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Foreword

The Office of Naval Research, the National Research Council, and
the University of Michigan jointly sponsored the Fourteenth Symposium
on Naval Hydrodynamics, which was held in Ann Arb qMichi~an, on ---

August 23-27, 1982. An internationa sy--m-osium of this scope requires
carefu.pahhfng, intense effort, and extraordinary cooperation among
sponsors, organizers, and participants. The success of the Ann Arbor
symposium reflects positively on the efforts and dedication of a
larger group of people than can be acknowledged here.

The technical program for the symposium consisted of eight ses- -'-.

sions focusing on four areas of current interest to naval hydrodynam-
icists: propeller-related problems, cavitation, nonlinear free-surface
problems, and viscous fluid problems. The authors of the thirty-two
papers that were presented were drawn from the international community N
of ship hydrodynamics research scientists, with eleven countries rep-
resented on the technical program. In total, more than twenty coun-
tries were represented at the symposium.

As previously stated, many people contributed in many ways to the
success of the Fourteenth Symposium on Naval Hydrodynamics. It is not
possible to quantify the value of each contributor's input, but cer-
tainly much credit must go to Professor T. Francis Ogilvie of the
Massachusetts Institute of Technology, who served as chairman of the
Program Committee and spent many hours ensuring an outstanding group *.-

of technical papers for the symposium. Professor Ogilvie was ably
assisted by the other members of the Program Committee: Dr. Choung M.
Lee of the Office of Naval Research, Professor George F. Carrier of
Harvard University, Mr. Lee M. Hunt of the National Research Council
Naval Studies Board, Mr. Ralph D. Cooper of Flow Research Company, and
Professor Michael G. Parsons of the University of Michigan. Professor
Parsons, who is chairman of the Naval Architecture Department at the
University of Michigan, and Professor Robert F. Beck of that depart-
ment were responsible for the local arrangements at Ann Arbor and did
an outstanding job in providing a pleasant and constructive scientific
and social atmosphere for the symposium. They were assisted by Mrs. . . .

Virginia Konz and Ms. Jeanette Vecchio from their administrative
staff. A successful symposium would not have been possible without
the overall coordination, planning, and administration provided by Mr. .. -
Lee M. Hunt, executive director of the Naval Studies Board, and his
staff, Mrs. Elizabeth A. Lucks, Mrs. Mary G. Gordon, and Mrs. Judy - -

Sul. Dr. Choung M. Lee provided enthusiastic and dedicated support
for all phases of symposium planning and organization and will remain
as the focal point at the Office of Naval Research for future symposia. *-."

Finally, a special and personal expression of gratitude is extend-
ed to Mr. Ralph D. Cooper, to whom this symposium was dedicated, for
his advice, counsel, and help, which has been freely given and inval-
uable.

Robert Whitehead
Group Leader, Fluid Dynamics J_
Office of Naval Research
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Introductory Address
Rear Admiral LELAND S. KOLLMORGEN, USN

On behalf of the Office of Naval Research, I am pleased to join
in the welcome of participants to the Fourteenth Symposium on Naval
Hydrodynamics.

It is gratifying for us at ONR to have once again worked with our
friends at the National Academy of Sciences in cosponsoring and orga- .
nizing this symposium. It is an association that began with the first
symposium in 1956 and is recognized as effective and mutually produc-
tive.

I take special pleasure in expressing my appreciation to the third
cosponsor and host to the symposium, the University of Michigan, for
providing such hospitable surroundings--the sun is scheduled for early '
this afternoon.

The University of Michigan in general and the Naval Architecture
Department in particular play a major role in the Navy's pursuit of
excellence in hydrodynamics research. The Office of Naval Research is ."-

*a major supporter of academic research and graduate education both
through its contract research program and by such direct means as the
ONR graduate fellowship program. It is significant that naval archi-
tecture is included as one of the selected fields of study for the
fellowship program. It is appropriate then that we join forces in the .....

organization of this symposium to disseminate the results of the latest
research.

Since the first symposium, the international nature of the bien- ,
nial series has been consciously and effectively maintained. The
meetings themselves have been held in six countries other than the
United States. Speakers at the symposia have been invited from wher-
ever outstanding research in naval hydrodynamics is being performed.

This meeting is no exception, with speakers from nine countries
other than the United States and participants from a total of twenty-
three countries. This international hydrodynamics research community
is in keeping with the true international nature of the sea upon which
the world depends.

Men have challenged the sea for many centuries. Much of early
science dealt with the sea, navigation, and commerce; man's curiosity
early on focused on putting men to sea on ships. Virtually all of the
significant advances in ship hydrodynamics research for the past three
decades have been reported at these symposia, which have served as the
source of inspiration for new and innovative ideas and concepts.

As an example, two symposia in this series have had as a theme
unconventional high-performance craft such as hydrofoils, air cushion
vehicles, surface effects ships, and small waterplane area twin hull
(SWATH) ships. Operational and prototype vehicles have been developed
on the basis of the results of research presented at these meetings.
Further, the application of modern numerical methods to the field of
ship hydrodynamics has been fostered by your participation, and other
meetings have led directly to improved performance and reduced fuel
consumption for ships and weapons through drag reduction.

, .-. '
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we can add bulbous bows, bow flares, and high-performance propel-
lers to the list of advances that were reported here in their early
stages of development. I am reminded also that the controllable re-
versible pitch propeller on our Spruance Frigates is a Danish design.

Although we have learned much, all of the participants at this
meeting realize that there is much yet to be done.

New and increasingly stringent demands are being placed on the
Navy's ships, submarines, and underwater systems. The explosive costs
of energy make it even more imperative that our ships operate effi-
ciently in every phase of their operation to conserve fuel and reduce
costs. Advances in many other technologies increase the pressure for
yet better performance of both our vessels and our weapons.

The performance of ships in high sea states and inclement weather
is a continuing challenge. We must be able to accurately project per-
formance before our ships are actually built and put to sea. Because
of the wide variation in sea conditions around the globe and the
importance of accurate wave measurements, it is extremely important to
have open international exchanges such as those that occur in these
symposiums. These exchanges are beneficial to all participants.

In concert with the changing nature of science and our nation's
needs, the Office of Naval Research itself is changing, as it must to
remain a viable and responsive supporter of the operational Navy's
mission of national defense. There is ever-increasing pressure to
focus research in areas that promise real payoff and progress.

Our research funds must be used carefully to continue to provide
a solid foundation of basic research that is relevant to the opera-
tional needs of the Navy. This is as true for hydrodynamics as it is
for all other areas of science.

I am constantly aware of our inability to progress in various
areas because of our lack of fundamental understanding of physical .-

phenomena--three-dimensional flows among them. I am pleased to see a
paper on hull-propeller interaction and hopeful that a new generation
of computers will make these complex problems more tractable.

Please accept my best wishes for a productive symposium and suc-
cess in your future research endeavors.
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Introductory Address
ROBERT A. FROSCH

National Research Council

I am delighted to welcome you to the Fourteenth Symposium on Naval
Hydrodynamics on behalf of the Naval Studies Board of the National
Research Council. The Board is a sponsor of this Symposium together
with the Office of Naval Research.

As most of you know, the National Academy of Sciences was founded
by Congressional charter early in the 1860s under the administration
of President Abraham Lincoln. It was chartered by the Congress as an
honorific body, which is in addition required to give advice on scien-
tific and technological matters to any agency of the U.S. Government
that may request it. During the 1960s the National Academy of Engi-
neering was organized under the charter of the National Academy of
Sciences to serve the same functions for engineering that the Academy Am
of Sciences had been set up to perform for the sciences. In 1970 the
Institute of Medicine was chartered by the Academy to deal with prob-
lems of provision of health services to all sectors of our society.

The National Research Council is the operating arm of the National

Academy system. Through its boards and committees it taps the scien-

tific and engineering expertise of the nation to advise the Government A
as the charter of the Academy requires. Another measure the Academy
uses for providing advice and for keeping up with the growth and ad-
vances in science and engineering is the sponsorship of symposia such
as this.

It is a pleasure for the Naval Studies Board to join with ONR in
the sponsorship of this symposium. Both ONR and the National Research
Council have shared for a long time a belief in the fundamentally
international character of ideas, and the consequent importance of .

sharing views on scientific concepts and their possible applications.
No country or particular group has a monopoly on creativity. It is
particularly the case that in matters of the oceans we are all sharers
of this vast global resource and must share its problems. S

A global interest in common problems and in devising scientific
approaches to their solutions is evident in the challenging program ,
that has been arranged for this occasion. I am sure that the papers
and the discussions that follow them will refresh everyone's ideas and
lead to a better understanding of how certain problems of Naval Hydro- 's.,-
dynamics can be solved.

I congratulate you on the opening of this important symposium and
share with you the anticipation of an exciting meeting.

3
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Introductory Address
DR. CHARLES G. OVERBERGER

The University of Michigan

Admiral Kollmorgen, Dr. Frosch, ladies and gentlemen: on behalf
of President Harold T. Shapiro and the Regents of the University of
Michigan, I would like to welcome you to Ann Arbor and to the Univer-
sity.

We are very pleased to be able to host the Fourteenth Symposium on
Naval Hydrodynamics. Since the first symposium held in 1956 in Wash-
ington, D.C., which many of you here this morning attended, this series
of symposia has been a significant contributor to the growth of an
important scientific field. We were, therefore, eager to cosponsor
the Fourteenth Symposium with the Office of Naval Research and the A
Naval Studies Board of the National Research Council.

The University of Michigan at Ann Arbor is a particularly appro-
priate place to hold this Symposium. The College of Engineering has a
rich tradition in experimental and theoretical naval hydrodynamics
through the Department of Naval Architecture and Marine Engineering,
the Department of Mechanical Engineering and Applied Mechanics, and
the Department of Atmospheric and Oceanic Sciences. We have been
teaching naval architecture and marine engineering here for more than
100 years. Last year the Department of Naval Architecture and Marine
Engineering celebrated the centennial of the arrival at the University
of a young Naval officer named Mortimer Cooley. Cooley had been sent
here by the U.S. Navy to teach "iron shipbuilding and steam engineer-
ing" for four years. In fact, he remained with the University for 47
years, serving 24 of them as Dean of Engineering.

Naval hydrodynamics has been an important ared of study and re-
search here throughout these years. Since 1960, 22 Ph.D.'s have been
earned in hydrodynamics within the Department of Naval Architecture
and Marine Engineering alone. Many of those graduates are here for "7

this symposium; five will be presenting papers during the week.
The University is proud of its excellent Department of Naval Ar-

chitecture and Marine Engineering, which will serve as your host for
the Symposium. The department has the largest undergraduate enroll-
ment in the nation plus remarkable strength over the full spectrum of

%.- marine-related academic activity. It covers fields from marine systems
economics through hydrodynamics to marine engineering and offers strong
programs on all levels from the bachelor's degree through the Ph.D..
Its faculty has a vital commitment to both teaching and research.

The University is now in the middle of the first major moderniza-
' tion of the Ship Hydrodynamics Laboratory in more than 20 years, an

.O effort specifically directed toward improving the fundamental research
capability of the facility. There will be an opportunity for you to
visit the towing tank during an open house tomorrow evening, and you
are cordially invited to avail yourselves of it.

*'[[ In closing, I welcome you again to the University of Michigan and ".
express the hope of all of us that you have a successful and rewarding "--- -

symposium.
5
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Banquet Address
MARSHALL TULIN

The very first Symposium on Naval Hydrodynamics convened
in Washington, D.C., during September 1956, 26 years ago. The
banquet site was a small ballroom in the late Roger Smith Hotel
near the intersection of 18th Street and Pennsylvania Avenue,
N.W. The appointed speaker was that charming person and dis-

tinguished mathematician who, for many decades, was a one-man
civilian faculty at the Royal Naval College, Greenwich, and who
helped to educate a generation of fine British naval construc-
tors, Professor L. M. Milne-Thomson. He created consternation
among the organizers of that symposium when, upon walking into
the ballroom, he asked, "Where is my blackboard?" A small
portable blackboard was hastily procured, and at the end of the
dinner he gave a fine lecture on "Some Problems and Methods in
Hydrodynamics," much more easily appreciated now in print than
it was then at that late hour by that well-fed audience.

Milne-Thomson began by pointing out that "Hydrodynamics,
as an exact science, started with Archimedes. It is true that
he treated the particular case of zero velocity, but his work ..

remains today a correct piece of applied mathematics and, in-
deed, a great achievement for the time." I might add that the
great Greek's exact result in his context reduces our low-speed,
moderate-speed, whatever-speed theories to insignificance. And
I might further remind you that Archimedes promptly left his
famous principle in the bathtub and dashed naked into the street
to achieve immediate publication of his results. .

I feel a little bit in such a situation at the moment.
But I have in fact the very pleasurable task of lauding one

among us, and I am honored to be chosen to perform it. In ad-
dition, there are a few remarks I would like to publish, ex-
bathtub, on behalf of most of us here, but I will hold them
until I close. -',:,. .', N

This twenty-sixth year is as close as we will come to a
silver anniversary meeting of this Symposium on Naval Hydro-._
dynamics on these shores. We have met in some alluring foreign

capitals, and we have touched both the Atlantic and Pacific ... -

shores of this huge land. It therefore seems appropriate to me

that our silver anniversary meeting, if I may call it that, is
being held at this great American university in our vast and..-
mythic Midwest. Soon after arriving here I had a chance to
read that fascinating, even exciting, booklet "Naval Architec-
ture and Marine Engineering at the University of MichigaA,
1881-1981" in which I learned of the early importance here of

the U.S. naval officer Mortimer Cooley and the Scottish emigre ._ .]

Herbert Sadler, two ships engineers. These two men, who be-

7
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tween them held the post of Dean of Engineering for 33 years
between 1904 and 1937, not only created and developed the Uni-

versity's School of Naval Architecture, but had enormous influ-
ence on the powerful Engineering School which has existed here
for a long time. The booklet also confirmed my own impressions
of the role of their successors--Dick Couch, Harry Benford,
Francis Ogilvie, and now Mike Parsons--in creating the strong
and internationally known department that exists today.

we who are alumni of the David Taylor Model Basin are not
organized as such, but we certainly feel a family connection.
And it is with the greatest pride that we observed the success,
first of Dick Couch and then of Francis Ogilvie, in creating ."per.
this department. It not only trains its students superbly in
the ancient art of ship design, but it is now well known for
high quality research in ship hydrodynamics, as evidenced by
Bob Beck's fine paper on the scientific determination of free-
board presented at this meeting, we have just missed the de-
partment's centennial last year, but congratulations to you
both as well as to all the others involved, and let us wish
Mike Parsons the best of luck in future. Francis Ogilvie ob-
viously did so well here that our eastern cousins saw fit to
snatch him away as a department head. It is surely not unfit-
ting that we take this opportunity to wish him a happy and
always convergent voyage as Department Head at MIT.

We are now all basking in that fine Midwestern hospitality
that has such a direct and personal quality. If you will allow
me, I will thank all the hosts here--Mike, Bob Beck, Bob
Latorre, Dick and Francis, and their gracious wives--for the
wonderful arrangements and warm reception. And to our Office
of Naval Research hosts Bob Whitehead and Sara, Choung Lee, and
their partners in this, Lee Hunt of the Naval Studies Board of
the National Research Council, and his support, Elizabeth Lucks,
Judy Sul, and Dixie Gordon. Thanks to all of you from all of
US.

I had thought for a while before coming here that it just
might be necessary for us to celebrate in anonymity that certain
person to whom this symposium is being dedicated--much the way
we celebrate the authors of the Holy Scriptures or the Nordic
Sagas or Beowolf--such is his personal modesty and aversion to
formal recognition. But I was relieved to hear the ice broken
and the name of Ralph Cooper spoken aloud during the first ses-
sion here. Ralph, this is something we all want to see done,
so please humor us and sit back and enjoy, if you possibly can.

The patriarch Abraham negotiated with God that He would
spare Sodom and Gomorrah if Abraham could find 50 righteous men
living there. Failing to deliver, Abraham renegotiated the
number to 10. But still he failed, and the cities were de- .
stroyed. Now God did find one righteous man in those biblical
cities: his name was Lot. And when God bothers to look around
Washington, D.C., I am relieved to know that he will at least
find Ralph Cooper.

a
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Has any of us during Ralph's long service for the Navy at
ONR ever doubted even for a second his devotion to the Navy and
to the research community both in the United States and over-
seas, of which we are all a part? Have we not all somehow been
affected by his unfailing graciousness and accessibility? Have
we not benefitted from his earnest interest in our work, and,
as a result, felt both eager and pleased to participate in the
Navy's program? And has not that program profited from his
broad understanding of naval hydrodynamics, his open-mindedness
toward new things, and his discriminating appraisals? He stands
as an epitome of public service in the technical sector, stead-
fast in his devotion, and devoid of any thought of personal
gain.

I have been chosen to praise him here in view, I am sure,
of our long personal friendship, and I can assure you that he
is as gracious and modest and wise in private as he is in car-
rying out his duties. But let me tell you a bit about his his-
tory. He was born and raised in Jacksonville, Florida, and
educated in mechanical engineering at the Georgia Institute of
Technology and at Columbia University where he took his M.S.
degree. In between he attended the U.S. Navy's steam school at
Newport, Rhode Island, and served as an officer in a destroyer
flotilla in the Pacific and for a while in Tinetain, China. He
arrived at Langley Field, NACA, sometime in the late 1940s and
began to work in a hypersonic tunnel group in the east area.
It was there that we met. At Langley, Ralph--like all of us--
was under the influence of some great aerodynamicists and aero-
nautical engineers, among them Antonio Fervi, A. Buremann, Carl
Kaplan, I.E. Garrick, I. Katzoff, A. von Doenhoff, and John
Stuck, and younger scientifically-minded colleagues like Clinton
E. Brown, Bernard Budiansky, and Coleman Donaldson. There were .. ,
many others: it was a rich and thriving hive.

In the early 1950s I reported to Ralph from Washington ..

that there were two very good Chinese restaurants in that city,
both Mandarin. It was an attraction lacking and much missed in
Newport News at the time, so Ralph joined me at the David Taylor
Model Basin in a group called Turbulence and Frictional Resis-
tance Research. We worked on some theoretical problems togeth-
er, including the resistance of cylinders in unsteady axial
motion, and the effect of non-uniform approach flow on lifting
line theory. And we did a series of experimental studies, both
in towing tanks and in a low turbulence wind tunnel that we had
designed and built for our purposes. We also had the good sense
to buy a superb hot film anemometer from a young genius at ".
Rouse's wonderful Institute in Iowa. His name was C.S. Ling,
and he is attending this Symposium. Ralph attended a course in
hot-wire techniques given by Lester Kovasznay at Johns Hopkins
University, at which many other people later to become well '-"
known for turbulence research were also present. G.I. Taylor,
later to be knighted, visited the David Taylor Model Basin in
the early 1950s to discuss the possibility of detecting subma-
rine wakes by measurement of turbulence, a possibility that had
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been put forward by Francois Frenkiel. After listening to Tay-
lor, we realized that it would be a good idea to make measure-
ments of the turbulence in the far wake of an axially symmetric
body. Ralph undertook the task in our low turbulence wind tun-

nel using Ling's hot-film anemometer and the techniques Ralph
had learned from Kovasznay. Today Ralph's DTMB report on this
work is often quoted in the literature. Frederick Todd, then
Director of the Hydrodynamics Laboratory at DT4B, directed our

attention to the problem of designing studs for transition
tripping on ship models. Ralph carried out systematic tests,

and as a result we introduced the use of large diameter but
very flat discrete studs to replace wires and sand strips on

ship models for turbulence stimulation; those tests were con-
ducted both in the old 140-foot basin in the basement of the

DTMB and in a smaller but very useful tank that we had for our
own use. At DTMB Ralph fell under the spell and romance of

research on ships, and under the influence of the great experts -
and younger colleagues there. I can mention Georg Weinblum,
Lou Landweber, Herman Lerbs, Bill Cummins, Phil Eisenberg, '.
Murray Strasberg, and Hugh Fitzpatrick, among others. And we
had constant contact with great and talented visitors such as
G.I. Taylor, whose visit and its consequences I nave already
mentioned.

In retrospect, it is hard to imagine a better preparation
for Ralph's career as a Scientific Program Manager at ONR than
his apprenticeship at those two great U.S. Laboratories:
Langely (NACA) and Carderock (D'I13). 

During his tenure at ONR as Head of the Fluid Dynamics
Program, Ralph became Mister Hydrodynamics, closely assisted by
Stanley Doroff, and we can all thank him for the continued vigor

of the program there, of which this Symposium series is an es-
sential part. It has enriched our technical lives and promoted ,.-.
growth in understanding of problems vital to the performance of
naval ships and weapons systems in such areas as speed and pow-
ering, seakeeping, maneuvering, noise, detection, and weapons
effects.

Research seldom produces immediate gains, and for that
reason it requires faith and courage to support it. It is easy
to doubt, and there are, unfortunately, constant doubters to
defend against and, if possible, to convert. But it is incon-
ceivable that the modern fleet could perform in all important
details as effectively as it must without the thousands of in-
dividual contributions from research that have been woven bit :

by bit through decades into the technology the fleet requires. .
It is almost a thankless job. So Ralph, be assured of the ad-
miration and affection of the scientific community that you
have served so well over the last 20 odd years, and be assured,.*.-
too, of your remarkable success.

Now, ladies and gentlemen, let us rise and express our
personal appreciation.

In concluding, allow me, Archimedes-like, to do a little
shouting in the streets. I wonder, do many of you share my
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sense of a crisis in research in our field of naval hydrody-
namics? First of all, it has become more and more difficult to
obtain support for even clearly relevant research in hydrody-
namics. Furthermore, both government laboratory personnel and
those of us outside in universities and industry who are sup-
porting government programs with our efforts know that it is
almost impossible to obtain support for what Bob Frosch called
"irrelevant research," no matter how skilled the scientist - --

seeking that support. I refer to Dr. Frosch's remarks at the .-

opening ceremony here stressing the importance of "irrelevant
research." I commend those remarks to your consideration,
coming as they do from a former Assistant Secretary of the Navy
for R&D and the current vice-president for Research for the
General Motors Corporation. -

The crisis regarding support leads to another crisis about , ,

which we should be equally concerned. It concerns the partici-
pation in our affairs of outstanding scientists, both experi-
mentalists and applied mathematicians from neighboring fields,
from whom we can learn how to raise our own standards and ex-
pectations as to what we can achieve and how. They can offer
us much needed critiques in both the fluid dynamic and applied
mathematics aspects of our work. At the first symposium in
this great series in 1956 there were present (I exclude a few
prominent scientists who are present here today) Batchelor,
Benjamin, Birkhoff, Bleich, Carrier, Clauser, Cole, Corrsin,
Dryden, Ellis, Gilborg, Greenspan, Herzfeld, Imai, Kennard,
Lieb-noff, Kovasznay, Laporte, Lighthill, Lin, Longuett-Higgins,
Macaoll, Munk, Plesset, Rott, Rouse, Schubaier, Sears, Stewart,
Stoker, van Dyke, Whitham.

I will speak frankly. Let us avoid isolating ourselves -

and suffering the tinge of the second-class. I was not happy .
to hear Admiral Kollmorgen in his opening remarks here suggest,
if I understood him, that we have not succeeded in understanding
the problem of propeller-wake interaction as well as aerodynam-
ics experts might. I happen not to believe this, but neither
do I believe that we cannot do better. Such serious problems
deserve the best by way of scientific and logical approaches,
the most accurate observations, the highest level of mathemat-
ics, and, finally, responsible computing.

Forgive me for this somewhat portentous ending. And thank
you for joining with me in our modest tribute to Ralph Cooper.

'Til Hamburg in '84......
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Banquet Address Response
RALPH D. COOPER

As most of you know, I rank high on the list--probably at the

very top--of poor public speakers, and out of consideration for audi-
ences I have avoided, whenever I could, being placed in the position
of speaking in public.

The first faint alarm about my present predicament sounded in
Tokyo two years ago at the conclusion of the Thirteenth Symposium on
Naval Hydrodynamics when I was overwhelmed by the announcement that
the Fourteenth Symposium was to be held in my honor. During most of
the intervening two years I tried rather unsuccessfully to suppress
this unpleasant prospect. I do not mean the prospect of the great
honor that is being bestowed upon me of which I am keenly aware, but
the prospect of these poor comments that I am now inflicting upon an
unsuspecting and undefended audience. However, I was moved from faint
alarm to abject terror when Bob Whitehead casually remarked to me sev-
eral months ago that Marshall was going to deliver the after-dinner
talk at the banquet of the Fourteenth Symposium and then suggested that
I might want to say a few words in reply. Can you imagine living for
two months with the knowledge that you would have to follow Marshall U
to the podium under these circumstances?

After much thought--as a matter of fact, I have probably thought
of little else day or night since that conversation with Bob--I was
unavoidably led to the speculation, now sadly confirmed, that I would
be the object of very complimentary comments that would be at best
highly exaggerated or more probably downright untrue.

To defend myself, to set the story straight, and to see that the
credit and the blame are placed where they properly belonged, I decid-
ed to try to trace the events and circumstances that have resulted in
my appearing before you tonight. -.- '-

Being a sort of a fluid dynamicist, I am, of course, greatly con-
cerned with continuity and consequently had some difficulty in decid-
ing where to start my story. I finally decided to begin the story

with the start of my work at the Langley Research Center of the old

National Advisory Committee for Aeronautics almost 35 years ago.
Among the people that I soon met there were Marshall Tulin and Morton
Cooper--both of whom play central roles in the tortuous saga I am
about to disclose to you--who had arrived some years before. We be-
came good friends, drawn together by our mutual professional interests
and other activities like playing bridge and tennis, and organizing
parties.

Marshall soon took a temporary leave of absence to pursue graduate -.

studies at Brown University, where one of his principal teachers, if I.-
remember correctly, was George Carrier--the same George Carrier who has __

" participated in the Organizing Committee for the last several Symposia
on Naval Hydrodynamics as a representative of the National Academy of

*' Sciences. One summer, I think it was in the late 1940s, C. C. Lin

13

K'%

A L..1-..,_.-

" ""...........:? '.- .- '-.'.;,,',." . .. . .-..- . . . . . . .. . . ... . ... , . . . • . . . .., . ,,, .., , . - .



offered a course in boundary-layer theory at Brown that, in addition .-

to Marshall, attracted Lou Landweber and Phil Eisenberg from the David
Taylor Model Basin. Before they returned to Carderock, Lou and Phil
told Marshall to let them know if he ever wanted a job. Shortly there-
after, he let them know and went to work at the David Taylor Model
Basin. He knew that I was interested in moving to a more cosmopolitan
area, and so when a position opened at the David Taylor Model Basin he
put in a good word for me, and I too was soon working at the David
Taylor Model Basin.

Those were great days for me. A number of friends and colleagues
at the Model Basin from those days are in the audience here today. In
addition to Lou and Marshall, they are Dick Couch, John Breslin, and
Bill Morgan. A charming account of those days can be found in the in-
troduction to Lou's recent Weinblum Memorial Lecture, which will appear
in the December issue of the Journal of Ship Research.

At that time, as many of you know, Marshall was working on the
first of his many major scientific contributions to naval hydrodynam-
ics--the linearized theory of cavity flows. During that same period,
Marshall also made several other lesser-known contributions. One of
them might be described as a time and motion study. He invented the
speed run. Marshall and I were in a common carpool in those days, and
the point of the speed run was for the driver of the car to go from
the Model Basin to the center of Washington--a distance of some 10 or
12 miles--during the afternoon rush hour in the shortest time possi-
ble. Of course, to ensure a common basis of comparison of the driv-
ers' skills, the same automobile had to be used in making a speed
run. Naturally, my car was chosen for this dubious honor. I no
longer remember the winning time, but I do remember it was held by
Marshall. Only the gods know why or how we escaped arrest or accident...

Marshall's second lesser-known contribution of this period was
more in the nature of number theory. He had perfected an intricate
procedure for playing the horses. I will not bore you with the de-
tails of this procedure, lest you be tempted to try it with the same
disastrous results. Not only did our horses never win, we never even
got to see the beautiful animals in action. We frequently encountered -.

Alec Tachmindji on these excursions to the local tracks. He was an-
other colleague from those days at the Model Basin and also an afi-
cionado of the horses. He must have thought that wo were mad indeed, --.

though he very pointedly but politely never pressed us for an explana-
tion of our strange behavior at the track.

To get on with the main point of the story, Phil went to the
Office of Naval Research in the mid-1950s, and after a short time
Marshall joined him. Shortly, with the help of the National Academy
of Sciences, they organized the First Symposium on Naval Hydrodynam-
ics, which was held in 1956 and which was, of course, immensely suc-
cessful and justly famous in several respects.

Not long after this Marshall went to the London Office of the
Office of Naval Research for several years, and Phil asked me to come
to the Office of Naval Research to help fill the void created by
Marshall's departure. I arrived at the Office of Naval Research in
time to play a minor role in the Second Symposium on Naval Hydro-
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dynamics, which had been organized by the same team as the first--
namely, Phil, Marshall, and the National Academy of Sciences. While
in ONR London, Marshall conceived the idea of holding the Third Sym-
posium on Naval Hydrodynamics in Europe and even worked out the tech-
nical program in considerable detail. About a year before the meeting
was to take place, Marshall returned to Washington, and he and Phil
left the Office of Naval Research and started Hydronautics. It fell
to Stanley Doroff and me to carry out the plan for the Third Symposium
on Naval Hydrodynamics that Marshall had initiated. By a stroke of
great good fortune, we were able to collaborate in that endeavor with
the Netherlands Ship Model Basin led by Drs. van Lammeren and van
Manen. Dyck van Manen is, of course, in the audience tonight. The
result was the Scheveningen meeting, and the pattern for the Symposium
on Naval Hydrodynamics was firmly established and followed faithfully
thereafter.

There is a little story I wish to share with you about the prepa-
rations for this meeting. You may recall that one of the first serious
studies on the sexual behavior of man was written by an eminent social
scientist named Havelock-Ellis, the bearer of one of a number of im-
pressive hyphenated British names that are occasionally encountered.
One day while on a European tour to promote and organize the Third
Symposium on Naval Hydrodynamics, I visited George Wood of the Nation-
al Academy of Sciences, who was temporarily assigned to La Specia, .
Italy. I was excitedly and enthusiastically describing the plans for
the Third Symposium to him, and at one point I said, "Of course, you
know that we are dedicating the symposium to Sir Thomas Havelock."
George replied, "Oh yes, didn't he write something with a fellow
called Ellis?" To this day I do not know whether George was pulling
my leg or not.

But to return to the story I started to tell you. At about this
time--early in the 1960s--Mort Cooper also decided to leave the Lang-
ley Research Center, and he joined me at the Office of Naval Research
where he very ably managed the aerodynamics portion of the fluid dy-
namics program. About five or six years ago, the leader of another
department of the Office of Naval Research was in the process of hir-
ing a new scientific officer. He asked Mort and me to assist him in
making a selection from a long list of impressive candidates. The
qualifications of one candidate stood out head and shoulders above all
others, and we each independently gave him a strong recommendation.
He was, of course, ultimately hired. His name is Robert Whitehead.

Just before I left the Office of Naval Research, Bob joined the
Fluid Dynamics Program, and he became the leader of the group when I
did leave. Subsequently, Bob recruited the able services of Choung
Lee to lead a portion of the hydrodynamics program, including respon-
sibility for these Symposia on Naval Hydrodynamics.

The story is almost, but not quite, over. Mort Cooper retired
from the Office of Naval Research a number of months before I did. A
symposium in his honor was organized by the aerodynamics community,

led by Tuncer Cebeci of the State University of California at Long
Beach. Inspired by this honor tendered him, he made a similar sug-
gestion to Bob Whitehead on my behalf. Since Bob was not going to
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attend the Tokyo Symposium on Naval Hydrodynamics, he assigned to Lee
Hunt the task of persuading whoever was selected to organize the Four- "
teenth Symposium to dedicate it to me. Francis Ogilvie very gracious-
ly agreed to this, the announcement in Tokyo resulted, and here I am,
standing before you, engaged in public speaking.

That completes a rather long and complex story, and I thank you
for the serious attention you have given to it. The moral of this
story, of course, is absolutely clear--one cannot be too careful about .

whom one chooses for one's friends.
And now, ladies and gentlemen, will you join me in a toast: to

the Symposia on Naval Hydrodynamics--past, present, and future!
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An Exact Theory of Gravity Wave
Generation by Moving Bodies, Its

Approximation, and Its Implications
Marshall P. Tulin* HYDRONAUTICS, Incorporated

ABSTRACT

The purpose of this paper is to present an analytic theory of
wave generation by moving bodies sufficiently rigorous and in such a
form that reliable conclusions may be drawn regarding the nature, ap-

pearance, and importance of non-linear effects, and through which bet-
ter understanding of their mechanism may be acquired.

In this theory, the two dimensional steady gravity wave problem is V
cast in the form of a first order linear differential equation in a

complex domain leading to exact solutions. In this equation, the de-
3pendent variable is the complex function v , where v is the so-called

complex velocity. The independent variable is a complex function re-
presenting a slightly strained Y space, where T is the complex po-
tential. The straining is O(02), where e is the local angle of the U
free surface, and is determined in terms of the solution through quad-
rature.

In the case of steep progressive waves, the exact solution (in the
variables described above) is precisely the exponential function.
Even in the second order version of this exact theory, which is equiv-
alent to the theory of Davies (1951), a limiting wave naturally appears
with included angle 1200.

In the case of waves made by a submerged body or by a pressure
distribution acting on the free surface, the exact solution has the
form of superimposed waves of continuously changing effective wave
number, explicitly related to the "nonwave" disturbance due to the
moving body or pressure distribution. In the case of a submerged body,
it is shown that both the primary wave generation and the modulation
of wave length are caused by the local pressure gradient normal to the

free surface in excess of the normal pressure gradient which would
exist in a free wave given the velocity there.

It is shown that both "weak" and "strong" nonlinear regimes exist.
In the latter, which occurs when the "nonwave" disturbance is suf-

ficiently large, discrete waves arise at critical points on the surface,
whose steepness is of order (K)+ where K is the wave number. There-
fore the existence of solutions in the strong regime for sufficiently

*now: Presidential Professor of Ocean Engineering; University of

California at Santa Barbara
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small Froude number is brought into question.
In the weakly nonlinear regime, where the "nonwave" disturbance

is of small (), waves become exponentially small as K increases.
Various approximations to the exact solution for the far downstream
wave are given. An approximation valid in the regime 1 << K << E- 2

is systematically derived and is shown equivalent to both the so-called
"slow-ship" theories of Inui-Kajitani (1977) and Dawson (1977).

I. INTRODUCTION

It has been long understood that non-linear effects in water wave -
behavior are of great practical importance, and are even crucial to
the existence and understanding of many observed phenomena - for
example, the solitary wave, progressive wave instability, breaking.
The subject of these non-linear effects is very far from closed. In
fact, only within the last decade or two, a great deal of attention
has been devoted to the calculation and understanding of very basic
waves (steady, two-dimensional solitary waves and steep progressive
waves), and most remarkable results obtained, as in a sequence of
papers by M. S. Longuett-Higgins, and by L. W. Schwartz, and Chen and
Saffman, etc.; these and others have been reviewed very recently by
L. W. Schwartz and J. D. Fenton (1982).

During the same period (the last decade) increasing attention has
been devoted to non-linear effects related to the wave resistance of
ships. These effects include those which occur in the case of steady
two-dimensional progressive waves, and others in addition. Among
these, the non-linear interaction between the propagating waves and
the "current" field around thick ships may be of particular importance.
A number of recent theories of ship wave resistance have attempted to -
account for these interactions, including those theories in the "slow-
ship" category, wherein the "current" field is taken to be that assumed
to exist in the limit of zero Froude number (the double-model flow).

It seems fair to say that all of these non-linear ship theorie:.[
rest on assumptions whose validity are difficult to judge quantita-
tively. Indeed the problem is awesome, as there are a variety of non-
linear effects occurring at one and the same time, and some of them
are not even sufficiently clarified from the point of view of mechanism.
A review of the simpler case of progressive waves alone shows how sur-
prisingly complex are the phenomena revealed through theory during the
last decade.

In this situation it seemed desirable to have an analytic theory
of wave generation by moving bodies sufficiently rigorous and in such
a form that reliable conclusions could be drawn regarding the nature,
appearance, and importance of non-linear effects,and through which
better understanding of their mechanism could be acquired. Despite
the three-dimensionality of the real ship wave problem, it was felt
that even such a theory restricted to two-dimensional flow would
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afford important progress. At the least, it would allow for comparison '.....-
with the two-dimensional versions of the various three-dimensional ap-
proximate theories. At the best, it would point the way toward the
construction of more rigorous or appropriate three dimensional theories.

