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FOREWORD

‘fé:;ltrasonic techniques are used to determine the velocities of guided waves
in unidirectional metal matrix composite plates. Both extensional (fundamental
Lamb symmetric) and in-plane shear (SH) plate wave speeds are measured via
through-transmission procedures utilizing one-half megahertz broadband
transducers. The values recorded for the wave speeds and the plate density are
used to calculate the four reduced stiffness coefficients of the plane stress
Hooke's Law relationship of the plate. This approach allows the full set of
elastic constants required by designers for the analysis of a thin orthotropic
plate or shell loaded in its plane to be obtained from only four ultrasonic
measurements. The accuracy of the elastic constant determinations may be
increased by measuring more than four wave speeds and employing the statistical
data reduction method described, herein. '
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INTRODUCTION

Metal Matrix Composites (MMCs) are a class of structural materials that has
attractive features for many applications. Lightweight MMCs (based primarily on
the addition of a reinforcement to an aluminum or magnesium matrix) are being
developed for structural members such as shells, shelves, and stiffeners. For
this generic type of element the thickness is usually much smaller than the
other dimensions. Typically, an MMC shell component is no more than 2.5mm thick
with the other dimensions being at least one order of magnitude greater.

Nondestructive inspection of such members frequently relies on ultrasonics
as a tool. A geometry in which one dimension of a part is significantly smaller
than the other two is well suited to the use of plate modes of ultrasonic wave
propagation. With the ready availability of ceramic transducers that have
operating frequencies in the range of 1/2 to 1 megahertz the inspection of thin
sheet and shell members by plate waves is a practical approach. In addition to
flaw detection, a full set of in-plane material elastic constants may be
obtained from the measurements of the proper plate wave velocities. The purpose
of this note is to summarize and catalogue the first-order equations which
express plate wave velocities as functions of the elastic constants and density
of an orthotropic laminate. In addition, the method by which elastic constants
are determined from phase velocity measurements is reviewed. In practice,
experimental measurements often garner more wavespeed data than are needed to
algebraically solve the pertinent equations. This problem of over determination
of variables is addressed via regressive analysis. Some simple examples are
presented using unidirectional boron/aluminum (B/A1) and graphite/aluminum
(6r/A1) as representative MMCs.

REVIEW OF THEORY

It is known that the propagation speed of an ultrasonic wave in anisotropic
media is a function of the material elastic constants and density. For single
crystals, the elastic constants may be unambiguously defined. For two-phase
materials, such as structural composites, an appropriate model of media response
to a transient elastic disturbance must be adopted in order to quantify the
relationship between wave velocities and elastic constants. When the effective
wavelength of the acoustic pulse is much larger than the dimensions of the

microstructural inhomogeneities, the effective modulus theory has been applied
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for this purpose. Examples in the literature demonstrate the application of
effective modulus theory to relate ultrasonic parameters to material properties
for a variety of composites. A summary of the relevant equations for the two
plate modes (P waves and SH waves) of present interest is presented herein.

g The effective moaulus theory assumes that a composite material is a

2 macroscopically homogeneous, orthotropic medium. For thin shell geometries the

R further assumption of a plane stress state is frequently adopted. Under these

Y conditions, the Hooke's law relationship between stress and strain is written

" 0] M Q2 © € ’

8

; o2 =Wz Q@2 O €2 (N

112 0 0 Qo6 \r12

. if the stresses (o), 02, 112) and the strains (e}, e, y]2) are indexed to a

f' cartesian coordinate system aligned with the laminate principal axes.

ﬁ The problem of determining the velocity of waves propagating in an

W isotropic plate was originally solved by Lamb. Among other things, the results

W showed that two basic families of waves could propagate, one having symmetrical

> and one unsymmetrical characteristics. The long-wavelength (where the wave-

2 length is measured in units of plate thickness) symmetrical mode is mildly

o dispersive, with the approximate wavespeed being a simple function of the plate

£ moduli and density. The antisymmetrical mode is highly dispersive. For the

£ symmetrical Lamb wave, as the wavelength becomes infinitely long, the limiting

! velocity is referred to as the extensional plate velocity. Subsequent work by
other investigators developed similar plate velocity expressions for orthotropic

-, elastic plates. The extensional plate wave velocity and its shear mode

-i analogue may be expressed as functions of the elastic constants of a composite

- laminate by using Equation (1) in conjunction with the equations of motion of

- the laminate material as it is disturbed by the ultrasonic wavefront. A simple

. derivation, based on a time-harmonic wave train, is summarized here.

