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1. Introduction

; This report presents the results of the investigations conducted over a

period of four years on control algorithms designed for stochastic systems.

fhese .

The main feature of these alyorithis 1s that -ehrey account for .

?}trT ” the current uncertainty in the systemj Frndr

/}f&&73)the anticipated future uncertainty in the system, which 1is,

in general control-dependent
jcautxous"fzz;perty

The first feature leads to the control to nave the
in order to minimize the effect of the current uncertainties on the system's
pertormance.

The second teature allows the control to affect i1n addition to the
system's state also the system's uncertainty. Such a controller is called
Jo a” '?/ /
#dual controller” because, by taking advantage of 1ts "dual effect" has the
capability of reducing the future uncertainties.

These uncertainties can pertain to the system's state or its unknown
parameters. Both continuous-valued and discrete-valued uncertainties have
been considered. €&

The next section summarizes the major results of the research effort

that have been published in reading control journals and presented at

major national and international conferences.
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In the following an outline of each publication 1s yiven. rult

papers appear in the Appendix.

2-1.
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C.J. Wenk and Y. Bar-Shalom, "A Multiple Model Adaptive Dual Control
Algorithm for Stochastic Systems with Unknown Parameters," 1EEE Trans.
Automatic Control, vol. AC=-25, pp. 703-710, Auy. 1980.

In this work an adaptive dual control algorithm is presented for linear
stochastic systems with constant but unknown parameters. The system
parameters are assumed to belony to a finite set on which a prior proba-
bility distribution is available. The tool used to derive the algorithm
is preposterior analysis: a probabilistic characterization of the future
adaptation process allows the contrtoller to take advantaye of the dual
effect. The resulting actively adaptive control called model adaptive
dual (MAD) control is compared to two passively adaptive control
algorithms-the heuristic certainty equivalence (HCE) and the De-

shpande-Upadhyay-Lainiotis (DUL) model-weighted controllers. An

analysis technique developed for the comparison of different con-
trollers is used to show statistically significant improvement in
the performance of the MAD algorithm over those of the HCE and DUL.

Y. Bar-shalom, "Stochastic Dynamic Proyramming, Caution and Probing,"
IEEE Trans. Automatic Control, vol. AC-26, pp. 1184-1195, Oct. 198l.

Tne purpose of this paper 1s to unify the concepts of caution and probing
put forth by Feldbaum with the mathematical technique of stochastic dynamic
programming origyinated by Bellman. The recently developed aecomposition of
the expected cost in a stochastic control problem, is used to assess yguan=-
titatively the caution and probing eftects of the system, uncertainties

on the control. It is shown how in some problems, because of the
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uncertainties, the control becomes cautious (less aygressive) while in
other problems it will probe (by becoming more agyressive) in order to
enhance the estimation/identification while controlling the system.

Following this a classification of stochastic control problems

according to the dominant effect is discussed. Tnis is then used to point

out which are the stochastic control problems where substantial improve-
ments can be expected from using a sophisticated algorithm versus a
simple one.

Y. Bar-Shalom and J. A. Molusis, "Stochastic Control and Identification

Enhancement for the Flutter Suppression Problem," Proc. 8th IFAC World
Conyress, Kyoto, Japan, Aug. 19s8l.

The topic of this paper is the application of some recent results in
Stochastic control to an aerospace problem where there are larye
uncertainties in the dynamics of the plant to be controlled. An approxi-
mation to the stochastic DynamiC Programming is considered that results
in an adaptive control of the "closed-loop" type: it utilizes feedback
(latest state and parameter estimates and their uncertainties) as well
as their anticipated future uncertainties ~ it anticipates (subject to
causality) subseguent feedback. This algorithm has the feature that
allows the control to enhance the parameter identification in real time.
This is done using the control's dual effect: the control can affect

the state as well as the (auymented) state uncertainty and thus can
reduce the uncertainty apout some parameters. A flight control applica-
tion in which stochastic adaptive control appears to otfer significant
payoff is the active control of aircratt wing=-store flutter. Improved
flutter suppression can be accomplished with an adaptive controller that

has the capability to learn and identify the flutter wmodes during the

flight.
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2.4 C. J. Wenk and Y. Bar-Shalom, "Model Adaptive Dual Control of MImvL
Stochastic Systems," Proc. 20th 1EEE Conf. on Decision and Control,
San Dieyo, CA, vec. 198l.

An adaptive dual control algorithm is presented for multiple-input,
multiple output (MIMO) linear systems with input and output noise and
unknown parameters. The system parameters are assumed to belong to a
finite set on which a prior probability distribution is available. The
difficulties 1n characterizing the future evolution @f the MIMO system

information as required by the dynamic programmig are overcome through

n PRI e I R

a novel way of using preposteriror analysis. This provides a proba-
bilistic characterization of the future adaptation process and allows

.. the controller to take advantagye of the dual effect.

- 2.5 Y. Bar-Shalom, P. iMookerjee and J. A. Molusis, "A Linear Feedback Dual
N Controller for a Class of Stochastic Systems," Proc. CNRS Collog.

- Automatique, Belle-Ile, France, Sept. 1982.

. The methodoloyy for deriving a dual control algorithm that has a linear

feedback form is presented. This control, while simple, has the capa-
bility of enhancing the identification of the system's unknown
parameters. A dual controller for a plant describing the helicopter
higher harmonic vibration control problem is presented together with

simulation results.

AN

2.6 K. Birmiwal and Y. Bar-Shalom, "Dual Control Guidance for Simultaneous
. Identification and Interception of a Target," Automatica 20:737-749,
Nove. 1984.

. An adaptive dual-control guidance algorithm is presented for intercepting
a moving target in the presence of an interferring target (decoy) in a
stochastic environment. Two seyuences of measurements are obtained at

N discrete points in time; however, it is not certain which sequence came

from the target of 1interest and which from the decoy. Associated with
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each track, the interceptor also receives noisy, state-dependent feature

«a"2'8 & &

measurements. The optimum control for the interceptor which is given by
the solution of the stochdastic dynamic programming equation is not numeri-

cally feasible to obtain. An approximate solution of this equation is

.
%

obtained by evaluating the value of the future information gathering.

Oty

This is done through the use of preposterior analysis:approximate prior
probability densities are obtained and used to describe the future

. learning and control. 1In this way, the interceptor control is used

for information gathering in order to reduce the future target and decoy
decoy inertial measurement errors and enhance the observable target/decoy
feature differences for subseguent discrimination between the true taryet
and the decoy. Simulation studies have shown the effectiveness of the

- scheme .

”, 2.7 J. A. Molusis, P. Mookerjee and Y. Bar-Shalom, "Dual Adaptive Control
- Based upon Sensitivity Functions," Proc. 23rd IEEE Conf. on Decision
and Control, Las Vegas, NV, Dec. 1984.

A new adaptive dual control solution is presented for the control of a

Ll Sl ALY

class of multi-variable input-output system. Both rapidly varying

[ SaL SN

random parameters and constant but unknown parameters are included. The

new controller modifies the cautious control design by numerator and

denominator correction terms. This controller is shown to depend upon

sensitivity functions of the expected future cost. A scalar example

is presented to provide insight into the properties of the new dual

PRSI ALY

controller. Monte-Carlo simulations are performed which show improve-

ment over the cautious controller and the Linear Feedback Dual Con-

troller.
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A Multiple Model Adaptive Dual Contro! Algorithm
for Stochastic Systems with Unknown Parameters

CARL J. WENK, STUDENT MEMBER, IEEE, AND YAAKOV
BAR-SHALOM, SENIOR MEMBER, [EEE

Abstract—An adaptive dual control algorithmn is presented for linear
stochastic systems with coastant but uskmown parsmeters. The system
parameters are assumed to belong to a finite set on which a prior
probability distribution is available. The tool used to derive the algorithm
is preposterior analysis: a probabilistic characterization of the future
adaptation process aliows the controller to take advantage of the dual
effect. The resulting actively adaptive control called mode! adaptive dual
(MAD) costro) is compared to two pasgively adaptive coatrol
algorithms—the bewristic certainty equivalence (HCE) and the De-
shpande-Upadhyay-Laialotls (DUL) model-weighted controllers. An amaly-
sis techaique developed for the comparison of different controllers is used
to show statistically siguificant improvement in the performance of the
MAD algorithm over those of the HCE aad DUL.

I. INTRODUCTION .

In the control of linear stochastic systems with quadratic cost, the
certainty equivalence property (6] 1s known to hold. If, however, there
are unknown parameters in the system to be controlled, then certainty
equivalence does not hold and the dynamic programming cannot be
solved [1]. In this case a control decision 1s known to affect not just the
future state of the system. but also the future state and parameter
uncertainty. that i1s, the control has the dual effect, first discussed by
Feldbaum [15]. and later shown 1o be inumately related to the certainty

equivalence property [6).

Manuxcnpt received Apnl 4. 1979, revised March 4, 1980 Paper recommendad by J. L

Speyer. Past Chawrman of the Stoch Control C. This work was supported by
the NSF under Grant ENG-77-08177 and the AFOSR under Grant 80-0098.
The suthors are with the Depariment of Electncal E g and Comp S

Univernity of Connecucut, Storrs, CT 06268

0018-9286/80/0800-0703500.75 ©1980 IEEE
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Because the parameter uncertamty renders the opumum control solu-
uon unatiainabie, a number of parameter-adaptive suboptimum control
strategies have been sought [14).[19] [23}.[13].{2).{24]. With the excep-
tion of [24]. most of these strategies. however. are in the passive feedback
classification as discussed in [6). That 1s, they Jdo not take into account
the knowledge that future iearning about the unknown system parame-
ters will occur. An algorithm which uses such knowledge to improve 1ts
control decisions 1s called actively adapuve: 1t takes advantage of the
dual effect of the control to improve the identification and uitimately the
performance.

This paper presents an actively adaptive control algonthm for hinear
stochastic systems where the vector 8 consisting of the constant but
unknown system parameters, is equal to one of the M known model
parameter vectors 8, y=1,--- . M. This assumption that the true system
15 a member of a discrete set of known model systems has been used for
the d2- 2lopment of a number of passively adaptve control algonithms
{U3){19:.425,.'230 and has received considerable recent attention in, for
example. the adaptise flight control problem for the F-8 Digital-Fly-By-
Wire Arrcraft [2),[3] Performance difficulties have ansen. however, due
1o the inherently passive learming properties of existing algorithms de-
signed for the muluple model adaptive control problem The algorithm
presented 1n this paper, with its active leaming properties, should repre-
sent an advance toward a more sophisticated solution of the multiple
model problem.

The actively adaptive control algonthm presented here. called the
model adaptive dual (MAD) control algorithm, 1s developed and studied
within the context of controlling the output of a single-input, single-out-
put system. 1n order 1o help gain understanding of the dual effect of the
control in the muluple model precblem. The problem 1s formulated in
Section {1. The MAD algonthm for two models is obtained in Sections
111-V by constructing an approximate solution to the stochastic dynamic
programnmung, the exact solution of which would give the globally
opumum (dual} control. Evaluation of the value of future information
gathering will be made through the use of prepostenor analysis [18);
approximate pnor probability densities are obtained and used to de-
scribe future learning and control. The extension to M >2 models is
presented 1n Section VI

Numerical studies and compansons of the MAD algonthm are made
m Section VIl with two passive algonthms, the heuristic certainty
equivalence (HCE) algonthm. and the Deshpande-Upadhyay-Lainiotis
(DUL) algonthm, as well as with the optimal controls produced for each
model system with known parameters. A ngorous statistical analysis
techmuque is presented for a meamngful companson of the performances
obtained from Monte Carlo simulations employing the above algo-
nthms.! It is shown by statstical tests performed on the results of a
Monte Carlo simulation procedure that significant performance im-
provements may be achieved using MAD over HCE and DUL. In the
latter algonthm, used in the F.8 aircraft problem in (2], the control is
formed as a weighted sum of the model-optimal controls.

Lastly, whide the MAD algonthm is designed for eventual on-line
computational feasibility. it is more expensive than HCE and DUL. It is
also pointed out that MAD has a built-in feature to help determine a
priort, 1n a non-Monte-Carlo fashion. when the performance improve-
ments obtainable with MAD are large enough to warrant the added
computing load.

fi.  PROBIEM FORMULATION

Consider controlling the linear syvstem described by the input-~output
model [4]
vy = A(q Wl — 1D+ Blg Duti~1)+e(1) 2.1
where

22)
29

Ag V=a,+ag '+ ta,qg Y

Blg )mbi4big '+ wbg 7D

'To the best knowledge of the suthors, past compansons between differeny control
algonthms were himited to sample means, leaving open the question of statisical sigmifi-
cance of the observed differences.

At '-"_l\.p" A
AT LSRN,
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are polynomials 1n the delay operator ¢! defined by ¢ " 'z(r)=2(1-1).
The system output is y(¢). the input is w(#), and &(7) is a zero-mean, white
Gaussian disturbance with standard deviation A. Part or all of the
parameter vector defined by

07 =(a,a;" a,bib, - b,] (24}
1s unknown. It 1s assumed. however, that the true parameter vector @ is
equal to one of M known constant model vectors Ol.j- L. .M. with
corresponding known a priori probabilities

P[8=6]=7(0): =1, .-- M (2.5)

M
2 N\0=1 (2.6)

=1

The objective 15 to determine a sequence of control deasions {u(0).
w(l).- - .u(N~ 1} which mimmuzes
J(0)= E{C(0)] (2.7)

where the cost 1s quadratic about a reference trajectory

|
C(1)= 3NN ) =N

Ed
'

tol—
[

+ L) =y (P + r(Du(n) - u (1)} (28)
‘

T

subject 10 (2.1)-(2.6). The expectation in (2.7) is performed with respect
to all random variables in C(0), with the quantities q(¢), (1), y,(r). and
(1) all known (time-varying) constants, t=0,1,- - - ,N. The information
vector at time ¢, Z(¢) consists of the sequence of known outputs and
control decisions

Z(e)y={ y(0).y(1).- - - y(0),u(0),u(1), - - ,u(1—1)}.

Given that an admissible control decision u() is a function of Z(7) as
well as the statistical description of the future observations [6), the
optimum solution to the problem is given by the stochastic dynamic
programming as

(29)

u()=arg minE{ % q(l)l_)'(l)—y,(l)]z+ —;-r(r)[u(l)--u,(l)]z
+J‘[r+l.u(l)]|2(r).u(l)} (2.10)

where J*[7+ 1.u(1)] is the optimum cost-to-go from 1+ | to the end, and
is a function of the present control decision wu(¢). The globally optimum
control cannot, in general, be computed —the only sure way of avoiding
the “curse-of-dimensionality” [11] is by finding a recursion in the cost-
to-go, which here does not exist because of the parameter uncertainty.
Several computable suboptimal control algorithms for this problem do
exist, however, including two of particular interest here. They are the
so-called heunstic certainty equivalence (HCE) algorithm {6), and the
Deshpande-Upadhyay-Laimotis (DUL) algorithm [13). In the HCE algo-
rithm, a current best estimate of @ is computed as

N M
b= 2 A1,

J-

2.1

8(t) 1s then used as if 1t were the true parameter vector, under which
assumption the optimum control is easily computed. Thus, in a heuristic
manner, certainty equivalence (though untrue) is enforced. In the DUL
algorithm, the control decision is obtained as

M
u(t)= 2| A(nDu(0)

J~

(2.12)

where u(1) is the opimum control which would result if 0=0, were in
fact true (again easily computed). Both the HCE and DUL algorithms
are passively adaptive; they do not assess the effect which the current
control decision will have on future learning. HCE and DUL are
algorithms of the feedback type, rather than of the truly closed-loop type
as defined in [6). The optimum control to be derived by approximation

AT E VRS T N TR TN TR T TR T T TN T Ty
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of (2.10) 1s a closed-loop control. capable of taking advantage of the dual
effect [7] of the contro! in this problem.

For the moment. attention 1s focused on the two-model (M =2) case
since, as will be shown in Section V1. solution of the general M-model
case (M »2) may be obtained by solving a fixed set of two-model
subproblems. The problem of pawwise (M =2) model discnminations
will be shown to embody the basic duahty of the control.

I1l.  PREPOSTERIOR ANALYSIS AND THE APPROXIMATE SOLLTION
OF THE STOC HASTIC DYNAMIC PROGRAMMING EQUATION

Consider the case M =2 with the probabilities defined in'(2.5)

A,(0) =T1(0). AO)y=1-1HO) (3.0
where the pnor [1(0) 1s known.

In order to obtain a computationally implementable algonthm, the
cost-1o-go 1n (2.10) will be approximated as follows: the future controls
(for 1 2 £+ 1) will be assumed of fixed structure; they will be of the DUL
type but with time-varying probabilities as more information becomes
avatlable to the controller. This 1s expressed as follows:

E{J*t+1Y2Z(n.ur)}

=£{ mn E{CU+DIZG+ D LG+ DEZ(0.un ) (3.2)
1(r+1)

where L(7 + 1) 1s the set of all parameters in the controlier structure from
1+ 1 through the end. Using the total probability theorem. the optimum
cost-t0-go 1n (3 2) may be wntten as

Joti+ Dy mun [+ DE(CU+ 120+ 1) L1 +1).0=8,]
Lit+ )
+[1 -1+ D]JE[CUr+ DiZGe+ 1) L+ 1),0=8,]} (3.3)

where

e+ 1)=P{0=08,,2(r+1)] (3.9)

is given by Baves' rule

[]( 4+ )= Pl ,"_I_+ l}‘ zﬂ)i‘.‘i’) 0::,9_!.1[,“”
ply(r+ DIZ().u(n)

plyvUr+DIZ u(n.0=0 111

SO+ D Z00.u(1.0=0,]+ |1 1IN p[s 1+ DIZ(1).u(c) =8))

(3.5)

where
p[_\(:+l);Z(r).u(l).O-Q]z ! exp( - -l,l'_v(wl)—)'~,(:+l)]z1
viea bl J
(3.6)
S+ N =E[vte+1)200).u(1).0=8)] 3.7

for y=1.2. If 4, B, denate the polynomals of (2.2) and (2.3), respec-
uvely. formed assuming 8=8, s true. then (3 7) hecomes

VAT ) = A () + Buln (3.8)

From (3.5) one can obtain the inverse transformation from [l + 1) to
the latest observation y(1+ 1)

1. .
yu+l)y= ily.(l+l)+yz(l+l)]

A? ) Tl e+ D))

;,1(,-91)._;-‘(/;1) n'l (1 H(Il]ﬂ(u»hl (3.9

Thus. the outer expectation on the nght-hand side of (3.2), which 1s over
vt + 1), can be replaced by an expectation over [i(7+ 1) as follows:

. e’ : - e ) . - R .
"-.-.0-.n'.-‘-..'..-.-'t|'_' L PE oS T o AP N R

E[Jo(+ 1) Z(1) u(1)]
- {'lmml (HU+ DE[CU+ 1D Z0+ D). L1+ 1).0=0,]
{1} (r+1)
+[1 =TI+ DE[CC+ 1) ZCr+ 1), L(1 +1),0=6,))

P+ DZ(D u()]dTT(t+1) (3.10)

where p[I1(1+ 1)|Z(1).u(1)] 1s the preposterior probability density func-
tion of I1(++ 1), which is the information state for the parameters at
¢+ 1. The term prepostenior [18] means that this is the prior density (with
respect to time ¢+ 1) of the posterior TI(¢+1). conditioned on the
information at 1. This density 1s obtained using (3.9) <

PG+ D) Z(0) . u(n)] =] d'”'“;-ﬁ»Ip(,\‘(l+|)ll(l)~u(l)]
Al 1
D (e D] G [T 1] { e
[l T S (1)1l (521
A+ =g+ ) [T-THOPTI+1)

L L

2
- ;(_f‘.(l+l)~ izlul))} ]ﬂl—ﬂu))exp

[ A IO = 11+ 1))

L ZA:L\"z(1+I)~.{~,(1+|) [ -ToICe+ 1)
i 2
+-2(y'l(r+n‘.v",(t+n)':} ]} a1

The integration required in (3.10) is stili net feasible to perform, even
given knowledge of the exact preposterior density (3.11). An approxi-
mate solution 1o this integration is obtained by taking advantage of a
fundamental property of the preposterior density: as the signaito-noise
ratio

SNR-;jlﬁ,(1+l:—,}'~z(l+l)]2 3

increases, the ability to discriminate between the two models increases,
and the prepostenor density 1n (3.11) exhibits a distinct bamodal char-
acter (see [9]); most of the density becomes concentrated around two
distinct locations, say I1;(1+ 1) and [1,(r+1). In the hmit as SNR—oc,
I+ D) Z(1).u(1)] becomes the weighted sum of two delta functions

bm  p(IT(r+ 1) Z(1)u(1)]
SNR -+
=(O8[1Tr+ 1) - 1]+ [1 - TINDJSITTIG+ D] (3.13)

These observations suggest using the following approximate prepostenor
density.

pIIH+ DIZ(Dw( =TI T+ 1) = T1 (e + D)
+ -8 {IIe+ D =T+ ] (3.14)

where the delta functon locations [T,(7+ 1) and 11z 4 1) sausfy
Oullir e NI QI e+ D) e 1L (3.19

The locavons 7+ 1) and Ilr+ 1) may be obtained by moment
matching  they are chosen <o that the first two moments of [igr+1)
produced by the approximate deauts (3.14) match those of the true
density (3.11) Such a techmigque has been used with success in [8].{9]. A
simple and accurate techmigue to carry this out 1s described in Appendix
1.

While the approxuimate prepostenor density has now been established.
evaluation of the cost-to-go 1n (3.10) still requites a minimization with
respect to the set L(r+ 1) of (hme-varying) controller parameters from
1= ¢+ 1 10 the end of the control penod. a set which, of course, depends
on the statisuc [I(r + ). An approximate solution to the minimuzation n
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(3.10), which is easy to implement, is obuined by assuming a future
sequence of DUL type controis represented by L(¢+1):

E[I*(1+ D) Z(D.u(D)=J [+ 1.u(1)
= [{Me+DE[ Cu+ DIZe+ 1), Lir+1).0=6,]
0

+[1-T(r+ |)]£[cu+ 1Z(r+ 1).E(:+1).o-oz]}
AT+ D) =T (¢ + D]+ [1-TI(1)]

B[+ D) =T (¢ +1)]} T2+ 1). (3.16)

Performing the integration, (3.16) becomes

J1e+ L] =D+ DIy [ e+ . Lyt +1).0=0, ]
+THO[ = T+ DY [ e+ (). L1+ 1).0=8, ]
+[1=TI()} (s + n.i,,[:+ Lu(). Ly (1+1).8=8,]

+[1-T(n]1 —H,(1+l)].i22[r+ L), gl + n.o-oz].
(3.17)

Equation (3.17) represents the approximate cost-to-go resuiting from a
particular control choice u(r). The nominal sequence of control parame-
ters L,(1+ 1), /j=1.2 consists of a DUL weighted sum of model control
gains. This sum is computed with nominal weighting factors given by:

1) [¢z+ D=TIT,(¢+ 1) as the imtial sufficient statistic for @ at r+1,

2) subsequent nominal postenor probabilities €, (i) that 8 =8, which
evolve as i=(+2,--- ,N~1 when this DUL control is applied to the
system with 8=6,.

Note that the model control gains are obtained from a standard linear
quadratic problem with known parameters. The term J;, which is the
corresponding cost, is obtained from a standard recursion for a known
linear system with @=8,. quadratic cost. and a given set of control
parameters L, (¢ +1). Sec. for example. {10].

IV. THE NOMINAL SEQUENCE OF FUTURE POSTERIOR
PROBABILITIES

The nominal future posterior probabilities Q,(i) are generated by
constructing a future observation and control scenario, based on the
statistical information contained in the approximate prepostenor density
function (3.14). This density indicates that. given a specific control
decision u(¢), with probability I1(r) the posterior probability IT(s+ 1) will
become IT,(r+ 1), and with probability [1—TI(s)] the posterior will
become Tl,(s+1). Using (3.9) it follows that the observation which
would produce the posterior TT(1+ 1) =11 (¢+1). /=1.2, is given by

1,. .
Vit )= o + D4y D+ e e —
it ) 2[""“ ) ) yar+ 1y ~vy(1+1)
N1 -M(e+ 1))

‘“{ o+ |- @D
The terms I1,(¢+ 1). V(1 + 1) are now used as initial conditions at i=m ¢+
for a nominal future observation and control sequence; nominal outputs
5,0 for a given pair (/j) are generated by replacing e(i) by its mean,
which 1s zero, in (2.1) with 0-0,:

Yyli+ )= Ay, (i)+ B, (i) imr+] N -2 F () my(r4)),

=12 (42)

The nominal controls i@,(¢) are generated using a DUL control policy

a (=@l (DE(D+ B, imral o N-1 43)
where x is a suitable state vector corresponding to (2.1) and £, represents
the future nominal state corresponding 1o y,, which was specified above.

The set of control parameters is
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Lr+ = {@,1). B0 sm i+ 1. N=1}. (4.4)
The control gains are given by the weighted sums [13]
a, ()=, (e, () + [ 1= QD) ]ayi) (4.5

where a,.a, are the model-optimal gains. An anaiogous equation yields
B,

The nominal postenor probability that the controller will attach to the
parameter being @=8,. when in fact it is @=8, j=1 or 2. and atr+11it
started with T1,(¢+ 1), /=1 or 2. is, using (3.5)

. -1
sz,,(.-+n-{|+';22:”'()” {‘;}\',”[y‘,,(ml)—ﬁ,,(un]’}}
(4.6)
=41, - N=-2 Q,r+)=TI(1+1)
where the “mismatched™ (& /) prediction is
Al+) = E[ i+ mz‘,,(i).a(,(n.o-o,‘]
= A, 5, () B, (i), k=) 4.7

with Z,(i) the nominal information vector at time i.

