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ABSTRACT

The deformation characteristics of two thermomechanically
processed, high-Magnesium, Aluminum-Magnesium-Zirconium
alloys were investigated. The processing included warm
rolling at 300°C to 90-95% reduction. Tension testing was
done at various temperatures and strain rates and super-
plastic elongations were observed for both alloys. Sub-
sequently, samples of Al-10%Mg-0.1%Zr were tested at 300°C
to strains ranging from 8% to 267% as well as to fracture.
Strain rates of 6.67 X 10~3 S=! and 6.67 X 10=% s=1 were
used. These were examined via TEM to observe microstruc-
tural changes which occur during deformation. Quantitative
analysis of the functional relationship between stress,
strain, strain rate, and grain size for this alloy is done

in an attempt to fit it's deformation response to current

models for superplastic deformation.
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TABLE I
ELEVATED TEMPERATURE DEFORMATION MECHANISMS

. n1 n
€ = K1 'Deff g + KZ.DLG
dP
Exponent Values Mechanism
ng = 1; p =2 Nabarro~Herring Creep
ny =1; p=3 Coble Creep
*n, = 2; p= 2 to 3 Grain Boundary Sliding
(m = 0.5) with lattice (p=2) or
grain boundary (p=3)
diffusion accommodated
Dislocation Creep
n, = 4-5 for pure metals
(m = 0,20 - 0.25)
n, = 3 for solid solutions
(m = 0.33)

*This most closely reflects the observed mechanism and is
best modeled by Ashby and Verrall, except their model has
n = 1 (m= 100)0

1

The first term dominates in Region II and can accommodate
most of the prevalent models for superplasticity. The second
term dominatez at higher strain rates, Region III.

25
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At high stresses in Region III, it is generally accepted
that the deformation mode is some form of dislocation creep
[Ref. 16]. Grain boundary sliding with diffusional accommo-
dation occurs too slowly to contribute significantly to the
total deformation. The dominant dislocation creep mode
occurs by dislocation glide and climb aided by vacancy
diffusion. The basic theory was formulated by Weertman
[Ref. 17]. The result is a lower strain rate sensitivity
exponent in this region and the elongations are not as
great. Using a power law equation (Eq. 2.3 or equivalently
Eq. 2.4), ¢ « o" where n is around 4 to 5 for
dislocation creep in pure metals. Equivalently, this gives
a strain rate sensitivity coefficient, m, equal to 0.20 to
0.25. The rate controlling step in this model is
dislocation climb. For solid solutions Weertman [Ref. 18]
postulated that the solute atoms provide drag on the dislo-
cations and glide becomes the rate controlling mechanism,
resulting in an n value of 3. Sherby and Burke [Ref. 19]
found, however, that many of the solid solutions they
studied exhibited the power law relation formulated for pure
metals, with n equal to 4-5, Table I summarizes the various
strain rate relationships observed for elevated temperature

deformation.

24




Log €

Figure 2.1 Typical plot of log O vs. log € obtained from
constant strain rate data. In o = Be @, m,

the slope, is the strain rate sensitivity
coefficient.

T
9
960 4}

Figure 2.2 Illustration of the Ashby-Verrall model for
grain boundary sliding with diffusional
.accommodation [Ref. 14].

23




explain the grain boundary sliding was proposed by Ashby and
Verrall. They show the individual grains moving and chang-
ing their relative positions by grain boundary sliding with
diffusional accommodation. Figure 2.2 [Ref. 14] shows the
process. The strain rate equation predicted by their model

can be summarized as:

where n=1 and Dggpe = Dy + (6/d)Dgp, 0o = 0.72T/d. $§is

the effective cross section of the grain boundary for diffusional
creep and T is the grain boundary energy of the alloy. From
this, p=2 in equation 2.1 when DL > (5/d).DGB and p=3 when
(6/d)Dgg >> Dy. This also contains a threshold term

associated with extension of the grain boundaries to the

point they can slide. A problem here is that for o >> )

n=1 is generally not observed. The term more frequently

observed would be 02. When o is above but near Oo» the
apparent n will still be greater than 1.0, although the

(0 - 05) term itself is applicable. Additionally, Nix [Ref.
15] has shown that this type of grain boundary sliding and
accommodation cannot be occurring by diffusion processes
alone., Because of this, there are several alternate models

which focus on grain boundary sliding with slip accommoda-

tion which better explain some of the observed phenomenon.

22
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as a whole. With a high m value the increased strain rate
€ Wwill result in a higher flow stress for deformation
within that region and if the necking region has hardened
enough, further deformation will occur in another region.
The larger the m value the longer the necking instability
can be extended.

Figure 2.1 shows the three regions generally thought to
be present during high temperature deformation. Region I is
not always observed experimentally and some argue that it
does not exist. There are generally three viewpoints con-
cerning Region I [Ref. 131]:

1. It is actually an extension of Region II but due to
grain growth there is an apparent change from Region II.

2. Region I represents the influence of a threshold
stress below which no flow occurs.

3. A true change in mechanism occurs.
Region II, with the largest m values, is where the
greatest elongations occur. A typical m value reported in
the literature is 0.5. Thias gives a stress-strain rate

relationship of
€« g (Eq. 2.4)

This is just rearrangement of the terms of the power law
creep equation. The exponent 2 is referred to as 'n' and is
simply equal to 1/m. As previously stated, the deformation
mechanism in this region is generally accepted to be some

form of grain boundary sliding. The most prevalent model to

21




Because plastic deformation is a thermally activated
process, the flow stress at elevated temperatures is a
function of strain, temperature, and also strain rate. A
povwer law equation is often used to relate the flow stress

( 6) to strain rate ( €):
o = ke™ (Eq. 2.3)

where k is a material and temperature dependent constant and
m is the strain rate sensitivity coefficient. The value of m
changes with temperature, strain, and strain rate. This
expression has become prevalent in the literature to explain
and predict superplastic behavior. The exponent m can be
found as the instantaneous slope from a plot of log stress
vs., log strain rate. It is generally felt such a plot
should have a sigmoidal shape, with the three distinct
regions resulting from three different mechanisms of defor-
mation. It has been found that superplastic behavior may be
observed for m values from 0.3 to 0.9. The higher the m
value, the greater the elongation expected. (An m value of
1.0 would be a Newtonian fluid and would be perfectly super-
plastic.) The strain rate sensitivity coefficient can be
thought of as a measure of the material's ability to resist
further necking once it has started. The necking region can
be thought of as a smaller tensile specimen in itself. With
the necking localized within a small region the effective

strain rate within that region is higher than for .he sample

20




enough to pin grain boundaries, but precipitates signifi-

cantly stronger than the matrix will frequently result in
cavitation. This is because the second phase does not
deform with the matrix, and consequently cavities form at
interphase boundaries. These may coalesce and cause frac-
ture, or if they do not cause fracture their presence will
greatly degrade the mechanical properties of the material.
Because of this, cavitation in superplastic forming is of
great concern and is currently undergoing much further
study. Cavitation is generally reduced as the grain size is
decreased [Ref. 12]. The presence of a finely distributed
second phase is therefore necessary to prevent grain growth
and stabilize the microstructure but it should be deformable
with the matrix to prevent cavitation.

