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Research Objectives

The goal of our research during 1981-83 was to study specific, important
problems in distributed systems and propose solutions for them. Intuitive arguments
about distributed algorithms are error-prone and hence we started work on proving
the correctness of distributed systems. The success of our research effort during this
period led us to set some ambitious goals for 1983-85: to identify unifying
paradigms in distributed computing regardless of the underlying architecture, com-
munication mechanism or operating system. We have concentrated on problems that
are general (applicable to a variety of systems), and fundamental (their solutions
constitute the critical portions of fugure and existing systems). We have not ad-
dressed problems for specific operating systems or architectures. Our objective is to
make our research applicable for novel architectures that we may see in the next
decade.

The development of distributed programs is much more difficult than the
development of sequential programs. One of the difficulties in distributed program-
ming is the absence of a set of general paradigms. Sequential programming has its
paradigms such as backtracking, divide and conquer and dynamic programming.
Distributed programming paradigms are often confused with specific problems of the
underlying architecture or operating system. One of the first genuine paradigms for
distributed systems is Lamport’s event ordering algorithm. This has found applica-
tion in distributed mail systems, distributed databases and operating systems. Un-
fortunately, very few such problems have been identified to be of general importance
in distributed systems area and fewer still have been solved (correctly). Our study
revealed that almost all deadlock detection algorithms published prior to ours (in
1982) either failed to report deadlock where one existed or reported deadlock where
none existed.

We proposed to study asynchronous message passing systems, consisting of ar-
bitrary number of processors (hence to be called, processes), arbitrary interconnec-
tions among processes and arbitrary, finite delays for message communication. The
paradigm of learning is fundamental to distributed systems: algorithms are executed
so that processes "learn" properties about the underlying system. What is learned
may be static - an unchanging property - or dynamic - a property changing with
time. A class of static problems arise from the network structure: (1) each process
learns the topology of the network, (2) assign unique id’s to each process, and (3) a
process learns the shortest path between two processes, etc. We have, however con-
centrated on dynamic problems; arbitrary computations are assumed to be proceed-
ing at various processes and it is required to superimpose an algorithm on the under-
lying computations so that a process learns a dynamic property of the system such
as: is the system deadlocked? The dynamic problem is considerably more difficult
than the static problem.
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Our work pointed out the need for formal methods in reasoning about com-
municating processes. Verification techniques for sequential systems are sometimes
unnecessary if proper care is taken in structuring and developing the system. Unfor-
tunately, nondeterministic control makes it nearly impossible to apply similar
reasoning based on locus of control; entirely new techniques were called for. One of
our goals was to propose techniques which not only are useful, but are also usable:
we planned to prove complex systems using these techniques.

We elaborate our major contributions in the following pages.

Status of Research

Our research has resulted in a number of significant contributions which have
already appeared, or will appear, in literature. Notable among our achievements are
the following:

1. Reasoning Techniques for Distributed Systems: We were the first
ones to propose "compositional” proof techniques for distributed systems,
which allowed the proof a distributed system to be partitioned into
proofs of individual components making up the system. This structuring
of proof made it possible to prove complex systems. Current work in
parallel program verification by most researchers has this compositional
flavor.

2. Distributed Snapshot: Many problems in distributed systems require
that a "snapshot" of the system be taken. We want to record the states
of all channels and processes at some instant. The problem is that in dis-
tributed systems there is no way of synchronizing such an "instant.” If
we could take global snapshots, all dynamic problems reduce to static
problems because we can take a sequence of snapshots of the dynamic
system and analyze each snapshot in turn. Since each snapshot is static
the analysis of a snapshot is a static problem. The solution of this
problem subsumed a large body of work on termination/deadlock detec-
tion and distributed checkpointing.

3. Detection of Quiescent Properties: Detection of certain properties,
such as termination or absence of tokens, can be accomplished more ef-
ficiently than by taking distributed snapshots, as in (1). We give a
characterization of a class of properties, called gquiescent properties, and
show how their presence in a system can be detected.

4. The Drinking Philosophers Problem: This captures the essence of
conflicts - two or more processes are prevented from continuing their ex-
ecutions in order to satisfy certain system constraints - and their resolu-
tion in many distributed programming situations. Our notion of conflict
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is general enough to include such legendary problems as mutual exclu-
sion, dining philosophers and multiple copy updates, as special problems.
Our solution shows the importance of introducing and preserving an

! asymmetry among processes.

5. Distributed Search: This provides a general strategy for implemen-
tations of dynamic programming solutions in a distributed system.

- We elaborate each of these contributions and our other work under this grant,
o in the following pages.

Reasoning Techniques: (Our later work in this area has been
i supported completely by AFOSR)

If a number of processes execute concurrently, it is difficult to make state-
ments about the ensemble, because the program control resides simultaneously at
- many different points, one point in each process. It is even more difficult to prove
properties of a process in isolation from its environment. However, this is exactly
é what is required if we ever hope to substitute one process by another without affect-
ing the functioning of the whole system.

We pioneered the area of compositional proof systems in which each process

has a specification independent of its environment. We showed how the specifica-

. tions of component processes can be combined to yield a specification for the system,
~ as a whole. This made it possible to structure the proof of a system along the lines
in which a system is structured into processes. Previous proof techniques required

3 elaborate "noninterference proofs*, to show that functioning of one component
would not be affected by simultaneous functioning of another component; this re-
m quired not only the specification of components but also their inner structure. Con-

sequently such proofs tended to be long. Our proof technique has been applied by
Ossefort ("Correctness Proofs of Communicating Processes - Three Illustrative Ex-
o amples from the Literature," ACM TOPLAS, Vol. 5, No. 4, October 1983, pp.

" 620-640). in proving several complex distributed algorithms. This work has been
extended in [5] and [19].
<2 Distributed Snapshots
A problem of considerable importance in distributed data bases, where a
:" process may have locked some data items and is waiting for others, is the problem of
deadlock. A similar problem appears in distributed routing (deadlock due to insuf-
iy ficient buffers) or legitimately, in a distributed computation where the processes
0 have run out of data. A somewhat different problem is to take a checkpoint of a
distributed system; such checkpoints are necessary for rollback and recovery in
o machines like the Cosmic Cube (built by Professor Chuck Seitz at Caltech).
Y
. Rt
e N
S .’.-J‘
g
(+ oo

T S R B RS S  S ES R  R T iy



;.1

AN

0
e

&

o
4« 9

-ﬁi':: '

Final Report, AFOSR 81-0205 4 19 July 1985

Each of these problems can be solved by taking a snapshot of the system. A
snapshot is a state of the system: states of processes and channels linking the
processes, which could have arisen at some point in the past.

An algorithm for taking a distributed snapshot was developed by one of the
principal investigators (Chandy) and Leslie Lamport. This algorithm requires min-
imal overhead, does not interfere with the underlying computation and is easy to im-
plement. This work has been widely referenced and has been developed further by
E. W. Dijkstra.

The Drinking Philosophers Problem

Conflicts arise in distributed systems due to contentions for shared resources.
For instance, two processes cannot write into a shared data item simultaneously, two
machines cannot broadcast messages on an ethernet at the same time, etc. Conflicts,
such as these, are typically resolved either (1) by a central process or (2) by assigning
static, global priorities to processes or (3) by resolving to probabilistic decision
making by individual processes. We identified the basic ingredient of every non-
probabilistic solution: asymmetry among processes. We showed how asymmetry
can be introduced initially by judicious of shared resources and how to preserve
asymmetry in a fair manner. Our formulation of the problem starts with (1) a set of
processes, (b) a set of resources shared among some subset of processes and (3) an ar-
bitrary computation at the processes which result in requests for the resources. The
mutual exclusion problem is a special case where there is a single resource shared by
all processes. The Dining Philosophers Problem has resources (forks) shared by ex-
actly two processes and requests for resources are always for identical sets of
resources. Our solution initially assigned resources to processes in such a manner
that individual processes could be distinguished by the resources that they possess.
We proposed certain rules for relinquishing resources which preserved this asym-
metry. Our solution is very efficient, because processes make only local transfor-
mations and they send no messages unless they are requesting or relinquishing
resources. In fact, our solution to the dining philosophers problem can be shown to
be optimal in the number of messages.

Detection of Quiescent Properties

Quiescence properties of a distributed system are those which continue to be
true once they become true. Termination, deadlock, and absence of tokens in a sys-
tem are examples of such properties. These properties may be detected by applying
the distributed snapshot algorithm described earlier. However, we show that there is
a more efficient class of algorithms, which includes a number of published al-
gorithms as special cases, for these classes or problems.

Our algorithm is given in fairly abstract terms using certain unspecified con-
ditions. Different instances of these conditions result in different algorithms. Our
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development of the algorithm, using stepwise refinement, led to very real conditions
under which the algorithm can operate.

Distributed Search

A large class of optimization problems have the following structure: a problem
may have many feasible solutions and, of these, we seek the solution with the lowest
cost. The critical task, therefore, is to find a feasible solution whose cost is bounded
below some given threshold; as the threshold is lowered, an optimum solution is ap-
proximated.

This problem, again, is of a very general nature. It includes such well known
problems as the traveling salesman problem and shortest path problems. The
generalization consists of making very few assumptions about the problem structure.
This work is similar in spirit to a very general model of dynamic programming intro-
duced by Karp and Held (Siam Journal of Applied Mathematics, May 1967). It is
hoped that the proposed paradigm will include all deterministic, search based op-
timization procedures.

Other Related Work

Our work on distributed simulation, partially funded by AFOSR, is considered
to be the seminal work in that area. We pioneered the area by demonstrating that
system simulations can run efficiently on several parallel machines. A large number
of researchers in U.S.A., Europe and Japan are now working in this area. It is not
too much to expect that all large scale simulations have to be distributed in the fu-
ture. Our problem formulation and solution procedures were general - independent
of specific properties of the system being simulated or idiosyncrasies of the under-
lying architecture - which allow it to be adapted for specific problems and architec-

tures.
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List of Publications

[1] "Distributed Computation on Graphs: Shortest Path Algorithms,"
Commaunications of the ACM, Vol. 25, No. 11, November 1982, pp.
833-837, (K. Mani Chandy and Jayadev Misra)

[2] *Distributed Deadlock Detection," ACM Transactions on Computer
Systems, Vol. 1, No. 2, May 1983, pp. 144-156, (K. M. Chandy, J. Misra
and L. Haas).

[3] "A Distributed Graph Algorithm: Knot Detection," ACM Transactions
on Programming Languages and Systems, Vol. 4, No. 4, October 1982,
pp. 678-686, (J. Misra and K. M. Chandy).

[4] "A Distributed Algorithm for Detecting Resource Deadlocks in Dis-
tributed Systems," Proceedings of the ACM SIGACT-SIGOPS Con-
ference on the Principles of Distributed Computing, August 18-20, 1982,
Ottawa, Canada, (K. M. Chandy and J. Misra).

[5) "Proving Safety and Liveness of Communicating Processes with
Examples”, Proceedings of the ACM SIGACT-SIGOPS Conference on
the Principles of Distributed Computing, August 18-20, 1982, Ottawa,
Canada, (J. Misra, K. M. Chandy and T. Smith).

(6] "Finding Repeated Elements," Science of Computer Programming, No.
2, (1982), pp. 143-152, North-Holland Publishing Company, (J. Misra and
D. Gries). ~

[7] "Assigning Processes to Processors in Distributed Systems," Proceedings
of the 1988 International Conference on Parallel Processing, August
23-26, 1983, Bellaire, Michigan, (Elizabeth Williams).

[8] "Paradigms for Distributed Computing,” Invited paper Third Inter-
national Conference on Foundations of Software Technology and
Theoretical Computer Science, Bangalore, India, December 12-14, 1983,
(K. M. Chandy).

(9] "Distributed Simulation,” Tutorial presented at the IEEE Computer

Society 4'h International Conference on Distributed Computing Systems,
May 14-18, 1984, San Francisco, California (Jayadev Misra).
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o [10] "*Processor Queueing Disciplines in Distributed Systems," Proceedings of
L the 1984 ACM SIGMETRICS Con ference on Measurement and Model-

ing of Computer Systems, August 21-24, 1984, Cambridge, Massachu-
N setts, (Elizabeth Williams).

[11] *The Effect of Queueing Disciplines on Response Times in Distributed
Systems,” Proceedings of the 1984 International Conference on Parallel
Processing, August 22-24, 1984, Bellaire, Michigan, (Elizabeth Williams).

(12] "The Drinking Philosophers Problem," ACM Transactions on Program-
ming Languages and Systems, Vol. 6, No. 4, October 1984, pp. 632-648,
(K. M. Chandy and J. Misra).

[13] "Distributed Snapshots: Determining Global States of Distributed
Systems," ACM Transactions on Computer Systems, Vol. 3, No. 1,
February 1985, pp. 63-75, (K. M. Chandy and Leslie Lamport).

E Papers written since Annual Report for year 1983-84

[14] "On Distributed Search", to appear in Information Processing Letters,
(Ted Herman and K. Mani Chandy).

- [15] "A Paradigm for Detecting Quiescent Froperties in Distributed
' Computations," NATO ASI Series, F13, Springer-Verlag Lecture Notes
in Computer Science, to appear in 1985, (K. Mani Chandy and Jayadev

Misra).

- [16] *An Example of Stepwise Refinement of Distributed Programs: Quies-
cence Detection," to appear in ACM Transactions on Programming
Languages and Systems, (K. Mani Chandy and Jayadev Misra).

[17] "A Class of Termination Detection Algorithms for Distributed 2
Computations,” Technical Report TR-85-07, The University of Texas at '!%':
Austin, Computer Sciences Department, May 1985, (Devendra Kumar), NS
submitted to IEEE Transactions on Software.

v » e v

(18] "A Model and Proof System for Asynchronous Networks," Proceedings
of the 4t'h ACM SIGACT-SIGOPS Con ference on the Principles of Dis-
tributed Computing, Minaki, Canada, August 5-7, 1985, (Bengt Jonsson).
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[19] "A Novel Approach to Sequential Simulation,” Technical Report

'i TR-85-14, The University of Texas at Austin, Computer Sciences Depart-

ment, July 1985, (Devendra Kumar), submitted to I[EEE Transactions on
Software.
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[20] *A High Speed Distributed Simulation Scheme and Its Performance
Evaluation,* (Devendra Kumar), submitted to the Nineteenth Annual
Simulation Symposium and CMG ’'85.
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Type of Degree
Thesis Title

Department

Degrees Expected

Recipient
Award Date
Type of Degree
Thesis Title

Department

A s A R

Elizabeth Williams

May, 1983

Ph.D (Doctor of Philosophy)
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Interactions (Invited lectures listed for the period 1983-85 only)

Invited lectures presented by Professor K. Mani Chandy on topics related to
work performed under this grant.

e Cornell University

e Stanford University

e M.I.T.

e Third Conference on Foundations of
Software Technology and Theoretical
Computer Sciences, Bangalore, India

e University of California at Berkeley

¢ Distinguished Lecture Series,
University of Minnesota

e IBM Research Lab, Yorktown Heights

o Keynote address, 3'9 ACM Principles of
Distributed Computing Conference,
Vancouver, Canada

e Pennsylvania State University

e Distinguished Lecture Series,
University of Central Florida, Orlando

e DEC, Systems Research Center, Palo Alto

o IFIP W.G. 2.3, Manchester, England

May 2-6, 1983
November 7, 1983
November 13, 1983

December 12-14, 1983

February 23, 1984

May 14-15, 1984

July 11-13, 1984

August 26, 1984

October 1-5, 1984

March 9-17, 1985

March 21, 1985

April 13-18, 1985
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(o
.,}:i ne Invited lectures given by Professor J. Misra on topics related to work per-
S formed under this grant.
.
P e University of California at Berkeley October 18, 1983
\. e University of Manchester, England November 9, 1983
- e University of California at Los Angeles January 26, 1984

e IBM Research Labs, Yorktown Heights February 9, 1984

i- e IBM Research Labs, San Jose March 7, 1984

e California Institute of Technology March 27, 1984
) ¢ [EEE Fourth International Conference on
E Distributed Computing Systems, Invited
. Tutorial entitled, "Distributed Simulation”

May 14-18, 1984

e Xerox Palo Alto Research Center
Palo Alto, California

e University of Washington

e U.S. - UK. Joint Workshop on Concurrency,
Carnegie-Mellon University

o IFIP W.G. 2.3, Victoria, Canada

e Workshop on Reasoning About Cooperating
Agents and Concurrent Processes, SRI,
Monterey Dunes, California

e Yale University

e Advanced NATO Study Institute on Logics
and Models for Verification and Specification

March 15, 1984

May 10, 1984

July 9-11, 1984

July 23-27, 1984

August 22-24, 1984

September 27, 1984

October 8-19, 1984

of Concurrent Systems, France

April 11, 1985 :

e Carnegie-Mellon University
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o Additional Statements :::
TN '.'-::
R One measure of importance of a piece of research is its acceptance by the ®.
, \ scientific community at large. Typically, a successful piece of work gains wide ac- f::::
2 ceptance within three to five years of its publication. Our work on Distributed l:jij
: Simulation, funded partly by the Air Force is now considered to be one of the most
‘ important developments in that area {as evidenced by the number of workers and .L..‘
- publications). Similarly, our work on Reasoning About Communicating Processes Eﬂ
. (funded by AFOSR) remains one of the most referenced papers in that area; in a T
i recent book - A Survey of Verification Techniques for Parallel Programs by Howard [2;';
2 Barringer (Lecture Notes in Computer Science, 191, Springer-Verlag, 1985) - compar- N

- ing nine different methods for parallel program verification, our approach is listed as
one of the four that admits of hierarchical developments.

bh-4¢

.
PO

7
»

We expect the other work reported here - particularly, Distributed Snapshots
and Drinking Philosophers Problem - to have the same kind of impact in the next
E three years or so. We have been invited by at least thirty universities and research

labs to deliver lectures related to these topics, in the last two years. We infer that
our work has gained wide acceptance because we have emphasized issues that are
fundamental and not only of immediate practical interest.
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University of Texas at Austin

Keywords: Distributed computation, graph algorithms

* This research was supported by a grant from the Air Force Office of Scientific Research under grant
AFOSR 81-0205.

1.0 Introduction

Many optimization problems have the following structure: A problem may admit many feasible
solutions, and of these, one seeks the solution of lowest possible cost. In this paper, we consider the
task of finding a feasible solution whose cost is bounded below some given threshold. As the
threshold is lowered, an optimum solution is approximated. This work is based, in part, on the pio-
neering work of Karp and Held (3] on dynamic programming.

Our distributed program is a parallel search for the approximate solution. The underlying distributed
system is an asynchronous network of processes, with indeterminant timings between computations.
The distributed search therefore has this non-deterministic flavor: The computation advances when-
ever and wherever possible in the distributed system.

2.0 The Distributed System

The distributed system consists of a fixed set of processes that communicate solely by passing mes-
sages. A process may directly send a message to another process only if there exists a channel be-
tween lhe two. A message may contain arbitrary data. The channels are loss-less: If process B sends
a message to process D, then we can assert that process D will receive the message (perhaps after
some finite delay). The number and locations of channels is fixed in the distributed system. It is
useful to think of processes as vertices and to channels as edges of a finite graph. The set of processes
in the system is
V={v}i=1.n

and (v;v;) denotes a channel/edge. The set E is the set of channels defined for the distributed system.
If there is a channel between a pair of processes, then we call these processes neighbors.

3.0 The Approximation Problem

Let P be the problem to be approximated. The solution to P will be an item called a policy. Policies
that satisfy the basic contraints of P are feasible policies. Define POLICY as the set of all possible
policies. Then for xePOLICY, the predicate function FEAS determines feasibility: FEAS(x) is true iff
x is a feasible policy. Messages between processes will represent policies. Processes receive policies,
amend them, and transmit them during the computation.

Policies are ordered by a cost function. COST(x) yields a number that is the cost of policy x. Policy
x is acceptable if it satisfies
FEAS(x) and COST(x)<R,



1

\ where R is a number defining the level of approximation desired for problem P. Further restrictions ::‘,]
» on the COST function are revealed in Section 4. -
;';J

. There is a bijection from the set of processes V to a set of functions Z. Elements of Z are functions k
that map policies to policies. For convenience, let z; correspond to process v;.
7

The class of approximation problems suited to our analysis must have solutions expressible as com- :f

positions of functions in Z. Let W(v,) represent some finite walk, originating at v;, over edges of the -

v

graph defined by the distributed system. W(v;) can be written in the form
" ViVieVi)Vig-1)Vik)

' l
»
4 i

- where the sequence i(1), i(2), ... i(k) designates the order of vertices in the walk. Corresponding to T
W(v,), we write the composition -
:-: S(W(V}),X) = Zi(k)o...°Zi(2)°zi”)(X), ::::
= which is a generation sequence based on x generated by v, The empty walk contains no edges. e
S(W(v)).x) = x for the empty walk. | J
3.1 Solution Characterization: A solution to P is an item y satisfying:
(a) FEAS(y) and COST(y)<R, or N
(b) FEAS(y) and
P {For all wePOLICY, FEAS(w) implies COST(y) £ COST(w)}, or
(c) y=1 and {For all wePOLICY, FEAS(w) is false}.
The first case provides an acceptable policy. In the second case no acceptable policy can be found,
so a minimum cost policy is the result. In the last case, the output is a special symbol L, which in-
. dicates that no feasible solution to P is possible. By convention COST(L) = 0. When a process
- v; sends a message y to some other process, then v; is said to generate y. We say a distributed com-
' putation generates y if any v; in the system generates y during the computation. The class of ap-
-, proximation problems to be considered can now be precisely characterized.
iy .
e,

3.2 Proposition: A solution to approximation problem P, P = [V,E,Z,FEAS,COST R], can be generated
n by a distributed computation, provided that a solution to P is expressible as S(W(v.),0), for some se-
e lection of W(v.), where v- is the label of a vertex called the initiator, and 6 is some initial policy.

4.0 Distributed Algorithm

We expose the distributed algorithm in successive refinements. First, a simple procedure will suffice
_ to generate an acceptable policy. Subsequent procedures generate solutions with greater economy.
LN Then termination criteria are introduced to complete the algorithm.

The computation will begin at the initiator v.. The initiator will originate the distributed computation
- by sending policy 6 to its neighbors, following proposition (3.2). Let MESSAGE(i,j.x) denote the
event: v; receives policy x, sent by v;. The behavior of v; following this event is described by the
following procedure.

4.1 Procedure: Upon MESSAGE(i,j,x) v; sends z;(x) to all neighbors.

r" 4.2 Lemma: The procedure 4.1 generates a solution to problem P.

Proof. By definition, the specification to problem P includes a set of functions Z such that a solution
to P is in the form S(W(v.),8). Since procedure 4.1 generates all possible W(v.), a solution to P must
- be generated. &
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where R is a number defining the level of approximation desired for problem P. Further restrictions
on the COST function are revealed in Section 4.

There is a bijection from the set of processes V to a set of functions Z. Elements of Z are functions
that map policies to policies. For convenience, let z; correspond to process v;.

The class of approximation problems suited to our analysis must have solutions expressible as com-
positions of functions in Z. Let W(v)) represent some finite walk, originating at v;, over edges of the
graph defined by the distributed system. W(v;) can be written in the form

VivinVi)y-Vik-1Vit)
where the sequence i(1), i(2), ..., i(k) designates the order of vertices in the walk. Corresponding to
W(v,), we write the composition

S(W(v))x) = zZiggo...0zi5)02;(1/(x),
which is a generation sequence based on x generated by v, The empty walk contains no edges.
S(W(v))x) = x for the empty walk.

3.1 Solution Characterization: A solution to P is an item y satisfying:
(a) FEAS(y) and COST(y)<R, or
(b) FEAS(y) and

{For all wePOLICY, FEAS(w) implies COST(y) € COST(w)}, or
(c) y=J1 and {For all wePOLICY, FEAS(w) is false}.

The first case provides an acceptable policy. In the second case no acceptable policy can be found,
so a minimum cost policy is the result. In the last case, the output is a special symbol L, which in-
dicates that no feasible solution to P is possible. By convention COST(L) = 0. When a process
v; sends a message y to some other process, then v, is said to generate y. We say a distributed com-
putation generates y if any v; in the system generates y during the computation. The class of ap-
proximation problems to be considered can now be precisely characterized.

3.2 Proposition: A solution to approximation problem P, P = [V,E,Z FEAS,COST R], can be generated
by a distributed computation, provided that a solution to P is expressible as S(W(v.),8), for some se-
lection of W(v), where v- is the label of a vertex called the initiator, and & is some initial policy.

4.0 Distributed Algorithm

We expose the distributed algorithm in successive refinements. First, a simple procedure will suffice
to generate an acceptable policy. Subsequent procedures generate solutions with greater economy.
Then termination criteria are introduced to complete the algorithm.

The computation will begin at the initiator v.. The initiator will originate the distributed computation
by sending policy 6 to its neighbors, following proposition (3.2). Let MESSAGE(i,j,x) denote the
event: v; receives policy x, sent by v;, The behavior of v; following this event is described by the
following procedure.

4.1 Procedure: Upon MESSAGE(i,j,x) vj sends zi(x) to all neighbors.

4.2 Lemma: The procedure 4.1 generates a solution to problem P.

Proof. By definition, the specification to problem P includes a set of functions Z such that a solution
to P is in the form S(W(v.),6). Since procedure 4.1 generates all possible W(v), a solution to P must
be generated. @
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Note that procedure 4 1 does not terminate, nor does it recognize a solution to P. Lemma 4.2 only
states that some process v; in the distributed system will, at some point, send a message z(x), where
z(x) is a solution to P.

It is important to consider the effect that an individual message has on the course of the distributed
computation. For example, if a message x can be removed from a computation and P is solved any-
way, then message x should not be generated for reasons of efficiency. The next results develop
apparatus needed to decide when a policy x should be discarded.

4.3 Procedure: Upon MESSAGE(i,j,x), if there is no solution to P of the form S(W(v),z(x)), for any

W(v)), then v; sends no messages. Otherwise procedure 4.1 is invoked.

Temporarily we focus on P where R=00. P is therefore a search for any feasible policy. Let £, be
a relation over policies such that

x&;y IFF For all W(v)), FEAS(S(W(v;)x)) = FEAS(S(W(V}-),y)).

The reader can verify that &Z; is an equivalence relation. Informally, x;y means that policy x and
policy y behave equivalently (with respect to feasibility) under any sequence of applications of func-
tions in Z. Let &Z(x) denote the equivalence class of x. The following procedure is suited to the

)
search for any feasitle policy.

4.4 Procedure: Upon MESSAGE(i,j,x), v; computes z{(x) and determines & (zj(x)). If v; has previously
sent z{y) to its neighbors, for some z{x)Zz(y), then v; sends no messages. Otherwise procedure
4.3 is invoked.

4.5 Lemma: Procedure 4.4 generates a solution to P (R=00).

Proof. Let z be a solution to P, z = S(W(v.),0). Consider tracing W, versus an execution of proce-
dure 4.4. Notice that any execution of 4.4 generates at least one prefix of W, because the initiator
v» sends O to all its neighbors. Let W, be the longest prefix of W, generated by some execution of
4.4, where W, terminates at v, Since W, is the longest prefix we infer that v;;, did not send x =
S(W,(v-),0) to its neighbors. It follows that v, previously sent y, for some y x. If x can be ex-
tended to feasibility, so can y, and we therefore continue tracing W, starting at v;;;) with policy y.
This argument can repeated to exhaust W, and obtain a feasible solution. @

Returning to the case R finite, cost is of importance. We now define a cost-sensitive equivalence re-
lation similar to one defined in [3]. Let =; be a relation over policies.
x =y IFF

(@) =, is an equivalence relation,

(b) xZ;y holds, and

(c) for ali W(v)), COST(S(W(v;),x)) SCOST(S(W(vj),y)).