) A field point in the laminate located at coordinates (x,y) oscillates with

2, respective displacements (u,v). The strains at (x,y) are then

1 €1 X

3 e = 8V (2)

ﬁ’ 2% %y .

o = 3 4 3V

. Y2 ay X

7; When the wavelength of the disturbance is much greater than the laminate
thickness plate wave modes are activated and, for the lowest order of P wave and
5 SH wave, the displacement at (x,y) may be approximated as uniform across the

X plate thickness. The displacements due to a harmonic wave will vary with time,
2 t, as

., u=ugy exp[i(k x cose + k y sine - wt] (3)
: 2
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A similar expression exists for v. In Equation (3), w is the angular frequency,
k = w/V, where V is the phase velocity of the wave, and ¢ is the angle between
the x axis and the normal to the wavefront.

From Newton's laws, the equation of motion of the field point is

() () €9

4) .
3o T 2
(_2_)+( 12)=‘, 2 v
3y ax atl
In Equation (4), o is the composite density.
Combining Equations (1) through (4) yields the Christoffel equation for
(ug» Vo), which is solved by setting the characteristic determinant equal to
zero. This relationship is known as the dispersion equation, Equation (5).
A1y - X A2
=0 (5)
A2 A2z - X
In Equation (5), X = pvz and the Ajj parameters are functions of the laminate
stiffness coefficients, Qij’ and the direction of wave propagation, e, as
follows:
A1l = Qn cosZe + Q66 sinZe
A22 = Qgg cos%e + Q2 sine (6)

A12 = (Q12 + Qe6) sine cose

Mathematically, Equation (5) is a quadratic with two roots for each angle
6. The larger root, representing the faster wave, Xf, is

Xp = (An * Azz) +(@n - Azg)?‘ 4 A%z) 7)

]

The smaller root, corresponding to the slower wave, Xs, is obtained by changing
the plus sign between the two terms of Equation (7) to a minus sign.

The physical interpretation of the two roots is that in any direction in
the plane of the lamina two types of waves may propagate which involve
principally in-plane stresses. Neither type will generate a net moment as, for
example, does a wave of flexure. These waves become pure mode longitudinal and
pure mode shear only when the propagation direction is along a laminate
principal axis. For these directions & = 0° or o = 90° and the phase
velocities are
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VE(0°) = Ayv/e
VE(90°) = Mgale (8)
Vs(0°) = Vs(90°) = Agg/e
For off-axis waves the mode is not pure and the terms pseudo-longitudinal waves
and pseudo-shear waves are sometimes used as descriptors. The relationships

between the Qj;j coefficients and the conventional engineering elastic constants
(Young's modu]1, shear modulus, and Poisson's ratios? are:

Q11 = Eni/(1 - vi2 v21)

Q22 = E22/(1 - vi2 v21)

Q12 = vi2 Q2 (9)
Q6 = G12

v21 E11 = vi2 E22

In Equation (9), Ej) and Ep2 are the extensional moduli in directions x
and y, respectively; v)2 and v%] are the major and minor Poisson's ratios; and
Gy2 is the in-plane shear modulus.

In order to check the predictions of these equations a panel of orthotropic
material with known elastic constants is needed. Given the set of four elastic
parameters plus the panel density, the phase velocities of the two types of
waves may be calculated from Equation (8) and compared to the experimental
measurements in the principal directions. Off-axis waves may also be used for
this purpose but greater care must be taken to ensure that the correct mode is
observed due to certain directional propagation effects present in orthotropic
media, as discussed below.

Acoustical birefringence occurs in anisotropic media. That is, the phase
velocity varies with direction. Even when using a model of material behavior
that neglects dependence of phase velocity on frequency, the directional
variation of V leads to the existence of a wave modulation envelope which
travels with a group velocity, Vg, that is not always the same as the phase
velocity. The group velocity is a vector and its components in the x and y
directions are

X
(10)
Voy = & .
aky

In Equation (10), ky = k cose and ky, = k sine. The partial derivatives
are determined by implicit differentiation of the dispersion relation, Equation
(5). This relation written in expanded form is
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8(wskxsky) = (kx 2017 + ky 2066 - pu?) (kx 2066 + ky 2422 = pw?)
- (kx ky(Q12 + Q66))% = 0

The components of Vg may be expressed

an/ sk
VGx = - __L
/s
g/ ak
v =z -
Gy i/ w

The corresponding partial derivatives are

%%; = (kg 2017 + ky 2066 - pu?)(2 ky Qgp)

+ (kx 2066 + ky 2Q22

owl)(2kx Q11) - 2kx ky 2(Q12 + Q66)2

38[:_ = (ky ZQ-” + ky 2066 puz)(z ky Q22)

&Ky

+ (kx 2Q66 + ky 2022 - gu?)(2ky Q66) - 2kx 2 ky (Q12 + Qg6)2

3

o lx 2(Q171 + G66) * ky 2(Q22 + Qg6) - 2pu?)(-2pw)

The direction of group velocity advancement with respect to the x axis, eg,
is found from

tan eg = Equation (13
quation

The magnitude of Vg is

vé = [Equation 112)]2 + [Equation (13)]2
[Equation (14)]¢

In Equation (15), eg is the angle of inclination of the group velocity
propagation direction for an ultrasonic wave packet that is launched with a
phase velocity propagation direction of angle e. Solution of Equation (15)
shows that eg = ¢ only for the two angles 0° and 90°.

