster analysis (Everitt, 1980). In both cases, one is presented
with a set of objects and their associated descriptions, and the goal is to generate some
taxonomic scheme that groups similar objects together. For instance, one might be given
a variety of animal species, along with their measurements on various dimensions. In this
case, the goal would be a hierarchical classification scheme in which species were grouped
into genera, families, and the like.

In traditional approaches, the analysis would stop at this point - with groupings of
the observed objects at varying levels of aggregation. However, Michalski proposed that it
would also be very useful to characterize each group in terms of some general description.
Moreover, traditional methods usually employed a simple distance measure (between the
positions of objects in an N-dimensional space) to direct the search for groupings. Michal-
ski suggested that if concept descriptions were constructed as well, the quality of these
descriptions could be used to direct the search for a useful taxonomy.

This formulation of the conceptual clustering task suggests two distinct but related
subtasks. The first of these - aggregation - involves grouping a set of objects into subclasses
(usually disjoint). The second subtask - characterization - involves finding some general
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description for each aggregate that covers members of that group, but does not cover
member, of any other group. The characterization task has been widely studied under the
label of "learning from examples', and various methods for solving this problem have been
explored (Winston, 1975; Hayes-Roth and McDermott, 1978; Mitchell, 1977; Anderson and
Kline, 1979). In learning from examples, the aggregation problem in made trivial, since
instances or objects are classified by a tutor. Thus, the conceptual clustering problem can
be viewed as a more difficult version of learning from examples, in which one must solve
the aggregation problem in addition to finding an adequate characterization.

The conceptual clustering task differs from the task of learning from examples along
another dimension as well. In the latter, only one level of concepts or descriptions must be
discovered, while in conceptual clustering, a hierarchy of such descriptions must be gen-
erated. This introduces a whole new level along which methods for conceptual clustering
may vary, as we will see when we compare some existing systems. Issues also arise about
the interaction between submethods for aggregation, characterization, and hierarchy con-
struction. Now that we have considered conceptual clustering and its position in the space
of learning tasks, let us examine some specific Al systems that address this problem.

Methods for Conceptual Clustering

Mitchell (1982) has argued that learning methods can be usefully analyzed in terms
of the search methods they employ, and we will follow his advice in our discussion of
conceptual clustering systems. In each case, we describe the system in the abstract, and
then restate its approach as search. Since we have identified three major subtasks, we
consider each systems' response to the search inherent in aggregation, characterization,
and hierarchy construction.

Michalski and Stepp's CLUSTER/2 (1983a, 1983b) is by far the best known concep-
tual clustering program. This system constructs its taxonomic hierarchy from the top
down, finding aggregations and characterizations at each level. Given a set of objects,
CLUSTER/2 first randomly selected N objects as .eed around which to "grow" clusters of
objects. To this end, it employed a general-to-specific characterization technique that, for
each seed object, found some description that covered that object but no other seed. Other
non-seed objects covered by the description were placed in the same class as the seed ob-
ject. However, the process did not stop here. CLUSTER next selected a new seed object 6

from each of the groups, and repeated the process, finding a new description for each seed,
*- and possibly reassigning some of the objects to new groups. This continued until the seed

objects stabilized, giving an optimal set of disjoint classes. At this point, CLUSTER/2
used a specific-to-general characterization technique, which produced a more conservative
description than the method used on seed objects.

. If the quality of the clusters (in terms of their descriptions) improved over the previous round,
this object was picked from the center of the group; otherwise, it was picked from the "edge' in

an attempt to.
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The system repeated this process for different values of N, giving alternative partitions
of the object set, h with associated descriptions. These descriptions were used in decid-
ing between the competitors, and the best partition was used to create the first branches
in the taxonomic hierarchy. CLUSTER/2 then applied the above process recursively to
each of the resulting classes, finding partitions of each set, along with their associated
descriptions. Each such partition led to additional branches at lower levels of the tree,
and this process of subdivision continued until further partitions ceased to provide useful
summaries of the data.

