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/ ABSTRACT

~ The performance characteristics of the generalized

influence function method for the approximate computation of
the amplitudes of the eigenfunctions of the equations of
plane elasticity in the vicinity of sharp reentrant corners
were evaluated. The eigenfunctions satisfy the equations of
equilibrium, compatibility and stress-strain laws and the
free-free boundary conditions at reentrant corners. The
amplitudes of the eigenfunctions are called the generalized
stress intensity factors.

It is concluded that the generalized stress intensity
factors can be computed to within one percent relative error
with small computational effort. Therefore the essential
characteristics of the elastic stress field in the neighbor-
hood of reentrant corners can be determined with great
precision. This computational technology is essential for
the development of theories of crack initiation in metals

and composites. - - - - o,
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fi TREATMENT OF GEOMETRIC SINGULARITIES WITH
THE p-VERSION OF THE FINITE ELEMENT METHOD
*
1. INTRODUCTION
In the displacement formulation of the finite element
F. method the solution minimizes the strain energy of the

error for the given finite element mesh and polynomial
- degree of elements. It has been shown that this is closely
related to minimizing the root-mean-square error in stress
[1]. 1In engineering computations, however, the Strain energy
4§ and the root-mean-square error in stress are not the gquanti-
ties of primary interest. The goal of computation is usually
to estimate within a reasonably small margin of error, some
functional of the displacement field, such as stress at a
point, stress intensity factors etc. These quantities are
usually computed from the finite element solution directly,
without taking into account that the essential character of
- the solution is known a priori. For example, stresses at a

point within an element are computed as some linear

{ *The numbers in brackets in the text indicate references
in the Bibliography.
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combination of the derivatives of the shape functions at
the point. Stress intensity factors for crack problems

are computed from the strain energy release rate, which is
obtained by computing the strain energy for two bodies with
slightly different crack sizes. Although the method per-
forms well when used in conjunction with the p-version of
the finite element method [2], the stress intensity factors
for mixed mode problems cannot be obtained separately by
this method.

In three related papers Babuska and Miller introduced
new techniques that permit the extraction of various
functionals of the displacements, such as pointwise
displacements, stresses and stress intensity factors, with
greater reliability and accuracy than was previously
possible [3, 4, 5]. The main idea of the new extraction
techniques is that not only the finite element solution
but also the essential characteristics of the exact
solution are utilized in making the computations. This
requires a modest amount of extra effort but a great deal
is gained in accuracy and reliability. One of the extrac-

tion techniques is the generalized influence function

method for the computation of stress intensity factors.
By stress intensity factors we mean not only the stress ﬂ

intensity factors defined in linear elastic fracture 1
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~ mechanics but also the analogous guantities associated
with any sharp reentrant corner.
Stress singularities in the solution of elasticity
| problems can be caused by loading, sudden changes in the
boundary conditions or material properties and reentrant
corners. A typical corner detail is shown in figure 1l.1.
This investigation is concerned with stress singularities
at reentrant corners with free-free boundary conditions
on the sides of the angle.
In the neighborhood of the corner the solution vector
can be written in terms of polar coordinates centered on

the corner in the following form:

K. -
u=ZIK r*F.(8) +Glr, 8) (1.1)

where u = (u,, u,), E and G are functions that are smoother
than r<i Fi(e) and the <i's are positive numbers. The
amplitudes Ki are the generalized stress intensity factors.
The eigenvalues K5 depend on the angle £, the boundary
conditions imposed on the two sides of the angle, and
Poisson's ratio. The eigenfunction Fi(e) depends on the
angle 2, the corresponding eigenvalue < and the elastic

constants. A typical stress component is of the form:

<i-l
= IR T £(2) + glr, 2) (1.2)
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Figure 1.1

Typical corner detail in plane elastic problems
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It can be seen that for values of Ki < 1 th2 stresses
become infinite at the corner.

A special case is the case of a crack (angle 8
equal to 360 degrees). The solution of crack problems
and the study of the conditions under which cracks
propogate is the subject of linear elastic fracture
mechanics. 1Its applicability rests on the satisfaction
of a criterion known as small scale yieiding. This means
that any nonlinearities are confined to a region which is
small in comparison with the size of the body and is com-
pletely surrounded by a region in which the solution of the
elasticity problem is an adequate representation of the real
response of the material. The elastic stress field and
strain field in the neighborhood of the singularity can be

written respectively as:

K ~ .
0, = ad,.(8) + higher order terms (1.3)
B g Y
€,, = K €..(8) + higher order terms (1.4)
1 aw Y

where K is the stress intensity’factor and Eij(e),

Eij(e) are smooth functions of 6. When the restrictions
stated in the preceding paragraph are met, these fields are
the same for any crack, regardless of the overall geometry

and applied loading. The stress and deformation fields

ahead of the crack tip for a purely symmetric or




antisymmetric crack configuration are then characterized
by a single parameter, the stress intensity factor K.
Linear elastic fracture mechanics is based on the obser-
vation that crack growth is controlled by the parameter
K. A pre-cracked specimen in which the elastic field is
known is tested under monotonic loading conditions until
the first occurence of crack propagation is observed.

At this point the stress intensity factor is said to have
a critical value which is usually denoted by K. This
phenomenological approach ignores the micromechanisms of

void nucleation ahead of the crack tip and the way in

which these voids are joined to increase the crag¢k length,

yet it has been highly successful in giving reliable
answers to important practical guestions such as the
expected life of structures under existing flaws, the
maximum f£law size that gquality control is allowed to miss
and maximum allowable time intervals between inspections.

The critical stress intensity factor K in mode I under

IC
plane strain conditions is termed fracture toughness and
is accepted as the material constant that characterizes
material resistance to fracture.

This approach has been extended to the nonlinear

regime. The J-integral is the intensity of the :ingular

nonlinear elastic strain field in the neighborhood of the

----------------
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of the crack tip (HRR field). 1In this sense JIC is

analogous to K c but of course the small scale yielding

I
condition is now replaced by the "J-dominance" condition,
which means that the area ahead of the tip, in which
intense nonlinearities deviating from deformation theory
of plasticity take place, is relatively small and is

completely surrounded by a region in which the singular

nonlinear elastic field represents adequately the real

material response [6, 7, 8, 9, 10].

Despite its great success, linear elastic fracture
mechanics is difficult to apply to structures of compli-
cated geometry. The presence of a large number of points
where cracks are apt to occur would require a large
number of analyses to be performed with a hypothetical
crack at each of these points. On the other hand, the
designer's intent is that the structure should spend most
of its life in the crack initiation stage rather than in
the crack propagation stage. The ability to formulate
crack initiation criteria based on linear elasticity
could open the way to more rational design procedures.

Although the singular nature of elasticity solutions
in the neighborhood of reentrant corners was reported

in the engineering literature as early as 1933 [11],

---------------
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and the 1952 paper by M. L. Williams [12] gave the strength
of these singularities for the various angles, no attempt
was previously made to assign any physical significance to
the amplitudes of the stress singular terms (except in
linear elastic fracture mechanics) and no numerical method
existepd for the computation of these gquantities. Based on
the work presented herein, these amplitudes can now be
computed with levels of precision normally expected in
engineering computations at the expenditure of a relatively
modest computational effort.

Our ability to compute the amplitude of all terms of
the asympotic expansion in the neighborhood of a reentrant
corner of any size offers new possibilities in the area of
failure initiation. When sufficient number of terms are
used in the expansion and the amplitudes are accurately
computed, then all stress field parameters are known in
the neighborhood of corner points, therefore various
hypotheses concerning relationships between elastic stress
field parameters and failure initiation can be tested. 1In
the absence of proper extracton methods, uncertainties in
numerically computed stress field parameters render the
formulation, testing and applications of such hypotheses
very tenuous.

A possible hypothesis for example is that the

generalized stress intensity factors are responsible for

crack initiation in reentrant corners in the same way that

—wTw '.-_-}

-~
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Let us consider the case of mode I and rewrite
equations (2.16) and (2.17) in the following form:
u =K. /% G(e) (2.20)

/2 q(e) (2.21)

<
[
=

Their derivatives can be expressed in the form:

-1/2 Ju -1/2

Ju _ . _
——'av = KI r Gl(e), W = KI r Gz(e) (2.22)
3v _ -1/2 v _ -1/2

We choose the auxiliary functions to be of the following

form:

o = r 32 (o) (2.25)
v =12 yie. (2.26)

Their derivatives can be expressed as:

39 _ -3/2 30 _ _=3/2
22 = ¢ v, (8), 33 r ¢, (8) (2.27)

. -3/2 u _ ~3/2
x r w1<e), v r wz(e). (2.28)




L e e T T N N N I P P e A A e e e et oen

-22-

the displacements u and v is known {13, 14] and is given

in the case of plane strain by:

Gu = K, (2m)~1/2 £1/2 o % (2-2v-cos? % ) (2.16)

v = K, (2172 /2 sin 3 (2-2v-cos® 5 ) (2.17)
for mode I (opening mode), and by:

Gu = K. (21r)-l/2 rl/2 sin % (2-2v+cos2 % ) (2.18)

Gv = K. (21r)-1/2 rl/z cos % (Zv-cos2 % ) (2.19)

for mode II (sliding mode).

These are only the first terms in the asymptotic
expansions. The second terms are of the order r. The

/2

third terms are of the order r3 and so on. The
asymptotic expansions also contain the corresponding
negative powers of r (-1/2, -1, -3/2 etc.), but these
terms make no sense physically since they would imply
infinite displacements at the crack tip, so they are
not considered. Nevertheless, these eigenfunctions
corresponding to the negative eigenvalues will be very

useful for our formulation: the auxiliary functions

¢ and ¥ are chosen to be precisely these eigenfunctions.

....................................
................................................
................................
.............
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In view of (2.3) and (2.4) we can write (2.12) and -
(2.13) as: -
Io =% ¢ (2.14) %

!

Ip =Y y. (2.15) |

On that part of the boundary where surface tractions are

specified, the guantities Ig and Ig are known and their

integrals are computed numerically. On that part of

the boundary where displacements are specified, the ¢

and y functions vanish. The reason that the functions

¢ and y are chosen to vanish there is that we do not

wish the extraction expression to contain a contour

integral of the derivatives of displacement components.

The extraction method has a rate of convergence equal

to the rate of convergence in energy if the integrals

used in the extraction represent only energy expressions.

This means that area integrals may contain up to first

order derivatives of the displacements, whereas contour

integrals may contain only the displacements themselves.

It is observed that expressions Iy and I, fall into this

category and so they do not reduce the rate of convergence.
In order to evaluate the contour integrals on the

circular arc Fe we proceed as follows: in the neighborhood

of the crack where the circular arc is located, the form of




______

...................
...............

I4=[X(g;§+g—£)ny+G(%nx+%ny) +
po( ¥, v Wy (2.11)
I; = Cx( %% + %% )nx + G( %% n, + %% ny) +
+ G( gﬁnx +g—§ny)]¢ (2.12)
16=[A(g—‘;+%¥) +G(-g-;%nx+-g—;-ny) +
+ G(.%% v +%-;—'-ny)]w. (2.13)

In (2.8) we recognize the expression in the bracket
as the force in the x direction in terms of displace-
ments (¢, Y). Similarly in (2.9) the bracket represents
the force in the y direction corresponding to those
displacements (¢, y). If the auxiliary functions ¢ and
y are chosen to satisfy the equations of equilibrium,

then I, and 12 vanish.

1

.....................
..................
-

Y




Adding (2.5) and (2.6) we obtain: N

SA S (Iz+12)dA - S (I3+I4)ds + S (Is+16)ds=0

P+F€ I"+I‘E (2.7)
where:
[ 3, 3% . 3y 22 a* ]

I. = [ (A+G) ( + ) + G + ) Ju (2.8)

1 3x ' 3x 3y % -

s (32 .o By 2y ]

I, = [(+6) =5 ( 5y * ax ) + G( ; + =)lv (2.9

Y X

- a2, 2 20 20
I, [A( 5t 32 ) n, + G( = n_* 3y ny)

+ G( 30 5 4 3 Ju (2.10) x
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and, finally:
2 2
3¢ 3”0
S A S [ (A+G) ;;7 u + (A+G) %37 v +
a2 2
97 ¢ 3 ¢
+G(-—2-+—-)u]dA
Ix ayz
39 a¢ 3¢
- [ (A+G) 3% un, + Aag vn, +Ga-n, U+
I‘+I‘e
d Y]
+ G v n u+G Iy vnx]ds
u . 0V Ju
+ [ (A+G) 33 00, A Ty ¢n, + G 3z n b +
I‘+I‘e
+c%‘y‘-ny¢+cg—;’¢nylds=0

(2.5)

Similarly, multiplying (2.2) by ¥ and integrating, after

identical operations, we obtain:




. -17-

4
i
3
]

I ax 9x 90X dy
Ju v Ju Ju
‘ + [A(E+W)¢nx+G§§¢nx+Ga—y-¢n
l I‘+I‘E
: du v
; + G ox ¢nx + G ox ¢ny]ds
: 2 2 2 2
' 3% 3 37¢ 3
= 4 [ =< u F—gL v+ G u+ G —

Sag ax? X3y 3y° 3y
i +G3—21u+c;3—2§;VJdA
: axz 9xIy.
. - 3¢ 3% 9
I [ ssun +AgE VA +Gzoun, +
EI r+re
- 3 3% 29
: + G 5% u ny + G % u n, + G 3y
EI du v Ju }
) + [A A 3y & Px T Gax ® 2 * 1
- 1
2 P+Pe o
2u au v 1
> +Gay¢ny+Gax¢nx+Gax¢ny]ds R
:
; E
. J
.

e )

ala
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ee) 2 (28428 L2y, 2, (2.2)
h ay rx Ty- ;{'2‘ y = . .
The stress boundary conditions are:
%= (22, 3V 2u 2u
X = x( T 3y )nx + G % Px T 3y ny) +
3u v
+ G( 3% Px + = ny) . (2.3)
= au IV IV v
Y=A(H+W)ny+c(§nx+§§ny)+
Ju v
+ + 2.4
G( W n, 3y ny) ( )

where A\, G are Lame's constants and n = (n, ny)

is the outward normal to the surface. X and ¥ are

the vector components of specified tractions in the x and

= . : ,

- y directions. Let us now choose two functions ¢ and v,
the properties of which will be discussed later and let
us multiply equation (2.l1) by ¢ and integrate over the

- domain. Applying the Gauss theorem twice we obtain:

= O-S lx—a—(?-‘i+l‘-’-)'+G(32u+32“)+

A X X 3% axf ayz
2 2
d u v

+ G —zax + G axay] ¢oda

{

e e T e e S e e e e T T
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Figure 2.1

Two dimensional elastic body with a crack
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2. THE GENERALIZED INFLUENCE FUNCTION METHOD

IN LINEAR ELASTIC FRACTURE MECHANICS

We consider a two dimensional body containing a crack
as shown in figure (2.1). The boundary consists of piece-
wise smooth curves and there is no re-entrant corner other
than the one at the crack tip. Extension to cases where
the domain contains more than one geometric singularity
will not introduce any additional difficulties. This will
be shown later.