4.6 Procedure: Upon MESSAGE(ij,x), v; computes z;(x) and determines = {(Zi(x)). If vj has previously
sent zj(y) to its neighbors, for some z(x)=z(y), and COST(z{(y)) S COST(zj(x)), then v; sends no
messages. Otherwise procedure 4.3 is invoked.,

4.7 Lemma: Procedure 4.6 generates a solution to P.
The proof is similar to the proof of lemma 4.5. Given some execution of procedure 4.6 and some

optimum policy z, we can trace the walk of z and show that procedure 4.6 either generates z or an-
other feasible policy of equal cost. B

4.8 Theorem: There is an algorithm to solve P if
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(a) Proposition (3.2) is satisfied, and
(b) =, has finite rank for each v; and
{c) For all v;€V and xePOLICY and for all W(v;), COST(x) < COST(S(W(v,).x)).

Proof. There are three parts to the proof. First we show that any policy generated by procedure 4.6
is finite under conditions (a-c). This result will show termination of procedure 4.6. Finally, we appeal
to previous work on diffusing computation [1,2] to detect termination and output a result.

(1) Any policy S(W(v.),5), generated by procedure 4.6, must satisfy: For all v;eV, W(v.) can contain
at most M; occurrences of v;, where M; denotes the rank of =,

Proof (by contradiction). Suppose, on the contrary, that W(v.) contains k>M; occurrences of v;, for
some j. Let Wy, .., W, be the prefixes of W(v.) that terminate at v;. Clearly, there must be two dis-
tinct prefixes W;,;, and W), “walks of the same equivalence class,”

[S(Wi(”(V'),é)] E]{S(Wl(z)(Vs),é)]
Since W, is a prefix of W, (or vice-versa), we must conclude that

COST[Z (S(Wl(z)(V'),é))] < COST[ZJ(S(W,(”(V-),é))]
for if the walk W, is extended, then by the logic of procedure 4.6, it must represent a lower cost
policy than that of( W) But the equivalence of these two policies and part (c) of the premise implies
the contrary, hence there is a contradiction.

(2) Procedure 4.6 terminates.

Proof. We prove termination by showing that every process v; eventually reaches a permanently
inactive state. Part (1) implies that every walk induced by an execution of procedure 4.6 has finite
length. Since every step of the computation of procedure 4.6 extends or terminates some walk, and
every walk is finite, we conclude that computations will cease in finite time.

(3) Termination detection/answer extraction.

Our plan to base an algorithm on procedure 4.6 will entail local variables for each process: Each v;
maintains a representative policy for each class of =;. The value of such a local variable is initially
L1, and is subsequently updated whenever MESSAGE(i,j,x) reflects an improvement in cost for
=,(z{(x)). Then the algorithm can succeed in two ways: First, some acceptable x may be found, in
which case v; discovers x and should broadcast a message throughout the distributed system to halt
further activity. In the second instance, no feasible x with COST(x)<R exists, so the algorithm
produces a policy of optimum cost--which will reside in a local variable. This optimum policy must
be extracted when the distributed computation halts; the diffusing computation protocols [1,2] pro-
vide suitable termination detection and extraction techniques. W

5.0 Applications

5.1 Tour: This example is an approximation to the travelling salesman’s problem. The problem is to
find a low-cost tour through m vertices. For instance, if m=3, we wish to search the set of cycles
r.p.qr where p and q are distinct vertices. A motivation for this problem is that a process r may re-
quire a communication cycle through two other processes for the purpose of soliciting votes on major
issues.

A policy will be a sequence of edges corresponding to some path beginning at v.. In terms of pro-
position 3.2, a policy is feasible if it represents a cycle that begins and ends at v., contains m vertices,
and has no repeated intermediate vertices. The cost of a policy is the sum of the weights of its edges.

The function z; will extend policy MESSAGE(i,j,x) by adding (v;v)) to x. Under this scheme, equiv-
alence x =,y holds if
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(a) z(x) and z{(y) cannot be extended to feasibility, that is, they contain repeated vertices or contain
more than m vertlces

(b) x and y can be extended to feasibility, and they are both permutations of T, a subset of V, where
IT| <m.

Following procedure 4.3, v; will not send z(x) to neighbors when case (a) applies. Case (b) implies
that Rank(=)) = 2" in the worst case (m=n). This could lead to an exponential requirement for
space, to accomodate local variables for each equivalence class. Since the travelling salesman problem

is NP-complete, the exponential result is expected for a worst case.

5.2 Shortest Walk: Here we seek low-cost walks from the initiator to all other vertices. Edges have
associated positive weights, and the cost of a walk s the sum of its edge-weights. A policy can be
adequately represented by its cost and tina. .ertex since x = y holds for any walks x and y that ter-

minate at v, Consequently Rank(=. = [ ~ . «impiy xeeps track of the best policy reaching v;

during the course of the computation 7Tr.s - wrarm .« extended to the case of negative cycles m 3

(2].
7]
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A PARADIGM FOR DETECTING QUIESCENT PROPERTIES
IN DISTRIEUTED COMPUTZ\TIONS*

x|

K. Mani Chandy and Jayadev Misra
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712
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- 1. Introduction ‘

L The problem of stability detection is one of the most widely studied problems

; in distributed computing [ 1-28 |. A stable property is one that persists: il the
i)roperty holds at any point, then it holds Athereafter. . Examples of stable

E:: properties are termination, deadlock and loss of tokens in a token-ring. The

problem is to devise algorithms to be superimposed on the underlying computation
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to determine whether a specified stable property holds for the underlying

computation. This paper presents a simple (almost trivial) algorithm to detect

quiescent properties, an important class of stable properties including those

TV
N

‘ mentioned above. Distributed snapshots [ 7 | may be used to derive algorithms for

'ﬁ- these problems. However our approach in this paper is different and results in

| simpler algorithms.
[ |
2. Model of Distributed Systems

2.1. The Model

A distributed system is a set of processes and a set of directed communication

-

channels. Each channel is directed from one process to another process. Processes

-i.';_

send messages on outgoing channels and receive messages on incoming channels. r}t.\;\
A process sends a message along an outgoing channel by depositing it in the "i:f
channel. A process receives a message along an incoming channel by removing the \‘#';”
message from the channel. A process may receive a message some arbitrary time ":‘-'3
after it is sent. Initially, all channels are empty. At any timé each process is in oo :.

l’l'

4 N t
NS

l.'.'

14
P
/

one of a set of process states and each channel is in one of a set of channel states.

*'rhis work was supported in part by a grant from the Air Force
Office of Scientific Research under AFOSR 810205.
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The channel state for a first-in-first-out channel is the sequence of messages in

transit along the channel. For channels which deliver messages in arbitrary order,

the channel state is the set of messages in transit. A system has a set of states, an
l initial state from this set, and a set of state transitions. The system state at any
time is the set of process and channel states. Let S, S* be states of a system. s*
is reachable from S if and only if there exists a sequence of state transitions from S

to S We assume that all system states are reachable from the initial system

-
- state.

| 2.2. Quiescent Property

- A stable property B of a distributed system is a predicate on system states such

N that for all S” reachable from S

o B(S) implies B(S")

[ .

o o In other words, once a stable property becomes true it remains true. A

) quiescent property of a distributed system is a special kind of stable property
i ‘ characterized by (1) a subset P’ of the set of processes, (2) for all processes p in P‘,

i ~ a predicate b, on the process states of p and (3) a subset C" of the set of channels
:’;;2 !*  between processes in P. A process p in P’ cannot send messages along channels in |
) c’ while b o holds. Furthermore, if bp is true, it must remain true at least until p
. receives a message along a channel in C*. The quiescent property B is:

. . all channels in C" are empty and for all proce-sses pin P bP.

It is easily seen that B is also a stable property. A process p is a predecessor of a

process g with respect to B if and only if p and ¢ are both in P’ and there exists 2

channel in C” from p to g. For brevity we shall say p is a predecessor of ¢ and
T drop the phrase "with respect to B". If for some system state, we have for some
.. process ¢ in P

b q and all of ¢’s incoming channels in C" are empty and

- . for all predecessors p of ¢ bp (1)

then this condition must persist at least until for some predecessor p of g, bp

I
.........
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E ' becomes false. This fact is useful in understanding quiescent properties and their
. detection.
. ~ 2.3. Problem Definition

T Let the system computation go through a sequence of global states S, ¢ >0,
- where S is the initial state; this sequence of global states will be called the

underlying computation. Given a quiescent property B we wish to superimpose a
- detection algorithm on the underlying computation to determine whether B holds.

The detection algorithm sets a boolean variable claim to true when it detects that

B holds, and clatm is false until that point. The detection algorithm must

gﬁarantee:
X (Safety) : not claim or B
(Liveness) : within finite time of B becoming true, claim is set to true. \
k

We now present a brief discussion of three instances of quiescent properties:

termination, database deadlock and communication deadlock.
2.4. Termination

A computation is defined to be terminated if and only if all processes are idle
and all channels are empty. Thus C" is the set of all channels, P" is the set of all

:processes, and for each process p, bp. is: p is ¢dle. Idle processes don't send

o messages and hence termination is a quiescent pruperty.
2.5. Database Deadlock

A process is either active or waiting. A waiting state of a process p is specified
by a pair (Rp, Hp) where R . is a non-empty set of resources that p is waiting for
and H 0 is a set of resources that p needs and holds (where R 0 and Hp have no
common elements). Resources are sent as messages from active processes to other
processes; a waiting process does not send any resource it needs and holds. A

process p, in a waiting state specified by (Rp, H p), takes the following action on

'e
¥
-
)

receiving a resource r in R2.; o)

- N

NS

t begin R:=R - {r}; Hi=H,U {r}; ' o
' ifR, = { } then become active else wait N

I > end




| {:}
E :
Here { } is the empty set. When p transits from active to waiting state, Rp and ,:;_
. ~~L
Z:: H p Bre set to values which arc of no consequence to us here. A set P’ of processes N
o is deadlocked if every process in P'is waiting for resources held by other processes t:;'
] in P’ i.e. -
- . _\:;
P is database deadlocked = o
» - p:t:*
for all p in P p is waiting and there exists a g in P’ such that o
- . _ : ».
) e
= anqué{} | %
| 3
“ In this case, the predicate bp is: p is waiting for R . and p holds Hp. A channel ¢ is :lz\l
in " if and only if ¢ is from a process ¢ to a process p where p and ¢ are both in 7
.. . R
o P., and ¢ holds a resource required by p. Typically, P’ is not specified and it is j
-
required to obtain a P’as part of the detection algorithm. :
. B3
| £ . ~
2.6. Communication Deadlock o
As in database deadlock a process is active or waiting. A waiting process p is ffZ:
-
S
waiting on a set of incoming channels Cp; ‘on receiving a message along any RS
! channel in Cp, process p becomes active. An active process may start waiting at
_ any time. Until it receives a message along a channel in C o B waiting process p o
vl ’ S
- continues to wait on Cp. A waiting process cannot send messages. A set of
- waiting processes is deadlocked if no process in the set is waiting on a channel
::'i . from a process outside the set, and all channels between processes in the set are
. .\
. empty, i.e., . "::
A set of processes P’ is communication deadlocked = .»
for all p in P". p is waiting for a set of incoming channels C » where each channel ¢ ::I_
L in CP is from' a process in P‘, and ¢ is empty. :‘..
; . ::.' t_\.
E In this case, bp is: p is waiting on CP' C" is the union of all Cp for p in P’ - S
. )
b -
; As in database deadlock, the detection algorithm is required to find P’ if such p“
L ~a set exists. Next we consider two specific classes of distributed systems: (i) '
systems in which messages arc acknowledged and (ii) systems in which channels :;::
. , ' . . D
:: 2 :c\
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are first-in-first-out, and show how to detect quiescent propertics in each class.

SO The latter class needs little description. We describe the former class next.

number of ackc acknowledgements received by p.

2.7. Systems with Acknowledgements ° E
N . Let ¢ be a channel from a process p to a process g. On receiving a message i
' along ¢, process ¢ sends an acknowledgement ack, to p. We are not concerned N
with how acks travel from onc process to another. An ack is not considered to be

a message in that acks are not acknowledged in t;urn. Furthermore, the statement v
o ' “channel ¢ is empty". means that ¢ contains no message; it may or may not :
} contain acks. Let num_ be the number of unacknowledged messages p has sent a
o ._.J along outgoing channel ¢, i.e., p
num, = number of messages sent by p along ¢ — '

1
2

N
-
o oy A

num, = 0 implies c is emply.
We assume that every message sent is received in finite time and acknowledged in

finite time. We also assume that every ack sent is received in finite time. Hence,

L
Lo A

v oo
2tz

an acknowledgement is received for each message within finite time of sending the

. _ message. Therefore, q
N '__ . :.:i
. if B becomes true, then within finite time of B becoming true: j:)’
. 2
forallclnC:numc=0 s

n
1: %}

|

LI S
3,
'n

o}
e

L 2

AR 3. The Paradigm
SIS ) Our paradigm is based on observing each process computation for some period
of time called an observation period. An observation period for a process p is

specified by two integers, start p and end " atartp_<_ cndp, denoting that p's

o computation is observed at every S,, start » <t S.endp. An observation period set

1 - for a quiescent property B is a set of observation periods, one for each process in
*

P :
f;-. : An observation period set obs” ={(startp" , cndp") | pin P.} is later than an

ol "' observation period set obs’ = {(gtartp', cndp’) | pin P'} if and only if all starting

.y times in obs" are alter some starting time in obd’, i.e.

......................
......................

..............
.................................
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min start” > min start
P P
p p
Let B be a predicate on observation period sets, definced as follows.
B’ (obs) = [for all pin P*:.
for all states S; where start, S<i<end;: b, holds in S}
and

[for all p,gin P’ where p is a predecessor of ¢: all messages sent
by p at or before startp are received by ¢ at or before end q] (2

Note: To ensure that messages sent by p at or before .~3tartp are

received By q at or before end o we must have for all p,q in P
where p is a predecessor of p : start 9 < end . (3)

3.1. Quiescence Detection Paradigm
clatm : = false; obtain aﬁ observatiqn period set obs;
while not B* (obs) do |
obtain an observation period set obs’ later than obp;
obs : = obs’'
od;

clatm : = true

We npext prove the correctness of this paradigm and postpone discussion of

techniques for implementing the paradigm to a later section.

3.2. Proof of Correctness

Safety : not claim or B

Safety holds while claim is false; thercfore consider the final iteration of the

while loop after which claim is set to true. For this iteration, we prove the

following by inductixig on 1:

. ¢
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foralli?_O:forallpinP‘:

[li< slart, or b, holds in Si ] and

[i< endp or p's incoming channels in ¢ are empty | |

L '-

This induction follows from (1), (2), and (3).

T X X T . _CNEY.T . 8 a7 7 N
.

Liveness: If there exists an ¢ > 0 such that B holds for §; then there exists a
- J 2 0 such that claim = true in S; . If B holds for S; then for all observation
' period sets, obs, where startp > 1, for all p, B’ (obs) holds. From the paradigm,

v ¥ v
]

either clatm is set true or later observation periods are chosen indefinitely. Hence

if B holds for S, for any 1 > 0, then claim will be true for some S,' yJ=>0.

3.3. Implementation of the Paradigm ' .
E The key question for implementation is: How can we ensure that all messages

sent by a predecessor p of a process g at or before startp, are received by g at or

before end q?

1 ‘ * 3.3.1. Systems with Acknowledgements
| The above question can be answered for systems with acknowledgements by

ensuring the following condition: for all p,q in P’ where p is a predecessor of ¢ and

for all channels ¢ from p to ¢ :
num =0 at startp and start » <.end . .

Proof of this condition is as follows. At start p NUM =0 implies that ¢ is
empty and hence all messages sent along ¢ have been received. Hence all messages
sent at or before start o along ¢, are received at or before start » and since

S start, < end, the result follows.

e,

For all p in P‘, let quiet p = for all states S.., where .startp <:< cndp : (b o and o

for all outgoing channels ¢ in c’: num = 0].

In the paradigm we replace B’ (obs) by
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[for all pin P*: qm'ctp] and

‘[for all p,gin P” where p is a predccessor of g: start < end ).
' p q

We show, in section 4, how startp < cndq, can be maintained. num, is maintaing:d
as a local variable of p and hence quictp can be determined by p. Note that for

systems with rendezvous, such as CSP and ADA, num =0 holds at all times.

3.3.2. Systems with First-In-First-Out Channels

To answer the key question posed at the beginning of this section, we use
special messages called markers, which are sent. and received along channels in C "
T'hey have no effect on the underlying computation other than that they occupy
the same channels as regular messages. We use the following implementation
rules. '

R1. Every process p in P’ sends one marker along each outgoing channel in c’
some (finite) time after (or at) start, and,

R2. Every process p in P’ has received one marker along each i incoming channel
in C* some time before (or at) end.

Since channels are first-in-first-out, all messages sent along a channel before
‘the marker is sent on the channel must be received before the marker is received.
Hence every mesage sent at or before start is received at or before end for all

p,qin P where p is a predecessor of ¢. -

Each process p in P*maintains a local boolean variable quiet p where

quictp = for all states S; where startp <1 S.cndp : bp.

In the paradigm we replace B'(obs) by : [for all p in P qm'etp] and rules R1,
R2 are satisfied.

3.4. Notes on the Paradigm
Our constraints on observation period sets are weak. For instance it is possible

that for a predecessor p of g, start q > cndp and there may be no overlap between
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. from p,, all i. A cycle is initiated byla process p. .., called the initiator. If the

termination, i.e. it sets claim to true. If any process ¢ returns a value quiet T of
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p's and ¢'s observation periods. For a system with first-in-first-out channels,
process p may send markers on some or all outgoing channels afier endp, and may

receive markers on some or all incoming channels be fore startp.

If the quiescent property never holds, the iteration in the paradigm will never

terminate, i.e. an infinite sequence of observation period sets will be obtained.

4. Applications of the Paradigm

There are many problems to which the paradigm may be 'applied and many
ways of applying the paradigm. We show two examples to demonstrate the power
of the paradigm: termination detection and (both types of) deadlock detection,
described earlier. We use termination detection as an example of the use of

markers and deadlock detection as an example of the use of acks.

4.1. Termination Detection
Processes are labeled p;, 0 <1 <n. We employ a token to transmit the values

quietp. The token cycles through the processes visiting Pi+1)mod n after departing

token completes a cycle (i.e. returns to p, ., after visiting all processes) and if all

processes p return a value quiet » of true in this cycle then the initiator detects

false in a cycle, then the current cycle is terminated and a new cycle is initiated
with ¢ as the initiator. A process ends one observation period and immediately

starts the next observation period when it sends the token. The algorithm,

described next in detail, shows how qm'ezp is set.

4.1.1. The Algorithm

The are no shared variables in a distributed system. However, for purposes of
exposition we assume that claim is a shared global variable which has an initial
value of false and which may be set true by any process. Such a global variable
can be simulated by message transmissions; for instance, the process that sets

claim to true may send messages to all other processes notifying them.

Two types of messages are employed in the termination detection algorithm.

S
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<marker> : this type of mcssage has already been discussed; it carries no
other information (except its own type).

<token, initiator> : this is the token and its initiator, as described in
Section 4-1.

" Each process has the following constants and variables. These will be

subscripted, by 7, when referring to a specific process 1.
ic: number of incoming channels to the process, a constant,
idle: process is idle,

quiet: process has been continuously idle since the token was last sent by the
process; false if the token has never been sent by this process,

hold-token: process holds the token,

init: the value of initiator in the <token, initiator> message last sent or
received; undefined if the process has never received such a message,

m: number of markers received, since the token was last sent by the process;
initial value as given in the algorithm. '

‘ Initial Conditions

The token is at Py

-

m, = the number of channels from processes with indices greater than 1, for

all 1, i.e., the cardinality of the set, {¢ | ¢ is a channel from p; to p; and j > t}.

(This initial condition is required because otherwise, the token will permanently

stay at one process.)

qutet, = false, for all 1.

(The algorithm is slightly more efficient with different initial conditions, but

for purposes of exposition we shall make the simpler assumption.)

Sob e onden ke b barmal T b e o
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E true, for 1=0 -;11
’ - - u’
hold-token, = { R
- . 'Y
N Jalse, for 1 £ 0 T
init. is arbitrary, for all ¢ ' 2
o ' 2,
' Algorithm for a Process P, e
B The algorithm for a process is a repetitive guarded command. The repetitive ___ﬁ
ey guarded command is a set of rules where each rule is of the form, condition — ‘“]l
action. The algorittin proceeds as follows: one of the rules whose condition part _ ‘:::::::
o evaluates to true is selected nondeterministically and its action part is executed. ;:l;
& .~-
The repetitive guarded command consists of the following rules: ‘
1. receive marker — m;:=m-+1; ‘
2. qm’et’- and receive regular message (i.e. underlying computation’s e
% | message) — quiet, : = false; e
3. receive <token, initiator> — begin im't‘. 1 = initiator; hold-tokcn'. KN
: = true end; : 0
- : 4. hold-token, and (ic; = m.) and idle; —
. if quiet; and (indt; = 1) then {termination detected} claim : = true;
- if guiet; and (init, 5% 1) then {continue old cycle}
m begin ~
.. mim0i
- . : ;.::-,
’ Send marker along each outgoing channel; ':‘
hold-token, : = false; s
oy N
i send <token, init.> to Pl + 1)mod n :}
. [
end ]
g R
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an observation period and starts the next one when the token leaves p;

p; has received markers from all lower numbered processes.
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if ~quiet; then {initiate new cycle}

begin

m;: = 0; quiet, : = true; init, : =1
Send marker along each outgoing channel;
hold~token.- : = false;

send <token, init‘-> to P(i+1)mod n

end

4.1.2. Proof of Correctness

* following {initial conditions should be treated slightly differently}:

1. quiet; = p; has been continuously idle in the current observation

period, i.e. since the token last left p;

. Each process sends a marker on each outgoing channel upon starting

an observation period.

- Each process ends an observation period only after receiving exactly

one marker along each incoming channel. -

. claim is set to true if and only if in one cycle of the token (which

corresponds to an iteration of the paradigm all processes p; return a
value of quiet, = true at the end of their observation perxods.

. After termination, a cycle of the token is completed in finite time. To

guarantee this we must ensure that each process receives a marker
along each incoming channel in finite time.

left to the reader.
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We need merely show that the algorithm fits the ‘pa.radigm. A process p, ends
Initially,
an observation period is started when the token leaves py the values of m; are so
chosen initially that it is possible for the token to leave Py for the first time, when

We need to show the

Proofs of these assertions follow directly from the algorithm and the details are
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4.1.3. Overhead and Efficiency

The most overhead is incurred in rule 4, when a process is idle. The overhead
while a process is doing uscful work in negligible. " Also a process sends the token
only when the process is idle; this controls the rate at which the token cycles
through processes. For instance, if all processes are active, the token will not
move at all. Also observe that termination will be detected within two cycles of

after computation terminates.

4.2. Deadlock Detection
The following refinement of the paradigm is applicable to database deadlock

and communication deadlock, under the assumption that messages are

acknowledged.

A process which we call the detector sends initiate messages to all processes; on
receiving an initiate message a process starts its observation period and
acknowledges the tnitiate message. After receiving acknowledgements to all the

- initiale iessages sent the detector sends finish messages to all processes. A
process p ends its observation period after receiving a finish message and replies

with a boolean value quiet » and a set waiting- for o where

qm’etp = for all states in the observation period :
[p is waiting and for all outgoing channels-c : num_ = 0]

set of objects that p is waiting for in the observation
period, if quietp. )

watting- for > =
arbitrary, if not quret .

The detector determines whether there exists a set of processes P‘, such that
for all p in P quictp and the sets waiting-[orp are such as to constitute a

deadlock. The proof of correctness is that the algorithm fits the paradigm.

The ilgorithm, as stated above, appears to be centralized rather than

distributed. Note however, that the detector process could be different for
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ES _ different initiations and there could be multiple detectors. The function of the
detector, i.c. sending messages, detecting deadlock, can be decentralized by having
messages forwarded to their destinations by intermediate processes and deadlock

. detection computation carried out by intermediate processes.

5. Previous Work
The idea of observation periods is central to the works of Francez, Rodeh and
- Sintzoff on distributed termination [ 12-14 ], and Chandy, Misra and Haas on
: deadlock dectection | 6 ]. Dijkstra [ 11 ], Gouda [ 16 ] and Misra [ 26 | have

developed token based algorithms for termination detection, and these algorithms

r' 4"‘."\

also use observations over a period. We have attempted to generalize these works
to produce a particularly simple paradigm for détécting an important class of

properties, quiescent properties, .in distributed systems with asynchronous

channels.
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1. Introduction

This paper presents a systematic derivation of a distributed algorithm by a

sequence of successive refinements of its specification: the invariant and
termination conditions. The problem treated is detection of "quiescent properties"”
in a distributed computation. Such properties include termination and deadlock.
An argument is made that stepwise refinement is a useful method to derive

distributed programs.

A consequence of the stepwise refinement method is that we obtain, in a
systematic manner, the weakest conditions under which the algorithm can operate.
Specific instances of the quiescence detection problem have been extensively
studied [ 1-30 ]. All such algorithms have the feature that each process is observed
over some interval during the computation and the intervals are related in some
manner. For instance, in termination detections of diffusing computations [ 10 ],
messages define the beginning and acknowledgements define the end of an
interval. A token is often used [ 14,28 ]| whose successive receipts at a process
define various intervals. Our solution differs from these in that we inspect

processes at arbitrary ttmes and in arbitrary order.

Stepwise refinements in our distributed program is carried out as follows: the
problem to be solved is specified in terms of global (system wide) properties; a
refinement consists of generalizing this global property to apply to subsystems.
For instance, quiescence is a system wide property; refinement consists of
obtaining generalizations of quiescence which apply to subsystems. Generalization
of the desired properties results in weakening the invariant. The weakened

invariant suggests the structure of the desired algorithm.

We use a common model of distributed systems in which sends and receives are
asynchronous, and channels are error-free [ 7 ]. A distributed system is a set of
processes and a set of directed channels. Each channel is directed from one
process to another. A process sends messages on its outgoing channels and receives

messages on its incoming channels. Messages are delayed for arbitrary, finite times
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N in channels. Channels are first-in-first-out. Processes communicate with one

another exclusively by sending/receiving messages. (For a more formal description

| see [ 7 ].)

o Each process and each message is colored either black or white. A message is
- given the color of the process sending it: black processes send black messages and
r white processes send white messages. The color of a message does not change. A

black process may turn white at any time. A white process may turn black only

- upon receipt of a black message. The problem is to detect property W where

W = all processes and messages in the system are whste. (1)
“ Once W holds it continues to hold. Property W is called quiescence. "Many
distributed algorithms are structured as a sequence of phases where each phase
E consists of a transient part followed by a stable part ... The presence of stable

behavior indicates the end of a phase" [ 3,7 ]. States in which there is a black
process or message are in the transient part, and states in which all processes and

messages are white are in the stable part. Thus detecting W amounts to detecting

the end of a phase. Termination and deadlock are special cases of W. In deadlock

detection "white process" means "waiting process", and a black message is one

N

q. - . - e, * * ®. 8 L] .
o which causes its receiver to stop waiting. Similar definitions apply to termination

detection.

n

n

~ The detection algorithm is to be supertmposed on the underlying computation.
l.‘\

N

A superimposed algorithm does not alter the underlying computation. The
3 superimposed algorithm employs the processes and channels of the underlying

computation. However, the superimposed algorithm may use additional local

variables at each process and special messages which are not part of the

P

underlying computation. Actions that change the state of the underlying
computation may also change the state of local variables employed by the
superimposed computation. There may also be actions that change the state of
the superimposed computation and do not change the state of the underlying

computation.
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1.1. Specification of the Detection Algorithm
The detection algorithm has a boolean variable claim satisfying the following

invariant and termination conditions.

