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W.I

*. INTRODUCTION

It is a common assertion that humans have "mental models" of

the systems with which they interact. In fact, it is difficult

to explain many aspects of human behavior without resorting to a

"* construct such as mental models (Conant and Ashby, 1970].

However, acceptance of the logical necessity of mental models

- does not eliminate conceptual and practical difficulties; it

-- simply raises a whole new set of finer-grained issues.

For example, what forms do mental models take? How does the

form affect the usage of the models? Is guidance in the use of

models as important as their form? How can and should designers

and trainers attempt to affect humxns' mental models? These

- really are not new questions. However, as is discussed later,

once they are expressed in terms of the concept of mental models,

they tend to be dealt with somewhat differently.

Further, despite many sweeping claims in the contemporary

literature, available answers to the above questions are rather

- inadequate. There are prospects for improving this situation.

However, there also are limits; the "black box" of human mental

models will never be completely transparent. This paper

considers these prospects and limits.

To place the arguments advanced in this paper in

•"'"-" . "-.- "•""""""'•"""'" '• -.- .• ", .•-,• *. .., .,. -.- - - .....-..,.......-........ -...,..'....",..-.." ....-.. .." .......".,.......,-.""""...,.....,...,....'..,..................ilil:•i~iiilS 'i;•il il
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perspective, several points of view with regard to mental models

are first reviewed. Alternative definitions, purposes, and

taxonomies are discussed in the context of a variety of

behavioral domains. This leads to a discussion of differences

among domains, particularly in terms of methods for identifying

the form, structure, parameters, etc. of mental models. From

this discussion emerges a key set of issues, which initially are

discussed in general. Discussion then focuses on issues

-. specifically associated with instruction (i.e., fostering the

creation of mental models). Finally, fundamental limits in the

search for mental models are considered.

DEFINITIONS

While the phrase "mental models" is ubiquitous in the

literature, there are surprisingly few explicit definitions

provided. This most likely reflects the extent to which the

concept has come to be completely acceptable on an almost

intuitive basis. Nevertheless, it is interesting to consider the

few formal definitions that have been espoused.

The manual control community has traditionally focused on

skilled, psychomotor performance. More recently, the term

"manual" is giving way to "supervisory" in recognition of the

fact that the human's role is increasingly becoming one of

monitoring automatically-controlled systems for the purpose of

*.• i .* * . .- * . . * -* -- ['••• --- "[ - '--•i[i•[• '[ [• [••[' [[[[[•• •[ i• [ * [•[ " •[ •[ i iii•[•



PAGE 3

detecting, diagnosing, and compensating for system failures

[Sheridan and Johannsen, 1976; Rasmussen and Rouse, 19811. In

reviewing the use of the concept of mental models in this domain,

Veldhuyzen and Stassen [1977] conclude that a human's mental

model includes knowledge about the system to be controlled,

knowledge about the properties of disturbances likely to act on

the system, and knowledge about the criteria, strategies, etc.

associated with the control task. In a recent, and more

circumspect, discussion of research in this area, Wickens [1984]

refers to the concept of a mental model as a "hypothetical

construct" to account for human behavior in sampling, scanning,

planning, etc. Jagacinski and Miller [1978], also working in

manual control, define mental models as special cases of

"schema," a fairly well-accepted psychological notion of how

skilled performance is organized (see Wickens [1984]).

While the manual control community has been blithely using

the mental models concept for at least twenty years, cognitive

psychology has only recently embraced this notion. This

acceptance is clearest in the area of "cognitive science," which

is basically the result of a liaison between cognitive psychology

and computer science or artificial intelligence. This relatively

new community of researchers has recently produced an edited book

on mental models [Gentner and Stevens, 1983].

In contrast to manual and supervisory control where mental
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models serve as assumptions which allow calculations of expected

control performance, research in cognitive science tends to focus

directly on mental models, particularly in terms of the ways in

which humans understand systems. Norman (19831 characterizes

this understanding as messy, sloppy, incomplete, and indistinct

knowledge structures. Lehner and his colleagues [1984] have

asserted that humans' mental models of a particular class of

computer programs (i.e., expert systems) include understanding

that: 1) the program's knowledge is encoded in rules, 2) rules

are organized in the program in terms of a network of

relationships, and 3) explanatory traces of program behavior

involve chaining along this network. Definitions that emphasize

somewhat narrower behavioral domains include topologies of device

models [Brown and deKleer, 1981; deKleer and Brown, 1983] and

collections of autonomous objects [Williams, et al., 1983].

Thus, it can be seen that definitions within the cognitive

science community range from broad and intentionally amorphous

generalizations to specific and somewhat esoteric constructs.

A very significant difficulty with the phrase "mental

models" involves how one should differentiate this concept from

that of "knowledge" in gener&.. Does this phrase reflect the

common tendancies of young sciences to re-label everyday

phenomena? Certainly cognitive science and especially artificial

intelligence appear to have penchants for coining terminology.

Nevertheless, in this case,' it appears to be reasonable to employ

* . . . . ... *
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"the concept of mental models to connote special types of

knowledge. This becomes clear when one considers the purposes

that mental models are supposed to serve.

PURPOSES

The above discussion tended to emphasize the differences in

- perspectives of researchers in manual/supervisory control and

cognitive science. These differences in definitions and

terminology are considerably lessened once one considers

purposes.

Veldhuyzen and Stassen [1977], in their review of the use of

the mental model concept in manual control, conclude that mental

models provide the basis for estimating the "state" of the system

(i.e., estimating state variables that are not directly

displayed), developing and adopting control strategies, selecting

proper control actions, determining whether or not actions led to

desired results, and understanding unexpected phenomena that

* occur as the task progresses. This conclusion, in effect,

asserts that mental models are the basis for all aspects of

manual control. Such a sweeping assertion can lead one to

sarmise that "mental models" are synonymous with "knowledge" in

generai.

In fact, Veldhuyzen and Stassen appear to be correct in the

- - - - - - - - - - - - - - - - - - - - - - - - - - - - --- *., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...•.. -' .-- " ," "..-... " -'." "/-.".- .- "-"
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K ~eznse that the phrase mental models is used in this way,

especially in the manual/supervisory control community. However,

this is not the way the phrase should be used. More precision is

needed; otherwise, there is a great risk that the result of

research in this area will simply be that, "humans have to know

something in order to perform their tasks." Clearly, this result

will not be a great stride for science.

Rasmussen [1979, 1983], also working within the domain of

* supervisory control, limits the range of purposes of mental

models. He asserts that mental models are for predicting future

events, finding causes of observed events, and determining

appropriate actions to cause changes (Rasmussen, 1979]. He also

includes the use of mental models for performing "internal"

* experiments [Rasmussen, 1983], or what physicists refer to as

"thought" or "Gedanken" experiments [Zukav, 1979].

Alexander [1964] discusses the "mental pictures" employed by

engineering and architectural designers. These pictures are

defined quite broadly in terms of contexts (problem definitions)

and forms (alternative solutions). Hence, the purposes of

designers' mental pictures or models are viewed as much more

encompassing than the models discussed in the supervisory control

arena. This difference in scope most likely reflects inherent

differences between open-ended tasks such as design and

well-defined tasks like supervisory control.