Superplastic deformation is a thermally activated
process and will not occur readily until T > 0.5T.
Diffusion controls the rate of deformation, and diffusion
coefficients, having an exponential temperature dependence,
are not sufficiently large except at relatively high temper-
atures. At such temperatures various creep mechanisms, all
involving diffusion, become possible modes of deformation.
The strain rate imposed in a stress-strain test must be low
to give time for superplastic mechanisms to work. At higher
strain rates, and therefore higher stresses, dislocation

creep may become the controlling deformation mechanism.

19
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their last step recrystallization of the material to attain

a fine, equiaxed microstructure. However, dynamic recrystal-
lization may also be used. This results when the fine grain
size is obtained early during the deformation process by
means of coalescence of dislocation structures to form high-
angle boundaries, as opposed to prior nucleation and growth
of new, strain-free grains [Ref. 11].

A second phase is generally required for superplasticity.
as a means to inhibit grain growth, Because superplastic
forming is done at high temperatures grain growth (resulting
in strain hardening and suppression of the superplastic
mechanism) must be restrained. A uniformly distributed,
fine precipitate will help pin grain boundaries and retard

grain growth as shown in the Zener-McLean relationship:

~ 4
d - 3f (Eq. 2.2)

where d is the size of grains whose boundaries are
restrained by particles of radius r, and volume fraction, f.
As the radius of the precipitate increases the mean distance
between them increases, therefore, the finer the particles
(assuming they are capable of pinning the grain boundaries),
the smaller the grains. Additional alloying with grain
refiners is frequently done, especially in aluminum, to

inhibit grain growth. The second phase must be strong

18




required because of the larger grains. At higher strength

levels the mechanisms for superplasticity may no longer hold
and dislocation generation, glide and climb become involved
in the deformation. This strain hardening, therefore,
results in decreased ductility.

Two processes frequently referred to when explaining
superplastic behavior are: 1) Nabarro-Herring diffusion
creep and 2) Coble diffusion creep. In Nabarro-Herring
creep lattice diffusion is the rate-controlling process,
Derr = D, and the grain size exponent p = 2. For Coble
creep, grain-boundary diffusion is the rate-controlling
process, Dges <« ng d~! and P = 3. Neither of these
processes adequately describes superplastic behavior, but
experimental observations of D,r¢ and p have been made which
coincide with these models [Ref. 51].

It is widely believed that the mechanism for superplas-
tic behavior involves grain boundary sliding. This dictates
the requirement for smooth, curved, high angle grain bound-
aries. Low angle subgrain structures (such as results from
warm working) do not slide readily under shearing stresses
because there is too much coherency in the lattice between
subgrains. Grain boundary sliding would require breaking the
majority of the bonds between the subgrains. Conventional
superplastic theory says such a microstructure should not be
superplastic. The vast majority of techniques used to

achieve a microstructure capable of superplasticity have as

17
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II. BACKGROUND

There are currently several prominent theories to explain

superplastic behavior., They are not in total agreement and

“one completely explains observed results. However, it is

& generally agreed there are certain requirements for super-

2 plasticity. These include: 1) a fine, equiaxed grain
P structure with high angle grain boundaries; 2) a second

8 phase which is comparable in strength to the matrix; 3) high

temperatures (> 0.5 Tm); 4) low strain rates (generally <
102 S'1); and 5) high strain rate sensitivity.

Typically, grain sizes less than 10 um are required
for superplastic behavior. The grain size effect on super-

plastic flow is generally taken to be of the form

. Degs
e@
4dP

f(a) (Eq. 2.1)

where € is the strain rate, p is the grain size exponent,

d is the grain size during superplastic flow, Dgege i3 the
effective diffusion coefficient, and f( o) is a function of
flow stress, o, This equation shows that for a constant € ’
as d increases, the flow stress must increase. In effect,
grain growth during deformation may result in the material
"strain ha :ning" during such superplastic f . The higher

. strength would result from the g:eater diffusi. iistances

i 16




..........

R W ™ W W = WY W~ ~

This work initially investigated two alloys: Al-8%Mg-
0.1%Zr and Al1-10%Mg-0.1%Zr. Tensile tests at room tempera-
ture, 250°C, and 300°C were conducted on each of these
alloys at strain rates varying from 1.39 X 10-4 s=1 to 1.39
X 101 s-1, Elongations in excess of 200% were achieved in
both alloys. At this point it was decided more thoroughly
to investigate the deformation response of the Al-10%Mg-
0.1%Zr alloy concurrently with related work by Hartmann
[(Ref. 9] and Berthold [Ref. 10]. It was also at this time
that the test specimen geometry was modified as explained in
Chapter III. Tensile tests were then conducted at 300°C to
six different strains prior to fracture at strain rates of
6.67 X 10~% s=1 and 6.67 X 10°3 s='. These samples were
examined using transmission electron microscopy (TEM) to
observe microstructural changes which occur during
deformation. Data obtained from the mechanical testing in
conjunction with the TEM work is evaluated and compared with

current theories of superplastic behavior.
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superplastic deformation to manufacture certain components.

In fact, in 1981, British Alcan Aluminum created a sub-
sidiary, Superform Metals Limited, to focus on the use of
superplastic forming for aluminum components. Certainly, *
the use of superplastic deformation is far from being in
Wwidespread use commercially; but as research continues and a
better understanding of the mechanisms involved is gained,
there is no doubt it will become a more common fabrication
process.

The purpose of this thesis was to investigate the
elevated temperature deformation response of two thermo-
mechanically processed (TMP) high-Mg Al-Mg-Zr alloys.
Previous research at the Naval Postgraduate School has
demonstrated that thermomechanically processed high-Mg
Aluminum alloys are capable of high strength with good
ductility, and at elevated temperatures superplastic elonga-
tions were achieved by several of these alloys. Using
transmission electron microscopy, McNelley and Garg [Ref. 8)
found that the TMP used gives these alloys a fine micro-
structure, consisting of cellular or subgrain structures.
Although a fine microstructure is considered a prerequisite
for superplasticity via grain boundary sliding, conventional
theories predict that low-angle subgrain structures such as
found in these as-rolled microstructures shouild not accommo-
date grain boundary sliding; yet superplastic elongations

are observed.

14




equiaxed, two phase microstructure. At elevated

temperatures and low strain rates these structures deform by
grain boundary sliding and superplastic elongations are
frequently achieved, but commercial applications are
limited. At room temperature these alloys are often either
too brittle or too soft for structural uses. Frequently in
two phase systems one of the phases is significantly harder
than the other and during superplastic deformation the hard
particles do not deform while the matrix does, resulting in
cavitation. Additionally, the requirement for a low strain
rate made these alloys infeasible for significant commercial
use, and so the research was mainly of academic interest.
Later, in the sixties and early seventies more focus was
given to commercial use of superplastic deformation pro-
cesses. Instead of finding alloys which displayed spec-
tacular superplastic elongations but were technologically
useless, more research was aimed at modifying important
existing alloys to become capable of superplastic deforma-
tions. Because such materials exhibit a low flow stress as
well as superplasticity, they have the potential to form
complex shapes with a minimum amount of energy expended.
Additionally, the fine microstructure needed for superplas-
ticity at high temperatures is also often a benefit at
service conditions; e.g, high strength and a smooth finish
[(Ref. 5]. Currently, numerous companies, such as Rockwell

International [Ref. 6] and Pratt and Whitney [Ref. 7] use

13

..............
..............