Now let us reanalyze CLUSTER/2 in terns of our three levels of search, and examine
the relation between these levels. The system selects an initial set of seed objects at random,
but these seeds do not constitute complete aggregations. Rather, CLUSTER/2 employs a
characterization method (which involves searching through a space of concept descriptions)
to find some description for each seed. Each such description determines an aggregate for
the seed on which it is based. However, these are not the final groupings. From each
aggregate, CLUSTER/2 selects a new seed and the process is repeated, generating a new
set of descriptions and a new set of aggregates.

Thus, the system uses a hill-climbing strategy in which each step involves finding an
improved set of characterizations and their associated aggregates. There is a "search3

for aggregations, but this is subsumed within the search for descriptions. CLUSTER/2's
higher level search through the space of taxonomies is easier to follow. The system begins
with a single, all-encompassing class, and successively divides this into lower level classes.
However, these classes are entirely determined by the aggregation-characterization process
just described, so that no additional search control is required at this level.

Langley and Sage (1984) have described DISCON, a conceptual clustering system that
takes a quite different approach. The program also constructs taxonomies from the top
downward, but uses knowledge of attributes and their values, rather than the more data-
driven approach of Michalski and Stepp's system. DISCON carries out an exhaustive
search through the space of taxonomic hierarchies, evaluating completed trees in terms of

-: their complexity. This search process constructs an AND/OR graph, in which OR branches
correspond to alternative attributes, and AND branches correspond to the values of an

,.". attribute. DISCON prefers simpler taxonomies to more complex ones that cover the same
-observations, and so selects that tree with the fewest number of nodes. Since the system
* carries out an exhaustive look-ahead, it is guaranteed to find the simplest summary of the
* data, though this method is expensive when many attributes are involved.

DISCON differs from Michalski and Stepp's system along a number of dimensions.
In CLUSTER/2, the main search is through the space of aggregations, with a secondary
search through the space of concept descriptions, the results of which are used to direct
the first search. In DISCON, the main search takes place in the space of taxonomic
hierarchies. At each level of the hierarchy, the systems tries to select the best description,

" but the quality of each description depends on the quality of the entire hierarchy. As a
-result, the evaluation must wait until complete trees have been constructed. Moreover,
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each "description'. is limited to a single attribute-value pair, rather than the arbitrary
conjuncts and disjuncts of Michalski and Stepp's program.

In CLUSTER/2, the search through the space of hierarchies is degenerate, with all
search occurring in the aggregation and characterization spaces. In DISCON, search
through these latter spaces is degenerate, with all true search occurring in the space of
hierarchies. This accounts for the vastly different "feel" one gets when reading descriptions
of these systems.

In many ways, Fisher's RUMMAGE (1984) is a compromise between the two systems
we have already described. Like DISCON, this program considers only descriptions that
consist of single attribute-value pairs. However, rather than carrying out an exhaustive
look-ahead through the space of hierarchies, RUMMAGE employs an evaluation function
that requires only one-step look-aheads. Thus, at each stage in constructing its taxonomic
hierarchy, the system considers all unused attributes in terms of their ability to summa-
rize the current set of objects. For each value of an attribute, RUMMAGE constructs a
description of the objects having that value. The program then computes a complexity
score for all values of the attribute, and selects that attribute with the lowest score.

GLAUBER as a Conceptual Clustering System

Now that we have examined some other approaches to the conceptual clustering task,
we can describe GLAUBER in the same terms. Upon reflection, we see that the system has
clear responses to the problems of aggregation and characterization. The FORM-CLASS
operator, and the heuristics for selecting a particular class, deals with the aggregation
issue. Similarly, the DETERMINE-QUANTIFIER operator deals with characterization,
along with some help from the substitution process within the FORM-CLASS mechanism.
What is interesting about GLAUBER's behavior is that, unlike other conceptual clustering
systems, it does not attempt to partition objects into disjoint classes all at once. In
the acid-alkali example, we saw that GLAUBER first formed the class of salts and its
associated laws, then found the class of acids, and only at the end did it formulate the
class of alkalis. Since the system substitutes the class name for all instances of the class,
it is guaranteed to find disjoint classes, but not in the traditional manner.