The fact that for off-axis waves the phase and group velocities do not
advance in the same direction is important to properly sizing a specimen for
measurement of off-axis phase velocities. When a pulse of acoustical energy is
radiated by a plane wave transducer, the phase front is aligned parallel to the
transducer face. However, the energy propagates in the direction of the group

()

(12)

(13)

(14)

(15j

(16)
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velocity, which is not normal to the transducer face. The angle of energy cant
from the transducer normal may be significant and, for a through-transmission
type of wave speed measurement, can lead to improper placement of the receiving
transaucer. The specimen dimensions must be large enough to account for this
canting effect so that the receiver may be offset by the proper amount to
intercept the pulse. Figure 1 depicts schematically the beam deflection
phenomenon for an off-axis wave propagating in a directional media. From the
figure, the phase velocity is numerically equal to the perpendicular distance
separating the transducers, L, divided by the time of fliight of the group wave
packet. Also, note that

V = Vg cos(eg - o) (17)

A number of investigators have used measured phase velocities to calculate
the elastic constants of a composite. In the present formulation, this problem
reduces to determining the four stiffness parameters--Qj}, Q22, Q66> Q]E--from
measured plate velocities. Therefore, a minimum of four velocities must be
recorded. At least one value is needed in an off-axis direction or vj2
cannot be determined. Algebraic solution of Equation (7) from the four
experimental quantities plus the density is then possible. A convenient
approach is to interrogate a specimen at 6=0° and =90°, since for these
directions the phase velocity propagates normal to the transducer face. The
influence of Poisson's ratio on wave speed derives largely from the effect of
the magnitude of A]z on the calculated results of Ec¢u-tion (7). The value of
Ao 1is proportional to the product sing cose, which i~ a maximum at e=45°.
Therefore, it is advisable to determine at least one wave speed at ¢= x/4,
if possible.

At times, more than four experimental wave speed values are available.

When this situation occurs, the accuracy of the Qjj determinations may be
increased by using the method of non-linear least gquare error analysis. The

approach is to fit the two -curves defined by Equation (7) to the total set of
data in such a way that the sum of the absolute deviations of the data points
from the smooth curves is a minimal. The following discussion assumes that the
experimental error in wave speed measurement is the same for all data points.

From Equation (7), two curves represent the behavior of both in-plane plate
wave modes, where the curve parameters are X{ and Xg expressed as functions
of the four Q;i's and e. The goodness of fit of a set of data to these two
curves, §, is &efined as

s = ; {xe - xns + (Xg - xz>§} (18)

Equation (18) is a summation over all specimen angles interrogated, n. In
Equation (18), XF = XF(Qjj.on) and X7 = pV?, where VF is the measured_speed of
the faster wave for angle e,. Similarly, Xg = XS(Qij,en) and X2 = pV§ at angle
on.
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The function & is here considered a continuous function of the four .,
unknown Q1J s; each Qjj is_an independent variable. Thus & describes a hyper-
surface in four-dimensional Q;; space and the space must be searched for the
, minimum value of §. The search procedure consists of establishing a four-

" dimensional grid mapping of the area of Qj ij space in which § is suspected to
: be minimal, and then progressively tightening the grid by reducing the range of
values of each of the Qij's.

] \ In the simplest mapping procedure, the permissable range for each Qi
e divided into two equal increments about its median value. The mid-range g01nt

plus the two extremities constitute three trial values for each Qij so that the

gg. 4-parameter space is divided into a grid consisting of 81 vertices. The value
A of & is then calculated at each of these vertices. This procedure yields a
%ﬁ map of the behavior of & as a function of all of the Q;j; parameters. The grid
no may be made initially very coarse on a "best guess" bas s, and then, when a

local minimum is identified, made finer by adjusting the median value of each
‘e Qij and reducing the incrementa] offset about the mid-point.

o Computer programs in BASIC for calculating the phase and group velocities
- from laminate elastic constants and density and for determining the best-fit set
" of Qjj's from a collection of experimental phase velocities are included in

Ay this report as Appendices A and B, respectively.