Equation (4.6) specifies the four “learning curves” used to compute
the cost-to-go (3.17) 1n order » obtain a feasible solution to the
stochastic dynamic programmu.» ¢ ;uation (2.10). Note that if j= 1 then
2, converges toward umity for t:+th /=1 and 2; however, because of
(3.15) it will converge faster if /=1. Conversely, if j=2, then Q, con-
verges toward zero. again for both /=1,2, but faster if /=2,

V. SoOME REMARKS ON THE PROPERTIES OF THE NEW ALGORITHM

From (2.9). (2.10). (3.16), and (3.17) it can be seen that the MAD
control at time ¢ is obtained by numerically locating a minimum with
respect to u(s) of the cost function

(5.1)

where J[r+ 1,u(0)} is the approximate cost-to-go as given by (3.17). A
golden section line search combined with a quadratic fit [S] may be used
to locate uMAC(r), where the HCE and DUL algorithm controls are used
to set the initial control search window. Computational evidence indi-
cates that between S and 8 function evaluations J[z + 1,u(1)] (5-8 diffe-
rent values of u(¢)) are sufficient to achieve high accuracy in locating the
minimum.

By using the approximate prepostenor density (3.14), consideration of
the possible values I(7 + {) may take on 1s reduced to two “most crucial™
values, ITi(sr+ 1) and ITy(r + 1). Equation (3.17) indicates then that four
possible events need to be considered: I1,(r+ 1) becomes the posterior
with the true system 8=8,; I1,(¢+ 1) becomes the posterior but 0=, is
true: Il (2+ 1) is the statistic but 8=0,; and IT,(¢+1) occurs with the
true system @=0, The probabilities of these four events occurring are
O+ 1), TH[1 =TT+ D) {1 = TI(HIT(¢+ 1), and (1 - [I())1 ~
TI,(£ + 1)) respectively. The cost which will be incurred if the event
:escribed by the {T1(r+1).8,} pair happens is Jy[¢+ L.u(z), L (1+1).8=

} )
Consider now how J,, reahistically represents the cost of such an event.
First assume /=;; for example, take /= ;= 1. Due to the condition
described by (3.15), the output y,(r+ 1) given by (4.1) with /=1 which
would produce this T1,(r+ 1) would more likely come from a system
where 8=8, were true. Since ;=1 in J,, this represents convergence of
[+ =TT, (s + 1) > T1(1) 1in the nght direction, which is toward unity.
In the future nominal control scenano described in Section IV the
probabilities Q,,(1) will then converge steadily toward unity, since the
mismatched predicted observation (4.7) appears as a negative exponent
in (4.6). If /= ;=2 the exponent 1n (4.6) is positive and ,,(i) converges
10 zero. Now consider what happens if /9/; for example, if /=2 =1,
The true system has @=86,, but a nominal observation y,(1+1) occurs
which makes IT(s+ )= TTy(r + 1)< TI(r): i.e.. TI(#+ 1) goes in the wrong
direction. In the subsequent nominal control scenario the observations

j[l.u(l)l- ; r(l)lu(r)—u,(l)]z+j[l+l,u(!)]

~
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7a1(i) come from the true systemn with 8#=0,. and thus, of course, the
posteriors @,,(i) wil recover from the “bad™ initial Q,,(r+ 1)=TI,(1+ 1),
but only after some time. Meanwhile. the control gains L,,(r+ 1) have
been closer to the optimum gains of the wrong system (8=8,), thus
accumulating an added cost represented by J,,. Similar statements may
be made about the event /=1, j=2 Thus. the cross terms J,, /=),
represent the costs incurred if learning is degraded by bad observations
at 1+ 1. Correspondingly. 1t is expected that

Ju>Jy and J,5Jy, (5.2)

on a range of control values containing the HCE, DUL, and MAD
controls. Computational evidence in Section VII indicates that this is
indeed so.

Thus, the algonthm MAD is sensitive to the anticipated rate of future
learning, and. if needed, its present decision will affect that learning rate
appropnately.

The evolution of the information about the system during the process,
described in detail 1n the previous two sections, can also be summarized
in pictonal form as in Fig. 1. The current probability [1(1) evolves into
one of the two values T1, or Il, from which four “learning™ curves
follow. These curves are labeled /; and they correspond to the four cost
components from (3.17). Thss 1s the essence of the novel approach that
yields the closed-loop (7] approximation of the stochastic dynamic pro-
gramming presented here.

V1. THe GeNeRAL M-MoODEL MAD CONTROL ALGORITHM

Extension of the two-model MAD algorithm described in Sections
I11-V to include the general case of M models, M > 2, 1s now discussed.
It will be shown that the M-model MAD algonithm consists of perform-
ing two-model cost computations for each of the distinct pairs of models
using the two-model MAD algorithm, along with one-model opumum
cost computations for an appropriate adjustment.

To begin the development, consider first the case M =3. Define W,
W,, and W, as the three mutually exclusive and exhaustive events 8= 9,,
0=0,, and 0=20, true, respectively. Then the mixed probability expres-
sion (25] p{/J. W, u W,U W;]. where J is a random vanable, can be
written as

plI W U Wou Wy =p[ ). W U W+ plJ. W U Wyl +p[J. WU W)
—plJ. W\l = plJ. W, - plJ . W;}=p[J] (6.1)

where the union W, U W, signifies the cvent that one of 6,.8, is the true
parameter vector, and where W, U W, U W, is the sure event (note that
Win Wyn Wy=@3, the null set). Using (6.1) for a cost-to-go J(¢ + 1), one
can wnte
plJr+ DIZE u(D] = [ A () + Ay D] p[J e+ 1) Z(0),u(r), W, W,]

+ (A + A(D]plJ G+ D Z(0).u(1), W0 Wi

+H AU+ A (D] pl I+ DIZ(0).ul1), Wyu Wi

=M (Dp[J+ DZCOu(0). W ]~ A(1)plJ(1+ DIZ(0).u(r), W,)

= A(DOp[J+ 1) Z(1).u(t), W,). (6.2)

From (6.2) 1t follows that

E[Jr+ DIZ(D.u(D]=[A (D) + N (DVE[Jr+ DZ(0), u(1). W U Wy)
+{AD+ AUDE[J(+ DIZ(0), ul ), W 0 W)
+[AUND+ ADE[J(e+ D Z(1)ul 1), WU W)
=N E[JC+ DIZ(O.u(1). W ]~ A E[S(+ D) Z(1)u(t). Wy]
~ Ay (DE[J+ DIZ(1).u(1). W), 6.3)
Now. for arbitrary M » 2 1t can be shown (see. eg., [17)) that
E[JU+1)Z(1).u(1))

M- M
= 2 Z (A0 AOIE DZGu. WU W)
1= e
M
~(M=2) T A(E[JG+1)2(1)u(1) W), (6.4)
=i

1 — — —— QO
LY

o JE 19:8y

Fig 1 “Learmng curves” for evaluanon of the cost-to-go.

Equation (6.4) states the following.

Theorem: For a specified u(r) the cost-to-go J(¢ + 1), given that one of
M models 8,, j=1,-- -, M is correct, can be obtained as follows.

1) First compute the cost-to-go which results if one of either 6,.0,,
k /. is true: this is done for each of M= M(M ~1)/2 distinct model
pairs.

2) Compute the optimum model costs (8, true), j=1.--- . M and form
the overall cost-to-go according to (6.4).

Of course, all the expectations in (6.4) are conditioned on the same
information state Z(s) and control choice u(r). The model costs are
casily computed from a standard linear quadratic problem. For each of
the two-model costs E[J(¢+ 1){Z(t),u(t), W, U W,] an approximate cost
is computed using the MAD algorithm of Sections III-V. Since the
event W, U W, means that either 8, or 8, is true, the required sufficient
statistic [1¥(¢) in the two-model MAD cost evaluation for the specified
pair of models is

An)

ky -7
0= 3 m+a0m

(6.5)

thus maintaining proper normalization.
The general M-model (M >2) MAD algorithm thus searches for a
minimum in

D)= 3 ) - w(OF +F[r+ LuD)  (66)

where j[H- 1,u(1)} is given by (6.4).

VII. NUMERICAL EXAMPLES

In the numerical studics, attention was focused on studying the
performance and characteristics of the MAD algorithm for the case
M =2, since the pairwise model discrimination procedure constitutes the
very essence of the actively adaptive decision making process of the
algonithm. Performance will be compared with that of the passively
adaptive HCE and DUL algorithms.

Example 1: A second-order system (n=2) is considered with two
poles at 0.7. It is not certain whether the true system's zero is at —0.225
or at —0.9. Correspondingly. the true system parameter vector is one of
the folliowing:

8 =[14
8l={14

-049 2 045] a.n
-049 1 09] (12)

which are considered a priori equiprobable. The initial output is y(0)=
0.1 and it is desired to make it follow over N =S time steps the reference
trajectory (for t=0,1,--..5)

y={01 05 1 2 25 10} (X))

The corresponding weightings in the cost (2.8) for i=0,1,---,5 were
chosen as

e={0 1 2 3 s 50] 1.4)

No penalty was attached to the control. Note that this would be a
straightforward munimum vanance controller about a desired output if
the parameters were known {4]. The process noise standard deviation
was chosen as A= 1.5.

A Monte Carlo simulation procedure was conducted to compare the
performance of the MAD control algorithm with the performances of
the HCE and DUL algonthms, when each is applied to this problem.

e
o -

SN

AT A e




CAC AR A

708 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-25, NO. 4, AUGUST 1980
TABLE | TABLE 11
SAMPLE AVERAGE COSTS AND STANDARD DEVIATIONS FOR STATISTICAL TEST FOR ALGORITHM COMPARISONS FOR EXAMPLE |
ExampLE |
1 T
Algorrtams | | I vest Estimated | .eve! of
Algoritnm oeT “CE QL MAC compared ! - | s!f:n‘s!!c hmprovement ! !:m:‘cnce
i i ! :
; i : N e
Sample Mean 63.8 153 AN 103 T
) HCE - DWL ' 3.63 €.67 , 258 l 2 3
50.84 l 13 " 13 0
Sample standard HCE - MAD J. 6 372 ' N
devration 732 233 25! 13% i
DuL - MAD a2 ! tao 3ot T n N
| I
TABLE 1V
TABLE III STATISTICAL TEST FOR ALGORITHM COMPARISONS FOR EXAMPLE 2
SAMPLE AVERAGE COSTS AND STANDARD DEVIATIONS FOR
EXAMPLE 2 T T .
Algorithms | Test Est mated
compared | { Statistic | tmprovement
s - al-
Aigorithm opT HCE oL MAD : :
WCE - DUL 42.3¢ - 13 69 3.3 1€
Sample Mean 60.5 264 2 109 |
Wee - Ma0 | isaae . 29.66 5.20 59
1
Sample standard 73.2 44z 43 (kY DUt - MAS ! 111 .81 T 2 3" 414 32
geviation i

Statistical tests were made on the results of 200 independent Monte
Carlo runs. Each of the 200 sets of disturbances was used to generate a
run for each of the three control algorithms examined. For [1(0)-200=
100 runs, the true parameter vector was set at @=8, and for [1—-TI1(0))-
200= 100 runs it was set at #=0,. Sample means and variances of the
Moate Carlo costs C, defined by (2.8) were computed.

Table I contains the results. The column labeled OPT is the perfor-
mance for the same disturbances when the optimal control with 8 known
is used. This table gives the first indication of the improvement MAD
gives over HCE and DUL both in mean cost reduction and reduction in
the variability of the performance.

Note that Table I does not provide a rigorous argument that the actual
performances (expected costs) are ordered as the sample means indicate.
Appendix Il presents a rigorous statistical test that provides the answer
to the question of whether the expected values of the costs are different.

To carry out this test, three new data sequences are formed by taking
the differences of the cost samples generated using the same random
variables for each of the methods HCE, DUL,MAD. That is

A,ID. CjHCE - C,DUL (1.9
A,“M- qHCE_ C"MAD (76)
A’DM - qDUL - C'MAD 1.7
for i=1,---,200. The sample means A of the differences and their

standard deviations a3 for the various algorithms are given in Table II.

Assuming that a hypothesis can be accepted only if the probability of
error (level of significance) a is less than 5 percent, i.c., the confidence
(1 - a) is a1 least 95 percent, the threshold against which we compare the
test statistic A/o5 is uwe1.65. The test statistic has to exceed the
threshold in order to accept the hypothesis. The conclusions that can be
drawn for this problem from Table II are the following.

1) The hypothesis that DUL is better than HCE cannot be accepted.
The estimated improvement of 2 percent is not statistically significant
(a=30 percent is too large a probability of error to accept that DUL is
better than HCE).

2) The hypothesis that MAD is better than HCE is accepted (actually
with 99.99 percent confidence). The estimated improvement (decrease in
cost) of 33 percent is statistically significant.

3) The bypothesis that MAD is better than DUL is accepted (actually

with 99.87 percent confidence). The estimated improvement of 3] per-
cent is statistically significant.

Note that MAD has gone about 55 percent of the way between DUL
and OPT; the latter is, however, an unachievable lower bound because it
assumes the parameters known. The Bayesian optimal controller for
unknown parameters (obtained from the stochastic dynamic program-
ming) is somewhere between OPT and MAD. Thus, MAD seems to have
gone “most of the way” towards the Bayesian optimum.

Example 2: This example is the same as the first one except for the
cost weightings, which are

g=[0 1 1 1 5 0] (7.8)

and the reference trajectory
y=[01 05 1 2 Ot 10]). 79)

The resulting average cost and standard deviations from 200 Monte
Carlo runs are shown in Table I11.

Table [V indicates the following.

1) The hypothesis that DUL is better than HCE is accepted. The
estimated improvement of 16 percent is statistically significant (a<0.1
percent).

2) The hypotheses that MAD is better than both HCE and DUL are
accepted (a < 0.00] percent).

Also note that MAD reduces by SO percent the cost incurred with
DUL, based on the 200 Monte Carlo runs.

Next, the learning properties of the above algorithms are illustrated by
presenting further results from the simulations of Example 2. Table V
shows in the first part the evolution in time of the posterior probability
that 0=@, (averaged over 100 runs) when the true system had 0=9,
These probabilities all tend to unity but the active learning feature of
MAD causes its probability to converge faster. Thus, active probing, the
need for which is realized only by MAD, pays off. The second part of
this table presents the corresponding results for the case 8=, true.
where convergence to zero (as required) is again faster for MAD.

The need for active learning as sensed by MAD is illustrated in Table
V1. For various possible values of the control at period 1, the MAD
algorithm evaluates the future leaming opportunities. For u(1)=4.3, the
preposterior density characterized by [1, and II, indicates that not
enough learning will take place: the contribution of J,, (which is the
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TABLE V
EvoLLTION OF P (0=8,(Z(¢)}

- ,,,-,___1[,_,-“ -—-———T—-———--
True Parameter e

“yme B3 i MAD ¢ g duL WAD
.
Tosoe 282 C sk ; 3836 2.500 3500
1 J15% 585 0 T30 a3 1497 0500
h S AN T IR T TSRRRAE DO O ' I B X
: 35T 3 Teb s 32 9 285 ).224
: 2733 2y - qaal‘ a3 3,42 20908

result of a mismaiched controller that_does not learn fast enough what
the true system is) 1o the cost makes J {see (5.1)] large. For larger u(1),
the learning is faster but after a point its price exceeds the benefit.

Examination of Table VI also gives valuable insight into the problem
of determining when there is value in using an actively adaptive con-
troller like MAD: when the penalty for mismatched controllers is large
and the contribution to the cost is significant.

VIII. SUMMARY AND CONCLUSIONS

The concept of preposterior analysis has been successfully used to
derive an approximation to the stochastic dynamic programsming equa-
tion for the control of systems with discrete-valued random parameters.
The resulting algorithm, called model adaptive dual control, is the only
actively adaptive controller for this class of systems. A rigorous
methodology for comparison of control algorithms has been presented
and used to show that the new actively adaptive controller yields
statistically significant performance improvement over two state-of-the
art passively adaptive controllers. The question of when it is worthwhile
10 use an actively adaptive controller (which is relatively expensive)
versus a passively adaptive one has been also addressed. While Monte
Carlo studies combined with the appropriate statistical analysis tech-
niques are the best tool, a decomposition of the cost-to-go can be utilized
10 assess inexpensively whether one can expect a significant improve-
ment when using this actively adaptive control versus a passive one.
Based on our experience, the class of problems in which one can expect
benefit from using an actively adaptive control is where there is heavy
terminal state penalty and the control period is relatively short, i.e.,
passive learning does not suffice and there is opportunity- and need for
active learning. In general, active adaptation can be expected to improve
the transient behavior in adaptive control by speeding up the adaptation
process.

APPENDIX |
MOMENT MATCHING FOR THE APPROXIMATE PREPOSTERIOR
DEeNsITY

The moment matching technique used to obtain [1(1+ 1), I=1,2, in
the approximate preposterior density (3.14) is now described. First
consider finding the true momeats E[II(1+1)|Z(n).u(1)], E(II(¢+
D|Z(n.u(n)) = T3r+1). From the fundamental theorem of expectation
and (3.5)

E[N(r+ 1) Z(0).u(2)])=T11(1) (A.1)

T3+ 1) must be obtained by numerical integration using either (3.11)
or (3.5) combined with p{ y(¢r+ 1)|Z(1).u(r)]. The latter approach lends
mself to a particularly simple and accurate integration procedure. Thus,
take

(e n= [* W+ D+ DIZOMDIdG+1).  (A2)

Now note from (3 5) that

TABLE V1
CoST BREAKDOWN AND LEARNING FOR MAD

AT ISV NS B P70 QRN ) RONT ) RT3 (e

4.3000 127.4 0.9398 { 0.05919 | 64.07 67.92 | 2090 66.39
4,500 112.0 0.947310.05185} 64.78 | ©7.38 |1787 65.87
4.7000  81.96 | 0.9540 {0.04518 | 65.65 67.10 ns.2 65.29

4.900 69.74| 0.9602|0.03917 | 66.68 66.9 181.7 64.94
rAD 5.097 63 5| 0.965510.03388 ¢ 67.85 66.92 15.0 64.55
5.3000 63.97{ 0.9704 [0.02910 | 69.22 66.98 112.0 64.18
5.5000 69 53| 0.9745|0.02502 | 70.73 67.13 118.3 63.96
$.700 70.20{ 0.9781 |0.02154 | 72.40 67.37 126.4 63.58
5.9000 70.97 ] 0.9911 {0.01859 } 74.23 67.72 135.) 63.34

M(t+1)= { i+ —'—;I—?T()Q exp{ - #[29(:+ 1)

+(~l)’"£’(~'+l)]]}‘l j=lor2 (A3)

where

1+ )my (14 1)—yy(1+1) (A9)

and
o1+ )=+ [ Y+ D=y 1+ D] (AS)

Using (A.3)-(A.5) and (3.5), the integration (A.2) may be shown to
reduce to

TE(r+1)= V2 M(r+ |){n(¢)f_°° Si(rye"dr,

+0-n0N " freddn) (A3

where
= 7_;-’% (A%
and
gop= {1+ L enp | - £
[2v2 Af,+(—|)’"'e(:+|)]] ] T jel2 (AS)

The integrals in (A.3) reduce to simple finite length summations through
the use of Hermitian quadrature [12); this technique is described by

I'
J. Je"de= 3 HAX) (A6)

where the x; are the zeros of Hermite orthogonal polynomials and the H,
are the respective Hermite coefficients. The H,, x, are well tabulated [12).
The number of terms /, in the expansion is chosen large emough wo
achieve desired accuracy in (A.6).

Using (A.6), (A.3) becomes

li
B+ D= VA + ) T HAIOA) + 0 =TOM00)
(A7)

Equating (A.1) and (A.7) to the respective moments produced by (3.14)
gives

N()=MOME+1)+[1-TOIM,¢+1) (A8
T (¢4 1) = I(OIT(e+ 1) + {1 = IO+ 1). (A9)
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Using inequality (3.15). (A.8) and (A.9) then yield the desired delta
function locations

i /2
M@+ )=T(1) + {n -n(,n[ n—n(T'T:"L) —nu)]} (A.10)
n
ﬂ,(l-H)- ;1’(),)“ s+ 1)} (A.1])
APPENDIX 11
STATISTICAL SIGNIFICANCE IN THE COMPARISON OF CONTROLLER
PERFORMANCES

Suppose that a Monte Carlo simulation is performed to compare two
control algorithms. The corresponding expected costs are J") and J . If
S independent runs are made with the first algorithm, this yrelds §
independent samples C" from a distribution with the true but unknown
mean J. If the same random vanables that entered into the Monte
Carlo runs with the first aigorithm are used to generate S runs with the
second algorithm, this yields S samples C/®’ from a distribution with the
also unknown mean J .

The sample means

_ 1 &
Ul — [2)
Co=s X Cf

1=

=12 (B.1)

are estimates of the corresponding performances (true means). A state-
ment that

CheC (B.2)

imphes that algorithm 1 is better than 2 must be qualified by a probabil-
ity a of error type 1 [16].
Thus, the statistical test needed is

(algorithm | not best) {(B.3)

(B.4)

Hy A=Jd-Jibgo

H;: A=mJB—Jh50  (algorithm | best).
The probability of ervor (also called level of sigruficance) a is defined
as
a= P{accept H,|H, true}. (B.5)
Then, since accepting H, means rejecting H, the lower a is the less
“significant™ Hy is. Thus, when we accept H, with a small a we are more
confident in H, being true.
The test is carried out by examining the set of independent samples
A =C - (B.6)
as to whether their true mean A can be accepted as being positive with

high confidence (low a). Assuming § large enough, the hypothesis H, is
accepted if

A>po; (B.7)
where
S
3 g (B3)
1 & =2
o}= T ZI(A,~A) (B.9)

and, 1n view of the central limit theorem, u is taken from the normal
distribution tables. For example, for u= .65 a=5 percent, and for
um2.33,a= | percent. The corresponding confidence in the statement
that algorithm 1 is superior to 2 1s then 1 - a

>, -
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Stochastic Dynamic Programming:
Caution and Probing

YAAKOV BAR-SHALOM. SENIOR MEMBER. IEEE

4 hrtract — The purpowe of this paper is to unify the concepts of caution
and probing put forth by Feldbaum [14] with the mathematical technigue of
stochastic dynamic programming originated by Bellman [S). The decom-
position of the expected cost in a stochastic control problem. recently
developed in 8], is uved to assess quantitatively the caution and probing
effects of the system uncertainties on the control. 1t is shown how in some
problems. because of the uncertainties, the control becomes cautious (less
aggressive) while in other problems it will probe (by becoming more
aggressive) in order to enhance the estimation “identification while control-
fing the system. Following this a classification of stochastic control prob-
lems according to the dominant effect is discussed. This is then used to

Manuscript receined April 6, 1980, revined Januan 14, 19%1 and March
200 1981 This work was supported in part by the Nauonal Science
Foundation under Grant (5S-32271 and in part by the Air Foree Office of
Scientific Rescarch under Grant 80-009%

The author is with the Department of Electneal Engincering and
Computer Science, University of Connecticut, Storrs, CT 06268

point out which are the stochastic control problems where substantial
improvements can be expected from using a sophisticated algorithm versus
a simple one.

I. INTRODUCTION

HIS PAPER reviews recent work in the area of stochas-

tic control and shows how the concepts of caution and -
probing. originated by Feldbaum [14), can be unified with
Bellman's dynamic programming technique {5]). [6]. The
concepts of caution and probing. developed by Feldbaum
[14) about 20 years age and also discussed in {16]. dealt
from an intuitive point of view with some phenomena
peculiar to stochastic control problems or decision under
uncertainty.
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In the presence of uncertainty. modeled by random
variables or stochastic processes. there as usually o de-
terioration of the system performance. which can be mea-
sured by an increase in the (expected) loss function com-
pared to the deterministic case. In order to reduce the
merease in the loss function the controtler will tend to be
“eautious.” a properts known in the deaision theory hitera-
wire as risk aversion” [12]. This phenomenon oceurs for
convex loss functions that the decision maker (controller)
wants to mimmze, like in most control problems. On the
other hand. in multistage problems where observations are
made on the svstem at each stage. the controller might be
able to carry out what has been called “active information
athering”™ or “probing™ of the svstem for estimation en-
hancement. This is possible when the controller affects not
onlv the state of the svstem but also the quality of the
estimation process, i.e.. has the so-called “dual effect.”

This paper intends to provide a tutorial on these aspects
of stochastic control by a suitable presentation of the basic
concepts embaodied in the stochastic dvnamie program-
ming. When the caution and probing phenomena are pre-
sent in the multstage problems, the optimal solution 18 not
known. In view of this. the isight is provided by consid-
ering o suboptimal algorithm that has the features of the
optimal one.

Section 1 discusses the information state in the mulu-
stage control problem of a stochastic system. The formula-
uen of the prnciple of optimality for stochastic svstems
and the resulting stochastic dvnamic programming equa-
ton for additive cost functions are discussed in Section 11,
1t is pointed out how the “preposterior analvsis™ technique
i~ 4 direct consequence of the principle of optimality. The
definition of the dual effect and the types of approximate
solutions of the stochastic dvnamic programming are the
topic of Section 1V, The “closed-loop™ approximation of
the stochastuie dvnamic programming using the “wide-sense”
information state (8] {29] (30] s shown in Section V to
lead to g decomposition of the expected cost into three
terms. Two of these terms can be associated directly with
the caution and probimg effects discussed earlier giving
thus o quantitative measure of these effects. It is shown in
Section VI how one can classify stochastie control prob-
fems according to the dominant term in the cost decom-
position. This is then dlustrated via a number of examples
where stochastic control problems  that are  probing-
dominated. caution-dominated. and essentially determinis-
ue are presented. The effect of various stare weightings in
the cost function and the anticipated future learning are
also discussed. Conclusions are presented in Section VII,

I, THE INFORMATION STATE IN A STOCHASTIC
CONTROL PROBI EM

The principle of opumahty of Bellman [$] can be stated
as follows for stochastic problems: at any tme, whatever
the present information and past decisions, the remaining
decisions must constitute an optimal pohey with regard to
the current information set.

In the deterministic case the information set is the state
of the system. This, together with the controller’s subse-
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quent decisions fully determines the future evolution of the
svstem. In the stochastic case the information set is, looselv,
what the controller knows about the system. This will be
discussed in more detail next.