A second difference is that GLAUBER does not generate a complete classification for
the structures it is given, which in the chemical example were reaction and taste events.
Rather, it forms classes from the objects occurring in these events. Thus, GLAUBER desk
with inherently relational descriptions, while CLUSTER/2, DISCON, and RUMMAGE all
assume attribute-value representations. But the difference is more subtle than it may
appear at first. One can imagine relational descriptions of objects, such as chairs or tables,
that would still lead one to classify the objects themselves, rather than their components.
The important point is that GLAUBER uses relations between the objects being classified
in determining its taxonomic hierarchy, and this leads it to use quite different methods

.' than other conceptual clustering systems.
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Another issue tlates to the direction of GLAUBER's search through the space of
hierarchies. The system constructs its taxonomies from the bottom up, rather than in
the divisive fashion of RUMMAGE, DISCON, and CLUSTER/2. One cannot tell this
from the acid-alkali example, since it involved only two taxonomic levels - the observed
substances and the abstract classes of acids, alkalis, and salts. However, the direction
becomes apparent on reactions involving metals, in which the system proposes the higher
level category of bases to include both metals and alkalis.

Two final differences involve the nature of GLAUBER's concept descriptions. First,
the intensional definitions of classes may include existential quantifiers as well as universal
ones. This is possible because GLAUBER's laws can relate different classes to each other,
and these relations may hold only between subsets of class members. Since other conceptual
clustering systems generate descriptions of isolated objects, existential quantifiers have no
role to play. Second, GLAUBER's descriptions need not be perfect. N1 a law holds for
most members in a class, it may still be universally quantified. This allows the system's
concept definitions to have a "fuzzy' quality similar to that of many real-world concepts.

In summary, while GLAUBER has many similarities to Al systems for conceptual clus-
* taring, we found that some significant differences also exist. In many ways, GLAUBER

seems to solving a somewhat different discovery task than CLUSTER/2, DISCON, and
RUMMAGE. Both are concerned with forming classes and descriptions for those classes,
but the former involves searching for relations between objects, while the latter systems
focus on isolated objects. Almost certainly, this difference arises from the sample problems
from which the systems were developed. The "mainstream! conceptual clustering systems
emerged in response to work in numerical taxonomy, which was created to deal with bio-
logical data. In contrast, we developed GLAUBER in order to understand the mechanisms
of discovery in early chemistry. Whether the two approaches can be combined to produce
a more robust discovery method is an interesting question for future research.

Some Other Discovery Systems

As we have seen, GLAUBER can be viewed as a conceptual clustering system, but its
discovery task differs somewhat from the standard definition of the conceptual clustering
problem. Before closing our survey, we should briefly consider some other Al systems
that are not usually viewed as conceptual clustering programs, yet which have much in
common with GLAUBER. A number of these systems operate in the domain of language
acquisition.

One of the most interesting (though perhaps the least known) of these systems is
Wolff's SNPR (1982). In implementing this system, Wolff has explored an approach to
grammar learning that incorporates methods very similar to those used in GLAUBER.
SNPR begins with a sequence of letters, and based on common sequences of symbols, de.
fines chunks in terms of these sequences. For example, given the sequence "thedogchased-
thecatthecatchasedthedog ... ", the program defines chunks like "the", "doge, "cat", and
"chased". Whenever a chunk is created, the component symbols are replaced by the symbol
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for that chunk. In this case, the sequence "the-dog-chased-the-cat-the-cat-chased-the-
doge would result. In addition, when a number of different symbols (letters or chunks) are

* found to precede or follow a common symbol, a disjunctive class is defined in terms of the
first set. For instance, in the above sequence we find the subsequences "the-dog-chased"
and "the-cat-chased)". Based on this regularity, Wolff's program would define the dis-

.*' :junctive class noun = (dog, cat). The symbol for this new class is then substituted into
the letter sequence for the member symbols. In this case, the sequence "the-noun-chased-
the-noun-the-noun-chased-the--noun" would be generated. These two basic methods are
applied recursively, so that chunks can be defined in terms of disjunctive classes, and vice
versa. Thus, given the last sequence, the chunk sentence = the-noun-chased-the-noun
would be defined, giving the final sequence "sentence-sentence".