Invariant: not claim or W (2)
Termination: within finite time of W holding, claim holds (3)

Therefore the detection algorithm is required to set clatm to true only if W holds

and it must do so within finite time of W being true.

1.2. An Outline of the Paradigm

We first discuss the paradigm informally and then discuss how the
specifications are met starting with the invariant (2) and then considering the
termination condition (3). We use a set checked of processes such that the

"algorithm detects W" means all processes are in checked. Formally,
claim = (checked = P) (4)

where P is the set of all processes. Let unchecked be the complement of checked
i.e. unghccked = P - checked. For brevity, processes in checked are called checked
processes; processes in unchecked are called vnchecked processes. We wish to
develop an algorithm which has two basic actions (1) add an unchecked process to
set checked and (2) remove processes from checked. The algorithm is developed so

that all processes are in checked means claim holds. Now conditions (2, 3) can be

rewritten:
Invariant: (checked C P) or W (5)
Termination: Within finite time of W holding, checked = P. (8)

Invariant (5) means there is at least one unchecked process or W holds. The
termination condition is that within finite time of W holding all processes are in
checked. Property W is a system wide property. Following Dijkstra [ 11 ] and
Gries [ 18 ], we seek to weaken (5, 8) by replacing the system wide property W by
a subsystem property w defined on process sets S, S C P, such that

w(P) =W.
From w(P)= W, we obtain:




|
S

e

2

nl

(checked C P) or W = (checked C P) or w(checked)

The above equivalence follows by considering two cases: (1) checked C P and (2)
checked = P. In the former case, the first term in the disjunctions of both the left
hand side and the right hand side of the equivalence hold. In the second case we
have w(checked) = w(P) and w(P) = W; hence the second term of the

disjunctions of the left and right hand sides are equivalent.

This allows us to write (5, 6) as:

Invariant: (checked C P) or w(checked) (7)
Termination: Within finite time of w(P) holding, checked = P (8)

How shall we generalize system-wide property W to obtain a subsystem property
w? A definition of w which guarantees w(P) = W is:

w(S) = all processes in S are white and
all input channels of all processes in S contain only white messages.

Invariant (7) says that there is at least one unchecked process or all processes

in checked are white and have input channels containing no black message.

1.3. How the Algorithm Maintains Invariant (7)

1.3.1. Intuition

We first discuss the intuition which went into the development of the
algorithm so as to maintain invariant (7). [Initially, (7) holds by setting
checked = empty. To maintain invariant (7) it follows that if w(checked) does not
hold then we should not allow checked to equal P. In other words, if w(checked)
does not hold we must prevent at least one unchecked process from being added to

checked. How do we prevent this?

We postulate an inclusion condition, inc¢, such that a process is added to

checked only if it satisfies snc. We define inc so that the following is an invariant:
Invariant: w(checked) or for some unchecked process: not inc (9)

Invariant (9) assures us that if w(checked) does not hold then checked C P because

there is at least one unchecked process which does not satisfy ine¢; furthermore this




unchecked process cannot be added to checked and thus we maintain the invariant.

We shall devise an algorithm satisfying invariant (9) and thus ensure invariant (7).

Now we look for a condition ¢nc satisfying (9).

1.3.2. An Example of an Incorrect Inclusion Condition

A simplistic, but incorrect, inclusion condition for a process is: process is white
and all its incoming channels contain only white messages. To see why this
condition is incorrect consider a system with two processes. Suppose checked is
empty and then one of the processes is added to checked when the other process is
black. Then the black process sends a black message, turns white and is
subsequently added to checked. Now we have a situation in which the algorithm
reports (since checked = P) that all processes and messages are white, though there
is a black message in transit. What went wrong? Invariant (9) was not satisfied.
The inclusion condition was not strong enough to ensure that at least one
unchecked process would never satisfy the inclusion condition if a checked process
was sent a black message. We now give an example of an inclusion condition
which does satisfy invariant (9). (There may be more than one inclusion condition

satisfying (9) — we should choose one most appropriate to each problem.)

1.3.3. A Correct Inclusion Condition

We develop a correct inclusion condition based on the following observation.
For any subset of processes checked, if w(checked) holds then it continues to hold
until (1) a checked process is sent a black message by an unchecked process or (2)
an unchecked process is added to checked Let us first focus our attention on the

event: an unchecked process sends a black message to a checked process.

We maintain invariant (9) as follows: if an unchecked process has sent a black
message to a checked process then that unchecked process is not added to checked;
we shall define the inclusion condition tn¢ so that such an unchecked process does
not satisfy ¢nc and this ensures that such a process is not added to checked.
Special messages called markers are employed; markers have no effect on the
underlying computation. We will enforce the following: if an unchecked process

sends a marker along a channel and subsequently sends a black message along that
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channel then that unchecked process does not satisfy the inclusion condition, inec.

Each process has a local variable, channel-state for each of its output channels.

8

A channel-state has one of three values: pre-marker, positive or negative. A
channel is initially in pre-marker state and transits from pre-marker state to

positive state when a marker is sent along it; it transits from positive to negative

- when a black message is sent along it. Therefore, a channel is positive means that L:-.-‘j
. a marker has been sent along the channel and no black message has been sent s
- along the channel after the marker along it. A channel is negative means that at j
- least one black message has been sent along it after the marker was sent along it. @
- The information conveyed by the marker is this: after a process receives a marker f.j:'f.:
along a channel the following holds: the channel contains only white messages or
E the channel is negative :—*—*
Each process has a boolean variable, received-marker, for each of its input

channels where initially recetved-marker is false, and it becomes true when a o
. marker is received along the channel. Observe that: .Q,+
for all channels: not ((channel-state = pre-marker) and received-marker) \;
The meaning of a marker is given by the invariant: :_j‘-.;:
» for all channels: not recetved-marker or channel 3
' contains only white messages or channel-state = negative (10) )
. The inclusion condition for a process is: j:Z:: 1
R
) inc = process is white and e
- [for all its input channels: recetved-marker| and "!“‘
[for all its output channels: channel is nonnegative] (11) i
In other words, we add a process to checked only it if is white and it has received ,‘;Z-jt'.’
‘ a marker along each of its input channels and it has not sent a black message “’;‘
following the marker, along any output channel. Given (11), we prove the Gtk
following invariant: .:7'_::'.;
: b
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T
]
Vel
f __91
el T e Sl e T T




-y e e Y Y v . B e 4 L e R BhaAl “Shalt Phin™y Al M ol B - e W, s e e - Pl i ol i ¢ L Jand
L™ it ek S et ol adi Fabi- s roacalias ot duye iy A St = duge o ban Mokt Saili A Ll L . » ¥ .

Invariant: w(checked) and

all output channels of all processes in checked are nonnegative N

or =

there is a negative output channel t:]

from an unchecked process to a checked process. (12) 4

Note: (12) implies (9). Therefore it is sufficient to prove that (12) is invariant. 5
- C £

Lemma: Inclusion condition (11) maintains invariant (12). g

N

3

Proof: We prove the invariant by induction on the cardinality of checked.

Initially, checked is empty; hence (12) holds. Assume that (12) holds at some
point in the computation immediately before some unchecked process g is added to

4
checked; we show that (12) holds with checked replaced by {q} U checked. :JJ
L

If there is a negative channel from a process in unchecked — {g} to a process in

checked U {q}, then the invariant is maintained ¢ is added to checked. Therefore,

assume that
(a): all channels from unchecked — {q} to checked U {q} are nonnegative

From the inclusion condition (11), all output channels of ¢ are nonnegative.

(b): all channels from unchecked processes to checked processes are nonnegative.
From invariant (12) and (b) we have,
(¢): w(checked) and all output channels of processes in checked are nonnegative.

y

Therefore using (a), we have, J
%

’

From (a) all channels from unchecked — {q} to ¢ are nonnegative; from this fact

and (c), we have,
(d): all input channels of ¢ are nonnegative.
From inclusion condition (11)
(e): g is whate.
From (10), (11) and (d) we have,
(£): all input channels of ¢ contain only white messages.

From (¢), (e) and (f) we have:
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(9): wchecked U {q}).

From (c), all output channels of all process in checked are nonnegative; from
inclusion condition (11), all output channels of ¢ are nonnegative. Therefore, we

have,
(h): all output channels of all processes in checked U {q} are nonnegative.

Invariance of (12), with checked replaced by checked U {g}, follows from (g) and

(h).

Next, we show that (12) is maintained when a message is sent or received; we
prove only the case of message send and leave receives to the reader. If the second
term in the disjunction (12) is true prior to a send, it remains true following the
send. Hence assume that the second term is false and therefore the first term in
the disjunction is true, prior to the message send. If the message is sent by a
checked process, it must be white because w(checked) holds prior to the send and

hence all checked processes must be white before the send.

A message send can be (a) a message sent by an unchecked process to an
unchecked process or (b) a white message sent by an unchecked process to a
checked process or (¢) a black message sent by an unchecked process to a checked
process or (d) a white message sent by a checked process. In cases (a), (), and (d),
the first term of the disjunction (12) is not falsified by the send. In case (¢) the

second term of the disjunction holds after the send.

1.4. How The Algorithm Achieves Termination

1.4.1. Intuition

If an unchecked process has a negative output channel then checked can never

equal P, from the inclusion condition. Hence termination will never be detected.

To ensure that termination condition (8) is met, each negative channel is
reinitialized in finite time, where by reinitialization we mean the channel-state is
set to pre-marker state; in order to preserve (10), we set the corresponding

received-marker value to false, and to preserve invariant (12), if the channel is

e e s
o N
{as 'S, ¢,

,s.-; ":":\-':'ﬂ.-'.\‘:'»-"‘-‘:y"-{ﬁ" ’...-' % ."(,’.-,’.\'., (f\\

W A Saeea a4 s i B e e s San 8 et A2t o i st Rl 4 a g e ad ke s R S S s Ate fun g on fanfien -San Jatn- Aoy Sau S te)
N -

P
'~
I

Sty
#

L

{0,

Ly
A

-

AR

2
L5

TS
gk
‘.:

K, .Q‘



$ a0 i Sus aa st A AN S ari a-a 0-4 BT A S - ke i PRI - s B da gbol GUbL Beil M st it a8 of L MAD S -mies ane af adr-atis el sl i e olidr i mi - iy -t~ ol At oAt ~ el A A

L O AR S St

from an unchecked process to a checked process then we set checked to empty. We
now argue that if each mnegative channel is reinitialized in finite time the

termination condition (8) is satisfied.

1.4.2. Proof of Termination
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If W holds, all nonnegative channels are positive (and remain posttive) or are
- in pre-marker state and will become positive in finite time (and remain positive
b :-'l‘ thereafter). From our reinitialization procedure, a negative channel becomes

pre-marker in finite time. Therefore, all channels are positive in finite time after
= W holds. All processes are white. Since markers are delivered in finite time, for all
channels recetived-marker holds in finite time after the channel becomes positive.
Therefore, in finite time after W holds, inc holds for every process, and hence,
within finite time after W checked = P.

t.
1.5. The Quiescence Detection Paradigm
Now, we put the pieces that we have been developing together to obtain the
I quiescence detection paradigm. Our description consists of a repetitive guarded

command [ 11 ] which is a set of statements of the form condition — action.
The action part of a statement is executed if the condition part of the statement
holds. The repetitive guarded command terminates when the condition parts of

all statements in the command are false.

A |

In this description we assume that checked is a global variable which may be

"n ". "‘

written or read by all processes. A distributed implementation of checked is

provided later.

Initially: checked = empty, [for all channels: received-marker = false,
channel-state = pre—marker]

Marker Sending:
for all channels: channel state = pre-marker —
send marker along channel; channel state: = positive

.
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Channel Turning Negative: .
for all channels: channel—state = positive and message is
sent along the channel — channel—state: = negative

a
Setting Recetved Marker:
for all channels: receive a marker
along the channel — recetved-marker: = true
a
Expanding Checked:
for all processes ¢: q is unchecked and inc holds for ¢ —
checked: = checked U {q}
a
Reinitialization:
for all channels: channel-state = negative —
channel-state: = pre-marker; recetved-marker: = false;
if the channel is from an unchecked process to a
checked process then checked: = empty
a

Detection:
claim = (checked = P)

2. Applications of the Paradigm
Now we continue stepwise refinement of the given distributed program. The
program outline given above does not specify how the shared variable checked is to

be implemented. We have several options for refining the program and we

describe only one.

We employ one token which visits processes one after the other and updates
checked. When the token visits an unchecked process the process is added to
checked if it satisfies inc; if the visited process has a negative output channel to a
checked process then checked is set to empty. How should negative channels be
reinitialized? The answer is based on the following observation: in the paradigm
and its proof we read or write the channel-state (pre-marker, positive, negative)

and received-marked variables only for unchecked processes. These variables are

not used for checked processes. This observation allows us to reset
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recetved-marker for all input channels of a process and channel-states for all its

¥ 1rv
..

output channels when the process is added to checked.

The processes are indexed ¢, where 0 < ¢ < n, and n is the number of

J M -
.,
;. L.
>
#h
\

processes in the system. The token is implemented as a special message, and for
all 7, process ¢ sends the token to process (¢+ 1)mod n after completing the
computation it is obliged to carry out on receipt of the token. The variable
checked is associated with the token; it may be thought of as a field of the token.
When process ¢ sends the token it also sends markers on all outgoing channels.
Since marker and channel-state values are reset as the token leaves a process, a

slight modification of the meanings of these variables is required.

For an input channel of a process:
recetved-marker is true means a marker has been received along the channel
since the token last left the process.

For an output channel of a process:
(channel-state = positive) means no black message has been sent along the
channel since the last marker was sent along the channel,

(channel-state = negative) means at least one black message was sent along
the channel since the last marker was sent along the channel.

No channel is in pre-marker state.

We now give the algorithm followed by a discussion. The Greek letters
a, ..., are used to label points in the program which are referred to in the
discussion. Initial conditions for the algorithm are derived later. The algorithm
consists of the channel turns negative rule, setting received-marker rule and the

rule given below.

Algorithm Details For Process 1,0 < 1 < n

{a::} process ¢ holds the token and process ¢ is white and
for all its input channels: received-marker —

..................
..............................
.............................
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if  process ¢ has a negative output channel to a checked process
then {g::} checked: = empty else {+::} checked: = checked U {7};
if checked = P then {5::} halt

else {e:} begin
send token to process (: + 1) mod n;
for all input channels: received-marker: = false;
for all output channels: send marker; channel-state: = posstive

end

When process 1 satisfies the condition « of the above guarded command then
either process ¢ satisfies inc (11) or it has a negative output channel. In the
former case the process is add 4 to checked {in 4}. In the latter case, if the
process has a negative output channel to a checked process we are obliged to set
checked to empty {in #}. Otherwise (i.e. the process has negative output channels
only to unchecked processes) since the channels will be made posstive {in ¢} and
since the process will then satisfy inc we add it to checked {in ~}. Now if
checked = P the algorithm has detected termination and halts. Otherwise (there is
still an unchecked process) and so the token is sent the next process and all output

channels are made positive {in ¢}.

The proof of the algorithm is the same as the proof of the paradigm: invariant
(12) is maintained, and the same proof of termination applies. (see initial

condition below)

2.1. Deriving Initial Conditions for the Algorithm

We derive the initial conditions to ensure progress of the token from one
process to the next. If we choose the initial conditions unwisely the token may get
stuck at a process because the condition "for all the process’ input channels:

received-marker holds" may never be met.

Assume that the token is initially at process O and that all markers sent on the

"previous” cycle of the token have been received. (Of course, there is no
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"previous" cycle, but intuition suggests that we determine initial values by
assuming that there was). Then, for all channels from higher-numbered processes
to lower-numbered processes, received-marker holds (because markers sent on
these channels in the previous cycle are assumed to have been received). For all
channels from lower-numbered processes to higher-numbered processes: not
recetved-marker (because when the token left a process on the last cycle,
received-marker was set to false for all incoming channels, and no marker has
since been sent along channels from lower-numbered to higher-numbered
processes). Initially, there may be black messages in all channels; therefore we

assume that all channels are negative. Thus we get:
Initially, token is at process 0.

For a channel from a process p to a process g, for all p, ¢:
received-marker = (p < q).

All channels contain no markers.

For all channels: channel-state = negatzive.

2.2. Pause To Review Stepwise Refinement

We pause at this point to review the stepwise refinement procedure adopted in
this paper. Starting with the problem specification and the notion of set checked
we showed the need for the inclusion condition and invariant (9). Then we
postulated an inclusion condition which resulted in a stronger invariant (12). We
next turned our attention to termination and deduced actions to ensure the
termination condition in the problem specification. At this point we had the
outline for a program though the method of implementation of some global

variables (notably checked) in a distributed system was left unspecified.

Next, a more complete program outline was obtained by postulating one
scheme for implementing the global variables of the previous step so as to
maintain the invariant; the implementation used was by means of a token. In
every step of the refinement we had multiple options and we had to make design

choices as to which option to pursue. Different options usually result in different
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algorithms.

* ' In the next refinement step we show how the program can be optimized by

reducing the amount of memory required by each process.

2.3. Implementation Issues

We may reduce the amount of memory required to implement the algorithm by

using a few observations about the algorithm.

Notation: Let ¢ . . 7 denote the set of (7 + n — ¢) mod n processes:
it modn, (1+1) modn, ... ,jmodn.

In other words, 1 . . j is the set of processes visited by the token after 1 and before

next leaving 7.

Observation 1: Either checked is empty or checked consists of the last k

processes visited by the token for some k, where 0 < k < n.

This observation allows us to keep track of the set checked by a variable inst
associated with the token where tnit has the following meaning. When the token
arrives at (j+ 1) mod n, if init = j, then checked is empty else checked is the set
(fnit +1).. 7

Observation 2: The only purpose of channel-state is to determine if there is

a negative channel from an unchecked process to a checked process.

This observation allows us to implement the algorithm without each process
keeping track of channel-state for each of its output channels. Each process has a
variable farthest-negative which is the index of the process "farthest from it" to
which it has a negative channel, where the sequence of processes ranked in

increasing order of "farther from" a process 1 is:
i, ({+1)modn, (i+2)modn,...,(i+n—1)modn

"Process ¢+ has no negative output channel," means " farthest-negative is ¢."
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= Let the token be at a process ¢. "There is a negative channel from process ¢ to
) a checked process" is equivalent to, " farthest-negative for process ¢ is in the set ]
. init+1..7—1". Thus we may dispense with channel-states and use a single E
variable farthest-negative for each process. In operational terms, )
N

farthest-negative for a process is the index of the process farthest from it to which

it has sent a black message since the token last left it. - -JJ

Observation 3: The variables recesived-marker are used only to determine for

;::' a process whether a marker has been received for all its input channels. u
This observation allows us to replace variables recetived-marker by a count nmr ‘!1
* for each process where nmr for a process is the number of markers received by the w
& process since then foken last left the process. For a process, "received-markers :Z::

holds for all its input channels" is equivalent to "nmr = number of input o
\ channels of the process". “:

Algorithm for process i

process ¢ holds the token and process 1 is white and

T
[ PT )

nmr = number of its input channels —

YA A

if  farthest-negative = 1 and tnit = 1

then {claim = true} halt;

R it  farthest-negative is in the set (snit +1) .. (¢ —1)
o then init: = 1;
send <token, init> to process (i + 1) mod n;

nmr: = 0; send marker on each output channel;

p OO IO . PR
: 1
AN

farthest-negative: = 1

[ receive marker — nmr: = nmr+1
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send black message to j— if jis farther from ¢ than
farthest-negative then farthest-negative: = 5

a

Explanation: For process i, farthest-negative = ¢ means the process has no
negative output channels. If tnit =1 when process ¢ gets the token then all
processes except ¢ are in checked. If farthest-negative is in the set tnit +1..
(¢ —1) then process ¢ has a negative channel to a checked process and in this case
checked is set to empty and then the token is propagated. Setting checked to

empty is accomplished by assigning ¢ to init before propagating the token.

3. Discussion

Stepwise refinement has been applied in sequential programming to develop
programs from specification [ 11,18]. We have illustrated an application of
stepwise refinement to a problem in distributed systems in which the problem
specification is in terms of an invariant and termination condition. In distributed
systems a useful refinement is that of generalizing predicates on systems to
predicates on subsystems, as for instance generalizing W to w. Another useful
refinement step is that of implementing global data structures (eg. checked) by

local data structures and messages (eg. token).

Stepwise refinement for the quiescence detection problem yields a family of
solutions, one of which was given here. The solution appears to be novel in that
attention is restricted to a process's output channels, i.e. checked is set to empty
only if there is a negative channel from a checked process to an unchecked process.
Other algorithms use inclusion conditions such as processes being continuously idle

(i.e. white) over an interval.

It is instructive to study the sequence of system specifications as stepwise
refinement proceeds. Invariant (2) and termination condition (3) specify the class
of all detection problems: a system property W is to be detected, and detection
means claim holds. In this paper we were concerned with a specific W: quiescence,

defined by equation (1). Equation (4) specifies a class of detection algorithms in
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which detection means "all processes are in checked". The choice of w refines the
class of solutions further. Every design choice narrowed the set of solutions until
we obtained a program. However, the program is less important than the
systematic development of design choices because for different environments
different solutions are appropriate, and the key question is: Given a development
of a program, how much design effort can be saved in developing another program
to satisfy a different set of constraints? For example, suppose we did not want a
symmetric solution in which all processes are alike (as was given here) but we
desired a solution in which one particular process was charged with the
responsibility of detection. We can re-use much of the development effort, to
solve this problem; indeed we could use the same paradigm. The benefits of
systematic development have been discussed for many years, but "calculational”
developments of distributed programs are still rare [ 31 ]. A point we wish to
make by means of the example given here is that it is possible to borrow much of

the ideas from sequential program development in writing distributed programs.

We noticed that it was helpful to separate concerns about the development of a
concept and its distributed implementation. For example early in the
development, we introduced checked and w as system-wide variables and later we
faced the problem of implementing these variables in a distributed manner on the
given processes. Morgan [ 31 | has found it helpful to assume a global clock early
in the design process and then later show its distributed implementation.
Allowing oneself the latitude of system-wide variables and postponing
consideration of distribution appears to be quite helpful. Again, separation of
concerns is an idea borrowed from sequential program development; however, the
particularly useful manifestation of separation of concerns--postponing issues
regarding distribution--does not seems to have received the attention it deserves in

the literature on distributed algorithms.

We found that in our development it was helpful to refer to states of the

program rather than to restrict attention to observable behaviors (the messages

sent and received by processes). To give a specific instance from our example we
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proposed the invariant (9):

w(checked) or for some unchecked process: not inc

The variable tnc may or may not be externally observable; while we are
developing the algorithm it is helpful to ignore (or at least postpone consideration
of) what is externally observable. The danger with referring to states is that
solutions may be over-specified; specifications in terms of observable behaviors
gives the designer wider latitude in implementation. Though it is sufficient to
restrict attention to the sequence of messages sent and received by each process,
and though one need not consider a process’ local variables, we found it helpful to
implement system-wide desiderata in terms of invariants on process’ local
variables. The tradeoffs between specifying abstract data types in terms of the
sequences of observable operations performed on it versus specifying it in terms of
(perhaps unobservable) states, have been discussed in the literature on sequential
programming. The same tradeoffs are relevant for specifying processes in
distributed systems. The point we wish to make here is that in our experience of
stepwise refinements of distributed algorithms, we find it helpful to propose
invariants in terms of process states. The reason for this is that in the initial
stages of refinement we propose invariants on global data structures, and we find
it easier to show that these invariants are equivalent to invariants on local data

structures than te invariants naming only messages.

This discussion on systematic derivation of distributed algorithms reflects our
experience in developing several superimposed algorithms--not merely the single

example given here.
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Abstract

We present a class of efficient algorithms for termination detection in a distributed
system. These algorithms do not require the FIFO property for the communication
channels. Assumptions regarding the connectivity of the processes are simple. Messages
for termination detection are processed and sent out from a process only when it is idle.
Thus it is expected that these messages would not interfere much with the underlying
computation, i.e., the computation not related to termination detection. The messages
have a fixed, short length. After termination has occurred, it is detected within a small

number of message communications.

The algorithms use markers for termination detection. By varying assumptions
regarding connectivity of the processes, and the number of markers used, a spectrum of
algorithms can be derived, changing their character from a distributed one to a
centralized one. The number of message communications required to detect termination
after its occurrence depends on the particular algorithm ~ wunder reasonable

connectivity assumptions it varies from order N (where N is the number of processes) to

a constant.

This paper introduces message counting as a novel and effective technique in designing
termination detection algorithms. The algorithms are incrementally derived, i.e., a
succession of algorithms are presented leading to the final algorithms. Proofs of

correctness are presented. We compare our algorithms with other work on termination
detection.
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YRS 1. Introduction

We develop a class of efficient algorithms for termination detection in a distributed

. ._.‘
: Jf l e

. system. We do not require the FIFO property for the communication channels, which is

usually assumed in other works. (The FIFO property for a communication channel

I}

A

y)

means that messages in the channel are received in the same order as they were sent.)

) N
S ]
- .

Our assumptions regarding connectivity of processes are simple. We have categorized ;

- our algorithms in three classes. Algorithms in classes 1 and 2 assume that there exists a :?

“ cycle involving all processes in the network. This cycle need not be an elementary &.
cycle, i.e., a process may be arrived at several times in a traversal of the cycle. _‘j
Moreover, the edges of the cycle need not be primary edges, i.e., the edges involved in "

the underlying computation; secondary edges may be introduced in the network to ':‘

facilitate termination detection. (We use the terms edges, lines, and channels o

b interchangeably.) Normally the length of this cycle would affect performance of the '-1
algorithms; by using secondary edges, if necessary, the length of this cycle may be kept "

to a minimum. Algorithms in class 3 assume the existence of cycles in several parts of “

| the networks. 5

. ;
] In these algorithms, messages for termination detection are processed and sent out Z‘_

:j from a process only when it is idle. Thus it is expected that these messages would not ]'
interfere much with the underlying network computation, i.e., the computation whose a

» . termination is to be detected. ]
3 3
',Z; Except for algorithms in class 1, the messages for termination detection in these ba
y - algorithms have a fixed, short length (a pair of integers). In all algorithms presented, I.{1
L termination is detected within a small number of message communications after its "
occurrence. ::

&

In devising an algorithm for detecting termination, deadlock, or some other stable !j

property [Chandy 85a, Chandy 85b], one important issue is how to determine if there *

are no primary messages in transit (primmary messages are those transmitted in the \

underlying computation; secondary messages are those related to termination ti
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detection).  Several approaches have been developed to handle this issue -
acknowledgement messages [Chandy 85a], using a marker to "flush out" any messages
in transit (with the assumption of FIFO property) [Misra 83, Chandy 85a], etc. Oné
contribution of this paper is to suggest a new approach — counting the number of
primary messages sent and received. As shown in this paper, this approach has several
desirable features — it results in simple and flexible connectivity requirements, it does
not require the FIFO property for the communication channels, and it does not generate
too much overhead in terms of the number of secondary messages after the occurrence
of termination. Moreover, we show that it is not necessary to count and transmit
information regarding number of primary messages on individual lines ~ it is sufficient
to count and transmit information about the total number of primary messages received

and the total number of primary messages sent by individual processes.