I R Bt S i AN S S St T T S A AL AR e I A

I, INTRODUCTION

Superplasticity refers to the ability of certain materials
to exhibit elongations of several hundred percent under cer-
tain conditions of strain rate and temperature. Examples of
superplasticity were published as far back as 1912, when
Bengough [Ref. 1] found a "special brass", ana / 8 brass,
which exhibited an elongation of nearly 200% at 700°C. 1In
1934 Pearson [Ref. 2] demonstrated that certain two phase
materials with a fine microstructure could achieve high
elongations and because of that work he is often given
credit for first demonstrating superplasticity. Two
Russians, Bockvar and Sviderskaya [Ref. 3], published
results of their extensive work with a superplastic Al-ZIn
alloy in 1945; there were numerous other articles written
prior to 1960, but research of superplasticity was treated
as more of a curiosity. Current interest in superplasticity
was motivated by Underwood's review in 1962 [Ref. 4] of the
work done in the USSR, Since that time considerable
research has been done in the area, and elongations well in
excess of one thousand percent are common in the literature.
Initially, research was centered on structures attained in
processing eutectic or eutectoid alloys, such as can be

found in the Pb-3Sn, Al-Cu, and Cu-Zn systems., It was felt

that such compositions were essential to achieve a fine,
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A. ALUMINUM MAGNESIUM ALLOYS

Aluminum alloys are technologically significant because
they are light in weight, generally corrosion resistant, and
have high strength with good ductility. The major alloying
elements used with Aluminum are Copper, Silicon, Magnesium,
Zinc and Manganese. Some of the more prevalent commercial
alloys are the heat treatable Aluminum-Zinc-Magnesium
alloys, such as 7075, and the Aluminum-Copper alloys, such
as 2024,

Aluminum-Magnesium alloys are significant because
Magnesium lowers the density and increases the strength,
giving a higher strength to weight ratio. 1In the Aluminum-
Magnesium alloy system the increased strength is mainly
attributable to solid solution strengthening and work
hardening. At higher Magnesium content precipitation
strengthening contributes, but this precipitation should be
kept fine and uniformly distributed. The maximum solubility
of Magnesium in Aluminum is about 15% at the eutectic
temperature of 451°C. The B phase is a relatively hard
intermetallic with composition MgsAls. A problem with the

B phase is at high Magnesium concentration it tends to
precipitate on the grain boundaries. This creates a
Magnesium-depleted zone adjacent to grain boundaries with a
resultant microstructure more susceptible to intergranular
corrosion and stress~-corrosion cracking. Commercially,

high strength Aluminum~-Magnesium alloys are usually limited
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to a Magnesium range of 4-6%. This is a result of the
potential for microstructural instability (intergranular
precipitation). Additionally, at concentrations near the
solubility limit (about 15%) the alloy becomes too brittle

for structural applications.

B. HIGH MAGNESIUM ALUMINUM ALLOY WORK AT NPS

Research on high Magnesium-Aluminum-Magnesium alloys
began at the Naval Postgraduate School in 1976 when Ness
[Ref. 20] tried to improve mechanical properties and refine
the microstructure of an 18% Magnesium Aluminum-Magnesium
alloy. Research in the thermomechanical processing of
various high Magnesium alloys was continued by several
students, including Grandon [Ref. 21], Speed [Ref. 22],
Bingay [Ref. 23], Chesterman (Ref. 24], Shirah {Ref. 251],
Glover [Ref. 26], and Johnson [Ref. 27]. The current ther-
momechanical processing sequence used for high Magnesium
Aluminum-Magnesium alloys at NPS evolved from their
research, The steps of the procedure are explained in
Chapter III. Included in the processing is a 24-hour solu-
tion treatment at 440°C. A higher temperature could result
in partial melting and a lower temperature may not result in
the entire sample being in the single phase region. The
upset forging is done at 440°C to provide hot working and
the billet is then returned to 440°C in the furnace for one

hour to ensure the entire sample is again isothermal prior

27
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It was found that the alloys would readily

to an oil quench.
recryatallize if worked at temperatures above the solvus, so
warm rolling is done just below the solvus at 300°C., The
rolling is done within 24 hours of upset forging and quench-
ing to avoid any possible Magnesium precipitation. Figure
2.3 shows the temperature range of interest in the processing.
It wasn't until Becker's work in 1984 [Ref. 28] that these
alloys were investigated for their mechanical properties at
elevated temperatures and their superplastic response was
found. Becker's research was principally with an Al-10%Mg-
0.5%Mn alloy which exhibited an elongation of about 400% at
300°C at a strain rate of 1.4 X 10-3 s=', He also investi-
gated an Al1-8%Mg-0.4%Cu alloy which achieved about 300%
elongation at 250°cC.

Fractional amounts of elements such as Manganese,
Copper, and Zirconium are frequently used as grain refiners

and to homogenize the microstructure in various aluminum

alloys. During deformation at elevated temperatures the
particles formed from these elements, MnAlg, CuMguAlg, and
ZrA13, act to pin the grain boundaries and prevent grain
growth., As stated earlier, grain growth strengthens the
material during elevated temperature flow during elevated
temperature flow and is detrimental to superplasticity.

Mills [Ref. 29] extended Becker's work on the Al-10%Mg-0.5%Mn
N over a larger temperature range and for more strain rates and

found activation energies and strain rate sensitivity

28
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coefficients consistent with those in the literature. Self

(Ref. 30] looked at several Aluminum-Magnesium alloys,
including: 8%Mg, 8%Mg-0.4%Cu, 8%Mg-0.4%Cu-0.5%Mn, 10%Mg,
10%Mg-0.4%Cu, and 10%Mg-0.2%Mn. He found the use of Copper
on an equal weight percentage as effective as the use of
Manganese to promote superplasticity. The primary benefit
of Manganese is as a grain refiner whereas Copper homoge-
nizes the microstructure and has some grain refinement
ability. Stengel [Ref. 31] continued the work of Becker and
Mills on the Al1-10%¥Mg-0.5%Mn alloy by using five different
annealing treatments following warm rolling, including: one
hour at 200°C, ten hours at 200°C, half hour at 250°C, one
hour at 250°C or one hour at 440°C (to recrystallize the
material), She found that annealing below the rolling tem-
perature enhanced the superplasticity; with a one hour
anneal at 200°C and subsequent testing at 300°C at a strain
rate of 5.6 X 10~3 s=! an elongation of 572% was achieved.
However, recrystallization strengthened the microstructure
and resulted in a decreased ductility. Berthold [Ref. 10]
and Hartmann [Ref. 9], concurrently with this work, did
extensive research on this Al-10%Mg-0.1%Zr alloy. Berthold
concentrated on microstructural aspects, examining the
microstructural changes during processing as well as after
fracture at various temperatures and strain rates for as-
rolled, annealed, and recrystallized samples. Hartmann did

extensive mechanical testing at various temperatures and

30
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strain rates for as-rolled, annealed, and recrystallized
samples. He also utilized this data to determine activation
energies and strain rate sensitivity coefficients.

