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Foreword

The Office of Naval Research, the National Research Council, and
the University of Michigan jointly sponsored the Fourteenth Symposium

on Naval Hydrodynamics, which was hgéﬂ_iﬂ_ﬁgg_égggx‘_ﬂigpigan, on
August 23-27, 1982, An international Symposium of this scope requires
careful planfiing, intense effort, and extraordinary cooperation among
sponsors, organizers, and participants. The success of the Ann Arbor
symposium reflects positively on the efforts and dedication of a
larger group of people than can be acknowledged here.

The technical program for the symposium consisted of eight ses-
sions focusing on four areas of current interest to naval hydrodynam-
icists: propeller-related problems, cavitation, nonlinear free-surface
problems, and viscous fluid problems. The authors of the thirty-two
papers that were presented were drawn from the international community
of ship hydrodynamics research scientists, with eleven countries rep-
resented on the technical program. In total, more than twenty coun-
tries were represented at the symposium.

As previously stated, many people contributed in many ways to the
success of the Fourteenth Symposium on Naval Hydrodynamics. It is not
possible to guantify the value of each contributor's input, but cer-
tainly much credit must go to Professor T. Francis Ogilvie of the
Massachusetts Institute of Technology, who served as chairman of the
Program Committee and spent many hours ensuring an outstanding group
of technical papers for the symposium. Professor Ogilvie was ably
assisted by the other members of the Program Committee: Dr. Choung M.
Lee of the Office of Naval Research, Professor George F. Carrier of
Harvard University, Mr. Lee M. Hunt of the National Research Council
Naval Studies Board, Mr. Ralph D. Cooper of Flow Research Company, and
Professor Michael G. Parsons of the University of Michigan. Professor
Parsons, who is chairman of the Naval Architecture Department at the
University of Michigan, and Professor Robert F. Beck of that depart-
ment were responsible for the local arrangements at Ann Arbor and did
an outstanding job in providing a pleasant and constructive scientific
and social atmosphere for the symposium. They were assisted by Mrs.
Virginia Konz and Ms. Jeanette Vecchio from their administrative
staff. A successful symposium would not have been possible without
the overall coordination, planning, and administration provided by Mr.
Lee M. Hunt, executive director of the Naval Studies Board, and his
staff, Mrs. Elizabeth A. Lucks, Mrs. Mary G. Gordon, and Mrs. Judy
Sul. Dr. Choung M. Lee provided enthusiastic and dedicated support
for all phases of symposium planning and organization and will remain
as the focal point at the Office of Naval Research for future symposia.

Finally, a special and personal expression of gratitude is extend-
ed to Mr. Ralph D. Cooper, to whom this symposium was dedicated, for
his advice, counsel, and help, which has been freely given and inval-
uable.

Robert Whitehead
Group Leader, Fluid Dynamics
Office of Naval Research
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Introductory Address

Rear Admiral LELAND S. KOLLMORGEN, USN

On behalf of the Office of Naval Research, I am pleased to join
in the welcome of participants to the Fourteenth Symposium on Naval
Hydrodynamics.

It is gratifying for us at ONR to have once again worked with our
friends at the National Academy of Sciences in cosponsoring and orga-
nizing this symposium. It is an association that began with the first
symposium in 1956 and is recognized as effective and mutually produc-
tive.

I take special pleasure in expressing my appreciation to the third
cosponsor and host to the symposium, the University of Michigan, for
providing such hospitable surroundings—--the sun is scheduled for early
this afternoon.

The University of Michigan in general and the Naval Architecture
Department in particular play a major role in the Navy's pursuit of
excellence in hydrodynamics research. The Office of Naval Research is
a major supporter of academic research and graduate education both
through its contract research program and by such direct means as the
ONR graduate fellowship program. It is significant that naval archi-
tecture is included as one of the selected fields of study for the
fellowship program. It is appropriate then that we join forces in the
organization of this symposium to disseminate the results of the latest
research.

Since the first symposium, the international nature of the bien-
nial series has been consciously and effectively maintained. The
meetings themselves have been held in six countries other than the
United States. Speakers at the symposia have been invited from wher-
ever outstanding research in naval hydrodynamics is being performed.

This meeting is no exception, with speakers from nine countries
other than the United States and participants from a total of twenty-
three countries. This international hydrodynamics research community
is in keeping with the true international nature of the sea upon which
the world depends.

Men have challenged the sea for many centuries. Much of early
science dealt with the sea, navigation, and commerce; man's curiosity
early on focused on putting men to sea on ships. Virtually all of the
significant advances in ship hydrodynamics research for the past three
decades have been reported at these symposia, which have served as the
source of inspiration for new and innovative ideas and concepts.

As an example, two symposia in this series have had as a theme
unconventional high-performance craft such as hydrofoils, air cushion
vehicles, surface effects ships, and small waterplane area twin hull
(SWATH) ships. Operational and prototype vehicles have been developed
on the basis of the results of research presented at these meetings.
Further, the application of modern numerical methods to the field of
ship hydrodynamics has been fostered by your participation, and other
meetings have led directly to improved performance and reduced fuel
consumption for ships and weapons through drag reduction.

1

.\.

A S PRI S TN
LURRNCI DA O S DL YA QPR TP G LA SR, .55 T, 1

[

v
2L
.ty

F L

1
v
]

%

¢

P S

e
. ‘_‘n
A
S
he

I

‘

.
€2 _B_",



b

S,

DR

P )
AP

4 oy

T T,
For »
AR

A\

RN,

T
.
o L3

»
.

NYASST

M WA )

_ el

we can add bulbous bows, bow flares, and high-performance propel-
lers to the list of advances that were reported here in their early
stages of development. I am reminded also that the controllable re-
versible pitch propeller on our Spruance Frigates is a Danish design.

Although we have learned much, all of the participants at this
meeting realize that there is much yet to be done.

New and increasingly stringent demands are being placed on the
Navy's ships, submarines, and underwater systems. The explosive costs
of energy make it even more imperative that our ships operate effi-
ciently in every phase of their operation to conserve fuel and reduce
costs. Advances in many other technologies increase the pressure for
yet better performance of both our vessels and our weapons.

The performance of ships in high sea states and inclement weather
is a continuing challenge. We must be able to accurately project per-
formance before our ships are actually built and put to sea. Because
of the wide variation in sea conditions around the globe and the
importance of accurate wave measurements, it is extremely important to
have open international exchanges such as those that occur in these
symposiums. These exchanges are beneficial to all participants.

In concert with the changing nature of science and our nation's
needs, the Office of Naval Research itself is changing, as it must to
remain a viable and responsive supporter of the operational Navy's
mission of national defense. There is ever-increasing pressure to
focus research in areas that promise real payoff and progress.

Our research funds must be used carefully to continue to provide
a solid foundation of basic research that is relevant to the opera-
tional needs of the Navy. This is as true for hydrodynamics as it is
for all other areas of science.

I am constantly aware of our inability to progress in various
areas because of our lack of fundamental understanding of physical
phenomena--three~dimensional flows among them. I am pleased to see a
paper on hull-propeller interaction and hopeful that a new generation
of computers will make these complex problems more tractable.

Please accept my best wishes for a productive symposium and suc-
cess in your future research endeavors.
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Introductory Address

- ROBERT A. FROSCH
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National Research Council

>, I am delighted to welcome you to the Fourteenth Symposium on Naval
z Hydrodynamics on behalf of the Naval Studies Board of the National

[ Research Council. The Board is a sponsor of this Symposium together

with the Office of Naval Research.
As most of you know, the National Academy of Sciences was founded
by Congressional charter early in the 1860s under the administration

-

RS of President Abraham Lincoln. It was chartered by the Congress as an
f:: honorific body, which is in addition required to give advice on scien-
b tific and technological matters to any agency of the U.S. Government
-ﬂ that may request it. During the 1960s the National Academy of Engi-
s neering was organized under the charter of the National Academy of
Sciences to serve the same functions for engineering that the Academy
o of Sciences had been set up to perform for the sciences. In 1970 the
. Institute of Medicine was chartered by the Academy to deal with prob-
;_ lems of provision of health services to all sectors of our society.
S The National Research Council is the operating arm of the National
N Academy system. Through its boards and committees it taps the scien-
tific and engineering expertise of the nation to advise the Government
as the charter of the Academy requires. Another measure the Academy
. uses for providing advice and for keeping up with the growth and ad-
i vances in science and engineering is the sponsorship of symposia such
- as this.
. It is a pleasure for the Naval Studies Board to join with ONR in
the sponsorship of this symposium. Both ONR and the National Research
o Council have shared for a long time a belief in the fundamentally
. international character of ideas, and the consequent importance of
g sharing views on scientific concepts and their possible applications.
ﬁ: No country or particular group has a monopoly on creativity. It is
3 particularly the case that in matters of the oceans we are all sharers
of this vast global resource and must share its problems.
b A global interest in common problems and in devising scientific
geis! approaches to their solutions is evident in the challenging program
;ﬁ- that has been arranged for this occasion. I am sure that the papers
et and the discussions that follow them will refresh everyone's ideas and
“:; lead to a better understanding of how certain problems of Naval Hydro-
‘ dynamics can be solved.
- 1 congratulate you on the opening of this important symposium and
:: share with you the anticipation of an exciting meeting.
-
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Introductory Address

DR. CHARLES G. OVERBERGER
The University of Michigan

Admiral Kollmorgen, Dr. Frosch, ladies and gentlemen: on behalf
of President Harold T. Shapiro and the Regents of the University of
Michigan, I would like to welcome you to Ann Arbor and to the Univer-
sity.

We are very pleased to be able to host the Fourteenth Symposium on
Naval Hydrodynamics. Since the first symposium held in 1956 in Wash-
ington, D.C., which many of you here this morning attended, this series
of symposia has been a significant contributor to the growth of an
important scientific field. We were, therefore, eager to cosponsor
the Fourteenth Symposium with the Office of Naval Research and the
Naval Studies Board of the National Research Council.

The University of Michigan at Ann Arbor is a particularly appro-
priate place to hold this Symposium. The College of Engineering has a
rich tradition in experimental and theoretical naval hydrodynamics
through the Department of Naval Architecture and Marine Engineering,
the Department of Mechanical Engineering and Applied Mechanics, and
the Department of Atmospheric and Oceanic Sciences. We have been
teaching naval architecture and marine engineering here for more than
100 years. Last year the Department of Naval Architecture and Marine
Engineering celebrated the centennial of the arrival at the University
of a young Naval officer named Mortimer Cooley. Cooley had been sent
here by the U.S. Navy to teach "iron shipbuilding and steam engineer-
ing" for four years. In fact, he remained with the University for 47
years, serving 24 of them as Dean of Engineering.

Naval hydrodynamics has been an important area of study and re-
search here throughout these years. Since 1960, 22 Ph.D.'s have been
earned in hydrodynamics within the Department of Naval Architecture
and Marine Engineering alone. Many of those graduates are here for
this symposium; five will be presenting papers during the week.

The University is proud of its excellent Department of Naval Ar-
chitecture and Marine Engineering, which will serve as your host for
the Symposium. The department has the largest undergraduate enroll-
ment in the nation plus remarkable strength over the full spectrum of
marine-related academic activity. It covers fields from marine systems
economics through hydrodynamics to marine engineering and offers strong
programs on all levels from the bachelor's degree through the Ph.D..
Its faculty has a vital commitment to both teaching and research.

The University is now in the middle of the first major moderniza-
tion of the Ship Hydrodynamics Laboratory in more than 20 years, an
effort specifically directed toward improving the fundamental research
capability of the facility. There will be an opportunity for you to
visit the towing tank during an open house tomorrow evening, and you
are cordially invited to avail yourselves of it.

In closing, I welcome you again to the University of Michigan and
express the hope of all of us that you have a successful and rewarding

symposium. 5
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f}» The very first Symposium on Naval Hydrodynamics convened G?:}}
~ in Washington, D.C., during September 1956, 26 years ago. The ﬁJi;:_
N banquet site was a small ballroom in the late Roger Smith Hotel RN

near the intersection of 18th Street and Pennsylvania Avenue,
N.W. The appointed speaker was that charming person and dis-
T tinguished mathematician who, for many decades, was a one-man
) civilian faculty at the Royal Naval College, Greenwich, and who .
o helped to educate a generation of fine British naval construc- o,
N tors, Professor L. M. Milne-Thomson. He created consternation o
among the organizers of that symposium when, upon walking into
the ballroom, he asked, "Where is my blackboard?" A small
portable blackboard was hastily procured, and at the end of the i
- dinner he gave a fine lecture on "Some Problems and Methods in -
i~: Hydrodynamics," much more easily appreciated now in print than -
g it was then at that late hour by that well-fed audience. ’
Milne-Thomson began by pointing out that "Hydrodynamics,
as an exact science, started with Archimedes. It is true that
> he treated the particular case of zero velocity, but his work

-: X i . - ; »‘,’

A remains today a correct piece of applied mathematics and, in- e };
e deed, a great achievement for the time." I might add that the ;xﬁvj
- great Greek's exact result in his context reduces our low-speed, D

‘ *."

moderate-speed, whatever-speed theories to insignificance. And
g I might further remind you that Archimedes promptly left his
X famous principle in the bathtub and dashed naked into the street
to achieve immediate publication of his results.

I feel a little bit in such a situation at the moment.
But I have in fact the very pleasurable task of lauding one
among us, and I am honored to be chosen to perform it. In ad-
dition, there are a few remarks I would like to publish, ex-
3 bathtub, on behalf of most of us here, but I will hold them -

;ﬁ until I close. e
X This twenty-sixth year is as close as we will come to a g{-*

silver anniversary meeting of this Symposium on Naval Hydro-
dynamics on these shores. We have met in some alluring foreign
capitals, and we have touched both the Atlantic and Pacific

ﬁjﬁ shores of this huge land. It therefore seems appropriate to me RN
{% that our silver anniversary meeting, if I may call it that, is s
A being held at this great American university in our vast and .
;{{ mythic Midwest. Soon after arriving here I had a chance to

jl- read that fascinating, even exciting, booklet "Naval Architec-

= ture and Marine Engineering at the University of Michiga.,
. 1881-1981" in which I learned of the early importance here of 'ﬁ{;

N the U.S. naval officer Mortimer Cooley and the Scottish emigre LN
- Herbert Sadler, two ships engineers. These two wmen, who be- }}:}:
n [Y'Y
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tween them held the post of Dean of Engineering for 33 years
between 1904 and 1937, not only created and developed the Uni-
versity's School of Naval Architecture, but had enormous influ-
ence on the powerful Engineering School which has existed here
for a long time. The booklet also confirmed my own impressions
of the role of their successors--Dick Couch, Harry Benford,
Francis Ogilvie, and now Mike Parsons--in creating the strong
and internationally known department that exists today.

We who are alumni of the David Taylor Model Basin are not
organized as such, but we certainly feel a family connection.
And it is with the greatest pride that we observed the success,
first of Dick Couch and then of Francis Ogilvie, in creating
this department. It not only trains its students superbly in
the ancient art of ship design, but it is now well known for
high quality research in ship hydrodynamics, as evidenced by
Bob Beck's fine paper on the scientific determination of free-
board presented at this meeting. We have just missed the de-
partment’s centennial last year, but congratulations to you
both as well as to all the others involved, and let us wish
Mike Parsons the best of luck in future. Francis Ogilvie ob-
viously did so well here that our eastern cousins saw fit to
snatch him away as a department head. It is surely not unfit-
ting that we take this opportunity to wish him a happy and
always convergent voyage as Department Head at MIT.

We are now all basking in that fine Midwestern hospitality
that has such a direct and personal quality. If you will allow
me, I will thank all the hosts here--Mike, Bob Beck, Bob
Latorre, Dick and Francis, and their gracious wives--for the
wonderful arrangements and warm reception. And to our Office
of Naval Research hosts Bob Whitehead and Sara, Choung Lee, and
their partners in this, Lee Hunt of the Naval Studies Board of
the National Research Council, and his support, Elizabeth Lucks,
Judy Sul, and Dixie Gordon. Thanks to all of you from all of
us.
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I had thought for a while before coming here that it just
might be necessary for us to celebrate in anonymity that certain
person to whom this symposium is being dedicated--much the way
we celebrate the authors of the Holy Scriptures or the Nordic
Sagas or Beowolf--such is his personal modesty and aversion to
formal recognition. But I was relieved to hear the ice broken
and the name of Ralph Cooper spoken aloud during the first ses-
sion here. Ralph, this is sometnhing we all want to see done,
so please humor us and sit back and enjoy, if you possibly can.

The patriarch Abraham negotiated with God that He would
spare Sodom and Gomorrah if Abraham could find 50 righteous men
living there. Failing to deliver, Abraham renegotiated the
number to 10. But still he failed, and the cities were de-
stroyed. Now God did find one righteous man in those biblical
cities: his name was Lot. And when God bothers to look around
Washington, D.C., I am relieved to know that he will at least
find Ralph Cooper.
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" Has any of us during Ralph's long service for the Navy at
:. ONR ever doubted even for a second his devotion to the Navy and
. to the research community both in the United States and over-

. seas, of which we are all a part? Have we not all somehow been
] affected by his unfailing graciousness and accessibility? Have SRy
> we not benefitted from his earnest interest in our work, and, )

- as a result, felt both eager and pleased to participate in the

) Navy's program? And has not that program profited from his

- broad understanding of naval hydrodynamics, his open-mindedness
. toward new things, and his discriminating appraisals? He stands
as an epitome of public service in the technical sector, stead-
. fast in his devotion, and devoid of any thought of personal

. gain.

N I have been chosen to praise him here in view, I am sure,

- of our long personal friendship, and I can assure you that he

' is as gracious and modest and wise in private as he is in car-
@ rying out his duties. But let me tell you a bit about his his-
- tory. He was born and raised in Jacksonville, Florida, and

f educated in mechanical engineering at the Georgia Institute of

'
e v

)
.

o Technology and at Columbia University where he took his M.S.
- degyree. In between he attended the U.S. Navy's steam school at
! Newport, Rhode Island, and served as an officer in a destroyer

flotilla in the Pacific and for a while in Tinetain, China. He
arrived at Langley Field, NACA, sometime in the late 1940s and
.~ began to work in a hypersonic tunnel group in the east area.
It was there that we met. At Langley, Ralph--like all of us--
was under the influence of some great aerodynamicists and aero-
nautical engineers, among them Antonio Fervi, A. Buremann, Carl
Kaplan, I.E. Garrick, I. Katzoff, A. von Doenhoff, and John
- Stuck, and younger scientifically-minded colleagues like Clinton
:g E. Brown, Bernard Budiansky, and Coleman Donaldson. There were
- many others: it was a rich and thriving hive.

In the early 1950s 1 reported to Ralph from Washington
that there were two very good Chinese restaurants in that city,
both Mandarin. It was an attraction lacking and much missed in
Newport News at the time, so Ralph joined me at the David Taylor
Model Basin in a group called Turbulence and Frictional Resis-
tance Research. We worked on some theoretical problems togeth-
er, including the resistance of cylinders in unsteady axial
motion, and the effect of non-uniform approach flow on lifting
line theory. And we did a series of experimental studies, both
in towing tanks and in a low turbulence wind tunnel that we had
designed and built for our purposes. We also had the good sense
to buy a superb hot film anemometer from a young genius at
Rouse's wonderful Institute in Iowa. His name was C.S. Ling,
and he is attending this Symposium. Ralph attended a course in
hot-wire techniques given by Lester Kovasznay at Johns Hopkins
University, at which many other people later to become well
known for turbulence research were also present. G.I. Taylor,
later to be knighted, visited the David Taylor Model Basin in
the early 1950s to discuss the possibility of detecting subma-
rine wakes by measurement of turbulence, a possibility that had
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been put forward by Francois Frenkiel. After listening to Tay-
lor, we realized that it would be a good idea to make measure-
ments of the turbulence in the far wake of an axially symmetric
body. Ralph undertook the task in our low turbulence wind tun-
nel using Ling's hot-film anemometer and the techniques Ralph
had learned from Kovasznay. Today Ralph's DTMB report on this
work is often quoted in the literature. Frederick Todd, then
Director of the Hydrodynamics Laboratory at DIMB, directed our
attention to the problem of designing studs for transition
tripping on ship models. Ralph carried out systematic tests,
and as a result we introduced the use of large diameter but
very flat discrete studs to replace wires and sand strips on
ship models for turbulence stimulation; those tests were con-
ducted both in the old 140-foot basin in the basement of the
DTMB and in a smaller but very useful tank that we had for our
own use. At DTMB Ralph fell under the spell and romance of
research on ships, and under the influence of the great experts
and younger colleagues there. I can mention Georg Weinblum,
Lou Landweber, Herman Lerbs, Bill Cummins, Phil Eisenberg,
Murray Strasberg, and Hugh Fitzpatrick, among others. And we
had constant contact with great and talented visitors such as
G.I. Taylor, whose visit and its consequences I have already
mentioned.

In retrospect, it is hard to imagine a better preparation
for Ralph's career as a Scientific Program Manager at ONR than
his apprenticeship at those two great U.S. Laboratories:
Langely (NACA) and Carderock (DTMB).

During his tenure at ONR as Head of the Fluid Dynamics
Program, Ralph became Mister Hydrodynamics, closely assisted by
Stanley Doroff, and we can all thank him for the continued vigor
of the program there, of which this Symposium series is an es-
sential part. It has enriched our technical lives and promoted
growth in understanding of problems vital to the performance of
naval ships and weapons systems in such areas as speed and pow-
ering, seakeeping, maneuvering, noise, detection, and weapons
effects.

Research seldom produces immediate gains, and for that
reason it requires faith and courage to support it. It is easy
to doubt, and there are, unfortunately, constant doubters to
defend against and, if possible, to convert. But it is incon-
ceivable that the modern fleet could perform in all important
details as effectively as it must without the thousands of in-
dividual contributions from research that have been woven bit
by bit through decades into the technology the fleet requires.
It is almost a thankless job. So Ralph, be assured of the ad-
miration and affection of the scientific community that you
have served so well over the last 20 odd years, and be assured,
too, of your remarkable success.

Now, ladies and gentlemen, let us rise and express our
personal appreciation.

In concluding, allow me, Archimedes-like, to do a little
shouting in the streets. I wonder, do many of you share my
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sense of a crisis in research in our field of naval hydrody-
namics? First of all, it has become more and more difficult to
obtain support for even clearly relevant research in hydrody-
namics. Furthermore, both government laboratory personnel and
those of us outside in universities and industry who are sup-
porting government programs with our efforts know that it is
almost impossible to obtain support for what Bob Frosch called
"irrelevant research," no matter how skilled the scientist
seeking that support. I refer to Dr. Frosch's remarks at the
opening ceremony here stressing the importance of "irrelevant
research.” I commend those remarks to your consideration,
coming as they do from a former Assistant Secretary of the Navy
for R&D and the current vice-president for Research for the
General Motors Corporation.,

The crisis regarding support leads to another crisis about
which we should be equally concerned. It concerns the partici-
pation in our affairs of outstanding scientists, both experi-
mentalists and applied mathematicians from neighboring fields,
from whom we can learn how to raise our own standards and ex-
pectations as to what we can achieve and how. They can offer
us much needed critiques in both the fluid dynamic and applied
mathematics aspects of our work. At the first symposium in
this great series in 1956 there were present (I exclude a few
prominent scientists who are present here today) Batchelor,
Benjamin, Birkhoff, Bleich, Carrier, Clauser, Cole, Corrsin,
Dryden, Fllis, Gilborg, Greenspan, Herzfeld, Imai, Kennard,
Liebanoff, Kovasznay, Laporte, Lighthill, Lin, Longuett-Higgins,
Maccoll, Munk, Plesset, Rott, Rouse, Schubauer, Sears, Stewart,
Stoker, van Dyke, Whitham.

I will speak frankly. Let us avoid isolating ourselves
and suffering the tinge of the second-class. 1 was not happy
to hear Admiral Kollmorgen in his opening remarks here suggest,
if I understood him, that we have not succeeded in understanding
the problem of propeller-wake interaction as well as aerodynam-—
ics experts might. I happen not to believe this, but neither
do I believe that we cannot do better. Such serious problems
deserve the best by way of scientific and logical approaches,
the most accurate observations, the highest level of mathemat-
ics, and, finally, responsible computing.

Forgive me for this somewhat portentous ending. And thank
you for joining with me in our modest tribute to Ralph Cooper.

'Til Hamburg in ‘84,
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Banquet Address Response

RALPH D. COOPER

As most of you know, I rank high on the list--probably at the
very top--of poor public speakers, and out of consideration for audi-
ences I have avoided, whenever I could, being placed in the position
of speaking in public.

The first faint alarm about my present predicament sounded in
Tokyo two years ago at the conclusion of the Thirteenth Symposium on
Naval Hydrodynamics when I was overwhelmed by the announcement that
the Fourteenth Symposium was to be held in my honor. During most of
the intervening two years I tried rather unsuccessfully to suppress
this unpleasant prospect. I do not mean the prospect of the great
honor that is being bestowed upon me of which I am keenly aware, but
the prospect of these poor comments that I am now inflicting upon an
unsuspecting and undefended audience. However, I was moved from faint
alarm to abject terror when Bob Whitehead casually remarked to me sev-
eral months ago that Marshall was going to deliver the after-dinner
talk at the banquet of the Fourteenth Symposium and then suggested that
I might want to say a few words in reply. Can you imagine living for
two months with the knowledge that you would have to follow Marshall
to the podium under these circumstances?

After much thought--as a matter of fact, I have probably thought
of little else day or night since that conversation with Bob--I was
unavoidably led to the speculation, now sadly confirmed, that I would
be the object of very complimentary comments that would be at best
highly exaggerated or more probably downright untrue.

To defend myself, to set the story straight, and to see that the
credit and the blame are placed where they properly belonged, 1 decid-
ed to try to trace the events and circumstances that have resulted in
my appearing before you tonight.

Being a sort of a fluid dynamicist, I am, of course, greatly con-
cerned with continuity and consequently had some difficulty in decid-
ing where to start my story. I finally decided to begin the story
with the start of my work at the Langley Research Center of the old
National Advisory Committee for Aeronautics almost 35 years ago.

Among the people that I soon met there were Marshall Tulin and Morton
Cooper-~both of whom play central roles in the tortuous saga I am
about to disclose to you--who had arrived some years before. We be-
came good friends, drawn together by our mutual professional interests
and other activities like playing bridge and tennis, and organizing
parties.

Marshall soon took a temporary leave of absence to pursue graduate
studies at Brown University, where one of his principal teachers, if I
remember correctly, was George Carrier--the same George Carrier who has
participated in the Organizing Committee for the last several Symposia
on Naval Hydrodynamics as a representative of the National Academy of
Sciences. One summer, I think it was in the late 1940s, C. C. Lin
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offered a course in boundary-layer theory at Brown that, in addition

to Marshall, attracted Lou Landweber and Phil Eisenberg from the David
Taylor Model Basin. Before they returned to Carderock, Lou and Phil
told Marshall to let them know if he ever wanted a job. Shortly there-
after, he let them know and went to work at the David Taylor Model
Basin. He knew that I was interested in moving to a more cosmopolitan
area, and so when a position opened at the David Taylor Model Basin he
put in a good word for me, and I too was soon working at the David
Taylor Model Basin.

Those were great days for me. A number of friends and colleagues
at the Model Basin from those days are in the audience here today. In
addition to Lou and Marshall, they are Dick Couch, John Breslin, and
Bill Morgan. A charming account of those days can be found in the in-
troduction to Lou's recent Weinblum Memorial Lecture, which will appear
in the December issue of the Journal of Ship Research.

At that time, as many of you know, Marshall was working on the
first of his many major scientific contributions to naval hydrodynam-
ics--the linearized theory of cavity flows. During that same period,
Marshall also made several other lesser-known contributions. One of
them might be described as a time and moticn study. He invented the
speed run. Marshall and I were in a common carpool in those days, and
the point of the speed run was for the driver of the car to go from
the Model Basin to the center of Washington--a distance of some 10 or
12 miles-~during the afternoon rush hour in the shortest time possi-
ble. Of course, to ensure a common basis of comparison of the driv-
ers' skills, the same automobile had to be used in making a speed
run. Naturally, my car was chosen for this dubious honor. I no
longer remember the winning time, but I do remember it was held by
Marshall. Only the gods know why or how we escaped arrest or accident.

Marshall's second lesser-known contribution of this period was
more in the nature of number theory. He had perfected an intricate
procedure for playing the horses. 1 will not bore you with the de-
tails of this procedure, lest you be tempted to try it with the same
disastrous results. Not only did our horses never win, we never even
got to see the beautiful animals in action. Wwe fregquently encountered
Alec Tachmindji on these excursions to the local tracks. He was an-
other colleague from those days at the Model Basin and also an afi-
cionado of the horses. He must have thought that we were mad indeed,
though he very pointedly but politely never pressed us for an explana-
tion of our strange behavior at the track.

To get on with the main point of the story, Phil went to the
Office of Naval Research in the mid-1950s, and after a short time
Marshall joined him. Shortly, with the help of the National Academy
of Sciences, they organized the First Symposium on Naval Hydrodynam-
ics, which was held in 1956 and which was, of course, immensely suc-
cessful and justly famous in several respects.

Not long after this Marshall went to the London Office of the
Office of Naval Research for several years, and Phil asked me to come
to the Office of Naval Research to help fill the void created by
Marshall's departure. I arrived at the Office of Naval Research in
time to play a minor role in the Second Symposium on Naval Hydro-

14




A e A0 i Banc A e ek San M Rans b ama S- Rl 8- dacih bt due gen el AR S T T ek M e Shd s ik et Setii gt St Bt Sen s Ban et Ses Jhaf Sy Jhat g eyl

dynamics, which had been organized by the same team as the first--
namely, Phil, Marshall, and the National Academy of Sciences. While
in ONR London, Marshall conceived the idea of holding the Third Sym-
posium on Naval Hydrodynamics in Europe and even worked out the tech-
nical program in considerable detail. About a year before the meeting
was to take place, Marshall returned to Washington, and he and Phil
left the Office of Naval Research and started Hydrohautics. It fell
to Stanley Doroff and me to carry out the plan for the Third Symposium
on Naval Hydrodynamics that Marshall had initiated. By a stroke of
great good fortune, we were able to collaborate in that endeavor with
the Netherlands Ship Model Basin led by Drs. van Lammeren and van
Manen. Dyck van Manen is, of course, in the audience tonight. The
result was the Scheveningen meeting, and the pattern for the Symposium
on Naval Hydrodynamics was firmly established and followed faithfully
thereafter.

There is a little story I wish to share with you about the prepa-
rations for this meeting. You may recall that one of the first serious
studies on the sexual behavior of man was written by an eminent social
scientist named Havelock-Ellis, the bearer of one of a number of im-
pressive hyphenated British names that are occasionally encountered.
One day while on a European tour to promote and organize the Third
Symposium on Naval Hydrodynamics, I visited George Wood of the Nation-
al Academy of Sciences, who was temporarily assigned to La Specia,
Italy. I was excitedly and enthusiastically describing the plans for
the Third Symposium to him, and at one point I said, "Of course, you
know that we are dedicating the symposium to Sir Thomas Havelock."
George replied, "Oh yes, didn't he write something with a fellow
called Ellis?" To this day I do not know whether George was pulling
my leg or not.

But to return to the story I started to tell you. At about this
time--early in the 1960s--Mort Cooper also decided to leave the Lang-
ley Research Center, and he joined me at the Office of Naval Research
where he very ably managed the aerodynamics portion of the fluid dy-
namics program. About five or six years ago, the leader of another
department of the Office of Naval Research was in the process of hir-
ing a new scientific officer. He asked Mort and me to assist him in
making a selection from a long list of impressive candidates. The
gualifications of one candidate stood out head and shoulders above all
others, and we each independently gave him a strong recommendation.

He was, of course, ultimately hired. His name is Robert Whitehead.

Just before I left the Office of Naval Research, Bob joined the
Fluid Dynamics Program, and he became the leader of the group when I
did leave. Subsequently, Bob recruited the able services of Choung
Lee to lead a portion of the hydrodynamics program, including respon-
sibility for these Symposia on Naval Hydrodynamics.

The story is almost, but not quite, over. Mort Cooper retired
from the Office of Naval Research a number of months before I did. A
symposium in his honor was organized by the aerodynamics community,
led by Tuncer Cebeci of the State University of California at Long
Beach. Inspired by this honor tendered him, he made a similar sug-
gestion to Bob Whitehead on my behalf. Since Bob was not going to
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attend the Tokyo Symposium on Naval Hydrodynamics, he assigned to Lee

Hunt the task of persuading whoever was selected to organize the Four-
teenth Symposium to dedicate it to me. Francis Ogilvie very gracious-
ly agreed to this, the announcement in Tokyo resulted, and here I am,

standing before you, engaged in public speaking.