We now remove from the domain a small disk of radius
r=c centered on the crack tip as shown in figure (2.2).
The boundary now consists of two parts: the circular arc
re and the rest of the original boundary I'. The removal
of the singularity enables us to perform integration by
parts. The limit is then taken as r tends to zero.

Let us choose a Cartesian coordinate system (x,y)
centered on the crack tip with the x-axis in the direction
of the crack, and the corresponding polar system (r,6) as

shown in figure (2.3), and write the equations of equili-

brium in terms of displacements (u,v) in the Cartesian

system:
<x+s)a(?-‘£+?—"-)+c(32“+32“)=o (2.1)
' X x 3y axi ayi :
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In chapter 7 it is concluded that the method is -
feasible and reliable, its potential value in engineering -
design is discussed and suggestions are made for further ~

Iy

research.

Pyl JU A
[
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separate the stress intensity factors for modes I and II
is demonstrated.

In chapter 3 explicit expressions are derived for
the asymptotic expansions of the displacements in the
neighborhood of reentrant corners of any size. The real
eigenvalues corresponding to modes I and II for various
angles are tabulated. The displacement eigenfunctions
are also derived for the case of complex eigenvalues.

In chapter 4 the generalized influence function
method is implemented for the case of a reentrant corner
of arbitrary size. The method for obtaining the amplitude
of any term in the expansion is demonstrated. Special
consideration is given to the case of complex eigenvalues.-

In chapter 5 the implementation is tested against a
model problem for which the exact solution is known. This
allows rigorous convergence study to be performed. The
theoretically predicted rates of convergence for various
reentrant corners are verified numerically.

In chapter 6 tests performed on double edge notched
epoxXxy specimens are discussed. This test data shows that
a monotonic relationship exists between the stress\intensity
factor and failure initiation for a wide range of solid

angles.
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function method for the extraction of stress intensity
factors in plane elasticity-

In the case of linear elastic fracture mechanics the
generalized influence function method yields separately
the stress intensity factors corresponding to the symmetric
mode of deformation (mode I) and to the antisymmetric mode
(mode II). Our ability to separate of the two modes may
prove to be important in linear elastic fracture mechanics,
where only the combination of the two modes could be com-
puted previously with reasonable accuracy and the contribu-
tion of mode II has not been well understood.

The method has a rate of convergence equal to the
rate of convergence in energy, which is twice the rate of
convergence in energy norm (4]. our ability to achieve con-
vergence in practical computations can be used as a tool
for error estimation. Knowing the theoretical rate of
convergence, we can obtain an estimate of the exact value
of the stress intensity factor (also strain energy, root-
mean square stress measure and other functionals) accurate
to within one percent relative error.

In chapter 2 the method is implemehted for crack
problems, The rationale of the method is explained and

the extraction functions are derived. The ability to

s
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the stress intensity factor in linear elastic fracture
mechanics is responsible for crack propagation. Again,
some small scale yielding criterion must be satisfied.
If experiments verify this hypothesis and establish its
limits of applicability, then we have at our disposal a
very'simple and powerful method for the design of structures
with geometric singularities, The methodology of linear
elastic fracture mechanics can be generalized in a
straightforward manner. For a given angle and mode of
loading the singular elastic field in the neighborhood of
a reentrant corner is of the same form regardless of the
overall configuration and load distribution. Any change in
the loading or the boundary conditions affects material
behavior at the tip of the notch only through the
generalized stress intensity factors which are the ampli-
tudes of the terms in the asymptotic expansion of the
linear elastic solutiSn in the neighborhood of reentrant
corners of arbitrary size. For large notch angles the
higher order terms may also be important as crack
initiation parameters. We can then argue that under
conditions of small scale yielding the generalized stress
intensity factors can be used for predicting failure
initiation events.

The scope of this report is the implementation,

application and evaluation of the generalized influence

":'-",".'._"-*1
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The integrals of I, I, I5 and I6 along the circular
‘arc can now be computed. A typical term for the

integral of I3 will be:

| 3¢
S R n,u ds
r
€
substituting
%% = r'3/2 01(8), nn = -cosf, u = Ky rl/2 G(8),

ds = rdsé

we obtain

36 T
s ™ nn uds = - KI .S-n ¢l(e) G(6) cos 6 d6 (2.29)
T

€

This last integral is independent of the radius r, it
contains only known functions of 8 and can be easily
computed either analytically or numerically. It also
contains as a multiplicative constant the stress

intensity factor K This is fundamental to the

I.
extraction technique. By choosing the auxiliary functions
¢ and y to be of the proper asymptotic behavior in the

neighborhood of the crack tip, expressions containing

the radius r disappear. By using the known asymptotic

T O I T U .
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expansions of the displacements in the neighborhood of

the crack tip, the stress intensity factor K_ appears

I
as a multiplicative constant. All the terms in the

integrals of I, and I4 behave exactly in the same way.
Each one will give an integral of a function of ¢
only, containing KI as a multiplicative constant.

Let us now examine the integrals of Ig and I6 on

the arc Pe. A typical term will be:

u
S % Px ¢ ds.

Te

Substituting:

du _ -1/2 _ . -l/2
=K T G,(8), n = -cos®, ¢ =r ¢(8),

ds = rdé6

we obtain:

Ju m
S ——-nx ¢ ds = -KI s Gl(e) $(6) cos 6 de. (2.30)

PO

This is again independent of the radius r and the same

RIP Y

arguments apply. It is then seen that contour integration

around the circular arc TE will yield the stress intensity 1
factor KI multiplied by a constant.
~
3
.
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In view of the singularity of the auxiliary functions
¢ and ¥ and their derivatives at the crack tip, the exis-
tence of the area integral over the domain and the contour
integrals over I' in (2.7) must now be examined. Since the
integrands I1 and I, are highly singular (they are of

order r /2

in the neighborhood of the crack tip), the
auxiliary functions ¢ and Yy are chosen to satisfy the
equations of equilibrium in that region, so that Il and
I2 vanish there. As far as the contour integration is
concerned, only the upper and lower faces of the crack
are of interest. We normally assume no tractions there

and it can be seen from (2.14) and (2.15) that I. and I

]
vanish there. In the case where the crack faces have

6

applied tractions on them, these integrands are of order
r-l/z. The integrals of I5 and I6 exist, but care must
be exercised in their numerical evaluation.

The integral of I, and I4 on the crack faces requires
further consideration. By comparing with (2.3) and (2.4)

it can be seen that (2.10) and (2.11) can be rewritten as
I, =X(¢,V)u » (2.31)
I, = Y(o,¥)v (2.32)

where X(¢,y) and Y(¢,v) are the tractions corresponding to

displacements ¢ and y. We have already seen that the




.

auxiliary functions ¢ and ¥ satisfy the equilibrium -
equations in the neighborhood of the crack tip. By
considering their form in (2.25) and (2.26) and N
recalling that the displacement expansions in the

neighborhood the crack tip contain terms of the order ;5
r-]‘/2 we conclude that the auxiliary functions ¢ and ﬁ1

Y can be chosen to be the eigenfunctions corresponding

to the eigenvalue -1/2, therefore they satisfy the

traction free boundary conditions on the crack surfaces.
In other words X(¢, ¥) and Y(¢, ¥) and consequently
I, and I, vanish there.

Let us now summarize the conditions that the
auxiliary functions ¢ and y must fulfill and then
proceed to construct them:

i) ¢ and ¥ must satisfy the equations of equili-
brium in the neighborhood of the crack tip:

ii) they must satisfy the traction free boundary
conditions on the faces of the crack near the crack tip;

iii) they must have a singularity of the order

-1/2

r in the neighborhood of the crack tip;

iv) they must vanish on the part of the boundary

where displacements are prescribed.

Conditions i), ii) and iii) together mean that o
¢ and y are eigenfunctions for the problem of an "
X




infinite body containing a crack, and correspond to
the eigenvalue equal to -1/2.

We now observe that in the absence of surface
tractions both the equilibrium equations (2.1l), (2.2)
and the stress boundary conditions (2,3) and (2.4) are
homogeneous and contains only material constants and
the derivatives of the displacement vector components.

By differentiating them with respect to x it is seen

that %% and %% also satisfy the same egquations. There-

fore they are possible candidates for ¢ and Yy satisfying
requirements i) and ii) above. By comparison of (2.20),
(2.21) with (2.25), (2.26) it is seen that %% and %%
also satisfy requirement iii) above. If we ncw consider
the case of a body where only tractions are specified

on the contour, then requirement iv) does not have to

be satisfied and we have arrived at an explicit form

for ¢ and y satisfying all the requirements. By
differentiating (2.16) and (2.17) with respect to x

and setting the constant multipliers equal to one, we

obtain for mode I:

¢ = r'l/2 cos % (2-2v-5cos2 % +4cos4 %) (2.33)
Vo= r-l/z sin % (-2+2v-3cosz % +4cos4 % ) (2.34)
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and for mode II:

N ¢ = r'1/% sin 2 (=2+2v+3cos? 2 -4cos’ 2) (2.35)
N
Yy = r-l/z cos % (2v-5cos2 % +4cos4 % ). (2.36)

The contour integrals on the circular arc that appear
in (2.7) can now be computed explicitly. Omitting inter-

mediate results, we obtain:

- S (I3+I,)ds + S (Ig+I.)ds = 4(1'V)"(2ﬂ)l/2KI.

€ Pe (2.37)

Taking into account (2.14) and (2.15) we obtain from

(2.7) the extraction formula:

4(1-v)m(2m) L/2 Ry = - S S (1,+1,)dA + J(I3+I4)ds -
A
T

S X¢ds - SYwds. (2.38)
r r

In the case where only tractions are specified on the

boundary of the body this simplifies to:

o

e
L]

'y

& P R T T L R ‘....- <«

‘aPy) \.\ L ANy ‘-\‘ e,



B R B N e L A

PR S A I S e v 0 ..;'T';v_v_t'_*r'r-.vtwv_—vvﬁ-T
=
‘. =30~
) /2 . _ = -
_ 4(1l-v)m(2m) K; = (I3+I,)ds - X¢ds - Yyds
. r r P (2.39)
- In the case of mode II, the integrals on the circular arc

Fe yield the same constant and we obtain:

4(1-v) 7 (2m) +/2 Ry = - S S (1,+1,)da + S (1,+41,)ds -
A
T

| v S Xods - S Tyds (2.40)
r r

and in the case of only applied tractions specified:

4(1-v)w(2n)l/2KIf = S (I3+I4)ds - S Xods - S Yyds.
r r r (2.41)

In the case where the domain contains more than one
geometric singularity, we simply remove a small disk of
f - radius r = ¢ from every singular point. This is done
. in order to be able to perform integration by parts.

The asymptotic expansions (2.16) and (2.17) or (2.18)
and (2.19) are considered only in the neighborhood of
the point where extration of the stress intensity factor
is desired. The auxiliary functions ¢ and ¢y are also

referenced to that point. The other singular points

............
. e . . TR S S PO
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are thus treated as the rest of the boundary and expres-

q
sions (2.38), (2.39), (2.40) and (2.41l) are still valid. :

In the formulation described above only one mode H

i was considered, that is, the vicinity of the crack tip )
was assumed to experience either mode I or mode II E

deformation, and the corresponding stress intensity
I factor was extracted. Of course, in practical situations

both modes will be present and the two intensity factors

v
e

must be computed separately. One of the major advantages

of the generalized influence function method is the
ability to obtain the intensity factors for the two modes
separately. It will now be shown that the extraction

formulae (2.38), (2.39), (2.40) and (2.41) are still

FEPEPRIR =

valid when both modes are present simultaneously. Let us
first formally introduce the following operators that give

l the tractions in the x and y directions corresponding to

displacements u and v through the strain-displacement,

stress-strain and Cauchy boundary relations:

X(u,v) = A( %% + %% )nx + G( &= n_ + n

+ G( g—i— n, + %}c n) (2.42) JW

. .
gy




32
’ = Ju v ov IV
Y(u,v) = ( —x + W )ny + G( H nx + a—y— ny) +
Ju ov
+ G -_n + —n 2.43
( 55 ¥ 0y (2.43)

Equation (2.7) can now be written as:

S g (I,+4I,)dA - S [Xo,v)u + Y(¢,v)v]ds +
A
I‘+I‘e

+ S [X(u,v)o + Y(u,v)v]ds = 0. (2.44)
r+re

The only difference now is the asymptotic expansion for
the displacements which is valid along the circular arc

Fe. Let us use the notation

u=u, + Urg (2.45)

v e=v, + Vi (2.46)

where subscripts I and II refer to the corresponding
modes and Ups Vo Upg and vy are given by (2.16),
(2,17), (2.18) and (2.19) respectively. They are listed
below together with their derivatives as well as the

auxiliary functions and their derivatives.

................................................