Classification of Our Algorithms

Algorithms in class 1 are based on counting primary messages on every line. Each
process keeps a count of the number of primary messages it has received or sent on each
adjacent line (i.e., input line or output line respectively). As mentioned above,
algorithms in class 1 assume that there exists a cycle C including every process of the
network at least once. A marker traverses the cycle, and uses these counts in detecting
termination.  After termination has occurred, it will be detected within |ICl-1
communications of the marker. (|C| refers to the length of the cycle C, i.e., the number
of edge traversals required to complete the cycle.) The problem with this algorithm is
that each message is long — it consists of E number of integers where E is the total

number of primary lines in the network.

Algorithms in class 2 reduce the message length. In these algorithms, each process
counts the total number of primary messages received by it, and the total number of
primary messages sent by it. Here counts are not being kept for individual adjacent
lines. A marker traverses the cycle C, and collects this information to detect
termination. In this case the message length is short (two integers). After the
occurrence of termination, it will be detected within 2|C| - 2 message
communications. Note that if C is an elementary cycle then |C| = N, where N is the

number of processes in the distributed system.

Cfiine “Aiie Zhde JhAn Jhi T




L A e MR e mal - san-al. aa e maah e B -g.a ol on i il e g tudl it s mUefl G un S tcadh Sl it aidh S s Bt Jeafi - Ba it Sl M el i DRl A S i 20 A S-S ‘lm

3

. T
)
)

Next, class 3 of our algorithms improve the performance of the algorithms in class 2,

T
[

by using multiple markers which traverse different parts of the system. We make

simple connectivity assumptions to permit these traversals. Using two markers, under

-1

reasonable assumptions the number of message communications after the occurrence of

- termination is reduced to approximately 3N/2, each message carrying an integer and a

.
14
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boolean. As the number of markers is increased, this number reduces further and the

-~ algorithm tends to change its character to a centralized one. Finally, using N markers,
- this number is reduced to the constant 4, and the algorithm becomes a purely
i centralized one.
- On the Nature of This Presentation
K A number of excellent papers on deadlock and termination detection for distributed
- systems have appeared in recent years. These papers usually discuss how the algorithm
| FE executes, i.e, what are the key data or execution steps in the algorithms. Proofs of
correctness are usually provided to convince the reader that the given algorithm works.
t However, certain other important questions are usually left unanswered. How was the
algorithm developed in the first place? Why were certain decisions (conventions,
' assumptions, major data, major execution steps) in the design of the algorithm taken —
are they critical to the correctness, or are they present simply to enhance performance,
E:\ or understandability, etc.? How would a simple variation of these decisions affect either
correctness or performance? For the algorithms discussed here, our presentation
P attempts to answer some of these questions to a certain extent. We discuss a succession
. of algorithms, each algorithm differing from the previous ones in a simple manner.
E Several simple variations of the algorithms are considered. As would be noted in the
‘. discussion, some of these "algorithms" are not even correct; they are discussed simply to ™
l enhance understandability of later algorithms. Moreover, specific details, for instance ~ \'
= initial conditions, are derived from more general considerations. It is hoped that with
$ this method of presentation, the reader can develop a better insight as to how various
o decisions were arrived at. Since the relationships among various algorithms are
. explicitly discussed, this approach would also help keep a clear and organized view of
(l the class of algorithms presented. .
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Related Work

Termination detection in distributed systems has been a subject of much study in
' recent years. One of the earliest works in this area is the elegant algorithm of [Dijkstra
80]. This is one of the few algorithms that do not assume the FIFO property for the
communication channels. However, this algorithm requires that for any primary line
from a process i to a process j, there must be a line from j to i. Termination is detected
within N message communications after its occurrence, where N is the number of I
processes in the system. However, depending on the nature of the underlying
computation, in the entire computation the total number of secondary messages

generated in this algorithm may be too much. (The total number of secondary

S |
R
e,

messages in this algorithm is equal to the total number of primary messages.) This may

severely affect performance. Moreover, secondary messages are processed and sent out

'r “r e
o
S

from a process even when it is active. This may slow down the underlying computation
itself.

The above algorithm was extended in [Misra 82a] to CSP [Hoare 78] environment. The
n basic idea of the algorithm has been used in several distributed algorithms in many
- applicatior areas [Cohen 82, Misra 82b, Chandy 82b, Chandy 81].

Marker based algorithms usually do not suffer from the drawbacks mentioned above

! for the algorithm in [Dijkstra 80]. A marker is sent from a process only when it is idle.
Therefore normally the secondary computation would not significantly slow down the

underlying computation. (Secondary computation is that related to termination
= detection; the underlying computation is also called the primary computation.)
Moreover, usually the total number of secondary messages would also be small.
“ Roughly speaking, if the primary computation becomes more intense (i.e., primary
e messages are being generated at a higher rate), then the recipient processes are likely to
be active more of the time (i.e., idle for lesser time). Hence the marker is likely to move
less frequently since it has to wait till the process has become idle. However, this is not
to say that marker based algorithms always result in better performance; in fact many

such algorithms require more than N message communications after the occurrence of

termination.
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Distributed termination detection using a marker was devised by Francez et. al.
[Francez 80, Francez 81, Francez 82]. This approach was improved upon, removing
some of its restrictions, in another marker based algorithm [Misra 83|. In this algorithm
a marker traverses a cycle C' that includes every edge of the network at least once.
The algorithm requires the FIFO property for the communication channels.
Termination is detected, after its occurrence, within two rounds of this cycle. Note
that, in principle, assuming the existence of a cycle traversing every edge is equivalent
to assuming the existence of a cycle traversing every process (as in our approach).
However, the performance resulting from the two approaches would normally be
different. The cycle C’ in general may be quite large — usually it would be longer than
the to'al number of primary edges in the network, and the number of primary edges
can be O(Nz). In contrast, in our approach we can always define an elementary cycle
(whose length will be N), introducing secondary edges if necessary. Defining an optimal
or near optimal cycle in our approach is much simpler, since we don’t require the cycle
to involve every primary edge. If the network is evolving over time (e.g., new primary
lines or processes being added to the network) our approach would normally require

simpler changes in the data stored at the processes regarding this cycle.

In several recent works [Chandy 85a, Chandy 85b) the notion of termination and
deadlock has been generalized and elegant schemes have been presented to solve these
general problems. [Chandy 85a] shows how the general scheme presented there can be
applied in many ways to solve the specific problems of termination and deadlock
detection. The termination detection algorithm described there assumes the FIFO
property for the communication channels. A marker traverses a cycle that includes
every process of the network at least once. Termination is detected, after its occurrence,
within two rounds of this cycle. The marker is a short message, containing only one
integer. However, before the marker is sent out from a process, another message
(containing no data) is sent out on output lines of this process. This effectively doubles
the number of message communications after occurrence of termination. Since our

algorithms in class 2 involve two rounds of the same cycle, with each secondary message

having two integers, we expect comparable performance between the above algorithm
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and our algorithms in class 2. However, our schemes in class 3 improve the
performance even further. As indicated in [Chandy 85a], the FIFO requirement for the
communication channels may be removed, leading to another algorithm. But that
algorithm would involve too many acknowledgement messages (equal to the number of

primary messages).

One nice property that the two algorithms above ([Misra 83] and the algorithm in
(Chandy 85a] using the FIFO property) enjoy is that the termination detection
algorithm may be initiated with the underlying computation of the network in an

arbitrary state, i.e., there may be an arbitrary number of primary messages in transit

and the processes may be in arbitrary states. Our algorithms and most of the other

algorithms published require special initializations for the secondary computation before K

PO

-

)

the underlying computation starts.

Il W

oty te

As mentioned earlier, termination detection has been used in designing several other
distributed algorithms. Many distributed algorithms can be devised as multiphase
algorithms, where a new phase is started after the termination detection of the previous

phase. Distributed simulation schemes have been devised using this approach [Chandy

81, Kumar 85]. [Francez 81] suggests a methodology for devising distributed programs

using termination detection.

A problem of considerable importance that is closely related to termination detection,
is the problem of deadlock detection in distributed systems. Several important pieces of
works have appeared in this area [Gligor 80, Beeri 81, Obermarck 82, Chandy 82a,
Chandy 83, Bracha 83, Haas 83].

Synopsis of the Rest of the Paper

Section 2 defines the model of computation and defines the termination detection

problem. Criteria used for comparing termination detection algorithms may vary

widely - performance, storage requirements, communication cost, simplicity of ’“_H
implementation, etc. In this paper we concern ourselves only with performance. In j

section 3 we discuss our performance criteria. Sections 4, 5, and 8 discuss our

S~ . LSS AP AT R I
N ARSI ANE ny




g
{
i

LR it latett ing ol i Al e A adhi o - e - [l = T T T TN BUTHR TR TG T m T, Ny W WL, W WL URLWLRLUE LS LS "Wl e e e

:
~ 7
algorithms in classes 1, 2, and 3 respectively (we have commented on these classes

earlier in the introduction). Finally section 7 gives concluding remarks.

o RERE ." . e e
\

2. Problem Definition

X
3

First we describe a basic model of a distributed system. For ease of exposition, we
discuss our algorithms in terms of this basic model. Our algorithms are applicable to

more general distributed systems; we briefly mention these systems later in this section.

The Basic Model

A distributed system consists of a finite set of processes, and a set of unidirectional
communication channels (or lines, or edges). Each communication channel connects
two distinct processes. Given two processes i and j, there is at most one communication

channel from i to j, denoted by the ordered pair (i, j).

In addition to their local computations, processes may send or receive messages.
Process i can send a message to process j only if the line (i, j) exists. Process i does so
by depositing the message in the channel (i, j). This message arrives at process j after
an arbitrary but finite (possibly zero) delay. Process j receives the message by removing
it from the channel, within a finite time (possibly zero) of its arrival. The channels are

error-free, except that they need not be FIFO channels.

The "Underlying" Computation
Now we describe the nature of the computation (called the underlying computation or
the primary computation) whose termination is to be detected. The messages sent or

received in this computation are called primary messages. Later other computation

(called secondary computation) would be superimposed on this computation for the

purpose of termination detection.

TXF RN

From the point of view of the underlying computation, at any moment a process is in

one of two states:

iy X

1. Active state: In this state, a process may send primary messages on its
outgoing lines. It may become idle at any time.

ot it aalt il L e e g S
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2. Idle state: In this staie, a process can not send any primary messages. On
receiving a primary message, it may remain idle or switch its state to active.

A process in any of the two states may receive primary messages or do any local
computations. It is assumed that initially, (i.e., when the primary computation starts)

there are no primary messages in transit; though the processes may be in arbitrary

states.

The Termination Detection Problem
A message in the distributed system is said to be a transient message if it has been
sent, but has not been received yet. We say that at a moment t the distributed

computation is terminated iff:

1. all the processes are idle at time t, and

2. there are no transient primary messages at time t.

It is obvious that if the network computation is terminated at a time instant t, then it
would remain terminated for all times after t (unless forced otherwise by some outside
agent). The problem is to detect the state of termination within a finite time after its
occurrence. To this end, we will devise an algorithm to be superimposed on the

underlying computation; this algorithm must satisfy the following properties:

1. Termination is reported, to some process in the network, within a finite time
after termination of the underlying computation, and

2. if termination is reported at some time t, the network must be terminated at
time t (i.e., no "false detection” of termination is allowed).

Messages related to termination detection are called secondary messages. It may be

noted that an idle process may send secondary messages, even though it can not send
primary ones.
Other Models

We briefly mention here other features that could be incorporated in our model of

computation, without affecting the applicability of cur algorithms (possibly with some

minor modifications).
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1. We may allow multiple communication channels from a process i to a
process j. Also, a process could be allowed to send a message to itself.

These extensions may be useful if a process consists of a set of interacting
subprocesses. -

2. A process may broadcast a message to a set of processes. This is equivalent

to sending the same message via communication lines to each process in the
set.

3. There may be a third state for a process — a terminated state. A process
enters this state when it is guaranteed that it will not send out any primary
messages in future, and no more primary messages would arrive at its input

lines.
3. Performance Criteria

There are two major criteria for performance evaluation of termination detection
algorithms:

1. The effect of secondary computation on the primary computation itself, i.e.,
how the primary computation gets slowed down and

2. How long it takes to detect termination after its occurrence.

In general, the two criteria above would be assigned different weights, depending on
the objectives of the primary computation and its termination detection. One has to
1. consider not only the time delays involved, but also how time critical the two delays

are. Depending on application, one of these may carry a higher weight than the other.

The following examples illustrate this:

1. Consider a distributed system that monitors a physical system. The primary
- computation is triggered by an extreme state in the physical system and its
Ty objective is to bring the system to a steady state. The primary computation
terminates after the system returns to the steady state. Here the former
criterion would be more significant.

) 2. Consider a secondary computation whose objective is to detect the
~ termination of a token in a token ring [Misra 83]. Suppose the loss of the A
token represents an extreme state that must be corrected immediately. Here I:j-‘.__-._1
B the second criterion would be more significant. \,ai
S yeh
) -

3. Consider a multiphase distributed simulation [Chandy 81, Kumar 85|. Here
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the objective is to reduce the total simulation time. In this case none of the
two delays above are time critical and both affect the overall objective in the
same way; thus both criteria would have equal weights here.

' J ADEN

In this paper we will focus on the second criterion. (As mentioned above, in a
particular application this may or may not be a good criterion for performance
measurement.) Let I denote the time interval between the occurrence of termination

and its detection.

o e, g e e,
N "'A. lll.l“'| B

How should one estimate I? Obviously, the value of I depends on characteristics of the

system that supports the primary computation. We use the number of (secondary)

‘n-"!"l. ‘,.' ." ," . 'A.

message communications during the interval I and the lengths of these messages as a

measure of I. Knowing the characteristics of communication delays, one may establish
- either I or an upper bound on it. For simplicity of discussion, we assume that any E
communication delay in the system is a linear function of message length. We mention

. below a few details about our performance evaluation:

o 1. Note that the value of I (and the associated measures mentioned above) o
H would depend on where the marker is at the time when termination occurs, -
; etc. For simplicity, we would normally consider only the worst case values.

2. Message communications at the same time on different lines will be taking .
place in parallel ~ this must be taken into account n determining the
number of messages, i.e., during any overlapping period, only one message is
considered being communicated. In general, any two independent events

. will be assumed to take place in parallel.

ey

v iay

g |

3. During the interval I, the number of messages received may be different
L (slightly) from the number of messages sent. We consider the latter one as
the number of message communications. (This would be more reasonable in
situations where the time involved in the act of sending a message, i.e., the

transmission time, is longer than the propagation delay of the message.)

. v a,e
+ t oy r
i) A

4. By message length we mean the total length of data in it. It is assumed that
even for a message of length zero, there would be a non-zero communication
delay.
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4. Class 1 of Algorithms: Counting Primary Messages on Each Line

In these algorithms, a marker traverses a cycle C that includes every process of the
. network at least once (discussed in section 1). Information as to how many messages
are in transit is kept by counting the number of primary messages sent, and received,
for each line. Each process i has two local arrays SNTP, and RECPF,. (For simplicity of
discussion, we assume here that primary lines in the network are globally numbered
1, 2, ..., E and each array SNIPi and REC’Pi has E elements. We will discuss more
appropriate data structures later.) At any time, SNTP.l(e) = the number of primary

messages sent by process i on line e after the last visit of marker at i (or since the initial

time, if the marker has not visited i yet). RECP(e) is similarly defined for messages

-

received. Each process i increments SNTP,(e) or RECP;(e), respectively, on sending or

receiving a primary message on line e.

The marker has two arrays SNTM and RECM, where it keeps its knowledge as to

how many primary messages have been sent or received on each line.

(For convenience, in this paper we use the obvious notation for array assignments,

array equality, etc. Also, we often use a time argument in a variable to refer to its

value at that time.)

AN

An Algorithm-Skeleton

The following basic algorithm-skeleton is followed by the marker.

(* marker arrives at process i, i.e. it is received by i. *)
The marker waits till process i becomes idle;

-
(* Process i is idle now. Marker starts its visit at i. *)
SNTM := SNTM + SNTP;

;.;. SNTP, := 0;

= RECM := RECM + RECP;

< RECP, := 0;

e (* The visit at process i is completed. *)

(* Declare termination or depart from process i. *)
B Under an appropriate condition (to be discussed) the marker
declares termination. If this condition does not hold,
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the marker leaves process i along the next line on cycle C. e

We discuss later (under the heading "some improvements and details") the algorithm

and data structures required to facilitate the repeated traversal of the cycle C by the }'b
marker.
A process does not receive any messages during the interval between the start of R’
marker’s visit and its departure. In other words, the underlying computation at a ::::::'
process is carried out only before the marker's visit and after its departure. As :J;
mentioned earlier, the variables SNTF, and RECPi are incremented on sending or
receiving (respectively) a primary message. k
The variables related to termination detection are initialized. before the primary :Z.
computation starts. Initially, a value of zero is assigned to all elements of SNTM, ,f
RECM, SNTP,, and RECP,. (This initialization will be changed later in the discussion.) i:k
Also, the marker is initially at an arbitrary process, and visits it when the process 53.3
becomes idle. : o |
R

The above is only a skeleton of an algorithm; we have not yet discussed when the \E
marker declares termination. We address this issue now. Suppose the primary ‘
computation terminates at time T, Then within a finite time after T, the system ‘
would reach a state where the condition SNTM = RECM is true (i.e., the
corresponding elements of the two arrays are equal) and would remain true forever. ;‘
(After Tf this condition may become true or false several times, but definitely after one &
complete traversal of the cycle C by the marker it will remain true forever.) This is h
stated as theorem 1 below. This suggests a way of detecting termination, but we still '\’.'
have to avoid the possibility of detecting "false termination®. Note that the condition 2
SNTM = RECM being true at a point in computation does not guarantee that
termination has occurred. For example, initially this condition holds, but the system ‘ﬂ'
may have active processes. We ask the question — suppose in a sequence of visits along -'r‘
the cycle C, the marker continuously finds that SNTM = RECM. Can it conclude .
termination after a (predefined) finite number V of such visits? Theorem 2 looks at this C
A
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t‘t question in a 'brute force’ manner, and answers it in the affirmative with V = 2.|C|. :::
" Using this theorem one can complete the algorithm. Thereafter we consider the question
. of efficiency. Theorem 3 improves the efficiency of this algorithm by reducing V to |Cf

Theorem 4 provides a way of reducing V to 1 if an additional condition is guaranteed .»
-1
before announcing termination. Later we discuss how to ensure this condition in an iy

efficient way. (It will be observed that as we progress from theorem 2 towards theorem

. 4, the results become less obvious and the proofs of correctness more complex.) Let us .~.
- first discuss some intermediate results that will be used in the proofs of these theorems.
' For convenience, in this paper we will be implicitly using the convention that events ’
are totally ordered, e.g., as in [Misra 81]. The events of interest are — sending a ZE::'.
; h primary message, receiving a primary message, a process changing its state, and the
- marker arriving at a process, starting a visit, completing a visit, and departing the
= process. All time instants mentioned in this paper correspond to a point in the trace of
events in the system, unless otherwise specified. In particular, normally no time instant
refers to a moment in between the start and completion of a visit. (Otherwise many of ~

l our lemmas will become incorrect!)

Let tsnt(e, t) = the total number of messages sent on line e up to (including) time t.

trec(e, t)is similarly defined for messages received.

)
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Let r(e, t) = the number of transient messages on line e at time t. '
I 5
} . .\h:
3 hY
i Lemma 1: For any line e and any time t: Y
? tant(e, t) = trec(e, t) + r(e, t) (1) S
. and tsnt(e, t) > trec(e, t) (2) \_:
)
‘ . S
Proof: Follows from the definitions.
"
[ Lemma 2: For any line e and any two time instants t, t' such that t < t': Py
tant(e, t) < tant(e, t') (3) .
& 3
3

Fiss
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;;j and trec(e, t) < trec(e, t') (4)
. Proof: Follows from the definitions. ]
% \ \11
s Lemma 3: For any line e = (i, j) and for any time t:
» tsnt(e, t) = SNTMe, t) + SNTP(e, t) (5)

and trec(e, t) = RECM(e, t) + REC'Pj(e, t) (8)
o Proof: The proof is by induction on the number of events in the system [Misra 81].
" Initially, (5) and (8) are true. Also, each event leaves any of them invariant.
u
- Lemma 4: For any line e = (i, j) and for any time t:

rle, t) = SNTM(e, t)- RECM(e, t) + SNTPje, t)- RECPj(e, t) (7)

i Proof: Follows from (1), (5), and (8).

Lemma 5: Consider a "current” moment T in computation. For a line e = (i, j),

pap——
O

suppose both processes i and j have been visited by the marker at least once. Let t, and

K
.
1.

tj, respectively, be the last times at which visits at processes i and j were completed.

, Then,
ﬁ SNTMe, T)- RECM(e, T)=tsnt(e, t)- trec(e, tj)
(8)

-

Proof: Obviously SNTM(e, T) = SNTMle, t,), RECM(e, T) = RECM(e, tj),
s SNTP{e, t;) =0, and RECP{(e, t) = 0. The result follows from lemma 3.
\ Note: Later we will make certain changes that will make lemma 2 incorrect. However,
lemmas 1, 3-5 will not be affected. Proofs of theorems 1-6 below will rest only on
"'ﬁ lemmas 1, 3-5 — they will not use lemma 2 directly.
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Theorem 1: If the underlying computation terminates at a time T, then within a
finite time after T, the system would reach a state where the condition
SNTM = RECM is true and would remain true forever thereafter (until termination is

declared and possibly a new primary computation is started).

Proof: After Tf, all processes remain idle forever; therefore the marker does not wait
indefinitely after its arrival at a process. Hence, within a finite time after T, (say at a
time T, T > Tf), the marker would have made a complete traversal of the cycle C, i.e.,
it would have visited every process at least once after time T, (unless it has declared
termination earlier). Let T' > T be any "current" time. For any line e = (i, j) let t,
and tj, respectively, be the last times at which processes i and j were visited. Obviously,
t; 2> T, and t; 2> T, From lemma §,
SNIM(e, T')- RECM(e, T') = tant(e, t.)- trec(e, tj)

But tsnt(e, t;) = tsnt(e, Tj), trec(e, tj) = trecle, T,), and tsni(e, T,) = trec(e, T,).

The result follows.

Il

Theorem 2: Suppose in a sequence of V = 2.|C| visits, the marker continuously finds
the condition SNTM = RECM to be true after each visit in the sequence. Then at the

end of this sequence it can conclude that the underlying computation has terminated.

Proof: Let T, be the time when the marker has completed |C| number of visits in the
above sequence. We will show that at time T0 the primary computation is terminated.
Let t:o be the time at which the marker completed its last visit at process i up to
(including) time T,. Also, let t;; and t, be the times at which the marker started and
finished, respectively, its fist visit at process i after time Ty (here we are considering the
start and completion of a visit as two distinct events in the history of events in the

system). Obviously, for all i t,; < T, < b < b

We first show that at time T, for all primary lines e = (i, j), SNTP(e, T,) = O.

In a similar manner it can be shown that RE’CPj(e, T,) == 0. Suppose for some
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e = (i, j), SNTF(e, Ty) > 0. Obviously SNTF(e, t;;) > SNIP(e, T,) > O.

Hence SNTM(e, t) = SNTM(e, t,) + SNTPje, t,) > SNTM(e, t,). But
._ SNTM(e, t;,) = RECM(e, t,,) and RECM(e, t,,) = RECM(e, t,). Therefore

SNTM(e, t;) > RECM(e, t,). This contradicts the hypothesis of the theorem.

Since for every line e = (i, j), SNIP(e, T, = RECPe, Ty) = 0 and
! SNTM(e, Ty) = RECM(e, T), iv follows from lemma 4 that r(e, T,) = 0. In other

words there are no transient primary messages at time To.

Now we show that every process i is idle at time Ty Obviously i is idle at time t,.
Also, i did not receive any primary messages during the interval [t.), T,], otherwise we
will have RE'CPi(e, To) > 0 for the corresponding input line e, which will contradict
the above result that RECPi(e, To) = 0. Thusi is idle at time T, This completes the

proof.
0

u Theorem 3: Theorem 2 remains valid if the requirement V = 2.|C| in it is changed to

V =|C|.

Proof: Let T, and T, respectively, be the times when the first and the last visits in the
! sequence are completed. For any process i, choose any particular visit that was
a completed in the interval [To, T] and let ty and t,, respectively, be the times at which

this visit was started and finished. Claim (A) below can be shown easily (if i is the first
- process visited in the sequence and t, = To, then (A) follows readily; for other cases it
2 follows as in the proof of theorem 2):
(A) At any time t during the interval [To, t..l], process i has

E =, SNTF{e, t) = RECPj(e, t) = 0 for any adjacent primary line e.

Since SNTM = RECM after each visit in the sequence, from (A) we conclude that:

(B) At time T, there are no transient primary messages, and

(C) Process i did not send or receive a primary message in the interval
[Tos )
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N Note that a process i may be active at time T, We will show that after time t;, process
i will never receive a primary message. Since any message in transit will be received
! after a finite time, this proves that there are no transient messages at time T when the
above sequence of visits is completed. Moreover, since process i is idle at time t; and

o does not receive any primary messages after time "i; it will be idle at time T.

- We say that a primary message is a bad message if it is received at a process i after
time t.. We will prove by contradiction that there can be no bad messages in the

v system. Suppose there are bad messages in the system. Let m be the bad message with

the earliest time of reception (say t ). Suppose m was sent on a line e = (i, j) at time

t,. Obviously, t, >t andt > tj. Consider the following two cases.

i
" 1

Case 1: t, > t, , i.e., m was sent out after the marker’s last visit at i. Then process i
must have received a bad message after t, and before t, (hence before t). this

contradicts the assumption that m is the bad message with the earliest time of

A

e

reception.

Case 2: t, < t. We have shown above (C) that process i does not send any primary
messages in the interval [T, t]. Therefore m must have been sent before Tqy- Hence

m is in transit at time T,. This contradicts (B) above. This completes the proof.

P il

" Now we attempt to reduce further the length of the sequence of visits required with

. the condition SNTM = RECM before the marker can conclude termination. Note that

-
O
PRI

~ in order to detect termination, the marker must visit every process at least once after
v the start of the secondary computation; since in our scheme the state (idle or active) of
a process can not be deduced from the information available at the other processes. We
show below in theorem 4 that if every process has been visited at least once, then the

condition SNTM = RECM after visiting a process guarantees that termination has

indeed occurred.

-
.
LR
e

Theorem 4: Suppose, after visiting a process, the marker finds that SNTM = RECM.

-
. -
e

8
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Also, suppose the marker has visited every process at least once by this time. Then at

this time T the underlying computation is in the terminated state.

Proof: Let t be the last time that the marker completed its visit at process i up to time
T (i.e, t; < T). We will show that after time t;, process i would never receive a

primary message. As argued in the proof of theorem 3, this leads to the conclusion.

With the above definition of t;, we define bad messages in the same way as in the

proof of theorem 3. The argument continues as before and case 1 is the same. Case 2

is different now and we consider it below.

Case 2: t, < t;, i.e, m was sent before the marker last visited process i. Since
SNIM(e, T) = RECMe, T), from lemma 5 we get tsnt(e, t) = trec(e, tj).
Consider the following two subcases.