That completes a rather long and complex story, and I thank you
for the serious attention you have given to it. The moral of this
story, of course, 1is absolutely clear--one cannot be too careful about
whom one chooses for one's friends.

And now, ladies and gentlemen, will you join me in a toast: to
the Symposia on Naval Hydrodynamics--past, present, and future!
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1 . . A

= Generation by Moving Bodies, Its

e Approximation, and Its Implications
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>

;\{ The purpose of this paper is to present an analytic theory of

- wave generation by moving bodies sufficiently rigorous and in such a

25 form that reliable conclusions may be drawn regarding the nature, ap-

.fﬁ pearance, and importance of non-linear effects, and through which bet-
) ter understanding of their mechanism may be acquired.

i In this theory, the two dimensional steady gravity wave problem is

cast in the form of a first order linear differential equation in a
complex domain leading to exact solutions. In this equation, the de-
e pendent variable is the complex function v3, where v is the so-called
complex velocity. The independent variable is a complex function re-
- presenting a slightly strained ¥ space, where ¥ is the complex po-
tential. The straining is 0(8%), where 6 is the local angle of the
free surface, and is determined in terms of the solution through quad-
rature.

In the case of steep progressive waves, the exact solution (in the f o
variables described above) is precisely the exponential function. -
Even in the second order version of this exact theory, which is equiv- L
alent to the theory of Davies (1951), a limiting wave naturally appears .
with included angle 120°.

In the case of waves made by a submerged body or by a pressure ot
distribution acting on the free surface, the exact solution has the >
form of superimposed waves of continuously changing effective wave o
number, explicitly related to the "nonwave' disturbance due to the >
moving body or pressure distribution. In the case of a submerged body,
it is shown that both the primary wave generation and the modulation
of wave length are caused by the local pressure gradient normal to the
free surface in excess of the normal pressure gradient which would
exist in a free wave given the velocity there.

It is shown that both "weak" and "strong" nonlinear regimes exist.

In the latter, which occurs when the 'monwave' disturbance is suf-
ficiently large, discrete waves arise at critical points on the surface,
whose steepness is of order (K) * where K is the wave number. There-
fore the existence of solutions in the strong regime for sufficiently

LA
3N
l"‘ I‘. «a's

R
b
7,
]
»
IR

o
@

)
s

I‘ 9,
;‘;’

7 LR
:":" o

.
L

1]
Y
"l
Sy
P

N
U
e

.
Iy %y
') .’
ay
oo

T
.‘
«
L
.
*
1

.‘:.': | ]

[y
s

oo e
x R
O E U R NEA

s e
.
ALA

R RSN

*now: Presidential Professor of Ocean Engineering; University of
California at Santa Barbara

-.r“r'

)

19

T
e "l 0
R IR |

S




LR R MR i ¥ N N T T T R N e e S R o o S e e T N TS Y TR T WV Ty

20

small Froude number is brought into question.

In the weakly nonlinear regime, where the '"nonwave' disturbance
is of small 0(€), waves become exponentially small as k increases.
Various approximations to the exact solution for the far downstream
wave are given. An approximation valid in the regime 1 << K << g2
is systematically derived and is shown equivalent to both the so-called
"slow-ship" theories of Inui-Kajitani (1977) and Dawson (1977).

I. INTRODUCTION

It has been long understood that non-linear effects in water wave
behavior are of great practical importance, and are even crucial to
the existence and understanding of many observed phenomena — for
example, the solitary wave, progressive wave instability, breaking.
The subject of these non-linear effects is very far from closed. 1In
fact, only within the last decade or two, a great deal of attention
has been devoted to the calculation and understanding of very basic
waves (steady, two-dimensional solitary waves and steep progressive
waves), and most remarkable results obtained, as in a sequence of
papers by M. S. Longuett-Higgins, and by L. W. Schwartz, and Chen and
Saffman, etc.; these and others have been reviewed very recently by
L. W. Schwartz and J. D. Fenton (1982).

During the same period (the last decade) increasing attention has
been devoted to non-linear effects related to the wave resistance of
ships. These effects include those which occur in the case of steady
two~-dimensional progressive waves, and others in addition. Among
these, the non-linear interaction between the propagating waves and
the "current" field around thick ships may be of particular importance.
A number of recent theories of ship wave resistance have attempted to
account for these interactions, including those theories in the "slow-
ship" category, wherein the "current" field is taken to be that assumed
to exist in the limit of zero Froude number (the double-model flow).

It seems fair to say that all of these non-linear ship theorie:
rest on assumptions whose validity are difficult to judge quantita-
tively. Indeed the problem is awesome, as there are a variety of non-
linear effects occurring at one and the same time, and some of them
are not even sufficiently clarified from the point of view of mechanism.
A review of the simpler case of progressive waves alone shows how sur-
prisingly complex are the phenomena revealed through theory during the
last decade.

In this situation it seemed desirable to have ananalytic theory
of wave generation by moving bodies sufficiently rigorous and in such
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a form that reliable conclusions could be drawn regarding the nature,
appearance, and importance of non-linear effects,and through which
better understanding of their mechanism could be acquired. Despite
the three-dimensionality of the real ship wave problem, it was felt
that even such a theory restricted to two-dimensional flow would
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afford important progress. At the least, it would allow for comparison
with the two-dimensional versions of the various three-dimensional ap-
proximate theories. At the best, it would point the way toward the
construction of more rigorous or appropriate three dimensional theories.
The opportunity for such an analytic theory presents itself
through the formulation of the steady gravity wave boundary condition
in complex notation, utilizing a particular choice of dependent and in-
dependent variables. The form of Bernoulli's equation from which this
development springs was first presented by Levi-Civita (1925) and it
was later used by Davies (1951,52) as the basis for a calculation
method for steep progressive waves. In this development, Davies
started with a very useful approximation of Levi-Civita's boundary con-
dition. The same approximation was later used by Packham (1952) to
produce a closed form solution for the solitary wave.
What we have realized here is that the dependent variable v3 (v is

the complex velocity), implicit in the earlier approximate works of
o Davies, et. al, can be shown exactly to obey a linear first order dif-
> ferential equation in a complex space, 7, slightly strained (of order
- [slopel]?) from the space ¥ = ¢+ i |y, where ¥ is the usual complex po-

- tential. The mapping Y -~ ¢ depends upon the solution V(). As a re-
sult, while the exact solution may be given in formal terms, the cal-
culation of explicit results depends upon iteration of the mapping
Y > Z.
Ff The important thing about this theory is that it seems to present
Et within a single expression, formally linear, all of the non-linear
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effects. Of particular interest is the appearance in the governing
differential equation of an analytic function (Q + Q) representing
both the source of waves in the flow and of the modulation in their
length as they propagate. 1In the case of an imposed pressure distri-
bution on the free surface, the function  is given in terms of that
pressure distribution, and for a submerged body Q is given in terms of
- the flow about the body, in both cases making use of the Cauchy inte-
-t gral. And, finally we are able to give physical significance to the
function (Q + 22) in terms of the normal pressure gradient on the free
surface.

The importance of having an analytical theory of the kind pre-
- sented here seems justified by the revelation that for sufficiently
- strong disturbances (as represented by the max.value of Q on the free
surface) waves arise at discrete points on the free surface which are
mathematically distinct from the waves arising in linear theory or in
. the "weakly" non-linear regime. In this "strongly" non-linear regime,
. for example, these particular waves do not become exponentially small

with decreasing Froude number, but rather tend to unbounded steepness

. as F > 0.
: Here we have derived the theory in the case of flow in water of

. unbounded depth and extracted a certain number of results. It remains
- for the future to utilize it for explicit computations. Furthermore,
o it would seem clear that the theory can be extended to the case of

o finite depth, to study solitary waves (as Packham (1952) has done
already) as well as shallow water waves, as begun by Davies (1951) in
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the case of progressive waves. If this were to be done, it might
prove useful for improved understanding of flows near the critical
speed in shallow water, where non-linear effects are of the essence.

In addition, the present results, which confirm the low speed
(weakly non-linear) theories of Inui-Kajitani (1977) and Dawson (1977),
at the same time suggest weakly non-linear approximations which would
not be limited to low speed applications.

II. DERIVATION - FROM THE FREE SURFACE CONDITION TO THE FLOW FIELD:
COMPLEX FUNCTION APPROACH

We consider a free surface (S) on which in some region we allow
the possibility for a pressure p to be imposed. A steady inviscid
flow exists beneath the free surface. Then (Bernoulli's Equation):

q’/2 + gy = q ?/2 - p/p [on s ] (1]

where q is the local flow speed, y the local vertical ordinate of [S];
g the acceleration of gravity; p the imposed local pressure on [S]; o]
the fluid density and qo a reference speed.

In addition thg flow is irrogational, so that a velocity potential
¢ exists (as usual V = V¢, where V is the local velocity vector, q =
|[V]), and then:

199 & --1dp
2 36 + =2 sinb o dé [ on s J
or ' [2]
3q° . - dp
?%; + 3K sinB = -3q E% [ on s]
where:

<= %g/a 2; @ = a/q; p = p/eq ?; and B = ¢/Rq,; 8 is the local
angle of V to the horizontal, or sin~! dy/ds, where s is the length
along the surface streamline, and % is a characteristic length scale,
which non-dimensionalizes all lengths appearing hereafter.

We note that [2] can be written:

- -
%§§-+ k sin36 + (4k sin®0) = -3q %% [ on s ] [3]

or

!y

-3 Ceing K ind
dfnq + k. f;“je + 4 f;“ 0 - - é%

% = = [on s ] (4]

o, Kg
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We specialize now to the case of two-dimensional flows in the
physical plane defined by z = x + iy. Therefore a complex potential
exists, ¥ = ¢ + iy, where §y = 0 on [S].

Then [4] can be written in complex function notation:

R [dggc -kigt+ kTG ] = R[AWY)] =0 [s]

where: - —t 3§60 ~ - -iD
G=V=¢g%7" v=qe = v/q ; subscript o refers to ¢ 0;

R means "the real part of" (and I, "the imaginary part of'").

< _ 3 dpo
R[Q(Y )] "W 4 (6]
4 sin’p )3
. A - o _ . -1/3
R[T(Y ) " 671(v )] = 3 R[i 6, ]; (7]
We can write [5] as:
R[ég%ﬁ-—cg(\y)-xi+n< T(W)H =0 =0 [8]

_ Two cases may be distinguished. If [ ] in [8] is regular for
Y < 0 (beneath the free surface), then of necessity:

A}

1 %%.— GQ(Y) - ki + KT(W)} = -k*1 everywhere for § < 0 [9]

where K* is a real constant.
Far below the free surface we take the following limits:

qQ->q; T(¥)>0; Q>0

Then, K* = K, and [9] becomes :

dG

vt G[ik - Q(¥)] = ki - KT(¥) [10]

The assumptions made above correspond to the case of flow without
a body or bottom beneath the free surface.
1f, however, [ ] in [8] is not regular everywhere for v < 0, then:

S
!(-
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é %% - GR(Y) - ki + KT(Y)Y =i + Q(¥)  everywhere for ¥ < 0 [11]
where ,
R[Q(¥)] = 0 on ¥ = 0 [12]

and | represents the effect of a body or bottom beneath the free sur-
face. We consider here only the effect of a body.
Far below the free surface we take Q(+) - 0. Then,

dG

G+ alir - 2w - a] = ki - <T(Y) [13]
or tinallsy,
j§ + Flri - 0¥ - 2] = Q¥) + Q) - KT(Y) [14]
where
F=G-1 (15]

and we note that F vanishes far from the free surface, and thus re-
presents the disturbance to the flow q_.

The ordinary differential equation [14] defines the flow created
on and beneath the free surface by a pressure distribution on the
free surface (represented by ), and/or by a body beneath the free sur-
face (represented by Q). This equation for F already represents a
variety of non-linear wave effects, even without the function T, which
itself represents additional non-linearities of higher order (of order
+ 3, where + is the amplitude of F).

Further, the higher order non-linear effects due to T may be in-
corporated in mapping ¥ - 7 = £ + in so that [14] becomes:

gg +F [ki - Q@) - )] = Q) + Q) [16]
where
én T _ .2
@ 't Fo@voEFn - T O0ED (17

and 2 + Q = 0(g).
Alternatively, [17] may be written
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dg _ 1 - KT _ _ _KT
dy dF/dg dG/dg
[18]
= 1 - ____LT___\ = l - L/G_____
dF/d¥Y + kT d§$c + KT/C

In the case of periodic waves, [16] takes a very simple form.
This classic problem is treated in the next section, where a limiting
wave arises naturally. This example serves to demonstrate that in any
particular case, it must be verified that the solutions given by [16]
are physically realizeable.

The mapping defined by [17] represents a straining of the ¥ space
which increases as €2. 1In the next section we show that for progres-
sive waves a stretching occurs in the transformation z + ¥ + ¢ such
that

27

= [1 + 0(a?%)] [19]

>

where A is the wave length in the physical plane, and A is proportional
to the wave amplitude.

The dependence of T on g? suggests that its effect on the solution
may be included in a complete solution of [14] or [16] through itera-
tion. Even in its neglect, however, the essential non-linearities
would seem captured not only in essence, but in a reasonably quantita-
tive way, provided that the additional stretching represented by [19]
is kept in mind. A feasible way is therefore opened up for the effec-
tive study of wave generation including non-linearities, which is the
purpose of this work.

II1. THE PERIODIC WAVE IN DEEP WATER. THE CALCULATION OF A

The progressive wave has been treated with improved accuracy,
starting with Stokes (1847) and continuing through Michell, Havelock,
pavies (1951), Schwartz, and Longuett-Higgins; see Schwartz and
Fenton (1982). It has a special important for us since the flow in
the physical plane asymptotically far downstream of a surface or sub-
merged disturbance in deep water will tend toward a purely progres-
sive wave. Indeed, the wave resistance of the disturbance is simply
related to the asymptotic wave amplitude. It is additionally impor-
tant as its treatment here allows us to derive some necessary re-
sults (the calculation of A, for example) and to understand the
workings of the present theory.

The motion is unforced, 2 = Q

0, and the wave originates at
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N
D infinity as a solution of:
dF
- — + 1 = -K 20
ay Y 1KF T [20]
which becomes,
g—%+iKF=O (¢ =€ + in) [21]

S—?y= 1—1(%) [22]

If the amplitude of F is A, then the free surface condition [3]
or [4] shows that T/F = 0(A?).
An appropriate solution of [21] is, of course:

o iKG(Y)

F=-A ; G=1- AeKne—lKE [23]

or,

L
q’ = Pl + A%e2KMy — 24efM - COSKE]
[24]
tan30 = -AeMNsink £ / (1 - Ae"coskE)

Take that a wave crest exists for z = Y = £ = 0, where:

1/3
Qerest [l - A] [25]

Therefore a limiting wave occurs for A = 1, for which the slqpe
at the crest is (found from [24] by the application of L'Hospital's
rule):

> +1/6 for £+ 0% [26]
crest

corresponding to the well known result: a limiting wave with an in-
cluded angle at the crest of 120°.

The overall dimensions, length A and total ame }tude H, of the
wave are found by integration of the definitiomn, G = d¥/dz, in the
form:

.. .

L. - . . . Lm .
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§
- (g = m/K) 43
[ A 0
3 . ( . w) - f S [27]
& 2 0 [1 - 4" e lKg] /3
' The role and importance of T may be understood by examining
- solutions of [20], neglecting T altogether, which are correct to sec-
N ond order in A:
F = -ae % 0a?) [28]
. The wave shape and overall dimensions in this case are readily
: found through the easily derived relation:
. vdv
K = =
g dz 31./iayrj:—ry
: PT S \/3 tan” ' v+l const. 29
4 \/\)2 +v+1 V3
where,
—ixo. s
Vo= (1 - aeTiR

from which it can be calculated that for the limiting wave in this
approximation:

H/A 1/z2m 30

sl a2 12

§ which may be compared with Stokes' value: H/A = 0.142 ~ 1/7. Further
- we note that the included angle at the wave crest in this approxi-
mation is 120° as in the exact theory. Wave forms calculated accord-
ing to this second order theory have been computed from [29] and have
been compared to the calculations of Schwartz (1964). In this compari-
son the crests in both cases are found to steepen and the troughs to
flatten with increasing wave amplitude. In the Schwartz calculations,
- the wavelength shortens with increasing amplitude while in the second
order case here the wavelength is independent of wave amplitude.

The transform Y + Z corresponds both to a '"stretching" and
"wrinkling" of the ¥ plane, increasing as A?. The "wrinkling" only
modifies the wave distortion already present to second order (and
which culminates in a limiting wave), while the "stretching" intro-
duces shortening of wavelength, as deduced below.
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Integrating the transformation [22] over one wave-length, from
crest to crest,

| 300
= . T -
£, -5 (1) = =y f (;) SIS
° (o]
d(\)
T -
1 =) 4% [31]
S (),

The integral in [31] may be evaluated by contour integration,
making use of Cauchy's theorem. We take the contour shown below (left):

£=(0,0)  ,  £=(20/x,0)
¥=0
D A | The integral along the contour
is zero, since the integrand is
analytic within and upon the con-
J J tour. The integrals along B and D
cancel each other because of the
L C f periodicity of the wave. Therefore:
=& +i =(§ + +i
4 EC in, z (&C 27/ k) in,
o)
T - T - - T 1
1 f (f) g, = - f(F) dy = -1 f (G) £ dd [32]
o c C(n, » =)

since G(+¥) - 1. The integrand in the last integral above may be eval-
uated making use of a representation of T/G in terms of its definition,

eg. [7].

oo

T/G = Z 1Ane'i“'<‘*‘ [33)

n=1

where, (see [7]):

4sin 9 A
= A sinnko [34]
R {T/G} o Z

3
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™
- and where the real coefficients Ap may be found by Fourier integration.
.} For example,
A qL
: " 2m/k 451n360 -
Ay, = = f — * sinkd do [35]
q, o o

(e

PR
LR,

:'-,

o ire¥)

ats

Combining [33] with the solution F = -A
g -~ VY for n, > -

and using that

LA
.

£ n‘u_.l et
!

—~
—
[l
S
1| -
[a%
|
]

. C(nC—>_oo)
_:'., &(A) e} . Y
= A -i(n - Dx ¢ , (n - 1)xn _
«f z () ST
:, O n =1
E (nC—+-on)
Al _
= -2 50 [36]

or, finally, suEstituting in [31], and making use of the fact that as
Voo, B0 = 3 ) = /e

2T _ A (1 - A /A)
K

o>

£, =
or, [37]
- A_ 2T -

S Q2 - K / (1 AI/A)

where A1, given by [35] is 0(A). Therefore, A =-%; (1 + 0(A%2)). In-
. spection of [35] shows that A, < 0, so that A decreases with increa-
sing wave amplitude, as was first pointed out by Stokes.

:" Finally, we point out that the second order solution may be im-
<. proved by iteration, although we beg questions of convergence, using
i. the transform: .

. (bo
5)=08 -1 .S 4%
5,0) =4, -1 f (C) F 4o, [38]

Q
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a e o] oo
o ~ .
5 ) = ¢ - -’ -ink¢ ~ n _-ik(ng - ) .~
Co(cb) ¢ ll/ Z iA e dq>o - Z i3 o dq)o
o n=1 n=1
(39]
where in the first approximation CU = ¢o etc.
1 1

IV. WAVES PRODUCED BY A PRESSURE DISTRIBUTION ON THE FREE SURFACE

We return now to our main purpose: the exploration of non-line-
arities associated with the free surface response to moving disturb-
ances. First we consider the pressure distribution moving on the free
surface. We will be able to compare the results with the recent cal-
culations of Doctors' and Dagan (1980) based on an assortment of other
approximations. Here:

%% + Flki-Q] = Q-«xT [14], as shown earlier

or

dF C o1
a + Flki-Q] = Q [40]

where, the transform Y > ¢ is given by:

dac - ikT - 2
ol taFcar s - Lt 0ED [41]

the pressure field given by Q being taken 0(g€). Recall that,

_ 3
R[Q(d)o)]= - d~° (6]

Again, the space [ corresponds to the space Y '"stretched and wrinkled"
by the waves themselves.
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An appropriate exact solution of [40], (no waves far upstream) is:

c
4 ' ;
. 1 ™~ o~
F= [ e e ’“f[l tie MO g [42]
: .

-00

This simple solution represents on the free surface { _a linear sum-
mation of elemental waves OF(Z;{) originating at & =17:

CO

Fz,) = f 8F (£_5C.) di_ [43]

-0

where the elemental wave is given by,
sidetp 4 f @) o
0 C

o

[44]

so that the amplitude and phase of the elemental wave is shifted over
the region it travels downstream, the shift depending on the integral
over the pressure disturbance,

A

0 L ~
f T 4T

z

o

so that the phase shift over one wave length is measured by:

Co(x) Q(Z;) dE;

%=1—1[f ——ﬁ———]

(¢}

where A is the unshifted wave length 27/k.
Th amplitude A(») of the wave far downstream is given by:

400 HKr +f Z) dZ
A(») = |F_| = ampl f Q(EO) e Zo dZo

SRS A L A A TN
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= ampl f Q(CO) e 2 . e
[45]

The wave resistance, D, associated with a pressure disturbance, p, on
the surface is,

- dy
; D=—fp dyo=-ﬁ(c)d—g-d20 [46]

We have made calculations to second order ({ = ¥) for a pressure patch
treated by Doctors and Dagan (1980), hereafter referred to as D&D. The
results are shown as Figure (l). The second order calculation are seen
to agree very closely with the second order theory of D&D based on a
regular expansion of ¢ in the physical plane.

:j V. WAVES PRODUCED BY A SUBMERGED BODY

In the case where the flow is not unlimited beneath the free
surface (submerged body and/or finite depth), we have shown that:

: G+ Fla - o] = o) - kTew) [14]

where

i
o

R[Q(3 )]
This may again be transformed into the exact equation:

e ki-q)=0 [47]
L

where the transform ¥ = { 1is given by:

s _ . N ;
! e Ty Y DU (48]

the field Q due to the submerged body being taken 0(e).

L - ‘.,
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D)
.F‘,\".-r..‘.




. An appropriate exact solution of [47], (no waves for upstream) is
g

i -~ ~

4 -1kl + 2 Q5)] &

For the solution on the free surface, § = Co, the solution is:

CO 1 ~ - ~

o fD-to@d

F(co) = f 1Qi(c°) e Co dgo [50]

- 0O

since Q(¢ ) = iQi(C ), the real part being null. The amplitude of the
wave far 8ownstream is:

- - Q, .~ ~
+ o L +Zf ?1 () dg ] i
A(®) = ampl f 1, (g ) e o dg [51]
4
An exact alternate solution is:
- 60 ~ ~
) ¢ + f [k~ ]ab
rdy= [ [ig, -] e o a_ [52]
where
" Q
- i ~ ~
+oo +[$ +$f - ¢ do_] i
A(®) = ampl f [iQi -k T]e ) do_
- 0o [53]
?f We shall use the latter to consider in a little more detail the flow

" over a submerged body, and in particular to define and give meaning to
o the important function Qi($°), which drives the wave field.
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5 VI. ON THE CALCULATION OF Q, (4 )
h The waves produced by a submerged body are seen to comprise in
;; space a linear superposition of elemental waves driven by the function
L Qi (9o). Here we give a method for its calculation, and in the next

:i seciion (VII) we reveal its physical meaning — a major result of this
- work.

e We imagine a submerged body, S, without circulation (for simpli-

city). The flow in the physical plane is shown as Figure 2a. It trans-

i forms into the complex potential plane as shown in Figure 2b. The slit
.f: at ¥ = -h for 0 < ¢ < £ represents a distribution of flow singularities
e (of F). The flow may be extended, we assume, into the region § > 0

o where a slit again exists for Y = +h, as shown in Figure 2b. In this

" latter representation, there are no singularities on the free surface

itself. On the slit in the upper half plane we anticipate two separate
. singularity systems: one for O < ¢_< £ is an image of the system at
o Y = -h, and the other extends from ¢ = 0 to infinity downstream and is
" wavelike; it is the latter which creates the waves on the free surface.
We shall not necessarily calculate these singularity systems, but we
Y shall use the fact that they exist as shown.
We wish_to find wave-like solutions which decay with depth and are
regular for § < 0, and we must define Q appropriately. Since F can be
singular only on the slit A for w < 0, then the same must be _true of Q
(in view of [14]). Since Q is soft [i e., Q($,0) = iQ1(¢,0)], we know,
too, that Q(¥) can furthermore, only be singular in the upper half
plane on the slit B, the image of A,
We may thus, in general, write for Q (Cauchy's Theorem):

a
'o ‘. .l ‘l 1

_1‘ Qa)dY | g(B)d
. Q¥) = 2H1 W - W ZIIi [54]
A

Ej which can also be written:

0 )

'-\ — - i 6 * 6 B ~~

W@ =5 [ | a [55]

M o (6-3)-1(h+])  ($~¢)+i(h-U)

" where

:: = [Q(a) upper " Q(A) lower], represents the jump in Q across

". the slit A, a complex quantity. [56]

'; It is easy to see that for Q(¢ ) to be purely imaginary, then 8Q(B) = o
jZZ 8Q*, (where the overbar here denotes the complex conjugate), so that '
» finally, y

o
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- i 8Q* * ~
W@ = [ | a3 [57]

- J @B D) FBr+(0-D)

" and

R 2 R 2
= - i 8Q* d i 8Q* ~
- Q($,0) = 1 1 f —%—_—L =1 R f o d¢ [58]

) [ (6-)+ib) [ (3-9)-ih]
N °

_t; We need now only use the definition of Q implicit in [14] in order to

N define Q*; solving for Q:

_ dF/d¥ + kiF + kT _ d&nG ik | KT
-, Q=T aE D “Tay tiK -Gt [59]
" This completes our definition of Q;($,0), eqs. [58],[56], and [59] ,

- which is now stated in terms of the flow on the submerged body.

- For its interpretation we imagine the flow created solely by a
. surrogate submerged body, Ss, whose singularities on the slit A cor-
> . respond exactly to those on the real body S; therefore, as the depth
< of submergence increases Sg + S. For this body:

T )

- - i 5Q*dg
. Q;(9,0) = = ——:3:99——— [60]

4 [(¢-§)-1n]

R °
:\"
b2 So, that, comparing [60] with [58], and using [59]:

2
- Q;(3,,0) = 21 {Qs(éo,O)}

Z‘; - de_(4) cos30_(¢ )

L Q;(8,,0) = -6 —=—2—+ 2c (1 - —=- )+ 21{KI} [61] _
= do, a5(6,,) G o
ﬁj This explicit relation allows for the calculation of Qi($o,0) and ‘E{
~- therefore the wave field, given knowledge of F on the slit A (surrogate SO
- body). 1In an iterative solution, F could first be taken as calculated R
- for the isolated body (in the case where the body is sufficiently sub- °
.o merged), or in the double model flow (for large k). A
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i ‘.'\.:_\._‘-,A
-'4. \’\._*..(
) .\n:\‘_\."“i
ﬂi S
'J'-_' ‘:.
A 2
N R
o 5
A
<.

'y

‘I
.

»
v
I,.
a4

NN R e Wy W e e, w e ey
SN AN T
A ,_. ¥ i
AR AL RSSO Ve

'» »

1.
.
P

'« WP, WY,



b ol e ainn gnd b ahe g ami s ad - aed s geg g

36

For large k we note, see [61] that:

- cos3es(5o)
Q, (¢ ,0) ~ 2k f1 - —— + 0(68%) [61a]
oo Q)

1

where F on A would correspond to the double model flow.

VII. ON THE PHYSICAL INTERPRETATION OF Qi($o). HOW WAVES ARE GENERATED .

The function Qi($o) can be given additional important meaning in
the following way. The flow is inviscid, so that Bernoulli's equation
applies everywhere. Therefore:

2
3q /2 8y - _ 1 ap
on tsg an p an [62]

where n is the unit normal to the surface. Equation [62]can also be PN
written: KA

§_(-13_+ =,.-§.-B 6 A
50 3kcos 3q 3 [63] -
or,
Blnﬁf . 3Kkco0s30 + 3k(cosB-cos30) - _ 3 Eé [64]
3& 33 Pz 32 oy
or,
‘ danG _ 3l _ KT(W)‘\ - }
s 46 3 c | I {1P(W) [65]
where
} \y} =—3— —aﬁ -=0 66
RAEM == F on ¢ (66l
I ‘I} _ 3(co§g;_90336) on § =0 [67]
1 G 32
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or
dinG 3ki T{ _ i
) I3 3y G -~ P- kg =0 on Y =0 [68]
= ,
;: This can finally be written:
" de [ iM] =
- qy + 1GL3k - P +iM] = 3ki + kT [69]
X where,
iMy)] = o on ¥ =0

R

.»:.‘l'-' A

DR i i S
(SR S

Ok

(2
P

VI
n

12

0 6, 0, a8 N,
R _.'.

¥

[

In the case of a free wave, P = Py, M = 0, and [69] can be compared
with the earlier equation [13], with the result that:

2k, ik(T+T)

P, = 2k - o4 Tt [70]

Hereafter we write: .
P=P,+P

so that P* is a measure of the motion induced normal pressure gradient
in excess of that existing in a free-wave.
Therefore [69] can be written:

%% + iG[k - P* +iM] = ki ~ KT [71]

which compares with Equation [13] (R = 0):

dG

Frig iG[k + 1Q] = ki ~ KT
On § = 0, these become:
dG * * _
& + 6k - P - 1P + iMr] = ki - KT

dG
d$-+ iG[k - Qi] Ki - KT

*

.
.
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e
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o so that, comparing these relations: ﬂiﬁdﬁ
o T
= ] - - . e
£d = * =
M (8)) = Py* () and Q(6) = P * (4 )
Lf% and, finally:
- Q(Y) = 1P*(¥); M(¥) = -Q(¥)
o or, in the case where {lalso exists: :iiﬁﬁt
Y \"}'\
e YL
N R
Q(Y) + Q(¥) = iP*(¥); M(¥) = -Q(¥) [72] R

[y

4
(4
’
iy

As a result, the wave driving function Qi (¢o) + Qi(ao) can be

.
L
.

A given the following physical interpretation:

_: & Y = * Iy )

Q;(8,) + 0;(8.) = P *(3 ), and noting [66]

= : sy -3 (a8 _ap - _

Qi(cbo) + Qi(cbo) FE (an an > p=20 [73]

“ w

:jt which reveals that in the case of a submerged body; the wave field
originates in an unbalance of the normal pressure gradient on the free

AR surface; i.e., in the excess of the normal pressure gradient over that

o in a free wave.

':~ Note that in the case of a surface pressure distribution, waves

originate, in addition to those due to Qj, in the imposed pressure dis-
tribution itself (those due to ).

)
_::—‘ ~
o VIII. STRONG AND WEAK NONLINEAR REGIMES. ASYMPTOTIC BEHAVIOR (K + «); "
“ AND OTHER APPROXIMATIONS. COMPARISON WITH OTHER THEORIES. ;x-
i}* It is implicit in the exact result, [47], that the generation of
A waves by a submerged body involves both weak and strongly nonlinear
= effects, depending on the maximum value of Qi(¢p)/k. The regimes cor-
- respond to:
o WEAK NONLINEAR : Q (0) = < «x
S
X
e, : >
~ STRONG NONLINEAR: Qi(¢o) max K
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This can readily be seen from the following form for the exact

result, [47];

dF i Q4
—2 4 ixF = Q

ag ° Dm0y ]

whose solution is:

* o* *
-iK% (o) iQy4 +1K% ~
F =e J/. —_—0— e dr*
o (1 -0 /«] %
00 o

where C,* is the map of  given by:

d *
CO

a - [- QiolK]

[o]

[74]

[75]

[76]

It is apparent that both the solution, [75], and the mapping [76]
experience singularities at the point on the free surface where Q4 (¢o)=
K. We can in fact show that in the asymptotic case (K * = ) that Sis-
crete waves arise at such points. These waves are entirely a product of

the strongly nonlinear effect.

The Strongly Non-linear Regime,

We write the amplitude of the far downstream wave as, see [53]:

+oo +icf(9,)

A() = ampl. f [+ Qu(3) - xT(3)] - e a3,

where:

£5,) = 6, + f Q (6,)/x 4
$

o}

and note that:

df -
EE;'= [1- Qi(¢°)/K]

[(77]

[78]

Note that for large Kk (low speed), the wave ampltiude A(w) will
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cease to bg of exponential order in k if the first derivative of the
arg. ein(¢o) is zero within the range of integration (real values of
$o). That is, see [78], if a value of ¢} exists such that:

Q,(6,%) = « [79]

At such critical points (¢, = ¢o*), strong waves arise which may be
Estimated by asymptotic integration (the method of stationary phase)
77].
For large k, we note (see [61a]) that through 0(e?), the critical
point corresponds to the condition:

a; (¢o*) > 2 cos 3 es(¢o*) [80]

where we recall that the subscript s corresponds to the flow about the
surrogate body. Note that this condition does not explicitly involve
the wave number «.