-33-
up = a; rl/2 cos % (2-2v-cos2 % ) (2.47) T
vy = ag r/2 sin § (2-2v-c0s® §) (2.48) 231
vy g -1/2 8 2 9 40 ?
% 32T cos = (2-2v=-5cos = +4cos 3 ) (2.49)
335 =1 a r'l/2 sin g (2-2v-3cosz 8 +4cos4 g ) (2.50) 2
vy 1 -1/2 : 2 9 49 i
== =3 a, r sin 3 (-2+42v=3cos 3 +4cos 3 ) (2.51) ;
vy 1 -1/2 8 2 8 40
157 =zarr cos > (=2v+5cos 5 -4cos 5 ) (2.52)
oy = r'l/2 cos % (2-2v-5cos2 % +4cos4 % ) (2.53)
V., = r-l/z sin A (-2+2v-3cos2 g +4cos4 g ) (2.54)

I 2 2 2
91 _ 1 -3/2 8 3 2 8
S5 =3 cos ¥ [6-6v+(-43+8v)cos” = +

+ 84cos4 % -48c056 % ] (2.55) 2

J )

PR3
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3¢
301 1 3/2 430 9 [2-2vs(- 28
5y > T sin 3 [2-2v+(~23+8v)cos” 5 +

jo

+ 60cos? % -48cos® ] (2.56)

Ay _
-1§ = % =32 gin % [-24+2v= (7+8V) cos> % +
+ 60cos? % -48cos® % 1 (2.57)
dVry ~3/2 0 2 9
5y cos 3 [-6v+(35+8v)cos 7 =
- 84cos? % + 48cos® %] (2.58)
1/2 .. 8 29
urr = arg r sin 3 (2=-2v+cos 3 ) (2.59)
- 1/2 2 0
Vit ar; b o cos x (2v=-cos 3 ) (2.60)
Wpp g -1/2 . 8 2 8 48
- = 3 aII r sin 5 -2+2v+3Ccos 3 -4cos 5
(2.61)
Wry g -1/2 8 2 8 4 0
5y =3a., T cos 3 [4-2v~5cos 3 +4cos” 3 ]
(2.62)
B o S R O SR SR iy et e e e




v
I _ 1 -1/2 8 roennc2 © 48
—F-=Fa; T cos 3 [2v-5cos 5 +4cos 5] (2.63)
V1 =La_ 12 gin g ]:2\)-3cos2 8 +acos? &1 (2.54)
3y 2 "II 2 2 2 )
=172 . 8 r_ 28 , 468
¢II =r sin 3[ 2+2v+3cos 5 4cos 5 ] (2.65)
Vg = 2 cos % [2v-5c052 %+4cos4 % ] (2.66)
2911 =1 .73/2 55 8 [-2+42v+(23-8V) ¢ 28
3X 2 sin 3 °s 32
- 60cos4 %+48cos6 % ] (2.67)
011 < 1 73/2 s [12-6Vv+(-51+8v)c 2 .
v 3 cos 3 os® 3
+ 84cos’ %-48coss 21 (2.68)
a3 =L r'3/2 g [6\1»--(35-0-8\))cc>s2 S 4
5x - 2 cos 3 2
+ 84 cos® 2 -48cos® £ 1 (2.69) =

R S T S T,

CURSPER T SR Y Sl LY. e

PR P R e e e N N LIPS N R A
LRI, A S S APy Al Suth. S S S P U L W S

«® e
=t .



w W
...................

Iy
II _ 1 -3/2 . 8 ro _ 28
—5y = 3 r sin 3 [2v (15+8v)cos > +
+ 60cos? -g--wcoss % ) (2.70)
K K
a; = i, a . = I (2.71)
GY2nm GY2T

The contour integral on the circular arc FE in

(2.44) can now be written as:

= S [X(¢'W)u1 + Y(wa)vl]ds -
r

€
- S[X(¢.¢)uII + Y(¢,W)VII]ds

rE

+ S [X(uI,vI)cb + Y(uI.vI)w]ds +
rE

+ S [X(uII, VII)¢ + Y(uII,vII)w]ds. (2.72)

FE

In order to extract the mode I stress intensity factor we

substitute ¢ = ¢I and y = wI. It can now be seen that ¢,

Ju v
II II :
11’ T3y ' Tix and n, = -cosf are symmetric

3
ax ' 3y ' ¥

B A LR S
PSS LR

T e R
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. : ¢ X
with respect to the x axis whereas vy, 5y ' 3x Urpe
BuII BVII _

5y ' Ox and ny = =-sin® are antisymmetric with

respect to the x axis. By virtue of (3.42) and (3.43)

we conclude that X(¢, V), x(uI, VI) and Y(uII, VII) are
symmetric whereas Y(¢, ¥), Y(uI, vI) and x(uII, vII)

are antisymmetric with respect to the x axis. Since the
expressions in the radius r disappear when integrating on
the circular arc FE and the domain of integration (-m, m)
is symmetric with respect to the x axis it follows that
the integrals of X(¢, w)uII, Y(o, w)vII, X(uII, vII)¢,

Y(u )y vanish, these products being antisymmetric

11’ V11
with respect to the x axis.

The remaining integrals are:

- S (X(s, Wug + T(¢, Y)v lds +

Te

+ S [f(ux' VI)¢ + ?(uI, vI)WIdS' (2.73)

Te

and these are the same as those considered in the deriva-

tion of the extraction formula for KI.

In order to extract KII we substitute ¢ = ¢

II1’
= i ¢ 3 ;
¥ wII' In this case vy, 3y ' 3x are the symmetric terms

........................................
.............................................................
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3. EIGENVALUES AND EIGENFUNCTIONS FOR AN INFINITE NOTCH

OF ARBITRARY SOLID ANGLE

Let us consider a two dimensional elastic body of
infinite dimensions with a notch, the solid angle of
which is equal to 2a as shown in figure (3.1l). We choose
the vertex of the angle to be the center of the coordinate
system. The bisector line of the solid angle is selected
as the x axis of a Cartesian system (x, y) and the
reference (6 = 0) axis of the corresponding polar system
(r, 8) as shown in the figure. The faces of the angle
are assumed to be free of tractions. We shall investigate
the state of stress and deformation in the neighborhood of
the apex. In'the interest of completeness, all required
equations are derived from first principles [15, 16].

Let us write the equations of equilibrium in the case

where body forces are absent in the form:

aox arx

Y =
rraling e 0 (3.1)
arxy aoy
Tl 5y = 0. (3.2)

In the usual way, let the stresses be defined in terms of

the Airy stress function x as:

..........................

W Wy

.........

{.




1/2

X(ul,vl) = r xl(e)

= - p-1/2
Y(ul.vl) r Yl(e).

this integral is equal to:

12 4T
r S_W [X,,(8)G, (8) + ¥ B (8)]de +

T
+ /2 S [X,(8)¢(8) + ¥, (8)¥(6)]a6
-7

- -1/2 -1/2 - -1/2
r C5 + r C6 r C7

(2.127)

(2.128)

(2.129)

The necessary and sufficient condition for this to have

the same value for all values of r is that C7

is Ll = (,

= 0, that




- S [§(¢,w)ul + Y(¢,w)vllds +
+

+ [i(ul,vl)¢ + ?(ul,vl)w]ds =0 (2.125)

*
T1+F3

therefore:

- S [i(¢rw)ul + ?(¢rW)Vl]ds +

I3

+ S [i(ul,vl)¢ + ?(ul,vl)wlds

Ty

= S [X(¢.¢)u1 + Y(¢.W)Vl]ds +

*
r3

+ [i(ul,vl)¢ + Y(ul,vl)w]ds (2.126)

which means that the contour integral Ll has the same
value on all circular arcs Pe. (In fact Ll is path .
independent but it is convenient to consider only

circular arcs here). By using (2.112), (2.113), (2.77),

(2.80), (2.99), (2.100) and noting that
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AR
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S A S [Lx(¢,wul + Ly(¢,1P)VleA -
- S [§(¢,w)ul + ?(¢,w)v1]ds
r

[x(ul,vl)¢ + Y(ul,vl)w]ds = 0. (2.123)

+
e | W )

The auxiliary functions ¢ and y satisfy the equilibrium
equations in the locality of the crack tip, therefore

the area integral vanishes. Both the auxiliary functions
and the eigenfunctions satisfy the traction free conditions
on the crack surfaces, therefore the contour integrals
vanish on the segments Fz and P4 of the boundary. Equation

(2.123) then reduces to:

- [3!'(¢,w)ul + ¥T(o,¥)vylds +

+ [:‘((ul,vlm + ?(ul,vl)wlds = 0. (2.124)

We now choose a larger annulus bounded by the circular

arcs Fl and F3* and apply the same arguments. Then:

...........
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Figure 2.4

Annular ring with a slit
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' [i(uB,v3)¢ + ?(u3,v3)w1ds =

T
= pl/2 s [X,(0)0(8) + ¥Y,(B)¥;(0)]d0 = /2 ¢

(2.121)

It can be easily seen that in the limit as r +~ 0 both
expressions vanish.
The integral Ll appears to be more troublesome as

it will be of the form r /2

C and this is unbounded as
r - 0. We shall now prove that this integral is zero.

Let us consider a two dimensional body in the form
of an annulus with a slit, centered at the crack tip as
shown in figure (2.4). The boundary of this body consists
of the two circular arcs Fl and F3 and the straight

segments, Pz and ', on the crack surfaces. Since the

4
eigenfunctions satisfy the equilibrium equations we can

write

Lx(ul,vl)¢ +.Ly(ul,vl)w = 0 (2.122)

integrating over the domain and applying the Gauss

theorem twice we obtain:
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S [i(u21v2)¢ + ?(uzlvz)U)]ds =

™
- S [X,(8)8(8) + ¥,(8) ¥(8)]de =C,  (2.117)
-T

which is again independent of r and can be readily

computed.

In order to evaluate the integral Ly on FE we use

(2.79), (2.82) and observe that:

< 1/2
X(u3, v3) = r x3(e) (2.118)

s 1/2 '
Y(u3, v3) = r YB(B) : (2.119)

therefore:

S [R(s,¥)u,y + T(o,y)v 1ds =

Te

L2 |7 _ 172
r S_ﬂ [X,,(8)G5(8) + ¥, (8)H;(8)1d8 = r/“Cy
(2.120)

and:

..........
.............

“]

> .
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n Let us now examine each of these expressions separately.
- The integral L, will provide the required K,. In view
T of (2.42), (2.43), (2.78), (2.81), (2.99), (2.100) we
‘ can write
"
- X(o,0) = r 2 x (9 (2.112)
! oy
To,v) = % v, (8) (2.113)
oy
- = -1
i r x(uz.vz) = r xz(e) (2.114)
= T(u,,v,) = r L v,(8) (2.115)
. 272 2 .
i N
. therefore, since ds = r d46:
' B S [§(¢r¢’)u2 + Y(‘¢0W)V2]ds =
Te
- ™
i = o [X¢w(6) Gz(e) + yw(e) H2(6)1d6 = Cl.
s Thie last integral is independent of r and can be
_! computed either analytically or numerically. Similarly:
i
o

.............
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- S [(X(¢,¥)u + ¥(¢,¥)v]ds +

Te

(2.108)

+ S (X(u,v)¢ + Y(u,v)¢lds = L1 + L2 + L3

r
€

where: tu

é'f;ff

{'; L, = =K [iw,w)ul + ?w,w)vl]ds +

+ Kl S [x(ul,vl)¢ + Y(ul,vl)w]ds (2.109)

Lz = -Kz [i(¢lw)u2 + ?(¢:W)V2]ds +

v
‘e
i’i#

l !. oy

.-—,

™
I. l' l'
.

+ K, [J-((uz,vz)q) + Y(uz,vz)w]ds (2,110)

Te

rE

+ K, S [X(ug,v3) ¢ + T(ug,vy)ulds (2.111)

Te




n Let us further introduce the notation Lx(u, v) and

- Ly(u, v) for the differential operators of equilibrium

3_ in the x and y directions:

- 2 2

. ] Ju ov s u s u

- L (u,v) = (A+G) == ( == + == ) + G( + — ) (2.105)
x X ax oy axi 8y2

Ay 4 6 iq‘z’-+?-—‘2’-).(2.1os)

%1e
+

3
Ly(n,v) = (A+G) Iy (

<
)
L
oy
]

Equation (2.44) can now be written:

S N S (L (6 ,9)u + Ly(¢,v)v]dA -
.-' - S (X(¢,v)u + ¥(o,p)vids (2.107)
I‘+I‘e
! + S [(X(u,v)o + ¥(u,v)ylds = 0.
T+l
‘ €
At this point we are interested only in the contour
| integrals around the circular arc FE. The other integrals
will not be affected as the asymptotic expansions are not
Tt valid there. The integrals on PE can be written as:

................
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vy (r,0) = rl/2 5y (0) (2.97) .
Voo (z,8) = r¥/2 B._(8) (2.98) N
32\ 32 . . e

The intensity factors K; and the eigenfunctions U, Vo

may correspond to either mode I or mode II. The intensity
factor K2 corresponding to the second term in the expansion
will now be extracted. To this end the auxiliary functions

are chosen to be of the form:

o=t o(8) (2.99)

v =zt ye. (2.100)

Their derivatives can be written in the form:

2= r2 0,00 (2.101)
%%-- r2 o, () (2.102)
2= 72y (o) (2.103)
3y =2 v, (o), (2.104)
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‘ ‘ v _ K 9) +
w - K v21(r, ) Ky v22(r,0) + Ry Vay (r,68) + ...
. (2.86)
where:
-
. _ =172 .
“11(”6) =r Gll(e) (2.87)
-1/2
uy, (2,0 = r 2 6, 00) (2.88)
‘i; = =
uzl(r,e) uZl(B) G21(6) (2.89)
3 uzz(r,e) = uzz(e) = Gzz(e) (2.90)
» uy, (£,0) = r1/2 6g5(0) (2.92)
< vy, (£,0) = ™2 5., 0 (2.93)
vy, (£,8) = =~1/2 5, (0) (2.94)
v21(r,9) = v21(6) = Hzl(e) (2.95)
vzz(r,e) = vzz(e) = 322(6) (2.96)

;
L
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uy (£,8) = /2 6 () (2.77)
u, (r,0) = r G, (8) (2.78)
uy(z,8) = /2 65(0) (2.79)
v, (z,0) = r/2 &, (8) (2.80)
v, (r,8) = r Hy(9) ' (2.81)
vy(r,8) = r/2 By(e). (2.82)

Their derivatives can be written in the form:

e

= Kl ull(r,e) + K2 u21(r,e) + K3 u3l(r,6) + ...
(2.83)

= Kl ulz(r,e) + 32 “22(r'9) + K3 u32(r,e) + ..
(2.84)

1P

v
—— AR + + + o s ®
X Kl vll(r,e) K2 v21(r,6) K3 v3l(r,9)
(2.85)
L T R N N NIATS B0 S8 IOITAO N 0 26 A SN RN O
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3y are the antisymmetric terms. It follows

and ¢, %5,

that X(¢, ¢) is now antisymmetric and ¥Y(¢, ¢) is symme-
tric. The integrands that now cancel are: X(¢, v)ug,
Y4, W)VI. i(uI, vI)¢ and ?(uI, vI)w. The remaining

integrals are:

- S (X9, $lugy + ¥(o, YIvp lds +

Te

+ S X(uII, VII)¢ + Y(uII, VII)w]ds (2.74)

rE

which are precisely those considered in deriving the
formula for KII'

Another advantage of the extraction technique is
the ability to extract the intensity factors corresponding
to higher order terms in the asymptotic expansions. Let

us write the asymptotic expansions for the displacements

in the form:

u = K1 ul(r, 8) + K2 uz(r, 8) + K3 u3(r, 8) +...(2.75)

v = Kl vl(r, 8) + Kz vz(r, ) + K3 v3(r, 8) +...(2.76)

where:
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_ 97X
oy
2
G = 2.% (3.4)
Y ax

_ 3
Txy = - a—x'éxf (3.5)

It can be easily verified that the equilibrium equations
are identically satisfied. The stress-strain relations
in the case of plane strain can be written in terms of

the displacements as:

= 3¢ 89 , 3v u
g, = A( =7t 3y ) + 2G 3% (3.6)
ou v v
Oy A(3§+W)+2G§§ (3.7)
- Ju Iv
Txy = G ry"’ ﬁ) (3.8)
Adding (3.6) and (3.7) yields:
u vV
0x+qy=2()\+G)(~§-£+§-y—). (3.9)
Combining (3.6) and (3.9) and putting 3 XG = v we
obtain:
du _
2G % = 9y v(cx + cy) (3.10)
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- Analogously:

o

i oV

3 Y y (a, y) ( )

In the case of plane stress we can write:

au v ow au .
Ux A( -a—i‘.' Fy—'f' -g; ) + 2G '; (3.12)
_ Ju ov ow v
ny = A( % + 3; + 3z ) + 2G 3; (3.13)

Ju vV oW oW
OSX(H+W+3—£)+2G§E (3.14)

from which by summation:

o +a, = (3% + 26) ( $2 + LA

X y X 3y (3.15)

u v ow

and by substituting back for = T 5§-+ Tz and putting
?} 37%73 = TEU we obtain:
3
'f 26 32 = 0, - 5y (o, *+ 0 (3.16)

X ov I
- 2G 3y e = T3v (nx + oy). (3.17)

PORN

We define o as:

- 3
: -':!
: j

8
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s v for plane strain
-
: g = (3.18)
v
STV for plane stress

and combine (3.10), (3.11), (3.16) and (3.17) to obtain:

Ju

2G I < Oy T o(ox + oy) (3.19)
v _ -
2G 5;-- oy c(ox + qy). (3.20)

We now differentiate (3.19) twice with respect to vy,
differentiate (3.20) twice with respect to x, add them and

use (3.8) to obtain:

2
9 T 2 2
- 0xX I 2
2 XY - + L . GY%(a. + 0.). (3.21)
9X3y ayi axz X Yy

Finally, substituting (3.3), (3.4), (3.5) into (3.21) and

dividing by (1 - 0) we obtain:

74y = 0. (3.22)

We now write:

T
A

2

= 72y = L
o, + oy Vox = 3X3y (3.23)

~—

VR T T OrTy
RN ‘.' !
L I v e
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et ST
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This equation defines the function ¥ in terms of the

stress function X up to the functions of integration.

Equations (3.19) and (3.20) can be written in the form:

2u -—
26 3¢ = =, + (1 = a) (o, + ﬂy) (3.24) :::;
26 & =g + (1 - a)la. + a) (3.25) =
oy X x Yy ’ e

and by use of (3.23) they become:

2G CAE - 3 (1 - ) sx ‘ (3.26)

Tu = A + a Ww .

2G s—a = = -_§3 + (1 - a) —'5'?—3 v (3.27)
Y 3 ' ax Y a7

These can now be integrated to give:

2Gu=-%§+(l-o)-§% (3.28)
2Gv=-%§+(1-c)§—i (3.29)

where u and v are known up to possible rigid body motion.
. These displacements u and v were derived on the
basis of equations (3.6) and (3.7). The third equation
of equilibrium (3.8) also has to be satisfied which
imposes an one more condition that the function ¥ has to

satisfy. From (3.8) and (3.5):

y e AT et et At AN, ety e e e s e e
DAL PR R S S LRSS S LR . e "
ARG e - B A AT O LI T T e e T T T e e
P RS S RIET I TR IS y A T Sk ERIIe e T e A .‘l'l‘-’ »
— , - s AL A
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R (243 -, =_%L (3.30)
O oy = ox '~ ‘xy 0X0Y :
N Differentiating (3.28) and (3.29) and adding:
= 2
> 3 2

2“cxy=-23—£5x§+(l-a)vw (3.31)

and in view of (3.30):
vy = 0. (3.32)

2 32 32 2
VY o= ( ) + i Yo o= £7(x) + £5(y) + Viw(x, y)(3.35)
X Y

. S SR SN . s e c e
LR ARG AL N AT P S ST A S SR ae e e A e B A L R R

The question now arises whether it is always possible to
find a function ¥ which is harmonic and related to the
stress function by (3.23). By taking Laplacians of both

sides of (3.23) we obtain:

2 2

vhy = 72 (93 = v¥¢( Eax"‘a% ) = ai—ay (v3y) = 0.  (3.33)

We now separate the terms that are independent of x and

the terms that are independent of y by writing ¢ as:
v = fl(x) + fz(y) + wix, y) (3.34)

from which:
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and by (3.33):
2 2
) 2 9 2
m (VoY) = -a—xa—y- (V°w) = 0. (3.36)
From which:
.%‘. [ .sa)_’ V2 w(u, y)] = (3.37)

consequently, the expression in the bracket is

independent of x:
2 92 wix, y) = g.(y) (3.38)
B_y' r Y gl Y .

Therefore, Vzw(x, y) is itself independent of x:

V2 wix, y) = v2 wiy) = g5 (y). (3.39)

Interpreting now the mixed derivative in the reverse

order:

=

3 o2
5y (x5 7 wix, y)] =0 (3.40)

Therefore, the expression in the bracket in independent

of y:

= 7% w(x, y) = gyx) (3.41)

from which v2 w(x, y) is itself independent of y:




2

v wix, y) = 7% (x) = g (x) (3.42)

From (3.39), (3.42) and noting that constant terms have

been incorporated in £, (x) and £,(y) it follows that:

v2 wix, y) = 0 (3.43)
or

V2 [pix, y) - £,(x) - £, = 0 (3.44)

which means that the function ¥y can always be adjusted by
means of functions of x only and functions of y only to
become harmonic. These functions are the integration
functions needed to obtain y from x. There are no other
requirements that ¢ has to satisfy, therefore, it is
always possible to find such a function.

Stress functions in polar toordinates

Expressions for the stress components in polar
coordinates in terms of the stress function x can be
derived as follows:

Noting (3.3) and using the stress transformation law we

obtain:
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2

_ 2, _ . . 20 _ 87X
"x = “r cos” 6 2Trec05651n6 + 0gsin 8 = ayz (3.45)
a2
transforming into polar coordinates:
oy
X = ai 9X cos® 9
= sind & + =F ’A‘é‘ (3.46)
EEK = (sinf =— + cos 3 ) (sinb 9X 4 cos CR4 )
ayz ) r J0 or r 46
2
- cose(L 25X 4 13X - 2 (L3
cos 9(;7 " + T 3¢ ) + 2sinfcos® 5T ( = ?% )
2
+ sin®e X (3.47)
3r

comparing the coefficients of like trigonometric terms

we obtain:

1 3% .13
r a6
2
) l 23 1l 9 1l 3

o3 (T " - Eewt 28 o A

3_2)2& (3
(1 = 050)

e ar .

and it can be easily seen that:

o_ + a, = V% (3.51)

o

M

T,
(]

. _'
f
“ .-




‘‘‘‘‘‘‘‘‘‘‘

At ate b ol -

-61-

The stress~strain relations of two-dimensional
elasticity in polar coordinates can be written concisely

as:

e, = % [-0g + (1= o) (a_ + )] (3.52)
€g = 2_16 ["_’r + (1= ) (a + ag)] (3.53)

with o given by (3.18).
We now introduce the function vy which is defined (up to

the functions of integration) as:

oy
2 ) 1l
Vo = 3T (r 35 ) (3.54)

Taking into account (3.50) and (3.52) the expression for

Er can be written as:

Ju 2 oY
r 1 9 3 1
W’ﬁ[-ﬁ'*(l-“).a_r(rw)] (3.55)
integrating with respect to r:
3y
uraﬁ[-%-ﬁ(l—o)r}-@i] (3.56)

where wl now incorporates the integration function.




In view of (3.54) and (3.51) we can write:

3y 30 2 3

3 1, % 3%y 5 1

Ip* g =3r 55 ) =55 * 355 =55 (Vp * T 57)
(3.57)

and expression (3.53) for €4 can be written as:

u Ju 2
r 1 9 1l 13 1 3
R LS il e
2
+(1-0) g W+ 5] (3.58)

Multiplying through by 2Gr and substituting for u, from

(3.56) gives after some cancellation of some terms:

2
Ju 2 Y
8 1l 2 1
2G 585 =" . +(1 - g) r 3536 (3.59)
96
integrating with respect to 6:
oy
=L o 13 - 2 1
u, =sz[-238+ Q2 -ar = 1 (3.60)

where once again the function of integration has been
incorporated in wl.
So far only the radial and circumferential components

of stress and strain have been considered. The considera-

tion of the stress-strain and strain-displacement relations
for shear stress and strain will lead to an extra condition

L)
that the function ¥, must satisfy. From: -




Teg = GYre (3.61)
and:
du au u
l_r 8 _ _8
Yeg =t 38 Y 3T r (3.62)

Substituting for u_. and ug, from (3.56) and (3.60) after

some manipulation we obtain:

2
2 3%y
=ir- 13 x . 1_2,_ 1 1
Yro g l-Fame vz Mmoot
3w, 3%y
1 Y1 1 1 3y
M T ) + <5 55 ]
r r
orx
.l[-.l..ﬁx.+£i(1-c)v2 + 229 (3.63)
Yrg * G T 3r36 & 2 by 2 36 .

v wl =0 (3.64)

The solution of the two-dimensional elasticity problem
then reduces to the determination of a biharmonic

function x and a harmonic function ¥y related to it

through (3.54).
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Eigenvalues and eigenfunctions for the notch problem

We now seek the general solution in the neighborhood
of an angular point. We shall investigate solutions of

the form

x = =t F(e) (3.65)
Then since
2 2 2
4 3 l 5 1 23 ] 1l 3
VY= (et S mm b 5 = ) — + = ==+
3r2 r or r2 ae2 3t r °r
2
e Bov REI
r- 236
we obtain:
2 2
9 1l 3 1 3 K+1
(—2-+- +——§)r F(0) =
3r r 3t r2 98
= rK-l[(K+l)2F(6) + F"(8)] (3.66)
and:
vy = 23RV (0) +2 (k24 1) F" (8) + (k=1) 2 (k+1) °F (8) ] (3.67)

from which:




..........
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FIV(0) + 2(c%+1)F"(8) + (k-1)2(x+1)%F(8) = 0  (3.68)
Let
F(8) = a ™ (3.69)
The characteristic equation becomes:
nt + 2(K2+l)m2 + (K-l)z(K+l)2 =0 (3.70)

which has the roots:

m=+ (v« + 1)i

these roots leading to solutions of the form:
sin(x+1)8, cos(x+1l)8, sin(k-1)8, cos(k=1)9

and the general solution can then be written in the

form:

X = r‘+l[clsin(m+l)e+c cos (k+1) 6+

2

+ C,sin(x=-1)6+C,cos(k=-1)6] (3.72)

3

4

.....
.........
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At this point it should be noted that the above form for
¥ satisfies the biharmonic equation for any value of «,
real or complex.

In order to determine wl we investigate solutions

of the form:

vy =T G(8) (3.73)

Since ¥, is harmonic, from
(£'+%‘5§E+riz£§§)wl=o W

we obtain:

G"(8) + m” G{o) = 0 (3.74) j
Let ~

G = be™ | (3.75)
then: _

n’ +m’ =0 (3.76) .
from which: N

nEim (3.77)

B D S T e S N N R N R I R e
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Gz(r, 6). Thus a complex root of the eigenequation gives
rise to two distinct eigenfunctions. This can also be
seen if we write the stress intensity factor in complex

form and write the term corresponding to (3.140) as:

K
u = (Rj*iK,) r *[G, (r,8)+iG, (r,0)] (3.141)

separating real and imaginary terms:

K1 K1
u=K r Gl(r,e) - K, r Gz(r,e) +

K
+ir 1[x1 G,(r,8) + K, Gy (r,0)] (3.142)

Both the real and the imaginary parts of this expression
are acceptable solutions. However, we observe that the
imaginary part contains the same eigenfunctions Gl(r, 8)
G,(r, 8) as the real part. Therefore, to a complex
eigenvalue there correspond two distinct eigenfunctions,

each with its own stress intensity factor. They have a

K
singularity of the same strength r l. If the complex

number in (3.136) is an eigenvalue, its complex conjugate
will also be an eigenvalue. To this eigenvalue there

correspond two distinct eigenfunctions G,(r, 8), G,(r, 6},

K
both having a singularity of the same strength r l. We

then conclude that to a pair of complex conjugate

.......
..........

.........
..........
w e .

‘‘‘‘‘‘‘‘‘
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It is seen that only the real part of the complex root
determines the strength of the singularity, the imaginary
part being incorporated in the eigenequation. The
expressions in the bracket in the eigenequations (3.130),
(3.121) of mode I and (3.130), (3.131) of mode II will
also be complex. Let us write (3.120) for example in

the form:
a = rK[Fl(e) + i Fy(8)] (3.138)
In view of (3.148) this can be written as:

K
u=r l[Fl(e)cos(Kzlnr)-Fz(e)sin(Kzznr)
+ i(F,(8)cos (k,2nr)+F, (8) sin(k,2nr)) ] (3.139)

The terms cos(Kzlnr) and sin(nzlnr) are highly oscillatory
in the neighborhood of the notch tip, the frequency of
oscillations tending to infinity as the radius r

approaches zero. Let us now write (3.139) in the form:
K 1 }
u=r "[6)(r,8) + i G,y(r,8)] (3.140)

There will be a stress intensity factor corresponding

to the real part G,(r, 68) of the eigenfunction and a

different one corresponding to the imaginary part
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26¢(2m) /2y = k¥ [ (CB4<+1) sinc6-2¢Csindcos (x-1) 8] -
(3.133) '

and for mode II:
1/2 ¢ . "
26c(2m) *"u = K}, [ (CD-«k=-1)cosk6+2xCsinbecos (k-1) 6] .
(3.134) ~

K* rK[-(CD+K+l)COSK6-2KCCOSGCOS(K-l)@]

2G6c (2m) /2y *

(3.135)

It is reminded that the eigenvalue k and the constant C

are different for each mode.