Consider the following general stochastic control prob-
lem. The state x evolves according to the equation

Nk+ 1) =[xtk outh) (k)] A =000
(2.1)

where u 1s the control and ¢ is the process noise. The

measurements are described by
v(k)=hlk x(k)ow(k)]  k=1.---  (22)

where w is the measurement noise. The information set at

time & 1s assumed to be the past measurements and con-
trols

Y=y ut oy ok (2.3)

where
R U I S U1 R P X'}

and subscrnipt +--0 is omitted. The inclusion property in
{2.3) points to the fact that the sequence of information as
assumed here 1s nested - each contains its predecessor.

Since (2.3) s growing with & it is of interest when a
(nongrowing) information state can replace (2.3).

Note that x(k) is a state only in the deterministic
context when. together with U/, it fully determines x( ;).
Vy>k, ie. x(k) summarizes the past of the system. The
stochastic counterpart of this is the “information state.”

The information state is defined as a vector-valued vari-
abie or a function that summarizes the past (i.e.. it can
replace /* ) when we want to characterize (probabilistically)
the future evolution of the system. This is more general
than the “informative statistic™ of Striebel [26] which is,
roughly, what the optimal controller (for the problem
under consideration) needs from the past data (2.3).

It is assumed in the sequel that all the pertinent proba-
bility densities exist. Discrete-valued random variables will
have a probability density function (pdf) with Dirac delta
functions at the locations of the point masses.

If both sequences of process and measurement noises are
white and mutually independent. then at ume & the condi-
tional probability density funcuion of the vector x(k)

S4=ple(h) ]! (2.5)

is an information state. This can be seen from the follow-
ing. The conditional density of x(k+1) can be written
using Bayes' rule

NOEN fp[.‘-(;\q BTN '] . %p[vr(k-fl)|x(k+1).l‘.u(k)]

plek+ DA u(k)] (2.6)

where ¢ 18 a normalization constant.

'"Rigorously. the conditional density should be written pl- YUt Y
hecause this is conditioned on the vigma-algebra generated by the mea-
surements but it is not well-defined unless l%nc values of past controls or
control functions are indicated [26]. For & - 0 this is the prior density of
the sate
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If the measurement noise is white (w(k + 1) conditioned
on v(A - 1) has to be independent of wi 7). j<k. e sate
dependent measurement noise is allowed). then

plytk = Dxtk+1) I oulk)] =p[ vik+Dixth+ 1)
(2.7)

tthe control is anyway irrelevant in the conditioning).
For an arbitrary value of the control at & one has

plria= Dtk ] = fplxth - ik 1 ouk)]
platk s k)] dethy. (2.8)

If the process noise sequence is white and independent
of the measurement noises (v(A) conditioned on x(4 ) has
to be independent of v( /- 1wt 7). y<k. ie. state depen-
dent process noise is allowed). then

PG D) P a()) p[ ks DN, ul k)]
(2.9)

and. since

plxCl cuth] = platk i ]=s4 (2.10)

then, inserting (2.9) and (2.10) into (2.8) it follows that
plxCh =Dt (k)] = o[k - 134 k)] (201

Now.using (2.7) and (2.11) in (2.6) one has

Sotegfk - LSk Dotk 22y

LeL It is summarized by 34 Equation (2.12) is the recur-
sion for the information state.

From the smoothing property of expectations it also
follows that. for j >k,

A RYAR AN I BT I

Jrlsenaen o plvon e ae
Jrlvenven e st ak

MR S (2.13)

where the whiteness of the process noise sequence and its
independence from the measurement noises has been used
dEdIn

Theretores the whiteness and mutual mdependence of
the two noise sequences is a sufhaent condition for % 1o
he an mtormanon state. It should be emphasized that the
whiteness iy the crucial assumption. This is equivalent to
the requirement that Ay be an incompletely observed
Markov process 1. for example. the process noise se-
duence s not white it is obvious that 2% does not sum-
murtze the past datas In this case the sector s not a state
Aamvmore and it has o be augmented (see. e.g (3. This
discussion pomnts out the reason why the formulation of
stocttastic control problems s done with white norse se-
quences,

TRANSAC HONS ON AUTOMATIC CONTROL. VOL. AC-26. NO. 5. GCT10BER 198)
III.  FROM THE PRINCIPLE OF OPTIMALITY TO
STOCHASTIC DYNAMIC PROGRAMMING

Consider the problem where the number N of time steps
1s finite and deterministic. In general, the terminal time can
he a random variable. possibly depending on the state or a
decision variable. The present discussion is limited to the
fixed terminal time problems. See. e.g.. [11]. [18] for discus-
sions on the free end-time problem. Denote the (scalar)
cost function of the problem as

C=C(xr U, (3.1)

Since this is a random variable, the minimization (in gen-
eral. extremization) is done in the Bayesian approach on
the expected cost

J=E{C}. (3.2)

We assume here that the minimum and. therefore. an
optimal solution (policv) exist. Otherwise, the infimum of
(3.2) i1y 10 be obtained und then only an e-optimal policy
exists (see, e.g.. [11. p. 42)). Other approaches, like min - max
and worst distribution. are also used sometimes but they
are usually more difficult.

In order for (3.2) to be a well-defined criterion. the
expectation must exist. i.e.. all the variables entering into
the cost must be either deterministic or random (with
suitable moment conditions that guarantee the existence of
the expected cost). No “unknown constants™ can be used
i formulating stochastic control problems with the Baye-
stan approach.

If there are unknown system parameters, they have to be
modeled as random sariables with ¢ priori pdf. If these
parameters are time mvariant. then one has a single realiza-
tion from the prior pdf. ie.. an unknown svstem model
generated by a probabilistic mechanism betore the start of
the process. In this case the mimimization of the expected
cost imphies that we want to find the optimal policy

Iy over all possible iitial conditions (as specified by
their pdf).

2y over all possible values of the unknown parameters
(whose reahization is according to the corresponding pdf)

the ensemble of systems perceived by the controller in
view of ity uncertamnty;

3y over all possible disturbance sequences.

When there are unknown timesinvariant or slowly vary -
Mg syvstem parameters the stochastic controller can then be
adaptive. et will thopefuliv) “learn™ the svatem parame-
ters durmg the control period.

The causahity condiion s that any decision function
must depend only on the mformation set avanlable at the
tme 1t has to be computed. ic.

wlh) wtlh 1) A O 0N L (23}

Since the principle of optimality states that every end
part of the decision process must be optimal. the multi-
stage optimization has o be started from the last stage.
The last decision. w0 N 1) must be optimal with regard o
the information set avardable when it has to be computed.

res it will be obtained from the functional minimization

", A A “om et et .« S i ..‘ ‘-‘ RS .n" '.‘ S V.u' --'7- -
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min E(C)I*') (3.4) the minimization (3.7) of C(0). the cost starting from the
e u(¥ initial time O yields the discrete-time stochastic dynamic
~\. where C is the cost for the entire problem. prpgramming equation. Dynamic programming can be ap-
The next to the last decision. u(N — 2} phcd.only to thg so-called. class of “decomposa'b?e" cost
1) must be optimal with respect to (w.r.t.) /* "2 and functions, as pom'ted out in [21], [23]. The additive cost
W 2) is to be made knowing that the remaining decision (3'8.) belongs to this class.
) u( N — 1) will be optimal w.r.t. IV 'D 1% 2, Since
‘ Thus, the (functional) minimization that yields the deci- f
-, sion function at N —2 is c=3 c[j.x(j) ()] (3.9)
P 170
. M(T'PZ)E[MT",‘”E(C|I~ SITA ] (3:5) 4 independent of U,y [ ! and using the smoothing property

. of the expectation operator. i.e.,
and 1t uses the result of the functional minimization (3.4).

Note that the outside averaging in (3.5) is over y(N—1) E[E(-|1/)|1*] :E[-|I"]

N using the conditional density

p[(N=1)I~-

vi>k  (3.10)

2 u(N-2)]

«(N)

min E
w(N -1

oo

min E[C‘ 24 mm E[c(N)
u(N

u( v -

min E
w vV -2y

u(®

" g 2 P . .
) I N

:mlnE{

.

+e(N=DIY ™ 2] --~|1°}

RS R

ut

= minE{c(0)+ T(i'r))E[c(l)-# e Il(r‘1|\1,i_r12)l-.'[c‘(N—2)

+ Tinl E[¢(N=1)+c(N)IY ']|1~“2] . --|I']|l°}.
wN-1O

(3.11)

one has from (3.7)
(3.6)
J*(0.1°%)
parameterized by the control at N —2. Since this measure-
ment is not yet available when w(N —2) is to be computed |
but it will be available for u(N— 1) it is “averaged out” in  — r:}:)r)]E T
(3.5).
The above-described last two steps are entirely similar to N1
the “preposterior analysis™ technique from the operations + X (N
research literature discussed. e.g., in {22]. This technique is 1=0
usually formulated in the following context. The first deci-
sion [here u(N-—-2)} is for information gathering by an
experiment from which a posterior information will result
[here y(N —1)] that will be used to make the last decision
[here u(N —1)]. The prior (to the experiment) probability
density of the (posterior) result of the experiment is called
the “preposterior density” and in the present problem this
1s (3.6). Thus. cne can say that preposterior analysis, which
- is “anticipation” (in a statistical sense, i.e.. causal) of future
information is a consequence of the principle of optimality.
From the above discussion it can be scen that the
principle of optimality’s statement that. at every stage, “‘the
remaining decisions must constitute an optimal policy with
regard to the current information set™ implies the follow- In the above the cost summands have been moved to the
ing: every decision has to use the available “hard” informa- left outside the minimizations that are not relevant for
tion (2.3) and “soft” information (3.6) about the subse- them.
quent hard information. This can be paraphrqsed as the Rewriting (3.11) in (backward) recursive form yields the
- optimal controller has to know how to use what it knows as Bellman equation
: well as what 1t knows about what it shall know.
The extension of (3.5) to the full N-stage process vields
the optimal expected cost starting from the initial time as

e
o0

JHk 1Y) = mi::E{c[k. x(k ). u(k)]
u(

" JHO ") kLYY k=N=1L-0 0 (302)
-. .

(S q4 . ol g~ 2] g0 where JU(k, 1*) is the optimal cost-to-go from time & to
: n?«"»? f" mn\"m:.t[mn:"nnﬁ(( U 4 ] 4 } the end and its dependence on the available information
A (3.7) setat k is explicitly pointed out. The terminal condition for

o (REPARES

I~ where 1" 1s the nitial information. Note that this equation . _

.' does not assume any particular form for the cost function SN )= { [N x( N)]ll } (3.13)
> ¢ o ) where the last measurement is irrelevant since it is averaged
::: For the additive cost given by out immediately.

The stochastic dynamic programming functional equa-
tion (3.12) resuited from the use of the principle of opti-

Vo
Clk)=c[N.x(N)]+ Z [y x(1).u())] (38)
1k mality embodied in (3.7) for the additive cost (3.8). The

T N T e e e e e e e Y e e e e e e
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recursion was obtained by moving to the left in (3.11) the
cost summands.

An equivalent approach. based on the “basic lemma of
stochastic control™ [2] s as follows. This basic lemma states
that

min E[((.\'. u )] = min E{E[('(.\‘. u )[\'] }

= Emin L'[('( v, u)[r]. (3.14)
ut)

e if a measurement y related to x is available then the
minimization of the conditional expectation {the right-hand
side (RHS) of (3.14)] yields the absolute minimum. This is
equivalent to the statement that to minimize an integral
[the outside expectation in (3.14)] is best done by minimiz-
ing the integrand at each point via the function u( ), i.e..
“feedback.” instead of a single value for the entire integral,
e “open loop.” In other words. moving a minimization
inside a sequence of expectations, to be in front of a
conditional expectation (conditioned on all the available
information) is what is needed for the global minimum.
Thus. based upon (3.14) the expected cost is minimized as
follows:

min E{q)I°)

e h) N Doy

. min E{--- E[E(Q¥)~ 1] 1)

wy. Lty Dy N

- mmff{--- min E[ min E(qrt "yt :]"'Il”}.
wh )

gin wN D

(3.15)

te.. exactly (3.7). Note that the nestedness property (2.3) of
the sequence J* was used above.

IV. Duar EfFrct: CAUHON AND PROBING

The solution of multistage stochastic decision processes,
either in the general form (3.7) or in the stochastic dynamic
programming form (3.12) for an additive cost is a formida-
ble problem. Unless an explicit form is found for the
optimal cost-to-go in (3.12) one cannot solve this func-
tnonal equation except numerically. The curse of dimen-
sionality [6] afflicted upon the deterministic dynamic pro-
gramming is further compounded by the expectation oper-
ators in the stochastic case making 1t unsolvable with a few
exceptions (in addition to numerical minimization, numeri-
cal caleulation of the conditional expectations also has to
be carried out. which s practically impossible).

The few exceptions are the linear-quadratic problem {1].
[2]. [7]. the linear-exponential-quadratic-Gaussian problem
[24} and a linear system with a special form cost (even
powers of the state up to sixth) |25).

Since one cannot obtain the optimal stochastic controller
it is of interest to find suitable approximations for the
stochastic dynamic programming. Such an approximation
should preserve the preposterior analysis property of the
principle of optimality mentioned in the previous section

and allow an assessment of the effect of uncertainties
(mperfect information: present and future) on the con-
troller and its performance.

The approximations of the stochastic dynamic program-
ming fall in the following two classes.

1) Feedback Type Algorithms: In this case the control
depends only on the current information

ulk)=ulk. I*) {4.1)

but does not use the prior statistical description of the
future posterior information

plyG+nrl. =k (4.2)

2} Closed-Loop Type Algorithms: Such a controller
utilizes feedback (4.1) and anticipates future feedback via
(4.2). 1.e., that the loop will stay closed.

Feldbaum (14] introduced the concept of dual effect in
the control of stochastic dynamic systems. In a stochastic
problem the control has. in general, two effects.

1) It affects the state (control action).

2) It affects the uncertainty of the state (augmented by
the possibly unknown parameters).

A rather general mathematical definition of this has been
given in {7] in terms of conditional central moments of the
state vector. To illustrate it. let the conditional covariance
of the state at k be

Z(k|k)=E{[x(k)=2(k|k)][x(k)~x(k|k)]|1*)
(4.3)

where x(k | k ) denotes the conditional mean. Then if Z(k |k)
does not depend on the past controls U* "', the control has
no dual effect (of second order), i.e., it is neutral. This is
the case in linear dynamic systems with additive but not
necessarily Gaussian noise [7}, [32). In nonlinear systems
the state estimation accuracy is in general control depen-
dent— the control has a dual effect.

If the system has unknown parameters, modeled as a
realization of a vector valued random variable, the control
values will affect, in general. the information about them
derived from the measurements. Since having more accu-
rate estimates of the system parameters is intuitively be-
neficial for the controller, the idea that the controller
should enhance their identification is appealing. The initial
control should account for the fact that it is applied to a
system with parameters drawn from the prior distribution
and for the fact that their value can be further identified
during the process. This is the adaptive or learning feature
of the controller. A simple example that illustrates the dual
effect of the control is given in the Appendix.

Therefore, the controller can be used for “active infor-
mation storage” (estimation enhancement of uncertainty
reduction) via what has been called probing [14). Note that
only a “closed-loop™ algorithm can do this active informa-
tion gathering. On the other hand, the existence of uncer-
tainty in the system. might have another effect. Since, in
general. uncertainty in the system will increase the ex-
pected cost. the controller should be “cautious” not to
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increase further the effect of the existing uncertainties on
the cost. A simple example to illustrate this “caution™
effect is also given in the Appendix.

The open-loop feedback (OLF) control [1). which be-
longs to the feedback class. works well in some problems.
Nevertheless, it can suffer from the “turn-off” phenome-
non which can be avoided only by a closed-loop controller
[15]. [36}. As pointed out in [7] the optimal solution of the
linear-yuadratic control problem belongs to the feedback
class because in this problem the control has no dual effect.
Among the algorithms that belong to the feedback class are
the heuristic certainty equivalence (“enforced separation™)
{10]. [28]. the self-tuning regulator {3}, the cautious control
[36]. and the multiple model partitioned control [4]. [13].
Algorithms of the closed-loop type are the wide-sense
adaptive [8]. [29]. [30]. the dual controllers of [27]. [36]. the
innovations dual controller of [20]. and the model adaptive
dual controller for multiple models [37].

V. CatrioN AND PROBING EFFECTS FROM THE
STOCHASTIC DYNAMIC PROGRAMMING

The previous discussion pointed out qualitatively that a
controller

1) has a direct control effect on the state:

2) can perform active information gathering {probing)
to improve the accuracy of subsequent control actions: and

3) has to be cautious because of the existing uncer-
tainties in the svstem.

While there is no umiversal agreement on the notions of
caution and probing this author believes these concepts are
valuable in the derivation of suboptimal algorithms. In this
section g quantification of the above properties is pre-
sented. This is obtained by an approximation of the opti-
mal cost from the stochastic dvnamic programming that
results 10 a decomposition of the cost into three terms., each
associated with one of the above 1tems.

The stochastie dvnamic programming equation (2.12) is
approvmated as follows [8],[29). [30]. First, instead of the
evadt mformation state, the following approximate “wide-
sense” amnformation state is used:

SRR Sk, (5.1)
Le. the (approximate) conditional mean and covariance of
v A ) obtained. e.g.. via an extended Kalman filter. The use
of this “quasi-sufficient statistic™ is needed for an algo-
rithm that 15 implementable. Assume now that the system
v at ime & and a closed-loop control (in the sense defined
carlier) is to be computed using ** and the present knowl-
edge (statistical) about the future observations.

I'he prinaiple of optimality with the information state
{5 1) vields the following stochastic dynamic programming
equation for the closed-loop-optimal expected cost-to-go at
time k

Tk oty = Tiﬂf{c[k.x(k).u(/\ )

A 1 et (5.2)

T
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The main problem is to obtain an approximate expres-
sion for E{J*k+ 1.4 H[PR) preserving its closed-loop
feature. 1.e.. this expression should incorporate the “value™
of the future observations. In order to find an explicit
solution, the cost-to-go C(k + 1) defined in (3.8) s ex-
panded about a nominal trajectory (designated by sub-
script 0) generated by the recursion

xol j+ D =M J xol i) uol ) E(H)],
j=k+1.--.N=1 (5.3)

where uy( j). j=h+1.--- . N—1 1s a sequence of nominal
controls and () is the mean of the process noise. The
initial condition x(k + 1) is taken as the predicted value of
the state at kK + 1 given *7* and the control (yet to be found)
u(k). The expansion of the cost-to-go from time &+ 1 is

Clk+1)=Cylk+1)+AC,(k+1) (5.4)

where Cy(k+ 1) is the cost along the nominal (ignoring ail
the uncertainties) and ACy( k + 1) is the variation of the cost
about the nominal with terms up to second order obtained
from a Taylor expansion. which will capture the stochastic
effects. The approximation of the closed-loop-optimal ex-
pected cost-to-go from time k& + 1 is done now as follows:

JHA+D=Clk+ D) +AJS(k+1) (5.5)
where the optimal “closed-loop™ perturbation cost is

AJ(k+1)

- 1 I:{ 1 E c <+ &:PN’[ ...L_'P"l]
W0 FL ey min ELGU 113

(5.6)

and Su(k)=u(k)—wu,(k). This minimization problem is
quadratic since. by construction, AC,(k + 1) is quadratic in
Su( j). k+1<j<N-1 as well as in the variations about
the nominal trajectory. Ax(j)=x(j)—xy(f). k+ 1</ N,
Using a Taylor series expansion of (2.1) and including
second-order terms results in a set of perturbation state
equations in 8x( ) with dx(k+1)=x(k+ 1) x(k+ 1) as
an initial condition. Thus, the problem posed in (5.6)
consists of minimizing a quadratic cost given a quadratic
system of state equations, and is somewhat similar to the
linear-quadratic control problem. Then., by assuming a
solution quadratic in the perturbed state (i.e.. neglecting
higher order terms) and evaluating the expectations per-
mits the optimal closed-loop (CL) cost-to-go to be obtained
explicitly. See [8] for the development of the details. This
result, obviously, depends on the approximations used in
the derivation.

The Cost Decomposition

The explicit expression of the (approximate) cost ob-
tained can be decomposed as follows:

JUK) = Ik )Y+ (k) +Jp(k) (5.7

v
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where the subscript D stands for deterministic. C stands
for caution, and P stands for probing components.
It will be assumed, for simplicity, that

[k x(k) . u(k)]=c [k, x(k)]+e,[k.u(k)] (58)

and that the process noise. whose covarnance 1s 1. enters
additively in (2.1). Then the deterministic component of
the cost-t0-go is. excluding ¢, (which does not depend on
the control) ts given by

Ip(k) 2 e[k u(k)]+ Colhk+ 1)+ (k+1) (5.9)

and the stochastic terms obtained via the perturbation
problem are

JAKk) E 20 [Ky(k+ 1) E(k+11k)]

[Ko(i=1V())]  (5.10)

Nl
+1,2 3 ur
J A+l

‘ N
kY212 3wl (1] (5a1)

J hel

Y is the covariance of the augmented state and v, K. and o
are given by appropriate recursions detailed in {8].

The stochastic term (5.10) reflects the effect of the
uncertainty at time & summarized by Z(k|k) and subse-
quent process noises on the cost. These uncertainties can-
not be affected by u( k) but their weightings do depend on
1. e.g.. Sk~ 11k ) depends on Z(k |k ) and u(k ). The effect
of these uncontrollable uncertainties on the cost should be
minimized by the control; this term indicates the need for
the control to be cautious and thus is called caution term.
The stochastic term (S5.11) accounts for the effect of un-
certainties when subsequent decisions (corrective actions)
will be made. The weighting of these future uncertainties is
nonnegative (d,,  1s positive semidefinite). If the control
can reduce by probing (experimentation) the future up-
duted covarance. it can thus reduce the cost. The weight-
mg matrix o vields approximately the value of future
intormation for the problem under consideration. There-
fore. this as called the probing term. Note that even if the
contral has no dual effect. i.e.. it does not affect the future
covarance £ of the augmented state (which includes the
random parameters). the weighting of these covariances
mught sull be affected by the control. Therefore, this (ad-
mittedly approximate) procedure accounts not only for the
dual effect but all the stochastic effects in the performance
index.

Thus. starting from the stochastic dynamic programming
one can see the following: the benefit of probing is weighted
by its cost and a compromise 1s chosen such as to minimize
the sum of the deterministic, caution. and probing terms,
T'he minimization of /% will also achieve a tradeoff be-

The closed-loop control u(k) is found from the minimi-
zation of (5.7) using a search procedure. At every k to each
control u(k ) for which (5.7} is evaluated during the search
there corresponds a predicted state and to this predicted
state a sequence of deterministic controls is attached that
defines the nominal trajectory. The only use of the nomi-
nals and perturbations is to make possible the evaluation
of the cost-to-go optimized in a closed-loop manner. This
procedure is repeated at every time a new control is to be
obtained.

The “quality™ of the approximations used in the deriva-
tions outlined above, in particular. the second-order expan-
sions, is an open question. Only extensive Monte Carlo
simulations with rigorous comparison with other algo-
rithms (see. e.g., [37]) can answer these questions. For some
problems [29]. [30] significant performance improvements
have been found. In other cases where probing is not
significant the CL algorithm performed close to the OLF
{8].

The cost decompositicn is believed to provide the only
insight we now have towards the understanding of complex
stochastic control problems for which the optimal solution
is unknown. Furthermore. the classification of various sto-
chastic control problems presented in the next section,
which is based on this decomposition, can be used as a tool
to assess for which nonlinear problems stochastic control
algorithms can provide significant performance improve-
ments.

V1. IMPLICATIONS OF THE COST DECOMPOSITION
AND EXAMPLES

The decomposition of J* presented above yields an
explicit evaluation of the tradeoffs between direct control,
active probing, and a cautious action on the part of the
controller. Thus. the ability of the control to affect learning
as well as steer the system to its targets can be numerically
evaluated using this decomposition. This is a particularly
attractive feature for it captures both the need (and desire)
of the controller to extract more information from the
system as well as the aversion for drastic actions which
may result in undesirable outcomes (risk aversion [12]).
Furthermore, this also gives indication whether the uncer-
tainty dominates the problem when the stochastic part of
the cost (J-+J,) exceeds significantly the deterministic
part (Jp).

If the uncertainty dominates the problem, then one can
distinguish two cases.

1) The caution component J. dominates. Then. since
this is “uncontrollable™ uncertainty, one has a highly un-
certain model which cannot be improved in the course of
the control period.

2) The probing component J, dominates. Then, with the
dual effect of the control, one can reduce the uncertainty of
the model — thus, the model. while uncertain at the begin-
ning. might prove to be ultimately adequate for the control
problem under consideration.




BAR-SHALOM: PROGRAMMING, CAUTION, AND PROBING

Y Y
.r.‘-"’.'. € . 'l '0 [ I Y

A third case occurs when we have the following.

3) The deterministic component of the cost J,
dominates: then the parameter uncertainties are of no
significant consequence.

The last case is the most desirable because then the
controller can be of the certainty equivalence type [7]. i.e..
tt cai. ignore the uncertainties by repiacing all the random
variables by their (conditional) means. This is the least
expensive algorithm because it is essentially deterministic
and will yield near optimum performance. However. the
stochastic control approach outlined above has to be used
to reach this conclusion.

Wonham [33] stated, about ten vears ago, the following.
In the case of (stochastic) feedback controls the general
conclusion is that only marginal improvement can be ob-
tained (over a controller ignoring the stochastic features),
unless the disturbance level is very high: in this case the
fractional improvement may be large but the system is
useless anyway.

This statement implies that with high-level disturbances
(in which one can include large parameter uncertainties)
one has a “hopeless” situation. The other extreme is the
situation with low level disturbances. These two situations
seem to match, respectively, cases 1) and 3) from above. It
was also pointed out in [33] that Feldbaum’s dual control
which probes the system might hold the promise of useful
applications of stochastic control. However, at that time it
was not clear whether there are sfich problems and. if yes.
then how to obtain a (dual) controller that can effectively
probe the system to reduce uncertainties. The wide-sense
dual (or stochastic closed-loop) control algorithm (8], [29],
presented in Section V, can then be used to obtain signifi-
cant performance improvement.