...... •- ,

. . . . . . . . . . . . . . . . ..••..'. . . .."..- ° %':.. . • :.. .
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Within the cognitive science domain, Williams and his

colleagues (1983) claim the purposes of mental models to be

predicting and explaining system behavior and serving as mnemonic

devices for remembering relationships and events. Evidencing a

- more traditional psychological point of view, Wickens [1984)

-* reports that mental models are constructs used by researchers to

-*• explain display sampling and scanning, formulating of plans, and

*. translating of goals into actions. He also suggests that mental

models are sources of humans' expectations.

The intersection of the various points of view outlined in

this section leads to a fairly clear set of purposes for mental

_ models. The common themes are describing, explaininf, and

predicting, regardless of whether the human is performing

internal experiments, scanning displays, or executing control

actions. These three terms can be combined with a modification

of Rasmussen's.taxonomy of mental models (Rasmussen, 1979] to

* yield the integrated view of the purposes of mental models shown

in Figure 1.

Based on this figure, a functional definition of mental

models can be proposed: mental models are the mechanisms whereby

-* humans are able to generate descriptions of system purpose and

form, explanations of system functioning and observed system

* states, and predictions of future system states. It is important

__ to emphasize that this definition does not differentiate between

................ ,.*..-



PURPOSE -> WHY A SYSTEM EXISTS

DESCRIBING
Nk

FUNCTION - HOW A SYSTEM OPERATES

EXPLAINING

STATE > WHAT A SYSTEM IS DOING

PREDICTING

FORM -> WHAT A SYSTEM LOOKS LIKE

FIGURE 1. PURPOSES OF MENTAL MODELS

~~~ ..~ .. . . . -. . .
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knowledge that is simply retrieved and knowledge that involves

_ some type of calculation. Thus, humans' mental models are not

necessarily computational models.

It was noted earlier that a models = knowledge definition

_. should be avoided if the mental models construct is to have any

real utility. The above definition does not eliminate this

problem, which serve8 to underscore the possibly marginal value

* of the construct. Nevertheless, the proposed definition does

* specify particular types of knowledge and the purposes for which

* this knowledge is used. This level of specificity is sufficient

to enable a meaningful inquiry into the nature of mental models.

IDENTIFICATION

Given the above functional definition of mental models, one

can then reasonably consider how these mechanisms might be

identified. In other words, what forms, structures, parameters,

etc. are associated with mental models of particular individuals

for specific task situations? There are a variety of approaches

to these types of question.

Inferring Characteristics Via Empirical Study

Perhaps the most traditional approach to the study of mental

models is the use of experimental methods to infer the
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characteristics of models. This approach is the stock in trade

of experimental psychology. An excellent example of this

Sapproach is the work of Kessel and. Wickens [1982] who etudied the

impact of training (manual control vs. monitoring of automatic

control) on subsequent monitoring performance. They found that

the cue utilization abilities fostered by manual control training

were more successfully transferred to subsequent monitoring

performance than training based on monitoring of automatic

*• control. Despite the fact that proprioceptive channels (due to

control stick movements)-were no longer available in the transfer
conditions, manual training was clearly superior. Based on this

finding, the investigators inferred that the mental models

developed in the two conditions were different in that the type

of information employed in monitoring depended on the type of

training.

While inferonce via empirical study provides evidence for

effects of various independent variables on characteristics of

mental models, these types of result provide, at best, only

indirect insights into the form (e.g., spatial vs. verbal) and

structure (e.g., hierarchical vs. planar) of mental models.

This is due to the likelihood that acces6 and manipulation of

models are confounded with perception and response execution;

interaction among these three stages of information processing

can limit the precision of conclusions.

/•

. . . . " .-
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Empirical Modeling

In situations where perception and response execution are

unlikely to interact with model manipulation, empirical modeling

may be poseible. This approach involves algorithmically

identifying the relationship between humans' observations and

subsequent actions. If it can be assumed that humans actually

perceive what is displayed and response execution is very simple,

then techniques such as regression can be used to identify

input-output relationships. From these relationships, the

structure and parameters of mental models can be inferred.

Jagacinski and Miller [1978] employed this approach for a -

"bang-bang" time-optimal manual control task where regression on

subjects' "switching curves" allowed inferences about mental

models. Several investigators have -studied the relationships

between humans' explicit predictions of future system states and %%%,

currently displayed states, using regression or time-series

models to identify input-output relationships [Rouse, 1977; van

Bussel, 1980; van Heusden, 1980]. All four of the above studies

resulted in hypothesized mental models that differed

systematically from the "true" model of the system involved.

It is worth noting that related approaches have been -

employed in a variety of studies of human judgement. Anderson's

"cognitive algebra" and Hammond's "policy capturing" are two

notable examples; a thorough review of these and other efforts

P %i..
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is provided by Hammond and his colleagues [1980]. These studies

of the combining of cues to form judgements are rather different

than the types of task discussed thus far in this paper, in that -,

the combination rules that are identified do not necessarily

directly relate to any explicit model of the system.

Nevertheless, the whole issue of cue utilization is very

"important and is discussed further later in this paper. -

Analytical Modeling

There are very few tasks where empirical modeling is

appropriate. For most tasks, the input-output relationships

identified would be very likely to be confounded with

characteristics of displays and controls, as well as subjects'

interpretations of performance criteria. Analytical modeling is

a common approach to these types of task, particularly in the

manual/supervisory control community.

Analytical modeling involves using available theory and data

to formulate assumptions about the form, structure, and perhaps

parameters of mental models for particular tasks. Based on these

assumptions, human performance (e.g., RMS tracking error) is

calculated or computed analytically and compared to empirical

performance data. A common practice is to adjust the parameters

of the assumed mental model in order to minimize differences

between the analytical and empirical performance metrics. If the

..........
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resulting differences are fairly small, one can conc-lude that the

assumed mental model is a reasonable approximation for the

purpose of predicting the performance metric of interest. In

contrast, one cannot safely conclude that one has identified the

"real" mental model. Unfortunately, this leap, perhaps of faith,

occurs not infrequently.

The nature of some domains virtually dictates the use of

analytical modeling. Neural information processing is a good

example where basic knowledge of neuron behavior is used to

synthesize network models. The overall behaviors of these

network models are analytically determined and compared to

empirical results of basic psychological studies (Anderson,

19831. The complexity of the neural system is such that a purely

empirical approach is simply not feasible.

As noted earlier, analytical modeling is quite common in the

manual/supervisory control domain. Because of the very

constrained nature of many manual control environments (i.e., the'

human must adapt to the task in order to perform acceptably), a

common assumption is that humans' mental models are perfect

relative to the real system (e.g., [Kleinman, et al., 1971]).

However, for tasks involving only monitoring [Smallwood, 1967;

Sheridan, 1970], especially when apparent discontinuities occur

in the state trajectory [Cagalayan and Baron, 1981], imperfect

models are often assumed. Imperfect mental models are also

. ....... . -..-... -...... ...-... ..-...-......-...-.... ..........-.....-........... ..
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assumed for tasks that involve slowly-responding systems such as

ships and process plants [Veldhuyzen and Stassen, 19771, where

the human has much greater discretion in terms of the timing and

magnitude of control actions.

The assumption of an imperfect mental model can be