As a result of [80], if qg(@ax) on i = O exceeds the value 2}/3,
then of necessity one or more critical points must exist. In addition,
if |6.| reaches the value m/6, then of necessity critical points must
also exist.

Imagine a submerged body S. As its depth increases, qg -+ 1,
fs » 0 everywhere, so that at a sufficient depth no critical points
exist on the free surface, and the flow corresponds to the weakly non-
linear regime. For smaller depths, however, critical points will
generally exist, and the flow corresponds to the strongly non-linear
regime.

In this case, the method of stationary phase applied to [77],
yields:

Vo [K(i - T(¢on*)ﬂ

Qg I
[3@ (to2 )]

where the upper or lower sign is to be taken in the exponential ac-

cording as dQi/d¢o at the critical point, dop » 1s positive or negative.

Beyond the first appearance of strong waves note that n must be even.
Since dQj/d¢o at the critical point is 0(k), then [81] shows

that in the strongly non-linear regime:

1
A(w) ~ |</i [82]
a result which implies that wave slopes are O(K%) and wave amplitudes
are O(K—%). We recall, however, that physically realizeable waves do
forexist for A > 1, so that [82] implies that in the strongly nonlinear
regime, for sufficiently small Froude numbers (large k), a physically

. %
.o HKE(9o ) 2 /4] [81]

A(o) ~ ampl. Z
n

2 A A T

. |_'.
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realizeable solution does not exist.

The Weak Regime

We seek the reduction of the exact result [77] to approximate non-
linear forms valid in the weak regime for sufficiently small disturb-
ances; these allow comparison with several existing non-linear theories.
The latter are usually expressed in physical plane variables, so we
begin by writing [77] in the form:

+0

0

Exact; A(w) = (ke) {ampl. ./. [1610-€2To] eino(x)[l+uo(x)][l*Y;2 ]dx‘

[83]

where: x is the horizontal space coordinate, nog-dimensionalized by
the characteristic length £; Qi = Qi,/(xe) and To = To/e’ are both
0(1).

In the first approximation (making use that y,' = 0(e)):

£t< L +o0

A % () | amt. [ 18y ™o [ir (0] ax 40
o

Q

where (l4+u ) is the horizontal component of ao'
To proceed further it is necessary to expand the terms in the exact
expression for Qj,, [61], with the result:

! [84]

-0

e RN EC [85]
SO o

€
(o]

where rg, is the radius of curvature of the streamline yg = 0, positive
when concave from beneath and where (1 + uso) is the horizontal com-
ponent of qg,.

Substituting [85] in [84] yields a further approximation:

ke2<< 1; g2¢< 1;

3

[+
4o +x f [1-6{u, +(r,°.<)"}][1+u°]di‘+o(.<c2)
A(w)aampl.?f 61[us°+(rs°|<)-l]-e = ° ax_(+0(xe?)

(86]

. . )
- M .. - " . .
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wherein we have not made any a priori assumptions regarding the magni-
tude of k. Note that the requirement ke?<<l arises from the approxi-
mation of the exponential argument, and that the quantities appearing
may be evaluated at y = 0 in place of ¢ = 0.

Further we examine the low speed weakly non-linear regime: «k >> 1;
k€2 << 1. In this case the surrogate submerged body, Sg, approaches
the submerged half of the double model, Sy, corresponding to the flow
beneath a rigid plane. In this case:

ug(x)) = uy(x))/2 + 0(e/K)
uy (x)) = ug(x,) [87]

-1 £
(rSOK) =00

where [1 + ug(x,)]is the speed on the rigid plane beneath which Sq is
submerged.

Substituting [87] in [86] we obtain the low speed weakly non-
linear approximation:

Ke2<< 1; k >> 1;

Xo
4 ik f [1~2u4(X,) 1d%,
A(e) = 3-ampl 3 f iud(;o)'e - d:'?o + O(Ksz) + 0(¢)

e OO

[88]

This virtually corresponds to the version of the theory of Inui-
Kajitani (1977), derived in the two-~dimensional case by Doctors and
Dagan (1980), where it is shown by numerical application to a surface
pressure distribution that I-K closely corresponds to the second-order
regular expansion theory. The difference is that A(«) = ampl. F while
the corresponding RHS in I-K is ampl. v; it is easily shown that F =
3(v - 1) + 0(e?), so that [88] and I K may be considered identical.

We now prepare for a comparison with the three dimensional theory
of Charles Dawson (1977). The low-speed, weakly non~linear approxi-
mation, [88], implies the following diffferential equation in the com-
plex domain, for the complex velocity v = dW/dz:

Ke?<< 1; Kk >> 13

Nyt 1wl + 2102)] = W(2) [89]

where: 2z = x + iy, where y = 0 corresponds to the free surface,

- Ky .
Fdra o, o, ‘-'."w."‘-". < R R N .
e A e T e e e T e
B o S e e e S S L
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and R{Ud(x,o)> = 03 I{Ud(x,o)} = ud(x,o) [90]

Therefore,-1U(z)is the double model complex velocity. On y = O:

K€2<<1; K>>1;
dv
4 - = 1
ax + ik [1 2ud(x)] iK‘ud(x) [91]

which leads eventually to the solution [88]; therefore proving our con-
tention about [89].

Now we consider the solution for V to be composed of the double
model flow plus a wave-like perturbation, V of 0(1/k), with a pertur-
bation potential ¢; i.e. Vv =-iU(z) +V. We find for V, after sub-~
stitution in [91]:

Kke< 1y k>>1;

dU; dud
e + iKVO [1 - Zud(x)] = - iKud(l - 2ud) [92]

or, in scalar notation (y = 0); taking the real part:

ke2<< 13 k>>1;

'$xx + .<3>‘y' [1 -2u,(0] = —ug () (931

Dawson's three dimensional equation, written in our notation ex-
cept that his % is the length along the double model streamlines on
y = 0; and setting ug(x) = ¢; , is:

X

2,29 +(<1>2$)+ kK§ =0 [94]
dl 29 dz L 2 y

We put [93] and [94] in tomparative form by re-arrangement and by
neglecting some terms of 0(62) in each equation:

[93] » (1+20) & + & = =(1+2up uy [95]
X

[94] + (1+20) G, + .<$y = -(1+ 2uy + 26)) u [96]

d&
where ug in [96 ] 1s the speed along £ on the free surface in the double
model flow.

Since ¢g/uq = 0(1/k), these eqn's may be taken as identical in the
present approximation: K€2<<l, K>>1.,

With regard to the weakly non-linear straining technique intro-
duced by Guilloton (1964), we note that [92Jmay be written in the form
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=
o
AN
& e
T AT, = g - dkuy (1 - 2u)) [97]
dx' e
% = [1-20,0] [98] R

implying that the low speed, weakly non-linear solution may be obtained
as the solution of the linearized equation, [ 97 ], with the solution re-
interpreted according to the straining [ 98]. 1In the low speed appli-
cation of straining a' la Guilloton, however, dx'/dx = [I - ud(x)].

The present result, [ 98 ], therefore confirms the observation of Doctors- -
Dagan that Guilloton underestimates by half the straining necessary, and .. -
that [ 98 ] applies, as implied by Inui-Kajitani. R

In summary, we have found that the present low speed, weakly non-
linear approximation of the exact theory [83], is identical with both
Inui-Kajitani and Dawson within the approximations involved, and limited
to the speed range defined by 1 << k << €2, It would be remiss not to
point out here that Dawson was anticipated by Ogilvie (2d; 1968) and
then by Dagan (3d; 1972a,b), and later by others; see Tulin (1978).

The present analysis therefore confirms and provides comment on the
approximation first proposed by Ogilivie and now so well known as low
speed theory.

The most important comment to make is that for given €, no matter
how small, this so~called low speed theory i1s not valid for sufficiently
‘low speeds. It is a theory valid for low, but not too low speeds! Per-
haps it would best be thought of as a moderate speed theory, especially
where moderate is used in the context of real ship speeds. This dis-
tinction illuminates the difference between this moderate speed theory
and the very low speed theory of Keller (1974;78) based on rays. The
two theories may or may not overlap in any particular case.

At very low speeds, in the sense meant by Keller iun his works, the
waves on a submerged body become exponentially small in the weakly non-
linear case, although they may be calculated by using the appropriate
integral, [84]. In Keller's ray theory these waves have disappeared,
as he contends that only in the case of a body intersecting the surface
do waves originate at very low speeds, and then only at singularities on
the waterline. However, we have also found here finite waves originating
on the surface in the case of very low speeds, even for a submerged
body, but only in the strongly non-linear regime; these do not seem to
have been anticipated in any previous theory, and their practical signi-
ficance remains to be shown.

Finally we should point out that a weakly non-linear approximation, but _ ‘.
not limited to moderate speeds, is given by [86], and applies,provided T
that ke << 1 << 1/¢%. 1In 1its application we should point out that the
surrogate body flow involved in the integrand may be realized as the
arithmetic mean of the double model plus free model flows (in the latter, SEENERAN
ugg 0 ony=0). SRR
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Discussion

T.F. Ogilvie (Massachusetts Institute of Technology)

The theory presented applies only to pressure distributions and/or }{}45

submerged bodies. I assume that there are smoothness restrictions on e

the allowable pressure distributions. How then do you apply or even tﬁ?;a

interpret your results for surface-piercing bodies? rz, {W

E. Baba (Mitsubishi Heavy Industries) Yy

AR Ny

Lk J'

‘ The author should be commended for his efforts in making clear the {i{si
- relationship among the free-surface conditions related to th: problems };.{&]

for weakly nonlinear regime, i.e., the author's, Inui-Kajitani's and

Dawson's. My comment is about the position where the free-surface con-
- dition is satisfied. The author's free-surface condition is satisfied
- on the free surface. On the other hand, Dawson's one is satisfied not
- on the free surface but on the symmetrical plane for double-body flow,

A and, further, a term proportional to the second derivative of the
- double-body velocity potential with respect to the depthwise variable
i" (y) is missed in a sense of a Taylor expansion about the symmetrical

- plane. To the discussor's experience in calculating wave resistance in
- low Froude numbers, a contribution from this additional term is impor-
tant, as discussed in the depth study meeting in Izu that followed the
Washington workshop on ship wave resistance computations in 1979. The
discussor would like to hear the author's view on this point.

ﬁ{: L.J. Doctors (University of New South Wales) }}ﬁ}ﬁ?
o RO, .:
ji: The discussor was pleased to see the excellent agreement between ;:,} 4
. the present theory and that of Doctors and Dagan (to second order) i'

_3 displayed in Figure 1. Could Dr. Tulin compare the two methods in gt
-}? terms of ease of use and expected accuracy at higher orders? {vﬁfi
=y Can he also comment on why the theory at second order already pre- ;ﬁi\:a
e dicts a limiting included overt angle of 120°--a result that one would p:c}i:

b expect should only appear at much higher orders. ﬁiﬂvﬁ'
f“ Finally, one knows that perturbation theory, when applied to the :

P traveling pressure-patch problem with pressure taken as the small pa-

e rameter, will break down if a spray jet occurs--such as occurs at the

j} bow of a planing surface. Can the present theory overcome this weak-

e ness?

!L A.T. Chwang (University of Iowa)

2

v
Ly

I would like to ask two questions: First, in your paper you used
"surrogate” body instead of the actual body in the calculation. Would

1
e &

rugigaron,
. )
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X
X et
WOy you please explain what is meant by "surrogate®” body? Second, have you -‘eﬁ?uf
N . . . . I A
~,: compared your solution with other known solutions such as solitary _n;\ﬁﬂt
o waves or solitons? N A
w et
. X
D Author’s Reply - -
&

“ %

N, M.P. Tulin (Hydronautics, Inc.)
)

» To T.F. Ogilvie

-ﬂ: As the discussor perceives, the part of the theory pertaining to

Y surface pressure distributions may, in principle, be utilized in the
" case of a two-dimensional body intersecting the free surface, and it

would be worthwhile to pursue such calculations and observe the phe-

N nomena that could emerge--strong wave generation, non existence, etc.
158 L . s .

o In deriving the theory, no explicit assumptions were made about the
{;» smoothness of the pressure distribution. The apex of the problem would

i

be to specify a pressure distribution resulting in a physically mean-
ingful body and free surface, but this does not require strong smooth-
ness everywhere. It is clear, for example, that if a body with a
corner under water (cigar-box) were sought, the pressures would not be
differentiable immediately at the corner. 1In all probability, the form
of the pressure at and just downstream of the stagnation point would be
crucial in its specification and might require some subtle
considerations.
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To E. Baba

Dr. Baba has raised an interesting and important question. Cer-
tainly a theory unlimited on the high-speed end should consider the
effect raised. As for the moderate~speed theory, I would like more
time to consider the question carefully; but my belief now is that
Dawson's theory, neglecting the term cited by Dr. Baba, is correct to
the order specified in my paper (two dimensions). Whether the term
would appear in a theory accurate to lower speeds than Dawson used is
doubtful.
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i To L.J. Doctors

o The "second" order version of my exact theory is inconsistent in
2 the sense that the approximation neglects some third-order terms (slope)
., in a regular expansion of Bernoulli's equation but not others (speed),
:: it is for this reason that it yields the limiting wave, whereas a regu-
< lar second order expansion does not. I do not yet know just how a spray
Dy jet might emerge and be treated within the framework of this theory, and
™ it would be most interesting to study that question in detail.
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To A.T. Chwang

The surrogate body flow in the plane of the complex potential
possesses singularities only on the slit in the lower half plane rep-
resenting the real submerged body, and nowhere else. On that slit the
values of Fare are precisely the same as for the real submerged body
flow. Therefore, the difference between the surrogate and the real
body flow is that the latter includes the effect of images in the upper
half plane, while the former does not (unbounded flow). As for the
effect of bottom boundaries, I have not treated that case, but it would
be most interesting to do so. It is certainly possible to obtain
cnoidal and solitary progressive waves in this approach, as Davies and
Packham have already done in approximations that are second order in
my theory (the solitary wave solution of Packham has been shown to
compare extremely well with the numerical solution of Lenau).
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Strong Nonlinear Characteristics of
Steep Surface Gravity Waves

[ling-Yang Su, Oceanoarapner, Physical Oceanography Branch
Albert I Green, Head, Physical Oceanoaraphy Branch
liaval Ocecan Research and Development Activity
NSTL Station. MS 39529

Results of an extensive series of experiments on strong nonlinear
properties of deep water qravity waves are sumnarized. The
experinents were conducted in a large outdoor basin (1 x 100 x 340 n)
and a long indoor wave tank (3.6 x 3 6 x 134 n). The waves were
produced by a mechanical wavenaker. Effects of wave steepness (0.1 <
ak < 0.34) are analyzed for both wave trains and packets. \laves with
noderate to larce steepness are found to be subject to two
fundanentally different types of subharmonic instabilities and two
kinds of bifurcations.

Uynanical processes observed in these experiments include

Wree-dinensional wave breaking, directional energy spreading,
nonlinear enerny transfer for narrow spectra, fornation/interactions
of envelope solitons, and formation of three-dinensional compact wave
Jroups.

Th2 experinental results plus additional analyses of oceanic wave
gyroup chracteristics provide evidence that the stronq interactions of
ocean waves can he significant nechanisns for enerqgy transfer. These
newly recoqnized characteristics of qravity waves may have significant
relevance to ship dynanics and offshore platforms in storm seas.
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I. TdTRODUCTIOIi

In the last two decades several theories about the stability and
interactions of finite amplitude surface waves have been presented.
(See Yuen and Lake, 1982). Many of the theoretical predictions have
been verified to sone extent by recent experimental results, but in
several cases experiments have provided descriptions of phenomena that
defy theoretical analysis at tihis time. In this paper we shal)
concentrate on describing experimental results that have given some
valuabie insights about the evolution of wave trains and wave groups,
particularly in providing clearer understanding of the processes and
forcing conditions that may exist in high sea states.

These results could aid designers in improving predictions of
ship performance. One property of nonlinear wave dynamics that may be
of particular interest to naval architects is the high coherency of
the highest waves within a wave qroup. For many purposes it is
sufficient to consider that the surface wave field is represented by a
narrow-hand Gaussian process that can be used in realistic simulations
of ship hull response The occurrence of coherent wave groups,
particularly in high sea states, could present critical forcing
situations that are not represented by simple statistical forcing
rnodels.

In the following sections we summarize the results of recent
experinental work directed toward improving the description of the
nonlinear dynamics of surface waves. In §2 we describe results of
observations of two-dimensional wave instabilities and the formation
of envelope solitons. These two-dimensional instabilities are also
intinately related to a rapid change in the carrier frequency of wave
groups and wave trains. In §3 we present results of observations of
three-dimensional wave instabilities and bifurcation processes that
occur for steep wave trains. A feature of wave instabilities that has
not been described previously is the interaction of two- and
three-dimensional instabilities; some of our results that give
evidence for this type of interaction are briefly outlined. In §4 we
describe statistical analyses of extensive wave data sets obtained
durina stormy periods in the Gulf of Illexico. We examine the
occurrence of contiquous high waves that are members of an
identifiable wave groun. The joint probability distribution and
correlation of contiquous high waves will be discussed. The
dependence of wave groupiness on the peakedness of the wave spectra
are exanined. In §5 we attempt to relate some of the experimental and
theoretical results to phenomena in natural ocean waves. These
phenomena include wave breaking, formation of giant waves, short
crestedness of natural waves and power spectra evolution. The results
of our experimental work clarify and help to explain some of these
complicated processes. In §6 we make a brief review of pertinent
theoretical results which can partially elucidate some of the wave
evolution processes that we have observed.
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II. Tt EVOLUTION OF TWO-DIMENSIOHAL WAVES: EXPERIMEWTAL RESULTS

v Benjanin and Feir (1967) presented clear evidence that finite
- anplitude wave trains are subject to a two-dimensional instability
. which is manifested by rapid growth of side-band components of the

- basic carrier wave. The growth of the side-band components

- progressively rodulates the initial carrier; as the growth of the

N instability advances the upper side-band component attenuates while
the lower frequency side-band grows. Distinct wave groups are formed

- in this process and the maximun wave height within a group may be

N double the initial wave height. An example of this type of wave train

. evolution is given in Figure 1, where agky = 0.15 and the carrier

- frequency of the wave train fq = 1.23 Hz. In this exanple the time
n series of water surface elevation at 61 m (594,) contains wave
) groups composed of about 7 waves. ihe higher waves occur at the
- leading edges of these groups with maximun wave heights 90% greater
o than the initial wvave train. MHodulation intensity decreases
noticeably at the 76.2 m station with eventual reconstitution of a
near-uniforn wave train at the x = 106.7 n station.
ilave power spectra for this example are shown in Figure 2. ilote
that the side-band compnonents are visible at station x = 30.5 m, and
at x = 91.5 n the lower side-band conponent of the instability has
variance equal to variance of the the carrier wave component at f,.
. leanwhile, the higher side-band conponent (f2) decreases
AR appreciably. By the time the wave train evolves and proceeds to
. station x = 106.7 n (1044,), the lower side-band component (fq)
: has alriost twice the variance of the fy conponent. The majority of
the carrier wave energy is transferred to fy. It appears that the
= Benjamin-Feir instability is a precursor of the frequency downshift
that accompanies the energy transfer from the carrier 1ode to the
lover frequency node. This frequency downshift occurs for waves with
steepness, agky 2 0.1. It is clearly not a process described by
the presently availahle theories. (Su, 1982b; Lake et al., 1977).
Another experimental result of interest is the formation of wave
qroups that remain essentially unchanged as they propagate. These
experinental observations, to some extent, correspond with "envelope
solitons", wave qroups with invariant envelopes. HNote examples in
Fiqures 3 and 4. In Figure 3, we find that the wave packet has
k separated into a set of distinct envelope solitons by station x = 61
n. Frequency dispersion causes the lower frequency harbinger waves to
lead the envelope solitons which appear to maintain their shapes after
separation from the intial packet. The leading envelope soliton
contains the bulk of the enerqy of the original wave packet. The
leading solitons generally have carrier frequencies that are lower
than the initial carrier frequency, while trailing waves have frequen-
cies nearer the initial packet carrier frequency. The maximum magni-
tudes of the frequency shifts relative to f? are roughly equal to
the initial steepness (agkg), or (1 - f1fg=1) 2= agkg,
where f1 is the rost rapidly growing lower side-band of the
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Benjamin-Feir instability.

As the number of waves in the initial packet (N,) increase, there
is a higher probability that some envelope solitons or simple groups
will collide. Examples of collisions of wave packets are shown in
Figure 4 where agkg = 0.15, fy = 1.23 Hz and Ny = 60.

At early stages the wave packet is subjected to modulations that
are roughly symnetric about the center of the evolving packets in the
range x = 6.1 m to x = 42.7 n At subsequent stations the more intense
modulations are biased toward the front of the packet (Fig. 4, x =
61.0 m to 91.5 m). \le believe that the asymmetric modulations are due
to the collisions of wave groups of different carrier frequencies.
(Su, 1982c).

ITI. EXPERINMEMTAL RESULTS OF THREE-DIMEHSIOMAL MAVES

Several types of three-dimensional surface wave patterns were
observed to evolve fron finite amplitude wave trains with initial
steepness 0.16 < agkg < 0.34. Host of these observations were
nade in an outdoor basin 1 x 100 x 340 m. A 16 m long plunger-type
vavenaker was used to generate waves that are initially uniform and
2-dinensional. Some smaller scale experiments were carried out in a
deeper, narrower indoor tank 3.6 m x 3.6 m x 134 m.

A. Skew Bifurcation of Stokes Waves

For 0.16 < agky <, 0.18, finite anplitude wave trains (similar
to Stokes waves) are “found to bifurcate into three-dimensional
patterns which propagate oblique to the primary direction of the
initial waves generated by the wavemaker. A typical case with
agkg = 0.17 serves as an illustration of the 3-dimensional pattern
that appears to be similar to a "skew bifurcation" of Stokes waves
(see Figure 5). The rather conplex three-dimensional wave field has
been divided into five phases:

(a) finite amplitude (Stokes-like) waves,

(b) skew bifurcation,

(c) interactions of the skew bifurcation,

(d) low frequency wave rodulations, and

(e) nodulation of skew bifurcated waves.

Figure 6 presents two exanples of skew-bifurcated waves; the
initial long-crested waves with wavelengthAy evolve into
short-crested waves. Results of our experinents show that the crest
lengths of the skew bifurcated waves (Ag) and their propagation
directions, lie in the ranqges:

2.525 < Ag < 3.51,
15° <¥ < 20°.
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The average value of A g and¥, are approximately 3A, and 18°,
repectively. The group velocities of the skew wave patterns Cp,S
in the initial wave direction is

Co/35 < Cp,s £Co/65

which is small compared with the group velocity of small-amplitude
waves, C5/2. The skew wave patterns appear to be almost stationary
to an observer standing on the wavemaker,

The upper central portion of Figure 7 gives an example of the
interactions between two crossing skew wave patterns. This interac-
tion produces compact diamond-shaped wave packets whose pattern is
sinilar to the form of a narrow band two-dimensional wavenumber
spectrun illustrated by Longuet-Higgins (1976). 1In the stage after
the most intense interactions of the skewed bifurcating waves, a pair
of skewed wave patterns emerge without apparent distortion of envelope
shape.

tlext the skew-bifurcated waves undergo the nodulational
instability that appears to be of the Benjamin-Feir type.
Instability-induced nodulations can be seen in the upper portion of
Figure 7. The temporal records (Figure 8) of surface displace-ment at
six locations clearly show the development of the instabilities. Low
frequency nodulations at about 1/50 the frequency of the primary waves
are due to the progressive skewed wave pattern which has a small group
speed. The shorter modulation period (about 6 wave periods)
superinposed on the longer modulations are caused by the Benjamin-Feir
instability. A more detailed description of the results of
observations of the skew wave pattern can be found in Su (1982a).

B. Symnetric Bifurcation of Stokes Waves

When the range of wave steepness is 0.25 < agkg < 0.35,

the characteristics of evolution of initially uniform wave trains are
different from those discussed above. The evolution of these steeper
waves can be described by five stages. A typical example described
here has agkg = 0.32 (Figure 9). The stages are:

(a) Three-dimensional instability,

(b) Symmetric bifurcation,

(c) Spilling wave breaking,

(d) Radiation of oblique wave groups, and

(e) Frequency downshift.
Fiaures 9 and 10 should be noted in order to understand the brief
description of each stage.

Figure 10a shows a small portion of the wavenaker together with the
first few waves with small perturbations (roughness). 1In Figure 10b
distinct small-scale perturbations are superimposed on the larger
waves; these disturbances are evidence of incipient three-dinensional
instabilities on the steep waves. At this stage small-scale breaking
occurs near the crests of the primary waves. The multiple
disturhances are quickly sorted out, and highly regular, crescent-
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shaped wave forms emerge at the beginning of the next stage (Figure
10c); these crescent-shaped waves are the result of symmetric
bifurcation of the steep primary waves and a superimposed
three-dimensional instability. The bifurcated waves in most cases
have wavelengths that are twice the primary Ay. This configuration
of the symmetric bifurcation occurs in nine out of ten experiments in
this range of agky. ilote in Figure lla that there is azAgg

shift of the pattern in alternating rows of waves, when the symmetric
bifurcation is dominant. Apgc is the crestwise wavelength of the
symmetric bifurcated wave.

In about one out of ten experiments another confiquration occurs
and is characterized by a length scale of 3Ay (Figure 11b). Note
that every third row of waves has ajApc crestwise shift with respect
to the other two rows. The least frequently observed configuration
(about 1% of experiments) has a length scale of 4 o and is
qualitatively similar to the first configuration, except that there
are two identical patterns followed by twoé%hgc shifted patterns
(Figure 11lc) (Su, 1982a).

In the next stage spilling wave breaking occurs in the centers of
the crescents (Figure 10d) as the symmetric bifurcation intensifies.
Capillary waves radiate away from the "breakers” in a wide range of
directions. Adjacent waves appear to interact strongly. Air
entrainment occurs as the spilling breakers form. Following this
phase, the wave train, evolves into two regimes: (1) wave groups
radiating away from the primary waves propagating at an angle of about
30° (Figure 10f) and modulating the primary wave train, their source
appears to be related to the syrmetric bifurcation process and the
fully developed state of the three-dimensional instability; (2) wave
groups travellina in the direction of the primary waves (Figure 10Qe)
and appearing to be undergoing a transition similar to a well
developed Benjanin-Feir instability accompanied by a rapid decrease of
the primary wave frequency. The frequency downshift in the final
stage may be as large as 25% of f, (Su, Bergin, Harler and llyrick,
1982).

Figures 12 and 13 show the tine series of surface fluctuations

SRS A
and the corresponding power spectra at ten stations. Ilodulations due SR
to the three-dinensional instability are first visible at x = 12.2 m RO
in Figure 13. At stations, x = 30.5 m and x = 36.6 m, we see the {y;};:}
alternate high and low wave crests which are the indications of g(if;x{
symmetric bifurcated waves. In the next two stations (x = 42.7 m and et ﬁl
x = 48.8 n), the nost dominant modulation is four wave periods; this DRSAENS
corresponds to the transition from three- to two-dimensional waves. AL
The two-dinensional wave modulations produce the lower frequency AN

envelope nodulations at station (x = 67.1 m).
C. Interactions of Two- and Three-Dimensional Instabilities
We have described the experimental results of wave evolution as if

the two- and three-dinensional instabilities were not co-existant and
not subject to interactions. These phenomena are coincident, although
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their growth rates differ according to agky. In fact, both

classes of instability influence each other during the evolution of
wave trains and packets. In this section we describe some results of
these interactions.

One particularly important effect of the interactions of the
instabilities is found in the relation of initial steepness (agkq)
to relative growth of wave amplitude. Figure 14 shgws the variation
of the anmplitude amplification factor, defined as ("™/ay), for
0.09 < agky < 0.20, where ay is the largest wave amplitude
observed at the naximum modulation in eacg run of experiments at a
fixed agkg, with initial amplitude ag. (°™/agy) is the
relative maxinum wave height growth in the wave evolution due to the
Benjanin-Feir type instability. From the theoretical analysis of this
t*pe of instability (Longuet-Higains, 1978), we would expect
(""/ay) to increase ronotonically for agkg < 0.20.

A_renarkable feature of the observed variation (Figure 14) is
that (“M/ay) reaches a maxinun value; (aw/ag) =~ 1.9 for
agkox 0.14. Additionally, at the stage of maximun amplitude of
the wave envelopes agkg X ap/ag = 0.27 (0.14 < agkg £
0.2), i.e., the "effective steepness” (apkqy) reaches its maximum.
This "effective steepness” puts the steepest waves into a range
(agkp > 0.25) in which the three-dimensional instability limits
the anmplitudes of two-dimensional disturbances. The impact of the
three-dirmensional instability is clearly deronstrated in Fiqure 14.
Su (1982b) and ilelville (1982) reported the observations of
three-dinensional crescent-shaped breaking waves during the interval
of maxinum wave train modulation for agky 2 0.18. For wave packet
rmodulations, Su (1982c) reported sinilar ohservations for agkg 2
0.14.

In short, effects of interactions between these two types of
instahilities wmay be summarized as follows. The three-dimensional
instability appears to be enhanced in the steeper waves by the
presence of the two-dimensional instability. Breaking dissipation
acconpanying the evolution of the crescent-shaped patterns, which
results from three-dimensional instability, appears to limit the
anplitude attained by the two-dimensional instability. The
two-dinensional unstable waves reach a maximun steepness of only about
75% of the theoretical steepness limit, 0.443. Additionally, some
effects of finite depth of water on both two- and three-dimensional
instabilities are presented by Su, Berqin, ilyrick and Roberts (1982).

IV. PROPERTIES OF STORI1 UAVE GROUPS

A. Introduction

In this section we describe some analyses of wave data taken in
stom conditions. The results provide new insights into the ways
nonlinear dynamics influence the formation of wave groups. A wave
group is defined here to be a sequence of waves with heights exceeding
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a threshold chosen to be the significant wave height (Hg). This
definition differs from the classical version that characterizes the
"group" as an envelope of waves with nearly the same frequency.
flarine folklore abounds with accounts of higher waves occurring more
frequently in groups than singly. Recently this lore has been
compared with quantitative analyses of ocean wave records. In the
past decade it has been recognized that the occurrence of wave groups
can be of considerable importance in operation and design of marine
vehicles and offshore structures.

The presence of wave groups in wind seas is usually considered to
be a consequence of the narrowness of the spectral bandwidth. The
“qroupiness” of wind seas has received very little analysis compared
with standard wave spectral investigations. lleager attention has been
devoted to understanding the processes that contribute to narrow
spectral bandwidth and groupiness of wave data from rapid growth
stages. e suggest that §$2 and §3 contain some keys for explanation
of these phenomena; in those sections we noted that wave trains and
packets evolve into wave groups.

In an attempt to seek physical reasons for this phenonenon, as
well as recognizing that wave trains/packets have natural tendency to
evolve into more stable wave groups (§2 and §3), we now think it nay
be justifiable to propose that the narrow bandwidth of wave spectra is
a consequence of existence of abundant wave qgroups in storm seas
(generally considered to be strictly random processes). In any case,
we shall show that these two wave characteristics are closely related.

The field data used here were collected by a consortium of
several oil companies with offshore platforms in the Gulf of ilexico
during 1969-1971. The data include passages of three hurricanes (Ward,
1974). tHere we shall use only those portions of wave records with
significant wave height (Hs) greater than 2 m and with individual
waves (Hj) determined by the zero up-crossing method. ilearly 50,000
waves are included in this analysis. (Su, Bergin and Bales, 1982).

The peakedness paraneter, Qp, introduced by Goda (1970) is a
useful measure for (relative) narrowness of the wave spectrum, E(f):
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where mg is the zeroth nonment of E(f). Larger Qp corresponds to
narrower E(f). Wave records have been separated according to the
growth stage {increasing Hg), or the decay stage (decreasing Hg),
so that possible differences in the statistical properties between
these two stages of ocean waves can be studied.