As will be shown in the sequel. the cost decomposition
presented above can answer affirmatively the question
whether there are probing-dominated stochastic control
problems, i.e.. problems falling in case 2) from above.

In the following a number of examples are discussed to
Hlustrate the usefulness of the cost decomposition and its
implications. Some of these examples have appeared earlier
in the literature and they are reexamined in light of the
recentlv gained quantitative understanding of the caution
and probing effects from the cost decomposition.

A. A Probing-Donunated Problem (Ternunal Guidance)

The first example is the interception problem from [30].
In this case a third-order linear system with six unknown
(random) parameters and both process and measurement
noises was considered. The augmented nine-dimensional
state (for which the dynamic equation is obviously nonlin-
ear) had an initial estimate and an associated covariance.
The elements of this covariance matrix corresponding to
the parameters reflected the fact the initial estimates of the
parameters were poor. The goal was to steer one of the
(proper) state components to a target value by the terminal
time. which was VN =20. This was expressed by a quadratic
term for the terminal state. There was no cost associated
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Fig. 1. Cost decomposition for a probing-dominated stochastic control
problem (terminal guidance for a third-order system with six unknown
parameters).

with the state prior to the terminal time and the cost
weighting of the control. also entering quadratically, was
low.

Fig. | presents the plot of the cost decomposition for the
first period control. It can be seen that this is a probing-
dominated stochastic control problem: the probing compo-
nent of the cost is approximately 80 percent of the total
cost.

The performance of the wide-sense dual {or closed-loop
(CL)] control described in Section V was compared in {30}
via Monte Carlo runs to the HCE (heuristic certainty
equivalence) where the parameters’ estimates were used as
if they were the true values. The observed improvement of
the CL algorithm versus HCE was, from (the modest
number of) 20 Monte Carlo runs, around 85 percent [30].
This fractional improvement is quite close to the share of
the probing cost from the total as indicated above. The CL
controller, via its dual effect helped identify the system,
i.e.. it was actively adaptive and this was the key factor in
its better performance. This decomposition, which was not
known at the time of the original work [30]. can now be
used to provide the explanation for the observed perfor-
mance improvement.

An important observation is that the probing component
of the cost is not convex — the parameter identification is
enhanced by large magnitude first period control values,
both negative and positive. This lack of convexity of the
probing component leads to local minima, as can be seem
from Fig. 1. This phenomenon was pointed out in {27],
[36}. The behavior of the multiple minima is discussed later
in more detail.




v v w

192 IFFE TRANSAC IIONS ON AUTOMATIC CONTROL, VOL. AC-26. NO. 5. OCTOBER 1981

The example discussed above. which is of the terminal
state penalty type, belongs to the second class of problems.
i.¢.. probing dominated.

B 4 Cuution-Dominated and an Essenually Determimistic
Problem ( Econometric Models)

Two additional problems, denved from econometrics are
discussed next. Both are macroeconometric models of the
U.S.. derived from the same data but under different
assumpuions. For a concise description of the models see
[9]. [10). The first econometric model has three states (gross
national product, investment. and consumption), is driven
by the government expenditures input. and has five un-
known parameters characterized by an initial estimate and
covariance matrix. The second econometric model has 11
states (as above plus increments of these variables and
some lagged values). same input. and three unknown
parameters.

The first model was obtained by Kendrick using ordinary
least squares [17] while the second. more elaborate model,
was obtained by Wall using the full information maximum
likelihood method {34}, [35]. The cost was quadratic in the
deviations of the three economic variables and the input
from target values along the entire trajectory consisting of
seven periods (economic quarters).

The analyvsis of the cost J<1(0) for the first econometric
madel, shown in Fig. 2, points to the fact that this problem
is dominated by the caution term. This is due to the
relatively large uncertainties in the inital parameter esti-
mates. The probing component is negligible — this problem
i~ completely dominated by the initial uncertainty - it be-
longs to the first class defined at the beginning of the
section. Note that both the caution as well as the probing
term tend to reduce the value of u' " versus u'E, ie., they
are not conflicting in this case.

Fig. 3 shows the cost for the second econometric model.
The deterministic component dominates here and u(0) 1s
very close 1o w'“¥(0). The probing component s again
neghgible. This problem belongs to the third class-—it is
essentially deterministic.

C. A Scalar Problem: Parametric Studv of the Cost Shape

Another example of the application of the cost de-
composition deals with a scalar hinear system over N =2
tme periods discussed in {19].

VA - 1) cax(k) A bulk) + (k) k=0.1 (6.1)

with ¢ 0.7 known, the unknown nput gain b with initial
estimate h(0) = 0.6, and variance 6;(0). The process noise
t(k) is zero mean. white with variance . The goal is to
keep the state x. which is perfectly observed, around zero.
This is expressed by the quadratic cost

CoE200 2y 1,2 (W (0) +ui ()] (6.2)

with terminal state weighting Q(2) and control weighting
r =0.1. The inmtal state is x(0) = 1.
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Fig. 2. Cost decomposition for a caution-dominated stochastic control
problem (third-order econometric model with five unknown parame-
ters).
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Fig 3. Cost decompositon for an essentially deterministic stochastic
control problem (! lth-order econometne model with three unknown
parameters)

Fig. 4 presents the cost decomposition at k=0 (first
period) for the initial gain uncertainty 07(0)=0.52 and
process noise variance |'=0.2 and terminal state weighting
Q(2)=10. The probing component of the cost. which varies
drastically with the control. vields two minima for the total
cost. [t is of interest to see how these minima behave as the
terminal state weighting changes. This 1s illustrated in Fig.
5. For even larger terminal weighting the two minima get
further apart while for a lower weighting. Q(2)= 1. there is
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only one minimum left. In this latter case the lighter
terminal penalty does not justify a major control effort to
identify accurately the parameter b and u‘! is quite close
to wHCE.

Another aspect of interest is how the anticipated future
lea-ning changes the present behavior of the CL controller.
To this purpose the variance of the process noise was
varied. Fig. 6 shows the cost J “V(0) for Q(2)= 1000, o} = 2,
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Fig. 6. Effect of the anticipated future learning on the control (scalar
system)

and various values of V. For large process noise variance.
less learning is anticipated and the cost curve is relatively
flat, even though it has two minima, wide apart. For low
process noise variance the cost curve has a very high
maximum at #(0)=0 (when no learning of b occurs) and
then two sharp minima around this point.

VII. CoNCLUSIONS

While still very few stochastic control problems have
been solved optimally. insight into such problems can be
gained by using the decomposition of the expected cost.
This decomposition, based on the stochastic dynamic pro-
gramming. vields three cost components: one deterministic
and two stochastic ones. The stochastic terms quantify the
effect of the various uncertainties on the performance
index. The effects these stochastic terms have been associ-
ated with Feldbaum's concepts of caution and probing.
Furthermore, this decomposition revealed three classes of
stochastic control problems: caution dominated. probing
dominated, and essentiallv deterministic. This, admittedhy
fuzzy. classification pointed out that there are stochastic
control problems where significant improvements can be
expected when using an appropriate sophisticated control
algorithm. The examples show that one can assess. before
extensive simulations. whether significant performance im-
provement can be expected in a stochastic control problem.
It has also been shown that the various cost components
can vary drastically with changes in the performance index
weightings. The probing component of the cost can be
nonconvex thus leading to local minima in the total cost.
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APPENDIX
SIMPLE EXAMPLES OF PROBING AND CAUTION

Consider the scalar svstem

XOk 1) —ax(h) v hulk) - vlk) (A1)
with g known, b an unknown parameter with prior mean
h(()) and variance 07(0). and v(k ) a zero-mean white noise
sequence with variance o,°. Letting

Y= rt . (A.2)
re.. perfect state observations. 1t follows that the un-
certainty about parameter b at time &k ~ 1 is, from a stan-
dard least-squares argument. dependent on the control at &
as follows:
. o, (k)a’
o lk+l)s ——a . (A3)
o lkYu(h) oS

This clearly illustrates the controb’s dual effect, in addition
toats effect on the state the control also affects the future
information accuracy.

Constder neat the same system with the (one-step hori-
2010 0T MYOpPIC) Cost

CLAY A= 1) - (A ) (A.4)
Fhe controb that mininizes
JUAY B Cchy Y (A.S)
an be obtaimed ea s as
WA} ,“‘”}”;‘_""_ {(A.6)

BUAY - a (k)N

Note that. because of the myopiaty of the cost (A4), this
controller 1ignores any possibility of learning. On the other
hand, because of the uncertainty in b, this control can be
very cautious  a large vanance o (A ) can decrease signifi-
vantly the value of the control 1n (A.6) compared 10 the
case where there v no uncertanty im b or when this
uncertamty is ignored as an HCE controller would do

av(AVhLA)

WMo . )
(k)X

(A7)

The opumal myopie controller (AL6) can then exhibit the
turn-off phenomenon {13 [36] 1t can be small because of
Lirge uncertants i b and this will then prevent. accordimg
o A 3 the reduction of this uncertamty.
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PROBLEM

Y. Bar-Shalom and J. Molusis

the control's dual effect:
parameters.
craft wing-store flutter.

the flutter modes during the flight.
1. INTRODUCTION

The topic of this paper is the application of
some recent results in stochastic control to an
aerospace problem where there are large uncer-
tainties in the dynamics of the plant to be
controlled. While the stochastic Dynamic
Programming {Bl,B2] yields, in principle, the
solution to general stochastic control problems,;
the curse of dimensionality prevents its appli-
cation to nonlinear problems. An important
class of problems is the one of linear systems
with unknown and possibly time varying para-
meters. Such a system is nonlinear in the
augmented state, which is made up of the

proper state and the unknown parameters.

It was pointed out in [B3] that the optimal
stochastic control depends, im general, on

() the current information (e.g., the
latest estimate of the state and
parameters)

(ed) the quality of the current informa-
tion (represented, e.g., by the
covariance associated with the
above mentioned estimates)

(444) the anticipated quality of the sub-
sequent (future) information

The well-known optimal solution of the Linear
Quadratic Gaussian Problem (without unknown
parameters) has the so-called Certainty
Equivalence property: the resulting feedback
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STOCHASTIC CONTROL AND IDENTIFICATION ENHANCEMENT FOR THE FLUTTER SUPPRESSION

Electrical Engineering and Computer Science Department, University of
Connecticut, Storrs, Connecticut 06268, USA

Abstract. The topic of this paper is the application of some recent results
in stochastic contrpl to an aerospace problem where there are large
uncertainties in the dynamics of the plant to be controlled.
tion to the stochastic Dynamic Programming is considered that results in an
adaptive control of the 'closed-loop" type:
state and parameter estimates and their uncertainties) as well as their
anticipated future uncertainties - it anticipates (subject to causality)
subsequent feedback. This algorithm has the feature that allows the control
to enhance the parameter identification in real time.

An approxima-

it utilizes feedback (latest

This is done using

the control can affect the state as well as the
(augmented) state uncertainty and thus can reduce the uncertainty about some
A flight control application in which stochastic adaptive
control appears to offer significant payoff is the active control of air-
Improved flutter suppression can be accomplished
with an adaptive controller that has the capability to learn and identify

control has the same gain as the corres-
ponding deterministic problem and only uses
the state estimate instead of the (unavail-
able) state. This solution exhibits only
feature (4{) from above - it is independent
of the quality of the state estimate. The
“Heuristic Certainty Equivalence" (HCE)
algorithm for linear systems with unknown
parameters consists of the following: the
parameters are estimated in real time and
the feedback gain is computed using the
latest parameter estimates as if they were
the true values [S1].*

This algorithm, while adaptive, does not
take into consideration the quality of the
parameter estimates.

An approximation to the stochastic Dynamic
Programming was presented in [T1,T2,B4].

In the terminology of [B3], the resulting
adaptive control is of the "closed-loop'(CL)
type: it utilizes feedback (latest state
and parameter estimates and their uncer-
tainties) as well as their anticipated
future uncertainties - it anticipates (sub-
ject to causality) subsequent feedback.
This algorithm has all three features («)-
(44L) mentioned above. In particular, the
third feature allows the control to enhance
the parameter identification in real time.
This is done using the control's dual
effect {Fl]: the control can affect the

*The strict meaning of Certainty Equivalence
{s that all the random variables in the
problem under consideration can be replaced
by their means-the problem is equivalent to
one with perfect certainty.
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state as well as the (augmented) state
uncertainty and thus can reduce the uncer-
tainty about some parameters. This is the
"probing" or "estimation/identification
enhancement' property of the control. For
this reason the algorithm was also called
"dual control.”" At the same time the con-
trol also has to exercise ''caution" in
order to avoid the performance to suffer
due to the existing uncertainties.

The connection between the stochastic
Dynamic Programming and these two properties
of "probing' and "caution" of an adaptive
controller is discussed in Section 2.

A flight control application in which
stochastic adaptive control appears to

offer significant payoff is the active comn-
trol of aircraft wing-store flutter. Fighter
aircraft are required to carry many different
combinations of external wing-mounted stores
to perform a variety of missions over a wide
operational envelope. Wing mounting of these
stores gives rise to different flutter
speeds. Release of the wing-mounted stores
will cause an abrupt change in the damping
and frequencies of wing structural modes.

The structural and aerodynamic models used

in the design of "constant gain" type con-
trollers are increasingly inaccurate for
higher frequency aero-elastic dynamics.

Thus, improved flutter suppression could be
accomplished with an adaptive controller,
which includes the capability to learn and
identify the flutter modes during the flight
mission.

The ability to successfully suppress flutter
during a change in store configuration re-
quires that the adaptive controller identify
the structural modes very rapidly. Failure
to identify the system parameters quickly
enough could result in an instability or
cause structural damage. For this reason,
an adaptive control which provides identi-
fication enhancement through probing would
result in more rapid identification of
system parameters than a heuristic cer-
tainty equivalence controller.

Section 3 describes the flutter model
considered and simulation results are
presented in Section 4. It is shown that

the CL control, by anticipating the

learning of the parameter can enhance their
identification; i.e., be "actively adaptive."
The HCF. control is adaptive, but only
passively so, and its "accidental learning"
is not as fast as the CL controller's.

2. PROBING AND CAUTION IN ADAPTIVE CONTROL

The actively adaptive control approach devel-
oped earlier in [T1,T2,B4] is described in
this section and a decomposition of the
stochastic cost is presented that will {ndi-
cate the effect of the uncertainties on the
control -- whetter it should be more aggres-
sive or more cautious in comparison with the
heurfistic certainty equivalence (HCE - when
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all the random variables are replaced by
their means). This algorithm is suboptimal
in the sense that certain approximations are
used in expressing the optimal return func-
tion in the solution of the dynamic program-
ming equation. In particular, Taylor's
series expansions about some nominal trajec-
tory, including second order terms, are used.
The convenient and intuitively appealing form
of the solution, together with its computa-
tional tractability, however, make it a very
useful tool. Only a brief outline of the
algorithm is given to facilitate under-
standing of the stochastic cost decom-
position (see [B4] for details).

Consider the system whose state l(k)' an n-
vector, (which has been augmented to include
unknown parameters) evolves according to the
equation

x(k+1) = £1k,x(K), u()] + v(k) (2.1)

k = 0,1,...N-1
and whose observations are given by x(k), an
m-vector, according to
y(k) = hik,x(k)] + w(k), k = 1,...,N1
(2.2)

The initial condition, x(0), is a random vari-
able with mean X(0/0) and covariance I(0/0);

v(k) and w(k) are the process and measurement
noises, with known statistics up to second

order. The cost function is taken as
N-1
C(N) = y(x(N)] 4-}5: Lix(k),k] + ¢fu(k),k]
k=0 (2.3)

The optimal closed-loop expected cost-to-go
can be written as [B4]

CL A .
JUE(N-k) = JD(N-k) + JC(N-k) + JP(N-R)
(2.4)

where
Jp(N=-k) ¢ ¢lu(k), k] + CO(N-k—l) + yo(k+1)
(2.5)

is the deterministic part of the cost and

I (N-k) 2 'str (K (k1) Z(k+l]k)) +

N-1
*‘32 tr(Ky(+DV() ]
j=k+l (2.6)
N-1
A&
Jpl8-k) =y Z trldy (9 Tptiid)
jek+l 2.7

are the stochastic terms in the cost obtained
via the perturbation problem. In the above,
V is the process noise covariance, © is the
covariance of the augmented state and y, K
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and A are given by appropriate recursions
detailed in (B4].

The first stochastic term, (2.6), reflects
the effect of the uncertainty at time k and
subsequent process noises on the cost.
These uncertainties cannot be affected by
u(k) but their weightings do depend on it.
The effect of these uncontrollable uncer~
tainties on the cost should be minimized by
the control; this term indicates the need
for the control to be cautious and thus is
called caution term. The second stochastic
term, (2.7), accounts for the effect of
uncertainties when subsequent decisions
(corrective actions) will be made. The
weighting of these future uncertainties is
non-negative (10 xx 1s positive semidef{-
nite). If the control can reduce by
probing (experimentation) the future up~
dated covariances, it can thus reduce the
cost. The weighting matrix Ao xx yields
approximately the value of futlre informa-
tion for the problem under consideration.
Therefore this is called the probing term.
Note that even if the control has no dual
effect, i.e., it does not affect the

future covariance I of the augmented state
(which includes the random parameters), the
weighting of these covariances is still
affected by the control. Therefore this
procedure accounts not only for the dual
effect but all the stochastic effects in
the performance index.

The benefit of probing is weighted by its
cost and a compromise is chosen such as to
minimize the sum of the deterministic,
caution and probing terms. The minimization
of J'Y will also achieve a tradeoff between
the present and future actions according to
the information available at the time the
corresponding decisions are made.

To find the closed-loop control u(k), the
minimization of (2.4) is performed using a
search procedure. At every k to each control
u(k) for which (2.4) is evaluated during the
‘search there corresponds a predicted state and
to this predicted state a sequence of deter~
ministic controls is attached that defines the
nominal trajectory. The only use of the nomi-
als and perturbations is to make possible the
evaluation of the cost-to-go optimized in a
closed-loop manner. This procedure is re-
peated at every time a new control is to be
obtained.

If the uncertainty dominates the problem then
one can distinguish two cases: (1) The cau-
tion component, Jg¢, dominates. Then, since
this is "uncontrollable” uncertainty, one has
a highly uncertain model which cannot bhe
improved in the course of the control period.
(2) The probing component, Jp, dominates.
Then, with the dual effect of the control one
can reduce the uncertainty of the model - thus
the model, while uncertain at the beginning,
might prove to be ultimately adequate for the
control problem under consideration. A third
case occurs when (3). The deterministic compo-

nent of the cost, Iy, dominates: then the

parameter uncertainties are of no significant
consequence. This is the most desirable sit-
uation because then we can use CE, i.e.,
least expensive, control algorithm with good
performance. However, only the stochastic
control approach can indicate this.

3. A SIMPLIFIED WING-STORE FLUTTER MODEL

A simplified version of a wing store flutter
model can be represented by a second order
differential equation. The state space model,
with position and velocity components, can be
written as

0 1 1] 1]
ic.-[ 2 ] 5-#-[ ]u+[] v (3.1)
-9y 02-',...0 K 1

with measurements of velocity only

y=1({0 1] x+w (3.2)’
|

where v and w are the process and measurement
noises, respectively.

Typical values of the parameters for model
(3.1) are wg = 20 + 10, ; = 0.05 + 0.1 (it can
become open-loop unstable) and <« = 1 + 0.9
(the control gain can become very low).

A more general flutter model would include a
lead-lag transfer function between control
input and input u of model (3.1). However,
the simplified model (3.1) is sufficient to
demonstrate the adaptive control concept of
improved control by identification enhance-
ment.

The discretized version of (3.1) is, for
sufficiently high sampling rate (typically
ten times its natural frequency)

1 AT
x(k+l) = 2 x(k)
-0 AT I-ZZQOAT

0 vl(k)
+ u(k) + 3.3
KAT v, (k)
2
where v(k) is a zero-mean white noise sequence.

For wg = 20 one has f = 20/27 3 3.2, T = 0.3 and
the sampling time was chosen as AT = 0.03. The
nominal parameters of the discrete time model
are then

2

Ol = -wO$T - -12
0, = 1=27wgil = 0.94 3.4
O3 = <AT = 0.03

The augmented state model consists of (3.3) and
the model for the parameters with additive zero-
mean white noise

31(k+l) = )i(k) + v1+2(k) i=1,2,3 (3.3




i.e. the parameters were assumed to behave (over
the relatively short horizon of the problem) as
Wiener processes. This was done to allow for
the changes that occur in the flutter dynamics
during the flight.

The initial estimate for the augmented state was

£(0]0) = [0 10 -12 .94 0.03]' (3.6)

with the covariance matrix assumed diagonal

£(0]|0) = diag[1072 1 36 oé Gg ] 3.1
2 73

The last two terms, reflecting the damping
and input gain uncertaintiy, can take a
number of values.

The process noise covariance was

2

V = diag [0, 10°°, O, V v (3.8)

44 SS]

The terms V;, and Vg5 were non-zero in the
runs where the effects of time-varying
damping and control gain, respectively, were
investigated.

The flutter control problem can be repre-

sented as the minimization of a quadratic
cost criterion

N
J=E :Z x" (k) x(k) + ruz(k-l)) (3.9
k=1

L0010
Q(k) = H
0 .1

with

|
=1 (3.10)

where, N is chosen to reflect the desired
sample duration during the store configura-
tion change. For the problem here N=5 was
chosen. As indicated by (3.10) the goal is
to keep the velocity, x;, small with limited
amounts of control.

4. SIMULATION REUSLTS

The flutter model of (3.3) and (3.4) was
investigated with nominal parameter values
shown in (3.6), (3.7) and (3.8). Two con-
trollers were evaluated: (1) the closed
loop control ubl which minimizes the quad-
ratic cost (3.9) and assumes uncertainty in
the flutter parameters and (2) the Heuristic
Certainty Fquivalence control u CE which
assumes the flutter parameters are known
without vrror. The case of time-invariant
parameters is shown first, followed by
assumine the parameters vary with time
(Wiener Process) as shown in (3.5).

rhe first set of simulations consisted of
the evaluation of the first period cost
decomposition presented in the previous
gection for time-invariant parameters.
Table 4.1 presents the results in

terms of the cost components evaluated

at the Heuristic Certainty Fquivalence

control value uHCE (0) and at the value ob-
tained by minimizing (2.4), uCl (0). In
cases 1 and 2, with moderate uncertainties
in Oy (damping) and Q3 (input gain) the
three cost components - deterministic, prob-
ing and caution - are of approximately the
same magnitude. The minimum of the closed-
loop cost is very close to the HCE control,
which minimizes only the deterministic cost
(because HCE ignores all uncertainties).

For larger uncertainties in the damping the
caution component increases but the reduc-
tion in the probing component, with a larger
magnitude control |yCLI>{yHCE| ¢ields a
small reduction of the total cost. Case 3
considers the situation where the gain uncer-
tainty is very large. This situation leads
to a significant dominance of the caution
effect - the magnitude of the CL control is
significantly smaller than the HCE control.

The significance of the results presented in
Table 4.1 for the flutter problem (assuming a
time-invariant parameter description) is as
follows. For large uncertainty in the danping
parameter (J>) the performance of both the

uCl and the uHCE controller is nearly the same.
However, if in addition, the control gain has
large uncertainty (case 5) the CL control
shows a 7% reduction in the cost - all of
which is due to the caution component. This
implies that uncertain knowledge of the con-
trol gain dictates that the optimal control
should exhibit more caution than the

Heuristic Certainty Equivalence controller.

The second set of simulations was perforrced for
a time-varying description of the flutter para-
meters. A time-varying parameter case was
simulated by assuming there is process noise in,
(3.5) for i=3, The standard deviation of the
noise affecting the input gain was taken as
s = 0.014. The results are shown in Table
4.2 for different values of the initfal damping
uncertainty. As can be seen probing dominates:
a significant reduction in the probing cost

and a 10% reduction in the total cost can be
obtained by using an actively adaptive control
like u This control anticipates that
changes will occur in the parameter even though
it does not know what will be the changes,
which are modelled by zero-mean noise with
variance VSS' according to (3.5). Conse-
quently, this "anticipation" (which is re-
stricted to be causal) leads the control to
enhance the identification of the input gain,
whose variance otherwise would be excessively ‘
large.

The results in Table 4.2 demonstrate that
flutter suppression can be more effectively
achieved bv probing the svstem to enhance
identification of the control gain for the
case where the control gain can vary with time.
The results of Table 4.2 indicate the average
performance improvements by using the ClL-
controller. Specific time historv results

can give a detailed examination of the identi-
fication enhancement property of the CL-
control.
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The next set of simulations consists of time
history runs with time-varying parameter as
in case 7. The true value for the gain was
03-0.03. The process noise vg5(l) simulated
the change of 03 from time 1 to time 2. The
goal was to see how the probing control as
shown in case 7 (Table 4.2) was able to
enhance the real-time parameter identifica-
tion in order to reduce the cost. An exact
assessment of the potential benefits from
using u vs. ulCE yould involve many Monte
Carlo runs where all the random variables
(initial conditions, parameters, noises) have
to be generated according to their statisti-
cal characterizations [B5] and the results
require special analysis [W1]. A few runs
cnly were carried out with only the noise
v5(1)=23(2)-24(1) being non-zero while, all
the other noises were set to zero, to eval-
uate the cumulated cost over N=5 steps.

Table 4.3 shows these values for the two
control policies for a few parameter changes.
In cases 8-10 the initial estimate of the
input gain was the same as the true value,
i.e., 33(0) = D3(0) = 0.03. In this situa~
tion, which initially favors the HCE con-
troller, the CL controller is still better
when the gain decreases (cases 9 and 10).
Note that this decrease of the control gain
causes sgignificant cost increases and this {is
when the CL controller proves itself useful.
In cases 11 and 12 the initial gain estimate
was 23(0) = 0.05, i.e., it was overestimated.

The final set of simulations represent time
histories where both the damping parameter
7> and the control gain .3 experience abrupt
changes, This would be typical of a wing
store configuration change. The damping and
control gain change are shown in Fig. 4.1.

