
RD-Ai59 189 RESEARCH TOSTUDY SPECIFIC IMPORTANT PROBLEMS IN 1/2
DISTRIBUTED SYSTEMS AND (U) TEXAS UNIV AT AUSTIN DEPT
OF COMPUTER SCIENCES K M CHANDY ET AL JUL 85

UNCLASIIE F9l
IIIIIIIIIIIIIIll~fflf
SlfllllflflflflIflll

IIIIIIIIIIIIII
IIIIIIIIIIIIIIfllfll.
SllllllllllEEE hE

1111L2 11.0 1.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU O)F STANDARDS- 1963-A

IUI-IjM
1111

EM

-iS

lii,',

"1.
II .,

IWOSR-TR. 85-0 732

00 Air Force Scientific Report

6/15/81 tjrough 6/14/85

DEPARTMENT OF COMPUTER SCIENCES
V * THE UNIVERSITY'OF TEXAS AT AUSTIN

AUSTIN, TEXAS 78712 D

SEP 13 198

85 9 10 08 1
-. 77P777; f-7777777

Air Force Scientific Report

A.FOSR 81-0205

8/15/81 through 6/14/85

K. M. Chandy and J. Misra

.o.

Accessio For.

Department of Computer Sciences Csston For

The University of Texas TIC TABI

Austin, Texas 78712 Unannounced [] R
(512) 471-4353 Justifie.i...

By-
_Distribution/
Availability Codes

JAvail and/or
Dist Special

19 July 1085 __al

4o.

D.fl

<--/ Q X "" ' , -''i-:-,.-' r-"- -' _:'. ": :::.-.;.'' '. '" "'.' ."'' .. i .p -c \ -% '_ 1sr , ,. . r ' : .

C
SECURITY CLASSIFICATION OF THIS PAGE (Wh ,on DeleoEntered)_

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS.
RPRDI P EBEFORE COMPLETING FORM

L REPORT NUMBER 2_VZ..CCESAN Nt qC I P It ATALOG NUMBER

S kFOSR- TR - 732
4. TITLE (and Subtitle) S. TYPE OF RPORT & PERIOD COVERED

' Final Scientific Report for AFOSR final - 6/14/81 - 6/15/85
grant AFOSR 81-0205 6. PERFORMING OG. REPORT NUMBER

S7. AUTHOR(s) 9. CONTRACT OR GRANT NUMBER(a)

Professor K. M. Chandy
Professor J. Misra

.. Univerity.of Texas at Austin AFOSR 81-0205
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA A WORK UNIT NUMBERS

Computer Sciences Department C\\c K
University of Texas at Austin
Austin, Texas 78712 _ _ C) _ _-

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT OATE

July, 1985
AFOSR/NM 13. NUMBER OF PAGES

Bolling AFB, DC 20332 1 -
* 14. MONITORING AGENCY NAME & ADDRESS(If dilfetet from Conftolina Ofice) IS. SECURITY CLASS (of t

AFOSR/NM
Bldg 410 203-48I A sDLBoling AFBD OECLASSIFICATION/OOWNGRAOING

Bollng FB C 2032-448SCHEDULE

I. DISTRIBUTION STATEMENT (at thia RepMrt)

Approved for public release;

distribut ion uni nhited.

17. DISTRIBUTION STATEMENT (of the abact t entered in Block 20. II different from Repot)

I. SUPPLEMENTARY NOTES

'T 19. KEY WORDS (Conlinue on everse side if necessary and identif/ by block numbe)

20. ABSTRACT (Continue nn reverse side It necenese, and Identify by block member)

Our-work has resulted in a number of significant algorithms for distri-
buted systems. Notable among these are, (1) Distributed Snapshots: which
allows for the construction of a consistent global state, (2) The Drinkingr Philosophers Problem: which captures the essence of many conflict resolution
problems, (3) Detection of Quiescent Properties: which allows detection of
many"stable properties"-without taking a snapshot and (4) Distributed Search:
which allows for the solution of dynamic programming problems on a message

"' , passing architecture .. -

DD , 1473 EDITION OF INOVS IS OBSOLETE

" . . ' ,. . -- - "' , ' ."7 * "" "

Final Report, AFOSR 81-0205 1 19 July 1985

Research Objectives

The goal of our research during 1981-83 was to study specific, important
problems in distributed systems and propose solutions for them. Intuitive arguments

p[about distributed algorithms are error-prone and hence we started work on proving
the correctness of distributed systems. The success of our research effort during this
period led us to set some ambitious goals for 1983-85: to identify unifying
paradigms in distributed computing regardless of the underlying architecture, com-
munication mechanism or operating system. We have concentrated on problems that
are general (applicable to a variety of systems), and fundamental (their solutions
constitute the critical portions of fugure and existing systems). We have not ad-
dressed problems for specific operating systems or architectures. Our objective is to
make our research applicable for novel architectures that we may see in the next
decade.

The development of distributed programs is much more difficult than the
development of sequential programs. One of the difficulties in distributed program-
ming is the absence of a set of general paradigms. Sequential programming has its
paradigms such as backtracking, divide and conquer and dynamic programming.
Distributed programming paradigms are often confused with specific problems of the

* underlying architecture or operating system. One of the first genuine paradigms for
distributed systems is Lamport's event ordering algorithm. This has found applica-
tion in distributed mail systems, distributed databases and operating systems. Un-

* fortunately, very few such problems have been identified to be of general importance
in distributed systems area and fewer still have been solved (correctly). Our study
revealed that almost all deadlock detection algorithms published prior to ours (in

". 1982) either failed to report deadlock where one existed or reported deadlock where
none existed.

We proposed to study asynchronous message passing systems, consisting of ar-
bitrary number of processors (hence to be called, processes), arbitrary interconnec-
tions among processes and arbitrary, finite delays for message communication. The
paradigm of learning is fundamental to distributed systems: algorithms are executed
so that processes "learn" properties about the underlying system. What is learned
may be static - an unchanging property - or dynamic - a property changing with
time. A class of static problems arise from the network structure: (1) each process
learns the topology of the network, (2) assign unique id's to each process, and (3) a
process learns the shortest path between two processes, etc. We have, however con-

j centrated on dynamic problems; arbitrary computations are assumed to be proceed-
ing at various processes and it is required to superimpose an algorithm on the under-
lying computations so that a process learns a dynamic property of the system such
as: is the system deadlocked? The dynamic problem is considerably more difficult
than the static problem.

bL .

.PI
* .l-_

.... - '--- : . .. - = ... -' -, -. -. .. =4 ~,,= - =- . i Ti , l

Final Report, AFOSR 81-0205 2 19 July 1985

Our work pointed out the need for formal methods in reasoning about com-
municating processes. Verification techniques for sequential systems are sometimes
unnecessary if proper care is taken in structuring and developing the system. Unfor-

- tunately, nondeterministic control makes it nearly impossible to apply similar
reasoning based on locus of control; entirely new techniques were called for. One of

" our goals was to propose techniques which not only are useful, but are also usable:
we planned to prove complex systems using these techniques.

We elaborate our major contributions in the following pages.

Status of Research

Our research has resulted in a number of significant contributions which have
" already appeared, or will appear, in literature. Notable among our achievements are

the following:

1. Reasoning Techniques for Distributed Systems: We were the first
ones to propose "compositional" proof techniques for distributed systems,
which allowed the proof a distributed system to be partitioned into
proofs of individual components making up the system. This structuring
of proof made it possible to prove complex systems. Current work in
parallel program verification by most researchers has this compositional
flavor.

2. Distributed Snapshot: Many problems in distributed systems require
that a "snapshot" of the system be taken. We want to record the states
of all channels and processes at some instant. The problem is that in dis-
tributed systems there is no way of synchronizing such an "instant." If
we could take global snapshots, all dynamic problems reduce to static
problems because we can take a sequence of snapshots of the dynamic

* . system and analyze each snapshot in turn. Since each snapshot is static
" the analysis of a snapshot is a static problem. The solution of this

-:1 problem subsumed a large body of work on termination/deadlock detec-

tion and distributed checkpointing.

" 3. Detection of Quiescent Properties: Detection of certain properties,

such as termination or absence of tokens, can be accomplished more ef-
ficiently than by taking distributed snapshots, as in (1). We give a
characterization of a class of properties, called quiescent properties, and
show how their presence in a system can be detected.

-. 4. The Drinking Philosophers Problem: This captures the essence of
conflicts - two or more processes are prevented from continuing their ex-
ecutions in order to satisfy certain system constraints - and their resolu-
tion in many distributed programming situations. Our notion of conflict

- *j~*~ -4.4 S.,

• -.

Final Report, AFOSR 81-0205 3 19 July 1985

is general enough to include such legendary problems as mutual exclu-
sion, dining philosophers and multiple copy updates, as special problems.
Our solution shows the importance of introducing and preserving an
asymmetry among processes.

5. Distributed Search: This provides a general strategy for implemen-
tations of dynamic programming solutions in a distributed system.

-- We elaborate each of these contributions and our other work under this grant,
.. in the following pages.

Reasoning Techniques: (Our later work in this area has been
, . supported completely by AFOSR)

If a number of processes execute concurrently, it is difficult to make state-
ments about the ensemble, because the program control resides simultaneously at
many different points, one point in each process. It is even more difficult to prove
properties of a process in isolation from its environment. However, this is exactly
what is required if we ever hope to substitute one process by another without affect-
ing the functioning of the whole system.

We pioneered the area of compositional proof systnem in which each process
has a specification independent of its environment. We showed how the specifica-
tions of component processes can be combined to yield a specification for the system,pH
as a whole. This made it possible to structure the proof of a system along the lines
in which a system is structured into processes. Previous proof techniques required
elaborate "noninterference proofs", to show that functioning of one component
would not be affected by simultaneous functioning of another component; this re-

p quired not only the specification of components but also their inner structure. Con-
sequently such proofs tended to be long. Our proof technique has been applied by
Ossefort ("Correctness Proofs of Communicating Processes - Three Illustrative Ex-
amples from the Literature," ACM TOPLAS, Vol. 5, No. 4, October 1083, pp.
620-640). in proving several complex distributed algorithms. This work has been
extended in 15] and 119].

Distributed Snapshots

A problem of considerable importance in distributed data bases, where a
process may have locked some data items and is waiting for others, is the problem of
deadlock. A similar problem appears in distributed routing (deadlock due to insuf-

* , ficient buffers) or legitimately, in a distributed computation where the processes
have run out of data. A somewhat different problem is to take a checkpoint of a
distributed system; such checkpoints are necessary for rollback and recovery in
machines like the Cosmic Cube (built by Professor Chuck Seitz at Caltech).

o'"

Final Report, AFOSR 81-0205 4 19 July 1985

Each of these problems can be solved by taking a snapshot of the system. A
snapshot is a state of the system: states of processes and channels linking the
processes, which could have arisen at some point in the past.U

An algorithm for taking a distributed snapshot was developed by one of the
principal investigators (Chandy) and Leslie Lamport. This algorithm requires min-
imal overhead, does not interfere with the underlying computation and is easy to im-
plement. This work has been widely referenced and has been developed further by
E. W. Dijkstra.

The Drinking Philosophers Problem

Conflicts arise in distributed systems due to contentions for shared resources.
For instance, two processes cannot write into a shared data item simultaneously, two
machines cannot broadcast messages on an ethernet at the same time, etc. Conflicts,
such as these, are typically resolved either (1) by a central process or (2) by assigning
static, global priorities to processes or (3) by resolving to probabilistic decision
making by individual processes. We identified the basic ingredient of every non-
probabilistic solution: asymmetry among processes. We showed how asymmetry
can be introduced initially by judicious of shared resources and how to preserve
asymmetry in a fair manner. Our formulation of the problem starts with (1) a set of
processes, (b) a set of resources shared among some subset of processes and (3) an ar-
bitrary computation at the processes which result in requests for the resources. The
mutual exclusion problem is a special case where there is a single resource shared by
all processes. The Dining Philosophers Problem has resources (forks) shared by ex-
actly two processes and requests for resources are always for identical sets of
resources. Our solution initially assigned resources to processes in such a manner
that individual processes could be distinguished by the resources that they possess.
We proposed certain rules for relinquishing resources which preserved this asym-]

metry. Our solution is very efficient, because processes make only local transfor-
mations and they send no messages unless they are requesting or relinquishing
resources. In fact, our solution to the dining philosophers problem can be shown to
be optimal in the number of messages.

Detection of Quiescent Properties

Quiescence properties of a distributed system are those which continue to be
true once they become true. Termination, deadlock, and absence of tokens in a sys-
tem are examples of such properties. These properties may be detected by applying
the distributed snapshot algorithm described earlier. However, we show that there is
a more efficient class of algorithms, which includes a number of published al- '-WI
gorithms as special cases, for these classes or problems.

Our algorithm is given in fairly abstract terms using certain unspecified con-
ditions. Different instances of these conditions result in different algorithms. Our

,-.-

Final Report, AFOSR 81-0205 5 19 July 1985

\ development of the algorithm, using stepwise refinement, led to very real conditions
under which the algorithm can operate.

U Distributed Search

A large class of optimization problems have the following structure: a problem
I may have many feasible solutions and, of these, we seek the solution with the lowest

coat. The critical task, therefore, is to find a feasible solution whose cost is bounded
below some given threshold; as the threshold is lowered, an optimum solution is ap-
proximated.

This problem, again, is of a very general nature. It includes such well known
)% -problems as the traveling salesman problem and shortest path problems. The

generalization consists of making very few assumptions about the problem structure.
This work is similar in spirit to a very general model of dynamic programming intro-
duced by Karp and Held (Siam Journal of Applied Mathematics, May 1967). It is
hoped that the proposed paradigm will include all deterministic, search based op-
timizationprocedures.

Other Related Work

S""Our work on distributed simulation, partially funded by AFOSR, is considered
- to be the seminal work in that area. We pioneered the area by demonstrating that

system simulations can run efficiently on several parallel machines. A large number
of researchers in U.S.A., Europe and Japan are now working in this area. It is not

Stoo much to expect that all large scale simulations have to be distributed in the fu-
* :.ture. Our problem formulation and solution procedures were general - independent

of specific properties of the system being simulated or idiosyncrasies of the under-
"- lying architecture - which allow it to be adapted for specific problems and architec-

U tures.

-

€..

U, i:

U. J.

., -'' . ' . ' ,. , ,,'. - • "- . '- . . . - . .. - . - . .

Final Report, AFOSR 81-0205 8 19 July 1985

List of Publications

U [1] "Distributed Computation on Graphs: Shortest Path Algorithms,"
Communications of the ACM, Vol. 25, No. 11, November 1982, pp.
833-837, (K. Mani Chandy and Jayadev Misra)

[2] "Distributed Deadlock Detection," ACM Transactions on Computer
Systems, Vol. 1, No. 2, May 1983, pp. 144-156, (K. M. Chandy, J. Misra
and L. Haas).

[3] "A Distributed Graph Algorithm: Knot Detection," ACM Transactions
on Programming Languages and Systems, Vol. 4, No. 4, October 1982,
pp. 678-686, (J. Misra and K. M. Chandy).

(4] "A Distributed Algorithm for Detecting Resource Deadlocks in Dis-
tributed Systems," Proceedings of the ACM SIGACT-SIGOPS Con-

" ference on the Principles of Distributed Computing, August 18-20, 1982,
Ottawa, Canada, (K. M. Chandy and J. Misra).

[5] "Proving Safety and Liveness of Communicating Processes with
Examples", Proceedings of the ACM SIGACT-SIGOPS Conference on

*the Principles of Distributed Computing, August 18-20, 1982, Ottawa,
Canada, (J. Misra, K. M. Chandy and T. Smith).

[6] "Finding Repeated Elements," Science of Computer Programming, No.
2, (1982), pp. 143-152, North-Holland Publishing Company, (J. Misra and
D. Gries).

[7] "Assigning Processes to Processors in Distributed Systems," Proceedings
of the 1988 International Conference on Parallel Processing, August
23-26, 1983, Bellaire, Michigan, (Elizabeth Williams).

[8] "Paradigms for Distributed Computing," Invited paper Third Inter-
national Conference on Foundations of Software Technology and
Theoretical Computer Science, Bangalore, India, December 12-14, 1983,
(K. M. Chandy).

[9] "Distributed Simulation," Tutorial presented at the IEEE Computer
• :. Society 4 th International Conference on Distributed Computing Systems,

May 14-18, 1984, San Francisco, California (Jayadev Misra).
r

L

Final Report, AFOSR 81-0205 7 19 July 1985

N: [10] "Processor Queueing Disciplines in Distributed Systems," Proceedings of
the 1984 ACM SIGME TRICS Conference on Measurement and Model-
ing of Computer Systems, August 21-24, 1984, Cambridge, Massachu-
setts, (Elizabeth Williams).

[111 "The Effect of Queueing Disciplines on Response Times in Distributed
Systems," Proceedings of the 1984 International Conference on Parallel
Processing, August 22-24, 1984, Bellaire, Michigan, (Elizabeth Villiams).

[12] "The Drinking Philosophers Problem," ACM Transactions on Program-
ming Languages and Systems, Vol. 6, No. 4, October 1984, pp. 632-646,
(K. M. Chandy and J. Misra).

[13] "Distributed Snapshots: Determining Global States of Distributed
Systems," ACM Transactions on Computer Systems, Vol. 3, No. 1,
February 1985, pp. 63-75, (K. M. Chandy and Leslie Lamport).

Papers written since Annual Report for year 1983-84

.* [14] "On Distributed Search", to appear in Information Processing Letters,
(Ted Herman and K. Mani Chandy).

[151 "A Paradigm for Detecting Quiescent f-roperties in Distributed
Computations," NATO ASI Series, F13, Springer-Verlag Lecture Notes
in Computer Science, to appear in 1985, (K. Mani Chandy and Jayadev
Misra).

[16] "An Example of Stepwise Refinement of Distributed Programs: Quies-
.. -cence Detection," to appear in ACM Transactions on Programming

Languages and Systems, (K. Mani Chandy and Jayadev Misra).

[17] "A Class of Termination Detection Algorithms for Distributed
Computations," Technical Report TR-85-07, The University of Texas at
Austin, Computer Sciences Department, May 1985, (Devendra Kumar),
submitted to IEEE Transactions on Software.

[18] "A Model and Proof System for Asynchronous Networks," Proceedings
of the 4 th ACM SIGACT-SIGOPS Conference on the Principlej of Dis-

-* tributed Computing, Minaki, Canada, August 5-7, 1985, (Bengt Jonsson).

[19] "A Novel Approach to Sequential Simulation," Technical Report
TR-85-14, The University of Texas at Austin, Computer Sciences Depart-
ment, July 1985, (Devendra Kumar), submitted to IEEE Transactions on
Software.

.1-,

Final Report, AFOSR 81-0205 8 19 July 1085

3 -. [20] "A High Speed Distributed Simulation Scheme and Its Performance
Evaluation," (Devendra Kumar), submitted to the Nineteenth Annual
Simulation Symposium and CMG '85.

'.

Final Report, AFOSR 81-0205 9 19 July 1985

List of Professional Personnel

" .. Name K. Mani Chandy
Title Co-Principal Investigator

Department Faculty, Department of Computer Sciences, UT

Name Jayadev Misra
Title Co-Principal Investigator

Department Faculty, Department of Computer Sciences, UT

" Name Marty Ossefort {Note: received 3 months of support}
Title Graduate Student {Graduated August, 1182}

Department Graduate School, Department of Computer Sciences, UT

Name Devendra Kumar

Title Graduate Student
Si Department Graduate School, Department of Computer Sciences, UT

Name Elizabeth Williams
Title Graduate Student {Graduated May, 1983}

Department Graduate School, Department of Computer Sciences, UT*
- Name Bob Comer

Title Graduate Student
Department Graduate School, Department of Computer Sciences, UT

Name Ted Herman
Title Graduate Student

Department Graduate School, Department of Computer Sciences, UT

4-

Final Report, AFOSR 81-0205 10 19 July 1985

Degrees Awarded

Recipient Elizabeth Williams
Award Date May, 1983

Type of Degree Ph.D (Doctor of Philosophy) of
Thesis Title "Design, Analysis, and Implementation of

Distributed Systems from a Performance
Perspective"

Department Department of Computer Sciences

Recipient Martin John Ossefort (3 months of support)
Award Date August, 1982

Type of Degree Ph.D (Doctor of Philosophy)
Thesis Title "A Unified Approach to Formal Verification

of Network Safety Properties"
Department Department of Computer Sciences

Degrees Expected

Recipient Ted Herman
Award Date December, 1985

Type of Degree Ph.D (Doctor of Philosophy)
Thesis Title "Paradigms for Distributed and Parallel

Programming"
Department Department of Computer Sciences

i..

-. P.

€..

PSI

Final Report, AFOSR 81-0205 11 19 July 1985

Interactions (Invited lectures listed for the period 1983-85 only)

Invited lectures presented by Professor K. Mani Chandy on topics related to
work performed under this grant. 7"

9 Cornell University May 2-6, 1983

* Stanford University November 7, 1983

• M.I.T. November 13, 1983

* Third Conference on Foundations of December 12-14, 1983P . Software Technology and Theoretical
K Computer Sciences, Bangalore, India

' .". e University of California at Berkeley Febraary 23, 1984 r

* Distinguished Lecture Series, May 14-15, 1984
University of Minnesota

e IBM Research Lab, Yorktown Heights July 11-13, 1984

* Keynote address, 3 rd ACM Principles of August 26, 1984
Distributed Computing Conference,
Vancouver, Canada

* e Pennsylvania State University October 1-5, 1984

* Distinguished Lecture Series, March 9-17, 1985
University of Central Florida, Orlando

* DEC, Systems Research Center, Palo Alto March 21, 1985

* IFIP W.G. 2.3, Manchester, England April 13-18, 1985

,* -:.

.4:

L,'.' '-' -,-"-' .. " ".'.,, -:. ... ,, . -* ..-'-'-:,(, . '-". .". •.'.".:. . -" . . -''@ ". -' ,-''

Final Report, AFOSR 81-0205 12 19 July 1985

Invited lectures given by Professor J. Misra on topics related to work per-
* formed under this grant.

* University of California at Berkeley October 18, 1983

* University of Manchester, England November 9, 1983

e University of California at Los Angeles January 26, 1984

. IBM Research Labs, Yorktown Heights February 9, 1984

. . IBM Research Labs, San Jose March 7, 1984

- California Institute of Technology March 27, 1984

. IEEE Fourth International Conference on May 14-18, 1084
Distributed Computing Systems, Invited
Tutorial entitled, "Distributed Simulation"

e Xerox Palo Alto Research Center March 15, 1984
Palo Alto, California

-- University of Washington May 10, 1984

.U.S. - U.K. Joint Workshop on Concurrency, July 9-11, 1984
Carnegie-Mellon University

* IFIP W.G. 2.3, Victoria, Canada July 23-27, 1984

e Workshop on Reasoning About Cooperating August 22-24, 1984
Agents and Concurrent Processes, SRI,

Monterey Dunes, California

-Yale University September 27, 1984

e Advanced NATO Study Institute on Logics October 8-19, 1084
and Models for Verification and Specification
of Concurrent Systems, France

o Carnegie-Mellon University April 11, 1985

L-

rFinal Report, AFOSR 81-0205139Juy98

e Cornell University April 12, 1085

* IFIP W.G. 2.3, Manchester, England April 15-10, 1085

-a'V

Final Report, AFOSR 81-0205 14 19 July 1985

Advisory Functions

Dr. Chandy serves on the Committee on Recommendations for U.S. Army
Basic Scientific Research, National Research Council, July 1, 1984 to June 30, 1987.

Z-t"

.~.

b '4.

Final Report, AFOSR 81-0205 15 19 July 1985

Additional Statements

m One measure of importance of a piece of research is its acceptance by the

scientific community at large. Typically, a successful piece of work gains wide ac-
ceptance within three to five years of its publication. Our work on Distributed
Simulation, funded partly by the Air Force is now considered to be one of the most
important developments in that area (as evidenced by the number of workers and :4L
publications). Similarly, our work on Reasoning About Communicating Processes
(funded by AFOSR) remains one of the most referenced papers in that area; in a
recent book - A Survey of Verification Techniques for Parallel Programs by Howard
Barringer (Lecture Notes in Computer Science, 191, Springer-Verlag, 1985) - compar-
ing nine different methods for parallel program verification, our approach is listed as
one of the four that admits of hierarchical developments.

We expect the other work reported here - particularly, Distributed Snapshots
and Drinking Philosophers Problem - to have the same kind of impact in the next
three years or so. We have been invited by at least thirty universities and research
labs to deliver lectures related to these topics, in the last two years. We infer that
our work has gained wide acceptance because we have emphasized issues that are

° "fundamental and not only of immediate practical interest.

.6;:

i:-i

2--,

11

L

*. % % " , .. *. . *. -.". "° ".• • ° . " . " % ' . " " . " % "

wr

SECURITY CLASSIFICATION Of THIS PAGE (*%OS DOtO.En.Fred)O

: REPORT DOCUMENTATION PAGE READ INSTRUCTIONSi!L) BFORE COPETNG FORM
1. REPORT NUMBER 2.GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 3.TYPE Of REPORT A, PERIOD COVERED

Manuscript: "On Distributed Search" final: 6/14/31 - 6/15/S5

6. PERFORMING OIG. REPORT NUMBER

7 AUTmOR(a) 8. CONTRACT OR GRANT NUMBER(a)

Professor K. M. Chandy
Ted Herman (Graduate Student)
.Univere.iy nf-Texas at Austin

9 PERFORMING ORGANIZATION NAMF AND AODRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA a WORK UNIT NUMBERS

Computer Sciences Department
University of Texas at Austin
Austin, Texas 78712

1I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT BATE

Ca pt A. L. Bellamy July 1985
AFOSR/NM II. NUMBER OF PAGES

- Bolling AFB, DC 20332
" MONITORING AGENCY NAME & AOORESS(If different from Contolling Office) IS. SECURITY CLASS. (of Ihis report)

IS&. OECLASSIFICATION/OOWNORAOING
SCHELES

16 DISTRI DUTION ITATEMENT (ni this Repnrt)

17. DISTRIBUTION STATEMENT (*I the obstrct entered in Block 20, it different f(rm Report)

IS. SUPPLEMENTARY NOTES

to appear in Information Processing Letters

It. KEY WORDS (Continue on reveree side if noeesary and identify by block number)

)A

Distributed computation, graph algorithms

20. ABSTRACT (Confinoe nn reveree aide If neeeeary and Identify hy block nueshor)

Many optimization problems have the following structure: A problem may
admit many feasible solutions, and of these, one seeks the solution of lowest
possible cost. In this paper, we consider the task of finding a feasible solu-

- tion whose cost is bounded below some given threshold. As the threshold is
.) lowered, an optimum solution is approximated.

Our distributed program is a parallel search for the approximate solution.
. . The underlying distributed system is an asynchronous network of processes, with

L DO I JAN73 1473 EOITION OF I NOV 65 IS OBSOLETE

...
.

.--.

SECURITY CLASSIFICATION OF THIS PAGE(fte, Does Enter.ed

indeterminant timings between computations. The distributed search thereforehas this non-deterministic flavor: The computation advances whenever and
wherever possible in the distributed system.

J

St~uITY LASIFICTIO OF ull AGR'Whe Do Entrtd

-st

On Distributed Search

Ted Herman and K. Mani Chandy
Department of Computer Science

.. University of Texas at Austin

Keywords: Distributed computation, graph algorithms

I This research was supported by a grant from the Air Force Office of Scientific Research under grant
AFOSR 81-0205.

1.0 Introduction

Many optimization problems have the following structure: A problem may admit many feasible
solutions, and of these, one seeks the solution of lowest possible cost. In this paper, we consider the
task of finding a feasible solution whose cost is bounded below some given threshold. As the
threshold is lowered, an optimum solution is approximated. This work is based, in part, on the pio-
neering work of Karp and Held [3] on dynamic programming.

Our distributed program is a parallel search for the approximate solution. The underlying distributed
system is an asynchronous network of processes, with indeterminant timings between computations.
The distributed search therefore has this non-deterministic flavor: The computation advances when-
ever and wherever possible in the distributed system.

2.0 Thc Distributed System

The distributed system consists of a fixed set of processes that communicate solely by passing mes-
sages. A process may directly send a message to another process only if there exists a channel be-
tween .he two. A message may contain arbitrary data. The channels are loss-less: If process B sends
a message to process D, then we can assert that process D will receive the message (perhaps after
some finite delay). The number and locations of channels is fixed in the distributed system. It is
useful to think of processes as vertices and to channels as edges of a finite graph. The set of processes
in the system is

V = {vi}, i = system.
and (vi,vj) denotes a channel/edge. The set E is the set of channels defined for the distributed system.
If there is a channel between a pair of processes, then we call these processes neighbors.

3.0 The Approximation Problem

Let P be the problem to be approximated. The solution to P will be an item called a policy. Policies -
that satisfy the basic contraints of P are feasible policies. Define POLICY as the set of all possible

policies. Then for xePOLICY, the predicate function FEAS determines feasibility: FEAS(x) is true iff
x is a feasible policy. Messages between processes will represent policies. Processes receive policies,
amend them, and transmit them during the computation.

Policies are ordered by a cost function. COST(x) yields a number that is the cost of policy x. Policy
x is acceptable if it satisfies

FEAS(x) and COST(x) < R,

-Z

-:'.-:.i.. • .-....,.....---..,..-..,.........'-...,''.-......''...-...,...-.'-.'.."-.,." ': :':..: 4.'....-.-..-' .-.--'',.':...'... . .".. .. ,. .'. .,.'.:I;'

where R is a number defining the level of approximation desired for problem P. Further restrictions
on the COST function are revealed in Section 4.

There is a bijection from the set of processes V to a set of functions Z. Elements of Z are functions
- that map policies to policies. For convenience, let z i correspond to process vi.

The class of approximation problems suited to our analysis must have solutions expressible as com-
positions of functions in Z. Let W(vj) represent some finite walk, originating at vj, over edges of the
graph defined by the distributed system. W(vj) can be written in the form

-VjVi(I}Vi{2}...Vik-i}Vi~k)
where the sequence i(1), i(2) ... , i(k) designates the order of vertices in the walk. Corresponding to
W(vi), we write the composition

S(W(vj),x) = Zi(k)o...oZi(2)oziP()X),
* which is a generation sequence based on x generated by vj. The empty walk contains no edges.

S(W(vi),x) = x for the empty walk.

3.1 Solution Characterization: A solution to P is an item y satisfying:
(a) FEAS(y) and COST(y)< R, or
(b) FEAS(y) and

{For all wePOLICY, FEAS(w) implies COST(y) 5 COST(w)}, or
(c) y = .. and {For all wePOLICY, FEAS(w) is false}.

The first case provides an acceptable policy. In the second case no acceptable policy can be found,
so a minimum cost policy is the result. In the last case, the output is a special symbol .1., which in-

. dicates that no feasible solution to P is possible. By convention COST(m) = oo. When a process
vi sends a message y to some other process, then vi is said to generate y. We say a distributed com-
putation generates y if any vi in the system generates y during the computation. The class of ap-
proximation problems to be considered can now be precisely characterized.

3.2 Proposition: A solution to approximation problem P, P = [V,E,Z,FEAS.COST,R], can be generated
by a distributed computation, provided that a solution to P is expressible as S(W(v.),6), for some se-
lection of W(v.), where v. is the label of a vertex called the initiator, and 6 is some initial policy.

4.0 Distributed Algorithm

We expose the distributed algorithm in successive refinements. First, a simple procedure will suffice
to generate an acceptable policy. Subsequent procedures generate solutions with greater economy.
Then termination criteria are introduced to complete the algorithm.

The computation will begin at the initiator v.. The initiator will originate the distributed computation
by sending policy 6 to its neighbors, following proposition (3.2). Let MESSAGE(ij,x) denote the
event: vj receives policy x, sent by vi. The behavior of vj following this event is described by the

-* following procedure.

"" 4.1 Procedure: Upon MESSAGE(ij,x) vj sends zj(x) to all neighbors.

" 4.2 Lemma: The procedure 4.1 generates a solution to problem P.

Proof. By definition, the specification to problem P includes a set of functions Z such that a solution
to P is in the form S(W(v.),6). Since procedure 4.1 generates all possible W(v.), a solution to P must

.- be generated. N

2

- ~ m7u...&A.. -

.- .

where R is a number defining the level of approximation desired for problem P. Further restrictions
on the COST function are revealed in Section 4.

There is a bijection from the set of processes V to a set of functions Z. Elements of Z are functions
that map policies to policies. For convenience, let zi correspond to process vi.

The class of approximation problems suited to our analysis must have solutions expressible as com-
positions of functions in Z. Let W(vj) represent some finite walk, originating at vj, over edges of the
graph defined by the distributed system. W(vj) can be written in the form

i VjVi(l)Vi(2}"'..Vi(k-i)vi(k)

where the sequence i(1), i(2) ..., i(k) designates the order of vertices in the walk. Corresponding to
W(vi), we write the composition

S(W(Vi,),x) = Zi(k)o...oZi(2)oZi(1)(X),

which is a generation sequence based on x generated by vj. The empty walk contains no edges.
S(W(v),x) = x for the empty walk.

3.1 Solution Characterization: A solution to P is an item y satisfying:
* "(a) FEAS(y) and COST(y) < R, or

(b) FEAS(y) and
{For all wePOLICY, FEAS(w) implies COST(y) S COST(w)}, or

(c) y =m and {For all wePOLICY, FEAS(w) is false}.

The first case provides an acceptable policy. In the second case no acceptable policy can be found,
so a minimum cost policy is the result. In the last case, the output is a special symbol .1., which in-
dicates that no feasible solution to P is possible. By convention COST(l) = oo. When a process
vi sends a message y to some other process, then vi is said to generate y. We say a distributed com-
putation generates y if any vi in the system generates y during the computation. The class of ap-
proximation problems to be considered can now be precisely characterized.

3.2 Proposition: A solution to approximation problem P, P = [VE,Z,FEASCOST,R, can be generated

by a distributed computation, provided that a solution to P is expressible as S(W(v.),6), for some se-
*. lection of W(v.), where v. is the label of a vertex called the initiator, and 6 is some initial policy.

4.0 Distributed Algorithm

We expose the distributed algorithm in successive refinements. First, a simple procedure will suffice
to generate an acceptable policy. Subsequent procedures generate solutions with greater economy.
Then termination criteria are introduced to complete the algorithm.