Case 2.1: t, < tj. By definition of m, process i did not receive any primary messages in.
the interval [ti, ti]. Therefore process i did not send any primary messages in this
interval. Therefore, tsnt(e, t,) = tsnt(e, tj). Hence tsnt(e, tj) = trec(e, tj). But
there is at least one transient message, namely m, on line e at time tj (since m was sent
before t, and received after tj). This contradicts (1).

Case 2.2: b <t Since tant(e, t.) = trec(e, tj), using (2) and (3) we conclude in this
case that tant(e, t.) = tsni(e, tj) = trec(e, tj). In other words, no primary messages
were sent on line e during [tj, ti] and there are no transient messages on line e at time

t.j. Hence m was sent before t',j and received by the time tj. This contradicts with the
definition of m.

il

Note: The proof of case 2 will be simpler if one assumes the FIFO property for the
communication channels. Informally, since m has been counted in tsnt(e, t.) and has
not been counted in trec(e, tj), by the FIFO property we will get

tant(e, t.) > trec(e, t.j). Therefore we won't have to consider the cases 2.1 and 2.2.
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Completion of the Algorithm

It may be noted that if the hypothesis of theorem 2 or theorem 3 is true then the
hypothesis of theofem 4 is true as well, but not vice versa. Therefore the method
suggested by theorem 4 would be more efficient. Hence we use theorem 4 to complete
the algorithm. How would the marker decide that it has visited every process at least
once? One brute force method would be to have a counter in the marker that counts
how many visits have been completed. When this counter becomes |C|, obviously every
process has been visited at least once. (Alternatively, the marker could count how

many distinct processes it has visited, by marking a process "visited* after visiting it.)

We use a more efficient strategy — the initial values of the variables SNTM, RECM,
SNTPF, RECP, are assigned in a different way than mentioned earlier. This assignment

guarantees the following two conditions:

1. As long as there is at least one process that has not been visited yet, the
condition SNTM = RECM will remain false, i.e., at least one pair of
corresponding elements in the two arrays will not match. (We will be
assuming that each process has at least onme adjacent primary - line.
Otherwise we have isolated processes in the system. If needed, such cases can
be incorporated in the scheme in obvious ways.) This is stated as lemma 6
below.

2. Moreover, this assignment does not affect the correctness of theorems 1 and
4. (In fact, all of lemmas 1, 3-5 and theorem 1-4 remain valid.) This is
stated as lemma 7 below.

Obviously, this strategy is more efficient since the additional counter in the marker is
avoided, reducing its length. An infinite set of assignments guaranteeing the above

conditions exist; here we consider one specific assignment.

Corresponding to every primary line e = (i, j), we initialize SNTM(e) = 1,
RECM{(e) = 0, SNTP(e) = 1, and RECPj(e) = 2. The marker declares termination
after a visit if it finds that SNTM = RECM. The rest of the algorithm remains the

same as before. Theorems 5 and 6 below prove the correctness of the algorithm.
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Lemma 8: With the above initialization, suppose after visiting a process the marker
finds that SNTM = RECM. Then, the marker has visited every process at least once
by this time (say T). -

Proof: For any line (i, j), we show that the marker has visited both i and j by the
time T. (Since every process has at least one adjacent line, this establishes the result.)
Suppose, to the contrary, this is not true for a line e = (i, j). Consider the following

cases.

Case 1: The marker has not visited the process j by the time T. Obviously, in this case
SNTM(e, T) > 1 and RECM(e, T) = 0. This contradicts the assumption that
SNTM = RECM at time T.

Case 2: The marker has visited process j, but not i, by the time T. Obviously, in this
case SNTM(e, T) = 1, and RECM(e, T) > 2. Again, this leads to a contradiction.
This completes the proof.

Lemma 7: With the new initial values lemmas 1 and 3-5, and theorems 1-4 remain
valid.

Proof: Note that with the new initial values, lemmas 1 and 2 remain valid. The results
(5) and (8) in lemma 3 become slightly incorrect — the corrected versions of these

results are:

tant(e, t) = SNIM(e, t) + SNIP|(e, t)-2 (5")
trec(e, t) = RECM(e, t) + RECPj(e, t) -2 (6")

The proofs of (5') and (8') are similar to the proofs of (5) and (8) before. From (5') and

(8') it follows that lemmas 4 and 5 remain valid.

The previous proofs of theorems 1-4 do not directly rest on lemma 2 or the initial

values of the program variables (so long as lemmas 1 and 3-5 remain valid).

Therefore
their correctness is not affected. This completes the proof.

e A b
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Theorem §: If the underlying computation is terminated at a time T}, then the marker o

would declare termination within a finite time after Tr

Proof: Follows from lemma 7 and theorem 1.

Il

Theorem 6: Suppose at a moment T, the marker declares termination. Then at this

moment, the underlying computation is, indeed, in the terminated state.

Proof: The theorem follows from lemmas 6 and 7 and theorem 4.

Some Improvements and Details

We briefly mention below some simple performance improvements to the algorithm.
We also discuss a few details related to implementation.

1. Instead of keeping the two arrays SNTM and RECM in the marker, it is
sufficient to keep a single array, say SRM, which would equal
SNTM - RECM. This would reduce the secondary message length. Also,
this reduces the chances of an overflow. (Elements of arrays SNTM and
RECM are non-decreasing with time.)

-
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In our description of the algorithm, the arrays .’3‘1\fI'Pi and REC'Pi have an

element for every primary line of the network. Usually a process is
connected to only a few other processes; in such cases, with this data
structure updating SNTM or RECM or SRM may be quite inefficient. It
may be more efficient to assign contiguous local line ids to the adjacent lines
at each process, keep elements only for the adjacent lines in arrays SNTP,

and RECP,, and keep an array that maps from local line ids to global line
ids.

e e e

d 3. How does the marker determine the next line to be traversed? If C is a
simple cycle, then obviously just keeping the successor’s id at each process is
sufficient. Otherwise, one may keep a circular list of outgoing lines at each
process (a line may be repeated several times in this list) and a local pointer
that points to the next line to be followed by the marker. These circular
lists can be initialized by considering a single traversal of the cycle C "by
hand". The pointers can be initialized by defining the starting point of the
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marker on the cycle. Note that the marker itself does not carry any
information about its path of traversal; otherwise the secondary messages
would become even longer.

Performance of the Algorithm

In the worst case, the number of message communications after the occurrence of

termination is |C|-1. C can be chosen to be an elementary cycle, in which case this

~equals N-1, where N is the total number of processes in the system. Each message has a

length of E integers, where E is the number of primary lines in the system. If
communication delays depend significantly on the length of the messages, then this
would be quite inefficient. On the other hand, if the message length does not
significantly affect communication delays then this scheme would give a reasonable
performance. One nice feature of this scheme is that in the dest case, the number of
message communications after termination is zero. Normally marker based algorithms
[Misra 83, Chandy85a] require at least one complete cycle between the occurrence of

termination and its detection.

5. Class 2 of Algorithms: Counting Total Number of Primary Messages
Sent and Received in the System

Our notivation for devising algorithms in this class is to reduce the length of
secondary messages. Here the marker has two scalar variables SNTM2 and RECM2
where it keeps its knowledge regarding the total number of primary messages sent and
received, respectively, in the system. This differs from algorithms in class 1 where
information about tndividual lines was being kept. Each process i has two scalar
variables SNTP2 and RECP2. At any time SNTPZ, = the total number of primary
messages sent out by process i after the last visit of the marker at i (or since the initial
time, if the marker has not visited i yet). RECPZ is similarly defined for messages
received. The algorithm-skeleton of class 1 remains the same for this class, except that
the variables SNTM, RECM, SNTP,, and RECP, are replaced by SNTM2, RECMZ2,
SNIPZi, and RECPZ, respectively. These variables are initialized to be zero, before the
primary computation starts. (Unlike the discussion in class 1, we won’t find a need to

change this initialization later.) As in class 1, a process does not receive any messages
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during the interval between the start of the marker's visit and its departure. As before,

the variables SNTP2Z and RECPZ are incremented on sending or receiving

(respectively) a primary message. -

Now we consider the issue of when the marker declares termination. Theorem 7
below states that if the primary computation terminates at time Tf then within a finite
time after T, the system would reach a state where the condition SNTM2 = RECM2
will be true and will remain true forever afterwards. As before, we have to avoid the
possibility of detecting "false termination”. Again we ask the question — suppose in a
sequence of visits along the cycle C, the marker continuously finds that
SNTM?2 = RECM?2. Can it conclude termination after a (predefined) finite number V
of such visits? Unfortunately, the answer in this case is in the negative, as shown in
example 1 below. Theorem 8 below gives a method to complete the algorithm.
Theorem 9 considers simple variations of the method given by theorem 8. These
variations reduce the computational requirements at the processes; they do not improve
communication requirements. Theorem 10 improves the performance of the algorithm
by reducing the number of message communications after termination. After proving
theorem 10, we show that certain simple and obvious variations of theorem 10 do not

work. First let us discuss some intermediate results that will be used in the proofs.

Note that the variables SNTM, RECM, SNTPi, and RECPi of class 1 can be used as
"auxiliary® or "ghost" variables in our proofs. The notion of auxiliary variables is
discussed, for example, in [Owicki 76]. The use of these auxiliary variables in our proofs
is not essential; we use them only to simplify our proofs by exploiting the results in
section 4. We assume that these variables are initialized to be zero at the start of

primary computation.

Lemma 8: Lemmas 1-5 and theorems 1-4 of section 4 remain valid for the present
algorithm-skeleton (when the variables SNTM, RECM, SNTF‘i, and RECPi are

interpreted as auxiliary variables).
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Proof: In the algorithm-skeleton of section 4, let us introduce variables SNTM2,
RECMZ2, SNTPZ, and RECPZ in the same way as they are used in the present
algorithm-skeleton. Obviously, the previous results of section 4 hold for this new
algorithm-skeleton. Now in this algorithm-skeleton, let us treat variables SNTM,
RECM, SNTPi, and RECPi as auxiliary variables. Obviously, the results would still
hold.

Lemma 9: At any time t,

SNTM2(t) = sum {SNTM(e, t), over all primary lines e} (9)
RECM2(t) = sum {RECM(e, t), ovér all primary lines e} (10)
SNTP2(t) = sum {SNTPi(e, t), over all outgoing primary lines e of process i} (11)

RECP2(t) sum {RECP|(e, t), over all incoming primary lines e of process i} (12)

Proof: Obvious, by induction on the number of events in the system.

Lemma 10: At any time t,

tr(t) = SNTMZt) - RECM2(t) + sum {SNTP2(t), over all processes i} -
sum {RECPZ2(t), over all processes i} (13)

where tr(t) = the total number of primary messages in transit at time t.

Proof: Let us take the sum of each side of (7) over e, e ranging over all primary lines in

the system. The result follows from lemmas 9 and 8.

Theorem 7: Theorem 1 of section 4 remains valid if SNTM and RECM in that
theorem are replaced by SNTM2 and RECM2 respectively.

Proof: Follows from lemma 8 and the results (9) and (10) in lemma 9.
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Example 1: To show that there exist computations (following the algorithm-skeleton)
where in an infinite sequence of visits, the marker continuously finds that

. SNTM2 = RECM?2, and yet the primary computation never terminates. -

Consider a network of 10 processes. The cycle C is the elementary cycle 1, 2, ..., 10, 1.
- Initially the marker is at process 1, process 5 is active, and process 10 is idle. Processes
] 1-4 and 6-9 never send or receive a primary message and are always idle. Consider the

following sequence of events at processes 5 and 10:

1. 5 sends a primary message to 10, 10 receives it, 10 sends a primary message
to 5, 5 receives it. At this point 5 becomes idle and 10 remains active.

g
[

2. The marker visits 5, and departs.

3. 10 sends a primary message to 5, 5 receives it, 5 sends a primary message to
E 10, 10 receives it. At this point 10 becomes idle and 5 remains active.

4. The marker visits 10, and departs.

5. The above steps 1-4 are repeated indefinitely.

Obviously, after every visit the marker will find that SNTM2 = RECMZ2. But the

primary computation would never terminate!

K The above example illustrates why after a finite number of visits with
SNTM2 = RECM2 after each visit, the marker can not in general announce
;'.:I termination. Roughly speaking, a process i may have sent and received messages in

between two successive visits by the marker. Theorem 8 is based on this observation.

B0 ab AL LS iy BB

Theorem 8: Suppose in a sequence of V = |C| visits, the marker continuously finds
that SNTP2, = RECPZ = 0 before each visit (except possibly the first visit in the
| sequence) and SNTM2 = RECM2 after each visit. Then, at the end of this sequence of

:3: Z'-_';_ visits it can conclude that the underlying computation has terminated.

Proof: We show by induction on the number of visits in the sequence that after each
visit SNTM = RECM. The result follows by theorem 3.
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N Base Case: Consider the first visit. Let T, be the time when the first visit in the d

! sequence is completed. Obviously, SNTP%(T,) = RECP2(T,) = O for each process in E

R the  system. Therefore from (11) and (12) in lemma 9, :
| SNTP(e, Ty) = RECPj(e, T,) = O for each primary li.ne e = (i, j). Hence from :4

- lemmas 4 and 1, SNIMe, T)) = RECM(e, T,) for any e. But Elj
e SNTMAT,) = RECMZT,). Therefore from (9) and (10) in lemma 9, we get N

. SNTM(e, T,) = RECM(e, T,) for every primary line e. Therefore SNTM = RECM ‘.'-_‘:

x at time T 2

S Inductive Case: Inductively, suppose SNTM = RECM after the k™ visit. By the
hypothesis of the theorem, at the start of the (k+1)** visit SNTPg = RECPZ = 0
7 = where i is the process being visited. Using (11) and (12) in lemma 9 it follows that

SNTM = RECM at the end of the visit.
' ]

| I Note: The above proof shows that if in a computation the hypothesis of theorem 8 is
v true then so is the hypothesis of theorem 3. The converse also follows, in an obvious
way. Hence the two algorithms will require the same number of secondary message
' communications after and before the occurrence of termination. (Since the computation
! time in a visit in the two algorithms is different, the sequence of events in the two

algorithms may be differer.. The above remark ignores any such differences.)

We state below some simple variations of theorem 8. These variations reduce only the

/A v . -
l-‘ MR .

processing requirements during a visit by the marker. Theorems 8 and 9 require the

-

-y -
“ s ox

same number of secondary message communications after and before termination
v (again, this assumes that different processing requirements during a visit won't affect

the sequence of events).

Theorem 9: Theorem 8 remains valid under any one of the following modifications

(note: we are not considering here a combination of these modifications):
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i

1. The requirement SNTP2 = RECPZ, = 0 is replaced by SNTP2, = 0.

2. The requirement SNTP2 = RECPZ = 0 is replaced by RECPZ, = 0.
._ 3. The requirement "SNTMZ2 = RECMZ2 after each visit" is replaced by \
' "SNTM2 = RECM2 at the end of the last visit of the sequence". . N
- Proof: It is easy to see that any variation stated in theorem 9 is equivalent to theorem ;
% 8, in the sense that if the hypothesis of one is true then so is the hypothesis of the :,Efl]
other.
3

2 1l

Now we consider a stronger modification to theorem 8. The algorithm suggested by
theorem 10 below is more efficient than the one suggested by theorem 8, in terms of the

number of message communications required after termination. We will discuss this

(X
v,

after proving the theorem.

. Theorem 10: Suppose in a sequence of V = |C] visits, the mé.rker continuously finds
l that RECPZ = O before each visit (except possibly the first visit in the sequence) and
SNTMZ2 = RECMZ2 at the completion of the last visit of the sequence. Then at the end

- of this sequence of visits it can be concluded that the underlying computation is

terminated.

~ 18

Proof: Let To and T, respectively, be the times when the first and the last visits of the
sequence were completed. Let t; be the time when the marker completed its last visit at

o process i up to (including) time T. From (10),
RECMZT) = sum {RECM(e, T), over all primary lines e}

L]
B

ol

= sum {trec(e, tj), over all primary lines e = (i, j)} by (6).

= sum {trec(e, T,), over all primary lines ¢ = (i, j)} since, obviously,
in the interval [To' ti] process i did not receive any primary
messages.
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Similarly,

SNTMZT) = sum {tsnt(e, t.), over all primary lines e = (i, j)} by (9) 2nd (5)
= sum {tsnt(e, T,), over e} + sum {r'(e), over e}

where r'(e) = the number of primary messages sent on the line e = (i, j) during
the interval [T,, t].

Since SNTMZT) = RECMZT), using (2) we get tsnt(e, T,) = trecle, T,) and
r'(e) = O for every primary line e. This is the same as conditions (B) and (C) in the
proof of theorem 3. The rest of the proof is the same as the proof of theorem 3 after
observation (C). (Alternatively, for any primary line e = (i, j), tsnt(e, t;) - trec(e, tj)
= tsnt(e, T,) + r'(e) - trece, T,) == 0. Hence by (8), SNTM(e, T) == RECM(e, T).
The result follows from theorem 4.)

Il

Now we show that theorem 10 suggests a more efficient algorithm than theorem 8.
Obviously, if the hypothesis of theorem 8 holds at a point in computation, then the
hypothesis of theorem 10 holds as well. Example 2 below shows that the converse is not
true. (However, for a given network topology, the worst case number of message

communications after occurrence of termination is the same in both cases.)

Example 2: Consider the network of example 1 with the same initial conditions, except
that the marker is initially at process 9. As before , processes 1-4 and 6-9 always

remain idle. Consider the following sequence of events at processes 5 and 10:

1. 5 sends a message to 10, 10 receives it. At this point both processes are idle.

2. The marker arrives at process 10.

In the algorithm given by theorem 10, the marker will visit processes 10, 1, ..., 9 and
then declare termination. Using the algorithm given by theorem 8, the marker will visit

processes 10, ..., 5, ..., 10, ..., 4 and then declare termination.
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t
::: : One may be tempted to consider the following variation of theorem 10 — replace the ;)

A

requirement RECPZ = 0 by SNTP2, = 0. Example 3 below shows that this won't

! work. -

Example 3: Consider the network of example 1 with the same initial conditions and

i
L
34

Pl
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-

the same behavior of processes 1-4 and 6-9. Consider the following sequence of events 3

- ’
‘- on processes 5 and 10: o
1. 5 sends a primary message to 10 and becomes idle. (10 has not received it o
i yet.) -]
2. Marker visits 5. It "restarts" a new sequence since SNTF, 7 O at the start _
F of the visit. o
L 3. Marker visits 10 and departs. -
= 3
. 4. 10 receives the primary message sent by 5. It sends a primary message to 5 -
and remains active. 5 receives this message and remains idle. ?:_
i 5. Marker visits 5 and declares termination. :
But process 10 is still active! jfv

" Since the above variation of theorem 10 doesn’t work, it follows that the following '-\;-'
! variation will also not work - replace the requirement REC‘P!.’i = 0 by (RECle =0 LS
or S’Nﬂ’zi = 0). (If this variation had worked, obviously it would have been more E

:,.3 efficient than theorem 10.) ;1
“' O\
"7 We complete the algorithm-skeleton for class 2 by using theorem 10. Along the lines t ‘
of the proof of theorem 1, it can be shown that if the primary computation terminates, s

say at time T, then the hypothesis of theorem 10 will become true within a finite time -
after T. The correctness of the algorithm follows from this observation and theorem £
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o

Some Improvements and Details

>y
il

1. As in class 1 (see "some improvements and details" in section 4), instead of
keeping the two variables SNTM2 and RECMZ2 in the marker, it is
sufficient to keep only a single variable SRM2 which would equal
SNTMZ2 - RECM2. This has the same advantages as before.

4 1’. .

2. Also, at a process i instead of keeping SNTPei and RECPZ, one may keep 3
variable SRP2I which would equal SN’."Pzl - RECI-:’%, and a boolean variable
to indicate if RECP2 = 0. This, of course, does not improve the efficiency

regarding message communications; it only reduces the processing time
involved in a visit.

[
AL

- e
(1
3

3. Same as 3 in our discussion under "some improvements and details" for E;Q’,jf
class 1.

4. How does the marker detect that the first condition of theorem 10 holds for
the entire sequence? We roughly sketch a few possible ways of doing this: oy

)
W

o
IO R

a. Sequence Length Counter: The marker carries a counter for this ‘—”1
purpose. Initially this counter is 0. On visiting a process i, if RECP2 Ta
is zero at the start of the visit then the counter is incremented; else it
is reset to 1. After the visit if the counter is > |C|, then the condition
SNTM2 = RECM?2 is checked.

Lo

o What ¢ the counter has become > |C| and the condition
o SNTM2 = RECM2 is not met!? If the counter keeps getting

incremented indefinitely, it may overflow. To avoid this, one may
B reset the counter to 1 during a visit if it is > |C| at the start of the
e visit. This raises the following issue: there seems to be a possibility
that termination may be detected after "too many" visits. Far
;:ji example, what if the condition RECP2, = 0 is true before every visit,
but the condition SNTM2 = RECM2 becomes true after |C|+1 visits
— and the counter was reset to 1 (to avoid overflow) during the visit
I |C|+1? It can be shown that such cases can not arise. In other words,

at the start of a visit if the counter is > |C|, then it can be reset to 1

without loss of efficiency. At any such point T it can be asserted that
- the marker will definitely visit (either in future or in current visit) a
process i such that RECPZ £ 0 at the start of the visit. To prove
this, suppose this is not true. Then there are two possibilities: (i)
There is a finite sequence of visits made after time T such that
. RECP2, == 0 before each such visit at the process i being visited and
E SNTMZ2 == RECM?2 at the completion of the last visit of the sequence.

(i1) There is an infinite sequence of visits made after time T such that
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.

S RECPZ = Q before each visit and SNTM2 7 RECM?Z after each visit.
Note that after time T, for any visit at a process i if RECP2, =

before the visit then SNTPZ = 0 before the visit as well. Since
SNTMZAT)  RECMZT), (i) above is impossible. In case (ii),
obviously we have primary messages in transit at time T. Within a
finite time one of these'messages will be received at a process i, making

Y
3

EL4

$

- W . W W W
5

f;:.: _ RECPZ, nonzero. Hence (ii) above is impossible. This completes the
proof.

e b. Round Number: For simplicity, first let us assume that C is an

_ elementary cycle. The marker contains a round number. At the start

£ of a visit (say at process i) if RECP2, 5 O then a new round is started,

i.e., marker’s round number is incremented. During any visit at a

process i, the marker’s round number is stored in a local variable at i.

e If at the start of a visit, the round number of the marker equals that

’ of the current process i, it means that the marker has previously made

a sequence of at least |C| visits such that before each visit (except

S possibly the first one) RE’Csz == 0 at the corresponding process j.

Therefore in this case if RECP2Z = 0 at the start of the visit, the

condition SNTM2 = RECMZ2 is checked for termination after

completion of the visit. (Alternatively, the termination check could be

e made at the start of a visit if the round numbers match.) At the start

u of secondary computation, round numbers of the marker and the
- processes are initialized to 1 and O respectively.

- If the round number of the marker keeps getting incremented
indefinitely, it may overflow. To solve this problem one may
] increment the round number as 1+ [(round number) mod |C|]. The

new round number generated would obviously be different from local
round numbers of all processes (except possibly the one being visited).

(As a side note, using this method the number of message
- communications after occurrence of termination is increased by 1.)

If C is not an elementary cycle, a counter may be kept at each process
that counts the number of times the process has been visited in the
current round.

c. Initial Process Id: Again let us first assume that C is an elementary
cycle. In this method the marker keeps a pointer that points to the
process id of the first process in the current sequence of visits such that

before each visit (except possibly the first one) RECP% = 0. At the

start of a visit (say at process i) if RECP2 5 0 then this pointer is set

e
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to i. If at the start of a visit, this pointer is pointing to the current
process i, this means that the marker has previously made a sequence
of at least |C| visits such that before each visit (except possibly the
first one) REC’P2‘i = 0 at the corresponding process j. Therefore in -
this case if RE'CPZi = 0 at the start of the visit, then the condition

SNTMZ2 = RECM?2 is checked for termination after completion of the
visit. Similar to our discussion in (a) above (using sequence length
counter), if the condition SNTM2 = RECM2 is false in this check, we
need not reset the pointer.

Obviously, there is no overflow problem in this approach. As in the
method using round numbers, the number of messages after
termination in this method is increased by 1. If C is not an elementary
cycle, one may keep local counters at the processes to count the
number of times the process currently pointed to by the marker has
been visited in the current sequence.

5. Suppose we designate a specific process where the decision regarding
termination would be taken. In this case the marker needs to carry only an
integer (the value of SNTMZ2- RECM?) and a boolean (instead of an integer
as in 4 above) which remembers whether in the current round the first
condition of theorem 10 has been true so far. Since message length has
decreased, this improves the performance in the worst case. However, in the
average case the number of message communications after termination will
increase.

Performance of the Algorithm

The worst case occurs when the marker departs a process i and before it reaches the
next process, process i receives a primary message and the primary computation
terminates at this point. The number of secondary messages sent after the termination
of primary computation in this case is 2.|C| - 2. Each secondary message contains two
integers — one integer containing the value SNTMZ2 - RECM?2, and the other used to
check the first condition of theorem 10, as discussed in 4 above under "some

improvements and details®.
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6. Class 3 of Algorithms: Using Multiple Markers

In classes 1 and 2 we have a single marker that sequentially traverses the system. In
" this section we will use multiple markers to enhance performance. First we observe that
‘ the sequential traversal of the system by a marker in the previous algorithms is not

essential. If several processes could be visited in parallel, even then these results will

hold. The following theorem is obtained from theorem 10 by an abstraction of the
proof of that theorem (i.e., by avoiding details regarding sequential nature of the

traversals). The proof of this theorem is essentially the same as that for theorem 10.

Theorem 11: Let [T,, T| be a time interval during which several visits have been

completed, possibly in parallel. Suppose these visits satisfy the following:

1. At least one visit is completed at each process during this interval (the start
times of these visits need not be in the interval).

2. At the start of each visit, say at process i, RE'CP.?i = 0, and

3. At time T SNTM2 = RECM2.

Then, at time T the primary computation is terminated.

Notes:

1. The values of SNTM2 and RECM?2 at time T are defined in the obvious
way - the results of various visits have to be accumulated.

2. Theorem 10 follows as a special case of theorem 11. On first sight this
might not be so obvious, since theorem 10 allows the value of RE’CP..%l for

3 - the first visit to be nonzero. However, after the very first visit in the
[~ sequence, one may consider an imaginary visit to the same process —
- - theorem 10 would then readily follow from theorem 11.
N
r ' Using theorem 11, one may devise schemes using several markers. The markers would
b S
- check the values of RECP2, and accumulate values for SNTM2 and RECM2 in
- different parts of the system (these parts need not be disjoint).
[
.
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A. Using Two Markers

. . v e .
'ff; )
- -

PN -

Let us assume that we have two paths Pl and P, from a given process I to a given !
process J. Also assume that these paths together cover all the processes in the system: H—j
Initially both markers are kept at process I. Then they traverse the two paths j
res-pectively. After both have visited J, a check for termination is made as follows. The :
values SNTM2 and RECM2 are computed by adding the corresponding values in the ..:.4

A
Cininn

two markers. Each marker i also has a boolean variable NZRECi which is set tc true if

v v
a1,

at the start of some visit at a process j in the current traversal of the path, RECPQ‘i was
found to be nonzero. At J, if SNTM2 = RECM?2 and both booleans are false then

termination is announced. Otherwise a new traversal is to be started. To start a new

e
v PR
RN

L

traversal, both markers may be sent back to I via a line (J, I). Alternatively, the
markers may traverse the paths P, and P2 in the reverse direction in which case the

next check for termination would be made at process L.