For this case the damping parameter (9;)

goes from a stable value of .94 to an

unstable value of 1.06. The control gain

(73) goes from .03 to .005. The standard

deviation of the noise for the damping para-
-t

meter was +V,, = .l.

The cumulated cost for this case is shown in
Table 4.4 for uCl and ufiCE,

The CL control is seen to have improved the
performance over the HCE controller. This
improved performance is due to identifica-
tion enhancement of the damping parameter.
This can be seen in Figure 4.2 where the CL

control is shown to identify the damping para-

meter more rapidly. Figure 4.3 shows the
identified gain parameter which is success-
fully identified by both controllers after 5
time steps.

5. CONCLUSION

The simulation results resented in this
paper indicate that potuatial improvement

in flutter suppression is possible using

an adaptive control of the closed loop type.
This {mprovement is a direct result of
identification enhancement due to probing in

the control solution.
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A more detailed

flutter model and further simulation is re-
quired to fully quantify the maximum

achievable performance capability using the
CL control.
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A LINEAR FEEDBACK DUAL CONTROLLER *
FOR A CLASS OF STOCHASTIC SYSTEMS

Y. Bar-Shalom, P. Mookerjee and J. A. Molus
’ University of Connecticut
Department of Electrical Engineering
and Computer Science
Storrs, CT, USA 06268

Résumé.

-
On présente une méthode pour la construction d’'un algorithme de commande
duale ayant une structure i rétroaction linéaire. L'application de cet
algorithme pour la commande d'un hélicoptére est discutée et des résultats
de simulation sont dounés.

Abstract

The methodology for deriving a dual control algorithm that has a linear
feedback form is presented. This control, while simple, has the capability
of enhancing the identification of the system's unknown parameters. A dual
controller for a plant describing the helicopter higher harmonic vibration
control problem is presented together with simulation results.

Pl

1. Introduction
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In the control of nonlinear stochastic systems the control has, in
general, a dual effect {Fl, Bl]: it affects the system's state as well as
its uncertainty. Since in linear plants with unknown parameters the con-
trol has a dual effect, it can be potentially used to enhance the real-time
identification of the system parameters.

The attractiveness of a linear controller that incorporates the dual
effect has been pointed out in [Ml]. Previous dual control algorithms
[A2, B2, W1, W2] required numerical search which makes their implementation
costly. The success of the self-tuning regulator [Al], which stems from
its ease of implementation as well as its effectiveness, prompted us to
investigate control algorithms that have a linear feedback form but incor-
porate the dual effect.

The problem considered in Section 2 is the simplest one where there
is a dual effect, in order to illustrate the concept. A 2-stage optimi-
zation problem is then formulated with the stochastic dynamic programming
in Sectfion 3 and the controller is derived in Section 4.

In Section 5 an algorithm based on this methodology is derived f.r
a multiple-input multiple~output model corresponding to a simplitied
version of the "higher harmonic control" of helicopter vibration {W3, M’].

Simulation results are presented in Section 6.
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2. Problen Formulation

The following memoryless unknown-gain system with plant and measur.-

ment noises 1s considered. The plant equation is

© x(k1) = bu(k) + v(k) (2.1
w’it.h -L
' B0 = 0 ;i Ev(OV() = V & .n
and the measureément is given by
y(k) = x(k) + w(k) (1.0
where
Ew(k) = 0 Ew(k)w(j) = 6kj (2.9
and
Ev(k)w(j) = 0 (2.5

The estimation of the unknown gain b (assumed time invariant here) is
done according to the following equations:
b(k+1) = b(k) + P(k)u(k) [P(k)u (k) + Vv + w] [y(k+1) - é(k)u(k)] (2.h)
P(It1) = E[b - b(k+1)]2 = PUO(V + W) [P(Q)ui(k) + V + W]~} (2.7

Note in (2.7) the fact the control affects the variance of the para-
meter estimate, i.e., it has the dual effect [Fl, Bl].

The control criterion to be minimized will be taken as the expectod

value of the cost from step O to N

J(0) = E{c(0)} (2.%)
where
N
ck) = 3 cly.x(i),u(h] (o
=k

and, with £(j) denoting the desired state at time j
cd) = a(x() - £I2 + re2(§)  §=0,1,....N-1  2.1m)

c(N) = q(N) [x(N) - £ ]2 NS
3. The Multistage Problem and Dvnamic Programming
The general equation of the Stochastic Dynamic Programming is
J*0GYE) = min Ele(h) + 3%+l YY) ken-dt0 (b
u(k)
where J*(k) is the "cost-to-go" from k to N, Yk is the cumulated int semori

at time k when the control u(k) Is to be determined.

Due to the memoryless nature of the system (2.1) the onlv o apling
between the stages in a multistage problem is the informational erfe.t o
the control - its effect on the quality of the estimate of the piroaet,r

The last control is obtained from

. Y oLN-
a*oe1) - u?ﬁﬂl)E{q(N—l)[x(N-l)-&(N-l)]2+ru2(N-l)+q(N)[\(ﬂ)--(N\] \
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- u?%fl){E[Q(N‘l)lx(N—l)-E(N-l)]2|YN-l]+[r+q(N)[;2(3_1) .

+ P(N-1) 1 Ju? (N-1)-2 (N) £ (N)b (N~ 1) u(N-1)4q () [V+£2(N) | (3.2)
as .
a*(N-1) = () 2D+ (-1 1) Lq ) EQO B (8-1) (.3
This yields the optimal cost-to-go
I*(N-1) = E[qN-1) (x(N-1) - £N-1)2 Y1) & 7* (-1 (3.9
where

J (N 1)=-[r+q(N)(b (N-1)+P(N-1)) ] (q(N)ﬁ(N);(N-l))2+q(N)CZ(N)+q(N)V

= [r+q(N)(b (N-1)+P(N-1)) 1" (r+Q(N)P(N-1))q(N)EZ(N)+q(N)V (3.5)
is the cost-to-go excluding the term which is not affected by the current
control.

The control (3.3) is the well-known "one step ahead cautious" control.
This is the optimal control, for all k, if the cost has a sliding horizon
of only one step (called also "myopic" control).

The next to the last control is to be obtalned from the fcollowing

02,72 = atn Ele-2)+3 @-1,Y 1) (Y2 (3.8)

u(N- 2)

The dependence of J (N-l), given by (3.4), on y(N-1) is via b(V D.
Since, as detailed in (3.5), J (N 1) is a rational function of b(N-1) one
cannot carry out explicitly the expectation in (3.6), which is over y(N-1)
conditioned on YN-Z. Even if one could carry out explicitly this expecta-
tion, the dependence of the cost-to-go J*(N—l) on the previous control
u(N-2) via P(N-1) poses a significant problem: the minimization of (3.6)
would require solving a high order algebraic equation. This can be scen
as follows.

Assume that g(N-l)in E(N—l) given by (3.4), (3.5) would be replaced
by ;(N—Z), the estimate at the time u(N-2) is to be computed. This removes
the need to carry out the expectation of J*(N-l) conditioned on YN-2 in
(3.6). Then (3.6) becomes an explicit function of u(N-2) and, as shown in
Sternby [S1], the derivative w.r.t. u(N-2) leads to a fifth order polynomial.

Thus the two main problems in performing the first backward iteration
of the Stochastic Dynamic Programming as given in (3.6) are the conditional
expectation over the future measurement and the minimization. In the
Linear-Quadratic Problem the presence of quadratic and linear terms (as
opposed to rational functions here) made possible an easy solution for the
optimal control. The resulting solution, in the form of a linear fecdback

control has been in wide usage because of its ease of implementation. n
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the other hand, the linear problem with unknown parameters {s encountered
in many applications and it is desirable to obtain (and evaluate) a dual
controller which has the linear feedback form. The gain should in this

case depend on the current as well as the expected future parameter un-

certainties.
4. A Linear Feedback Dual Controller with a Two-Step Horizon
The cost-to-go given in (3 5) depends on the following variables:
J'(u-1) = 17*N-1,82(N-1), P(N-D)} (4.1
The first, b (N-1), the estimate squareg of the parameter at N-1, will have
N

to be "averaged out" conditioned on Y . The second, P(N-1) depends dir-
ectly on u(N-2), which is to be determined from (3.6).
The following first order series expansion of (4.1) is proposed

oy T -1, v2m-2), PON-1) +4L§L1— (b2(N-1) - b2N-2)]
b2 (N-1)

, aleen BED [ 24-2) ~ @221 (4.2)
9P (N-1) au? (N-2)

In other words, the expansion is about the current estimate of the
parameter, ;(N~2), and a "nominal" variance for this parameter P(N-1),
given by

B(N-1) = P(N-2) (Vé¥) [P(N-2)u’(N-2) + v +w]™! (4.3
where u(N-2) is a "nominal” control at N-2.

The following notations are introduced

o1 2 1*iN-1, bEN-2), PON-1)) (4.4)

o & Jz N-1 (4.5)
bl -1)

3 p(8-1) Q_J_@.’_l (4.6)
3P (N-1)

B -1 £ 4 .E!!:_l (6.7
3“ (N-2)

where the partial derivatives (4.5)~(4.7) are evaluated at the same nominal
values as (4.4). Note that (4.5)and (4.6) are the sensitivities of the
cost-to-go W.r.t. the parameter and its uncertainty, respectively; (4.7) ix
the sensitivity of the parameter uncertainty w.r.t. the control. With

these notations (4.2) can be written

. ‘-'\.‘.'w"?'l-.".;."}"a .
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J*N-1) - T-1) + 3 o-0) - (bZN-1) - GZ(N-2)1+3P(N-1)§U(N-1)

- (i) - @2e-2)) (4.8)
The asterisk on the cost, symbolizing optimality, has been kept e¢ven
though (4.8) is only an approximation to the optimum.
When inserting (4.8) into (3.6) its expected value conditioned on

N-2

Y will have to be computed. Note that only the second term on the r.h.s.

of (4.8) is random when conditioned on YN-Z. Its conditional expectation is
BT (-1 A1) - b2 ev-2) )Y 2
= J -0 [E 62D Y0 - P v-))
- Eb(u-l) [ P(N~-2) - P(N-1)] (4.9)

Notice the fact that u(N-2) enters into (4.9) via P(N-1). A first
order expansion of P(N-1) about its nominal value (4.3) will be used in

(4.9). Using notation (4.7) one replaces (4.9) by

EG,o- - pieeD - Baen) | WY

T3 N1 - [PO2) - Bv-1) - B - (P-2)-32 2] (4.10)
The (approximate) conditional mean of (4.8), becomes, using (4.10)
g 0o | ) - v + 3,01« [P-2) - BO-D)
+ 3,01 = T, (-1 B 0D - (N2 - P -2)] (4. 1D)
Combining (4.11) and (3.4) into (3.6) yields

J'N-2) = min {E[Q(N-2) (x(N-1) - E=1))%+ rul(N-2) + q(-1) (x(N-1) -
u(N-2)

~ =12 Y2 4 T + 3, (-1 [P(N-2) - BN-D)] +

iu(n-1)[u2(n-2) - -2 1) (4.12)

+ [3,(8-1) - 3b<n—1)1

Ignoring the terms in (4.12) that are independent of u(N-2) yields
2 N-2
u'(N-2) = arg min (QN-DE[(x(N-1) - E@-1D° | ¥V %)

+ [r + Gp0-1) = 3 (0-1)B (-1 WD)}
= arg min {[r+q(N-1)[Qz(u-z)+p(n-2)1+[3P(u-1)—3b(u-1)1Pu(n-1)1u2(n-2)

(4.13)

- 2q(N-1DEN-1)b(N-2)u(N-2) }

which gives the control as
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u*(N—z) = [r+ q(N-l)(QZ(N-z) + P(N-2) + (BP(N-l) - 3b(x-1>>iu(w-1)1’l

Q(N=1)£(N-1)b (N-2)

Note the presence of the caution effect above - the additive P(N-.)

(4.1 4y
the denominator, which being positive, will tend to decrease the contro!
magnitude. However, the last term in the denominator is negative refl.oct-
ing the probing effect via the sensitivity functions (4.5 - 4.7) and thus
will tend to increase the control. This can be seen as follows: WP(N—t»
is positive (since the cost increases with uncertainty), 3b(N-l) is nego-
tive (this follows from inspection of (3.5)), and ﬁu(N-l) is negative fthis
follows from inspection of (2.7)).

The resulting control has thus the linear feedback form with the pain

modified by the caution and probing effects.

5. Extension to Multiple Input Multiple Output Model
The plant model is
x(k+1l) = ¢ + B u(k) + v(k) (7.
with
Evk) =0 ; Ev@yv'() =V 6kj (5.0
where c i1s an unknown vector, B a matrix with unknown parameters., The ur-

known elements of ¢ and B are denoted as § with covariance matrix P. 1I»
the helicopter vibration problem to be considered later ¢ is the amplit-
of uncontrolled vibrations. The matrix B is called the "transfer matrix”
[M2] and represents the effect of the control on the vibration amplitule
The measurement is given by
Yk = x(k) + w(k)
where

Ewk) =0 ; Ewkw(j)=WS3

kj
Ev(kw'(}) =0
The control criterion to be minimized is the expected value o* th

cost from step O to N

x'(K)Qx(k) + u'(k-1)Ru(k-1)?
1

The last control is easily obtained by minimizing JT(N-1) and i« w7

N
J0) = E{C(0)} = E{ & (nh
k=

* - - - .
u (N-1) = - (R + E(B'QB|YN ’)) ! E(B'QEIYN 1) V'
Thus inserting 2*(N—l) in the cost we get

* ' N-1
J (N-1) = E(e'QelY ) + tr(QV)

Cyils
Lo

4 0

N A I N T TR
3

3

.

ST T




e TS S

Canurs

T s €
M

iy m;vz‘r;ré\:x;xa.’é*.f‘.f:rrf KRRl R
. . . L . ‘ . N i

~ 765 —
- E(_c_‘QB]YN—l)[R + E(B'QB]YN-l)]—l E(B'QEIYN_l) (5.8)
Thus
* * ~
J (N-1) = J [ N-1, §(N-1), P(N-1)] (5.9)

where P(N-1) is the covarfance matrix assocliated with the estimate v (N=-T).

The approximation of the stochastic dynamic programming tor N=2 steps

is done with a first order expansion with respect to u(0)

n *
S = 5N 50, B+ By SR - 10@)-50) G0
where
*
3,0 8 a—;Pﬁ—; : Pg(l)é g;gl% 5.1
are evaluated at nominal value Q(O).
Then with
3, - 311, 800y, B(L)] G
we get
1*(0) = min E{x'(1)Qx(1) + u'(0) Ru(®)[¥")

u(0)

+3 4+ Jp(1) p2 (1) [u(0) - w(®]

1

min  E{[c + Bu(0) + v(0)]'Qlc + Bu(0) + v(0)]+u'(0)ru(0) -

u(0)
£ 3+ 3D P - (w0 - ZO] | v0) (5.11)
The two-step dual control is then
u(0) = - (R + £ Y0y )7t {E(B'Qgh’o) + i;— I, @ P (1] (510

where

le(l) oP D

M, N

Jp(l) ® Pu(l) =
= mn 9P n(1) du(0)

and Pm n is the m,n element of the matrix P. The cocfficient ¢ introduced
’

in (5.14) allows the same cxpression to vield several controllers as tollow.:

8 =0 One step stochastic controller (cautious myopic)
=1 Two step dual controller
B>2 Modified dual controller with (artificial) extry horizon.
6. Application to a Helicopter Vibration Contrel Problem

The problem of helicopter vibration control is to find suitable Nk

harmonic control ampl [tudes which, when applicd to the svstemy caneedb oo
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the vibration occurring in the airframe. The relationship between vibration

output and higher harmonic control input is known to be nonlinear and thus

adaptivg control solutions are required. 1In such cases fixed gain feedback

controllers perform poorly. A simplified linear version of this problem

(for two vibration components) can be represented by the plant equations

(W3]

x, (kD) = 8, + B,u, (k) + B0, (k) + v, ()

x,(k+1) = 8, + Bu, (1) + Beu, (k) + v, () 6.1)
with

Ev(k) v'() = V= diag (V),V,)) ; V=28° , v,=at0”  (6.2)

The first state, x, represents the rotor hub force amplitude at a

1
given frequency (one of the harmoqics of the rotor r.p.m.), the second

BT

state, Xys represents the rotor blade bending moment amplitude at the samc
frequency. The two controls are the "higher harmonic controls". These
controls excite the rotor blades at higher harmonics of rotational speed.
These cancel out some of the existing unsteady air loads [Cl].
The measurements are
Y1) = x; (k) + w,(k)

yo(k) = x,(k) + w,(K) (6.3)
with
! : E w(k)w'(k) = W = diag (“1'“2) H wl-zs2 . wz-aaoz (6.4)
SRR i«:;_v_ The initial parameter estimates are generated as N(Si.ei), i=1,...,6
where the true values are
61 = 287.3 ea = 4410
92 = -25.1 95 = =32.5
- - =54 6.
63 14.4 96 54.0 (6.5)
. The cost weighting matrices are
- ‘ -5 . -8
2 C Q = diag (4,,q;) 34, =107, q, = 5x10
- -4 -4
2 - . - - 6.6)
x R = diag (rl.rz) R 10 » T 10 (
In terms of the notation of Section 5
] 6, © u, (k)
1 2 3 1
c = , B = , u(k) = (6.7
- [ eb J [65 86 uz(k)
The parameter vector to be estimated 1s
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)

a0

8 S8, 0, 0, o, o 661" (6.8)
and it is modelled as time invariant

S(k+1) = 8(k) (6.9)
- with measurements

y (k) = H(k) [6) 8, 851" + v (k) + w, (k)

i’

s

_ yz(k) = H(k) [94 95 86]‘ + vylk) + wz(k) (6.10)
: where
H(k) = [ 1 u (k) u, (k)] (6.11)
):: In view of (6.2) and (6.4) the covariance matrix of 8(k) 1s block
: diagonal
5 Byl 0
2 P(k) = (6.12)
y 0 Pz(k)
f: The optimum cost for stage 1, assuming it is the last one, is
= ') = Be'qe | Y + er(qv)
- - E(c'eB | Y (R + EB'qe]YY )Y E(BQe|Yh) (6.13)
S The above can be rewritten as
- RIe)) o2 + +q.(02
o . v iy ql( 1 Pl,l(l)) qz(al. + Pa.l‘(l)) + ql ¢ vl + qZ . Vz
‘1- AP T . - 1 5 (an - 2FGE + czc) (6.14)
- ) . o CD-E
. vhere
- e . ) ~y ~
b AT . L c ql(e2 + Pz’z(l)) + qz(e5 + PS,S(I)) +r,
D ql(e3 + P3’3(1)) + q2(96 + P6,6(1)) + T,
;Z E = ql(eze3 + 92’3(1)) + qz(ese6 + Ps's(l))
;: o - o Fe= q1(9102 + Pl,z(l)) + q2(9495 + Pb,s(l))
- ) ) L . A A ~ A .
;. . - ' €= q)(6,85 +P) 5(1)) +q,(8,8, + P, ((1) (6.15)

The terms JP(l) are easily obtained from equation (6.14). The co-
variance update equation is

] N -1
Pi(k)-Pi(k-l) - Pi(k—l)H (k)[ﬂ(k)Pi(k-l)H (k)+Vi+Hi] H(k)Pi(k-l)(ﬁ.IG)

i i=1,2
; f”g??b X 5;%?§=qj? The nominal covariance Pi(k) 1s obtained in terms of previous P, (k-1)
- o - . and a nominal control i(k-l) of the "1 step" type.
- ' ' The sensitivity term P (1) can be evaluated from the above.

The two-step dual control (5.14) was implemented for the above
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problem with a "sliding horizon" for a total of 20 steps. The evaluation

criterion is
N
. L x'(k)Qx(k)
k=1

Performance was evaluated from 100 Monte Carlo runs for the following

cases:
1. Heuristic Certainty Equivalence,
2. One step ahead optimal stochastic cautious myopic,
3. Two step dual
4. Modified two step dual.

The above runs were made for the case 61(0) ~ N(ai.Oi)-

Comparisons are made between the performances of the cautious and dual
algorithms on the system and a conventional statistical significance analv-

sis is8 done using the normal theory approach [N1,Wl}. The methodology is

given in Appendix A. Tables I & II contain the results of the simulation

runs, Table II indicates that the dual control performs better than the
other controllers over 10 time steps., Table I provides a rigorous argu-
ment that the dual outperforms the other controllers.

The performances are compared in Figures 1-3. 1In Fig. 1 the HCE con-
troller uses a very large control magnitude and drives the system hard.
Thus in step 1 the vibration is increased compared to the cautious uand
dual controllers. This however helps to learn the parameters faster and
reduces the vibration earlier than the others. In a realistic situatien
one cannot really live with a HCE because of the practical bounds on the

control. The dual starts off higher than the cautious but behaves better

after 2 steps.

Fig. 2 compares the cautious, dual and modified dual algorithms. As
B increases from 0 to 6 the vibration at step 1 increases. Values of &
from 3 onwards do not behave very much better than B=2 beyond step 3. Thu-

f=0,1,2 are suggested for implementation and the statistical tests were

Fig. 3 compares the cautious and dual

performed only for these values.
over a wider scale,

Single Time History Runs

over 20 time steps are plotted ir

Fig. 5

.

Results of single time history runs

Figs. 4-6 for the HCE, dual and cautious controllers. Ay and 6

compare the controls Ul, U2, and cost for the three cases respectivelv.

For all the controllers the controls Ul, U2 reach almost the same value ot

T ————- —
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the end of 20 steps, although they start differently indicating that the

algorithms have learned the parameters.

As a trade-off between the rapid

learning and émaller cost, the dual is the best of the three.

Algorithms Compared

Cautious myopic - Dual (B=1)

Cautious myopic - Dual (3=2)

Time Step| Test Statistic Estimated Time Test Estimated
Kk z Improvement Step Statistic| Improvement
k ET, (%) K z, EIk(,{)
-
1 -2.30 -7.19 ' 1 -2.83 -20.64 :
2 -0.36 -1.90 2 -0.21 - 3.2 :
3 1.26 4.79 3 0.37 3.19 '
4 5.28 19.56 4 5.32 32.22
5 3.53 23,21 i S 7.94 44,48
6 5.43 34.20 i 6 6.49 47.63
7 4,40 32.51 : 7 5.43 40.67
8 3.68 3.16 | 8 4.53 40.67
9 2,94 29.16 ' 9 3.84 36.04
10 2.13 23,39 o1 2.81 28.60 l
. 1
Table I. Statistical significance test for algorithm comparisons
in the Example (100 Monte Carlo runs)
Average Cost over 100 runs
k B=0 B=1 B=2 HCE
k
O [k | 2@ |k @] 2]k 2] 2(4)
N P R R B PO N BN FUT I B P
i
1 1,72 | — 1.84 | —— 2.07) — 8.98 |
2 1.59 | 3.31 1.63 | 3.47 1.65] 3.72 4.61 13.56
3 1.07 | 4.38 1.02 | 4,49 1.04f 4,76 0.62 14,18
4 0.87 | 5.25 0.70 | 5.19 0.59( 5.35 0.23 14.41
5 0.75 { 6.00 0.57 | 5.76 0,41) 5.76 0.13 14.54
6 0.66 | 6.66 0.44 1 6.20 0.35] 6.11 0.13 14.67
7 0.51 | 7.17 0.35 | 6.55 0.30| 6.41 0.12 14.79
8 0.46 | 7.63 0.30 | 6.85 0.27| 6.68 0,12 14.91
9 0.42 | 8.05 0.29 | 7.14 0,27f 6.95 0.13 15.04 l
10 0.38 | 8.43 0.29 | 7.43 0.271 7.22 0.13 15.17
—
Sum = | 8.43 7.43 7.22 15.17 }
Table IL. Average costs for the four algorithms in the Example.

%
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. 7. Conclusion

A suitable expansion of the cost to go in the stochastic dynamic
programming equation can yield a linear controller that accounts for the

controller's dual effect.

The simulation runs indicate that a dual controller under certain
situations shows up to 492 improvement over the HCE and cautious control-
lers. Statistical analysis of Monte Carlo runs indicates that on the
average use of the dual controller provides approximately a 202 improvement
in the performance cr.teria over the cautious controller.

For the HCE controller the learning of the parameters is faster than

. the dual or cautious but the vibration cost is more. As a trade-off be-
:' tween faster convergence and lesser cost, the dual controller seems to be
S the best.
9 Appendix A

- Statistical Significance in the Comparison of Controller Performance
: Two control algorithms are compared by performing a Monte Carlo simu-
: lation. S independent runs with the two algorithms, under the same homo-
> geneous conditions, yield a set of i.1.d. samples Ciz). C:lz(). i=1,2,...,8
‘r

: from two distributions with true but unknown means

. : . : J:l)md Jéz). respectively, for each time step k.
- . P The sample means
¢
5 4
- & :
- Nom—
: T~

~
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Sat . are point estimates of the respective true means.
A-statement that
Eél) < 5‘52) (A2
indicating that algorithm 1 is better than 2 for time step k has to be
accompanied by a level of significance a of type I error.

. Thus we test the hypothesis
: Ho: A= Jl£2) - Jél) <0 (algorithm 1 not better) (A. )
against the one sided alternative
s e H: A=32 0 3M5 0 (algorithm 1 better) (A.4)
i o 1 k k
e A for a particular a level at each time step k.
_ This probability of error o is defined as
: . a @ P{accept HI/HO true} (A.5)
. Since we get a set of data of the performances of the two algorithms
- on the plant under similar conditions we regard it as a set of naturally
: paired observations.
'.: We consider the sample differences
n
A (2) (1)
LY - - LY
" B = S T O (A6

and this set of differences Aik represents a sample with mean

»
* 4

) | Jél) (A.7)

& = Iy

Thus we have reduced the two-sample problem to a onc-sample problim.