The computation will begin at the initiator v.. The initiator will originate the distributed computation
by sending policy 6 to its neighbors, following proposition (3.2). Let MESSAGE(ij,x) denote the

r e'ient: vj receives policy x, sent by vi. The behavior of vj following this event is described by the
,following procedure.

4.1 Procedure. Upon MESSAGE(ij,x) vj sends zj(x) to all neighbors.

[4.2 Lemma: The procedure 4.1 generates a solution to problem P.
* Proof. By definition, the specification to problem P includes a set of functions Z such that a solution

to P is in the form S(W(v.),6). Since procedure 4.1 generates all possible W(v.), a solution to P must
be generated. m

2

b..,

Note that procedure 4 1 does not terminate, nor does it recognize a solution to P. Lemma 4.2 only
states that some process vi in the distributed system will, at some point, send a message zi(x), where
Zi(x) is a solution to P.

. It is important to consider the effect that an individual message has on the course of the distributed
" computation. For example, if a message x can be removed from a computation and P is solved any-

way, then message x should not be generated for reasons of efficiency. The next results develop
apparatus needed to decide when a policy x should be discarded.

4.3 Procedure: Upon MESSAGE(ij,x), if there is no solution to P of the form S(W(vj),zj(x)), for any
W(vj), then vj sends no messages. Otherwise procedure 4.1 is invoked.

Temporarily we focus on P where R= oo. P is therefore a search for any feasible policy. Let Y be
. -a relation over policies such that

x 'y IFF For all W(vj), FEAS(S(W(vj),x)) = FEAS(S(W(vj),y)).

The reader can verify that Y.'J is an equivalence relation. Informally, x2'1 y means that policy x and
" policy y behave equivalently (with respect to feasibility) under any sequence of applications of func-

tions in Z. Let YW(x) denote the equivalence class of x. The following procedure is suited to the
search for any feasible policy.

4.4 Procedure: Upon MESSAGE(ij,x), vj computes z.(x) and determines .Y'(z.(x)). If v. has previously
sent zi(y) to its neighbors, for some zj(x).Y'jzj(y), then vJ sends no messages. Otherwise procedure
4.3 is invoked.

- 1 4.5 Lemma: Procedure 4.4 generates a solution to P (R= oo).
,-. Proof. Let z be a solution to P, z = S(WI(v.),6). Consider tracing W, versus an execution of proce-

.,- _dure 4.4. Notice that any execution of 4.4 generates at least one prefix of W, because the initiator
v. sends 6 to all its neighbors. Let W2 be the longest prefix of W, generated by some execution of
4.4, where W2 terminates at vi) Since W 2 is the longest prefix we infer that vi 1 did not send x -
S(W2(v.),6) to its neighbors. It follows that vi() previously sent y, for some y9'1 x. If x can be ex-
tended to feasibility, so can y, and we therefore continue tracing W I starting at Via) with policy y.
This argument can repeated to exhaust W, and obtain a feasible solution. U]

Returning to the case R finite, cost is of importance. We now define a cost-sensitive equivalence re-
lation similar to one defined in [3]. Let =/be a relation over policies.
x jy IFF

(a) is an equivalence relation,
(b) xiy holds, and
(c) for all W(vj), COST(S(W(vj),x)) S COST(S(W(v),y)).

4.6 Procedure: Upon MESSAGE(ij,x), vj computes zj(x) and determines -(z(x)). If vj has previously
sent z,(y) to its neighbors, for some zj(x)" .(y) and COST(zj(y))5 COST(zj(x)), then vj sends no
messages. Otherwise procedure 4.3 is invoke

K. 4.7 Lemma: Procedure 4.6 generates a solution to P.
The proof is similar to the proof of lemma 4.5. Given some execution of procedure 4.6 and some

r !optimum policy z, we can trace the walk of z and show that procedure 4.6 either generates z or an-
other feasible policy of equal cost. M

4.8 Theorem: There is an algorithm to solve P if

)%3

V::. :....- .. .:,.-. " . ;,-.% -- -. ': . -. .- -.-: % ,-'-'-: -J -3, : : '.-' .- -'-: -''

L

(a) Proposition (3.2) is satisfied, and
M(b) - has finite rank for each v., and
(c) For all vieV and xePOLICY and for all W(vj), COST(x)_5 COST(S(W(vj),x))."I

Proof. There are three parts to the proof. First we show that any policy generated by procedure 4.6
is finite under conditions (a-c). This result will show termination of procedure 4.6. Finally, we appeal

."to previous work on diffusing computation [1,2] to detect termination and output a result.

(1) Any policy S(W(v.),6), generated by procedure 4.6, must satisfy: For all vjeV, W(v.) can contain
MR at most Mi occurrences of vl, where Mj denotes the rank of .

Proof (by contradiction). Suppose, on the contrary, that W(v.) contains k>M, occurrences of vj, for
some j. Let W 1, . Wk be the prefixes of W(v.) that terminate at v. Clearly, there must be two dis-
tinct prefixes Wi(1 and W i), "walks of the same equivalence class,"[S(Wi(1(v.),6)] =irS(Wi(2)(v),6)].
Since Wi(1) is a prefix of W i(2) (or vice-versa), we must conclude that

.. COST[z(S(W-(2)(v-),6)) < COST[zj(S(Wi()(v.),6))]
for if the walk W is extended, then by the logic of procedure 4.6, it must represent a lower cost

-' policy than that of W1(j). But the equivalence of these two policies and part (c) of the premise implies
the contrary, hence there is a contradiction.

(2) Procedure 4.6 terminates.
Proof. We prove termination by showing that every process vj eventually reaches a permanently

.- inactive state. Part (1) implies that every walk induced by an execution of procedure 4.6 has finite
length. Since every step of the computation of procedure 4.6 extends or terminates some walk, and

* every walk is finite, we conclude that computations will cease in finite time.

(3) Termination detection/answer extraction.
Our plan to base an algorithm on procedure 4.6 will entail local variables for each process: Each vl
maintains a representative policy for each class of E. The value of such a local variable is initially
., and is subsequently updated whenever MESSAGE(i,j,x) reflects an improvement in cost for
- 1 (z.(x)). Then the algorithm can succeed in two ways: First, some acceptable x may be found, in

.*. which case vj discovers x and should broadcast a message throughout the distributed system to halt
further activity. In the second instance, no feasible x with COST(x)<R exists, so the algorithm
produces a policy of optimum cost--which will reside in a local variable. This optimum policy must
be extracted when the distributed computation halts; the diffusing computation protocols [1,2] pro-
vide suitable termination detection and extraction techniques. U

- 5.0 Applications

5.1 Tour: This example is an approximation to the travelling salesman's problem. The problem is to
: find a low-cost tour through m vertices. For instance, if m=3, we wish to search the set of cycles

r,p,q,r where p and q are distinct vertices. A motivation for this problem is that a process r may re-
quire a communication cycle through two other processes for the purpose of soliciting votes on major
issues.

A policy will be a sequence of edges corresponding to some path beginning at v.. In terms of pro-
position 3.2, a policy is feasible if it represents a cycle that begins and ends at v., contains m vertices,
and has no repeated intermediate vertices. The cost of a policy is the sum of the weights of its edges.

* .The function zj will extend policy MESSAGE(i,j,x) by adding (vi,vj) to x. Under this scheme, equiv-
alence x ajy holds if

4

LA%*

. (a) zj(x) and zj(y) cannot be extended to feasibility, that is, they contain repeated vertices or contain
more than m vertices. A
(b) x and y can be extended to feasibility, and they are both permutations of T, a subset of V, where!I *_ m.
Following procedure 4.3, vj will not send z(x) to neighbors when case (a) applies. Case (b) implies
that Rank(_=-) = 2 v

1 in the worst case m n). This could lead to an exponential requirement for
space, to accomodate local variables for each equivalence class. Since the travelling salesman problem
is NP-complete, the exponential result is expected for a worst case.

52 Shortest Walk: Here we seek low-cost walks from the initiator to all other vertices. Edges have
associated positive weights, and the cost ot a -. alk :s tne sum of its edge-weights. A policy can be
adequately represented by its cost and rina.. e--t -,rce x= v holds for any walks x and y that ter-
minate at vi. Consequently Rank(- . K Keeps track of the best policy reaching vj

[2].

References

[1] E. W. Dijkstra and C. S. Scholten, Termination Detection for Diffusing Computations. Information
17 Processing Letters 11 I(Aug 1980), pp. 1-4.

[2] K. M. Chandy and J. Misra, Shortest Path Algorithms, Comm. ACM 25 I1(Nov 1982), pp.
833-837.

-. [3] R. M. Karp and M. Held, Finite-State Processes and Dynamic Programming, Siam J. Appl. Math.
15 3(May 1967), pp. 693-718.

.-1
I..

5;i
7-.

• -V,

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enieredj_
REPORT DOCUMENTATION PAGE READ INSTRUCTIONS• BEFORE COMPLETING FORM ,

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPItNT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT 4 PERIOD COVERED

Manuscript:. "A Paradigm for Detecting Quiescent final: 6/14/81 - 6/15/85
Properties in Distributed Systems" 6. PERFORMINGOIG. REPORT NUMBER

7. AUT OR~a) M. CONTRACT OR GRANT NUMBER(s)ProTessor K. M. Chandy

Professor J. Misra AFOSR 81-0205
* ~University of-Texas at Austin

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Computer Sciences Department
University of Texas at Austin
Austin, Texas 78712

71. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

*- Capt. A. L. Bellamy July 1985
AFOSR/NM 13. NUMBER OFP AGES

Bolling AFB, DC 20332
14. MONITORING AGENCY NAME A AODRES(IU different from Controlling Office) 15. SECURITY CLASS. (of this repot)

ISa. OECL ASSI FICATIONDOWNGRAOING
SCHEOULE

16. OISTRItiJTION STATEMENT (fi this Repnrt)

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. If different from Report)

IS. SUPPLEMENTARY NOTES

NATO ASI Series, F13, Springer-Verlag Lecture Notes in Computer Science,
- to appear in 1985.

19. KEY WOROS (Continue on tevroo side it neoeeeiy and identify by block numaib)

20. ABSTRACT (Continue on ,.e..ae side it n.o...aay and Identify by black numbher)

The problem of stability detection is one of the most widely studied problems
in distributed computing. A stable property is one that persists: if the pro-
perty holds at any point, then it holds thereafter. Examples of stable proper-
ties are termination, deadlock and loss of tokens in a token-ring. The prob-

S lem is to devise algorithms to be superimposed on the underlying computation
to determine whether a specified stable property holds for the underlying com-

p... putatlon. This paper presents a simple (almost trivial) algorithm to detect
quiescent properties, an important class of stable properties including those

L DD I, , 1473 EOITION OF I NOV65 IS OBSOLETE

-.-

.p.~n p. ..

B SECURITY CLASSIFICATION OF TMIS PAGE(Whan Data Entered)

mentioned above. Distributed snapshots may be used to derive algorithms for
these problems. However our approach is this paper is different and results
in simpler algorithms.

H%

U

SECURITY CLASSIFICATION OF YU** PAGO((Whn 00#4 Entered,

- .s~r

v~~~~~ UP 1 41q F p

A PARADIGM FOR DETECTING QUIESCENT PROPERTIES

IN DISTRIBUTED COMPUTATIONS*

K. Mani Chandy and Jayadev Misra
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

1. Introduction k

The problem of stability detection is one of the most widely studied problems

in distributed computing [1-28]. A stable property is one that persists: if the %.

property holds at any point, then it holds thereafter. Examples of stable

properties are termination, deadlock and loss of tokens in a token-ring. The

problem is to devise algorithms to be superimposed on the underlying computation

to determine whether a specified stable property holds for the underlying

computation. This paper presents a simple (almost trivial) algorithm to detect

quiescent properties, an important class of stable properties including those

mentioned above. Distributed snapshots [7] may be used to derive algorithms for

these problems. However our approach in this paper is different and results in

simpler algorithms.

2. Model of Distributed, Systems

2.1. The Model

A distributed system is a set of processes and a set of directed communication

channels. Each channel is directed from one process to another process. Processes

send messages on outgoing channels and receive messages on incoming channels. ",41

A process sends a message along an outgoing channel by depositing it in the

channel. A process receives a message along an incoming channel by removing the

message from the channel. A process may receive a message some arbitrary time

after it is sent. Initially, all channels are empty. At any time each process is in •-

one of a set of process states and each channel is in one of a set of channel states. C

*This work was supported in part by a grant from the Air Force

Office of Scientific Research under AFOSR 810205.

'i : i , . I. ' , , , ', .'*,. h ', 2 . 1 V e rk h . r nq a u (8 2" .'s
.,',,

t The channel state for a first-in-first-out channel is the sequence of messages in

transit along the channel. For channels which deliver messages in arbitrary order,

the channel state is the set of messages in transit. A system has a set of states, an

initial state from this set, and a set of state transitions. The system state at any

time is the set of process and channel states. Let S, S* be states of a system. S

is reachable from S if and only if there exists a sequence of state transitions from S

to S . We assume that all system states are reachable from the initial system

state.

2.2. Quiescent Property

A stable property B of a distributed system is a predicate on system states such
"" that for all S* reachable from S.

B(S) implies B(S")

In other words, once a stable property becomes true it remains true. A

quiescent property of a distributed system is a special kind of stable property

characterized by (1) a subset P* of the set of processes, (2) for all processes p in P,

a predicate bp on the process states of p and (3) a subset C* of the set of channels
, 'p

between processes in P. A process p in P* cannot send messages along channels in

C* while b holds. Furthermore, if bP is true, it must remain true at least until p
receives a message along a channel in C*. The quiescent property B is:

all channels in C* are empty and for all processes p in p b.

It is easily seen that B is also a stable property. A process p is a predecessor of a

process q with respect to B if and only if p and q are both in P* and there exists a

channel in C from p to q. For brevity we shall say p is a predecessor of q and

drop the phrase "with respect to B". If for some system state, we have for some

process q in P:

bq and all of q's incoming channels in C* are empty and

t- for all predecessors p of q b (1)

then this condition must persist at least until for some predecessor p of q, b
,,

P.2
I .1 I ;~~ii. I .~.:' crk~i,~'r~sI~JiiLI 0.

becomes false. This fact is useful in understanding quiescent properties and their

detection.

2.3. Problem Definition

Let the system computation go through a sequence of global states S., i >-0,

where S o is the initial state; this sequence of global states will be called the

underlying computation. Given a quiescent property B we wish to superimpose a

detection algorithm on the underlying computation to deterniine whether B holds.

The detection algorithm sets a boolean variable claim to true when it detects that

B holds, and claim is false until that point. The detection algorithm must

guarantee:

(Safety) not claim or B

(Liveness) : within finite time of B becoming true, claim is set to true.

We now present a brief discussion of three instances of quiescent properties:

termination, database deadlock and communication deadlock.

2.4. Termination

* A computation is defined to be terminated if and only if all processes are idle

and all. channels are empty. Thus C* is the set of all channels, P* is the set of all

""processes, and for each process p, b P is: p is idle. Idle processes don't send

, messages and hence termination is a quiescent property.

2.5. Database Deadlock

A process is either active or waiting. A waiting state of a process p is specified

by a pair (R , H) where R is a non-empty set of resources that p is waiting for

and H is a set of resources that p needs and holds (where R and H have no

common elements). Resources are sent as messages from active processes to other

- processes; a waiting process does not send any resource it needs and holds. A

process p, in a waiting state specified by (R , H), takes the following action on
p p

receiving a resource r in R

begin R :=R- {r}; Hp:= H U {r};

if R = { } then become active else wait

end

I * U .~i. IITU.. It, 21 . t VvrkI'lemerfntI .ILr 8.1
. . .. -. . . .-.. .;:-._...:.:....'.:/:. ,.,.,... . . -.* . . _.*. ,,., , ,'~ -,,p-..-.....-....... :....."... :,::.'..-..-.-... -......... ,

Here { } is the cmpty set. Whcn p transits from active to waiting state, Rp and

H are set to values which arc of no consequence to us here. A set P" of processes

is deadlocked if every process in P is waiting for resources held by other processes

in P, i.e.

P is database deadlocked

for all p in P": p is waiting and there exists a q in P* such that

., RpnH {

* In this case, the predicate b is: p is waiting for R and p holds H. A channel c is

in C if and only if c is from a process q to a process p where p and q are both in

P', and q holds a resource required by p. Typically, P* is not specified and it is

required to obtain a P* as part of the detection algorithm.

2.6. Communication Deadlock

As in database deadlock a process is active or waiting. A waiting process p is

waiting on a set of incoming channels CP; -on receiving a message along any

- channel in C , process p becomes active. An active process may start waiting at

any time. Until it receives a message along a channel in Ce, a waiting process p

, continues to wait on C . A waiting process cannot send messages. A set of

waiting processes is deadlocked if no process in the set is waiting on a channel

from a process outside the set, and all channels between processes in the set are

* .empty, i.e.,
."a.

A set of processes P' is communication deadlocked

*:: for all p in P" p is waiting for a set of incoming channels C, where each channel c

in CP is from- a process in P*, and c is empty.

In this case, b is: p is waiting on C. C is the union of all C for p in P*.

As in database deadlock, the detection algorithm is required to find PC if such

[. a set exists. Next we consider two specific classes of distributed systems: (i)

systems in which messages are acknowledged and (ii) systems in which channels

-, ?,-

• . :, t. '! . 'l ,',hd .. ' ni $,, i. I } , , } , , . , , , , , . A '. , , v k ' l L t l '.| 'u *.
) '

. ,

1" are first-in-first-out, and show how to detect quiescent properties in each class.

The latter class needs little description. We describe the former class next.

2.7. Systems with Acknowledgements

5 !Let c be a channel from a process p to a process q. On receiving a message

along c, process q sends an acknowledgement ack, to p. We are not concerned

: .- i with how acks travel from one process to another. An ack is not considered to be

a message in that acks are not acknowledged in turn. Furthermore, the statement

"channel c is empty" means that c contains no message; it may or may not

contain acks. Let numc be the number of unacknowledged messages p has sent

along outgoing channel c, i.e.,

num, - number of messages sent by p along c -
* number of ack, acknowledgements received by p.

. num - 0 implies c is empty.

We assume that every message sent is received in finite time and acknowledged in

finite time. We also assume that every ack sent is received in finite time. Hence,

* an acknowledgement is received for each message within finite time of sending the

message. Therefore,

" -. if B becomes true, then within finite time of B becoming true:

for all c in C num, - 0

3. The Paradigm

Our paradigm is based on observing each process computation for some period

of time called an observation period. An observation period for a process p is

S"specified by two integers, startp and endp, start < endp, denoting that p's

computation is observed at every S., start < i <.end . An observation period Bet
I P- - p

for a quiescent property B is a set of observation periods, one for each process in

P.

An observation period set obs" =((startp" , end P) p in P } is later than an

observation period set obs' {(start/, end') p in P*} if and only if all starting -

times in obs" are after some starting time in obs', i.e..*.

. . . .

min start > min start "

Let B* be a predicate on observation period sets, defined as follows.

B*(obs) -=[for all pin P

for all states S. where startp < i < end: bp holds in "

and

[for all p,q in P* where p is a predecessor of q: all messages sent

by p at or before start are received by q at or before end (2)
i" .

Note: To ensure that messages sent by p at or before startp are
P

received by q at or before end , we must have for all p,q in P*
where p is a predecessor of p : start1 : endq (3)

3.1. Quiescence Detection Paradigm

claim : false; obtain an observation period set obs;

• t while not B* (obs) do

obtain an observation period set ob.' later than obs; *

obs : - obs!

od;

claim : = true
* h

We next prove the correctness of this paradigm and postpone discussion of

techniques for implementing the paradigm to a later section.

3.2. Proof of Correctness

Safety: not claim or B

Safety holds while claim is false; therefore consider the final iteration of the

fwhile loop after which claim is set to true. For this iteration, we prove the

following by inducting on s:

G "". U2'

for all i > 0 for all p in P:

i < start P or bP holds in S] and

[i < endP or p's incoming channels in c are empty JJ

This induction follows from (1), (2), and (3).

Liveness: If there exists an i > 0 such that B holds for $j then there exists a
> 0 such that claim = true in S. . If B holds for S" then for all observation

period sets, obs, where start1 > i, for all p, B (obs) holds. From the paradigm,

.- either claim is set true or later observation periods are chosen indefinitely. Hence

if B holds for S. for any i > 0, then claim will be true for some Sj, j> 0.

3.3. Implementation of the Paradigm

The key question for implementation is: How can we ensure that all messages

sent by a predecessor p of a process q at or before start, are received by q at or

before endq?

3.3.1. Systems with Acknowledgements

The above question can be answered for systems with acknowledgements by

ensurin'g the following condition: for all p,q in P* where p is a predecessor of q and

for all channels c from p to q:

num =0 at start and start <.end. .

Proof of this condition is as follows. At startp, num-=O implies that c is

empty and hence all messages sent along c have been received. Hence all messages

sent at or before start , along c, are received at or before start and since

start < endq, the result follows.

For all p in P, let quiet- for all states S, where start < end: [b and

for all outgoing channels c in C : num - 01.

In the paradigm we replace B" (obs) by

L 7
" !, hl, . i, I ,IIIii,11 I I t,' 24,.' i ' V kleikklim runIg auf 112"

% L

[for all p in P quiet and

*[for all p,q in P" where p is a predecessor of q: start < endq]."

We show, in section 4, how startp < end, can be maintained. num c is maintained

as a local variable of p and hence quiet can be determined by p. Note that for

systems with rendezvous, such as CSP and ADA, num =0 holds at all times.

M 3.3.2. Systems with First-In-First-Out Channels

To answer the key question posed at the beginning of this section, we use

special messages called markers, which are sent and received along channels in C*

They have no effect on the underlying computation other than that they occupy

the same channels as regular messages. We use the following implementation

rules.

R1. Every process p in P sends one marker along each outgoing channel in C*
some (finite) time after (or at) startp and,

R2. Every process p in P* has received one marker along each incoming channel
in C some time before (or at) end.

Since channels are first-in-first-out, all messages sent along a channel before

the marker is sent on the channel must be received before the marker is received.

Hence every message sent at or before startp is received at or before endq, for all
P q

p,q in P, where p is a predecessor of q, '

Each process p in P'maintains a local boolean variable quiet, where

- quietp for all states Si where start i <, endp bp.R

In the paradigm we replace B(ob:) by [for all p in P quiet] and rules R1,

R2 are satisfied.

3.4. Notes on the Paradigm

[Our constraints on observation period sets are weak. For instance it is possible

that for a predecessor p of q, startq > end and there may be no overlap between

.L.. 'Jill ,,i ,,- -- ilF m 'lF1 . xV le u g a f0
.. i drr , ,rt r . Iai..q,' . i' . I.'. * I Vcrkh'iirriy juf 8r2'',.-i

. . * " -

r p's and q's observation periods. For a system with tirst-in-first-out channels,

process p may send markers on some or all outgoing channels after endP and may

receive markers on some or all incoming channels before start "

If the quiescent property never holds, the iteration in the paradigm will never

terminate, i.e. an infinite sequence of observation period sets will be obtained.

4. Applications of the Paradigm

There are many problems to which the paradigm may be applied and many

ways of applying the paradigm. We show two examples to demonstrate the power

of the paradigm: termination detection and (both types of) deadlock detection,

described earlier. We use termination detection as an example of the use of

markers and deadlock detection as an example of the use of acks.

' r4.1. Termination Detection

Processes are labeled pi, 0 < i < n. We employ a token to transmit the values

quiet P. The token cycles through the processes visiting P(i+,)mod n after departing

from pi, all i. A cycle is initiated by a process Pinit' called the initiator. If the

token completes a cycle (i.e. returns to piit after visiting all processes) and if all

processes p return a value quiet of true in this cycle then the initiator detects

termination, i.e. it sets claim to true. If any process q returns a value quietq of

false in a cycle, then the current cycle is terminated and a new cycle is initiated a
with q as the initiator. A process ends one observation period and immediately

starts the next observation period when it sends the token. The algorithm,

described next in detail, shows how quiet is set.

4.1.1. The Algorithm

The are no shared variables in a distributed system. However, for purposes of

exposition we assume that claim is a shared global variable which has an initial

value of false and which may be set true by any process. Such a global variable

can be simulated by message transmissions; for instance, the process that sets

claim to true may send messages to all other processes notifying them.

Two types of messages are employed in the termination detection algorithm.

It. .. "-fl.

<marker> : this type of message has already been discussed; it carries no
other information (except its own type).

<token, initiator> this is the token and its initiator, as described in
+ ! Section 4-1.

Each process has the following constants and variables. These will be

subscripted, by i, when referring to a specific process i.

ic: number of incoming channels to the process, a constant,

q6P. idle: process is idle,

quiet: process has been continuously idle since the token was last sent by theI

process; false if the token has never been sent by this process,

V hold-token: process holds the token,

init: the value of initiator in the <token, initiator> message last sent or
received; undefined if the process has never received such a message,

"* m: number of markers received, since the token was last sent by the process;
initial value as given in the algorithm.

Initial Conditions

The token is at Po.

=rai = the number of channels from processes with indices greater than i, for

all i, i.e., the cardinality of the set, {c I c is a channel from p, to pi and j > i}.

(This initial condition is required because otherwise, the token will permanently

stay at one process.)

quieti = false, for all i.

(The algorithm is slightly more efficient with different initial conditions, but

for purposes of exposition we shall make the simpler assumption.)

1 C 0AL
, ii ,i .,l~ l h ' ,I I, It I h~ l 1 1 . , h ,, in ; l. ' eI II fl' it+'ll, 1 CJ~ ,Ltf E3:'

{ true, for i=O
hold-tokeni =

false, for i 0•-

init. is arbitrary, for all i

Algorithm for a Process P.

The algorithm for a process is a repetitive guarded command. The repetitive

guarded command is a set of rules where each rule is of the form, condition

action. The algoritlin proceeds as follows: one of the rules whose condition part

evaluates to true is selected nondeterministically and its action part is executed.

The repetitive guarded command consists of the following rules:

1. receive marker - m i: = m.+ 1;

2. quiet, and receive regular message (i.e. underlying computation's

message) -. quieti : = false;

3. receive <token, initiator> -- begin init.: - initiator; hold-token.

- true end;

* 4. hold-tokeni and (icei mi) and idle, -*

if quiet i and (initi = i) then {termination detected} claim = true;

if quieti and (initi - i) then {continue old cycle}
l begin '

Send marker along each outgoing channel;

hold-token.: - false;

send <token, initi> to P(i + 1)rod n

end

•o '1
°-ii°

I it' r eki~sei ii I
°°o~

If -quiet then {initiate new cycle)

begin

m i :-; quiet,: true; initi : i;

Send marker along each outgoing channel;

hold-token. : false;

-- send <token, init,> to P(i+1)mod n

end

4.1.2. Proof of Correctness

We need merely show that the algorithm fits the paradigm. A process pi ends

an observation period and starts the next one when the token leaves pi. Initially,

: . an observation period is started when the token leaves Po the values of m, are so

[L chosen initially that it is possible for the token to leave pi, for the first time, when

Pi has received markers from all lower numbered processes. We need to show the
following' {initial conditions should be treated slightly differently}:

1 1. quiet, , has been continuously idle in the current observation
period, i.e. since the token last left pi

2. Each process sends a marker on each outgoing channel upon starting
an observation period.

3. Each process ends an observation period only after receiving exactly
one marker along each incoming channel.

* j. 4. claim is set to true if and only if in one' cycle of the token (which
corresponds to an iteration of the paradigm all processes pi return a
value of quieti = true at the end of their observation periods.

5. After termination, a cycle of the token is completed in finite time. To
guarantee this we must ensure that each process receives a marker
along each incoming channel in finite time.

Proofs of these assertions follow directly from the algorithm and the details are

left to the reader.

I-

I i .11 -i '12 i r.ri.c ;Lf 3

4.1.3. Overhead and Efficiency

The most overhead is incurred in rule 4, when a process is idle. The overhead

while a process is doing uscful work in negligible. Also a process sends the token

only when the process is idle; this controls the rate at which the token cycles

through processes. For instance, if all processes are active, the token will not

* move at all. Also observe that termination will be detected within two cycles of

after computation terminates.

" 4.2. Deadlock Detection

7." The following refinement of the paradigm is applicable. to database deadlock

and communication deadlock, under the assumption that messages are

acknowledged.

A process which we call the detector sends initiate messages to all processes; on
Lreceiving an initiate message a process starts its observation period and

* acknowledges the initiate message. After receiving acknowledgements to all the

initiate messages sent the detector sends finish messages to *all processes. A

process p ends its observation period after receiving a finish message and replies

with a boolean value quiet and a set waiting-for, where
PP

quiet for all states in the observation period :
p

[p is waiting and for all outgoing channels c :num 0],

set of objects that p is waiting for in the observation N.
period, if quiet quiet." ~ ~~waiting- f or f "

arbitrary, if not quiet

_

The detector determines whether there exists a set of processes P, such that

for all p in P* : quietp and the sets waiting-forp are such as to constitute a

deadlock. The proof of correctness is that the algorithm fits the paradigm.

The algorithm, as stated above, appears to be centralized rather than

distributed. Note however, that the detector process could be different for

different initiations and there could be multiple detectors. The function of the

detector, i.e. sending messages, detecting deadlock, can be decentralized by having

messages forwarded to their destinations by intermediate processes and deadlock
. ~detection computation carried out by intermediate processes. ..

5. Previous Work

The idea of observation periods is central to the works of Francez, Rodeh and

Sintzoff on distributed termination [12-14 J, and Chandy, Misra and Haas on

deadlock detection [6]. Dijkstra [11], Gouda [16 1 and Misra [26 1 have

developed token based algorithms for termination detection, and these algorithms

also use observations over a period. We have attempted to generalize these works

to produce a particularly simple paradigm for detecting an important class of

properties, quiescent properties, in distributed systems with asynchronous 'I
-, ~channels. :.

Acknowledgement: It is a pleasure to acknowledge extensive discussions

with Shmuel IKatz, who also carefully read and commented on eirlier draft of this * 1
Spaper. Edsger W. Dijkstra and Hank Korth helped with constructive criticism.

References

p 1. C. Beeri and R. Obermarek, "A Resource Class Independent Deadlock

Detection Algorithm", Research Report RJ3077, IBM Research

Laboratory, San Jose, California, May 1081.

2. G. Bracha and S. Toueg, "A Distributed Algorithm For Generalized

Deadlock Detection", Technical Report TR 88-558, Cornell University,

June 1083.

3. K. M. Chandy and J. Misra, "Asynchronous Distributed Simulation

Via a Sequence of Parallel Computations", Communications of the

ACM, Vol. 24, No. 4, pp. 108-205, April 1081.

4. K. M. Chandy and J. Misra, "A Distributed Algorithm for Detecting

Resource Deadlocks in Distributed Systems", ACM SIGACT-SIGOPS

Symposium on Principles of Distributed Computing, Ottawa, Canada,

August 1082.

%" .- I
).. ., .-.

.'...

, I. {I'! ,'. 'k, ' ; i, r , I ,' ''.., , ,1 ?5,.Vr , *tl c u l l ll lI ".

5. K. M. Chandy and J. Misra, "A Computation on Graphs: Shortest
S"-Path Algorithms", Communications of the ACM, Vol. 25, No. 11, pp.

833-837, November 1082.

6. K. M. Chandy and J. Misra and L. Haas, "Distributed Deadlock
Detection", ACM Transactions on Computing Systems, Vol. 1, No. 2,
pp. 144-156, May 1083.

7. K. M. Chandy and L. Lamport, "Distributed Snapshots: Determining
IL Global States .of Distributed Systems", to appear in ACM

Transactions on Computing Systems.

8. E. Chang, "Echo Algorithms: Depth Parallel Operations on General
Graphs", IEEE Transactions on Software Engineering, Vol. SE-8, No.
4, pp. 391-401, July 1082.

9. S. Cohen and D. Lehmann, "Dynamic Systems and Their Distributed
Termination", ACA SIGACT-SIGOPS Symposium on Principles of

k3 ,Distributed Computing, pp. 20-33, Ottawa, Canada, August 18-20,
1982.

10. E. W. Dijkstra and C. S. Scholten, "Termination Detection for
Diffusing Computations", Information Processing Letters, Vol. 11, No.
1, August 1080.

11. E. W. Dijkstra, "Distributed Termination Detection Revisited", EWD
828, Plataanstraat 5, 5671 AL Nuenen, The Netherlands.

12. N. Francez, "Distributed Termination", ACM Transactions on
Programming Languages and Systems, Vol. 2, No. 1, pp. 42-55,
January 1080.

13. N. Francez, M. Rodeh, and M. Sintzoff, "Distributed Termination with
Interval Assertions", Proceedings of Formalization of Programming

2:. Concepts, Peninusla, Spain, April 1981. Lecture Notes in Computer
Science 107, (Springer-Verlag).

' 14. N. Francez and M. Rodeh, "Achieving Distributed Termination
Without Freezing", IEEE-TSE, Vol. SE-8, No. 3, pp. 287-202, May
1982.

15. V. Gligor and S. Shattuck, "On Deadlock Detection in Distributed
Data Bases", IEEE Transactions on Software Engineering, Vol. SE-6,
No. 5, September 1080.

A

-. I -111 ., 1 (11 't Ilom ruting

16. M. Gouda, "Personal Communication", Department of Computer
Sciences, University of Texas, Austin, Texas 78712.

17. L. Haas and C. Mohan, "A Distriblated Deadlock Detection Algorithm
for a Resource-Based System", Research Report RJ8765, IBM Research
Laboratory, San Jose, California, January 1083.

18. T. Herman and K. M. Chandy, "A Distributed Procedure to Detect
AND/OR Deadlock", Computer Sciences Department, University of
Texas, Austin, Texas 78712, February 1983.

19. T. Holt, "Some Deadlock Properties of Computer Systems",
Computing Surveys, Vol. 4, No. 3, pp. 179-196, September 1972.

20. D. Kumar, Ph.D Theses (in preparation), Computer Sciences
Department, University of Texas, Austin, Texas 78712.

" 21. L. Lamnport, "Time, Clocks and the Ordering of Events in a

Distributed System", Communications of the ACM, Vol. 21, No. 7,
July 1978.