The opportunity for such an analytic theory presents itself
through the formulation of the steady gravity wave boundary condition
in complex notation, utilizing a particular choice of dependent and in-
dependent variables. The form of Bernoulli's equation from which this
development springs was first presented by Levi-Civita (1925) and it
was later used by Davies (1951,52) as the basis for a calculation .
method for steep progressive waves. In this development, Davies

started with a very useful approximation of Levi-Civita's boundary con-
dition. The same approximation was later used by Packham (1952) to
produce a closed form solution for the solitary wave.

What we have realized here is that the dependent variable V 3 (v is
the complex velocity), implicit in the earlier approximate works of
Davies, et. al, can be shown exactly to obey a linear first order dif-
ferential equation in a complex space, C, slightly strained (of order
[slope] 2 ) from the space Y = (+ i 4, where T is the usual complex po-
tential. The mapping T c depends upon the solution V(C). As a re-
sult, while the exact solution may be given in formal terms, the cal-
culation of explicit results depends upon iteration of the mapping

The important thing about this theory is that it seems to present
within a single expression, formally linear, all of the non-linear
effects. Of particular interest is the appearance in the governing
differential equation of an analytic function (Q + 0) representing . ,.
both the source of waves in the flow and of the modulation in their
length as they propagate. In the case of an imposed pressure distri-
bution on the free surface, the function 0 is given in terms of that
pressure distribution, and for a submerged body Q is given in terms of
the flow about the body, in both cases making use of the Cauchy inte-

* "gral. And, finally we are able to give physical significance to the
function (Q + S,) in terms of the normal pressure gradient on the free .

surface.
The importance of having an analytical theory of the kind pre-

sented here seems justified by the revelation that for sufficiently
strong disturbances (as represented by the max. value of Q on the free
surface) waves arise at discrete points on the free surface which are
mathematically distinct from the waves arising in linear theory or in
the "weakly" non-linear regime. In this "strongly" non-linear regime,
for example, these particular waves do not become exponentially small
with decreasing Froude number, but rather tend to unbounded steepness ".

as F - 0.
Here we have derived the theory in the case of flow in water of

unbounded depth and extracted a certain number of results. It remains
for the future to utilize it for explicit computations. Furthermore,
it would seem clear that the theory can be extended to the case of
finite depth, to study solitary waves (as Packham (1952) has done

already) as well as shallow water waves, as begun by Davies (1951) in
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the case of progressive waves. If this were to be done, it might

prove useful for improved understanding of flows near the critical

speed in shallow water, where non-linear effects are of the essence. Y
In addition, the present results, which confirm the low speed

(weakly non-linear) theories of Inui-Kajitani (1977) and Dawson (1977), 4
at the same time suggest weakly non-linear approximations which would

not be limited to low speed applications.

•.'4 211

II. DERIVATION - FROM THE FREE SURFACE CONDITION TO THE FLOW FIELD:

COMPLEX FUNCTION APPROACH

We consider a free surface (S) on which in some region we allow 21
the possibility for a pressure p to be imposed. A steady inviscid
flow exists beneath the free surface. Then (Bernoulli's Equation):

q212 + gy = q 2 12 - p/p on S ] Ci]

where q is the local flow speed, y the local vertical ordinate of [s];

g the acceleration of gravity; p the imposed local pressure on [S]; p

the fluid density and q a reference speed.
In addition the flow is irroqational, so that a velocity potential

c_,exists (as usual V = V4, where V is the local velocity vector, q =

lVI), and then:

i1 + R sin _1 [ on SJ

2 3p q p d

or [2]

97,+-3Ksin6 -3q on S]

where:
K g 2 ; q and = e is the local

angle of V to the horizontal, or sin -z dy/ds, where s is the length
along the surface streamline, and Z is a characteristic length scale,

which non-dimensionalizes all lengths appearing hereafter.

We note that [2] can be written:

+ K sin3e + OK sin=0) -3q on S ] [31

or ,..

+- n K sin36 4K sin [on S [4]

- -3 -3 -2-
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We specialize now to the case of two-dimensional flows in the
physical plane defined by z = x + iy. Therefore a complex potential II
exists, = + iW, where p = 0 on [S].

Then [4] can be written in complex function notation:

R [dnG Ki G 1 + KT G- 3= R [ .'.- [5]

where: -3ie - -i8

G =V =q =qe =v/q.; subscript o refers to = 0;

R means "the real part of" (and I, "the imaginary part of").

0 =To [ ]. * .o

sin380'. '""

R[T(P)" G '(4 o)] = 4 3  :R[i G [7]

We can write [5] as:

R -- GO(Y) Ki + K T(T) :0 0 [8]

Two cases may be distinguished. If [ ] in [8] is regular for
< 0 (beneath the free surface), then of necessity:

1 dG GQ(T) - Ki + KT(T) = - K*i everywhere for < 0 [9]

where K* is a real constant. ,..
Far below the free surface we take the following limits:

q -c q; T(T) 0+ 0; 2 - 0

Then, K* < K, and [9] becomes:

-G + G[iK - Q(i)] = Ki - KT(T) []dY

The assumptions made above correspond to the case of flow without -
a body or bottom beneath the free surface.

If, however, [ ] in [8] is not regular everywhere for i < 0, then:
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G( Y) - K i + KT(M) = Ki + Q(T) everywhere for < 0 [ii] **'9

where, -

R[Q(T)] =0 on 0 [12]

and L represents the effect of a body or bottom beneath the free sur-
face. We consider here only the effect of a body.

Far below the free surface we take Q() - 0. Then,

+ [iT - 2Q(') - Q(f)] = Ki - KT() [13]

or I i il 1%

+ F[ i - Q() - Q()] = Q(T) + Q2(M') -KT() [14]
d

whcere
F = G-1 [15]

and we Mnte that F vanishes far from the free surface, and thus re-
pre:,:ents the disturbance to the flow q.." i.

The ordinary differential equation [14] defines the flow created
on and beneath the free surface by a pressure distribution on the
free surface (represented by 2), and/or by a body beneath the free sur-
face (represented by Q). This equation for Falready represents a
variety of non-linear wave effects, even without the function T, which
itself represents additional non-linearities of higher order (of order

wherte is the amplitude of F).
Further, the higher order non-linear effects due to T may be in- .

corporated in mapping Y -* = + in so that [14] becomes: " -

d- + F [<i - Q(r) - S2(;)] = Q() + Q(() [16J

where

_ +T _- I + OQE2) [ii]
d iF (Q + Q)(F + 1) [17]

and Q + Q =0 ().
Alternatively, [17] may be written .

d.-.. A
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KT KT
d_ dF/dC =1 dG/d"

[18] _

KT KT/G
dF/d{ + KT d.nG+--"/G+ KT/G-''. "

In the case of periodic waves, [16] takes a very simple form.

This classic problem is treated in the next section, where a limiting

wave arises naturally. This example serves to demonstrate that in any

particular case, it must be verified that the solutions given by [16]

are physically realizeable.
The mapping defined by [17] represents a straining of the T space

which increases as £
2
. In the next section we show that for progres- 9

sive waves a stretching occurs in the transformation z T ' - such

that

- 27r [1 + O(A2 )] [19]

2.= K

where X is the wave length in the physical plane, and A is proportional .

to the wave amplitude.

The dependence of T on c3 suggests that its effect on the solution

may be included in a complete solution of [14] or [16] through itera-

tion. Even in its neglect, however, the essential non-linearities

would seem captured not only in essence, but in a reasonably quantita-

tive way, provided that the additional stretching represented by [19]

is kept in mind. A feasible way is therefore opened up for the effec- .,/-."

tive study of wave generation including non-linearities, which is the .-.

purpose of this work.

III. THE PERIODIC WAVE IN DEEP WATER. THE CALCULATION OF X

The progressive wave has been treated with improved accuracy,

starting with Stokes (1847) and continuing through Michell, Havelock,

Davies (1951), Schwartz, and Longuett-Higgins; see Schwartz and

Fenton (1982). It has a special important for us since the flow in

the physical plane asymptotically far downstream of a surface or sub-

merged disturbance in deep water will tend toward a purely progres- .'

sive wave. Indeed, the wave resistance of the disturbance is simply

related to the asymptotic wave amplitude. It is additionally impor-

tant as its treatment here allows us to derive some necessary re-

sults (the calculation of X, for example) and to understand the

workings of the present theory.

The motion is unforced, 2 = Q = 0, and the wave originates at .'..'-.

V..."
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infinity as a solution of:

dF + i KF = -KT [20]

which becomes,

dF + i KF = 0 ( = + ifl) [21]
dC

upon the transformation,

-1-i (..)..[22]

If the amplitude of F is A, then the free surface condition [3] .

or [4] shows that T/F = O(A2 )'
An appropriate solution of [21] is, of course:

F = -Ae - K ( Y) • G = 1 - AeKfe - iK [23]

or,

3 
= I + A2 e 2 I ) - 2AeKrl COSK"

[24]

tan36 = -AeKTlsinK / (1 - Ae1 cos K)

Take that a wave crest exists for z = = = 0, where:

q crest A /3 [25]

Therefore a limiting wave occurs for A 1 1, for which the slope

at the crest is (found from [24] by the application of L'Hospital's

rule):

+ 7T/6 for 0T [26]
crest

corresponding to the well known result: a limiting wave with an in-

cluded angle at the crest of 1200.

The overall dimensions, length X and total amplitude H, of the

wave are found by integration of the definition, G d/dz, in the

form:

M3

%.

r .. .. 2-.*..
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K + iH) = [27] "--KKd-,
[2 - Ae K  e - i

K E ] 
1/30

The role and importance of T may be understood by examining
solutions of [20], neglecting T altogether, which are correct to sec-
ond order in A:

-i KT13F = -Ae + 0(A 3 ) [28]

The wave shape and overall dimensions in this case are readily
'- found through the easily derived relation:

K .d R vdv -Kdz = 3 iJ( T3 )."

v - 1 2 + "ns'.t.

i-n + V3 tan -  2 + const. 29
,,., + + V ' +/

w i t. r c

-iK 1/3
V =(- Ae )

from which it can be calculated that for the limiting wave in this
app rox imat ion:

H = 112r ! 30

which may be compared with Stokes' value: H/X = 0.142 - 1/7. Further r *
we note that the included angle at the wave crest in this approxi- -'

mation is 1200 as in the exact theory. Wave forms calculated accord- -.. -.

ing to this second order theory have been computed from [29] and have
been compared to the calculations of Schwartz (1964). In this compari- V
son the crests in both cases are found to steepen and the troughs to
flatten with increasing wave amplitude. In the Schwartz calculations,
the wavelength shortens with increasing amplitude while in the second
order case here the wavelength is independent of wave amplitude.

The transform Y + corresponds both to a "stretching" and
"wrinkling" of the T plane, increasing as A2. The "wrinkling" only
modifies the wave distortion already present to second order (and
which culminates in a limiting wave), while the "stretching" intro- .:
duces shortening of wavelength, as deduced below.

AI
. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .*.*

• ..... •,o"....%..-%. . . .
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Integrating the transformation [22] over one wave-length, from

crest to crest,

( - o() = -R I d4o

0

I Jf d [31]

The integral in [31] may be evaluated by contour integration,
making use of Cauchy's theorem. We take the contour shown below (left):

=(0,o0) (2 IT/ K,o 0
AN

The integral along the contour
is zero, since the integrand is
analytic within and upon the con-
tour. The integrals along B and D
cancel each other because of the

C periodicity of the wave. Therefore:

=c+irc = +2T/K)+irc
c c c c

rI (A)f " .I = -I di' = -I ."""

f C f (-) C- [32]

since G(+) - 1. The integrand in the last integral above may be eval-
uated making use of a representation of T/G in terms of its definition,
eg. [7]:

00

T/G = iAen e[33] "

n= 1

where, (see [7]): t*' '"*

300

4sin 3O
R T/G0 = o A sinnKP [34J

3 n
0 n1

Cr. ., -.. .: [

:-. .-.% ',-
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and where the real coefficients An may be found by Fourier integration.
For example,

2Tf/K 4sin 3 
e

A, f o .inKS ° d$ 35

,KCC((

7T\ qlJ  / [3 ] "" 0'

Combining [33] with the solution F = -A e and using that
-~Y forn -no:

dcp
'!i C(nc

An-i(n-)Kq (n- 1)KT"
-R f Zn) e e c d$ "

0 n.

(n - -CO) 3

A
I $(X) [36] '""1

ii A . -"

or, finally, substituting in [31], and making use of the fact that asyT .. ..., P( ) = $o(A) = , :V-...'
0

( - = 0 - A,/A)
0 K .

[37]

A, - 2rr / (1 -A / ).. . .

- -A,/A)

2 Tr
where Ai, given by [35] is O(A). Therefore, = K (I + O(A2 )) In-
spection of [35] shows that Al < 0, so that A decreases with increa-
sing wave amplitude, as was first pointed out by Stokes.

Finally, we point out that the second order solution may be im-
proved by iteration, although we beg questions of convergence, using
the transform:

o 'T
o($o)~ (T G .

if=I 0 G F do [38]

0

U%
% %-

U%
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.v, - d -+ -?';il

00
( T  d' T 1 d^-

e i t f o o f G etc

0o 0 ( .

- rt o ur m inK a i - o

arities asoie wit th re sufd epos omvigdsub

src W

clis foo n= D n a a

};.. [39]

where in the first approximation ion 1 s t

We return now to our main purpose: the exploration of non-line-arities associated with the free surface response to moving disturb-

ances. First we consider the pressure distribution moving on the free
surface. We will be able to compare the results with the recent cal-

~culations of Doctors' and Dagan (1980) based on an assortment of other

approximations. Here : L

dF + F[Ki-Q] : -KT [14], as shown earlier ,'. '

or •,-.,.

dF + F[Ki-Q] Q [40]

dCC

where, the transform T C ¢ is given by:

-2+ [41]
i.KT . -(c.)

d-- KiF - Q(F + 1)

the pressure field given by Q being taken 0(e). Recall that,

dp[2 ) = .- - - [6] -. .2-,
3 0 6

Again, the space ¢ corresponds to the space T "stretched and wrinkled"

by the waves themselves.

-. . *..d ~...................................................... *.

-. . .. . . . . . . . . . . . . . . . . . . . - • ...
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An appropriate exact solution of [40], (no waves far upstream) is:

-iK ri+ K () d- [2F Cf() e - ( dd [42]

This simple solution represents on the free surface C a linear sum-

mation of elemental waves 6F(C;C) originating at = :-

* . 0

F(C) = 6F (C ;C d [43]

where the elemental wave is given by,

0

6F" -i( e + f ) d[
0

so that the amplitude and phase of the elemental wave is shifted over

the region it travels downstream, the shift depending on the integral

over the pressure disturbance,

0

so that the phase shift over one wave length is measured by:

.- ~ S2( ) d :?.--

211 0

0f
0

where A is the unshifted wave length 2 .K./7
The amplitude A(-) of the wave far downstream is given by:

+c +iK + ( ) d °

AI) = Fl = ampl f () e d
f1 00

... ~.. .. .....

% , . . ]
• - " - " " - - " " " : " ' " ' " - - - : - " . - " " -" " ' " ". ., ".".". .- , ." , " - ' " ' ' ,
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Rf(Z)O' +i K + 1 0____0

ampi Q2( e 0 0
- 'o 0

[45]

The wave resistance, D, associated with a pressure disturbance, p, on
the surface is,

dy
D dy = -Jp(1 0~ d [46]

We have made calculations to second order (C --: ) for a pressure patch
treated by Doctors and Dagan (1980), hereafter referred to as D&D. The
results are shown as Figure (1). The second order calculation are seen
to agree very closely with the second order theory of D&D based on a
regular expansion of in the physical plane. -

V. WAVES PRODUCED BY A SUBMERGED BODY

In the case where the flow is not unlimited beneath the free
surface (submerged body and/or finite depth), we have sh~own that:

dF r
-- + F[Ki - Q(QP)] =QQI') -KT(Y) [1

4
]

where

R [QG) (T 0

This may again be transformed into the exact equation:

dF

d-+ F[Ki - Q]=Q [47]

where the transform TP- is given by:

d~ 1 KT __

-T :iF - Q(F + 1) 1+0()[8

the field Qdue to the submerged body being taken 0(0).
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An appropriate exact solution of [47], (no waves for upstream) is

FQ( ) e d [49]
* 00

For the solution on the free surface, C C0 the solution is:

C ~-iic i -I Q( -

F() f iQi(ZO) e d- [50]
-00 0 0

since Q(G) iQ (C~ ), the real part being null. The amplitude of the
% wave far 8ownstreamOis

+ O +iK[z +f i 0Z, dZ 0]
A(-) =ampl 1 ± 0z e dC [511

An exact alternate solution is:

F(o~ f iQ (o) KT() e 0do [52]

where

+0+ f (~o df

A(-) =ampl f-iQi K T e do 0

C- [53]

We shall use the latter to consider in a little more detail the flow
over a submerged body, and in particular to define and give meaning to
the important function Q10 which drives the wave field.

%4~
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VI. ON THE CALCULATION OF Qi( o)
0

The waves produced by a submerged body are seen to comprise in C
space a linear superposition of elemental waves driven by the function

Qi( o). Here we give a method for its calculation, and in the next
sez.ion (VII) we reveal its physical meaning- a major result of this
work.

We imagine a submerged body, S, without circulation (for simpli-

city). The flow in the physical plane is shown as Figure 2a. It trans- ...
forms into the complex potential plane as shown in Figure 2b. The slit
at = -h for 0 < 0 < Z represents a distribution of flow singularities
(of F). The flow may be extended, we assume, into the region 0 > 0
where a slit again exists for p = +h, as shown in Figure 2b. In this
latter representation, there are no singularities on the free surface

itself. On the slit in the upper half plane we anticipate two separate
singularity systems: one for 0 < < is an image of the system at .

= -h, and the other extends from C = 0 to infinity downstream and is
wavelike; it is the latter which creates the waves on the free surface.

We shall not necessarily calculate these singularity systems, but we
shall use the fact that they exist as shown. -.-

We wish to find wave-like solutions which decay with depth and are lei

regular for i < 0, and we must define Q appropriately. Since F can be

singular only on the slit A for 4 < 0, then the same must be true of Q
(in view of [14]). Since Q is soft [i.e., Q(j,0) = iQi( ,O)], we know,

too, that Q(T) can furthermore, only be singular in the upper half
plane on the slit B, the image of A.

We may thus, in general, write for Q (Cauchy's Theorem):

1 Q(A)d____.__ Q(B)d[ ]

QM ~ = + [54)2 f 211

A B

which can also be written: %%%%%

2J1
4' ~ f [(0- )-i(h+4) bQB ~[5

0 -

where
Q*= [Q(A) - Q(A) ], represents the jump in Q across

upper lower tejm
the slit A, a complex quantity. [56]

It is easy to see that for Q(4o) to be purely imaginary, then 6Q(B) =

-Q*, (where the overbar here denotes the complex conjugate), so that

finally,

T., ' -% -'"."

U% %

.. . .-• ... . . ...
=• .. .. -. -. .. .. -..-.. . -. . .- ,- -- . . . - .- .. .-. - . . .. ; - .- .- .. .. .. .. ., . . . - -. ,. ,. -.. . . .. .. ,...*. .*
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= ,f, + ( i-l d4 [57]

and

SI - i2 <
= .6Q* d i 6Q* [58]Qi(q,0)= I J1 R(-)+h I dO R[(-5-h]81.:,.

We need now only use the definition of Q implicit in [14] in order to
define Q*; solving for Q:

dF/d + KiF + KT dinG iK KT [59]
(1 +F +iK -- + [9

This completes our definition of Qi(,O), eqs. [58],[56], and [59]
which is now stated in terms of the flow on the submerged body.

For its interpretation we imagine the flow created solely by a
surrogate submerged body, Ss, whose singularities on the slit A cor-
respond exactly to those on the real body S; therefore, as the depth
of submergence increases Ss S. For this body:

S 7( ) = ~, - [60•

0

So, that, comparing [60] with [58], and using [59]:

Q (o000) 21 {Qs( 0 90)}

Qi( o,0) =-6 0+ 2K (1 -3+ 2+ [61]
d o qs (o G

This explicit relation allows for the calculation of Qi( o,O) and
therefore the wave field, given knowledge of F on the slit A (surrogate
body). In an iterative solution, F could first be taken as calculated
for the isolated body (in the case where the body is sufficiently sub-
merged), or in the double model flow (for large K).

°.i i ~ % %"%

U%

",'. >,'- .J .

-.. .. ... ... ... ..

.. . . . . . . %-.'

-...-. ........ ....... ..... .. -.- . ,.. ,.... .,,.,•#,. .. _..",'
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For large K we note, see [61] that:

-~ ( cos36 (q 4) 3
4 ,9) -2Kj I,1-___ + 0(o) [61a]

where F on A would correspond to the double model flow.

VII. ON THE PHYSICAL INTERPRETATION OF Q.() HOW WAVES ARE GENERATED.

The function Qi(Po) can be given additional important meaning in
the following way. The flow is inviscid, so that Bernoulli's equation-
applies everywhere. Therefore:

eI2+ ap[62]
an an p an

where n is the unit normal to the surface. Equation [62]can also be
written:

+~1 3Kcose0 -3q~ [63]

or,

a9,nq 3 + 3izcos3 + 3co-cs) - i2 [64]

or,

+ -tn -K KT(Y) I=1 M [65]

where

R P(I on 0 [66]

I oe co36 on P~ 0 [67]
kG q
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or

t dTn G 3 i KT G 0 on P0 (68)

This can finally be written: 1

dCG iG[3K -P +iM] =3Ki + KT [69)

* where,

I[M(i')] 0 on =0

In the case of a free wave, P Pw, M -20, and [69] can be compared

with the earlier equation [13], with the result that:

P =2K -LK + iK(T+T) [70]
w G G

Hereafter we write:

so that P* is a measure of the motion induced normal pressure gradient

in excess of that existing in a free-wave.
Therefore L69J can be written: .V-

G+ iG[K -P* +iM] = 'i -T [71]

which compares with Equation [13) (S2 E0):

dG

On ~J=0, these become:

dG iG[c r -ip * mr i K

dG
+ G[K - Q Ki -KT ''.

.~~~~ .. . . . ..

*. . . . . .. ... .
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so that, comparing these relations:

M r(o) = Pi* (P0 and Q d 0 0 Pr 0-O

and, finally:

Q(T) = iP*(T); M(T) -Q(T)

or, in the case where Qalso exists;

Q(T) + Q(T) = iP*(T); M(T) = -Q(T) [72)

As a result, the wave driving function Qi( o) + Qi($o) can be
given the following physical interpretation:

Q(o ) + ( o) = Pr*($o), and noting [66]

3
Qi($0 ) + 0i = 3 -$0 = (=a 0 [73J

which reveals that in the case of a submerged body; the wave field
originates in an unbalance of the normal pressure gradient on the free
surface; i.e., in the excess of the normal pressure gradient over that
in a free wave.

Note that in the case of a surface pressure distribution, waves

originate, in addition to those due to Qi, in the imposed pressure dis-
tribution itself (those due to Qr).

VIII. STRONG AND WEAK NONLINEAR REGIMES. ASYMPTOTIC BEHAVIOR (K 0); .
AND OTHER APPROXIMATIONS. COMPARISON WITH OTHER THEORIES.

It is implicit in the exact result, [47j, that the generation of
waves by a submerged body involves both weak and strongly nonlinear
effects, depending on the maximum value of Qi($o)/K. The regimes cor-
respond to:

WEAK NONLINEAR : ) max < K- -

STRONG NONLINEAR: Qi > K
o max

L d" - ".**'r *' -"-h t . .ZA
. . . . .. . . . . . . . . . . . . . . .,'A -.

%A.. . .;.' " .,-. : .* s . . . . - ., ' A' .... ' )., .. .. . .-.-- . - . * -. . . .~ ..... . - . . . .
=% . • - % = , % - A% " . . , %,- • - % %. . . . .
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This can readily be seen from the following form for the exact
result, [47];

dF + Qi°
0 - [74]

0 [ Q K
d o 0

whose solution is:

whee" F e mae d [75] :gvnb:g

0= [ -Q 1K] [76]
d i

It is apparent that both the solution, [75], and the mapping [76]
experience singularities at the point on the free surface where Qi^( o)
K. We can in fact show that in the asymptotic case (K "I -0 ) that 3is-
crete waves arise at such points. These waves are entirely a product of
the strongly nonlinear effect.

The Strongly Non-linear Regime.

We write the amplitude of the far downstream wave as, see [53]: ,- ,.',.

+0 +i f(0)

A() = ampl f [i Qi($) -KT($o)] e do [77]

where: OD

f(o) : o +  qi¢ )1K d-oZ-:-- -

o f..,-i-.'

and note that:

df = [1 - Qi(ol/K] [78]

Note that for large K (low speed), the wave ampltiude A(o) will

,. .. -... -... . -.. . ... . ... % . ... . .- . .... . . *... .... . . .. . . ..
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cease to be of exponential order in K if the first derivative of the
arg. eiKf($o) is zero within the range of integration (real values of
0o). That is, see [78], if a value of 0* exists such that:

Q(*) = K [79] JT'x

At such critical points (4o = o*), strong waves arise which may be
estimated by asymptotic integration (the method of stationary phase)
[77].

For large K, we note (see [61a]) that through 0(62), the critical .
point corresponds to the condition:

q (o*) > 2 cos 3 a(qo*) [80] . -
S ~ ~ 0o

where we recall that the subscript s corresponds to the flow about the
surrogate body. Note that this condition does not explicitly involve
the wave number K.

As a result of [80], if qs(max) on s= 0 exceeds the value 21/3 ,

then of necessity one or more critical points must exist. In addition,
if 10-1 reaches the value i/6, then of necessity critical points must
also exist.

Imagine a submerged body S. As its depth increases, qs -> 1,

6s 0 everywhere, so that at a sufficient depth no critical points
exist on the free surface, and the flow corresponds to the weakly non-
linear regime. For smaller depths, however, critical points will
generally exist, and the flow corresponds to the strongly non-linear
regime.--

In this case, the method of stationary phase applied to [77],
yields:

v57,f [Ki -T( ~~))
KdQ - T(,On i[Kf(o ) ±r/4] [

A(-) ampl. e n [81]

n Ld 0  On/J'-.-'.

where the upper or lower sign is to be taken in the exponential ac-
cording as dQi/dpo at the critical point, 4 On , is positive or negative.
Beyond the first appearance of strong waves note that n must be even.

Since dQi/d o at the critical point is 0(K), then [81] shows

that in the strongly non-linear regime:

A(-) K [82]

a result which implies that wave slopes are O(K2 ) and wave amplitudes

are O(K- ). We recall, however, that physically realizeable waves do
forexist for A > 1, so that [82] implies that in the strongly nonlinear
regime, for sufficiently small Froude numbers (large K), a physically

* .. . .. . . . . ...- - -

" " 5 -" 5 . . . .* . .. S S S*.... " - - " , ',' ' S- -. '- S~. . . . . . . .. S...... "- " "*," " - " ""- " - - .:
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realizeable solution does not exist.

The Weak Regime

We seek the reduction of the exact result [77] to approximate non-
linear forms valid in the weak regime for sufficiently small disturb-
ances; these allow comparison with several existing non-linear theories.
The latter are usually expressed in physical plane variables, so we
begin by writing [77] in the form:

4Wo

Exact; A(o) = (KC) ampl. -E2TO°  e o [l+u (X)][ ] dx

[83]

where: x is the horizontal space coordinate, non-dimensionalized by
the characteristic length k; Qi° = Qio/(c) and To - To/c' are both
0(1).

In the first approximation (making use that yo' = 0()):

E2<< l ""

A(-) Z (KC) ampl. f ii f(x) --. "dx [4

where (l+uo) is the horizontal component of qo,
0 %To proceed further it is necessary to expand the terms in the exact...

expression for Qio, [61], with the result: ..

Qi°  6 [u + (Krs + 0(C) [8i]

0 E 5 0 0

where rso is the radius of curvature of the streamline s 0, positive
)hen concave from beneath and where (I + uso) is the horizontal com-
ponent of qso

Substituting [85] in [84] yields a further approximation: e

KE
2  

1; E 2<< ;

X

++ + f [1-61u.o +(ro, K)'[1-o 0 -

A(-)-4ampl. 61 [us+(rsK) l.e s +(K )

(86]

% %. i.-- 

,".: 

-°
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wherein we have not made any a priori assumptions regarding the magni- "L%
tude of K. Note that the requirement K 2 «1 arises from the approxi- ,-
mation of the exponential argument, and that the quantities appearing
may be evaluated at y = 0 in place of 4 = 0.

Further we examine the low speed weakly non-linear regime: K >> 1;
KES2 << 1. In this case the surrogate submerged body, Ss , approaches
the submerged half of the double model, Sd, corresponding to the flow
beneath a rigid plane. In this case:

us(xo) = Ud (X )/2 + 0(5/K)

u (X) Ud(X) [87]

(r K) =0(- A
0

where [1 + ud(xo)]is the speed on the rigid plane beneath which Sd is
submerged.

Substituting [87] in [86] we obtain the low speed weakly non-
linear approximation: -lei

KE
2 
<< K >>;

3aMPI f d 6-,)Ue -(o + O(K 2) + 0(C)
i ° ..

This virtually corresponds to the version of the theory of Inui-
Kajitani (1977), derived in the two-dimensional case by Doctors and
Dagan (1980), where it is shown by numerical application to a surface
pressure distribution that I-K closely corresponds to the second-order
regular expansion theory. The difference is that A(-) = ampl. F while
the corresponding RHS in I-K is ampl. v; it is easily shown that F =

3(v - 1) + 0(s2), so that [88] and I K may be considered identical. _A
We now prepare for a comparison with the three dimensional theory

of Charles Dawson (1977). The low-speed, weakly non-linear approxi-
mation, [88], implies the following diffferential equation in the com-
plex domain, for the complex velocity V = dT/dz:

K52 << 1; K 1;

dv + iKv[1 + 2iU(z)] = KU(z) [89]
dz, . ,

where: z f x + iy, where y = 0 corresponds to the free surface,

.
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a.nd R Ud(x~o)~ 0; IOUd(x,o)~ = d(x,o) [90]

Therefore,-iU(z)is the double model complex velocity. On y =0:

«E 1< ; K >>

+v iKVi 2ud(x] = K ieu(x) [91]

which leads eventually to the solution [88]; therefore proving our con-
tention about [89].

Now we consider the solution for 'V to be composed of the double
model flow plus a wave-like perturbation, _V of 0(1/K), with a pertur-
bation potential 4); i. e. V -U (z) +_V. We f ind f or V, after sub-
stitution in [91]:

KE 2<< K >> 1S

0 d
+ KV [I1 uW iKUd(1 2u [92

dx o 'd"' dx [92]

or, in scalar notation (y =0); taking the real part:

+x y [ -2ud(x)] - (x) [93]_

Dawson's three dimensional equation, written in our notation ex-
cept that his k~ is the length along the double model streamlines on
y =0; and setting ud(x) (d', is:

x

d 919,9 + ( d2 21 )+ K $y =0[4

We put [93] and [94] in bomparative form by re-arrangement and by
2 r* neglecting some terms of 0(C) in each equation:

[93] - (1 + 2ud)4 + K4) _ (l + 2u) ud [95]d xx y

[94]~_( +* (121)~'. [96]
[941~~ (1 + 2 + 24) k u C1

where ud in [96 ]is the speed along 2. on the free surface in the double
model flow.

* Since Ot2 /ud 0(1/K), these eqn's may be taken as identical in the
present approximation: KE <<1, 0>1.

With regard to the weakly non-linear straining technique intro-
duced by Guilloton (1964), we note that [92imay be written in the form

S.- - - . . . . . .. . . . . . . . . .
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]:., (y =O ) :", ." -"

0+

d x Ko - U d (G - d)

dx' [1 2ud(x)] [98) "dx d

implying that the low speed, weakly non-linear solution may be obtained
as the solution of the linearized equation, [ 97], with the solution re-
interpreted according to the straining [ 98]. In the low speed appli-
cation of straining a' la Guilloton, however, dx'/dx = [i - ud(x)J.
The present result, [98], therefore confirms the observation of Doctors-
Dagan that Guilloton underestimates by half the straining necessary, and

that [ 98 ] applies, as implied by Inui-Kajitani.
In summary, we have found that the present low speed, weakly non-

linear approximation of the exact theory [83], is identical with both
Inui-Kajitani and Dawson within the approximations involved, and limited

to the speed range defined by 1 << K << C--. It would be remiss not to
point out here that Dawson was anticipated by Ogilvie (2d; 1968) and U
then by Dagan (3d; 1972ab), and later by others; see Tulin (1978).

The present analysis therefore confirms and provides comment on the
approximation first proposed by Ogilivie and now so well known as low --

speed theory.
The most important comment to make is that for given C, no matter

how small, this so-called low speed theory is not valid for sufficiently

low speeds. It is a theory valid for low, but not too low speeds! Per-
haps it would best be thought of as a moderate speed theory, especially
where moderate is used in the context of real ship speeds. This dis-

tinction illuminates the difference between this moderate speed theory
and the very low speed theory of Keller (1974;78) based on rays. The

two theories may or may not overlap in any particular case.
At very low speeds, in the sense meant by Keller in his works, the

waves on a submerged body become exponentially small in the weakly non-
linear case, although they may be calculated by using the appropriate
integral, [84]. In Keller's ray theory these waves have disappeared,
'as he contends that only in the case of a body intersecting the surface
do waves originate at very low speeds, and then only at singularities on
the waterline. However, we have also found here finite waves originating
on the surface in the case of very low speeds, even for a submerged
body, but only in the strongly non-linear regime; these do not seem to
have been anticipated in any previous theory, and their practical signi-
ficance remains to be shown.

Finally we should point out that a weakly non-linear approximation, but S
not limited to moderate speeds, is given by [86], and appliesprovided

that KS2 << 1 << j/ 2 . In its application we should point out that the
surrogate body flow involved in the integrand may be realized as the
arithmetic mean of the double model plus free model flows (in the latter,
Usf - 0 on y O).

M... ,
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Discussion

T.F. Ogilvie (Massachusetts Institute of Technology)

The theory presented applies only to pressure distributions and/or
submerged bodies. I assume that there are smoothness restrictions on
the allowable pressure distributions. How then do you apply or even
interpret your results for surface-piercing bodies?

E. Baba (Mitsubishi Heavy Industries) "--

The author should be commended for his efforts in makiig clear the
relationship among the free-surface conditions related to th . problems
for weakly nonlinear regime, i.e., the author's, Inui-Kajitani's and
Dawson's. My comment is about the position where the free-surface con- *

dition is satisfied. The author's free-surface condition is satisfied
on the free surface. On the other hand, Dawson's one is satisfied not
on the free surface but on the symmetrical plane for double-body flow,
and, further, a term proportional to the second derivative of the
double-body velocity potential with respect to the depthwise variable
(y) is missed in a sense of a Taylor expansion about the symmetrical U
plane. To the discussor's experience in calculating wave resistance in
low Froude numbers, a contribution from this additional term is impor-
tant, as discussed in the depth study meeting in Izu that followed the
Washington workshop on ship wave resistance computations in 1979. The
discussor would like to hear the author's view on this point.

L.J. Doctors (University of New South Wales)

The discussor was pleased to see the excellent agreement between

the present theory and that of Doctors and Dagan (to second order)
displayed in Figure 1. Could Dr. Tulin compare the two methods in
terms of ease of use and expected accuracy at higher orders?

Can he also comment on why the theory at second order already pre-

dicts a limiting included overt angle of 1200--a result that one would
expect should only appear at much higher orders.

Finally, one knows that perturbation theory, when applied to the
traveling pressure-patch problem with pressure taken as the small pa-
rameter, will break down if a spray jet occurs--such as occurs at the
bow of a planing surface. Can the present theory overcome this weak-
ness?

A.T. Chwang (University of Iowa) -':,-7,

I would like to ask two questions: First, in your paper you used
"surrogate" body instead of the actual body in the calculation. Would <. ,.

.5 .5 .. .*.,.". .* *5..
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you please explain what is meant by "surrogate" body? Second, have you
compared your solution with other known solutions such as solitary
waves or solitons?

-,* Author's Reply

M.P. Tulin (Hydronautics, Inc.)