Now we make a simple modification to the above scheme that would lead to an
obvious generalization for the case of more than two markers. A new process, called a
central process (CP), is introduced in the system where the check for termination would

be made. (This process may be implemented as part of some existing process in the

system.) Paths P, and P, now need not share their initial and final processes. Initiaily
both markers are at the CP. A traversal of the system is started by the CP, by sending
the markers to the initial processes of the respective paths. After traversing the paths,
. the markers arrive at the CP where the decision regarding termination is made in the

same way as before.

Now we consider an erroneous variation of this scheme which supposedly attempts to

improve its efficiency. Suppose a marker i has arrived at the CP after traversing its

Lo o s o e o o g
RN .

path and NZREC,; is true. Suppose the other marker has not yet arrived at the CP. =
. One might be tempted to consider the following. Since marker i knows that P—E:

termination can not be announced after this traversal, it doesn’'t wait for the other
marker to arrive; instead it goes back to traverse Pi' Equivalently, a marker i would

3
1
“ <]
| traverse its path P, repeatedly until the value of NZREC; is false at the end of a .;
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traversal, and then it would go to CP and wait for a termination check to be made.

The following simple example shows that this scheme won’t work:

Example 4: Let P, and P, consist of single processes, processes 1 and 2 respectively.

Initially process 2 is idle and process 1 is active. Consider the following sequence of

events:

1. Marker 2 visits process 2. It departs from process 2 (but hasn’t arrived at
the CP yet). '

2. Process 1 sends a primary message to process 2. Process 2 receives this
message and sends another one to process 1. Process 1 receives it and
becomes idle. Process 2 remains active.

3. Marker 1 visits process 1. Since the value of NZREC1 is true after this visit,

it visits process 1 again (equivalently, after the first visit it goes to CP, then
goes back and visits process 1). Now :t arrives at the CP.

4. Marker 2 arrives at CP. Obviously both booleans NZRE.'Ci are false and

SNTMZ2 = RECMZ2 at this point. Hence termination is declared. But
process 2 is still active!

Performance of the Scheme

Let us assume that the length of each path P, or P, is approximately N/2. For worst
case, consider the following scenario. Marker 1 visits and departs from the first process
(say i) on its path. Now process i receives a primary message and at this point the
primary computation is terminated. Obviously termination won’t be detected after the
current traversal. Again, it won't be detected in the next traversal since RECP!&l would
be nonzero at the start of the next visit to i (let us assume that i appears only once on
Pl, and doesn't appear on P,; otherwise this won’t be strictly true). So the number of

secondary message communications after termination is &~ 3N/2. Each such message

consists of an integer and a boolean.

B. Using More Markers
One may similarly use a CP, K paths, and K markers in general. Let L be the length
of the longest of these paths. By considering a scenario similar to the above, we have

the worst case number of message communications = 3L + 4. If each path has N/K

............................
........................................
...................................................
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processes then this equals 3N/K + 1. Note that as K is increased, the scheme tends
to become more centralized. With K = N it is a purely centralized scheme (i.e., each
process interacts only with the central processor for termination detection) with worst

case number of message communications after termination = 4.

7. Conclusion

We have presented a class of efficient algorithms for termination detection in
distributed systems. Our assumptions regarding the underlying computation are simple.
In particular we do not require the FIFO property for the communication channels.
Also, the topological requirements about communication paths are simple and flexible,
both from the correctness and performance point of view. We discussed the correctness
and performance of our algorithms. Depending upon the application, the nature of the

chosen algorithm can be varied incrementally from a distributed one to a centralized

one.

We introduced message counting as an effective technique in designing termination
detection algorithms. We showed how one can avoid counting messages for each and
every line, normally resulting in better performance. Our presentation involves deriving
algorithms via a sequence of simple modifications. Several correct as well as incorrect
variations have been considered. We hope that this approach of presentation has

resulted in better understandability of the algorithms.
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ASYNCHRONOUS NETWORKS

Bengt Jonsson
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e

Abstract: We present a compositional model for nonde-
terministic asynchronous networks, which represents both
safety and liveness properties. A network is represented
by the set of its quiescent traces. A quiescent trace is the
L sequence of communication events in a computation, after
which the network will not produce more output unless it

receives more input. The representation of a network is
- derived from an operational definition of its behavior, in
the form of a labeled transition system. Rules for compo-
sition, abstraction and renaming in the model are proven
from their operational definitions, showing that the model
is compositional. A method to specify networks in predi-
e cate logic is presented, together with a proof system. The
method is demonstrated on the specification and verifica-
tion of the alternating bit protocol.

1. Introduction

For deterministic asynchronous networks Kahn [K] has
presented an elegant model which represents a process by
a function from histories on input channels to histories on
output channels. For nondeterministic networks, Brock and
Ackerman [BA| have shown that channel histories are not
adequate in a compositiona! model, since channel histories
of the component processes do not provide enough infor-
mation to calculate the channel histories of the whole net-
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work. Several solutions have been presented ([BA}, [Br],
[Pal, [Pr]), but it is not clear which one is easiest to use in
practice.

Compositionality can be attained in a simple way by
using traces, i.e. totally ordered sequences of communica-
tion events on all channels of a process or a network (e.g.

[BM], [CH], [MC]), but it is not evident how to represent ':
liveness properties of nondeterministic networks. . *'
Consider for example the buffer process in Fig. 1 that =
reads a’s on the left channel and for each a outputs 2 b on N
the right channel. \ :
a ‘ b -‘i
) ———) "
.
Figure 1. A buffer process “-
The traces of the process are the sequences of a’s and b’ L_
with at least as many a’s as }'s. The set of traces, how- N
ever, does not say anything about liveness properties, since e,
another process, that at some nondeterministically chosen .
moment stops producing output, will have the same set of 3
traces and yet have different liveness properties. (:: :
The idea of quiescence, due to Chandy and Misra [Mis], Wy

is a solution to the problem of representing liveness. The &
remainder of the introduction contains a summary of this
idea and an outline of its further development in this paper.

A process or a network is in a quiescent state iff it g“'
remains inactive and does not produce any more output, '\-
unless it receives more input. A guiescent trace is the se- ‘:'_ L
quence of communication events in a computation after L‘*
which the process becomes quiescent, i.e. a maximal trace
that will not be extended unless more input is supplied. |
The finite quiescent traces of the buffer process in Fig. 1
are the traces that contain an equal number of a’s and b's. e

Since some processes may not terminate, all infinite ::':
traces are considered quiescent: an infinite trace can not O
be extended. As an example consider the source process 3
in Fig. 2 that repeatedly sends a and never terminates. o

N



Figure 2. A source process

The process never becomes quiescent, but can be repre-
sented by the infinite trace < aaa... >, denoted as a“.

Infinite traces make it possible to model fairness prop-
erties by requiring that each infinite trace represents a fair
computation. For instance, the infinite traces of the bnﬂ'er
process in Fig. 1 contain an infinite number of .

A process or a network is represented by the set of its
quiescent traces. A trace of a network is quiescent iff each
projection of the trace onto a process of the network is
quiescent, since a network is in a quiescent state iff each of
its processes is in a quiescent state. Thus the representa-
tion is compositional. Safety properties correspond to the
(possibly nonquiescent) traces of the network. These are
obtained as prefixes of the quiescent traces. Liveness prop-
erties correspond to the quiescent traces: a monquiescent
trace will always be extended to a quiescent trace.

In this paper we develop the idea of quiescence in more
detail. The main contributions are:

o A model for nondeterministic asynchronous networks,
which represents a network by its quiescent traces. The '
model is derived from an operational definition in the
form of labeled transition systems. From the opera-
tional definition we prove rules for composition, ab-
straction and renaming of networks in the model, show-
ing that the model is compositional.

o A method for specifying and verifying both safety and
liveness properties of asynchronous networks. Proper-
ties of quiescent traces are stated in predicate logic. We
believe that a specification method based on the con-
cise model will allow short specifications and proofs.
The method is demonstrated on the specification and
verification of the alternating bit protocol.

A related approach to the specification of liveness prop- .
erties [MCS| uses a special condition corresponding to
“nonquiescence”. Another way to state liveness proper-
ties is to use temporal logic [Ha], [INGO). Compositional
models that use traces and represent liveness properties for
s, achronous networks [BER|, [FLP}, [Mil], [NGO| must in-
clude information about which communication events the
network is ready to perform.

The paper is organised as follows: In section 2 we
present our view of networks, and in section 3 the opera-
tional semantics. A more elaborate discussion of the oper-
ational semantics is deferred to the appendix. In section 4,
quiescent traces are defined and the mode] for representing
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networks is presented. Rules for composition, abstraction
and renaming are given. In section 5 we present a method
for specifying networks, followed by a proof system in sec-
tion 6. The method is illustrated by a specification and
verification of the alternating bit protocol in section 7.

2. Networks

A network in our model consists of a (finite) set of
processes that are connected by uniquely named unidirec-
tional cAannels. A channel that connects two processes of
the network is of type internal. A channel that connects
a process with the environment of the network is of type
ezternal input or external output channel, depending on its
direction. The signature of 3 network is the set of chan-
nels together with their types. Fig. 3 depicts a network
with three processes, whose signature contains three inter-
nal channels, two external input channels, and one external
output channel.

Figure 3. A network

Processes communicate by sending messages over chan-
nels. Our model is based on the following requirements.

1) A process can send output without cooperation by the
receiver, since communication is asynchronous.

2) Communication events, such as the transmission of a
message, should be atomic in order to simplify the
model.

These requirements are satisfied by partitioning the
network into subnetworks as shown by the dashed lines
in Fig. 3. It is always possible to send a message into the
input channel of another subnetwork. Communication be-
tween subnetworks corresponds to an atomic event, namely
the passing of a message over a dashed line (i.e. a sending
event). In the following we will therefore consider subnet-
works, consisting of a process and its input channels, as
basic entities.

The sending of the message m over the chanpel c is
a communscation event denoted by the pair (¢,m). The
event is called an internal event, an external input event,
or an external output event, depending on the type of the
channel ¢. The set of communication events of the network
N is denoted Ey. We also consider silent events within a
network. All silent events are denoted by r. Examples
are reading of messages from input channels, and commu-
nication on channels that are hidden as the result of an
abstraction operation (defined below).
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The following operations on networks will be studied:

o Composition of several networks N,,..., N,, denoted
by Nyl |INy. External output channels of the net-
works N,,..., N, are linked to external input channels
with the same name and become internal channels of
the network N, - - - [|Ns.

o Abstraction of a set C of internal channels of a network
N, denoted by N\ C. The channels in C disappear
from the signature of N\ C. Communication events on
channels in C become silent events.

o Renaming of a set of channels of the network N by a
renaming function &, denoted by N[®|. The function &
is a bijection on the set of channel names that preserves
their types.

3. Operational Semantics -

As an operational definition of the behavior of a net-
work N we use a labeled transition system. This is a quin-
tuple < By, Ex, Rn,dfv, v >, where

En is 2 set of configurations.

Ey is the set of communication events possible on N's

channels, ~

Ry isaset of labeled transitions in Ty x(EnU(r})xEy.

o} is the initial configuration.

7v is a finite collection of fairness sets.

A configuration of N typically includes the states of the
processes and the contents of the channels. Configurations
of the network N are denoted by o, oy, etc.

A transition corresponds to the occurrence of an event
and a simultaneous change of configuration. A transition
from the configuration o to the configuration o) labelled
by the event ¢, written as

(4.4 _.'le

states that in the configuration ox the event e can occur
and as a result the configuration changes to oy. Here e €
Enyv {T}.

Note that it is not the case that every transition sys-
tem models a network (cf. proposition 4.2. below). Further
details about this, the modeling of fairness, and the defini-
tion of composition, abstraction and renaming in transition
systems are found in the appendix.

4. The Model
4.1. Quiescent Traces

The notions of trace and quiescent trace are defined
o from the operational semantics in the following way:
l o A transition sequence of a network N is a (finite or
infinite) sequence of transitions in Ry, starting in the
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initial configuration. It is written

U‘.v [ agN 2] e L2 NC.N

with ¢; € Ey U (r}. (For infinite sequences there
are certain fairness requirements, elaborated in the ap-
pendix.)

o A trace of the network N is the sequence of communi-

cation events (thus skipping 7’s) in a finite or infinite
transition sequence.

' o Atraceof N is divergent iff it is finite and consists of the

communication events in an infinite transition sequence
(which thus must end with an infinite sequence of r-
transitions).

o A trace of N is qusescent iff either

1) It is the sequence of communication events in a fi-
nite transition sequence o}y —= - .. = g% in which
the only transitions possible from the last configu-
ration o} are labeled by external input events.

2) It is infinite.

3) It is divergent.

o A quiescent trace of N is nondivergent iff either 1) or
2) above holds.

Note that a quiescent trace of a nondeterministic net-
work can be both divergent and nondivergent, since there
can be many transition sequences corresponding to the
same trace.

4.2. The Model

In the model a network N is represented by the set of
its quiescent and divergent traces, written as

[Nl= {q | ¢ is a nondivergent quiescent trace of N }
U{g 1| qis a divergent traceof N }

In the following we use g to denote the sequence of com-
munication events in a quiescent trace. The symbol 1 that
is appended to divergent traces indicates that the compu-
tation does not terminate although only a finite number of
events are observed.

The following proposition shows that the representa-
tion [N] of a network N characterises both its safety prop-
erties (since all traces can be obtained as prefixes of the
quiescent ones), and its liveness properties (a trace that is
not quiescent will be extended to a quiescent trace).

Proposition 4.1. A sequence of communication events
is a trace of a network N iff it is the prefix of a (possibly
divergent) quiescent trace of N.

The proof is omitted. It follows from the definitions in
section 4.1 and properties of transition systems.
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- Proposition 4.3. The following properties always hold Renaming: Here & denotes the pointwise extension of the

-
:

o for the representation [N] of a network N renaming function @ to traces, i.e. & renames the events ::'.:-:'.:3
st 1) [N #£0 of a sequence as follows: &((c, m)) = (®(c), m). s
o
l 2) If the sequence of communication events ¢ is a prefix of INI®]l= (®(q) | ¢ N]} j
| an element of [N], then for each external input event T o
1 € Ey the sequence of events ti is a prefix of an ele- V(e T e te N} :-i*:-:"_
.- ment of [N]. Below we outline proofs of the rules. _-::j
. 3) If the sequence of communxcatio.n even.u tisa Preﬁ‘x © Composition: The network N||---||N; is in a quiescent :::.:f'_j
v of an element of [N l: then there is a quiescent trace in state iff each subnetwork is in a quiescent state. It fol- S
'~- [N] tbat extends ¢t without using external input events. lows that if g is a finite nondivergent quiescent trace of Yy
';. The proof is omitted. It follows from the operational se- Nijl- - [|Ns then the projection of g onto each subnetwork 1
e mantics in the appendix. Intuitively, 2) states that a net- N; is a finite nondivergent quiescent trace, since it cor- e
B work can always receive input, and 3) states that in each responds to the part of the computation in which N; is RS
4 - situation the network will continue to perform output and involved. K ¢ is infinite, its projections onto the subnet- :-j'_ ::.]
“: internal events until it reaches a quiescent state. works must be (possibly divergent) quiescent traces. If ¢ PO
] - is divergent, it must have a divergent projection onto some
subnetwork.

: 4.3. Operations on the Model Conversely, if the projections of a sequence of commu- o
) We show that the model is compositional by estab- pication events g onto all subnetworks are quiescent, then -ji}“.j
. lishing rules corresponding to the composition, abstraction q is a quiescent trace of Ny||---[|Ns. If one or more of the F"‘)
N and renaming operations. The definition of these oper- projections are divergent, then ¢ will be divergent iff it is s
] ations on the operational semantics (in the appendix) is finite. %

used to prove the following rules.

Theorem 4.3. Composition, abstraction and renaming
correspond to the following operations in the model:

Abstraction: A network N is in a quiescent state if N\ C
is in a quiescent state. For each transition sequence of N
there is a transition sequence of N \ C in which events on

. channels in C are changed to r’s. A quiescent trace ¢’ of

Composition: Hers g ranges over sequences of communica- N\ C is therefore obtained by deleting events on channels

. ::;:::n::xf:}, ;n d #i(g) denotes the projection of ¢ in C from a quiescent trace g of N. The trace ¢’ is divergent
- either if ¢ is divergent, or if an infinite r-sequence is cre-
[Nl IN]) = ated in the corresponding transition sequence by deleting

; . events, in which case g is infinite.
o {g| for all i xi(q) € [Ni]}

g 4 Conversely, a sequence of events obtained by deleting
g infinite an

events from a quiescent trace q of N is a quiescent trace ¢’
of N\ C. H g is divergent, then ¢’ will also be divergent.
If ¢ is infinite but ¢ finite, then ¢' is divergent, since it
corresponds to a transition sequence ending in an infinite
7-sequence.

] uigl
" for all s ( xi(q) € [Ni] or xi(g) t€ [Ni])

¢ finite and

U{qtl | forall i ( xi(q) € [Ni] or xi(q) 1€ [N:])

AL
atat

Renaming: The rule simply states that the events of the

quiescent traces of N should be renamed to obtain the
- quiescent traces of N[®]. The proof is straight-forward.

-]

for some j (x;(q) t€ [N;])

Abstraction: Here ¢\ C denotes the result of deleting events

on channels in C from q. Note that the composition operator is “fair® with re-

spect to each subnetwork. As an illustration, consider the

'_::-. IN\C] = network in Fig. 4 consisting of two subnetworks N, and N,
= {q\C | gq€[N],q fnite} that perform the events e and f, respectively.
?
u{g\C | g€ [N],qandg\C infinite } R .
U(@\C) 1] g€ [N],q infinite and g\ C fnite } pui i 'q_...
V{(e\C) 1| qte N}
. Figure 4. A network
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The following cases show how [N,||N:] depends on
[N:] and [N;]. We borrow notation from regular expres-
sions. An infinite sequence of ¢’s is denoted ¢“.

Ml V2] (GALA]

¢ § d all fair merges of
¢ and fv.
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5. Specifications

In this section we present a way to use the model for
specification and verification of networks.

The behavior of a network is specified through proper-
ties of its quiescent traces. These are stated as formulas in
predicate logic. The quiescent traces should be specified
indirectly by properties of their projections onto channels
of the network. This is important when formulating proof
rules for composition and abstraction. Forinstance, a spec-
ification of a subnetwork stating “each quiescent trace only
contains events oa the channel c” can not be used to specify

quiescent traces of a larger network, but the specification -

“the projection of each quiescent trace onto the channels
of this subnetwork only contains events op the channel c*
can, since it will be true for any computation in which the
subnetwork participates.

A specification language L therefore (following [ZRE])
contains the following special variables with intended in-
terpretations:

%t o the projection of a quiescent trace onto the set of
channels cset.

¢ : the sequence of messages on the channel ¢ in a qui-
escent trace. Compare r(,; which denotes a se-
quence of events < (¢, m,)(c,m;)... >, and ¢ which
denotes a sequence of messages < mym;...>.

In addition L contains constants and variables of types

sequence, message, integer, logical connectives and quaati- | ;

fiers. We also use the following functions and predicates.

<> is the empty sequence.
as’ is the concatenation of the sequences s and ¢'.
8 < s’ states that the sequence s is a prefix of o'.
8 < &' states that the sequence s is a proper prefix of ¢'.

8 < o' states that the sequence s is a (not necessarily con-
secutive) subsequence of o'

[s] is the (possibly infinite) length of the sequence .

A specification S in the language L is a formula in
which no special projection variable «,,, or ¢ is bound by
a quantifier. Define .
chan(N) denotes the set of channels in N’s signature.

chan(S) denotes the set of channels in the special variables

%ot and ¢ that occur in §, i.e. the set of channels
mentioned by S.

Definition 8.1. A petwork N satisfies a specification S,
written as
Nsats

iff the following holds:

1) each quiescent trace g of N satisfies the formula S. We
assume that each special variable r.,,, is interpreted as
the projection of ¢ onto the set of channels cset, and
each special variable c is interpreted as the sequence of
messages on the channel ¢ in g. .

2) chan(S) C chan(N). The motivation is that a specifi-
cation of N must not state properties of channels that
are not channels of N. This has importance for the
composition rule.

3) {N] does not contain any divergeat traces. The moti-
vation is that we regard divergence as always undesir-
able.

Note that the specification method cannot describe
networks that have divergent traces, in contrast to the
model. The model describes what can be "observed® from
the network; the specification method treats some observa-
tions as undesirable. The motivation for this discrepancy
is to make the model flexible. It can be used for different
specification methods with different considerations about
desirable observations.

6. Proof System
6.1. Proof Rules

Theorem 6.1. The following proof rules for composition,
abstraction and renaming are sound.

Composition: Composition of networks corresponds to
conjunction of specifications.
N, st S t=1,...,k
Nil---INs sat  A;S;

Abstraction: Let C be a set of internal channels of N. Let
#c and wxc denote the projection of g onto the channels
in C and onto the channels of N that are not in C, respec-
tively.

N st §

§ A |rncl#too - |xc] # o
§ =~ 8

chan(S') C chan(N \ C)

N\C sat s

.
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Renaming: Let S[3] be the result of textually replacing all
occurrences of channel names (e.g. in special variables) ¢
by @(c) in S.

N st §
N[®] sat S[9]

Consequence:

N st §

S - &

N st &
o
6.2. Soundness

The soundness of the rules follows from theorem 4.3.
Proof sketches for the composition and abstraction opera-
tions are given below.

Composition: The requirementson N[l -- || Ny sat A;S;
in definition 5.1 are motivated as follows:

1) From theorem 4.3 it follows that each projection of a
quiescent trace g of N,||---[|Ns onto a subnetwork N;
is a quiescent trace of N;. Each projection onto a sub-
network N; satisfies S;. Since a specification only talks
about ¢ through its projections, the trace ¢ must satisfy
AS;.

2) The formula A;S; only mentions the channels of the
subnetworks. These are also channels of Ny||: - || Ny.

3) Theorem 4.3 shows that if no subnetwork has a diver-
gent trace , then N,||---||N) cannot have a divergent
trace.

Abstraction: The requirements on N\ C sat S’ are mo-
tivated as follows:

1) Suppose ¢ is a quiescent trace of N\ C. Theorem 4.3
shows that ¢ is the projection of a quiescent trace g of

R e

e m——s

N onto chan(N \C). Since g satisfies S and hence also

§', ¢ must satisfy S'.
2) Follows from the fourth premise.

3) The first antecedent implies that N has no divergent
traces. Theorem 4.3 then states that N \ C has di-
vergent traces iff there is an infinite trace of N whose
projection onto the channels not in C is finite. The
second premise states that this cannot happen.

6.3. Completeness

The rules are complete in a rather weak sense. To make
this precise, first make the following definition

o A specification § is a precise specification of the net-
work N iff ¢ € [N] for each sequence ¢ of events on
the channels in chan(N) that satisfies § (the special
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variables r,,,, and ¢ in S are interpreted as projections
of g). In other words, the sequences of events in Ey
that satisfy S are exactly those in [N].

The rules are then complete in the following sense.

o Assume that N sat S for a network N that is defined
from the subnetworks N,, N, ..., N; using the compo-
sition, abstraction and renaming operations. Further
assume that no part of the definition of N describes
a network that has a divergent trace. If for each sub-
network N; there is a specification S; that makes the
formula N; sat S; precise, then N sat S is provable from
the precise specifications S,,...,S, of the subnetworks.

A pecessary condition for completeness is thus that the
specification language L can express precise specifications
of the subnetworks that are considered.

However, the rules are incomplete in the following
sense. Assume that a formula N sat S is derived from
specifications N; sat S; of subnetworks, where some of the
specifications are not precise. It may then be the case that
N also satisfies a stronger specification §’, but that this is
not provable from the imprecise specifications.

The situation can be improved by introducing the foi-
lowing rule.

Entailment: Assume that every network that satisfies §
also satisfies T'.

N st §
N st T

The rule is a stronger version of the consequence rule,
and takes into account properties true of all networks (such
as those in proposition 4.2). When making proofs from
imprecise specifications the rule is sometimes necessary.

7. Verification of the Alternating Bit Protocol

To illustrate the use of the proof system we specify
and verify the alternating bit protocol. This is a simple
protocol for transmitting messages correctly across a faulty

- medium.

The structure of the protocol is shown in Fig. 5. (no-
tation from [Hal).

Figure 5. The alternating bit protocol

There are four modules: a Sender, a Recesver and the
two media MSR and MRS. There are six channels: X, Y,
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The purpose of the protocol is to transmit all messages
on the input channel X to the output channel Y in correct
order, in spite of the fact that the media can lose messages.

The medium MSR is used to send messages from the
Sender to the Recesver. Each message will also contain a se-
quence pumber, either 0 or 1. The medium MRS is used to
‘send acknowledgments in the other direction. As acknowl-
edgment for a message the same message is returned with
its sequence pumber. Each medium can lose but not re-
order messages. Corruption of messages can also be taken
into account by modeling it as loss (some mechanism will
detect and discard a corrupted message). Each medium
is *fair® in the sense that if infinitely many messages are
input, then infinitely many messages will be delivered.

The operation of the protocol is th; following:

The Sender reads the pending message from X. It
adds a sequence pumber to the message, transmits it on
a and awaits an acknowledgment on &. If it arrives, the
procedure is repeated with the next message from X but
with the sequence number inverted. If no acknowledgment
arrives within a specified time period the sender retrans-
mits the message. Retransmissions are repeated until an
acknowledgment arrives.

The Receiver acknowledges each message received on
B by sending it on 4. The first message on § and each
subsequent message with a sequence sumber differeat from
that of the previous one is delivered on Y.

We add the following notation:

R(s) reduces s by deleting all consecutive duplicates
in the trace s. Thus R(mym;m;mym,myms) =
M MMMy Mg,
number(s) adds sequence numbers to the messages in s, alter-
natingly 0’s and 1’s, starting with 0.
unnumber (s) is asequence starting with the first message of
8. It thereafter contains the sequence of messages
in & that have a sequence number different from the
previous one. The sequence numbers are deleted
from the result.
X is a special variable denoting the sequence of mes-
sages transmitted on X; similarly for a, 8,7, § and
Y.

The following list of small lemmas will be used in the
subsequent proof. Here s,, 23 denote sequences and m
denotes a message.

s X0 — R(s1) < R(s2) (L1)
[81] <00 — (8, XA <8 ~ s =42) (£2)

(9 <83) A (82 2X8,<m>)
log] < 00 = - (L3)
(1 =83) V (8, <m>=14;)
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unnumber(number(s)) = s (L4)
R(s,) # R(s:) <mm > (LS)

; The proof also uses the following lemma implied by the
entailment rule

(Xl <) - (X=¥)
A (X|=e0) ~ (I¥|=co)

‘. N st X=7 (Le)
which follows from proposition 4.2.
7.1. Specification of the Protocol
Specification of MSR.
BXXa (MSR1)
lal =00 — |f] = 0o (MSR?)

The formula (MSR1) states that the medium may lose but
not reorder messages. (MSR2) says that the medium is
fair with respect to delivery of messages. If infinitely many
messages are input, then infinitely many messages will be

delivered.
The specification of MRS is similar.
§%q9 (MRS1)
[7l =00 — || =00 (MRS?2)
Specification of Sender.
[ R(a) = number(X)
R(a) < R(5) — (51)

| A [X]# 00 = |a| # o0
(3m)[R(a) < R(5) <m >]

R(a) 2 R(8) - | A R(a) < number(X) 52)

A |al =00

Intuitively, the specification is motivated as follows. We
assume that the sender discards messages on § that are
not the expected acknowledgment.