This work focuses on the behavior of the alloy at 300°C.
The variation of the strain rate sensitivity coefficient, m,
with strain and strainrate is plotted and reasons for the
variation are postulated. Tensile tests to six different
elongations prior to fracture are done for two strain rates.

The microstructural changes which occur during testing are

followed using TEM, From the informat.on gained using
microscopy, a correlation is made of how o , € , € , d, and
m vary with deformation. The data is evaluated as to how
well it compares with current models for superplastic

deformation mechanisms.
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' III. EXPERIMENTAL PROCEDURE

|‘I.V‘l’.“

A. MATERIAL PROCESSING
The two alloys initially studied in this research were

direct-chill cast at the ALCOA Technical Center. The ingots
as received measured 152mm (6 in.) in diameter by 1016mm
i (40 1nJ.in length. The composition for each alloy is listed

below [Ref. 321].

7| b I

TABLE II
g ALLOY COMPOSITION (WEIGHT PERCENT)
f{ Serial Number si Fe Mg Zr Al
- 5572823 0.01 0.02 8.05 0.13 Balance
"
= $572826 0.02 0.02 9.90 0.09 Balance
\.a
%
_ Billets of dimension 32mm X 32mm X 95mm (1.25 in. X

1.25 in. X 3.75 in.) were sectioned from the as-cast ingots.
Following the procedures developed by Johnson [Ref. 27] and
Becker [Ref. 28], these were then solution treated at 440°C
for 24 hours, upset forged at U440°C on heated platens to
approximately 28mm (1.1 in.), annealed at 440°C for 1 hour
and then oil quenched. This hot working reduced the billet
by approximately 70%, equivalent to a true strain of about
1.2. Warm rolling was then done at 300°C within 24 hours

of upset forging in the manner described by Mills (Ref. 291.
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Isothermal rolling was desired so each billet was placed in
a furnace for about 30 minutes to heat from room temperature
to 300°C before attempting the first pass. The samples were
then heated for 8 to 10 minutes between passes to ensure
isothermal rolling. Each billet was rolled to a thickness
of about 1.8mm (0.07 in.) thickness., This took about 25
passes, resulting in a final warm reduction of approxi-
mately 94%, equivalent to a true strain of about 2.75. When
the specimen geometry was changed, the sample thickness
became 2.0 mm (0.08 in.) resulting in a warm reduction of
approximately 92%. Figure 3.1 is a schematic diagram showing
the steps in the thermomechanical processing. Figure 3.2
illustrates the processing sequence from ingot to fabricated

test specimen.

B. SPECIMEN FABRICATION

For the initial testing of these two alloys the
specimens were prepared as described by Becker [Ref. 281.
Each sheet was cut into blanks of dimension 64mm (2.5 in.)
long and 14.3mm (0.5625 in.) width and these were endmilled
to give gage dimensions of 3.1mm (0.12 in.) width and 15.2mm
(0.6 in.) length. This gives a gage width to length ratio
of 1 to 5. Figure 3.3 shows this specimen geometry. This
design emphasized a gradual specimen shoulder at the ends of
the gage section to prevent stress concentrations which

could cause premature fracture. Elongations were based on
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a gage length of 15.2mm (0.6 in.). but measurements were

taken end to end. Gage marks were not used on the specimens
because at elevated temperatures they are not well defined
or they may disappear altogether,

After initial testing of these alloys it was decided
that further, in depth testing would be done only on the
Al-10%Mg~-0.1%Zr alloy in conjunction with Hartmann. At this
time it was decided to change the sample geometry to make it
more comparable to current specimen geometries used for
tension testing of superplastic materials. At elevated
temperatures the ductility of a sample is less sensitive to
stress concentrations and a geometry with a better-defined
gage section (sharper shoulders) can be used. The new
geometry changed the gage dimensions to 5.1mm (0.20 in.)
width and 12.7mm (0.5 in.) length. This gives a gage width
to length ratio of 1 to 2.5, The new geometry is shown in
Figure 3.4, With this specimen geometry shoulder-to-shoulder
measurements before and after testing were used to determine
elongations. This eliminated errors in calculations caused
by elongation in the tabs of the sample which were not
accounted for with the previous sample geometry. Also, with
the previous design the samples were milled by the student
in sets of 5 on a small Tensilkut machine. However, after
the geometry was changed, the sample blanks were taken to

the machine shop to be endmilled to the proper specimen
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Dia = 0.133"

Figure 3.3 0l1d specimen geometry.

Dia=0.1015"

Rad=0.0625"

0.200"

Figure 3.4 New specimen geometry.
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dimensions. These specimens Jere produced to a much closer

tolerance than could be achieved with the Tensilkut machine.

C. SPECIMEN TESTING

Initial testing for both alloys was done at room
temperature, 250°C, and 300°C, with strain rates from 1.39 X
10=1 s=1 o 1.39 X 10=% s=1, An electromechanical
Instron machine was used for tensile testing; the testing
procedure was similar to that described by Self [Ref. 301.
Test specimens were placed in wedge-action grips and held in
place by pins passing through the wedges. The wedges were
slid into a grip assembly which is screw mounted on pull
rods connected to the Instron machine. The wedges, grip
assemblies and pull rods were produced by Applied Test
Systems, Inc. and are made of Inconel 718 specifically for
use at elevated temperatures, Elevated temperature testing
was conducted using a Marshall model 2232 three-zone
clamshell furnace. Furnace temperature is controlled by
three separate controllers, one for each zone. The three
thermocouples used for controlling the zone temperatures
were brought in through the side of the furnace and had
glass fiber insulation wrapped around them. The thermo-
couple to control the upper zone was located about six
inches above the thermocouple entrance point and approxi-
mately one inch in from the heating elements. The control

thermocouple for the bottom zone was located in a
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corresponding location below the entrance point, and the
thermocouple for controlling the middle zone was just
approximately one inch in from the entrance point,

Additional insulation was used at several locations both
inside and outside of the furnace., Glass insulation of one
inch thickness was used throughout except where noted., Flue
effects were reduced by using insulation mounted inside the
furnace at the top and bottom where the pull rods go
through, such that the insulation wraps around the pull rods
when the furnace is closed. Also, on the outside top and
bottom of the furnace ceramic plates were slid in place
almost flush around the pull rods after the furnace was
closed., Pads of insulation with a slot and hole cut for the
pull rods were also placed on the top and bottom of the
furnace to help minimize heat loss. Two or three pads were
used on top and one pad was used on the bottom; the bottom
pad was secured to the furnace by wrapping Nichrome wire
around it and the furnace. Thin strips of asbestos-
lmpregnated paper and glass fiber insulation were placed
inside the furnace doors on the closing surfaces.