Behaviof of the roots of the eigenequations. The case

of complex eigenvalues.

The above derivation is valid for complex values of

the eigenvalue x as well. Let us write the complex roots

in the form:

K = <1 + i K, (3.136)

With this notation, the singular term can be written as:

K
< = 1 cos(Kzznr) + i sin(mzknr) (3.137)

> v,
Py oy
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These are transformed into Cartesian coordinates and

after trigonometric transformations they are written

in the form:

2Gu = r“[ (CD-x-1)sink8+2kCsindcos (k=1)6] (3.130)
2Gv = [~ (CD+k+1)cosk6-2xCcosbcos (k=1) 6] (3.131)

where D is given by (3.128) and C is the ratio in (3.100).
The eigenfunctions (3.120), (3.121) of mode I and
(3.130), (3.131) of mode II are determined within a
multiplicative constant: any multiple of these eigen-
functions will also be an eigenfunction. This multipli-
cative constant is chosen to agree with the one adopted
in engineering literature on Linear Elastic Fracture
Mechanics. The generalized stress intensity factors,
which are the amplitudes of the singular terms in the
displacement and stress expansions in the neighborhood
of the reentrant corner, are then defined to coincide
with Irwin's definition [13] of K

and K, by writing

1 I

for mode I:

ZGC(Zw)l/zu = KE r“[ (CB-x=~1) cosk 8-2«kCcosfcos (k=1) 8]

(3.132)
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F(8) = sin(k+1)8 + C sin(x-1)9 (3.122) ;
G(8) = - = C cos(k-1)8 (3.123) :
from which: i
F'(8) = (k+l)cos(k+1l)6 + C(k-l)cos(k=-1)8 (3.124)
G'(8) = 4C sin(k+1)8 (3.125)

and the displacements for mode II can be written as:

2Gu, = rK[-KK+1)sin(K+l)6+CDsin(<fl)e] (3.126)
2Guy = IK[-(K+1)COS(K+1)Q-CECOS(K-l)9] (3.127) E
where:
D = 4(l=a) =k =1 (3.128)
E = 4(l-0) +« =1 (3.129)
et e gl e g e R e A
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u = cosf u, - sinbd ue (3.116)
v = sin® u. + coséf ue (3.117)
:
to be:
2Gu = rK[-(<+l)cosxe+CAcosecos(K-l)e
- CBsinfsin(k=1)8] (3.118)

26V = rK[(K+l)sinKe+CAsin6cos(K-l)6+CBcosesin(K-l)6]

(3.119)
I Through trigonometric transformations these can be
written in the form:
) 2Gu = r[ (CB-x-1)cosk8-2xCcosdcos (k=1)6] (3.120)
2Gv = r“[(CB+x+1)sin@-2cCsindcos (k-1)6] (3.121)

where B is given by (3.115) and C is the ratio in (3.102).
Mode II

In a similar way by takiné C1 = 1 and calling the
ratio C3/C;, = C in (3.100) the stress functions can be

written as:

........ R U . . e o ey e NN A TR e e
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and:

G(8) = Eér C sin(k=1)6 (3.109)
from which:

F'(8) = =-(xk+l)sin(k+1)8 - C(k=-1l)sin(k=-1)86 (3.110)

G'(8) = 4C cos(k-1)6 ' (3.111)

using (3.82) and (3.83) we can write the displacements

for mode I as:

26 u_ = r[-(c+1)cos (k+1) 8+CAcos (k-1) 8] (3.112)

26 ug = r“[ (k+1)sin(x+1) 8+CBsin(k-1)6] (3.113)
where: %
A= 4(l-a) = (k+1) (3.114) -

B = 4(l-a) + k=1 (3.115)
The displacements u and v in Cartesian coordinates can now =

be found through the transformation law:

7
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In the case of a crack (a = 180°), the first

positive eigenvalue k = 1/2 is of great significance in
linear elastic fracture mechanics, where the symmetric
mode is termed mode I and the antisymmetric mode is
termed mode II. In the seguel this terminology will be
extended to the case of a notch of an arbitrary angle.
In the crack case the two modes have the same eigenvalue
but the eigenfunctions corresponding to them are
different. In all other cases (except the half plane
case as we saw) the two modes have different eigenvalues.
This means that whenever Cl and C3 are nonzero then C2
and C, must be zero and vice-versa.

. It is important to note that in either mode I or
mode II if «k is an eigenvalue, so is =-«x.:- This is very
important for the formulation of the generalized influence
function method, where use is made of the eigenfunctions
corresponding to these negative eigenvalues. The negative
roots yield unbounded displacements at the vertex of the
angle, so they do not have physical significance.

Expressions for the displacements

Mode I
By taking C, = 1 and calling the ratio C4/C2 = C in

(3.102) we can write:

F(8) = cos(k+1l)8 + Ccos(k=1)8 (3.108)

T N T
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hold simultaneously. Excluding the meaningless case of

a = 0, these are satisfied either when:

a = 90° and «k = n (half plane) (3.105)
or:

a = 180° and k = % (crack case) (3.106)

with n = integer.
In the case of the half plane Cl = 0 and C3 is undetermined.
The triviality of the case k = 0 can be seen by expressing

a_ in terms of «x. Making use of (3.50) and (3.72) we

r

cobtain:
g = 2 ﬁx+l§.x= K=llpw(8)+(k+1)F(6) ] (3.107)
r ;7 ~g2 T o r :

and for « = 0 it can be verified that the expression in
the bracket becomes zero. From (3.84) and (3.85) it is
obvious that g and Tre are also zero, and from (3.82)
and (3.83) we can see that the displacements do not
depend on the radius r, therefore, we have a state of
rigid body motion. It is also of interest to note that
for the antisymmetric case (equation 3.99), the value

k = 1 is a solution for any notch angle a.
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3 _ _ sin(x+l)a _ _ (x+l)cos(x+l)a (3.100)

but one of them, say Cl, can be assigned arbitrarily.
Conveniently we choose Cl = 1.
Similarly the other two egquations (3.96) and (3.97)

yield the eigenegquation:
sin2a + sin2xa = 0. (3.101)

Again for every root of this equation at least one of Cys
C4 is nonzero. One of them can be given an arbitrary
value but their ratio is determined from either (3.96) or

(3.97) as:

Ei = - Cos(k+l)a _ _ (k+l)sin(x+lla (3.102)
c, cos (k-1) a (k=1)sin(k=-l)a :

Examining equations (3.99) and (3.101l) together it is
seen that they are satisfied simultaneously either in

the trivial case x = 0, or when:

sin2cka = 0 (3.103)

and:

sin2a = 0 (3.104)

=Y
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(K+l)Czsin(K+l)a +(K-l)ClSin(K-l)a = 0 (3.97)

It is then seen that the original system of four equations
in four unknowns is separated into two independent systems,
each of two.equations in two unknowns. It will be seen
that (3.94) and (3.95) lead to a solution which is anti-
symmetric about the x axis and (3.96), (3.97) lead to a
solution which is symmetric about the x axis. This
separation into the symmetric and the antisymmetric terms
could have been anticipated considering the symmetry oz
the domain about the x axis. Each system is homogeneous
and for non-zero solutions to exist the determinant of
each one should vanish. The determinant 6f the system

(3.94), (3.95) is zero if:

(c=1l)sin(x+l)acos(k=-1l)a=(x+l)sin(k=-1l)acos(k+1l)a = 0
(3.98)
this simplifies to:
xsin2a - sin2ka = 0. (3.99)

For every root « of this eigenequation at least one of <y
and C; is nonzero. The ratio C3/Cl can be determined

from either (3.94) or (3.95) as:

..............
............................
......................................




I substituting for F(6) from (3.72) yields:
v clsin(n+1)a+czcos(K+1)a+c3sin(K-l)a+C4cos(K-l)a = 0
y (3.90)
=
E R -Cysin(k+1l)o+Cycos (k+l)a=Cysin(k=-1)a+C,cos(k-1)a = 0
i (3.91)
[Eﬁ
{ (K+1)ClCOS(K+l)G-(K+1)C25in(K+l)a+(K-l)C3Cos(K~l)a
r".
-(K-l)c4sin(x-l)a = 0 (3.92)
. (K+1)Clcos(K+l)Q+(K+1)Czsin(K+l)a+(K—l)C3COS(K-l)a
+(K-l)C4COS(K-l)Q =0 (3.93)
e
- By simple additions and subtractions these are easily
transformed into:
- Clsin(x+l)a + C3sin(m-l)a = 0 (3.94)
b
S
[ -
b
i -~ (k+1)C,cos (x+1)a+(k=1)Cycos(k=1)a = 0 (3.95)

and:

[
N
.
h
{<
1 Czcos(K+l)a + C4cos(K-l)a = 0 (3.96)




......... W, e A% e g
s S N T T VW TV TV y——"T"

...............................

The characteristic values of k for which the stress
function in (3.72) and consequently the displacements in
(3.82) and (3.83) provide a solution for the notch pro-
blem will be determined by the requirement that the
traction~-free boundary conditions be satisfied on the
edges of the angle. Let us express g and T.o in

terms of «. Using (3.49), (3.50) and (3.72) we obtain:

2
g, = 2% = « (k+1) 2L F (o) (3.84)
8 = 3.2

r
. --L_?Bix_+ié.z<.-- “=1 k1 (e) (3.85)
re6 - T T 3ra6 7 36 - T y

In order for tractions to be zero on the two faces of

-

the angle, both 0, and A must vanish there:

e r

0506 = + a) =0 (3.86)
T (8 =+ a) =0 (3.87)

from which: -
F(6 =+ a) =0 (3.88) i
F'(8 =+ a) =0 (3.89)

SRR

'''''''''''''''''
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which leads to solutions of the form:

sinmf, cosmé

- The general solution for G(8) will then be:

Lan an e

G = al cosmb + a, sinmé (3.78)

and this is valid for complex values of m as well.

From the relationship (3.54) between x and wl by equating

the powers of r we obtain:

T Y YT
e ~r. -, e .

K = 1l=m (3.79)

T
f_§

and by equating subsequently coefficients of similar

E ;{ trigonometric terms we obtain:
T
a. = - 2_ ¢ ) (3.80)
1 k=1 -3 ]
a, = == C (3.81)
27 k-1 "¢ )

The expressions for the displacements now become:

2Gu_ = - (xk+1)F(8)+(1-0)G"' (8)] (3.82)

K
2Gu, = r [-F'(8)+(1-a) (A=1)G(8)]. (3.83)
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' n eigenvalues there correspond four independent eigen-
Al K
- functions with a singularity of the same strength r 1
: but each having its own stress intensity factor. By
h - using the complex form of trigonometric functions
b
E 5 sin x = sin k4 cosh K, + 1 cos k; sinh Ko (3.143)
b' 3 . .m 3 4
: Cos Kk = COS K cosh Ky = 1 sin k, si Ko (3.144)

and substituting in (3.120), (3.121), (3.130), (3.131)

after rather lengthy but otherwise straightforward
trigonometric and algebraic transformations we obtain
. the following explicit expressions for the eigenfunctions:
: mode I:
- se(am /2y = gD 1 eKze[(K +3-40-L))c, +
n 1 I 1 1’71
+ (ky-Ly)sy - 2(K1c3+K253)cose]
L <28

+ e [(Kl+3-4n-Ll)c2 - (Kz-Lz)sz -

- 2(K1c4+xzs4)cose] } (3.145)
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¥
1/2 (1) “1 [ <2°
4G (2m) v, = KI r (e [(Kl+3-4n+Ll)sl - f]
ii - (|<2+L2)cl - 2(ch3+<253)sine]
&; =K 9
- + e [(n<1+3-4c1+Ll)s2 + (k,+Ly)e, +

+ 2(-ch4+v<254)sin6]} (3.146)

4G(21r)1/2 u

8
o2y fuf K2
, = Kg r <% [ (|<1+3-46-L1)sl +

+ (<2-L2)c1 + Z(Kls3-ch3)COSe]

-Kze

- 2(Kls4+<2c4)cose]} (3.147)

K .8
46(2-")1/2 v, = K§2) r l{} 2 [(|<1+3-4n+L1)cl +

+ (ky+L,)s) + 2(K153-K2c3)sin6]

-K .0 o
2 X
+ e [—(Kl+3-4ﬁ+Ll)c2 + (n<2+L2)s2 - K

ok

- Z(Kls4-o<2c4)sin6]} (3.148)
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] where
0

v = -

; ﬁ c, = COS(Kle <2an) (3.149)
- .
o = sxn(Kle-Kzlnr) (3.150)

cos(Kle+|<22.nr) (3.151)

]

sin(Kle-hczlnr) (3.152)

cy = cos(ncle-e-xzznr) (3.153)

A . sy = sin(Kle-e-Kzlnr) | (3.154)

|» ’

N ::: c, = cos(nle-e+'<22,nr) (3.155)

Sy = Sin(Kle-6+K22nr) (3.156)

- C, (k,+1)+x.,C
- L, = 2l 22 (3.157)
. c] + C3

C.k,=C, (k,+1)
12 2 1 (3.158)

i L. =
T S

DO TP TR I TN S S S S S RS .
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coshZKzac052a+c052Kla

X €1 = - cosh2k ,a+cos2 (k;-1)a (3.159) y
- sinh2x.,a sin2k.a $
: c. = 2 1 (3.160) '
2 cosh2K2a+c052(Kl-l)a :
and o is given by (3.18)
mode II
4G(2'rr)l/2 u, = K(l) rKl eKze[(B-K -4a-L,)s, +
l II 1 A S |
+ (k,+Ly)e, + 2(<lc3+xzs3)sin6] -
’
-Kze . ’
] + e [(3-(1-4n-Ll)sz.- (k +Lyley +
+ 2(ch4-Kzs4)sine]‘> (3.161) :
4G(2n)l/2 v, = (1) r'<l eKZG[-(B-K -40+4L.)c, +
1 11 1 1’"1