problematic from an analytical point of view. If a perfect

mental model can be assumed, one need only perform an engineering

analysis of the system of interest to identify the model. In a

sense, there is only one choice. In contrast, there is an

infinity of alternative imperfect models, and justifying the

* choice of any particular alternative can be difficult. Of

course, if one's objective is solely the prediction of some

overall performance metric, this difficulty may be minor.

However, the fact that one is able to "match" such an overall

metric does not imply that one can reasonably conclude that the

imperfections assumed in the analytical model are identical to

the actual imperfections inherent in the human's mental model.

Direct Incuiry

Perhaps an obvious alternative to the somewhat indirect

methods of identification discussed above is simply to ask people

about their mental models. Introspection, in a variety of forms,

was a common approach to psychological research in the 19th

century, particularly in Europe. However, the behaviorist
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movement of Watson (19141 and later Skinner [19383 almost __

completely divested this approach cf any credibility it may have

had within experimental psychology. Fortunately, the last two

decades have produced a substantial softening of the strict

behaviorist perspective. Nevertheless, psychologists' yearning

to be like physicists still persists to some extent, despite

fundamental and irreducible differences between the two domains

of study [Rouse, 1982].

An approach to introspection that has gained substantial

currency of late is the verbal protocol, which is simply a

transcript of a human "thinking aloud" as he or she performs a

task. Insightful analyses of verbal protocols have been

performed fcr troubleshooting [Rasmussen and Jensen, 1974],

process control [Bainbridge, 1979], device understanding

[Williams, et al., 1983], problem solving in elementary physics

[Gentner and Gentner, 1983], and various game-like tasks [Newell

and Simon, 1972]. In the cognitive science domain, there are

many examples of verbal protocols serving as the "data" from

experiments; see [Gentner and Stevens, 1983].

While there are strong advocates of this approach in the

manual/supervisory control community [Bainbridge, 1979;

Rasmussen, 1979, 1983] as well as the cognitive science community

[Newell and Simon, 1972; Ericsson and Simon, 1980, 19843, there

are also more circumspect views [Nisbett and Wilson, 19771.
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Certainly, what humans say they are thinking about or intend to

do is interesting and of value. However, verbalization of a

non-verbal (e.g., spatial or pictorial) image may result in

severe distortions and biases. Further, verbal protocols

provide, at best, information about what humans are thinking

about, but little direct information about how they are thinking

(i.e., about the'underlying information processing). Therefore,

it seems prudent to view verbal protocols as quite useful, but

far from conclusive. As a result, such data may be more useful

for generating hypotheses for subsequent experimentation rather

than as a primary means for testing hypotheses (unless, of

course, the hypotheses only address the "what" of thinking).

Another approach to direct identification of mental models

is interviews and/or questionnaires. In general, this approach

is quite different from verbal protocols. However, in some

cases, the only difference between this approach and verbal

protocols is the fact that the inquiry does not occur as the task

is performed. Studies of air traffic control by Falzon [1981)

and Whitfield and Jackson [1982), and of marine navigation by

Hutchins [1983), are of this type.

In contrast, interviews and/or questionnaires concerning

preferences or judgements are not necessarily task-oriented. In

such cases, there is really no reason to make inquiries during

task performance. An excellent example of this type of situation
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is the study of "mental maps" by Gould and White [19741, where

the concern was with geographical perceptions and preferences.

(Wickens [1984, pp. 189-192] reviews a variety of studies of how

humans' mental representations of imagined maps tend to be

distorted.)

As an interesting aside, the above observations on direct

inquiry have important implications for the design of "expert

systems.!! Succinctly, expe.ts may not be able to verbalize their

expertise. Perhaps worse, their verbalizations may reflect what

they expect is wanted by the inquirer rather than how they

actually perform. An example of evidence of this phenomenon is a

recent study of process control operators whose explanations of

what they thought they would (or perhaps should) do were at

variance with their actual behaviors [Morris and Rouse, 1985;

Knaeuper and Rouse, 1985].

Summary

Reconsidering all of the approaches to identification

discussed in this section, it is clear that each type of approach

has substantial advantages for some types of task, but also

important weaknesses. Further, while employing multiple

approaches can compensate for these weaknesses to an extent, the

possibility of totally "capturing" the mental model is rather

remote. This is, in part, due to the great likelihood that a
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mental model does not exist as a static entity having only a

single form.

TAXONOMIES

- It is fairly easy to accept the assertion that any

particular phenomenon can be thought of in a variety of ways.

For example, one can think of an automobile as a collection of

"- electromechanical elements that convert chemical energy of fuel

to mechanical energy in terms of motion. In contrast, one can

view an automobile as a sleek, sculptured, and powerful extension

of one's persona. Both of these "mental models" involve the same

physical entity. However, the verbal protocols produced for

these two models of an automobile would differ in rather dramatic

ways. This would be the case even if the two protocols were

produced by the same individual.

As noted earlier, Rasmussen [1979] has developed a taxonomy

of alternative mental models of systems. His taxonomy moves from

concrete to abstract perspectives in terms of five types of

model: 1) physical form, 2) physical function, 3) functional

structure, 4) abstract function, and 5) functional meaning or

purpose. Thus, roughly speaking, a system can be viewed as what

it looks like, how it functions, or why it exists. All of these

views are "correct" and of value for answering a variety of

questions about a system.

.........................................
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Norman [1983] uses the word "conceptaalization" to

characterize researchers' models of humans' mental models. This

characterization serves to emphasize the difficulty of studying

-* mental models in that orne is basically searching for

approximations of approximations of reality (Cohen and Murphy,

1984], a process that can be viewed as akin to estimating the

variance of the variance in statistical modeling.

The conceptualizations chosen by researchers tend to reflect

their methodological backgrounds and the way in which they assume

humans are likely to view the systems of interest. Assumptions

about how people view systems are, of course, also likely to be

affected by researchers' backgrounds (e.g., engineers may think

that operators and maintainers view systems from an engineering

perspective). Thus, researchers' mental models affect their

conceptualization of other humans' mental models; to avoid

getting sidetracked by this issue, it is not pursued further

until a later section of this paper.

A practical implication of this phenomenon is that it is

quite natural to taxonomize mental models in terms of

conceptualizations. In reviewing how researchers have approached

human detection and diagnosis of system failures, Rasmussen and

Rouse (1981] contrast conceptualizations involving differential

equations, functional block diagrams, and "snapshots" of physical

form as examples of different ways that various researchers view
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"similar problems. Beyond differences in conceptualizations

dictated by researchers' natural inclinations, there are

"important, and hopefully more substantial, effects of differences

in how mental models are used.

Young (1983) has suggested a range of uses of mental models.

* For example, a mental model might be used as a way of describing

a device independent of its usage. Another use of a mental model

of a device might be to represent the input-output relationships

•* associated with typical uses of the device. Yet another use of a

mental model of a device is as a means of understanding an

analogous device (e.g., a VDU is like a typewriter).

The clear implication of such usage-oriented perspectives is

that humans' mental models of a system (e.g., within Rasmussen's

taxonomy), and the most appropriate conceptualizations of these

models, depend upon the tasks to be performed. If the system is

used in multiple ways (e.g., the automobile example noted

earlier), then multiple mental models are likely to be developed.

Therefore, a taxonomy that is purely system oriented (i.e.,