To T.F. Ogilvie

As the discussor perceives, the part of the theory pertaining to
surface pressure distributions may, in principle, be utilized in the PIP

4i'. case of a two-dimensional body intersecting the free surface, and it .

would be worthwhile to pursue such calculations and observe the phe-
nomena that could emerge--strong wave generation, non existence, etc. "-
In deriving the theory, no explicit assumptions were made about the -'.

smoothness of the pressure distribution. The apex of the problem would

be to specify a pressure distribution resulting in a physically mean-
ingful body and free surface, but this does not require strong smooth-
ness everywhere. It is clear, for example, that if a body with a
corner under water (cigar-box) were qouqht, the pressures would not be
differentiable immediately at the corner. In all probability, the form
of the pressure at and just downstream of the stagnation point would be
crucial in its specification and might require some subtle
considerations.

To E. Baba

Dr. Baba has raised an interesting and important question. Cer- ]
tainly a theory unlimited on the high-speed end should consider the
effect raised. As for the moderate-speed theory, I would like more
time to consider the question carefully; but my belief now is that
Dawson's theory, neglecting the term cited by Dr. Baba, is correct to
the order specified in my paper (two dimensions). Whether the term
would appear in a theory accurate to lower speeds than Dawson used is ".*

,.4 doubtful. 11
To L.J. Doctors ,

The "second" order version of my exact theory is inconsistent in
the sense that the approximation neglects some third-order terms (slope)
in a regular expansion of Bernoulli's equation but not others (speed), '3
it is for this reason that it yields the limiting wave, whereas a regu-
lar second order expansion does not. I do not yet know just how a spray
jet might emerge and be treated within the framework of this theory, and .
it would be most interesting to study that question in detail.

%" % -
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To A.T. Chwang *X.

The surrogate body flow in the plane of the complex potential
possesses singularities only on the slit in the lower half plane rep-
resenting the real submerged body, and nowhere else. On that slit the
values of Fare are precisely the same as for the real submerged body
flow. Therefore, the difference between the surrogate and the real
body flow is that the latter includes the effect of images in the upper
half plane, while the former does not (unbounded flow). As for the

effect of bottom boundaries, I have not treated that case, but it would
be most interesting to do so. It is certainly possible to obtain ------ 4
cnoidal and solitary progressive waves in this approach, as Davies and
Packham have already done in approximations that are second order in
my theory (the solitary wave solution of Packham has been shown to
compare extremely well with the numerical solution of Lenau).
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Strong Nonlinear Characteristics of
Steep Surface Gravity Waves

[ling-Yang Su, OcOMno.rdpher, Physical Oceanography Branch
Albert V Green, Head, Physical Oceanography Branch

Haval Ocean Research and Developnent Activity
.4STL Station HS 39529

Results of an extensive series of experinenits on strong nonlinear
properties of deep water gravity waves are sumrarized. The
experiments were conducted in a large outdoor basin (1 x 100 x 340 ri) A lo
and a long indoor wave tank (3.6 x 3 6 x 134 n). The waves were
produced by a riechanical wavetiaker. Effects of wave steepness (0.1 <
ak < 0.34) are analyzed for both wave trains and packets. Iaves with
nioderate to large steepness are found to be subject to two
fundarientally different types of subharrionic instabilities and two
kinds of bifurcations. ,

Dynanical processes observed in these experiments include
three-diiensional wave breaking, directional energy spreading,
nonlinear enerqy transfer for narrow spectra, foration/interactions
of envelope solitons, and fornation of three-dinensional compact wave
groups.

Th_ expeririental results plus additional analyses of oceanic wave
. qroup chracteristics provide evidence that the strong interactions of

ocean waves can be sinnificant riechanisns for energy transfer. These
newly recognized characteristics of gravity waves may have significant
relevance to ship dynarics and offshore platforms in storm seas.

j ."; . "
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I. IrITRODUCTIOii

In the last two decades several theories about the stability and
interactions of finite amplitude surface waves have been presented.
(See Yuen and Lake, 1982). Many of the theoretical predictions have
been verified to some extent by recent experimental results, but in .-

several cases experiments have provided descriptions of phenomena that
defy theoretical analysis at this time. In this paper we shall
concentrate on describing experimental results that have given some
valuable insights about the evolution of wave trains and wave groups,
particularly in providing clearer understanding of the processes and
forcing conditions that may exist in high sea states.

These results could aid designers in improving predictions of
ship performance. One property of nonlinear wave dynamics that may be
of particular interest to naval architects is the high coherency of
the highest waves within a wave group. For many purposes it is
sufficient to consider that the surface wave field is represented by a
narrow-band Gaussian process that can be used in realistic simulations
of ship hull response The occurrence of coherent wave groups,
particularly in high sea states, could present critical forcing
situations that are not represented by simple statistical forcing
models.

In the following sections we summarize the results of recent
experimental work directed toward improving the description of the -
nonlinear dynamics of surface waves. In §2 we describe results of
observations of two-dimensional wave instabilities and the formation
of envelope solitons. These two-dimensional instabilities are also

"- intimately related to a rapid change in the carrier frequency of wave
groups and wave trains. In §3 we present results of observations of
three-dimensional wave instabilities and bifurcation processes that
occur for steep wave trains. A feature of wave instabilities that has
not been described previously is the interaction of two- and
three-dimensional instabilities; some of our results that give
evidence for this type of interaction are briefly outlined. In §4 we
describe statistical analyses of extensive wave data sets obtained
durino stormy periods in the Gulf of [exico. We examine the
occurrence of contiguous high waves that are members of an
identifiable wave group. The joint probability distribution and
correlation of contiguous high waves will be discussed. The
dependence of wave groupiness on the peakedness of the wave spectra
are examined. In §5 we attempt to relate sone of the experimental and >...

theoretical results to phenomena in natural ocean waves. These
phenomena include wave breakinn, formation of giant waves, short
crestedness of natural waves and power spectra evolution. The results
of our experimental work clarify and help to explain some of these
complicated processes. In §6 we make a brief review of pertinent . .

theoretical results which can partially elucidate some of the wave
evolution processes that we have observed.

..- . •, .- .- ,-, .- >'.,,. ..- ,-'--. :, ,-',.-.,. . .. ,-,- ..-



55

II. TIHE EVOLUTION OF TO-DIMENSIONJAL WAVES: EXPERIM1ENTAL RESULTS

Benjamin and Feir (1967) presented clear evidence that finite
amplitude wave trains are subject to a two-dimensional instability
which is manifested by rapid growth of side-band components of the
basic carrier wave. The growth of the side-band components
progressively nodulates the initial carrier; as the growth of the
instability advances the upper side-band component attenuates while
the lower frequency side-band grows. Distinct wave groups are formed
in this process and the maximu, wave height within a group nay be
double the initial wave height. An example of this type of wave train
evolution is qiven in Figure 1, where aoko = 0.15 and the carrier
frequency of the wave train fo = 1.23 Hz. In this example the time
series of water surface elevation at 61 m (59Ao ) contains wave
groups composed of about 7 waves. ihe higher waves occur at the g
leadinq edges of these groups with maximu. wave heights 90% greater
than the initial wave train. Hiodulation intensity decreases
noticeably at the 76.2 n station with eventual reconstitution of a
near-uniforn wave train at the x = 106.7 n station.

ave power spectra for this example are shown in Figure 2. (iote
that the side-band components are visible at station x = 30.5 m, and
at x = 91.5 11 the lower side-band component of the instability has
variance equal to variance of the the carrier wave component at fo.
;1eanwhile, the higher side-band component (f2 ) decreases
appreciably. By the tine the wave train evolves and proceeds to
station x = 106.7 n (104o), the lower side-band component (fl)
has almost twice the variance of the fo conponent. The majority of
the carrier wave energy is transferred to fl. It appears that the
Benjanin-Feir instability is d precursor of the frequency downshift
that accompanies the energy transfer from the carrier node to the
lower frequency node. This frequency downshift occurs for waves with
steepness, aoko .> 0.1. It is clearly not a process described by
the presently available theories. (Su, 1982b; Lake et al., 1977).

Another experimental result of interest is the formation of wave
groups that remain essentially unchanged as they propagate. These
experirental observations, to some extent, correspond with "envelope
solitons", wave qroups with invariant envelopes. Note examples in
Figures 3 and 4. In Figure 3, we find that the wave packet has
separated into a set of distinct envelope solitons by station x = 61
n. Frequency dispersion causes the lower frequency harbinger waves to
lead the envelope solitons which appear to maintain their shapes after
separation from the intial packet. The leading envelope soliton
contains the bulk of the energy of the original wave packet. The
leading solitons generally have carrier frequencies that are lower
than the initial carrier frequency, while trailing waves have frequen-
cies nearer the initial packet carrier frequency. The maximum magni-
tudes of the frequency shifts relative to fo are roughly equal to
the initial steepness (aoko), or (1 -flfo-'): aoko,
where fl is the rost rapidly growing lower side-band of the

..... .. ..... ...... . , -... ..- .. .- .,. -...- ,.-..- .., .. -.-, -.-.. .. .. .. .. .. . . .... .... , . .- . ., .. ....e,
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Benjamin-Feir instability.
As the number of waves in the initial packet (Nw ) increase, there

is a higher probability that some envelope solitons or simple groups
will collide. Examples of collisions of wave packets are shown in
Figure 4 where aok o = 0.15, fo = 1.23 liz and Nw 

= 60.
At early stages the wave packet is subjected to modulations that

are roughly symmetric about the center of the evolving packets in the
range x = 6.1 n to x = 42.7 1i At subsequent stations the more intense
modulations are biased toward te front of the packet (Fig. 4, x =
61.0 n to 91.5 n). tie believe that the asymmetric modulations are due
to the collisions of wave groups of different carrier frequencies.
(Su, 1982c).

III. EXPERIr1EITAL RESULTS OF TIIREE-DIMENSIONAL WAVES

Several types of three-dimensional surface wave patterns were
observed to evolve from finite amplitude wave trains with initial
steepness 0.16 < aok o < 0.34. Most of these observations were
made in an outdoor basin I x 100 x 340 n. A 16 m long plunger-type
wavenaker was used to generate waves that are initially uniform and
2-dimensional. Some smaller scale experiments were carried out in a
deeper, narrower indoor tank 3.6 1 x 3.6 m x 134 m.

A. Skew Bifurcation of Stokes Waves

For 0.16 < aok o < 0 .18, finite amplitude wave trains (similar -
to Stokes waves) are found to bifurcate into three-dimensional
patterns which propagate oblique to the primary direction of the
initial waves generated by the wavemaker. A typical case with
aok o = 0.17 serves as an illustration of the 3-dimensional pattern
that appears to be similar to a "skew bifurcation" of Stokes waves
(see Figure 5). The rather complex three-dimensional wave field has
been divided into five phases:

(a) finite amplitude (Stokes-like) waves,
(b) skew bifurcation,
(c) interactions of the skew bifurcation,
(d) low frequency wave modulations, and
(e) rodulation of skew bifurcated waves.
Figure 6 presents two examples of skew-bifurcated waves; the

initial long-crested waves with wavelengtht o evolve into
short-crested waves. Results of our experiments show that the crest
lengths of the skew bifurcated waves (As) and their propagation
directions, lie in the ranges:

2."5Xo < %s < 3"51o

150 < < 20° .

..**. .. . ..
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" The average value of s andS, are approximately 3A0 and 180,
repectively. The group velocities of the skew wave patterns Cp s .

* in the initial wave direction is

Co/35 < CPS <Co/65

which is small compared with the group velocity of small-amplitude '.-.

waves, Co/2. The skew wave patterns appear to be almost stationary
to an observer standing on the wavemaker.

The upper central portion of Figure 7 gives an example of the
interactions between two crossing skew wave patterns. This interac-
tion produces cortpact diamond-shaped wave packets whose pattern is
sinilar to the form of a narrow band two-dimensional wavenumber
spectrun illustrated by Longuet-Higgins (1976). In the stage after
the inost intense interactions of the skewed bifurcating waves, a pair
of skewed wave patterns emerge without apparent distortion of envelope
shape.

Next the skew-bifurcated waves undergo the nodulational
instability that appears to be of the Benjamin-Feir type.
Instability-induced modulations can be seen in the upper portion of
Figure 7. The temporal records (Figure 8) of surface displace-nent at
six locations clearly show the development of the instabilities. Low -*
frequency rodulations at about 1/50 the frequency of the primary waves
are due to the progressive skewed wave pattern which has a small group
speed. The shorter modulation period (about 6 wave periods)
superinposed on the longer modulations are caused by the Benjamin-Feir
instability. A rore detailed description of the results of
observations of the skew wave pattern can be found in Su (1982a). -

B. Symmetric Bifurcation of Stokes Waves

When the range of wave steepness is 0.25 < aok o < 0.35,
the characteristics of evolution of initially uniform wave trains are
different from those discussed above. The evolution of these steeper
waves can be described by five stages. A typical example described
here has aok o = 0.32 (Figure 9). The stages are; ...

(a) Three-dimensional instability,
(b) Symetric bifurcation,
(c) Spilling wave breaking,
(d) Radiation of oblique wave groups, and
(e) Frequency downshift.

Fiures 9 and 10 should be noted in order to understand the brief
description of each stage. **

Figure 10a shows a small portion of the wavenaker together with the
first few waves with small perturbations (roughness). In Figure 10b
distinct small-scale perturbations are superimposed on the larger
waves; these disturbances are evidence of incipient three-dimensional
instabilities on the steep waves. At this stage small-scale breaking
occurs near the crests of the primary waves. The multiple
disturbances are quickly sorted out, and highly regular, crescent-

% %
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shaped wave forms emerge at the beginning of the next stage (Figure

10c), these crescent-shaped waves are the result of symmetric ' "
bifurcation of the steep primary waves and a superimposed
three-dimensional instability. The bifurcated waves in most cases
have wavelengths that are twice the primary ;o. This configuration

of the symmetric bifurcation occurs in nine out of ten experiments in
this range of aok o . ilote in Figure Ila that there is ai-XBC
shift of the pattern in alternating rows of waves, when the symmetric
bifurcation is dominant. 2"BC is the crestwise wavelength of the
symmetric bifurcated wave.

In about one out of ten experiments another configuration occurs
and is characterized by a length scale of 3Ao (Figure 1lb). Note
that every third row of waves has aABC crestwise shift with respect
to the other two rows. The least ?requently observed configuration
(about 1% of experiments) has a length scale of 4 o and is
qualitatively similar to the first configuration, except that there
are two identical patterns followed by two-iALBC shifted patterns ..
(Figure 11c) (Su, 1982a). -

In the next stage spilling wave breaking occurs in the centers of

the crescents (Figure 10d) as the symmetric bifurcation intensifies.
Capillary waves radiate away from the "breakers" in a wide range of
directions. Adjacent waves appear to interact strongly. Air
entrainment occurs as the spilling breakers form. Following this ....
phase, the wave train, evolves into two regimes: (1) wave groups
radiating away from the primary waves propagating at an angle of about
300 (Figure 10f) and modulating the primary wave train, their source

appears to be related to the symmietric bifurcation process and the
fully developed state of the three-dimensional instability; (2) wave
groups travellini in the direction of the primary waves (Figure 10e)

and appearing to be undergoing a transition similar to a well
developed Benjariin-Feir instability accompanied by a rapid decrease of
the primary wave frequency. The frequency downshift in the final
stage may be as large as 25% of fo (Su, Bergin, Htarler and lHyrick,
1982).

Fiqures 12 and 13 show the tirne series of surface fluctuations

and the corresponding power spectra at ten stations. Hlodulations due
to the three-dimensional instability are first visible at x = 12.2 m
in Figure 13. At stations, x = 30.5 m and x = 36.6 m, we see the
alternate high and low wave crests which are the indications of

symmetric bifurcated waves. In the next two stations (x = 42.7 m and -
x = 48.8 r), the most dominant modulation is four wave periods; this
corresponds to the transition from three- to two-dimensional waves.
The two-dimensional wave modulations produce the lower frequency

41 envelope modulations at station (x = 67.1 m).

C. Interactions of Two- and Three-Dimensional Instabilities

We have described the experimental results of wave evolution as if

the two- and three-diriensional instabilities were not co-existant and

not subject to interactions. These phenomena are coincident, althouqh 2. :

%...........................................
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their growth rates differ according to aok o . In fact, both
classes of instability influence each other during the evolution of
wave trains and packets. In this section we describe some results of
these interactions.

One particularly important effect of the interactions of the
instabilities is found in the relation of initial steepness (aok O )
to relative growth of wave amplitude. Figure 14 shqws the variation
of the amplitude amplification factor, defined as ( m/ao), for

* 0.09 < aoko < 0.20, where am is the largest wave amplitude
observed at the maximum modulation in each run of experiments at a -
fixed aok o , with initial amplitude ao . ( /ao ) is the
relative maximum wave height growth in the wave evolution due to the
Benjaiin-Feir type instability. From the theoretical analysis of this 4
tgpe of instability (Longuet-Higgins, 1978), we would expect
( m/ao ) to increase monotonically for aoko < 0.20.

A remarkable feature of the observed variation (Figure 14) is
that (an/ao) reaches a maximum value; (am/a o ) = 1.9 for
aoko0.14. Additionally, at the stage of maximum amplitude of
the wave envelopes aok o x an/a o = 0.27 (0.14 < aok o < "
0.2), i.e., the "effective steepness" (anko ) reaches its maximum.
This "effective steepness" puts the steepest waves into a range
(aok o > 0.25) in which the three-dinensional instability limits
the amplitudes of two-dimensional disturbances. The impact of the
three-dimensional instability is clearly demonstrated in Figure 14.
Su (1982b) and lelville (1982) reported the observations of
three-dimensional crescent-shaped breakinq waves during the interval
of viaximuri wave train modulation for aoko > 0.18. For wave packet
modulations, Su (1982c) reported similar observations for aok o
0.14.

In short, effects of interactions between these two types of
instabilities way be summarized as follows. The three-dimensional
instability appears to be enhanced in the steeper waves by the
presence of the two-dimensional instability. Breaking dissipation
accompanying the evolution of the crescent-shaped patterns, which r ,
results from three-dimensional instability, appears to limit the
amplitude attained by the two-dimensional instability. The
two-dimensional unstable waves reach a maximum steepness of only about
75% of the theoretical steepness limit, 0.443. Additionally, some
effects of finite depth of water on both two- and three-dimensional
instabilities are presented by Su, Berain, ilyrick and Roberts (1982).

IV. PROPERTIES OF STOR! UAVE GROUPS

A. Introduction

In this section we describe some analyses of wave data taken in
stor conditions. The results provide new insights into the ways

- nonlinear dynamics influence the formation of wave groups. A wave
group is defined here to be a sequence of waves with heights exceeding

-..
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a threshold chosen to be the significant wave height (Hs). This
definition differs from the classical version that characterizes the
group" as an envelope of waves with nearly the same frequency.

Hlarine folklore abounds with accounts of higher waves occurring more
frequently in groups than singly. Recently this lore has been
compared with quantitative analyses of ocean wave records. In the
past decade it has been recognized that the occurrence of wave groups
can be of considerable importance in operation and design of marine
vehicles and offshore structures.

The presence of wave groups in wind seas is usually considered to
be a consequence of the narrowness of the spectral bandwidth. The '.

"qroupiness" of wind seas has received very little analysis compared
with standard wave spectral investigations. Tleager attention has been
devoted to understanding the processes that contribute to narrow
spectral bandwidth and groupiness of wave data from rapid growth
stages. We suggest that §2 and §3 contain some keys for explanation
of these phenonena; in those sections we noted that wave trains and
packets evolve into wave groups.

In an attempt to seek physical reasons for this phenomenon, as
well as recognizing that wave trains/packets have natural tendency to
evolve into more stable wave groups (§2 and 53), we now think it nay
be justifiable to propose that the narrow bandwidth of wave spectra is

. a consequence of existence of abundant wave groups in storm seas
(generally considered to be strictly random processes). In any case,
we shall show that these two wave characteristics are closely related.

The field data used here were collected by a consortium of
_ several oil companies with offshore platforms in the Gulf of iexico

during 1969-1971. The data include passages of three hurricanes (Ward,
- 1974). Here we shall use only those portions of wave records with

significant wave height (Hs) qreater than 2 n and with individual
waves (ii) determined by the zero up-crossing method. Nearly 50,000
waves are included in this analysis. (Su, Bergin and Bales, 1982).

The peakedness parameter, Qp, introduced by Goda (1970) is a
useful measure for (relative) narrowness of the wave spectrum, E(f):

2
Qp= - f E (f) df, (1)

where no is the zeroth nor'ent of E(f). Larger Qp corresponds to
narrower E(f). Wave records have been separated according to the
growth stage (increasing Hs ) , or the decay stage (decreasing Hs ) ,
so that possible differences in the statistical properties between
these two stages of ocean waves can be studied.

B. Correlation of Successive Wave Heights

Table I gives the correlation [R(j)] of successive wave heiqhts

for lags of j waves, j = 1, 2, 3 and 4, for the stages of growth,

decay and the combination of the two. The mean of R(1) > 0.32 is

_,.................. .-. ...-....................... ... ... ...... .......................................................................... . - ... .. , .- -'". -
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higher than the one-lao auto-correlation of a narrow band Gaussian
process (Goda, 1970) for all the cases. The assumption that R(-1)
R(1) can be justified by the symmetry of the joint probability
distribution of wave heights. We find that up to three successive
waves are well correlated. We found little difference in the R(1)'s
between the stages of growth and decay in comparison with the rather
large difference (0.30 vs. 0.20) reported earlier by Rye (1974). ;,lore
recently, Arhan and Ezraty (1978) obtained R(1) = 0.297 for a data set
of about 26,000 storm waves collected in the North Sea, which cotipares
more favorably with the present result than that of Rye (1974).

To show the dependence of R(1) on the bandwidth of wave spectra,
a scatter diagram of hourly R(1) vs. the corresponding Q is given
in Figure 15. Although there is considerable scatter, the diagram . -
indicates an approximately linear dependence between R(1) and Qp:

R(1)! 0.2 (Qp - 1) (2)-

C. Probability Distribution of Group Lengths

The number of successive waves with Hi > Hs is defined here
as the length of a wave group (LI), while the number of successive
waves with H < Hs is defined as the group separation (L2 ). The
combined number of waves for a pair of contiguous wave group and group
separation, L = LI + L2, will be called the total length of a wave
group. Table I gives the probability distribution of LI = 1, 2, 3
and 4, p(LI), plus the mean and standard deviation of L1 , L2 and ..-.
L for the stages of qrowth, decay and the corbination of the two.

Assuming statistical independence of wave heights, Goda (1970)
computed p(LI = 2) = 0.116. This is smaller than the value of 0.198
calculated from the field data; we surmize from this that waves with
li> Hs tend to group together, rather than propagate singly. Our
analysis shows sriall differences in L1 , L2 and L, for the stages
of yrowth and decay in coriparison with those reported by Rye (1974).

Figure 16 is a scatter diagram of hourly LI vs. corresponding
Qp. Also shown on the figure is a curve obtained by Goda (1976)
based on a computer simulation using the JONSWAP spectra. This curve
seems to represent a fairly good approxiration for the mean of LI
vs. Qp. An approximate linear relationship for these wave group
parameters is

L1 = 0.2 Op + 0.9. (3)

Eliminating Qp from (2) and (3) yields

Li = R(1) + 1.1 (4)

D. Joint Distribution of Successive Wave Heights

For sake of brevity we shall not present the details of the joint
distribution of successive wave heights. Specifically, we mention

,,\... .
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results of computations of the ratio of Hi to the expected value of
Hi+ 1 from the joint distribution. If Hi and Hi+I were
independent, the expected value of Hi+l/- o would be 2.51 under
the assumption of Rayleigh distribution of wave heights, note the
straight dashed line in Figure 17. Statistics of the field wave data
shows that successive waves with Hi/Jmo > 4 have a higher ,-
correlation than smaller waves. This fact further justifies our
choice of Hi > Hs for defining wave groups.

V. COiPARISOUS OF LABORATORY AND OCEAN WAVES

So far we have presented results of wave measurements from the
laboratory and wind seas. The organized wave trains and packets in
the laboratory experiments have features that we can relate to
phenomena frequently seen in ocean waves, such as short crestedness,
spilling breakers and directional spreading. The strong visual
similarity of natural and laboratory waves inspires us to propose that
the phenomena are governed by the sane processes.

Before discussing the similarities, we should mention differences
between laboratory and ocean waves. The laboratory waves come from a
spatially compact, coherent source that creates Stokes-like waves.
Harmonics of the finite amplitude waves are phase locked. Ocean wind r
waves are generated by randomly distributed turbulent atmospheric
forcing that appears to act directly only as long as the wave phase
speed is less than the wind speed. Another obvious difference is
wavelength; the laboratory waves are on the 0(1 n), whereas their
visual oceanic counterparts are typically somewhat longer and further
from the gravity-capillary regime. Although we could describe more
differences, such as boundary effects and effects of dissipative
turbulence, we refer the reader to Su (1982a,b) for more extended
discussions,

A. Short-Crestedness and Directional Spreading

Deep ocean waves, particularly in growing seas, are usually short
crested; the crestlength is on the order of the wavelength. The short
crests can be attributed to modulations produced by waves travelling ,-:-:.- . -

in different directions, instabilities or bifurcations. Nature
probably allows all of these phenomena a range of admixtures, but the
laboratory experiments give some sharp focus on wave instabilities and
bifurcations. The added acuity allows us to see that even small
perturbations on waves of moderate ak create rapidly growing
instabilities. The compounding of two- and three-dimensional
instabilities, and bifurcations create short-crested waves.

Oceanic waves are not generated by a coherent source, nonetheless
the perturbations will be present and the most unstable modes will
amplify. These two-dimensional growth processes will modulate the
waves to form groups containing waves steep enough to accelerate the
growth of the three-dimensional instability and, finally, breaking.

•...-
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Weak resonant interactions possibly complement wave instabilities.
The laboratory results give clear evidence that bifurcations and
three-dimensional instabilities lead to breaking waves and spreading
of energy away from the primary wave direction.

In growing seas dominant waves may often have ak = 0.14 to 0.18,
the range in which modulational instabilities grow rapidly, so it
appears reasonable to surnize that the ocean wave instabilities lead
to short-crestedness. The generation of short crested waves spreads --
the directional power spectrum. The experiments also show that
three-dimensional wave breaking may be an additional source of
directional spreading of wave energy.

B. WJave Breaking in Deep Water

We have been impressed by the apparent similarity of the spilling
breakers seen in the experient and white-capping deep sea breaking -
waves. In the laboratory we found that wave breaking is the result of
three-dir.ensional instabilities and symmetric bifurcations. Analyses
of stor wave records show that many waves have sufficient ak to - -

trigger the sequence of these types of instabilities and bifurcations.
Mlore indirect evidence of the physical similarity of these

processes cones fron the group properties of storm waves; it appears 3
that wave groups contribute to the most energetic bands of the
spectra. The probabilities of occurrence of these groups exceeds that
of a narrow band Gaussian process. From this we surmize that
modulational instabilities and bifurcations tend to reinforce phase
locking of wave components; this also exists in ocean waves and leads -

to wave breaking. Donelan, Longuet-Higgins and Turner (1972) observed
that oceanic wave breaking appears to happen most often at periods
twice the dominant wave period. This is consistent with the
experimental results of the three-dimensional breaking waves in the
most frequent configuration of the symmetric bifurcation (§111).

C. Giant Waves

We now add another example of evidence for strongly nonlinear wave --..•
evolution. This concerns the so-called "giant" waves encountered in
the Aghulas Current and, less frequently, other regions of the oceans. . .

-*" These types of abnormally high waves have been described by ilallory . -

(1974) and Hamilton (1980). Results of our experiment that appear to
- bear on this phenomenon are the observations of rapid growth of wave

-* height due to modulational instability . The giant waves appear to be
in small groups that arise as a result of rapid changes in the wind or
current field through which large amplitude swell passes. Swell
entering the Aghulas Current from the south (with ak = 0.08) increases

* steepness as it interacts with the opposing current. The increase in
steepness to ak = 0.12 is sufficient to bring the swell into a range '

. where rapid growth of modulational instabilities creates wave packets
- containing some large steep waves.

. %%-.-
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In the laboratory we found that the modulational instability
could create waves with heights two times that of the initial waves.
Intense ilodulation can also occur as a result of rapid and intense
change of wind speed and direction in the presence of swells, such as
in the case of the passage of a squall line (Hamilton, 1980). The
abrupt wind change rapidly generates waves that may increase the --.
steepness of the initial wave field by the process of long-short wave
interactions. These instabilities could be the sources of anomalous
waves. Although the connections of the laboratory and oceanic
processes are tenuous at this stage, the roles of nonlinear
instabilities and bifurcations in ocean wave evolution seem to be -A
important.

D. Implications to Iaval Hydrodynanics

As efforts progress in numerical simulations of hull response, it
is clear that the representations of the forcing field, such as waves
and currents, need to he accurate. The occurrence of wave groups
conplicates the response rnodel by introducing conditions that require
the model to have memory for several wave periods. For example, a
ship underway in heavy seas may ronentarily be loaded by water trapped
on the open decks. This status could be precarious for a damaged
vessel since there is a significant probability that the first intense
wave will be followed by another. The second wave could have somewhat
greater impact than the first, due to the mass of water added by the
first wave.

VI. APPLICABLE THEORIES

A. Applicability of Theories

Throughout this paper we have described our observations in terms .

of instabilities and bifurcations. This temrinology has been chosen
to describe processes that have similarities with recent theoretical
results. All of these theories have assurmed that the initial wave
trains or packets have finite amplitudes. The instabilities arise
from the presence of relatively small perturbations to the wave field.
The theoretical results that are based on snall perturbation analyses
are not strictly applicable to our observations in every case, since
the observed perturbations are not always small. The nonlinear wave
evolution resulting from finite amplitude disturbances is different
from the theoretical assuriptions. Later stages in the development of
the transitional phenomena, such as irreversible frequency downshift,
wave breaking and the self-limiting of instabilities at finite
amplitudes are not in the scope of present theory. levertheless, the
theoretical results have given valuable aid in developing working
analogies of complex phenomena. Mathematical methods currently being
developed in other branches of physics, renormalization theory for
example, nay eventually overcome the major mathematical problems and

W.*
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quantitatively describe the natural phenomena (See Dewitt, 1982 for
examples).

B. Wave Instabilities

Benjamin and Feir (1967) showed that two-dimensional Stokes waves 7
were subject to instabilities when perturbations at higher or lower
frequency side bands were introduced. Experimentally, these side-band
instabilities are observed as modulations of the carrier wave, hence
the term "modulational instabilities". Longuet-Higgins (1978)
extended the Benjanin-Feir theory to all waves of large amplitude.
[lodulational instabilities of this class have been observed (§2) and
are the source of the incipient rodulations of wave trains and
packets.

Three-dimensional instabilities of steep waves have been
predicted by McLean, et al. (1980) and McLean (1981). This type is
most clearly manifested as the dominant instability for aok o >
0.3, although it is present for small steepness. This instability has
the critical feature of phase locking with the prii.ary wave, so it
must travel at the phase speed of the carrier waves. Observations of
the crescent-shaped, three-dimensional instabilities correspond
closely with the theoretical predictions of symmetric bifurcations
given by Saffiian and Yuen (1981). There are some clear differences,
however. The observed waves break and appear to dominate the carrier
waves.

Saffman and Yuen (1980) predicted a second class of bifurcated ,v.
waves, the skew bifurcations mentioned in §3. Our observations
confirm existence of this phenomenon and are quantitatively consistent
with several features, such as angle of divergence of the wave vector
relative to the primary, but the group speed differs.

In our experiments we found that the intense nodulational
instabilities created wave packets containing waves with ak large
enough to trigger the three-dii.iensional instabilities. The small
perturbation analyses of the present theories do not include these
forcing conditions. Generally, it is clear that many of the
qualitative and some of the quantitative theoretical results are
consistent with our observations.

C. Envelope Solitons ,

Another iportant observation in the experiments is that wave
packets tend to sort themselves out into stnaller packets of
near-permanent form, described here as envelope solitons. This packet
fissioning into envelope solitons was predicted for waves of small
aoko by Zakharov and Shabat (1972). The main features of their
theory agree well with observations with small aoko; however, for
waves with aoko > 0.1 the leading, most energetic envelope
solitons are found to have carrier frequencies lower than the initial
;ain carrier. The nonlinear homogeneous Schr8dinger equation, which
is the basis for the Zakharov and Shabat analysis does not admit

Uv
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solutions with permanently frequency-downshifted waves (Yuen and Lake,
1975; Lake et al., 1977). Presently there is no theory that explains
the frequency-downshifting information of envelope solitons.

D. Frequency Downshifting

One of the most interesting features of our experinental results
is the observation that waves with aok o > 0.1 shift energy from
the initial carrier wave to a lower frequency component. The energy
is transferred to wave components with a frequency corresponding to
the lower side band mode of the nodulational instability (Benjamin and
Feir, 1967; Longuet-Higgins, 1978). This energy extraction from the .... -

primary wave may continue until the carrier is almost totally absorbed
by the lower side band. Exchange of energy among frequency components
is predicted by Hasselnann (1962) as a result of weakly nonlinear
resonant wave interactions (Phillips, 1960). Due to the assumptions
of small steepness and long interaction times, the weak resonant
theory is not applicable to wave evolution in the ranges of ak in
storm seas and in our experiments. In addition, an important
simplifying assumption used in the theory is that the phase
relationships among the interacting field are random. As we have
noted, this assumption has limited validity due to the apparent phase
locking of components in wave packets with ak > 0.1. 7

VII. COIICLUSIOdS

lie have described several nonlinear wave processes that have
been observed recently. The initial wave steepness ranged fron 0.1 to
0.34. The general features of these processes correspond well with
predicted instabilities and bifurcations, but significant advances in
theories will be needed to explain the observed frequency down-
shifting, energy transfer and dissipation. The tendency of
moderate-to-steep waves to form phase locked groups was observed in
the laboratory and in oceanic storns. Several characteristics of the
ocean waves are very similar to the laboratory waves, so we suggest
that comparable processes are working in both domains, but i i
considerable work will be required to quantify this conclusively. The
existence of wave groups of large-anplitude could be a threat to ship
survival in extreme seas, particularly when the vessel is damaged or
disabled. Je shall be able to make more accurate predictions of sea
state and ship response to heavy seas, if we can improve our
understanding of these strong nonlinear wave phenomena.

The high incidence of wave groups of higher waves in storms
should be considered in formulation of new statistical theories of
deep water waves. Existence of these components with strong -
interactions compells us to suggest that the weak multiwave resonant
interactions nay not be the major source for the wave-wave energy
transfer. Sporadic, but strong interactions should also be included
in the energy budget.

N-4S.
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Figure 1. The space-time evolution of a continuous wave train with an initial

steepness, aoko 0.15 and fo 1.23 Hz.
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60 30(Oe

Figure 3. Time series of surface displacements at six stations for a moderate
steepness wave packet (Nw = 20, aoko = 0.22, X0 = 0.82 mn and f
1.15 Hz). The packet fissions to form five distinct envelope
solitons (61 in).
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Figure 4. The evolution of l ong wave packets includes packet collisions that
occur as the lower frequency fission products pass through the higher
frequency, slower packets.
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bands of high and low amplitude. In region (c) interference bands
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In zone (d) Benjamin-Feir-type modulations of the skew waves are
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Figure 11. Three observed configurations of symmetric bifurcations from steep
wave trains with 0.25 < a ko< 0.34: (a) with the periodicity of
two primary waves, (b) with the periodicity of three primary waves,
and (c) with the periodicity of four primary waves.
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Discussion

A.T. Chwang (University of Iowa)

In one of your earlier slides you showed the evolution of envelope
solitons. However, they are not arranged in descending order in ampli-
tude. We know that a soliton with larger amplitude propagates faster
than one of smaller amplitude. I presume if you measure further down-
stream you will find the envelope solitons will arrange in descending
order in amplitude. My second question concerns the interaction of
waves. I would expect that the resultant wave would have an amplitude
greater than the sum of two incident waves. However, your slides indi-
cate otherwise. Would you please explain? Perhaps the result depends -

on the oblique angle of the two incident waves.

B. Johnson (U.S. Naval Academy)

Would you expect the same results if the wavemaker generated a
perfect Stokes wave with no harmonic distortion introduced by the wave-
maker? In other words, is it possible to separate the observed insta-
bilities into those caused by the imperfect motion of the mechanical
wavemaker and those predicted by Benjamin and Feir?

How time and wind dependent are your outdoor results? Do the
observed phenomena appear the same so long as the wind speed is below a
certain value? Do you use a wind-speed criterion above which experi-
ments are not undertaken? This information would be useful to other
outdoor seakeeping and maneuvering basins.

0. Sarda (University of Iowa)

Would Dr. Su tell us briefly about the measurement system and if
the data set was obtained in analog form only (as is seen from the
figures) or in digital form, a form convenient for storage and
analysis, also.

M.P. Tulin (Hydronautics, Inc.)