Three thermocouples were installed inside the furnace to
directly monitor the specimen temperature. Two thermo-
couples were brought through the top of the furnace alongside
the upper pull rod. Asbestos-impregnated paper and glass
fiber insulation was wrapped around the pull rod and

thermocouple couple and this was secured with Nichrome wire.
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Figures 4.2 and 4.3 are true stress vs. true strain plots at
300°C for these alloys. Figures 4.4 and 4.5 plot ductility
data for these materials at 250°C and 350°C while 4.6 and
4.7 plot stress vs. strain rate data corresponding to the
ductility data. 1In this temperature regime, the lower Mg
alloy (8% Mg) is both stronger and less ductile. Both as
well exhibit an initial strain hardening during deformation.
This initial hardening is thought to result from an unstable
microstructure in both cases, where the grain size increases
during deformation (refer to Eq. 2.1, 1/dP dependence
predicted for Region II).

The decreased strength and increased ductility attained
in the 10% Mg alloy compared to the 8% Mg material is con-
sistent with previous work by Becker and Self. This is
thought to arise from the differing amounts of the interme-
tallic B8 (MgSAle) available to stabil‘ e the structure
against grain growth during deformation. If, as noted pre-
viously, the Mg content of the solid solution is the equi-
librium value for 300°C, then there will be lesser volume
fraction of B in the 8% alloy. Hence, grain structure will
tend to be more coarse with higher strength and lesser
extent of Region II, again as indicated by equation 2.1,

The importance of the Zirconium addition is not clear at
this point. The Zirconium is non-uniformly distributed as
found by Berthold. Interaction between the ;. (ZrA13)

and the 8"8 (MggAlg), the efectiveness of the Bz, in
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Figure 4.1 Weight percent Mg in solution vs. true rolling

strain for Al-10%Mg binary alloy, showing
increase in hardness and precipitation of Mg
from solution during warm rolling at 300°C.
From McNelley and Garg [(Ref. 8].
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In view of the TMP used on these al .ys, it is not surpris-
ing these alloys exhibit such similar room temperature char-
acteristics. As previously stated, the main strengthen-ing
mechanisms for these alloys is solid solution strengthening
and work hardening which comes from warm rolling to about
94% reduction or 2.75 true strain. Figure 4,1 from McNelley
and Garg [Ref. 8] shows that as the true strain increases
the amount of Magnesium in solution decreases until it
reaches the solubility limit of about 7% for the 300°C
rolling temperature, Although this figure illustrates
results for a 10% Mg alloy, there is undoubtedly a similar
pattern for an 8% alloy. Therefore, both alloys would have
about the same amount of Magnesium in solution and both have
experienced about the same amount of strain hardening from
the rolling procedure. Using the lever rule it is found the
8% alloy should have about 3.5 weight pct. of B phase, while
the 10% alloy has about 10.5 weight pct. of B8 phase.
Because of the TMP used there is little strengthening from
the B precipitation.

At elevated temperatures the ductility of the 10%
Magnesium alloy is clearly superior to that of the 8% alloy.
While an elongation of over 200% was achieved by the 8%
alloy at 300°C, the 10% alloy exhibited in excess of 300%
ductility at 300°C and at a strain rate ten times faster
(1.39 X 10=3 vs. 1.39 X 10=% s=1), Figures 4.2 through 4.7

summarize the mechanical test data for these two alloys.
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IV. RESULTS AND DISCUSSION

A. INITIAL MECHANICAL TEST RESULTS

Tensile testing was done as described in Chapter III on
the Al1-8%4Mg-0.1%Zr and Al-10%Mg-0.1%Zr alloys, processed by
warm rolling, and stress-strain data was obtained. Tables
III and IV summarize the data obtained for these two alloys.
Appendix A contains a complete set of plots for engineering
stress vs, engineering strain and true stress vs. true
strain for these alloys.

Both the 8% and the 10% alloys show good room tempera-

ture properties and ductilities are about 10% for each.

This is considered sufficient for most applications of high-
strength Aluminum and is comparable to the superplastic
Al-Mg-Cu alloys previously researched at NPS. It is a
significant improvement over the 3-4% ductilities exhibited
by the superplastic Al-Mg-Mn alloys studied previously,
Ductilities of less than 5% indicate in sufficient toughness
for most applications. It has been reported that Copper
additions to high strength Al-Mg alloys are less desirable
because of an increase in susceptibility to pitting corro-
sion, The ultimate tensile strength of each of these alloys
is about 450 MPa which is comparable to all the alloys
previously researched, Overall, there is little significant

difference in room temperature response of these two alloys.

45




diamet ° were punched out and these were electro-polished
using a TENUPOL 2 polisher. An electrolytic solution of two
parts methanol and one part nitric acid maintained at about
-20°C was used to thin the specimen. The samples were
thoroughly rinsed in methanol after thinning. Microscopy
was done on a JEOL (JEM-100 CX II) Electron Microscope.

Kodak Electron Microscope film 4487 was used.

G. GRAIN SIZE DETERMINATION

Grain sizes were determined by using the mean-~linear-
intercept (L) method. An 8 cm X 8 cm grid was used with
micrographs with a magnification of 5000 diameters.
Equation 3.5 was used to determine the mean intercept

length.

f: = — (Eq- 3.5)

where L is the mean intercept length and Np is the number of
intercepts of grain boundaries or substructure per unit
length of test line [Ref. 33]. Measurements from one to
three micrographs representative of the specimen were used

to determine an average L.
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3. Elongation of the sample outside of the gage section.
The computer reduction was based on a gage length of
either 0.6 in. for the original specimen geometry or
0.5 in. for the new geometry. The chart records
crosshead movement and cannot distinguish gage length
elongation from elongation outside the gage length.

After the geometry was changed it was decided to adjust
the computer reduced data to coincide exactly with the
measured elongation. This was accomplished with a simple
correction factor which equaled the ratio of measured
elongation to computed elongation. A typical value for this
correction factor would be 0.900. The correction was

accomplished with a simple computer program.

E. COMPUTER PROGRAMS

Data reduction programs were written in Fortran and were
run on the IBM 3033 at the Naval Postgraduate School. All
plotting was accomplished using EASYPLOT, an interactive
computer plotting routine available on the IBM 3033. The
programs used to reduce and correct the raw data along with

sample input data files are included in Appendix C.

F. METALLOGRAPHY

Using transmission electron microscopy a comparison
done of microstructures at various strains prior to fracture
(approximately 8%, 14%, 20%, 45%, 160%, and 260%) for strain
rates of 6.67 X 10=% s=1 and 6.67 X 10-3 s=1, Gage sections

of the specimens were polished using 240 to 600 grit paper

to a thickness of about .254mm (0.01 in.). Discs of 3mm




................

magnification factor, the Instron full load scale setting,
and the specimen's initial dimensions. A computer program
was used to convert this data to engineering stress,
engineering strain, true stress, and true strain. The

following basic formulas were used:

Teng = P/Ag (Eq. 3.1)
e = (Lf - Lo)/L° (Eq. 3.2)
€ =z 1n (1 + e) (Eq. 3.4)

where e is engineering strain and € is true strain and

o] is engineering stress and O.,.,o is true stress. Since

eng
these relationships for true stress and true strain are only
valid up until the onset of necking, true stress vs. true
strain plots show those points past the onset of necking as

a dashed 1line.