22. G. Le Lann, "Distributed Systems - Towards a Formal Approach",
Information Processing 77, IFIP, North-Holland Publishing Company,
1977.

23. D. Menasce and R. Muntz, "Locking and Deadlock Detection in
Distributed Data Bases", IEEE Transactions on Software
Engineering, Vol. SE-5, No. 3, May 1979.

*24. J. Misra and K. M. Chandy, "A Distributed Graph Algorithm: Knot
Detection", ACM Transactions on Programming Languages and
Systems, Vol. 4, No. 4, pp. 678-688, October 1982.

25. J. Misra and K. M. Chandy, "Termination Detection of Diffusing
Computations in Communicating Sequential Processes", ACM
Transactions on Programming Languages and Systems, Vol. 4, No. 1,

N "pp. 37-43, January 1982.

26. J. Misra, "Detecting Termination of Distributed Computations Using
Markers", Proceedings of the ACM SIGACT-SIGOPS Symposium of f-
Principles of Distributed Computing, Montreal, Canada, August 17 -
19, 1083.

27. R. Obermarck, "Deadlock Detection For All Resource Classes",
" Research Report RJ2055, IBM Research Laboratory, San Jose,

California, October 1980.

[I* I

.,t "., ',, l . , k,' ll I,, f ,,t t I lt '., hm,: '..' , Ve~rkh'onoruing ,uf (12 ' =
N --- '.Q

28. R. Obermarck, "Distributed Deadlock Detection Algorithm", ACM
Transactions on Database Systems, Vol. 7, No. 2, pp. 187-208, June
1082.

k, mfo id1 111 I;II eken rn tUwv

SECURITY CLASSIFICATION OF THIS PAGE (When Deafle ied),
READ INSTRUCTIONS --p

C:REPORT DOCUMAENTA:TION PAGE BEFORE COMIPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

! 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Manuscript: "An Example of Stepwise Refinement final: C/1V0/Gl - 6/15/85
of Distributed Programs: Quies- -6 PERFORMING01G. REPORT NUMBER

* cence Detection"
7. AUTHOR(a) 0. CONTRACT OR GRANT NUMSER(a)

Professor K. M. Chandyp
Professor J. Misra
The U4niversity- of Texas at AustinAOS8105

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA A WORK UNIT NUMBERSA

Computer Sciences Department
University of Texas at Austin
Austin, Texas 78712 _______________

I 1. CO 4TROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Capt. A. L. Bellamy July 1985
AFOSR/NM -13. NUMBER OF PAGES

* Boiling AFB, DC 20332
r4. MONITORING AGENCY NAME a ADORESS(if different from Controlling Office) 15. SECURITY CLASS. (at thie report)

I D. ECL ASSI FICTON D NGADING

SCHEDOU LE ATOEW

IS. OiSTRIOIJTION 'iTATEMENT (ni this Report)

I?. DISTRIBUTION STATEMENT (of the Abetract entered In Block 20. It diffeet from Report)

IS. SUPPLEMENTARY NOTES

to appear in ACM Transactions on Programming Languages and Systems

19. KEY WORDS (Continuean m eweree *#do It neceei nmd Identuify by block nsinsb4e)

20. ABSTRACT (Contlnoto nn roer#*te aide it neconear and Identify by block nmwboe)

This paper presents a systematic derivation of a distributed algorithm by
a sequence of successive refinements of its specification: the invariant and
termination conditions. The problem treated is detection of "quiescent proper-
ties" in a distributed computation. Such properties include termination and
deadlock. An argument is made that stepwise refinement is a useful method to
derive distributed programs.

DD' A"317 DTO 1 NTV ::.IS OBSOLETE ... ,

An Example of Stepwise Refinement
.' of Distributed Programs:

Quiescence Detection

K.~~ Man Chnd

Jayadev Misra

Department of Computer Sciences

University of Texas at Austin

Austin, Texas, 78712

29 April 1985 z

This work was supported in part by a grant from the Air Force Office of Scientific
Research under AFOSR 810205. P"

':p..

-2.P
.:,

1. Introduction

This paper presents a systematic derivation of a distributed algorithm by a

sequence of successive refinements of its specification: the invariant and

termination conditions. The problem treated is detection of "quiescent properties"

in a distributed computation. Such properties include termination and deadlock.

-An argument is made that stepwise refinement is a useful method to derive

distributed programs.

- A consequence of the stepwise refinement method is that we obtain, in a

systematic manner, the weakest conditions under which the algorithm can operate.

Specific instances of the quiescence detection problem have been extensively

studied [1-30 1. All such algorithms have the feature that each process is observed

over some interval during the computation and the intervals are related in some

manner. For instance, in termination detections of diffusing computations [10],
messages define the beginning and acknowledgements define the end of an

" interval. A token is often used [14,28] whose successive receipts at a process

" define various intervals. Our solution differs from these in that we inspect

processes at arbitrary times and in arbitrary order.

Stepwise refinements in our distributed program is carried out as follows: the

problem to be solved is specified in terms of global (system wide) properties; a

refinement consists of generalizing this global property to apply to subsystems.

* . For instance, quiescence is a system wide property; refinement consists of

obtaining generalizations of quiescence which apply to subsystems. Generalization

of the desired properties results in weakening the invariant. The weakened

invariant suggests the structure of the desired algorithm.

We use a common model of distributed systems in which sends and receives are

asynchronous, and channels are error-free [7 1. A distributed system is a set of

processes and a set of directed channels. Each channel is directed from one

I process to another. A process sends messages on its outgoing channels and receives

messages on its incoming channels. Messages are delayed for arbitrary, finite times

* ..L i

4- W

2

in channels. Channels are first-in-first-out. Processes communicate with one

another exclusively by sending/receiving messages. (For a more formal description

3 see [7])

Each process and each message is colored either black or white. A message is

given the color of the process sending it: black processes send black messages and

white processes send white messages. The color of a message does not change. A

black process may turn white at any time. A white process may turn black only

upon receipt of a black message. The problem is to detect property W where

W = all processes and messages in the system are white. (1)

Once W holds it continues to hold. Property W is called quiescence. "Many

distributed algorithms are structured as a sequence of phases where each phase

consists of a transient part followed by a stable part ... The presence of stable

behavior indicates the end of a phase" [3,7]. States in which there is a black

," process or message are in the transient part, and states in which all processes and

messages are white are in the stable part. Thus detecting W amounts to detecting

the end of a phase. Termination and deadlock are special cases of W. In deadlock

detection "white process" means "waiting process", and a black message is one !'J.

which causes its receiver to stop waiting. Similar definitions apply to termination

detection.

The detection algorithm is to be superimposed on the underlying computation.

A superimposed algorithm does not alter the underlying computation. The

* superimposed algorithm employs the processes and channels of the underlying

computation. However, the superimposed algorithm may use additional local

variables at each process and special messages which are not part of the

- underlying computation. Actions that change the state of the underlying

computation may also change the state of local variables employed by the

* -" superimposed computation. There may also be actions that change the state of

,' the superimposed computation and do not change the state of the underlying

computation.

3

1.1. Specification of the Detection Algorithm

The detection algorithm has a boolean variable claim satisfying the following

pa invariant and termination conditions.

Invariant: not claim or W (2)

Termination: within finite time of W holding, claim holds (3)

Therefore the detection algorithm is required to set claim to true only if W holds

and it must do so within finite time of W being true.

1.2. An Outline of the Paradigm

We first discuss the paradigm informally and then discuss how the

specifications are met starting with the invariant (2) and then considering the

termination condition (3). We use a set checked of processes such that the

"algorithm detects W" means all processes are in checked. Formally,

claim (checked =-P) (4)

where P is the set of all processes. Let unchecked be the complement of checked

i.e. unchecked = P - checked. For brevity, processes in checked are called checked

U' .processes; processes in unchecked are called vnchecked processes. We wish to
LV

* . develop an algorithm which has two basic actions (1) add an unchecked process to

set checked and (2) remove processes from checked. The algorithm is developed so

that all processes are in checked means claim holds. Now conditions (2, 3) can be

rewritten:

Invariant: (checked C P) or W (5)

Termination: Within finite time of W holding, checked = P. (6)

Invariant (5) means there is at least one unchecked process or W holds. The

termination condition is that within finite time of W holding all processes are in

checked. Property W is a system wide property. Following Dijkstra [11] and

- . Gries [18], we seek to weaken (5, 6) by replacing the system wide property W by

a subsystem property w defined on process sets S, S C P, such that

W(P) = W.

From w(P) = W, we obtain:

i..i oo-. ,. ... o . o . .* ., -,., b - - . -. -. --. -. -o. . -.-. 'u ". " i
k'. " - " ". "" ." - .. .'.: .. \ .', .' , ,.• : , , ,. ,;,'..',,,,.: - ,- .'., ." . , " ,"-,',., " .".. ' ,"-., ,..- -',. . '-.. , ... '' . -. ,.

4

(checked C P) or W - (checked C P) or w(checked)

The above equivalence follows by considering two cases: (1) checked C P and (2)

checked = P. In the former case, the first term in the disjunctions of both the left

hand side and the right hand side of the equivalence hold. In the second case we

have w(checked) = w(P) and w(P) W; hence the second term of the

disjunctions of the left and right hand sides are equivalent.
I.

This allows us to write (5, 6) as:

Invariant: (checked C P) or w(checked) (7)

Termination: Within finite time of w(P) holding, checked = P (8)

How shall we generalize system-wide property W to obtain a subsystem property

w? A definition of w which guarantees w(P) = W is:

w(S) =_ all processes in S are white and
all input channels of all processes in S contain only white messages.

Invariant (7) says that there is at least one unchecked process or all processes

in checked are white and have input channels containing no black message.

1.3. How the Algorithm Maintains Invariant (7)

1.3.1. Intuition

We first discuss the intuition which went into the development of the

algorithm so as to maintain invariant (7). Initially, (7) holds by setting

checked = empty. To maintain invariant (7) it follows that if w(checked) does not

hold then we should not allow checked to equal P. In other words, if w(checked)

does not hold we must prevent at least one unchecked process from being added to

checked. How do we prevent this?

We postulate an inclusion condition, inc, such that a process is added to

checked only if it satisfies inc. We define inc so that the following is an invariant:

Invariant: w(checked) or for some unchecked process: not inc (g)

Invariant (9) assures us that if w(checked) does not hold then checked C P because

there is at least one unchecked process which does not satisfy inc; furthermore this

o*.

5

. unchecked process cannot be added to checked and thus we maintain the invariant.

We shall devise an algorithm satisfying invariant (g) and thus ensure invariant (7).

Now we look for a condition inc satisfying (9).

1.3.2. An Example of an Incorrect Inclusion Condition

A simplistic, but incorrect, inclusion condition for a process is: process is white

and all its incoming channels contain only white messages. To see why this

condition is incorrect consider a system with two processes. Suppose checked is

empty and then one of the processes is added to checked when the other process is

black. Then the black process sends a black message, turns white and is

subsequently added to checked. Now we have a situation in which the algorithm

reports (since checked-= P) that all processes and messages are white, though there

is a black message in transit. What went wrong? Invariant (9) was not satisfied.
L The inclusion condition was not strong enough to ensure that at least one

unchecked process would never satisfy the inclusion condition if a checked process

was sent a black message. We now give an example of an inclusion condition

* which does satisfy invariant (9). (There may be more than one inclusion condition

satisfying (9) - we should choose one most appropriate to each problem.)

- 1.3.3. A Correct Inclusion Condition

We develop a correct inclusion condition based on the following observation.

For any subset of processes checked, if w(checked) holds then it continues to hold

until (1) a checked process is sent a black message by an unchecked process or (2)

an unchecked process is added to checked Let us first focus our attention on the

event: an unchecked process sends a black message to a checked process.

We maintain invariant (9) as follows: if an unchecked process has sent a black

message to a checked process then that unchecked process is not added to checked;

we shall define the inclusion condition inc so that such an unchecked process does

not satisfy inc and this ensures that such a process is not added to checked.

Special messages called markers are employed; markers have no effect on the

underlying computation. We will enforce the following: if an unchecked process

sends a marker along a channel and subsequently sends a black message along that

channel then that unchecked process does not satisfy the inclusion condition, inc.

-- Each process has a local variable, channel-state for each of its output channels.

A channel-state has one of three values: pre-marker, positive or negative. A

channel is initially in pre-marker state and transits from pre-marker state to

positive state when a marker is sent along it; it transits from positive to negative

- when a black message is sent along it. Therefore, a channel is positive means that

a marker has been sent along the channel and no black message has been sent

along the channel after the marker along it. A channel is negative means that at

least one black message has been sent along it after the marker was sent along it.

-- The information conveyed by the marker is this: after a process receives a marker

along a channel the following holds: the channel contains only white messages or

the channel is negative

Each process has a boolean variable, received-marker, for each of its input

channels where initially received-marker is false, and it becomes true when a

markef is received along the channel. Observe that:

for all channels: not ((channel-state = pre-marker) and received-marker)

'* The meaning of a marker is given by the invariant:

for all channels: not received-marker or channel
contains only white messages or channel-state - negative (10)

The inclusion condition for a process is:

inc =_ process is white and
[for all its input channels: received-marker] and
[for all its output channels: channel is nonnegative] (11)

In other words, we add a process to checked only it if is white and it has received

a marker along each of its input channels and it has not sent a black message

following the marker, along any output channel. Given (11), we prove the

• "following invariant:

. . I

rIT- 9'7.

r7
Invariant: w(checked) and

all output channels of all processes in checked are nonnegative
or

there is a negative output channel

from an unchecked process to a checked process. (12)

Note: (12) implies (9). Therefore it is sufficient to prove that (12) is invariant.

Lemma: Inclusion condition (11) maintains invariant (12).

Proof: We prove the invariant by induction on the cardinality of checked.

Initially, checked is empty; hence (12) holds. Assume that (12) holds at some

point in the computation immediately before some unchecked process q is added to

checked; we show that (12) holds with checked replaced by {q} U checked.

If there is a negative channel from a process in unchecked - {q} to a process in

checked U {q}, then the invariant is maintained q is added to checked. Therefore,

assume that

(a): all channels from unchecked - {q} to checked U {q} are nonnegative

From the inclusion condition (11), all output channels of q are nonnegative.

Therefore using (a), we have,

i- (b): all channels from unchecked processes to checked processes are nonnegative.

From invariant (12) and (b) we have,

(c): w(checked) and all output channels of processes in checked are nonnegative.

From (a) all channels from unchecked - {q} to q are nonnegative; from this fact

* . and (c), we have,

: •(d): all input channels of q are nonnegative.

From inclusion condition (11)

(e): q is white.

From (10), (11) and (d) we have,

(f): all input channels of q contain only white messages.

From (c), (e) and (f) we have:

U,

-~ 8

(g): w(checkedU {q}).

From (c), all output channels of all process in checked are nonnegative; from

n inclusion condition (11), all output channels of q are nonnegative. Therefore, we

have,

(h): all output channels of all processes in checked U {q} are nonnegative.

Invariance of (12), with checked replaced by checked U {q}, follows from (g) and
.- (h).

Next, we show that (12) is maintained when a message is sent or received; we

prove only the case of message send and leave receives to the reader. If the second

term in the disjunction (12) is true prior to a send, it remains true following the

send. Hence assume that the second term is false and therefore the first term in

the disjunction is true, prior to the message send. If the message is sent by a

*. checked process, it must be white because w checked) holds prior to the send and

hence all checked processes must be white before the send.

A message send can be (a) a message sent by an unchecked process to an

unchecked process or (b) a white message sent by an unchecked process to a

checked process or (c) a black message sent by an unchecked process to a checked

process or (d) a white message sent by a checked process. In cases (a), (b), and (d),

the first term of the disjunction (12) is not falsified by the send. In case (c) the

second term of the disjunction holds after the send.

1.4. How The Algorithm Achieves Termination

1.4.1. Intuition

If an unchecked process has a negative output channel then checked can never

equal P, from the inclusion condition. Hence termination will never be detected.

To ensure that termination condition (8) is met, each negative channel is

reinitialized in finite time, where by reinitialization we mean the channel-state is

set to pre-marker state; in order to preserve (10), we set the corresponding

received-marker value to false, and to preserve invariant (12), if the channel is

,N k

g

from an unchecked process to a checked process then we set checked to empty. We

now argue that if each negative channel is reinitialized in finite time the

termination condition (8) is satisfied.

1.4.2. Proof of Termination

If W holds, all nonnegative channels are positive (and remain positive) or are

- in pre-marker state and will become positive in finite time (and remain positive

thereafter). From our reinitialization procedure, a negative channel becomes

pre-marker in finite time. Therefore, all channels are positive in finite time after

W holds. All processes are white. Since markers are delivered in finite time, for all

. channels received-marker holds in finite time after the channel becomes positive.

Therefore, in finite time after W holds, inc holds for every process, and hence,

,* within finite time after W checked= P.

, 1.5. The Quiescence Detection Paradigm

Now, we put the pieces that we have been developing together to obtain the

quiescence detection paradigm. Our description consists of a repetitive guarded

command [11] which is a set of statements of the form condition -. action.

- The action part of a statement is executed if the condition part of the statement

" holds. The repetitive guarded command terminates when the condition parts of

all statements in the command are false.

In this description we assume that checked is a global variable which may be
written or read by all processes. A distributed implementation of checked is

provided later.

Initially: checked = empty, [for all channels: received-marker false,
channel-state = pre-marker]

Marker Sending:
for all channels: channel state = pre-marker--
send marker along channel; channel state: - positive

o

10

Channel Turning Negative:
K for all channels: channel-state = positive and message is

sent along the channel - channel-state: = negative

Setting Received Marker.
for all channels: receive a marker
along the channel -- received-marker: - true -_

0

Expanding Checked:
for all processes q: q is unchecked and inc holds for q --
checked: = checked U {q}

0

Reinitialization:
for all channels: channel-state = negative -.

channd-state: = pre-marker, received-marker: = false;
if the channel is from an unchecked process to a
checked process then checked: - empty'

Detection:
claim (checked -P)

2. Applications of the Paradigm

Now we continue stepwise refinement of the given distributed program. The

program outline given above does not specify how the shared variable checked is to

be implemented. We have several options for refining the program and we

describe only one.

We employ one token which visits processes one after the other and updates

checked. When the token visits an unchecked process the process is added to

checked if it satisfies inc; if the visited process has a negative output channel to a

checked process then checked is set to empty. How should negative channels be

reinitialized? The answer is based on the following observation: in the paradigm

and its proof we read or write the channel-state (pre-marker, positive, negative)

and received-marked variables only for unchecked processes. These variables are

not used for checked processes. This observation allows us to reset

N.:::
-1::'.2

received-marker for all input channels of a process and channel-8tate for all its

output channels when the process is added to checked. .4'

The processes are indexed i, where 0 < i < n, and n is the number of

processes in the system. The token is implemented as a special message, and for

all i, process i sends the token to process (i + 1) mod n after completing the

computation it is obliged to carry out on receipt of the token. The variable

checked is associated with the token; it may be thought of as a field of the token.

When process i sends the token it also sends markers on all outgoing channels.

Since marker and channel-state values are reset as the token leaves a process, a

slight modification of the meanings of these variables is required.

For an input channel of a process:
received-marker is true means a marker has been received along the channel
since the token last left the process.

For an output channel of a process:
(channel-8tate = positive) means no black message has been sent along the
channel since the last marker was sent along the channel,

(channel-state = negative) means at least one black message was sent along
" .the channel since the last marker was sent along the channel.

No channel is in pre-marker state. .

We now give the algorithm followed by a discussion. The Greek letters

a,... ,e are used to label points in the program which are referred to in the

discussion. Initial conditions for the algorithm are derived later. The algorithm

consists of the channel turns negative rule, setting received-marker rule and the

rule given below.

Algorithm Details For Process i, 0 < i < n

{a::} process i holds the token and process i is white and
*:. for all its input channels: received-marker -.

t " '

• ° "

.-- -. -.. - .- ;. -. ... :. ,... .".. . . -.. -. -' ' -..

12 A

if process i has a negative output channel to a checked process

then {#::} checked: = empty else {-y::} checked: = checked U {i};

if checked = P then {6::} halt

else {e::} begin
send token to process (i + 1) mod n;
for all input channels: received-marker. false;
for all output channels: send marker;, channel-state: = positive

0
end

When process i satisfies the condition a of the above guarded command then

either process i satisfies inc (11) or it has a negative output channel. In the

former case the process is add, I to checked {in "}. In the latter case, if the

process has a negative output channel to a checked process we are obliged to set

checked to empty {in 6}. Otherwise (i.e. the process has negative output channels

only to unchecked processes) since the channels will be made positive {in E} and

* since the process will then satisfy inc we add it to checked {in -1}. Now if

checked = P the algorithm has detected termination and halts. Otherwise (there is

still an unchecked process) and so the token is sent the next process and all output

channels are made positive {in e}.

The proof of the algorithm is the same as the proof of the paradigm: invariant

(12) is maintained, and the same proof of termination applies. (see initial

condition below)

2.1. Deriving Initial Conditions for the Algorithm

We derive the initial conditions to ensure progress of the token from one

process to the next. If we choose the initial conditions unwisely the token may get

stuck at a process because the condition "for all the process' input channels:

received-marker holds" may never be met.

Assume that the token is initially at process 0 and that all markers sent on the

"previous" cycle of the token have been received. (Of course, there is no

LAL

113

"previous" cycle, but intuition suggests that we determine initial values by

assuming that there was). Then, for all channels from higher-numbered processes

to lower-numbered processes, received-marker holds (because markers sent on

these channels in the previous cycle are assumed to have been received). For all

channels from lower-numbered processes to higher-numbered processes: not

received-marker (because when the token left a process on the last cycle,

-. received-marker was set to false for all incoming channels, and no marker has r.

since been sent along channels from lower-numbered to higher-numbered

processes). Initially, there may be black messages in all channels; therefore we

assume that all channels are negative. Thus we get:

Initially, token is at process 0.

For a channel from a process p to a process q, for all p, q

received-marker = (p < q).

•* All channels contain no markers.

For all channels: channel-state = negative.

2.2. Pause To Review Stepwise Refinement

We pause at this point to review the stepwise refinement procedure adopted in

this paper. Starting with the problem specification and the notion of set checked

P[we showed the need for the inclusion condition and invariant (9). Then we

postulated an inclusion condition which resulted in a stronger invariant (12). We

.o next turned our attention to termination and deduced actions to ensure the

termination condition in the problem specification. At this point we had the

". outline for a program though the method of implementation of some global

variables (notably checked) in a distributed system was left unspecified.

Next, a more complete program outline was obtained by postulating one

scheme for implementing the global variables of the previous step so as to

maintain the invariant; the implementation used was by means of a token. In

[" every step of the refinement we had multiple options and we had to make design

choices as to which option to pursue. Different options usually result in different

[me
....*.. il.. '.r.

14

algorithms.

In the next refinement step we show how the program can be optimized by

reducing the amount of memory required by each process.

2.3. Implementation Issues

- We may reduce the amount of memory required to implement the algorithm by

using a few observations about the algorithm.

Notation: Let i. . j denote the set of (j + n - i) mod n processes:

imodn,(i+I)modn, ,jmodn.

In other words, i. . j is the set of processes visited by the token after i and before

next leaving j.

Observation 1: Either checked is empty or checked consists of the last k

processes visited by the token for some k, where 0 < k < n.

This observation allows us to keep track of the set checked by a variable init

associated with the token where init has the following meaning. When the token

arrives at (j"+ 1) mod n, if init = j, then checked is empty else checked is the set

(init + 1). .j.

Observation 2: The only purpose of channel-state is to determine if there is

a negative channel from an unchecked process to a checked process.

This observation allows us to implement the algorithm without each process

.*. keeping track of channel-state for each of its output channels. Each process has a

variable farthest-negative which is the index of the process "farthest from it" to

which it has a negative channel, where the sequence of processes ranked in

increasing order of "farther from" a process i is:

i, (i + 1) mod n, (i + 2) mod n, ... ,(i+ n - 1) mod n

"Process i has no negative output channel," means "farth eat-negative is i."

.1.'°

: 15

Let the token be at a process i. "There is a negative channel from process i to

a checked process" is equivalent to, "farthest-negative for process i is in the set

init + 1 .. i - 1". Thus we may dispense with channel-states and use a single

variable farthest-negative for each process. In operational terms,

farthest-negative for a process is the index of the process farthest from it to which

it has sent a black message since the token last left it.

Observation 3: The variables received-marker are used only to determine for

a process whether a marker has been received for all its input channels.

This observation allows us to replace variables received-marker by a count nmr

for each process where nmr for a process is the number of markers received by the

process since then token last left the process. For a process, "received-markers

holds for all its input channels" is equivalent to "nmr - number of input

channels of the process".

Algorithm for process i

process i holds the token and process i is white and

"-' nmr =- number of its input channels--

p!. if farthest-negative = i and init - i

then {claim =- true} halt;

if farthest-negative is in the set (init + 1) . . (i - 1)

- then init: i;

send <token, init> to process (i + 1) mod n;

nmr. = 0; send marker on each output channel;

fart hest-negative: = i

receive marker -- nmr: = nmr + 1

.°:~.

r16

send black message to j- if j is farther from i than
- farthest-negative then farthest-negative: - j

0

Explanation: For process i, fartheat-negative = i means the process has no

negative output channels. If init = i when process i gets the token then all

* processes except i are in checked. If farthest-negative is in the set init + 1..

(i - 1) then process i has a negative channel to a checked process and in this case

checked is set to empty and then the token is propagated. Setting checked to
empty is accomplished by assigning i to init before propagating the token.

3. Discussion

Stepwise refinement has been applied in sequential programming to develop

programs from specification [11,18]. We have illustrated an application of

-stepwise refinement to a problem in distributed systems in which the problem

specification is in terms of an invariant and termination condition. In distributed

systems a useful refinement is that of generalizing predicates on systems to

predicates on subsystems, as for instance generalizing W to w. Another useful

" refinement step is that of implementing global data structures (eg. checked) by

local data structures and messages (eg. token).
p

Stepwise refinement for the quiescence detection problem yields a family of

solutions, one of which was given here. The solution appears to be novel in that

attention is restricted to a process's output channels, i.e. checked is set to empty

Sonly if there is a negative channel from a checked process to an unchecked process.

Other algorithms use inclusion conditions such as processes being continuously idle
(i.e. white) over an interval.

* .- It is instructive to study the sequence of system specifications as stepwise

refinement proceeds. Invariant (2) and termination condition (3) specify the class

,. of all detection problems: a system property W is to be detected, and detection

means claim holds. In this paper we were concerned with a specific W: quiescence,

defined by equation (1). Equation (4) specifies a class of detection algorithms in

• L . , ."•"--- "-"-"• -" -" "-• . . •° .- •• •, .-. ,,-., ' . .,' - ' ." . , ' ,, .,," , " ' . "

17

which detection means "all processes are in checked". The choice of w refines the

class of solutions further. Every design choice narrowed the set of solutions until

we obtained a program. However, the program is less important than the

systematic development of design choices because for different environments

different solutions are appropriate, and the key question is: Given a development

of a program, how much design effort can be saved in developing another program

to satisfy a different set of constraints? For example, suppose we did not want a .

symmetric solution in which all processes are alike (as was given here) but we

desired a solution in which one particular process was charged with the

responsibility of detection. We can re-use much of the development effort, to

solve this problem; indeed we could use the same paradigm. The benefits of

systematic development have been discussed for many years, but "calculational"

developments of distributed programs are still rare [31]. A point we wish to

make by means of the example given here is that it is possible to borrow much of

the ideas from sequential program development in writing distributed programs.

We noticed that it was helpful to separate concerns about the development of a

concept and its distributed implementation. For example early in the

°'. development, we introduced checked and w as system-wide variables and later we ..

faced the problem of implementing these variables in a distributed manner on the

given processes. Morgan [31] has found it helpful to assume a global clock early

in the design process and then later show its distributed implementation.

" Allowing oneself the latitude of system-wide variables and postponing "

consideration of distribution appears to be quite helpful. Again, separation of

concerns is an idea borrowed from sequential program development; however, the

. particularly useful manifestation of separation of concerns-postponing issues

regarding distribution-does not seems to have received the attention it deserves in _.__

the literature on distributed algorithms.

We found that in our development it was helpful to refer to states of the

program rather than to restrict attention to observable behaviors (the messages

sent and received by processes). To give a specific instance from our example we

o -. +,.° . .° . - . - -° - . + .° ° . ° - .- . - * ° . * * " °° . ° . " -. ° " . - ° * .- °. . * *. o°° - . - . * - +° ,

18

proposed the invariant (9):

w(checked) or for some unchecked process: not inc

U The variable inc may or may not be externally observable; while we are

developing the algorithm it is helpful to ignore (or at least postpone consideration

- of) what is externally observable. The danger with referring to states is that

solutions may be over-specified; specifications in terms of observable behaviors to

" gives the designer wider latitude in implementation. Though it is sufficient to

restrict attention to the sequence of messages sent and received by each process,

and though one need not consider a process' local variables, we found it helpful to

implement system-wide desiderata in terms of invariants on process' local

variables. The tradeoffs between specifying abstract data types in terms of the

sequences of observable operations performed on it versus specifying it in terms of
L" (perhaps unobservable) states, have been discussed in the literature on sequential

programming. The same tradeoffs are relevant for specifying processes in %

distributed systems. The point we wish to make here is that in our experience of

stepwise refinements of distributed algorithms, we find it helpful to propose Ok

invariants in terms of process states. The reason for this is that in the initial

stages of refinement we propose invariants on global data structures, and we find

it easier to show that these invariants are equivalent to invariants on local data

5 structures than to invariants naming only messages.

This discussion on systematic derivation of distributed algorithms reflects our

experience in developing several superimposed algorithms-not merely the single

-- example given here.

Acknowledgements We owe a debt of gratitude to Prof. E. W. Dijkstra for his

detailed criticism of earlier drafts. Comments from Hank Korth and Shmuel Katz

are appreciated. Discussions at IFIP W.G. 2.3 helped in clarifying our ideas.

i

•L'q
:...... .

References

1. C. Beeri and R. Obermarck, "A Resource Class Independent Deadlock
Detection Algorithm", Research Report RJ3077, IBM Research
Laboratory, San Jose, California, May 1981.

2. G. Bracha and S. Toueg, "A Distributed Algorithm For Generalized
Deadlock Detection", Technical Report TR 83-558, Cornell University,
June 1983.

3. K. M. Chandy and J. Misra, "Asynchronous Distributed Simulation
Via a Sequence of Parallel Computations", Communications of the
ACM, Vol. 24, No. 4, pp. 198-205, April 1981.

4. K. M. Chandy and J. Misra, "A Distributed Algorithm for Detecting
Resource Deadlocks in Distributed Systems", ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, Ottawa, Canada,
August 1982.

Lb;

5. K. M. Chandy and J. Misra, "A Computation on Graphs: Shortest
Path Algorithms", Communications of the ACM, Vol. 25, No. 11, pp.
833-837, November 1982.

6. K. M. Chandy and J. Misra and L. Haas, "Distributed Deadlock
Detection", ACM Transactions on Computing Systems, Vol. 1, No. 2,
pp. 144-156, May 1983.

7. K. M. Chandy and L. Lamport, "Distributed Snapshots: Determining
Global States of Distributed Systems", to appear in ACM
Transactions on Computing Systems.

8. E. Chang, "Echo Algorithms: Depth Parallel Operations on General
Graphs", IEEE Transactions on Software Engineering, Vol. SE-8, No. -'

4, pp. 391-401, July 1982.

9. S. Cohen and D. Lehmann, "Dynamic Systems and Their Distributed
Termination", ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, pp. 29-33, Ottawa, Canada, August 18-20,
1982.

10. E. W. Dijkstra and C. S. Scholten, "Termination Detection for
Diffusing Computations", Information Processing Letters, Vol. 11, No.
1, August 1980.

11. E. W. Dijkstra, "A Discipline of Programming", Prentice Hall, 1976.

9% wl

20

' 12. E. W. Dijkstra, "Distributed Termination Detection Revisited", EWD
828, Plataanstraat 5, 5671 AL Nuenen, The Netherlands.

n 13. N. Francez, "Distributed Termination", ACM Transactions on
Programming Languages and Systems, Vol. 2, No. 1, pp. 42-55,
January 1980.

14. N. Francez, M. Rodeh, and M. Sintzoff, "Distributed Termination with
Interval Assertions", Proceedings of Formalization of Programming
Concepts, Peninsula, Spain, April 1981. Lecture Notes in Computer
Science 107, (Springer-Verlag).

15. N. Francez and M. Rodeh, "Achieving Distributed Termination
Without Freezing", IEEE-TSE, Vol. SE-8, No. 3, pp. 287-292, May
1982.

16. V. Gligor and S. Shattuck, "On Deadlock Detection in Distributed -
L "Data Bases", IEEE Transactions on Software Engineering, Vol. SE-6,L No. 5, September 1980.

17. M. Gouda, "Personal Communication", Department of Computer
Sciences, University of Texas, Austin, Texas 78712.

r: 18. D. Gries, "The Science of Programming", Springer-Verlag, 1981.

- *: 19. L. Haas and C. Mohan, "A Distributed Deadlock Detection Algorithm
- "for a Resource-Based System", Research Report RJ765, IBM Research

Laboratory, San Jose, California, January 1983.

20. T. Herman and K. M. Chandy, "A Distributed Procedure to Detect
AND/OR Deadlock", Computer Sciences Department, University of
Texas, Austin, Texas 78712, February 1983.

21. T. Holt, "Some Deadlock Properties of Computer Systems",
Computing Surveys, Vol. 4, No. 3, pp. 179-196, September 1972.

22. D. Kumar, Ph.D Theses (in preparation), Computer Sciences
Department, University of Texas, Austin, Texas 78712.

23. L. Lamport, "Time, Clocks and the Ordering of Events in a
Distributed System", Communications of the ACM, Vol. 21, No. 7,
July 1978.

24. G. Le Lann, "Distributed Systems - Towards a Formal Approach",
Information Processing 77, IFIP, North-Holland Publishing Company,

V..

.-...- .

21

1977.

25. D. Menasce and R. Muntz, "Locking and Deadlock Detection in
Distributed Data Bases", IEEE Transactions on Software
Engineering, Vol. SE-5, No. 3, May 1979.

26. J. Misra and K. M. Chandy, "A Distributed Graph Algorithm: Knot
Detection", ACM Transactions on Programming Languages and
Systems, Vol. 4, No. 4, pp. 678-688, October 1982.