The hypothesis is tested by examining whether Ak can be accepted as being

D)

1s%e"

positive with high confidence. The test statistic is

Zk o (A.8)
Ak
where
\ | o 1 S
‘ B = 5 2 A (A.9)

k s & ik
-~ .
e
:.
$l
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i=1

The test statistic Z, has a t - distribution with (S-1) degrees of

freedom. For S large (>50) Z has a normal distribution. Then we have

s
2 - L - .2
cz\k §2 12; By - 8 (A.1D)

and the hypothesis Hl is accepted if

Zk > ¢ (A.12)

where c is taken from the normal distribution tables. For a 1 sided-test
with o = 0.05, ¢ = 1.645.

[Al]

[az]

{81]

[B2]

[F1)

[M1]

M2)

[N1]

[s1]

er, &

The estimated improvement for each time step k is defined as

2D
"

2@
&

2(2)
&

x x 100X (A.13)
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most of these strategies are only passively adapt-
ive [Bl1]; they do not use the knowledge that future
~ learning will occur. An algorithm using such know-
ledge to improve its control decisions is called
actively adaptive; the dual effect of the control

and ultimately the performance.

This paper presents an actively adaptive con-
trol algorithm for multiple-input, multiple-output
(MIMO) linear stochastic systems where there is un-
certainty in the measurements made on the system,
and where the vector O of constant but unknown sys-
tem parameters and noise covariances is equal to
one of M known model vectors O,, j=1,...,M. The
problem of control of multiplejmodel dynamic sys-

O
YR MR T

ENL S OO

of the well known "two-armed bandit problem".
The aspects which make the
problem considered here quite general are the in-

. Research supported by the AFOSR Grant 80-0098.
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is used to enhance the estimation and identification

tems considered here {s a significant generalization
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MODEL ADAPTIVE DUAL CONTROL OF MIMO STOCHASTIC SYSTEMS
3 Carl J. Wenk and Yaakov Bar-Shalom
.
o Department of Electrical Engineering
: and Computer Science U-157
University of Connecticut
j Storrs, Connecticut 06268 R - S
: An adaptive dual control algorithm is presented for clusion of dynamics with discrete uncertainties as
K multiple-input, multiple output (MIMO) linear well as continuous input and output noises. The
- systems with input and output noise and unknown algorithm extends the method presented in (W1},
S parameters. The system parameters are assumed to which was developed only for single-input, single-
belong to a finite set on which a prior probability output stochastic systems where there was parameter
3 distribution is available. The difficulties in uncertainty but only white input noise with known
- characterizing the future evolution if MIMO system covariance. The algorithm for MIMO systems in
information as required by the dynamic programming general state-space form presented here is a more
N are overcome through a novel way of using preposte- sophisticated suboptimal solution to the dynamic
. rior analysis. This provides a probabilistic char- programming equation for the multiple model problem
. acterization of the future adaptation process and than the state-of-the-art algorithms [D1, S1,
s allows the controller to take advantage of the dual A2].
effect. The algorithm presented in this paper, called
the MIMO Model Adaptive Dual (MAD) control algo-
.. ! rithm, overcomes the special difficulties posed by
., 1. Introduction . i the MIMO system in characterizing the future evolu-
. tion of information through a novel use of preposte-
- In the control of linear stochastic systems rior analysis. Approximate pricr probabilicy
. with known dynamics and quadratic cost the Certain- densities are obtained and used to characterize
ty Equivalence (CE) property [Al, Bl] is known to future learning. The result is an approximate
hold. When the dynamics are incompletely known, solution to the stochastic dynamic programming, the
- however, due to parameter and noise covariance un- exact solution to which would give the globally
. certainty in the system to be controlled, then the optimum (dual) control.
: CE property does not hold and the dynamic program—
‘ ming cannot be solved [Al]. As shown in [B2] the 2, Problem Formulation
optimum control has the dual effect: it affects
not just the future state of the system, but also Consider controlling a MIMO linear stochastic
the future state, parameter, and noise covariance system whose dynamics and measurements depend on an
uncertainty. unknown vector O. The system state propagates in
. To circumvent this inability to compute the discrete time as:
" optimum solution, a number of adaptive suboptimum x(k+1) = A(O)x(k) + B(O)u(k) + D(O)w(k) (2.1)
A control strategies have been developed {S1,
- Dl, A2, T1, W1]. Except for [T1l, W1], however, where x(k) is the state n-vector, u(k) is the con-

trol r-vector, and w(k) is a disturbance d-vector
assumed zero mean, white, and Gaussian with vari-
ance W(0). Imperfect system measurements are made

as:
y(k) = H(O) x(k) + v(k) (2.2)

where y(k) is the measurement q-vector and v(k) re-
presents the measurement uncertainty, also taken as
zero mean, white, and Gaussian with varfance V(0).
w(k) and v(k) are assumed uncorrelated. The system
matrices A(Q), B(0O), D(O), H(O), and noise covari-
ances W(0), V(O) are known functions of the con-
stant but unknown vector O, which is assumed equal
to one of M known constant model vectors O,, j=1,
...,M, with corresponding known a priori ] proba-
bilities:

PIO-OJI - /\j(O);

M
Z:Aj(O) =1 (2.4)
j=1

J=l, .0 M (2.3)

0191-2216/81/0000-0821 $00.75 © 1981 IEEE
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The objective is to obtain a control sequence
{u(0),...,u(N-1)} minimizing

J(0) = E[C(0)) (2.5)

where the cost is quadratic about a given, time-
varying reference trajectory:

C(k) = 3 [x(M) = x, ()]* QM) [x(¥) - x W]

N-1
Egi {Ix(1) - x (1] ) [x(1) - x (1))

1
*3

+ () - w (D] R L) - u (D]} (2.6)

subject to equations (2.1)-(2.4). The information
vector at time k, Z(k), consists of the measure-
ments and controls up to k:

Z() = {y(0),y(1),...,y(k),u(0),u(1),...,ulk-1)}

(2.7)

The optimum control u*(k), a function of Z(k) and

the statistical description of the future measure-
ments [Bl], is obtained by solution of the stocas-—
tic dynamic programming:

I = m%:)zf%(x(k) - %, (0] QU [x() ~ x (W]
u

+ 31600 - u (01" RE) [u(k) = u_(9]

+ J*(k+1) [2(k), u(k)}. (2.8)
The exact solution of (2.8) is impossible due to
the “curse-of-dimensionality" ; the parameter
and noise covariance uncertainty prevent the exact
computability of E[J*(k+1)[Z(k), u(k)]. The state-
of~the-art in suboptimum algorithms which circum—
vent this difficulty has largely consisted of the
Heuristic Certainty Equivalence (HCE) algorithm
[B1], where

) H
B0 - 3
=1

Aj(k)ej 2.9)

is assumed the true parameter vector, and the
Deshpande-Upadhyay-Lainiotis (DUL) algorithm [D1],
where the model-optimal controls u,(k) are computed
and the actual control taken as 3

M
u(k) = P

& Aj(k) uj(k)

(2.10)

The active Model Adaptive Dual control algorithm

(MAD) developed in [W1l] for systems in input-output
form was able to achieve significant perform
ance superiority over the passively adaptive (non-
dual) HCE and DUL algorithms by directly obtaining
an accurate approximation of E[J*(k+1)]|2(k), u(k)].

3. roximate Solution of the Stochastic amic

Programming Equation by Pairwise Preposterior
Model Discrimination

The computation of E[J*(k+1)|Z(k), u(k)] in

822
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the solution of the stochastic dynamic programming
equation (2.8) for M models can be reduced to com
puting M(M-1)/2 two-model costs by use of a result
which may be found in [W1]. Only the two-model
cost approximation will be developed here using
models 91, 02. The prior probabilities at k in the

two-model problem are
P[6=6,|2(i), u(k)] = N(k), P[6=0, |2 (k) ,u(k))

1-T(k) (3.1

For computational feasibility the cost is ap-
proximated as follows: the future controls
(1 > k+1) are assumed to be of the DUL type structure
with time-varying probabilities as more information
becomes available to the controller. Thus

E{J*(k+1) [Z(k), u(k) =

E{min  E[C(ic+1) |Z(k+1),L(k+1) )|Z (k) ,u(k)} (3.2)
L(k+1)

where L(k+1) is the set of parameters in the con-
troller structure from k+l through the end. Using
the total probability theorem the (approximation of
the) optimum cost-to-go may be written as

J*(k+1) = min {H(k+1)S[C(k+l)|Z(k+1),L(k+1),6=61]
L(k+1)

+ [1-M(k+1) JE[C(k+1) | Z(k+1) ,L(K+1),

9=92]} (3.3)
where by Bayes' rule
M(k+1) = P[e=91|2(k+1)] -1
ply (k1) |2(X) ,u(k) ,0=0,]
= ]-1 + LK) 2 (3.4)

L "™ plyeen 200,000 ,6m0 )

with the appropriate Gaussian densities in (3.4)
being

Ply(et) [2(k), u(k), 8-8,] =

NIy () ; v, (k1) [K), 5, (et [10] (3.5)

3
where the means and varlances in (3.5) are obtained
from two Kalman filters, matched to 6=8 . J=1,2,
respectively. 3

Next note that (3.2) requires performing a
multiple integration over the elements of y(k+l).
This 1s not computationally feasible, in general,
and will be avoided through the following procedure.
From (3.4) and (3.5) it can be seen that y(k+l) and
M(k+1) are related through a mapping described by

1o o el o0 1,0 o0, -1, %
2010 '8 -y )= 50y=yp) " S, (y-y,) =

-Is |Q/2 ]
2 M(k) [1-T(k+1 (3.6) i

s |q/2 (1-T(k) M (k+1) ]
1

vhere the time arguments of y(k+l), ;§k+1)]k) and
a given

Sj(k+1)|k) have been dropped. Since
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lI(k+1l) may result from an infinite number of y(k+l),
it is clear that [I(k+l) is not a sufficient statis-
tic for y(k+l). However, M(k+l) can be used to
serve as an "approximate sufficlent statistic".

Thus (3.3) may be rewritten as

Jx(k+1) = min  {(k+1)E[C(k+1) [Z(k),u(k),
L(k+1)

M(k+1), L(k+1), e=91]

+ [1-M(k+1) JE[C(k+1) [Z(k) ,u(k),I(k+1),
L{k+1), 6-02]} 3.7
The outer expectation of (3.2) over y(k+l) is

then replaced by an expectation with respect to
p(ﬂ(k+1)|Z(k). u(k) ], the preposterior probability
density [R1l] of N(k+l), the "model information

state" at k+l. An approximate preposterior density
with two delta functions at locations Hl(k+1) and

ﬂz(k+1) is used as in [B3,Wl].

Having established an implementable preposte~-
rior density, the next step is to construct the
minimization in (3.7) with respect to the time—
varying future controller parameter set L(k+l), a
set depending of course on [I(k+l). An easily im—
plemented approximate solution to this minimization
is obtained by assuming a future sequence of DUL
controls represented by L(k+l):

E[J*(k+1) |Z(k), u(k)] ~ J(k+1)

1 -
- ‘l' (MUHDE[CCk+1) |2k ,u(i) , T(k+1) , L(k+1),,6=8), ]
0

+ [1-T(k+1) JE{C(k+1) | Z(k) ,uk) ,N(k+1) ,T(k+1) ,e=92]}

* pIM(k+1) |Z(k), u(k)] diI(k+l) (3.8)
Using the two delta function preposterior density
above and performing the integration gives the
approximate cost-to-go resulting from a particular
control decision u(k):

Jack) = n(k)nl(k+1)3111k+1),u(k),Ell(k+1),a=911
+ H(k)[l—ﬂl(k+l)]312[k+l, uli), L, (t1),6-0, ]
+ [1—ﬂ(k)]Hz(k+l)321[k+1,u(k),iZl(k+1),6=91]

+ [l-ﬂ(k)][1—H2(k+1)]322[k+1,u(k),122(k+1),6=62] (3.9)

The nominal sequence of control parameters iﬁj(k+1)’

£, 3=1,2 comes from a time-varying DUL weighted
sum of model-optimal controls. This sum is com-
puted with nominal weighting factors given by:

(1) TMN(k+l) = Hz(k+1) as the sufficient statistic

for 6 at k+l,
(i1) gubsequent nominal posterior probabilities
“lj(i) that 9-61 which evolve as 1=k+2,...,

N-1 when this DUL control {s applied to the
system with 6-85.

The single-model optimal control parameters
are obtained from a standard lingar quadratic pro-
blem with 6 known. The costs Jpj are obtained

from a recursion for the linear system with 6=0_,
quadratic cost, using a DUL control policy wlthj
control parameters Ljp;(k+l). Details of the
nominal posterior prggability generation and the
recursions for Jlj are contained in [W2].

4. Numerical Studies

A second order system is considered with the
following two-model system description.

0 -0.49
AB,) = A(B,) =

1 1 1.4
B(B)) = [0.45 2]
3(02) = {0.9 1]’
D(el) = D(ez) = diag(l,l)
H(B,) = H(B,) = diag(l,1)
W(B,) = W(B,) = diag(107",2.25)
¥(8,) = V(8,) = d1ag(10,107)

A priori, P(0=61)-P(6-6 ) = 0.5. The control
objective is to take the initial state of x(0) =
[0 0.1])' and make it follow over N = 5 time stages
the state reference trajectory

[o'] ol [o‘
Q) = » X (2) = ’ 3) = ’
e 0.s1 15 x‘ L2}

" 0 0 ] .
% Lo.ll S P
with quadratic weighting matrices

Q@) =0

Q1) = Q(2) = @(3) = diag(0,1)

Q(4) = diag(0,5) , Q(5) = diag(0,50)

There was no penalty associated with the control,
R(k) = 0 ¥ k.

The first test was to compute the sample means
and sample standard deviations of the cost samples

and

C?PT , C¥CE, CBUL. and C?AD. The results are con-
tained in Table 1.
[Algorithm “OPT | HCE DUL MAD |
Sample mean 60.97( 269.3 | 223.4 | 110.4
Sample standard 73.9 443.6 406.4 137.8
deviation
Table 1. Sample Average Costs and Standard

Deviations

This table gives the first indication of the
superiority of MAD over HCE and DUL in both mean
cost reduction and performance cost variability.
Note that MAD has reduced the mean cost by 51X over
DUL, and by 59X over HCE. MAD has reduced the cost
variability by 66% over DUL and by 69% over HCE.

Are these results truly statistically signifi-
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cant? Are the true means ordered as the sample
means would indicate? To answer these questions,

a rigorous statistical test for the comparison of
controller performances was developed in [(W1l). The
sample means of the differences and the standard
deviations of the sample means are given for the
algorithms in Table 2. They indicate that

Significance Estimated

Algorithms test_statistic Improvement
Compared A % A/OE b4
HCE - DUL 45.866 13.767 3,3316 17
HCE - MAD 158.86 29.881 5.3164 59
DUL - MAD 112.99 27.033 4.1797 51

Table 2. Statistical test results for algorithm
comparisons

the hypotheses that MAD is better than both HCE and
DUL are accepted.

Table 3 illustrates the manner in which the
need for active learning is sensed by MAD. For
various possible values of the control decision at
period 1, MAD evaluates the future learning oppor-
tunities and calculates the future costs. For
u(l) = 4.35 the preposterior density characterized

by II,(2) and I1,(2) indicates that not enough learn-—

ing Wwjll take place to minimize the effect of the
term J 1(2) in the cost to go equation (3.9).

J (2; represents the cost of a mismatched control-
ler 'which does not learn fast enough what the true
system is). For larger u(l) the learning is faster,
but after u(l) = 5.09 the price of learning exceeds
the benefit.

Table 3 also gives insight into how to deter-
mine a priori (or even on line), in a non-Monte
Carlo fashion, when it is valuable (and necessary)
to use an active, dual control decision making al-
gorithm like MAD: when the penalty for a mismatched
controller is large and its probabilistic contribu-
tion to the cost is significant.

In these cases active adaptation can be expected to
improve the transient behavior in adaptive control
by speeding up the adaptation process.
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64,48

64,20

Table 3. Cost Breakdown and learning for MAD

5. Concluding Remarks

An actively adaptive control algorithm has been
derived for multiple input, multiple output stochas-
tic systems in general state space form possessing
both continuous and discrete modes of system uncer-
tainty. The algorithm, called Model Adaptive Dual
Control, is the only actively adaptive controller
for this class of systems. Rigorous statistical
tests were used to show statistically significant
performance improvement in the new actively adapt-
ive MIMO MAD algorithm over two state-of-the-art
passively adaptive control algorithms., It has been
shown in particular that when there is heavy termin-
al state penalty and the control period is relative-
ly short, passive learmning often does not suffice.
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Dual Control Guidance for Simultaneous Identification
and Interception®

K. BIRMIWALY* and Y. BAR-SHALOM1*

An adaprice dudal-control guidance algorithm enables moving target interception in the
presence of aninterfering target when noisy, nonlinear. stare dependent feature’
measurements are available for target identification.

Key Words  Guidancee systems: dual control. Kaiman filters: identification; dynamic programming.

Abstract  An adapine dual-control guwdance algonthm s
presented tornterceptng 4 moving target in the presence of an
mtertermg target idecoy i in a stochastic environment. Two se-
guences of measurements are obtaimed at discrete paints in time:
nowever. 1t is not centain which seguence came from the target of
interest and which from the decoy  Assouiated with cach track,
the interceptor also recenes nony, state-dependent feature
measurements The optimum control for the interceptor which iy
given by the solution of the stochastie dynumic programming
cquation s pot numencatly feastble 1o obtain. An approximate
solution of this equation is obtained by evaluating the value of the
future information gathening, This is done through the use of
preposterior anadysis - approvmate prior probabihty densities
are oblained and used to deseribe the future learning and control.
{n this way, the intereeptor control i used for inlormation
guthering i order to reduce the future target and decoy iertial
measuremert errors and enhance the obsernvable target decoy
feature diflerences 1or suhsequent discriminanon between the
true target and the decoy Simulation studies have shown the
cllectiveness of the scheme

I INTRODUCTION
A NFW CONTROL-DECISION strategy for intercept-
ing a4 moving target is developed where the target is
using a defensive decoy n an environment best
described by a stochastic process. The decision-
making problem takes place during the terminal
phase of interceptor guidance.

At discrete points in time the interceptor receives
noisy. state-dependent, feature measurements: one
from the true target and one from the decoy. It is
assumed that there is no measurement to track
association uncertainty : however, 1t is not certain
which measurement sequence came from the target
and which from the decoy. Additional sources of
uncertamty are the imperfect. noise-corrupted state

*Recenved 2 May 1983 revised S Lanuary 1984 Rescarch
suppotted by AFOSR Grant 800098 The orginal sersion of this
paper was not presented atany THAC mectung Thes paper was
recommended for publicahion i revised formy by Associate
Fditor H Sorenson under the direction of Fditer B DO
Anderson

* Department of Electrcal Bngineening and Computer Science
D07 Upiversity of Connecticut Storrs, C1 06268 U8 A
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observations and the inherently unknown time-to-
intercept. The result is a highly nonlinear stochastic
control and decision-making problem, with both
continuous (all noises) and discrete (track identity)
sources of uncertainty, in which the control has a
dual effect (Feldbaum, 1965): in addition to its effect
on the relative interceptor:target;decoy states
themselves, the present interceptor cornirol aiso
affects the future feature observation process and
hence the target decoy identification uncertainty.
Specifically. the interceptor control must be used for
information gathering about the true target track
by: (a) reducing future target and decoy inertial
measurement errors by changing its own state and
hence the relative states. and by (b) enhancing
observable target.decoy feature differences for sub-
sequent discrimination between the true target and
the decoy. All of these information theoretic
characteristics are functions of the inter-
ceptor-target decoy states. which are in turn
directly affected by the interceptor control. The
decisions must also simultaneously be used to
optimize the function of interceptor guidance
toward the target (control proper. which is
inseparable from the information gathering). The
problem is further complicated by certain con-
straints: maximum fuel capability, and possibly,
maximum time-to-intercept and interceptor state
constraints.

This is an cxample of a nonlinear stochastic
control problem in which the optimum solution
exhibits an inseparability between the dual actions
of the control decision in gathering information
about the partially unknown system (reducing
uncertainty). and simultaneously changing the
system state itself (the control function proper,
which requires minimum uncertainty or maximum
information about the state). In general, systems
with both continuous and discrete nonlinear
probabilistic structures create decision-making
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Gaussian, zero mean (WGZM) with known co-
variance Q.
Let the motion of the interceptor be given by

Nk + 1) = dyxy(h)y + Buth) + Gyw (k)

k=0.1.2.... (2)
where utk) is the interceptor control vector to be
determined at time A and w (k) is the process noise,
WGZM with known covariance Q.

The measurement equations of the two vehicles
are
=12

(k) = Hix)(Kk) + vi(k) (3)

where v,(k) is the measurement noise, WGZM with
known covariance R,.

The measurement equation associated with the

interceptor is

k) = Hxk)y + vi(k) 4)
where v, (k). the measurement noise of the inter-
ceptor. is assumed to be WGZM with known
covariance R,.

To discriminate between the two vehicles, a
feature measurement fii(k} associated with cach
vehicle ! is obtained. For simplicity. this feature
measurement is assumed to be a scalar and is a
function of the state of the vehicle x,(k ). the state of
the interceptor x,(k) and the true feature ¢,. that is

l}[”\) = f[d),.X,(k).X.(k)] +- 11“\') l = |.2. ‘5)
k=12...
Here. it is assumed that ¢, # ¢, for the

identification purpose and x,(k) is the additive white
noise. independent of the states. assumed normal
with mean zero and variance ;.

All the noise sequences are assumed to be
mutually independent.

In this formulation of the target decoy inter-
ception problem. it is assumed that the vehicles
follow the state equations (1) without changing their
state models. The extension of this formulation to
the case of the target decoy changing its state model
is discussed in the example section. Also. this model
can casily be extended to the case of state-dependent
feature measurement noise.

The following notations are used:

Zh = lglingliv: = 1.2:i = 1.2, .k (6)
=Bl =1200= 12k (7N
U = iy i =0.1,... k! (8)
niky= Pi0 = 1|Z* U (9)
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where 00 = j.j = 1,2 represents the event that the jth
track is the track originated from the target of
interest.

The interceptor’s objective is to choose the
control strategy u(k) that minimizes the expected
terminal weighted relative. position of the
target/interceptor (T I) at the unknown (random)
terminal time N, subject to the dynamic control
effort bound and speed limit of the interceptor. For
the problem to be meaningful, it is assumed that the
interceptor is capable of intercepting any of the
vehicles in finite time. This leads to the stochastic
control cost criterion to be minimized at time k

Jtk) = E[C(K)]

N-1
- E[ S w(R(() + ' [XelN), x(N))

i=k

Qgxo(N)x(N)]| Z* B, U*~ ‘] (10}
subject to
[, (1) < ™)y VY Vizk (an
and
i+ )< ™  Vizk (12)

where R(i) is a known (time-varying) control
weighting matrix ;g {<,(V ). x,(N) ] is a vector-valued
function, whose coriponents are the positions
differences between the states x4(N) and x(N): Q is
a known constant weighting matrix associated with
this relative terminal T:I position state; u,(i) is the
nth component of the control vector u(i); u™*(i) is a
known, time-varying dynamic control effort bound,
which depends on the kinematic acceleration
capability of the interceptor: 1)(i), a function of x,(i)
is the interceptor’s speed at time i and ™" is a known
speed limit of the interceptor.

Letan admissible control decision vectoru(k) be a
function of Z* and f* as well as the statistical
description of the future observations (Bar-Shalom
and Tse, 1976). Then the optimum control strategy
for this nonlinear stochastic control problem is
obtained by applying the Bellman's Principle of
Optimality. which leads to the stochastic dynamic
programming (SDP) equation, Solution of the SDP
equation yields the globally optimal control, which,
in general. has the dual effect (Bar-Shalom and Tse,
1974 Feldbaum. 1965). At time k, the SDP is
described for this problem as

J*(k) = min E[u'(k) R(km(k)

uiky

+J%k + D2 U]

13)
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subject to
k) < w™Nk)y Vi (14)
and
ntk + 1)y < ™ (15)

where for a given u(k). J*(k + 1) is the optimum
cost-to-go from time k + 1 to the unknown terminal
time N and the expectation is done with respect to
all future random variables. including both inertial
observation errors and the feature parameter
observation errors.

The exact solution to this problem is impossible
due to the fact that no distribution over N is
available and because of the “curse of dimensionality’
(Bellman. 1961). This can be avoided only by a
recursion for the cost-to-go which here does not exist
because of the track uncertainty. We present next an
approximate solution of this problem.

1 APPROXIMATE SOLUTION OF THE STOCHASTIC
DYNAMIC PROGRAMMING EQUATION

For computational feasibility. the cost is approxi-
mated as follows: the future control (i > k + 1) are
assumed to be of the DUL type (the ‘partitioned
control obtained by Deshpande, Upadhyay and
Laimotis. 1973) as

u(i) = nije, () + (1 — m(i)lusti)  (16)
where u;(i) is the bounded optimum control at time
i. given 0 =j with time-varying probabilities as
more information becomes available to the con-
troller. and where the controls uti) and w(i) satisfy
the constraints (11) and (12) as shown in the next
section. With 1his the optimal cost-to-go in (13) is
replaced by
ElJ*tk + Wz gty

-~

E{ min E'Ctk + D24 g US Lk + D))
Lk 1y

VAN L"} (17)

where L(k = 1) is the set of parameters in the
controller structure from k + | through the end and
Cth + 1) is the cost function. Using the total
probability theorem. the (approximation of the)
optimum cost-to-go may be written as

JHEk + 1)y 2 min ‘ntk + BE[C(h + 12+,

Lik+ 1y
B ALk + o= 1]+
E[Ctk + W2 L,

[l =ik + D]
U Ltk + 10,0 = 2]

(18)
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where by Bayes’ rule

rtk + 1y = Pl = || Z* 0 Beot L)

[+ ()

plzk + 1) Bk + l)|Z‘ pUk 0 = "]]

plztk + 1).Btk + )| Z5 g U0 =1)]

(19
where
2k + 1) 2 (Zi(k + 23k + Dozjk + D] (20)
and
Bk + 1) = [Bytk + 1).82k + D). (21)

Here z(k + 1) and Btk + 1) are respectively the
(column) vectors of all state measurements and
feature measurements at time k + 1.