B. Correlation of Successive l{ave Heights
Table 1 gives the correlation [R(j)] of successive wave heights

for lags of j waves, j = 1, 2, 3 and 4, for the stages of growth,
decay and the combination of the two. The rean of R(1) > 0.32 is
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higher than the one-laoc auto-correlation of a narrow band Gaussian
process (Goda, 1970) for all the cases. The assumption that R(-1) =
R(1) can be justified by the symmetry of the joint probability
distribution of wave heights. We find that up to three successive
waves are well correlated. We found little difference in the R(1)'s
between the stages of growth and decay in comparison with the rather
large difference (0.30 vs. 0.20) reported earlier by Rye (1974). ilore
recently, Arhan and Ezraty (1978) obtained R{1) = 0.297 for a data set
of about 26,000 storm waves collected in the Morth Sea, which conpares
more favorably with the present result than that of Rye (1974).

To show the dependence of R(1) on the bandwidth of wave spectra,
a scatter diagram of hourly R(1) vs. the corresponding Q, is given
in Figure 15. Although there is considerable scatter, the diagram
indicates an approximately linear dependence between R(1) and Qp:

R(1)z= 0.2 (Qp - 1) (2)
C. Probability Distribution of Group Lengths

The number of successive waves with Hj > Hg is defined here
as the length of a wave group (Ly), while the number of successive
waves with H < Hg is defined as the group separation (Lp). The
combined number of waves for a pair of contiquous wave group and group
separation, L = Lj + Lo, will be called the total length of a wave
group. Table 1 gives the probability distribution of Ly =1, 2, 3
and 4, p(L1), plus the mean and standard deviation of Ly, Lo and
L for the stages of growth, decay and the conbination of the two.
Assuming statistical independence of wave heights, Goda (1970)
computed p(Ly = 2) = 0.116. This is smaller than the value of 0.198
calculated from the field data; we surmize from this that waves with
Hi> Hg tend to group together, rather than propagate singly. Our
analysis shows small differences in Ly, Lp and L, for the stages
of yrowth and decay in conparison with those reported by Rye (1974).
Figure 16 is a scatter diagram of hourly Li vs. corresponding
Qp. Also shown on the figure is a curve obtained by Goda (1976)
hased on a computer simulation using the JONSWAP spectra. This curve
seens to represent a fairly good approximation for the mean of L;
vs. Qp. An approximate linear relationship for these wave group
parameters is

L1 = 0.2 0y + 0.9, (3)
Elininating Qp from (2) and (3) yields

Ly = R(1) + 1.1 (4)
D. Joint Distribution of Successive Wave Heights

For sake of brevity we shall not present the details of the joint
distribution of successive wave heights. Specifically, we nention
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results of computations of the ratio of H; to the expected value of
Hi+1 from the joint distribution. If Hj and Hj4; were

independent, the expected value of Hji+1//My would be 2.51 under

the assumption of Rayleigh distribution of wave heights: note the
straight dashed line in Figure 17, Statistics of the field wave data
shows that successive waves with Hi/JﬁB > 4 have a higher

correlation than smaller waves. This fact further justifies our
choice of Hj > Hg for defining wave groups.

V. COMPARISOHS OF LABORATORY AND OCEAM WAVES

So far we have presented results of wave measurements from the
laboratory and wind seas. The organized wave trains and packets in
the laboratory experiments have features that we can relate to
phenomena frequently seen in ocean waves, such as short crestedness,
spilling breakers and directional spreading. The strong visual
similarity of natural and laboratory waves inspires us to propose that
the phenomena are governed by the same processes.

Before discussing the similarities, we should mention differences
between laboratory and ocean waves. The laboratory waves come fron a
spatially compact, coherent source that creates Stokes-1ike waves.
Harmonics of the finite amplitude waves are phase locked. Ocean wind
waves are generated by randomly distributed turbulent atmospheric
forcing that appears to act directly only as long as the wave phase
speed is less than the wind speed. Another obvious difference is
wavelength; the laboratory waves are on the 0(1 m), whereas their
visual oceanic counterparts are typically somewhat longer and further
from the gravity-capillary regime. Although we could describe more
differences, such as boundary effects and effects of dissipative
turbulence, we refer the reader to Su (1982a,b) for more extended
discussions.

A. Short-Crestedness and Directional Spreading

Deep ocean waves, particularly in growing seas, are usually short
crested; the crestlength is on the order of the wavelength. The short
crests can be attributed to modulations produced by waves travelling
in different directions, instabilities or bifurcations. HNature
probably allows all of these phenomena a range of admixtures, but the
laboratory experiments give some sharp focus on wave instabilities and
bifurcations. The added acuity allows us to see that even small
perturbations on waves of moderate ak create rapidly growing
instabilities. The compounding of two- and three-dimensional
instabilities, and bifurcations create short-crested waves.

Oceanic waves are not generated by a coherent source, nonetheless
the perturbations will be present and the most unstable modes will
amplify. These two-dimensional growth processes will modulate the
waves to form groups containing waves steep enough to accelerate the
growth of the three-dimensional instability and, finally, breaking.
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\leak resonant interactions possibly complement wave instabilities.
The laboratory results give clear evidence that bifurcations and
three-dimensional instabilities lead to breaking waves and spreading
of enerqy away from the primary wave direction.

~ In growing seas dominant waves may often have ak = 0.14 to 0.18,
the range in which modulational instabilities grow rapidly, so it

o appears reasonable to surmize that the ocean wave instabilities lead
o to short-crestedness. The generation of short crested waves spreads
- the directional power spectrum. The experinents also show that
three-dimensional wave breaking may be an additional source of

.

-~ directional spreading of wave energy.
- B. ‘llave Breaking in Deep Water
;5: He have been impressed by the apparent similarity of the spilling

breakers seen in the experiment and white-capping deep sea breaking
waves. In the laboratory we found that wave breaking is the result of
three-dinensional instabilities and symmetric bifurcations. Analyses
of storm wave records show that many waves have sufficient ak to

;ﬁ trigger the sequence of these types of instabilities and bifurcations.
b llore indirect evidence of the physical sinilarity of these
¢ processes comes from the group properties of storm waves; it appears

N that wave groups contribute to the most energetic bands of the

e spectra. The probabilities of occurrence of these groups exceeds that
: of a narrow band Gaussian process. Fromn this we surmize that

modulational instabilities and bifurcations tend to reinforce phase

locking of wave components; this also exists in ocean waves and leads

to wave breaking. Donelan, Longuet-Higgins and Turner (1972) observed

) that oceanic wave breaking appears to happen rnost often at periods

= twice the dominant wave period. This is consistent with the

T experinental results of the three-dimensional breaking waves in the

most frequent configuration of the symmetric bifurcation (§III).

C. Giant Waves

:l Wle now add another example of evidence for strongly nonlinear wave
" evolution. This concerns the so-called "giant" waves encountered in
= the Aghulas Current and, less frequently, other reqions of the oceans.
- These types of abnormally high waves have been described by ilallory

o (1974) and Hamilton (1980). Results of our experiment that appear to
- bear on this phenomenon are the observations of rapid growth of wave
;{ height due to modulational instability . The giant waves appear to be
h in small groups that arise as a result of rapid changes in the wind or
e current field through which large amplitude swell passes. Swell

" entering the Aghulas Current from the south (with ak = 0.08) increases
9 steepness as it interacts with the opposing current. The increase in
o steepness to ak = 0.12 is sufficient to bring the swell into a range

where rapid arowth of modulational instabilities creates wave packets
containing sone large steep waves.
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In the laboratory we found that the modulational instability
could create waves with heights two times that of the initial waves.
Intense modulation can also occur as a result of rapid and intense
change of wind speed and direction in the presence of swells, such as
in the case of the passage of a squall line (Hamilton, 1980). The
abrupt wind change rapidly generates waves that may increase the
steepness of the initial wave field by the process of long-short wave
interactions. These instabilities could be the sources of anomalous
waves. Although the connections of the Tlaboratory and oceanic
processes are tenuous at this stage, the roles of nonlinear
instabilities and bifurcations in ocean wave evolution seem to he
important.

D. Implications to ilaval Hydrodynanics

As efforts progress in numerical simulations of hull response, it
is clear that the representations of the forcing field, such as waves
and currents, need to be accurate. The occurrence of wave groups
conplicates the response nodel by introducing conditions that require
the model to have memory for several wave periods. For example, a
ship underway in heavy seas may romentarily be loaded by water trapped
on the open decks. This status could be precarious for a damaged
vessel since there is a significant probability that the first intense
wave will be followed by another. The second wave could have sorewhat
greater inpact than the first, due to the mass of water added by the
first wave.

VI. APPLICABLE THEORIES

A. Applicability of Theories

Throughout this paper we have described our observations in terms
of instavilities and bifurcations. This terminology has been chosen
to describe processes that have similarities with recent theoretical
results. All of these theories have assumed that the initial wave
trains or packets have finite amplitudes. The instabilities arise
fron the presence of relatively small perturbations to the wave field.
The theoretical results that are based on small perturbation analyses
are not strictly applicable to our observations in every case, since
the observed perturbations are not always small. The nonlinear wave
evolution resulting from finite amplitude disturbances is different
from the theoretical assurmptions. Later stages in the developient of
the transitional phenomena, such as irreversible frequency downshift,
wave breaking and the self-limiting of instabilities at finite
arplitudes are not in the scope of nresent theory. levertheless, the
theoretical results have given valuable aid in developing working TR

analogies of complex phenomena. tathematical methods currently being ;3&%1;\
developed in other branches of physics, renormalization theory for :ﬂ*&'f
exanple, nay eventually overcone the major mathematical problems and Qg .
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quantitatively describe the natural phenomena (See Dewitt, 1982 for
examples).

B. Vave Instabilities

Benjamin and Feir (1967) showed that two-dimensional Stokes waves
were subject to instabilities when perturbations at higher or lower
frequency side bands were introduced. Experimentally, these side-band
instabilities are observed as modulations of the carrier wave, hence
the term "modulational instabilities". Longuet-Higgins (1978)
extended the Benjamin-Feir theory to all waves of large amplitude.
flodulational instabilities of this class have been observed (§2) and
are the source of the incipient nodulations of wave trains and
packets.

Three-dinensional instabilities of steep waves have been
predicted by McLean, et al. (1980) and McLean (1981). This type is
rmost clearly manifested as the dominant instability for agky >
0.3, although it is present for small steepness. This instahility has
the critical feature of phase locking with the primary wave, so it
rmust travel at the phase speed of the carrier waves. Observations of
the crescent-shaped, three-dimensional instabilities correspond
closely with the theoretical predictions of symmetric bifurcations
given by Saffrnan and Yuen (1981). There are some clear differences,
however. The observed waves break and appear to dominate the carrier
waves.

Saffman and Yuen (1980) predicted a second class of bifurcated
waves, the skew bifurcations mentioned in §3. Our observations
confim existence of this phenomenon and are quantitatively consistent
with several features, such as angle of divergence of the wave vector
relative to the primary, but the group speed differs.

In our experiments we found that the intense modulational
instabilities created wave packets containing waves with ak large
enough to trigger the three-dinensional instabilities. The small
perturbation analyses of the present theories do not include these
forcing conditions. Generally, it is clear that nany of the
qualitative and sonme of the quantitative theoretical results are
consistent with our observations.

C. &nvelope Solitons

Another inportant observation in the experiments is that wave
packets tend to sort themselves out into smaller packets of
near-permanent form, described here as envelope solitons. This packet
fissioning into envelope solitons was predicted for waves of small
agkg by Zakharov and Shabat (1972). The main features of their
theory agree well with observations with small agky; however, for
waves with agkg > 0.1 the leading, most energetic envelope
solitons are found to have carrier frequencies lTower than the initial
main carrier. The nonlinear homogeneous Schrddinger equation, which
is the basis for the Zakharov and Shabat analysis does not admit
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- solutions with permanently frequency-downshifted waves (Yuen and Lake,
% 1975; Lake et al., 1977). Presently there is no theory that explains
< the frequency-downshifting information of envelope solitons.

D. Frequency Downshifting

= One of the most interesting features of our experimental results
-, is the observation that waves with agkq > 0.1 shift energy from
- the initial carrier wave to a lower frequency component. The energy

is transferred to wave components with a frequency corresponding to
the lower side band mode of the modulational instability (Benjamin and
Feir, 1967; Longuet-Higgins, 1978). This energy extraction from the
primary wave may continue until the carrier is almost totally absorbed
by the lower side band. Exchange of energy among frequency components
is predicted by Hasselmann (1962) as a result of weakly nonlinear
resonant wave interactions (Phillips, 1960). Due to the assumptions
of small steepness and long interaction times, the weak resonant
theory is not applicable to wave evolution in the ranges of ak in
storm seas and in our experiments. In addition, an important
simplifying assumption used in the theory is that the phase
relationships among the interacting field are random. As we have
noted, this assumption has limited validity due to the apparent phase
locking of components in wave packets with ak > 0.1.

VIT. CONCLUSIONS

We have described several nonlinear wave processes that have
been observed recently. The initial wave steepness ranged fron 0.1 to
0.34. The general features of these processes correspond well with
predicted instabilities and bifurcations, but significant advances in
theories will be needed to explain the observed frequency down-
shifting, energy transfer and dissipation. The tendency of
moderate-to-steep waves to form phase locked groups was observed in
the laboratory and in oceanic storms. Several characteristics of the
ocean waves are very similar to the laboratory waves, so we suggest
that comparable processes are working in both domains, but
considerable work will be required to quantify this conclusively. The
existence of wave groups of large-amplitude could be a threat to ship
survival in extreme seas, particularly when the vessel is damaged or
disabled. e shall be able to make rore accurate predictions of sea
state and ship response to heavy seas, if we can improve our
understanding of these strong nonlinear wave phenomena.

The high incidence of wave groups of higher waves in storms _2
should be considered in formulation of new statistical theories of o
deep water waves. Existence of these components with strong ¢ 9
interactions compells us to suggest that the weak multiwave resonant BN
interactions nay not be the major source for the wave-wave energy Qt;{flf
transfer. Sporadic, but strong interactions should also be included PR
in the energy budget. SN
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Figure 1. The space-time evolution of a continuous wave train with an initial
steepness, agkg = 0.15 and f; = 1.23 Hz.
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Figure 3. Time series of surface displacements at six stations for a moderate
steepness wave packet (N, = 20, agko = 0.22, Ao = 0.82 m and f, =
1.15 Hz). The packet fissions to form five distinct envelope
solitons (61 m).
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Figure 10. A sequence of photographic images corresponding to the phases of
) the three-dimensional evolution of a steep wave trains (agkg = 0.32,
- fo = 1.23 Hz): (a) the initial uniform wave train, (b) at x = <0 ft.,

Ty
.
e

:3 and (c) at x = 40 ft., exarples of the yrowth of the three-dii - isiona)l
- perturbations (d) at x = 60 ft., the syrietric bifurcation forvs
\ crescent-shaped spilling breaking waves, (e) at x = 80 ft., showing

intense two-dimensional wodulation preceding the freguency downsnift,
and (f) at x = 120 ft., the chlique wave groups radiate from the
transitlion of the pillie i v .nors,
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Figure 11. Three observed configurations of symmetric bifurcations from steep
wave trains with 0.25 < ajky < 0.34: (a) with the periodicity of
two primary waves, (b) wi%h the periodicity of three primary waves,

and (c) with the periodicity of four primary waves.
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Figure 12. Time series of surface displacement of a wave train at :
stations along a tow tank; agkp = 0.30, fg = 1.15 Hz, o = 1.12 m. i
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15.

Scatter diagram of correlation of wave heights vs. peakedness
parameter for the stages of growth and decay, respectively.
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Figure 16.

Scatter diagram of mean group length, Ly, vs. peakedness parameter,
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Figure 17. The ratio of Hi/Hj+1 vs. Hi/J Wy for the stages of growth and
decay. The dash 11ne_wou]d be the expected curve if waves are
completely independent.
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Discussion

A.T. Chwang (University of Iowa)

{: In one of your earlier slides you showed the evolution of envelope
.- solitons. However, they are not arranged in descending order in ampli-
tude. We know that a soliton with larger amplitude propagates faster
than one of smaller amplitude. I presume if you measure further down-
stream you will find the envelope solitons will arrange in descending
order in amplitude. My second question concerns the interaction of
waves. I would expect that the resultant wave would have an amplitude
greater than the sum of two incident waves. However, your slides indi-
cate otherwise. Would you please explain? Perhaps the result ‘depends
on the oblique angle of the two incident waves.

B. Johnson (U.S. Naval Academy)

Would you expect the same results if the wavemaker generated a
perfect Stokes wave with no harmonic distortion introduced by the wave-
maker? In other words, is it possible to separate the observed insta-
bilities into those caused by the imperfect motion of the mechanical —
wavemaker and those predicted by Benjamin and Feir? R

How time and wind dependent are your outdoor results? Do the DER
observed phenomena appear the same so long as the wind speed is below a _Qi}?
certain value? Do you use a wind-speed criterion above which experi- e
ments are not undertaken? This information would be useful to other B
outdoor seakeeping and maneuvering basins. - .

a

‘e '

S "

:

n

O. Sarda (University of Iowa)

PPN

Would Dr. Su tell us briefly about the measurement system and if
the data set was obtained in analog form only (as is seen from the
figures) or in digital form, a form convenient for storage and
analysis, also.

M.P. Tulin (Hydronautics, Inc.)

My comment supplements the remark that wave steepness is not lim-
ited by the occurrence of the Stokes limiting wave but by instabilities
begirning earlier. Duncan and I have found the same to be true in the
case of waves produced by a moving hydrofoil, where breaking usually
begins on the first wave to the rear at a maximum wave slope of 17-18°
(rather than 30°) and seems to be associated with two-dimensional insta-
bilities of the type calculated by Longuett-Higgins.
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7:;‘ Author’s Reply
&
L M.-Y. Su (NORDA)
ij To A.T. Chwang
j}: Your statement of descending order in amplitude of envelope soli-
-f* tons evolving from a wave packet is correct. The example I show in the

presentation is still in the process of evolution, in which the middle

envelope soliton has not reached its final stage yet. 1In our experi-

ments, which are not presented here, there are cases that demonstrated

exactly what you described.

Your second question is believed to refer to Figure 14 in which

L the amplitude amplification versus wave steepness is shown. The in-
Ccrease versus wave amplitude here is due to nonlinear instability of
the Benjamin-Feir type but not superposition of two wave trains. As

*;E such, the amplitude amplification factor can be smaller than 2.

- " To B. Johnson

: We have purposely used two quite different types of plunger shapes
e for studying the instability problems of both two-dimensional and three-
S dimensiocnal phenomena. No basic difference has been found. As such, we
o could state that these phenomena are independent ol the specific charac-
Y teristics of the wavemaker.

Since our large basin is outdoors we need to wait for calm weath-

er to conduct experiments. In our locality, we can often expect such
conditions to prevail during the early morning and late afternoon.

:j Normally, wind speed is less than 1 m/sec for our experiments. The phe-
n: nomena with which we are concerned here are mainly due to subharmonic
‘;: perturbation and/or bifurcations, which are not affected by the small
'j wind waves at the superharmonic scales.
- To O. Sarda i
- The wave data (i.e., surface elevation) are measured by up to 20 RCSC
;ii capacitance wave gauges simultaneously. The data are digitized on- SRR
il line at a normal rate of 40 samples per second and recorded on mag-
o netic tapes. To produce the time series of wave evolution as shown in
L the presentation, these digital data are converted back to analog form
R and plotted. Other wave characteristics are all processed digitally.
)
e
~
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To M. Tulin
The breaking waves investigated by Lonquet-Higgins and Coblet is

two dimensional in nature, while the breaking waves in our experiments
presented here are due to a new kind of three-dimensional instability.
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Binnie Waves

by
Chia~Shun Yih
The University of Michigan

Abstract

Surface waves created by water flowing in an open channel with
vertical side-walls and variable width are considered and analytical
solutions given. It is shown that there are infinitely many Froude
numbers, depending on the wavenumber of the channel-width variation I
and on the transverse wavenumber, at which the amplitude of one of the '
wave components becomes infinite., These critical Froude numbers are
interpreted physically. The waves created generally have a diamond
pattern.

The case of channels of varibale depth as well as variable width
is then investigated and the solutions given. Finally, internal waves s
are treated briefly and some results presented. )
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I. INTRODUCTION

More than two decades ago Binnie (1960) observed self-induced sur-
face waves in a channel with vertical corrugated side-walls. The lon-
gitudinal wavelengths of these waves were observed to be an integral
multiple of the basic wavelength of the wall corrugation, and there
were transverse wavenumbers as well, so that the waves observed have a
diamond pattern in general. I believe that although there are papers
in the literature dealing with corrugated walls Binnie's paper is the
only one that deals with dispersive waves, which are much more inter-
esting and richer in substance than the nondispersive sound waves.

L. his brief analysis Binnie treated the side-walls as straight.
In doing so he necessarily did not reveal the mechanism by which his
waves are created and the amplitudes of the many wave components, each
with a different transverse wavenumber, are determined. His corru-
gated walls serve merely to provide the basic longitudinal wavelength.

In this paper Binnie's waves will be given a more complete analy-
sis and the analytical solutions presented. The waviness of the side-
walls will be taken fully into account. It is found that resonance
occurs at an infinite number of critical Froude numbers (or internal
Froude numbers for the case of internal waves), at which the amplitude
of one of the wave components becomes infinite. The critical Froude
numbers are given a physical interpretation which illuminates their
significance. For a given Froude number, there is in general one wave
component with the maximum amplitude, and this component must be what
Binnie observed. The analysis given here is capable of predicting
which component will be dominant at a given Froude number.

The case of variable depth (as well as variable width) will then
be considered, and similar analytical results given. Finally, internal
waves in a channel with vertical side-walls and variable width will be
briefly treated, and the results for the special case of two fluid
layers of equal depth presented.

II. FORMULATION OF THE PROBLEM

The theory will be constructed on the assumption of irrotational
flow. Let x, y, and z denote Cartesian coordinates measured in units
of L, which is the half-width of the channel at some section, and let
U be the mean velocity in the x-direction. Then the velocity compo-
nents u, v, and w, for the directions of increasing x, y, and z, re-
spectively, will be measured in units of U and the velocity potential
¢ will be measured in units of UL. We shall then treat the Cartesian
coordinates, the velocity components, and ¢ as dimensionless.
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)

¢ =0 (8)

PR
)

where n is measured in a direction normal to the side-walls. Equation

3 2), (5), (7), and (8) govern the fluid motion in the channel.
3
V“'
3".
. III. A TRANSFORMATION FOR THE CHANNEL SHAPE
!
o So far we have not accounted for the variation of the channel
‘\': width. This variation is represented by the transformation
g
. x+1iy = a + 1B + a sin k(a + iB)
-.‘.
<) or
o
:‘ Xx = o+ a sin ka cosh kB,
o (9)
~ y = B + a cos ka sinh kB,
2.
b
o where k is the wavenumber of the channel-width variation, and a its
o amplitude. The Jacobin of the transformation is
s. J = %&‘J—YB%— = 1 4+ 2ak cos ka cosh kB + a2k2(coszka + sinh2 k8). (10)
ﬁ. b4
{, The boundary of the channel is given by B = + 1.
' In terms of a, B, and z, (2) and (5) become
N
\) 1
. -— =
}: J(¢aa + ¢BB) + ¢zz 0, (1
]
i and
.
\‘
<,
e 1 9 9.,.,1,.2 2 2 -2
e ~ — —— —_—) = =
- 70 50t tg 3@ [0+ 0p) + 4 1 +2F 70, = O (12)
t The condition (7) remains the same, but (8) is now replaced by
e ¢, = 0 at B = +1 (13)
e 8 A
Y
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The governing system now consists of (11), (12), (13), and (7).

VI. SOLUTION OF THE PROBLEM

It is evident that the amplitude of the waves produced by the
channel-width variation is proportional to the amplitude of that varia-
tion. Hence we assume

2
¢ = oy tap +ae,+ ... (14)

Since in the absence of any width variation the flow is just a uniform
flow in the x or a direction, it is evident that

¢0 = q. (15)

Substituting (14) and (15) into (11) and (12), and sorting out the
terms of first order in a (Remember that J contains a, o, and B.),
we have

¢ = 0 (16)

¢Jlaa + 188 + ¢1zz

-2

b 6, = - k2sin ka cosh k8. (17)

laa

The solution satisfying (16), (7), and (13) is, since cosh kB is even
in B,

¢, = ) B_ sin ka cos nmB cosh y_(z + d) , (18)
1 n=0 " "

where

2. 22
Y, = (k" +n'nm

1/2

) (19)

and Bn is determined by (17). The result is
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1 nt+l 3
BC = - k2 J cos nml cosh kB dB = g' sinh k .

-1 Tn

2(~-1)

(20)

vhere

- 2 -2
Cn k= cosh Ynd + F Yy sinh ynd. (21)

To the order a, then, r is determined from (4) to be

r = - ak-l cos ko z B vy sinh vy d cos n7B (22)
=g B D n

which gives a diamond pattern for the free-surface displacement. In
obtaining (22), we have made use of the result

_ 1,2, 2
bt 0, = Floo +eg)

as well as (20), which gives the Fourier coefficients for cosh k3.

The free-surface displacement is shown in Figure 1 for one half wave-

length of the channel-width variation. :
Note that as Cp>0, Bp»~. The infinite number of values of F given

by C;, = 0 then are critical values, at which resonance occurs. For

Cn = 0,

2
Fz ) Iﬂ_tanh Ynd
k2 Yn

g h tanh Ynd 1/2
Ynd

ky - i (23)
Yn

In (23), k/y_ 1is the cosine of the angle between the a-direction and
the direction normal to the wave fronts of the slanted waves with
wavenumber ypd (which is the wavenumber non-dimensionalized with the
length h instead of the length L), and the right-hand side is precisely
the wave speed of these waves. Thus, the n-th critical value of U is
such that its component normal to the fronts of the waves with wave-
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number y,d is equal to their wave speed. When U has such a value, the
amplitude of the yp-waves (with wavenumber y, or ynd, depending on the
length scale used to non-dimensionalize the wavenumber) becomes in-
finite, and resonance occurs. This is reminiscent of the resonance
that occurs when a layer of water flows over a wavy bottom with a speed
equal to the speed of waves with the same wavenumber as the bottom.
But now there are infinitely many critical values of U, and slanted
waves are involved, so that the resonance is somewhat more subtle.
Higher approximations can be carried out systematically. For the
sake of brevity we shall refrain from doing so, but shall mention that
at the second approximation two new longitudinal wavenumbers will be
produced: =zero and 2k. The former give no finite critical values for
U, whereas the latter does —-- in much the same way that the basic lon-
gitudinal wavenumber k gives rise to such critical values, as shown in
the foregoing. At the third approximation the new wavenumber 3k is
brought forth, which gives rise to another set of critical values for
U. Thus there are infinitely many sequences of critical values of U,
each sequence consisting of an infinite number of such critical values.

V. CHANNELS WITH VARIABLE WIDTH AND DEPTH

Since natural streams have variable depth, often with a maximum
depth much smaller than their width, we shall use the shallow-water
theory to deal with the case of variable depth. We shall retain the
meanings of the symbols used so far, but d now is given by

d = 1- 82. (24)
The total (dimensionless) depth is
D = d+¢g, (25)
and the equation of continuity is
2 (0p) += (D) = O, (26)
ax X 3y y
and the Bernoulli equation for the free surface is

¢i + ¢§ + 2F—2§ = constant , (27)

o
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where ¢§ is neglected, in consistency with the shallow-water theory.
Converting (26) and (27) to the o-B coordinates, we have

(d0g)g + a0, + 4 T = 0, (28)
and

'%(¢i + ¢§) + 2F_2C = constant, (29)

where J is given by (10).
Using (10), (14), (15), and (29), we have

_ 2 22 2
Ca = - aF ¢1aa - aF k~ sin ko cosh kB + 0(a™). (30)

Substituting (14), (15), (24), and (30) into (28), extracting terms of
order a, and writing

¢l = sin ko f(B), (31)

we obtain

(- 8her + % - k21 - 8H1e = P2 cosh k8, (32)

where the primes indicate differentiation with respect to B. Equation
(32) is singular at B = + 1. What is needed is a nonsingular solution
of (32). This solution can always be found, but if k2 is not small
compared with 1 much computation is needed. Fortunately for most
natural streams k2 is small, permitting a simple calculation.

Consider the equation

2. e 2 2 _ L
[(1-8%)G6"] + [A - k(1 -8))16G = 0, (33) -ﬁﬁi»
-_1-_ -
‘-:t‘n.{:
and seek nonsingular solutions of this equation. Let -}i*¢t
-~ ™
N ~ 2 4 -
::;.‘: A= uo+ku1+ku2+..., (34)
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o G g, + k g, + k By ¥ oo . (35) i,:j\}:
. e
’ Substituting (34) and (35) into (33), and collecting terms not con- . =
Ay taining k, we obtain the Legendre equation for gy- For a nonsingular R
< [ N
L‘ solution, then, RSSO
P R
- N
K} [ -{‘4 -
by = n(n+1), g = P (B) , (36) AEA SN

0 0 n b

Sy
where Pp(B8) is the n-th Legendre polynomial in 8. Collecting terms of '.:-*\ig-:;;

order kZ, we obtain NN

[Py N

iy

g, = [(L-89g)] +ntm+Dg = (-8g -ug, . (37) L
1 1 1 0~ "% A

AN
RES S

First, the requirement that g. be nonsingular demands that the right- c;::f;.-:;.j-
hand side of (37) be orthogonal to 8o- (To prove this statement, one AR SY
needs only to multiply (37) by 8o and integrate, by parts if necessary, fS aahak
between -1 and 1.) This determines u; and g; in principle. In prac- ) W

tice it is easier to use the formulas on page 115 of Jahnke and Emde S T

(1945), for instance, and obtain

2
1 2 2n _ 2 2n +2n-1 P ,
Ligrm G - BB = - 8P Y ooy ®
so that
v
1 2 2n :\:' :\' "‘.L\n )
Bl 7 rm B Py " 701 B Py o (38) e
r_'-. ‘.’.‘n',
;'s:\':'\.
2 o
- .20 +2n-1 y
e S e YT i (39) TETTY
‘.'_\"-:'.)‘,;
by
L'_'-‘:-.“\‘
For a given n, we shall denote the corresponding )X and G by An and Q;QAQ::
Gn, respectively. Since the right-hand side of (32) is even, we have ti:f:%x{

n = 2m, where m is an integer, including zero, and

o Ly
£(8) = ] B, G, . (40) e
m=0 y
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Substituting this into (32), and using the orthogonality of the eigen-
functions G2y, we obtain

1 1
2.2 o2 _ 2.2
BZm (k°F° - kzm) [q_sz dB = Fk [J-cosh kB sz dg, (41)
which determine BZm' Then (40), (31), and
$ = o+ ad,

give the solution up to 0(a). We note that stopping at terms of 0(k2)
involves an error of 0(k%), which for k = 1/4 is negligible, and for
k = 1/2 is of the order of 0.06.

Let the two integrals in (41) be denoted by I} and Ip (I; for the
left-hand side), we obtain the following table, for n up to 4.

TABLE 1. Values of Integrals

Kk | .n 0 2 4
| 15 2.014 0.399 0.222
1/4 p—-
| I, 2.028 0.006 0.000
I, 2.056 0.395 0.222 |
1/2 _4-—-——_._~.-*~‘._~1
I, 2.114 0.022 0.000

For k2F2 = Aom» m =0, 1, 2, ..., there is again resonance.
The physical interpretatiou for these critical values is analogous to
that for the case of vertical side-walls, but the arguments lose some
sharpness due to the fact that the Legendre polynomials cannot be
easily combined with sin ka or cos ka to form a sine or cosine func-
tion which is easily seen to represent waves.

VI. INTERNAL WAVES

Since it is easier to create internal waves of large amplitudes,
internal waves created in channels of variable width by flowing water
will be briefly discussed. The solution for internal waves so created
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can be obtained by the same approach as described in Sections 2-4. The
results for the case of two layers of fluid of the same depth h and
with density p' for the upper layer and density p for the lower layer
will be given here, because they are obtainable from (18) - (22) upon
simple modifications of coefficients. If in the C, the F-2 1s replaced

- - ' -
by F12 = %:%T F 2, and then the Bn determined by (20) is multiplied by

_nt
%I%T’ (18) and (22) will give the solutions for ¢ (of the lower layer)
and . As for ¢', the velocity potential for the upper layer, it is

o' = - néo Bn sin ko cos nmB cosh Y, (z - d), (42)

where B, is the modified B, obtained by the process mentioned in the
fore-going.

Finally, we note that the theory is not merely for supercritical
flows, and that when k is large waves of large amplitude can occur even
at subcritical speeds. The figure given in this paper is for super-
critical speeds, for the F would be larger than 1 if it were based on
the mean depth, and the pattern agree qualitatively with that obtained
from the classical shallow-water theury at supercritical speed and for
vertical side walls. But this should not obscure the fact that the
present theory is for all Froude numbers, however large or small.