My comment supplements the remark that wave steepness is not lim-
ited by the occurrence of the Stokes limiting wave but by instabilities
begirning earlier. Duncan and I have found the same to be true in the
case of waves produced by a moving hydrofoil, where breaking usually
begins on the first wave to the rear at a maximum wave slope of 17-18"
(rather than 300) and seems to be associated with two-dimensional insta- -

bilities of the type calculated by Longuett-Higgins.

. .- ...........-

.. . . . . .
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Author's Reply

M.-Y. Su (NORDA)

To A.T. Chwang

Your statement of descending order in amplitude of envelope soli-

tons evolving from a wave packet is correct. The example I show in the
presentation is still in the process of evolution, in which the middle
envelope soliton has not reached its final stage yet. In our experi- -.

ments, which are not presented here, there are cases that demonstrated

exactly what you described.
Your second question is believed to refer to Figure 14 in which

the amplitude amplification versus wave steepness is shown. The in-
crease versus wave amplitude here is due to nonlinear instability of
the Benjamin-Feir type but not superposition of two wave trains. As
such, the amplitude amplification factor can be smaller than 2.

To B. Johnson

We have purposely used two quite different types of plunger shapes
for studying the instability problems of both two-dimensional and three-
dimensional phenomena. No basic difference has been found. As such, we
could state that these phenomena are independent of the specific charac-
teristics of the wavemaker.

Since our large basin is outdoors we need to wait for calm weath-
er to conduct experiments. In our locality, we can often expect such
conditions to prevail during the early morning and late afternoon.
Normally, wind speed is less than 1 m/sec for our experiments. The phe-
nomena with which we are concerned here are mainly due to subharmonic
perturbation and/or bifurcations, which are not affected by the small
wind waves at the superharmonic scales.

To 0. Sarda

The wave data (i.e., surface elevation) are measured by up to 20
capacitance wave gauges simultaneously. The data are digitized on-
line at a normal rate of 40 samples per second and recorded on mag- -
netic tapes. To produce the time series of wave evolution as shown in
the presentation, these digital data are converted back to analog form
and plotted. Other wave characteristics are all processed digitally.

- . . . -%
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To M. Tulin

The breaking waves investigated by Lonquet-Higgins and Coblet is
two dimensional in nature, while the breaking waves in our experiments
presented here are due to a new kind of three-dimensional instability.

O -
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Binnie Waves
by

Chia-Shun Yih
The University of Michigan

Abstract

Surface waves created by water flowing in an open channel with
vertical side-walls and variable width are considered and analytical
solutions given. It is shown that there are infinitely many Froude
numbers, depending on the wavenumber of the channel-width variation
and on the transverse wavenumber, at which the amplitude of one of the
wave components becomes infinite. These critical Froude numbers are
interpreted physically. The waves created generally have a diamond
pattern.

The case of channels of varibale depth as well as variable width
is then investigated and the solutions given. Finally, internal waves
are treated briefly and some results presented.
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I. INTRODUCTION -:.

'..

More than two decades ago Binnie (1960) observed self-induced sur-
face waves in a channel with vertical corrugated side-walls. The lon-
gitudinal wavelengths of these waves were observed to be an integral
multiple of the basic wavelength of the wall corrugation, and there
were transverse wavenumbers as well, so that the waves observed have a
diamond pattern in general. I believe that although there are papers
in the literature dealing with corrugated walls Binnie's paper is the
only one that deals with dispersive waves, which are much more inter-
esting and richer in substance than the nondispersive sound waves.

Ii, his brief analysis Binnie treated the side-walls as straight.
In doing so he necessarily did not reveal the mechanism by which his
waves are created and the amplitudes of the many wave components, each
with a different transverse wavenumber, are determined. His corru-
gated walls serve merely to provide the basic longitudinal wavelength.

In this paper Binnie's waves will be given a more complete analy-
sis and the analytical solutions presented. The waviness of the side- '. -
walls will be taken fully into account. It is found that resonance
occurs at an infinite number of critical Froude numbers (or internal
Froude numbers for the case of internal waves), at which the amplitude .
of one of the wave components becomes infinite. The critical Froude
numbers are given a physical interpretation which illuminates their
significance. For a given Froude number, there is in general one wave --
component with the maximum amplitude, and this component must be what
Binnie observed. The analysis given here is capable of predicting
which component will be dominant at a given Froude number.

The case of variable depth (as well as variable width) will then .
be considered, and similar analytical results given. Finally, internal
waves in a channel with vertical side-walls and variable width will be
briefly treated, and the results for the special case of two fluid

* layers of equal depth presented.

II. FORMULATION OF THE PROBLEM

The theory will be constructed on the assumption of irrotational
flow. Let x, y, and z denote Cartesian coordinates measured in units
of L, which is the half-width of the channel at some section, and let
U be the mean velocity in the x-direction. Then the velocity compo-
nents u, v, and w, for the directions of increasing x, y, and z, re-
spectively, will be measured in units of U and the velocity potential
will be measured in units of UL. We shall then treat the Cartesian

coordinates, the velocity components, and as dimensionless.

4 . .-

. . . . .. . . . . . . . . . . . . .... . . . . .. . . . . . . . . . . . . . . . . . . . 4 . .;

• '. . . . .,
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We have

where the subscripts denote partial differentiation. Since the fluid \.

is assumed incompressible, satisfies the Laplace equation

+ y = 0. (2)

Let the displacement of the free surface above its mean position (or
the plane of the free surface if there were no flow) be denoted by i,

measured in units of L. Then the kinematic condition of the free sur-
face is

uc +vC = w, (3)x Vy ...

and the Bernoulli equation written for the free surface is

2 2 2 -2 2 2
u + v + w + 2F constant, = U /gL. (4)

Combining (3) and (4), and using (i), we have the free-surface condi-
tion

0 02 + 2 +2 )+2-2 = 0. (5)
x x + y ay (  y

If the dimensional mean water depth 13 h, and ,.

hd = - (6)
L '

then the condition at the bottom is A.

0 0 at z = -d (7)

The condition at the side-walls is

%

114 1,
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4n 0 (8)

where n is measured in a direction normal to the side-walls. Equation
(2), (5), (7), and (8) govern the fluid motion in the channel.

II. A TRANSFORMATION FOR THE CHANNEL SHAPE

So far we have not accounted for the variation of the channel 0%.
width. This variation is represented by the transformation -(

x + iy c + i8 + a sin k(a + is)

or

x - a + a sin ka cosh ka,

(9)
y - + a cos ka sinh ka,

where k is the wavenumber of the channel-width variation, and a its
amplitude. The Jacobin of the transformation is X-.

a= y 1+ 2kcskcsk8+ 2 2 2
J1= + 2ak cos ka cosh k + ak2(cos ka + sinh ks). (10)

The boundary of the channel is given by 8 = + 1.
In terms of a, 8, and z, (2) and (5) become

10J(4 + + z 0, (11)
J~ BOc 8 zz

and

1 + a 2 2 2 -2
j( a as).? [ j<%t + 08 + 0z+ 2F O = 0 (12)

The condition (7) remains the same, but (8) is now replaced by

O 0 at B + 1. (13) N

W.".."'-
........................................... .. * V
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The governing system now consists of (11), (12), (13), and (7).

VI. SOLUTION OF THE PROBLEM

It is evident that the amplitude of the waves produced by the
channel-width variation is proportional to the amplitude of that varia- .
tion. Hence we assume

= 0 + a 1 + a2 2 + (14)

Since in the absence of any width variation the flow is just a uniform
flow in the x or a direction, it is evident that k

= C. (15)

Substituting (14) and (15) into (11) and (12), and sorting out the
terms of first order in a (Remember that J contains a, a, and s.),
we have

i +  Izz = 0 (16)

-2 2 .2*.

¢l F+  = -k sin ka cosh k8. (17)

The solution satisfying (16), (7), and (13) is, since cosh k8 is even
in 8,

= B sin ka cos nn8 cosh (nz + d) (18)
n (

where

2 n22) 1/2,-..

= (k2 + n2)1(19)

and B is determined by (17). The result is .-
n

A. %% %

~J

N ~ ~ ~ - .S
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k2 i 2(-l) n+ik3 sinh k
n f cos nO cosh kO da 2 (20)

-1 Yn

where

2 -
C - k  cosh ynd + sinh ynd. (21)

To the order a, then, C is determined from (4) to be . *

= - ak -I cos ka B y sinh ynd cos n7r (22) .'--
n=O

which gives a diamond pattern for the free-surface displacement. In
obtaining (22), we have made use of the result

2 2 1 2 2 ,'
x y J a

as well as (20), which gives the Fourier coefficients for cosh k 3.
The free-surface displacement is shown in Figure 1 for one half wave-
length of the channel-width variation.

Note that as Cn-O , Bn . The infinite number of values of F given
by Cn = 0 then are critical values, at which resonance occurs. For
Cn = 0, -

2  wk
y tanh y d2 n n

F =

k 2  Y~n

or

n g h tanh Y d 1/2

YnU n

In (23), k/y is the cosine of the angle between the a-direction and
the direction normal to the wave fronts of the slanted waves with
wavenumber ynd (which is the wavenumber non-dimensionalized with the
length h instead of the length L), and the right-hand side is precisely
the wave speed of these waves. Thus, the n-th critical value of U is
such that its component normal to the fronts of the waves with wave- 9

%9,.

.% *.*
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number ynd is equal to their wave speed. When U has such a value, the k "
amplitude of the Yn-waves (with wavenumber Yn or ynd, depending on the
length scale used to non-dimensionalize the wavenumber) becomes in-
finite, and resonance occurs. This is reminiscent of the resonance
that occurs when a layer of water flows over a wavy bottom with a speed
equal to the speed of waves with the same wavenumber as the bottom.
But now there are infinitely many critical values of U, and slanted
waves are involved, so that the resonance is somewhat more subtle.

Higher approximations can be carried out systematically. For the
sake of brevity we shall refrain from doing so, but shall mention that
at the second approximation two new longitudinal wavenumbers will be
produced: zero and 2k. The former give no finite critical values for
U, whereas the latter does -- in much the same way that the basic Ion-
gitudinal wavenumber k gives rise to such critical values, as shown in
the foregoing. At the third approximation the new wavenumber 3k is
brought forth, which gives rise to another set of critical values for
U. Thus there are infinitely many sequences of critical values of U,
each sequence consisting of an infinite number of such critical values.

V. CHANNELS WITH VARIABLE WIDTH AND DEPTH

Since natural streams have variable depth, often with a maximum

depth much smaller than their width, we shall use the shallow-water
theory to deal with the case of variable depth. We shall retain the
meanings of the symbols used so far, but d now is given by

d 1 2 (24)

The total (dimensionless) depth is

D = d + C, (25)

and the equation of continuity is

x x a 0 (26)
TXDd +D ay y

and the Bernoulli equation for the free surface is

S2 g2 2
S 2 + 2F-2  = constant (27)

~x ~y

.1

e: ,..-,:
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where zis neglected, in consistency with the shallow-water theory.
Converting (26) and (27) to the ct-B coordinates, we have

(d4B)B + d, + = 0, (28)

and

1 2 + 2 + 2F = constant, (29)

-, where J is given by (10).

Using (10), (14), (15), and (29), we have

= 2 2 2 2 ~ .-

S=- aFl -aFk sin ka cosh kB + 0(a). (30)

Substituting (14), (15), (24), and (30) into (28), extracting terms of
order a, and writing

= sin ka f(B), (31)

we obtain

2 2 2 k 2 (l 2 )f F2 2
[(i - B2)f'] + Ik2F - k2(1 - B2)]f = F k cosh kB, (32)

where the primes indicate differentiation with respect to B. Equation
(32) is singular at B = + 1. What is needed is a nonsingular solution
of (32). This solution can always be found, but if k2 is not small ..

compared with 1 much computation is needed. Fortunately for most
natural streams k2 is small, permitting a simple calculation.

Consider the equation

[(l-82)G'] + [X - k2(l - B2)]G 0, (33)

and seek nonsingular solutions of this equation. Let

O+ k2 + k42 + ... (34)

...... ..

. %.

... .... . .. .. ,, ,. . .. . ,
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p..2 4G = + k g + k g +  
(35)

0 1-2

Substituting (34) and (35) into (33), and collecting terms not con-
taining k, we obtain the Legendre equation for go. For a nonsingular
solution, then,

10 = n(n + 1), go Pn(8) (36)

where Pn(O) is the n-th Legendre polynomial in B. Collecting terms of
order k2 , we obtain . .

Lg I  [(1 - B 2)g'] + n(n + l)g I  = (1 - 02)g 0 - lg 0 . (37)

First, the requirement that g1 be nonsingular demands that the right-
hand side of (37) be orthogonal to go. (To prove this statement, one
needs only to multiply (37) by go and integrate, by parts if necessary,
between -1 and 1.) This determines p, and g, in principle. In prac-
tice it is easier to use the formulas on page 115 of Jahnke and Emde
(1945), for instance, and obtain

L' 1 (a2P 2n Pa2 + 2n 2+2n-i P ,

6+4n n 2n-1 n- n (2n+3)(2n-l)

so that

1 (.2P 2n " (38)T '[ gl -- 6+4 n -1 n-i )l(8 .. L..

1I - 2n2+2n-1 (39)
(2n+3)i(2n-s)"ve,9w

For a given n, we shall denote the corresponding X and G by Xn andGn, respectively. Since the right-hand side of (32) is even, we have
n 2m, where m is an integer, including zero, and

~AD

f(8) = B2 G 2m (40)

% A.-

-% %
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Substituting this into (32), and using the orthogonality of the eigen-
functions G2m, we obtain

B2m (kF X2 ) G d k cosh k G da, (41)
2m Bm (k 2m

which determine B Then (40), (31), and--

= a + al r.

2
give the solution up to O(a). We note that stopping at terms of O(k2 )
involves an error of 0(k4), which for k = 1/4 is negligible, and for
k = 1/2 is of the order of 0.06.

Let the two integrals in (41) be denoted by II and 12 (Il for the i, -

left-hand side), we obtain the following table, for n up to 4.

TABLE 1. Values of Integrals

k n 0 2 4

II 2.014 0.399 0.222
1/4 X-

1 i 2.028 10.006 0.000

1 2.056 0.395 0.222

12 1 2.114 .0.022 j 0-000 I___IO.__000 -- -

For k2F2 = ~2m, m = 0, 1, 2, ... , there is again resonance. .
The physical interpretation for these critical values is analogous to

that for the case of vertical side-walls, but the arguments lose some, ,
sharpness due to the fact that the Legendre polynomials cannot be
easily combined with sin ka or cos ka to form a sine or cosine func- - .
tion which is easily seen to represent waves. q.

VI. INTERNAL WAVES

Since it is easier to create internal waves of large amplitudes,

internal waves created in channels of variable width by flowing water -

will be briefly discussed. The solution for internal waves so created -

• .,.. € .-'.
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can be obtained by the same approach as described in Sections 2-4. The
results for the case of two layers of fluid of the same depth h and
with density p' for the upper layer and density p for the lower layer
will be given here, because they are obtainable from (18) - (22) upon
simple modifications of coefficients. If in the Cn the F-2 is replaced

-2 = p-' -2
byFi - ' F , and then the B determined by (20) is multiplied by

P P" (18) and (22) will give the solutions for 4 (of the lower layer)
p+p,

and . As for 4', the velocity potential for the upper layer, it is

4' - n 0 B sin k cos n7$ cosh yn (z - d) , (42)n=O nn

where Bn is the modified Bn obtained by the process mentioned in the
fore-going.

Finally, we note that the theory is not merely for supercritical
flows, and that when k is large waves of large amplitude can occur even
at subcritical speeds. The figure given in this paper is for super-
critical speeds, for the F would be larger than 1 if it were based on r
the mean depth, and the pattern agree qualitatively with that obtained
from the classical shallow-water theory at supercritical speed and for
vertical side walls. But this should not obscure the fact that the
present theory is for all Froude numbers, however large or small.

We note also that Binnie (1960) observed time-pericdic oscilla-
tions in his waves. These are freely propagating waves with longitudi-
nal wavelengths which are integral multiples of the wave length of the
corrugation and transverse wave numbers (denoted by n here). They are
not bound to the corrigations studied in this paper, and their produc-
tion is presumably due to some mechanism of instability not discussed
here. . \
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Figure 1. Graphs showing the free surface, at F 2, k 0.4, d 0.2.

The maximum dimensionless C/a is 0. 242, at kot = TTr (or 4a/Tr = 10) and
=0. On ka = 0. 5Tr, C = 0.- The dimensionless C/a is plotted above

or below the dotted lines. The figure can be reflected across the
planes a = 0 and =0 sequentially to produce the free surface for a

whole wavelength and for the whole channel.
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Discussion
S•

A.T. Chwang (University of Iowa)

Regarding the question of resonance, I would imagine that for a -. '

simply divergent or convergent channel with straight side walls, there
would be a continuous spectrum of resonant frequencies. Would you \ -

please comment on it and tell me if I am wrong.

L.J. Doctors (University of New South Wales)

Professor Yih takes into account the effect of the wavy channel
walls by means of the transformation given by Equation (9).

Since the amplitude of the waviness in the wall is considered to
be small, it would also seem possible to represent this effect by means m .
of a source distribution on the walls. To first order, this source -l
distribution would be constant with respect to depth below the free
surface but vary along the channel.

Could Professor Yih comment on this approach and compare it with
his own? It should be added that an infinite set of image source
distributions would be required--as is usual with tank problems.

E. Palm (University of Oslo)

Since the driving mechanism for the waves is revealed mathemati-
cally in the form of a forcing term in the free-surface boundary condi-
tions, should not these waves formally be closely related to waves due
to pressure applied on the free surface?

Author's Reply

C.-S. Yih (University of Michigan)

To T. Chwang

For a divergent or convergent channel one can use a different con- .0
formal mapping from Equation (9) in my paper, and then the solution
would involve Fourier integrals with a continuous spectrum in k, with
the Fourier coefficients to be determined. The very interesting thing
is that the value of k that, if discrete, would cause resonance, will
now give the lee-wave (which, in general, has diamond patterns) compo-

*. nents after the contraction or expansion.

*L
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To L.J. Doctors

Professor Doctors is right in saying that the effect of the wavy
wall can be represented by sources and sinks. The strengths of these
sources and sinks are independent of depth to the zeroth order, i.e.,
if the effect of surface waves is ignored, but will vary with depth
already in a first-order calculation. For large composite wave num-
ber Yn, this variation is confined to a thin layer near the free
surface. For n - 0 and k (the longitudinal wave number) very small,
the variation will be weak.

If the variation of the channel width is periodic but otherwise-
arbitrary, one can use a Fourier series in my approach, and if it isC., not periodic, under certain restrictions a Fourier integral can be
used. I prefer this approach to using sources and sinks, because it
is simpler and more elegant, if I may say so. While the method of .

sources and sinks can always be applied, it is cumbersome. Among -
other things, one has to calculate for and trace out the boundary
shape from the source-sink distribution, which is a nuisance.

To E. Palm

Professor Palm rightly perceives the analogy of the driving
mechanism given in my paper with a pressure distribution applied at
the free surface of water flowing in a straight channel. Indeed,
Equation (17) indicates this analogy, with the right-hand side, which
arises in a roundabout way from the variation in channel width, stand-
ing for the fictitious pressure distribution.

(,...-,:.
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Three-Dimensional Nonlinear Long
Waves Due to Moving Surface Pressure

De-Ming Wu and Theodore Y. Wu
California Institute of Technology

Pasadena, California 91125

This is a continuing study of long waves generated in shallow
water by a moving surface pressure disturbance; the method takes
both the nonlinear and dispersive effects into account for the subcriti-

. cal, transcritical and supercritical regimes. The long wave model
adopted here is the one recently developed by Wu (1979, 1981), which
is of the Boussinesq class but generalized to allow two horizontal
dimensions of wave propagation in water of both temporally and
spatially varying depth. A finite-difference numerical method has
been developed to solve this general class of unsteady, three-

'" dimensional, nonlinear long wave problems. A simple approximate
" -. open-boundary condition has been found to work effectively and suc-

cessfully as a 'radiation condition' in suppressing nonphysical wave
reflections from the open boundary into the domain of interest. A
series of numerical examples will be presented to illustrate the theo-
retical predictions. They include a particular test case of a steady
two-dimensional disturbance for which an exact solution is readily . .. -
available for comparison. The Froude number Fh = U/ J*-F (based
on the moving pressure velocity U and water depth h) chosen for the
computation ranges from 0.4 through 1. 4, which typically covers the
transcritical regime. Some salient new features of the wave profile
and wave resistance can be attributed to nonlinear and dispersive
effects.

A new feature of particular interest is that after a free-
surface pressure disturbance is kept moving at a transcritical speed
for a sufficiently long time, a solitary wave will emerge just ahead of
the disturbance, and finally surges away from the disturbance to
propagate ahead as a free solitary wave. The process seems to con-
tinue almost periodically. The central problem considered here may

S have applications to air-cushion vehicle, ship motion in shallow
water, and possibly also to problems of meteorological interest.

k "On academic leave from the Harbin Shipbuilding Engineering
Institute, Harbin, China.
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I. INTRODUCTION

In 1834 John Scott Russell (1838, 1845) was the first to observe
the 'singular and beautiful phenomenon' that a 'wave of a large solitary

7elevation' formed, surged ahead free from a boat, when the boat drawn
by a pair of horses suddenly stopped. Thereafter the wave continued
its own course along a channel without change of form and speed. This
keen observation of Russel and his subsequent pioneering experimental
studies stimulated much strong interest as shown notably by Boussinesq
(1871, 1877), Rayleigh (1876), and Korteweg & de Vries (1895). These
early contributions of great significance opened an important chapter of - 4
hydrodynamics. In the past two decades, a renewed interest in long
waves has been intense, and can be traced back to the discovery of
Zabusky & Kruskal (1965) indicating that solitary waves invariably
emerge in the asymptotic solution of the Korteweg-de Vries equation.
The literature has been numerous and rich, and we refer the interested
reader to recent reviews, e. g. by Miles (1980), Yuen & Lake (1982)
where earlier reviews can also be found.

In naval architecture and ocean engineering, it has long been
known under the name of shallow-water effect and restricted-water
effect (with side wall constraints) that flow configurations and trim of
ships moving in a shallow and restricted water present a striking con-
trast to those of ships sailing in open deep sea (see e. g., Kinoshita
1954; Inui 1954; Graff, Kraft & Weinblum 1964; Kirsch 1966; Graff &
Binek 1969; and review by Wu 1972). The flow field of a ship sailing
in shallow water undergoes drastic changes of finite amplitude from a
-wave type to an entirely different type as the 'depth Froude number'
Fh = U/gT (based on ship speed U and water depth h) increases
from the subcritical (Fh < 1) to supercritical regime (Fh > 1). In
the transcritical regime (F = 1), the nonlinear effects become so
predominant that a nonlinear theory is necessary to yield a valid solu-
tion, as demonstrated by Lea & Feldman (1972) who developed a
method of systematic matched asymptotic expansions to evaluate the -"
nonlinear effects on ship resistance, sinkage and trim.

It is generally believed that both the nonlinear and dispersive
effects must be accounted for in a balanced manner to solve trans-
critical ship problems. Regarding the contention that a strong inter-
play of nonlinear and dispersive effects may exist in transcritical ship
motion, considerable light has been shed by the recent discovery of
Huang, Sibul & Wehausen (1982). In their towing tank experiment with I *i-

-

a ship model (a Series 60, block 80 hull, though the hull shape was
said to have little to do with the observed phenomenon) in very shallow
water (about 0. 5 ft), they found that approximately two-dimensional
waves spanning across the tank were generated, one after another, to
move down the tank ahead of the model. The longer the run, the more
of them appear. This has led the authors to conjecture that "the
motion does not approach a steady state, but that solitons will con-
tinue to be generated as long as the model keeps moving".

To facilitate our calculations of the nonlinear and dispersive
effects on the generation and evolution of long waves, we take here a

, .1.

i F-"":

-: : ::i :::" :: - :": ":':: : - : " " -p-1 : --: -i:: ., - '- ; .::: '--.% : '" : -: -' - - -:"' -: - : : '- ''' :" ' :-, .: " -: -' -

" " " " " " " V" " " " " " " ' " ' " . ' " " " " " , , -v , ' -- ' " . " , . . ' -' .

I'"" :"]'." " ; ..' " .;..'' .." .' ..," -,.. '''"" ."'.. .,.; "-" . ... .." % €, ., ' " .' .,. .



105

new approach based on the layer-mean transport equations introduced
by Wu (1979, 1981). This set of equations was derived by averaging
the three-dimensional Euler equations along the vertical axis across
the water layer and then expressed, through expansion for long waves,
in terms of the water surface displacement and layer-mean velocity
potential. They admit two possible forcing functions, one being the
free-surface pressure disturbance and the other due to the vertical

4# displacement of the floor supporting the water layer, both of which
assume the form compatible with the long water waves they generate.
This nonlinear dispersive long-wave model has been applied by
Lepelletier (1981) for calculating harbor oscillations and by Schember
(1982) to study propagation and evolution of three-dimensional tsunami-
like long waves in coastal water. We undertake here a study of the
generation of long waves by traveling free-surface pressure distur-
bances and report some preliminary results.

II. THE NONLINEAR DISPERSIVE LONG-WAVE MODEL

The problem of our central interest is concerned with the ..

*" generation and propagation of three-dimensional long gravity waves
of finite amplitude that can propagate in two horizontal dimensions
r = (x, y) in a layer of water whose initial free surface, when unper-
turbed at time t = 0, is at z = 0 and whose floor is at a prescribed - - -
depth z = -h(r, t). The forcing functions responsible for generating .,

waves will include the free-surface pressure distribution po(r, t)
acting over the displaced water surface at z = 4(r, t) and the unsteady
movement of the water floor given by z = -h(y, t). The surface pres-
sure may be used to represent disturbances of meterological and
naval architectural nature such as in applications to air-cushion vehi-
cle and ships, while the floor movement can simulate tsunami-genic 1 

'

disturbances of the ocean floor. In our exposition, however, these
forcing functions will be confined to such a type that the resulting
waves will have lengths, K, primarily large compared with the char-

acteristic water depth, h0 , and will have typical amplitude, a, small
relative to h o , i.e.,

ce = a/h 0< I, E = ho/K < 1 . (I)

(The condition of c << I holds for long waves by definition. ) Further,
we shall concentrate our attention to the case when the magnitude of -
a relative to c2, known as the Ursell number, is of order unity,

2 2/3 --l-

ur = a/,E = a = (1) . (2)

0 i:77

The gravity waves satisfying conditions (1) and (2) will be said to be- .

long to the "Boussinesq class". It signifies the case in which the

-'.'p J~ '-.d

"" . p. j. N. ,N.
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nonlinear effects causing the waves to steepen forward, at a rate
proportional to a, are comparable in importance with the opposite
tendency, due to the dispersive effects by which waves of longer 2
lengths travel at greater velocities by a margin proportional to c .

For the theoretical model capable of representing appropri-
ately the long waves generated in shallow water by this general class
of forcing functions we adopt the one recently developed by Wu (1979, "-
1981, his equations (41) and (42)):

h h2  2
t+V • [(h+r )V] = -ht+ V" t[h(ht+ V" (hV)) - -3-- V T]Vh) (3)

1 h h 2

( )t+ !-(VT) + g + I Po [ht + V" (hV)] - -V (4)

Here, V represents the two-dimensional vector operator V- 8/8r=
(a/ax, a/ay) with respect to the position vector r = (x, y) in the
horizontal plane, and T denotes the layer-mean value of the original
velocity potential O(x, y, z, t) = 0(r, z, t) as defined by

r-, t) (,r, z, t)dz, h + (5)

-h

The velocity potential # and its layer mean are related by

1I12 I 2ZZ-' .

-(z + lh)[ht+ V (hV7)] - L(z - Th)VT (6)

From this relation one can readily deduce the velocity distribution as
((,x' pvp) and the pressure field from the Bernoulli equation,

1 2 + + 2) *(7

pp -gz - Ot - (x y z

In the sequel, the fluid density, p, and the gravitational constant, g,
will be normalized to unity and reinstated whenever needed for clari-
f ication.

The above set of basic equations (3) and (4) may be regarded
as to form a generalized Boussinesq class in view of the new feature
of the medium being now inhomogeneous (due to the spatial and tempo-
ral variation of h) and the added dimension of wave propagation.

%p "
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Strictly speaking, the consistency of the expansion procedures (see
Wu, 1979) employed in deriving (3) and (4) also requires that

Iht j/c < 0(a), jVhI < 0(1), Ip0 /PC
2 < 0(a), (c2 gh 0 ),

2(8)

where c = (gh represents the typical wave velocity. Under -
this limiting condition, the basic equations (3) and (4) are both valid
with an error term of O(aE 4 , a2CI ), as shown by Wu (1979).

Various long-wave models can be extracted directly from (3)
and (4), as their subgroups, under special simplifying assumptions. -
If the nonlinear terms are dropped from (3) and (4), we have the lin-
ear dispersive long-wave model. On the other hand, if the dispersive
effects (given by the terms involving third-order derivatives of )
are neglected, we have the nonlinear, nondispersive long-wave model
which may be regarded as the generalized Airy wave model. Finally,
when both the nonlinear and dispersive effects are neglected, we
obtain the simplest case of linear, nondispersive long-wave model,

t+ hV2 T = ht + V. (.-hh Vh) (9)

t+ g p + 1 hhtt (10)•P

Before we proceed with detailed comparison between these
models, we note that the integrals of (9) and (10) are particularly
simple when the extraneous disturbances are of the form

Po = Po(x-Ut), h = h - h (x-Ut) (h = const.), (11)ooP~-U )  h°  oh°

"" A 4

each representing a right-running wave with velocity U. From (9)
and (10) it is readily found that for p0 alone,

::.-?Z-p 2  2 P (x 'U t )  (c gh/' o ) , (12a) '

U 2c P ]
and for the case of p0 E0, but with hI given by (11),

jb
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U2% 2 2
2 21{h 1 (x-Ut)+- hhl(X-Ut)) (12b)

U c

where the primes denote differentiations with respect to the argument.
The above solutions are classical (aside from the term with h" in
(12b) which arises from the present refinement, see Lamb, 1932, Art.
177); they indicate that 4 is similar in form to the traveling distur-
bances and is in the same phase with the disturbance, or the opposite,
according as U > c or U < c, except for the critical speed (U = c)
at which 4 becomes undefined. They further imply zero wave resis-
tance since no waves are radiated from the traveling disturbances.
We shall see that these drastic departures of the solution from our -
physical experience are stemmed from the oversimplifications of the
last model, especially for the subcritical and transcritical speeds.

III. THE BASIC NUMERICAL METHOD "2.. -

In view of the basic form of (3) and (4) being the simple wave *.

equation (to the leading order in the absence of extraneous distur-
bances), the numerical techniques developed here for computation of
solutions to equations (3) and (4) are further extensions of those typi-
cally used to yield implicit solutions to the wave equations as repre-
sented in finite-difference form. Implicit methods are chosen to
allow for larger time steps and to reduce the growth of spurious nu-
merical errors of large wave numbers. In general, our computation
of 4 and F for various problems governed by the basic equations (3)
and (4) will be handled as an initial-boundary value problem in order
to avoid the difficulty due to the lack of an exact or accurate 'radiation
condition' for evaluating the data at an open boundary.

We describe first the numerical method we have developed for
the computation of two-dimensional nonlinear dispersive waves (in the
(x, z) plane) over a sufficiently large region dZ fixed in the absolute
frame of reference (fixed with respect to the undisturbed fluid). The
fluid medium is assumed to be unbounded in both directions of the

x-axis. For a prescribed pressure disturbance p (x, t), assumed to
be finite in extent, 1 and 4 assume the initial values Wm 0, = "p

and 4--0 outside the distribution of pop as in the state of static
equilibrium. For t > 0, the pressure disturbance progresses along
the free surface with a given velocity. The basic equation (3) and (4)
are then solved with suitable boundary conditions (to be discussed
below) by a time advancing and finite-differencing scheme. In ad-
vancing 4 and T in time steps, we apply the modified Euler method
following a two-step predictor -corrector procedure, with iteration,
while the spatial derivatives are approximated by central differences. - 3
For all the interior nodes (the boundaries are exceptions as will be
discussed later), nodal values of 49 and n (with the usual notation: '.-..%

........... .'-
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n
p''"-x n"'' at time ste t = n~t are first used to determine a

-. set of provisional values ,nland 0n. according to the formula .

n+ n - n 1a
~J. = . tz. (1a

n1 n n)T ITn+-(Tn1 n+T 1)

(13 b)

n+l (1 22 1 C -n+l + iiT n n1
3LAx 3 Ax +Ji. ~~

at[Fn' + n1  (I 4a) .. '5

n 1 n 1% 54(I4b

N F------- 2 ~i+l -n 2 n

where e = h/L, L being the extent of the p distribution. We note
that (14) is an implicit scheme, involving an iteration procedure.

* These provisional values are then used to evaluate a set of corrected

values fl1and 1~ at t =(n+l),at from the formula *~'

n+l n at RTT n(1)-
.4 ~ . =~ -- z. + Z. (15

;n1T + 1+2(2E - n+l Tn+l n n- 1(1 +-z +1 ~i-l i+.
1 1 3Ax 3 ix 1 il

,at RT~T n n+l n
+. + p. +p P..16

Similar to (14), (16) is an implicit schemne with iteration. The above
formulas, (13)-(16), hold only for the case of uniform depth (h=
const.), but can be readily modified to be applicable to the general case.

In regard to the condition that should be required for the open t 1

boundary nodes, we could avoid the issue, at least in an initial stage, ,

by taking a sufficiently large computation region R such that T' and2
outside de can be considered insignificant. However, the need of

an adequate open-boundary condition (also called the 'radiation

v->
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condition' by some authors) will sooner or later arise, especially
when & is to be kept as small as desired. A proper open-boundary j
condition must satisfy the following prerequisites. First, it must be
sufficiently transparent, i. e. , nonobstructing to allow all the physi-

cal phenomena generated in the region a to pass through the open
boundary without suffering appreciable numerical (nonphysical) re-
flections at the boundary back into , Second, when numerical er-
rors attributable to an imperfect open-boundary condition cannot be
further reduced to a desired limit, they must not affect the stability
and convergence of the entire computational scheme, or contaminate -
the interior data beyond an acceptable level. For nonlinear water
wave problems it is especially challenging because of the presence of
other possible solutions, admissible to the Laplace equation for ,

that propagate with infinite velocity. Various approximate open-
boundary conditions have been proposed for different types of prob-
lems (see, e. g., Orlanski 1976, its modified scheme used by Chan
1977 and Yen et al. 1977; Bai 1977; also see the review by Yeung
1982). There is however no absolutely satisfactory answer to this
difficult problem and research efforts still continue. ..

In order to assess the various existing open-boundary condi-
tions together with a few new ones that were examined during this .-.

work, we have applied them to two test cases, in both of which the
exact solution of the corresponding steady state was obtained (one of -
them will be presented in the next section) for comparison with the
large time asymptotic limit of the numerical solutions reached by
using the different boundary conditions. Based on the result of this
e.*erive search, we have found that the following open-boundary

condItion,

t + cQ x = 0 c + (gh /2 (17)
t x0 .. ,

where Q = and = ,, and the + sign is so chosen at each boundary
node as to make the local wave leave the region P , has worked
effectively and successfully in all the cases attempted. This is
basically different from the Orlanski scheme and its variations, for
by their rule the local phase velocity c of exit waves must be nu-

merically evaluated from using the nodal data adjacent to the bounda-
ry point. This is also different from Sommerfeld's radiation condi-
tion since condition (17) does not differentiate between the eventual
long waves and transient waves of larger wave numbers. Crude as it
may appear, condition (17) nevertheless has produced the best result,
as will be seen later, of all the open-boundary conditions tested. In
specific detail, the present numerical representation of (17) adopts
an 'upstream differencing' for a downstream boundary point and a
'downstream differencing' for an upstream boundary point,

In+ 1 At I n At n+l n n
IMX ( a'-) [RIMX +x MIMX-l + IMX-l - -IMX) ] , (18)

. . . . . . . . .'.
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and with a similar equation for . Here in (18), the subscript IMX
denotes the downstream open boundary node.

In the interest of keeping the computation region as small as
necessary, we have further devised a technique employing a 'step-
shifting region'. This is a region which remains fixed with respect ,

to the absolute frame as before, only now with its boundary shifted
forward by one interval length AXx after N time steps (i. e. choosing
At = Ax/(NU) to keep up with the moving disturbance. The same
basic equations and open-boundary conditions are used as before (for
fixed boundaries) except that new boundary values will now be re-
quired at the new upstream boundary node after each shift. It is
convenient to choose the upstream boundary point far enough to keep
flow variables infinitesimal there. Thus, for supercritical cases, it

n+ I n+ 1 n,.':
suffices to set I 0 and *I = Ifor all n. In the subcritical
case it has proven successful to determine the new boundary values
by interpolating the nodal values at the revious time step and using
the approximate phase velocity c = W.