task independent), will be, at best, inadequate; a

behavior-oriented framework is also needed. Of course,

approaching mental models, or cognition in general, from a

behavior or performance point of view is the norm in experimental

psychology. Taxonomic efforts in this discipline tend to produce
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attributes-oriented characterizations for particular tasks. For

example, Wickens [1984) discusses specificity and code of

.representation as attributes of mental models in process control.

From the foregoing discussion, it is clear that efforts to

develop taxonomies of mental models are heavily influenced by the

domain being investigated (e.g., word processing vs. vehicle

control), as well as the backgrounds of the investigators (e.g.,

psychology vs. engineering vs. computer science). Research in

a wide variety of domains can be characterized as dealing with

mental models. Thus, the literature cited in this paper includes

several domains: 1) neural information processing, 2) manual

control, 3) supervisory control, 4) understanding of devices

(e.g., for maintenance purposes), 5) problem solving in physics,

and 6) making value judgements.

While all of tha research cited in these domains explicitly

deals with mental models (or equivalent concepts), these efforts

differ substantially in terms of conceptualizations chosen and

identification methods employed. It appears that these

differences can be explained by distinctions among domains along

two dimensions: 1) nature of model manipulation, and 2) level of

behavioral discretion. The distinctions among the various

domains listed above are illustrated in terms of these two

dimensions in Figure 2. (Note that "understanding of devices"

appears as "system maintenance" and "using assembly

I ,o
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instructions." )

The nature of model manipulation can range from implicit to

explicit, where these terms refer to whether or not a human is

aware of his or her manipulation of a mental model. As an

example, one is likely to be totally unaware of manipulating

"neural network representations in associative memory. In

contrast, assembling devices or solving physics problems is

"likely to involve explicit manipulation of models.

An alternative point of view relative to this dimension is

to consider the terms "implicit" and "explicit" as indicative of

a dichotomy rather than end points on a continuum. The result is

an analogy of the compiled vs. interpreted processes of Newell

and Simon [19723. One can also express this difference in terms

of systems vs. applications software. The basic idea is that

the "source code" for compiled processes or systems software is

* no longer available to the human who, therefore, cannot report on

how it operates.

The level of behavioral discretion can range from none to

full, where, as above, these terms refer to the extent that a

human's behavior is a matter of choice, as opposed to being

dictated by the task. At one extreme, phenomena such as neural

information processing are unlikely to be discretionary.

However, as tasks are more oriented toward decision making and

I I ~~~~~~~~~~................... .... ................... .............-.--.... *..-••. -•, - .-......€•.. -. -...
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problem solving, opportunities for discretion are more likely.

Interestingly, humans' roles in many engineering systems are

tending toward tasks that involve greater discretion; the more

task-dominated aspects of system operations are being

increasingly automated.

While the relative placement of domains in Figure 2 is far F

from eyact, the distinctions emphasized in this figure provide a

basis for explaining methodological differences among domains.

Considering identification methods, two generalizations seem

reasonable.

First, inferential methods (i.e., empirical assessment,

empirical modeling, and analytical modeling) tend to yield more

accurate descriptions when there is little discretion. This is

because the nature of the conceptualization of a mental model can

be based on external environmental and organizational

constraints. Since the human has little discretion, he or she

can be assumeA to adapt to these constraints and the resulting

mental model will reflect this adaptation.

The second generalization is that verbalization methods

(i.e., verbal protocols, interviews, and questionnaires) are

likely to provide more appropriate descriptions when there is *. ,

explicit manipulation. This is simply due to the fact that the

need for explicit manipulation may result in verbalization being

.:: :............................ . . . . . . . . . . .. .:::::::::::: ::::::: :::: :::: ::"::. : :: ::::::::::::::: :::::::::::::::::: : ::!i
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a "natural" part of a task. Of course, it is also quite possible

that manipulation may be explicit, but the mental model is, for -..

example, spatial rather than verbal, or perhaps in terms of

subjective images rather than objective constructs.

If accepted, these two generalizations have important

implications. Most obvious is the conclusion that domaina toward

the upper left of Figure 2 are likely to present methodological

difficulties, at least in the sense that mental models will be

elusive. An example is the aforementioned research on human

judgement (e.g., [Hammond, 1980]), which attempts to "capture".

relationships between features observed and decisions made.

The results of such analyses indicate, at most, wha is

taken into account in the process of social decision making, but

not how this information is processed in the context of one or

more mental models. The types of situation addressed are too

laden with implicit values and too open to discretion to allow

mental models to be "captured" to the extent that they can be,

for example, for device understanding. Studies of human judgment -

in the area of personal relations [Harvard, 1980] and personal

geographical preferences [Gould and White, 1974] are good

examples of this limitation.

Expanding upon the above notion, an overall implication of

the generalizations drawn from Figure 2 is that the possible L -- .- *..* *- *** * *. ...-*-•* ~
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level of specificity of conceptualizations of mental models, and

perhaps even the form of conceptualizations, are limited by the

location of a task domain along the nature of manipulation/level

of discretion dimensions. In fact, it seems reasonable to

conjecture that these limits may be fundamental. Elaboration of

this conjecture is-, however, delayed until a later section of

this paper.

SALIENT ISSUES

From the discussion thus far, it is clear that there are a

plethora of issues surrounding the topic of mental models. Many

of these are relatively minor, involving terminology and inherent

differences among domains. A few issues, however, appear

repeatedly in the literature and are dominant in many of the

domains discussed in this paper.

This section, as well as the following section, explore the

nature of these issues. The discussion proceeds in the following

sequence:

1. Accessibility - To what extent is it possible to "capture"
individuals' mental models?

2. Forms of representation - What do mental models look like
(e.g., spatial vs. verbal)?

3. Context of representation - To what extent can mental models
be general rather than totally context-dependent?

!I
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4. Nature of expertise - How do the mental models of novices and
experts differ?

5.. Cue utilization - How are mental models affected by the cues
one employs, either by choice or due to availability?

6. Instruction - How can and should training affect individuals'
mental models?

The rationale underlying the ordering of these topics is to

consider first the inherent nature of mental models, particularly

as affected by context, expertise, and available cues, and then

to focus on approaches to fostering the development of

appropriate mental models.

Accessibility

As might be surmised from the foregoing discussion, the

accessibility of mental models is a recurrent and important

issue. While the considerations outlined earlier need not be

repeated, it is of value to note a few examples where

accessibility appears limited in the sense that researchers'

abilities to "capture" mental models are constrained by humans'

lack of abilities to verbalize their models. Van Heusden [1980.

found that subjects had difficulty verbalizing how they predictea.

future states qf time series. Whitfield 4nd Jackson [1982.

reported that air traffic controllers had difficulty verbalizing

their "picture" of the state of the system. Wickens [1984] notes

that models for control are less verbalizable than models for

.... • .....
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detection and diagnosis. As noted earlier, Morris and Rouse

. (1985] and Knaeuper and Rouse (1985) found that subjects' answers

"* regarding what they would (or perhaps should) do were different

from what they actually did. Therefore, while the intent is not

to belabor the point, an important issue concerns when

verbalization is possible, reliable, and valid. (The previous