There was routinely a discrepancy between the measured
elongation and the elongation computed using the raw data
from the strip chart. This discrepancy was as high as 20%
in some cases but averaged about 10% difference. Some of
the factors contributing to this error were:

1. Deciding on the point of fracture from the strip

chart. For the highly superplastic samples the load at

fracture was perhaps only a fraction of a pound.

2. Grip seating. The wedges are slid into the grip
assembly and as the load increases the wedges could be
seated more securely within the grip assembly. The

strip chart would record this as elongation of the
sample.
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D. DATA REDUCTION

_ Elongation was determined by measurement of the test
specimen before and after tension testing. For the original
geometry these measurements were taken end-to-end and a gage

! length of 15.2mm (0.6 in.) was used to determine elongation.

3 % Elongation = (Lg - Lg) / 0.6

(Lo = 205 ino)

For the new geometry these measurements were taken shoulder-
to-shoulder and a gage length of 12.7mm (0.5 in.) was used

to determine elongation.

% Elongation = (Gg - G,) / 0.5
(G, = 0.625 in.)

The Instron strip chart recorded the applied load (1bs.) vs.
chart motion. The magnification ratio between chart speed
and crosshead speed varied from 10-100 for these tests. For
accurate determination of stress-strain strain behavior,
values of 40, 50 or 100 were used.

From the strip chart, raw data points of chart displace-

ment and load were taken from the curve and put in data

files to be reduced. A "floating slope" was used on the
strip chart from which measurements were taken. This was
used to remove such'variables as grip adjustment and elas-
ticity of the sample as well as Instron components them-

selves., The input data file would also have the
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One of these thermocouples was placed in contact with the
upper tab of the sample to directly monitor the temperature
of the specimen. The second was placed near, but not
touching, the middle of the gage section of the sample. The
third thermocouple was brought up through the bottom of the
furnace and was secured to the bottom pull rod in a similar
manner as above. It was placed in contact with the lower
tab of the sample. The furnace controllers were adjusted
such that these three thermocouples were all within 1% of
the desired testing temperature. The furnace was heated for
24 hours prior to conducting a sequence of tests for a given
temperature to ensure the temperature had settled out to the
desired testing temperature. After a sample was mounted the
furnace was closed back up and the three thermocouple
temperatures were monitored until they were back within the
desired range for testing. It would usually take about one
hour for the temperatures to reach equilibrium and then the
tensile test would begin. The crosshead speeds ranged from
0.0508mm/min (0.002 in/min) to 127mm/min (5 in/min). For
the original specimen geometry this provided strain rates
from 5.55 X 10~° s=' to 1.39 X 10! s='. For the new
specimen geometry this provided strain rates from

6.67 X 10~ s=1 to 1.67 x 10~ s-1,

40
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retarding microstructural coarsening and the relative impor-
tance of the Zr and Mg content all need further microstruc-

tural analysis.

B. EFFECT OF SPETIMEN GEOMETRY, DATA SCATTER

As explained in Chapter III, the specimen geometry was
changed after initial testing of these two alloys to more
closely resemble specimen geometries used in superplastic
testing in other laboratories. After changing the specimen
geometry, a series of tests were conducted at 300°C with
similar strain rates for specimens of both geometries. The
newer geometry consistently gave better ductilities, as
expected, due to the lower length to width ratio of the gage
section, Figures 4.8 and 4.9 are plots of ductility vs.
strain rate for the old and new geometry specimens, respec-
tively., Multiple tests at many of the strain rates show the
significant data scatter experienced throughout this
research., Data scatter such as seen here is of concern,
there are even a few tests where there is over 100% differ-
ence in results. It can be argued that experimental error
might account for some of the data scatter, particularly
when ductilities fall significantly lower than others. The
data scatter, however, also reflects the statistical nature
of the mechanisms involved in the deformation. Any material
flaws: voids, impurities, or inordinate constituent particle

or grain sizes might accelerate the deformation processes
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locally and result in significantly less ductility than
would be for a "perfect"™ specimen. Besides getting better
ductilities with the new specimen geometry, it also appears
there has been a small shift to higher strain rates for
maximum ductility. It is not known whether such a shift is
real or whether it reflects the data scatter involved. Of
course, because the data scatter is significant, it must be
further studied as more knowledge of the mechanisms involved
is gained. Figure 4,10 shows a comparison of flow sStresses
at 0.1 true strain vs. strain rates for each of the specimen
geometries. As can be seen, one curve can fit both sets of

data, meaning the strengths are the same, as expected.

C. TESTING OF Al1-10%Mg-0.1%Zr AT 300°C

1., Mechanical Test Data

Concurrently with Berthold [Ref. 10] and Hartmann
[Ref. 9] further research of the Al-10%Mg 0.1%Zr alloy was
initiated. This research focused on the materials response
when deformed at 300°C. Eleven different strain rates were
tested and results are summarized in Table V. Appendix B
contains a complete set of plots developed during this
series of experiments. The true stress vs. true strain
curves are similar to those shown in Figures 4.2 and 4.3,
with early strain hardening followed by a region of
straining at relatively constant stress prior to the onset

of necking. It is significant to note that over a range of
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strain rates from 3.33 X 10~% s=1 to 3.33 x 10-2 s~!

elongations were all at least 300%. Technologically
significant is the high strain rate, 10~' S=! (10 pct. per
second) at which ductility in excess of 200% is observed.

Using this same data, a study was done on how the
strain rate sensitivity coefficient, m, changes with strain.
All previous research at NPS based calculation of m on the
slope of the log (o) at 0.1 true strain verses the log (€ ).
The literature frequently quotes values for m, but it is
seldom stated what value of true strain was used in the
calculations, This is because the flow stress often is
constant over a large range of strain. This being true, it
does not matter what value of true strain is used and m is
the same throughout this region. Figure 4.11 shows how the
log o vs. log £ plot is made. As can be seen, any
constant strain value, after initial strain hardening, can
be used and the curve will be the same, if the flow stress
is constant. This is not observed with this alloy. There
is significant hardening up to € = 0.1 and then gradual
hardening up to the onset of necking. Plotting true stress
vs. strain rate on logarithmic axes for several values of
true strain reveals that the coefficient m clearly decreases
with increased strain as well as demonstrating the strain
hardening.