L EXPERIMENTAL

;55 Two types of MMC were available for preliminary evaluation of the

preceeding theory. Both consisted of undirectionally reinforced aluminum in a
thin lamina form and are therefore characterized with respect to in-plane
stiffness behavior by four independent elastic constants--Ej], the axial elastic
modulus; Eop, the transverse elastic modulus;.vjp, the major Poisson's ratio;
and Gy, ﬁe in- plane shear modulus. Some physical properties of the as-received
plates are given in Table 1. The boron filament used in B/Al is a product of
AVCO; the precursor wire of which the plate of Gr/Al is made was manufactured by
Material Concepts, Inc. Plate consolidation was performed by DWA Composite
Specialties in both cases. Although similar in regard to matrix type and
reinforcement arrangement, the boron filament and graphite fiber differ in
average diameter by approximately one order of magnitude. Thin panels of these
kinds can serve as structural materials in their undirectional form or as the
unit of construction for complex laminate layups.

v . e
I

-"wc--ﬁ“-
i g o J

o
]

=
>

The experimental approach was to cut the panels into various sample sizes
for measurement of ultrasonic phase velocities by through-transmission methods. .
Figure 2 shows three typical samples of B/Al. Both longitudinal-type waves and
in-plane shear waves were studied using broadband transducers which had a
nominal 0.5 MHz center frequency. The materials were interrogated to determine
the velocities of both types of waves at five angles with respect to the
reinforcement direction. Densities were obtained by immersion. The resulting
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TABLE 1. DESCRIPTION OF PLATES USED IN ULTRASONIC STUDIES

v Length Width Thickness

~ (cm) (cm) (cm)

h Boron/A13 23.8 7.6 0.138

y Graph1te/A] 30.0 30.0 0.068

)

[}

)

g Filament Alloy Reinforcement Dens1t§

Type Fraction (gm/cm?)

Boron/Al12 5.6-mil boron 6061 0.51 2.59
Graphite/AlP GY-70 graphite A201 0.37 2.52

a. DWA Plate No. B-1379-1
g b. DWA Plate No. G-5100

>,
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AN velocities and calculated values of Xf and Xg are presented in Tables 2 and
.ot 3. The composite elastic constants were obtained for each material by applying
i:{ Ehe Legst-square-error program of Appendix B. These values are listed in Tables
- and 5.
:ﬁ The B/Al1 plate was not large enough to permit additional mechanical tests
%W to be conducted which would provide comparative data for the elastic constants.
N Therefore, the results of an investigation in the literature is utilized for
}g this purpose, Reference 1. In this study the complete orthotropic elastic-
- ) stiffness matrix of undirectional, Borsic-filament-reinforced Al composites was
, experimentally evaluated for three different volume fractions by ultrasonic bulk
%ﬁ wave velocity measurements. The fiber-volume fractions reported are 0.13, 0.34
t{ and 0.54. Interpolation of the elastic constants from this paper to the fiber-
~ fraction of the B/Al plate used in the present study (0.51) gives the set of

-1 elastic constants listed in Table 4.

g The Gr/Al plate was large enough to allow coupons to be cut for tensile

ﬁ} evaluation of Young's modulus in the fiber direction, Ej). Three tests were

o performed; the results are given in Table 5. Insufficient material precluded
o running mechanical tests to determine the remaining three properties. Since
VN EZ% and Gy2 are both matrix-dominated properties, a rough estimate of their

on value for an aluminum composite incorporating 37% graphite may be obtainea from
: studies on other types of unidirectional Gr/Al of approximately equal fiber

o fraction (References 2 and 3).
e The composite cylinder assemblage model has been used to predict the

- properties of a Gr/Al material from calculations based on fiber and matrix

constituent properties, Reference 2. Fiber fractions ranging from 0 to 50

z percent were addressed in 10 percent increments, allowing interpolation to the
L1~ value of 0.37. Ultrasonic evaluations based on bulk waves of a 30 volume
‘:; percent Gr/Al composite were also reported, Reﬁerence 3. Both studies involved
hd! graphite filaments of another type than GY-70.  The elastic constants from
3}3 these papers are reproduced in Table 5.

.: Predictions of ultrasonic group velocity by the effective modulus theory
e were in part evaluated by an experiment which delineated the group propagation
o envelope directly. A small source of extensional waves was applied to one edge
o of the GY70/A201 plate, as shown in Figure 3. A second small transducer was

- employed to track a constant phase point in polar fashion about the disturbance
r— source as origin. This procedure yields a plot of Vg versus eg for angles

- ranging from 0° to 85°. The results, presented in Figure 4, correspond to the
- locus of the wavefront for the faster plate wave at a time of t = 12.8 usec

o after the pulse was initiated. The theoretical curve, calculated from Equation
fE (15) and Equation (16) using the GY70/A201 moduli of Table 5, is presented on
o the same figure as the experimental data for comparison.
. -
T *The filament axial elastic modulus was approximately 50 x 106 psi gn both
o studies cited. The axial modulus of GY70 is approximately 70 x 10° psi.
o
22 11




TABLE 2.