+ (ky-Ly)s; + 2(-<1c3+<253)cose]

-xze
+ e [-(3-Kl+4G+L1)C2 - (ky=L,)s, -

- 2(<lc4+<254)cose]> (3.162)

o,
Ca
(v
X
Cd
L4
<




K KB
o2y Sa <R L
= K r {e [(3 Ky 4«+Ll)cl +

ag(2m) /2 u, :2

+ (k,=Ly)s; + 2(—Kls3+K2c3)sin6]

-Kze

+ e [—(3-K1-40-L1)c2 - (Kz-Lz)s2 +

+ Z(Kls4+rzc4)sin6]} (3.163)
. 1/2 (2) 1, %2°
4G (27) v, = K;7 {e [(3-K1-46+Ll)sl +

+ (Kz-Lz)cl + Z(Kls3-<2c3)cose]
-<2e
+ e [-(3-Kl—4a+Ll)s2 + (ky=Ly)ec, -

- 2(Kls4+K2c4)c059]} (3.164)

where

c; and s, are given by (3.149) turough (3.155)

C.({x.+1)+x .C
L, o= =1 2 2 (3.165)
1 CZ + C2
1 2
C.k.~C.,(k.+1)
172 7271
LZ = = 5 (3.166)
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-86- =
-coshZKzacos2a+cos2Kla
€, = coshikza-COSZ(Kl-l)a (3.167) -
sinh2k.,a sin2k,a =
Y p—— x (3.168)
2 coshZKZa-cos2(Kl-l)a *
The heuristic approach that was followed in this
chapter can be justified in the framework of a very
general theory given by Kondratev [17]. He showed that
the solution of an elliptic boundary value problem in
the neighborhood of an angle can be written in the form: E
“i
u=73x a; r en? r ¢i(e) + w(r, 9) (3.169)
i : ..
[ 28
where g
g=0, ..., mi -1 _
m, = the multiplicity of the eigenvalue Ky o

¢i(9) is a smooth function

and &(r, 8) is smoother than the r 1 on? r terms
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‘ It is now of interest to explore further the nature

. of the roots of the eigenequations. We are only

;ﬁ interested in roots with a positive real part. The roots

- with a negative real part are readily obtained from the

l former through a simple sign reversal, due to the symmetry

f of the eigenequations with respect to the x axis. They

) are disregarded in the displacement expansions as they
would imply unbounded displacements at the tip. Karp and

o Karal [18] have shown that there exists a nontrivial real

r

root which is always smaller than the positive real part
of any of the complex roots.

The smallest positive eigenvalue for mode I is given
in table 3.1 for various values of the half angle a.
Table 3.2 displays the same informatio; for mode II. We
can see that except for the crack case (o = 180 degrees),
where the eigenvalues for the two modes are the same, the
eigenvalue for mode II is always larger than the eigen-
value for mode I. 'When the half solid angle o is equal to
128.7268 degrees the eigenvalue for mode II is equal to 1,
therefore the stresses corresponding to mode II are bounded
;; at the notch tip. Under mode I conditions any reentrant
corner will give rise to singular stresses at the tip, the
critical half angle being 90 degrees (half plane). The

f’ second and higher eigenvalues are complex for angles o

-

r
0
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equal to or smaller than 157 degrees in the case of mode I,
and for angles & equal to or smaller than 164 degrees in
the case of mode II. 1In the case of a crack (a = 180
degrees) all the eigenvalues are real. For smaller angles
there is a finite number of real eigenvalues and an
infinite number of complex ones. Table 3.1 refers to mode
I and displays the first nine real eigenvalues for a

equal to 175 degrees together with all the real eigenvalues
for o equal to 170, 165, 160 and 158 degrees. Table 3.4
displays the corresponding results for mode II, with the
first nine real eigenvalues for o equal to 175 degrees

and all the real eigenvalues for a equal to 170 and 165

degrees.

LN




—

Table 3.1

Smallest positive eigenvalue

for various solid angles, mode I

(roots of the equation ksin2o + sin2ka = 0)

solid angle a first eigenvalue, mode I
360° 180° 0.5
350° 175° 0.500052987126443
340° 170° 0.500426375426056
. 330° 165° 0.501453008713551
: 320° 160° 0.563490483184783
' 310° 155° 0.5069328?2286465
300° 150° 0.512221361160512
290° 145° 0.519854303113919
I 280° 140° 0.530395719129773
: 270° 135° 0.544483736782464
260° 130° 0.562839480481682
250° 125° 0.586278864957285
240° 120° 0.615731059490783
230° 115° 0.652269555181627
220° 110° g::;‘flﬁ%;%OS?ZOl
210° 105° 0.751974545407642
200° 100° 0.818695851323838
190° 95° 0.900043811488137
180° 90° 1.
e e N I L S B R T VRS S B A AT

PO S g
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Table 3.2

Smallest positive eigenvalue
for various solid angles, mode II

(roots of the equation ksin2a - sin2xa = 0)

solid angle a first eigenvalue, mode II

360° 180° 0.5

350° 175° 0.529354738341384
340° 170° 0.562006549619481
330° 165° 0.598191849614085
320° 160° 0.638182471293363
310° 155° 0.682294830307061
300° 150° 0.730900741512950
290° 145° 0.784440552974094
280° 140° 0.843439568929300
270° 135° 0.908529189846099
260° 130° 0.980474925453105

257.4536° 128.7268° 1.

250° 125° 1.060214662528446
240° 120° 1.148912751316944
230° 11s° 1.248039607030766
§§§: 110° £i§;§%3§953661662
210° 105° 1.485811706900859
200° 100° 1.630525086564494
190° 95° 1.798932622346293
180° 90° 2.
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Table 3.3
Real eigenvalues for various solid angles, mode I

(Roots of the equation ksin2a + sin2ka = 0)

Solid angle o real eigenvalues, mode I

0.500052987126443
1.058842953176205
1.499727767815282
2.118822841754057
3500 _ 2.497979910848996
>0 : H7o 3.181532712089234
3.493301550223319
4.250184120916684
4.482534709491662

etc.

0.500426375426056
1.125406650991640
340° 170° 1.497613486365886
2.267186596933758
2.476769998913093

0.501453008713551
330° 165° 1.202957173241424
1.490377798463559

..............
.........




{continued)

Solid angle a real eigenvalues, mode I
0.503490483184783
320° 160° 1.302693359118874
1.467008439164243
0.504675297031383
316° 158° 1.365731350131872

1.436282183283593




Table 3.4

Real eigenvalues for various solid angles, mode II
(Roots of the equation ksin2a - sin2ka = 0)

Solid angle a real eigenvalues, mode II

0.529354738341384
l.

1.588609191187519
1.999106964391621
. . 2.649698718055999
350" 17 2.996140969135392
3.714772677395547
©3.989019694329133
4.789341976925038
4.972275638161229

etc.

0.562006549619481
1.

1.692250101505664
340° 170° 1.991384797275372
2.883886605832655
2.920169039793589

0.598191849614085
330° 165° 1.
1.838934252571961

1.948555887250050

................................
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2a
XXX
Figure 4.1
Two dimensional body with a notch
(solid angle = 2a)
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X Ky P
u = Kl r Ul(e) + Kz r U2(6) + ... (4.1)
K1 K2
v = Kl_r vl(e) + Kr vz(e) + ... (4.2)

;
F
3

where K,, K, are the generalized stress intensity factors and
Kys K, are the eigenvalues. The precise form of functions
Ui(e) and vi(e) was derived in the previous chapter. We are
interested in compute so the generalized stress intensity
factors K,, K,, etc. The eigenfunctions Ui(e), Vi(e) also
depend on the elastic constants, the half solid angle o and
the corresponding eigenvalue Kye

We choose as extraction functions ¢ and y the eigenfunc-
tions corresponding to the negative eigenvalue of the term,
whose amplitude is being extracted.

¢ =x ¢(e) + ¢y (4.3)

y =T v(8) + vy (4.4)

where ¢(6) and y(e) are obtained from Ul(e) and Vl(e) respec-

CTEET. VLY,

tively if we substitute =K, for Kq* The terms Op and Yy, are
smooth functions that vanish in the neighborhood of the notch

tip and arc so chosen that the extraction functions satisfy

.Yy st o

the following requirements:
i) They vanish on the part of the boundary where dis-

placements are specified. This is accomplished by the

U2« ¢

aadition of the smooth functions ¢b and wb, which are called

A

.-

.-
DU o W » o IR R R )

.
a’

{ W

")

RS .\i
.

DR U S L W R S A S LI TP S DA A NV R t e
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blending functions. Another way is to multiply the singular
! part in ¢ and y by a cut-off function, which takes the value
of unity in the neighborhood of the notch tip and the value

of zero away from it with a smooth transition in-between.

F Further discussion on the cut-off and blending functions can

_ be found in [3].

- ii) They satisfy the equilibrium equations in the
neighborhood of the notch tip. If no displacement boundary
conditions are specified on any part of the boundary, then

p- they satisfy equilibrium everywhere in the domain.

. iii) They satisfy the traction-free boundary conditions

:: on the faces of the notch, that is tractions corresponding to

. displaéements ¢ and ¢y vanish for 6=a and 6=-q. »

iv) They have a singularity of the orderr 1'.

\ The equations of elasticity (plane strain) in the

. Cartesian system (x,y) can be written as:

Lx(u,v) = 0 (4.5)

" Ly(u,v) = 0 (4.6)

- where

] 3, du , 3v 3%u | 2%

: Lx(u,v) = (A+G) % ( x> T 3y ) + G ( ;;7 + ;—7 ) (4.7)

- Y

3 du . 3v 2%y | 3%y

F Ly(u,v)=(>\+G)§-§(H+Ty)+G(a—x?+a—y—2) (4.8)

S




g
t
b
>

; are the tractions corresponding to displacements (u,v)
»

. and Eé(nx,ny) is the outward normal to the surface. 1In
[ 4

I

b

,’:.

e o e e e P N e e e e
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._\
‘A
with A and G being Lame's constants. We now multiply 1
o)
equation (4.5) by ¢ and integrate over the domain. Similarly, %
we multiply equation (4.6) by ¥y, integrate over the domain -
"l
and add the resulting equations to obtain: o
( (L. (u,v)¢ + L _(u,v)ylda = 0. (4.9)
Ja v Y
Integrating twice by parts, as explained in Chapter 2, we
obtain:
3
-
+ 3
(L (¢,v)u + L _(¢,yp)v]aAa=- \ [T (¢,¥)u + T _(¢,v)v]ds N
A X Yy X y t:
()
I‘+I‘E
=
+ [Tx(u,v)¢ + Ty(u,v)w]ds =0 (4.10) -
I‘+l"E ;
A |
where:
pl
J3u v du du o~
Tx(u,v)= (K+W)nx+G(ﬁ-nx+a—y-ny) L
#)
o
Ju IV -
+ G( % "x * 3x P ) (4.11)
au oV oV Y
Ty(u,v) = = 3§-) ny + G( 5 0, + 3y ny)
+6( ¥+ g (4.12)

3y 'x T 3y "y
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the case where only tractions are specified on the boundary
the area integral in (4.10) vanishes, since the extraction

o functions satisfy equilibrium everywhere, and equation

L o an e

“»
bl
(4.10) becomes:
-~
E.
- - [T (6. ¥)u + T (6,¥)v]ds + [T, (u,v)
I - T+T T+T

+ Ty(u,v)wlds = 0 (4.13)

The integration will be performed separately on the
circular arc Pe and the rest of the boundary I'. On the
part of the boundary, where tractions are specified, .

Tx(u,v) and Ty(u,v) are known:

Tx(u,v) = X (4.14)

Ty(u,v) =Y (4.15)

[

On the part of the boundary, were displacements are speci-

fied, ¢ and y vanish. The second integral in (4.13)

T T T Y T T
..."'
A

evaluated around the contour I' can then be written:

S [Tx(u,v)¢ + Ty(u,v)w]ds = 5 (X¢o + Yy)ds (4.16)
T T

1,




This integral can be evaluated numerically from the data of

the problem. The integration around the circular arc

E:: yields an expression of the required stress intensity
“»
i factor. On this arc I‘s the displacements u and v are given
\ by equations (4.1) and (4.2). Their derivatives will be of -1
the form: ]
‘ K,=1 K,=1 g
du 1 2
. -k T le(e) + K, I Usye(8) + ... (4.17) ]
v K.=1 Ka=1
,i. 5y " fL T U, (8) + Ky x Upy (8) + ... (4.18) _1
= Ky=1 Ka=1 :
5 av _ 1 27 v, (8) + ... (4.19) 1
: % K, T le(a) + K,r 2x -
Kq=1 K=l
i v 1= 2
3y K, vly(e) + K, r sz(e) + (4.20)

- o
TR AT

-
7
]

In view of (4.11) and (4.12) and the fact that on the

. circular arc I‘e the outward normal n has components

i n, = -cos 8 (4.21)
n, = -sin 0 (4.22)

X Yy

the tractions Tx(u,v) and Ty(u,v) can be written in the

form:

K,=1 Kz-l
r Tx2(6)+...(4.23)
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Kl-l K_=1

= 2
Ty(u,v) Kl r Tyl(e) + K2 r Ty2(6)+ c..(4.24)

By noting that on Fs=

ds = r 46

(4.25)

we can write the second integral in (4.13) around FE in

the form:

S[Tx(u,v)¢ + Ty(u,v)w]ds = K, M, + K,

+ K3 M3(r) + K4 M4(r)

a
M, = S-a[Txl(G) ¢(8) + Tyl(B)W(G)]de

Mz(r)

(4.26)

(4,27)

-Kl+|<2 a
My(r) = r [sz(e) $(8) + 'ryz(e) v (8)]de

-Q

Kl a
My(r) = r [Txl(e)cpb + Tyl(e)wblde

-Q

-Q

K Qa
2
M4(r) = r S [sz(e)cpb + Tyz(e)wb]de

(4.28)

(4.29)

(4.30)

The higher order terms are disregarded in what follows,

since two terms are sufficient for the discussion of all

the relevant issues. We now observe that Ml is independent
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of the radius r. This is the reason that the extraction

I |

functions are chosen as the eigenfunctions corresponding
to the negative eigenvalue =Ky Otherwise Ml would also ﬂ
depend on r. It can be seen that M,(r) and M, (r) vanish |
as r approaches zero.

in view of (4.3) and (4.4) the derivatives of the

extraction functions can be written in the form:

-1 -

%% -y 1 @ () + o (4.31) -4
%% - r-Kl.l @y(e) + ¢by (4.32)
%% - r-Kl-l R CYRER (4.33)
_g% . r"‘l’l v (0) + vy (4.34)

where ¢b2' ¢by' wbx' wby are aéain smooth functions. The

tractions. corresponding to displacements ¢ and y can be

written in the form: -
-Kl-l
Tx(¢,W) = r x¢w(8) + xb (4.35) J
-Kl°l
TY(¢,w) = r Y¢w(e) + Yb (4.36)
with xb and Yb being again smooth functions. The first {1

integral around Te in (4.13) can then be written as:

............................
---------------------------------




8 2 ]

S [T (6 ¥)u + T (6,4)v]ds = K} M. + K

M_(r)
r 1%s 2 6
€
+ K2 M7(r) + Kz Ma(r) (4.37)
]
‘ where:
a
Mg = -a[x¢w(e) Ul(e) + Y¢w(6) vl(e)]de (4.38)
-K l+l< 2 [o ]
Mg(r) = r _a[x¢w(e) u,(8) + Y¢w(6) vz(e)]d¢
(4.39)
K1+l Qa
i M,(r) = _a[xb U, (8) + ¥ vl(e)]de (4.40)
<2+l a .
Ms(r) =r _a[xb Uz(e) + Y vz(e)]de (4.41)

We observe that expression MS is also indpenedent of r.