Assuming that the conditional joint density of
ztk+ 1), Bk + 1) in (19) is known or can be
obtained, the computation of (17) requires perform-
ing a multiple integration over their elements (20)
and (21). This is not computationally feasible and is
avoided as follows: since the mapping from z(k + 1)
and Bk + 1) to n(k + 1) is not one-to-one (in fact,
many-to-one), n(k + 1)}is not a sufficient statistic for
z(k + 1) and Pk + 1). However. n(k + 1) can be
used to serve as an ‘approximate sufficient statistic’.
Using this approximate statistic in (18) and then
replacing the outer expectation of (17) over z(k + 1)
and B(k + 1) by anexpectation over a(k + 1) results
in

E[J*tk + D[ZE R L] 2
1
min |n(k + DE[C(k + 1)|Z* B~ U~
o Lik+h
ntk + DLtk + 1).0 = 1]
+ [ = mk + DIE[Ck + D]ZM B~ U
ntk + 1Lk +1),0 =27

plrtk + D ZX B~ U ldr(k + 1) (22

—

where p[n(k + 1)|Z* g* U*) is the preposterior
probability density of m(k + 1) (Raiffa and Schlaifer.
1972). The use of the exact density in (22) would
require numerical integration and this is avoided
using a two-point delta function density as in Wenk
and Bar-Shalom (1980) and Wenk (1981).

As the vehicles' discrimination capability in-
creases, the preposterior density exhibits a bimodal
character. largely concentrated around two distinct

locations. say m(k + 1) and n,(k +1). The
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upprpximhte preposterior density then can be taken
as
platk + DEZE B UK = k) [rtk + 1)
—mk+ D]+ [ —nk)]
o[k + 1) — math + 1)] (23)
where the delta function locations n,(k + 1) and
n.(k + 1) satisfy
Osmik+hisnh)smth+ <l (24)
The locations m,tk + 1) and ny(k + 1) are
obtained by matching the first two moments
produced by the approximate density (23) to the
true preposterior moments of n{k + 1). The explicit
expressions for m; and =, are derived in the
Appendix A (Wenk. [981). Substituting this simple
preposterior density (23) in (22) and assuming
that the minimization in (22} occurs when
L(k + )= L(k + 1) representing the future con-
trols to be of the constrained DUL type. gives
approximately the expected cost-to-go resulting
from a particular control decision u(k) (Wenk and
Bar-Shalom. 1980)

E[J*k + D|ZN B UF) 2 kg tk + LIk + 1)
+ k) [ =k + D] Tk + D)+ [ = (k)]
otk + Dtk + D+ (1= ak)] [} — natk + 1)

“Jaath + 1) (25)

where

itk ~ )2 E[Ctk + 1 ZY B UK Lk + 1))

min E[C(k + | Z* g~ U™,

Lik+ 1

Rk + DLLKK+ 1D.0=]]

e

(26)

The nominal sequence of control parameters
Ltk + 1):m.j = 1.2 are given by

(1) mhk + 1) =nm,k + 1) as the sufficient statistic
for ¢ at k + 1. and

(i) subsequent nominal posterior probabilities
R li) for i >k + 2. representing the prob-
ability at time i of the first track being from
the target when mih + )y =n,(k + 1) and
0=j

Details of the nominal posterior probability
generation and computation of J,,; are contained in
the next section.

4 GENFRATION OF THE NOMINAL PARAMETERS
AND THF COST-TO-GO

The intercept time N is not necessarily the same
for the target and for the decoy. For both the tracks.
N is a complicated function of the states of the
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vehicle x,(k) and the interceptor x,(k), the future
controls to be applied and the process noise, yet to
come. To obtain a solution of this nonlinear
stochastic control problem, N is taken to be the
same for both tracks and is estimated as the
minimum number of sampling intervals including &
in which the interceptor will intercept either of the
two vehicles maintaining its control effort bound
and its speed limit. Clearly, N is reestimated at each
time k and the corresponding estimate is N(k).

The nominal sequences of future posterior
probabilities 71,{(i): m.j = 1,2 are generated by
constructing a future observation and control
sequence, based on the statistical information
contained in the approximate preposterior density
(23), which in turn is a function of the control u(k).
At time k, the nominal values for time k + | and for
the path mj are obtained as follows

Ntk + 1) = N(k) (27)
itk + 1) =ma(k + 1) (28)
Kimilk + 1) = AX(k|K)  1=1.2 29)
Ximitk + 1) = AR (k|k) + Bu(k). (30)

The nominal optimal control for the interceptor
Uy (k + 1) where O = j, n(k + 1) =n,(k + 1) and
the interceptor considers the Ith track as the track
from the target. is given by the solution of the LQG
problem (for the estimated terminal time
N,jtk + 1)). In case this optimal control exceeds the
bound (11). the appropriate bound is used. Then the
nominal DUL control for the interceptor at time
k + 1 is given by

U,k + 1) =70k + Dtk + 1)
+ [} = Atk + D] -8tk + 1), (31)

If the resulting nominal speed of the interceptor of
time k+ 2 exceeds the limit (12), then the
magnitude of this nominal control @,,;(k + 1} is
reduced by considering the control t-W,;(k + 1),
0 <1 <1 (ie. the direction of the desired nominal
control is unchanged) so that the interceptor moves
at its speed limit.

Observe that the nominal feature measurements
at time k+ 1 are not generated since the
information of these features is contained in
nk + 1)and myk + 1).

i For time i > k_ + 2, the quantities Xyu;(i), Xyw;li),
PBmii), fmili). Npii) and 6,Hi) are obtained
recursively as follows:

Ximili) = ARpmili = 1) =12 (32)
ilmj‘” = '4|ilmj(i - l) + Bﬂ,,,j(l - I) (33)
Pimitid = ([ X i) Kymsli)]  1=12 (34)
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a: ¢,
b: @ |siniy ~v)|
I: Interceptor

o] . x

Fi1G..1. Projection (b) of the lenélh feature ¢, of the Ith vehicle (a)
on the interceptor’s (1) line-of-sight.

Buky = ¢jlsin [;k) — Yyk}]| + a(ky 1= 1.2
5

k=12...
{46)
where
_y k) = k) n n
(k) = ta LEEAMIEE il - : .
vlk) = tan k) = x,(k) 25”(“52
47)
and .
I
_ _ (k) n Lmn
Y, (k) = tan l:I(T) —ESWIU\)SE. (48)

Here, though the noise (k) (assumed Gaussian)
has the real line as its supp’on. this is an
approximation for this example since f,(k) is always
non-negative. This approximation js acceptable if
&1 > Oy .

Now, the estimation of the posterior probability
ntk + 1). when z(k + 1) and Btk + 1) are available
(i.e. to update the system). the computation of the
nominal posterior probability #,,;(i) (35) the
determination of the one-step predicted value of
Btk + 1) ie. ﬁj (A.4) and the associated covariance
S; (A7) will complete the discussion for this
example. Since the feature measurements (46) are a
highly nonlinear function of the states. the
conditional joint density of z(k + 1).B(k + 1)in (19)
is not directly available. Observe that at time k. we
do not compute m(k + 1) using (19). rather we
compute m,(k + 1) and n,(k + 1) using (A.10) and
(A.11). Hence, to obtain ntk + 1 at time k + 1,
when the measurements z(k + 3 and Bk + 1) are
available, we rewrite (19) as

. I — n(k)
Tt“\ + ’—[l +—n~“\"""

pBk + N Z** ' gL =21
ST AW R 49)
piBtk + D Z¥ L U0 = 1)

2 -1
AP (1) — Bm:m]'[';' :2] (B (i) - L;m]}]

""\. c..f.'- N-.‘rv-_ et ".-$’ '(:‘l-" *' ’!“’." sﬂ...' -."q.‘ \“"\. L ‘(\' n’

Here, if the con i nal density of Btk + 1)in (49) is
determined ma; by the noise characteristics of
a(k + 1) (otherwise, a better approximation of this
conditional density has to be obtained and this is
omitted in this example so as not to deviate from the
main theme of this paper), then this density is
approximately g..=n by

plBk + D21 UNO =] 2
, k+1 pk rrk i 0’% 0
N| E(B(k + 1)|Z** ' g U0 = j), 2
0 g3

j=12 (50)
where

E[Bk + D|Z* ' g U0 =j]=
dulsin [k + 1k + 1) = gyk + 1k + 1))
=12 (51)

Here, ¢;isasin (34)and #,(k + 1k + 1),k + 1|k
+ 1) are approximated as

Sk + Yk + )=

Nk k4 1 = Rk + 1k 4+ 1)

. =l,
Ntk + Mk + 1) — 5k + 1k + 1) ! 2

(52)

<

and
Nk + 1k + 1)

ik + 1k +)y=tan 'o———~ "
itk + 1]k + 1) = tan Sk Ak + 1)

(53)

with

Rtk + 1k + )= E[x(k + D|Z**', U1 =1,2
(54)

Rk + 1k + 1) = E[x(k + 1)]Z¥*!, U*) (55)

being obtained using Kalman filters,
Simtlarly, rewriting (35) to obtain the nominal
posterior probability 7,,;(i) gives

_ I -#,,(i—1)
M=1+—mr 7
(1) [ + Tomgli — T
_{pmj(nlzaj.ﬂ;;'. Upi'.0 = 2]}]"_ (56)
P Bl 20 i Uns ' 0 = 1]
As in (49), we assume that the conditional
distribution of P,;(i) in (56) is approximately

gaussian. Then. simplifying the expression in {-} of
(56) gives the equation for #,,(i) as

o V=fmti=1 =1y
n,,,,(:):[l + Fodi = 1) exp{ 3

-1
(57
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Now f§,. defined in (A.4)is obtained similar to (51)
as

E[Bik + )| Z* B UK 0 =j) =
Gyjlsin [Ptk + 1K) — otk + kY|

=12 (58)
where
R _ 3tk + k) = dyk + 1]k)
5(k + 1[k) = tan ™12 59
Ak + 1k = an ™ i 1k O
and
bk + 1K) = tan- 12k T 1K)
Yk + 1|k) = tan BT (60)
with
Kk + 1|k) = E[x/(k + 1|Z*. g% U*]  (61)
and
Rk + k) = E[xy(k + N|Z* g U*]  (62)

being obtained using Kalman filters.
Finally. S;. the covariance matrix associated with
(58) may be taken as
0

a3 ]
[0‘ aﬁ] j=12

A final remark on the extension of the present
work: In the analysis presented of the target/decoy
interception problem. it was assumed that the target
and the decoy will follow the same state models
throughout. i.e. the models do not switch to other
state models. After this algorithm of the target/
decoy interception problem has been activated, if
any of the vehicles do switch to a different state
model. that switch must be detected and the
corresponding filter should be reinitialized. Notice
that the analysis presented in this work remains
valid for the switched model as long as the states
propagate according to an equation similar to (1),
forexample -aswitch from a ncarly constant speed
(non-maneuvering) model of (41) to a nearly
constant acceleration (maneuvering) model with the
state vector

(63)

> ~
S; =

X =[x %0 08T (64)

A simple maneuver detection scheme for tracking
a maneuvering target, i.e. a scheme to detect the
switching of models, is given by Bur-Shalom and
Birmiwal (1982). It was obscrved there that suitable
state models at all times will result in the best

"""" - L e % e w_ e _ o
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tracking performance. Using such a scheme to
detect the switching of models and then reinitializ-
ing the switched-state model, the present work is
easily extended to the case of the target/decoy
changing models.

6. SIMULATION RESULTS

As an evaluation of this algorithm, the above
example was simulated. Two sets of feature lengths
were chosen: one for the target and decoy being
nearly ‘identical’ and the other corresponding to
more separated features. For each set of features,
two pairs of distinct trajectories for the two vehicles
were considered. Initial values of these trajectories
were

Trajectories 1

[8000m | [ 8000m
©) 100 m/s 0 100 m/s (65)
X = N =
‘ soom | 29| _s00m
L Om/sd L Om/s
Trajectories 2
[7500m ] 8500 m
o) Om/s 0) Om/s 66
X = . X =
' Om 2 Om ©6)
100 m/s : 100 m/s

The sampling time interval T was taken to be
3sec. The process noise covariance matrix asso-
ciated with the interceptor was taken to be zero
while for the two vehicles, it was

(67)

Q|=Qz=[0 0.1

01 o0 ](m/s)z.

The interceptor’s state measurement noise co-
variance, R, was taken to be zero (the interceptor
knows its state with relatively more certainty and no
Kalman filter for the interceptor) while for the two
vehicles, it was

(68)

The feature measurement noise variance was taken
to be 6! = 6 = 4m?. Since no information about
target/decoy was avaifable at time 0, n(0) = 0.5.
The cost matrix R (i) associated with the
interceptor control was taken to be the same for all i

100

0

2 2 :
IO.O](S /my> Vi, (69)
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The cost matrix Q associated with the relative
position of the terminal target decoy and inter-
ceptor state was taken to be

100 0 ,z
Q=[0 |.()()](m). (70)

The interceptor control bound (i} was taken
to be 25m-s® for j = 1.2 and for all i. The discrete
controls u(k) were chosen over a grid of points
(controls) Sm s* apart in both the directions and
whose effective direction of acceleration was within
90° of the direction of motion of the target decoy.
The speed limit of the interceptor. 1f™* was taken to
be 250 m, s. The threshold n*. which is used to decide
about the identities of the tracks. was taken to be
0.499. i.e.. the decision about the tracks was made
when n(k) was greater than 0.999 or smaller than
0.001. After the decision about ‘which track is from
the target’ is made, the bounded optimal control
obtained from the solution of the LQG problem for
the estimated time-to-go was applied to the
interceptor until the determined target was
intercepted.

Tracks of both vehicles were initialized using the
two-point differencing of the measurements me-
thod, as in Bar-Shalom and Birmiwal (1982). Initial
values of the interceptor state components were
taken to be zero.

The two sets of feature values considered were
¢, =22m. ¢, =20m and ¢, =28m, ¢, = 20m.
Observe that the features of the first set differ
effectively by less than one standard deviation of the
feature measurement noise.

For each of the four cases. a Monte Carlo
simulation of ten runs was performed. It was
observed that the interceptor intercepted the true
target correctly in all the runs. Figure 2 shows the
typical motions of the target. decoy and the
interceptor. starting at time zero until the inter-
ception took place, for the very close features set
and the trajectories one. Figures 3 5 show these

€7C

290}

TrOCK | 2 mmers o d et s ) -

P Trotk 2 smermmeem. - -
//

[ge.] 430 - 2nal ‘ (3 A cdo

y position (km)

- ’)C

* pos:toon (km;

F16. 2. Typical motions of the target. decoy and the interceptor

for the case of ! = 1. @, = 22m. ¢, = 20m and trajectorics |

Herce. the distance between two consccutive similar symbols s

five sampling intersals (158sec) and * represents the locations of

the two vehicles and the interceptor when the decision about the

tracks is made. Legend:  » v target: + 4+ decoy:
intereeptor

€00~
£ 200}
€
8 Trock | x—x—u‘_‘vx-.ho«—
E b\'(rg—v——
S Trock 2
~ 2001

-600 . L
0.00 400 800 1200 16.00 2000 2400
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F1G. 3. Typical motions for the case of 0 =1, ¢, = 28m.
¢, = 20m and trajectories 1.
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FiG. 4. Typical motions for the case of 0 =1, ¢, = 22m,
¢: = 20m and trajectories 2.
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+
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3 0.00 X +
~ Trock | Track 2
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FiG. §. Typical motions for the case of 0 =1, ¢, = 28m.
¢ = 20m and trajectories 2.

motions for the other three cases. For the same set of
random numbers and corresponding to each of the
above 40 runs, another set of runs was performed
with target and decoy tracks interchanged. Again,
the true target was identified correctly and
intercepted in all these runs. Figures 6-9 are the
plots corresponding to Figs 2-5 respectively with @
changed (target and decoy switched).

From these figures, we observe that the
interceptor takes longer time in deciding about the
tracks when the interceptor is on the endfire than on
the broadside. This is because the feature measure-
ment noise is more dominating in the former case.
When the target and decoy are more different, it
takes less time to decide about the tracks, which is
intuitively obvious. When the target and decoy are
nearly identicial, the interceptor does not follow
them directly. Instead. it takes a course so that at the
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time of interception. the last nominal « posteriori
probability #(N — 1} is close to its extreme value
(here we have the dual effect). To achieve this goal in
minimum time. the interceptor tries to be on the
broadside of the target,/decoy. In case the target and
decov are easily discriminable. the interceptor
follows the vehicles directly because it anticipates
that the future learning will guide it correctly to the
true target.

|
l Trock | + i om v mm e o b om oo o ey 0
'\ Track 2 x—x—.—i—)—-“--ﬁsﬁ

y position (km)

-l 8.0 s [ 2000 24 00
x position {km)

F1G. 6. Typical motions for the case of ¢ =2 ¢, =20m,
¢> = 22m and trajectories 1.

R Tegck 1+ J(g
—_— -L < —-: l—x—l—n—;—u

Trock 2

7 position (km)

C .o EINN 8ac i20C 16.0C 2000 24.00
x position (km)

Fig. 7. Typical motions for the case of #=2. ¢, = 20m,
¢, = 2¥m and trajectories |
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The relative importance of the terminal state cost
over the interceptor control cost was seen by
changing all diagonal components of Q to 0.05m 2.
For this Q and the rest of the parameters unchanged,
aMonte Carlo of ten runs was obtained for each set of
the trajectories and features corresponding to Figs 2,
4, 6 and 8. It was observed that the true target was
intercepted correctly in all these runs. Figures 10-13
are the respective plots giving the typical motion of

600
£ oo
s Track | -t
'é TroCk 2 +omed ommjomm 4 man . wma pawn c=ptl
a "20C
~euL L
R .00 800 200 16.00 2C 00 24 ¢

x position (km)

Fi6. 10. Typical motions for the case of #=1, ¢, =22m
¢, = 20m, trajectories | and reduced Q.

8.00}
]
+
. ]
§ oo i
[ X +
2 1]
3 [ ]
& {1
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Fiii. t1. Typical motions for the case of O0=1. ¢, =22m,
¢» = 20m. trajectories 2 and reduced Q.
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Fii. 13, Typical motions for the case of 8 = 2m, ¢, = 20m,
¢, = 22m. trajectories 2 and reduced Q.
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the target. decoy and the interceptor. By comparing
these two sets of figures. it is clear that the interceptor
tried to be more on the broadside in the former case
{and hence took less time to decide about the track
ID) so that the last nominal posterior probability
(N — 1) was closer to its extreme value. This is
because the terminal state cost was relatively more
dominating over the interceptor control cost in the
former case than in the latter case. i.¢. the controller
was more willing to expend the additional fuel to take
the more energetic trajectory in the former case and
this resulted in faster convergence.

The algorithm was run in Fortran 1V on IBM-
3081D. The number of statements in the code were
around 1300, but the code included overhead
(trajectory. noise generation) and hence was not
efficient. The memory requirement wis approxi-
mately 250K and the average CPU time for each
run was approximately 1 min.

7. CONCLUSIONS

An adaptive dual-control guidance algorithm for
intercepting a moving target has been developed for
the situation where the target is using a defensive
decoy in a stochastic environment. At each time
step. the interceptor chooses its bounded contriol
and hence its trajectory such that it can differentiate
between the true target of interest and the decoy
with the aid of the expected future state observations
and the feature measurements, approaching at the
same time towards the target decoy. To reduce the
computational load. an approximate solution of the
stochastic dynamic programming equation is
obtained by performing the preposterior analysis.
The algorithm developed is especially useful if the
cost associated with the terminal miss distance
between the true target and the interceptor is
relatively high compared to the interceptor control
cost. The case of the target decoy changing their
state models is also considered. The simulation
studies have shown the effectivencss of the scheme.
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APPENDIX A: DERIVATION OF THE APPROXIMATE
PREPOSTERIOR DENSITY

The locations n((k + 1) and n,(k + 1) of the preposterior
density (23) are obtained by matching the first two moments of
(23}) to the true preposterior moments of =tk + 1) vic.
Einitk + 1))Z* p*. U*] and E[a%(k + 1)|Z* B*, U*]. From the
Fundamental Theorem on Expectation and (19), we have

E{ntk + | Z* g U] = r(k). (A1)

Using the total probability theorem. the true second moment
of ntk + 11 can be rewritten as
ik e 1V & E{rth + DIZA B U%) = nik)
CElRTk + DZS U0 = 1]+ [ =~ mik))
Eirtik o+ D28 U0 = 2) (A2)
Now consider E{r7th + 1| ZA B U0 = §). In view of (19),

and ignoring the variation of nth + 1) with respect 1o ztk + 1),
then nth + 1} is an explicit function of Bk + 1)

mk + 1) =na[Bth + 1)) £ [p]. (A3)
Expanding n(k ~ 1) to second order about

B, 2 Efpik + D2 P UM 0 =] (A.4)

grves
nthov Ly, + [VA,)B -8+ 4(B- 8,1V -8]
(A.5)
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where #,. V. V21 are the function. gradient and Hessian of 1AL
respectively. evaluated at ﬁ,. Then. since § — B, is approximately
Gaussian, equation (A.5) gives

Efmtk = D|Z5 U0 =13 3,30 - g (VI8

VRN SIVA) + Le LUV 8,1+ L VRS 1T (A

where tr denotes the trace operator and §, = Sth ~ A0 = jns
the residual covariance associated withfs,

Sth + Bkt = ) = con [Pk + T2 L0 =) (AT

This completes the computation of the second moment (A2}
Equating (A.1)and 1A.2) to the respective moments of (23) gives
mky=mky gk ~ DY+ 11~ k] sk o+ B (AK)
Ak« L= rik)mithk + Ly - [ = mehyomdth - 1), 1AY)

Using (241 (A%) and (A9 sields the desired 1wo-point
preposterior density focations

ft-mkr ot
Tk = =k~ < - Bt AU NI Sl T (A 10y
! | mky ! f
A
P T Ty S T YW I
I — nih) ’

APPENDIX B: THE ALGORITHM

Step |

Initialize n{0) and ,10{0). X:(0]{0). $,40/0) along with their
respective covartances. Obtain the predicted states {,¢1]0).
R:11;01. Define k = 0.

Step 2
Is it desired to obtain the optimal control for target
identification  and  interception  itrue  only  when

inik) — 0.51 < n*1? If yes. go to Step 3. otherwise terminate.

Step 3
Choose a feasible control u(k). i.¢. a control thai satisties the
Obtain

constraimts Qi AY < k) and gk + 1)< et
[k + Bk

Kb+ 1ky = AK4hlk) « Bulk) (B.I
Step 4

Compute, = E Pk + 125 g UR 0 = Land the associated
covaniance §,. For the example considered

B, . q),,;‘.\i.n :‘.’.’||I\ + I}‘I\l - u_,(k - l“\);} B2
oy isin Ttk = HAY = wath 4 LAY
where “dh = ALy fh + LAs! = 1. 2are given by the equations

t39)and (60) respectively along with equations (61 and (62). The
expression for §, s given by (63).

Step §
Compute n th = 1) and nh = 1
t - mik R . 12
Tyth + 1= nthy « { '-;’;’rtl. - n'lk)}( 1B.3)
| k) (
k)
Tk o 1) = =gtk o B4
ma ) |-k \ 1] (B}

where 2%tk ~ 1) = E7z%(k « 1) Z% B UF ] hs given by equation
{A.2) which n turn is given by cquation (A.6). This involves #,.
V#, and V£, which, for the example considered. are given by

AR - .‘!-.;.::'.'.: \' \'.-\'.\;.- ;. o

DI SR g e SRR s

R - i > i o b s S e X

K. BiRMIWAL and Y. BAR-SHALOM

A 1 — atk) 1 fe? 07
e IR B R M ORI
; ”2 0 t -1
—ti.—B.h[O' n] (B,—bn}] (B.S)

. [a; 07
Vﬂ,:’ll'“ -ﬂl)‘[ol ﬂs‘] ", _’2) ‘Bﬁ'
s ) ai 01!
"ﬁ,=7‘l,'(|—ﬂ,)'1|-'2ﬁj|' 0 ol

Step 6
Compute the cost Jih) for the control u(k) as follows:
Jih)y = wikRA k) + ETJ*%k + 1) 288 U] (B8)
where
E sk « IHZN B 0% = ko yih + 1)
Stk = 1h+ k) T — ek + Nk + 1)
+ 01— ntk)}-matk + Dtk + 1)
- k)T~ math ~ D) T a0k + 1), (B.9)

Now we compute J, ik + 1) for the scquence mj. m = 1.2;
=12

{iy Estimate Ntk). For the cxample considered
Nik) = min (N, (k). Nk}

where

Nuak) = k +[QT]+1 1=1.2 (B.10)

where [\ ] is the greatest integer less than or equal to x. Tis the
sampling interval and 1, is the positive root of the equation.
ey — AR + h kR 12

= 208 k(K- ki) = kR + F k| k) (k)

— Stk{kNIr — [k]k )y — Xk fh?

+ iklk) = suklkn?] = 0. (B.11)
(ii) Define
K, ak + 1) = Niky (B.12)
Rk + 1) =mak + 1) (B.13)
Kpmith + 11 = ARUALKD =12 (B.14)
Ky th + 11 = AR AR + Buik). (B.15)

The solution of the LQG problem for the example considercd
and for the nominal terminal time N, (k + [) is

Btk + 1= ~ L [BRo Ak + 2B + Rk + 1))
B'K.lk + 214,

Rk + D= Ktk + )] 1=12  (B6)

where K,,(k + 2} is given by the backward equation (Ricatu
equation)
Kodh + b= A TK o th + 2) - Ktk + 2IBIB'K,(k + 2)B
<R+ NJ'BK tk+ 2104 (BT
KNtk + 1N =Q"

and Q15 the 4 x 4 matrix whose elements are all zero except the
elements (1. 1), (1. 3). (3. 1} and (3. 3) which are the elements (1. 1),

RN

(B.18) .
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Dual control guidance for simultaneous identification and interception

(1. 2% (2. 1y and (2. 2) respectively of the Q matrix. For the
general case. the optimal control @y, (A + I} iy a function of A,
I'=1.2. 4 and the differemt state components of the three state
vectors. The solution can be obtained for any specific probiem by
proper augmentation of the state vector and the transition
matrices.