From this description we see that Wolff's learning system employs two operators -

one for forming disjunctive classes such as "noun', and another for defining chunks or
conjunctive classes, such as "dog". The first of these is identical to GLAUBER's operator
for forming disjunctive classes like "acid' and "alkali". 7 The main difference between
the two systems' use of this operator lies in the heuristics for forming such disjuncts.
Wolff employs adjacency criteria well-suited to the language acquisition domain, while
GLAUBER uses the notion of shared arguments, which is more appropriate for relational
domains. In contrast, the second operator in Wolff's method has no analog in GLAUBER's
repertoire, and this suggests a gap in our discovery system's capabilities.

In our review of conceptual clustering, we divided the concept learning task into two
14 components - a process of aggregation and a process of characterization. However, we

failed to distinguish between two quite different notions of aggregation. In the first form
-' of aggregation, one must determine which objects or events should be grouped together

as instance of a single concept or class. This is the aggregation problem addressed by
, conceptual clustering systems such as CLUSTER/2, DISCON, and RUMMAGE, as well as

GLAUBER. In the second form of aggregation, one must determine which objects or events
should be grouped together as parts of a higher level object or event. Both problems are
trivialized in the task of learning from examples, since the tutor groups objects into classes
and specifies the parts of each object. Traditional approaches to conceptual clustering deal
with instance aggregation, but ignore part aggregation.

Thus, an obvious extension ot GLAUBER would let the system form conjunctive classes
or chunks, in addition to the disjunctive classes it already forms. Let us consider an
example from the domain of genetics that requires this form of reasoning. Suppose the
system observed (as did Mendel) that when certain green garden peas were self-fertilized,
they produced only green offspring, but that when other green peas were self-fertilized,

7 Rather, we should say that GLAUBER's operator is identical to Wolff's operator, since Wolff's
work preceded our own by many years. Although the original version of GLAUBER was developed
independently of Wolff's approach, the current system borrows considerably from his results in
the domain of grammar learning. Also note that, like GLAUBER, the SNPR system operates in a
bottom-up fashion, rather than the top-down manner used in most conceptual clustering systems.
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they produced both green and yellow children. We can represent this with propositions
like (parent of (pe"2) is (pea-1)), (has-quality object {pea-1) color (green)), and (has-
quality object (pea-2} color {yellow)).

In this case, we would like GLAUBER to divide the green peas into two classes based
not on their own directly observable features (since these are identical), but based on
the features of their offspring. We can accomplish this by first defining the higher level
predicate child-has-quality, and define this chunk by the rule (child-has-quality parent
{X) child (Y) color (Z)) =: (parent of (Y} is {X)) & (has-quality object {Y) color (Z)).
Given such a predicate, GLAUBER could rewrite its direct observations at a higher level
of aggregation and form disjunctive classes based on the resulting propositions.

As a result, the system would be able to formulate laws such as V pure-green (child-
has-quality parent {pure-green) child (pure-green} color {green)). This states that all
members of the "pure-green" class have children that are also members of that class, and
that these children are green in color. This is equivalent to stating that pure-strain green
peas always breed true with respect to color. Note that we have not suggested heuristics
for directing GLAUBER's search through the space of conjunctive classes. Wolff's system
employed a data-intensive method similar to our technique for selecting disjunctive classes.
Such a method might work for an extended nonincremental version of GLAUBER, but it

.. would not be useful for the incremental version outlined in the previous section.