The choice of the extractions functions ¢ and y as the
eigenfunctions corresponding to the negative eigenvalue =<1
makes both MS and M6 independent of r. Since xb and Yb

are smooth functions, expressions M7(r) and Ma(r)~vanish in
the limit as r approaches zero. Expressions M,(r) and
Ms(r) require further consideration. 1In the case where <4

is the first eigenvalue, that is Ky < Koo then the guantity

(-<l+<2) is positive and both Mz(r) and MG(r) vanish as r

...............................
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tends to zero. However, if a higher order stress intensity
factor is extracted, say Kz, the exponent of r in expres-
sions Mz(r) and Ms(r) will be negative. These expressions
then become unbounded as r tends to zero, unless the
integrals with respect to & vanish. It will now be shown
that they indeed vanish.

Consider the body shown in figure (4.4), which is
bounded by the straight segments Pz, F4 on the faces of
the notch angle and the circular arcs rl, T3 of epicentral
angle 2o centered at the notch tip. Applying equation
(4.13) for this body with u, v as the second terms of (4.1)
and (4.2) respectively and ¢, y as the siﬁgular terms of

(4.3) and (4.4) we obtain:

-<l+<2-l
- r [X¢w(6) U2(6) + Y¢w(6) Vz(e)]rde
T1+F3
-Kl+K2-l
+ r [T,o(B)0(8) + Tyz(e)W(e)]rde =
Fl+F3 (4.42)

Both integrals vanish on the straight segments Fz, T4
because the traction components sz, Ty2 corresponding to
the eigenfunctions, as well as the tractions components

Y corresponding to the extraction functions vanish

Xou' You

on the faces of the angle.
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Figure 4.4
Annular ring with a cut

(epicentral angle = 2a)
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We now consider a larger annular sector with the same >

inside diameter but a larger outside diameter, where the

*
arc F3 is replaced by F3 . We then have:

—K1+K2—l -
[x¢w(e)02(e) + Y¢w(6)V2(6)]rde T

-K1+K2-l
+ r [sz(e)¢(e) + Tyz(e)W(e)]rde =0
*

. +T (4.43)

Therefore:

_ -K1+K2-l
r [x (e)uz(e) + Y (e)vz(e)rde

oy oy
I's
-Kl+K2-l B
+ r [sz(e)¢(e) + TYZ(S)W(G)]rde = ‘
I's
-K1+K2—l f
= - r [x¢w(e)02(a) + Y¢w(8)V2(6)rde S
r3* :
-K1+K2‘l
+ r [sz(e)¢(e) + Tyz(e)W(e)]rd6(4.44)
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au K.=1
1/2 I _ I _ = - - -
2C G (27) = =K T KI[(CIB kK -l)cos (k ~1)¢
- ZKICICOSGCOS(KI-2)6 +
+ 2CIsinesin(KI-2)e] (5.18)
ou K.=-1
1/2 I _ I _ — - . _
ZCIG(ZW) 5y R, T KI[ (CIB €q 1)51n(KI 1)8 +

+ ZCI(KI-l)COSGSln(KI—Z)e] (5.19) ‘L
v Ko=1
172 °V1 I s _ _
2CIG(2v) =5 =K T KI[(CIB+KI+1)=ln(KI 1)6
- ZCIsinecos(KI-Z)el. (5.20)
‘ v K.=1
1/2 I I
2C,G(2m) T K; T »<I[(c113+.<1+1)cos(.<I 1)8 + =
+ ZKIC151n651n(KI-2)e -
- 2CIcosecos(KI-2)e] (5.21)
-
PRSI e e T T e T T e L e T




Subscripts I and II refer to modes I and II respectively.
The stresses in the Cartesian system (x, y) can be

expressed through the transformation formulas:

a, = 0. cosze + dg sin28 - 2 T.9 sin® cosf (5.13)

g = a sinze + a cosze + 2 T sin® cosH (5.14)

y r 8 ré :

T = (0_-a_.)sind cosf + T (cosze-sinze) (5.15) i
Xy r '8 re )

The edges of the notch are free from tractions with
stresses g and Tro being zero there. On any other plane
through the body with an outward normal n = (n, ny) the
tractions are given in terms of stresses through the

transformation law:

X = nx cosa + Txy sina (5.16)

Y = o_ sina + 1, cosa | (5.17
b4 Xy )
An alternative way of obtaining expressions for the
tractions is to obtain first the derivatives of the

displacements and then express the tractions in terms of

these derivatives as follows:
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K_ =1 i
1l/2 _ I . =
CI(Zn) Toor = K; T KI[(KI+1)Sln(KI+l)9 + -
+ CI(KI-l)Sln(KI-l)e] (5.7) 'ﬁ
1 g
1/2 - . “1I :
CII(Zw) Oogr = Ky T [KII(KII+1)Sln(KII+l)9 +

+ CIIKII(KII-B)sin(KII-l)e] (5.8)

-1 >

1/2 _ K1z . o

C;q(2m) Oggp = Kyp T KII(KII+1)[Sln(KII+l)9 + ﬂ
+ CIIsin(KII-l)e] (5.9) .

3

-1 l

1/2 . “11 j

CII(Zw) Tra1T KII r KII[(KII+l)cos(KII+l)6 + f
+ Crplepo-llcos(c ,-1)8]  (5.10) =

|

W

where &
-

cos(k._.+1l)a (c.,+1l)sin(xk_+1)a .

C - - I = - A 1 (5 ll) '(
I cos(KI-lT& (KI-lféin(kI-l)a : |
il

o

c . s%n(KII+1)u L (KII+1)COS(KII+1)G (5.12) ’
II sxn(mII:I)a (KII—l)cos(KII-ITE ﬂ
|

J

N

)
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[ 4
1/2 I — - -
2GCI(2n) K. [(CIB K1 1) cosx .8

- ZKICICOSGCOS(KI-I)G] (5.1)
K
1/2 . _ I . )
2GCI(2ﬂ) vy = K; T [(CIB+KI+1)SanIG
- ZKICISLnOCOS(KI-l)e] (5.2)

1/2 “11 _
C I(Zw) u., = K. ¢ [(CIID K

11 11 -l)sink__96 +

II II

+ 2 4C Istnecos(KII-l)e] (5.3)
K
1/2 11
c I(2n) vy = Kip ¥ [ (CIID+KII+l)cosKIIG
- 2 ,C IIcosecos(KII-l)e] (5.4)
K.=1
1/2 I
~ B -
I(21r) a1 R, T [KI(KI+1)COS(KI+1)6 +
+ Cg Kq (x —3)COS(K -1)e] (5.5)
K.=1
1/2 - 1
c (2m) Ogy = Ky T KI(KI+1)[COS(KI+1)6 +
+ CICQS(KI-l)e] (5.6)
PRI c.;,L;;.fffif#:L;}“;“L“L)ﬁ*i:?;}”}"}“;“}*Z"L*S*34;\§=$\j:;wj\;n;nj\;ujigéijggj';4:5:';{;]}]{;3;‘;;
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5. THE MODEL PROBLEM

The numerical performance of the extractior method
will now be established through numerical experiments
based on a model problem. The model problem contains a
reentrant corner and a solution is selected which satis-
fies (1) the Navier equations and (2) the boundary

conditions at the reentrant corner. On the other

boundaries the tractions corresponding to the exact solution

are specified. 1In this way the exact solution has the
main characteristics of typical practical problems (i.e.
ones with reentrant corners). It is therefore suitable
for benchmark studies. No problem with reentrant corners
and possessing an exact solution has been reported in the
literature. 1In all the reported solutions a numerical
approximation is made at some stage, in which the error
is unknown. Thus precise convergence studies cannot be
performed.

Let us consider the two-dimensional domain of
infinite dimensions with a notch of total solid angle
equal to 2a. As it was explained in Chapter 3 the stress

and deformation fields are given by series expansions in

which the typical terms are as follows:
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. The same will happen when more terms are kept in the

expansion. Equation (4.76) then reduces to:

- S [Tx(¢,w)u + Ty(¢,¢)v]ds + S[Tx(u,v)¢ +

E
re Pe
4
+ ry(u,v)w]ds = iil Ry Njs (4.82)
The other terms in equation (4.13) are not affected and
e the analogous equation of (4.50) is now:
4 -~ -—
iil Ky N, = | Xods + | Yvas -\ [T (6,¥)u +
. T r r
+ Ty(¢,w)v]ds (4.83)
! By choosing in turn the extraction functions to be the

eigenfunctions with the negative eigenvalue =< and
corresponding to the eigenfunctions that have as stress

- intensity factors the constants KZ' K3, K4 respectively
in equations (4.54), (4.55), we obtain three more equations

of the same form. We have then a system of four equations

in four unknowns to determine Kl’ Kz, K3, and K4.




where:

M. = I K, N,. (4.77) .

Z
[N
s
1]
\-’-\
L
a1

hij(e)de (4.78)

We have shown that the integral in (4.78) must be indepen-
dent of r. Since the functions c(r), s(r), cl(r), sl(r) i

are linearly independent, this can happen only if:

Mz = M3 = M4 = Ms =0 (4.79)

So far only one term in the expansion has been considered.
The inclusion of further terms will give rise to an o

expression of the form:

« v e
Bl B

Ml + c(r)M2 + s(r)M3 + cl(r)M4 + sl(r)M5

SR T
i

]
“3 3 “3 3

N +r c(r)M6 + I "s(r)My + ¢ Tcy(riMg + ¢ s, (r) M 5
> (4.80)
o~ 4
il as the right-hand-side of (4.76). It can be shown that
- ' K K K s
b the new functions of r (c, s, Cyr Sy0 T 3 s, r 3 Cyr T 3 sl) )
Sj are also linearly independent. Thus expression (4.79) can

be independent of r only if:

M, = 0 i=2, ...,9 (4.81)
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Fi(r,e) = gli(e) + c(x) gzi(e) + s(r) g3i(6)

+ cl(r) 941(6) + s,(r) gg;(8) (4.73)

where now c(r), s(r), cl(r), sl(r) are functions of r that
are linearly independent. The other three products

Ty(u,v)wds, T, (¢,¥)xds and Ty(¢,w)vds are of the same

:?; form and we can write for the contour T_
‘ v - [T (¢,¥)u + T (¢,y,v]ds + [T (u,v)¢ + T (u,v)ylds =
: . X [4 y 14 14 X ’ y ’ w
- 4
. . = iil Ki Hi(r,e)dﬁ (4.74)
;{j where: ’
n Hi(r'a) = hli(e) + c(r)hZi(e) + s(r)h3i(e) +
+ cl(r)h4i(6) + sl(r)hSi(e) (4.75)
Integrating:
- - S [Tx(¢.!u)u+'ry(¢,wv]ds + S[Tx(u,v) ¢+Ty(urv)w]ds =
:E$ re Te
:E' M, + c(r)M2 + s(r)My + cl(r)M4 + sl(r)M5 (4.76)
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4
Tx(u,v)q;ds = .2 Ki Fi(r,e)de (4.66) i
i=] : -
where ﬁ

Fi(r,e) = Gli(e) + C(r)Gzi(e) + s(r)G3i(e) +

+ 2216, (0) + s2(r)Gg, (8) + c(r)s(r)Ggy, (6)

(4.67)
By denoting:
cl(r) = cos(2x,inr) (4.68) ig
sl(r) = sin(ZKZRnr) (4.69) :ﬂ
we can write: f&
cz(r) = cos?(k.inr) = = [e, (r)=-1] (4.70) 14
2 2" :
s2(r) = sin®(x,thr) = 3 [c; (r)+1] (4.71) A
]
c(r)s(r) = cos(Kzlnr)sin(Kzlnr) = % sl(r) (4.72) R

and rearrange (4.67) to obtain:

.........
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Ka=1
T (u,v) = r 1 R (T, 1, (8)+c(D)T,;,(8)+s(x)T, 5(0)] +

i

¥ k=1
- +r Kz[Tx21(6)+c(r)Tx22(9)+s(r)Tx23(e)]
v
N Kl-l
. +r K3[Tx3l(e)+c(r)Tx32(e)+s(r)Tx33(e)] +
' - xl-l
; +r K4[Tx4l(6)+c(r)Tx42(6)+s(r)Tx43(6)] (4.62)
Ty(u,X) = r Kl[TY4(e)+c(r)Ty12(e)+s(r)Tyl3(6)] +
Kl-l ;
- 17 KT 5 (8)4c(x)T 5, (8)+s(X)T 55(0)]
'l
Kl-l
+r K3[Ty3l(6)+c(r)Ty32(e)+s(r)Ty33(6)] +
! a Kl-l
o +r Kany4l(6)+c(r)Ty42(e)+s(r)Ty43(6)] (4.63)
: i -Kl—l
T (0,¥) = [x,(8) + e(x) X,(8) + s(x) X4(8)](4.64)