discussion surrounding Figure 2 suggests how this issue might be

viewed).

Forms of Representation

The accessibility of mental models. as well as their use in

general, depends on their forms of representation. This issue

concerns how mental models are encoded and perhaps evolve. While

neural information processing approaches to this issue are

emerging [Anderson, 1983), the potential of such fine-grained

descriptions appears, at least at this point in time:, to be

limited to providing explanations of very elementary

psychological phenomena rather than behavior in realistically

complex taeks.

One important distinction relative to form is spatial vs.

verbal. Considering humans' exquisite pattern recognition

abilities, it is likely that the human information processing

system is particularly adept at processing spatially-oriented

information and, hence; may tend to store information in that

- * - , ..--.-... . . .
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manner. Therefore, it seems reasonable to suggest that mental

models are frequently pictorial or image-like rather than

symbolic in a list-processing sense. This obviously presents "•.

difficulties when humans are asked to verbalize their models

(e.g., the air traffic controllers of Whitfield and Jackson

(1982]).

Even when verbal representations are likely (or at least

*• useful), the vocabulary or "ontology" of such descriptions can be

* an important factor in the effectiveness of these representations

for problem solving [Greeno, 1983]. An excellent example is that

reported by Falzon [1982] where air traffic controllers thought

of their task in terms of aircraft "separations" rather than

"positions.0

Another important distinction relative to form is

representational vs. abstract. Rasmussen's taxonomy of mental

models illustrates how any particular system can be described at

various points along this dimension [Rasmussen, 1979]. Larkin

(1983] distinguishes expert from novice solvers of physics

problem in terms of abstract vs. representational mental models.

Context of Representation

A related. issue concerns the context of representation, -°

rather than the form, and whether it is general or specific

• ~~~~~~~~~~~~~~~.. . .. ••--..-....i.-. .--- "."...'--.. i.-.'."...,-.-.--...-.....-...-...---..-.;.. -•....-..•'-••'•-"
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(e.g., general principles of physics or' specific heuristics for

troubleshooting a particular device). In reviewing the available

evidence for process control, Wickens [1984] concludes that

mental models tend to be specific. However, if specific

representations are predominant, it is difficult tD account for

the richness of human problem solving behavior (i.e., abilities

to solve novel problems). Explanations of this richess have

included learning via metaphors (Carroll and Thomas, 1982],

analogical problem solving (Steinberg, 1977; Gentner and

Gentner, 1983; Silverman, 1983], and use of multiple models

(Rasmussen, 1983].

While the issue of general vs. specific knowledge is

certainly not new (e.g., (Peirce, 1877]), it is far from

resolved. Part of the difficulty is inherent in the topic.

Tasks and behavior are always specific. Hence, "general"

phenomena are not observable. Yet, such constructs seem to be

necessary to explain, for example, human behavior in unfamiliar .. -

situations [Glaser, 1984]. Given the fact that much of what is

routine is increasingly being automated, leaving humans to deal

with the non-routine, a recurring theme is training of humans to

have general skills to deal with a wider variety and less

familiar tasks. As might be expected, therefore, the general vs.

specific issue is likely to continue to receive attention. ,'

• . .A

..........................................................- '*....*.,....,.
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Nature of Expertise

At least a portion of the general vs. specifc debate has

focused on the nature of expertise. The question of concern,

within the context of this paper, is how experts' mental models

differ from those of novices. Intuitively, one might think that

experts simply know more than novices (i.e., have more elaborate

and accurate mental models). However, experts' mental models are

not just more elaborate or accurate; evidence suggests that they

are fundamentally different from novices' models [Chi and Glaser,

1984; Glaser, 1984; Greeno and Simon, 1984].

Wisner and Carey [1983] have concluded that the

"novice-expert shift" involves a conceptual change, rather than

just refinement of the novice's perspective. As noted earlier,

Larkin 11983] discusses this shift as a movement from

representational to abstract models. Chase and Simon 11973], as

well as Dreyfus and Dreyfus [1979], describe expertise in terms

of highly-developed repertoires of pattern-oriented

representations. If one accepts the conclusion that experts tend

to have conceptually abstract, pattern-oriented mental models,

then one must simultaneously question the accessibility of these

models via verbalization methods. This has, of course, important

implications for developers of "expert systems."

An interesting phenomenon related to expertise is the fact
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that the shift away from novice does not necessarily imply that

all naive notions are discarded. DiSessa (1982] and McCloskey

(1983] found that naive, "pre-Newtonian" theories of motion were

retained by students even after instruction in "correct"

theories. Similarly, Clement (1983] found that the naive idea of

"motion implies force" was retained even after instruction that

indicated otherwise. Thus, individuals who know what is

"correct" may also retain ideas that are "wrong," perhaps because

their real-world (as opposed to instructional) experiences tend

to be such that inconsistencies do not occur. In other words,

mental models may include a bit of "baggage" remaining from

earlier experiences that humans find no need to question or

discard, even though this baggage may create difficulties when

novel situations are encountered.

An alternative interpretation of the above results is that

the subjects studied were not "experts" in the full sense of the

word; otherwise, their naive notions would have been dispelled.

While this position is reasonable, it runs the risk of investing

in experts the non-human characteristic of always being correct.

Alternatively, one can define expertise in relative terms. From

this perspective, the results cited above are perhaps suggestive

of the inherent limitations of expert opinion.
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Cue Utilization

An issue that is often overlooked in discussion of mental

modelo is cue utilization. In order to predict future system

states or explain the current state, two things nre neaded: 1)

one has to know what the current state is, and 2) one has to have

some mechanism that emulates the process whereby the state

evolves. The human's internalization of this mechanism is

usually thought of as the mental model; however, the development

and use of this mechanism cannot be divorced from the human's

abilities to extract from the environment the cues necessary to

form the state estimates upon which this mechanism operates.

An excellent example of possible confounding of cue

utilization and mental models can be found in various studies of

humans' abilities to predict future system states. Independent

studies by Rouse [1977], van Bussel [1980], and van Heusden

[19801 have concluded, via empirical modeling methods, that

humans' models reflect inappropriate weightings of past system

states. All three of these efforts assumed that past states were

accurately observed, or at most were subject to zero-mean

Gaussian observation noise.

However, despite these researchers' serious efforts to avoid

it, subjects may have produced consistently biased or distorted

state estimates which led them to develop what appeared to be
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inappropriate mental models. For example, subjects may have

looked for spatial patterns such as number of reversals or

repeated subpatterns in the displayed time series rather using

* the "state" as the investigators had intended. If this was the

case, it may have been that the mental models developed by

subjects were "optimal" (i.e., the best fit) for those cues. In

other words, it may have been that their cue utilization dictated

the limits to the accuracy of their models.

This phenomenon has implications for explaining the impact

of predictor displays. A predictor display explicitly depicts,

via a model of the system, the future states of the system and

has been shown to result in improved system performance [Sheridan

and Ferrell, 1974, pp. 268-273). One explanation for this

improvement is that humans' mental models of the systems involved

were other than perfect. Alternatively, as argued above, it

could be that they simply tended to have difficulty estimating

* the higher-order state variables (e.g., acceleration and its

derivatives).

A study by Johannsen and Govindaraj [1980] supports the

latter hypothesis. They used a manual control model to assess

the effects of a predictor display, which they represented solely

in terms of improved cue utilization. Experimental data