Suppose that ¢ is a quiescent trace of the sender. Ac-
cording to the informal description of its operation, the
sender reaches quiescence either by transmitting all mes-
sages of X on a and receiving acknowledgments, or by not
receiving any acknowledgment for one message, which is
retransmitted indefinitely.

In the former case the sequence of different messages on
a is a subsequence of the different acknowledgments on §
(if extra acknowledgments on & occur, they are discarded).
Therefore the antecedent of (S1) is true. In this case, all
messages of X are sent with sequence numbers on a (i.e.
R(a) = number(X)), and the sender terminates after re-
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g:: ceiving the last acknowledgment (i.e. | X| # 00 — |a] # o0) The first conjunct of (s s +) now follows from ::.:'_'.::
if X contaios a finite number of messages. ber(R _:.:_:e:_:

In the latter case the antecedent of (52) is true. Ac- Y =unnumber(R(6)) = unnumber(R(a)) = (3) e d

F knowledgments have arrived for all messages but the last =unnumber(number(X)) = X 0.
i.e. < (SN,

(ie. (3m)| R(a) < R(8) < m > ]) and the sender where the first equality follows from (R1), the second from :-..'_-J

has only transmitted some of the messages from X (i.e.
R(a) € number(X)). The last message on a is transmit-
ted repeatedly (i.e. |a] = o).

Specification of Recesver.
Y = unnumber(R(8)) (R1)
. 1=8 (R2)

The formula (R1) states that the first message and sub-
sequent ones with new sequence numbers received on 8
are tranamitted onto Y. (R2) ltateo that all messages are

the preceding paragraph, the third from (S1) and the last
from (L4).

Next assume that the antecedent of (S1) is false, i.e.
the antecedent of (S2) is true. We shall then derive a con-

" tradiction, showing that antecedent of (S1) must be true
and (3) holds.

If the antecedent of (S2) is true, then the consequent
of (S2) states that there is 2 message m such that R(a) <
R(6) < m >. This together with (2) shows, using {L3),
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acknowledged. that either R(6) = R(a) or R(6) < m >= R(a). Al
[ - but one of the relations in (2) must therefore be equalities, RN
F 7.2. Verification of the Protocol showing that either R(8) = R(a) or R(B) < m >= R(a). L

The following argument shows that the latter cannot be
We shall prove that the protocol behaves like a buffer. trae:
{~ I all modules are composed and the internal channels . L.
G a,B,7 and § are abstracted, the resulting network satis- Since |a| = co (from (52)) and |2(°)|' is finite, a must
1 gan it

fies the specification X = Y. The following specification be of the form a'm” for some sequence o’ whose last mes-
, will be proven sage is not m. Using (MSR1) and (MSR2) we get 8 < a
Ve ~ and || = oo, which implies that § is of the form §'m“ for
i N\{a,,7,6} sat X=Y (*) some ' whose last message is not m. It follows that

where N is the composition of the four modules R(a) = R(B) < m >= R(F'm*) < m >= R(F") < mm >

N = Sender||MS R||Receiver|| MRS

The formula () is proven using the abstraction rule and
the formula

X=Y~A
N sat (+9)
[lxl <o — |°l1|ﬂ|vh|r|6| < co]

The first conjunct X = Y of (++) follows by proving

(K<) = (X=1) )
AIXI = 00) — (¥} = o)

and using lemma (L6).
The formulas (MSR1), (MRS1) and (R2) together im-
pPly
§27=p<Za (1

which by (L1) implies

R(8) 2 R(7) = R(F) 2 R(a) (2)

To prove the first conjunct of (+ s s) we now assume
that [X| < co. Note that (S1) and (S2) imply |R(a)| < co.
Firet assume that the antecedent of (S1) is true. This
and (2) implies R(§) = R{a) using (L2), since |R(a)| is
finite. All relations in (2) must then (again using (L2)) be
equalities, and we conclude R(8) = R(a).
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which is a contradiction since (L5) states that an expres-
sion of the form R(a) can never contain two consecu-
tive duplicates of the same message. Thus we must have
R(B) = R(a).

The same argument can be used to show that R(6) =
R(4) is true by excluding the case that there is a message
m such that R(6) < m >= R(4).

Combining R(8) = R(a) and R(5) = R(q) in (2) yields
R(6) = R(a). Thus the antecedent of (S2) is false, giving
the desired contradiction.

To prove the second conjunct of (s s «), assume that
1X| = o0. X |R(a)] < oo then the antecedent of (S2)
must be true, since the consequent of (S1) states that
R(a) = number(X). But above it was shown that the
antecedent of (S2) leads to a contradiction (note that
we there never used the fact that {X| < oo, only that
[R(a)| < o0). Thus |R(a)| = oo. By (S1) and (S2) we
get R(a) < R(8). Using R(a) = number(X) (from (S1))
and R(5) < R(B) (from (2)) we see that R(A) contains an
infinite subsequence with alternating sequence numbers.
Therefore |[unnumber(R(8))| is infinite, whence |Y| =
by (R1).

The proof of the first conjunct of (+s) is now completed.
The second conjunct of (s+) ia verified by assuming that | X]|
and |Y| are finite, and proving that the other channels also
have finite length. This follows easily from the following
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formulas:
|X]# 00 — |a| # o (51)
BXa (MSR1)
=8 (R2)
§<9 (MRS1)

Finally, (+) is proven by (ss) and the abstraction rule.

Conclusion

We bave presented a way to formmalise the idea of
quiescence for (nondeterministic) asynchronous networks
{[Mis}). From an operational definition of networks we have
derived a compositional model that represents both safety
and liveness properties using quiescent traces.

A method for specification and verification of networks
through properties of quiescent traces has been presented.
We believe that the conciseness of the model allows short
specifications and verifications, but more experience with
examples is needed. It is sometimes difficult to prove prop-
erties of infinite computations. This was illustrated in the
example, where it was easier first to carry out the proof
assuming that the input sequence is finite, and then prove
the infinite case by a special argument.

So far, no syntax for processes has been mentioned,
from which a method of proving specifications about prim-
itive networks (containing one process) could be con-
structed. We are experimenting with a small CSP-like
language [H|, but presently only a rudimentary finite-state
language without variables or fairness constraints has been
considered.
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Appendix: Operational Semantics
Transition Systems

As described in section 3, a labeled transition system is
a quintuple < L, E, R, 0% 7 >. Here ¥ is a finite collection
of fairness sets [MP]. A fairness set is a set of transitions.
An infinite sequence of transitions is fasr iff for each fairness
set F € 7 the following bolds

If the sequence contains infinitely many configura-
tions in which a transition from F is enabled, then
infinitely often a transition from F must occur.

As an example, channel fairness can be modeled by
including, for each channel, a fairness set that contains all
transitions corresponding events on this channel.

Operational Semantics

The basic unit of description is a subnetwork and not
a process, as described in section 2. The transition sys-
tem that models a primitive subnetwork, consisting of a
process and its input channels, is obtained by composing
a transition system that models the process, and transi-
tion systems that model the input buffers. This can be
done using coupled transitions for communication, e.g. as
in [Mil]. .

A petwork N is modeled by the labeled transition sys-
tem < En, En, Ry, 0%, v >, which satisfies the following
requirements that reflect the asynchronous nature of com-
munication.

1) For each configuration oy € Ly and external input

event 1 € Ey there is a transition aN—"-oa'N € Ry
from oy labeled by s.

2) No fairness set in 7y may contain transitions labeled
by external input events.

3) All transitions labeled by internal events, external out-
put events, or silent events are elements of some fair-
pess set.

The motivation for 1) and 2) is that a network has
no control over external input events. The network can
never refuse to receive input messages, and it can not con-
strain the occurrence of external input events in infinite
transition sequences. Requirement 3) is a process liveness
assumption.

Since coramunication events are atomic it is now pos-
sible to use the techniques in e.g. [BHR|, [Mil] for syn-
chronous networks, and model communication in a network
by coupled transitions in subnetworks. The asynchronocus
nature of communication is captured in requirements 1) -
3). These requirements are sufficient to prove propositions
4.1 and 4.2 and theorem 4.3. It follows that our model can
describe any type of network where components can be
modeled by transition systems satisfying 1) - 3). In par-
ticular, it is not necessary that channels are perfect. The
essential ingredient is that it is possible to send a message
without cooperation by the receiver.

Operations

Composition, abstraction and renaming are defined as
follows in the operational semantics.

Composition: Let N = N,||...||Ni. The set of configura-
tions Ly of N is the cartesian product Ey, X+ - -x Zp, of the
sets of configurations of the subnetworks. A configuration
on of N is a k-tuple, written

ONn = (ON,) .-+ ON,)-

The transitions in Ry are obtained from the transitions
of the subnetworks as follows: If ¢ is an internal or silent
event of a subnetwork N;, or an external event of N, then
transitions labeled by e only concern one component oy,
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of on. This is formulated as the rule
GN, —.'.a,N'
{on,- ON) =={ON ey O 01 OM,)

On the other hand, if ¢ is an event on a channel internal
to N, but external to two subnetworks N; and N;, then
both components o, and oy, are involved in a transition
according to the rule

ey OTNgses

UN:_L’G;V,
1N o3 ONys o)

The network N inherits the fairness sets of its subnet-
works: For each fairness set F; of a subnetwork N; there is
a fairness set F of N that contains all transitions that are
derived from a transition in F; according to the above rules.
Note that the transition system of N fulfills requirements
1) - 3) above.

Abstraction: For each configuration oy of N there is a
configuration of N\ C, written ox \ C. Transitions labeled
by events ¢ not in C are unchanged

L] ]
UN‘ —_ GNI

(...,CN,,...,CNJ,...) —‘0(...

on—.-.a.n
on\C—oy\C

but events e on channels in C correspond to r-transitions.

on\C— 0ol \C

The network N \ C inherits the fairness sets of N: for

each fairness set F' of N there is a fairness set of N\ C
containing all transitions derived from a transition in F
according to the above rules.

Renaming: For each configuration o of N there is a con-
figuration of N(®|, written ox[®]. The transitions of N{®|

are obtained by renaming the events of the transitions of

N. Below, the function @ denotes the extension of & from

channel names to events (i.e. &((c,m)) = (®(c), m) and

&(r) =1).
ony —— 0y

oo 22 iy

The network N{®| inherits the fairness sets of N, i.c.
the fairness sets of N(®] are obtained by renaming the
transitions in the fairness sets of N according to the rule

above.
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.. A Novel Approach To Sequential Simulation

. Devendra Kumar

-

Department of Computer Sciences
o~ University of Texas at Austin
k: Austin, TX 78712

ABSTRACT
We present a novel approach to sequential simulation. In this approach we do not
require events to be simulated in the chronological order of their occurrence. Instead, at

any point in simulation all guaranteed events are simulated right away. This approach

Y x
Y fr

reduces the number of event list insertions in a number of simulation systems. In some
cases it eliminates the need for event list altogether. It also reduces the number of
scheduled events that do not take place, i.e., get cancelled later in the simulation.
Sometimes memory requirements may be reduced as well. We illustrate the approach

- with an example. The approach is based on a distributed simulation algorithm.

*This work was supported by Air Force Grant AFOSR 81-0205. e
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1. Introduction

A fundamental convention in traditional simulation is that events are simulated in
their chronological order of occurrence. The main reason behind this convention is as
follows. An event simulated later but with an earlier time of occurrence may affect an
event simulated earlier but with higher time of occurrence, making it incorrect.
However, we observe that often in practice certain events can be guaranteed to be
correct, and they are unaffected by the simulation of other events of earlier times of

occurrence. We take advantage of this in our approach to simulation. We do not

require events to be simulated in chronological order; rather, whenever an event is

guaranteed to occur it is simulated right away.

The main advantage of this approach is that insertions of scheduled events (as in

traditional simulation) can be reduced in number. One can often reduce the number of
computations of scheduled events that would get cancelled later in traditional

simulation. Sometimes this approach also ~ssults in reduced memory requirements.

The approach is derived from a distributed simulation algorithm. In distributed
simulation, the simulator consists of a set of communicating processes which are
assigned to several processors. We have adapted the algorithm to the case of a
uniprocessor system. Due to the uniprocessor environment, several simplifications result,

and new issues arise (e.g., scheduling of the processes). We have modified the algorithm

accordingly.
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A system to be simulated consists of a set of entittes that interact with each _}ﬁ

. other. At discrete instants of time events occur — each event is caused by an entity and %

- its occurrence affects the future behavior of zero or more entities. For example, an j'-i:f:l

event in a communication network could be the sending of a message from one process E:

- S

:f:' to another; in this case the sender and the recipient processes are affected by this event. :fj'.:}
: On the other hand, the event of broadcasting a message affects all the processes in the X

system. ic

) We briefly review the traditional event driven simulation here. The simulation

& program maintains a list, called the event list, of scheduled events that might occur in

the future. At an abstract level, a scheduled event can be defined by a tuple [e,t,i,5]

where e is an identifier of the event, t is the time at which event e is supposed to occur,
i is the entity that would cause e, and S is the set of entities that would be affected by

it.

To simulate an event, the simulation program finds in the event list the scheduled
event [e,t,i,S] with the minimum occurrence time t, and causes its entity i to simulate it,
then advances the simulation clock to t. The entities in set S may be affected by the
event occurrence — some of their old scheduled events may be deleted from the event

list and new scheduled events may be inserted into it.

At a given point in simulation, a scheduled event [e,t,i,S] is said to be guaranteed

if, based upon the events simulated so far, it is determined that this event will definitely

' be simulated. In other words, simulation of any other events before this scheduled
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event can not cancel it. As noted above, in general not all scheduled events are
guaranteed. This results in the following fundamental convention in traditional
simulation — events are simulated in the chronological order of their times of
occurrence. In other words, an event is simulated only after all events of earlier times of
occurrence have been simulated. (This convention is also followed in time driven

simulation, and not just in event driven simulation, for the same reason.)

We observe, however, that often in practice many scheduled events are indeed
guaranteed. For example, consider a FCFS queue with the convention that arrivals of
input jobs are simulated in chronological order. Here the scheduled events of service
completions are guaranteed to be simulated, since the arrival of new jobs can not cancel
them. In our scheme we simulate such guaranteed events right away, instead of first
depositing them into the event list and then waiting for the simulation clock to reach
that time. More specifically, whenever an entity i computes an event e that is
guaranteed to occur at time t, it goes ahead and simulates it. The tuple [e,t] is then
deposited in a buffer Bi,j for every other entity j affected by the event. An entity j
computes its events based on the information it has received from its input buffers B, i

for various entities i.

Since events in the whole system are not being simulated in chronological order,
there is no simulation clock maintained by the program. However, for any two entities
i and j, all the events that are caused by i and affect j are simulated in chronological
order. Thus, when a tuple [e,t] is deposited by i in the buffer Bi,j' entity j knows the
entire history of all events that are caused by i and affect j up to time t. This helps j in

its computation of future events.
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Obviously, by computing guaranteed events and depositing them in buffers, we
are avoiding the corresponding insertions in the event list, as required in traditional

simulation.
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The simulation program cycles through the entities — each entity computes
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guaranteed events and deposits them in the corresponding buffers. Each entity also

£

.

discards from its input buffers those elements that are no longer needed for future
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What happens when no entity can compute a guaranteed event? In such a
situation we revert back to the event list mechanism — the next scheduled events are é

computed and the event with the minimum occurrence time is simulated. Subsequently,

guaranteed events are simulated till the above situation arises again. Thus in the total
simulation, the simulator keeps alternating between "compute and simulate guaranteed
events” and "compute and simulate the scheduled event with the minimum occurrence
time" phase. (Henceforth we will call these phases: A and B, respectively.)
Advantages Of The Approach

In our approach we simulate guaranteed events right away. This avoids the
corresponding insertions in the event list. Insertions in the event list may be quite time
consuming, since the elements in the list need to be maintained in the order of

increasing time values.

Consider a scheduled event in traditional simulation that gets cancelled later
during the simulation. Obviously, the time involved in its computation and insertion in

the event list goes wasted. This can happen, for example, in a priority queue where the
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arrival of a job of higher priority will preempt the current job in service. In our
approach the number of such cases can be reduced. This stems from the fact that
events need not be simulated in chronological order. For example, for a priority queue
guaranteed output events may be computed by first simulating input events up to an

appropriately higher time.

Sometimes our approach may result in reduced memory requirements. For
example, in a tandem network of FCFS queues, in traditional simulation we need
enough buffers to hold all the jobs present in the system at any time. In our approach,
we may simulate the complete progress of one job, then simulate the complete progress

of the next job, etc. Thus we would require memory to hold one job only.

3. An Example
We illustrate our simulation method by considering a simple system — a driver’s

license office, shown schematically in figure 1 below.

— +

Door D1 / Issuing Queue (IQ)
Door D2 Exit El

Testing Queue (TQ) ||

Exit E2

Figure 1: A Driver’s License Office

Applicants for a license enter the office via door D1. There are two kinds of applicants

— those who currently hold a license and simply want to renew it, and those who
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currently don’t have a license and wish to get one. Applicants for a renewal enter a
"license issuing area® via door D2. There is an issuing officer who takes their
application, verifies the information therein, takes a photograph, accepts the license fee,
and issues a license. Having received the license, the applicant leaves the driver’s license

office via exit E1.

Applicants without a license go to a "testing area" where a testing officer gives
them a driving test. Some of them fail the test, and leave the testing area via exit E2.
The successful applicants go to the license issuing area via door D2. From here on, they

go through the same activities as described above for the license renewal applicants.

All the applicants arriving at the license issuing area form a waiting line (called
the issuing queue or 1Q). The issuing officer deals with one applicant at a time, in the
FCFS order. Similarly, all applicants going to the testing area form a waiting line

(called the testing queue or TQ), and the testing officer gives them the test in the FCFS

order.

The problem is to simulate the events that occur in this system. An event is the

arrival of an applicant at D2, 1Q, TQ, E1 or E2.

In an actual simulation, one would normally compute the interarrival times at the
door D1, and service times for the queues IQ and TQ by sampling from certain
prespecified probability distributions. Similarly, one would determine the type of an
applicant (whether applying for a renewal or otherwise) and whether an applicant

taking the driving test fails, by sampling from prespecified probabilities. However, for
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the ease of exposition, we will assume a deterministic system with the following
characteristics:
1. Applicants arrive at the door D1 at times 100, 200, 300, .... Service times at

IQ and TQ are 105 and 500 respectively.

2. Applicants 10, 20, ... need to take the test; others are applying for a renewal.

3. For the applicants taking the test — the first one fails the test, next one

passes, third one fails, and so on.

4. We assume that only 20 applicants enter the system.

We assume that the only information of interest about an applicant is his id.
Hence the element e in a tuple [e,t] would refer to the applicant’s id. We will use the
following order in which the entities are reached by the simulation program to compute
their guaranteed events. The phase of computing guaranteed events (i.e., phase A)
consists of an alternating sequence of two subphases. In subphase 1, we follow the
progress of applicants from the door D1 to exit E2 or door D2 (as the case may be), one
applicant at a time. This subphase is over when an applicant reaches door D2. In
subphase 2, we follow the progress of applicants from the door D2 to exit El, one
applicant at a time. This subphase is over (and subphase 1 starts) when no more
applicants can progress from door D2. At the start of subphase 1, if no applicants can

progress, then we enter phase B of the algorithm. In phase B, obviously we have to

consider only the scheduled event for the door D2.
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Below we show the sequence of actions taken by the simulation program.
Specifically, we show the sequence in which tuples are computed for various buffers, and
the computation of scheduled events in phase B. In the following, a quadruple (e,t,i,j) is
used to state that tuple [e,t] is deposited in the buffer Bi,j' We refer to an entity i by
its symbolic name D1, D2, E1, E2, IQ, or TQ, instead of an irteger. The buffers are
referred to in the similar way. Af)plicant ids are assumed to be Al, A2, ....

1. Tuples buffered:

(A1,100,D1,D2), (A2,200,D1,D2), ..., (A9,900,D1,D2).

This simulates the arrivals of applicants Al, ..., A9 at door D2 at times 100,
«sy 800. During this simulation period, entity D2 can not compute its
guaranteed next output events, since it has to output the tuples in buffer
(D2,IQ) in the chronological order. If it deposits the tuple (A1,100), it
doesn’t know if there would be a tuple deposited on buffer (TQ,D2) later

with a time component less than 100.

2. Tuples buffered:

(A10,1000,D1,TQ), (A10,1500,TQ,E2).

This simulates the arrivals of applicant A10 at TQ and E2 at times 1000 and

1500 respectively.

3. Tuples buffered:
(A11,1100,D1,D2), (A12,1200,D1,D2),

(A19,1900,D1,D2).
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This simulates the arrival of applicants 11, ..., 19 at door D2 at times 1100,

., 1900. Note that entity D2 still cannot compute an output tuple.

4. Tuples buffered:

(A20,,2000,D1,TQ), (A20,2500,TQ,D2)

This simulates the arrivals of applicant A20 at TQ and D2 at times 2000

and 2500 respectively.

5. Tuples buffered:
(A1,100,D2,1Q), (A1,205,IQ,E1), (A2,200,D2,1Q),
(A2,310,IQ,E1), ..., (A9,900,D2,1Q), (A8,1045,1Q,E1),
(A11,1100,D2,1Q), (A11,1205,]Q,E1), (A12,1200,D2,1Q),

(A12,1310,1Q,E1), ..., (A19,1900,D2,IQ), (A19,2045,1Q,E1).

This simulates the arrivals of applicants Al, ..., A9 and All, ..., Al9 at IQ
and E1. Note that after computing the above tuples, D2 can not compute
its next output tuple since it doesn’'t know the simulation time of next tuple
to arrive in the buffer (D1,D2). At this point D1 also can not compute an

output (since it has simulated all 20 applicants). Hence the algorithm enters

its phase B. As mentioned before, we need compute only the next scheduled

event for D2. This scheduled event is the tuple (A20,2500). PL_J
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6. Tuples buffered:

(A20,2500,D2,1Q), (A20,2605,1Q,E1).

This simulates the arrivals of applicant A20 at IQ and E1. At this point the
algorithm again enters phase B. Since there is no scheduled event for D2,

simulation ends.

4. Further Improvements

We mentioned in section 2 that the simulation program cycles through various
entities to compute their guaranteed events. It is possible that when a particular entity
is reached, it has nothing to output. This wastes the time involved in reaching this
entity and checking this condition for the entity. Depending on the particular system
being simulated, one could possibly define an order in which to reach the entities such
that the number of such cases is reduced. This order could be defined either statically
or dynamically. For example, in a tandem network of FCFS queues, one may use the
same order of entities in which a job arrives at them (statically defined order). In
simulating a tree network rooted at a source process that generates jobs, one may follow
the progress of one job from the source to a sink, then follow the next job, etec.
(dynamically defined order). Now we define a heuristic to reduce the number of such
cases in general. We keep a list of "potentially active" entities. Any entity currently
not on this list is guaranteed not to be able to compute a guaranteed event. The
simulation brogram reaches the entities by going through this list. When an entity has
computed all its guaranteed events, it is removed from the list. When does an entity

enter the list? One heuristic would be — whenever it receives an input. In a specific

e T b e d e e s
' R M Y D LAy

e

LA

R
1, 1

oo .,,,
T IERER | N AR RN
. .)- Hhh Y e e

ey 2

v
'.n'- v"A A )

f‘p,

P -'.."f'('..f“ 1,
o

180
il &

1 v},
L] 'l_‘,l:t



r I

et
1 ’: application, one could possibly define more appropriate boolean conditions for the L_J
- specific entities. It would be helpful to keep a boolean variable for each entity to check ::Ei:::‘i
. whether it is on the list currently; it should be checked before evaluating the above -_.‘:
- boolean condition. {
y sy
:::; Consider an -instant when phase A is over, i.e., no guaranteed events can be \
computed for any entity. Which entities should compute their next events? In general \
= not all of them. For a particular system certain entities may be known not to compute -
:u the scheduled event with minimum time. A FCFS queue is one such example. We need -«‘:-
not consider such entities in computing the scheduled events. ;:-x,
™
- Earlier we suggested that in phase B we compute all the scheduled events afresh, ‘ii);
SN
- i.e., the scheduled events computed in the current occurrence of phase B are not saved E:
:. to be used in the next phase. Sometimes, several scheduled events computed in phase B ‘
" remain valid even in the next occurrence of phase B. Here we suggest a heuristic to take ¢
* advantage of this. One may keep an event list of the scheduled events computed during o
ne phase B. One would also keep a list of those entities whose scheduled events must be ‘_:.
computed at the next occurrence of phase B. (If these entities have elements in the :\
event list then they must be removed from the event list in the next occurrence of phase 1" =

B B.) This list is similar to the "potentially active" list mentioned above. As before,

appropriate conditions may be defined to decide when an entity should be inserted in

- this list. Also, a boolean variable may be kept for each entity to check if it is currently

f. on this list.
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5. Discussion and Conclusions

We have presented a new approach to sequential simulation. In this approach we
do not require that events are simulated in their chronological order. This is a major
point of deviation from traditional simulation. This approach results in reduced
number of insertions in the event list. It can sometimes reduce the number of
computations of scheduled events that do not actually take place. Also, it ca.ﬁ reduce
memory requirements. These advantages would depend on the specific system being
simulated. For better performance, one has to take decisions regarding the following
issues: (i) In what order are the entities reached to compute their guaranteed events, (ii)
When phase B begins, which entities should be reached to compute their scheduled
events, and (iii) Should one keep an event list to hold scheduled events previously
computed, so that some of them could be used in the next occurrence of phase B. We

have suggested heuristics for these issues.

Our approach is based on a distributed simulation algorithm. In distributed
simulation, usually each entity is simulated by an autonomous process and various
processes are mapped onto processors. In order to achieve a high degree of parallelism,
the processes are asynchronous and there is no global simulation clock. Processes
synchronize with each other by sending and receiving the tuples [e,t]. In general,
deadlocks may arise resulting from a cyclic waiting among the processes. One method
of handling the deadlock problem is to let the simulator deadlock, to detect deadlock,
and to recover from it [Chandy 81, Kumar 85¢c]. We applied this algorithm to the case
of a uniprocessor system. In such a system, deadlock is easy to detect (when no entity

can compute a guaranteed event, i.e., the list of "potentially active" entities is empty).
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13
Several other algorithms have been proposed for distributed simulation [Chandy 79a, fz:::;:
Peacock79, Jefferson82, Misra 84, Kumar 85c], but they involve too many overhead ".:::Z‘_:

messages and we expect that this may severely degrade performance on a uniprocessor

system.
We have shown in this paper that an algorithm developed for distributed 1
simulation could also be useful for sequential simulation and it can suggest a new ,1
S
approach in this environment. We expect similar lessons to be learnt in other "":d

application areas of parallel computing.
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- ABSTRACT ]
a We present a high speed distributed simulation scheme that can be used to simulate :;:
: any feedforward network of processes which communicate solely by exchanging ~.\
messages. The scheme is simple to implement and the number of overhead messages is ':'
- nearly zero. We prove the correctness of the scheme and study its performance both b_:s.:

analytically and empirically. Under reasonable assumptions, it is shown that the i""ﬁ
= scheme offers a substantial speed up over sequential simulation. In particular we show

that for a large class of networks, the speed up over sequential simulation is .,
N proportional to N, where N is the number of processors used in the distributed ¥y
. simulator.