27. J. Misra and K. M. Chandy, "Termination Detection of Diffusing
Computations in Communicating Sequential Processes", ACM
Transactions on Programming Languages and Systems, Vol. 4, No. 1,
pp. 37-43, January 1982.

28. J. Misra, "Detecting Termination of Distributed Computations Using
Markers", Proceedings of the ACM SIGACT-SIGOPS Symposium of

L P~rinciples of Distributed Computing, Montreal, Canada, August 17 -
19, 1983.

29. R. Obermarck, "Deadlock Detection For All Resource Classes",
Research Report RJ2955, IBM Research Laboratory, San Jose,

* California, October 1980.

30. R. Obermarck, "Distributed Deadlock Detection Algorithm", ACM
Transactions on Database Systems, Vol. 7, No. 2, pp. 187-208, June
1982.

* 31. Dijkstra, E.W., Feijen, W.H.J., & Van Gasteren, A.J.M., "Derivation
of a termination detection algorithm for distributed computations"
Information Processing Letters, Vol. 16, pp. 217-219, 1983.

32. Morgan, Caroll, "Relaxing Distributed Algorithms" to appear
Information Processing Letters, 1984.

. . . .

', -. .

...-r... .--------

r"

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered),".' READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE RE COMPLETIOR
BEFORE COMPLETING FORM

I REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subliftle) S. TYPE Of REPORT a PERIOD COVERED

Manuscript: "A Class of Termination Detection final: 6/14/81 - 6/15/85

Algorithms for Distributed S. PERFORMING OIG. REPORT NUMBER.- Computations"

7. AUTHOR(') 8. CONTRACT OR GRANT NUMBER(s)

Devendra Kumar (Graduate Student) AF0SR 81-0205
""1niva-city nf- Texas at Austin

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Computer Sciences Department
University of Texas at Austin
Austin, Texas 78712

S II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Capt. A. L. Bellamy July 1985
AFOSR/NM 13. NUMBER OF PAGES
Bolling AFB, DC 20332

14 MONITORING AGENCY NAME & ADDRESS(f different from Controllind Office) 15. SECURITY CLASS. (of this report)
Ali

ISs. OECLASSIFICATION,'OOWNGRAOING
SCHEDULE

16. OISTRIBIJTION STATFMENT (of this Report)

17. DISTRIBUTION STATEMENT (of the abetret entered In Block 20. If different from Report)

IS. SUPPLEMENTARY NOTES

submitted to IEEE Transactions on Software

(Technical Report TR-85-07, Computer Sciences Department, UT)

IS. KEY WORDS (Continue on reveree @)de if neceeey and identify by block number)

7

20. ABSTRACT (Confinto on ,reveree aide It neceeelay end Identify hy blork n..mhor)

We present a class of efficient algorithms for termination detection in a dis-
tributed system. These algorithms do not require the FIFO property for the
communication channels. Assumptions regarding the connectivity of the processe-
are simple. Messages for termination detection are processed and sent out from
a process only when it is idle. Thus it is expected that these messages would
not interfere much with the underlying computation, i.e., the computation not
related to termination detection. The messages have a fixed, short length.

FORM

DD I JAN 7 1473 EDITION OF I NOV 65 IS OBSOLETEVI

SECUNITY CLASSIFICATION OF THIS PAGE(Whmn Date Enterd)

After termination has occurred, it is detected within a small number of message
communications.

The algorithms use markers for termination detection. By varying assumptionsIs regarding connectivity of the processes, and the number of markers used, a
spectrum of algorithms can be derived, changing their character from a distri-
buted one ot a centralized one. The number of message communications required

.. to detect termination after its occurrence depends on the particular algorithm
-under reasonable connectivity assumptions it varies from order N (where N is
the number of processes) to a constant.

This paper introduces message counting as a novel and effective technique'in
designing termination detection algorithms. The algorithms are incrementally
derived, i.e., a succe-sion of algorithms are presented leading to the final
algorithms. Proofs of correctness are presented. We compare our algorithms
with other work on termination detection.

-

S '

SEU-1CLSSFCAIU F-.AO

% ~*......... ..

* A CLASS OF TERMINATION
DETECTION ALGORITHMS

FOR DISTRIBUTED COMPUTATIONS1

Devendra Kumar

Department of Computer Sciences
University of Texas at Austin

Austin, Texas, 78712

TR-85-07 May 1985

.

4. - 'This work Wa$ supported by Air Force Grant AFOSR 81-0205.

.-

Abstract
S-: We present a class of efficient algorithms for termination detection in a distributed

system. These algorithms do not require the FIFO property for the communicatior

channels. Assumptions regarding the connectivity of the processes are simple. Messages

for termination detection are processed and sent out from a process only when it is idle.

Thus it is expected that these messages would not interfere much with the underlying

L computation, i.e., the computation not related to termination detection. The messages

-' have a fixed, short length. After termination has occurred, it is detected within a small

number of message communications.

." The algorithms use markers for termination detection. By varying assumptions C..

" "regarding connectivity of the processes, and the number of markers used, a spectrum of

algorithms can be derived, changing their character from a distributed one to a

centralized one. The number of message communications required to detect termination

. after its occurrence depends on the particular algorithm - under reasonable

connectivity asumptions it varies from order N (where N is the number of processes) to

a constant.

This paper introduces message counting as a novel and effective technique in designing

". termination detection algorithms. The algorithms are incrementally derived, i.e., a

succession of algorithms are presented leading to the final algorithms. Proofs of

correctness are presented. We compare our algorithms with other work on termination

detection.

• •

V

tC

' 1. Introduction

We develop a class of efficient algorithms for termination detection in a distributed

system. We do not require the FEFO property for the communication channels, which is

usually assumed in other works. (The FIFO property for a communication channel

means that messages in the channel are received in the same order as they were sent.)

Our assumptions regarding connectivity of processes are simple. We have categorized

our algorithms in three classes. Algorithms in classes 1 and 2 assume that there exists a

cycle involving all processes in the network. This cycle need not be an elementary

* -" cycle, i.e., a process may be arrived at several times in a traversal of the cycle.

Moreover, the edges of the cycle need not be primary edges, i.e., the edges involved in F
the underlying computation; secondary edges may be introduced in the network to

facilitate termination detection. (We use the terms edges, lines, and channels

L- interchangeably.) Normally the length of this cycle would affect performance of the

algorithms; by using secondary edges, if necessary, the length of this cycle may be kept

* to a minimum. Algorithms in class 3 assume the existence of cycles in several parts of

" mthe networks.

In these algorithms, messages for termination detection are processed and sent out

S.'from a process only when it is idle. Thus it is expected that these messages would not

interfere much with the underlying network computation, i.e., the computation whose

termination is to be detected.

Except for algorithms in class 1, the messages for termination detection in these

algorithms have a fixed, short length (a pair of integers). In all algorithms presented,

'- termination is detected within a small number of message communications after its

occurrence.

In devising an algorithm for detecting termination, deadlock, or some other stable

-. iproperty [Chandy 85a, Chandy 85b], one important issue is how to determine if there

are no primary messages in transit (primary messages are those transmitted in the

" funderlying computation; secondary messages are those related to termination

I'. .",-. . , - . . '. . .* . * -

r2

detection). Several approaches have been developed to handle this issue -

acknowledgement messages [Chandy 85a], using a marker to "flush out" any messages

. in transit (with the assumption of FIFO property) [Misra 83, Chandy 85a], etc. One

contribution of this paper is to suggest a new approach - counting the number of

primary messages sent and received. As shown in this paper, this approach has several

desirable features - it results in simple and flexible connectivity requirements, it does

. inot require the FIFO property for the communication channels, and it does not generate

too much overhead in terms of the number of secondary messages after the occurrence

of termination. Moreover, we show that it is not necessary to count and transmit

information regarding number of primary messages on individual line. - it is sufficient

to count and transmit information about the total number of primary messages received

and the total number of primary messages sent by individual processes.

Classification of Our Algorithms

S.Algorithms in class 1 are based on counting primary messages on every line. Each

* process keeps a count of the number of primary messages it has received or sent on each

adjacent line (i.e., input line or output line respectively). As mentioned above,

algorithms in class 1 assume that there exists a cycle C including every process of the

network at least once. A marker traverses the cycle, and uses these counts in detecting

termination. After termination has occurred, it will be detected within 1C1-1
communications of the marker. (CI refers to the length of the cycle C, i.e., the number

of edge traversals required to complete the cycle.) The problem with this algorithm is

that each message is long - it consists of E number of integers where E is the total

number of primary lines in the network.

Algorithms in class 2 reduce the message length. In these algorithms, each process

counts the total number of primary messages received by it, and the total number of

primary messages sent by it. Here counts are not being kept for individual adjacent
lines. A marker traverses the cycle C, and collects this information to detect

termination. In this case the message length is short (two integers). After the

occurrence of termination, it will be detected within 2"C - 2 message

communications. Note that if C is an elementary cycle then ICI = N, where N is the

number of processes in the distributed system.

.

I..' 3

Next, class 3 of our algorithms improve the performance of the algorithms in class 2,

by using multiple markers which traverse different parts of the system. We make

simple connectivity assumptions to permit these traversals. Using two markers, under

reasonable assumptions the number of message communications after the occurrence of

termination is reduced to approximately 3N/2, each message carrying an integer and a

boolean. As the number of markers is increased, this number reduces further and the

algorithm tends to change its character to a centralized one. Finally, using N markers,

this number is reduced to the constant 4, and the algorithm becomes a purely

centralized one.

On the Nature of Th6 Presentation
A number of excellent papers on deadlock and termination detection for distributed :

systems have appeared in recent years. These papers usually discuss how the algorithm

executes, i.e, what are the key data or execution steps in the algorithms. Proofs of

correctness are usually provided to convince the reader that the given algorithm works.

However, certain other important questions are usually left unanswered. How was the

algorithm developed in the first place? Why were certain decisions (conventions,

assumptions, major data, major execution steps) in the design of the algorithm taken -

are they critical to the correctness, or are they present simply to enhance performance,
or understandability, etc.? How would a simple variation of these decisions affect either II
correctness or performance? For the algorithms discussed here, our presentation

attempts to answer some of these questions to a certain extent. We discuss a succession

of algorithms, each algorithm differing from the previous ones in a simple manner.
Several simple variations of the algorithms are considered. As would be noted in the

discussion, some of these "algorithms" are not even correct; they are discussed simply to

enhance understandability of later algorithms. Moreover, specific details, for instance

initial conditions, are derived from more general considerations. It is hoped that with

this method of presentation, the reader can develop a better insight as to how various

decisions were arrived at. Since the relationships among various algorithms are

explicitly discussed, this approach would also help keep a clear and organized view of

the class of algorithms presented.

;2:2 "2 ".A

4

Related Work

Termination detection in distributed systems has been a subject of much study in

* recent years. One of the earliest works in this area is the elegant algorithm of [Dijkstra

80]. This is one of the few algorithms that do not assume the FIFO property for the

communication channels. However, this algorithm requires that for any primary line

from a process i to a process j, there must be a line from j to i. Termination is detected

"*- within N message communications after its occurrence, where N is the number of

processes in the system. However, depending on the nature of the underlying

computation, in the entire computation the total number of secondary messages

generated in this algorithm may be too much. (The total number of secondary

messages in this algorithm is equal to the total number of primary messages.) This may

. severely affect performance. Moreover, secondary messages are processed and sent out

from a process even when it is active. This may slow down the underlying computation

itself.

*. The above algorithm was extended in [MIsra 82a] to CSP [Hoare 781 environment. The

*basic idea of the algorithm has been used in several distributed algorithms in many

application areas [Cohen 82, Misra 82b, Chandy 82b, Chandy 81].

Marker based algorithms usually do not suffer from the drawbacks mentioned above

for the algorithm in [Dijkstra 801. A marker is sent from a process only when it is idle.

Therefore normally the secondary computation would not significantly slow down the

underlying computation. (Secondary computation is that related to termination

detection; the underlying computation is also called the primary computation.)

Moreover, usually the total number of secondary messages would also be small.
Roughly speaking, if the primary computation becomes more intense (i.e., primary

messages are being generated at a higher rate), then the recipient processes are likely to

be active more of the time (i.e., idle for lesser time). Hence the marker is likely to move

less frequently since it has to wait till the process has become idle. However, this is not

to say that marker based algorithms always result in better performance; in fact many
such algorithms require more than N message communications after the occurrence of

termination.

:7

Distributed termination detection using a marker was devised by Francez et. al.

[Francez 80, Francez 81, Francez 821. This approach was improved upon, removing

some of its restrictions, in another marker based algorithm [Misra 831. In this algorithm

a marker traverses a cycle C' that includes every edge of the network at least once.

-" The algorithm requires the FIFO property for the communication channels.

Termination is detected, after its occurrence, within two rounds of this cycle. Note

that, in principle, assuming the existence of a cycle traversing every edge is equivalent

to assuming the existence of a cycle traversing every process (as in our approach).

-" However, the performance resulting from the two approaches would normally be -

different. The cycle C' in general may be quite large - usually it would be longer than

the to'sl number of primary edges in the network, and the number of primary edges

can be O(N 2). In contrast, in our approach we can always define an elementary cycle

L(whose length will be N), introducing secondary edges if necessary. Defining an optimal

or near optimal cycle in our approach is much simpler, since we don't require the cycle

. to involve every primary edge. If the network is evolving over time (e.g., new primary

lines or processes being added to the network) our approach would normally require

simpler changes in the data stored at the processes regarding this cycle.

In several recent works [Chandy 85a, Chandy 85b) the notion of termination and

deadlock has been generalized and elegant schemes have been presented to solve these

general problems. [Chandy 85a] shows how the general scheme presented there can be

applied in many ways to solve the specific problems of termination and deadlock

detection. The termination detection algorithm described there assumes the FIFO

property for the communication channels. A marker traverses a cycle that includes

every process of the network at least once. Termination is detected, after its occurrence,

• .within two rounds of this cycle. The marker is a short message, containing only one

integer. However, before the marker is sent out from a process, another message

(containing no data) is sent out on output lines of this process. This effectively doubles

the number of message communications after occurrence of termination. Since our

algorithms in class 2 involve two rounds of the same cycle, with each secondary message

b. having two integers, we expect comparable performance between the above algorithm

.. . .. :'.. .'.. ,. .. ./ ,-... ,.: . ., .. ::.._.. ,: .. ,..-. .-. .. -...-: ...-. ::,

and our algorithms in class 2. However, our schemes in class 3 improve the

"L performance even further. As indicated in [Chandy 85a], the FIFO requirement for the

Scommunication channels may be removed, leading to another algorithm. But that

algorithm would involve too many acknowledgement messages (equal to the number of

primary messages).

One nice property that the two algorithms above ([Misra 831 and the algorithm in

[Chandy 85a] using the FIFO property) enjoy is that the termination detection

*i algorithm may be initiated with the underlying computation of the network in an

arbitrary state, i.e., there may be an arbitrary number of primary messages in transit

* -and the processes may be in arbitrary states. Our algorithms and most of the other

algorithms published require special initializations for the secondary computation before

*' -. the underlying computation starts.

As mentioned earlier, termination detection has been used in designing several other

. distributed algorithms. Many distributed algorithms can be devised as multiphase

*algorithms, where a new phase is started after the termination detection of the previous

phase. Distributed simulation schemes have been devised using this approach [Chandy

81, Kumar 85]. [Francez 81] suggests a methodology for devising distributed programs

using termination detection.

A problem of considerable importance that is closely related to termination detection,
L-s the problem of deadlock detection in distributed systems. Several important pieces of

works have appeared in this area [Gligor 80, Beeri 81, Obermarck 82, Chandy 82a,

* Chandy 83, Bracha 83, Has 831.

Synopsis of the Rest of the Paper

; "" Section 2 defines the model of computation and defines the termination detection

problem. Criteria used for comparing termination detection algorithms may vary
* "widely - performance, storage requirements, communication cost, simplicity of

• - implementation, etc. In this paper we concern ourselves only with performance. In

section 3 we discuss our performance criteria. Sections 4, 5, and 6 discuss our

SI

-.,L -'-'-'- -"',' .; '' . , " : ." ;;,', ." .' .'' ," " " -- 2" .," ,"- .i ..'''' . " " " ..
' _ *'t, :. .- *..,-*-..-**. - ,-.* ,- "- , . . ,., ',. * ,-.*_ ..* .=. . -•-: - . .,. .. _ . , / x _ :_

,
. ,,_ ,,-

7

algorithms in classes 1, 2, and 3 respectively (we have commented on these classes

earlier in the introduction). Finally section 7 gives concluding remarks.

2. Problem Definition

First we describe a basic model of a distributed system. For ease of exposition, we

discuss our algorithms in terms of this basic model. Our algorithms are applicable to

-more general distributed systems; we briefly mention these systems later in this section.

The Basic Model

A distributed system consists of a finite set of processes, and a set of unidirectional

communication channels (or lines, or edges). Each communication channel connects

two distinct processes. Given two processes i and j, there is at most one communication

channel from i to j, denoted by the ordered pair (1, j).

In addition to their local computations, processes may send or receive messages.

Process i can send a message to process j only if the line (i, j) exists. Process i does so

by depositing the message in the channel (i, j). This message arrives at process j after

an arbitrary but finite (possibly zero) delay. Process 3 receives the message by removing

it from the channel, within a finite time (possibly zero) of its arrival. The channels are

error-free, except that they need not be FIFO channels.

pThe "Underlying" Computation

Now we describe the nature of the computation (called the underlying computation or

the primary computation) whose termination is to be detected. The messages sent or

received in this computation are called primary messages. Later other computation

(called secondary computation) would be superimposed on this computation for the

purpose of termination detection.

From the point of view of the underlying computation, at any moment a process is in

-: one of two states:

1. Active state: In this state, a process may send primary messages on its
outgoing lines. It may become idle at any time.

fS

-o .

r 8

2. Idle state: In this state, a process can not send any primary messages. On
receiving a primary message, it may remain idle or switch its state to active.

A process in any of the two states may receive primary messages or do any local

-. computations. It is assumed that initially, (i.e., when the primary computation starts)

there are no primary messages in transit; though the processes may be in arbitrary

states.

*- The Termination Detection Problem

A message in the distributed system is said to be a transient message if it has been

sent, but has not been received yet. We say that at a moment t the distributed

computation is terminated iff:

1. all the processes are idle at time t, and

2. there are no transient primary messages at time t.

It is obvious that if the network computation is terminated at a time instant t, then it

- would remain terminated for all times after t (unless forced otherwise by some outside

agent). The problem is to detect the state of termination within a finite time after its

occurrence. To this end, we will devise an algorithm to be superimposed on the

underlying computation; this algorithm must satisfy the following properties:

1. Termination is reported, to some process in the network, within a finite time
after termination of the underlying computation, and

2. if termination is reported at some time t, the network must be terminated at

time t (i.e., no "false detection" of termination is allowed).

Messages related to termination detection are called secondary messages. It may be

-noted that an idle process may send secondary messages, even though it can not send

primary ones.

Other Models

We briefly mention here other features that could be incorporated in our model of

computation, without affecting the applicability of our algorithms (possibly with some

minor modifications).

i .

9

1. We may allow multiple communication channels from a process i to a
process j. Also, a process could be allowed to send a message to itself.
These extensions may be useful if a process consists of a set of interacting
subprocesses.

2. A process may broadcast a message to a set of processes. This is equivalent
to sending the same message via communication lines to each process in the
set.

3. There may be a third state for a process - a terminated state. A process
enters this state when it is guaranteed that it will not send out any primary
messages in future, and no more primary messages would arrive at its input
lines.

3. Performance Criteria

There are two major criteria for performance evaluation of termination detection

algorithms:

1. The effect of secondary computation on the primary computation itself, i.e.,
how the primary computation gets slowed down and

2. How long it takes to detect termination after its occurrence.

In general, the two criteria above would be assigned different weights, depending on

the objectives of the primary computation and its termination detection. One has to

m consider not only the time delays involved, but also how time critical the two delays

are. Depending on application, one of these may carry a higher weight than the other.

The following examples illustrate this:

1. Consider a distributed system that monitors a physical system. The primary :"%
computation is triggered by an extreme state in the physical system and its
objective is to bring the system to a steady state. The primary computation
terminates after the system returns to the steady state. Here the former
criterion would be more significant.

2. Consider a secondary computation whose objective is to detect the 0
termination of a token in a token ring [Misra 83]. Suppose the loss of the
token represents an extreme state that must be corrected immediately. Here
the second criterion would be more significant.

h3. Consider a multiphase distributed simulation [Chandy 81, Kumar 85]. Here

I'%

F 10

the objective is to reduce the total simulation time. In this case none of the
two delays above are time critical and both affect the overall objective in the
same way; thus both criteria would have equal weights here.

In this paper we will focus on the second criterion. (As mentioned above, in a

particular application this may or may not be a good criterion for performance

*measurement.) Let I denote the time interval between the occurrence of termination

* ,and its detection.

How should one estimate I? Obviously, the value of I depends on characteristics of the

system that supports the primary computation. We use the number of (secondary)

*- message communications during the interval I and the lengths of these messages as a

measure of I. Knowing the characteristics of communication delays, one may establish

him either I or an upper bound on it. For simplicity of discussion, we assume that any

communication delay in the system is a linear function of message length. We mention

below a few details about our performance evaluation:

1. Note that the value of I (and the associated measures mentioned above)
would depend on where the marker is at the time when termination occurs,
etc. For simplicity, we would normally consider only the worst case values.

2. Message communications at the same time on different lines will be taking
place in parallel - this must be taken into account :n determining the

Nnumber of messages, i.e., during any overlapping period, only one message is
considered being communicated. In general, any two independent events

.. will be assumed to take place in parallel.

3. During the interval I, the number of messages received may be different
*_ (slightly) from the number of messages sent. We consider the latter one as

the number of message communications. (This would be more reasonable in
situations where the time involved in the act of sending a message, i.e., the
transmission time, is longer than the propagation delay of the message.)

4. By message length we mean the total length of data in it. It is assumed that
even for a message of length zero, there would be a non-zero communication
delay.

. .. .°

4. Class 1 of Algorithms: Counting Primary Messages on Each Line

In these algorithms, a marker traverses a cycle C that includes every process of the

network at least once (discussed in section 1). Information as to how many messages

are in transit is kept by counting the number of primary messages sent, and received,

for each line. Each process i has two local arrays SNTPi and RECPi. (For simplicity of

discussion, we assume here that primary lines in the network are globally numbered

1, 2, ..., E and each array SNTP and RECP has E elements. We will discuss more

appropriate data structures later.) At any time, SNTPi(e) = the number of primary

) imessages sent by process i on line e after the last visit of marker at i (or since the initial

time, if the marker has not visited i yet). ZECFi(e) is similarly defined for messages

received. Each process i increments SNTPi(e) or RECPi(e), respectively, on sending or

receiving a primary message on line e.

The marker has two arrays SNTM and RECM, where it keeps its knowledge as to

*: how many primary messages have been sent or received on each line.

3 (For convenience, in this paper we use the obvious notation for array assignments,

array equality, etc. Also, we often use a time argument in a variable to refer to its

value at that time.)

An Algorithm-Skeleton

The following basic algorithm-skeleton is followed by the marker.

(* marker arrives at process i, i.e. it is received by l. *)
The marker waits till process i becomes idle;

(Process i is idle now. Marker starts its visit at i.)
SNTM :- SNTM + SNTP';
SY17Pj 0;
RECM:- RECM + RECP;
RECP :== 0;

(* The visit at process i is completed. *)

(Declare termination or depart from process i.)
kUnder an appropriate condition (to be discussed) the marker

declares termination. If this condition does not hold,

X.°. " *-"

- .,,,.. ,.

17 12

the marker leaves process i along the next line on cycle C.

*We discuss later (under the heading "some improvements and details") the algorithm

and data structures required to facilitate the repeated traversal of the cycle C by the

marker.

" A process does not receive any messages during the interval between the start of

marker's visit and its departure. In other words, the underlying computation at a

process is carried out only before the marker's visit and after its departure. As

mentioned earlier, the variables SNTP and RECP are incremented on sending or

receiving (respectively) a primary message.

The variables related to termination detection are initialized before the primary

computation starts. Initially, a value of zero is assigned to all elements of SNTM,

RECM, SNTP, and RECP. (This initialization will be changed later in the discussion.)

Also, the marker is initially at an arbitrary process, and visits it when the process

becomes idle.

,- The above is only a skeleton of an algorithm; we have not yet discussed when the

marker declares termination. We address this issue now. Suppose the primary

computation terminates at time Tr Then within a finite time after Tf the system

would reach a state where the condition SNTM = RECM is true (i.e., the

corresponding elements of the two arrays are equal) and would remain true forever.

(After Tr this condition may become true or false several times, but definitely after one

complete traversal of the cycle C by the marker it will remain true forever.) This is . - -

stated as theorem 1 below. This suggests a way of detecting termination, but we still X.

'" have to avoid the possibility of detecting "false termination". Note that the condition

NTM = RECM being true at a point in computation does not guarantee that

termination has occurred. For example, initially this condition holds, but the system

may have active processes. We ask the question - suppose in a sequence of visits along ..'r.

the cycle C, the marker continuously finds that SNTM - RECM. Can it conclude

termination after a (predefined) finite number V of such visits? Theorem 2 looks at this

'
r ?:'-:.-57,',::"-. " . .. " " " """ " " " " " "'"

13

question in a 'brute force' manner, and answers it in the affirmative with V - 2.1C1.

Using this theorem one can complete the algorithm. Thereafter we consider the question

of efficiency. Theorem 3 improves the efficiency of this algorithm by reducing V to 14
Theorem 4 provides a way of reducing V to 1 if an additional condition is guaranteed

'* before announcing termination. Later we discuss how to ensure this condition in an

efficient way. (It will be observed that as we progress from theorem 2 towards theorem

4, the results become less obvious and the proofs of correctness more complex.) Let us

first discuss some intermediate results that will be used in the proofs of these theorems.

For convenience, in this paper we will be implicitly using the convention that events

are totally ordered, e.g., as in [Misra 81]. The events of interest are - sending a

primary message, receiving a primary message, a process changing its state, and the

*marker arriving at a process, starting a visit, completing a visit, and departing the

process. All time instants mentioned in this paper correspond to a point in the trace of

*events in the system, unless otherwise specified. In particular, normally no time instant

refers to .a moment in between the start and completion of a visit. (Otherwise many of

5 our lemmas will become incorrect!)

Let tant(e, t) = the total number of messages sent on line e up to (including) time t.

trec(e, t) is similarly defined for messages received.

Let r(e, t) = the number of transient messages on line e at time t.

Lemma 1: For any line e and any time t:

tant(e, t) = trec(e, t) + r(e, t) (1)

and tant(e, t) _ trec(e, t) (2)

Proof: Follows from the definitions.

Lemma 2: For any line e and any two time instants t, t' such that t < t':

ta.t(e, t) < tant(e, t') (3)

L

14

and trec(e, t) < trec(e, t') (4) '-"-

U Proof: Follows from the definitions.

Lemma 3: For any line e = (i, j) and for any time t:

tmnt(e, t) =SNTA4(e, t) + S1VTP(e, t) (5)

and trec(e, t)= RECA(e, t) + RECP1 (e, t) (6)

Proof: The proof is by induction on the number of events in the system [Msra 81].

Initially, (5) and (6) are true. Also, each event leaves any of them invariant.

Lemma 4: For any line e = (i, j) and for any time t:

r(e, t)- SNTMe, t) - RECA(e, t) + SINTPi(e, t) - REC (e, t) (7)

Proof: Follows from (1), (5), and (6).

Lemma 5: Consider a "current" moment T in computation. For a lin e -- (,

suppose both processes i and j have been visited by the marker at least once. Let ti and

t., respectively, be the last times at which visits at processes i and j were completed. .*

Then,
SNTMe, T) - RECA4(e, T) = tsnt(e, ti) - trec(e, t,)

(8)

Proof: Obviously S.NTM(e, T) = S.NTM]e, ti), RECA4(e, T) - RECM(e, t,),

SNTPi(e, ti) = 0, and RECP(e, t.) = 0. The result follows from lemma 3.

Note: Later we will make certain changes that will make lemma 2 incorrect. However,.-,.,,=

lemmas 1, 3-5 will not be affected. Proofs of theorems 1-6 below will rest only on

lemmas 1, 3-5 - they will not use lemma 2 directly.

Il,.ia ll*"

' ~ S55.5. - ,~ .5-

~15

c

Theorem 1: If the underlying computation terminates at a time Tr then within a

finite time after T the system would reach a state where the condition

SNTM = RECM is true and would remain true forever thereafter (until termination is

declared and possibly a new primary computation is started).

Proof: After T, all processes remain idle forever; therefore the marker does not wait

..m indefinitely after its arrival at a process. Hence, within a finite time after Tf (say at a

time T, T > Tf), the marker would have made a complete traversal of the cycle C, i.e.,

" it would have visited every process at least once after time Tf (unless it has declared

*termination earlier). Let T' > T be any "current" time. For any line e = (i, j) let ti

and tj, respectively, be the last times at which processes i and j were visited. Obviously,

- tj > Tf and tj Tf. From lemma 5,
SJTMe, T') - RECMe, T') = tant(e, ti) - trec(e, t,)

C But tant(e, ti) = tant(e, Tf), trec(e, tj) - trec(e, T,), and tant(e, Tf) - trec(e, Tf).

- The result follows.

Theorem 2: Suppose in a sequence of V - 2.1C visits, the marker continuously finds

the condition SNTM = RECM to be true after each visit in the sequence. Then at the

end of this sequence it can conclude that the underlying computation has terminated.

Proof: Let To be the time when the marker has completed ICI number of visits in the

above sequence. We will show that at time TO the primary computation is terminated.

Let ti0 be the time at which the marker completed its last visit at process i up to

*-. (including) time T0. Also, let t, and t i be the times at which the marker started and

finished, respectively, its fist visit at process i after time To (here we are considering the

start and completion of a visit as two distinct events in the history of events in the

system). Obviously, for all i tio : To < til < ti.

We first show that at time T0 , for all primary lines e - (i, j), SNTPi(e, TO) = 0.

In a similar manner it can be shown that RECP(e, TO) - 0. Suppose for some

N
4"J

mI,

.11

t 16

e - (1, j), SNTPi(e, TO) > 0. Obviously SNTPi(e, til) SNTPi(e, To) > 0.

Hence SNTM(e, ti) - SVTM(e, ti,) + SNTPi(e, til) > SIVTM(e, til). But

3 SNTM(e, ti) = RECMe, tit) and RECM(e, til) = RECMe, ti). Therefore

SNTM(e, ti) > RECMe, ti). This contradicts the hypothesis of the theorem.

Since for every line e = (i, j), SNTPi(e, To) = RECP/(e, TO) = 0 and

S.NTM(e, TO) = RECM(e, TO), it follows from lemma 4 that r(e, TO) = 0. In other

words there are no transient primary messages at time T0.

Now we show that every process i is idle at time T0 . Obviously i is idle at time ti0 .

Also, i did not receive any primary messages during the interval [ti0, To], otherwise we

will have RECPi(e, TO) > 0 for the corresponding input line e, which will contradict

the above result that RECP(e, TO) - 0. Thus i is idle at time T0 . This completes the

proof.

Theorem 3: Theorem 2 remains valid if the requirement V =2.101 in it is changed to

Proof: Let To and T, respectively, be the times when the first and the last visits in the

sequence are completed. For any process i, choose any particular visit that was

completed in the interval [To, T] and let ti1 and ti, respectively, be the times at which

this visit was started and finished. Claim (A) below can be shown easily (if i is the first 6%

.- process visited in the sequence and ti = T0 , then (A) follows readily; for other cases it

follows as in the proof of theorem 2):
(A) At any time t during the interval [To, ti], process i has

S.NTPi(e, t) = RECPi(e, t) = 0 for any adjacent primary line e.

" Since SNTM = RECM after each visit in the sequence, from (A) we conclude that:

(B) At time To there are no transient primary messages, and

(C) Process i did not send or receive a primary message in the interval

iTo, til.

17

Note that a process i may be active at time T0. We will show that after time ti, process
K i will never receive a primary message. Since any message in transit will be received

after a finite time, this proves that there are no transient messages at time T when the

above sequence of visits is completed. Moreover, since process i is idle at time t. and

does not receive any primary messages after time ti; it will be idle at time T.

We say that a primary message is a bad message if it is received at a process i after

time t. We will prove by contradiction that there can be no bad messages in the

system. Suppose there are bad messages in the system. Let m be the bad message with

the earliest time of reception (say tr). Suppose m was sent on a line e = (i, j) at time

ts. Obviously, tr > t and tr > t. Consider the following two cases.

Case 1: > ti ,i.e., m was sent out after the marker's last visit at i. Then process i

must have received a bad message after t. and before t. (hence before tr). this

contradicts the assumption that m is the bad message with the earliest time of

reception.

Case 2: ts < ti. We have shown above (C) that process i does not send any primary

messages in the interval [TO, ti]. Therefore mn must have been sent before T . Hence
m is in transit at time T0 . This contradicts (B) above. This completes the proof.

Now we attempt to reduce Iurther the length of the sequence of visits required with

the condition SATM = RECM before the marker can conclude termination. Note that

in order to detect termination, the marker must visit every process at least once after

the start of the secondary computation; since in our scheme the state (idle or active) of

a process can not be deduced from the information available at the other processes. We

show below in theorem 4 that if every process has been visited at least once, then the -

condition SI.TM = RECM after visiting a process guarantees that termination has

indeed occurred. .. %F

Theorem 4: Suppose, after visiting a process, the marker finds that SNTM - RECM.

4.-.. .

18
6

Also, suppose the marker ha. visited every process at least once by this time. Then at

this time T the underlying computation is in the terminated state.

Proof: Let t. be the last time that the marker completed its visit at process i up to time

T (i.e., ti < T). We will show that after time ti, process i would never receive a

primary message. As argued in the proof of theorem 3, this leads to the conclusion.

. With the above definition of ti, we define bad massages in the same way as in the

proof of theorem 3. The argument continues as before and case 1 is the same. Case 2

is different now and we consider it below.

Case 2: t, < t, i.e., m was sent before the marker last visited process i. Since

SNTM(e, T) = RECM(e, T), from lemma 5 we get tant(e, ti) - trec(e, t.).