It is important to note that this type of analysis

can only be done for true strains before the onset of
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Figure 4,11

Me P o= o= o
Moy == o

Log ¢

Schematic diagrams illustrating determination

of m: a) true stress vs., true strain for vaqigus

strain rates; b) log 0 vs. & log, with ¢ = Be
m = slope.
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necking. At the onset of necking the equations for true
stress and true strain (Eqs. 3.3 and 3.4) are no longer
valid and calculations would have to reflect the reduced
area at the neck. For this analysis, true stress vs. strain
rate was plotted on logarithmic axes for true strains of
0.02, 0.05, 0.1, 0.2, and 0.5, Figure 4,12 shows the curves
for 0,02, 0.1, and 0.5 true strain. Plots for all the
strains are included in Appendix B. The m value found for
0.02 strain is about 0.38 and for the 0.5 strain plot (at
lower strain rates), it is about 0.29. It should be noted
that for most materials m varies between 0.02 and 0.2 for
temperatures between 0 absolute and 0.9 T, [Ref. 341].
Several other observations may be made. At low
strain rates, rapid strain hardening is seen due to the
grain growth. Micrographs presented later will reinforce
this point. For a strain rate of 6.67 X 10=2 S‘1, the
strength more than doubles from 8 MPA to 21 MPA going from
true strain of 0.02 to 0.5. Conversely, the strain
hardening at a strain rate of 1.67 X 10=1 s-1 15 only about
9%, from 147 MPA at 0.02 true strain to 160 MPA at 0.2 true
strain. It is also readily apparent that the shape of the
curves are different. Recalling Figure 2.1, a log O vs,
log € plot for superplastic materials generally is sigmoidal
in nature. For this alloy, Regime I is not apparent for the
strain rates tested. If lower strain rates were tested,

still more rapid strengthening due to grain growth very
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likely would lead to tailing off of the curve. However, as
pointed out earlier, Regime I may reflect a threshold stress
below which flow will not occur, or Regime I may not exist
at all.

It is also seen that Regime III becomes more apparent
as the strain increases. Regime III represents a change in
the mechanism of deformation. In Regime II the flow process
is more diffusionally accommodated, whereas in Regime III
the stresses are higher, dislocations are generated and the
mechanism of deformation likely is dislocation creep. The
curve for 0.02 strain appears fairly linear through all
strain rates tested, whereas for the 0.5 strain curve there
is a distinct transition to a region where m is about 0.17,
signifying a change in the deformation mechanism to disloca-
tion creep, although the corresponding n of 5.9 is slightly
larger than either Weertman model would predict. It would
appear that if tests were conducted at higher strain rates
the change of mechanism would become apparent at lower
strains. Figure 4.13 shows the strain rate sensitivity
coefficient m vs. true strain.

It is concluded that the coarsening of the substruc-
ture which occurs with strain strengthens the material and
also acts to suppress superplastic response. In effect the
growth shrinks the strain rate regime over which high elon-
gations can be achieved. This is undesirable because an

important goal in the design of superplastic alloys is to be
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Figure 4.21 Transmission electron micrographs of

Al1-10%Mg-0.1%Zr after fiactTre with
straining at 6.67 X 10°% S™%, showing
dislocations in grain or subgrailn
interiors.
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Figure 4,20

Transmission electron micrographs of
AL-10%Mg-0.1%Zr afteg el?ngation to 260%
strain at 9.67 X 1072 S=' (a) and

6.67 X 10~ s~1 (b),
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Figure 4.19 Transmission electron micrographs of
A1-10%Mg-0.1%Zr aftes el?ngation to 160%
strain at 9.67 X 1072 87' (a) and
6.67 X 10~% s=1 (p),
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Figure 4.18 Transmission electron micrographs of
Al-10%Mg-0.1%Zr af‘teg el?ngation to 45%
strain at 9.67 X 1072 s7' (a) and
6.67 X 10=7 s=' (b).

78

PSR YN P R W R e



Figure 4,17

Transmission electron micrographs of

Al-10%Mg-0.1%2Zr aftes el?ngation to 3%

strain at .67 X 107

5=
6.67 X 10=% s=' (b).

(a) and
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Figure 4.16 Transmission electron micrographs of
Al-10%Mg-0.1%Zr for as-rolled condition
(a) and after 1 hour heating to 300°C (b).
76
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Figure U4.15 Samples of Al-10%Mg-0.1%Zr pulled to various
elongations at 6.67 X 1073 s=', including:
unstrained, 8%, 20%, u45%, 160%, 265% and to
fracture (485%).
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plot of the results. Between 150 and 300 intercepts were
counted at each strain so still more microscopy would need

to be done to try to draw definitive numerical conclusions.
The trend, however, is clear. There is appreciable grain
growth during testing with this alloy, especially at lower
strain rates. At 6.67 X 1073 s=1 where grain growth was
less, an elongation of 485% was achieved. At 6.67 X 10=% s=1
where grain growth was more severe, an elongation of 330%
was achieved.

Berthold's [Ref. 10] microscopy on the as-received
structure showed ZrAlj particles (8,,.) as large as 10 um,
All the Zirconium should have been in solution to be precip-
itated out during TMP as fine @8;,. particles which
would then pin the grain boundaries. As result of the high
Mg content in this alloy, primary BZr formed in the liquid
and grew because of rapid diffusion in the liquid state.
These primary particles, having formed at such high tempera-
ture, are stable and resistant to resolutioning. There is,
therefore, less Zr available to form fine ZrA13 to serve
more effectively to pin boundaries and stabilize the grain
size.

3. The Grain Size Exponent

The data available was utilized to attempt to deter-
mine the grain size exponent in Eq. 4.1 applicable here. For
p = 2, lattice (or bulk) diffusion is indicated as the rate

controlling process in the deformation mechanism. The
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micrographs are at the top of each page. It is readily
apparent that by 45% elongation there is a significant
difference in the size scale of each microstructure. The
slower strain rate has resulted in a considerably coarser
microstructure. Whereas annealing at 300°C results in
initial recovery with little subsequent coarsening, addi-
tional straining results in noticeable coarsening, and much
more so at the slower strain rate where more time is avail-
able for the grain growth to take place., It appears the
microstructure is undergoing recrystallization, but the
recrystallization is not of the conventional nucleation and
growth process where new, strain-free grains form ¢»d grow
through dislocated regions. Instead, it appears that the
microstructure recovers continuously until the relatively
low-angle subgrain structure becomes in many areas essen-
tially a high-angle grain structure. These structures then
continue to grow into adjacent regions. The micrographs in
Figure 4,21 is from a sample pulled to fracture at a strain
rate of 6.67 X 10~% s=1, Significant dislocation activity
is still apparent and it is seen these are able to cut
through substructure boundaries, meaning that they are rela-
tively low-angle boundaries. It is not known from what
source these dislocation were generated. They may be a
result of accommodation by slip of grain boundary sliding.
Using micrographs from each sample, the microstructure size

was measured at the various strains and Figure 4,22 is a

® .




Another sample was heated for two hours at 300°C and then
examined via TEM to determine the effect of time at tempera-
ture without straining. It must be noted that a rigorous
EE quantitative study of the microstructures was not attempted;
| i.e., analysis of grain misorientations and percent recrys-
tallization were not done. Observations of changes in the
microstructure are from more of a qualitative viewpoint.

Figure 4,16 shows the significant recovery which
takes place within the hour it takes for the sample to reach
300°C. The as-rolled condition has a high dislocation
density, the grains cannot be distinguished and the sub-
structure is diffuse by the time the sample is heated to
3009C for one hour it has recovered sufficiently to distin-
guish a fine subgrain structure. The mean intercept length
for this substructure was determined to be 1.9 um. The
sample which was heated for two hours showed no discernible
change in microstructure from that heated one hour. This
follows the previous research on Aluminum-Magnesium alloys
that found the alloys did not recrystallize unless heated
above the solvus, which is about 350°C for the 10% Mg-Al
alloys.