IV. STATIONARY WAVES GENERATED BY SURFACE PRESSURE
DISTURBANCE

An interesting special case is the two-dimensional stationary
waves generated by a steady surface pressure, namely p = P(x+Ut),
moving over a layer of water of uniform depth. After a suitable
Galilean transformation from the absolute frame to the moving-dis-
turbance frame, (3) and (4) become

U + (1 + )u = 0,

1 1
Uu+ u + -TUu +-P =0

in which u, and P are functions only of x, and we have set
h : 1. Upon eliminating from the above two equations, we obtain

= (U1 u 3 3+Zu 3 P~) (19) .. -

3 1 u+juZ+ (U2 -)u] + 2.P(x) 
.

Uxx U (U+u) + uz 2 Uz lu

In the absence of disturbance, P 0, the above equation has solu- S.-'.tions of the form

24 2 2u = A sech 2 {k(x - Ut)} A= -Uk h (20)

. ,-.:,- . , .
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provided U > 1 (i. e. U > c = (gh)1 /2 ), that is, in the supercritical
regime. For given U and P(x)00, (19) can be integrated numeri-
cally if appropriate boundary values are prescribed at a certain point
upstream of P(x), e.g. by giving u and u at a point x1  For low
subcritical speeds, such as U < 0. 5, it can be seen that 4 just up-
stream of the leading edge of P(x) is negligibly small. Hence a very
accurate solution of 4 can be obtained by integrating (19) downstream
from the leading edge (x = o) of P(x) with the boundary conditions

= 0 and x = 0 (i.e. u=0 and u = 0) at x =0.

V. TRAVELING PRESSURE DISTURBANCES

As the first example of an initial value problem of a traveling
disturbance we consider the following surface pressure distribution
for t > 0, A

x+Ut :-'
(x, - cos(2rr L (0 < (x+Ut) < L)0o(X t) =Po ''"

m )

with

h=const. =1, Fh U/J-g U1 =- 0."3989, p = 0.01,
m

L = 1, (ZZ)

and P 0 elsewhere as well as for t < 0. For the initial values
we assign, as stated before, 4 = -p (x, 0) and T 0 at t = 0. The
transient motion resulting from the application of this p was com-
puted by applying the present numerical schem , as explained in the
previous section, to equations (3) and (4) over the region -20 <x< 10,
with

x= 0. , t = ax/4 U (23)

The numerical result is replotted in figure 1, so that the wave train
remains fixed with respect to p , for the dimensionless time
t = UT/L up to 10. Also shown in figure 1 is the steady limit com-
puted by numerical integration of (19) for the present p0 by following
the procedure described earlier, here with Ax = 0. 01. By compar-
ison, the leading wave of the unsteady wave train is seen to have
approached the steady limit by t = 10, and the tendency is to have the
subsequent waves grow in magnitude, thereby gaining in speed to
approach the steady limit in consecutive order. Since the steady
limit is known to be accurate, this comparison further affords a
critical examination of the error due to any imperfectness of the
open-boundary condition (17) used here, which in this case is ex-
tremely small. . .

r'
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The wave resistance, D , experienced by the surface pres-
sure (per unit width) has the coefficient %*

CD = Dw/g 1 aL;_ --:
SD /pghL ghL P(x, t) dx (24)

The corresponding result of CDW is given in figure 2. We see that

C DW oscillates while gradually approaching its steady limit.

A. Pressure Disturbance of Opposite Signs

To examine the different features of long waves generated by
surface pressure disturbances of opposite signs for the case whenthe 2..

. nonlinear effects become appreciable, we consider again the distribu-
tion (21), now with

U = 0.4, Po = 0.3 and p -0.3 , (25). - m m

respectively. The results of these two cases, executed numerically
again by using (23) and as shown in figures 3 and 4, exhibit clearly
the nonlinear effects as the waves in both cases have sharper crests
and flatter troughs, than in the case of sinusoidal waves correspond-
ing to much smaller p0  thus displaying finite departure from the

antisymmetry as would fe expected on linear theory argument.
These waves are seen to resemble the free cnoidal waves as solutions

of the KdV equation.
Figure 5 shows that the wave resistance coefficient, CDW, of

the negative pressure disturbance (p0  = -0.3) oscillates with time
m ."more strongly, about a considerably greater mean, than the C of

of the positive pressure disturbance (p0  = 0.3). The basic mecha-

nism underlying these distinctive features between positive and nega-
tive surface pressures is not well understood, though it is discernible
from figures 3 and 4 that the water surface has a steeper slope under
the negative surface pressure than that under the positive one.

B. Pressure Disturbances at Supercritical Speeds

We now proceed to investigate the long waves generated by " "
surface pressure disturbances at supercritical speeds by adopting
again the distribution given by (21), now with

. ..
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U= .2, P 0.3 and p = -0.3 (26)
m m

respectively. The numerical execution was based on Ax = 0. 2,

At = /Ax/ U. As shown in figures 6 and 7, the forcing distur-

bance advances quickly from its initial position, drawing the trailing

waves increasingly longer and displacing the water surface ahead of

it over a wide extent. In the meantime, the waves generated in the

initial stage have not had much time to have propagated away from

their original position. It is also quite clear that the free surface

underneath the pressure distribution undergoes a rather slow change

in amplitude and phase. On the other hand, the corresponding wave--"., "

resistance coefficient decays rapidly to small values after its first

peak, then gradually approaching zero, as can be seen from figure 8.

In order to estimate the rate of approach of the solution to its

steady limit (a rate which may have a strong dependence on the I

Froude number), we compare the large time solutions corresponding 1 --Z.

to U = 1.2 and 1. 4 respectively, subject to otherwise the same

pressure disturbance as given by (21). From figure 9 we see that

the closer the U to 1, the slower is this rate of approach (see the
data at t = 48 for comparison). We therefore may expect that it

would take very long time to reach the steady limit when U is very i -

close to 1, if the limit exists. This case will be examined in more

detail in the next section.
In figure 10, we demonstrate a comparison between nonlinear

dispersive and linear dispersive models for the case of U = 1.2,
Po = 0. 1 and h = 0.5. Although the two limiting solutions are

si ilar in form, the linear theory underestimates the wave ampli- .

tude by a margin as large as 30 %
Finally, we point out that, as can be seen from figures 9 and

10, the present open-boundary condition is evidently very effective

in handling the physical processes near the open boundary, especially
when r and T are of finite amplitude at the downstream boundary

for t < 20, a situation which usually presents a severe test. Only *
with this early success was the computation possible to continue to ,'.

very long times as shown.

VI. TRANSCRITICAL DISTURBANCES

On physical ground, both the nonlinear and dispersive effects
are expected to play essential roles in the transcritical regime. On r

one hand, the continued rate of working by the traveling disturbance

will contribute to increasing the mechanical energy of the nearby

fluid. If we base our argument on linear dispersive wave theory, we

see that the energy so acumulated can radiate only towards down-

stream because of the group velocity of long waves being slightly less

than their phase velocity. This will imply that it will become

.. ....

...... ..... ...... .....
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increasingly more difficult to radiate the accumulated energy away
from the disturbance as the velocity of a traveling disturbance, U,
approaches the critical value, which is c = (gh) 1 2. On the other
hand, it is feasible that the flow energy accumulated about the dis-
turbance may evolve, under the joint action of nonlinear and disper-
sive effects, into waves of finite amplitude that can rediate in differ-
ent ways.

To investigate this interesting problem, we consider the case
of the po(x,t) distribution of (21) with

U = 1. 0, P = 0. 1, h = 0.5 (27)
m

The numerical result for ,, obtained with _x = 0. 2, iAt = 0. 2
and as shown in figure 11, exhibits an exceedingly interesting phe-
nomenon. The transient wave underneath the p distribution contin- I-

ues to grow in magnitude and starts at time about t 24 to form an
inflected peak just ahead of p which shortly thereafter surges *>2
ahead to run away as a soliton. At a later time about t = 48, a
second inflected peak forms to surge ahead as the second soliton.
Since its separation, the first soliton has continued to grow in magni-
tude, and accordingly accelerates further ahead. At t = 56, it be-
comes so large that its breaking can be an open question. Other than .:-.
the prospects of exchanging energy between the main wave train and
the 'run-away solitons', these solitary waves appear in every aspect
like free solitons, for their excess mass is all distributed above the
original water level (at z = 0). On the downstream side, the wave
train also grows inamplitude, length and group size, thereby gaining
in phase velocity while moving forward following the forcing distur-
bance. The profile oscillates across z = 0 and resembles the .

cnoidal waves.
It is interesting to note that by comparison with the corres- -..

ponding results of wave resistance variations shown in figure 12, the 41-
run-away solitons appear to emerge at the instant when the wave
resistance instantaneously reaches a maximum, i. e. C = 0. 02126
at t = 19.2 for the first and C =0.02301 at t = 44.6 "tor the ..... fl

second soliton. Immediately afer the separation of a soliton from ... a

the main wave train, the wave resistance decreases to reach a mini- K.-"- -mum, then increases as the next soliton is being conceived. 4.

The interesting phenomenon just presented has been found to
manifest over a region in the transcritical regime, as demonstrated
in figure 13 for the case of

U = 0.9, PO =0. 1, h = 0.5 (28)
m

The time period of formation of consecutive solitons in this case
appears to be considerably shorter than that at the critical speed,
e.g., t 16 in this case versus t 24 at U = 1 for the first .

%,%

. . . . . . . . . . . ..
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soliton to emerge. This comparison would suggest that the carac-
teristic time scale for this transcritical phenomenon perhaps reaches
a maximum at the critical speed. As a remark concerning the corn-
putational error incurred in this case, the dashed lines near the
boundaries delineate more accurate results obtained by using a

. ,greater region of computation. The error is thus seen to remain
confined only to a narrow region next to the boundary.

To isolate the nonlinear effects, we present in figure 13 a
comparison with the corresponding results based on linear dispersive
model. The contrast is drastic. The unique phenomenon of soliton

separation does not seem to occur at all on linear theory. This there- L-.F
fore lends a strong evidence that the phenomenon arises only from the
interaction between the nonlinear and dispersive effects.

The wave resistance coefficients corresponding to the two .,S.
theories are shown in figure 14. The CD, predicted by the linear
dispersive model increases with time, witn no asymptote in sight.

In concluding our exposition, we note that the new phenome- lmp
non of soliton separation predicted by the present nonlinear disper-
sive model appears to be very much like the experimental discovery
of Huang, Sibul & Wehausen (1982), notwithstanding the different
circumstances that the source of disturbance was a ship model in the
experiment and is a two-dimensional surface pressure at hand. The
history of formation of run-away solitons, the cnoidal-wave-like train U
of waves following the forcing disturbance and the transient waves
further downstream in the two cases are very much alike in all the
qualitative features. Evidently, this newly discovered phenomenon
has a rich content yet to be brought out by further studies. Perhaps
it has a fundmental basis common with the 'singular and beautiful

*= phenomenon' first interviewed by John Scott Russell.
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number Fh - U = (2rp 0. 01 (based on pgh): -

-unsteady theory (Ax =0. ,rlt = .125); 000 steady
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FIGURE 7. Wave generation at supercritical speed U h =ab
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FIGURE 9. Large time asymptotic waves at supercritical speeds at
U=F = 1. 2 and 1.4.
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FIGURE 10. Comparison between nonlinear dispersive model and
linear dispersive model at the supercritical speed of
U Fh= 1.2 ; Pom 0.1.

II_. ...- .®



124

U 10, P. 0 .1, hO- .5

0.2fp 
p i I pp p p : .

I 1-16

t =24 and 48

t04

1UIO Poa 0 ' V.
z2t5
Or

FIUE1. Itrlyo olna nddsesv fet tteciia
spe U. =~ F .Telrg iesltonsossltr

wae en enrtdt rpaaeusra a rewvs

o C2

z

U,

U C

0 e 16 24 32 40 48 56
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FIGURE 13. Comparison between nonlinear dispersive model and
linear dispersive model at the high subcritical speed
of U = Fh= . 9 ; Porn =0. 1. -.- the range of
p (X, t); --- numerical results from using a
greater region of computation.
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Discussion

A.M. Ferguson (University of Glasgow)

The results of some recent shallow-water tests conducted at the
University of Glasgow Hydrodynamics Laboratory may be of interest. ?...

These tests concerned the reactions of a bulk carrier in shallow

water approaching a shoaling sandbank. The reaction of interest was
that a singular transverse wave was noted well ahead of the model.
When this wave, or pressure front, reached the shoaling sandbank, the

model responded with an increase in trim by the head, then oscillated
in pitch in the manner of a damped spring. This reaction was ampli-
fied when the bow of the model reached and passed over the sandbank._I

I would be interested in the author's comments.
C*J:

W.C. Webster (University of California)

Dr. Wu mentioned some experiments that were conducted at the
University of California at Berkeley. In those experiments a ship
model was towed at a constant speed in shallow water. During these .3
experi- ments the following remarkable phenomena were observed:

1. A train of waves was generated at the bow. These waves
separated from the bow and ran ahead of the ship.

2. These waves were, as far as we could tell, two dimensional.

That is, they did not change shape across the tank. This is
the only situation I know of whereby two-dimensional waves
result from a full three-dimensional flow.

3. "Running away" waves were generated at speeds well below
Fr = 1 to speeds corresponding to Fr zl.4. This latter
result is consistent with solitary wave theory.

I suggest that the good agreement between Wu's two-dimensional
theory and our experiments lies in the fact that only two-dimensional
waves are created. Perhaps the appropriate three-dimensional m4"
equations admit only two-dimensional upstream wave patterns. ,,_ ,

,. ." .-. ,

S.M. Yen (University of Illinois)

I would like to compliment the authors for their success in
developing a method to implement the open boundary condition for the
nonlinear moving surface-pressure problem. The direct application of
Orlanski's method at the open boundary could lead to several computa-
tional difficulties that have to be dealt with carefully. These

V" 161, 67, %"

% .- ,-,-. - - :.-,%. - .'% , - .- .. , .- , '--,.. *..- .... ,. -. -.-....... ... .... -. .. . . . "..

.--,,..: .. ,. .,.', ,p. . , - ., .,'., , . - ,. - ...-. '.. -. . ... ..-. - . . . -,. .. .



127

difficulties include the accurate numerical calculation of advection
speed and the control of high-frequency errors. It would be of

*interest to apply a simple model of the open boundary condition as
suggested by the authors. However, it requires the determination of
the typical advection for the problem to be solved.

Colleagues in atmospheric sciences have also studied methods to
implement the open boundary condition in solving the atmospheric
gravity-wave problems. They have also found that the best way to

, apply the advection equation at the open boundary is to use the
typical advection speed for problems in which this speed is known.
The authors' findings presented in this paper are, therefore, in
accord with that of the colleague in atmospheric sciences.

Author's Reply

T.Y. Wu and D.-M. Wu

To A.M. Ferguson

We would like to thank Dr. Ferguson for bringing a very
interesting experimental observation to our attention. We believe i i
that the phenomenon stated is closely related to the general problem
at hand. As the bulk carrier model approached the shoaling sandbank,
the sandbank could be regarded as a source of providing a disturbance,
unsteady with respect to the carrier model, which should then be able
to usher in a singular transverse wave precursing ahead of the model,
as observed, provided the Froude number was within a transcritical
range. Based on our finding here that the wave resistance experienced
by a progressing disturbance should vary with time even when the
progressing velocity is kept fixed at a near-critical speed, one might
expect that a self-propelling model could respond with oscillations in J *
motion (like what was observed) in similar operational state with
respect to the criticality of the speed of the progressing forcing
function. It is especially of interest to note that the salient
features are common to the forerunning wave in this case and those
described by Professor Webster in his discussion. That is, these
waves all appear with a transverse wave front ahead of a
three-dimensional disturbance.

To W.C. Webster

we very much appreciate having Professor Webster's contribution

to summarize the experimental findings obtained by the University of
California at Berkeley team. It complements effectively the compar- ...-

ison between the, dnd experiment that we had merely enough time to .. *

present only the case of the Froude number U - 0.90 (see Figure A.1).
Likewise we take note that, interestingly, while the forcing agency is ".**'*t

sq. --k.
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a three-dimensional and slender ship model for the experiment and is a
two-dimensional surface-pressure disturbance employed in theoretical
calculation, the resulting runaway solitons are nevertheless two di-
mensional in both cases and have almost the same main features in their
evolution and propagation. We hope we can pursue together further com-
parative studies between theory and experiment, especially in regard to
this issue.

To S.M. Yen

We wish to thank Professor Yen for providing valuable information
about the practice of applying Orlanski's method and the emergence of
some new methods developed by researchers in atmospheric science.
Various computational difficulties associated with application of
Orlanski's method may not be its intrinsic shortcoming. In the pres-
ent case, where we have also experienced similar difficulties, the
field equations are, however, basically different from those for which
Orlanski's method was originally proposed. We are further delighted
to learn, for the first time, that some new methods, apparently quite
similar to the one we have just developed through our studies, have
been found successful in serving as the open boundary condition for
numerical computation of problems in atmospheric science.

Nevertheless, we should like to stress the importance and need of
a thorough understanding of the nature of the "open boundary
condition" for problems involving wave phenomena. The validity of the
condition must necessarily require satisfaction of certain criteria
ensuring the convergence and stability of the numerical scheme and, if
possible, by having a definite error estimate. We have been able to
secure only a limited success in estimating the error of our open
boundary condition, through some numerical experimentation.
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Travelling Bubble Cavitation Noise
Measurements

V. Shanmuganathan and V.H. Arakeri .. /
Indian Institute of Science, Bangalore, India

-- ABSTRACT
An effectively controlled uniform travelling bubble cavitation at

" all free stream conditions was made possible by seeding the flow with
artificial nuclei by electrolysis generated within the boundary layer of "
the test bodies. The cavitation inception and noise data were obtained
on three test bodies having different pressure distribution and boundary
layer characteristics. The cavitation noise data have been presented in .-.-
the non-dimensional form. "-" '

1. INTRODUCTION
A cavitation nucleus when subjected to sufficient tension, will ex-

pand as a vapour bubble until it experiences a positive pressure at which
point it will reverse the process and collapse. This volume change makes
the cavitation bubble to act as a monopole in radiating sound. The
acoustic characteristics of noise radiated from a single cavitation
bubble growth and collapse process has been analytically first computed
by Fitzpatrick and Strasberg (1956). Some of the important conclusions
from their work are that at low frequencies the cavitation noise spec-
tral density, S increases like f4 where f is the frequency, reaches a
peak at value of f approximately equal to reciprocal of the bubble life-
time and finally decays like f- at higher frequencies if the liquid
is assumed to behave incompressibly throughout the history of bubble
dynamics. However, the decay at high frequencies is predicted to be
much stronger like f-2 if the compressibility effects of the liquid are

- taken into account. Some of the early experimental studies in particu-
lar those of Jorgensen (1961) did confirm the qualitative aspects of the
prediction due to Fitzpatrick and Strasberg (1956).

In real flows, cavitation zone consists of several cavitation bub-
bles growing and collapsing randomly distributed in space and time. In
this situation it would be pertinent to ask whether the information ob- '"

tained from single bubble dynamics could be useful at all in predicting
* cavitation noise from a cavitating zone. The answer to the above, to

some extent is contained in the work of Morozov (1969) who has shown - 0
that if the cavitation bubbles can be assumed to be independent random
events, then the spectral density of cavitation noise from a cavitation - " N
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zone is given by the product of S, the spectral density of a single cav-
itation bubble noise event and N, the average number of cavitation noise
events per unit time. Therefore, in principle the qualitative aspects
of cavitation noise from a cavitation zone would be expected to be simi-
lar to those of a single bubble cavitation event discussed earlier. In
addition, it would be justifiable to use the important parameters char-
acterising single bubble cavitation noise in describing noise from an
arbitrary cavitation zone in non-dimensional terms. The ultimate aim
finally being the derivation of appropriate scaling laws for cavitation
noise as successfully done by Strasberg (1977) in one instance. By scal-
ing here we mean the extrapolation of cavitation noise measurements under
given conditions to different conditions with geometrical similarity
maintained. If the scaling laws derived on the basis of analysis of
single bubble cavitation noise are to be successful, then we should ex-
pect that the phenomenon of cavitation itself scales properly with bub-
ble dynamics considerations alone. Por example, we should expect then
that the relative extent of cavitation should simply scale with the cav- A

itation number, a. However, it is well known now that this is not found
to be true and in particular we may cite the work of Blake et al. (1977)
who found that on the same body at otherwise identical physical condi-
tions (like same a, free stream velocity etc) different types and extent
of cavitation was observed depending upon whether boundary layer was
tripped or not tripped at the leading edge of the foil. In turn this
reflected in noise measurements as well. Thus, the scale effects which
may influence the inception process would be naturally expected to be .
carried over to the scaling of cavitation noise itself. In some cases
this difficulty can partially be overcome as for example suggested by
Strasberg (1977), Blake et al. (1977) and Thompson and Billet (1977) to

use the parameter a/ai (the ratio of cavitation number to the cavitation
number at inception) rather than just a. i.-

However, this procedure may not account for all the effects due to
variation in nuclei content as well as differences in real fluid flow
characteristics. These effects are now well documented for example by M
Acosta and Parkin (1975), Arakeri (1979), Arndt (1981), Holl (1970),
etc., and will not be elaborated further. Due to the complex nature of
scaling of cavitation inception process itself it would be difficult to
attribute the observed scale effects on cavitation noise either to the
scale effects on the inception process or to the effects which are in- r-A
herent to the noise generation. This necessarily indicates a need to
conduct cavitation noise measurements where controlled cavitation can be
generated.

In recent years there have been several investigations reported
(Albrecht and Bjorheden 1975, Noordzij 1976, Kodama et al. 1979) where
such control has been attempted by artificially seeding the flow with
electrolysis bubbles which act as free stream nuclei. Similarly Arakeri

and Acosta (1973) reported studies where electrolysis was used to gener-
ate artificial nuclei at the surface of a headform. In comparing the

two methods of seeding the flow it is to be noted that free stream nuclei

v~~~~~..... ...-.................. v,...-.
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are subject to the socalled "screening effect" first pointed out by
Johnson and Hsieh (1966). In view of this, in the present work, the
seeding of the nuclei by electrolysis from electrode in the nose of the
headform was preferred. Thus, the primary scope of the present work was
to study the scaling of travelling bubble cavitation noise with cavita- %.

tion number, free stream velocity, etc., following the work of Blake et
al. (1977) however with controlled generation of cavitation.

2. EXPERIMENTAL METHODS

2.1 Test Facility ..

The experiments were carried out in the High Speed Water Tunnel of
the Indian Institute of Science, Bangalore. The test section of this >i.'.

facility is that of a closed jet type with an inner diameter of 381 m
and an overall length of 1524 mm. In this test section, a test body of - .-*.

maximum diameter of 50 mm would not essentially experience any blockage
effect. The maximum attainable velocity in the test section is 30 m/s
though the experiments were carried out up to a velocity of 17 m/s only.
The pressure inside the system can be varied from 0.34 to 2.5 atmospheres -
by controlling the pressure above the free surface of an air chamber con-
nected to the settling section of the tunnel circuit. An important fea-
ture of this facility is that it has a resorber which will drive back
into the solution, the air bubbles liberated in the tunnel circuit.
Though there is no deaeration system, the water is filtered through a
filtering unit and treated with alum.

2.2 Test Models
The test models chosen for these experiments were Schiebe nose,

Hemispherical nose and NSRDC the details of whose geometry are given in
Figure 1. These test bodies have recently been used for cavitation in-
ception studies for example by Gates and Acosta (1978) and Carroll
(1981). The experiments were primarily carried on the Schiebe nose
whose contour is generated by the potential flow solution to a distri-
buted source disc oriented normally to a uniform flow. The coordinates
of this body were taken from Gates (1979). This model geometry was
chosen for the reasons that it does not have a laminar separation and it
has a low natural incipient cavitation number, ai approximately equal to

0.4 though its Cpmin = -0.75. This large difference between ai and

Cpmin provides a wide range of o where the seeding of flow with artifi-
cial nuclei would be expected to be quite effective.

Experiments were also conducted on a hemispherical nose which has ,.-.-- .

altogether different shape of pressure distribution even though about the
same - C . value as the Schiebe nose. Over the range of present tests
hemisphe ical nose was expected to exhibit laminar separation as compared
to the absence of the same on the Schiebe nose over the identical Reynolds

number range. A series of tests were first made without tripping the"'', 's-,
boundary layer on the hemispherical nose. However, some additional tests . 4.

on a different hemispherical nose were made by tripping the boundary lay-
er by intentionally keeping the electrode ring (see Figure 3) about 0.1 mm,
protruding out of the surface. This was effective in eliminating laminar

V.. ... .... ....... ...... ...-..'... :.... .. ....
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separation (judged on the basis of observed type of cavitation at incep-
tion) at a velocity of about 11 m/s.

A limited number of tests were conducted using a NSRDC nose whose
pressure distribution is almost similar to that of Schiebe nose though
the value is somewhat higher. The theoretical pressure distri-• -pmin ..- "-'

butions in the absence of wall effects for all the three models are
shown in Figure 2. All the models were made of plexiglass for reasons
to be indicated later and extreme care was exercised in fabrication of
the same. The models were inspected for their accuracy on an optical
projection equipment at nominal magnification of 1oX. The models were
mounted in the test section securely with a three bladed sting support
as shown schematically in Figure 4.

2.3 Nuclei Generation
Hydrogen bubbles which served as artificial nuclei in the present

experiments were produced by electrolysis from a stainless steel ring
of 25 mm diameter and 1 nun thickness imbedded in the nose of the body at
s/D roughly equal to 0.25. Schematic details of the mounting of the ring
was imbedded in a plexiglass plug in the nose of an otherwise stainless
steel body. However, it was found that as soon as a potential was
applied across the ring and tunnel wall the electrolysis bubbles were
generated not only on the ring but also on the surface of the model due
to its proximity. In view of this, it was finally decided to make the
entire model out of plexiglass. The ring was electrically connected to
the negative pole of a D.C. power supply by a cable passing through an
internally drilled hole in the model and its support system. Differing
levels of D.C. voltages in the range of 0-60 volts were applied between
the terminals to generate electrolysis bubbles.

2.4 Noise Measurements,-.
The noise measurements were made with the help of a flush mounted

pressure transducer (Celesco LC 71) whose sensitive surface is of 0.208"
diameter and resonant frequency is 150 kHz. Barker (1976) mounted the
transducer in a flooded cavity behind a thin diaphragm which was flush
with the test section. This was done to eliminate background noise from
wall pressure fluctuations caused by the turbulent wall boundary layer.
In the present work such an arrangement was not found to be necessary
since the primary interest was the measurement of cavitation noise as
compared to Barker (1976) who was interested in the measurement of radi-
ated flow noise as well. The location of the transducer relative to the
model is shown in Figure 4. The signal from the transducer was fed into
a B & K Level Recorder via a Precision Conditioning Amplifier, a Measur-
ingAmplifier and a Third Octave Filter. The data from calibrated charts
were reduced to give sound pressure levels and spectral density using
standard methods. The measurements were made in the frequency range of

2 to 100 kHz with an averaging time of 1 sec. We must note that this
is the minimum averaging time and increases to a higher value at lower

frequencies. Attempts were made in the present work to ascertain the
reverberation characteristics of the test section following the method

) =. . '"-. .
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suggested by Blake et al. (1977). However, difficulties were experi-enced primarily since the LC 71 was not as sensitive as a hydrophone and -. %

the projector used (B & K Hydrophone 8100) had a poor projection effi-
ciencies at lower frequencies. As a result below about 20 kHz the sig-
nal to noise ratio in particular at distances of the order of 1 m turned
out to be quite poor. In view of this the present measurements remain
uncorrected for the possible reverberation effects.

2.5 Nuclei Measurements
In order to get an idea about the nuclei size and population, Laser

Scattering method was adopted. The optical set up in the present work
was very much similar to the one initially used by Keller (1972). The
laser beam from Spectra Physics Helium-Neon laser tube was made to graze
through the boundary layer of the model and was focused at a point -"
slightly above the stainless steel ring from which the nuclei were gen-
erated. The light scattered was collected at 900 by a photomultiplier
tube of DISA Make and the signal was fed into a GOULD's Storage Oscillo-
scope. The pulse height and the number of pulses were obtained from . .'

the stored oscilloscope trace typically over a 50 sec period which could
be expanded. At the time of writing this paper, the calibration of the
laser light scattering set up was not completed.

2.6 General Test Procedure
Before commencing the experiments, the water was deaerated by run-

ning the tunnel at low speed, pulling high vacuum over the free surface
of the air chamber in the tunnel circuit and allowing the model to cav- .... *.*

itate heavily. Then air collected in the resorber was released by open-
ing the air vent. Now and then the air content was measured using Bio-
chem Oxygen Analyser. This was repeated until the air content was
brought down to roughly 25 percent of saturation at atmospheric condi- ., .: %.
tions. . .-

The water velocity in the test section was kept at a specified val- .- .k:
ue and the tunnel pressure was then gradually reduced until the bubble
became visible on the model under the stroboscopic illumination. This .

was done without electrolysis at different voltages to study the effect :. "--
of electrolysis and its voltage on the cavitation inception. '.-

At a given water velocity, the pressure was reduced in steps and
at each pressure the noise spectra were obtained with and without elec-
trolysis. The electrolysis voltage was kept at 9 V for almost all of
the tests and the data were collected in the velocity range of 8.6 m/s
to 17 m/s. The range of a variation at each speed was between 0.4 and
0.7.

3. RESULTS I *
The results from nuclei measurements by Laser Scattering are shown .

in Figure 5. This gives qualitatively an idea about the effect of elec-
trolysis on nuclei distribution. It is evident that by electrolysis
many larger sized nuclei were introduced in the flow. Though there were

V..-... .....-.
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as many as 30 nuclei of the size corresponding to a pulse height of 0.0
to 0.2 V in the flow when there was no electrolysis they could not ini-. - .

tiate cavitation probably because their size might have been less than
the critical radius. Once the electrolysis was switched on many number
of nuclei whose size corresponds to the pulse height greater than 0.2 V
were generated and readily triggered travelling bubble cavitation at a
a of about 0.6. As noted previously, the laser light scattering set up
was not calibrated and hence it is not possible to assign bubble sizes
to the respective voltage levels shown in Figure 5. However, we might
note that even before selecting the location of electrolysis ring posi- _ Jai
tion etc., extensive theoretical estimation of the expected bubble sizes
at detachment from the electrolysis ring were made. This was on the
basis of balance of various forces acting on the bubble submerged with-
in the laminar boundary layer. From this analysis it was estimated that
the electrolysis bubble sizes are in the range of 30 microns at a free "..-.
stream velocity of about 12 m/s.

Figure 6 shows the influence of electrolysis voltage on the noise
spectrum at a a value of 0.61 on the hemispherical nose. With the elec-
trolysis on, there is a substantial increase in Sound Pressure Level
(SPL) as much as 20 dB at certain frequencies, when compared to that
without electrolysis. As shown in the figure generally the sound pres-
sure spectrum varied when the electrolysis voltage was changed. At

2.5 V the SPL at a given frequency was generally the maximum and grad-
ually decreased as the voltage was increased. One feature which might
explain this dependence was the fact that at lower voltages the cavi-
tation bubbles were generally larger and its number density was less;
however, at larger voltages the bubbles were smaller but the number den-
sity was greater. In view of these observations most of the tests in_ .

the present work was limited to electrolysis voltage of 9 V which was
a compromise between excessive bubble density and consistency in appear-
ance of stable cavitation zone.

The incipient cavitation number, 0i variation with velocity for the
three test bodies with electrolysis is shown in Figure 7. In all cases
the type of cavitation at inception was the travelling bubble type.
Without electrolysis on the Schiebe nose at lower velocities (below
about 12 m/s) the type of cavitation at inception observed was the tray- k
elling bubble type. At a higher velocity of about 14 m/s the type ._
changed to travelling patch with generally inception numbers being lower.
In any case it is apparent that the inception cavitation numbers without
electrolysis are significantly lower than those with electrolysis.
Figure 8 shows the dependence of inception cavitation number with change
in the electrolysis voltage at a given velocity. The ai values increase
with increase in the electrolysis voltage though generally marginally. \"-.*

The influence of cavitation number on the spectral densities for

the Schiebe body is shown in Figure 9. Here the spectral density. of
radiated noise is defined as 10 log s (f Af)/Af where - (f, f) is.
the effective mean square pressure in the one-third octave band width .--

* . c .r. .. .. . . . . . . . . .
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Af at the centre frequency f. The spectral densities so defined are
converted to decibel values by referring to a pressure of one micro pas-
cal. The spectral density variation with a for selected centre frequen-
cies for the Schiebe body are shown in Figure 10. It is clear that at
all the centre frequencies cavitation noise first increases with lower-
ing of a, reaches a maximum at a certain a and then decreases with fur-
ther reduction in a. The influence of velocity on the spectral densi-
ties for the Schiebe body is shown in Figure 11. It is clear that at
all frequencies the spectral density increases with increase in velocity
as also shown in Figure 12 at certain selected centre frequencies. The
non-dimensional representation of the noise data for the Schiebe body is
shown in Figure 13. The method used in non-dimensionalising the results
is fully considered in a later section.

The influence of cavitation number and velocity on the spectral
densities for the hemispherical nose (untripped) are shown in Figures 14
and 15 respectively. The non-dimensional representation of the noise
data for this body is shown in Figure 16.

The influence of cavitation number on the spectral densities for
the hemispherical nose (tripped) are shown in Figure 17. The non-dimen-
sional representation of the noise data for this tripped body is shown
in Figure 18. Finally, selected noise data for all the test bodies in
a non-dimensional form are shown in Figure 19.

4. DISCUSSION OF RESULTS

4.1 Cavitation Inception
As expected there is a dramatic difference in the value of incipi-

ent cavitation number for the Schiebe nose with and without electrolysis.
The difference between ai and Cpmin is of the order of 0.15 with electro-
lysis whereas it is of the order of 0.375 without electrolysis. In addi-
tion to this the cavitation pattern at inception with electrolysis was
of travelling bubble type and being uniform around the headform. As
compared to this, without electrolysis the cavitation pattern at incep-
tion was extremely unsteady sometimes being of the travelling bubble
type and at other times being of travelling patch type. There was also
no uniformity of cavitation pattern around the headform. It is to be
pointed out that noise measurements without electrolysis would have been
extremely difficult due to the unsteady nature of cavitation without
utilising significantly larger averaging times than that utilised pres-
ently. This general description was found to be true for the other two _-, .

models as well namely hemispherical nose (tripped) and the NSRDC nose.
In the latter case without electrolysis several spot type cavities
appeared at relatively low velocities ("10 m/s) and in many instances
these persisted even with electrolysis thus interfering with noise mea-
surements. It is for this reason that only limited cavitation noise
measurements have been presented for the NSRDC nose. \
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One significant point to be noted from the results of Figure 7 is

that for the three test bodies with electrolysis the ai value does not I
depend strongly on the velocity and the type of cavitation at inception
did not vary with change in velocity. Thus, the velocity scale effect
on the a. normally observed has been eliminated by the use of artifi-
cially seeding the flow with nuclei in the boundary layer.

The effect of increasing the electrolysis voltage seems to have
only a small effect on the inception cavitation number as shown in Fig-
ure 8. This may not be entirely surprising since on present bodies the
electrolysis bubbles are dynamically detached from the electrode surface
before they get a chance to fully grow on the surface. Thus, it appears
that the detachment size is primarily governed by dynamic considerations
than electrolysis considerations. Physically though it was observed
that the number density of cavitation bubbles did increase the absence
of quantitative results from the laser light scattering set up further
discussion on the inception results would only be speculative in nature. N
However, it is interesting to note that the difference between -Cpmin
and ai values is considerably larger for the Schiebe body than the other
two headforms.