Two other Al language learning systems formed both disjunctive and conjunctive
classes like those generated by SNPR - Sikldssy's ZBIE (1968) and Anderson's LAS (1977).
However, both systems assumed that word chunks were already known, and that the learner

- could tell where sentences began and ended, while Wolff's system induced both of these. In
.. addition, both ZBIE and LAS assumed that each sample sentence was accompanied by its

meaning, and that the goal of the learning system was to acquire some mapping between
sentences and their meanings. Sikl6sy represented meaning using a propositional nota-
tion, while Anderson used semantic networks, but both used this information to greatly
constrain the learning process.

ZBIE and LAS employed a method for forming disjunctive classes that is a mixture of
the methods used by SNPR and GLAUBER. Suppose the word X precedes the word Z in
one sentence, and the word Y precedes Z in another sentence. Siklssy's and Anderson's
systems would consider creating a disjunctive class at this point, but would not follow
through before examining the meaning of each sentence. Assume X1, Y', and Z' stand for
the concepts associated with the words X, Y, and Z. The systems would create the class
(or add a word to it, if it already existed) only if X' and Y' occurred in the same relation
to Z' in the meanings of the two sentences.

Thus, ZBIE and LAS required converging evidence from two sources - sequential lin-
guistic information and relational semantic information - before forming a disjunctive clan
like "subject" or "verb". In contrast, SNPR relied on only the first form of information,

*while GLAUBER uses only the second. Although from our description ZBIE and LAS
sound very similar, they actually differ in many ways, including their representation of
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grammar and their solutions to the part aggregation problem. However, we have focused
here on their method for handling instance aggregation, since this holds the most relevance

to GLAUBER.

GLAUBER also bears some resemblance to Brown's (1973) discovery system, which
operated in the domain of kinship relations. This system noted relations that held empir-
ically between predicates in its data base. For instance, it might discover that whenever
the relation brother (X, Y) holds, the relations parent (Z, X) and parent (Z, Y) also hold.
Such relations are actually more like relational versions of Wolff's sequential chunks than
GLAUBER's disjunctive classes, which Brown's program did not define. Also, Brown's
system focused on finding redundancies between facts in a data base, rather than creating
higher level terms to summarize a set of observations. Some more recent work by Emde,
Habel, and Rollinger (1983) addresses a problem very similar to Brown's task. In this
case, the method examines whether predicates obey certain higher-level relations, such as
transitivity or inversivity. Although this approach leads to laws very similar to those found
by Brown, their model-driven discovery method contrasts with the data-driven technique
used in the earlier system.

t Conclusions

To su ,our interest in the discovery of qualitative empirical la led us to de-
sign and impleent GLAUBER, an AI system that operates in this doman Given a set
of observations, GLAUBER defines abstract classes and formulates laws stated in terms of
these classes. approach was driven by examples from the history of early chemistry,
specifically by the development of the theory of acids and bases. Although the existing
version of GLAUBER covers many of these discoveries, it has numerous limitations that
should be remedied in future versions of the system. Thase include the need for improved
evaluation methods, the ability to distinguish between unobserved and unsuccessful re-
actions, and the ability to run simple experiments in order to test predictions. These
improvements suggest the need for two additional revisions - methods for the incremen-
tal discovery of classes and laws, and a search organization more robust than the current
hill-climbing scheme. .

Despite GLAUBER's limitations, its relations to other Al discovery systems are inter-
esting in their own right. We found that GLAUBER has much in common with conceptual
clustering systems such as Michalski and Stepp's CLUSTER/2, but we found significant
differences as well. These included differences in the representation of data and laws, and
in the details of search through the space of laws and classes. GLAUBER is also closely
related to AI language acquisition systems, in particular to Wolff's SNPR. In this case
the differences between the systems suggested another extension to GLAUBER - the in-
clusion of an operator that forms conjunctive classes or chunks, to let the system restate
observations at higher levels of aggregation.

As usual, more work remains to be done, and we intend to implement a revised version
of GLAUBER that incorporates many of the extensions we have outlined. However, the
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current instantiation of the system has already provided us with an interesting account of
the qualitative discovery process, and it has led to a variety of intriguing questions that
we plan to pursue in our future research.
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