Consider the following two subcases.

Case 2.1: ti < t. By definition of m, process i did not receive any primary messages in

the interval [ti, t]. Therefore process i did not send any primary messages in this

interval. Therefore, tmnt(e, ti) = tant(e, ti). Hence tant(e, tj) = trec(e, tj). But
"" " there is at least one tranient mesae, namely m, on line e at time t, (since m was sent

before ti and received after t.). This contradicts (1).

Case 2.2: tj < ti. Since tant(e, t) = trec(e, t1), using (2) and (3) we conclude in this

case that tant(e, ti) - tant(e, tj) = trec(e, tj). In other words, no primary messages

were sent on line e during [tj, ti] and there are no transient messages on line e at time

... tj. Hence m was sent before tj and received by the time ti. This contradicts with the

definition of m.

Note: The proof of case 2 will be simpler if one assumes the FIFO property for the

-.. communication channels. Informally, since m has been counted in tsnt(e, ti) and has

not been counted in trec(e, ti), by the FIFO property we will get

tant(e, ti) > trec(e, tj). Therefore we won't have to consider the cases 2.1 and 2.2.

=

K,, .;, .°.,; .t ., .. -. -, ., -.,' .. .,-:$.,: , .. , •; , ,

Completion of the Algorithm

It may be noted that if the hypothesis of theorem 2 or theorem 3 is true then the

hypothesis of theorem 4 is true as well, but not vice versa. Therefore the method-

suggested by theorem 4 would be more efficient. Hence we use theorem 4 to complete

the algorithm. How would the marker decide that it has visited every process at least

once? One brute force method would be to have a counter in the marker that counts

I how many visits have been completed. When this counter becomes lCt, obviously every

process has been visited at least once. (Alternatively, the marker could count how

'.: many distinct processes it has visited, by marking a process "visited" after visiting it.)

We use a more efficient strategy - the initial values of the variables SZTM, RECM,

SNTPi, RECP are assigned in a different way than mentioned earlier. This assignment

guarantees the following two conditions:

1. As long as there is at least one process that has not been visited yet, the
condition SNTM = RECM will remain false, i.e., at least one pair of
corresponding elements in the two arrays will not match. (We will be
assuming that each process has at least one adjacent primary line.
Otherwise we have isolated processes in the system. If needed, such cases can
be incorporated in the scheme in obvious ways.) This is stated as lemma 6

* *2 below.

2. Moreover, this assignment does not affect the correctness of theorems 1 and

4. (In fact, all of lemmas 1, 3-5 and theorem 1-4 remain valid.) This is
*stated as lemma 7 below.

Obviously, this strategy is more efficient since the additional counter in the marker is
_. avoided, reducing its length. An infinite set of assignments guaranteeing the above

conditions exist; here we consider one specific assignment.

Corresponding to every primary line e = (i, j), we initialize SNTM(e) 1,
"RECM(e) = 0, SNTPi(e) = 1, and RECP(e) = 2. The marker declares termination

after a visit if it finds that SNTM = RECM. The rest of the algorithm remains the

* same as before. Theorems 5 and 8 below prove the correctness of the algorithm.

"2'

20

Lemma 6: With the above initialization, suppose after visiting a process the marker

finds that SATM = RECM. Then, the marker has visited every process at least once

by this time (say T).

Proof: For any Iihe (i, j), we show that the marker has visited both i and j by the

time T. (Since every process has at least one adjacent line, this establishes the result.)

Suppose, to the contrary, this is not true for a line e = (i, j). Consider the following

cases.

Case 1: The marker has not visited the process j by the time T. Obviously, in this case

S.vTMAe, T) 2 1 and RECAe, T) 0. This contradicts the assumption that

SNTM = RECM at time T.

Case 2: The marker has visited process j, but not i, by the time T. Obviously, in this

case SATAe, T) = 1, and RECAe, T) 2 2. Again, this leads to a contradiction.

This completes the proof.

Lemma 7: With the new initial values lemmas 1 and 3-5, and theorems 1-4 remain

" -' .valid.

,P Proof: Note that with the new initial values, lemmas 1 and 2 remain valid. The results

(5) and (6) in lemma 3 become slightly incorrect - the corrected versions of these

results are:

-. tant(e, t)-- SNTMe, t) + SNTPi(e, t) - 2 (5')

trec(e, t)- RECM(e, t) + RECPCe, t)- 2 (6')

'A The proofs of (5') and (6') are similar to the proofs of (5) and (6) before. From (5') and

(6') it follows that lemmas 4 and 5 remain valid.

The previous proofs of theorems 1-4 do not directly rest on lemma 2 or the initial
values of the program variables (so long as lemmas 1 and 3-5 remain valid). Therefore

their correctness is not affected. This completes the proof.

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~...... " """"""""" """ -
"

'

21

" Theorem 5: If the underlying computation is terminated at a time Tf, then the marker

would declare termination within a finite time after T.

* Proof: Follows from lemma 7 and theorem 1.

Theorem 6: Suppose at a moment T, the marker declares termination. Then at this

moment, the underlying computation is, indeed, in the terminated state.

'- Proof: The theorem follows from lemmas 6 and 7 and theorem 4.

Some Improvements and Details

* We briefly mention below some simple performance improvements to the algorithm.

' We also discuss a few details related to implementation.

~ 1. Instead of keeping the two arrays S.NTM and RECM in the marker, it is
sufficient to keep a single array, say SRM, which would equal
SNTM - RECM. This would reduce the secondary message length. Also,
this reduces the chances of an overflow. (Elements of arrays SNTM and
RECM are non-decreasing with time.)

2. In our description of the algorithm, the arrays SNTPi and RECP1 have an
" element for every primary line of the network. Usually a process is

* connected to only a few other processes; in such cases, with this data
structure updating SNTM or RECM or SRM may be quite inefficient. It
may be more efficient to assign contiguous local line ids to the adjacent lines
at each process, keep elements only for the adjacent lines in arrays SNTPi -

and RECPi, and keep an array that maps from local line ids to global line
ids.

3. How does the marker determine the next line to be traversed? If C is a
simple cycle, then obviously just keeping the successor's id at each process is
sufficient. Otherwise, one may keep a circular list of outgoing lines at each i"
process (a line may be repeated several times in this list) and a local pointer
that points to the next line to be followed by the marker. These circular

r" lists can be initialized by considering a single traversal of the cycle C "by U:
hand". The pointers can be initialized by defining the starting point of the

22

marker on the cycle. Note that the marker itself does not carry any
information about its path of traversal; otherwise the secondary messages
would become even longer.

Performance of the Algorithm

In the worst case, the number of message communications after the occurrence of

termination is ICI-1. C can be chosen to be an elementary cycle, in which case this

equals N-i, where N is the total number of processes in the system. Each message has a

length of E integers, where E is the number of primary lines in the system. If

communication delays depend significantly on the length of the messages, then this

would be quite inefficient. On the other hand, if the message length does not _

significantly affect communication delays then this scheme would give a reasonable

performance. One nice feature of this scheme is that in the beat case, the number of

message communications after termination is zero. Normally marker based algorithms

[lra 83, Chandy85a] require at least one complete cycle between the occurrence of

termination and its detection.

5. Class 2 of Algorithms: Counting Total Number of Primary Messages

Sent and Received in the System

Our rotivation for devising algorithms in this class is to reduce the length of

secondary messages. Here the marker has two scalar variables SNTM2 and RECM2

where it keeps its knowledge regarding the total number of primary messages sent and

received, respectively, in the system. This differs from algorithms in class 1 where

information about individual lines was being kept. Each process i has two scalar

variables SNTPZ and RECP,.=. At any time SNTP. = the total number of primary

messages sent out by process i after the last visit of the marker at i (or since the initial

time, if the marker has not visited i yet). RECP is similarly defined for messages

received. The algorithm-skeleton of class 1 remains the same for this class, except that

the variables SNTM, RECM, SNTPi, and RECPi are replaced by SNTIM2, RECM2,

SNTPPj, and RECP2 respectively. These variables are initialized to be zero, before the

primary computation starts. (Unlike the discussion in class 1, we won't find a need to ..

change this initialization later.) As in class 1, a process does not receive any messages

p..'.,?

:.: 1...

w

23r

during the interval between the start of the marker's visit and its departure. As before,

the variables SIVTPPj and RECP2 are incremented on sending or receiving

(respectively) a primary message. L

Now we consider the issue of when the marker declares termination. Theorem 7

- below states that if the primary computation terminates at time T then within a finite

n time after T the syctem would reach a state where the condition SNTM2 = RECM2

will be true and will remain true forever afterwards. As before, we have to avoid the

possibility of detecting "false termination". Again we ask the question - suppose in a

sequence of visits along the cycle C, the marker continuously finds that
SNTM2 = RECM2. Can it conclude termination after a (predefined) finite number V

of such visits? Unfortunately, the answer in this case is in the negative, as shown in

example 1 below. Theorem 8 below gives a method to complete the algorithm.

Theorem 9 considers simple variations of the method given by theorem 8. These

variations reduce the computational requirements at the processes; they do not improve

communication requirements. Theorem 10 improves the performance of the algorithm

by reducing the number of message communications after termination. After proving j
theorem 10, we show that certain simple and obvious variations of theorem 10 do not

work. First let us discuss some intermediate results that will be used in the proofs.

Note that the variables SNTM, RECM, SATP, and RECPi of class 1 can be used as

"auxiliary" or "ghost" variables in our proofs. The notion of auxiliary variables is

.* discussed, for example, in [Owicki 761. The use of these auxiliary variables in our proofs

is not essential; we use them only to simplify our proofs by exploiting the results in

section 4. We assume that these variables are initialized to be zero at the start of

• .primary computation.

Lemma 8: Lemmas 1-5 and theorems 1-4 of section 4 remain valid for the present

algorithm-skeleton (when the variables SNTM, RECM, SNTPi , and RECPi are

interpreted as auxiliary variables).
.%

.~~-n N&

I- 24

Proof: In the algorithm-skeleton of section 4, let us introduce variables SNTM2,

RECM2, SNTP, and RECP2. in the same way as they are used in the present

algorithm-skeleton. Obviously, the previous results of section 4 hold for this new

algorithm-skeleton. Now in this algorithm-skeleton, let us treat variables SNTM,

*.'. RECM, SNTPi, and RECP as auxiliary variables. Obviously, the results would still

hold.

Lemma 9: At any time t,

SNTM2(t) = sum {SNTM(e, t), over all primary lines e} (9)

S .RECM2(t) = sum {RECM(e, t), over all primary lines e} (10)

SIVTP2 (t) - sum {SVTPi(e, t), over all outgoing primary lines e of process i} (11)

i RECP(t) - sum {RECPi(e, t), over all incoming primary lines e of process i} (12)

Proof: Obvious, by induction on the number of events in the system.

Lemma 10: At any time t,

tr(t) = SNTM(t) - RECM2(t) + sum {SNTP2(t), over all processes i} -
sum {RECPZ(t), over all processes i} (13)

- where tr(t) - the total number of primary messages in transit at time t.

Proof: Let us take the sum of each side of (7) over e, e ranging over all primary lines in

* "the system. The result follows from lemmas 9 and 8.

Theorem 7: Theorem 1 of section 4 remains valid if SA M and RECM in that

theorem are replaced by SZTM2 and RECM2 respectively.

-Proof: Follows from lemma 8 and the results (9) and (10) in lemma 9.

S- "

RD-R159 189 RESEARCH TO STUDY SPECIFIC IMPORTANT PROBLEMS IN 2/2
DISTRIBUTED SYSTEMS AND (U) TEXAS UNIV AT AUSTIN DEPT
OF COMPUTER SCIENCES K M CHANDY ET AL JUL 35

lIll l l RO---3h92l
I Illllllllll
IIIIIIIIIIIIIIffllfllf
IIIIIIIIIIIIII

Slflllflflllllf

.4

-,m A.005

11111 Ia 1-

1.51111.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOAROS-1963-A

4,%

lul,_.

MIRCPSFOUINTS HR

NAINLBREUO TNORS.6-

"p1-

25

Example 1: To show that there exist computations (following the algorithm-skeleton)

where in an infinite sequence of visits, the marker continuously finds that

SSNTM2 = RECM2, and yet the primary computation never terminates.

Consider a network of 10 processes. The cycle C is the elementary cycle 1, 2, ... , 10, 1.

S-"Initially the marker is at process 1, process 5 is active, and process 10 is idle. Processes

1-4 and 6-9 never send or receive a primary message and are always idle. Consider the

following sequence of events at processes 5 and 10:

1. 5 sends a primary message to 10, 10 receives it, 10 sends a primary message
to 5, 5 receives it. At this point 5 becomes idle and 10 remains active.

2. The marker visits 5, and departs.

3. 10 sends a primary message to 5, 5 receives it, 5 sends a primary message to
10, 10 receives it. At this point 10 becomes idle and 5 remains active.

4. The marker visits 10, and departs.

5. The above steps 1-4 are repeated indefinitely.

Obviously, after every visit the marker will find that SNTM2 RECMe. But the

primary computation would never terminate!

The above example illustrates why after a finite number of visits with

SNTM2 = RECM2 after each visit, the marker can not in general announce

termination. Roughly speaking, a process i may have sent and received messages in

between two successive visits by the marker. Theorem 8 is based on this observation.

Theorem 8: Suppose in a sequence of V -- C visits, the marker continuously finds
that SNTP2i -= RECP, = 0 before each visit (except possibly the first visit in the

sequence) and SNTM2 = RECM2 after each visit. Then, at the end of this sequence of

visits it can conclude that the underlying computation has terminated.

Proof: We show by induction on the number of visits in the sequence that after each

. visit SNTM RECM. The result follows by theorem 3.

26

.%

Base Case: Consider the first visit. Let To be the time when the first visit in the

' sequence is completed. Obviously, SNTP2(To) = RECPP,(T0) -= 0 for each process in

the system. Therefore from (11) and (12) in lemma 9,

.- SNTPi(e, TO) = RECP,(e, TO) = 0 for each primary line e = (i, j). Hence from

lemmas 4 and 1, SNTM e, TO) > RECM(e, TO) for any e. But

SATM2T 0) = RECM2(T 0). Therefore from (9) and (10) in lemma 9, we get

SNTMe, TO) RECM e, TO) for every primary line e. Therefore SNTM = RECM

at time T0.

Inductive Case: Inductively, suppose SNTM - RECM after the kth visit. By the

hypothesis of the theorem, at the start of the (k+l)st visit SNTPPj = REMP , = 0

where i is the process being visited. Using (11) and (12) in lemma 9 it follows that

SNTM = RECM at the end of the visit.

£ Note: The above proof shows that if in a computation the hypothesis of theorem 8 is

true then so is the hypothesis of theorem 3. The converse also follows, in an obvious

- way. Hence the two algorithms will require the same number of secondary message

communications after and before the occurrence of termination. (Since the computation

time in a visit in the two algorithms is different, the sequence of events in the two

algorithms may be differer .The above remark ignores any such differences.)

We state below some simple variations of theorem 8. These variations reduce only the k

processing requirements during a visit by the marker. Theorems 8 and 9 require the

same number of secondary message communications after and before termination

(again, this assumes that different processing requirements during a visit won't affect

the sequence of events).

Theorem 9: Theorem 8 remains valid under any one of the following modifications

(note: we are not considering here a combination of these modifications):

%l

.-. , = . - , -. w . v v rr-o - . - - r rr -r = r

27

1. The requirement SNTP - RECP- = 0 is replaced by SNTP2= =0.

2. The requirement S.NTP = RECP = 0 is replaced by RECPR = 0.

U 3. The requirement "SNTM2 = RECM2 after each visit" is replaced by
"SNTM2 =RECM2 at the end of the last visit of the sequence"...

Proof: It is easy to see that any variation stated in theorem 9 is equivalent to theorem

8, in the sense that if the hypothesis of one is true then so is the hypothesis of the

. other.

- Now we consider a stronger modification to theorem 8. The algorithm suggested by

theorem 10 below is more efficient than the one suggested by theorem 8, in terms of the

number of message communications required after termination. We will discuss this

after proving the theorem.

Theorem 10: Suppose in a sequence of V =C 10 visits, the marker continuously finds

that RECPS, = 0 before each visit (except possibly the first visit in the sequence) and

SN7M2 = RECM2 at the completion of the last visit of the sequence. Then at the end

-. of this sequence of visits it can be concluded that the underlying computation is

terminated.

Proof: Let To and T, respectively, be the times when the first and the last visits of the

sequence were completed. Let ti be the time when the marker completed its last visit at

process i up to (including) time T. From (10),

*: tRECM2(T) - sum {RECMe, T), over all primary lines e}

* /= sum {trec(e, tj), over all primary lines e = (i, j)} by (6).

= sum {trec(e, TO), over all primary lines e - (i, j)} since, obviously,
in the interval [To, ti] process i did not receive any primary
messages.

•.. -7 .'.. ***='*--. ****

28

Similarly,

SNTM2T) = sum {tant(e, ti), over all primary lines e = (i, j)} by (9) and (5)

- sum {tant(e, TO), over e} + sum {r'(e), over e}

where r'(e) - the number of primary messages sent on the line e - (i, i) during
the interval [To, ti].

Since SITM2(T) - RECM2(T), using (2) we get tsnt(e, TO) = trec(e, TO) and

r'(e) = 0 for every primary line e. This is the same as conditions (B) and (C) in the

proof of theorem 3. The rest of the proof is the same as the proof of theorem 3 after

observation (C). (Alternatively, for any primary line e = (i, j), tant(e, ti) - trec(e, tj)

= tunt(e, TO) + r'(e) - trec(e, TO) = 0. Hence by (8), SNTMe, T) - RECM(e, T).

The result follows from theorem 4.)

Now we show that theorem 10 suggests a more efficient algorithm than theorem 8.

Obviously, if the hypothesis of theorem 8 holds at a point in computation, then the

hypothesis of theorem 10 holds as well. Example 2 below shows that the converse is not

true. (However, for a given network topology, the worst case number of message

communications after occurrence of termination is the same in both cases.)

Example 2: Consider the network of example 1 with the same initial conditions, except

that the marker is initially at process 9. As before , processes 1-4 and 6-9 always

remain idle. Consider the following sequence of events at processes 5 and 10:

1. 5 sends a message to 10, 10 receives it. At this point both processes are idle.

2. The marker arrives at process 10.

In the algorithm given by theorem 10, the marker will visit processes 10, 1, 9 and

then declare termination. Using the algorithm given by theorem 8, the marker will visit

processes 10, ... , 5, ... , 10, ..., 4 and then declare termination.

. 7 ..

2gr

" : One may be tempted to consider the following variation of theorem 10 - replace the

requirement RECP -- 0 by SNTP -- 0. Example 3 below shows that this won't

S work.

-. *- Example 3: Consider the network of example 1 with the same initial conditions and
the same behavior of processes 1-4 and 6-9. Consider the following sequence of events

on processes 5 and 10:

1. 5 sends a primary message to 10 and becomes idle. (10 has not received it
yet.)

2. Marker visits 5. It "restarts" a new sequence since SIVTP 5 VA 0 at the start

of the visit.

3. Marker visits 10 and departs.

\ . 4. 10 receives the primary message sent by 5. It sends a primary message to 5
and remains active. 5 receives this message and remains idle.

5. Marker visits 5 and declares termination.

But process 10 is still active!

Since the above variation of theorem 10 doesn't work, it follows that the following

variation will also not work - replace the requirement RECP- = 0 by (RECPZI = 0

or SNTP -= 0). (If this variation had worked, obviously it would have been more

efficient than theorem 10.)

We complete the algorithm-skeleton for class 2 by using theorem 10. Along the lines

of the proof of theorem 1, it can be shown that if the primary computation terminates,

say at time Tp then the hypothesis of theorem 10 will become true within a finite time

after Tr The correctness of the algorithm follows from this observation and theorem

* *". 10.

' ,i-I..,

i i: i

* . "
.

30

Some Improvements and Details

1. As in class 1 (see "some improvements and details" in section 4), instead of
keeping the two variables SNTM2 and RECM2 in the marker, it is
sufficient to keep only a single variable SRM2 which would equal
SATM2 - RECM2. This has the same advantages as before.

r. 2. Also, at a process i instead of keeping SNTP2 and RECP2i, one may keep a

variable SRP which would equal SNTPj - RECP1, and a boolean variable

to indicate if RECP2. = 0. This, of course, does not improve the efficiency

regarding message communications; it only reduces the processing time
involved in a visit.

3. Same as 3 in our discussion under "some improvements and details" for

class 1.

4. How does the marker detect that the first condition of theorem 10 holds for
the entire sequence? We roughly sketch a few possible ways of doing this:

a. Sequence Length Counter: The marker carries a counter for this
purpose. Initially this counter is 0. On visiting a process i, if RECP2 "

is zero at the start of the visit then the counter is incremented; else it
is reset to 1. After the visit if the counter is > JCJ, then the condition
STM = RECM2 is checked.

What the counter has become > ICI and the condition
SINTM2 - RECM2 is not met? If the counter keeps getting
incremented indefinitely, it may overflow. To avoid this, one may
reset the counter to 1 during a visit if it is > ICI at the start of the
visit. This raises the following issue: there seems to be a possibility
that termination may be detected after "too many" visits. For
example, what if the condition RECP -= 0 is true before every visit,
but the condition SNTM2 = RECM2 becomes true after IC1+1 visits
and the counter was reset to 1 (to avoid overflow) during the visit
1C0+1? It can be shown that such cases can not arise. In other words,
at the start of a visit if the counter is > 1C, then it can be reset to 1
without loss of efficiency. At any such point T it can be asserted that
the marker will definitely visit (either in future or in current visit) a
process i such that RECP2, 3 0 at the start of the visit. To prove

this, suppose this is not true. Then there are two possibilities: (i)
There is a finite sequence of visits made after time T such that ,.
RECPj = 0 before each such visit at the process i being visited and

SNTM2 - RECM2 at the completion of the last visit of the sequence.
(ii) There is an infinite sequence of visits made after time T such that

..

.-. . . . % ,.% ..- , • - , - ,. - . -.. *. . - .- .- *-.* . . .-. -, .. - .,
' .. :. - . . . -. , > . - , , '

31

- RECPZ = 0 before each visit and SNTM2 -7 RECM2 after each visit.
Note that after time T, for any visit at a process i if RECP9 = 0
before the visit then SNTP72 0 before the visit as well. Since
SNTM2(T) 76 RECM2(T), (i) above is impossible. In case (ii),
obviously we have primary messages in transit at time T. Within a
finite time one of these messages will be received at a process i, making
RECP91 nonzero. Hence (ii) above is impossible. This completes the
proof.

b. Round Number: For simplicity, first let us assume that C is an
elementary cycle. The marker contains a round number. At the start

.'. of a visit (say at process i) if RECP 74 0 then a new round is started,
i.e., marker's round number is incremented. During any visit at a
process i, the marker's round number is stored in a local variable at i.
If at the start of a visit, the round number of the marker equals that
of the current process i, it means that the marker has previously made
a sequence of at least ICI visits such that before each visit (except
possibly the first one) RECP2. - 0 at the corresponding process j.

J
Therefore in this case if RECP - 0 at the start of the visit, the
condition SNTM2 - RECM2 is checked for termination after
completion of the visit. (Alternatively, the termination check could be
made at the start of a visit if the round numbers match.) At the start
of secondary computation, round numbers of the marker and the
processes are initialized to 1 and 0 respectively.

If the round number of the marker keeps getting incremented
indefinitely, it may overflow. To solve this problem one may

*[increment the round number as 1+ [(round number) mod lCJ]. The
new round number generated would obviously be different from localround numbers of all processes (except possibly the one being visited).

(As a side note, using this method the number of message
communications after occurrence of termination is increased by 1.)

If C is not an elementary cycle, a counter may be kept at each process
that counts the number of times the process has been visited in the
current round.

c. Initial Process Id: Again let us first assume that C is an elementary
cycle. In this method the marker keeps a pointer that points to the
process id of the first process in the current sequence of visits such that"'. before each visit (except possibly the first one) RECP- -- 0. At thei
start of a visit (say at process 1) if RECP91 34 0 then this pointer is set

r-e." . " , , . . ; , ,; . ,. - . . .' .

t,.i .. . , . , .,.: .. ., . . , :-. . - -,. , . :' " ,: -- "-,.' , ' '. , .: ' . . - , '

32

to I. If at the start of a visit, this pointer is pointing to the current
process i, this means that the marker has previously made a sequence
of at least I0I visits such that before each visit (except possibly the
first one) RECP2 = 0 at the corresponding process j. Therefore in
this case if RECP2. = 0 at the start of the visit, then the condition

S'NTM2 = RECM2 is checked for termination after completion of the
visit. Similar to our discussion in (a) above (using sequence length
counter), if the condition SNTM2 = RECM2 is false in this check, we
need not reset the pointer.

Obviously, there is no overflow problem in this approach. As in the
method using round numbers, the number of messages after
termination in this method is increased by 1. If C is not an elementary
cycle, one may keep local counters at the processes to count the

S."number of times the process currently pointed to by the marker has
been visited in the current sequence.

5. Suppose we designate a specific process where the decision regarding
termination would be taken. In this case the marker needs to carry only an
integer (the value of SNTM2 - RECM2) and a boolean (instead of an integer
as in 4 above) which remembers whether in the current round the first
condition of theorem 10 has been true so far. Since message length has
decreased, this improves the performance in the worst case. However, in the

U average case the number of message communications after termination will
increase.

Performance of the Algorithm

p The worst case occurs when the marker departs a process i and before it reaches the

next process, process i receives a primary message and the primary computation

terminates at this point. The number of secondary messages sent after the termination
of primary computation in this case is 2.1I - 2. Each secondary message contains two

integers - one integer containing the value SNTM2 - RECM2, and the other used to

check the first condition of theorem 10, as discussed in 4 above under "some

improvements and details".

- ** **t**. *, " .
-I - .- . . . $* ' .

33

6. Class 3 of Algorithms: Using Multiple Markers

In classes 1 and 2 we have a single marker that sequentially traverses the system. In

this section we will use multiple markers to enhance performance. First we observe that

the sequential traversal of the system by a marker in the previous algorithms is not

essential. If several processes could be visited in parallel, even then these results will

hold. The following theorem is obtained from theorem 10 by an abstraction of the

proof of that theorem (i.e., by avoiding details regarding sequential nature of the

traversals). The proof of this theorem is essentially the same as that for theorem 10.

Theorem 11: Let [TO, T be a time interval during which several visits have been

* completed, possibly in parallel. Suppose these visits satisfy the following:

1. At least one visit is completed at each process during this interval (the start
* times of these visits need not be in the interval).

* 2. At the start of each visit, say at process i, RECP - 0, and

* "3. At time T S.NTM2-- RECM2.

Then, at time T the primary computation is terminated.

Notes:

1. The values of SNTM2 and RECM2 at time T are defined in the obvious
way - the results of various visits have to be accumulated.

2. Theorem 10 follows as a special case of theorem 11. On first sight this
_ might not be so obvious, since theorem 10 allows the value of RECP21 for

the first visit to be nonzero. However, after the very first visit in the

sequence, one may consider an imaginary visit to the same process -
theorem 10 would then readily follow from theorem 11.

Using theorem 11, one may devise schemes using several markers. The markers would

. check the values of RECPt, and accumulate values for SNTM2 and RECM2 in
different parts of the system (these parts need not be disjoint).

%I

'-" -"" ,""--*-*-"* -., - *, % - '. **-* -*. "%-'. .- ,'." '•"' " ... -:." " . ' , -,--'.'"- .. "- .'- - .-- "- '- "' .-.

A. Using Two Markers

Let us assume that we have two paths P1 and P 2 from a given process I to a given

process J. Also assume that these paths together cover all the processes in the system.

Initially both markers are kept at process I. Then they traverse the two paths

respectively. After both have visited J, a check for termination is made as follows. The

values SNTM2 and RECM2 are computed by adding the corresponding values in the

two markers. Each marker i also has a boolean variable NZRECi which is set tc true if

at the start of some visit at a process j in the current traversal of the path, RECP2. was

found to be nonzero. At J, if SNTM2 = RECM2 and both booleans are false then

termination is announced. Otherwise a new traversal is to be started. To start a new

traversal, both markers may be sent back to I via a line (J, I). Alternatively, the

markers may traverse the paths P1 and P2 in the reverse direction in which case the

next check for termination would be made at process I.

Now we make a simple modification to the above scheme that would lead to an

obvious generalization for the case of more than two markers. A new pro'ess, called a

central procea (CP), is introduced in the system where the check for termination would

be made. (This process may be implemented as part of some existing process in the

.. system.) Paths P and P 2 now need not share their initial and final processes. Initialy"

both markers are at the CP. A traversal of the system is started by the CP, by sendIng
the markers to the initial processes of the respective paths. After traversing the pazhs,

the markers arrive at the CP where the decision regarding termination is made in the

same way as before.

Now we consider an erroneous variation of this scheme which supposedly attempts to

improve its efficiency. Suppose a marker i has arrived at the CP after traversing its

path and NZREC is true. Suppose the other marker has not yet arrived at the CP.

One might be tempted to consider the following. Since marker i knows that

*2- termination can not be announced after this traversal, it doesn't wait for the other .

marker to arrive; instead it goes back to traverse P.. Equivalently, a marker i would

traverse its path Pi repeatedly until the value of NZRECi is false at the end of a

..... _.: : :

35 ,. 4-.

. traversal, and then it would go to CP and wait for a termination check to be made.

The following simple example shows that this scheme won't work:

Example 4: Let P1 and P2 consist of single processes, processes 1 and 2 respectively.

. Initially process 2 is idle and process 1 is active. Consider the following sequence of

events:

1. Marker 2 visits process 2. It departs from process 2 (but hasn't arrived at
the OP yet).

2. Process 1 sends a primary message to process 2. Process 2 receives this
message and sends another one to process 1. Process 1 receives it and
becomes idle. Process 2 remains active.

3. Marker 1 visits process 1. Since the value of NZREC1 is true after this visit,
it visits process 1 again (equivalently, after the first visit it goes to CP, then
goes back and visits process 1). Now t arrives at the CP.

4. Marker 2 arrives at CP. Obviously both booleans NZREC. are false and

SATM2 = RECM2 at this point. Hence termination is declared. But
process 2 is still active!

Performance of the Scheme

*. Let us assume that the length of each path P 1 or P 2 is approximately N/2. For worst

case, consider the following scenario. Marker 1 visits and departs from the first process :"

(say i) on its path. Now process i receives a primary message and at this point the '

primary computation is terminated. Obviously termination won't be detected after the

current traversal. Again, it won't be detected in the next traversal since RECP would

be nonzero at the start of the next visit to i (let us assume that i appears only once on

P,, and doesn't appear on P 2; otherwise this won't be strictly true). So the number of

secondary message communications after termination is k 3N/2. Each such message

consists of an integer and a boolean.

B. Using More Markers

* One may similarly use a CP, K paths, and K markers in general. Let L be the length

of the longest of these paths. By considering a scenario similar to the above, we have

the worst case number of message communications - 3L + 4. If each path has N/K

,i.,"%

.

38

processes then this equals 3N/K + 1. Note that as K is increased, the scheme tends

to become more centralized. With K = N it is a purely centralized scheme (i.e., each

process interacts only with the central processor for termination detection) with worst

case number of message communications after termination - 4.

7. Conclusion

We have presented a class of efficient algorithms for termination detection in .

distributed systems. Our assumptions regarding the underlying computation are simple.

In particular we do not require the FIFO property for the communication channels.

Also, the topological requirements about communication paths are simple and flexible,

both from the correctness and performance point of view. We discussed the correctness

and performance of our algorithms. Depending upon the application, the nature of the

chosen algorithm can be varied incrementally from a distributed one to a centralized -

one.

We introduced message counting as an effective technique in designing termination

detection algorithms. We showed how one can avoid counting messages for each and

every line, normally. resulting in better performance. Our presentation involves deriving

algorithms via a sequence of simple modifications. Several correct as well as incorrect

variations have been considered. We hope that this approach of presentation has

resulted in better understandability of the algorithms.

Acknowledgments

I am indebted to Professors J. Misra and K. M. Chandy for their masterful teaching of

several courses at UT Austin which have significantly influenced me. Their financial

support for this work is greatly appreciated. The idea of counting messages on the lines

was inspired by a similar thought of Professor K. M. Chandy. I am thankful to

Professor J. Misra for his encouragement and for his thoughts on performance of

termination detection algorithms. Professor M. Gouda's encouragement and his positive

influences on my writing style are greatly appreciated. I would like to extend my

special thanks to Ted Briggs and Pradeep Jain for their comme.ts on earlie,' drafts of

this paper.

-*.-. *%

.-. ** **.- * -** - **. * '~ - * -. .- .. *\ .-*% :

References

[Been 811 C. Beeri and R. Obermarck, "A Resource Class Independent
Deadlock Detection Algorithm", Research Report RJ077, IBM
Research Laboratory, San Jose, California, May 1981.

[Bracha 83] G. Bracha and S. Toueg, "A Distributed Algorithm For Generalized
Deadlock Detection", Technical Report TR 88-558, Cornell
University, June 1983.

[Chandy 81] K. M. Chandy and J. Misra, "Asynchronous Distributed Simulation
Via a Sequence of Parallel Computations", Communications of the
ACM, Vol. 24, No. 4, pp.19 8-205, April 1981.

[Chandy 82a] K. M. Chandy and J. Misra, "A Distributed Algorithm for Detecting
Resource Deadlocks in Distributed Systems", ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing,
Ottawa, Canada, August 1982.

[Chandy 82b] K. M. Chandy and J. Misra, "A Computation on Graphs: Shortest
Path Algorithms", Communications of the ACM, Vol. 25, No. 11,
pp.833-837, November 1982.

i [Chandy 831 K. M. Chandy, J. Mirsra, and L. Haas, *Distrilbuted Deadlock ,

Detection", ACM Transactions on Computing Systems, Vol. 1, No.
2, pp. 144-156, May 1983. j

[Chandy 85a] K. M. Chandy and J. Misra, "A Paradigm for Detecting Quiescent
Properties in Distributed Computations", working paper,

Department of Computer Sciences, University of Texas, Austin,
Texas 78712, January 9, 1085.

[Chandy 85b] K. M. Chandy and L. Lamport, "Distributed Snapshots: Determining
Global States of Distributed Systems", to appear in ACM
Transactions on Computing Systems.