) Vi (mm/y
0° 8.84
30° 7.49
45° 6.41
60° 5.06
90° 3.88

NSWC TR 85-186

BORON/ALUMINUM UNIDIRECTIONAL LAMINA PLATE WAVE
VELOCITIES AND ACOUSTICAL PRESSURES

0 Vg (mm/ysec) Vg (mm/usec) Xf(GPa) Xs(GPa)
0° 9.624 4.741 239.52 58.126
20° 9.207 4.859 219.21 61.055
45° 8.142 5.300 171.43 72.641
60° 7.946 5.274 163.28 71.930
90° 7.826 4.820 158.38 60.079
TABLE 3. GRAPHITE/ALUMINUM UNIDIRECTIONAL LAMINA PLATE WAVE

VELOCITIES AND ACOUSTICAL PRESSURES

sec) Vg (mm/yusec) Xg{GPa) Xs(GPa)
2.74 196.9 18.92
2.90 141.4 21.19
2.96 103.5 22.08
3.11 64.52 24.37
2.75 37.93 19.06
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g TABLE 4. BORON/ALUMINUM UNIDIRECTIONAL LAMINA ELASTIC CONSTANTS

L Plate Waves? Ref. 1

g E11(msi) , 32.8 32.6
Gy2(msi) 8.2 8.4
PTAN vi2 0.24 0.25

¥ (a) 51 v/o Boron/6061
Ao, (b) 52 v/o Borsic/6061

7 TABLE 5. GRAPHITE/ALUMINUM UNIDIRECTIONAL LAMINA ELASTIC CONSTANTS

’Sgg Plate Wavesd Tensile Testd Ref. 2b Ref. 3¢

3sk. Eqq(msi) 27.4 27.0, 29.3, 27.6 26.6 23.3
ga. Epy (msi) 5.0 --- 5.1
) ! G]Z(ms") 2-5 3.]
V]Z 0026 --— 0.34

4.
2'
0.28

-—-y

N 0 W

bt (a) 37 v/o GY70/A201
1dnd (b) mathematial model predictions for 37 v/o P55/6061
e (c) 30 v/o T50/A201
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DISCUSSION

A comparison of the elastic properties of B/Al and Gr/Al from ultrasonic
plate waves with values found in the literature shows reasonable agreement for
the majority of the constants. The discrepancies can be attributed to sample
differences between this study and the references cited and the effect of
dispersion on.plate wave velocity determinations. The good agreement of plate
wave values of Ejj with the results of other types of measurement is
particularly encouraging, in that axial performance of a unidirectional
composite is usually of first order importance for design considerations.

Reasonable agreement is also observed between the predicted and observed
group velocity envelope of an extensional-type wave generated by a point source
of disturbance in Gr/Al. This fact lends confidence to the hypothesis that
effective modulus theory can be applied to relate the material stiffness
parameters of a unidirectional MMC to elementary elastic wave analysis.

CONCLUSIONS

Effective modulus theory appears adequate to provide a first-order
approximation of in-plane plate wave propagation characteristics in thin panels
and shells of unidirectional B/Al1 and Gr/Al. The plate wave approach appears
especially relevant to determining the value of the major elastic modulus,

E11, which is of much interest to both users and manufacturers of MMCs.

RECOMMENDATIONS

Additional plate wave studies of the present type should be performed on
other types of MMCs and on layup arrangements other than unidirectional plies.
The effect of residual stresses resulting from the manufacturing process on
phase velocities needs to be investigated. The development of a model of MMC
material behavior with regard to transient elastic disturbances that
incorporates dispersion should be addressed.

16
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APPENDIX A

COMPUTER PROGRAM FOR CALCULATING PLATE WAVE SPEEDS
FROM ELASTIC CONSTANTS

oS
FY N W S )

[

F e

The following computer program, written in BASIC, calculates the fundamental
'1: symmetric Lamb and SH shear plate wave velocities of an orthotropic lamina from
b its four elastic constants and density. Enter the input data in Step 2000 in
¥ the order:
A E)7 (Msi); Ep2 (Msi); G]? (Msi); v12; and o (gm/cm3). A sample
o calculation is presented in Table A-1 using Ei‘ = 27.4 Msi; Epp = 5.0 Msi;
-, G2 = 2.5 Msi; v12 = 0.26; and p = 2.52 gm/cm®, which is a representative
e set of values for GY 70/A201 Gr/Al.
2
4
v
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10 REM PROGRAN TO CALCULATE UAVE SPEEDS OF FUNDAMENTAL LANB MODE