supported their formulation, although their study was designed

for purposes other than providing a definitive test of the cue
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utilization vs. imperfect mental model issue.

Increasing levels of automation in engineering systems have

led to a variety of studies of the impact on human performance of

manually controlling vs. monitoring of automatic controls in

tasks such as failure detection. Kessel and Wickens (1982] found

that subjects trained in failure detection while manually

controlling subsequently produced better failure detection

performance when monitoring an automatically controlled system.

They concluded that training that included manual control leads

to improved cue utilization. Ephrath and Young (19811 reach what

at first glance appears to be almost the opposite conclusion but,

Supon closer inspection, mainly serves to illustrate the

subtleties of the issue. (For example, the value of information

is related to the human information processing resources required

to utilize the information.) In a rather different study, but

still within the manual control domain, Cohen and Ferrell (1967]

* found that subjects' abilities to estimate "readiness" of the

driver to perform difficult maneuvers with an automobile were no

.* different if they were to perform the maneuver themselves or they

were simply observing another driver (i.e., manual involvement

did not enhance performance).

The above studies on prediction, predictor displays, and

manual control mainly serve to emphasize the importance of cue

utilization in development and use of mental models. Succinctly,
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one's conceptualization of how something works is highly

* influenced by what observations one chooses to make. Therefore,

when attempting to identify the cause of suboptimal performance

by humans, one should try to avoid confounding information

processing limits (e.g., memory) and inappropriate or inadequate

cue utilization. In some situations, these two types of

* limitation seem to have demonstrably different effects [Baron and

- Berliner, 1977]. However, in general it appears that

-- insufficient attention has been devoted to this issue.

An interesting aspect of cue utilization is the extent to

which it differs for novices and experts. In general, experts

are not found to be unduly influenced by superficial cues [Chi

and Glaser, 1984]. For example, in a study of the use of

research literature, Morehead and Rouse [1985] found that faculty

* members were much more definitive than Ph.D. students in

specifying attributes of information that they did not want

retrieved. However, there are situations where novices perform

relatively better because they utilize more concrete, detailed

representations [Adelson, 1984]. Nevertheless, available

evidence indicates that an important attribute of expertise is

the ability to select the most useful features of problems.

A Central Issue

To the extent that it is reasonable to characterize any

* . * \ *. . * * *
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single issue as the central issue, that issue has to be

instruction or training. For any particular task, job, or

profession, what mental models should humans have and how shopld

these models be imparted? This question is of sufficient

theoretical and practical importance to warrant a much more

detailed treatment than accorded to the other salient issues

considered in this section.

INSTRUCTIONAL ISSUES

The purpose of instruction is to provide the, learner with

necessary knowledge and skills, as well as improve confidence,

attitude, etc. For instruction related to any given system, a

subset of the necessary knowledge and skills relates to the

ability to describe purpose and form, explain functions and

observed states, and predict future states. Therefore, one of

the purposes of instruction is to provide necessary mental

models.

While this may seem, at least initially, straightforward, it

is a very difficult issue. The basic questions are: For a given

system, what do the humans involved with that system need to be

able to do, and what knowledge is necessary for them to develop

and maintain this repertoire of skills? An important related

question is: What is the most appropriate form for this

knowledge?
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Within this section, thqse questions are considered in terms

of the types of iaowledge included within the proposed definition

of mental models. For the most part, this discussion emphasizes

the impacts of particular types of knowledge rather than the more

global concepts of mental models. This level c~f specificity

serves to emphasize the potential utility of many of the iesults

cited. *

Knowledge of Theories and Principles

When considering the questions noted above, a fairly common

assertion is that humans (particularly operators and maintainers)

need to understand thoroughly the fundamental principles upon

which the design and operation of the system of interest is

based. The "principles" of concern usually include fundamentals

of thermodynamics, heat transfer, fluid mechanics, Polid

mechanics, dynamics, electricity, and perhaps mathematics. Many

technical training programs place heavy emphasis on these types

cf principle.

Unfortunately, there is little if any evidence that this

emphasis results in better and more useful mental models. In tho

• The need for this level of specificity also serves to highlight
the fact that expressing results solely in terms of global and
somewhat vague concepts tends to dissipate any impact these
results might potentially have.

...............................................................
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domain of process control, a variety of independent studies have

shown that explicit training in knowledge of theories,

fundamentals, or principles did not enhance performance, and

sometimes aedtua3ly degraded performance [Grossman and Cooke,

1962; Kragt and Landeweerd, 1974; Brigham and Laios, 1975;

Shepherd, et al., 1977; Morris and Rouse, 1985). It has also

'been found that scores on tests of fundamental understanding did

not correlate significantly with process control performance

[Surgenor and McGeachy, 1983; Morris and Rouse, 1985].

Similar results have been founid in the domain of electronics

troubleshooting. Schorgmayer and Swanson [1975] determined that

an account of system functioning did not enhance performance

relative to procedural assistance. Williams and Whitmore [19591

found that knowledge of theory was greatest and troubleshooting

* performance poorest immediately following training; the opposite

conclusions were reached when the same subjects were tested three

. years later. Foley [1977] reviewed seven studies of

troubleshooting, including that of Williams and Whitmore, and

concluded that performance on tests of theory and job knowledge

did not correlate with actual job performance. ....

Results in the domain of mathematical problem solving are -- -•

also similar. Two studies compared training that emphasized -, o

general understanding of mathematical. principles to training that

stressed calculational techniques [Mayer and Greeno, 1972;

.............................................* * *. . . . . .. . . . . . . .- ... . . . .

.. • .*m.-.s.'
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Mayer, et al., 19771. For both studies, it was found that

general understanding was better for answering questions about

mathematics, while knowledge of calculational techniques was

better for actually solving problems.

. A very consistent picture emerges from the above studies of

" process control, electronics troubleshooting, and mathematical

problem solving. While the theories, fundamentals, and

principles were certainly relevant to the systems and tasks

investigated, this knowledge did not have observable effects on

the performance of the operators, maintainers, and problem

solvers studied. It seems reasonable to assert that

theoretically-oriented training increased knowledge about the

system and task, but the form and/or guidance in use of this

knowledge were not sufficient to improve performance and, in some

instances, were such that performance was degraded.

Related to this issue is the research of Eylon and Reif

[1984] who studied the effects of forms of knowledge organization

on college-level physics problem solving. They found that

hierarchical organizations had positive effects, particularly for

the better students. They conclude that the organization of

knowledge for instruction is as important as the content of

instruction.

.4 4 . - - '. - ... , - -.4-.
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Guidance and Cueing

Guidance in the use of knowledge can occur in several ways.

Many of the studies noted above provided trainees with explicit

procedures for performing their tasks. In some cases, the

comparison was procedures vs. principles; in other cases,

training via procedures served as more of a control group. In

general, procedures tended to be at least as useful as

principles, and at least as useful as having both procedures and

* principles.

" Procedures represent an extreme form of converting general

principles into operationally-useful guidance. A less extreme

form of guidance involves simply informing trainees of how and