4.2 Cavitation Noise
It is clear from Figures 9, 14, and 17 that the dependence of cavi-

tation noise spectral density on a is quite complex. In general as
shown in detail in Figure 1O the spectral density first increases with
decrease in a, reaches a peak around a = 0.5 (for the Schiebe nose) and
then decreases for a values less than 0.5. At different centre frequen-
cies the behaviour though qualitatively similar does not seem to show
any consistent quantitative trend. Results similar to ours have previ-
ously been observed at least qualitatively in a limited region of a by
Lesunovskii et al. (1969). However, our findings are in contradiction
to the observations of Blake et al. (1977) and more recently by Hamilton
(1981) who observe that cavitation noise level keeps on increasing with
decrease in a. It is possible that had they gone to lower a's than in-
dicated in above references they may have observed similar trend as ours.
It is to be pointed out that from single bubble dynamics considerations
it is expected that cavitation noise level would keep on increasing with
decrease in a since it is predicted that the maximum bubble size would
increase with decreasing a (see for example Baiter 1974). Then the
present observations suggest that the single bubble dynamics considera-
tions may not be accurate in predicting radiation of cavitation noise
from a cavitation zone thickly populated with vapour bubbles. Such con-
siderations necessarily ignore possible interference effects which may
influence the bubble dynamics aspects. In addition, the presence of
cavitation bubbles in sufficient density near to the solid surface may
alter the effective pressure distribution since basically the flow will
see a modified test body.

The effect of velocity on the noise radiated due to cavitation on
the Schiebe body is shown in Figure 11. It is clear that at all centre

... ,.. . . .
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:2 frequencies the level increases quite sharply with increase in the mag-
nitude of the free stream velocity. The results in Figure 12 show that
the dependence of the level of cavitation noise on velocity can be ex-
pressed in the form, -2 = KUm . In present work the value of m was found
to vary between about 5.3 to 7.2 depending on the centre frequency (see
Figure 12). It is to be noted that Blake et al. (1977) estimated the
value of m to be about 3-4. Single bubble dynamics considerations (see
for example Hamilton 1981) suggest that the value of the exponent should

. be 2.4 ignoring the compressibility effects of the liquid medium. It is
* not at all clear at this stage as to the reasons for the higher values

of the exponent found in the present work at least at the a value of
0.56 for the Schiebe body. On the untripped hemispherical nose posses-

. sing laminar separation the dependence of spectral density on the veloc-
ity is found to be somewhat different as shown in Figure 15 as compared -
to the trend observed for the Schiebe body as shown in Figure 11. This
may be entirely due to the viscous effects associated with the presence
of laminar separated region on this body.

4.3 Non-dimensional Representation of Spectral Density
The spectral density can be non-dimensionalised following Blake et

al. (1977) using the parameters of single bubble dynamics such as maxi-
mum radius of the bubble Rm and collapse time -o. The maximum radius of
the bubble can be approximately estimated from Strasberg's (1956) rela- [ -li

tionship

Rm U2 (-00 Cpmin) t'

where t' is the residence time, i.e., the duration in which the bubble
-is in the region where the local pressure is less than the vapour pres-

.- sure. It is given by

" U.(lu-p)

where p is the space averaged static pressure coefficient.

The distance '1' along the surface of the model in which the local .

pressure is less than the vapour pressure, is determined from the inter-
cept of the constant a line with the pressure distribution curve C vs
s/D.

A rough estimate of To can be made using Rayleigh's relationship A

T= 0.915 Rm (,) -'%\%

..R 2 L
i.e.,Tr 0.915m

Analogous to one used by Fitzpatrick and Strasberg (1956) Blake et
* al. (1977) have given the spectral density in the non-dimensional form

as

.... ..'. . - -4-. ' . %
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Ps (f, Af) VT r

S(f TO) = AfR

Here VT 0 is the total lifetime of the bubble including growth, initial
collapse and rebounding times expressed in multiples of T0 . Blake et al.
(1977) have suggested that the value of v should be taken approximately
equal to 3. In the absence of any experimental study on the bubble dy-
namics in the present work the value of V was chosen to be the same as
that used for example by Blake et al. (1977).

For the Schiebe body the non-dimensionalized spectral density for
various combinations of the free stream parameters is shown in Figure 13.
It can be seen that the collapse of data is quite good for non-dimension- .•.

al frequency parameter value of up to about 4. At higher values of ft 0
the scatter is found to be quite high comparatively. It is presumed
that this unexpected spread is due to the peak found in almost all the -

noise spectra at a centre frequency of 63 kHz as shown for example in
Figure 11 for the Schiebe body. The reasons for this peak in the ab- V.
sence of bubble splitting phenomenon of the type observed by Blake et al.
(1977) are not clear. For the hemispherical nose, in particular for the
tripped case the collapse of data (Figure 18) was generally similar to
that for the Schiebe body just discussed. For the untripped case the
scatter was somewhat greater even at low values of fT0 and in particular
for the data at lower velocities. Again one may suspect the role of .. ..-

laminar separated region whose length varies with velocity to at least -. '

partly be responsible for these observations. As shown in Figure 19 -"

the attempted collapse of cavitation noise data from all the three test
bodies at selected combination of free stream parameters is found to be
only adequately good. Again the observed peak in the spectral densities .- ,:
at 63 kHz seems to distort the collapse.

5. CONCLUSION ,. _

It is found that seeding the flow with artificial nuclei has an
important effect on cavitation inception, type of cavitation and result-
ing noise. One important observation was that with artificial nuclei
the cavitation inception number did not show a strong dependence on
velocity on three different test bodies having different hydrodynamic
characteristics which otherwise would not have been the case. In addi-
tion, the cavitation observed was that of the travelling bubble type
which was steady and uniform around the headform. This was helpful in
obtaining systematic cavitation noise data at various free stream con-
ditions. Cavitation noise spectral densities showed a complex behaviour
with a; initially the levels increased with decrease in a, and after
reaching a peak they subsequently decreased in levels with further de-
crease in a. Within the range of velocities in the present tests the
cavitation noise spectral densities showed a rather sharp increase with
increase in U.. The mean square sound pressure was found to be propor-
tional to U. with m values ranging from 5.3 to 7.2 at different centre
frequencies. The presentation of the noise data in normalized coordi-
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nates showed the collapse to be quite good (within 5 dB) at non-dimen-
sional frequency values of fT less than about 4. At higher fT0 values

- the spread was rather high being of the order 10-15 dB. The present
results could have been viewed with greater confidence had the reverbera-
tion corrections been applied to the cavitation noise data. In any case
these corrections would not influence our findings on the dependence of
cavitation noise on free stream parameters like a and U,.
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12 &Schiebe body (10.8 m/s)
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* Schiebe body (a=0.56)
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Figure 11 -InfLuence of VeLocity on SpectraL
Densities for Schiebe Body.
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Figure 12-InfLuence of VeLocity on Mean
Square of Sound Pressure at
Dif ferent Centre Frequencies
on Schiebe Body.
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HemisphericaL nose (Untripped)
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Figure 14-InfLuence of Cavitation Number on-
SpectraL Densities for HemisphericaL

Nose (untripped).
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0 Hemispherical nose (Untripped)
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Figure 16-Non-dimensionaL Spectral Densities for Various
Conditions on HemisphericaL Nose (untripped).
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Discussion - "-

T.T. Huang (DTNSRDC)

Does your bubble-seeding technique (electrolysis) trip the bound-
ary layer? If so, how much increase in noise is caused by the tripping
itself. The increase of microbubble population will cause an increase
of the occurrence of bubble cavitation events. Further increase of *. '..

microbubble population, the interaction of individual bubble cavita-
tion, and the noise associated with the interaction become important. ".
Based on your data, can you address this interaction problem?

On a large-scale body, traveling bubble cavitation becomes less
important. Do you intend to extend your research to cover the noise
associated with sheet and attached cavitation?

R. Latorre (University of Michigan)

Several years ago I attempted to measure the cavitation noise
during inception on an ITTC headform tested in the cavitation tunnel
of the Ship Research Institute, Mitaka, Japan. Unfortunately, cavi-
tation formed on the mounting sting, which tended to mask the incep-
tion noise. At lower there was a good correspondence with the visual
observation of cavitation inception and the increase in the noise sig-
nal. Did the authors find a similar correspondence?

Regarding Section 4.2, the cavitation noise from a tip vortex cav-
ity shed from three-dimensional hydrofoils and rotating propellers 1-4
also increased with lowered a, reached a maximum, and then decreased
with further reduction in a. This has been characterized as a tip
vortex cavitation noise envelope shown in Figure 1. At the peak noise
level, what were typical cavitation patterns on the head form? With .
tip vortex cavitation the noise level decreased with the formation -
of the vortex cavity.

In Section 4.3 the authors have usedy= 3.0 and noted that above
nondimensional frequency values of 4, the data have a large spread.
Did they attempt to use another y value, and, if so, what was the re-
sult on the data collapse? On the other hand, the authors indicate
the noise level -kUm, where m is 5.3 to 7.2 in the present work and
was 3-4 for another researcher. This difference might be a difference
in the cavitation pattern and type. Could the authors provide sketches
of the cavitation pattern on the head and associated noise?

% %..; %
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d8 1/30OCTAVE FREQUIENCY ANALYSIS
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Author's Reply

V. Shanmuganathan and V. Arakeri

To R. Latorre

The authors wish to thank Prof. Robert Latorre for his useful
discussion on their paper.

As indicated in Section 3.0, though there was cavitation on the -

strut supporting the model in the present work, there was a substan-
tial increase in the SPL, as much as 20 dB at certain frequencies when ..

* the electrolysis was on, and there was a good correspondence between
- the onset of cavitation on the model and increase in noise level at

all values.
With electrolysis on, the type of cavitation was that of travel-

- ~ing bubble only at all conditions. Also, the SPL was lower at very . -

* low cavitation numbers when the extent of cavitation became larger.
Even from the theoretical solution of the Rayleigh-Plesset equa-

tion, the value of y was found to be around 3. Hence the authors did
not choose to use any other value of y in normalizing the data. With

* regard to Prof. Latorre's suggestion that the difference in m value
between the present experiments and those of Blake could be due to the

*difference in the type of cavitation, it is to be pointed out that in

both cases the type of cavitation observed was that of traveling bub-V.
ble; however, the complications arising due to bubble splitting, etc.
present in Blake's experiments was not possible and observed in the

* present experiments. In addition, in the present work, the extent of
* cavitation scaled uniformly with the cavitation number owing to nuclei :

seeding, whereas this would not be ensured in the Blake experiments.
* These differences may perhaps be responsible for the observed differ-
* ences in the value of m.
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Cloud Cavitation: Theory

G. L. Chahine, HYDRONAUTICS, Incorporated

I•"*:

ABSTRACT

The collapse of a bubble cloud, due to a change in the surrounding

pressure, is considered, first, by using a single perturbation theory. ..

The interaction of any individual cavity with the rest of the cloud is -

modelled using matched asymptotic expansions in powers of the ratio -.

between the characteristic bubble radius and interdistance. Up to the

third order, the problem is shown to be equivalent to the interaction

of two cavities of different collapsing strengths. The numerical

results obtained with a symmetrical repartition of bubbles on a spheri-

cal shell show that the influence of the other bubbles in the cloud .

in the collapse of a particular bubble is to reduce the driving pressure -

during most of the collapse time, thus delaying the implosion, and

then to dramatically increase this pressure producing a violent end of

the collapse. The pressure released is then orders of magnitude

higher than with an isolated bubble. This pressure, which is being

imposed on an area of the same size as the whole cloud, could explain

the high erosion rates and bending of foil trailing edges. In the

second part, a continuum medium approach of the cloud is considered in --

order to extend the validity of the preceding approach to higher void

fraction and to enable to account for the compressibility of the

bubbly medium. .

I. INTRODUCTION j
The design criteria for high-speed ship propellers involve trade-

offs between efficiency and cavitation, and strength and vibration of 
-

the propeller. Operating in ship wakes at relatively low cavitation

numbers, the propeller will, at least intermittently, cavitate, in-

ducing erosion of the blades, loss of efficiency, noise, vibration,

and occasionally structural failure of nearby plating. These harmful .

effects are mainly due to the collapse of unsteady cavities. These

include individual bubbles as well as sheet cavities and "clouds" '

(Figure 1).

Adequate and increasingly sophisticated theories for individual

bubble growth and collapse exist (see the reviews by Plesset and

Prosperetti, 1977 and Hammitt, 1980). While the transition to sheet

165
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A cavity is not well-understood, a large number of experimental observa-
tions of sheet cavitation are available (Shen and Peterson, 1979, Bark
and Barlekom, 1979), and a steady, then unsteady, theory for sheet -'

cavitation was recently developed (Tulin, 1980 and Tulin and Hsu, 1980).
Downstream of a "steady" sheet cavity a region of high population of
tiny bubbles can be observed and is especially known to be associated
with erosion. However, as concluded from observations by Tanabayachi
and Chiba (1977), an unsteady sheet cavity is required for the formation
of coherent clouds of very fine bubbles. These clouds are either de-
tached from the frothy mixture at the trailing end of the unsteady
sheet, or generated in a finite region of the liquid downstrean of the
unsteady sheet where significant fluctuating pressures exist.

As the pressures generated by single bubble collapse are not strong
enough to explain the intense erosion in the subject region, and the
high forces needed, for example, to bend the trailing edge, cloud cavi-
tation has been held responsible since Van Manen's (1963) work. This
is supported experimentally by a very close correlation between the AF
dynamics of these clouds and the sharpest and highest pressure pulses
detected on an oscillating hydrofoil (Bark and Barlekom, 1979).
Similar phenomena have been observed with ultrasonic cavitation
(Hanson and M~rch, 1980).

Apart from some information on the frequency of generation of
cloud cavitat'on, the experimental observations and measurements are

*I' very qualitative and do not allow at the present time, any quantitative
predictions. In addition, the lack of understanding of the dynamics
of such cavities makes it impossible to explain any scaling effects and
to correct for them. Theoretical and fundamental studies are thus
needed as guidance for future design and experimentation.

To our knowledge, since the early work of Van Wijngaarden (1964)
only a few publications by M~rch (1977, 1980, and 1982) and Hanson and
M~rch (1980) have dealt theoretically with the problem of "collective
bubbles collapse" or "cavity cluster collapse." However a large amount
of literature has been devoted to the modeling of bubble-liquid
mixture behavior, using either a continuum medium approach or a "two-

r fluid" approach (Zwick, 1959; Van Wijngaarden, 1972, 1976, 1980, 1982;
Zuber, 1964; Ishii, 1975). In order to explain the phenomenon of pro-
peller blades bent at the trailing edge, Van Wijngaarden (1964) 'on-
sidered the case of a uniform layer of cavities on a solid wall. He
studied its unidimensional collective collapse when the surrounding
fluid is suddenly exposed to a pressure increase. He derived the con- _

tinuity and momentum equations for the layer, neglecting the convective
and dissipative terms and assuming that the volume fraction of gas is
small enough to authorize such approximations. However, he took into
account the individual bubble radial motion and translation, neglecting
viscous effects. Solving the derived system of equations, Van
Wijngaarden found a considerable increase of the pressure along the
wall due to collective effects. S

Mrch (1977, 1980), concerned with ultrasonic cavitation fields,
considered the collapse of a hemispherical "cluster" near a wall,
which by symmetry, he extended to the case of a spherical cloud. He

%
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characterized the cloud only by its radius and a uniform volume frac-

tion, c, constant in time, and developed the following model. A pres-

sure rise in the liquid leads to the formation of a shock wave on the
"cloud boundary". The shock moves toward the cloud center leaving no
bubbles behind it and thus constitutes the cloud boundary at each time.
The collapse time of a spherical cloud is found to beVa times the
Rayleigh collapse time of a spherical bubble of the same initial radius. -
Although a very interesting approach, especially for the calculation of
the collapse time, this model (like Rayleigh's model for spherical
bubble collapse) is incapable, in its present state, of adequately cal-
culating the pressure field. At the end of the collapse the cloud
radius is zero and the velocities and pressures are infinite, since the

model does not allow the bubbles to contain noncondensables. In
addition, the main physical assumption (presence of a shock wave
dividing the space in two regions one containing bubbles which do not
sense the pressure variations until a later time stage, and another
one where all bubbles have collapsed) is valid only for relatively
high void fractions. The case of a spherical single cavity of the same
size as the whole cloud is the perfect extreme example of the domain
of validity of this approach. Hanson and M~rch (1980) and M~rch (1982)
extended the same model to a cylindrical cloud and a layer of bubbles
on a solid plate.

We present in this paper first a singular perturbation theory

(Chahine, 1981) which will allow us to compute the pressure field and
the cloud dynamics for the growth and collapse of a cloud composed of
a finite number of bubbles. In the second part of the paper we will

discuss a continuum medium approach for a bubble cloud collapse.

II. SINGULAR-PERTURBATION THEORY

The following approach is applicable to a cloud of bubbles of
low void fraction. Provided that the characteristic size of a bubble ,"
in the cloud, rbo, is small compared to the characteristic distance 0
between bubbles, to, we can assume in absence of initial relative
velocity between the bubble and the surrounding fluid that each of the
individual bubbles reacts, in first approximation, to the local pres- , ,. 2'
sure variations spherically as if isolated. To the following order of

approximations, interactions between bubbles induce bubble motion and
deformation and are taken into account. This approach is an extension
of the earlier studies by Chahine and Bovis (1981) and Bovis and
Chahine (1981) on the collapse of a bubble near a solid wall and a
free surface, later presented more generally for nonspherical bubbles

by Chahine (1982).
Since the problem possesses two different geometrical scales, to

and rbo, we can consider two subproblems: one concerned with the

macroscale and the other one with the microscale. The "outer problem"
is that considered when the reference length is set to be to. This

problem is concerned with the macrobehavior of the cloud, and the

bubbles appear in it only as singularities. The "inner problem" is

%.~ %
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that considered when the lengths are normalized by rbo and its solution
applies to the vicinity of the considered individual bubble of center
Bi. The presence of the other bubbles, all located at infinity in the
"inner problem", is sensed only by means of the matching condition with
the "outer problem". That is to say, physically the boundary conditions
at infinity for the "inner problem" are obtained, at each order of
approximation, by the asymptotic behavior of the outer solution in the
vicinity of Bi. Mathematically, one has to match term by term the
inner expansion of the outer solution with outer expansion of the inner
solution, using the same asymptotic sequence in the two expansions.

A. Bubble Radius Variations
The determination of the flow field and the dynamics of any of the

individual bubbles, Bi, is accessible once the boundary conditions at
infinity in the corresponding "inner region" are known. Here we imposed
the restrictive assumption that the void fraction is low enough so that
the information about the variation of the ambient pressure around the
cloud, P_(t), is transmitted to the microscale in a time scale much
shorter than the bubble collapse time. Therefore, in the absence of a slip
velocity between the considered bubble and the surrounding fluid and
when interactions are neglected, the only boundary condition at infinity
is the imposed pressure variation P (t). The "inner problem" is there-
fore spherically symmetrical and its solution is given by the well-known
Rayleigh-Plesset equation. With the assumption that the liquid is
inviscid and incompressible this equation can be written as follows:

aoao + 2 ao3 = -P (t) + Pg0 (ao-3k - 1) + We(1 - a (1)

0 0 2 o go o

In this equation, where the superscript i is omitted for convenience,
aA(t) is the radius of the bubble Bi normalized by rbo. The times are
normalized by the Rayleigh time based on rbo and (Po - Pv). All pres-

*. sures are normalized by (P0o- Pv) where Po is the initial pressure,

and Pv the vapor pressure. We is the Weber number and Pgo the initial
normalized gas pressure in the bubble. The noncondensable gas pres-

. sure inside the bubble, Pg, is assumed to have a polytropic behavior,
Pg aok= cte. 

. ..

When interactions cannot be neglected, still assuming that an
"inner region" enclosing the bubble Bi can be defined, the boundary
conditions at infinity can be much more complex than in the preceding
paragraph. First, as we will see in paragraph 3, the macroscale pres-
sure in the cloud at Bi, P(Bi, t), can be very different from the im-
posed far field pressure P,,o(t) and depends indeed on the bubble location
in the cloud. Second, a relative velocity between the bubble and the
surrounding fluid, U(Bi, r, t)*can exist causing the bubble to be non-
spherical. Both P and U can be determined only by solving the equa-
tions of motion of the two-phase medium as presented in paragraph 3.

-' ." Here we will limit ourselves to a small perturbation theory whose -- -

interest will be to give the behavior of the solution when the per-
turbation grows continuously. In that case P(Bi, t), which is the
* underlined quantities are vectors

*1I
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1 1

driving pressure for the collapse of the bubble Bi, is only a pertur-
bation of the imposed far field pressure, Poo(t), and IL(Bi, r, t) is a -."

perturbation of the spherical velocity due to the bubble volume vari-ation. . -

If we assume that the liquid flow is irrotational, we can define
a velocity potential for the macroscale ("outer problem"), 4(Bi , t),
and a velocity potential for the microscale ("inner problem"), 4i(B 1 ,
r, t) both satisfying the Laplace equation. The matching condition
between these two potentials expresses the at-infinity conditions for
01, and replaces the conditions on P(Bi, t) and U(Bi, r, t). Using
the results obtained with the interaction of two bubbles and the pro-
perty of additior of potential flows, this condition can be written:

N
q + 2q + £ q2 + + "".)

li ). 00 (B i r 't  = 0 o'
*r-oo j = i

+2 q + _ qJ + r cosO~i  + ....
-, 0

+ (i) (3 qJ + r2P2(cO + ... (2)

where the superscript (j) denotes quantities corresponding to the other
bubbles, Bi. iJ is the initial distance between the bubble centers
Bi and Bi. eij is the angle MBiBj and r the distance BiM, where M is
a field point in the fluid (see Figure 2). Pn(COse) is the Legendre
polynomial of order n and argument cgse. qA is the correction of
order en of the strength, qA = A (aJ)2 , of the source representing
the first-approximation spherical oscillations of the bubble BJ.

Expressed in physical terms (velocities, pressures), the boundary
condition (2) states that the first order correction,O(6), to the non-
perturbed spherical behavior of the bubble Bi is a spherical modifi-
cation of the collapse driving pressure. This would introduce, as for

two bubbles, a spherical correction of the variations ao(t). At the
following orders new corrections of the uniform pressure appears, as
well as a velocity field accounting for a slip velocity between the
bubble and the surrounding fluid. Again, as in the two-bubble case,
this induces a spherical correction and a nonspherical correction of
the bubble shape. Therefore, one can show that the equation of the
surface of the bubble Bi can be written in the form:

R R( 0 i, t) = a +(t) + E t) + £ a(t) + f (t) ' cosi +

4,4

"+ £1a 3 (t) + f1(t) coseig + gi(t) P 2  (coseig) + ... (3)

%-°, % 7. 'A %
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Where the direction BiGi(see figure 2) from which is measured the

angle eig is compounded from all the xi3 and is obtained using Equation

(7) presented below. Writing the nonspherical boundary conditions on

the bubble wall and expanding 8i in spherical harmonics one obtains

the following differential equations for the successive corrections of

a o (t) given by (1). Superscripts(i) are omitted for convenience:

a a. + 3A A + a F (a W e  P K) -7 0' e1 go, 'Z 4.

oi o~ 100 eg

a a + 3a a + a F + F (a0, W, K) =%
0 2 0 2 2 0 1a 1 0 j .

a a + 3A a + a F + F (a a , a W P K) : - .

0 3 0 3 30 (, i 2v e9 Poj 2 ' JJ

ad + 3A d = _.. 3 )(4)ao  (4
0 2 0 2 J 00 0

\No/ ..

0

a d + 35d + 3Fa ,a) d = -Z 3 - (aoq + ao +Fq

ag+ 3A - (a - 6/W a) g =-Z. 5 (a q + 2aaq )
0a3 0 3 0 e o 3 0 00 0

In these equations Fo, F F2, F3 are known functions depending on the

physical constants, We and Pgo, and on the calculated preceding orders 
- .

of approximation. The deformations f2 , f3 of the bubble Bi and the

motion of its center toward BJ; Z2, Z3; have been replaced by d2 , d3

which indicate the total motion of the point Ei toward Bi (Figure 2).

= 2 - i2~ ; d 3 = i 3 - i3 (5)

When all the initial radii of the bubbles in the cloud are identical,

the right-hand sides of Equation (4) are the same as those for the

two-bubble case right-hand sides multiplied by one of the geometrical

constants cl, c2, c3:

ci = Ej (9oI / . J) ,, ,'\ _

c= (9. /ii)2 cos6ij (6)

0 0
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C3 = 0 0 P2 (COSO ie) (6)

We can now compute the behavior of Bi by solving the jbtained differ- L
ential equations (1 and 4) using a multi-Runge-Kutta procedure. The

*. behavior of the whole cloud can then be obtained. This appears at
first to be a very long task. However, noting that if ao(t) is the

" nondimensional solution for a bubble of unit initial radius, the .iP

" solution ao , for a bubble of normalized initial radius A is such that,
ao(Xt) = A ao(t), the right-hand sides of (4) can be easily computedL
when As are known.

Indeed the whole problem can be reduced to the case of two inter-
acting bubbles of different sizes. The comparison of equations (4)
with those obtained in the case of two-bubbles shows that the N bubbles
in the cloud other than Bi can be replaced by a uni ue bubble of --

strength qng , located at Gi , a distance kog from B1 in the direction
defined by the angle MBiG i =e@ig. As this equivalent bubble should in- -

duce the same pressures and velocities as defined by (2), its location
and strength are obtained by the equations:
:7 N

qig/ig= J/°iJ
qn 0 qn o

e.g ig /(kj'g) e. . qJ (7)i
e._ig n gl 0

wherp tig and eij are respectively unit vectors of the directions BiG i

and Dl (Figure 1), and n is the order of approximation. These . .

equations define the angle eig, and the direction in which d-j(t) is
measured in equation (4). -

B. Pressure Field
For a given Po(t),.equation (1) can be solved for the variations

of the bubble radius, ao(t). This allows the subsequent determination "'. .
of the pressure field around the bubble Bi, of center Bi, by the use
of:

i .2 2 4.A2 4 %.'P(B , r , t) = Poo(t) + (2 a a + a a )/r - a a/2r
00 0 0 0 0 0

i
where r is the distance between B and a given point M in the fluid.

The following corrections of Po are obtained once the successive
orders of the problem are solved. The nondimensional outer problem,

can be written:

q- q! q q _i ig) +8 "0 ..

(M,t) = - i  + --- + -- + - os + (8)r r r rt r/ ~ g, .....
r [ZIT
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where bars denote nondimensional "outer" quantities, and tildes non-

dimensional "inner" quantities.

= = • r = =T3~ r/J (9)
qn qn 'rb o r

T is the characteristic time of the bubble collapse and ri is the dis-
tance between a field point M and Bi . The Bernoulli equation enables
one to calculate P using (8). We can write nondimensionnally:

'(M, t) _ (1) 6Tt)-_i ~ ~ (10)

Ap is the amplitude of the pressure driving the collapse and t = t/T, .."'""
where

B
T = rbV$7  . (Ii).-

In the following, we will consider as an illustration a uniform field
of bubbles; any bubble has the same geometrical position relative to
the others, and thus the same behavior. The general expression (8)

simplifies considerably to become: 3

p(M,t) = (C 2 - 3. \ +
p q +Eq + q +E

0 1 2 1 \r

~2 2

S+ cos g qo-
S- 2i .(12)

In this expression, the summations are geometrical constants similar
to C1 , c2, c3 (6). Thus, once the dynamical bubbles behavior is known
as well as their distribution the pressure field is determined.

c. Examples: Spherical Shell of Bubbles
As an illustration of the method presented above let us consider

a distribution of bubbles centered on the surface of a sphere and which '.--,

have the same position relative to each other. We will study the
bubble behavior and the pressure generated for two types of ambient
pressure variations with time: a) the classical case of a sudden
positive pressure jump of amplitude Ap, b) the case of a sudden pres-
sure drop, Ap, followed by a return to the initial pressure after a
time period AT during which the minimum pressure is kept constant.

In figure 3, the results of five different computations for case
a), are compared, expansions being conducted up to C . The ratio,
C = rb /Zo, was kept constant and at a value of 0.05. The cases of
two, t~ree and twelve bubbles of centers located on the surface of a

sphere are presented together with that of an isolated bubble. The

.-. , - . .2 .- . ... . . . .
........
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fifth case is an intermediate situation between the configurations of
three and twelve bubbles. This case is arbitrary and is only deter-
mined by the choice of cl, C2, and c3. In each case the variation with
time of the distance, BiEi, (Figure 2) between the extreme point on a
bubble Ei, and its initial center, Bi, is chosen to represent the bubble
dynamics. Taking the bubble collapse in an unbounded fluid as refer- .. •* -,
ence, it is easy to see from Figure 3 how increasing the number of
bubbles changes the dynamics of the one studied. We can observe first

* that, during the early slow phase of the implosion process, the collapse
is significantly delayed. At any given nondimensional time the distance
between Bi and Ei (and simultaneously the bubble characteristic size) -

* is greater when the number, N, of interacting bubbles increases. Then, -

in the final phase of the implosion the tendency is reversed: the
_ - phenomenon speeds up and, in a shorter total implosion time, the final

velocity of the motion is higher when N increases. As we will see
later, this effect can be easily explained by accounting for the modi-
fication of tte driving pressure of the collapse of any bubble due to
the dynamics of the other bubbles.

Figure 4 shows the behavior of the bubbles in the case of a pres-
sure variation of type b. The cases of an isolated bubble and two,
three, five and twelve bubbles are investigated again, and the vari-
ations of BiEi with time are plotted. The ratio C, and the duration
'T, of the pressure drop are kept constant and at the particular values U
of 0.1 and 0.8 respectively. Here, as in the preceding figure, notice-
able changes can be observed when the degree of interaction increases.
First, the growth is slowed down and retarded in comparison with the
isolated case. Then, the collapse is accelerated and as a result the
total implosion time decreases with an increase in the number of bub-
bles, N. While for N = 2, the total implosion time is greater than
that of an isolated bubble, for N = 12 the time is significantly
smaller. As we will see below this acceleration of the collapse makes . -

the generated pressures at the end of the collapse higher than !or the
single bubble case.

Figure 5 compares for the same cloud configuration (twelve bubble,
E = 0.1) the bubble behavior for three values of the duration, AT, of
the pressure drop. The greater AT is, the longer the bubble is allowed
to grow. As a result the maximum size it attains is bigger, but its
lifetime is smaller. Thus, the resulting collapse is much stronger.

To examine the observations made above let us compare the imposed *
ambient pressure with the variations of the pressure generated at a
distance Zo from a collapsing bubble in an infinite medium. As we can
see from Figure 6, the perturbation pressure, i.e. the difference
between the pressure at 9o and the far-field pressure, is negative
for t < 0.75. As a result a fictitious bubble placed at the distance
Z from this spherical bubble will sense a less important and more
gradual increase in the surrounding pressure. In the considered case,
instead of a sudden nondimensional jump of the pressure from 0 to 1, P
surges only to 0.84, then rises slowly, not attaining 1 until t > 0.75. .-.
This would affect the bubble dynamics exactly as observed in Figure 3,
namely a less violent start of the collapse. As a result, we find at %

%~~~~~~.....% .•.-....., •........... ..... ... °., ... ° ...... ••.-...... ... ... .. ;
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the end of this process a larger bubble than would be observed in an , .
infinite medium. This, added to the fact that in the later stages (t
0.75) the driving pressure increases up to 2.25 times the far-field
pressure, makes the subsequent end of collapse much more violent.

The same type of observation is made in the case of a finite-time
pressure drop. In the first time period, T, the pressure sensed at a
distance Zo from the bubble center, Bo, is higher than the imposed one.
As a result a second fictitious bubble placed at this distance from Bo
would have a slower growth during AT. This phenomena is however re-
versed in the second phase as an expansion wave is generated by the
growing bubble Bo. In the third and last phase a compression wave in-
creases the driving pressure for collapse making this one more intense.
In the presence of several bubbles the effects described above are . -

amplified. Figure 7 is an example of this for the case of twelve bub-

bles. Plotted are the pressures generated during the bubble history %J
at two locations: a) the center of the cloud and b) the center of one -
bubble, B i, in its absence. These pressures are compared with those
generated during the growth and collapse of an isolated bubble at a
distance equal to the spherical cloud radius. The corresponding bubble
radius variation with time is that represented in Figure 5 (12 bubbles
T - 0.6). The high pressure surge at the end of the collapse will be
considered in the following.

Figure 8 is a collection of the results obtained in several cases
studied. The maximum nondimensional pressure generated during the
cloud collapse are represented versus the number of bubbles in the
cloud. The cumulative effect is obvious since the values obtained vary
in a several orders of magnitude range. The numbers represented should
not be considered accurate since other scales for times, pressures and

lengths are needed at the end of the collapse. Instead, they are pre-
sented here to give an indication of how tremendous pressures can be
generated with an increasing number of interacting bubbles, and to
give an idea of the trend of this increase. In this figure, the

maximum pressures are given at the cloud center, C, at the center of
a bubble, B i , if it was removed,and at a distance rbo from Bi .

The important role played by the gas content of the bubbles is to

be emphasized. Increasing P 0 from 0.1 to 0.2 reduces dramatically
the generated pressures. This comes mainly from the fact that the
cushioning effect of the gas reduces significantly the velocities
attained at the end of the implosion.

Another very interesting observation from figure 8 is that the
maximum pressures generated at the end of the collapse is rmuch lower
for a pressure drop of finite duration followed by a recompression in
comparison with the pressure jump case. This effect is not due to
the apparent higher gas content in this case. Indeed, the value of
Pg to consider for comparison purposes should be for all cases the ..-.-°
minimum gas pressure, Pgmin, which exists at the start of the collapse
when the bubble has its maximum volume. For the case of twelve bub-

bles for example and a pressure drop (AT = 0.8, Pgo = 0.53) the value
of Pgmin is 0.07. The effective gas content is thus smaller, and the
observed pressure drop is intrinsically related to the imposed pressure

. .......... ,
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function.
This observed pressure attenuation can be explained by the fact j

that the cumulative effect of the other bubbles on the initial phase
of the dynamics of the considered bubble is of opposite nature for the
two pressure cases. In the pressure jump case the presence of other
bubbles reduces initially the effective driving pressure of the bubble
collapse thus preventing the bubble size from being small in the later

phase when the collapse pressure surge occurs (see Figure 6). Con-
versely, the initial cumulative effect in the case of a finite time .
pressure drop is to reduce the bubble growth thus reducing the bubblesize when the pressure surge occurs. i

Another parameter on the value of the maximum pressure generated
is the duration of the pressure drop. This effect is shown in Figure
9 for twelve bubbles and c = 0.1. The previous type of reasoning when
applied to the gas pressure leads us to believe that the increase of

the maximum pressure with AT is mainly due to a decrease in the ef-
fective initial gas content at the start of the collapse since the
maximum bubble radius increases with AT.

III. CONTINUUM MEDIUM APPROACH

One major assumption of the theoretical approach as used in the
preceding section is that, in first approximation the imposed ambient
pressure is assumed to be instantaneously transmitted to the vicinity
of each bubble in the cloud. Therefore, both the compressibility of
the bubbly medium and the influence of the liquid motion generated by
the other bubbles on the dynamics of the bubble considered were neg-
lected in the first order approximation. This limits the validity of
the study to very low void fractions. The incompressibility assumption
is valid as long as the fluid velocity does not approach the speed of
sound. For single bubble dynamics this does not usually happen until
the final phase of the collapse. Here, however, two factors contribute
to limit the validity of the assumption. First, the rate of implosion
is higher and second, more important, the velocity of sound drops con-
siderably when the void fraction increases. This underlines the need
to account for the behavior of the cloud as a whole in order to deter-
mine a more accurate value of the local pressure driving the collapse
of the individual bubbles. In addition this would have the advantage
of limiting, for the following orders of approximations, the number of
bubbles directly influencing the considered one. Indeed, the asymp-
totic theory shows that the effective parameter of the expansions is
ccl,(where cl, defined by (6), is a direct function of the number of
bubbles),rather than E = rbo/to. Introducing a motion equation for
the bubbly medium would limit the number of influencing bubbles to
those in the direct vicinity of the considered one, through a time
delay of the propagation of the information from one bubble to another.
In summary, if we account for a motion equation in the cloud medium
the first order approximation of the preceding approach becomes more
accurate and as a consequence the following corrections will be 12

%:



176

smaller making the approach valid for higher void fractions, '.