-x.=1
T 0w = x 1LY (8) + o) Yy(8) + s(x) ¥y(0)](4.65)

We are now in a position to evaluate the integrals

appearing in (4.13) around the circular arc FE. The

{ product T (u,v)¢ds can be written as:
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“1
+r x3[v3l(e) + c(r) v32(e) + s(r) V33(6)] +

K1

+r K4[V41(°) + c(x) V42(6) + s(r) V43(6)]
(4.55)
where:
c(r) = cos (Kzlnr) (4.56)
s(r) = sin (Kzznr) (4.57)

The corresponding extraction functions for extracting Kq

are: .
¢ = r [¢l(e) + c(r) ¢,(8) + s(r) ¢3(e)] (4.58)
Yy = r [wl(e) + c(r) ¥,(8) + s(r) w3(e)] (4.59)

Since
= [cos(k.,nr)] = = « 1 sin(x,%nr) (4.60)
r 2 2 2 ‘
iL‘[sin(K Lnr)] = « ™! cos (k. &nr) (4.61)
ar 2 2 2 *

the corresponding tractions can be written in the form:

ok

Le‘a's

aca
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As it was explained in the previous chapter, to the posi-
tive real part there correspond four independent eigen-

functions, each with its own stress intensity factor and a

K

singularity of the order r 1. The smooth part also

contains terms of the form:
sin (Kzlnr), cos(Kzznr) (4.53)

which means that the eigenfunctions can be written in

the form:

K
1
u=r Kl[Ull(e) + c(r) Ulz(e) + s(r) 013(9)] +

K
+r 1 Kz[Uzl(e) + c(r) Uzz(e) + s(r) 023(6)]
K1

+r K3[031(e) + c(r) 032(6) + s(r) U33(6) +

K
+ r 1 K4[U4l(e) + c(r) 042(6) + s(r) U43(e)]

(4.54)
K1

v=or Kl[vll(e) + a(xr) V,,(8) + s(r) Vl3(6)] +

K
+r TRV, (8) + elr) Vyy(8) + s(r) Vyy(8)]

............
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Equation (4.13) then becomes:

K, (-M +M) = S X¢ods + S? ds - S [Tx(¢.w)u +
r T r

+ Ty(¢,W)V]ds (4.50)

et ) -1 Y
R - e v .
IS PR .,, . o2 4

When displacements are prescribed on some part of the
boundary, the area integfal is also present and (4.50)

becomes:

‘l'vw‘v“v.v.-'
o e 00 e

Kl(-Ml+M5) = S AS[LXW.W)x + Ly(¢,w)VJdA +

LT MM N RONG
PR R PR o P aT s

+ S X¢ds + S Yyds - S [Tx(¢,w)x + Ty(¢,W)V]dS
T r r (4.51)

‘In order to obtain an approximation to K, we substitute in

1

(4.50) or (4.51) u = Urp and v = Vep:

The case of complex eigenvalues:

Let us now consider the case of a pair of complex conjugate

eigenvalues in the form:

K =, + 1 K2 (4.52)

...................................
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or:
* *

*
where ry is the radius of the arc P3 and Iy is the radius
*
of the arc F3 . This means that the expression (-M2+M6)
takes the same value for any value of the radius r. By

writing this expression in the form:

- K a -K ,+K

M, + M, =1 T 2S F(e)de =r ' 2¢ (4.46)
-Q

it is obvious that this can be independent of r only if

the integral is zero (the eigenvalues Kis Ko are distinct),

therefore:

-M, + M = 0 (4.47)

When more terms are kept in the asymptotic expansion the

corresponding expression will be:

=K . +K -K 4 K | -K . K
+M = T 2¢c 4+ 1 3C3+r 1 4c:4+...

-M 6 2

2
(4.48)

where the eigenvalues Kor Kqs K, are all different from Kqe

This expression can be independent of r only if:

C2 = C3 = C4 = 0 (4.49)

consequently, we obtain again equation (4.47).
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au Keo=1
172 %%11 _ II L
2CpG(2m) =% - K1 T <l (Cpg=<p=1)

SLn(KII-l)Q + 2 CII(KII-l)
sznecos(KII-z)e] (5.22)
Ju Keoe=1
172 711 _ II o
ZCIIG(Zn) 5y RKyp T KII[(CIID Keq 1)

cos(KII-l)e - ZKIICIISlne

sin(k ;=2)8 + ZCIICOSBCOS(KII-Z)S]
(5.23)

ov Keo=1
11 _ 11 )
T ¢ <pgl=(CpD+ep*1)

1/2
ZCIIG(ZW)
-COS(KII-l)e - ZKIICIICOSB

cos(KII-Z)e + 2C1151n651n(<II-2)e]

(5.24)
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3V K -l ia
1/2 I1 _ II
ZCIIG(zw) 5y Ryp T KII[(CIID+KII+1)
sin(KII-l)S + ZCII(KII-l)cose
sin(KII-Z)e] (5.25) .
Ju v Jua v
- I I I I
xI = (A+2G) % Py + A ¥ T2 n, + G( ¥ T2 + T )ny
(5.26)
“
v du u v -
I I I I =
YI = (A+2G) 337 ny + A 5% ny + G( —37 + 3% )nx .
(5.27) 2
su av au ov
1I 1I II 1I =
xII = (A+2G) T Px + A 3 n, + G( Ty + e )ny .
(5.28)
dv Ju Ju v N
II II II Il
YII (A+2G) Ty ny + A ny + G( 5y % )nx i
(5.29) R
Let us now cut out from the infinite domain a body 'j

of finite dimensions which contains the notch, but is

otherwise arbitrary. If we apply to this body the

tractions specified by (5.26) to (5.29), then the state

of stress and deformation will be given by (5.1l) to
t' (5.10) in accordance with the uniqueness theorem of T
i elasticity. Since the body was in equilibrium when

embedded in the infinite domain, it must be in equilibrium

. .
I
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under the tractions on the cut-out surface. When these
tractions are then applied as external lcading, this
loading is self-equilibrating. The displacement boundary
conditions that have to be enforced are then the ones
necessary to prevent rigid body motions. 1In the problems
that we analyzed we chose to fix both displacements’ at
the notch tip and the u displacement at the upper right
corner.

We can then predetermine the singular elastic field
that exists throughout the body by arbitrarily choosing
the generalized stress-intensity factors. The applied
tractions necessary to induce this field are then given
by (5.26) to (5.29). Any number of terms can be retained
in the expansion. Thus we can create problems for which
the exact values of the generalized stress intensity
factors of any order are known. In the problems studied
herein only the first terms in the expansions were kept
and the stress intensity factors KI and KII were chosen
to have an exact value of unity. The combined loads
corresponding to mode I and mode II were applied in each
case. Three problems were analyzed with a total solid
angle of 360, 330 and 270 degrees respectively as shown
in figures 5.1, 5.2, 5.3. The last case is one that
occurs very frequently in practice representing a right

angle cut-out (L-shaped domain). The results are listed
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Element mesh for model problem with a solid angle of 360°
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Element mesh for model problem with a solid angle of 330°
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Element mesh for model problem with a solid angle of 270°
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in tables 5.1, 5.2, 5.3 and are shown graphically in

figures 5.4 through 5.12. The theoretically predicted
rates of convergence are also shown in the figures. The
rate of convergence in energy is equal to twice the
smallest eigenvalue, which is the first mode I eigenvalue.
For the stress intensity factors the theoretical rate of
convergence is equal to twice the corresponding eigenvalue,
since the tractions corresponding to mode II have no
influence on the mode I stress intensity factor and vice
versa. It can be seen from the figures that the theore-
tical rates of convergence are verified numerically and
even for the coarse mesh chosen a relatively small number

of degrees of freedom is required to give answers within

required engineering accuracy (usually 1 to 5 percent).
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Energy convergence for model problem of Figure 5.1

(solid angle = 360°)
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vicinity of reentrant corners and therefore can be
utilized in research in the area of crack initiation.
Direct methods for stress computation, whether based on
the finite element method of other numerical methods,

have the disadvantage that in the vicinity of singular
points they incur large errors, therefore they are not
well suited for correlation between experimental and
analytical data. 1In order to realize the full benefits

of the extraction method, extensive experimentation must
be performed with the goal to determine relationships
between elastic stress field parameters and failure
initiation events. Preliminary experiments with brittle
epoxy resin specimens were conducted. Monotonicity was
found to exist between the stress intensity factor and
failure initiation for a wide range of solid angles. Once
theories of failure initiation, based on elastic stress
field parameters, are developed and proven the extration
method presented herein will provide a basis for the design,

analysis and certification of structures with geometric

singularities.

I
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7. SUMMARY AND CONCLUSIONS

The generalized influence function method for the
extraction of stress intensity factors in plane elasti-
city was evaluated from the point of view of its potential
utility in engineering applications. The method was
implemented and applied in conjunction with the p-version
of the finite element method. The method yields the
amplitudes of all terms in the asymptotic expansion of
the linear elastic field in the neighborhood of sharp
corners and/or sudden changes in boundary conditions.

In this investigation only reentrant corners with free-
free boundary conditions were considered.

A model problem for which the exact solution is
known was used to test the implementation and for
evaluating the method. Convergence studies were performed
and the theoretically predicted rates of convergence were
verified numerically. The method was found to be accurate
and reliable. Even with coarse meshes and relatively small
number of degrees of freedom, it was possible to compute
the stress intensity factors to within a few percent rela-
tive error.

The engineering importance of the extraction method
presented herein is that it provides good gualitative

and guantitative understanding of the stress £ield in the
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S e T U e TS T, T e e e

Results of experiments

M T e e et |
e S

First Specimen dimensions (mm) Computed K;
Solid |Eigeavalue Failure Y
Angle (A) Specimen | Width | Ligament | Thickness| Load (N) (MPa ot )
R
360° 0.5 2.5 38.1 28.4 3.2 657 ., 0.805
1.5 38.1 28.6 3.3 804 | 0.849
1.6 38.1 28.6 3.3 824 ! 0.882
330° 0.5015
2.1 38.1 28.6 3.3 78S 0.839
4+ 1.3 22.2 3.2 647 0.863
. 3.4 8.1 28.7 3.3 1491 1.645
300° 0.5122 3.5 38.1 28.7 3.3 1549 1.724
4.1 38.1 28.7 3.3 1461 1.614
3.1 38.1 26.7 3.3 1451 1.955
270° 0.5445 3.2 8.1 26.7 3.3 1383 1.841
3.3 38.1 26.7 3.3 1461 1.968
4.2 38.1 29.0 3.3 1648 2.602
240° 0.6157 4.3 38.1 29.0 3.3 1608 2.530
4.4 38.1 29.0 3.3 1589 2.509
1.1 38.1 28.2 3.3 352 9.073
1.2 38.1 28.2 3.3 3364 8.800
210° 0.7520
1.3 38.1 28.2 3.3 3609 9.463
4.5 38.1 28.2 3.2 3383 9.315
B R R B R




.....

AR N AN AR S s AL DAL % A AL AL A Al AN At e A A A I e B A’ St - Sha e~ S

e e,

-145-

4.0' "‘

4.0

Figure 6.2

Typical test specimen
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Eighteen speciments were tested, a typical specimen
is shown in figure 6.2. The dimensions of the specimens,
the failure load and the stress intensity factors at
failure (K;) are given in Table 6.1. The dimension of

*
K, depends on the strength of the singularity, which is

I

the corresponding eigenvalue. Due to the brittleness of
the material, the failure initiation and failure events
occured at virtually the same load level. The experimental
results are plotted in figure 6.3. Monotonicity of the
critical value of the generalized stress intensity factor
K; is observed. It is hoped that future experimental work
will establish precise failure initiation criteria in

terms of generalized stress intensity factors and clarify

their range of applicability.
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the range of solid angles within which the hypothesi; is
valid. In the context "valid" is meant in the sense:
"sufficiently accurate for the purpose of predicting
crack initiation in practical applications”.

This is one of several possible hypotheses. An
extensive amount of experimental work is required in order
to identify the minimum number (and kind) of material
parameters that need to be measured in order to be able
to predict crack initiation events with about the same
accuracy and reliability that crack extension is pre-
dictable today. The ability to compute with high accuracy
the elastic stress field parameters for any sharp notch
configuration allows alternate hypotheses to be made and
makes this a very promising research area.

The material used for the experiments was a two
component epoxy system: 83 percent Shell Epon 828 resin,
17 percent Shell Epon curing agent Z. Modulus of elasti-
city of this material was 4.3 GPa and Poisson's ratio
0.3f-0.39 (based on ultrasonic measurements). The resin
was cured 24 hours at room temperature and 12 hours at
65 degrees Ce%éius. The equipment was an INSTRON testing
machine with a 500 kgf load cell. The test arrangement

is shown in figure 6.1.

-
R & W U G W

s T 2 -




I U ORI IR SR 0 s Y St il S Al S e O RIC R S T AW S JC S SV GUR Sl A v st g Ty——

. O R A R A

-141-

6. PRELIMINARY EXPERIMENTS -
A number of preliminary experiments were performed =
in order to obtain baseline data for the hypothesis that, B
in the case of sharp reentrant corners, crack initiation 3
is controlled by the intensity of the stress singular )
term. .
This hypothesis implies that crack extension and D
crack initiation are not fundamentally different phenomena; ”
both events can be correlated with the intensity of the é%
stress singular term at the reentrant corner, provided .
that the solid angle is not much smaller than 360 degrees. ﬁ
Of course, it is very likely that, in the case of smaller -
solid angles, the intensities of the higher order terms B
may also have to be considered. Ez
Assuming this hypothesis to be valid, one would B
expect the intensity of the stress singular term at -

failure initiation to be some monotonic function of the

solid angle. Of course, monotonicity itself is not

: sufficient evidence that the hypothesis is valid. A number :ﬂ

MNANNL TS A A AN N LA | SN
.

of carefully designed experiments involving various stress o
fields must be performed and the outcome (i.e. the crack
initiation event) successfully predicted from baseline

data, representing critical material stress intensities,

8
in order to establish the validity of the hypothesis and _J
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Convergence of KII for model problem of Figure 5.3

(solid angle = 270°)
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Convergence of K. for model problem of Figure 5.3 )

I
(solid angle = 270°)
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Convergence of KII for model problem of Figure 5.2

(solid angle = 330°)
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