We note also that Binnie (1960) observed time-pericdic oscilla-
tions in his waves. These are freely propagating waves with longitudi-
nal wavelengths which are integral multiples of the wave length of the
corrugation and transverse wave numbers (denoted by n here). They are
not bound to the corrigations studied in this paper, and their produc-
tion is presumably due to some mechanism of instability not discussed
here.
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Figure 1. Graphs showing the free surface, at F = 2, k = 0.4, d = 0.2.
The maximum dimensionless {/a is 0.242, at ka = 7 (or 4o/m = 10) and
B=0. On ko =0.57T, £ = 0. The dimensionless L/a is plotted above
or below the dotted lines. The figure can be reflected across the
planes @ = 0 and B = 0 sequentially to produce the free surface for a
whole wavelength and for the whole channel.
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Discussion

A.T. Chwang (University of Iowa)

Regarding the question of resonance, I would imagine that for a

ALy
simply divergent or convergent channel with straight side walls, there ¢;}5}}
would be a continuous spectrum of resonant frequencies. Would you RO
please comment on it and tell me if I am wrong. e ey

'.’
.
')
s
r
'

22l

L.J. Doctors (University of New South Wales)

Professor Yih takes into account the effect of the wavy channel
walls by means of the transformation given by Equation (9).

Since the amplitude of the waviness in the wall is considered to
be small, it would also seem possible to represent this effect by means
of a source distribution on the walls. To first order, this source
distribution would be constant with respect to depth below the free
surface but vary along the channel.

Could Professor Yih comment on this approach and compare it with
his own? It should be added that an infinite set of image source
distributions would be required--as is usual with tank problems.

E. Palm (University of Oslo)

Since the driving mechanism for the waves is revealed mathemati-
cally in the form of a forcing term in the free-surface boundary condi-
tions, should not these waves formally be closely related to waves due
to pressure applied on the free surface?

Author’s Reply

C.-S. Yih (University of Michigan)
To T. Chwang

For a divergent or convergent channel one can use a different con-
formal mapping from Equation (9) in my paper, and then the solution
would involve Fourier integrals with a continuous spectrum in k, with
the Fourier coefficients to be determined. The very interesting thing
is that the value of k that, if discrete, would cause resonance, will
now give the lee-wave (which, in general, has diamond patterns) compo-
nents after the contraction or expansion.
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To L.J. Doctors

Professor Doctors is right in saying that the effect of the wavy
wall can be represented by sources and sinks., The strengths of these
sources and sinks are independent of depth to the zeroth order, i.e.,
if the effect of surface waves is ignored, but will vary with depth
already in a first-order calculation. For large composite wave num-
ber y,, this variation is confined to a thin layer near the free
surface. For n = 0 and k (the longitudinal wave number) very small,
the variation will be weak.

If the variation of the channel width is periodic but otherwise
arbitrary, one can use a Fourier series in my approach, and if it is

‘.Y” 1“.""' v‘-
. K AR
. / .
» | B .l ‘l
3;; AP

not periodic, under certain restrictions a Fourier integral can be :f T
used. I prefer this approach to using sources and sinks, because it }}}’:@
is simpler and more elegant, if I may say so. While the method of it
sources and sinks can always be applied, it is cumbersome. Among };t}.}
other things, one has to calculate for and trace out the boundary f“*‘?
shape from the source-sink distribution, which is a nuisance. P—#égﬁ

VAT

s
To E. Palm ﬁ;f;iﬁ

Professor Palm rightly perceives the analogy of the driving
mechanism given in my paper with a pressure distribution applied at
the free surface of water flowing in a straight channel. Indeed,
Equation (17) indicates this analogy, with the right-hand side, which
arises in a roundabout way from the variation in channel width, stand-
ing for the fictitjous pressure distribution.
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Three-Dimensional Nonlinear Long A
Waves Due to Moving Surface Pressure G
De-Ming Wu* and Theodore Y. Wu el

California Institute of Technology
Pasadena, California 91125

This is a continuing study of long waves generated in shallow %4
water by a moving surface pressure disturbance; the method takes ot

-, “~

both the nonlinear and dispersive effects into account for the subcriti- ::-_-.-:::
- cal, transcritical and supercritical regimes. The long wave model SRS
adopted here is the one recently developed by Wu (1979, 1981), which RO

is of the Boussinesq class but generalized to allow two horizontal poy
dimensions of wave propagation in water of both temporally and E
spatially varying depth. A finite-difference numerical method has .

been developed to solve this general class of unsteady, three-

dimensional, nonlinear long wave problems. A simple approximate }:'7_:"_{
open-boundary condition has been found to work effectively and suc- N
cessfully as a 'radiation condition' in suppressing nonphysical wave bt
reflections from the open boundary into the domain of interest. A b
series of numerical examples will be presented to illustrate the theo- M\t
retical predictions. They include a particular test case of a steady 5_\ N
two-dimensional disturbance for which an exact solution is readily ;-Q:{:)-‘
available for comparison. The Froude number F} = U/ [Jgh (based RSy
on the moving pressure velocity U and water depth h) chosen for the L2l
computation ranges from 0. 4 through 1. 4, which typically covers the e
transcritical regime. Some salient new features of the wave profile ::-::}"C"i
and wave resistance can be attributed to nonlinear and dispersive _~'.:
effects. i
A new feature of particular interest is that after a free- 1-:':‘{':"
surface pressure disturbance is kept moving at a transcritical speed ——
for a sufficiently long time, a solitary wave will emerge just ahead of . ey
the disturbance, and finally surges away from the disturbance to s N
propagate ahead as a free solitary wave. The process seems to con- !':. .:3
tinue almost periodically. The central problem considered here may ,,'-\;:
have applications to air-cushion vehicle, ship motion in shallow -ﬁ“-‘f.:s_
water, and possibly also to problems of meteorological interest. o
aaa N
Rt
-3:.' ~
t&:
*On academic leave from the Harbin Shipbuilding Engineering apy
Institute, Harbin, China. »
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I. INTRODUCTION

In 1834 John Scott Russell (1838, 1845) was the first to observe
the 'singular and beautiful phenomenon' that a 'wave of a large solitary
elevation' formed, surged ahead free from a boat, when the boat drawn
by a pair of horses suddenly stopped. Thereafter the wave continued
its own course along a channel without change of form and speed. This
keen observation of Russel and his subsequent pioneering experimental
studies stimulated much strong interest as shown notably by Boussinesq
(1871, 1877), Rayleigh (1876), and Korteweg & de Vries (1895). These
early contributions of great significance opened an important chapter of
hydrodynamics. In the past two decades, a renewed interest in long
waves has been intense, and can be traced back to the discovery of
Zabusky & Kruskal (1965) indicating that solitary waves invariably
emerge in the asymptotic solution of the Korteweg-de Vries equation.
The literature has been numerous and rich, and we refer the interested
reader to recent reviews, e.g. by Miles (1980), Yuen & Lake (1982)
where earlier reviews can also be found.

In naval architecture and ocean engineering, it has long been
known under the name of shallow-water effect and restricted-water
effect (with side wall constraints) that flow configurations and trim of
ships moving in a shallow and restricted water present a striking con-
trast to those of ships sailing in open deep sea (see e. g., Kinoshita
1954; Inui 1954; Graff, Kraft & Weinblum 1964; Kirsch 1966; Graff &
Binek 1969; and review by Wu 1972). The flow field of a ship sailing
in shallow water undergoes drastic changes of finite amplitude from a
wave type to an entirely different type as the 'depth Froude number' o
Fy = U/fg"H' (based on ship speed U and water depth h) increases
from the subcritical (F, < 1) to supercritical regime (F, > 1). In

-
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L e s e .
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« . Vo N AR oA MO RENENE R
P . g LRI I v ot
¥ LI ‘. P o . . R
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the transcritical regime™ (F, = 1), the nonlinear effects bécome so AN
predominant that a nonlinear theory is necessary to yield a valid solu- }::-:::-:::n
tion, as demonstrated by Lea & Feldman (1972) who developed a NN
method of systematic matched asymptotic expansions to evaluate the :x':-:t‘-:

2

nonlinear effects on ship resistance, sinkage and trim.

It is generally believed that both the nonlinear and dispersive
effects must be accounted for in a balanced manner to solve trans-
critical ship problems. Regarding the contention that a strong inter-
play of nonlinear and dispersive effects may exist in transcritical ship

27,
It I
l".“"’ 3 "
¥ 'l‘..."}

Loket o,
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motion, considerable light has been shed by the recent discovery of e _:q\
Huang, Sibul & Wehausen (1982). In their towing tank experiment with r -fj'&f'

a ship model (a Series 60, block 80 hull, though the hull shape was
said to have little to do with the observed phenomenon) in very shallow
water (about 0.5 ft), they found that approximately two~dimensional
waves spanning across the tank were generated, one after another, to
move down the tank ahead of the model. The longer the run, the more
of them appear. This has led the authors to conjecture that ''the
motion does not approach a steady state, but that solitons will con-
tinue to be generated as long as the model keeps moving".

To facilitate our calculations of the nonlinear and dispersive
effects on the generation and evolution of long waves, we take here a
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‘ RN,
Z new approach based on the layer-mean transport equations introduced $-',:;<':1;",
by Wu (1979, 1981). This set of equations was derived by averaging ):‘.f,;.- \

the three-dimensional Euler equations along the vertical axis across ;, e,

the water layer and then expressed, through expansion for long waves,
in terms of the water surface displacement and layer-mean velocity
potential. They admit two possible forcing functions, one being the
free-surface pressure disturbance and the other due to the vertical
displacement of the floor supporting the water layer, both of which
assume the form compatible with the long water waves they generate.
This nonlinear dispersive long-wave model has been applied by

Lepelletier (1981) for calculating harbor oscillations and by Schember &i.j_'i_
(1982) to study propagation and evolution of three-dimensional tsunami- Pit\-:ﬁ‘:'
like long waves in coastal water. We undertake here a study of the o %“t’
generation of long waves by traveling free-surface pressure distur- E %2:\'»
bances and report some preliminary results. RGYL
) ot
II. THE NONLINEAR DISPERSIVE LONG-WAVE MODEL ’.\j}%}&i
ERRARATS
The problem of our central interest is concerned with the Do) 3:‘{,
generation and propagation of three-dimensional long gravity waves r'!'-_ Tk
of finite amplitude that can propagate in two horizontal dimensions
X = (x,y) in a layer of water whose initial free surface, when unper- T
turbed at time t =0, is at z = 0 and whose floor is at a prescribed t[{)\'_‘
depth z = -h(r,t). The forcing functions responsible for generating fo o
waves will include the free-surface pressure distribution p (r,t) ‘K"-:E:-'\.}%
acting over the displaced water surface at z = {(r,t) and tie unsteady Frandred

movement of the water floor given by z = -h(r,t). The surface pres-
sure may be used to represent disturbances of meterological and
naval architectural nature such as in applications to air-cushion vehi-
cle and ships, while the floor movement can simulate tsunami-genic
disturbances of the ocean floor. In our exposition, however, these
forcing functions will be confined to such a type that the resulting
waves will have lengths, X\, primarily large compared with the char-
acteristic water depth, h o’ and will have typical amplitude, a, small
relative to h i.e.,

a = a/ho « 1, € = ho/x « 1, (1)

éi ‘,
IRGey
(The condition of ¢ « 1 holds for long waves by definition.) Further, B
we shall concentrate our attention to the case when the magnitude of
a relative to ez, known as the Ursell number, is of order unity,

it

R I
N
»

R Y

SR

2 2,3 SRR

Ur = a/e” = ax"/h) = O(l) . @) S

(o}

£ _:’
The gravity waves satisfying conditions (1) and (2) will be said to be- :;j:::::‘::_. '
long to the '"Boussinesq class'. It signifies the case in which the . st
_-. ‘-"i r
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nonlinear effects causing the waves to steepen forward, at a rate
- proportional to @, are comparable in importance with the opposite
tendency, due to the dispersive effects by which waves of longer
lengths travel at greater velocities by a margin proportional to ¢ .

. For the theoretical model capable of representing appropri-
7 ately the long waves generated in shallow water by this general class
of forcing functions we adopt the one recently developed by Wu (1979,
o 1981, his equations (41) and (42)):
L
: h ne _2-
. L, +V: [(h+3)V8] = -b + V- {[z(h + V (bV§)) - ==V §]Vh}, (3)
-
= 1, _h2d )
il - = — . -
» @)+ 2<v$> + gL+ 2P, =3 pplhy + V- (V)] - 7 VTG, . (4)
.:-’_; Here, V represents the two-dimensional vector operator V= a/&;; =
v (8/8x, 8/dy) with respect to the position vector r = (x,y) in the
«::f horizontal plane, and ¢ denotes the layer-mean value of the original
.o velocity potential ¢(x,y,z,t) = ¢(r,z,t) as defined by
- 1
5 =;5 $(x,z,t)dz,  (n=h+l) . (5)
x -h
‘-:r
’ The velocity potential ¢ and its layer mean ¢ are related by
o - 1 o 1.2 1.2 2=
¢ -9 =-(z+5h)[h + V- (hvg)] - 5(z" - =h")V7¢ . (6)
1 2 2 t 2 3
rod
‘) From this relation one can readily deduce the velocity distribution as :
0 ((px ¢py, e, ) and the pressure field from the Bernoulli equation, t,,:_‘ ’-.P
L AN '1"
N G
Ny L
% lp=gz-9,-302+ 0>+ o) (1) AR
' p p g t 2 V'x y b2 - .*.‘.\-"»‘.ft
" , ' ".‘\-_;.,_
- In the sequel, the fluid density, p, and the gravitational constant, g, ;:}.}\: t
§:_ will be normalized to unity and reinstated whenever needed for clari- S
A fication, \'.“1:{}* ’
'\E:‘ The above set of basic equations (3) and (4) may be regarded b '~
W as to form a generalized Boussinesq class in view of the new feature
*'i of the medium being now inhomogeneous (due to the spatial and tempo- SV
W] ral variation of h) and the added dimension of wave propagation. >§:_-{
> ro el
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Strictly speaking, the consistency of the expansion procedures (see
Wu, 1979) employed in deriving (3) and (4) also requires that

b l/e < o@), |Vh| < o), [p I1/pc* < O(@), (c*= gh),

(8)

where ¢ = (gho)ll2 represents the typical wave velocity. Under
this limiting condition, the basm eguatlons (3) and (4) are both valid
with an error term of O(ae ), as shown by Wu (1979).

Various long-wave models can be extracted directly from (3)
and (4), as their subgroups, under special simplifying assumptions,
If the nonlinear terms are dropped from (3) and (4), we have the lin-
eardispersive long-wave model. On the other hand, if the dispersive
effects (given by the terms involving third-order derivatives of @)
are neglected, we have the nonlinear, nondispersive long-wave model
which may be regarded as the generalized Airy wave model. Finally,
when both the nonlinear and dispersive effects are neglected, we
obtain the simplest case of linear, nondispersive long-wave model,

Lo+ hv2$ = -h +V: (%hhch) , (9)
¢, + gt = —-:)—po+%hhtt : (10)

Before we proceed with detailed comparison between these
models, we note that the integrals of (9) and (10) are particularly
simple when the extraneous disturbances are of the form

Py = po(x-Ut), h = ho - h1 (x-Ut) (h0 = const. ), (11)

each representing a right-running wave with velocity U. From (9)
and (10) it is readily found that for P, alone,

h
{ = U—21-—7 —pgpo(x-Ut) (c=y/gh ), (12a)
-C

and for the case of P = 0, but with hl given by (11),
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2 1"
L = 2LC2— {hl(x-Ut) + %hi hl(x-Ut)} , (12b)

U -

where the primes denote differentiations with respect to the argument,
The above solutions are classical (aside from the term with h'' in
(12b) which arises from the present refinement, see Lamb, 1932, Art,
177); they indicate that { is similar in form to the traveling distur-
bances and is in the same phase with the disturbance, or the opposite,
according as U > ¢ or U < ¢, except for the critical speed (U = c)
at which { becomes undefined. They further imply zero wave resis-
tance since no waves are radiated from the traveling disturbances.

We shall see that these drastic departures of the solution from our
physical experience are stemmed from the oversimplifications of the
last model, especially for the subcritical and transcritical speeds.

III. THE BASIC NUMERICAL METHOD

In view of the basic form of (3) and (4) being the simple wave
equation (to the leading order in the absence of extraneous distur-
bances), the numerical techniques developed here for computation of
solutions to equations (3) and (4) are further extensions of those typi-
cally used to yield implicit solutions to the wave equations as repre-
sented in finite-difference form. Implicit methods are chosen to
allow for larger time steps and to reduce the growth of spurious nu-
merical errors of large wave numbers. In general, our computation
of { and ¢ for various problems governed by the basic equations (3)
and (4) will be handled as an initial-boundary value problem in order
to avoid the difficulty due to the lack of an exact or accurate 'radiation
condition' for evaluating the data at an open boundary.

We describe first the numerical method we have developed for
the computation of two-dimensional nonlinear dispersive waves (in the
(%, z) plane) over a sufficiently large region R fixed in the absolute
frame of reference (fixed with respect to the undisturbed fluid). The
fluid medium is assumed to be unbounded in both directions of the
x-axis. For a prescribed pressure disturbance p_(x,t), assumed to
be finite in extent, ¢ and { assume the initial values ¢=0, L= -p
and {=0 outside the distribution of p , as in the state of static

- equilibrium. For t > 0, the pressureodisturbance progresses along
- the free surface with a given velocity. The basic equation (3) and (4)
’ are then solved with suitable boundary conditions (to be discussed
below) by a time advancing and finite-differencing scheme. In ad-
vancing { and ¢ in time steps, we apply the modified Euler method
following a two-step predictor-corrector procedure, with iteration,
while the spatial derivatives are approximated by central differences.
For all the interior nodes (the boundaries are exceptions as will be
discussed later), nodal values of L‘i‘ and 3.? (with the usual notation:

o
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;? = {(iax, nat) at time step t = nat are first used to determine a

n+l

set of provisional values Qi and ¢_ln+l according to the formula

gim = g?- AtZI; , (13a)

n_ 1 n n n n 1 o n ?
Zhbye i g-1-1)(2514(1'T’Fi-l)"/:'x‘z(1"‘-'1':’(?5“1’2?"!-iJ’T’ri-l) ’

(13b)

—_— 2 2 —_ —_—
—-—n+l _ —n 2¢ " .-1 | ¢ —n+l n+ n n
¢; '$i+(1+3 3 A0, v % - %)

Ax 3Ax

n n
= At[Fi + pOl]} ’ (14a)

n 1

8Ax

¥

"

- 2
2 o - P (14b)

where ¢ = h/L, L being the extent of the p_ distribution. We note
that (14) is an implicit scheme, involving an iteration procedure.
These provisional values are then used to evaluate a set of corrected

values L?H and $?+1 at t = (n+l)at from the formula

n+l __n

by =& '%E{Zi;n

vzi ), (15)

2 2
n+tl _—rn 2¢” -1, € n+l n+l n n
¢ ’$i+(l+3Ax2) {3‘_\;(3i+1+$i-1‘$i+1'$i-1’

At _n+l n n+l n
- T{Fi +F + poi + poi]} . (16)

Similar to (14), (16) is an implicit scheme with iteration. The above
formulas, (13)-(16), hold only for the case of uniform depth (h =
const.), but can be readily modified to be applicable to the general case.

In regard to the condition that should be required for the open
boundary nodes, we could avoid the issue, at least in an initial stage,
by taking a sufficiently large computation region & such that ¢ and
{ outside R can be considered insignificant. However, the need of
an adequate open-boundary condition (also called the 'radiation
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condition' by some authors) will sooner or later arise, especially
when € is to be kept as small as desired. A proper open-boundary
condition must satisfy the following prerequisites. First, it must be
sufficiently transparent, i.e., nonobstructing to allow all the physi-
cal phenomena generated in the region @ to pass through the open
boundary without suffering appreciable numerical (nonphysical) re-
flections at the boundary back into ¢ . Second, when numerical er-
rors attributable to an imperfect open-boundary condition cannot be
- further reduced to a desired limit, they must not affect the stability
and convergence of the entire computational scheme, or contaminate
the interior data beyond an acceptable level. For nonlinear water
wave problems it is especially challenging because of the presence of
other possible solutions, admissible to the Laplace equation for ¢,
that propagate with infinite velocity. Various approximate open-
boundary conditions have been proposed for different types of prob-
lems (see, e.g., Orlanski 1976, its modified scheme used by Chan
1977 and Yen et al. 1977; Bai 1977; also see the review by Yeung
- 1982). There is however no absolutely satisfactory answer to this
difficult problem and research efforts still continue.
e In order to assess the various existing open-boundary condi-
b tions together with a few new ones that were examined during this
4 work, we have applied them to two test cases, in both of which the
MK exact solution of the corresponding steady state was obtained (one of
them will be presented in the next section) for comparison with the
" large time asymptotic limit of the numerical solutions reached by
. using the different boundary conditions. Based on the result of this
ex*er.sive search, we have found that the following open-boundary
conxition,
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Q. +cQ = 0 ¢ =+ (g )%, (17)
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where Q = ¢ and = ¢, and the + sign is so chosen at each boundary
node as to make the local wave leave the region &£ , has worked
effectively and successfully in all the cases attempted. This is
basically different from the Orlanski scheme and its variations, for
by their rule the local phase velocity c of exit waves must be nu-
merically evaluated from using the nodal data adjacent to the bounda-
~ ry point. This is also different from Sommerfeld's radiation condi-
tion since condition (17) does not differentiate between the eventual

) long waves and transient waves of larger wave numbers. Crude as it
may appear, condition (17) nevertheless has produced the best result,
. as will be seen later, of all the open-boundary conditions tested. In
.. specific detail, the present numerical representation of (17) adopts

- an 'uypstream differencing' for a downstream boundary point and a

- he

1'1’!-'-{

". 'downstream differencing' for an upstream boundary point,

b

PN n+l _ At -1,.n At n+l n n

% Cimx = M+ 3% [opmx * 3x Grvx-1 * Simx-1- bmx) + (18
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and with a similar equation for § . Here in (18), the subscript IMX
denotes the downstream open boundary node.

In the interest of keeping the computation region as small as
necessary, we have further devised a technique employing a 'step-
shifting region'. This is a region which remains fixed with respect
to the absolute frame as before, only now with its boundary shifted
forward by one interval length Ax after N time steps (i. e, choosing
At = Ax/(NU) to keep up with the moving disturbance. The same
basic equations and open-boundary conditions are used as before (for
fixed boundaries) except that new boundary values will now be re-
quired at the new upstream boundary node after each shift. It is N

convenient to choose the upstream boundary point far enough to keep !".‘_.‘_jf‘,
flow variables infinitesimal there. Thus, for supercritical cases, it feid
suffices to set §111+1 =0 and ¢n+1 = ¢n for all n. In the subcritical ::-:;

case it has proven successful to determine the new boundary values
by interpolating the nodal values at the previous time step and using
1/8ﬁ

the approximate phase velocity ¢ = o'

IV. STATIONARY WAVES GENERATED BY SURFACE PRESSURE
DISTURBANCE

An interesting special case is the two-dimensional stationary
waves generated by a steady surface pressure, namely p = P(x+Ut),
moving over a layer of water of uniform depth. After a shitable
Galilean transformation from the absolute frame to the moving-dis-
turbance frame, (3) and (4) become

U+ (1+¢&u = 0,

Uu+%u2+§—-jl-qux+P = 0,

in which u, { and P are functions only of x, and we have set
h = 1. Upon eliminating { from the above two equations, we obtain

_ 3 1 1 3 3 2 2 3
U TG m)-[zu +5Uu + (U- l)u]+UP(x) . (19)
In the absence of disturbance, P =0, the above equation has solu-
tions of the form

u=A sech2 {k(x - Ut)} A= ; Ukzhz , (20)
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;‘Q:"_ provided U > 1 (i.e. U > c = (gh)llz), that is, in the supercritical

P:-:: regime. For given U and P(x)#0, (19) can be integrated numeri-
o cally if appropriate boundary values are prescribed at a certain point
= upstream of P(x), e.g. by giving u and u_ at a point x,. For low
Y

+ subcritical speeds, suchas U < 0.5, it cah be seen that { just up-
- stream of the leading edge of P(x) is negligibly small. Hence a very
N accurate solution of { can be obtained by integrating (19) downstream
2 from the leading edge (x = o) of P(x) with the boundary conditions
e { = 0 and t_,sz(i.e. u=0 and ux=0)at x = 0,

V. TRAVELING PRESSURE DISTURBANCES

As the first example of an initial value problem of a traveling
disturbance we consider the following surface pressure distribution
for t > O,

+Ut)] (0 < (x+Ut) < L) ,

po(x, t) =p [1 - cos(2w
m ¢ 1)

. h = const. =1, Fh =U/fgh=U=1//2r =0.3989, pom = 0. 01,
t-"-I L =1, (22)

and Pq 0 elsewhere as well as for t < 0. For the initial values
we assign, as stated before, { = -P, (x,0) and §= 0 at t=0. The

-::: transient motion resulting from the apphcatmn of this p was com-
. puted by applying the present numerical schem , as expl%med in the
- previous section, to equations (3) and (4) over the region -20 <x< 10,
e with
)
o ax = 0.2, at = Aax/4u . (23)
': The numerical result is replotted in figure 1, so that the wave train
- remains fixed with respect to p , for the dimensionless time
. t = UT/L up to 10. Also shown in figure 1 is the steady limit com-
puted by numerical integration of (19) for the present P, by following
e the procedure described earlier, here with Ax = 0.0l. © By compar-
s ison, the leading wave of the unsteady wave train is seen to have
) approached the steady limit by t = 10, and the tendency is to have the
[-. - subsequent waves grow in magnitude, ithereby gaining in speed to
) approach the steady limit in consecutive order. Since the steady
Ko limit is known to be accurate, this comparison further affords a
-.::- critical examination of the error due to any imperfectness of the
1209 open-boundary condition (17) used here, which in this case is ex-
O tremely small.,
o
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The wave resistance, D., experienced by the surface pres-
sure (per unit width) has the coeyficient

L
i . o
CDW = Dw/pghL = - _‘EI_L ‘g po(x, t) 5% dx . (24)
(o]

The corresponding result of CD
C

W is given in figure 2. We see that

DW oscillates while gradually approaching its steady limit.

A. Pressure Disturbance of Opposite Signs

To examine the different features of long waves generated by
surface pressure disturbances of opposite signs for the case whenthe
nonlinear effects become appreciable, we consider again the distribu-
tion (21), now with

U = 0.4, p, = 0.3 and p_ = -0.3 , (25)
m m

respectively. The results of these two cases, executed numerically
again by using (23) and as shown in figures 3 and 4, exhibit clearly
the nonlinear effects as the waves in both cases have sharper crests
and flatter troughs, than in the case of sinusoidal waves correspond-
ing to much smaller Py thus displaying finite departure from the

antisymmetry as would Be expected on linear theory argument.
These waves are seen to resemble the free cnoidal waves as solutions
of the KdV equation.

Figure 5 shows that the wave resistance coefficient, C

DW’ of
the negative pressure disturbance (p, = -0.3) oscillates with time

more strongly, about a considerably grpeater mean, than the CDW of

of the positive pressure disturbance (po = 0.3). The basic mecha-

nism underlying these distinctive features between positive and nega-
tive surface pressures is not well understood, though it is discernible
from figures 3 and 4 that the water surface has a steeper slope under
the negative surface pressure than that under the positive one.

B. Pressure Disturbances at Supercritical Speeds

We now proceed to investigate the long waves generated by
surface pressure disturbances at supercritical speeds by adopting
again the distribution given by (21), now with
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U-=1.2, p, = 0.3 and P, = -0.3 (26)
m m

respectively. The numerical execution was based on Ax = 0. 2,
At = Ax/ U. As shown in figures 6 and 7, the forcing distur-
bance advances quickly from its initial position, drawing the trailing
waves increasingly longer and displacing the water surface ahead of
it over a wide extent. In the meantime, the waves generated in the
initial stage have not had much time to have propagated away from
their original position. It is also quite clear that the free surface
underneath the pressure distribution undergoes a rather slow change
in amplitude and phase. On the other hand, the corresponding wave
resistance coefficient decays rapidly to small values after its first
peak, then gradually approaching zero, as can be seen from figure 8.

In order to estimate the rate of approach of the solution tec its
steady limit (a rate which may have a strong dependence on the
Froude number), we compare the large time solutions corresponding
to U=1.2 and 1. 4 respectively, subject to otherwise the same
pressure disturbance as given by (21). From figure 9 we see that
the closer the U to 1, the slower is this rate of approach (see the
data at t = 48 for comparison). We therefore may expect that it
would take very long time to reach the steady limit when U is very
close to 1, if the limit exists. This case will be examined in more
detail in the next section.

In figure 10, we demonstrate a comparison between nonlinear
dispersive and linear dispersive models for the case of U = 1.2,
P, = 0.1 and h = 0.5. Although the two limiting solutions are

sirailar in form, the linear theory underestimates the wave ampli-
tude by a margin as large as 30 %.

Finally, we point out that, as can be seen from figures 9 and
10, the present open-boundary condition is evidently very effective
in handling the physical processes near the open boundary, especially
when ¢ and ¢ are of finite amplitude at the downstream boundary
for t < 20, a situation which usually presents a severe test. Only
with this early success was the computation possible to continue to
very long times as shown,

-
s,

VI. TRANSCRITICAL DISTURBANCES

v On physical ground, both the nonlinear and dispersive effects
" are expected to play essential roles in the transcritical regime. On
- one hand, the continued rate of working by the traveling disturbance

- will contribute to increasing the mechanical energy of the nearby

P fluid. If we base our argument on linear dispersive wave theory, we

see that the energy so accumulated can radiate only towards down-
stream because of the group velocity of long waves being slightly less
than their phase velocity. This will imply that it will become
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increasingly more difficult to radiate the accumulated energy away
from the disturbance as the velocity of a traveling ?isturbance, U,
approaches the critical value, which is c = (gh)1 2, On the other
hand, it is feasible that the flow energy accumulated about the dis-
turbance may evolve, under the joint action of nonlinear and disper-
sive effects, into waves of finite amplitude that can rediate in differ-
ent ways,

To investigate this interesting problem, we consider the case
of the p (%, t) distribution of (21) with

"
(=]

U = 1.0, P, = 0.1, h
m

.5 . (27)

The numerical result for {, obtained with Ax = 0.2, At = 0.2
and as shown in figure 11, exhibits an exceedingly interesting phe-
nomenon. The transient wave underneath the P, distribution contin-
ues to grow in magnitude and starts at time about t = 24 to form an
inflected peak just ahead of p , which shortly thereafter surges
ahead to run away as a soliton. At a later time about t = 48, a
second inflected peak forms to surge ahead as the second soliton.
Since its separation, the first soliton has continued to grow in magni-
tude, and accordingly accelerates further ahead. At t = 56, it be-
comes so large that its breaking can be an open question. Other than
the prospects of exchanging energy between the main wave train and
the 'run-away solitons', these solitary waves appear in every aspect
like free solitons, for their excess mass is all distributed above the
original water level (at z = 0), On the downstream side, the wave
train also grows inamplitude, length and group size, thereby gaining
in phase velocity while moving forward following the forcing distur-
bance. The profile oscillates across z = 0 and resembles the
cnoidal waves.