A. Classical Description
Basically the classical methods used to describe a two-phase

medium are not much different from the singular perturbation method we
presented above. The final description deals just with the macroscale ..

of the cloud. However, this description is obtained by averaging the

various physical quantities defined in the microscale. The two phase -

medium is assumed to be constituted of "particles" containing the host
liquid and few bubbles. This "particle" is small enough to be able to
distinguish the gaseous and liquid constituants, but large enough to
enable one to define significant volume average quantities in the two-
phase continuum. Therefore, each "particle" appears in the macroscale

as a fluid point M alloted various physical and kinematic properties:
L(M,t) is the local void fraction, pm(M,t) is the local medium density,
U m(M,t) is the velocity and Pm(M,t) the pressure,....etc. In such a
volume averaging description, if V is the volume of the particle,

X(M,t) the considered average quantity and x(m,t) its local value in
the microscale, we have the following definition:

X(M,t) = x (m, t) dV (13)

P V

The density of the medium is therefore defined by the relation:

Sm(M,t) = P [i - cx(Mt)] + pg(M,t) c(M,t) , (14)

where p (M,t) is defined by (13). The liquid is assumed to be incom-
pressible and p constant. The void fraction, ca(M,t), is defined as
the relative voiume of gas in the particle. Usually Pga is neglected
and the density of the medium is written:

Po(Mt) [1 - a(Mt) (15)"-

If U (Mt) is the average velocity of the liquid in the particle and

i lg(Mt) the average velocity of the gas, we obtain comparable results

to (14) and (15):

Qm!U =p ( -) + p U , (16)

.P m U 0 U £ 1 00) (17)

and combining with (15),

U U (18) ..
U..•

:% -
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The continuity equation is obtained by writing the mass conser-
vation of a volume of the bubbly medium followed during its motion. j
Using the average quantities defined above we can write:

dPm dV f V • U dV =0 (19)
dt ) ) tt -M ( 19

Here the material derivative pertains to the medium velocity Um,
or with our assumptions to U (see (18)).

d/dt = t +U V (20)

As Equation (19) is valid for any volume V, we obtain the general
equation:

* A
-- m+ V '(Pm Um)=-0 , (21 ) [N[

where Pm is defined by either (14) or (15).
A similar equation can be written concerning the number of bub-

bles, n(M,t). Neglecting any complete bubble disappearence or sudden
generation, as well as bubble splitting and coalescence we can write:

Dt + n V. Ujig 0 ,(22)

the material derivative being defined as;

D/Dt / t + U V.. (23)

The momentum equation of the bubbly medium can be obtained in the
same manner by using the momentum equations of both constituents in
the microscale and integrating over the "particle" volume V If we
neglect the viscous forces, this can be written:

f id-- + VPi dV =0 (24)

Vp , ,,t

the index i designating the liquid or the gaseous phase depending on
the position of the element of volume dV in the microscale. If we
account for the incompressibility of the liquid this equation becomes:

dUX DU
-(U- P V.U dV + Vp4 dV = 0 (25)

2. dt + pgt -D g
p p-g.

If we neglect the gas contribution to the momentum, and we account for

-. . . ..... .. " -. .. - - .. . . ..... .- .... . . " .
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(18) we obtain the following approximate classical momentum equation:

dU
p- ( -+ V P = 0 (26)

dt m

where it is assumed that

f- Vpi dV f Pin1 ds V -V P (27)
P PA p m

The only equation left is that giving the bubble translation
velocity, U,, which reflects the interaction between the two phases of
the bubbly medium. The study of this equation is a whole subject of
research in itself. Several contributions exit which have dealt with
more and more complicated situations. To quote some without trying to
be extensive we can add to the above references Johnson and Hsieh
(1966), Landweber and Miloh (1980), Van Wijngaarden (1976,b), Van Beek
(1981). When viscous drag is neglected a very interesting general

expression for the motion of a deformable bubble in a nonuniform
potential flow was derived by Landweber and Miloh (1980). If we admit,
however, that the liquid flow around an isolated bubble is linearly
accelerated, and that the bubble remains in first approximation spher-
ical, we can write,neglecting the bubble mass,a simpler equation as
follows:

DU aU- a
-- 3)-.- = 3 - - (U (28)
Dt Dt a -Z -g.

0

In this equation the virtual mass of the bubble is considered to be
2/3rrao, p and the material derivative is related to the bubble
velocity is discussed by Prosperetti and Van Wijngaarden (1976).

When other bubbles are present in the flow corrections are to be %
introduced in this expression, following Landweber's calculations.
Van Wijngaarden (1976,a) and Van Beek (1981) performed similar cor-
rections for a rigid sphere and obtained the expression:

dr +) (U- U) d 0 U(9
dt L2 -g-9 =(-)d 2.(9

where ¢ is a correction to the added mass of the sphere due -o the
presence of the cloud. They gave, however, respectively the values
(2.78 cA) and (-0.225 a) for .

B. Micromorphic Continuum Description
In classical continuum mechanics the fluid is described geo-

metrically by a field point M and kinematically by a velocity field
U(M). The averaging approach o.- the cloud medium, as described in the .
preceding paragraph, is in this sense classical. However, when a
medium contains microstructure, as is the case for a bubbly medium, '3.-
a more refined description can be obtained by assigning to M, in

k ,% %,

,% ,
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addition to the macroscale velocity, U(M), other quantities which re-
flect the microscale behavior in the "particle". In a first gradient
theory, in addition to the velocity field, U(m), a field of the
gradients of relative velocities in the microscale scale, X, is added
which defines kinematically the medium*. The description can be
further refined by using higher order gradient theories. Germain
(1973) considered such approaches and, using the method of virtual .-.--

power, was able to derive the equation of motion of the continuum
medium accounting for the macrostresses, a, and themicrostresses, S.

In a first gradient theory the velocTty in the microscale can-be
written as

U' (m) = U(M) + X(M) Mm (30)

Consequently the acceleration, r', of m is derived and, by equating
at dynamical equilibrium the virtual power of all the internal and ___
external forces acting on the considered particle (volume Vp) to the
material derivative of the virtual power of mass velocity of Vp, one
obtains a dynamical equation of the medium relating S, ct, and r'. I

To define X we consider the motion on a scale which is of

the same order =as the microstructure. To do so for a bubble cloud,
let us divide the cloud medium into fluid "cells" each enclosing an
isolated bubble. In addition, we assume for simplicity that the bub-
ble center of mass and the "cell" center of mass coincide at the con-
sidered time. Let U(M) be the velocity in M induced by the rest of N
the cloud in absence of the bubble, and V(B) the velocity of the
bubble center, B. U(M) would be the value of the velocity field
assigned to M in a classical fluid mechanics description.

The bubble radius is ao and its variations with time are given -
by (1). This radial motion of the bubble surface induces at a point
m of the cell (Figure 10) a velocity of value (ur •er'), where er' .V

is the unit vector of the direction Mm. The total velocity u', at
m is:

a2 a 1
u'(m) = U(M) + r---- e + V [ U (M) - V(B)) e +...(31)-- - -r 2 r1'2 --- r

where r' is the distance between M and m. The second term in this
expression is a source term due to the spherical bubble oscillations,
while the last term, u", is a dipole due to the slip velocity between
the spherical bubble and the fluid, and could include first order
corrections of the bubble shape. For further corrections for non-
sphericity of the bubble, other terms (singularities of higher orders)
have to be included. By differentiating (31) with respect to time
and space one can define an acceleration vector, F', and a strain

rate tensor, D'. Following Germain's approach, and using the princi;ple
of virtual powers, one could then derive an equation of motion of

the cloud medium. We decided instead to start with a first gradient
* A double underlined quantity Is a tensor.

'Ile'

-Ct.
p. .19V.
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theory and replace (31) by its Taylor expansion. We follow in doing so

the first calculations done by Michelet (1980) in his graduate thesis.

The basic approximation used in this linearization approach is
based on the fact that Equation (31) is only valid in the liquid
portion of the "cell" (r >ao). It seems therefore logical to write

the velocity in m, close to the bubble boundary, as a Taylor expansion
of the value of u' computed on a point of the bubble surface, S,

(Figure 10). This has the advantage of eliminating the singularity of

(31) for r' = 0. The obtained expression for u'(m) is then:

u'(m) U(M) + 3ao + 4Vt cose r' 2 t + 3---c."+
a 

0 cos)]e

+3 r, V sin] (32)
2V t sin a t

0

where Vt V(B) - J(M) I
When Vt is not accounted for, the expression of u'(m ) reduces to a
form comparable to (30), which is much easier to interpret than equa-

tion (32). In that case we obtain:

u'(M') =U(M) + X • Mm+ (A e (33)-o- -- = -r i'-

where X and _ are both tensors assigned to M and defined as:

X =- 2  I, a= 3 a I (34)
- a - o

We notice that in comparison to (30), which describes a first grad-

ient homogeneous deformation, in (33) there is in addition to the

gradient tensor, X, a tensor 2 reflecting the presence of a source in

the cell. Equation (32) reflects in addition to this the presence of 'S
a dipole. It could be written as N

u'(M') U(M) + X Mm + X' IMm e + o e + a' e
--- -- -z -r -z

(6V r' Vt cosO)e (35)+ 6 t cosO 2%

where ez is the unit vector of the direction of U and V; X' and of' play
the same role as X and ct but are applied just to the direcEtion o- the

translation. The last inhomogeneous term is more difficult to put

in simple form.
From the expression (32) we can now compute the acceleration,

then apply the principle of virtual power, to obtain the equation of

%I
. . _- ... . . . .,,
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motion. Here again in absence of translation velocity Vt, the results
are simpler to interpret. In absence of viscous effects these results
can be written as follows:

PmI + 3 K ao - V p (36)

where K depends unfortunately on the cell 6cometty,

PK= f - r dV (37)
V
c

If the cell and the bubble are symmetrical with regard to the center of .

mass M, then K- 0, and (37) reduces to the classical equation o'

motion, (26). Although it is unfortunate that the cell shape seems to
play a role in the model, K might rather reflect an effect of the non-
sphericity of the bubble.

When Vt is taken into account a whole series of "inertia" integrals ":
like (37) appear in the calculations. In order to see what such a
model might indicate we consieered the case of a spherical bubble in a -Me
spherical cell. In this case the motion equation becomes:

dm + 3 + 6 + O(a (V - = Vp (38)
dt a 4 a R

Here, R is the radius of the cell, and if we write R a a- 1 , we
• . have the unusual result:'J.-,,:.

/a + -)/3 a2/3

1M  1 + -+ .. (V - U) -Vp

(39)

-1/3 -
*. This surprising result (dependence on a might be compared with

that obtained for the apparent viscosity of a bubbly flow, which is J
41/3 •a -1 . (Batchelor (1967), Van Wijngaarden (1972)). We recognize
however that the present model is in its infancy and should be care- ,..-
fully checked before any conclusions are drawn. In addition, due to
the linearization of the velocity field (first gradient theory) this
model loses it validity for low as.

C. Case of a spherically symmetrical cloud O
Let us consider a finite size spherical cloud of bubbles and de-

fine its radius, R(t), at time t, as the position of the last outer
shell of bubbles. The space is therefore divided into two regions.

*,.- ;.': %:C.,
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For r > R(t), the medium is an incompressible liquid of density p",
while the interior of the sphere, r < R(t), is filled with a two-phase
medium which can be defined as in the preceding paragraphs. Let us
consider here the classical approach and define at a point M(r), a
radial liquid velocity uZ(r,t) and a radial bubble translation velocity
ug(r,t). Similarily we define a local void fraction ct(r,t), density
Pm(r,t), bubble radius ao(r,t), number density n(r,t), and medium
velocity um(r,t). The matching between the two media, states that at
r = R(t) there is continuity of velocities and pressures:

R(t) = ug(r,t) (40) iB "

(40) ¢"',;

P (R,t) lim p'(R, r', t)
r 00+oo''-...

where r' is the distance in the microscale between a bubble center and
a cell field point. The continuity and momentum equations in the
liquid medium (r > R(t)) are easy to solve and give, after neglecting
viscous effects:

u (r) = V r (41)

P£ 0P 2 "''"-'.

2 (42)

Vg is the total volume of the bubbles in the cloud

V= 4Tr a r2 dr (43)

Inside the bubbly medium, due to the spherical symmetry, the con-
tinuity equation also gives

V(r)
u R(r,t) = T ; r < R(t) ,(44) " -''

d.r

with - -

V(r) = 47T Cx(xt) x 2 dx (45)
f

If we are interested in the problem of the collapse of the cloud under
an imposed ambient pressure variation, P (t), (41) can be integrated
between the cloud radius and infinity to give:

Z ; .2]
-Poo(t) + P(R) = (46)z -4T r 'R 2 R4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. .,.
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Using (40), P (R) can be related to the behavior of any individual
bubble of radius ao in the last outer shell of the cloud, using equation
(1). Equation (43) becomes:

[a. 3k p U" O2.-•..
-P-o(t) + P + P +& -aoao4 + 0 (47) '

0 O ~ 47T R 2 0 (47

9 The cloud radius motion can be obtained by using an equation of
the bubble motion,for instance (25) or (26). In the simplest case
equation (25) gives the following second relation between R, a and Vg:

+ = _ + ° (48)a 4rrR 2  g 2R3 a g0 0
A third equation, in addition to (47) and (48), is needed to solve

for R, ao and V g. Without an assumption on a proportionality between
Vg(t) and ao(t) or without penetrating the cloud and solving for all
ao(r,t) to determine Vg there is no hope of solving the problem. We
do not think the proportionality assumption is generally justifiable
even if at t = 0 all bubbles in the cloud have the same size, since
P(r,t) would not generally be the same for any location r at a subse-
quent time. This need to solve the whole problem is to be expected
and is very important because it shows that defining the cloud by just
one parameter, as a unique void fraction, is not sufficient to describe
its dynamics. Number and bubble size distribution are other important
variables to consider. An exception to this reasoning is the case of -
a cloud which possesses a high enough void fraction in order for a
shock wave to form at R(t) and separate the two media described here.
Such an interesting model has been described by M~rch (1982).

IV. CONCLUSIONS

We have considered in this paper the collapse of a cloud of bubbles
submitted to a change in the ambient pressure. Two types of models
were presented. The first model, valid for low void fraction is an
asymptotic approach based on the fact that the bubble radius is small
compared to its distance from neighboring bubbles. This single per-
turbation method allowed us to write a system of differential equations
which enables one to describe any bubble motion and deformation know-
ing the geometrical and size distributions of the bubbles. As a con- , ...

sequence the whole flow and pressure field can be determined. As an o-

illustration a few cases of symmetrical bubble distributions on a
spherical shell were considered and showed interesting results. Even '
for very low void fractions, collective bubble collapse can generate

pressures orders of magnitude higher than those yroduced by single
bubble collapse. This would tend to explain the observed high erosion
intensities and the bending of trailing edges. The cumulative effect
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comes from the fact that the interaction increases the driving pres-
sure of collapse of each individual bubble. This augments the violence
of its implosion and thus the interaction with the other bubbles.
Thus, each bubble ends its collapse not under the effect of a pressure
of the same order as the ambient, but orders of magnitude higher.
This cumulative effect would not exist if the void fraction is high
enough for the cloud to behave as a single bubble. The study showed
again the importance of gas content in the bubble and the history of
the ambient pressure variations.

The second approach is a continuum approach and is undertaken in
order to extend the validity of the study to higher void fractions.
We principally pointed out the difficulties and suggested a way of
improving the averaging methods by accounting for the singular nature
of the bubbly medium under collapse conditions. To do this we used a
first gradient theory for the flow field and a micromorphic structure
for the bubbly medium. A correction of order 0-I/3 appears in the AP
motion equation of the bubbly medium when the bubble radial oscillation
and translation velocity are not negligeable. We showed finally for
a spherical cloud, with a classical continuum medium approach that it
is not possible to easily solve the problem without imposing an -. *.

assumption of a relationship between the behavior of the total gas
volume in the cloud and that of an individual bubble. The knowledge i-
of the local behavior of the bubbles in the cloud and thus of the local
characteristics of the cloud (i.e., void fraction, bubble number density)
seems necessary for solving the problem.

This work was supported by the Naval Sea Systems Command, General
Hydromechanics Research Program administered by the David Taylor
Naval Ship Research and Development Center under contract number
N00014-82-C-009. My thanks are due to M. P. Tulin who raised my
interest in this fascinating subject and to Ph. Genoux, from DRET,
Paris, for fruitful discussions and help in calculations for the

continuum medium approach.

V. REFERENCES

Bark, G., and Van Barlekom, W. B. (1979). Experimental investigations
of cavitation noise, 12th Symposium on Naval Hydrodynamics, 470.

Batchelor, G. K. (1967). An introduction to fluid dynamics, Cambridge,
the University Press.

Bovis, A. G., and Chahine, G. L. (1981). Etude asymptotique de
l'interaction d'une bulle oscillante avec une surface libre
voisine, J. de M~canique. 20, 3, 537

Chahine, G. L. (1981). Asymptotic theory of collective bubble growth
and collapse, Proc. 5th International Symp. on Water Column
Separation, IAHR, Obernach, Germany.

Chahine, G. L. (1982). Experimental and asymptotic study of non-
spherical bubble collapse, Appl. Sci. Res.,38, 187.

Chahine, G. L., and Bovis, A. G. (1981). Pressure Field Generated by
nonspherical bubble collapse, Cavitation Erosion in Fluid

-",, .5-.

. • , . . .. .... .... .. .... . . .-. ".

, - .. #. .. . .. = . # . .- °_. . . -2 ". ' . . . ° . . . . , . . . .•. . - " ° ". . . . " .



185

Systems, ASME, New York, 27.
Germain, P. (1973). The method of virtual power in continuum mechanics,

Part 2: Microstructure, SIAM J. Appl. Math. 25, 3, 556.
Hammitt, F. G. (1980). Cavitation and multiphase flow henomena,

McGraw Hill International Book Company.
Hansson, I., and Morch, K. A. (1980). The dynamics of cavity clusters "."'"

in ultrasonic (vibratory) cavitation erosion, J. of Applied
Physics, 51, 4651.

Ishii, M. (1975). Thermo-fluid dynamic theory of two-phase flow,

Eyrolles, Paris.
Johnson, V. E., and Hsieh, T. (1966). The influence of the trajectories

of gas nuclei on cavitation inception, Proc. 6th Naval Hydro-
dynamics Sy~mrp., Washington, D.C.

Landweber, L., and Miloh, T. (1980). Unsteady Lagally theorem for

multipoles and deformable bodies, J. Fluid Mech. 96, 33.
Michelet, M. G. (1980). Etude des milieux micromorphiques, ENSTA, "-''"

Filiere de Recherche Post-Scolaire, rapport de DEA No. 2.
M~rch, K. A. (1977). Concerted collapse of cavities in ultrasonic

cavitation, Proc. Acoustic Cavitation Meeting, London, 62.
M~rch, K. A. (1980). On the collapse of cavity clusters in flow

cavitation, Proc. 1st International Conference on cavitation and
inhomogeneities in Underwater Acoustics, Springer Series in Elec-

trophysics, 4, 95. 3
M~rch, K. A. (1982). Energy considerations on the collapse of cavity

clusters, Appl. Sci. Res. 38, 313.
Plesset, M. S., and Prosperetti, A (1977). Bubble dynamics and

cavitation, Annual Review J. Fluid Mech. 9, 145.
Prosperetti, A., and Van Wijngaarden (1976). On the characteristics

of the equation of motion for a bubbly flow and the related
problem of critical flow, J. Eng. Math. 10, 2.

Shen, Y. T., and Peterson, F. B. (1979) Unstead cavitation on an
oscillating hydrofoil, 12th Sympsoium on Naval Hydrodynamics, 362.

Tanabayashi, H., and Chiba, N. (1977). Unsteady cavitation of oscil-
lating hydrofoil, Mitsubishi Technical Bulletin 117, Mitsubishi
Heavy Industries, Ltd., Tokyo, Japan.

Tulin, M. P. (1980). An analysis of unsteady sheet cavitation, 1980
ITTC Conference, Ann Arbor, Michigan.

Tulin, M P., and Hsu, C. C. (1980). New applications of cavity flows
theory, 13th Symposium on Naval Hydrodynamics, Tokyo, Japan. ..

Van Beek, P. C. W. (1981). 0(c) - accurate equation of motion for a

liquid-bubble dispersion, Technische Hogeschool Delft. Report
81-18. Department of Mathematics and Informatics.

Van Manen, J. D. (1963). Bent trailing edges of propeller blades of
high powered single screw ships, International Shipbuilding Pro-
gress, 10, 101, 3.

Van Wijugaarden, L. (1964). On the collective collapse of a large
number of gas bubbles in water, Proc. 11th International Cong.
of. Appl. Mechanics, Springer, Berlin, 854.

Van Wijngaarden, L. (1972). One-dimensional flow of liquids contain-

ing small gas bubbles, Annual Review of Fluid Mech., 4, 369.

?;: ;..:' - '.-:.-~ .: -:



186

Van Wijngaarden, L. (1976,a). Hydrodynamic interaction between bub-
bles in a dilute gas bubble liquid mixture, J. Fluid. Mech., 77,
1, 27.

Van Wijngaarden, L. (1976,b). Some problems in the formulation of
the equations for gasliquid flows. Theor. and Appl. Mech., ed.
W. T. Koiter, North Holland Publishing Company.

Van Wijngaarden, L. (1980). Sound and shock waves in bubbly liquids,
Proc. ist International Conference on Cavitation and Inhomogeneities
in Underwater Acoustics, Springer Series in Electrophysics, 4, 127.

Van Wijngaarden,L. (1982). Bubble interaction in liquid/gas flows,
Appl. Sci. Res., 38, 331.

Zuber, N. (1964). On the dispersed two-phase flow in the laminar
flow regime, Chem. Eng. Sci., 19. 897.

Zwick, S. A. (1959). Behavior of small permanent gas bubbles in a
liquid, J. Math and Phys., 37, 339.

7 7 -..-

-'.4:-.;

43" "

, ~. -. '-,. ,

'.',N' ',



187 
p *

B U BBLES

~T~~CLOUD

EROSIO BENT
TRAILING
EDGE

FIGURE 1 -TYPES OF CAVITATION ON FOIL

00

/ G

e c 0

iI,

FIGUR 2 mUTBBL NEATO QIAEC .

COCP

n h

~ ***-..~, **-~* * :-~'0

p.-4.. 'C'.- -. *.-*** -. :.%. *..,**G

p.C ~ C~. ~ ~ "~~' .



AD-AI58 920 SYMPOSIUM OF NAVAL HYDRODYNAMICS (14TH) HELD AT ANN 3/13
RBOR MICHIGAN ON AUGUST 23-27 1982(U) OFFICE OF NAVAL
RESEARCH ARLINGTON VA M P TUJLIN ET AL 1982

UNCLASSIFIED F/G 2e/4 N

momhohmohEojI

KnhsmhmmMNNEu



1. Q

111 1.0 L2e -

1111i 2 5 l 1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A



188

%.

T c1 = C2  C3  0 (ISOLATED BUBBLE)
0 ~ ~ C1 = 2 = 3 = TOBBLS

2 C1I = C2 C 3V 1 (TW B.25BTLEE BLS

(A 0.4.C=(N UBLS3.N2z
00 = 2, C~ 1..5 5 C0(TH2E BUBBLES)

0 0 1 0 2 0 3 0.= 0.I. . . . . .

NONDIMENSIONAL TIME, t =tl(r 0  /AP

FIGURE 3- MOTION OF THE BUBBLE WALL TOWARD THE CLOUD: E= 0 I5, P =0. 1, K' 1. 4,
POSITIVE PRESSURE STEP g

1.86.

0u

1.4

1.2

1.2

z
0 0.
z

0T 0.6P 1

0.4
0 1 2 3 4.-

NONOIMEI4SIONAL TIME, t V (r 0  pAP)

FIGURE 14 - MOTION OF THE BUBBLE WALL TOWARD THE MULTIBUBBLE :
CLOUD CENTER W. = 100., P 9= 0. 53, K = 1.14, c 0. 1.
DURATION OF THE PRESSURE D'hOP AT =0.8.

'o~e. ; low%
* ~. - m



189

ISOATE BUBBLE

1.

.z

2BUBBLES OINTWR H CLOUDCETR

1.44

0 2 3

1.4.

0 1.0

0.6~ - N

-p. 02.

< 0
z4 R

-0.2 -%

FIUR 6 RSUEVRAINVRU.TM TADSACMRSSO
00

IMOE PRSSR 0WWAV0E,£= 0 L *0
AT INFNITY A



7.

-- CENTER

38.83 -- CNE INF 19--1 .

0

00

FIUR 7-RSUEVESSTM A IFRNTLCTOS

NODMNSOA 12ME PRSSR JUM P'/ 0=op-

) 10

PRESSUPRSSUR JUMP,. 1, o

8 r
CA 0,. I.-.=..

U. 6
B1 = BUBBLE LOCATION

w C CLOUD CENTER

~ I' .R 0 =AT ADISTANCEr . I
z FROM B8

2
FINITE TIME PRESSURE DROP, P =0. 53, AT =0.3. P 0.07 U

0.1 0.5 1.0 5 10 so 10 2 x 10 10 3 5 x10 3 10

MAXIMUM NONDIMENSIONAL PRESSURE, P IP - P.)/AP t

FIGURES 8 VAt~oATION WITH THE NUMBER OF BUBBLES OF THE
MAXIMUM PRESSURES GENERATED, W =100. =0.1 r

J 6



191

R0,AT A DISTANCE r FROM 8B
0

0 C.CLOUD CENTER

-B, BUBBLE LOCATION
0.8 A

'0. 6

z
0

0 -

10 102 1

MAXIMUM NONDIMENSIONAL PRESSURE, (P -. lA

FIGURE 9 -VARIATION WITH THE AMBIENT PRESSURE DROPDURATION,
AT, OF THE MAXIMUM PRESSURES GENERATED, P., 0.53,

W =100., c 0. 1, N 12e

FIGURE 10 -SCHEMATIC OF A FLUID CELL



192

Discussion

E.A. Weitendorf (Hamburg Ship Model Tank)

Is it possible to derive advices for practical propeller cavita-
tion tests if cloud cavitation occurred?

It is imaginable that advices for the propeller designer who has
to avoid cloud cavitation as far as possible are already included in
the findings of the author. For instance, is it the right way for
avoiding the cloud cavitation that the pressure on the profile at the
end of the sheet cavitation should change as rapidly as possible to
positive pressure values by increasing the profile curvature? I would
like to know the opinion of the author on this problem.

R. Latorre (University of Michigan) %

The author is to be congratulated for isolating the interaction
of a bubbly continuum to a basic bubble-bubble model.

To continue the development of this model it appears the author
can introduce the compressibility of thL medium by modifying the time
scale of the pressure propagation among the bubbles. Has he a sugges-
tion of how this might be treated?

My second comment concerns the mass exchange across the bubble
boundary. Recently, Prosperetti1 introduced a generalized equation
based on the Rayleigh-Plesset equation that includes non-Newtonian be-
havior of the liquid and mass exchange process at the bubble interface.

3 2 T2 1 1

RU + - - 2U +T -1 21 p1 1 1 Pb Pl

P. P. 2 + 3 r-1T dr
P1  1 -R R rr (1)

where R bubble radii
U1  radical liquid velocity at cavity interface
Pi pressure in the bubble
P pressure at infinity
Trr stress in fluid
r distance from centerT mass flux'

P 1 fluid density
P b bubble density

V. -
'IV-" - r.:*\%S4 .
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ProsperettiI indicated that Equation (1) is useful when the mass
flux can be computed independently of conditions within the bubble. It
appears that this model might be useful in treating the final stage of
the bubble collapse where the bubbles may break down into a group of
smaller bubbles. Does the author's numerical study suggest what
changes would result from using Equation (1)? I would be happy to
hear his comments on the utility of this modification.

References

1 Prosperetti, A. OA Generalization of the Rayleigh-Plesset Equa-
tion of Bubble Dynamics," Phys. Fluids Vol. 25, No. 3, March
1982, pp. 409-410. .

Author's Reply

G.L. Chahine (Hydronautics, Inc.)

To E.A. Weitendorf

Obviously, my paper considers, theoretically, the dynamics of an %
existing bubble cloud in a given pressure field, without attempting to
address the very important practical problem of propeller design in
order to avoid cloud cavitation. However, without considering the
cloud inception problem, I agree with Dr. Weitendorf that some conclu-
sions may be drawn from the results of the paper. Figures 5 and 9,
for example, reinforce his suggestion concerning a rapid positive
pressure increase behind the sheet cavity. Indeed, reducing AT, the
pressure drop duration, reduces the bubble growth and its rate of
collapse (Figure 5) as well as the pressures generated following the
collapse (Figure 9). An order-of-magnitude difference in these pres-
sures can be seen for AT dropping from 0.8 to 0.4. A similar conclu-
sion can be drawn concerning the amplitude of the pressure drop and
the increase to which the cloud is submitted. This is expressed by
the value of the nondimensional parameter Pgo, with Pgo small mean-
ing either high-pressure variations or low initial gas pressure. When
Pgo is increased (AP decreased) the generated pressures are very
significantly reduced (Figure 8). This suggests a practical propeller
design that minimizes the pressure fluctuation behind the sheet cavity,
besides reducing its spatial extent. This might mean increasing the
curvature and reducing the pitch angle. Another idea would be the
injection of gas bubbles in the concerned region in order to increase
Pgoi
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To R. Latorre e

The second part of my paper (continuum approach) treats the two-
phase medium as a continuum and derives the basic equations needed to
describe the propagation of information (pressures, velocities) inside 4
the cloud and answers Dr. Latorre's first question.

The inclusion in the model of the mass exchange across the bound- -
ary of the bubble and non-Newtonian effects is an interesting sugges-
tion but has the drawbacks of complicating, for instance, the numer-
ical procedure of the first approach. For inertia-controlled bubbles,
the mass exchange is negligible as it takes place at a much slower LJ*'

* 4. rate. Viscoelastic effects included in the Rayleigh-Plesset model
have been shown theoretically to be negligible for spherical bub-
bles. 1  In addition, experimental evidence, 2 confirming earlier
results about spherical bubbles, showed that significant viscoelastic
effects are observed only when the bubble departs from sphericity.

References

1. Chahine, G.L. "Etude asympotique des oscillations et du collapse
des bulles de cavitation, Thise de Docteur-Ingenieur, University " -
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Bubble Collapse,n Appl. Sci. Res., Vol. 38, pp. 187-197, 1982.

,. _7

-"

A..4% 
5

4.._

a. " . .".- "-* ' . ." "- ".*. " . d ,, ."..' ".* - N - " .' - **",. --- ",". " " - " . .. ,,4 ,*" 
-



~.1

Viscous Effects on the Stability of
Cavitating Line Vortices

Jaakko V. Pylkk&nen
Helsinki University of Technology

Ship Hydrodynamics Laboratory
Finland

ABSTRACT

A semi-empirical theory is presented to investigate the effect of
viscosity on the stability of cavitating line vortices. The emphasis
is on the formulation and the analytical aspects of the problem. No
numerical results are available.

In the case of the flow of a trailing vortex far downstream, viscous
action leads to an increased pressure at the axis, and so to an axial
deceleration of the core fluid. Correspondingly, in the present
approach, the cavity pressure is considered as a function df the axial
coordinate. The actual dependence is based on a paper of Batchelor. In
order to simplify the derivations the cavity diameter is assigned a .
constant value. Thus the pressure balance on the boundary between the
cavity and the fluid demands the inclusion of a fictitions surface
tension component as a function of the axial coordinate. This
formulation of the problem makes it possible to apply the linear spatial
stability theory. The real and fixed disturbance frequency can be
considered as representing the nonuniform wake. It is found that the
cavitating line vortex is spatially stable everywhere except at one
point where the stability is neutral. An analytical formula involving
exponential integrals determines the coordinate of this special station.
The above analysis is repeated for the case of compressible fluid.
Assuming both low wave and Mach numbers the same conclusions are still
valid.

NOTATION

B mathematical abbreviation '*

Csubscript unknown to be determined

c speed of sound

Dsubscript mathematical abbreviation

195
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F~p mathematical abbreviation.--.i . .

H H( I  Hankel function of first kind i

Hm m

H, HS  defined by Eqs. (3.5) and (5.8)

Kmodified Bessel function of second kind"'""-"
Km

k /c . -.'

L, LS  defined by Eqs. (2.12) and (5.3)""

V[X] defined by Eq. (3.8)•--

M Mach number ,. 2Nk

m helicity number;

P defined by Eq. (4.13)

p pressure,-.---

Pd vapour pressure in cavity

PdD[1X] additional pressure due to viscosity

PO static pressure at infinity_

Ap pressure jump across the boundary 6

Rradius of cavity

r radial coordinate in (r,e,x) set ,',.<

Sr  Strouhal number

::T s  surface tension

" ~ ~~ TsD[X] fictitious surface tension< .."1"I

t t ime".. -

WE  axial velocity,

E.q=

%%ll__
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W averaged axial velocity in Ch. 2-
subscript

X E X

coordinate of neutrally stable position

x axial coordinate in (re, x) set

Y integration variable

8 defined by Eq. (5.5)

r circulation "

Y Euler's constant

small parameter

radial disturbance of cavity boundary

T0, TI defined by Eq. (2.9) " "

e angular coordinate in (rO,x) set

X fast variable defined by Eq. (2.10)

K - dx(X)/dx '

v kinematic viscosity

.defined by Eq (2.10)"
--... ; , \

variable defined by Eq. (4.12)

p fluid density

disturbance velocity potential

-0' 01 defined by Eq. (2.8)

01H' €IB defined by Eq. (2.22)

adjoint of -

angular velocity -

W real and fixed disturbance frequency p.-...

" 0 one writes f(E) - 0(6(E)) as c 0 if lim {f(E)/6(e)}

" . . ..
%.
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1. INTRODUCTION

A cavitating tip vortex affects the pressure field around a naval screw
propeller. The pressure amplitudes in front of and directly above the
propeller are decreased (Weitendorf, 1977). Large pressure
fluctuations are caused by the breakdown of a cavitating tip vortex
(English, 1980). The purpose of the present paper is to investigate "' "*
the spatial stability of a cavitating axisymmetric vortex and estimate
the longitudial position of the stations where instabilities occur.

There exist several papers dealing with the stability of a
cylindrical vortex enclosing a central core in an inviscid flow
(Ffowcs Williams and O'Shea, 1970), (Morozov, 1974), (Narain and
Uberoi, 1973), (Pylkkinen, 1981), (Uberoi et al., 1972). To account
for diffusion in the fluid around trailing vortices the axisymmetric
Navier - Stokes equations have been calculated numerically by Bovis
(Bovis, 1980), (Bovis, 1981). Further, several authors have dealt with
the stability of boundary layers of rotating axisymmetric bodies. With
minor modifications they could serve as models for a corresponding
investigation in the case of a tip vortex. All these studies demand a
numerical evaluation. In the case of slowly diverging jets the problem
of the spatial stability has been attacked by 'rg & Round (Garg and - -.

- Round, 1978) and Plaschko (Plaschko, 1979) The viscous flow in a
diverging duct poses a similar spatial stability problem (Eagles and
Weissman, 1975). Nayfeh has studied the connection between temporal
and spatial stability of boundary layers from a more general point of
view (Nayfeh, 1980), (Nayfeh and Padhye, 1979).

The present problem consists of a spatial stability investigation
in the context of slow changes in the boundary conditions. The
governing equations of the flow and the boundary conditions define a " ".

cylindrical cavity surrounded by a potential vortex advancing at a
constant speed. In contrast to the studies mentioned above, the goal
here is to obtain analytical expressions. Thus a simple model for the
effect of viscosity is needed. It is assumed that the vapour pressure
in the cavity depends on the axial coordinate. The actual shape of
this positive pressure gradient is based on a paper of Batchelor
(Batchelor, 1964), (Uberoi, 1979). By assigning a constant radius to .,h.
the cavity the mathematical aspect of the problem becomes much simpler.
Consequently the condition of the pressure balance on the cavity
boundary demands the inclusion of a fictitious surface tension
component. These assumptions make it possible to perform an analytic
stability investigation. It will be found that at one axial station
the flow is spatially neutral. Finally the calculations are repeated .' ",
by allowing for the compressibility of the fluid.

The flow field is characterized as follows. The axial velocity ,
WE represents the speed of advance of the foil. The azimuthal
velocity V at the boundary of the cavity (at the radius RE) is due to
the cross slow at the tip. The entire fluid is taken to be inviscid
and incompressible.

.-. 4''. "o .".-.. ..- . .. . .. . . .. . .. . . . .. .-.- -" - " , " . . " " " . . ' " " " - " " . " " "
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2. PROBLEM FORMULATION

In cylindrical coordinates (x,r,e) the mean flow is given by

R2 R
(2.1) (WE , -  = V E)Es r " Q r:-

Since the fluid is inviscid and irrotational outside the vortex core,
the perturbation velocity potential satisfies the Laplace equation

2 VS(2.2) V24 = 0 for r -> RE + n(x,e,t),.

where n(x,e,t) is the disturbance of the cavity boundary, and t denotes
"" time. The kinematic and dynamic boundary conditions are (Narain and

Uberoi, 1973)

(2.3) 4r= (x+WE)n +-1 (+V RE)n + t on r = RE+n,
r x E 2 6 .E6

r

(2.4) -p{t+1 [ +2+(W+V) 2+ 1 2
t.""(R 2 r E+V 2 d dD

Ts+T (x) E 2

RE 3/2 (R R R+n x• ' - RE [ q2+(q~~~x e/(RE+n ) ) 21]32(- + - O) ,'..."-..