[Chang 82] E. Chang, "Echo Algorithms: Depth Parallel Operations on General
Graphs", IEEE Transactions on Software Engineering, Vol. SE-8,
No. 4, pp.391-401, July 1982.

[Cohen 82] S. Cohen and D. Lehmann, "Dynamic Systems and Their Distributed
Termination", ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, pp. 29-33, Ottawa, Canada, August 18-20,
1982.

7;. :6,Z;

38

[Dijkstra 80] E. W. Dijkstra and C. S. Scholten, "Termination Detection for
:71 .. Diffusing Computations", Information Processing Letters, Vol. 11,

No. 1, August 1980.

[Dijkstra E. W. Dijkstra, "Distributed Termination Detection Revisited",

EWD 828, Plataanstraat 5, 5671 AL Nuenen, The Netherlands.

[Francez 80 N. Francez, "Distributed Termination", ACM Transactions on
Programming Languages and Systems, Vol. 2, No. 1, pp. 42-55,
January 1980.

[Francez 81] N. Francez, M. Rodeh, and M. Sintzoff, "Distributed Termination
with Interval Assertions", Proceedings of Formalization of
Programming Concepts, Peninusla, Spain, April 1981. Lecture Notes

* .in Computer Science 107, (Springer-Verlag).

" [Francez 82] N. Francez and M. Rodeh, "Achieving Distributed Termination
Without Freezing", IEEE-TSE, Vol. SE-8, No. 3, pp.287-292, May
1982.

[Gligor 80] V. Gligor and S. Shattuck, "On Deadlock Detection in Distributed
Data Bases-, IEEE-TSE, Vol. SE-8, No. 5, September 1980.

[Haas 83] L. Haas and C. Mohan, "A Distributed Deadlock Detection
Algorithm for a Resource Based System", Research Report RJ765,
IBM Research Laboratory, San Jose, California, January 1983.

[Herman 83] T. Herman and K. M. Chandy, "A Distributed Procedure to Detect
AND/OR Deadlock", Department of Computer Sciences, University
of Texas, Austin, 78712, February 1983.

[Hoare 78] C. A. R. Hoare, "Communicating Sequential Processes",
Communications of the ACM, Vol. 21, No. 8, pp. 666-677, August
1978.

[Holt 72] T. Holt, "Some Deadlock Properties of Computer Systems",
Computing Surveys, Vol. 4, No. 3, pp. 179-196, September 1972.

[Kumar 85] D. Kumar, "Distributed Simulation", Ph.D. Thesis (in preparation),
Department of Computer Sciences, University of Texas, Austin,
Texas 78712.

[Lamport 78] L. Lamport, "Time, Clocks, and the Ordering of Events in a

o-.

39

Distributed System", Communications of the ACM, Vol. 21, No. 7,
July 1978.

[Misra 81] J. Misra and K. M. Chandy, "Proofs of Networks of Processes",
IEEE Transactions on Softaware Engineering, Vol. SE-7, No. 4, pp.
417-426, July 1981.

[Misra 82a] J. Misra and K. M. Chandy, "Termination Detection of Diffusing

- Computations in Communicating Sequential Processes", ACM
Transactions on Programming Languages and Systems, Vol. 4, No.
1, pp. 37-43, January 1982.

[Mi sra 82b] J. Misra and K. M. Chandy, "A Distributed Graph Algorithm: Knot
Detection", ACM Transactions on Programming Languages and
Systems, Vol. 4, No. 4, pp. 678-688, October 1982.

[Isra 831 J. Misra, "Detecting Termination of Distributed Computations Using
Markers", Proceedings of the ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, Montreal Canada, August
17-19, 1983.

* [Obermarck 80] R. Obermarck, "Deadlock Detection For All Resource Classes",
Research Report RJ2955, IBM Research Laboratory, San Jose,
California, October 1980.

[Obermarck 82] R. Obermarck, "Distributed Deadlock Detection Algorithm", ACM
Transactions on Database Systems, Vol. 7, No. 2, pp.187-208, June

1982.

(Owicki 76] S. Owicki and D. Gries, "An Axiomatic Proof Technique for Parallel
" *;. Programs I", Acta Informatica, Vol. 6, pp.319-340, 1976.

.7-1
ij

3 I

y

SECURITY CLASSIFICATION OF THIS PAGE (When DataEntered)R

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'$ CATALOG NUMBER

4. TITLE tend Subtitle) S. TYPE OF REPORT A PERIOD COVERED

Manuscript: "A Model and Proof System for final: 6/14/81 - 6/15/85
Asynchronous Networks" G. PERFORMING OIG. REPORT NUMBER

7. AUTHOR($) S. CONTRACT OR GRANT NUMBER(a)

p Dr. Bengt Jonsson
. currently at Uppsala University AFOSR 81-0205

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA a WORK UNIT NUMBERS

Computer Sciences Department
" "University of Texas at Austin

Austin, Texas 78712
*I M" I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Capt. A. L. Bellamy July 1985
AFOSR/NM 13. NUMBER OF PAGES

;-., . Bolling AFB, DC 20332
S 4. MONITORING AGENCY NAME & AOORESS(If different from Conrrollind Office) IS. SECURITY CLASS. (of this report)

- IS. OECL ASSI FIC ATIONiOOWNGRADING" :::iSCHEDULE

IS. DISTRIBUTION STATEMENT (n1 hio Report)

17. DISTRIBUTION STATEMENT (of the abetret entered In Block 20. It dlfferent from Reporf)

" . IS. SUPPLEMENTARY NOTES

to appear in the Proceedings of the 4th ACM Conference on the Principles
of Distributed Computing, Minaki, Canada, August 5-7, 1985

19. KEY WORDS (ContInue on reveree side It neceeeary and identify by block nmubee)

20. ABSTRACT (Contime nn reverse aide ## necessary and identify by block number)

q We present a compositional model for nondeterministic asynchronous networks,
which represents both safety and liveness properties. A network is represented

-" by the set of its quiescent traces. A quiescent trace is the sequence of com-
munication events in a computation, after which the network will not produce
more output unless it receives more input. The representation of a network is I
derived from an operational definition of its behavior, in the form of a labele
transition system. Rules for composition, abstraction and renaming in the

% model are proven from their operational definitions, showing that the model is

[DD I A 1473 EDITION OF 1 NOV O. IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE(Whan Date Entemd)

compositional. A method to specify networks in predicate logic is presented,
together with a proof system. The method is demonstrated on the specification
and verification of the alternating bit protocol.

. .• u

p..-.

LSECURITY CLASSIFICATION OF P- PAGE(WhIn Date Entored,

r
t-.%

%

A MODEL AND PROOF SYSTEM FOR
ASYNCHRONOUS NETWORKS

Bengt Jonsson

Uppsala University, Institute of Technology'
S-751 21 Uppeala, Sweden

Abstract: We present a compositional model for nonde- work. Several solutions have been presented ([BA, [BrI,
termnnistic asynchronous networks, which represents both [Pal, [Pri), but it is not clear which one is easiest to use in
safety and liveness properties. A network is represented practice.

* by the set of its quiescent traces. A quiescent trace is the-'" Compositionality can be attained in a simple way by
sequence of communication events in a computation, after
which the network will not produce more output unless it using traces, i.e. totally ordered sequences of "u -

receives more input. The representation of a network is tion events on all channels of a process or a network (e.g.

. derived from an operational definition of its behavior, in [BM], [CHI, [MCI), but it is not evident how to represent

the form of a labeled transition system. Rules for compo- liveness properties of nondeterministic networks.

sition, abstraction and renaming in the model are proven Consider for example the buffer process in Fig. 1 that
from their operational definitions, showing that the model reads a's on the left channel and for each a outputs a b on
is compositional. A method to specify networks in predi- the right channel.
cate logic is presented, together with a proof system. The
method is demonstrated on the specification and verifica-a
tion of the alternating bit protocol. srsam"

1. Introduction Figure 1. A buffer process
For deterministic asynchronous networks Kahn [Kj has The traces of the process are the sequences of a's and b's

presented an elegant model which represents a process by with at least as many a's as b's. The set of traces, how-
a function from histories on input channels to histories on ever, does not say anything about liveness properties, since
output channels. For nondeterministic networks, Brock and another process, that at some nondeterministically chosen
Ackerman [BAI have shown that channel histories ar not moment stops producing output, will have the same set of
adequate in a compositional model, since channel histories traces and yet have different liveness properties.
of the component processes do not provide enough infor- The idea of qu-escene, due to Chandy and Mists (Mis],
mation to calculate the channel histories of the whole net- is a solution to the problem of representing livenesm. The

0: Pan of this work was carried out while the author wa on Ism at remainder of the introduction contains a summary of this
Stanford University. idea and an outline of its further development in this paper.
This work vu supported in pt by th Swedi Dowd for Teb A process or a network is in a quiescent state iff it
cal Development (STU) under Contract 82-3406, by the National Sci- m inactive and don not produce any more output,
ence Foundation nuder anst MCS-82-14523, by Defense Adr oed
Research Projects Agency under Contract N0003.44-C-0211, and by unless it receives more input. A quiescent tres is the se-
the United States Air Force Ofce of Scientift Research under Con- quence of communication events in a computation after 1,
tracts$ AFOSR.0-014 ad AFOSR-81-O5. which the process becomes quiescent, i.e. a maximal trace

to appear at that will not be extended unless more input is supplied.
4th ACM Symposium on The finite quiescent traces of the buffer proces in Fig. 1
Princi ples of istri buted Computing em the traces that contain an equal number of a's and b's.
Minaki, Canada, August, 1985 Since some processes may not terminate, all infinite

traces amre considered quiescent: an infinite trace can not
be extended. As an example consider the source process
in Fig. 2 that repeatedly sends a and never terminates.

% ---..-.

i]

networks is presented. Rules for composition, abstraction
and renaming are given. In section S we present a method
for specifying networks, followed by a proof system in sec-
tion 6. The method is illustrated by a specification and
verification of the alternating bit protocol in section 7.

Figure 2. A source process
2. NetworksThe process never becomes quiescent, but can be repre-

sented by the infinite trace < aaa... >, denoted as a". A nsstwork in our model consists of a (finite) set of
Infinite traces make It possible to model fairness prop- prsses that are connected by uniquely named unidirec-

erties by requiring that each infinite trace represents a fair tional chansed.. A channel that connects two processes of

computation. For instance, the infinite traces of the buffer the network is of type iuteeaL A channel that connects
a process with the environment of the network is of typeprocess in Fig. I contain an infinite number of b's. etra mu reewu u u hnedpnigo taernal input or ezierna output channel, depending on Hes

*/ A process or a network is represented by the set of its direction. The sigaure of a network is the set of chan-
2' quiescent traces. A trace of a network is quiescent iff each nels together with their types. Fig. 3 depicts a network

projection of the trace onto a process of the network is with three processes, whose signature contains three inter-
quiescent, since a network is in a quiescent state iff each of nal channels, two external input channels, and one external
its processes is in a quiescent state. Thus the representa- output channel.
tion is compositional. Safety properties correspond to the
(possibly nonquiescent) traces of the network. Then are
obtained as prefixes of the quiescent traces. Liveness prop.
erties correspond to the quiescent traces: a nonquiescent
trace will always be extended to a quiescent trace.

'- In this paper we develop the idea of quiescence in more

detail. The main contributions are:
F'W 3. A network

o A model for nondeterministic asynchronous networks,
which represents a network by its quiescent traces. The Processes communicate by sending messages over chan-
model is derived from an operational definition in the nels. Our model is based on the following requirements.
form of labeled transition systems. From the opera- 1) A process can send output without cooperation by the
tional definition we prove rules for composition, ab- receiver, since communication is asynchronous. .-'.
straction and renaming of networks in the model, show- 2) Communication events, such as the transmission of a
ingthat the model is compositional, message, should be atomic in order to simplify the

o A method for specifying and verifying both safety and model.
livenes properties of asynchronous networks. Proper. Thes requirements are satisfied by partitioning the

"-" ties of quiescent traces are stated in predicate logic. We network into subnetworks as shown by the dashed lines
believe that a specification method based on the con- in Fig. 3. It is always possible to send a message into the
cise model will allow short specifications and proofs. input channel of another subnetwork. Communication be- -

The method is demonstrated on the specification and tween subnetworks corresponds to an atomic event, namely
verification of the alternating bit protocol the passing of a message over a dashed line (i.e. a sending

A related approach to the specification of livenes prop- event). In the following we will therefore consider subnet-
erties [MCSI uses a special condition corresponding to works, consisting of a process and its input channels, as
'nonquiescence'. Another way to state livenese proper- basic entities.
ties is to use temporal logic [Hal, INGO]. Compositional The sending of the message m over the channel c is
models that use traces and represent lvenes properties for a con"uaucstion event denoted by the pair (c, m). The
r, ichronous networks [BHRI, [FLPI, [Mill, (NGOI must in- event is called an internal event, an external input event,
dlude information about which communication events the or an external output event, depending on the type of the

* network is ready to perform. channel c. The set of communication events of the network
The paper is organised as follows: In section 2 we N is denoted EN. We also consider Went eests within a

present our view of networks, and in section 3 the opera- network. All silent events are denoted by y. Examples
tional semantics. A more elaborate discussion of the oper- are reading of messages from input channels, and commu-I!ational semantics is deferred to the appendix. In section 4, nication on channels that are hidden as the result of an
quiescent traces are defined and the model for representing abstraction operation (defined below).

L - -L,

The following operations on networks will be studied: initial configuration. It is written

o Compositioni of several networks Nj,...,N, denoted ---
by NI... lIN,. External output channels of the net-

Swork N, ,Nk are linked to eternal input channels with , e ENvU (r}. (For infinite sequences there

with the same name and become internal channels of are certain fairness requirements, elaborated in the ap-
the network N11I 1 N.. pndx.)

N "o Abstrdion of a set C of internal channels of a network o A trace of the network N is the sequence of communi-
N, denoted by N \ C. The channels in C disappear cation events (thus skipping r's) in a finite or infinite
from the signature of N \ C. Communication events on transition sequence.~channels in C become silent events.

mo A trace of N is diverBe iff it is finite and consists of the
. o Raamin# of a set of channels of the network N by a communication events in an infinite transition sequence

renaming function f, denoted by N[]. The function # (which thus must end wit an infinite sequence of r.
is a bijection on the set of channel names that pserve transitions).
their types. o A trace of N is uiscel iff either

. 1) It is the sequence of communication events in a fi-
S. Operational Semantics nite transition sequence V .. -- 4 N in which

As an operational definition of the behavior of a net- the only transitions poesible from the last configu-
work N we use a labeled transition system. This is a quin- ration e1 are labeled by external input events.
tuple < EN, ENRN,4,YN >, where 2) It is infinite.

- EN is a set of caflgmrati.ns. 3) It is divergent.

EN is the set of communcuton eents possible on N's o A quiescent trace of N is noi esaent iff either 1) or
channels. " 2) above holds.

N t .in.Note that a quiescet trace of a nondeterministic not.
ON is the iuitiel configuration. work can be both divergent and nondivergent, since there

'N is a finite collection of furmneu sets. can be many transition sequences corresponding to the

f A configuration of N typicaly includes the states of the same trace.

processes and the contents of the channels. Configurations
of the network N are denoted by UN, o,, etc. 4.1 The Model

A transition corresponds to the occurrence of an event In the model a network N is represented by the set of
and a simultaneous change of configuration. A transition its quiescent and divergent traces, written as
from the configuration &N to the configuration a'N labelled
by the event e, written as IN] = {q I q is a nondivergent quiescent trace of N}

"N - N, U(qt q isa divergent trace of N }

states that in the configuration UN the event e can occur In the following we use q to denote the sequence of com-
and as a result the configuration changes to oui. Here e E munication events in a quiescent trace. The symbol T that
EN u {r). is appended to divergent traces indicates that the compu-

Note that it is not the cue that every transition sys- tation does not terminate although only a finite number of
tem models a network (cf. proposition 4.2. below). Further events are observed.
details about this, the modeling of fairness, and the defini. The following proposition shows that the representa-
tion of composition, abstraction and renaming in transition tion [J of a network N characterlues both its sfety prop

systems are found in the appendix. erties (since all traces can be obtained as prefixes of the
quiescent ones), and its livenese properties (a trace that is

4. The Model not quiescent will be extended to a quiescent trace).

4.1. Quiescent Traces Propoedtion 4.1. A sequence of communication events
Sa trace of a twork N if it is the pmrx of a (possibly

The notions of trace and quiescent trace are defined divergent) quiescent trace of N.
from the operational semantics in the following way:I The proof Is omittd. It follows from the definitions in

o A trasition sequence of a network N is a (finite or section 4.1 and properties of transition systems.
infinite) sequence of transitions in Riv, starting In the

",'a

0.. L(

Proposition 4.2. The following properties always hold Renaming: Here denotes the pointwise extension of the
for the representation INJ of a network N renaming function * to traces, i.e. 0 renames the events

1) [NJ6 0 of a sequence as follows: #((c, m)) = (9(c), m).

2) If the sequence of communication events t is a prefix of [N[9]J = (9(q) I q E [NJ)
an element of [NJ, then for each external input event
i B EN the sequence of events ti is a prefix of an ele- u-(q) TI q TE [NJ)

ment of [NJ. Below we outline proofs of the rules.

3) If the sequence of communication events t is a prefix Composition: The network NI' INs is in a quiescent
of an element of [N], then there is a quiescent trace in state iff each subnetwork is in a quiescent state. It fol-
[N] that extends t without using external input events, lows that if q is a finite nondivergent quiescent trace of ,--.

The proof is omitted. It follows from the operational se- N11... uNh then the projection of q onto each subnetwork
msntics in the appendix. Intuitively, 2) states that a net- N. is a finite •ondivergent quiescent trace, since it cor-
work can always receive input, and 3) states that in each responds to the part of the computation in which Ni is
aituation the network will continue to perform output and involved. If q is infinite, its projections onto the subnet-
internal events until it reaches a quiescent state. works must be (possibly divergent) quiescent traces. If q

a. is divergent, it must have a divergent projection onto some
subnetwork.

4.3. Operations on the Model Conversely, if the projections of a sequence of commu-

We show that the model is compositional by estab- nication events q onto all subnetworks are quiescent, then
lishing rules corresponding to the composition, abstraction q is a quiescent trace of NI 11 1Nh. If one or more of the
and renaming operations. The definition of these oper- projections are divergent, then q will be divergent iff it is

ations on the operational semantics (in the appendix) is finite.nit e

used to prov the following rules. Abstraction: A network N is in a quiescent state iff N \ C

Theorerm 4.3. Composition, abstraction and renaming is in a quiescent state. For each transition sequence of N
correspond to the following operations in the model: there is a transition sequence of N \ C in which events on ,
Compoition: Here q ranges over sequences of communica- channels in C are changed to r's. A quiescent trace q' of

N \ C is therefore obtained by deleting events on channels
tion -vents in UE B,, and r(q) denotes the projection of q in C from a quiescent trace q of N. The trace q' is divergent
onto the channels of N.

either if q is divergent, or if an infinite r-sequence is cre-
[N, ll... ll-'l = ated in the corresponding transition sequence by deleting

{q I for aUl i s,(q,1 e [NJV Ievents, in which case q is infinite.

f (Conversely, a sequence of events obtained by deleting
q infinite and events from a quiescent trace q of N is a quiescent trace q'U 91 of N \ C7. If q is divergent, then ' will also be divergent. "-+,+.

for all i (-r(q) [Ni or u,(q) 16 If q is infinite but q' finite, then q' is divergent, since itr qfniteandcorresponds to a transition sequence ending in an infinite
I II v'-sequence. *

U q t for ali (r,(q1 l_ [Nl or iri(q) TE [Nil) Rnmg.The rule simply states that the events of the ,
(for some j (ui(q) T [Nil) JJquiescent traces of N should be renamed to obtain the

quiescent traces of N[90. The proof is straight-forward.

Abstraction: Here q\C denotes the result of deleting events
on channels in C from q. Note that the composition operator is 6fairl with re-

spect to each subnetwork. As an illustration, consider the
[N \Cl= network in Fig. 4 consisting of two subnetworks N, and N2

(q \ C I q 4 IN] , q finite } that perform the events e and I, respectively.

u{q\C I qeIN] ,qandq\Cinfinite}

u((q \C) TI qEIN] , qinfinite andq\C finite)4
U((q \ C) T I q Te [NJ)

Figure 4. A network

%'. -
- -toL

The following cases show how INIIN21 depends on chan(S) denotes the set of channels in the special variables
INs and 1N21. We borrow notation from regular expres- r,.e and c that occur in S, i.e. the set of channels
sions. An infinite sequence of e's is denoted C". mentioned by S.

1N11 jN~ Definition 5.1. A network N satisfies a specification S,
IN21 written as

r all fair merges of N sat S

C" and . 1iff the following holds:

' (e Uf)" 1) each quiescent trace q of N satisfies the formula S. We
e' T" assume that each special variable w,., is interpreted as

"T e T the projection of q onto the set of channels cset, and 09
each special variable c is interpreted as the sequence of
messages on the channel c in q.

5. Specifications 2) chan(S) _ cha(N). The motivation is that a specifi-

In this section we present a way to use the model for cation of N must not state properties of channels that
specification and verification of networks. are not channels of N. This has importance for the

The behavior of a network is speified through proper- composition rule.

" ties of its quiescent traces. These are stated as formulas in 3) IN] does not contain any divergent traces. The moti-

* predicate logic. The quiescent traces should be specified vation is that we regard divergence as always undesir-
indirectly by properties of their projections onto channels able.
of the network. This is important when formulating proof u
rules for composition and abstraction. For instance, a spec- Note that the specification method cannot describe
ification of a subnetwork stating each quiescent trace only networks that have divergent traces, in contrast to the
contains events on the channel c' can not be used to specify model. The model describes what can be 'observed' from
quiescent traces of a larger network, but the specification the network; the specification method treats some observa-
.the projection of each quiecent trace onto th, chanes tions as undesirable. The motivtion for this discrepancy
of this subnetwork only contains events on the channel c' is to make the model flexible. It can be used for different
can, since it will be true for any computation in which the specification methods with different considerations about
subnetwork participates. desirable observations.

A specification language L therefore (following [ZREI)
contains the following special variables with intended in- *. Proof System

- terpretations:
M.1. ProofRuls ' "

r,,,: the projection of a quiescent trace onto the set of
channels ciet. Theorem 6.1. The following proof rules for composition,

abstraction and renaming are sound.
c the sequence of messages on the channel c in a qui-

escent trace. Compare w(,) which denotes a se- Composition: Composition of networks corresponds to

quence of events < (c, mi)(c, m 2)... >, and c which conjunction of specifications.

denotes a sequence of messages < m1m 2 ... >. N sat A. i = 1,..., k

In addition , contains constants and variables of types NO J... [[N sat Ai A,

sequence, message, integer, logical connectives and quanti- Abstraction: Let C be a set of internal channels of N. Let
fiers. We also use the following functions and predicates. 'c and 1

NC denote the projection of q onto the channels

<> is the empty sequence. n C and onto the channels of N that are not in C, respec-

as' is the concatenation of the sequences a and a'. tively.

"s a' states that the sequence s is a prefix of a'. N sat S

* < ' states that the sequence s is a proper prefix of s'. S A IrNCJIoo - Ifrcl#0
s " a' states that the sequence * is a (not necessarily con-

secutive) subsequence of a'. S -0 S,
" J is the (possibly infinite) length of the sequence a. chsn(S) Q chan(N \ C)

A specification S in the language L is a formula in ',_-'_ _

* which no special projection variable w,,a or c is bound by N\0 sat 8'
a quantifier. Define

chan(N) denotes the set of channels in N's signature.

P A

-r -- -c -7 q br' rrr- y~..MW- -. .

Renaming: Let Sit) be the result of textually replacing all variables r,., and c in S are interpreted as projections ...

occurrences of channel names (e.g. in special variables) c of q). In other words, the sequences of events in N'
by #(c) in S. that satisfy S are exactly those in IN].

NThe rules are then complete in the following sense.N sat S

Nit sat S] o Assume that N sat S for a network N that is definedjj sat from the subnetworks Ni, N2 ,..., Nh using the compo.

Consequence: sition, abstraction and renaming operations. Further
assume that no part of the definition of N describes

N sat S a network that has a divergent trace. If for each sub-
network N there is a specification Si that makes the

$ formula N, sat Si precise, then N sat S is provable from

N sat S' the precsespecifications S,,..,S of the subnetworks.
0

A necessary condition for completeness is thus that the
specification language L can express precise specifications

Th. soudess ofteuesfof the subnetworks that are considered.
The sondnes of the rules follos from theorem r3. However, the rules are incomplete in the following

Proof sketches for the composition and abstraction opera- sense. Assume that a formula N sat S is derived from
tions are given below. specifications N, sat Si of subnetworks, where some of the

Composition: The requirements on Ni.."" IN& sat ASi specifications are not precise. It may then be the cse that
in definition 5.1 are motivated as follows: N also satisfies a stronger specification S', but that this is

1) From theorem 4.3 it follows that each projection of a not provale from the imprecise specications.
quiescent trace q of N3iS... [INI. onto a subnetwork N The situation can be improved by introducing the fol-

is a quiescent trace of Ni. Each projection onto a sub- lowing rule.
network Ni satisfies S. Since a specification only talks Entailment: Assume that every network that satisfies S
about q through its projections, the trace q must sat* also satisfies T.
AiSi.

2) The formula AiSi only mentions the channels of the N sat S
subnetworks. These are also channels of N111 ... JiNs. N sat T

3) Theorem 4.3 shows that if no subnetwork has a diver- The rule is a stronger version of the consequence rule,
gent trace, then N1 1... INA cannot have a divergent and takes into account properties true of all networks (such
trace. as those in proposition 4.2). When making proofs from

Abstraction: The requirements on N \ C sat S' ae mo- imprecise specifications the rule is sometimes necessary.
tivated as follows: 9
1) Suppose q' is a quiescent trace of N \ C. Theorem 4.3 7. Verufication of the Alternating Bit Protocol

shows that q' is the projection of a quiescent trace q of K..N ono € (N\). Snce saisfe S ad hnce denTo illustrate the use of the proof system we specify
N onto chan(N \ C). Since q satisfies S and hence alnseoy h i rooo hs sasmlS' 'ms stsyS.and veri4 the lterating bit protocol. This is a simple ./

', ' must satisfy tocol for transmitting messages correctly across a faulty

2) Follows from the fourth premise. medium.

3) The first antecedent implies that N has no divergent The structure of the protocol is shown in Fig. S. (no.
traces. Theorem 4.3 then states that N \ C has di- tation from (Hal).
vergent traces iff there is an infinite trace of N whose
projection onto the channels not in C is finite. The M"s 7 '
second premise states that this cannot happen. "

6.3. Completeness

The rules are complete in a rather weak sense. To make
this precise, first make the following definition Figure 5. The alternating bit protocol..-.

o A specification S is a precise specification of the net- There are four modules: a Sender, a Receier and the
work N iff q e IN] for each sequence q of events on
the channels in chsn(N) that satisfies S (the special tar ne

"..

- ~ . ---. .- ---. n ,--r -.- - - - -. -.. .,,

a, , and 6. unnumber(number(s)) --s (.4)

The purpose of the protocol is to transmit all messages 9(8) A(. 2) < mm> (LS)
on the input channel X to the output channel Y in correct
order, in spite of the fact that the media can lose messages. The proof also uses the following lemma implied by the

The medium MSR is used to send messages from the entailment rule
Sender to the Receiver. Each message will also contain a se-

% quence number, either 0 or 1. The medium MRS is used to N sat -..) (x=Y)

send acknowledgments in the other direction. As acknowl- A (IXI = co) -. (IYI = o))
edgment for a mesage the same mesage is returned with N sat X = Y (M6)
its sequence number. Each medium can lose but not re-
order messages. Corruption of messages can also be taken which follows from proposition 4.2.
into account by modeling it as loss (some mechanism will
detect and discard a corrupted message). Each medium 7.1. Spec fication of the Protocol
is "fair in the sense that if infinitely many messages are
input, then infinitely many messages will be delivered. Specification of MSR.

The operation of the protocol is the following. a (MSRI)

The Sender reads the pending message from X. It 1l0 00 -0 IPI 00 (MSR2)
adds a sequence number to the message, transmits it on
a and awaits an acknowledgment on 6. If it arrives, the The formula (MSRI) states that the medium may lose but
procedure is repeated with the next message from X but not reorder messages. (MSR2) says that the medium is
with the sequence number inverted. If no acknowledgment fair with respect to delivery of messages. If infinitely many
arrives within a specified time period the sender retrans- menses are input, then infinitely many messages will be
mite the message. Retransmissions are repeated until an delivered.
acnowledgment arrives. The specification of MRS is similar.

The teceiver acknowledges each message received on 6 s (MRS 1)
by sending it on y. The first menage on P and each I,1=00-" Il=00 (MRS2)

subsequent message with a sequence number different from
that of the previous one is delivered on Y. Specification of Sender.,.' •

We add the following notation: [A -
R () reduces s by deleting all consecutive duplicates A JxJ # 00 - jl # 00.

MIM2M, MS. 3- a) < m >1 q
number(s) adds sequence numbers to the messages in a, alter- I(a) : A(S) - A A(a) <5 number(X) S2)

natingly 0's and l's, starting with 0. j
unnumber (s) is a sequence starting with the first mesage of ["' co

a. It thereafter contains the sequence of messages
in a that have a sequence number different from the Intuitively, the specification is motivated as follows. We
previous one. The sequence numbers are deleted assume that the sender discards messages on 6 that are
from the result. not the expected acknowledgment.

X is a special variable denoting the sequence of mes- Suppose that q is a quiescent trace of the sender. Ac-
sages transmitted on X; similarly for a, P, 7, 6 and cording to the informal description of its operation, the
Y" sender reaches quiescence either by transmitting all mes-

The following list of small lemmas will be used in the sages of X on a and receiving acknowledgments, or by not
subsequent proof. Here s1, s2 denote sequences and m receiving any acknowledgment for one mesage, which is
denotes a message. retransmitted indefinitely.

(Li) In the former case the sequence of different messages on
s -5 * -A(s) < A(s 2) (l a is a subsequence of the different acknowledgments on 6

l811 < 00 (1 s 82 A s2 ,*--, s, = s2) (L2) (if extra acknowledgments on 6 occur, they are discarded).
((1 -5 2) A (8 2 :5 81<M.) Therefore the antecedent of (Sl) is true. In this ease, all

8,1 < j o -. (1) mesages of X are sent with sequence numbers on a (i.e.
(81= -2) V (81 < m >= 82) J A(a) - number(X)), and the sender terminates after re-

. - "

,'.;-".".-".-..."- .".' ." .. "-' . .=..-..'.=. ..- '". ',' .-.-...""-".. . ." - .."-.....

ceiving the last acknowledgment (i.e. IX! # J o -. Ia! # co) The first conjunct of (a a.) now follows from
if X contains a finite number of messages.

In the latter case the antecedent of (S2) is true. Ac- Y =unnumber()) -unnuiber(.(a)) = (3)
knowledgments have arrived for all messages but the last =unnumber(number(X)) = X O

(i.e. (3m)[R(a) _ A(6) < m >]) and the sender
has only transmitted some of the messages from X (i.e. where the first equality follows from (RI), the second from
2(a) < number(X)). The hat message on a is transmit- the preceding paragraph, the third from (Si) and the last

ted repeatedly (i.e. Jai = co).

Specification of Receiver. Next assume that the antecedent of (SI) is false, i.e.
Specimiction of)) (Aesr.the antecedent of (S2) is true. We shall then derive a con- .

Y -- unnumber(R(6)) (RI) tradiction, showing that antecedent of (Si) must be true
-7 = j6 (R2) and (3) holds.

The formula (RI) states that the first message and sub- If the antecedent of (S2) is true, then the consequent

sequent ones with new sequence numbers received on ' of (S2) states that there is a message m such that .2(a)

are transmitted onto Y. (R2) states that all messages are 2(6) < m >. This together with (2) shows, using (L3),

acknowledged. " that either R(6) = -(a) or R(6) < m >= (2(a). All
but one of the relations in (2) must therefore be equalities,

7.2. Verification of the Protocol showing that either .(,6) = .2(a) or .2(6) < m >= .2(a).
The following argument shows that the latter cannot be

We shall prove that the protocol behaves like a buffer. true:
If all modules are composed and the internal channels

a,p,l and 6 are abstracted, the resulting network satis- Since I! = oo (from (S2)) and 1.(a)! i finite, a must
fies the specification X = Y. The following specification be of the form amw for some sequence a' whose last mes-

will be proven sage is not m. Using (MSRI) and (MSR2) we get 6 5 a
and 1,61 = co, which implies that P is of the form 8'm" for

N\{a,P, % 5 tt X-Y (') some ,whose last message is not m. It follows that

where N is the composition of the four modules .(a) = .(a) <m >= £2jm") <m >= £(i) <mm>

N = SenderIIMSRIlJReceier)JMRS which is a contradiction since (LS) states that an expres-

The formula (is proven using the abstraction rule and sion of the form 2(a) can never contain two consecu-

the formula tive duplicates of the same message. Thus we must have
r .: RL8) ff .2(a). . ''
X=Y AI

N sat I .~The same argument can be used to show that R2(6)=

iAxl < co -. lal, A,171,51 < .o R(7) is true by excluding the case that there is a message
in such that 2(6) < m >= .(7).

The first conjunct X Y of (**) follows by proving Combining R(a) = R(a) and R(6) = .2(-) in (2) yields((j<c)-(X=YR(5) = .(a). Thus the antecedent of (S2) is false, giving

N a (IXI = oc) "(Y the desired contradiction.
k(JX J 00) -(Y I 00 To prove the second conjunct of (* a a), assume that

and using lemma (L-6). IX = oo. If I.(a)l < o then the antecedent of (S2)
must be true, since the consequent of (SI) states that

The formulas (MSRI), (MRSI) and (R2) together im- R(a) = ,umber(X). But above it was shown that the
ply antecedent of (52) leads to a contradiction (note that

65 - = . a (1) we there never used the fact that IX < co, only that

which by (LI) implies l.(a)l < o). Thus 12(a)l = oo. By (Si) and (S2) we
get I(&) __ R(6). Using .(a) = number(X) (from (S))

A.(6) :5.4(7) = R(f) 2(a) (2) and .2(6) :5 .2(a) (from (2)) we see that R(O) contains an
infinite subsequence with alternating sequence numbers.