12 REN AND SH SHEAR MODE AS A FUNCTION OF ANGLE FOR THIN PLATE MATERIAL
14 REN USING THE MODULI AS INPUTS. INPUT E11(MSI),E22(NS1),612(NSI)

16 REN POISSONS RATIO, AND BENSITY (6/CC)

17 PRINT

18 PRINT

20 PRINT “PROGRAN CALCULATIONS MADE AT 5 DEGREE INTERVALS"

60 DIN T3(95),X1(95),X2(93),Y1(93),Y2(93)

43 DIN T9(93),N9(95),22(93),13(95)

90 PRINT

102 READ E1,E2,6,V1,R

105 PRINT

106 PRINT * El1 = ", E1,"NSI"
108 PRINT * E22 = " E2,"NS1"
110 PRINT * 612 = *,6,"NSI"
112 PRINT *  POISSONS RATIO =",V1
114 PRINT *  DENSITY = *,R,“GNS/CC"
115 PRINT

116 PRINT

117 PRINT “FAST WAVE SPEEDS VERSUS ANGLE®
118 PRINT

119 PRINT

120 PRINT "THETA PHASE","F PHASE VEL","THETA GROUP","F GROUP VEL"
122 PRINT "(DEGREES)","(MN/USEC)","(DEGREES)"," (MM/USEC)"
124 PRINT

128 V2=Vis(E2/E1)

130 AI=E1/((1-V1sV2)%0.143)

140 A2=E2/((1-V1sV2)%0.14%)

150 A3=(V2sE1)/((1-V1sV2)20.145)

160 Ab=6/.145

200 FOR I=0 TD 90 STE? S

210 T2=1+(6.283185/360)

215 T3(1)=T2

220 L=C05(T2)

230 L2=LslL

240 N=(1-L2)ss0.5

250 N2zMsi

260 Hi=L2sA1+N28A%

270 H2=L29Ab6+K2%A2

280 HIzLshs(A3+AS)

290 HasH3IsH]

300 H7sH14H2

310 HB=H7sH?

320 H9=H1sH2-HA

400 X120.38(H7+(HB-43H9)»20.5)

410 X2=0.5¢(H7-(HB-4¢HT)840.5)

420 UI1s({X1/R)e0.3

600 Fiz(L2sA1+N20A4-RoU10U1 )0 (2eM2A2)
610 B1s(L2sA1+H20A4~ReUtsU1)e(2¢LsAb)
620 F2s(L2sAd+N20A2-RolU10U1 )8 (20NsAb)
630 B2s(L2%Ab+N29A2-Relisl1)e(2sLsAl)
640 Fls-20NsL26(A3¢A6) 092

630 B3=-20LeN28(AJ+A4) 802

660 FAsF14F24F3
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670

680

690

700

210

720

730

740

7260

1000
1010
1020
1022
1024
1026
1030
1032
1034
1200
1210
1213
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1400
1410
1430
1600
1610
1620
1630
1640
1630
1660
1670
1680
1690
1700
1710
1220
1730
1740
17720
1780
2000
9999
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842614624563

U1aL28 (A1+AS) +N2¢(AS+A2)-2¢RsU 1 %UY

U2=-2sRsU1

Ul=Uisl2

UAs(FAsF4+04¢84)/(U3sU3)

US=U4ss.3

T17sF4/64

T8=(180/3.14159)sATN(T?)
PRINT I,U1,78,U3

NEXT 1

PRINT

PRINT

PRINT "SLOU UAVE SPEEDS VERSUS ANGLE"

PRINT

PRINT

PRINT "THETA PHASE","™S PHASE VEL","THETA GROUP","S GROUP VEL"

PRINT "(DEGREES)","{(NM/USEC)","(DEGREES)"," (NM/USEC)"

PRINT

FOR I=0 TO 90 STEP S

T2=13(6.283185/360)

T3(1)=T2

L =C0S(T2)

L2=Lsl

N=(1-L2)%s.5

N2=NsN

Hi=L2sA1+H20Ab

H2=L2¢Ab6+N28A2

H3z=LeN* (A3+AS)

HA=H3*H3

H7=H1+H2

HB=H7 K7

H9=H18H2-H4

X120.58(H74(HB-48H9)9s ,5)

X230 .58 (H7-(HB-48H9 ) 22,5)

Ui=(X2/R)ss.5

Fi=(L2sA1+H2¢A6-ReU1sU1)3(24NsA2)

GI=(L2oA1 +M20AL-RelIsU1) e (200 2A4)

F2=(L2%A&+N28A2-ReU13U1 ) s (2¢N2Ab)

625 (L2¢A6+N28A2~RsVU1sU1 )8 (2¢L A1)