It is interesting to note that by comparison with the corres-
ponding results of wave resistance variations shown in figure 12, the
run-away solitons appear to emerge at the instant when the wave
resistance instantaneously reaches a maximum, i.e. CD = 0.02126
at t = 19.2 for the first and Cp = 0.02301 at t = 44.6> Yor the
second soliton. Immediately aRer the separation of a soliton from e
the main wave train, the wave resistance decreases to reach a mini- .
mum, then increases as the next soliton is being conceived,

The interesting phenomenon just presented has been found to
manifest over a region in the transcritical regime, as demonstrated
in figure 13 for the case of

'w'r'? "
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U = 0.9, p = 0.1, h = 0.5 . (28)

The time period of formation of consecutive solitons in this case
appears to be considerably shorter than that at the critical speed,
e.g., t = 16 in this case versus t = 24 at U = 1 for the first

‘ ’
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:::: soliton to emerge. This comparison would suggest that the charac- :-‘:-\, o
ony teristic time scale for this transcritical phenomenon perhaps reaches e
P a maximum at the critical speed. As a remark concerning the com- gt
. putational error incurred in this case, the dashed lines near the ARACS!
a boundaries delineate more accurate results obtained by using a A:g;;
. greater region of computation. The error is thus seen to remain o -}_3
confined only to a narrow region next to the boundary. ',-f’._%x*
P To isolate the nonlinear effects, we present in figure 13 a o]
e comparison with the corresponding results based on linear dispersive '-:_-;‘[:’.4
model. The contrast is drastic. The unique phenomenon of soliton s
- " separation does not seem to occur at all on linear theory. This there- ;.,..,;'}
t‘f': fore lends a strong evidence that the phenomenon arises only from the '{:-Si
. interaction between the nonlinear and dispersive effects. ) ::1:‘-
o The wave resistance coefficients corresponding to the two -'_‘_3-‘}«:'{
o theories are shown in figure 14. The CD predicted by the linear :‘;_,."-.::*..
* dispersive model increases with time, Witk no asymptote in sight. e ah,
nad In concluding our exposition, we note that the new phenome-
r non of soliton separation predicted by the present nonlinear disper-
- sive model appears to be very much like the experimental discovery
o of Huang, Sibul & Wehausen (1982), notwithstanding the different
N circumstances that the source of disturbance was a ship model in the
». experiment and is a two-dimensional surface pressure at hand. The
Sh history of formation of run-away solitons, the cnoidal-wave-like train

L of waves following the forcing disturbance and the transient waves
further downstream in the two cases are very much alike in all the
qualitative features. Evidently, this newly discovered phenomenon
has a rich content yet to be brought out by further studies. Perhaps
it has a fundmental basis common with the 'singular and beautiful
phenomenon' first interviewed by John Scott Russell.

R
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FIGURE 1. Generation of a wave train by the surface pressure
distribution given by eqluftion (21), traveling at Froude
number F, = U = (27)~ 2, Poy, = 0. 01 (based on pgh):
—— unsteady theory (Ax = 0.2, At = 0. 125); o o0 o steady
limit (by numerical integration of (19) with Ax = 0. 0l).
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FIGURE 2. Wave resistance coefficient (defined in (24)) corresponding
to the surface pressure prescribed by (21) and (22).
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FIGURE 3. Wave generation by the surface pressure prescribed by

(21), Por, = 0.3, at Froude number Fh =U =0.4.
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FIGURE 7. Wave generation at supercritical speed U = Fy = 1.2 by
the p (x,t) given by equation (21), with py = < 0.3.
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pressure distributions prescribed for figures 6 and 7.
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9. Large time asymptotic waves at supercritical speeds at

U=Fh= 1.2 and 1. 4,
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FIGURE 12,

Interplay of nonlinear and dispersive effects at the critical
speed U =F, = 1. The large time solution shows solitary
waves being generated to propagate upstream as free waves.
Two such 'run-away solitions' can be seen shortly after

= 24 and 48,

= Us10, P01, h=05 -

Variation of wave resistance experienced by the surface
pressure disturbance at the critical speed. The run-
away solitons appear to emerge at the temporal maxima
of the wave resistance (compare with figure 11).
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FIGURE 13. Comparison between nonlinear dispersive model and
linear dispersive model at the high subcritical speed
of U =Fh= 0.9; Po,, = 0.1. «— . — the range of
p.(x,t); = — — numerical results from using a
greater region of computation.
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FIGURE 14. Wave resistance as predicted by nonlinear dispersive
and linear dispersive theories.
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Discussion

A.M. Ferguson (University of Glasgow)

The results of some recent shallow-water tests conducted at the
University of Glasgow Hydrodynamics Laboratory may be of interest.

These tests concerned the reactions of a bulk carrier in shallow
water approaching a shoaling sandbank. The reaction of interest was
that a singular transverse wave was noted well ahead of the model.
When this wave, or pressure front, reached the shoaling sandbank, the
model responded with an increase in trim by the head, then oscillated
in pitch in the manner of a damped spring. This reaction was ampli-
fied when the bow of the model reached and passed over the sandbank.

I would be interested in the author's comments.

W.C. Webster (University of California)

Dr. Wu mentioned some experiments that were conducted at the
University of California at Berkeley. 1In those experiments a ship
model was towed at a constant speed in shallow water. During these
experi- ments the following remarkable phenomena were observed:

1. A train of waves was generated at the bow. These waves
separated from the bow and ran ahead of the ship.

2. These waves were, as far as we could tell, two dimensional.
That is, they did not change shape across the tank. This is
the only situation I know of whereby two-dimensional waves
result from a full three-dimensional flow.

3. "Running away" waves were generated at speeds well below

= 1 to speeds corresponding to F, *1.4. This latter
result is consistent with solitary wave theory.

I suggest that the good agreement between Wu's two-dimensional
theory and our experiments lies in the fact that only two-dimensional
waves are created. Perhaps the appropriate three~dimensional
equations admit only two-dimensional upstream wave patterns.

S.M. Yen (University of Illinois)
I would like to compliment the authors for their success in

developing a method to implement the open boundary condition for the
nonlinear moving surface-pressure problem. The direct application of

'

9. Orlanski's method at the open boundary could lead to several computa-
E?; tional difficulties that have to be dealt with carefully. These

C;:::j

P oo

2t

X

34

A

o

"2,

45

-

.. _ \\ }\ .‘“‘ :‘L.:,_




n e S Aee Bo Sub Moo £0% Sof falt Sai PN N TN P P T A L I L VI g TR LR TG s T e & Y ("(""':'. '.‘,'.'.

e aaa ate-auc i abiC st i nss Janc MAac b T e i ol

-
~
&

127

PRASRLE. 1 AU

difficulties include the accurate numerical calculation of advection
speed and the control of high-frequency errors. It would be of
interest to apply a simple model of the open boundary condition as
suggested by the authors. However, it requires the determination of
the typical advection for the problem to be solved.

Colleagues in atmospheric sciences have also studied methods to
implement the open boundary condition in solving the atmospheric
gravity-wave problems. They have also found that the best way to
apply the advection equation at the open boundary is to use the
typical advection speed for problems in which this speed is known.
The authors' findings presented in this paper are, therefore, in
accord with that of the colleague in atmospheric sciences.

l‘-

]

Author’s Reply

T.Y. Wu and D.-M. Wu

To A.M. Ferguson

We would like to thank Dr. Ferguson for bringing a very
interesting experimental observation to our attention. We believe
that the phenomenon stated is closely related to the general problem
at hand. As the bulk carrier model approached the shoaling sandbank,
the sandbank could be regarded as a source of providing a disturbance,
unsteady with respect to the carrier model, which should then be able
to usher in a singular transverse wave precursing ahead of the model,
as observed, provided the Froude number was within a transcritical
range. Based on our finding here that the wave resistance experienced
by a progressing disturbance should vary with time even when the
progressing velocity is kept fixed at a near-critical speed, one might
expect that a self-propelling model could respond with oscillations in
motion (like what was observed) in similar operational state with
respect to the criticality of the speed of the progressing forcing
function. It is especially of interest to note that the salient
features are common to the forerunning wave in this case and those
described by Professor Webster in his discussion. That is, these
waves all appear with a transverse wave front ahead of a
three-dimensional disturbance.

To W.C. Webster

Wwe very much appreciate having Professor Webster's contribution
F to summarize the experimental findings obtained by the University of
) California at Berkeley team. It complements effectively the compar-
] ison between the: , and experiment that we had merely enough time to
. present only the case of the Proude number U = 0.90 (see Figure A.l).
- Likewise we take note that, interestingly, while the forcing agency is
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a three~dimensional and slender ship model for the experiment and is a
two-dimensional surface-pressure disturbance employed in theoretical
calculation, the resulting runaway solitons are nevertheless two di-
mensional in both cases and have almost the same main features in their
evolution and propagation. We hope we can pursue together further com-
parative studies between theory and experiment, especially in regard to
this issue.

To S.M. Yen

We wish to thank Professor Yen for providing valuable information
about the practice of applying Orlanski's method and the emergence of
some new methods developed by researchers in atmospheric science.
Various computational difficulties associated with application of
Orlanski's method may not be its intrinsic shortcoming. 1In the pres-
ent case, where we have also experienced similar difficulties, the
field equations are, however, basically different from those for which
Orlanski's method was originally proposed. We are further delighted
to learn, for the first time, that some new methods, apparently quite
similar to the one we have just developed through our studies, have
been found successful in serving as the open boundary condition for
numerical computation of problems in atmospheric science.

Nevertheless, we should like to stress the importance and need of
a thorough understanding of the nature of the "open boundary
condition" for problems involving wave phenomena. The validity of the
condition must necessarily require satisfaction of certain criteria
ensuring the convergence and stability of the numerical scheme and, if
possible, by having a definite error estimate. We have been able to
secure only a limited success in estimating the error of our open
boundary condition, through some numerical experimentation.
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Travelling Bubble Cavitation Noise
Measurements

V. Shanmuganathan and V.H. Arakeri
Indian Institute of Science, Bangalore, India

ABSTRACT

An effectively controlled uniform travelling bubble cavitation at
all free stream conditions was made possible by seeding the flow with
artificial nuclei by electrolysis generated within the boundary layer of
the test bodies. The cavitation inception and noise data were obtained
on three test bodies having different pressure distribution and boundary

layer characteristics. The cavitation noise data have been presented in
the non-dimensional form.

1. INTRODUCTION

A cavitation nucleus when subjected to sufficient tension, will ex-
pand as a vapour bubble until it experiences a positive pressure at which
point it will reverse the process and collapse. This volume change makes
the cavitation bubble to act as a monopole in radiating sound. The
acoustic characteristics of noise radiated from a single cavitation
bubble growth and collapse process has been analytically first computed
by Fitzpatrick and Strasberg (1956). Some of the important conclusions
from their work are that at low frequencies the cavitation noise spec~
tral density, S increases like £4 where f is the frequency, reaches a
peak at value of f approx1matel§ equal to reciprocal of the bubble life-
time and finally decays like f at higher frequencies if the liquid
is assumed to behave incompressibly throughout the history of bubble
dynamics. However, the decay at high frequencies is predicted to be
much stronger like £72 if the compressibility effects of the liquid are
taken into account. Some of the early experimental studies in particu-
lar those of Jorgensen (1961) did confirm the qualitative aspects of the
prediction due to Fitzpatrick and Strasberg (1956).

In real flows, cavitation zone consists of several cavitation bub-
bles growing and collapsing randomly distributed in space and time. 1In
this situation it would be pertinent to ask whether the information ob-
tained from single bubble dynamics could be useful at all in predicting
cavitation noise from a cavitating zone. The answer to the above, to
some extent is contained in the work of Morozov (1969) who has shown
that if the cavitation bubbles can be assumed to be independent random
events, then the spectral density of cavitation noise from a cavitation
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zone is given by the product of S, the spectral density of a single cav-
itation bubble noise event and N, the average number of cavitation noise
events per unit time. Therefore, in principle the qualitative aspects
of cavitation noise from a cavitation zone would be expected to be simi-
lar to those of a single bubble cavitation event discussed earlier. 1In
addition, it would be justifiable to use the important parameters char-
acterising single bubble cavitation noise in describing noise from an
arbitrary cavitation zone in non-dimensional terms. The ultimate aim
finally being the derivation of appropriate scaling laws for cavitation
noise as successfully done by Strasberg (1977) in one instance. By scal-
ing here we mean the extrapolation of cavitation noise measurements under
given conditions to different conditions with geometrical similarity
maintained. If the scaling laws derived on the basis of analysis of
single bubble cavitation noise are to be successful, then we should ex-
pect that the phenomenon of cavitation itself scales properly with bub-
ble dynamics considerations alone. For example, we should expect then
that the relative extent of cavitation should simply scale with the cav-
itation number, 0. However, it is well known now that this is not found
to be true and in particular we may cite the work of Blake et al. (1977)
who found that on the same body at otherwise identical physical condi-
tions (like same 0, free stream velocity etc) different types and extent
of cavitation was observed depending upon whether boundary layer was
tripped or not tripped at the leading edge of the foil. In turn this
reflected in noise measurements as well. Thus, the scale effects which
may influence the inception process would be naturally expected to be
carried over to the scaling of cavitation noise itself. 1In some cases
this difficulty can partially be overcome as for example suggested by
Strasberg (1977), Blake et al. (1977) and Thompson and Billet (1977) to
use the parameter 0/d; (the ratio of cavitation number to the cavitation
number at inception) rather than just o.

However, this procedure may not account for all the effects due to
variation in nuclei content as well as differences in real fluid flow
characteristics. These effects are now well documented for example by
Acosta and Parkin (1975), Arakeri (1979), Arndt (1981), Holl (1970),
etc., and will not be elaborated further. Due to the complex nature of
scaling of cavitation inception process itself it would be difficult to
attribute the observed scale effects on cavitation noise either to the
scale effects on the inception process or to the effects which are in-
herent to the noise generation. This necessarily indicates a need to
conduct cavitation noise measurements where controlled cavitation can be
generated.

In recent years there have been several investigations reported
(Albrecht and Bjorheden 1975, Noordzij 1976, Kodama et al. 1979) where
such control has been attempted by artificially seeding the flow with
electrolysis bubbles which act as free stream nuclei. Similarly Arakeri
and Acosta (1973) reported studies where electrolysis was used to gener-
ate artificial nuclei at the surface of a headform. In comparing the
two methods of seeding the flow it is to be noted that free stream nuclei
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are subject to the socalled "screening effect" first pointed out by
Johnson and Hsieh (1966). In view of this, in the present work, the
seeding of the nuclei by electrolysis from electrode in the nose of the
headform was preferred. Thus, the primary scope of the present work was
to study the scaling of travelling bubble cavitation noise with cavita-
tion number, free stream velocity, etc., following the work of Blake et
al. (1977) however with controlled generation of cavitation.

2. EXPERIMENTAL METHODS

2.1 Test Facility

The experiments were carried out in the High Speed Water Tunnel of
the Indian Institute of Science, Bangalore. The test section of this
facility is that of a closed jet type with an inner diameter of 381 mm
and an overall length of 1524 mm. In this test section, a test body of
maximum diameter of 50 mm would not essentially experience any blockage
effect. The maximum attainable velocity in the test section is 30 m/s
though the experiments were carried out up to a velocity of 17 m/s only.
The pressure inside the system can be varied from 0.34 to 2.5 atmospheres
by controlling the pressure above the free surface of an air chamber con-
nected to the settling section of the tunnel circuit. An important fea-
ture of this facility is that it has a resorber which will drive back
into the solution, the air bubbles liberated in the tunnel circuit.

S .
Though there is no deaeration system, the water is filtered through a ﬁggi;j}
filtering unit and treated with alum. txﬂﬁ*&
2.2 Test Models Qs
The test models chosen for these experiments were Schiebe nose, b 3
Hemispherical nose and NSRDC the details of whose geometry are given in ﬂ%\;¢;
Figure 1. These test bodies have recently been used for cavitation in- qi}}i}i
ception studies for example by Gates and Acosta (1978) and Carroll hh{{_{ﬁ
(1981). The experiments were primarily carried on the Schiebe nose {{?Q%%¢
whose contour is generated by the potential flow solution to a distri- AR
buted source disc oriented normally to a uniform flow. The coordinates ¢

of this body were taken from Gates (1979). This model geometry was
chosen for the reasons that it does not have a laminar separation and it
has a low natural incipient cavitation number, 0; approximately equal to
0.4 though its Cppin = -0.75. This large difference between 0j and

C min provides a wide range of 0 where the seeding of flow with artifi-
cial nuclei would be expected to be quite effective.

Experiments were also conducted on a hemispherical nose which has
altogether different shape of pressure distribution even though about the
same - C min value as the Schiebe nose. Over the range of present tests
hemispheglcal nose was expected to exhibit laminar separation as compared
to the absence of the same on the Schiebe nose over the identical Reynolds
number range. A series of tests were first made without tripping the
boundary layer on the hemispherical nose. However, some additional tests
on a different hemispherical nose were made by tripping the boundary lay-
er by intentionally keeping the electrode ring (see Figure 3) about 0.1 mm
protruding out of the surface. This was effective in eliminating laminar
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separation (judged on the basis of ohserved type of cavitation at incep-
tion) at a velocity of about 11 m/s.

A limited number of tests were conducted using a NSRDC nose whose
pressure distribution is almost similar to that of Schiebe nose though
the -C, ., value is somewhat higher. The theoretical pressure distri-
butions in the absence of wall effects for all the three models are
shown in Figure 2. All the models were made of plexiglass for reasons
to be indicated later and extreme care was exercised in fabrication of
the same. The models were inspected for their accuracy on an optical
projection equipment at nominal magnification of 10X. The models were
mounted in the test section securely with a three bladed sting support
as shown schematically in Figure 4.

2.3 Nuclei Generation

Hydrogen bubbles which served as artificial nuclei in the present
experiments were produced by electrolysis from a stainless steel ring
of 25 mm diameter and 1 mm thickness imbedded in the nose of the body at
s/D roughly equal to 0.25. Schematic details of the mounting of the ring
was imbedded in a plexiglass plug in the nose of an otherwise stainless
steel body. However, it was found that as soon as a potential was
applied across the ring and tunnel wall the electrolysis bubbles were
generated not only on the ring but also on the surface of the model due
to its proximity. In view of this, it was finally decided to make the
entire model out of plexiglass. The ring was electrically connected to
the negative pole of a D.C. power supply by a cable passing through an
internally drilled hole in the model and its support system. Differing
levels of D.C. voltages in the range of 0-60 volts were applied between
the terminals to generate electrolysis bubbles.

2.4 Noise Measurements

The noise measurements were made with the help of a flush mounted
pressure transducer (Celesco LC 71) whose sensitive surface is of 0.208"
diameter and resonant frequency is 150 kHz. Barker (1976) mounted the
transducer in a flooded cavity behind a thin diaphragm which was flush
with the test section. This was done to eliminate background noise from
wall pressure fluctuations caused by the turbulent wall boundary layer.
In the present work such an arrangement was not found to be necessary
since the primary interest was the measurement of cavitation noise as
compared to Barker (1976) who was interested in the measurement of radi-
ated flow noise as well. The location of the transducer relative to the
model is shown in Figure 4. The signal from the transducer was fed into
a B & K Level Recorder via a Precision Conditioning Amplifier, a Measur-
ingAmplifier and a Third Octave Filter. The data from calibrated charts
were reduced to give sound pressure levels and spectral density using

i!’ standard methods. The measurements were made in the frequency range of
E}. 2 to 100 kHz with an averaging time of 1 sec. We must note that this
~ is the minimum averaging time and increases to a higher value at lower
;:- frequencies. Attempts were made in the present work to ascertain the
ﬁ}f reverberation characteristics of the test section following the method
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; suggested by Blake et al. (1977). However, difficulties were experi- naﬁ?—%
; enced primarily since the LC 71 was not as sensitive as a hydrophone and _ Iﬂ{l{;:»
5 the projector used (B & K Hydrophone 8100) had a poor projection effi- }}*fj:j

ciencies at lower frequencies. As a result below about 20 kHz the sig-
nal to noise ratio in particular at distances of the order of 1 m turned
out to be quite poor. In view of this the present measurements remain
uncorrected for the possible reverberation effects.

2.5 Nuclei Measurements

In ordexr to get an idea about the nuclei size and population, Laser
Scattering method was adopted. The optical set up in the present work
was very much similar to the one initially used by Keller (1972). The
laser beam from Spectra Physics Helium~Neon laser tube was made to graze
through the boundary layer of the model and was focused at a point
slightly above the stainless steel ring from which the nuclei were gen-
erated. The light scattered was collected at 90 by a photomultiplier
tube of DISA Make and the signal was fed into a GOULD's Storage Oscillo-
scope. The pulse height and the number of pulses were obtained from
the stored oscilloscope trace typically over a 50 sec period which could
be expanded. At the time of writing this paper, the calibration of the
laser light scattering set up was not completed.

2.6 General Test Procedure

Before commencing the experiments, the water was deaerated by run-
ning the tunnel at low speed, pulling high vacuum over the free surface
of the air chamber in the tunnel circuit and allowing the model to cav-
itate heavily. Then air collected in the resorber was released by open-
ing the air vent. Now and then the air content was measured using Bio-
chem Oxygen Analyser. This was repeated until the air content was

brought down to roughly 25 percent of saturation at atmospheric condi- }j?ifE
tions. IR
ARt
The water velocity in the test section was kept at a specified val- Fgﬂ:{f:

ue and the tunnel pressure was then gradually reduced until the bubble
became visible on the model under the stroboscopic illumination. This S,
was done without electrolysis at different voltages to study the effect p::ﬁﬁ:{
of electrolysis and its voltage on the cavitation inception. ﬁ}i}f:;‘
R
AN

At a given water velocity, the pressure was reduced in steps and .
at each pressure the noise spectra were obtained with and without elec-
trolysis. The electrolysis voltage was kept at 9 V for almost all of
the tests and the data were collected in the velocity range of 8.6 m/s

o

NS :
to 17 m/s. The range of ¢ variation at each speed was between 0.4 and SRRy

' .'-~ -r..‘ ~
0.7. ..-,_._}.._._._

“ ..\< -

3. RESULTS

The results from nuclei measurements by Laser Scattering are shown
in Figure 5. This gives qualitatively an idea about the effect of elec-
trolysis on nuclei distribution. It is evident that by electrolysis
many larger sized nuclei were introduced in the flow. Though there were
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as many as 30 nuclei of the size corresponding to a pulse height of 0.0
to 0.2 V in the flow when there was no electrolysis they could not ini-
tiate cavitation probably because their size might have been less than
the critical radius. Once the electrolysis was switched on many number
of nuclei whose size corresponds to the pulse height greater than 0.2 V
were generated and readily triggered travelling bubble cavitation at a

o of about 0.6. As noted previously, the laser light scattering set up
was not calibrated and hence it is not possible to assign bubble sizes
to the respective voltage levels shown in Figure 5. However, we might
note that even before selecting the location of electrolysis ring posi-
tion etc., extensive theoretical estimation of the expected bubble sizes
at detachment from the electrolysis ring were made. This was on the
basis of balance of various forces acting on the bubble submerged with-
in the laminar boundary layer. From this analysis it was estimated that
the electrolysis bubble sizes are in the range of 30 microns at a free
stream velocity of about 12 m/s.

Figure 6 shows the influence of electrolysis voltage on the noise
spectrum at a ¢ value of 0.61 on the hemispherical nose. With the elec-
trolysis on, there is a substantial increase in Sound Pressure Level
(SPL) as much as 20 dB at certain frequencies, when compared to that
without electrolysis. As shown in the figure generally the sound pres-
sure spectrum varied when the electrolysis voltage was changed. At
2.5 V the SPL at a given frequency was generally the maximum and grad-
ually decreased as the voltage was increased. One feature which might
explain this dependence was the fact that at lower voltages the cavi-
tation bubbles were generally larger and its number density was less;
however, at larger voltages the bubbles were smaller but the number den-
sity was greater. In view of these observations most of the tests in
the present work was limited to electrolysis voltage of 9 V which was
a compromise between excessive bubble density and consistency in appear-
ance of stable cavitation zone.

The incipient cavitation number, 0; variation with velocity for the
three test bodies with electrolysis is shown in Figure 7. In all cases
the type of cavitation at inception was the travelling bubble type.
Without electrolysis on the Schiebe nose at lower velocities (below
about 12 m/s) the type of cavitation at inception observed was the trav-
elling bubble type. At a higher velocity of about 14 m/s the type
changed to travelling patch with generally inception numbers being lower.
In any case it is apparent that the inception cavitation numbers without
electrolysis are significantly lower than those with electrolysis.
Figure 8 shows the dependence of inception cavitation number with change
in the electrolysis voltage at a given velocity. The oi values increase
with increase in the electrolysis voltage though generally marginally.

The influence of cavitation number on the spectral densities for
the Schiebe body is shown in Figure 9. Here the spectral density\of
radiated noise is defined as 10 log 5% (f, Af)/Af where 55 (£, Af) is
the effective mean square pressure in the one-third octave band width
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Af at the centre frequency f. The spectral densities so defined are
converted to decibel values by referring to a pressure of one micro pas-
cal. The spectral density variation with o for selected centre frequen=-
cies for the Schiebe body are shown in Figure 10. It is clear that at
all the centre frequencies cavitation noise first increases with lower-
ing of 0, reaches a maximum at a certain o and then decreases with fur-
ther reduction in 0. The influence of velocity on the spectral densi-
ties for the Schiebe body is shown in Figure 1l. It is clear that at
all frequencies the spectral density increases with increase in velocity
as also shown in Figure 12 at certain selected centre frequencies. The
non-dimensional representation of the noise data for the Schiebe body is
shown in Figure 13. The method used in non-dimensionalising the results
is fully considered in a later section.
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The influence of cavitation number and velocity on the spectral
densities for the hemispherical nose (untripped) are shown in Figures 14
and 15 respectively. The non-dimensional representation of the noise
data for this body is shown in Figure 1l6.

The influence of cavitation number on the spectral densities for
the hemispherical nose (tripped) are shown in Figure 17. The non-dimen-
sional representation of the noise data for this tripped body is shown
in Figure 18. Finally, selected noise data for all the test bodies in
a non-dimensional form are shown in Figure 19.

4. DISCUSSION OF RESULTS

4.1 Cavitation Inception

As expected there is a dramatic difference in the value of incipi-
ent cavitation number for the Schiebe nose with and without electrolysis.
The difference between o; and C i, is of the order of 0.15 with electro-
lysis whereas it is of the order of 0.375 without electrolysis. In addi-
tion to this the cavitation pattern at inception with electrolysis was
of travelling bubble type and being uniform around the headform. As
compared to this, without electrolysis the cavitation pattern at incep-
tion was extremely unsteady sometimes being of the travelling bubble
type and at other times being of travelling patch type. There was also
no uniformity of cavitation pattern around the headform. It is to be
pointed out that noise measurements without electrolysis would have been
extremely difficult due to the unsteady nature of cavitation without
utilising significantly larger averaging times than that utilised pres-
ently. This general description was found to be true for the other two
models as well namely hemispherical nose (tripped) and the NSRDC nose.
In the latter case without electrolysis several spot type cavities
appeared at relatively low velocities (V10 m/s) and in many instances
these persisted even with electrolysis thus interfering with noise mea-
surements. It is for this reason that only limited cavitation noise
measurements have been presented for the NSRDC nose.
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One significant point to be noted from the results of Figure 7 is
that for the three test bodies with electrolysis the 03 value does not
depend strongly on the velocity and the type of cavitation at inception
did not vary with change in velocity. Thus, the velocity scale effect
on the o4 normally observed has been eliminated by the use of artifi-
cially seeding the flow with nuclei in the boundary layer.

The effect of increasing the electrolysis voltage seems to have
only a small effect on the inception cavitation number as shown in Fig-
ure 8. This may not be entirely surprising since on present bodies the
electrolysis bubbles are dynamically detached from the electrode surface
before they get a chance to fully grow on the surface. Thus, it appears
that the detachment size is primarily governed by dynamic considerations
than electrolysis considerations. Physically though it was observed
that the number density of cavitation bubbles did increase the absence
of quantitative results from the laser light scattering set up further
discussion on the inception results would only be speculative in nature.
However, it is interesting to note that the difference between -C min
and 0; values is considerably larger for the Schiebe body than the other
two headforms.

4.2 Cavitation Noise

It is clear from Figures 9, 14, and 17 that the dependence of cavi-
tation noise spectral density on o is quite complex. In general as
shown in detail in Figure 10 the spectral density first increases with
decrease in o, reaches a peak around ¢ = 0.5 (for the Schiebe nose) and
then decreases for ¢ values less than 0.5, At different centre frequen-
cies the behaviour though qualitatively similar does not seem to show
any consistent quantitative trend. Results similar to ours have previ-
ously been observed at least qualitatively in a limited region of ¢ by
Lesunovskii et al. (1969). However, our findings are in contradiction
to the observations of Blake et al. (1977) and more recently by Hamilton
(1981) who observe that cavitation noise level keeps on increasing with
decrease in 0. It is possible that had they gone to lower ¢'s than in-
dicated in above references they may have observed similar trend as ours.
It is to be pointed out that from single bubble dynamics considerations
it is expected that cavitation noise level would keep on increasing with
decrease in ¢ since it is predicted that the maximum bubble size would
increase with decreasing o (see for example Baiter 1974). Then the
present observations suggest that the single bubble dynamics considera-
tions may not be accurate in predicting radiation of cavitation noise
from a cavitation zone thickly populated with vapour bubbles. Such con-
siderations necessarily ignore possible interference effects which may
influence the bubble dynamics aspects. In addition, the presence of
cavitation bubbles in sufficient density near to the solid surface may
alter the effective pressure distribution since basically the flow will
see a modified test body.

The effect of velocity on the noise radiated due to cavitation on
the Schiebe body is shown in Figure 11l. It is clear that at all centre
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frequencies the level increases quite sharply with increase in the mag-
nitude of the free stream velocity. The results in Figure 12 show that
the dependence of the level of cavitation noise on velocity can be ex-
pressed in the form, ﬁg = KUB. In present work the value of m was found
to vary between about 5.3 to 7.2 depending on the centre frequency (see
Figure 12). It is to be noted that Blake et al. (1977) estimated the
value of m to be about 3-4. Single bubble dynamics considerations (see
for example Hamilton 198l1) suggest that the value of the exponent should
be 2.4 ignoring the compressibility effects of the liquid medium. It is
not at all clear at this stage as to the reasons for the higher values
of the exponent found in the present work at least at the ¢ value of
0.56 for the Schiebe body. On the untripped hemispherical nose posses-
sing laminar separation the dependence of spectral density on the veloc-
ity is found to be somewhat different as shown in Figure 15 as compared
to the trend observed@ for the Schiebe body as shown in Figure 11. This
may be entirely due to the viscous effects associated with the presence
of laminar separated region on this body.

4.3 Non-dimensional Representation of Spectral Density

The spectral density can be non-dimensionalised following Blake et
al. (1977) using the parameters of single bubble dynamics such as maxi-
mum radius of the bubble Ry and collapse time 1,. The maximum radius of
the bubble can be approximately estimated from Strasberg's (1956) rela-
tionship

Ry = [!5 u2 ('U'Cpmin)] e

where t' is the residence time, ji.e., the duration in which the bubble
is in the region where the local pressure is less than the vapour pres-
sure. It is given by

1
th = Um(l—(—lp)%

where Cp is the space averaged static pressure coefficient.

The distance 'l' along the surface of the model in which the local
pressure is less than the vapour pressure, is determined from the inter-
cept of the constant o line with the pressure distribution curve Cp vs
s/D.

A rough estimate of T, can be made using Rayleigh's relationship

o
T, = 0.915 Ry (pfpo)

= 0.915 fn Bk

Us

i.e., 1

aAnalogous to one used by Fitzpatrick and Strasberg (1956) Blake et
al. (1977) have given the spectral density in the non-dimensional form
as
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Here V1, is the total lifetime of the bubble including growth, initial
collapse and rebounding times expressed in multiples of 1,. Blake et al.
(1977) have suggested that the value of v should be taken approximately
equal to 3. In the absence of any experimental study on the bubble dy-
namics in the present work the value of V was chosen to be the same as
that used for example by Blake et al. (1977).

For the Schiebe body the non-dimensionalized spectral density for
various combinations of the free stream parameters is shown in Figure 13.
It can be seen that the collapse of data is quite good for non-dimension-
al frequency parameter value of up to about 4. At higher values of ft,
the scatter is found to be quite high comparatively. It is presumed
that this unexpected spread is due to the peak found in almost all the
noise spectra at a centre frequency of 63 kHz as shown for example in
Figure 11 for the Schiebe body. The reasons for this peak in the ab-
sence of bubble splitting phenomenon of the type observed by Blake et al.
(1977) are not clear. For the hemispherical nose, in particular for the
tripped case the collapse of data (Figure 18) was generally similar to
that for the Schiebe body just discussed. For the untripped case the
scatter was somewhat greater even at low values of fTo and in particular
for the data at lower velocities. Again one may suspect the role of
laminar separated region whose length varies with velocity to at least
partly be responsible for these observations. As shown in Figure 19
the attempted collapse of cavitation noise data from all the three test
bodies at selected combination of free stream parameters is found to be
only adequately good. Again the observed peak in the spectral densities
at 63 kHz seems to distort the collapse.