To prove the first conjunct of (, a a) we now assume Therefore !unnumbevr(R£)) is infinite, whence IYI = c.
that IXl < o. Note that (SI) and (S2) imply l.(a)l < co. by (RI).
First assume that the antecedent of (Si) is true. This The proof of the first conjunct of (aa) is now completed. "

and (2) implies 2(6) = .2(a) using (L2), since I2(a)l is The second conjunct of (**) is verified by assuming that IX
finite. All relations in (2) must then (again using (L2)) be and IYI are finite, and proving that the other channels also
equalities, and we conclude R(6) = 2(a). have finite length. This follows eailly from the following

.0-.-

.~~~ ..

formulas: As an example, channel fairness can be modeled by

including, for each channel, a fairness set that contains all
li # co -- l a cc (SI) transitions corresponding events on this channel.

_< ,, (MasR) --
"7= p (R2) Operational Semantics

6 -.7 (MRS1) The basic unit of description is a subnetwork and not C
a process, as described in section 2. The transition sys-
term that models a primitive subnetwork, consisting of aFinally, (*) is proven by (**) and the abstraction rule. tmthtodlapriiv bntokcostngfaprocess and its input channels, is obtained by composing
a transition system that models the process, and transi-

Conclusion tion systems that model the input buffers. This can be
*~p done using coupled transitions for communication, e.g. as

We have presented a way to formalise the idea of in [Mill.
quiescence for (nondeterministic) asynchronous networks A network N is modeled by the labeled transition sys-
([Mis]). From an operational definition of networks we have tern < EN, EN, RN, U°N, rN >, which satisfies the following
derived a compositional model that represents both safety requirements that reflect the asynchronous nature of com-
and liveness properties using quiescent traces. munication.

A method for specification and verification of networks 1) For each configuration oN E EN and external input
" through properties of quiescent traces has been presented. event i 4 EN there is a transition UN - a- ON E RN

We believe that the conciseness of the model allows short from UN labeled by i.
specifications and verifications, but more experience with 2) No fairness set in IN may contain transitions labeled
examples is needed. It is sometimes difficult to prove prop- by external input events.
erties of infinite computations. This was illustrated in the 3) All transitions labeled by internal events, external out-
example, where it was easier first to carry out the proof put events, or silent events are elements of some fair-
assuming that the input sequence is finite, and then prove nes set.
the infinite case by a special argument. The motivation for 1) and 2) is that a network has

S"So far, no syntax for processes has been mentioned, no control over external input events. The network can
from which a method of proving specifications about prim- never refuse to receive input messages, and it can not con-
Snnstrain the occurrence of external input events in infinite

(containing one process) could be con transition sequences. Requirement 3) is a process livenem'
structed. We are experimenting with a small CSP-Uke assumption.
language [HI, but presently only a rudimentary finite-state
language without variables or fairness constraints has been Sibe o usete tehnqes e a Mic f s ncosierd sible to use the techniques in e.g. [BHR], [Mill for syn- ..
considered. ch~ronous networks, and model communication in a network

by coupled transitions in subnetworks. The asynchronous
Ac)'.nowledgments nature of communication is captured in requirements 1).

3). These requirements are sufficient to prove propositions
The author is grateful to Jay Misra for ideas and com- 4.1 and 4.2 and theorem 4.3. It follows that our model can

ments. His and K. Mani Chandy's ideas [Mil provided describe any type of network where components can be
the original inspiration for this work. Thanks to Erst- modeled by transition systems satisfying I) - 3). In par-

d r g r d o d iticular, it is not necessary that channels are perfect. The
Rfdiger Olderog for fruitful discussions, and in particular essential ingredient is that it is possible to send a message
for the idea of using transition systems. Thanks also to without cooperation by the receiver.
Joachim Parrow for critical reading of the manuscript, and

' to Zohar Manna for fruitful comments on related work. Operations

Composition, abstraction and renaming are defined as
Appendix: Operational Semantics follows in the operational semantics.

" Tyansition Systems Composition: Let N = N 1 ... IINk. The set of configura-
tions EN of N is the cartesian product EN, x... x EN. of the

As described in section 3, a labeled transition system is sets of configurations of the subnetworks. A configuration
a quintuple < E, E, R, 0 , 1 >. Here I is a finite collection UN of N is a k-tuple, written
of fairness sets [MPI. A fairness set is a set of transitions.
An infinite sequence of transitions is fair iff for each fairness CN = (ON, ON,).

set F E I7the following holds
The transitions in RN are obtained from the transitions

If the sequence contains infinitely many configura- of the subnetworks as follows: I e is an internal or silent
tions in which a transition from F is enabled, then event of a subnetwork N, or an external event of N, then
infinitely often a transition from F must occur, transitions labeled by e only concern one component N,.

* .

1993,~ pp.. 12-16

On ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~(r troe othe had tei'nevn nacanlnenl t cmuiedn pocense t ndoryotcols.'ncnial

oh comphnenis forulaed a, ahe rulved cnatastoordeCompuing Laorneo, noMa 19s91. o 0

according_____to__the__rule_ (F ProFramgnce&,N.Lh a D., NrHland l, Amst lierm his.

NI% mCHJ ChehoreCcan omuer Sc.1.'Piae c tn of Jly18)

On te oherhan, ite anevet o a cannl iteral] comicting T prcesse ancproet ocs uchna

ors For but h externess to t tw o subnetwork AN then moiJ9,rnoger PeraG, Prgamig82:ac Gop
bothes cmoetso 'N tatndtainvoalve trnitins tastio weor Coptn.%%rtr a91

dndfoatrniini according to theaoe rules [omm. F ACs N., ehmAug., InMP), . Alnearhis

1) -" 3) tov.ry ahG. semantics oiml language fore pra-

temproramlog. PrcreP74 Note in oputer SAinc
wosrs:i For each ainessuse to ar u tork N there is aser nerema, 19 62 41-7.AD

aofigrnesatn of N Crtt cntan al C.Transitions thatele (Ho Manne, C.A.Ran 'Cmnicteueni . wti oa tproses.
dyevedt fro anstion in are ucacdng tooo thsaoysrle.eom fC r 21,o(ug. 1978) ppgug.' 666-.1t C

Note ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~Sypsu tha thPrniinritmo ufil anG Tesmnicls of a si mpl lnugr pgars,-
1)3ON aOve IM prmmn. Proc15 . P7,NrhHlad m

Absrneio Fo e c .ongrati\n ofler N. ther iscuu af sterdacatin 1974sppe471475
cofiuato ofcur Noe i ,witnu .'rniin aee lP anZM nd CopueSien.Hw cook apine tepral
byt events e notn cae uncngesd proo systemtis fo ou e lnuge'Pr0.0t C

U2 ~\ .4u'j \C Mis] MIr, J. A~en calculu tors of communicatingm'
but ~O evnt eNI onane chanel inud Cnttt corsodto-rnstos 90 1

U, \ C f\ C Logics and Models for Verification and Specification of -
Concurrent System, Nice, France, 1984.

The network N \ C inherits the fairness sets of N: for [MCI Misrs4 J. and Chandy, K.M. 'Proofs of networks of3each fairness set Fof Nthene is afairness set of N \C processes.' LEND Transactions on Software Engineering
containing all transitions derived from a transition in F SB-, 4 (July 1981), pp. 417-426.
according to the above rules. [MCSI MIsra, J., Chandy, Kid,, and Smith,?T. 'Proing safety

Rwaimg: For each configuration am of N there is a con- and liveness of communicating processes with exam-
figuration of N[J, written UN [4J. The transitions of N[J pies.' Proc. ACM SIGACT-SIGOPS Symposium on
are obtained by renaming the events of the transitions of Principles of Distributed Computing, 1962, pp. 201-
N. Below, the function 0 denotes the extension of * from
channel names to events (Le. f((c, i)) =(0(c), m) and INGO] Nguyen, V., Gries, D., and Owicki, S. 'A model a Ad

0(r) r).temporal proof system for networks of processes.' Proc.
UN --- *a' Ift ACM Symposiu on Prin~ciples of Progammig

Languages, 198, pp. 121-131.
UJVIOJ V U'4' [Pal Park, D. 'Th 'fairness' problem and nondeterministic

The etwrk N0J nherts he firnss sts f Ncomputing networks.' In de Bakker, Leuwen eds. Foun-The etwrk it]inheitsthefainessset ofN, ~e.dations of Computer Science WV, Part 2, Mathematical
the fairness sets of N(01 are obtained by renaming the Centre Tracts 159, Amsterdam 1983, pp. 133-161.
transitions in the fairness sets of N according to the ru(r rtVi.'ntecmpsto fpocse. rc

*above. 99 ACM Symposium an Principles of Programming
Languages, 1982, pp. 213-223.

x~trenss ZREJ Zwiers, J., do Roever, W.-P., and van inde Dos,
P. 'Compositionality and concurrent networks: sound-

[DM Back, R.J.R. and Mannil, H. 'A refinement of Kahn's ness and completeness of a proofaystem' Rep. 57, tn-
semantics to handle nou-determinism and communica- formatica/Computer Graphics, Faculty of Science, Ni-
tics.' Proc. ACM ,1IGACT-SIGOPS Symposium on jmegen Univerity, The Netherlands, 1964. (to appear

Principles of Distributed Computing, 1982, pp. III. in ICALP 1965).
120.

* (Aj Brock, J.D. and Ackerman, W.D. 'Scenarios: a model
of non-determinate computation.' In J. Dim, L Ramos
eds. Formalization of Programming Concepts, Lecture
Notes in Computer Srience J0, Springer Verlag, 1981,W

ppp5229
%~

SECURITY CLASSIFICATION OF THIS PAGE (When DatoaEntered),
REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
REPORT• BEFORE COMPLETING FORM) . REPORT NUMBER 2.GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

S 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Manuscript: A Novel Approach to Sequential final: 6/14/81 - 6/15/85
"- SimulationSimulation 6. PERFORMING 01G. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(aJ

Devendra Kumar (Graduate Student)
. University of Texas at Austin AFOSR 81-0205

" 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA A WORK UNIT NUMBERS

Computer Sciences Department
University of Texas at AustinAustin, Texas 78712

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

' Capt. A. L. Bellamy July 1985
. AFOSR/NM 13. NUMBEROF PAGES

14. Bolling AFB, DC 20332
14. MONITORING AGENCY NAME & ADDRESS(II dilferent from Controlllng Olfite) IS. SECURITY CLASS. (of this report)

IS&. DECLASSIFICATIONWOOWNGRAOING
SCHEDULE

16. DISTRI3IITION STATEMENT (of thia Repnrt)

17. DISTRIBUTION STATEMENT (of the abeitrct entered in Block 20. If dlfferent frome Report)

IS. SUPPLEMENTARY NOTES

submitted to IEEE Transactions on Software and
IEEE Software II Conference

19. KEY WORDS (Continue an rever., aide if noce ae , and identify by block n,,,er)
A ."

* .. 20. ABSTRACT (Continge on reverse aid* If necessary and Identify by block mombr)

We present a novel approach to sequential simulation. In this approach we do
-. not require events to be simulated in the chronological order of their occur-

rence. Instead, at any point in simulation all guaranteed events are simulated
.fright away. This approach reduces the number of event list insertions in a
-) number of simulation systems. In some cases it eliminates the need for event

list algogether. It also reduces the number of scheduled events that do not
take palce, i.e., get cancelled later in the simulation. Sometimes memory

DD 1473 EDITION OF I NOV 6S IS OBSOLETE
:i IDD I JAN 73 147

S. ,/ '

. . .- -.- .> ,.J,, ".,,.., , ,.K. . .. ,*", ',K"', K,. -K,. . ' ,,z , '- , .-. ". ,. ,..,' . . , . , * ,, - ' " "" "

SECURITY CLASSIFICATION OF THIS PAGE(WY..n Dots Eutetod)

requirements may be reduced as well. We illustrate the approach with an
example. The approach is based on a distributed simulation algorithm.

SE~RIY LASIFCAIONOF'rPAG(WonDot Ft-ad

A Novel Approach To Sequential Simulation

Devendra Kumar

Department of Computer Sciences f
University of Texas at Austin

Austin, TX 78712

ABSTRACT

We present a novel approach to sequential simulation. In this approach we do not

require events to be simulated in the chronological order of their occurrence. Instead, at

any point in simulation all guaranteed events are simulated right away. This approach

reduces the number of event list insertions in a number of simulation systems. In some ."

cases it eliminates the need for event list altogether. It also reduces the number of

scheduled events that do not take place, i.e., get cancelled later in the simulation.

Sometimes memory requirements may be reduced as well. We illustrate the approach

with an example. The approach is based on a distributed simulation algorithm.

This work was supported by Air Force Grant AFOSR 81-0205.

k..

Table of Contents
1. Introduction
2. The Approach 2
3. An Example 5
4. Further Improvements 10

5. Discussion and Conclusions 12

ida

46I

1. Introduction

A fundamental convention in traditional simulation is that events are simulated in

their chronological order of occurrence. The main reason behind this convention is as

follows. An event simulated later but with an earlier time of occurrence may affect an

event simulated earlier but with higher time of occurrence, making it incorrect.

However, we observe that often in practice certain events can be guaranteed to be

correct, and they are unaffected by the simulation of other events of earlier times of

occurrence. We take advantage of this in our approach to simulation. We do not

" require events to be simulated in chronological order; rather, whenever an event is

guaranteed to occur it is simulated right away.

The main advantage of this approach is that insertions of scheduled events (as in

traditional simulation) can be reduced in number. One can often reduce the number of

computations of scheduled events that would get cancelled later in traditional

L. simulation. Sometimes this approach also -esults in reduced memory requirements.

The approach is derived from a distributed simulation algorithm. In distributed

simulation, the simulator consists of a set of communicating processes which are

assigned to several processors. We have adapted the algorithm to the case of a

.. •uniprocessor system. Due to the uniprocessor environment, several simplifications result,

and new issues arise (e.g., scheduling of the processes). We have modified the algorithm

a caccordingly.

. .'.°,, .!

A. "

Ut L
a- ',

,-2

- 2. The Approach

A system to be simulated consists of a set of entities that interact with each

other. At discrete instants of time events occur - each event is caused by an entity and

1 - its occurrence affects the future behavior of zero or more entities. For example, an

event in a communication network could be the sending of a message from one process

• .to another; in this case the sender and the recipient processes are affected by this event.

On the other hand, the event of broadcasting a message affects all the processes in the

system.

We briefly review the traditional event driven simulation here. The simulation

r program maintains a list, called the event list, of scheduled events that might occur in

the future. At an abstract level, a scheduled event can be defined by a tuple [e,t,i,S]

where e is an identifier of the event, t is the time at which event e is supposed to occur,

i is the entity that would cause e, and S is the set of entities that would be affected by

it.

To simulate an event, the simulation program finds in the event list the scheduled

event [e,t,i,S] with the minimum occurrence time t, and causes its entity i to simulate it,

then advances the simulation clock to t. The entities in set S may be affected by the

- event occurrence - some of their old scheduled events may be deleted from the event

list and new scheduled events may be inserted into it. .

At a given point in simulation, a scheduled event [e,t,i,SJ is said to be guaranteed

if, based upon the events simulated so far, it is determined that this event will definitely 7
be simulated. In other words, simulation of any other events before this scheduled

1k]q '"i
[.7.: .

..- 1 - , % , . .'- . .,...-. -.:, .. .,, . ., -.. .. . -, ,.-, . ,. . ,,,.2 .,,-.: .

3

event can not cancel it. As noted above, in general not all scheduled events are

guaranteed. This results in the following fundamental convention in traditional

simulation - events are simulated in the chronological order of their times of

. occurrence. In other words, an event is simulated only after all events of earlier times of

occurrence have been simulated. (This convention is also followed in time driven

simulation, and not just in event driven simulation, for the same reason.)

We observe, however, that often in practice many scheduled events are indeed

, guaranteed. For example, consider a FCFS queue with the convention that arrivals of

input jobs are simulated in chronological order. Here the scheduled events of service

LI completions are guaranteed to be simulated, since the arrival of new jobs can not cancel

them. In our scheme we simulate such guaranteed events right away, instead of first

depositing them into the event list and then waiting for the simulation clock to reach ".-

. that time. More specifically, whenever an entity i computes an event e that is

* -. guaranteed to occur at time t, it goes ahead and simulates it. The tuple [e,t] is then

deposited in a buffer Bi, for every other entity j affected by the event. An entity j

- computes its events based on the information it has received from its input buffers B

for various entities i.

Since events in the whole system are not being simulated in chronological order,

there is no simulation clock maintained by the program. However, for any two entities

i and j, all the events that are caused by i and affect j are simulated in chronological

order. Thus, when a tuple [e,t] is deposited by i in the buffer B entity j knows the

entire history of all events that are caused by i and affect j up to time t. This helps j in

its computation of future events.

.,-L- =
S*." .-

Obviously, by computing guaranteed events and depositing them in buffers, we

are avoiding the corresponding insertions in the event list, as required in traditional

simulation.

The simulation program cycles through the entities - each entity computes

guaranteed events and deposits them in the corresponding buffers. Each entity also

discards from its input buffers those elements that are no longer needed for future

computations.

What happens when no entity can compute a guaranteed event? In such a

situation we revert back to the event list mechanism - the next scheduled events are

computed and the event with the minimum occurrence time is simulated. Subsequently,

guaranteed events are simulated till the above situation arises again. Thus in the total

5 simulation, the simulator keeps alternating between "compute and simulate guaranteed

events" and "compute and simulate the scheduled event with the minimum occurrence

time" phase. (Henceforth we will call these phases: A and B, respectively.)

* -, Advantages Of The Approach

In our approach we simulate guaranteed events right away. This avoids the -

corresponding insertions in the event list. Insertions in the event list may be quite time

consuming, since the elements in the list need to be maintained in the order of

increasing time values.

.' Consider a scheduled event in traditional simulation that gets cancelled later

during the simulation. Obviously, the time involved in its computation and insertion in

the event list goes wasted. This can happen, for example, in a priority queue where the

.L - - o . o,

5

arrival of a job of higher priority will preempt the current job in service. In our

approach the number of such cases can be reduced. This stems from the fact that

events need not be simulated in chronological order. For example, for a priority queue

guaranteed output events may be computed by first simulating input events up to an

appropriately higher time.

Sometimes our approach may result in reduced memory requirements. For

example, in a tandem network of FCFS queues, in traditional simulation we need

enough buffers to hold all the jobs present in the system at any time. In our approach,

we may simulate the complete progress of one job, then simulate the complete progress

of the next job, etc. Thus we would require memory to hold one job only.

3. An Example

g We illustrate our simulation method by considering a simple system - a driver's

license office, shown schematically in figure 1 below.

Doo D1 Issuing Queue (IQ) """
-- ~oo D2 Exi t El . -•'Do,

Testing Queue (TQ)

Exit E2

Figure 1: A Driver's License Office

Applicants for a license enter the office via door D1. There are two kinds of applicants

- those who currently hold a license and simply want to renew it, and those who

.. ,-.... .

rj 6

currently don't have a license and wish to get one. Applicants for a renewal enter a

' "license issuing area" via door D2. There is an issuing officer who takes their

application, verifies the information therein, takes a photograph, accepts the license fee,

and issues a license. Having received the license, the applicant leaves the driver's license

office via exit El.

Applicants without a license go to a "testing area" where a testing officer gives

- them a driving test. Some of them fail the test, and leave the testing area via exit E2.

The successful applicants go to the license issuing area via door D2. From here on, they

* go through the same activities as described above for the license renewal applicants.

All the applicants arriving at the license issuing area form a waiting line (called

the issuing queue or IQ). The issuing officer deals with one applicant at a time, in the

* FCFS order. Similarly, all applicants going to the testing area form a waiting line

. (called the testing queue or TQ), and the testing officer gives them the test in the FCFS

order.

The problem is to simulate the events that occur in this system. An event is the

• .arrival of an applicant at D2, IQ, TQ, El or E2.

In an actual simulation, one would normally compute the interarrival times at the

door D1, and service times for the queues IQ and TQ by sampling from certain

10
prespecified probability distributions. Similarly, one would determine the type of an

"- applicant (whether applying for a renewal or otherwise) and whether an applicant

taking the driving test fails, by sampling from prespecified probabilities. However, for

.

-+ .. % + *' o+ . o oO .+ ' % % + . * ' % " "+ " -. . % ° ' + . " . +. • .+ . " . " ." o ' + ' , .. + . " - + • . " % + o . • • .' . • -

-- - - - - --7~ -r -. - r V rM

7b

the ease of exposition, we will assume a deterministic system with the following

characteristics:

1. Applicants arrive at the door D1 at times 100, 200, 300, . Service times at

IQ and TQ are 105 and 500 respectively.

2. Applicants 10, 20, ... need to take the test; others are applying for a renewal.

:!*

3. For the applicants taking the test - the first one fails the test, next one

passes, third one fails, and so on.

4. We assume that only 20 applicants enter the system.

We assume that the only information of interest about an applicant is his id.

Hence the element e in a tuple [e,t] would refer to the applicant's id. We will use the

following order in which the entities are reached by the simulation program to compute

their guaranteed events. The phase of computing guaranteed events (i.e., phase A)

consists of an alternating sequence of two subphases. In subphase 1, we follow the

-* progress of applicants from the door D1 to exit E2 or door D2 (as the case may be), one

applicant at a time. This subphase is over when an applicant reaches door D2. In

subphase 2, we follow the progress of applicants from the door D2 to exit El, one

" applicant at a time. This subphase is over (and subphase 1 starts) when no more

applicants can progress from door D2. At the start of subphase 1, if no applicants can

progress, then we enter phase B of the algorithm. In phase B, obviously we have to

r_ consider only the scheduled event for the door D2.

L Sk

8

Below we show the sequence of actions taken by the simulation program.

Specifically, we show the sequence in which tuples are computed for various buffers, and

the computation of scheduled events in phase B. In the following, a quadruple (e,t,i,j) is

used to state that tuple [e,tl is deposited in the buffer Bi j . We refer to an entity i by

its symbolic name D1, D2, El, E2, IQ, or TQ, instead of an irteger. The buffers are

. referred to in the similar way. Applicant ids are assumed to be Al, A2.

• 1. Tuples buffered:

(A1,100,D1,D2), (A2,200,D1,D2), ... , (A9,900,D1,D2).

This simulates the arrivals of applicants Al, ... , Ag at door D2 at times 100,

900. During this simulation period, entity D2 can not compute its

guaranteed next output events, since it has to output the tuples in buffer

(D2,IQ) in the chronological order. If it deposits the tuple (A1,100), it

doesn't know if there would be a tuple deposited on buffer (TQ,D2) later

with a time component less than 100.

2. Tuples buffered:

(A1O,1000,D1,TQ), (A1O,1500,TQ,E2).

This simulates the arrivals of applicant A10 at TQ and E2 at times 1000 and

1500 respectively.

3. Tuples buffered:

(A11,1100,D1,D2), (A12,1200,D1,D2), ...,

(A.9,1900,D1,D2).

I7

r-* '--.-.--- *- ._ w rr'

9

r *

This simulates the arrival of applicants 11, ... , 19 at door D2 at times 1100, 1

... , 1900. Note that entity D2 still cannot compute an output tuple.

4. Tuples buffered:

(A20,,2000,D1,TQ), (A20,2500,TQ,D2)

This simulates the arrivals of applicant A20 at TQ and D2 at times 2000

and 2500 respectively.

5. Tuples buffered:

(Al,100,D2,IQ), (Al,205,IQ,E1), (A2,200,D2,IQ),

(A2,310,IQ,El), ... , (A.9,900,D2,IQ), (A9,1045,IQ,El),

(All,ll00,D2,IQ), (All,1205,IQ,El), (A12,1200,D2,IQ),

(Al2,1310,IQ,El), ... , (Al9,l900,D2,IQ), (A19,2045,IQ,El).

This simulates the arrivals of applicants Al, ... , A9 and All, ... , A19 at IQ .11
and El. Note that after computing the above tuples, D2 can not compute

its next output tuple since it doesn't know the simulation time of next tuple

to arrive in the buffer (Dl,D2). At this point Dl also can not compute an

output (since it has simulated all 20 applicants). Hence the algorithm enters

its phase B. As mentioned before, we need compute only the next scheduled

event for D2. This scheduled event is the tuple (A20,2500).

- .2-. :j:S~:.:.>L:L.i .~ m~i~,ofio

10

6. Tuples buffered:

(A20,2500,D2,IQ), (A20,2605,IQ,E1).

This simulates the arrivals of applicant A20 at IQ and El. At this point the

algorithm again enters phase B. Since there is no scheduled event for D2,

simulation ends.

4. Further Improvements

We mentioned in section 2 that the simulation program cycles through various

entities to compute their guaranteed events. It is possible that when a particular entity

is reached, it has nothing to output. This wastes the time involved in reaching this W

entity and checking this condition for the entity. Depending on the particular system

being simulated, one could possibly define an order in which to reach the entities such

that the number of such cases is reduced. This order could be defined either statically

or dynamically. For example, in a tandem network of FCFS queues, one may use the

same order of entities in which a job arrives at them (statically defined order). In

simulating a tree network rooted at a source process that generates jobs, one may follow

the progress of one job from the source to a sink, then follow the next job, etc.

(dynamically defined order). Now we define a heuristic to reduce the number of such

cases in general. We keep a list of "potentially active" entities. Any entity currently ': -.

not on this list is guaranteed not to be able to compute a guaranteed event. The

simulation program reaches the entities by going through this list. When an entity has

computed all its guaranteed events, it is removed from the list. When does an entity

enter the list? One heuristic would be - whenever it receives an input. In a specific J'.

S-2

application, one could possibly define more appropriate boolean conditions for the

specific entities. It would be helpful to keep a boolean variable for each entity to check

whether it is on the list currently; it should be checked before evaluating the above

boolean condition.

Consider an instant when phase A is over, i.e., no guaranteed events can be

computed for any entity. Which entities should compute their next events? In general

not all of them. For a particular system certain entities may be known not to compute

the scheduled event with minimum time. A FCFS queue is one such example. We need

not consider such entities in computing the scheduled events.

Earlier we suggested that in phase B we compute all the scheduled events afresh,

i.e., the scheduled events computed in the current occurrence of phase B are not saved

to be used in the next phase. Sometimes, several scheduled events computed in phase B

remain valid even in the next occurrence of phase B. Here we suggest a heuristic to take

advantage of this. One may keep an event list of the scheduled events computed during

phase B. One would also keep a list of those entities whose scheduled events must be

computed at the next occurrence of phase B. (If these entities have elements in the

event list then they must be removed from the event list in the next occurrence of phase

B.) This list is similar to the "potentially active" list mentioned above. As before,

appropriate conditions may be defined to decide when an entity should be inserted in

this list. Also, a boolean variable may be kept for each entity to check if it is currently

on this list.

' ""12

5. Discussion and Conclusions

We have presented a new approach to sequential simulation. In this approach we

. do not require that events are simulated in their chronological order. This is a major

point of deviation from traditional simulation. This approach results in reduced

number of insertions in the event list. It can sometimes reduce the number of

* computations of scheduled events that do not actually take place. Also, it can reduce

* memory requirements. These advantages would depend on the specific system being

simulated. For better performance, one has to take decisions regarding the following

issues: (i) In what order are the entities reached to compute their guaranteed events, (ii)

When phase B begins, which entities should be reached to compute their scheduled

events, and (iii) Should one keep an event list to hold scheduled events previously

computed, so that some of them could be used in the next occurrence of phase B. We

*] have suggested heuristics for these issues.

Our approach is based on a distributed simulation algorithm. In distributed

simulation, usually each entity is simulated by an autonomous process and various

processes are mapped onto processors. In order to achieve a high degree of parallelism,

- the processes are asynchronous and there is no global simulation clock. Processes

synchronize with each other by sending and receiving the tuples [e,t]. In general,

deadlocks may arise resulting from a cyclic waiting among the processes. One method

. of handling the deadlock problem is to let the simulator deadlock, to detect deadlock,

and to recover from it [Chandy 81, Kumar 85c]. We applied this algorithm to the case

" of a uniprocessor system. In such a system, deadlock is easy to detect (when no entity

can compute a guaranteed event, i.e., the list of "potentially active" entities is empty).

....I' ."

13

Several other algorithms have been proposed for distributed simulation [Chandy 79a,

Peacock7g, Jefferson82, Misra 84, Kumar 85c], but they involve too many overhead

messages and we expect that this may severely degrade performance on a uniprocessor

system.

We have shown in this paper that an algorithm developed for distributed

simulation could also be useful for sequential simulation and it can suggest a new .,

approach in this environment. We expect similar lessons to be learnt in other

. application areas of parallel computing.I-..

Acknowledgements

My special thanks to Professor M. Gouda for his help in the presentation of this

work, including several fruitful discussions and comments on earlier drafts of the paper.

I am also thankful to Professors J. Misra and K. M. Chandy for several discussions,

encouragement, and financial support for this work.

.9,-

.,:

', '1.

14

References

[Bagrodia 83] R. Bagrodia, "May: A Process Based Simulation Language", Master's

Report, Dept. of Computer Sciences, University of Texas at Austin,

Austin, Texas 78712, 1983.
1*

[Birtwistle 73] G. M. Birtwistle, 0. J. Dahl, B. Myhrhaug, and K. Nygaard,

"Simula Begin", Auerbach Publishers Inc., Philadelphia,

Pennsylvania, 1973.

[Birtwistle 791 G. M. Birtwistle, "DEMOS: A System For Discrete Event

Simulation", Macmillan Press, 1979.

[Bryant 77] R. E. Bryant, "Simulation of Packet Communication Architecture

Computer Systems", Technical Report MIT, LCS, TR-188,

Massachusetts Institute of Technology, November 1977.

[Chandy 79a] K. M. Chandy, V. Holmes, and J. Misra, "Distributed Simulation Of

Networks", Computer Networks 3(1):105-113, Feb. 1979.

[Chandy 79b] K. M. Chandy and J. Misra, "Distributed Simulation: A Case Study

In Design And Verification of Distributed Programs", IEEE

Transactions on Software Engg., SE-5(5):440-452, September 1979.

[Chandy 81] K. M. Chandy and J. Misrs, "Asynchronous Distributed Simulation

Via a Sequence of Parallel Computations", Communications of the

ACM, Vol. 24, No. 4, pp.198-205, April 1981.

0 - °-:K'KS<>W. .KK:•jC> ~-

[Chandy 821 K. M. Chandy and J. Misra, "A Distributed Algorithm for Detecting -...

Resource Deadlocks in Distributed Systems", ACM SIGACT-

SIGOPS Symposium on Principles of Distributed Computing,

Ottawa, Canada, August 1982.

[Chandy 83] K. M. Chandy, J. Misra, and L. Haas, "Distributed Deadlock

Detection", ACM Transactions on Computing Systems, Vol. 1, No.

2, pp. 144-156, May 1983.

[Christopher 831 T. Christopher, et. al., "Structure of a Distributed Simulation

System", in Proceedings of the 3rd International Conference on

Distributed Systems, Ft. Lauderdale, Florida, 1983.

[Dahl 70] 0. J. Dahl, B. Myhrhaug, and K. Nygaard, "Simula 67 Common

Base Language", Norwegian Computing Centre, Oslo, Norway, 1970.

[Fishman 78] G. S. Fishman, "Principles of Discrete Event Simulation", A Wiley-

Interscience Publication, John Wiley and Sons, New York, New

York, 1978.

[Franta 771 W. R. Franta, "Process View of Simulation", Elsevier Computer

Science Library, Operating and Programming Systems Series, P.J.

L Denning (ed.), Elsevier North Holland Publisher, 1977. S

[Gligor 80] V. Gligor and S. Shattuck, "On Deadlock Detection in Distributed

Data Bases", IEEE-TSE, Vol. SE-6, No. 5, September 1980.

,F :

"' " 16

[Holt 72] R. C. Holt, "Some Deadlock Properties of Computer Systems",

Computing Surveys, Vol. 4, No. 3, pp. 179-196, September 1972.

[Jefferson 82] D. R. Jefferson and H. A. Sowizral, "Fast Concurrent Simulation

Using The Time Warp Mechanism, Part I: Local Control", Technical

Report, The Rand Corporation, Santa Monica, California, December

1982.

[Kleinrock 76] L. Kleinrock, "Queueing Systems, Volume H: Computer

Applications", Wiley-Interscience, John Wiley & Sons, Inc., 605

Third Avenue, New York, N.Y. 10158, 1976.

* [Kobayashi 81] H. Kobayashi, "Modeling and Analysis: An Introduction to Systems

Performance Evaluation Metodology", The Systems Programming

Series, Addison-Wesley Publishing Company, Menlo Park, California,

Oct. 1981.

U
[Kumar 85a] D. Kumar, "A Class of Termination Detection Algorithms For

Distributed Computations", Technical Report, Department of

Computer Sciences, University of Texas at Austin, Austin, Texas

78712, May 1985.

[Kumar 85b] D. Kumar, "A High Speed Distributed Simulation Scheme And Its

Performance Evaluation", in preparation.

[Kumar 85c] D. Kumar, "Distributed Simulation", Ph.D. Thesis (in preparation),

I.

r ,,g ~~~~~~~~~~~~~~~~...,-.-....-.---.....: -... ".'....-......:-.... •......'... '..-.',..., ,,-,....:, .. :., ,

17

Department of Computer Sciences, University of Texas, Austin, -k

Texas 78712.

[Lamport 78] L. Lamport, "Time, Clocks, and the Ordering of Events in a

Distributed System", Communications of the ACM, Vol. 21, No. 7,

July 1978.

[Lonow 82] G. Lonow and B. Unger, "Process View of Simulation In ADA", in

1982 Winter Simulation Conference, pages 77-86, 1982.

[Misra 83] J. Misra, "Detecting Termination of Distributed Computations Using

Markers", Proceedings of the ACM SIGACT-SIGOPS Symposium

on Principles of Distributed Computing, Montreal Canada, August

17-19, 1983.

[Misra 84] J. Misra, "Distributed Simulation", IEEE Tutorial on Distributed

Simulation, 1984.

[Obermarck 82] R. Obermarck, "Distributed Deadlock Detection Algorithm", ACM

Transactions on Database Systems, Vol. 7, No. 2, pp.187-208, June

1982.