FI=-2¢NsL2s(A3J¢A4) 282

53=-2sLsK28(A3+A4) 802

FAsF14F2+4F3

G4=51+4562+63

HisL28(A1+A8) +N28 (A6+A2)-2¢RsU1sU1

U2=-2sR2U1

U3siisu2

Va=(FAsF4+B4464)/(U3sU3)

US=li4es. S

T7=F4/64 »
T8=(180/3.14159)sATN(T?) i
PRINT 1,U1,T8,US i
NEXT 1 ¥
DATA 27.4,5,2.5,.26,2.52 '
END !

i
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TABLE A-1. CALCULATED PLATE WAVE SPEEDS OF GY70/A201

Enn = 27.4 nsl

€22 = H] L191

8§12 = 2.5 LD "
POISSONS RATIO = .26

BENSITY = 2.52 8ns/cc

FAST UAVE SPEEDS VERSUS ANGLE

THETA PHASE F PHASE VEL THETA GROUP F SROUP VEL

(DEGREES) (MK/USEC) (BEGREES) (HK/USEC)
0 8.71337 5.35621E-27 8.721337
H] 8.4839 .356083 8.71009
10 8.59579 1.12141 8.70003
15 8.44995 1.70591 8.468262
20 8.24794 2.320% 8.45678
25 7.99196 2.9802 8.42081
30 7.68491 3.70159 8.57214
35 7.33048 4.50%27 8.50489
40 6.93327 5.43812 8.41913
43 6.49904 6.54179 8.29952
50 6.03515 7.90947 8.13264
35 5.55142 9.70745 7.8913
50 5.06206 12.2915 7.52273
45 4.3902 16.5943 6.91422
70 4.1791% 25.5448 5.85483
73 3.89977 45.146 4.49644
80 3.77398 87.7915 3.8613
LH 3.73184 81.2612 3.7398
70 3.72217 90.0001 3.72217

SLOU VAVE SPEEDS VERSUS ANGLE

THETA PHASE § PHASE VEL THETA GROUP § GROUP VEL

(DEGREES) (NN/USEC) (BEBREES) (MN/USEC)
0 2.61569 B.64539E-6  2.61569
s 2.6235 0.91%67 2.62971
10 2.6448 17.5449 2.46991
15 2.48425 25.4413 2.73122
20 2.73414 33.0643 280481 .
25 2.79%418 392662 2889
3 2.04177 45.7506 2.97341
35 2.93409 51.0619 3.05328
0 3.00821 $5.7444 3.1255 .
4 3.08108 59.8259 3.10719
K. 50 3.14937 63.2574 3.235%6
Kot 55 3.20903 65.8411 3.24735
Borar 60 3.25407 66.9417 3.27824
N 5 3.2729% 64,7922 3.222%
ML 70 3.23907 54.9942 3.353
e ” 3.1088 30,8446 3.79778
m ] 288531 37,0604 3.0911
" " 249095 53.2619 316411
e 0 2.61549 0. 2.61569
1958
i
) A-4

.‘1.‘.'0\ "“ \‘.
2 5 L4 W 5




NSWC TR 85-186

APPENDIX B

PROGRAM FOR CALCULATING LAMINA STIFFNESS COEFFICIENTS
FROM PLATE WAVE SPEEDS

The following computer program, written in BASIC, applies to the calculation
of the four reduced lamina stiffness coefficients Qj1, 025, 0?5 and Q12 when
more than four experimental wave speeds have been recorded. It assumes that at
each angle interrogated within the lamina both the pseudolongitudinal wave speed,
VF, and the pseudoshear wave speed, Vg, have been measured. The program is
based upon a least-square-error fit o§ two theoretical curves, Xg (o) and Xg (o),
to the set of experimental data, where X = p V (e)z. Enter the data beginning
in Step 7000 in the order: angle of the transducer with respect to the fibers,

o (degrees); Xf (GPa) obtained at this angle; Xg (GPa) obtained at this angle.
The program accommodates three trial values for each of the four Qij'S and
computes the square-error sum for all 81 combinations of Qij. The output lists
the best five combinations in order of descending total square error; the
least-square-error value, representing the best fit of the two curves simul-
taneously, is the final set. Enter the trial Qij's in GPa units beginning in
the Step 7000 in the order: Q11; Q22: Qg6s Qi2. A sample of the program output
is presented in Table B-1; the numbers therein are representative of B/Al. The

two ]east;square-error velocity curves are shown with the experimental data on
Figure B-1.
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100 REM  PROGRAN TO CALCULATE PLATE QIJ PARAMETERS
110 REN  FROM SYNMETRICAL LANB AND SH SHEAR WAVE
120 REN  SPEED DATA. INPUT ANGLE(DEGREES),XF(GPA)
130 REN  XS(6PA). INPUT ESTINATED VALUES FOR