*This work was supported by Air Force Grant AFOSR 81-0205.
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1. Introduction

In general, simulation is one of {he most expensive software to run; each simulation run
usually requires large execution time and storage. The problem is compounded with the
: emerging need to simulate distributed systems that consist of large numbers of

interacting components. One technique to counter this problem is to partition the

simulation software into a number of autonomous processes that communicate solely by o

exchanging messages. These processes are executed in parallel on the different processors .‘-—]
- of a distributed system, thus reducing the total execution time. This technique is known ‘,*
as distributed simulation [Chandy 79a, Chandy 81|, and the set of communicating 5
processes that perform the simulation is called a distributed simulator (or logical
system).

Many distributed simulation schemes have been proposed in the literature [Chandy
79a, Chandy 79b, Peacock 79, Chandy 81, Jefferson 83a, Jefferson 83b]. They can be
classified into two categories depending on how they deal with deadlock situations that
may arise between the communicating processes in a distributed simulator. The scheme

P in [Chandy 81] allows deadlocks to occur, but they are later detected and recovered
from. The schemes in [Chandy 79a, Chandy 79b, Peacock 79] allow the processes to
exchange overhead NULL messages whose sole purpose is to avoid communication
deadlocks. For a detailed and complete survey on distributed simulation schemes, we
refer the reader to [Misra 84, Kumar 85).

Unfortunately, except for one simulation study [Seethalakshmi 79] whose results are
nonconclusive the performance of these existing schemes have not been analyzed yet. -
This situation leaves the interesting question *how good is distributed simulation versus Aj::.—:
sequential simulation?® basically unanswered. This paper represents a first step towards A
answering this question. In particular, we present a new distributed simulation scheme
called TBASIC, and show that in many cases TBASIC can achieve a speed-up
proportional to N over sequential simulation, where N is the number of processors used
to run the distributed simulator.

Following the introduction, the paper is organized as follows. In Section 2, we present
the scheme TBASIC and prove its correctness. In Section 3, we analyze the performance
of TBASIC in simulating tandem queuing networks. In Section 4 we present an
approximate analysis for the performance of TBASIC in simulating feedforward queuing X
networks, and report on an empirical validation of this approximate analysis. In Section

¢ 5, we use this approximate analysis to evaluate TBASIC, i.e., determine its performance Ly
in simulating various classes of feedforward queuing networks. In particular, we show ROk
that for a general class of these networks the speed up attained by TBASIC over
sequential simulation is proportional to the number of processors in the distributed :‘ll:]
simulator. Concluding remarks are given in Section 8. S
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2. The Scheme TBASIC

In this section we characterize the physical systems that can be simulated using our
scheme TBASIC. We then present TBASIC and discuss its correctness proof.

2.1 Physical Systems

We call the systems to be simulated by TBASIC physical systems. A physical system
consists of a finite number of physical processes (or pp’s for short) that interact with
each other solely by exchanging messages via unbounded, one-to-one, one directional
communication lines. The topology of a physical system is assumed to be acyclic, and its
communication delays (i.e., the time between one process sending a message and the
message being placed at an input line of its destination process) are assumed to be zero.

[Kumar 85] discusses how any discrete event system can be modeled as a physical
system.

The message history up to time t for a line (i, j) in the physical system is defined as
the tuple sequence <(t,, m,), (t5, my), ... (t,, m;)> where m;, m,, ... is the sequence of
messages sent on this line up to time ¢, and t; < ty < ... < t, < t are the times at
which these messages were sent.

We assume that if the message histories of all input lines of a pp is known up to time t,
then the message history on each output line of the same pp is computable up to at least
time t. This is called the realizability property.

We assume that any physical system is required to be simulated for a time period
[0, Z], where Z is any positive value.

Five example of pp's are as follows: (These are called queuing processes since as
discussed later they can be used to model queuing networks. These processes are shown
in figure 1.)

1. A delay process has one input and one output lines. It processes its input
messages in a FCFS queuing discipline, then sends each of them out after a
finite service time. The service time may be deterministic or probabilistic.

2. A merge process has two or more input lines, and one output line. Whenever
it receives a message on one of its input lines, it sends it via its output line
after zero delay. If occasionally two or more inputs are received at the same
time, they are put together in a single message and sent out via the output
line.

3. A fork process has one input line and two or more output lines. Whenever it
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E:: receives a message on its input line, it sends it out along one of the output
lines, after zero delay. The output line for a message is chosen in a
. probabilistic manner, according to predefined branching probabilities for the
output lines.
- 4. A source process has no input lines, and one output line. It simply generates
- messages and sends them out.
e
~ 5. A sink process has one input line and no output lines. It simply absorbs its
.; input messages.
2.2 TBASIC
) In TBASIC, each physical system is simulated by a distributed simulator called a
E logical system. A logical system is a network of processes, called logical processes (or lps
for short) that is topologically isomorphic to the physical system it simulates, with each
pp being replaced and simulated by one lp. Each lp executes a loop consisting of three
phases, called the computation phase, the termination checking phase, and the input
phase.
| n 1. In the computation phase, the lp computes for each output line a (possibly
' empty) set of output tuples (t, m) in the chronological order of their t
components, and sends them out.
] 2. In the termination checking phase it checks if it has received an input with

t-value = Z on each input line. If so, it terminates. Otherwise it goes on to
the input phase.

e
P Y

3. In the snput phase it waits until at least one more message has arrived on its
input port; it then receives all available messages in FIFO order and stores
them in its line buffers, before returning to the computation phase.

In the computation phase, if the output history is known up to a time > Z, then only
the tuples, whose t-values were < Z, are sent out. Then, if the last sent tuple on a line
had a t-value < Z, then a special termination message (Z, NULL) is sent out on that
line. This tuple informs the receiving lp that no more tuples would be sent out on this
line.
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2.3 Correctness of TBASIC

We now show that TBASIC is both safe and live. The safety of TBASIC means that
at any point in the simulation, the sequence of tuples sent or received on a line correctly
simulates a sequence of messages sent on the corresponding line in the physical system.
In other words, tuples are sent on every line in chronological order of their t-values, and
every tuple (t, m), except for the termination message, corresponds to a message m sent
on the corresponding line in the physical system at time t. Moreover, no message on that
line is skipped in the sequence of tuples up to time t.

The liveness of TBASIC means that within a finite time from the start of simulation, a
tuple with t-value = Z would be sent on each line in the logical system, and each lp
would terminate. These safety and liveness properties follow from the next two
theorems respectively.

Theorem 1: Let the sequence of sent tuples on some line (i, j) up to some point of the
simulation be <(t;, m,), ..., (t, my)>. Then each of the following assertions holds.

Lt <t <..<t, <Z

2. For any tuple (t;, m,) in this sequence, except for the termination message if
any, message m, was sent on line (i, j) in the physical system at time t,.

3. If a message m was sent in the physical system on the line (i, j) at time t
where t < t,, then the tuple (t, m) is present in the above sequence.

il

A proof of this theorem is by induction on the number of events in the logical system;
it is similar to that of theorem 4 in [Chandy 78a]. A proof of the next theorem is given
in appendix A.

Theorem 2: A tuple with t-value = Z will be sent, and received, on every line in the
logical system within a finite time from the start of the simulation.

O

3. A Performance Analysis of TBASIC in Simulating Tandem Queuing
Networks

In this section, we consider a class of physical systems, called tandem networks, and
derive the ratio of the required simulation time when using a sequential simulator to
simulate any network in this class to the required simulation time when using TBASIC
to simulate the same network. More specifically, we derive a formula for the following
ratio when the physical system is a tandem network:
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SR = Speed-up ratio
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. = SST/DST, (1)
kx \
where SST = Sequential simulation time, i.e., the time taken by a sequential g-jj'.:'.';
i~ simulator to simulate some physical system up to time Z, and ;’_7;:';
S Fals
Pa
- DST = Distributed simulation time, i.e., the time taken by a logical system to LA
o simulate the same physical system up to Z. :Z:E:
5
ESES
B A tandem nelwork is a linear sequence of pps; the first pp in the sequence is a source, r-!:t:'
N the last one is a sink, and the intermediate ones are delay pps (see figure 2). In TBASIC, oand
| a tandem network is simulated by a logical system that is a linear sequence of lps. The l_‘%:
r following parameters are used in the analysis below. ::‘.::’::
N = the total number of pps in the tandem network -.-;i
. o)
i (It is also the number of lps in the simulating logical system.) A
M= the total number of messages sent out on line (i, j) in the physical
system.
. (It is also the total number of messages sent out on line (i, j) in the
- logical system.)
\ 1/u; = the constant processing time taken by lp i in computing one output
tuple
g = the propagation delay on line (i, j), i.e., the time delay between the
sending of a message by Ip i on line (i, j) and its reception at the input
3 port of Ip j
e~
Dijr= the departure time of the r*® message on line (i, j) from Ip i =
13> ~ 43
A;;, = the arrival time of the rth message on line (i, j) to Ip j gﬁ%
.d ‘."r |
L D;, = the departure time of the r'® message from Ip i 2 ’
A;, = the arrival time of the r*h message to Ip i :“';
;E:;I:
1
b A proof of the following theorem is in appendix A. ""E
o
i
.:_:."-_
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Theorem 3: Fori=1,2,..,N-l,andr=1, 2, ..,

Dy p = (oy *+ ¢; = 1/vy) + /vy (2)
i

z (1/#k)

k=1

i

$3 = & Moy x and

k=2

i

min {#k}

k=1

where oy

vy

From theorem 3,

A =Dy p * 75y 4

(01-1 + ¢i - 1/1/1_1) + r,Vi_l (3)

Therefore, the distributed simulation time DST can be computed as follows:
N

max {A; .. where r = M, ,}

i=2

DST

|
max {("1-1 + ¢i - 1/”1_1) + “1'1,1,01'1} (‘)
i=2

Formula (4) is exact; but to gain more insight into it, we better approximate it by the
following (approximate) assumptions:
1. If the value of Z is sufficiently large then Mi-l,i would be large, and DST can
be written as:
N-1
DST ~ max (M; ;,,/v;} (5)
i=1

2. If all Mi,i +1's are roughly equal (this would happen, for example, if the sum of
service times of delay pps is smaller than interarrival times of messages
generated by the source pp. This would also happen if the source pp stops
producing messages long before time Z, so that the last message does reach
the sink by time Z), say M, then DST can be written as
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N-1
i=1
= wyu-i (6)

3. Furthermore, if all 4;'s were equal, say , then
DST =~ M/u | )

The sequential simulation time SST may be approximated by
N-1
i=1

This approximation is arrived at by several approximating assumptions. (For example,
we have ignored the processing time involved in managing the event-list.) It is expected
that, normally, the actual value of SST would be larger than the above approximation.

The speed up ratio SR can now be computed from (7) and (8).
SR=N-1 (9)
This formula shows that the speed up offered by TBASIC in the case of tandem

networks is proportional to N, where N is the number of processes in the distributed
simulator.

4. An Approximate Performance Analysis of TBASIC in Simulating
Feedforward Queuing Networks

An important class of physical systems that can be simulated using TBASIC is
feedforward queuing networks. In section 4.1 we present an approximate analysis to
compute the ratio SR when the simulated physical system is a feedforward queuing
network that consists of pps from the five classes- delay, fork, merge, source, and sink
defined in section 2.1. In section 4.2 we use simulation to validate this approximate
analysis.

4.1 Approximate Analysis

In order to compute SR, we first compute the quantities D, . . for every line (i, j) in the

iir =
logical system and for every value of r. (Recall that D; ., is the time at which the rth N
message is sent along line (i, j) in the logical system.) The analysis is approximate, since jf:\
it is based on the following three assumptions. ,:;\
LIt D;;, = A+ B *r where A and B are constants that do not depend on r, 3 ~
then Di,j,r can be approximated by B * r. Note that as simulation progresses E\-\
N
i
R
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and r becomes large the effect of the constant term A diminishes. Similar
approximation is made for D; | also. (Recall that D; , = the time at which lp i
sends out its r*® message.)

2. For any fork lp i with one input line and n output lines (i, j;), .-, (i, j,), and
with branching probabilities b; .}, ..., b; ;, respectively,

D. = Di’,/b- for every s = 1; 2, ..,0.

ijs,r i,js

3. The message flow on every line in the physical system is uniform, i.e., the rth
message on line (i, j) in the physical system is sent at time r/)\;

iy
a constant independent of r. (This assumption has no justification except

where )‘E,j is
that it simplifies our analysis and, as demonstrated by the simulation results

in the following section, it has no significant effect on the overall prediction
of TBASIC's performance.)

Theorem 4: Under the above approximating assumptions,

Dy g.r = T/ (10)
where X, ; is a constant independent of r, called the rate of message flow along line (i, j).
]

The proof of theorem 4 is given in appendix A. The proof shows how to compute the
rates );; of message flow on different lines in the logical system. (A message flow
satisfying (10) is called a uni form message flow.)

In order to compute DST and SR, one would compute the values Nij and Mi,j for every
line (i, j), where Mi'j’s can be computed by analyzing the physical system. From this,
one may compute DST and SST as follows.

DST = max {ui.jlxi,j} (11)
i.j
i.j

SR can be computed from (1), (11), and (12).

SO
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4.2 Empirical Evaluation of the Approximate Analysis

In order to validate the above approximate analysis, we considered 10 feedforward
queuing networks, and for each of them, we

1. simulated the corresponding logical system and measured its simulation time
DST,,, and

PR
P

2. computed the distributed simulation time DST, of the given network using
(11), and finally

=
A |

l4.7 EARS

3. compared DST, with DST,

As shown in appendix B, in each experiment the measured DST,, was within 4% from
the computed DST,. (The simulations were coded in the language MAY, which is a
simulation language for distributed systems [Bagrodia 83a, Bagrodia 83b], and were run
on a VAX 780. For further details concerning the simulations, we refer the reader to
appendix B and [Kumar 85].)

v ¢ A
e ot e

5. Evaluation of TBASIC Using The Approximate Analysis

i In this section we evaluate the performance of TBASIC in simulating several classes of

feedforward queuing networks using the approximate analysis discussed in the previous
. section. We conclude that for many classes of these networks the speed up ratio (SR) is
' proportional to N, where N is the number of lps in the logical system (or equivalently the
number of processors used in the distributed simulation). For the following analysis, we
assume that the value of y; for each Ip i in the logical system is the same, say 4, and that
o the physical system has only one source. We further assume that a delay pp can process

its input messages as fast as they arrive.

The proofs of theorems 5 and 8 below, are given in appendix A.

Theorem 5: The message flow rate \; ; on any line (i, j) in the logical system is given by

Aj = #-Pij (13)

where p; ; = the path probability of line (i, j), i.e., the probability that a

> given job from the source pp would traverse this line.

]
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L Theorem 6:

{

]

E ! DST = (u/s).2 (14)
) SST = (u/u).2.4 (15)
fe
b SR =¢ (16)

s where Z = is the simulation time period

b

}

. pg = is the message flow rate from the source in the physical
ke system, and
{ ¢ = L p;; where the sum is over all lines (i, j) (17)
b
0
E] It follows from theorem 6 that SR > (N-1).p_;, where p . =
min {Pi,j’ where (i, j) is a line in the logical system}. It also follows, that SR = 1 if the
F} queuing network consists of a source followed by a sink. Otherwise, SR > 2.
_ Next, we consider some specific classes of feedforward queuing networks, and determine
ﬁ their SR ratios in the light of equation (186).
: &
v 5.1 A Tandem Network
a For a tandem network of N processes, the ratio SR = (N-1). This matches our earlier
N result, (9).
e

5.2 A Parallel Network

< A parallel network has K paths from a fork process to a merge process. The ith path
contains L; delay processes. (See figure 3).

T Suppose one or both of the following conditions hold:

1. The branching probabilities at the fork process are all equal, or

2. L;’s are all equal.

Then it can be shown that

SR = (3K-4)/K + N/K

o8
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5.3 A Serial-Parallel Network
Figure 4 shows a serial-parallel network with S stages. For any branching probabilities,
we obtain:

SR = 3/4 N - 1/2

5.4 A Full Tree Rooted at a Source
Figure 5 shows an S-stage full-tree rooted at the source. Assume that each fork process
has B output branches with arbitrary branching probabilities. In this case,
SR = 2.logg|(N.B- N - B + 3)/2],
for B=2, SR = 2.log,(N+1) - 2
and for B=3, SR= 2.logy,N

5.5 A Non-full Tree

An example of a non-full tree is shown in figure 6. Assume that in the shown tree the
branching probability at a fork for the line going to a delay is a. (The other branching
probability is 1-a.) Thus,

SR = 2 + (1+a)/(1-a) .[1-aN/3- 1)
Notice that,

fora=0, SR=23,
for a == 1/2, SR = 2 + 3.[1 - 1/2(N/3-1)] ang
fora=1] SR=2/3.N

6. Discussion and Conclusions

Distributed simulation using the scheme TBASIC offers a substantial speed up over
sequential simulation in a large number of cases. For the serial-parallel networks
considered, the speed up ratio is linear with N, where N is the number of processors used
in the simulation. For full trees the speed up is logarithmic. In some networks, the speed
up is only a constant. However, it follows from theorem 6 that the speed up ratio is > 2
in all networks (except one trivial network).

Since there are no overhead messages in TBASIC, it seems that TBASIC may offer the
best performance that is possible by distributed simulation, in simulating feedforward
networks. Other schemes, e.g. [Chandy 79b] and [Chandy 79a], involve overhead
messages. It was noted in [Chandy 81] that some of these schemes require too many
overhead messages causing their performances to degrade considerably.

Also, it seems that performance of a distributed simulation scheme would depend on
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for feedforward physical systems. One avenue of future work would be to consider other

N

Y

the characteristics of physical systems being simulated. Note that TBASIC works only :
schemes suitable for specific classes of physical systems. -
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Appendix A: Proofs of Theorems

Proof of theorem 2: We say that at a moment during simulation, the logical system
is deadlocked if all of the following conditions hold:-

1. The t-value of at least one line is < Z (the t-value of a line is the t-value of

T e e _
RSO ML LI . *
. L AR .
. el e e e . e e O]
R ' .
KA i AT ' ‘e A AR
S ’ . e LI . A
Pk R SRR P | PR
PR N ORI PR P WS PRy s .

Y]]
. H

the last message sent on it),

o ol

Ve,
RPN REY,
e

2. there are no transient messages, and

3. every lp is either waiting for input or is terminated.

We first show that the logical system is deadlock-free. Suppose, on the contrary, the
logical system is deadlocked. Consider any line (iy, ij) with t-value < Z. By the
realizability property, there exists a line (i3, i) with t-value < Z. Continuing in this
manner we get an infinite sequence of lines

(i2’ il)v (i37 i2)1 (i4’ i3)’

But, this contradicts the fact that the logical system has a finite number of lines and is
acyclic. Therefore, we conclude that the logical system is deadlock-free.

Thus, if the t-value of a line is less than Z, then within a finite time a message would
be either sent or received on some line. However, the total number of messages sent in
the logical system is finite. This is based on our assumption that in the physical system
the total number of messages sent on any line up to time Z is finite. On any line in the
logical system there is at most one termination message; thus from the safety property of
TBASIC, the total number of messages on any line in the logical system is finite. The
result follows since the total number of lines in the logical system is finite.

The theorem follows, since the logical system cannot deadlock, and the total number of
messages sent in the logical system is finite.

Proof of Theorem 3: We first write down the equations defining system behavior.
Then we prove that (1) is the solution to this system of equations. For simplicity of
discussion, let us define

01 = 0 and R
D,,=0ifi=0o0rr=0. L

Then, the values D; , must satisfy the following system of equations:
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Fori=1,2,..,N-l,andr=1,2, ..

D;, = max {Di 1.1 Dy, + m )} + 1k

We now prove that values of D, , as given by (1) are the solution to the above system
of equations. The proof is by induction on i.

Base Case:
i=1.

We can establish this case by induction on r, in an obvious way.

Inductive Case:

Suppose (1) is the solution to the above system of equations for all pairs (i, r) where
i=12 .,k(k>1)andr=1,2, .. Consider i = k + 1. We establish (1) for this
case by induction on r.

The base case (r = 1) is obvious. Let us consider the inductive case (r > 1). Since
i > 1and r > 1, by the inductive hypotheses (on i and r), Di,r-l and Di-l,r can be
obtained from (1). Thus,

Djr1 =i+ ¢~ 1y + (r-1)/y
— [ai + ¢i + (r‘l)/Ul] - l/Vi and

Dy, =11+ ¢y~ vy +1/vy
Hence Di-l,r +rgi =0+ ¢- /v, + r/"i-l
== [ai + ¢; + (r'l)/"i—l] - l/ui
Consider the following cases:
Case 1: p < vy
Then v; = y; < v, ; and
Di; =Djpq + Uy
=o;+ ¢ + (r-l)/ui
Case 2: 4, > v,
Then v; = v, | and
Diy =Dpye + Mg + 1/p;
=o;+ ¢; + (r-l)/ui

In both cases we get the same value for D;, as the one given by (1). This proves the
theorem.

[ v e ey
. . . .
ST o N ey
LN . .

PN N » oy

LS
v
LS

. ‘e e e e e s [
ol M I S I " A
. . ' . A .
e R e 2 W e [
RN DU ¥ RS LI SN S S S M S SO L SO, N PE. 9 53




'- L4 -I

“e
haRTh |

TR S WY

L a4t S it 8- mAde da gn Mudl el Motk Aen S Mk RS Stk it tanth Abadh nadd o inn B dun - R R L U AR T e M T Vo T T 178 1M W W W YYW LTw T v.rv[‘\:':i':\:'.ﬁﬁ‘i"‘l’!
'

15

Proof of Theorem 4: Define the level I(i, j) of a line (i, j) as:
I(i, j) = the maximum path length from any source lp to lp j.

{Gince the logical system is acyclic, I(i, j) is well defined.)

We compute the rates of flow on the lines inductively, in increasing order of their
levels. Specifically, at the k*® step in the induction, we compute the rates of flow on the
lines whose level = k.

Base Case (k = 1):

Any line (i, j) whose level = 1 must be an output of a source node (i.e., i is a source
lp). Thus, Di,j, = r/[li.

Inductive Case (k > 1):

In this case, Ip i may be a delay, fork, or merge process.

Case 1:
Pp iis a delay pp with input line (q, i).
Obviously, in this case I(q, i) = I(i, j) - 1. Therefore, by the inductive hypothesis,

Dy = /g,
Hence A ;== 7., + /)
By induction on r, or directly from (1), it can be shown that

Thus Dy, = [rg; + 1/max{>g;, #}| + r/min{>g; #;}

~ l‘/min{xq'i, [li}

Case 2:

Pp iis a fork pp with input line (q, i) and output lines (i, j1), (i, j2), ..., (i, jn). One of
these output lines is the line (i, j) with branching probability b; ;-

Obviously, I(q, i) = I(i, j) - 1. Therefore, by the inductive hypothesis, Dq,i,r = r/xq,i.
D; ,, the time at which Ip i sends out its rth message is r/min{) }. The proof of this

is the same as in case 1.

q’ii ”i

By assumption 2,
D;jr = Dis/bij
= r/[b|’j . min{)‘q’i, “I}]
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Case 3:
Pp i is a merge pp with input lines (11, i), (12, i), ..., (In, i) and the output line (i, j).

Obviously, the level of any input line of Ip i is < (k - 1). Therefore the inductive
hypothesis is applicable to the input lines.

Lp i waits till it has at least one input tuple on every line. It picks up the tuple with
minimum t-value, removes it from the line buffer, and sends it out.

For simplicity of discussion, let us first assume that 1/4; = 0. We will discharge this
assumption later. Consider a time interval [0, T|. Fors =1, 2, ..., n, let

= the number of messages received on the line (lIs, i) in this interval, and

T, = the t-value of the last message received on line (ls, i) in this interval.

By the inductive hypothesis,
r' I xls,l .T

By assumption 3,
T’

s rs/ )‘is,i

[xh,i/xis,i] .T

Suppose the minimum value of [xls,i/xls,i]’ s =1, 2, ..., n corresponds to line (lu, i). Lp
i would send all the inputs received on this line; and also, from other lines, those tuples
whose t-values are < T . Thus the total number of messages that Ip i sends out in the
interval [0, T] is,
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Thus, output flow is uniform and

M = Ogi/Mad) - N

MR

y _In the above discussion for case 3, we assumed that 1/4; = 0. Now let us consider the
™ general case when 1/y; may be non-zero. In this case, obviously
B Ny = min {u;, [(gi/Mg,i) - Nl}

: This completes proof of theorem 4, and also shows how to compute the rate of flow on
s various lines in the logical system.

rou
ot

Proof of Theorem &: For any line (i, j) in the physical system, by induction on the
level of (i, j) it can be shown that,

[+ ighe

| S,
Mj = #sPij

Sl S e
SR
0

where x;,j = the message flow rate on the line (i, j) in the physical system

i and

#, = the message flow rate at the source pp

o Using this, theorem 5 can be established, again by induction on the level of line (i, j).
Note, in particular, that t-values on all input lines of a merge lp increase at the same
' rate (since )‘i,j/*;,j is independent of the line (i, j)). Thus output rate of a merge Ip is the

sum of its input rates.

Proof of Theorem 6: As in the proof of theorem 5, we have

- I
o MNj = HgPij
— ’
. Thus, Ml,j = Z'Xi,]’
o~
* = Z'”;'pi,j

(18) follows from the above, (14), and (12). (17) follows from the above and (13).
Finally, (18) follows from (18), (17), and (1).

PR
T
SRR

¢ em—
- ~e . Te L% it 1

O O I A A I AT N O K At T T SR ST
L L S N MY S S A Su L LA DL RS CE O DU N R




Loak S s adNA M e e v b gn et 3 4 Ea i e g Aok A th e i 2 i B st Sihe ~ it s S A S IR S AR - S Thadt " Shudt Sue et Jhgb By il etlir-aian sl aesdh e il Senn Sy J

E | 18
©  Appendix B: Details on Simulation of TBASIC

! In this appendix we give details of our empirical study on performance of TBASIC.
The physical systems simulated by TBASIC in these experiments are shown in figures
7-16. The service times at every delay pp, and the interarrival times of messages at every

A
oy source pp in these experiments are chosen to be exponentially distributed, with mean
values as follows:
. 1/u; for a delay pp i, = 3000.0
n 1/u; for a source pp i, = 4300.0
I The output branches of a fork process have equal branching probabilities. The values
- of 1/u for various classes of pps are as follows:
' delay : 300
b fork : 90
3'5 - merge : 120
= source : 60
o The propagation delay » on every line is assumed to be 60. The values of Z are chosen
. ' large enough to allow a large number of messages (in some experiments about 1000 and
-, in others about 2000) to be generated by the source pp. The values of DST,, and DST,
. and the percentage errors in the values of DS'I‘e (deviation from DSTm)are shown in the
following table. (The physical systems corresponding to these experiments are shown in
- figure 7.)
Exp. No. DST,(x 10%) DST,(x 108) % Error
n
1 0.318690 0.33 +4%
2 0.325785 0.33 +1%
3 0.326175 0.33 +1% R
4 0.318180 0.33 +4% <2,
5 0.840950 0.66 +1% o
y 6 0.669105 0.66 1% S
2 7 0.681045 0.66 -3% b
8 0.668805 0.66 1% 2.
i 0 0.643035 0.66 +3% =
' 10 0.668535 0.66 -1% =
.: For further details on our experimental studies on TBASIC, the reader is referred to Fig

[Kumar 85].
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Figure 7: Physical Systems for the simulation experiments
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