[Peacock 79] J. K. Peacock, J. W. Wong, and E. G. Manning, "Distributed

Simulation Using A Network of Processors", Computer Networks

3(1):44-56, Feb. 1979.

[Sauer 781 C. H. Sauer, "Characterization And Simulation of Generalized

Z

-

-

18

Queuing Networks", Research Report RC-6057, IBM Research,

Yorktown Heights, NY, May 1978.

[Sauer 81] C. H. Sauer, and K. M. Chandy, "Computer Systems Performance

Modeling", Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632,

1981.

" [Sauer 831 C. H. Sauer and E. A. MacNair, "Simulation of Computer

Communication Systems", Prentice-Hall, Inc., Englewood Cliffs, New

Jersey 07632, 1983.

[Seethalakshmi 79 M. Seethalakshmi, "A Study And Analysis of Performance of -0

Distributed Simulation", Master's Report, Dept. of Computer

Sciences, University of Texas, Austin, Texas 78712, May 1979.

000

...

* p• o.... 2. .. . - .. : °.o.* - .* - ** -

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered),
REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

R DBEFORE COMPLETING FORM
I) . REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

final: 6/14/81 - 6/15/85
Manuscript: A High Speed Distributed Simulation --_

Scheme and Its Performance Evalua- 6. PERFORMING O1G. REPORT NUMBER

tion
7. AUTHOR(&) 8. CONTRACT OR GRANT NUMBER(a)

Devendra Kumar (Graduate Student)
University of Texas at Austin Ap80AFOSR 81-0205

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA A WORK UNIT NUMBERS
Computer Sciences Department
University of Texas at Austin
Austin, Texas 78712

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Capt. A. L. Bellamy July 1985
AFOSR/NM 13. NUMBER OF PAGES

Bolling AFB, DC 20332
14. MONITORING AGENCY NAME & ADDRESS(01 dilerent from Controlling Office) IS. SECURITY CLASS. (of this report)

IS,. OECL ASSI FICATION OOWNGRADING
SCHEDULE

%"%

.. 6I. DISTRIRIJTION . TATEMENT (of thin Report)

17. DISTRIBUTION STATEMENT (of the absttact entered In Block 20, It different from Report)

mU

IS. SUPPLEMENTARY NOTES

submitted to 1) Nineteenth Annual Simulation Symposium
2) CMG '85

19. KEY WORDS (Continue on reverse aide flnecessew, and identify by block number)

20 ABSTRACT (Contnne on reverse aide It nacoary and identify by block number)

We present a high speed distributed simulation scheme that can be used to simu-
late any feedforward network of processes which communicate solely by exchang-

. ing messages. The scheme is simple to implement and the number of overhead
messages is nearly zero. We prove the correctness of the scheme and study its "
performance both analytically and empirically. Under reasonable assumptions,
it is shown that the scheme offers a substantial speed up over sequential simu-
lation. In particular we show that for a large class of networks, the speed up
over sequential simulation is proportional to N, where N is the number of

-Pr wsr -used-i n-the -dtfstr buted slmui'. "'.
. DO J 3 EDITION OF I NOV 65 IS OBSOLETE

.,' .. -. T.'....'...,..'..'......-...-.......-,'....."......-....-.'..'......'........-,...'.'.....'.....'.,.,..-...."........."...'.."...-.. -.

W--.

A High Speed Distributed Simulation Scheme

And Its Performance Evaluation*

Devendra Kumar

Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712

ABSTRACT

We present a high speed distributed simulation scheme that can be used to simulate

any feedforward network of processes which communicate solely by exchanging

messages. The scheme is simple to implement and the number of overhead messages is

* nearly zero. We prove the correctness of the scheme and study its performance both

*analytically and empirically. Under reasonable assumptions, it is shown that the

scheme offers a substantial speed up over sequential simulation. In particular we show

that for a large class of networks, the speed up over sequential simulation is

proportional to N, where N is the number of processors used in the distributed

simulator.

This work was supported by Air Force Grant AFOSR 81-0205.

- .- - - '

-V w"

Table of Contents

m 1. Introduction I
2. The Scheme TBASIC 2

2.1 Physical Systems 2
2.2 TBASIC 3
2.3 Correctness of TBASIC 4

3. A Performance Analysis of TBASIC in Simulating Tandem Queuing 4
Networks

4. An Approximate Performance Analysis of TBASIC in Simulating 7
Feedforward Queuing Networks

4.1 Approximate Analysis 74.2 Empirical Evaluation of the Approximate Analysis 9
5. Evaluation of TBASIC Using The Approximate Analysis 9

5.1 A Tandem Network 10
5.2 A Parallel Network 10
5.3 A Serial-Parallel Network 11
5.4 A Full Tree Rooted at a Source 11
5.5 A Non-full Tree 11

6. Discussion and Conclusions 11
Appendix A: Proofs of Theorems 13
Appendix B: Details on Simulation of TBASIC 18

. .".

.................

1. Introduction

In general, simulation is one of the most expensive software to run; each simulation run
5usually requires large execution time and storage. The problem is compounded with the

emerging need to simulate distributed systems that consist of large numbers of
interacting components. One technique to counter this problem is to partition the
simulation software into a number of autonomous processes that communicate solely by
exchanging messages. These processes are executed in parallel on the different processors
of a distributed system, thus reducing the total execution time. This technique is known
as distributed simulation [Chandy 79a, Chandy 81], and the set of communicating
processes that perform the simulation is called a distributed simulator (or logical

1system).

Many distributed simulation schemes have been proposed in the literature [Chandy
79a, Chandy 79b, Peacock 79, Chandy 81, Jefferson 83a, Jefferson 83b]. They can be
classified into two categories depending on how they deal with deadlock situations that
may arise between the communicating processes in a distributed simulator. The scheme
in [Chandy 811 allows deadlocks to occur, but they are later detected and recovered
from. The schemes in [Chandy 79a, Chandy 79b, Peacock 79] allow the processes to
exchange overhead NULL messages whose sole purpose is to avoid communication

- deadlocks. For a detailed and complete survey on distributed simulation schemes, we
refer the reader to [Misra 84, Kumar 85].

* Unfortunately, except for one simulation study [Seethalakshmi 79] whose results are
nonconclusive the performance of these existing schemes have not been analyzed yet.
This situation leaves the interesting question "how good is distributed simulation versus
sequential simulationo basically unanswered. This paper represents a first step towards
answering this question. In particular, we present a new distributed simulation scheme
called TBASIC, and show that in many cases TBASIC can achieve a speed-up
proportional to N over sequential simulation, where N is the number of processors used
to run the distributed simulator.

Following the introduction, the paper is organized as follows. In Section 2, we present
* the scheme TBASIC and prove its correctness. In Section 3, we analyze the performance

"- of TBASIC in simulating tandem queuing networks. In Section 4 we present an
approximate analysis for the performance of TBASIC in simulating feedforward queuing
networks, and report on an empirical validation of this approximate analysis. In Section
5, we use this approximate analysis to evaluate TBASIC, i.e., determine its performance V
in simulating various classes of feedforward queuing networks. In particular, we show
that for a general class of these networks the speed up attained by TBASIC over
sequential simulation is proportional to the number of processors in the distributed .1-I
simulator. Concluding remarks are given in Section 6.

. * * * * *°.- -

2

2. The Scheme TBASIC

In this section we characterize the physical systems that can be simulated using our
scheme TBASIC. We then present TBASIC and discuss its correctness proof.

S7

2.1 Physical Systems

We call the systems to be simulated by TBASIC physical systems. A physical system
consists of a finite number of physical processes (or pp's for short) that interact with

" each other solely by exchanging messages via unbounded, one-to-one, one directional
communication lines. The topology of a physical system is assumed to be acyclic, and its
communication delays (i.e., the time between one process sending a message and the
message being placed at an input line of its destination process) are assumed to be zero.
[Kumar 851 discusses how any discrete event system can be modeled as a physical .

* system.

The message history up to time t for a line (i, j) in the physical system is defined as
the tuple sequence <(tl, mi), (t 2, m2), ... (tr, mr)> where ml, m2, ... is the sequence of
messages sent on this line up to time t, and ti < t2 <... < tr < t are the times at

which these messages were sent.

We assume that if the message histories of all input lines of a pp is known up to time t,
then the message history on each output line of the same pp is computable up to at least
time t. This is called the realizability property.

We assume that any physical system is required to be simulated for a time period
[0, Z], where Z is any positive value.

* Five example of pp's are as follows: (These are called queuing processes since as i
discussed later they can be used to model queuing networks. These processes are shown
in figure 1.)

1. A delay process has one input and one output lines. It processes its input

messages in a FCFS queuing discipline, then sends each of them out after a

finite service time. The service time may be deterministic or probabilistic.

'. 2. A merge process has two or more input lines, and one output line. Wheneverit receives a message on one of its input lines, it sends it via its output line

after zero delay. If occasionally two or more inputs are received at the same

time, they are put together in a single message and sent out via the output
. line.

3. A fork process has one input line and two or more output lines. Whenever it

?
.........................

K (a) Delay pp (b) Merge pp) (c) Fork pP,

(d) Source pp (e) Sink pp

Figure 1: Queucing processes

pp pp 2 pp 3 pp (:-i) D N

Figure 2: Tandem netwurk of N processes

Figr 3 Pae

~Figure 3: I'araih4l network

. '' " ' ''% "" " -. '" - '. """%,.%. . ""'. '.."'

........... ,.. w~-m .'- J .

3

receives a message on its input line, it sends it out along one of the output

lines, after zero delay. The output line for a message is chosen in a V-

probabilistic manner, according to predefined branching probabilities for the

output lines.

4. A source process has no input lines, and one output line. It simply generates

messages and sends them out.

* ... 5. A sink process has one input line and no output lines. It simply absorbs its

input messages.

2.2 TBASIC

In TBASIC, each physical system is simulated by a distributed simulator called a
logical system. A logical system is a network of processes, called logical processes (or Ips
for short) that is topologically isomorphic to the physical system it simulates, with each
pp being replaced and simulated by one Ip. Each lp executes a loop consisting of three j.
phases, called the computation phase, the termination checking phase, and the input
phase.

1. In the computation phase, the lp computes for each output line a (possibly

empty) set of output tuples (t, m) in the chronological order of their t

components, and sends them out.

2. In the termination checking phase it checks if it has received an input with
t-value = Z on each input line. If so, it terminates. Otherwise it goes on to

the input phase.

3. In the input phase it waits until at least one more message has arrived on its

input port; it then receives all available messages in FIFO order and stores

them in its line buffers, before returning to the computation phase.

In the computation phase, if the output history is known up to a time > Z, then only r
the tuples, whose t-values were < Z, are sent out. Then, if the last sent tuple on a line
had a t-value < Z, then a special termination message (Z, NULL) is sent out on that
line. This tuple informs the receiving lp that no more tuples would be sent out on this
line.

"o..

L.:-

. o . V

"'-;'-"- -"''"-"-''-' ,'"" -"-' .' -"''',"-'-'""' ..' ,;''.r -'" "-'- -"-"-" "-' -"- "- ". '- -" -'2 ". '.- -,,.'¢ '.- ,' ' ,-" €.. , F

4

. 2.3 Correctness of TBASIC

We now show that TBASIC is both safe and live. The safety of TBASIC means that
at any point in the simulation, the sequence of tuples sent or received on a line correctly
simulates a sequence of messages sent on the corresponding line in the physical system.
In other words, tuples are sent on every line in chronological order of their t-values, and
every tuple (t, m), except for the termination message, corresponds to a message m sent
on the corresponding line in the physical system at time t. Moreover, no message on that
line is skipped in the sequence of tuples up to time t.

The liveness of TBASIC means that within a finite time from the start of simulation, a
-- tuple with t-value = Z would be sent on each line in the logical system, and each lp

would terminate. These safety and liveness properties follow from the next two
theorems respectively.

Theorem 1: Let the sequence of sent tuples on some line (i, j) up to some point of the
simulation be <(t 1 , mi), ..., (t k, ink)>. Then each of the following assertions holds.

.tl < t2 < ...< tk < Z

2. For any tuple (ti, ms) in this sequence, except for the termination message if

any, message m. was sent on line (i, j) in the physical system at time t..

3. If a message m was sent in the physical system on the line (i, j) at time t

where t < tk, then the tuple (t, m) is present in the above sequence.

A proof of this theorem is by induction on the number of events in the logical system;
it is similar to that of theorem 4 in [Chandy 79a]. A proof of the next theorem is given
in appendix A.

* Theorem 2: A tuple with t-value = Z will be sent, and received, on every line in the
logical system within a finite time from the start of the simulation.

3. A Performance Analysis of TBASIC in Simulating Tandem Queuing
Networks

In this section, we consider a class of physical systems, called tandem networks, and
derive the ratio of the required simulation time when using a sequential simulator to

I- simulate any network in this class to the required simulation time when using TBASIC
to simulate the same network. More specifically, we derive a formula for the following
ratio when the physical system is a tandem network:

L .A

5

SR = Speed-up ratio

= SST/DST, (1)

where SST = Sequential simulation time, i.e., the time taken by a sequential

simulator to simulate some physical system up to time Z, and

DST - Distributed simulation time, i.e., the time taken by a logical system to

simulate the same physical system up to Z. -,

A tandem network is a linear sequence of pps; the first pp in the sequence is a source,
the last one is a sink, and the intermediate ones are delay pps (see figure 2). In TBASIC,
a tandem network is simulated by a logical system that is a linear sequence of lps. The
following parameters are used in the analysis below.

N = the total number of pps in the tandem network

(It is also the number of Ips in the simulating logical system.)

Mij the total number of messages sent out on line (I, j) in the physical

system.

(It is also the total number of messages sent out on line (i, j) in the

logical system.)

1/=i the constant processing time taken by lp i in computing one output

tuple

i the propagation delay on line (i, j), i.e., the time delay between the

sending of a message by lp i on line (i, j) and its reception at the input

port of lp j

D the departure time of the rth message on line (i, j) from lp i

A =,j,r the arrival time of the rth message on line (i, j) to lp j

' Di,, = the departure time of the rth message from lp i

J Ai'= the arrival time of the rth message to Ip i

A proof of the following theorem is in appendix A.

"A9 X ,

Theorem 3: For i- 1, 2, N-I, and r- 1, 2,

Di. r =(a 0 * - l/v,) *r/ i (2)

where vi E (1/' k) -

k=1

- rfi 1 k-l.k and

k=-2

6.-

From theorem 3,
Aib r D

0i (u1 1 * - 1) * na-. (3)
",

Therefore, the distributed simulation time DST can be computed as follows:

DST = max {Ai. r where r =MI. : ;
U i=2

:-. mx (r_ + 1-1/m1-1) + kt=1b/vt-1 (4) :

1=2

Formula (4) is exact; but to gain more insight into it, we better approximate it by the

following (approximate) assumptions:

1. If the value of Z is sufficiently large then M. 1 would be large, and DST can

be written as:

N-1
DST max M.,/v} (5).-

2. If all Mjij+'s are roughly equal (this would happen, for example, if the sum of

service times of delay pps is smaller than interarrival times of messages

generated by the source pp. This would also happen if the source pp stops

producing messages long before time Z, so that the last message does reach

the sink by time Z), say M, then DST can be written as

,

L . % . - = , * . - . % .- . - . - °,- - % . .,- . . % % . . • • . . °."

7

"-i IIDST ; 11. max {l/vi

= i= -1 (6)

3. Furthermore, if all pi's were equal, say p, then

DST , /p (7)

The sequential simulation time SST may be approximated by

N-1

SST E {ij./~ 8

This approximation is arrived at by several approximating assumptions. (For example,
we have ignored the processing time involved in managing the event-list.) It is expected
that, normally, the actual value of SST would be larger than the above approximation.

The speed up ratio SR can now be computed from (7) and (8).

SR -N (9)

This formula shows that the speed up offered by TBASIC in the case of tandem
networks is proportional to N, where N is the number of processes in the distributed
simulator.

4. An Approximate Performance Analysis of TBASIC in Simulating
Feedforward Queuing Networks

An important class of physical systems that can be simulated using TBASIC is
feedforward queuing networks. In section 4.1 we present an approximate analysis to
compute the ratio SR when the simulated physical system is a feedforward queuing
network that consists of pps from the five classes- delay, fork, merge, source, and sink
defined in section 2.1. In section 4.2 we use simulation to validate this approximate
analysis.

4.1 Approximate Analysis

In order to compute SR, we first compute the quantities Di,i r for every line (i, j) in the

logical system and for every value of r. (Recall that Di,j,r is the time at which the rth

message is sent along line (i, j) in the logical system.) The analysis is approximate, since
it is based on the following three assumptions.

1. If Di,j,r = A + B * r where A and B are constants that do not depend on r,

then Di'j'r can be approximated by B * r. Note that as simulation progresses

8

and r becomes large the effect of the constant term A diminishes. Similar

approximation is made for Dir also. (Recall that Di'r - the time at which lp i

n sends out its rth message.)

2. For any fork Ip i with one input line and n output lines (i, Jj), (i, in), and

with branching probabilities bi 1, ... , bi,j respectively,

Di,js,r Di,rIbi,js for every s = 1, 2, n.

3. The message flow on every line in the physical system is uniform, i.e., the rth I

message on line (i, j) in the physical system is sent at time r/X~j, where X!,i is

a constant independent of r. (This assumption has no justification except

that it simplifies our analysis and, as demonstrated by the simulation results

in the following section, it has no significant effect on the overall prediction

of TBASIC's performance.)

Theorem 4: Under the above approximating assumptions,
i Di.l~r ff r/xi,, (10)

where xij is a constant independent of r, called the rate of message flow along line (i, j).

The proof of theorem 4 is given in appendix A. The proof shows how to compute the
rates X'j of message flow on different lines in the logical system. (A message flow

satisfying (10) is called a uniform message flow.)

' In order to compute DST and SR, one would compute the values Xij and Mij for every ,

line (i, j), where Mij's can be computed by analyzing the physical system. From this,

one may compute DST and SST as follows.

DST m (i. j/Xj (11)

SST £ (U 1 j./l,) (12)
(.j)

SR can be computed from (1), (11), and (12).

~ **..

g

4.2 Empirical Evaluation of the Approximate Analysis

In order to validate the above approximate analysis, we considered 10 feedforward
queuing networks, and for each of them, we

1. simulated the corresponding logical system and measured its simulation time

DSTm, and

2. computed the distributed simulation time DSTc of the given network using

(11), and finally

3. compared DSTm with DST,

As shown in appendix B, in each experiment the measured DST m was within 4% from
the computed DSTC. (The simulations were coded in the language MAY, which is a
simulation language for distributed systems [Bagrodia 83a, Bagrodia 83b], and were run
on a VAX 780. For further details concerning the simulations, we refer the reader to
appendix B and [Kumar 851.)

5. Evaluation of TBASIC Using The Approximate Analysis

In this section we evaluate the performance of TBASIC in simulating several classes of
feedforward queuing networks using the approximate analysis discussed in the previous
section. We conclude that for many classes of these networks the speed up ratio (SR) is
proportional to N, where N is the number of lps in the logical system (or equivalently the
number of processors used in the distributed simulation). For the following analysis, we
assume that the value of i for each lp i in the logical system is the same, say P, and that 4__
the physical system has only one source. We further assume that a delay pp can process
its input messages as fast as they arrive.

The proofs of theorems 5 and 6 below, are given in appendix A.

Theorem 5: The message flow rate xij on any line (i, j) in the logical system is given by

X. -ij (13)Xi,j = Ppi,j,(3)' "

where pi'= the path probability of line (i, j), i.e., the probability that aA

given job from the source pp would traverse this line.

..

10

Theorem 6:

DST = (14)

SST = (('/M).z., (15)
r-.

SR = (16)

where Z = is the simulation time period

- is the message flow rate from the source in the physical

system, and

r-. = pij where the sum is over all lines (i, j) (17)

It follows from theorem 6 that SR > (N-1).pmin, where Pmin -
min {p,, where (i, j) is a line in the logical system}. It also follows, that SR = I if the
queuing network consists of a source followed by a sink. Otherwise, SR > 2.

Next, we consider some specific classes of feedforward queuing networks, and determine
their SR ratios in the light of equation (16).

5.1 A Tandem Network

For a tandem network of N processes, the ratio SR = (N-i). This matches our earlier
result, (9).

5.2 A Parallel Network

A parallel network has K paths from a fork process to a merge process. The ith path
contains Li delay processes. (See figure 3).

Suppose one or both of the following conditions hold:

1. The branching probabilities at the fork process are all equal, or

2. Li's are all equal.

Then it can be shown that

SR -(3K-4)/K + N/K

o-

5.3 A Serial-Parallel Network

Figure 4 shows a serial-parallel network with S stages. For any branching probabilities,
we obtain:

SR = 3/4 .N - 1/2

5.4 A Full Tree Rooted at a Source

Figure 5 shows an S-stage full-tree rooted at the source. Assume that each fork process
has B output branches with arbitrary branching probabilities. In this case,

SR = 2.logB[(N.B - N - B + 3)/21,
for B=2, SR = 2.log2(N+1) - 2

and for B=3, SR= 2.log 3N

5.5 A Non-full Tree

An example of a non-full tree is shown in figure 6. Assume that in the shown tree the
branching probability at a fork for the line going to a delay is a. (The other branching
probability is 1-a.) Thus,

SR = 2 + (1+a)/(i-a) .[-a(N/3" 1).

Notice that,

fora=O0, SR=3,

for a = 1/2, SR = 2 + 3.[1 - 1/ 2 (N/3 1), and

for a = 1, SR = 2/3 .N

6. Discussion and Conclusions
Distributed simulation using the scheme TBASIC offers a substantial speed up over

sequential simulation in a large number of cases. For the serial-parallel networks

considered, the speed up ratio is linear with N, where N is the number of processors used
* in the simulation. For full trees the speed up is logarithmic. In some networks, the speed

up is only a constant. However, it follows from theorem 6 that the speed up ratio is > 2
in all networks (except one trivial network).

Since there are no overhead messages in TBASIC, it seems that TBASIC may offer the
best performance that is possible by distributed simulation, in simulating feedforward
networks. Other schemes, e.g. [Chandy 79b] and [Chandy 79a], involve overhead
messages. It was noted in [Chandy 811 that some of these schemes require too many
overhead messages causing their performances to degrade considerably.

* Also, it seems that performance of a distributed simulation scheme would depend on

I%2

Stage 1 Stage 2 StageS

Figure 4: Serial-pariralel network

--.~

Ki.,N"

Stage 1 Stage 2 Stage S
Figure 5: Full tree rooted at a source

Ii-.I l :- .-

-Sae Sag 2 eS2tage S

Figure 6: Non-full tree

---------------------------- ------------

._ L- _ ' '~

12

the characteristics of physical systems being simulated. Note that TBASIO works only
for feedforward physical systems. One avenue of future work would be to consider other

schemes suitable for specific classes of physical systems.

.0

5*'-4-

% *5f

13

Appendix A: Proofs of Theorems

Proof of theorem 2: We say that at a moment during simulation, the logical system
is deadlocked if all of the following conditions hold:-

1. The t-value of at least one line is < Z (the t-value of a line is the t-value of

the last message sent on it),

2. there are no transient messages, and

3. every lp is either waiting for input or is terminated.

We first show that the logical system is deadlock-free. Suppose, on the contrary, the
logical system is deadlocked. Consider any line (i2, il) with t-value < Z. By the
realizability property, there exists a line (i3, i2) with t-value < Z. Continuing in this
manner we get an infinite sequence of lines

(i2 , il), 0i3Y i2, (i4, i31,.. .

But, this contradicts the fact that the logical system has a finite number of lines and is
acyclic. Therefore, we conclude that the logical system is deadlock-free.

Thus, if the t-value of a line is less than Z, then within a finite time a message would
be either sent or received on some line. However, the total number of messages sent in
the logical system is finite. This is based on our assumption that in the physical system
the total number of messages sent on any line up to time Z is finite. On any line in the .-,
logical system there is at most one termination message; thus from the safety property of
TBASIC, the total number of messages on any line in the logical system is finite. The
result follows since the total number of lines in the logical system is finite. ' ".":

The theorem follows, since the logical system cannot deadlock, and the total number of
messages sent in the logical system is finite.

Proof of Theorem 3: We first write down the equations defining system behavior.
Then we prove that (1) is the solution to this system of equations. For simplicity of
discussion, let us define

=0, I 0 and
Di=Or - 0 if i = 0 or r 0.

Then, the values D r must satisfy the following system of equations:

H 14 -

For = 1, 2, -1, and r , 2,J

Dr -= max (Di'r 1, (Di..ir + Il-i) + l/i

We Dow prove that values of D1, as given by (1) are the solution to the above system
* of equations. The proof is by induction on i.

Base Case:

We can establish this case by induction on r, in an obvious way.

- Inductive Case:
Suppose (1) is the solution to the above system of equations for all pairs (i, r) where

i =1, 2,..., k(k 1) and r 1, 2,Consider i k +1.We establish (1)for this
case by induction on r.

L, The base case (r = 1) is obvious. Let us consider the inductive case (r > 1). Since .
17i > 1 and r > 1, by the inductive hypotheses (on i and r), Dinr- and Di..ir can be

obtained from (1). Thus,

Dj.~ = 01 + 0i - I/va + (-~v

=[aj + Oi + (r-l)/P~I] - 1/&'i and2

Dilr= O01-i + Oj..i - 1/i. + r/&'i.4
Hence Di..i,r +1r,.ii = ai-I + Oi - i/v, 1 + r/l'1..

= [ai + 0i + (r-l)/v.1J - /j

Consider the following cases:

Case 1: ui < i-I

Then vi =i < vi. and

Di'r D1,,.1 + i/Pj

ai+O + (r-1)/vi

Case 2: >v-
Then vi vi- and

Dir r + x1 , IJ+ + 1/j +

0i+O +

r..In both cases we get the same value for Dir as the one given by (1). This proves the
theorem.

ii '5

Proof of Theorem 4: Define the level l(i, j) of a line (i, j) as:

l(i, j) - the maximum path length from any source lp to lp j.

(Since the logical system is acyclic, l(i, j) is well defined.)

We compute the rates of flow on the lines inductively, in increasing order of their
levels. Specifically, at the kth step in the induction, we compute the rates of flow on the
lines whose level = k.

Base Case (k = 1): j
Any line (i, j) whose level 1 must be an output of a source node (i.e., i is a source

lp). Thus, Dij, = r/pi.

Inductive Case (k > 1):

In this case, lp i may be a delay, fork, or merge process.

Case 1: FIe-

tV Pp i is a delay pp with input line (q, i).

Obviously, in this case l(q, i) = l(i, j) - 1. Therefore, by the inductive hypothesis,
Dq,i,r -r/q, i .:.:,

Hence Aq,i,r 1 qi + r/>q,j

By induction on r, or directly from (1), it can be shown that

Thus Dii r --'[qi + I/max{xq,i, PJ + r/min{Xq,i, Pi}

%tsr/min(xqJi, Pi) '

Case 2:

Pp i is a fork pp with input line (q, i) and output lines (i, j1), (i, j2), ... , (i, jn). One of
these output lines is the line (i, j) with branching probability bij. .

Obviously, l(q, i) = l(i, j) - 1. Therefore, by the inductive hypothesis, Dqi,r '-- r/xq,i"

the time at which lp i sends out its rth message is r/min(xq,J, PJ}. The proof of this

is the same as in case 1.

By assumption 2, 11
V~i,j, r =Di'r/bi~j .

= r/[bij . min{,\q,i, P} .

16

Case 3:

Pp i is a merge pp with input lines (11, i), (12, i), ... , (In, i) and the output line (i, j).

Obviously, the level of any input line of Ip i is < (k - 1). Therefore the inductive
,. hypothesis is applicable to the input lines.

Lp i waits till it has at least one input tuple on every line. It picks up the tuple with
minimum t-value, removes it from the line buffer, and sends it out. *

For simplicity of discussion, let us first assume that I/p i = 0. We will discharge this
assumption later. Consider a time interval 10, TI. For s = 1, 2, ..., n, let

r. = the number of messages received on the line (Is, i) in this interval, and

T= the t-value of the last message received on line (Is, i) in this interval.

By the inductive hypothesis,

By assumption 3,

Ts' ,/xs f--- r

Suppose the minimum value of [l~/Xjli s - 1, 2, n corresponds to line (lu, i). Lp
i would send all the inputs received on this line; and also, from other lines, those tuples
whose t-values are < T'. Thus the total number of messages that Ip i sends out in the
interval [0, TJ is,

s=.

n

s=1

n

s=1 3

.YL , T,) ,'. .'-A

.% -':-9

17

L =Tn.

= (XlU/xiu) T 11,j

Thus, output flow is uniform and

, = u , X!. -

In the above discussion for case 3, we assumed that l/j i -0. Now let us consider the
general case when 1/pi may be non-zero. In this case, obviously

=i j = m in { # i, [P -l , / X u,i) " , .)""

This completes proof of theorem 4, and also shows how to compute the rate of flow on
fK* -various lines in the logical system.

Proof of Theorem 5: For any line (i,) in the physical system, by induction on the
level of (i, j) it can be shown that,

j ;s•Pi J

where >!j the message flow rate on the line (i, i) in the physical system

and

s the message flow rate at the source pp

Using this, theorem 5 can be established, again by induction on the level of line (i, j).
Note, in particular, that t-values on all input lines of a merge lp increase at the same
rate (since Xi,j/x!, j is independent of the line (i, j)). Thus output rate of a merge lp is the
sum of its input rates.

Proof of Theorem 6: As in the proof of theorem 5, we have

Thus, Mi j =Z. j

- ' Z 's-Pij

(16) follows from the above, (14), and (12). (17) follows from the above and (13).
Finally, (18) follows from (16), (17), and (1).

I2:

18

:-V Appendix B: Details on Simulation of TBASIC]
In this appendix we give details of our empirical study on performance of TBASIC.

The physical systems simulated by TBASIC in these experiments are shown in figures
7-16. The service times at every delay pp, and the interarrival times of messages at every
source pp in these experiments are chosen to be exponentially distributed, with mean
values as follows:

1/p& for a delay pp i, = 3000.0
" 1/ for a source pp i, = 4300.0

" The output branches of a fork process have equal branching probabilities. The values
of 1/1p for various classes of pps are as follows:

delay : 300

fork : 90
merge : 120

source: 60

The propagation delayr on every line is assumed to be 60. The values of Z are chosen
large enough to allow a large number of messages (in some experiments about 1000 and
in others about 2000) to be generated by the source pp. The values of DSTm and DSTC
and the percentage errors in the values of DST, (deviation from DSTm)are shown in the
following table. (The physical systems corresponding to these experiments are shown in
figure 7.)

Exp. No. DSTm(x 108) DSTC(x 106) % Error

1 0.3180g0 0.33 +4%

2 0.325785 0.33 +1%
3 0.326175 0.33 +1%
4 0.318180 0.33 +4%

5 0.640950 0.66 +1%

6 0.669105 0.66 -1%

, 7 0.681045 0.66 -3%

8 0.668805 0.66 -1%

9 0.643035 0.66 +3%

10 0.668535 0.66 -1%

For further details on our experimental studies on TBASIC, the reader is referred to
[Kumar 851.

"a°

F') .""" .,'''""'.".""' ..,. .,." ." ." -""""."-"-"" ." ," ...,. ' . .• • .,

(a) 1'xperitlicnrt I

(b) ExperimentL 2

(c Eprimniit. 3i

(d) LEqperinwivi .1

L Figure 7: Physical Systemns tor the simulationa experimnents

(c) Experiment 5

t:1.

fir) E"xperiment 7i

I~~t Figure 7 (Co1 nitied

L (h) E'xperiments

(j) Experiment 10j

F'igure 7 (ont hmeId(

Acknowledgements

-" Professor M. Gouda made significant contributions to this paper, both in its technical

content and presentation. I am thankful to Professor J. Misra for many fruitful

"" discussions with him and for his comments on an earlier draft of this paper. I thank

Rajive Bagrodia for his help in using the simulation language MAY, which considerably

simplified the task of simulating TBASIC. I extend my special thanks to Ted Briggs for

going over some of the proofs.

'C-
-I

M

20

References

[Bagrodia 83a] Bagrodia, Rajive.
May:A Process Based Simulation Language.
Masters Report, Dept. of Computer Science, University of Texas at

Austin, Austin, Texas 78712, 1983.

[Bagrodia 83b] Bagrodia, Rajive L.
MAY Reference Manual
Dept. of Computer Science, University of Texas at Austin, Austin,

Texas 78712, 1983.

[Chandy 79a] Chandy, K.M. and Misra, J.
Distributed Simulation: A Case Study In Design And Verification of

Distributed Programs.
IEEE Trans. on Software Engg. SE-5(5):440-452, September, 1079.

[Chandy 79b] Chandy, K.M., Holmes, V., and Misra, J.
Distributed Simulation of Networks.
Computer Networks 3(1):105-113, Feb., 1979. t W,

[Chandy 81] Chandy, K.M. and Misra, J.
Asynchronous Distributed Simulation via a Sequence of Parallel 11

Computations.
Communications of the ACM 24(11):198-206, August, 1981.

[Jefferson 83a] Jefferson, David R.
Virtual Time.
Technical Report TR-83-213, Computer Science Department,

University Of Southern California, May, 1983.

[Jefferson 83b] Jefferson, David R. and Sowizral, Henry A.
Fast Concurrent Simulation Using The Time Warp Mechanism, Part

II: Global Control. 7
Technical Report, The Rand Corporation, Santa Monica, California,August, 11983.

[Kumar 85] Kumar, Devendra.

Distributed Simulation.
PhD thesis, Dept. of Computer Science, University of Texas at Austin, Li

Austin, Texas 78712, 1985.L&

In Preparation.

[Misra 84] Misra, Jayadev.
Distributed Simulation
Dept. of Computer Science, University of Texas at Austin, Austin,

Texas 78712, 1984.
(IEEE Tutorial on Distributed Simulation).

21

[Peacock 70] Peacock, J.K., Wong, J.W., and Manning, E.G.
Distributed Simulation Using A Network of Processors.
Computer Networks 3(l):44-56, Feb., 1979.

[Seethalakshmi 79]
Seethalakshmi, M.
A Study And Analysis of Performance of Distributed Simulation.
Technical Report, ut, May, 1979.

,.*

FILMED

11-85

"4DT

4SDTlC

• __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