Figures 4,17 through 4,20 are a progression of
micrographs showing the change in microstructure as it is
strained. They show the microstructures at about 8%, u45%,
% 160% and 265% elongation for strain rates of 6.67 X 10-3 s~!

; and 6.67 x 10~% S", respectively, The faster strain rate
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If the change in strain rate is instantaneous and d is, in
fact, constant, the resultant m value from this test would

be higher than the apparent value obtained here. Figure

4,14 illustrates this. If the processing could be modified to
attain a stable microstructure, the current procedure would
exhibit a higher value for m.

2. Microstructural Analysis

It was seen in previous work at NPS [Refs. 28, 29,
30 and 31] that there is considerable change in the micro-
structure of these alloys from the as-rolled condition to
that at fracture. Berthold [Ref. 10) showed the same to be
true for this alloy. It was therefore decided to conduct a
series of tests at 300°C where samples were pulled to
various strains prior to fracture and then examined via TEM.
This was done at two strainrates to determine the effect of
strain rate on the microstructure as well. At a strain rate
of 6.67 X 10=3 s~-1 samples were pulled to elongations of
8.4%, 20.0%, 45.6% 103.2%, 162%, and 267%. For a strain
rate of 6.67 X 104 s=1 (10 times slower) samples were
pulled to elongations of 8.6%, 13.8%, 43.2%, 100.2%, 157.4%,
and 263.8%. Figure 4.15 shows the samples pulled at
6.67 X 10=3 s~1, Additionally, a sample was placed in the
300°C furnace, heated for one hour and then examined via
TEM. The microstructure of this sample demonstrated the
changes which take place from the time an as~rolled sample

is placed in the furnace until just prior to testing.
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able to deform the material at the highest possible strain

rate. The grain growth in this alloy decreases this strain

rate region where good superplastic response can be attained.
Recalling from Table I, the mechanism for superplas-

ticity is assumed to follow a constitutive law of the form:

n

(o]
off —3— (Eq.

e = K D 4,1)

where n is experimentally found to be about 2. This is

equivalent to

o = Cel (Eq. 4.2)
d2
where ¢ , T, and d are constant and C = ——_., From this
K Deff‘
3(1ln 0)
m = —_— (Eqn 4.3)
true = 3(1n &)
e, T,d

However, if 4 is not constant, using constant strain rate
tests to determine m will not be accurate. A better method

would be to use a step strain rate test as described, for

example, by Meyers and Chawla [Ref. 34]. 1In this test the
strain rate is instantaneously changed from él, to ¢ > and
the two corresponding flow stresses, o4 and 0, are

obtained by extrapolation and used to find Merye from Eq. 4.3.
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exponent on d becomes 3 when grain boundary diffusion is
rate controlling, This added dependence on d comes from the
Derf coefficient as discussed in Chapter II. Using the true
stress data for each of the tested strain rates (refer to
Figure 4.12), with the data of mean intercept length vs.
true strain (Figure B.1ll from Figure 4.,22), a plot of true

stress vs. mean intercept length was constructed. This is

shown in Figure 4.23. It should be noted that the true
stress data could not be taken directly from the data used
to generate Figure 4,12 because the true strain rate changes
with strain. The greater the strain, the lower the true

strain rate and therefore the true stress at the given

strain rate is higher than would be taken directly from the
data. Additionally, to extract a value of p from the data
an exponent of 2 was assumed for the flow stress o. This
derivation also assumes the grain size, d, is directly
proportional to the mean intercept length.

From Eq. 4.1, with the exponent on d an unknown, p,

it can be shown that:
log 0o = 1/2 log C + p/2 log d (Eq. 4.4)
where C = constant = é/KD

Therefore the slope of log 0 vs. log d should be equal to
p/2. The curves in Figure 4,23 are obviously not linear,

however, some useful data can be extracted. For the slower
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strain rate where more significant grain growth is apparent,
a fairly good linear fit can be made over the last four data
points. If this is done, a slope of 1.27 gives a value for
p equal to 2.54. This is almost exactly in between the two
modeled values of 2 and 3. Using this approach it would be
difficult to plot any further data because, although mean
intercept length data is available, localized necking begins
to occur beyond the maximum strain of 0.5 used for this
plot. It might be speculated that the slope would continue
to decrease to about 1 where p would equal 2, but no such
conclusion can be drawn., Nothing can be gained from the
curve for the faster strain rate because the data points are
too clustered together. It should be noted that the first
point on each plot can be termed a hybrid. The yield
strength, which is difficult to determine, is used with the
mean intercept length found from the sample heated to 300°C
for 1 hour. The point is included to show the trend of the
curves.

In summary, this set of experiments showed signifi-
cant grain growth in this alloy when tested at 300°C, and
the lower the strain rate, the greater the grain growth.
This microstructural instability was also evident in
Hartmann's work [Ref. 9]. He found values for activation
energy signifying lattice diffusion from test temperature of
150°C up to about 275°9C, and then again above 350°C.

In the temperature range around 300°C to 350°C there are
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dramatic microstructural changes; ie., continuous recrystal-
lization, and then conventional recrystallization which
resulted in an anomalously low or even negative activation
energies. It has been shown here that the behavior of this

alloy fits the most prevalent model for a superplastic

mechanism of deformation, expressed as Eq. 4.1, with a stress
: dependence of 2 and grain size exponent likely 2 as well.
h This model is thought to be most applicable to a fine,

equiaxed grain structure with high-angle grain bounda: ies.

The TMP used on this alloy, however, results in an elongated
grain structure with a dislocation substructure initially.
When testing at 300°C it appears the microstructure under-
goes recovery, continuous recrystallization and grain growth
processes and the resultant mechanical behavior follows that

modeled for a classical superplastic material.




V. CONCLUSIONS AND RECOMMENDATIONS

The following conclusions are drawn from this research:

1. The greatest elongations for this alloy are exhibited
when tested at temperatures around 300°C. This is
below the solvus for Mg and it appears the high

- dislocation density, subgrain structure of the as-

rolled condition undergoes a continuous recrystalliza-

[~ tion process resulting in a microstructure of mixed

i high and low angle grains.

b

‘ 2. Grain coarsening is seen in the alloy when tested at
. 300°C. This results in strain hardening of the alloy
a3 and is detrimental to the superplastic elongations
achieved.

3. The functional relationship between stress, strain,
N strain rate and grain size for this alloy can be
- considered consistent with current models used to
J describe a superplastic deformation mechanism.

4, The Al-10%Mg-0.1%Zr alloy showed consistently greater
elongations than the Al1-8%Mg-0.1%Zr alloy. The poorer
- elongations exhibited by the 8% alloy were a result of
> too much of the magnesium going back into solution at
2 around the 300°C temperature range.

The following recommendations for further study are made:

1. Investigate changes in the processing to result in
more of the Zirconium being finely dispersed
throughout the microstructure in an attempt to
stabilize the microstructure.

2. Conduct step strain rate tests to measure the effect
of the grain growth on the strainrate sensitivity of
the alloy.

3. Investigate room temperature mechanical behavior of
the alloy after it has been deformed at elevated
temperatures.

. 4, Further research into the deformation mechanism
A observed for this alloy with a view toward determining
3 the role of dislocation type processes.
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