If the magnitude of the nth component of this control exceeds
the bound w*Mk + 1) then change this component 1w
gtk + 1 e sign (direcuion) unchanged. Obtain the DUL
control

Oplh = 1= Rtk = DRtk = 1)+ (b= Rtk + 1]

U,k + 1) (B.19y

Truncate this control 0 1B, (A + THO < 1 <2 T1f necessiry. so
that the nommal speed of the interceptor atime d + 2isequal to

mas
-
O

(i) For time i > Kk + 2. define recursively

Kymplid = ARy i — 1y =12 (B.20)
Vymili) = A Xim,li = 1y =~ BB, 11 = 1) (B.2H)
Bimili) = 1 L1, Ry 1) Qi) =12 (B.22)

P B IIZL G =)
[ ATIN STV AN A SN T ' -

Now, estimate N, (i) as was done for time kA If N (v =i + 1.
then go to (iv). Otherwise continue. Obtain the DUL control
B, i) = R (i} B (i) + 1 = M (D) - Tap i) (B.24)
where @, (/) 1s obtained as for time & + 1 and Wy, (i) and @, (/) are
adjusted. if necessary. as was done for time & + 1. Go back to (i),
For the example considered.

Bimlid = &yI5in [ i) = 4 Ai) ]| (B.2S)

AUTO 20:0~C

g g SO A e Tl S thadl Sl Tk

L AL el Sk A ORI )

749
where
Vimili) = Vowili)
“mgt) = tan 1 St iU (B.26)
Ylml(‘) - -“Iuj“)
T i)
Wim,li) = tan ";L'J‘: (B.27)
Nimjll}
and 7,071 15 given by the equation (57).
) [ |
vy Jath 4+ 1) = Z By, (5) R(5 i (5)
vkl
+ R 1) 8 (R0 + DL Kyt + 1) QG [X i + 1)
st + D+ L= )] g (Ko i + 1
St + HHQ @ {Xamytt + LN (1 4 L]0 (B.2X)
For the example considered.
. o1
Jah + 11> 5 8, (5 RUs N, (5)
=kt
+ R bid [N+ By = N i+ 1))2
+atimli + D= i + 1)12) 2
+ (1= R} [ gl + 1) = Tgpti = 1)'?
i Vimli = T i+ 1302 (B.29}

Step 7

Find the cost J(k} for different discrete controls and find the
control u*(k) that minimzes J(k). Apply u*(k) at time k.

Step 8

Obtain the observations 2k + 1) fuk + 1) ¢ =12, and
otk + 1) Update the estimates K,k + 1k + 1) &k + Kk + 1),
Stk + 2|A + 1) using Kalman filters. Update the posterior
probability n(k + 1) using cquation (49) and for the example
considered. using equation (50). Increment k by one and go to
step 2.




i

s e e L e Nan T Ty TR T

Proc. of 23rd IEEE Conference
on Decision & Control,

Las Vegas , Nevada

Dec. 12-14, 1984

*
DUAL ADAPTIVE CONTROL BASED UPON SENSITIVITY FUNCTIONS

J. A. Molusis, P. Mookerjee, Y. Bar-Shalom

Dept. of Electrical Engineering & Computer Science
The University of Connecticut
Storrs, CT 06268

ABSTRACT

A new adaptive dual control solution is presented
for the control of a class of multi-variable input-
output systems. Both rapidly varying random parameters
and constant but unknown parameters are included. The
new controller modifies the cautious control design by
numerator and denominator correction terms. This con-
troller is shown to depend upon sensitivity functions
of the expected future cost. A scalar example is pre-
sented to provide insight into the properties of the
new dual controller. Monte-Carlo simulations are per-
formed which show improvement over the cautious con-
troller and the Linear Feedback Dual Controller of
[1] and {2].

1. INTRODUCTION

Multi-variable systems which are characterized by
uncertain parameters with large random variations are a
difficult challenge for most control design techniques.
The assumed randomness of the parameter variations
often precludes the use of gain scheduling (non adapt-~
ive) control design. Stochastic adaptive control
theory provides a principal design approach for systems
of this type. Exact solution of the stochastic prob-
lem with unknown parameters requires solution of the
Stochastic Dynamic Programming equation and this is not
feasible for practical implementation. The solution is
known to have a dual effect [1,2] that can be used to
enhance the real-time identification of system paramet-
ers as well as provide good control.

Many suboptimal dual solutions have been suggested
[1,2,5-11]. The various approaches which have incor-
porated this dual property can be loosely divided into
two classes. In the first class [5-8], the optimal
control problem is reformulated to consist of a one-
step ahead criterion to be minimized, augmented by a
second term which penalizea the cost for poor identifi-
cation. This approach is attractive due to the analy-
tical tractability of the solution; however, the solu-~
tion is based on a one-step criterion and does not
fully exploit the dual property of a multi-step solu-
tion. Padilla and Cruz [14)] give a dual control solu-
tion for such a plant by minimizing the control object-
ive function subject to an upper bound in the total
estimation cost. Their objective function includes a
standard control objective function and also a second
constraint term which reflects the sensitivity of the
parameters to the state of the system. Thus the solu-
tion adjusts itself to exercise better estimation for
such sensitive parameters within the upper bound. The
second class [9-11] utilizes the stochastic dynamic
programming equation directly and performs lineariza-
tion of the future cost in order to obtain a solution.
Previous control solutions among this second class re-
quire a numerical search procedure which poses diffi-
culties for a practical solution for on-line control
for multivariasble systems.

The linear feedback dual controller of [1,2] is
*Supported by NASA Ames Research Center Grant NAG 2-
213; Y. Bar-Shalom was also supported from Air Force
Office of Scientific Research Grant AFOSR 80-0098.

based upon a first order Taylor series expansion of the
expected future cost and is called the first order dual
(FOD). It offers some improvement over the non dual
cautious control based upon a one-step criterion. The
results are based upon a simulation model with constant
but unknown parameters. Although the dual comtrol of-
fers some improvement over the cautious controller the
improvement is not significant for wost practical ap-
plications where the system contains constant paraneters
and the objective is to control in steady state opers-
tion. However, for random parsmeter variations, dual
control can sometimes offer significant improvement
over non-dual controllers [5,9). The FOD of [1,2] is
attractive due to its simplicity (it is comparable to
the caut{ous control design {n algorithm complexity snd
does not require numerical search). The objective of
the present study is to evaluate the cautious control-
ler and the FOD for large random parameter variations
modeled as & random walk. Monte-Carlo simulations are
performed and conditions quantified under which the
dual controller offers significant improvement over a
non-dual cautious controller.

The FOD, although offering a reduction in the aver-
age cost, is found to be unacceptable in many cases.
This is attributed to the sensitivity of the expected
future cost whenever the system is characterized by
limited controllability. A second order expansion of
the linearization procedure of [1,2] is presented to
account for this sensitivity. This new second order
dual controller (SOD) inherently includes a robustness
property in that the controller accounts for sensiti-
vity of the expected future cost due to parameter esti- .
mates and their uncertainty. Simulations are presented
which show the improvement of the SOD over the cautious
controller and the FOD. This SOD uses a Newton type
search procedure and is developed for multi-variable
systems. One of the main advantages of the SOD pre-
sented herein is that it modifies the cautious control-
ler with a numerator "probing" term and a denominator
correction term. Although the SOD {s still considered
too complex for practical implementation, the structure
of the control solution is in a fora which permits
practical design changes to the cautious controller to
include the dual properties.

Section 2 gives the problem formulation. The ap-
proximate dual controller for the multi-varisble input-
output system is developed in Section 3. Section 4
analyzes this dual controller for a scalar example with
one unknown parameter. Section 5 concludes the paper.

2. PROBLEM FORMULATION
The multivariable system under {nvestigation is
x(k+1) = c(k) + B(k) u(k) (2.1)

wvhere c(k) is an unknown vector and B(k) is a matrix of
unknown parametera. The unknown elements of c(k) and
B(k) are denoted as 9(k) with covarfance matrix P(k).
These are represented by a discrete random model

O(k+1) = AB(k) + v(k) (2.2)
E(v(k))=0 and E(v(k)v'(§)) = V ij (2.3




The measurement equation 1is
y(k) = x(k) + w(k) (2.4)
where

E(w(k)) = 0 and E(u(k)w'(§)) = W ij
(2.5)
E(wk)v'(3)) = 0

and x{(k), y(k) being n dimensional vectors. The control
criterfon to be minimized is the expected value of the
cost from step 0 to N

N
J(0) = E{c(0)} = E { T x'"(k)Qx(k)+ u'(k-1)Ru(k-1)}

k=1 (2.6)
where N = 2 for the two step ahead criterion.

3. APPROXIMATE DUAL CONTROLLER FOR TWQ STEP CRITERILON

The ainimization of (2.6) with respect to u(0) and
u(l) subject to (2.1) - (2.5) is obtained from the
Stochastic Dynamic Programming equation [12,13)

J*(k) = min E{C(k)+J*(k+1) [YX} k=N-1,...,1,0 (3.1)
u(k)

where J*(k) is the "cost-to-go" from k to N and Yk is
the cumulated information at time k when the control
u(k) is to be determined. For N = 1, (3.1) is

J%0) = min E{x'(1)Qx(1)+u'(0)Ru(0)+I*(1) [Y°} (3.2)
u(0)

where J*(1) is the optimal cost at the last step and is
obtained by minimization of J(N-1) for N = 2. Assuming
diagonal Q = dlag(ql) this results in (1,2]

~ ~ n
MW = e ae(y + I qpk (3.3
1

1

(' (LQB(D) + B qLan(l)] (B'(1)QB(1) +
=1

.1 P + jL B (Dee(+ gq,_Pﬁ )
£=1 g=1 ~ °€
and
u*(1) = (B (DQB(D) + lz a, B(1) + RITHB (Doe(D)
n 2
+ T q,P, (1)) (3.4)
£=1 ¢ Bc
where
L L
P (1) P (1)
ply) - ;_ ZB (3.5)
PBc(l) Ps(l)

P(1l) is the expected value of (6(1)) for time
step 2 given measurement y(1l) at time step 1. The in-
zx £ is used to represent the row number in (2.1) and
PY(1) is the associated paramgter covariance.
The parameter estimates 8(1) and covariances P(1)
are obtained from the Kalman filter. Since W is diag-
onal one can decouple the estimation. Then

81 = astoreak () VoD (3.6)

k(D = p&ormr (n) [nu)p‘(o)u'u)wzr‘ (3.7

e - pbo - knuwrko (3.8

ety = lnar + v (3.9)
where

V(1) = yp(1) - H(w 80 (3.10)

H(1) = (1 u'(0)) (3.11)

sty - leglD) rsc(mT , &1,2,...n row of B (3.12)

- ) . n" -
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As discussed in [1] and [2) J.(;)”is a nonlinear
function of the parameter estimates 69(1) and covariances
P(1l) and thus a linearization was performed. In [l] a
scalar formulation was presented and a first order lin-
earization was per{or-ed about the nominal parameter
estimate squared (8(0))2 and nominal covariance F(1).
Also in [1,2) the vector case was presented and linear-
ization to first order performed. To more accurately
account for the dual effect a_second order Taylor Series
expansion is presented about 6(0) and_a first order ex-
pansion about the nominal covariance P(l). 1In additiom
(as will be presented subsequently) the covariance P(1)
will include a linearization to second order in u(0).
In [1,2], P(l) was linearized to first order. It is
believed that linearizations to second order are neces-
gary to better account for the nonlinearity in P(1) and
6(1) of (3.3) and in u(0) of (3.7) and (3.8). In addi-
tion a nonlinear Newton algorithm is used in the second
order approximation.

~ Linearization of (3.3) about the nominal B(l)
= AO(O) and P(1) using the nominasl u(0) results in

I = 5L, 80, ]+ A (50 - abo))
96(1)

+ Lo - ado)e %z’iﬂl (8(1) - A8(0)]
W

n o *
+ 1 T 3§ Aa [1’1 Q) - fj(l)] (3.13)
£l 1=1 31 (D o

where the superscript £ represents the covariance matrix
assoclated with the £th row of parameters and Py j(l)
is the i-j th element of the covariance matrix
P(l), m being the number of unknown parameters.
Using (3.6) the expected value of (3.13) is

E[I*1) [¥0] = J*[1, 6(0), BCD))
e e BID vy goyv(n o )
262(1)

-} o *
+ P %S-L (rfdu) - ifj(n] (3.14)

=1 =1 §=1 ari J(l)
Using (3.7), (3.8) and the innovation covariance
z{vL(l) \:2(1) |¥°} = uu)r"(o),u'u) +W, (3.15)

(3.14) can be written as
E[3*(1) [¥o] = J*(1, 8(0), B(D))
n o m
+ I I T %_i 2 wra) pl

13(1)-&’ j(O)A'
=1 1=1 j=1 391(1) 393(1)
»
-vle + Wl o) pt 1(1)1' (3.16)
1) ap1 (1) lj L] ‘
+3
The expected future cost (3.16) shoun to be a
function of the predicted covariance P (1) with a

nultipliet given by the sensitivity 1

3sz1) al aJ ) . Since the covariance
®L W aeiu)aej(x)
Pl

j(l) depends on the control u(0) the control has the

dual effect. It should be noted that the importance of
the dual effect depends upon the sens{tivity of the ex-
pected future cost with respect to both the covariance
and parameter estimate.

The optimal control u(0) can be coniuted by mini-
mization of (3.2) using (3.16). Since P j(l) is non-~

linear in u(0) a numerical search proenduro is required.
This is accomplished using a second order linearization
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I S, A
PUCERNEY PIRRY » -t

Wt e e - [UERFA L PR S Y




in u(0).

Thus (3.8) is linearized to second order about the
control ul(0), which 1s in the vicinity of the optimal
control.

£
P, (1)
pt . st .1, 1
PLLyD = L)+ s u‘(é;(o) u (0)]
1 1 asz,](l) 1
+ 3@~ (0} 2 (u(0)-u (0)) (3.17)
3 u“(0) uI(O)

The expected- future cost as given by (3.16) and
(3.17) 1s iuadratic in u(0) and thus a closed form
solution u®(0) is obtained by minimization of (3.2).

The optimal dual control u*(0) can now be computed
from (3.2) using (3.16) and (3.17). It is obtained by
solving (3.18)

o -
Mo) E{x'(1)Q x(1) + u'(0)Ru(0) + J*(1)[¥°} = 0
The optimal u*(O) is thus

PN a n
u*(0) = -{B'(0)QB(0) + zz (qpP 3(0) + Fp + gyt
=]

-~ ~ n
(B' (0)Qc(0) + ez (qlpfcm) +Ep] (3.19)
=]

where the matrix Fl and the vector fl are

I W Vo6 V N S WO Vi @)
e L L3 "2 77T T,
=1 g=1 2 \op{ () 26,(1) 26,1
3 apf (1)
0T —_33%57_ . R . (3.20)
u1(0y,8(0),B(1)

moomo ) 1 9 et ”f (1
fpm I 1 E( T -7 T )(—s‘%ar
=131 2\l (0 2 s 36‘5’(1) .

(3.21)

" ?0) 3u((())1) O]
ul(0),8(0),F (1)

Initially the nominal value of u(0) is computed
from (3.19) with Fp and fp equal to zero. Then a grad-
ient search is performed until in the vicinity of the
optimal u*(0). Then (3.19) - (3.21) are used until
convergence is achieved. This iteration procedure is
essentially Newton's method for minimization of a non-
linear function. The gradient search is used because
the stochastic cost in (3.2) being minimized is a high
order nonlinear equation and the gradient procedure is
used until ul(0) 1is 4n the vicinity of the minimum
before switching to the Newton method. The nominal
covariance BE(1) 1s computed frow((3.7) - (3.11)) with
u(0) = u(9). The sensitivity (partials) in (3.20) and
(3.21) of the cost J*(1) are conputed from partial
derivatives of J*(1) (3.3) and PE(1) (3.7) - (3.9)
evaluated at the nominal The partials of the covari-
ance are evaluated at ul(0) which is evaluated at the
previous {iteration I.

The approximate two-step ahead dual control of
(3.19) - (3.21) can be interpreted as a modification to
the cautious controller by the terms Fg and fg. These
terms depend upon the sensitivity of the future nominal
cost J*(1) with respect to the pargmeters e{(1)el(1)
for all 1,] and their covariance P} ,(1) for each row
£ of parameters. Whenever these siaditivities are
large the terms Fy and fy will be significant (that is
the dual effect will be important). Thus the sensiti-
vities take into account in the control solution the
sensitivity of the nominal future cost due to parameter
varifation and uncertainty. The larger this sensitivity

U L A S O ST B S
AT I LU JAUE S
. IO ST AP R SR S AT AP L . PN
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the more important will be the dual effect.

The resulting dual controller (3.19) exhibits a
robustness property with respect to parameter variations
and uncertainty of the future cost by including a term
which appears in the denominator of the dual controller.
In addition, a probing term appears in the numerator.

4, SCALAR EXAMPLE WITH ONE UNKNOWN PARAMETER

To further understand the dual control solution a
scalar example with one unknown parameter b is presented.
The approximate dual control solution for this scalar
case using Q = 1, R= 0, is given by (3.19) - (3.2})
with P, (1) and 6(0) being replaced by P (1) and b(0)
respecéi‘ely.

The partials required in the control law are

3t (1) RSO
B, (1) |~ (2(0)+F, (1))2 “n
b(O),l-’b(l) b
- ~y
RO . 225 | 2O e
BWBW (7o) 5 @ " w2+, (1)
®, (1) 2p2(0)w u¥(0)a?
3ut(’0) " ———— 4.3
WO @ ! (@2
2 12
a’p, (1) v-3, 0" @ |,
MOETOR I(o; -ZP (0w 12 , a  (4.4)
(P ©)u" (0)+)
where the noninal a(0) and P (1) are
o = - w-”—@—‘—— 4.5)
b2 (°)+Pb(0)
) S O
Pb(l) - —— +V (4.6)
Pb(O)u (0)+W

The parameter estimate b(0) and Pb(o) are computed
using data up to k = 0 ({.e. y(0)).

The expected future cost based upon the linearf-
zation of (3.16) is

e |v0) = & - & 2D 12 ) MNP e
b24E, () % BP(D)
*
- o’r (@-v) + F-53 p )-F ) .
b

4.1 Evaluation of the Cautious Controller

The performance of the cautious controller can be
evaluated using (3.2) with u(0) evaluated at the
nominal

- 2 o * ) _
30) = B YO} + eGP YN gyagqy  “o®
The first term in (4.8) represents the expected cost at
k = 1 and the second term in (4.8) represents the ex-
pected future cost at k = 2 using the cautious control
at k = 2 ({.e. u(l)) and using the cautious control at
k=1 (i.e. u(0)=u(0)). (4.8) is evaluated using
data YO,

Using (4.1) - (4.7), (4.8) becomes,

o2

iy 2 2
3(0) = c2 L2 @c + cZ - c2 b~(0)

b (0)+pb(o) b (0)+Pb(1)

2.2 -2
2.4 22 (03 (0)
1 9°37°Q1) . b
s 3IW . b (4.9)

(1) P (D)u(0) 44
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The last term in (4.7) is zero since P, (1) evalu-
ated at the nominal control (i.e. cautious control)

equals P (1). The first two terms in (4.9) represent
the average cost at step k = 1 and the last three terms
represent the expected future cost at k = 2 using the
cautious control.

A simple example can be used with (4.9) to demon-
strate when the cautious control is expected to behave
poorly.

Assume a scalar example with one unknown b para-
meter and let

b(0) = .05 , PCO) = .5, a= 1.0
vV =1 , W

(4.10)
=.1,c=1

The expected cost at k = 1 and_k = 2 i{s computed
from the nominal, u(0), Pb(l) and BZJ* 1) which yields
u(0) = -.1, Pb(l) = ,575 , 2 = -3,47 (4.11)
b~ (1)
and
2 2
JO) = c”" +c¢" ,c=1 (4.12)

Thus the cautious control applied at k = 0 results
in no reduction in the cost at k = 1 due to large un-
certainty P(1l) and also no reduction in the future ex-
pected cost since u(0) is small and no improvement in
parameter accuracy occurs at step k = 1,

4.2 Evaluation of the Dual Controller

The dual controller of (3.19) - (3.21), (4.1) -
(4.6) can be evaluated by computing the average cost of
(4.8) using the covariance

a2p,(0)W
P, (0)u’ () 4w

Pb(l) = +V (4.13)

The expected future cost (4.7) reduces to
b2 (0)
b (0)+P, (1)

2 2

(WYY = -

u*(0)
2.2 *2
2y REOu*)

+
3;2(1)

BN

Pb(o)u*2(0)+w

2.2 *2 2.2, =2
i art () ( a’p, (0)u " (0) 8 P (0)u"(0) ) (6.14)

oD\ e u*horw P (32(0) 4

and the total expected cost at k = 1 and k = 2 using
(4.8) is

370 = Elx®(1) [¥°)

+ E(3N(D) [} (4.15)
* %*
u (0) u (0)
where .
EGE) Y0 = ¢ + 26(0)u"(0)c +
N |U*(0)
+ 02 + £, (05" (0) (4.16)

Examination of (4.14) shows that the dual control
can reduce the expected future cost over the cautious
control stnce*ghe last _two expressions in (4.14) can be
negative 1f u €(0) > 32(0). Thus the dual property

can have a desirable effect on the future cost.

The cost J (0) is computed using the scalar exam-
ple previously discussed for the cautious controller.
A search procedure is used on (4.15) using (4.14) and
(4.16) with the parameter values from (4.10), and u*(0)
is iterated until in the vicinity of the minimum
ylelding

e e e e e
DI IR PR S T Y S I T
A o, et e, o
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* 2 %
w'w *5'w
- 0075 , SJL1 - 347,
P (D |0ye-.1 (1)  [a(0)e=-.1
a, (1) s X
—_— - .382 , - +1.0 ,
Ju(0) uI(O)--.6 auz(o) uI(O)--.6
Fp= .87, £, = .85 4.17)

The above sensitivities (4.17) were evaluated in
the vicinity of ths optimal ul(0) = -.6 and P _(1)=.278.
The dual control u (0) using ul(0)= -.6, c=1 ¥s

b(0)c + .85
b~ (0) + rb(o) + .87

u*(o) - -

= -.62 (4.18)

The corresponding future expected cost using (4.14)
and (4.17) is

2, %
2;* P (0)u < (0)
E{J*(I)IYo} =2, % 3Ag (1) b -
B P (Ou (O
u (0)
=2, e (4.19)

The result of this example shows that the dual
control of (4.18) reduces the-expected future cost to
44X of the original ¢? with no control. The cautious
control resulted in no reduction of the future cost.

The terms responsible for the improvement with dual con-
tro]*. are the second order sensitivities 2*P(1) and

¥J (1) . 3“2(0)

b~ (1)

The dual control of (4.18) differs from the cau-
tious control (4.11) by the terms Fg = .87 in the denom-
inator and fp = .85 in the numerator. The denominator
term in effect provides more "caution" whereas the
numerator term is an additive probing effect. The term
Fp provides a "robustness" property in that the sensi-
tivity of the future cost to parameter uncertainties as
they appear in the controller (i.e. b4(0)) are minimized.
Thus a new interpretation of the dual control is that it
contains robustness and learning (via probingi. These

concepts are applicable to the multivariable dual con-
troller in (3.19) - (3.21).

5. SIMULATION RESULTS

Performance was evaluated from 100 Mgnte Carlo
runs for the following controllers where b(0) was set
to b(0) with covariance Pb(O): 1) Cautious Controller
2) FOD 3) SOD

The above algorithms were tested for two cases:

a) Time varying case, b(Q) = .05, Pb(O) =1.0,

V= .1, c=10, W= _0landW=_.1, a=0.9
b) Constant case, with b(0) = .05, Pb(p) = 1.0,

V=0, c=1.0, W= _0landWe=_1, a= 1.0

Example a
Table 1 summarizes the results of the simulation

runs. All three algorithms were tested on this example
for two different levels of measurement noise covariance,
W= .0l and W= _.1. 100 Monte Carlo runs were performed
each of 40 time steps. For each run, an average cost
was computed over 40 time steps and then the averages
over 100 runs are tabulated in Table 1 and Table 2,
The tables clearly indicate that the SOD yields the
least cost. The dual effect shows a larger fmprovement
for larger measurement noise (i.e. W = ,1). Run numbers
7 and 14 of the 100 Monte Carlo runs were selected for
plotting. The cost and parameter value are plotted in
Pigures 1 through 4. It is evident that the second

order dual improves upon the other two on Lhe average.

Example b
In this case the true paraneter was close to zero

Table 2 summarizes
The average cost obtained Gy tha SOD is

(i.e., b(0) = ,05) but constant.
the result.
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much lower than the other two. The SOD always exhibited

excellent convergence whereas the other controllers per-

formed poorly. In addition the new controller consist-

ently avoided turmn off and burst [5]. This was an im-

portant common feature in all the Monte Carlo runs.

Runs 26 and 80 are plotted in Figures 5 and 6 respect-

ively, as typical examples.

The simulation study has shown that the new dual
controller improves upon the cost on the average. The
magnitude of the improvement on the average appears to
be relatively small for the noise levels used. However,
the real advantage of the new dual controller is the
{improvement in those instances where the cautious con-
troller and the FOD [1,2] yields unacceptable results.
Although the FOD [1,2] shows improvement over the caut-

. ious controller, it has been found to be unacceptable
at many time points.
6. CONCLUSION

A new adaptive dual control solution based upon the
sensitivity functions of the expected future cost has
been presented. This controller (SOD) takes into ac~
count the dual effect better by performing the second
order Taylor series expansion of the expected future
cost., The form of this controller is a modification of
the one step cautious controller. The FOD of [1,2] did
not have the denominator correction term like the pre-
sent one. This adds stability to the new control de~
sign. Simulation results of a scalar model have shown
the improvement obtained using the new dual algorithm.
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