when the knowledge gained during training should be used, without

telling them exactly what they should do. A variety of studies

in problem solving [Reed, et al., 1974; Weisberg, et al., 1978],

word puzzles [Perfetto, et al., 1983], and mathematics [Mayer, et

al., 1977] have considered the effect of this type of "cueing"

and found it to be necessary if clues, analogies, and general

principles are to be transferred successfully to task performance

subsequent to training.

It is not always possible for guidance to be explicit. If

systems are very complex and/or completely unanticipated

situations may arise, it is likely to be impossible to synthesize
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procedures that can be validated in the sense of assuring

success. Similarly, it may be impossible to inform trainees of

how and when knowledge will be applicable (i.e., "cueing" may not

be viable). Nevertheless, one hopes that the knowledge gained

during training will be called upon when unusual situations

arise.

One approach to enhancing this possibility is to provide

training in a variety of contexts (e.g., for more thdn one

system, one or more of which may be unfamiliar). The use of

unfamiliar contexts can "force" trainees to utilize general

principles such as analogies because that may be the only way in

which they can succeed. Rouse and Hunt (1984] have investigated

various aspects of this concept as applied to troubleshooting

training. While they found that the use of unfamiliar contexts

is somewhat more subtle and complicated than originally

anticipated, the concept was sufficiently viable and useful to

become an important element in training programs in the aviation

and marine domains [Rouse, 1982-83]. Brooke and his colleagues

[1980] have also investigated a variation of this concept and

found that training in multiple contexts improved transfer of

problem solving skills to new contexts.

These results serve to emphasize the possibility that human

performance within a particular system context may be

significantly affected by their knowledge of other contexts.

...................................................
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Thus, not only are tasks within a particular system likely to be

addressed via multiple mental models of that system, but task

performance may also be influenced by mental models of other

systems and classes of systems. This leads to the issue of prior

knowledge.

Effects of Prior Knowledge

With the possible exception of very young children,

instruction never involves the filling of a 'tabula rasa.

Trainees always approach an instructional experience with prior

knowledge and skills. In particular, trainees always have a

variety of a priori mental models which provide both

". opportunities and difficulties from an instructional point of

view.

The availability of prior knowledge presents an opportunity

in that it can serve as a basis for gaining new knowledge. In

fact, it can be argued that prior knowledge will almost certainly

affect learning [Glaser, 19843. For example, in the domain of

human-computer interaction, Carroll and Thomas [1982] argue that

new "cognitive structures" are developed by using metaphors to

existing cognitive structures, Norman and his colleagues [1976]

S offer a similar assertion with regard to the design of

instructional programs. Rasmussen [1979, 1983) discusses

implications of alternative mental models for display design and

.... :
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suggests that analogies offer an important mechanism for matching

displays to humans' models. With regard to analogies, Gentner

and Gentner (1983] found that the usefulness of analogies in

solving electricity problems was greatest when people used their

own a priori analogies rather than using those that they had only

recently learned as part of the instructions associated with the

* equipment.

"While existing "cognitive structures" offer a foundation on

• which to build, they also can be an impediment. Prior knowledge

that is incorrect will not necessarily be discarded once the

correct knowledge is provided. Instead, an amalgam of the

correct and incorrect may be retained, especially if the

incorrect aspects are such that everyday life experiences are

unlikely to yield any inconsistencies.

This phenomenon has emerged several times in studies of

physics problem solving. As discussed earlier, DiSessa [1982]

and McCloskey (1983] both found that students' naive,

"pre-Newtonian" views of motion persisted even after

college-level instruction had provided them with more appropriate

formulations. Similarly, Clement [1983] found that the "motion

implies force" misconception was retained after college-level

instruction had provided the appropriate conceptualization. The

implication of these findings is that instruction must remediate

a priori misconceptions as well as provide correct knowledge.

. . . . . . . . . . .. . . . . . . . . . . .
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3urnmar'•

S aar- zing the evidence presented in this section on

inst tc lonal issues, the following assertions seem reasonable*:

Kzincwdge of theories, fundamentals, and principles does not
necessarily enhance task performance; measures of the extent
of such knowledge are not good predictors of task-. performance.

2. The operational utility of this type of knowledge is highly
dependent, on the form in which it is presented and the
gutdance in ;is use that is provided.

3. Gu-idance is the use of knowledge can be explicit in terms of
procedures and cueing, or implicit by providing a range of
training experiences that foster or require the use of
knowledge.

4. A priori knowledge can serve as a powerful basis for gaining
new knowledge or, if incorrect, an impediment to gaining
correct knowledge; both cases argue for consideration of a
priori knowledge in designing instructional programs.

From the perspective of mental models, the above assertions imply

that the form of knowledge, guidance in use of knowledge, and

prior knowledge all interact to affect the development and use of

mental models.

*Morris and Rouse (1985), in a recent comprehensive review of
empirical research on human performance in troubleshooting tasks,
present considerable evidence for a similar set of assertions
relative to training for troubleshooting tasks.
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FUNDAMENTAL LIMITS

At many points throughout the discussions in this paper

various considerations have arisen that appear to pose limits to

understanding the "true" nature of mental models, particularly

for any specific individual and situation. In this section, the

apparent characteristics of these limits are formalized and

explored. The purpose of this discussion is to outline clearly

what appear to be fundamental limits in the search for mental

models.

One of these limits is fundamental to science in general.

Scientists' conceptualizations of phenomena are almost totally

dependent on their own mental models. These models dictate what

observations are made and how the resulting data is organized.

The ultimate subjectivity and arbitrariness of this process has

long been recognized [James, 1909; Whitehead, 1925]. However,

only recently has it come to be viewed as a predominant aspect of

the social and psychological processes within science [Kuhn,

1962; Zukav, 1979].

This subjectivity and arbitrariness is particularly

problematic in the behavioral sciences. As Ziman [1968] has

emphasized, controversy and uncertainty seem to be endemic in

psychology, where many of the basic phenomena are familiar to

both researchers and laymen. These problems are aggravated in
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the study of mental models because, in effect, such studies

arnouni:, to one or move humans developing models of other humans'

models of -he external world. This dilemma is fundamental in

that it cannot be resolved. Howeve.,0 the effects of this problem

can perhaps be lessened if researchLrs are aware of the biases

that they britng to a study, and thil these biases may not be

indicative oY the tendencies of the popuJl.tion of subjects being

studied. Therefore, for example, it 1;,- important for scientists

and engineers to avoid the presumption that operators,

maintainers, and managers approach their systems from a

scientific or ený,°ineerltn6 ierspective.

Beyond the limits imposed by investigators' biases, there

are difficulties that preclude uncovering the "truth." Several of'

these difficulties are discussed, or at least alluded to, in

earlier sections of this paper. The discussion of identification

methods considered several important limitations. It was noted

that empirical approaches are limited by the fact that behavioral

effects of access and manipulation of mental models may possibly

be confoanded with percoption and response execution. Analytical

approaches that consider the possibility of other than perfect

mental models mu:•t choose among an infinity of alternative

imperfect models.

In an attempt to generalize across domains, it was suggested

that the specificity and perhaps the form of conceptualizations

.... - . .... .... .... .... .... .... .... ....
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of mental models are limited by the location of a domain along