5. CONCLUSION

It is found that seeding the flow with artificial nuclei has an
important effect on cavitation inception, type of cavitation and result-
ing noise. One important observation was that with artificial nuclei
the cavitation inception number did not show a strong dependence on
velocity on three different test bodies having different hydrodynamic
characteristics which otherwise would not have been the case. In addi-
tion, the cavitation observed was that of the travelling bubble type
which was steady and uniform around the headform. This was helpful in
obtaining systematic cavitation noise data at various free stream con-
ditions. Cavitation noise spectral densities showed a complex behaviour
with 0; initially the levels increased with decrease in ¢, and after
reaching a peak they subsequently decreased in levels with further de-
crease in o. Within the range of velocities in the present tests the
cavitation noise spectral densities showed a rather sharp increase with
increase in U,. The mean square sound pressure was found to be propor-
tional to Uﬁ with m values ranging from 5.3 to 7.2 at different centre
frequencies. The presentation of the noise data in normalized coordi-
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nates showed the collapse to be quite good (within 5 dB) at non-dimen-~
sional frequency values of ft_ less than about 4. At higher ft, values
the spread was rather high being of the order 10-15 dB. The present
results could have been viewed with greater confidence had the reverbera-
tion corrections been applied to the cavitation noise data. 1In any case
these corrections would not influence our findings on the dependence of
cavitation noise on free stream parameters like ¢ and Ug.
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Figure 2—Theoretical Pressure Distributions
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NN

\—-Electrical
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Figure 3—Schematic Sketch Showing the

Electrolysis Ring.
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Figure 10—-Influence of Cavitation Number on
Spectral Densities at Different
Central Frequencies on Schiebe Body.
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a_ = Schiebe body (0=0.56)
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Figure 11 -Influence of Velocity on Spectral
Densities for Schiebe Body.
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Hemispherical nose (Untripped)
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Figure 14-influence of Cavitation Number on
Spectral Densities for Hemispherical
Nose (untripped).
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R Hemispherical nose(Untrippodﬂ
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Figure 15—Influence of Velocity on Spectral Densities
for Hemispherical Nose (untripped).
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Figure 16—-Non-dimensional Spectral Densities for Various
Conditions on Hemispherical Nose (untripped).
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Figure 18-Non-dimensional Spectral Densities for Various
Conditions on Hemispherical Nose (Tripped).

F P

l,' .
LN

£ r

.
:
.
2
R
Bl
.
¥

3
zrar




2t 7
P} AR
Ay

‘SPIpog 3159 99JYy| UO SUOIFIPUO)
SNOIUDA J0} S®!i3isus( 1DJ3d8dS 1DUOISUSWIP-UON ~6L ®.nbiy

]
g
»
1
Y
.-
.
)
2]
.

%23
. 09 ol 0l Z'0
1 T 1 | R 1 T [7? | L L A 1 1]
: —o09-
940 L'EL JQYSN ®
” 99°0 L€l J90¥SN O -
950 601 1Ddeydsiwey v pat
1S°0 G'El 1DdLsydsiwey Vv 8
.k ° 090 80l aqayIS o —
21, 1S°0 9°€El sqeyds o gy B [P
, <« a o (suw)n
vVvVvivVvVevye p o)
vo O D‘. 44 P 3N “.
VY Vv ey 8 "aa 1 <P
Y o 009 v ww , °DeM % 0 ol
ODO 8 ho ] 8 ~N
o a®.Y o ® 8¢ X _ :
By Vv o o oB 0 _
vV v DQ e ° ‘v —0¢
vy v o ]
vY v ° - s
_ 0
..,.ﬂ.....,....r- v, \...... AR '. ‘........_.4.. ......... ; .‘......... ....u .-.... ‘.-... .........\. .........‘.... V .....u..r............‘._.a. ‘....‘ .......‘ <l .-y.... ~ NN .......... ...n..M , n. ...n\.... ...w.‘. .-“.M-..‘..Mmt@..-..-._w .Lh...u\ n.“...M~\r“......w .<




el
.80

2
s,

‘

a_a
. »
PPN

»

5,
s

R RN

- I
(LI R ."."

Dl e S }
.

LR I
.

e 'l.'.‘

AR )

) L
l‘.
.

DAL
DU TR ot
P letele fa e

LA N Tl S —Rada ek et dunt P Pt At sh i aiie * S MU S g A da SERLA I & S o le Shad ~ Sl Jhile” St dbant Snde et Aao- J D -

162

Discussion

T.T. Huang (DTNSRDC)

Does your bubble-seeding technique (electrolysis) trip the bound-
ary layer? If so, how much increase in noise is caused by the tripping
itself. The increase of microbubble population will cause an increase
of the occurrence of bubble cavitation events. Further increase of
microbubble population, the interaction of individual bubble cavita-
tion, and the noise associated with the interaction become important.
Based on your data, can you address this interaction problem?

On a large-~scale body, traveling bubble cavitation becomes less
important. Do you intend to extend your research to cover the noise
associated with sheet and attached cavitation?

R. Latorre (University of Michigan)

Several years ago I attempted to measure the cavitation noise
during inception on an ITTC headform tested in the cavitation tunnel
of the Ship Research Institute, Mitaka, Japan. Unfortunately, cavi-
tation formed on the mounting sting, which tended to mask the incep-
tion noise. At lower there was a good correspondence with the visual
observation of cavitation inception and the increase in the noise sig-
nal. Did the authors find a similar correspondence?

Regarding Section 4.2, the cavitation noise from a tip vortex cav-
ity shed from three-dimensional hydrofoils and rotating propellers 1-4
also increased with lowered o, reached a maximum, and then decreased
with further reduction in o. This has been characterized as a tip
vortex cavitation noise envelope shown in Figure 1. At the peak noise
level, what were typical cavitation patterns on the head form? With
tip vortex cavitation the noise level decreased with the formation
of the vortex cavity.

In Section 4.3 the authors have usedy = 3.0 and noted that above
nondimensional frequency values of 4, the data have a large spread.
Did they attempt to use another vy value, and, if so, what was the re-
sult on the data collapse? On the other hand, the authors indicate
the noise level ~kUM, where m is 5.3 to 7.2 in the present work and
was 3-4 for another researcher. This difference might be a difference
in the cavitation pattern and type. Could the authors provide sketches
of the cavitation pattern on the head and associated noise?
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d8  1/30CTAVE FREQUENCY ANALYSIS
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Author’s Reply

V. Shanmuganathan and V. Arakeri

To R. Latorre

The authors wish to thank Prof. Robert Latorre for his useful
discussion on their paper.

As indicated in Section 3.0, though there was cavitation on the
strut supporting the model in the present work, there was a substan-
tial increase in the SPL, as much as 20 dB at certain frequencies when
the electrolysis was on, and there was a good correspondence between
the onset of cavitation on the model and increase in noise level at
all values.

With electrolysis on, the type of cavitation was that of travel-
ing bubble only at all conditions. Also, the SPL was lower at very
low cavitation numbers when the extent of cavitation became larger.

Even from the theoretical solution of the Rayleigh-Plesset equa-
tion, the value of y was found to be around 3. Hence the authors did
not choose to use any other value of y in normalizing the data. With
regard to Prof. Latorre's suggestion that the difference in m value
between the present experiments and those of Blake could be due to the
difference in the type of cavitation, it is to be pointed out that in
both cases the type of cavitation observed was that of traveling bub-
ble; however, the complications arising due to bubble splitting, etc.
present in Blake's experiments was not possible and observed in the
present experiments. In addition, in the present work, the extent of
cavitation scaled uniformly with the cavitation number owing to nuclei
seeding, whereas this would not be ensured in the Blake experiments.
These differences may perhaps be responsible for the observed differ-
ences in the value of m.
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Cloud Cavitation: Theory

G. L. Chahine, HYDRONAUTICS, Incorporated

ABSTRACT

The collapse of a bubble cloud, due to a change in the surrounding
pressure, is considered, first, by using a single perturbation theory.
The interaction of any individual cavity with the rest of the cloud is
modelled using matched asymptotic expansions in powers of the ratio
between the characteristic bubble radius and interdistance. Up to the
third order, the problem is shown to be equivalent to the interaction
of two cavities of different collapsing strengths. The numerical
results obtained with a symmetrical repartition of bubbles on a spheri-
cal shell show that the influence of the other bubbles in the cloud
>n the collapse of a particular bubble is to reduce the driving pressure
during most of the collapse time, thus delaying the implosion, and
then to dramatically increase this pressure producing a violent end of
the collapse. The pressure released is then orders of magnitude
higher than with an isolated bubble. This pressure, which is being
imposed on an area of the same size as the whole cloud, could explain
the high erosion rates and bending of foil trailing edges. In the
second part, a continuum medium approach of the cloud is considered in
order to extend the validity of the preceding approach to higher void
fraction and to enable to account for the compressibility of the
bubbly medium.

I. INTRODUCTION

The design criteria for high-speed ship propellers involve trade-
offs between efficiency and cavitation, and strength and vibration of
the propeller. Operating in ship wakes at relatively low cavitation N
numbers, the propeller will, at least intermittently, cavitate, in-
ducing erosion of the blades, loss of efficiency, noise, vibration,

,".
1':' )
t'l.:.*:::“ h

PRy
L
P

and occasionally structural failure of nearby plating. These harmful S
effects are mainly due to the collapse of unsteady cavities. These . | ]
include individual bubbles as well as sheet cavities and ''clouds" :f\fiffé
(Figure 1). '..:".::c

Adequate and increasingly sophisticated theories for individual :{\i{#\}
bubble growth and collapse exist (see the reviews by Plesset and GQKﬂ%h'

Prosperetti, 1977 and Hammitt, 1980). While the transition to sheet
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cavity is not well-understood, a large number of experimental observa-
tions of sheet cavitation are available (Shen and Peterson, 1979, Bark
and Barlekom, 1979), and a steady, then unsteady, theory for sheet
cavitation was recently developed (Tulin, 1980 and Tulin and Hsu, 1980).
Downstream of a "steady' sheet cavity a region of high population of
tiny bubbles can be observed and is especially known to be associated
with erosion. However, as concluded from observations by Tanabayachi
and Chiba (1977), an unsteady sheet cavity is required for the formation
of coherent clouds of very fine bubbles. These clouds are either de-
tached from the frothy mixture at the trailing end of the unsteady
sheet, or generated in a finite region of the liquid downstrean of the
unsteady sheet where significant fluctuating pressures exist.

As the pressures generated by single bubble collapse are not strong
enough to explain the intense erosion in the subject region, and the
high forces needed, for example, to bend the trailing edge, cloud cavi-
tation has been held responsible since Van Manen's (1963) work. This
is supported experimentally by a very close correlation between the
dynamics of these clouds and the sharpest and highest pressure pulses
detected on an oscillating hydrofoil (Bark and Barlekom, 1979).

Similar phenomena have been observed with ultrasonic cavitation
(Hanson and Mgrch, 1980).

Apart from some information on the frequency of generation of
cloud cavitat®on, the experimental observations and measurements are
very qualitative and do not allow at the present time, any quantitative
predictions. In addition, the lack of understanding of the dynamics
of such cavities makesit impossible to explain any scaling effects and
to correct for them. Theoretical and fundamental studies are thus
needed as guidance for future design and experimentation.

To our knowledge, since the early work of Van Wijngaarden (1964)
only a few publications by Mérch (1977, 1980, and 1982) and Hanson and
Mérch (1980) have dealt theoretically with the problem of "collective
bubbles collapse" or "cavity cluster collapse.'" However a large amount
of literature has been devoted to the modeling of bubble-liquid
miXture behavior, using either a continuum medium approach or a "two-
fluid" approach (Zwick, 1959; Van Wijngaarden, 1972, 1976, 1980, 1982;
Zuber, 1964; Ishii, 1975). In order to explain the phenomenon of pro-
peller blades bent at the trailing edge, Van Wijngaarden (1964) con-
sidered the case of a uniform layer of cavities on a solid wall. He
studied its unidimensional collective collapse when the surrounding
fluid is suddenly exposed to a pressure increase. He derived the con-
tinuity and momentum equations for the layer, neglecting the convective
and dissipative terms and assuming that the volume fraction of gas is
small enough to authorize such approximations. However, he took into
account the individual bubble radial motion and translation, neglecting
viscous effects. Solving the derived system of equations, Van
Wijngaarden found a considerable increase of the pressure along the
wall due to collective effects.

Mérch (1977, 1980), concerned with ultrasonic cavitation fields,
considered the collapse of a hemispherical '"cluster'" near a wall,
which by symmetry, he extended to the case of a spherical cloud. He
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characterized the cloud only by its radius and a uniform volume frac-
tion, &, constant in time, and developed the following model. A pres-
sure rise in the liquid leads to the formation of a shock wave on the
"cloud boundary". The shock moves toward the cloud center leaving no
bubbles behind it and thus constitutes the cloud boundary at each time.
The collapse time of a spherical cloud is found to be\o times the
Rayleigh collapse time of a spherical bubble of the same initial radius.
Although a very interesting approach, especially for the calculation of
the collapse time, this model (like Rayleigh's model for spherical
bubble collapse) is incapable, in its present state, of adequately cal-
culating the pressure field. At the end of the collapse the cloud
radius is zero and the velocities and pressures are infinite, since the
model does not allow the bubbles to contain noncondensables. In
addition, the main physical assumption (presence of a shock wave
dividing the space in two regions one containing bubbles which do not
sense the pressure variations until a later time stage, and another

one where all bubbles have collapsed) is valid only for relatively

high void fractions. The case of a spherical single cavity of the same
size as the whole cloud is the perfect extreme example of the domain

of validity of this approach. Hanson and Mgrch (1980) and Mdrch (1982)
extended the same model to a cylindrical cloud and a layer of bubbles
on a solid plate.

We present in this paper first a singular perturbation theory
(Chahine, 1981) which will allow us to compute the pressure field and
the cloud dynamics for the growth and collapse of a cloud composed of
a finite number of bubbles. 1In the second part of the paper we will
discuss a continuum medium approach for a bubble cloud collapse.
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IT. SINGULAR-PERTURBATION THEORY

The following approach is applicable to a cloud of bubbles of
low void fraction. Provided that the characteristic size of a bubble
in the cloud, Tbgs is small compared to the characteristic distance
between bubbles, %5, we can assume in absence of initial relative
velocity between the bubble and the surrounding fluid that each of the
individual bubbles reacts, in first approximation, to the local pres-
sure variations spherically as 1f isolated. To the following order of
approximations, interactions between bubbles induce bubble motion and
deformation and are taken into account. This approach is an extension
of the earlier studies by Chahine and Bovis (198l) and Bovis and
Chahine (1981) on the collapse of a bubble near a solid wall and a
free surface, later presented more generally for nonspherical bubbles
by Chahine (1982).

Since the problem possesses two different geometrical scales, %o
and rpo, We can consider two subproblems: one concerned with the
macroscale and the other one with the microscale. The "outer problem"
is that considered when the reference length is set to be %y5. This
problem is concerned with the macrobehavior of the cloud, and the
bubbles appear in it only as singularities. The "inner problem" 1s
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that considered when the lengths are normalized by Tp, and its solution
applieS to the vicinity of the considered individual bubble of center
Bi. The presence of the other bubbles, all located at infinity in the
"inner problem", is sensed only by means of the matching condition with
the "outer problem". That is to say, physically the boundary conditions
at infinity for the "inner problem'" are obtained, at each order of
approximation, by the asymptotic behavior of the outer solution in the
vicinity of Bi. Mathematically, one has to match term by term the

inner expansion of the outer solution with outer expansion of the inner
solution, using the same asymptotic sequence in the two expansions.

A. Bubble Radius Variations

The determination of the flow field and the dynamics of any of the
individual bubbles, Bi, is accessible once the boundary conditions at
infinity in the corresponding "inner region" are known. Here we imposed
the restrictive assumption that the void fraction is low enough so that
the information about the variation of the ambient pressure around the
cloud, P_(t), 1s transmitted to the microscale in a time scale much
shorter than the bubble collapse time. Therefore, in the absence of a slip
velocity between the considered bubble and the surrounding fluid and
when interactions are neglected, the only boundary condition at infinity
is the imposed pressure variation P_(t). The "inner problem" is there-
fore spherically symmetrical and its solution is given by the well-known
Rayleigh-Plesset equation., With the assumption that the liquid is
inviscid and incompressible this equation can be written as follows:

aa +35al= -Pu(t) + Pgo(a %k - 1) + W (1 -a ™" (1)
In this equation, where the superscript i is omitted for convenience,
a%(t) is the radius of the bubble B! normalized by Thg- The times are
normalized by the Rayleigh time based on rp, and (P ~ Py). All pres-
sures are normalized by (P, - Py) where Py is the initial pressure,
and Py the vapor pressure. We is the Weber number and ?go the initial
normalized gas pressure in the bubble. The noncondensable gas pres-
sure inside the bubble, Pg, is assumed to have a polytropic behavior,
Pg adk = cte.

When interactions cannot be neglected, still assuming that an
"inner region" enclosing the bubble Bl can be defined, the boundary
conditions at infinity can be much more complex than in the preceding
paragraph., First, as we will see in paragraph 3, the macroscale pres-
sure in the cloud at Bi, P(Bl, t), can be very different from the im-
posed far field pressure P,(t) and depends indeed on the bubble location
in the cloud. Second, a relative velocity between the bubble and the
surrounding fluid, U(Bi, r, t)*can exist causing the bubble to be non-
spherical. Both P and U can be determined only by solving the equa-
tions of motion of the two-phase medium as presented in paragraph 3.
Here we will limit ourselves to a small perturbation theory whose
interest will be to give the behavior of the solution when the per-
turbation grows continuously. In that case P(Bi, t), which is the

* underlined quantities are vectors
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driving pressure for the collapse of the bubble Bi, is only a pertur-
bation of the imposed far field pressure, P_(t), and U(Bi, r, t) is a
perturbation of the spherical velocity due to the bubble volume vari-
ation.

If we assume that the liquid flow is irrotational, we can define
a velocity potential for the macroscale ("outer problem"), ¢(Bi, t),
and a velocity potential for the microscale ('inner problem"), ¢4 (B,
r, t) both satisfying the Laplace equation. The matching condition
between these two potentials expresses the at-infinity conditions for
94, and replaces the conditions on P(Bi, t) and U(Bi, r, t). Using
the results obtained with the interaction of two bubbles and the pro-
perty of additior of potential flows, this condition can be written:

. N [} \ . .
lim $. (B ,r,t) = -y - (E q) + g2 qg +e3q) + ...) +
i , 21 o
r > > i=1 '3
o r
2\ 2 .
2 g2 qJ + €3 qJ + ... T cosGiJ + -
21_] o] 1 r'_‘
[e) e
2 3
+ —f; (63 qJ + ...) r2P2(c0591j) + ... (2)
g+ ©
o

where the superscript (j) denotes quantities corresponding to the other
bubbles, Bi. 24J is the initial distance between the bubble centers
Bi and Bi. 61 is the angle MBiB] and r the distance BIM, where M is
a field point in the fluid (see Figure 2). Pp(cosf) is the Legendre
polynomial of order n and argument cgsf. qa is the correction of
order €0 of the strength, qg = ég (ag)z, of the source representing
the first-approximation spherical oscillations of the bubble BJ.

Expressed in physical terms (velocities, pressures), the boundary
condition (2) states that the first order correction,0(e), to the non-
perturbed spherical behavior of the bubble Bl is a spherical modifi-
cation of the collapse driving pressure. This would introduce, as for
two bubbles, n spherical correction of the variations a%(t). At the
following orders new corrections of the uniform pressure appears, as
well as a velocity field accounting for a slip velocity between the
bubble and the surrounding fluid. Again, as in the two-bubble case,
this induces a spherical correction and a nonspherical correction of
the bubble shape. Therefore, one can show that the equation of the
surface of the bubble Bl can be written in the form:

riel®, o) = a:;(t) +eai(t) + e [ai’(t) +fie) - coselg] +

»
<

W,

Wt
L

+ 93[a§(t) + £l(e) cose® 4 gl(e) P, (coseig)] N E)
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' Where the direction Blcl(see figure 2) from which 1s measured the
angle 618 is compounded from all the 61] and is obtained using Equation
(7) presented below. Writing the nonspherical boundary conditions on
the bubble wall and expanding 6{ in spherical harmonics one obtains

the following differential equations for the successive corrections of <
aé(t) given by (1). Superscripts(i) areomitted for convenience:
. ') )
s 3aa 4 _ 5 ) .
aoal 3aoa! alFO(aO' we’ Pgov K) j Q’ij qO ’
)
L .
as +3 4 +aF +F(a,a,Ww,p, ,K=-2 [~==]) &
0 » o 2 2 O 1 0! 17 e’ g0’ j Qij 1 ’
o
L .
. + .« ® + + - -Z __C-). |
aoa3 33033 a3Fo Fz(ao, al, a2, We, PRO’ K) e 213 a5
)
.e Q 2 . .
+ 35 = .z, 21 33
aodg 3a0d2 i 3 gi] (aoqo + aoqo) ! (4)
o]
. £ \2 .
ad +31d +3F (a,a)d =-I, 3 [=x) +aq +Fq
03 03 RS R j p1d (369, oty 3q0) !
) -
LN . h
. . - 2 o 2] e 3
+ - -6 = - -2 .
3.8, 3aog3 (ao /Weao) g, Zj 5 1 (aoqo + Zaoaoqo) X
o e

Y
[N .
»

y

1

In these equations F,, F1, F2, F3 are known functions depending on the
physical constants, We and Pg,, and on the calculated preceding orders
of approximation. The deformations f., f3 of the bubble Bl and the
motion of its center toward BJ; %,, %3; have been replaced by dz, d3

;
L 4

A

N which indicate the total motion of the point E4 toward Bj (Figure 2).

. d; = f2 - %2 3 d3 = f3 ~ 23 (5)
! When all the initial radii of the bubbles in the cloud are identical,
N the right-hand sides of Equation (4) are the same as those for the

o two-bubble case right-hand sides multiplied by one of the geometrical
" constants cy, C2, C3!

R _ - ij

i C1 Lj (QO/Q/O ) ’

- _ ij.2 | 1j (6)
- c, Zj (20/20 ) cosf .
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17 ij.
es = I, (20/20%3 . Py (costdy (6)

b We can now compute the behavior of Bl by solving the ubtained differ-
ential equations (1 and 4) using a multi-Runge-Kutta procedure. The
behavior of the whole cloud can then be obtained. This appears at

> first to be a very long task. However, noting that if ag(t) is the

S nondimensional solution for a bubble of unit initial radius, the

. solution aj, for a bubble of normalized initial radius X is such that,
aj(At) = A ag(t), the right-hand sides of (4) can be easily ccmputed
when As are known.

Indeed the whole problem can be reduced to the case of two inter-
acting bubbles of different sizes. The comparison of equations (4)
with those obtained in the case of two-bubbles shows that the N bubbles
in the cloud other than Bl can be replaced by a unique bubble of
strength q38, located at G!, a distance 2%3 from B! in the direction
defined by the angle MBiGi =918, As this equivalent bubble should in-
duce the same pressures and velocities as defined by (2), its location
and strength are obtained by the equations:

T T o e

. . N . .
L ig pig _ 3913
E 9n /Qo . 2: qn/zo *
i j=1
.f ig/ Zig 2 ﬁi j/ Rij 2 7
:: gig q, ( o ) = i< g_lJ qn ( o ) ’ (7)

where gjg and €ij are respectively unit vectors of the directions Bici
and BiBj (Figure 1), and n is the order of approximation. These TR
equations define the angle 918, and the direction in which d%(t) is :f¢: N
measured in equation (4). g
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B. Pressure Field
For a given P_(t), equation (1) can be solved for the variations
- of the bubble radius, aé(t). This allows the subsequent determination
) of the pressure field around the bubble Bi, of center Bi. by the use
! of:

i

_ .2 2 . b a2
PO(B , T, t) =P (t) + (2 a aj + a ao)/r a

a’/act

o o

where r is the distance between Bi and a given point M in the filuid.
The following corrections of Py are obtained once the successive

orders of the problem are solved. The nondimensional outer problem,

®, can be written:

=i -1 =i
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where bars denote nondimensional '"outer" quantities, and tildes non-
dimensional "inner" quantities.

= % T, LY =a - Ty, T o= rl/zo . 9) e

T is the characteristic time of the bubble collapse and rl is the dis-~
tance between a field point M and Bl. The Bernoulli equation enables
one to calculate P using (8). We can write nondimensionnally:

E(M,t) = R(M,t) - Poo(t) = —¢ &- _ % E‘o ,AE’Z . (10)

Ap 3t

Ap is the amplitude of the pressure driving the collapse and t = t/T,
where

T = rbo\/O/Ap . (11)

In the following, we will consider as an illustration a uniform field
of bubbles; any bubble has the same geometrical position relative to
the others, and thus the same behavior. The general expression (8)
simplifies considerably to become:

POLE) = (€T +eF +e T+ ) I (—1.—>+

(o] 2 3 —1
r
. 6 g ?2'2 2
e cos v Jo 1 3
€ h2 Zl ‘r'iz € 3 V)Zl (?) + 0(c?®) . (12)

In this expression, the summations are geometrical constants similar
to ¢y, c2, c3 (6). Thus, once the dynamical bubbles behavior is known
as well as their distribution the pressure field is determined.

c. Examples: Spherical Shell of Bubbles

As an illustration of the method presented above let us consider
a distribution of bubbles centered on the surface of a sphere and which
have the same position relative to each other. We will study the
bubble behavior and the pressure generated for two types of ambient
pressure variations with time: a) the classical case of a sudden
positive pressure jump of amplitude Ap, b) the case of a sudden pres-
sure drop, Ap, followed by a return to the initial pressure after a
time period AT during which the minimum pressure is kept constant.

In figure 3, the results of five different computations for case
a), are compared, expansions being conducted up to €d. The ratio,
€ = rp./Ly, was kept constant and at a value of 0.05. The cases of
two, tﬂree and twelve bubbles of centers located on the surface of a
sphere are presented together with that of an isolated bubble. The

* ... &.‘:.x '.- » .
0y -“ e n.'.c" .'.f J‘".-
Sl T e

TR
- et




E2R S T i "Rk " e W e N N Ll *Sihe T “Shie Jln] Pt C

173

fifth case is an intermediate situation between the configurations of

A three and twelve bubbles. This case is arbitrary and is only deter-
mined by the choice of ci1, c2, and c3. In each case the variation with
time of the distance, BlEi, (Figure 2) between the extreme point on a
bubble E!, and its initial center, Bl, is chosen to represent the bubble

:j dynamics. Taking the bubble collapse in an unbounded fluid as refer-
"j ence, it is easy to see from Figure 3 how increasing the number of
~ bubbles changes the dynamics of the one studied. We can observe first

that, during the early slow phase of the implosion process, the collapse
is significantly delayed. At any given nondimensional time the distance
v between B! and E! (and simultaneously the bubble characteristic size)
o is greater when the number, N, of interacting bubbles increases. Then,
- in the final phase of the implosion the tendency is reversed: the
. phenomenon speeds up and, in a shorter total implosion time, the final
N velocity of themotion is higher when N increases. As we will see
later, this effect can be easily explained by accounting for the modi-
fication of the dviving pressure of the collapse of any bubble due to
= the dynamics of the other bubbles.
;L Figure 4 shows the behavior of the bubbles in the case of a pres-
’ sure variation of type b. The cases of an isolated bubble and two,
three, five and twelve bubbles are investigated again, and the vari-
ations of BEl with time are plotted. The ratio €, and the duration
AT, of the pressure drop are kept constant and at the particular values
of 0.1 and 0.8 respectively. Here, as in the preceding figure, notice-
able changes can be observed when the degree of interaction increases.
First, the growth is slowed down and retarded in comparison with the
isolated case. Then, the collapse is accelerated and as a result the
total implosion time decreases with an increase in the number of bub-
bles, N. While for N = 2, the total implosion time is greater than
" that of an isolated bubble, for N = 12 the time is significantly
- ‘smaller. As we will see below this acceleration of the collapse makes
- the generated pressures at the end of the collapse higher than :or the
single bubble case.
Figure 5 compares for the same cloud configuration (twelve bubble,
€ = 0.1) the bubble behavior for three values of the duration, AT, of
i the pressure drop. The greater AT is, the longer the bubble is allowed
N to grow. As a result the maximum size it attains is bigger, but its
lifetime is smaller. Thus, the resulting collapse is much stronger.
d To examine the observations made above let us compare the imposed
ambient pressure with the variations of the pressure generated at a
distance QO from a collapsing bubble in an infinite medium. As we can
see from Figure 6, the perturbation pressure, i.e. the difference
between the pressure at f, and the far-field pressure, is negative
for t < 0.75. As a result a fictitious bubble placed at the distance
25 from this spherical bubble will sense a less important and more
gradual increase in the surrounding pressure. In the considered case,
instead of a sudden nondimensional jump of the pressure from O to 1, P
surges only to 0.84, then rises slowly, not attaining 1 until t > 0.75.
This would affect the bubble dynamics exactly as observed in Figure 3,
namely a less violent start of the collapse. As a result, we find at
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the end of this process a larger bubble than would be observed in an
infinite medium. This, added to the fact that in the later stages (t =
0.75) the driving pressure increases up to 2.25 times the far-field
pressure, makes the subsequent end of collapse much more violent.

The same type of observation is made in the case of a finite-time
pressure drop. In the first time period, T, the pressure sensed at a
distance {, from the bubble center, By, is higher than the imposed one.
As a result a second fictitious bubble placed at this distance from By
would have a slower growth during AT. This phenomena is however re-
versed in the second phase as an expansion wave is generated by the
growing bubble Bg. In the third and last phase a compression wave in-
creases the driving pressure for collapse making this one more intense.
In the presence of several bubbles the effects described above are
amplified. Figure 7 is an example of this for the case of twelve bub-
bles. Plotted are the pressures generated during the bubble history
at two locations: a) the center of the cloud and b) the center of one
bubble, B!, in its absence. These pressures are compared with those
generated during the growth and collapse of an isolated bubble at a
distance equal to the spherical cloud radius. The corresponding bubble
radius variation with time is that represented in Figure 5 (12 bubbles
T = 0.6). The high pressure surge at the end of the collapse will be
considered in the following.

Figure 8 is a collection of the results obtained in several cases
studied. The maximum nondimensional pressure generated during the
cloud collapse are represented versus the number of bubbles in the
cloud. The cumulative effect is obvious since the values obtained vary
in a several orders of magnitude range. The numbers represented should
not be considered accurate since other scales for times, pressures and
lengths are needed at the end of the collapse. Instead, they are pre-
sented here to give an indication of how tremendous pressures can be
generated with an increasing number of interacting bubbles, and to
give an idea of the trend of this increase, In this figure, the
maximum pressures are given at the cloud center, C, at the center of
a bubble, Bi, if it was removed,and at a distance ry_ from BL.

The important role played by the gas content of the bubbles is to
be emphasized. Increasing Py, from 0.1 to 0.2 reduces dramatically
the generated pressures. This comes mainly from the fact that the
cushioning effect of the gas reduces significantly the velocities
attained at the end of the implosion.

Another very interesting observation from figure 8 is that the
maximum pressures generated at the end of the collapse is much lower
for a pressure drop of finite duration followed by a recompression in
comparison with the pressure jump case. This effect is not due to
the apparent higher gas content in this case. Indeed, the value of
Py to consider for comparison purposes should be for all cases the
minimum gas pressure, Pgmin9 which exists at the start of the collapse
when the bubble has its maximum volume. For the case of twelve bub-
bles for example and a pressure drop (AT = 0.8, Poy = 0.53) the value
of Pgmin is 0.07. The effective gas content is thus smaller, and the
observed pressure drop is intrinsically related to the imposed pressure
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function.

This observed pressure attenuation can be explained by the fact
that the cumulative effect of the other bubbles on the initial phase
of the dynamics of the considered bubble is of opposite nature for the
two pressure cases. In the pressure jump case the presence of other
bubbles reduces initially the effective driving pressure of the bubble
collapse thus preventing the bubble size from being small in the later
phase when the collapse pressure surge occurs (see Figure 6). Con-
versely, the initial cumulative effect in the case of a finite time
pressure drop is to reduce the bubble growth thus reducing the bubble
size when the pressure surge occurs.

Another parameter on the value of the maximum pressure generated
is the duration of the pressure drop. This effect is shown in Figure
9 for twelve bubbles and € = 0.1. The previous type of reasoning when
applied to the gas pressure leads us to believe that the increase of
the maximum pressure with AT is mainly due to a decrease in the ef-
fective initial gas content at the start of the collapse since the
maximum bubble radius increases with AT.