140 REN 011, @22, 066, Q12 IN GPA UNITS.

990 BIN D(100),C1(100),02(100),L3¢100),C6(100)

993 REM N = NUNDER OF ANGLES INTERROGATED

1000 FOR N=1 TO0 3

1003 READ T1(M),X1(H),X2(N)

1010 T(M)=T1(M)+(3.14159/180)

1013 NEXT N

1020 FOR H=1 70 3

1023 READ Q1(H),02(H),06(H),Q3(H)

1030 NEXT H

1031 PRINT “TRIAL VALUES OF @IJ IN GPA UNITS™

1032 PRINT “@11",%022",%Q66","012"

1033 FOR H = 1 T0 3

1034 PRINT Q1(H),Q2(H),Q6(H),03(H)

1036 NEXT H

1038 M=}

1040 FOR I=1 TD 3
1045 FOR Js1 TO0 3
1050 FOR K=1 T0 3
1055 FOR L=1 70 3
1058 02 = 0

1059 REM N = NUNBER OF ANGLES INTERROGATED
1060 FOR N=1 70 5

1100 AT(N) = Q1(1)s(COS(T(N)))ss2 ¢ Q6(L)*(SIN(TI(N)))»e2
1110 A2(N) = Q6(L)S(COS(TI(N)))es2 + Q2(J)s(SIN(T(N)))ex2
1120 AJ(N) = (Q3(K)+Q6(L)) & (SIN(T(N)ISCOS(T(N)))
1150 XS(N) = (AT(N)+A2(N))/2
1155 X6(N) = 0.58(((A1(NI=A2(N))ss2 ¢ 4sAT(N)s82))#20.5
1160 XI(N) = XS(N) ¢ X&(N)

g

1165 X4(N) = XS(N) - X&6(N)
1180 DI(N) = (XJ(N)-X1(N))#s2 ¢ (X4(N)-X2(N))s»2
1190 D2=D2+D1(N)

1200 NEXT N

1210 B(N) = D2

1212 C1(M) = 01(])

1214 C2(M) = 02(J)

1216 CI(N) = QI(K)

1218 Cé(M) = Q6(L)

1220 N = N+

1245 NEXT L

1250 NEXT K

1253 NEXT J

1260 NEXT 1

1400 =1

1410 FOR I=1 TO 80

1420 K=l ¢ 1§

1430 FOR J=K TO O

1440 IF B(1) > D(J). THEN 1300
1450 71 = MDD

B-2
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=

1452 12 = CI(D)
1454 13 = C2(D) d
1456 T4 = C3(D) z
1458 T3 = Cé(1)
1460 M(I) = B(D)
1462 C1CI) = CI(D)
1464 C2D) = C2(J)
1466 C3(D) = C3(J)
1468 CélI) = Cé(J)
1470 J) = T
1472 C1LD) = T2
1474 C2(D) = T3
1476 C3¢)) = T4 :
1478 Cé¢J) = T3 3
1500 NEXT J ‘
1510 NEXT I

1402 PRINT ;
1403 PRINT 4
1604 PRINT “BEST FIVE SETS OF Q1J (GPA)" i
1605 PRINT :
1406 PRINT *011",%022","04é","012","SQUARE ERROR" :
1407 PRINT

1408 FOR I = 77 T0 81

1610 PRINT C1¢1),C2(1),C4(1),C3¢1),B(D)
1620 NEXT 1

1480 REN  ENTER ANGLE, XF, XS

7000 BATA 00,239.52,58.124

7100 DATA 20,219.21,61.055 ]
7200 BATA 45,171.43,72.4641 )
7300 DATA 40,163.28,71.930 :
7400 BATA 90,158.38,60.079

7450 REN  ENTER 011,022,064,012 ;
7500 DATA 235,157,56,37.5 H
2600 DATA 235.5,157.5,56.5,38
7700 DATA 236,158,57,38.5 ;
9999 END
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TABLE B-1. REDUCED STIFFNESS COEFFICIENTS

I' OF B/A% FROM PLATE WAVE DATA '
g .
b TRIAL VALUES OF @1J IN GPA UNITS
a1 022 Q66 a12
B 235 157 56 37.5
2 235.5 152.5 56.5 38
Al 236 158 57 38.5
N
k) :‘\
;,"
! BEST FIVE SETS OF QIJ (6PA)
&5 a1 022 Qsé 012 SQUARE ERROR
o
)
] %“ 236 157.5 56.5 37.5 90.6936
el 235.5 157.5 56.5 38.5 90.6852
) 236 152.5 56.5 s 90.6342
‘ 235.5 157.5 58.5 37.5 90.5591
Ty 235.5 157.5 56.5 E1] 90.4256
1
308
1=
L
t j,
re
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