two dimensions: 1) nature of model manipulation, ranging from

implicit to explicit, and 2) level of behavioral discretion,

L° ranging from none to full. This two-dimensional characterization

*| of differences among domains appears to have clear implications

for the potential usefulness of alternative identification

methods. Namely, inferential methods seem to work best when

there is little behavioral discretion, while verbalization

methods appear to be most successful when explicit model

manipulation is inherent to the task of interest.

If the above limitations are, in fact, fundamental, then the

search for mental models will never comletely eliminate

uncertainty; the black box will never be completely transparent.

This type of problem has been addressed by particle physicists,

who ultimately accepted this inherent limitation in terms of

IHeisenberg's uncertainty principle [Heisenberg, 1958; Zukav,

1979]. The basic idea is that one cannot measure perfectly both

the position and momentum (the product of mass and velocity) of a

particle, because the process of measuring position produces

uncertainty in momentum and vice versa. Heisenberg [1958]

generalizes this notion by stating, "What we observe is not

nature itself but nature exposed to our method of questioning."

The general perspective provided by this statement, as well

as the specifics of the uncertainty principle, appear to be quite

• . • - " ' . . .• " °' - "• - ' ' * ) . • . ) 1 -. . i , ') - • • - L ' ' '" '' ' •' 'i ' '• / • ' " " " • ' ' - "/ ' ' " " '' -• " •' • • ' . *' . ." . . .•" '' ' • * '' ' '" *- ' i• •
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relevant to research on mental models. Much of the literature

implies that mnental models are static, unitary entities that can

be-identified if appropriate methods are employed. However, as

N Norman [1983] notes, this view is much 'too simplistic. Available

evidence suggests that mental models are more likely to be

dynamic entities that can have a multiplicity of forms.

If, at least for the sake of argument, one asserts that

mental models are analogous to physicists? elementary particles

which are dynamic entities that can be in multiple states, then

it is quite straightforward to map the physicists' uncertainty

principle to an analagous principle for mental models. The

position of a particle is analogous to the current state of a

mental model (i.e., what it is now) and the velocity (or

* momentum) of a particle is analagous to the changes occurring in

a mental model (i.e., what it is becoming).

Uncertainty is fundamental in the following ways. In order

* to measure perfectly what a mental model is now, one inevitably

intrudes on what the model is becoming. Less intrusive

* measurement methods reduce the effects on future model states,

* but increase the uncertainty about the current state. Similarly,

if one attempts to measure perfectly what a model is becoming, in

attempting to measure these changes, one introduces uncertainty

about the instantaneous state of the model (i.e., what it is now)

relative to which these changes are being measured.

.................................................
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Heisenberg's principle specifies that the product of the

uncertainties in position and momentum is constant (i.e.,

Heisenberg's constant!). The psychological analog of this

S constant is not apparent. In fact, it seems reasonable to

* conjecture that the magnitude of this constant might be domain

dependent in the sense that the dimensions in Figure 2 may affect

* the level of inherent uncertainty. Despite the intuitive appeal

*• of such a formulation, it must be remembered, however, that it is

totally a conjecture.

This raises the question of how this line of reasoning might

move beyond pure conjecture. Certainly, more thought is needed

and a mathematical/logical formulation might be possible. While

progress might be made in this way, it is also possible that a

limit such as that of Godel may be reached, where "truth" cannot

*' be proven and must simply be accepted (Godel, 1962; Guillen,

1983]. Obviously, the possibility of such "meta" limits is yet

another conjecture at this point in time.

This section has outlined several fundamental limits in the

search for mental models, as well as several conjectures

regarding limits to "knowing what can be known." The intent of

this discussion was to illustrate why pursuit of "truth" may be

inherently elusive, particularly when studying mental models.

Given these limits, dogged pursuit of "truth"t is unreasonable.

Instead, the emphasis should be on the utility of research on



PAGE 49

* mental models for system design, instruction, etc. This

pragmatic view of science is hardly new [Peirce, 1878; James,

1907); however, it often seems to be forgotten.

CONCLUSIONS

This paper has explored a wide range of issues associated

with research on mental models. At this point in time, this area

of study is rife with terminological inconsistencies and a

preponderance of conjectures rather than data. This situation

is, to a great extent, due to the fact that a variety of

subdisciplines have adopted the concept of mental models and

proceeded to develop their own terminology and methodology,

independent of past or current work in this area in other

subdisciplines.

Nowhere is this situation more evident than in the important

matter of definitions. In many cases, the phrase "mental models"

appears to be simply a substitute for "knowledge" in general.

Such a substitution is not particularly useful. This paper has

suggested a more concise working definition, based on a

functional perspective: mental models are the mechanisms whereby

humans generate descriptions of system purpose and form,

explanations of system functioning and observed systems states,

and predictions of future system states. Much of the discussion

in this paper is premised on this definition.

. . . . . . . . . . . . .. . . . .. . .. .. . . . . .. . . ..
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A portion of this discussion has focused on limits in

identifying or capturing mental models. Some of the difficulties

in this area are due to the likelihood that mental models are

dynamic entities that caa have a multiplicity of forms, even for

a particular individual in a specific situation. Beyond this

issue, other types of limit may be more fundamental. The biases

imposed by scientists' own mental models and the possibility of <•

an uncertainty principle have been suggested as fundamental in

nature. All of the limits outlined in this paper have practical

implications. For example, the deUign of "expert systems" is

premised on humans' abilities to verbalize their models; in

light of the above discussion, this ability would appear to be

more limited than is commonly assumed.

Despite the fundamental nature of some of the limits

outlined in this paper, the issues underlying the mental models

construct are important and deserve substantial attention. What

is needed, however, is to move away from the perception that

"truth" is being sought and, instead, emphasize the utility of

researching these issues to advance the state of understanding of

learning, problem solving, etc. This shift should help to

eliminate many minor issues, most of which appear to emanate f om

a rather zealous tendancy to coin new terminology.

By purging the debate of these minor issues, research should

be able to focus on the major, substantive issues including

..................................................
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accessibility, form and content of representation, nature of

expertise, cue utilization, and, of most importance,

"instructional issues. The literature is replete with insightful

thinking on these issues and a variety of interesting and 'N '

potentially important hypothese6 have been suggested.

- Unfortunately, however, there is a paucity of solid emirical data

available to support or refute these hypotheses. At the moment,

the research community's ability to generate conjectures and

publish them seems to be much greater than its ability to test

them empirically. What i needed are innovative (and validated)

empirical approaches to employing the mental models construct

*. usefully, moat Iikely involving a mix of several traditional

experimental methods with newer methods such as computational

modeling and linguistic analysis.

To conclude, the search for mental models is potentially of

great importance: any success that is achieved is likely to have

substantial impacts on system design, training, etc. However,,

there are fundamental limits on 4hat can be clearly seen on

looking into the black box. It appears that these limits will

have to be accepted as precluding the uncovering of "truth."

Fortunately, truth may not be necessary. If a pragmatic

perspective is adopted, research on mental models can avoid the

ephemeral. issues and concentrate on providing rigorously tested

answers to a variety of far-reaching arýd important questions.

""%. .. .. . .." . ...".. .. ":',-,"."." .',," "'. .."' N. . . . . . . . . . . . . . ." . .- . ..'' ,. . .... . . ..-. .-..21".; '•112 :ii .i2 < ~ -;?-'': i.:,; ''?i '
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