ITI. CONTINUUM MEDIUM APPROACH

One major assumption of the theoretical approach as used in the
preceding section is that, in first approximation the imposed ambient
pressure is assumed to be instantaneously transmitted to the vicinity
of each bubble in the cloud. Therefore, both the compressibility of
the bubbly medium and the influence of the liquid motion generated by
the other bubbles on the dynamics of the bubble considered were neg-
lected in the first order approximation. This limits the validity of
the study to very low void fractions. The incompressibility assumption
is valid as long as the fluid velocity does not approach the speed of
sound. For single bubble dynamics this does not usually happen until
the final phase of the collapse. Here, however, two factors contribute
to limit the validity of the assumption. First, the rate of implosion
is higher and second, more important, the velocity of sound drops con-
siderably when the void fraction increases. This underlines the need
to account for the behavior of the cloud as a whole in order to deter-
mine a more accurate value of the local pressure driving the collapse
of the individual bubbles. In addition this would have the advantage
of limiting, for the following orders of approximations, the number of
bubbles directly influencing the considered one. Indeed, the asymp-
totic theory shows that the effective parameter of the expansions is
€cy,(where c;, defined by (6), is a direct function of the number of
bubbles) ,rather than € = rbo/lo. Introducing a motion equation for
the bubbly medium would limit the number of influencing bubbles to
those in the direct vicinity of the considered one, through a time
delay of the propagation of the information from one bubble to another.
In summary, if we account for a motion equation in the cloud medium
the first order approximation of the preceding approach becomes more
accurate and as a consequence the following corrections will be
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smaller making the approach valid for higher void fractions, a.

A. Classical Description

Basically the classical methods used to describe a two-phase
medium are not much different from the singular perturbation method we
presented above. The final description deals just with the macroscale
of the cloud. However, this description is obtained by averaging the
various physical quantities defined in the microscale. The two phase
medium is assumed to be constituted of 'particles" containing the host
liquid and few bubbles. This "particle'" is small enough to be able to
distinguish the gaseous and liquid constituants, but large enough to
enable one to define significant volume average quantities in the two-
phase continuum. Therefore, each "particle" appears in the macroscale
as a fluid point M alloted various physical and kinematic properties:
a(M,t) is the local void fraction, pyp(M,t) is the local medium density,
Un(M,t) is the velocity and Pyp(M,t) the pressure,....etc. In such a
volume averaging description, if Vp is the volume of the particle,
X(M,t) the considered average quantity and X(m,t) its local value in

the microscale, we have the following definition: .
xot,e) =5 f % (me) av (13)
Py
P

The density of the medium is therefore defined by the relation:

ot = oy [1 - a0] + 0,000 aote , aw

where p,(M,t) is defined by (13). The liquid is assumed to be incom-
pressib%e and p, constant. The void fraction, a(M,t), is defined as
the relative vo%ume of gas in the particle. Usually POt is neglected
and the density of the medium is written:

pm(M,t) = 0, [1 - a(M,t)] . . (15)
If U (M,t) is the average velocity of the liquid in the particle and

U, (M,t) the average velocity of the gas, we obtain comparable results
to (14) and (15):

omym=oQHQ (l—a)+ogHg0t R (16)
P Up 7 Pp Up 1 - ) (17)

and combining with (15),
Hm o~ HQ . (18)
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" The continuity equation is obtained by writing the mass conser-
vation of a volume of the bubbly medium followed during its motion.
Using the average quantities defined above we can write:

d den
d—tl,’('t)pmdv =[ | at+e, VU al=0 . (9

v(t)

Here the material derivative pertains to the medium velocity Uns
or with our assumptions to gg (see (18)).
d/dt =3t + u V. (20)
As Equation (19) is valid for any volume V, we obtain the general
equation:
9p

E;T+V'(p v)=o0

where O, is defined by either (14) or (15).
A similar equation can be written concerning the number of bub-

bles, n(M,t). Neglecting any complete bubble disappearence or sudden
generation, as well as bubble splitting and coalescence we can write:

(21)

et n Velg =0 , (22)

the material derivative being defined as:

D/Dt =3 /3t + Uy V, . (23)

The momentum equation of the bubbly medium can be obtained in the
same manner by using the momentum equations of both constituents in
the microscale and integrating over the "particle" volume Vp. If we
neglect the viscous forces, this can be written:

a,u -

1% i
f["i L +Vpi] v =0 (24)
Vp

the index i designating the liquid or the gaseous phase depending on
the position of the element of volume dV in the microscale. If we
account for the incompressibility of the liquid this equation becomes:

du

0 (1-a)——’1+pa f U, V.U v +pr4dV—0 (25)
L dt g
P

If we neglect the gas contribution to the momentum, and we account for
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(18) we obtain the following approximate classical momentum equation:
du

pp (1-a) gZ+ TP =0 (26)
where it is assumed that
v Vpi dav = { pigds’—“Vp Ve . 27

P

The only equation left is that giving the bubble translation
velocity, U,, which reflects the interaction between the two phases of
the bubbly medium. The study of this equation is a whole subject of
research in itself. Several contributions exit which have dealt with
more and more complicated situations. To quote some without trying to
be extensive we can add to the above references Johnson and Hsieh
(1966), Landweber and Miloh (1980), Van Wijngaarden (1976,b), Van Beek
(1981). When viscous drag is neglected a very interesting general
expression for the motion of a deformable bubble in a nonuniform
potential flow was derived by Landweber and Miloh (1980). If we admit,
however, that the liquid flow around an isolated bubble is linearly
accelerated, and that the bubble remains in first approximation spher-
ical, we can write,neglecting the bubble mass,a simpler equation as
follows:

DU DU, 50

In this equation the virtual mass of the bubble is considered to be
2/37rag p, and the material derivative is related to the bubble
velocity %s discussed by Prosperetti and Van Wijngaarden (1976).

When other bubbles are present in the flow corrections are to be
introduced in this expression, following Landweber's calculatioms.
Van Wijngaarden (1976,a) and Van Beek (1981) performed similar cor-
rections for a rigid sphere and obtained the expression:

d |1 = (1 -y 4
TS [E'(l + ) (Hg - HQ)] = (1 - o) Ic HQ , (29)

where ¢ is a correction to the added mass of the sphere due :o the
presence of the cloud. They gave, however, respectively the values
(2.78 @) and (-0.225 @) for z.

B. Micromorphic Continuum Description

In classical continuum mechanics the fluid is described geo-
metrically by a field point M and kinematically by a velocity field
U(M). The averaging approach o’ the cloud medium, as described in the
preceding paragraph, is in this sense classical. However, when a
medium contains microstructure, as 1is the case for a bubbly medium,
a more refined description can be obtained by assigning to M, in
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addition to the macroscale velocity, U(M), other quantities which re-
flect the microscale behavior in the "particle'". 1In a first gradient
theory, in addition to the velocity field, U(m), a field of the
gradients of relative velocities in the microscale scale, X, is added
which defines kinematically the medium*. The description can be
further refined by using higher order gradient theories. Germain
(1973) considered such approaches and, using the method of virtual
power, was able to derive the equation of motion of the continuum
medium accounting for the macrostresses, ¢, and themicrostresses, S.

In a first gradient theory the velocity in the microscale can be
written as

U'(m) = U@ + XQD - Mmoo . (30)

Consequently the acceleration, I'', of m is derived and, by equating
at dynamical equilibrium the virtual power of all the 1nterna1 and
external forces acting on the considered particle (volume Vp) to the
material derivative of the virtual power of mass velocity of Vp, one
obtains a dynamical equation of the medium relating S, o, and I\

To define X  we consider the motion on a scale which is of
the same order as the microstructure. To do so for a bubble cloud,
let us divide the cloud medium into fluid '"cells" each enclosing an
isolated bubble. In addition, we assume for simplicity that the bub-
ble center of mass and the ''cell" center of mass coincide at the con-
sidered time. Let U(M) be the velocity in M induced by the rest of
the cloud in absence of the bubble, and V(B) the velocity of the
bubble center, B. U(M) would be the value of the velocity field
assigned to M in a classical fluid mechanics description.

The bubble radius is ag and its variations with time are given
by (1). This radial motion of the bubble surface induces at a point
m of the cell (Figure 10) a velocity of value (ur - er'), where er'
is the unit vector of the direction Mm. The total velocity u', at
m is:

a a? al
u'm) = UMD + g v e ' +V [5o oD -VEN e |+ (3D

where r' is the distance between M and m. The second term in this
expression is a source term due to the spherical bubble oscillations,
while the last term, u'', is a dipole due to the slip velocity between
the spherical bubble and the fluid, and could include first order
corrections of the bubble shape. For further corrections for non-
sphericity of the bubble, other terms (singularities of higher orders)
have to be included. By differentiating (31) with respect to time

and space one can define an acceleration vector, T', and a strain

rate tensor, D'. Following Germain's approach, and using the principle
of virtual powers, one could then derive an equation of motion of

the cloud medium. We decided instead to start with a first gradient

* A double underlined quantity ls a tensor.
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theory and replace (31) by its Taylor expansion. We follow in doing so
the first calculations done by Michelet (1980) in his graduate thesis.
The basic approximation used in this linearization approach is
based on the fact that Equation (31) is only valid in the liquid
portion of the "cell" (r 2 ag). It seems therefore logical to write
the velocity in m, close to the bubble boundary, as a Taylor expansion "
of the value of u' computed on a point of the bubble surface, S, '
(Figure 10). This has the advantage of eliminating the singularity of

]
(A
.

]

(31) for r' = 0. The obtained expression for u'(m) is then: 1
éo Ve
u'(m) = UM) +|3a, + 4Vp cosb - ' 2 — + 3 7 cosf e+
. ao o
+| 2V sin8 =<3 r'V_ sing | e (32)
t 2a0 t £ ’

where V. = | V(B) - u() | .

When V. is not accounted for, the expression of u'(m ) reduces to a
form comparable to (30), which is much easier to interpret than equa-
tion (32). In that case we obtain:

v
—

EJW)ZQM)+§- m+

1R

el (33)

l

where X and g are both tensors assigned to M and defined as:

(34)

| e
lo

X = -2 I, 2=3a

i

(o]

[e]

We notice that in comparison to (30), which describes a first grad-
ient homogeneous deformation, in (33) there is in addition to the
gradient tensor, X, a tensor g reflecting the presence of a source in
the cell. Equation (32) reflects in addition to this the presence of
a dipole. It could be written as

\J

u'(M') = UM +

>
e

e
=r —z

-Mn+ X' " [Mm|l e +a e+
dm + 2 e Te

2a -r

+ (GVt cosf - 2 r' Vt cose) e . (35)
o

where e, 1s the unit vector of the direction of U and V; X' and &' play
the same role as X and o but are applied just to the direction of the
translation. The last inhomogeneous term is more difficult to put
in simple form.

From the expression (32) we can now compute the acceleration,

then apply the principle of virtual power, to obtain the equation of
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motion. Here again in absence of translation velocity Vi, the results

are simpler to interpret. In absence of viscous effects these results
can be written as follows:

22

dU L1 a

o, af+3g(ao-252)=-vp, (36)
[0}

AR - Cal A RS ERRS  - Ea

where K depends unfortunately on the cell pcometiy,

40

L P K= &fpi e, dv (37)

C

r_

s

If the cell and the bubble are symmetrical with regard to the center of
mass M, then K= 0, and (37) reduces to the classical equation of
motion, (26). Although it is unfortunate that the cell shape seems to
play a role in the model, K might rather reflect an effect of the non-
sphericity of the bubble.

When V¢ is taken into account a whole series of '"inertia" integrals
like (37) appear in the calculations. In order to see what such a
model might indicate we consicered the case of a spherical bubble in a

- LA FLEAEAN

L spherical cell. 1In this case the motion equation becomes:

. a a

. du . "o 3 R o - = -

- Pmjacta |35 a_ 65 + 0@ (¥-Ut=-Vp. (38)

. o
Here, R is the radius of the cell, and if we write R = a, a-1/3, we

have the unusual result:

a
du o -1/3 (1 1/3 2/3 _ R
I dt+3aoa <4+a -2a + ... V-0 (= -

h boe
AENCATA O

(39)

ph ”
VT w s ?s

This surprising result (dependence on a_1/3) might be compared with
that obtained for the apparent viscosity of a bubbly flow, which is

. 4u/3 - a~l. (Batchelor (1967), Van Wijngaarden (1972)). We recognize
however that the present model is in its infancy and should be care-
fully checked before any conclusions are drawn. In addition, due to
the linearization of the velocity field (first gradient theory) this

»
[ I Sy e

j model loses it validity for low as.

L}
»! C. Case of a spherically symmetrical cloud
QE Let us consider a finite size spherical cloud of bubbles and de-
;& fine its radius, R(t), at time t, as the position of the last outer
" shell of bubbles. The space is therefore divided into two regions.
15
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For r > R(t), the medium is an incompressible liquid of density pyg,
while the interior of the sphere, r < R(t), is filled with a two-phase
medium which can be defined as in the preceding paragraphs. Let us
consider here the classical approach and define at a point M(r), a
radial liquid velocity ui(r t) and a radial bubble translation velocity
ug (r,t). Similarily we define a local void fraction a(r,t), density
pm(r t), bubble radius apg(r,t), number density n{r,t), and medium
velocity um(r,t). The matching between the two media, states that at

= R(t) there is continuity of velocities and pressures:

- .

R(E) = ugr,t) B
(40) virhni]
P,(R,t) = lin P'R, ', t) , T

r' > x

where r' is the distance in the microscale between a bubble center and
. a cell field point. The continuity and momentum equations in the

. liquid medium (r > R(t)) are easy to solve and give, after neglecting
viscous effects:

ug(r) = 0g/4nr2 , (41)
oP P d 0 2
3 P
il e A (42)

Vg is the total volume of the bubbles in the cloud
R
Vg = 47 f ar? dr (43)

C

Inside the bubbly medium, due to the spherical symmetry, the con-
tinuity equation also gives

V(r)
u (r,t) = ;== ; r <R(t) , (44)
with
V(r) = 47 ‘fm al(x,t) x? dx . (45)

O

If we are interested in the problem of the collapse of the cloud under
an imposed ambient pressure variation, Pm(t), (41) can be integrated
between the cloud radius and infinity to give:

. .2
e v

2 Vg 1V
- R) = & N A 4
MORSNORES N K i (46)
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Using (40), P_(R) can be related to the behavior of any individual
bubble of radius ap in the last outer shell of the cloud, using equation
(1). Equation (43) becomes:

a 3k 3
- -2 = 1Y 2 a2
P _(t) + P+ Pgo A odo t > &, . 47

The cloud radius motion can be obtained by using an equation of
the bubble motion, fOr instance (25) or (26). In the simplest case
equation (25) gives the following second relation between R, a, and Vg:

. a . 3 . Ksi a .
R+3-= R=4mzz Vg- + - Vg . (48)
(o] (¢}

A third equation, in addition to (47) and (48), is needed to solve
for R, a, and V,. Without an assumption on a proportionality between
Vg(t) and apg(t) or without penetrating the cloud and solving for all
ag(r,t) to determine Vg there is no hope of solving the problem. We
do not think the proportionality assumption is generally justifiable
even if at t = 0 all bubbles in the cloud have the same size, since
P(r,t) would not generally be the same for any location r at a subse-
quent time. This need to solve the whole problem is to be expected
and is very important because it shows that defining the cloud by just
one parameter, as a unique void fraction, is not sufficient to describe
its dynamics. Number and bubble size distribution are other important
variables to consider. An exception to this reasoning is the case of
a cloud which possesses a high enough void fraction in order for a
shock wave to form at R(t) and separate the two media described here.
Such an interesting model has been described by Mdrch (1982).

IV. CONCLUSIONS

We have considered in this paper the collapse of a cloud of bubbles
submitted to a change in the ambient pressure. Two types of models
were presented. The first model, valid for low void fraction is an
asymptotic approach based on the fact that the bubble radius is small
compared to its distance from neighboring bubbles. This single per-
turbation method allowed us to write a system of differential equations
which enables one to describe any bubble motion and deformation know-
ing the geometrical and size distributions of the bubtles. As a con-
sequence the whole flow and pressure field can be determined. As an
illustration a few cases of symmetrical bubble distributions on a
spherical shell were considered and showed interesting results. Even
for very low void fractions, collective bubble collapse can generate
pressures orders of magnitude higher than those jroduced by single
bubble collapse. This would tend to explain the observed high erosion
intensities and the bending of trailing edges. The cumulative effect
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S

ﬁ: comes from the fact that the interaction increases the driving pres-
.~ sure of collapse of each individual bubble. This augments the violence

X of its implosion and thus the interaction with the other bubbles.
T Thus, each bubble ends its collapse not under the effect of a pressure
" of the same order as the amblent, but orders of magnitude higher.
- This cumulative effect would not exist if the void fraction is high
N enough for the cloud to behave as a single .bubble. The study showed
=~ again the importance of gas content in the bubble and the history of
- the ambient pressure variations.

The second approach is a continuum approach and is undertaken in

. order to extend the validity of the study to higher void fractions.

We principally pointed out the difficulties and suggested a way of
improving the averaging methods by accounting for the singular nature
of the bubbly medium under collapse conditions. To do this we used a
-~ first gradient theory for the flow field and a micromorphic structure
A for the bubbly medium. A correction of order a-1/3 appears in the
motion equation of the bubbly medium when the bubble radial oscillation
and translation velocity are not negligeable. We showed finally for
a spherical cloud, with a classical continuum medium approach that it
is not possible to easily solve the problem without imposing an
assumption of a relationship between the behavior of the total gas
| volume in the cloud and that of an individual bubble. The knowledge
- of the local behavior of the bubbles in the cloud and thus of the local
o characteristics of the cloud (i.e., void fraction, bubble number density)
:\: seems necessary for solving the problem.
o This work was supported by the Naval Sea Systems Command, General
[~ Hydromechanics Research Program administered by the David Taylor

Naval Ship Research and Development Center under contract number

S N0O0014-82-C-009. My thanks are due to M. P, Tulin who raised my
> . interest in this fascinating subject and to Ph. Genoux, from DRET,
- Paris, for fruitful discussions and help in calculations for the
;{ continuum medium approach.
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‘- Discussion g

E.A. Weitendorf (Hamburg Ship Model Tank) =

4 W P
:} Is it possible to derive advices for practical propeller cavita- :gJﬁﬁ
i3 tion tests if cloud cavitation occurred? b LY
': It is imaginable that advices for the propeller designer who has A :&2.
W to avoid cloud cavitation as far as possible are already included in ia lr Y
v the findings of the author. For instance, is it the right way for SIS

avoiding the cloud cavitation that the pressure on the profile at the R
N end of the sheet cavitation should change as rapidly as possible to Do
_7

positive pressure values by increasing the profile curvature? I would ;
like to know the opinion of the author on this problem.

R. Latorre (University of Michigan)

i

The author is to be congratulated for isolating the interaction
of a bubbly continuum to a basic bubble-bubble model.

To continue the development of this model it appears the author
can introduce the compressibility of the medium by modifying the time
i scale of the pressure propagation among the bubbles. Has he a sugges-
- tion of how this might be treated?

My second comment concerns the mass exchange across the bubble
boundary. Recently, Prosperettil introduced a generalized equation
based on the Rayleigh-Plesset equation that includes non-Newtonian be-
havior of the liquid and mass exchange process at the bubble interface.

i‘

3 2 1

o RU, + 20 - = 2y +72 -1

) 1 2 71 p1 1l p p
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z 1 20 -1

== P, -PpP-=

o
o where R bubble radii

i Uy radical liquid velocity at cavity interface
= Pi pressure in the bubble
- P pressure at infinity
g Trr Stress in fluid

}: r distance from center
2, T mass flux

T Pl fluid density
Pp bubble density
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'y Prosperettil indicated that Equation (1) is useful when the mass @ﬁ}»ﬂ%
;2 flux can be computed independently of conditions within the bubble. It FEi,:ﬁ
9] appears that this model might be useful in treating the final stage of Q;AQ:C
K the bubble collapse where the bubbles may break down into a group of —
| smaller bubbles. Does the author's numerical study suggest what et i
J changes would result from using Equation (1)? I would be happy to ;*;:{j
. hear his comments on the utility of this modification. :¢}¢?;.
» It )
. NIATRE
> References DS
3 LAy
. 1 Prosperetti, A. "A Generalization of the Rayleigh-Plesset Equa- 5%‘ '
W tion of Bubble Dynamics," Phys. Fluids Vol. 25, No. 3, March e,
N2 : 1982, pp. 409-410, ho)
5 2
W8 Rt
® Author’s Reply !; —
- =
-, G.L. Chahine (Hydronautics, Inc.) ﬁb 5
il Py | n
RN Y,
- GaNa!
= To E.A. Weitendorf -
Q) Obviously, my paper considers, theoretically, the dynamics of an z}\¢ga%
~ existing bubble cloud in a given pressure field, without attempting to 2 2 G
o address the very important practical problem of propeller design in x§i N
v order to avoid cloud cavitation. However, without considering the o tih]
N
o cloud inception problem, I agree with Dr. Weitendorf that some conclu~-
. sions may be drawn from the results of the paper. Figures 5 and 9,
< for example, reinforce his suggestion concerning a rapid positive
ﬂ pressure increase behind the sheet cavity. 1Indeed, reducing AT, the
‘}: pressure drop duration, reduces the bubble growth and its rate of
e collapse (Figure 5) as well as the pressures generated following the
" collapse (Figure 9). An order-of-magnitude difference in these pres-
sures can be seen for AT dropping from 0.8 to 0.4. A similar conclu-
: sion can be drawn concerning the amplitude of the pressure drop and
RS the increase to which the cloud is submitted. This is expressed by
> the value of the nondimensional parameter Fgo, with §g° small mean-
jh ing either high-pressure variations or low initial gas pressure. When
o Pg, is increased (AP decreased) the generated pressures are very
. significantly reduced (Figure 8). This suggests a practical propeller
!{ design that minimizes the pressure fluctuation behind the sheet cavity,
[ besides reducing its spatial extent. This might mean increasing the
_i curvature and reducing the pitch angle. Another idea would be the
Ny injection of gas bubbles in the concerned region in order to increase
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To R. Latorre

The second part of my paper (continuum approach) treats the two-
phase medium as a continuum and derives the basic equations needed to
describe the propagation of information (pressures, velocities) inside
the cloud and answers Dr. Latorre's first question.

The inclusion in the model of the mass exchange across the bound-
ary of the bubble and non-Newtonian effects is an interesting sugges-
tion but has the drawbacks of complicating, for instance, the numer-
ical procedure of the first approach. For inertia-controlled bubbles,
the mass exchange is negligible as it takes place at a much slower
rate. Viscoelastic effects included in the Rayleigh-Plesset model
have been shown theoretically to be negligible for spherical bub-
bles.l 1In addition, experimental evidence,2 confirming earlier
results about spherical bubbles, showed that significant viscoelastic
effects are observed only when the bubble departs from sphericity.
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ABSTRACT

A semi-empirical theory is presented to investigate the effect of
viscosity on the stability of cavitating line vortices. The emphasis
is on the formulation and the analytical aspects of the problem. No
numerical results are available.

In the case of the flow of a trailing vortex far downstream, viscous
action leads to an increased pressure at the axis, and so to an axial
deceleration of the core fluid. Correspondingly, in the present
approach, the cavity pressure is considered as a function of the axial
coordinate. The actual dependence is based on a paper of Batchelor. 1In
order to simplify the derivations the cavity diameter is assigned a
constant value. Thus the pressure balance on the boundary between the
cavity and the fluid demands the inclusion of a fictitions surface
tension component as a function of the axial coordinate. This
formulation of the problem makes it possible to apply the linear spatial
stability theory. The real and fixed disturbance frequency can be
considered as representing the nonuniform wake. It is found that the
cavitating line vortex is spatially stable everywhere except at one
point where the stability is neutral. An analytical formula involving
exponential integrals determines the coordinate of this special station.
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The above analysis is repeated for the case of compressible fluid. W 5'r
Assuming both low wave and Mach numbers the same conclusions are still ﬁ*"r
valid. : *"‘C ::‘:
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FTpD mathematical abbreviation qujaiy
I R &Y
R Ch e Y
H = H(1), Hankel function of first kind ﬂlﬂ'u{ﬁ
m m AR
H, Hg defined by Egs. (3.5) and (5.8)
i = V-1
Km modified Bessel function of second kind
k = w/c
k[x] defined by Eq. (3.7)
L, Lg defined by Egqs. (2.12) and (5.3)
20x] defined by Eq. (3.8)
M Mach number
m helicity number
P defined by Eq. (4.13)
P pressure
Py vapour pressure in cavity
PdD[X] additional pressure due to viscosity
Py static pressure at infinity
Ap pressure jump across the boundary
RE radius of cavity
T radial coordinate in (r,0,x) set
Sr Strouhal number
& T, surface tension
& T plX] fictitious surface tension
i t time
- Vo = QR
;: W axial velocity
;
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A% . . . oy

¥, wsubscript averaged axial velocity in Ch
b
= X = eX

o]

. XNS coordinate of neutrally stable position

i x axial coordinate in (r,6, x) set

Y
:; Y integration variable

; 8 defined by Eq. (5.5)

A r circulation
x5
2K

:"-', Y Euler's constant

- € small parameter
o n radial disturbance of cavity boundary
;: Ny M, defined by Eq. (2.9) Ko red
0 . [
= ) angular coordinate in (r,8,x) set RO
=, LS Ly
\..“ . - \-. "
N X fast variable defined by Eq. (2.10) - :
-~ K = dax(X)/ax .

o v kinematic viscosity LG
-I‘: ~ . .‘\‘_'-'.' .4_‘:' i
oy = defined by Eq. (2.10) :_:;_:__{:}
el :" '.'L 'k
v £ variable defined by Eq. (4.12) o

; . . -
>, p fluid density R
Ca DA NNy
“ll\ 3 L . “).':P
:;.. ¢ disturbance velocity potential ;_:.ﬁ-,:"_:.‘
% : B
> ¢O’ ¢1 defined by Eq. (2.8) USRI
¢1q> $1p  defined by Eq. (2.22) eSO
3 . iy R
-"»‘. ¢ adjoint of ¢ . {_:__::.;: H
o g
) Q angular velccity "
¢ : : .y
X w real and fixed disturbance frequency "’-C’-;':
o _h"._. o
-’ . . . ." -, )
e 0 one writes f(e) = 0(8(e)) as € + 0 if lim {f(e)/8(e)} < » :Q:&
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1. INTRODUCTION o
'.\ ‘.\ -
A
A cavitating tip vortex affects the pressure field around a naval screw Yy

propeller. The pressure amplitudes in front of and directly above the
propeller are decreased (Weitendorf, 1977). Large pressure
fluctuations are caused by the breakdown of a cavitating tip vortex
(English, 1980). The purpose of the present paper is to investigate
the spatial stability of a cavitating axisymmetric vortex and estimate
the longitudial position of the stations where instabilities occur.

There exist several papers dealing with the stability of a
cylindrical vortex enclosing a central core in an inviscid flow
(Ffowes Williams and O'Shea, 1970), (Morozov, 1974), (Narain and
Uberoi, 1973), (Pylkkédnen, 1981), (Uberoi et al., 1972). To account
for diffusion in the fluid around trailing vortices the axisymmetric
Navier - Stokes equations have been calculated numerically by Bovis
(Bovis, 1980), (Bovis, 1981). Further, several authors have dealt with
the stability of boundary layers of rotating axisymmetric bodies. With
minor modifications they could serve as models for a corresponding
investigation in the case of a tip vortex. All these studies demand a
numerical evaluation. 1In the case of slowly diverging jets the problem
of the spatial stability has been attacked by “arg & Round (Garg and
Round, 1978) and Plaschko (Plaschko, 1979) The viscous flow in a
diverging duct poses a similar spatial stability problem (Eagles and
Weissman, 1975). Nayfeh has studied the connection between temporal
and spatial stability of boundary layers from a more general point of
view (Nayfeh, 1980), (Nayfeh and Padhye, 1979).
. The present problem consists of a spatial stability investigation
in the context of slow changes in the boundary conditions. The
governing equations of the flow and the boundary conditions define a
cylindrical cavity surrounded by a potential vortex advancing at a
constant speed. 1In contrast to the studies mentioned above, the goal
here is to obtain analytical expressions. Thus a simple model for the
effect of viscosity is needed. It is assumed that the vapour pressure
in the cavity depends on the axial coordinate. The actual shape of
this positive pressure gradient is based on a paper of Batchelor
(Batchelor, 196L4), (Uberoi, 1979). By assigning a constant radius to
the cavity the mathematical aspect of the problem becomes much simpler.
Consequently the condition of the pressure balance on the cavity
boundary demands the inclusion of a fictitious surface tension
component. These assumptions make it possible to perform an analytic
stability investigation. It will be found that at one axial station
the flow is spatially neutral. Finally the calculations are repeated
by allowing for the compressibility of the fluid.

The flow field is characterized as follows. The axial velocity
W_, represents the speed of advance of the foil. The azimuthal
velocity V. at the boundary of the cavity (at the radius R,) is due to
the cross glow at the tip. The entire fluid is taken to be inviscid
and incompressible.
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2. PROBLEM FORMULATION

In cylindrical coordinates (x,r,8) the mean flow is given by

2
R R
E_ . E

0, 0= = V=2).

(2.1) (g, 0, 8

Since the fluid is inviscid and irrotational outside the vortex core,
the perturbation velocity potential satisfies the Laplace equation

(2.2) v2¢ =0 for r 2 RE + n(x,6,t),

where n(x,0,t) is the disturbance of the cavity boundary, and t denotes
time. The kinematic and dynamic boundary conditions are (Narain and
Uberoi, 1973)

(2.3) ¢ = (¢x+wE)nX+r—12(¢e+VQRE) J#n, on r = Ry,
(2.14) -l +x 62+ (Uyre ) o+ ?;+—)2-(¢ VR 1 4p #p (%)
E
=TSZ:;D(X){1— [ni+(ne;§E+n))2+1]3/2[(R;+“)(1+2[§£%H]2+n§)
2 2 2n,n_n
-Eiigfggnee-(1+[§§%;] )nxx+—z§;f;?§;]} onr = RE+n,

and in linearized form
A

Q
(2.5) ¢, = Wpn + 7 ng*n,,

B 2
Vo Va

(2.6)  -pl¢ +Wpd + 200 = g n}={T +T_ (x)}n_ 2 "ee" 2 20
E £ RE RE

T and P4 denote the surface tension acting on the vortex sheet, and
tRe vapour pressure of the cavity, respectively. Finally the
disturbances should disappear when the radial coordinate approaches
infinity.

The additional pressure component P4 (x) originates from the
positive gradient due to viscosity. Thé pressure balance necessitates
the inclusion of a fictitious surface tension T _(x). The detailed
form of these two quantities will be discussed $n Chapter k. The
pressure p. (x) is assumed to vary only slowly in the axial direction.
According go the method of multiple scales the additional variable

(2.7) X = ex

= e o . . . e e
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is introduced. The variables X and x are called the slow and fast s
scales (Garg and Round, 1978). The parameter ¢ characterizes the N
positive pressure gradient elong the axis (Plaschko, 1979). .
The disturbance velocity potential and the position of the cavity s
boundary are teken as Wf'
(2.8)  ¢(r,0,x,t) = [¢,(r,X) + ed,(r, X)]el’, ﬁﬁﬁ?kﬂ
ey
(2.9)  n(e,x,t) = [ny(X) + en, (x)1e'E, -Zjii‘::f‘a
. RS

where L
1 W L% L%
(2.10) == -wt + me + EX(X)’ g
Faa
ax(x) RGN
(2.11)  w(X) = =5 - e
The real part of x(X) is the wave number, and the imaginary part is the o ]
spatial growth rate. The real frequency w represents the disturbances Eggﬁ}J
in the base flow. In the case of a marine screw propeller, the wake ;f;{{ﬁ=
field of a ship, or the variable immersion of the trailing tip vortex }:}}}‘
as a function of the angular position of the blade can be modelled in fﬂik’
this way. For comparison, the present flow configuration corresponds sk 3]

to a three-dimensional boundary-layer case, where the mean flow is
independent of the spanwise direction. Here the spanwise direction is
replaced by the angular coordinate. Thus, as discussed by Nayfeh
(Nayfeh, 1980), the helicity number m is fixed.

Substituting Eqs. (2.8) and (2.9) into the Laplace equation and the
boundary conditions, and equating the coefficients of like powers of e

leads to
(2.12) o™+ L o +(- Ln—2--r<2<x)}4> sL¢. = 0
y o T 07T 2 o % ’
3. (r,X)
(2.13) L¢1=—i{2K(X) gx +-d§§X)¢0(r,X)}-H,
(2.14) ¢ (Rg,X)=i e (X)-wmV/Rpdng
. - an, (X)
(2.15) ¢1(RE,X)=1{WEK(X)—w+mVQ/RE}n1+ Vo % :
. 21 Ry
(2.16)  ~p{i0,(Rg,X) [~whe(X)Wg+mV /R I-n VoRZ'}={T_+T_ (X)} fii%{i'
LA P
Ry
2 2 -2 2(x)]}, - ‘."-

+{ng Ry