2
l+n T o  2 2 n i n

x e __ _ 0,*.-

(R+- 21ee( ] )n + (EX Ox on r = RE+'
(RE +n) 2'6 RE +n xx (RE+n) 2 E

and in linearized form
V

(2.5) r = WE nx+ fEo+t,
E(2.6) VI V

(2.6) -P{ t+WEox+ WEe - -n}={T +T (x) } + n+ 2 .
X E E sDR

E E
T and p denote the surface tension acting on the vortex sheet, and
t~e vapour pressure of the cavity, respectively. Finally the
disturbances should disappear when the radial coordinate approaches
infinity.

The additional pressure component pdD(x) originates from the
positive gradient due to viscosity. The pressure balance necessitates
the inclusion of a fictitious surface tension T (x). The detailed

.Dform of these two quantities will be discussed Tn Chapter 4. The -.-

pressure p D(x) is assumed to vary only slowly in the axial direction.
According the method of multiple scales the additional variable

(2.7) X =x

V..--
' -".. --
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is introduced. The variables X and x are called the slow and fast
scales (Garg and Round, 1978). The parameter c characterizes the
positive pressure gradient along the axis (Plaschko, 1979).

The disturbance velocity potential and the position of the cavity
boundary are taken as

(2.8) o(r,6,x,t) = [ 0o(r,X) + c€1(r,X)]e
-,

(2.9) n(e,x,t) = Wn0 (X) + enI (x)]e i "

where

(2.10) E= w+m

(2.11) K(X) = dX(X)

The real part of K(X) is the wave number, and the imaginary part is the .
spatial growth rate. The real frequency w represents the disturbances '.
in the base flow. In the case of a marine screw propeller, the wake
field of a ship, or the variable immersion of the trailing tip vortex
as a function of the angular position of the blade can be modelled in
this way. For comparison, the present flow configuration corresponds
to a three-dimensional boundary-layer case, where the mean flow is
independent of the spanwise direction. Here the spanwise direction is
replaced by the angular coordinate. Thus, as discussed by Nayfeh
(Nayfeh, 1980), the helicity number m is fixed.

Substituting Eqs. (2.8) and (2.9) into the Laplace equation and the
boundary conditions, and equating the coefficients of like powers of e
leads to

(2.12) 40+ 1 0+ "- =

O r 0 2 ()1 0*L 0 =0
r r

(2.13) L01=-i{2K(X) + i X)X + 0 (X)H,

(2.14) €0 (REX)=i{WE (X)-W+mV /REh0

(2.15) 4 (REX)=i{WE (X)-W+mV /RE}n + WE 0X

(2.16) -p{i 0(RE,X) [-w+(X)WE+mV /RE]-n0V RE }={Ts+TsD(X)

{1Q -m 2RE-2 (X)]},

IV.

N*% 
"
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(2.17) _P{i¢I(RE,X)[_W+K(X)WE+MV 2 2-1 ao(REx)

1 E l E VRE E a,M

2 2 -2_ 2 ano dK(X)
={Ts+TD(X)}{n I [2-m RE K (X)]+i[2K(X)- - + - 0 ]}.

In the above formulae a prime is used to denote 3/ar. The insertion of
the dynamic boundary condition in the kinematic boundary condition
eliminates n, and in final form, the complete set of boundary conditions
is

, ~P { -w+<( X )WE +mVa I }2 0( RE'X) i.(" [.-:[..
i(2.18) €0(RE 'x)+ 2 -I_{Ts+TD(X){= 0, 2R2'K"X)}

P{-w+K(X)WE+mVQRE }2 i (R ,X)
(2.18) -(R X)+ = - "PV I -{Ts+TsD(X)}{RE2-m 2RE-K 2 (X)}Q sE

-i' aK(x),' ""'"-i WE ( X )  iWE - (REa(E

{_t+<( XWEm~a } {_W+K (X).WE+mVaF 1 }2 +  pE ax.["[![- ,..

.-.. ">

2W K dK1X) x)

(2.19) ,(R(E, )<.-.'

1 E 'X)X 2 1_ 2 2 -2 2
{+K(X)W+V1R { [T+TsDT +T (X)( -m R -K (X) av-E1 s ssD

2d3(X).

+ 2 EW

{+K(X)W+mVORE }+iT+ (R X)+K .

(2.20) = ---- +° as r+E, a
2.2 )X 0 I1(P 2" 1 T +T ()(R- m - K2 X ) -

(2.21) 0 a--"0 as r oo.(2 21 -'as-r... -

The E order problem is composed of two parts, i.e.

(2.22) 01 = 1H + 01B'

?A- %- -A_%-%
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where ....- , -..

(2.23i) LOIH = H,

901H
(2.23ii) 0 as r - ,

-1 2
P[{W+KC(X)W E +MV~ J1H (E X)

(2.23iii) HE- 2-0,
PV mTsmr,(X){ E

! ' ,P {- < (X)WEDmAJ l }2E IH(RE ,-cX)}"

.- ,W

(2.24i) LOlB 0,

1B %%, -- '

(2.24ii) 01B r ..as r

-12
P{-+(X)WE+mV I B ( RE ,X)

(2.2l4iii) (R________________ X)+ B.

PE 2- -IT+T (x){. m -1RE W0 ~E s -222 B

The inhomogeneous perturbation potential * satisfies the same
boundary conditions as € . € is obtaineAHas a solution of the
Laplace equation subject to a mixed boundary condition. If one is only
interested in the stability of the flow, there is no need to evaluate0 further. :
1B The boundary condition for the mean flow

(2.25) pd+Ap+pdD(X)-p 0 {W+(2) 2{W .-
d dD E 2RE

J-%.. %.
where p0 denotes the static pressure at infinity, r the circulation,
and

(2.26) Ap T R +T (

ED

determines the radius of the cavity. Eq. (2.25) also gives the
connection between the increasing pressure along the axis and the
fictitious surface tension, i.e.

(2.27) PdD(x) E Te(x).
E

a,.

%--
-0X
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3. SOLUTION

The E order disturbance potential and its adjoint are

(3.1) 0 C (X)K (K[X]r),
MfK M

(3.2) 0 = rCM(X)Km(i[X]r), -0
where K is modified Bessel function of the second kind. The
amplitude function C is an unknown at this stage. Inserting this ,'-*
solution in the dynamic boundary condition gives the dispersion ".
relation "

2

(3.3) -p(-Km(K[X]R){-W+K(X)WE+mV R}- V1{d-K (K[Xlr)} )-{TE+T Km Er=R,

SsTsD[ X]}{R 2 _m2 RE2 _WI2(X) {- Km([X]r)1} I r

from which the wave number and the spatial growth rate are determined.
The inhomogeneous problem (2.23) has a solution if and only if the

inhomogeneous part is orthogonal to every solution of the adjoint
homogeneous problem (Garg and Round, 1978), (Sauer and Szabo, 1969),
i.e. -,

(3.4) 0*dr = 0 = rdr.

Due to the fact that the disturbance boundary conditions are linearized,
the lower limit in the integrals can be set at R This is equivalent
to approximating the material lines by stream lines in unsteady cavity
problems.

The substitution of r.

(3.5) H -i{2d(X)K (K[Xlr (X)+2K(X)C (x) m([Xlr)

+ dK(X) C (X)K(ic[Xlr)}

in Eq. (3.h) yields *,.r.

(3.6) k[X]x- Cm (X)+t[X]Cm (X) = 0,

where

1 "

%.I.

V%
N.***
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.,(3-7) k[X] rK (K[Xlr)[-2iic(X)K (ic[X~r)]dr,
V. m

(3.8) t[X] rKm(K~xlr)[-iKt(X)K~ic[Xlr)-2iKc(X)AKm(4cXlr)Jdr.

RE

On integration the differential equation (3.6) gives

(3.9i) C (X) C jx {- ] -1 Y,
MKexp k[Y]

where

(3.9ii) TDX W 0 for X < X tt.-

Thus the solution, to the first order of approximation, is

(3.10) =C cK (K[Xlr)exp{-iwt+ime+i J[K(Y)+ ik[y31dYl,

* where

___1C 2__ 1(K[X]R)
k[X] - K(X) 2 2 m2 2t[]

(3.1) ~Z[XJ . K[X] (K'(KXX]RE (I+-~ )K(4]
m i 2 (X)~ 2

*The constant of integration C can be fixed by a suitable
normalization (Plaschko, 19 9 TiC

4.* STABILITY INVESTIGATION j',

For easier evaluation in the low wave number case the dispersion
formula (3.3) is written as

wR V2 {K[X]RE}K'(K[X]RE) V"

W W E K( RE 22
E WE m E WE P EWE

+ )(m _ 1+K2 2X
2 ExR )

PW EE

Introducing the mathematical abbreviations

%y"- -7.
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(4.2) D (xm
mK(X K O[XR~),

T s PdDIX]

(4.3) F 2+ 2

the relation can be investigated preliminarily as the second order
equation

-1 ~ RE V2

Ep WE WE WE

V R2 2
V RE 22 V] 2 2 2 1/2

--D (XF (X)[m---) -M +1- --J-(X)F (X)[ -1]) 1
mK TpD W E WE W 2m TpD

E E WE

The tip vortex of a marine screw propeller is adequately ?.

represente.. by the low wave number approximation (K(X )R <<1). Thus .

the asymptotic expressions (Abramowitz and Stegun, 197TO7

(25 K (z z

K (z) =--
2 2 + 2+ 2~

(z) = (8) + -- +. for z -~02

3 3 z

y=0.5772... =Euler's constant,

-~~ are substituted in D EX E.(.2 n i[X]/k[X]} (Eq. (3.10)).

JL(4.6) DmK(X) Fd fln(-! [X]RE)+y}- for m =0,

~-m for m Z 1; ic(X) RF <

and

ifeX) r iK'(X)1
(4.7 7X(-) for m0= 1,*7 k(X]

Fd .K() for m 2:2; K(X)R. «<1 .
' )2~

UA
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To order e the disturbances grow if the local spatial growth rate .

is negative, i.e. ~

(4.8i) ]Jn{K(X)+Ei jt[XI} < 0,

and remain neutrally stable in the case of an equality (Garg and Round,
1978). The local wave number

(4.Bii) Re{K(X)+Ei

does not possess any E order correction. Thus the spatial stability
is seen to depend on {K'[X]/K[X]J. On the basis of the approximations

dT,,(x)

~(.i K[X ] dX K 1 (K[XIRE) T s+T s(X)~OomO
K[X dXXI

~ PREWE

dT (x)
I dic[XJ E dX <

'u"" T dx dX 2T 2{ -w +TD ) -

22

fform 1, 1(x)) PWE

fo- QE<I T+ X) T +T (x) <<1,W p s sD s sD

V 2 2. -
1+(-) (-2±/T2h

(.ii 1 dic[X] 1 WE sTDOC
K[11J Xl dX R3 2 V SIwR..E dX

PREWE (- 2± r2)- +5
WE WE

V V T +T (X) -1
±r2 sD sI 0
WE WE pR EWi

for m =2, T +T (X) << 1; K(X)R << 1,

the flow is spatially stable everywhere except at the point

4- (4.1o) {dT ( X1,dX} 1  0~sDXS
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where the stability is neutral. The axial coerdinate of this station

is denoted by XNS. The shape of the pressure gradient curve determines
it.

The papers of Uberoi (Uberoi, 1979) and Batchelor (Batchelor, 1964)
contain a detailed discussion of the continual slowing-down of the

V j ' J azimuthal motion by viscosity. The link between the azimuthal and ... '
axial components of motion in a steady line vortex is provided by the -"

" . pressure. The result is a positive axial momentum. The present
approach is based on this pressure gradient dependence. An equation
for the additional "cavity" pressure, p (X), is obtained by
substituting suitable quantities in Eq.-[h.6) of Batchelor. Now pdD(X)
is taken to be determined by

1 1 rWED P(.)
1 O4~d 2 w+r 2(2nRE) -2}'J

(4.11) - P (x)}- -PDX - { xnP -dPD 2EE8v x

where 2
2

(4.12) - WE=

(4.13) P = ( 1 -et) 2 dt

The variable W could be called an averaged or equivalent axialED
velocity in the vortex core. Two initial conditions are determined by
the continuity of pressure and its derivative. In the present case the
Villat-Brillouin condition at the detachment point, XOS, for steady
flow and constant radius of cavity demands

(4.14) dPdD(Xos)/dX - 0 .

This leads to

(4.15) Xs = 0

The vortex core is assumed to be initiated at the detachment station,
-- i.e.

r WED P(EOS)
(4.16) {p (2 ,2r 2E S...

-Pd
-  8v x

where

(4.17) P(Os )/xos = 4v/{WERE }

An interpretation of the pd (X)-function is to consider it as a model
of a vortex core of constanP but negligible thickness. The unknown
W is added to satisfy the two initial conditions.
ED

N ....

: k; .
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The main conceptual weakness of the present theory is the neglect of
the convection of angular momentum (Uberoi, 1979). Uberoi has proposed
a simple theory for a turbulent trailing vortex, which incorporates the
vortex changes. His solution is
(h.18) r(x,r)/r 0  1 + constantI - cI

where 0o n'cn n - 1
( 9 r =( 2/x)(WE/rOS) ? ?

(4.19) E (r / ) W/
The constants are obtained from experimental data. This flow field is
not represented by a velocity potential. Thus the stability
investigation must be modelled on the paper of Plaschko (Plaschko, 1979).
But it can be shown, that compared with the non-cavitating flow, the
existence of free surface decreases the magnitude of radial velocities
in the boundary layer.

5. COMPRESSIBLE FLUID qz

By drawing on two of the references, (Morozov, 1974), (Ffowcs

Williams and O'Shea, 1970), the investigation in Chapters 2-4 can be
extended to include the effects of the compressibility of the fluid.

Provided the Mach (M = W' E/c) and Strouhal (Sr =Re/Va) numbers
satisfy E"

2
(5.1) MS << 1, M << 1,

the lii arized equations of the motion for the periodic perturbation
yield the Helmholz equation

(5-2) V O+k 0, k = w/c for r a RE+n. .,
. - 1

The E and 1 order disturbance velocity potentials are

( +r - K (X)+k 0 2 L SO = 0,
r

(5.4) LS4 1 = HS
S

where

2 22
(5.5) a (X) = k -K2(X).

The two cases,

(5.6i) B(X) = /k2- 2(X) for 0 < i(X)<k,

(5.6ii) s(x) = iVK2 (X)-k2 for k < K(X)<

A. .....- .-. .:.
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are to be considered separately. The boundary conditions at infinity
(Eqs. (2.20), (2.21)), and on the cavity surface (Eqs. (2.18), (2.19))
remain unchanged.0

The solution to the c order problem, and the inhomogeneous term
of the El~ order problem are given by

(5.7) 'O C MK(X)H m(a[Xlr),

and

(8) Hs ?-iK(X)H '(B[Xlr)}- C (X)+{-idKX H (8[X~r)Sm dX MK dX m .

The superscript of the first kind of Hankel function H ()will be .f
omitted in the following. The inhomogeneous eigenvalue problem has a
solution if and only if

(5.9) HJ'H*.dr =0 H f 3 0 rdr.

Thus, to the first approximation, the disturbance potential is

(5.10) C =CH (B[Xlr)exp{-iwt+ime + i J[K(Y)+ie'[ JdY},

* where 0

(sii ik[XJ = ' (X)' 2 T(X))

K(X~ 2 2
T 8() m 8[X]B E)

(H(8[x]RE)) 2+(, _ mL )H([])
(H (B[XIR8 ( )H OI

* ~The dispersion equation .. .'

H T2x] ) ... ~
(5(12)XJRF) KXMV~B 8x{ (T +T (X))

--+M R+K (X))),
e ~

1W~~ IUX
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where

(5.13) Din ([1E

determines the local wave number and the stability parameter. When
D. (X) is replaced by DmH(X), the solution given by Eq. (4.4) is still
applicable.

In the low wave number flow the asymptotic expressions
(Abramowitz and Stegun, 1970)

(5.14) H (Z) 0 (+ i2{1n(- )+y})+z 2  1 i

H1 (Z) =~{-2})+z(-+-I{lnQz)+y--}) +...,

H 2(Z) 1-}) +(ii1 )+
z

H (z) (-{- 16D + -(-{-2}) +... for z -~0,

3 3 r Z 7T

are substituted in D H(x) and {it[XJ/k[X]}. The limiting cases V

(5.15i) (X) Rsk, kRE << 1,

E

result in simple analytical formulae0

(5.,6i) D mH(X) Pj {lnQ kR E)} 1  for m =0,

A$ -M for m 1, (X) rdk

(5.16ii) DmH(x) F {ln-K[XIR )1 for m =0, ~..
2 E Z

S-M form 1n , S(X F ir(X).

By inserting {O(X) = iK(X)} in Eq. (5.11), the derivations of Chapter
4are recovered. The other extreme approximation {$(X) = k} leads to

_____ _____ (X) + (L](5.17) k[I - () -+O ]))for K(X) Pdk

and

'pe

0z -* '. % .**'
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K'(X) 1 sD 22 2_'(X) 2< dX REK (X)DMH(X)+(m -1)D (x))

PRE WE

22 T+T(X) E  22
(2R ic WE 1f+D(x s s ]+R s(X)[2m - - -})+RNK(XW

V2  Ts+TsD(x) -1I"[""

[V + (R2K2(X)_I+m2) B - 0 for 6(X) P k.
2 E 2WEWE PREW

Thus it can be concluded that, as in Chapter 4, the cavitating vortex
is neutrally stable only at the station defined by the condition
{dTD(X)/dX = O}.

6. CONCLUSION

For long waves the potential vortex flow outside a cavity is always
temporally stable (Pylkkinen, 1981). But, because of viscosity, this
result does not correspond to observations in nature. Thus the
present conclusion, that the flow is spatially stable everywhere
except at one point, where the stability is neutral, seems to be a more
reasonable one. Also for a low Mach number flow represented by the

. Helmholz equation this result is valid.
The present formulation can be extended to include the convection of

angular momentum. The actual solution to this problem cannot be based on
velocity potential. Earlier research indicates, that a finite area of
spatial instability is to be expected now. The conclusion is that the

calculated stability is highly dependent on the assumed initial conditions.
The wake field of a ship is represented by the real and fixed

frequency w. In a linearized theory the axial eoordinate of the
neutrally stable position is completely independent of the wake .-. ,
frequency or amplitude. The local wave niumber is determined from the
dispersion equation, and is strongly dependent on the wake frequency.
The changing immersion of a tip vortex due to the variable angular

•.: 'position of the blade can be simulated in exactly the same way. That
is, because of the assumed constant cavity radius and the linearization ..-

of the boundary conditions the details or the cause of the disturbance
do not appear in the low wave number approximations.

The present theory yields simple and pronounced formulae for the 0
mutual dependence of the variables compared with investigations based
on the evaluation of full Navier-Stokes equations. This is due to the
fact that the independent parameter pdD(X) appears only on one of the
boundary conditions, and not in the governing equation of the flow.
Certainly the sophistication of the investigation could be increased
in several ways, but. conversely, one could easily lose the insight given
by analytical r'esalts.

%%
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Closure ,.. -:

J.V. Pylkkanen (Helsinki University of Technology)

This closure is the author's response to the following informal
question. How does the Reynolds number affect the stability? The
axial coordinate of the station of neutral stability is strongly de-
pendent on the initial condition at the detachment plane. In its
turn, the initial condition is determined by the development of the t
boundary layer at the tip region. A free shear layer will be formed
because of the different directions and different magnitudes of the >. ..

boundary-layer flows originating on the suction and pressure sides of ,

the blade. It could well be that bilge vortices are created in a very %-
similar way. If this is really the case, use could be made of already
available computational techniques.

What will happen if on one or both sides of the blade there exists -

also a sheet cavity? The extent of this sheet could be compared with
the vapor-pressure area of the shear layer. If these two cavitating .

domains overlap, the sheet cavity will join the cavitating tip vortex.
As an initial approximation, the sectional area of the cavitating tip

vortex might be increased by the sectional area of the sheet cavity at
• ,this position.

.
.~ . . *
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Nuclei and Cavitation
Jean-Pierre Le Goff

Direction des Recherches Etudes et Techniques
Yves Lecoffre

NEYRTEC Company

France

I. ABSTRACT ,%%%

This paper presents the main steps in the ten-year research

programme undertaken by NEYRTEC and sponsored by D.R.E.T. concern- , .

ing the influence of nuclei on cavitation. .

After briefly recalling the state of the art in 1970, the

details of research progress in the field of bubble cavitation are

described, viz.

(a) initial experiments and measurement of negative pressure on a ."

cavitating profile during bubble growth ;

(b) theoretical model and scaling laws for nuclei populations

(c) development of measuring devices and methods for controlling

nuclei in hydrodynamics facilities (venturi, scattering method,

microbubble seeding, dissolved gas monitoring) ;

(d) field applications in laboratory, industrial and marine con-

ditions.

The second part of the paper describes recent experimental
work which confirmed the validity of scaling laws. The tests were

made on two geometrically similar hydrofoils and two propellers

in two different cavitation tunnels. The scale ratio was I : 6

for the foils and I : 2 for the propellers. The largest hydrofoil

(NACA 16209) was 600 mm x 900 mm. The diameter of the largest pro-

peller was 330 mm. During these tests, the nuclei population was
adjusted according to the A3 scaling lqws on concentration. Forces

were measured and flow visualisations were made.

The results show that:

(a) Cavitation inception conditions are perfectly reproducible
whatever the scale and the velocity ;

215
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(b) In developed cavitation conditions, when the X3 law is applied '
and the a values are the same, the geometries of the cavitating
flows are almost identical on the small and large models (of
hydrofoils or propellers). The resulting lift (and thrust)
coefficients are also equal

(c) Although extensive noise measurements were not made during these
tests, a tremendous effect of nuclei population on radiated
noise has been observed.

These results confirm that the nuclei population has a major
influence on cavitation behaviour. It is thus highly recommended to
control this parameter in hydrodynamic facilities and to measure it
in full-scale conditions. -

II. STATE OF THE ART IN 1967 -'.-

The aim of model tests is to

- determine cavitation inception conditions,
- measure the effects of developed cavitation on force coefficients,
-predict noise and fluctuating pressures,

evaluate the risks associated with erosion.

Theoretical treatments are not able to solve the problems com-
pletely and it is always necessary to make model tests to evaluate
these effects.

It has been observed that model tests can lead to large dis-
crepancies, either in the same facility at different times or in
different facilities. The prediction of full scale cavitation
behaviour thus appears to be a difficult problem.

In order to have a better understanding of the physical para-
meters involved, international tests have been conducted, inclu- 'N
ding ITTC headform comparative experiments. The results clearly
show the above-mentioned discrepancies (ref. 1).

The main parameters governing cavitation in water have long
been recognised to be the gas content and the Reynolds number.
Numerous studies were made in the 50's and 60's in order to assess
their relative importance, but these studies were not conclusive.

The importance of water quality appeared to be evident as .-. \*-.

tests made in exactly similar flow conditions led to different
results. Reynolds number effects were also recognised as the incep-

tion curves showed similar overall trends when this parameter was
varied.

r ,
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As an example, the well-known results of Bonnin and Hammit are . "-
% given on figure 1, where cavitation inception experiments in water .

and sodium are compared (ref. 2).

I" -- U-M water test -

- -- ,BSonnin water

O.O - ----- onnin sodium

-o

'.

402 2 4 6 8 106
Fig. I - Cavitation inception in similar venturis (Ref. I)

The main recommendations resulting from those studies were in .

the form of practical rules for cavitation tests

(a) Reynolds Number and velocity should be as high as possible in
model tests.

(b) Dissolved gas content should be as low as possible in the cavi-
tation facility.

The second point was recommended both from a cavitation point I
of view and for practical purposes : a high gas content generally
leads to bubble formation in test-sections, making flow visuali- -OF___

sation impossible (Ref. 3).

Moreover in 1970, the relative importance of stream nuclei ,.

and so-called wall nuclei was not clear (Ref. 4).

Practically, as the parameters involved in cavitation were
not correctly described, the laboratories used their own testing
procedures to predict cavitation effects, these procedures being
compared to full-scale results in an empirical way.

In many naval or industrial applications, the working a values
are high enough so that cavitation has no effect on performance.

Thus the results obtained under normal operating conditions in
model tests can be extrapolated to full-scale.

"6j. JXi 7,,r%,

,;. ;.. .*. -5 ,
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218

During the late sixties, the French Navy began feasibility stu-
dies on hydrofoils, with totally immersed lifting surfaces. This
type of high speed craft requires the use of an automatic pilot. It
is necessary to know precisely the force coefficients of the foils
under non-cavitating and cavitating conditions.

For hydrofoil craft, the uncertainties obtained in conventio-
nal tests under developed cavitation conditions are unacceptable.

As the model tests of two- and three- dimensional hydrofoils
had to be carried out by NEYRTEC (Sog.), it appeared necessary to

A. develop in parallel a more basic research programme.

At the time, the main purpose of research was to be able to
make reproducible tests on models and to extrapolate the results
to full scale.

III. PRELIMINARY EXPERIMENTS 3

The aim of the first studies was to ascertain the order of
magnitude of the discrepancies on force coefficients and cavitation
inception a values that could be obtained in model tests depending
on the procedure used.

Two types of experiments have been conducted

(a) cavitation inception with an orifice plate ; P,

(b) lift and moment coefficient measurements on a cavitating two-
dimensional hydrofoil.

During these experiments, the dissolved air content of the
water in the cavitation tunnel and its time-pressure distribution
were varied as well as the flow velocity and the cavitation a para-
meter. Typical results for cavitation inception in a jet are given
on figure 2 which show the general trend of the phenomenon, viz.

(a) cavitation inception aiincreases with gas content,

(b) ai increases with pressure drop (or velocity in the jet).

Ai -

<if::.< i.K .- .**,
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0.6.

-0.2"

0 2 ( 00 I )

Fig. 2 - Influence of dissolved gas on cavitation inception

(circular diaphragm) 
',,.

The lift curves of the foil (figure 3) show that the discre-

pancies between lift coefficient under given overall flow conditions

were dependent on the type of cavitation. When sheet cavitation

appeared, no influence of the gas content was noticed ; when 
bubble

cavitation was present, changes in lift coefficients could be as 
.-

high as 50 %. The lowest lift for a given value of a was always

obtained with high dissolved gas concentration. It was also shown

that the gas content (measured with an oxygen probe) was not the

only relevant parameter as tests conducted with the same air 
con-

tent value gave different results.

CL

A A A

A A 
%

COL 2 I1'

OJO.

o - 0 010 W O0

Fig. 3 - Lift of a 2-D Hydrofoil - 0 I° , showing the dispersion "..**. S.

of results
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It thus appeared probable that the history of the water had to
be taken into account. Different explanations were proposed, most of
them involving some stabilization mechanism of "nuclei" in the cavi-
tation facility. In fact, no clear explanation was given at the
time, contradictory hypotheses been presented by different authors.

IV. NEGATIVE PRESSURE MEASUREMENTS (1972)

As the foregoing global tests were not able to produce a prac-

tical procedure for hydrofoil testing, it was decided to seek more
basic insight into the specific problem of developed bubble cavi-
tation behaviour.

A special microscope was designed whose resolution was less than
I m. Its focal length was 30 mm in water. The idea was to measure
the nuclei in the water upstream from a cavitating body, outside
the boundary layer.

A test section was built which consisted of two cylindrical
portions built in such a way that one of them could rotate (figure
4). Bubble cavitation was produced on the cylinders and the pressure
field was explored in the cavitating zone by means of a movable
flush mounted pressure transducer. The main difficulty was to
avoid cavitation on the pressure gauge itself.

Tests were conducted by changing the water quality by acting
upon the dissolved air content in order to modify the nuclei popu-
lation.

p

microscope psas1

.4 O~Atw.-4 _

-Moos-ow

--Typicl presse distribution-

% % ... ..

I.Fig. 4 - Test section ' ' '
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The results showed that whatever the experimental conditions
(gas content), a negative pressure zone (or at least a zone where
pressure was below vapour pressure) always existed at the boundary
of the cavitating flow. The point of minimum pressure (generally
below zero absolute) was systematically measured and the related
Cpmin value was computed

PrninnPain - PWo Pv ' "."

PCprin 1/2; = 1/2p V '

For each experimental point, the number N of vapour bubbles on
the profile was measured by means of high-speed photographs. The '
main result of the study was to show (figure 5) that the minimum
Cp value for a given a value was only a function of the number N,
whatever the dissolved gas content and the flow velocity.

"

____,__,, 'r ,/ . :- '.*.0..

0.

Fig. 5 -Minimum pressure coefficient on oce rotating cylinder K~

As N increased, the CPmin value was closer to the working a va-
lue, that is, the pressure was closer to vapour pressure.

The geometry of the flow was also dependent on N. When the
number of vapour bubbles was high for a given a value, the growth
of each bubble was slowed down and its maximum diameter reduced.

Moreover, high-speed movies (5 000 f/s) and instantaneous
pressure measurements wore recorded simultaneously. This showed
that the passage of a growing bubble over the pressure transducer
produced a positive pressure pulse.

" -..- '

Finally, the number of nuclei measured using the microscope

V %.'-'
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of nuclei measured, especially the big ones, also increased. These

nuclei were very probably microbubbles.

A. General behaviour of the flow

After these experiments, the overall mechanism of bubble cavi-
tation became clearer C ]
1. At the leading edge of a profile, provided the a value is low

enough, the cavitation nuclei can create vapour bubbles. The

number of bubbles generated depends on the concentration and cri-
tical pressure distribution of these nuclei.

2. Further downstream, the growth of vapour bubbles is mostly due to
inertia effects. The fact that the bubbles actually grow clearly
shows th-Jh'ihe pressure outside the bubble in the liquid is be-
low vapour pressure. If the radial velocity of the bubbles is
high enough, this pressure can become negative.

3. The effect of the boundary and of neighbouring bubbles tends to
slow down the rate of growth. Simultaneously, the mean pressure
on the foil increases and the resulting lift decreases.

B. Theoretical approach

From these qualitative observations, a simplified theoretical A\."
model was built whose principal aim was to specify the scaling rules
from model to full-scale.

The model consisted of potential flow computation where a grid
of five bubbles and their images through a plane were allowed to
grow under a specified pressure at infinity p. (t) (figure 6). In
our experimental case, p. (t) was extrapolated from subcavitating
experiments for a specified a value.

The result of the computation showed a reasonable agreement
between the measured mean pressure and the theoretical time and
space averaged calculated pressure.

U%
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P

((a NO)

5.1"1 Radius

..... ' ........... ..rm ." ." ."" ........................ ...

x amputation

A, Experimental .- -

I t point - .

Fig. 6 -5 bubbles model

The theoretical model is obviously not perfect, i. e.

(a) bubbles are assumed to be spherical ;

(b) the radius of the five bubbles is assumed to be the same ;

(c) boundary layer effects are not taken into account.

However, from a formal point of view, the model shows that the
only relevant parameters are the a value and the relative distance

between bubbles and between the bubbles and the wall.

The result is that bubble cavitation effects as described by
this model are only a function of N and a whatever the velocity and _ U
dimensions.

C. Scaling of nuclei concentration

For developed cavitation conditions, the scaling rules on nu-
clei concentrations become obvious

*" The vapour bubbles are generated from freestream nuclei and their
absolute number depends on the volumetric concentration of active
nuclei. As the number N of vapour bubbles has to be the same on the

- model and at full scale, the relative concentration must be pro-
portional to the third power of the geometrical scale ratio A

Cm

C .. ;
The smaller the scale, the higher the concentration needed.

. - . - .-X .- ,
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VI. NUCLEI CONTROL ( 1976)

The general explanation of the phenomenon being known, the
problem was to develop practical means to control the nuclei content

of water.

A. Comparative measurement techniques

In April 1974, joint experiments were conducted at NEYRTEC
where the available methods for measuring nuclei were compared, na-

mely

(a) holographic method of F. B. PETERSON (NSRDC) .-. -.---

(b) the scattering method of A. KELLER (Munich University)

(c) the miscroscope of F. DANEL (NEYRTEC).

The tests showed a very good correlation between the hologra-

phic and scattering methods and these appeared to be the most effi-
cient systems for so-called "indirect measurements". Problems arose i..

with the microscope due to difficulties in precise determination

of an "effective" depth of field. .
, . ' °-. . .

The results confirmed that the nuclei concentration would vary

with the operating conditions of the cavitation tunnel in a non-
controllable way (ref. 5).

B. Artificial nucleation

It then became important to develop apparatus to generate arti-

ficial nuclei. The best way was to inject microbubbles in the water -

(e. g. Electrolysis, bubble filter). NEYRTEC developed a special

technique by using high pressure saturated water. The study of this
technique began in 1975. At that time, air and water mixtures were
injected into the facility and the bubbles produced had an average

diameter of 50 um. The system permitted an injection rate of about '.
-. 106 to 107 microbubbles per second. For typical test conditions -

(flow rate 10 m3 /s), this leads to a nuclei concentration of 0.1 to K
I bubble per cm3 , which is a rather low concentration.

Since that time, new microbubble systems of the same type -
have been developed to produce up to 1010 microbubbles/second. All -

exhibit a critical pressure very close to the vapour pressure and .

are well suited for model tests.

Simultaneously, new concepts of test facilities (pump test

loops, cavitation tunnels, etc.) have been developed embodying
nuclei content control systems. ..

- . .
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C. Venturi (direct measurements of nuclei)

The results given by indirect methods of nuclei measurements
always show very large amounts of nuclei (ref. 5) - more than one
thousand per cubic centimetre in the range of diameters above I uim.
Experimented observations on cavitation bodies show that the number
of vapour bubbles is limited and that concentrations higher than
1-10 active nuclei per cm3 were difficult to explain. For this
reason, it was decided to build a system in which the pressure could
be controlled and the number of nuclei actually creating vapour o
bubbles in the specified conditions could be determined.

In 1976, NEYRTEC built a microventuri (figure 7) whose princi-
ple had first been developed at the Delft Hydraulic Laboratory by
OLDENZIEL. The principle of the system consists in creating a
known pressure at the venturi throat. By varying the flow rate, this A
pressure can be changed and become negative. For a given pressure, -,
the number of nuclei generating vapour bubbles are counted acous-
tically when they collapse.

pressure
distribution

Fig. 7 Principle of venturi system

Using this system, one is able to measure the effective nu-
clei distribution and determine the histogram of critical pressure
versus concentration. This apparatus is built in stainless steel
or nickel and so can be used with most industrial liquids like wa-
ter, sodium or mercury. 6%

* .7

*1o[
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D. Results and applications of venturi apparatus .

Several tests under laboratory and industrial conditions have
been conducted using the venturi system. All the results clearly
showed that the nuclei population in "industrial" water is always
less than expected from indirect-method measurements.

Typically, the "susceptibility" (i. e. critical pressure of
weakest nuclei) of water is less than - I bar and the effective
nuclei concentration whose critical pressure is above - 2 bars is .
in the range of 10 to 100 per litre. Such low critical pressures
would correspond to bubbles less than 2 pm in diameter. This con-
firms that the particles which are present in the water and which
are measured by indirect methods do not constitute nuclei, at least
in the range of practical hydrodynamic conditions.

This shows that using direct methods is the only way to mea-
sure the nuclei content in full scale conditions. However, indirect
methods (e. g. scattering) can be used in test facilities when the
nature of the nuclei is known. For example, NEYRTEC designed a lo-
cal scattering apparatus to count the microbubbles injected into
cavitation tunnels (Ref. no 6 ). Practically, the range of con-
centrations that can be measured with the venturi is limited to
)O/cm3 . Using the scattering method, it is possible to count up to

3I 000/cm

NEYRTEC has used the venturi system for many different appli-
cations, e. g.:

(a) 1977 Turbine tests in LAUSANNE (E.P.F.L.)

The curve (figure 8) summaries a typical test showing the effi- ,; ".I.

ciency- a curve with and without injecting artificial nuclei. 6%

The nuclei concentration was measured with the venturi. These
experiments are described in reference no 7.7 i t-J

0.950 , . .'

/4 ~~~Head L'-.- .

-- o-- H = Sm nuclei injection
0.900 -- s-- H = 16m nuclei injection

0.050 O.1O0 OC-] '. .

Fig. 8 -Efficiency -a curves for a Francis turbine

.2. . ......
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(b) 1978 Joint experiments were conducted in Delft Hydraulic La-
boratories. Two venturi techniques (Delft and NEYRTEC), one

scattering method (KELLER), one holographic method (VAN RENESSE)
and one acoustic method (JANSSEN-DELFT) were compared and a
correlation of the results has been made with the cavitation
noise emitted by a valve. The results confirmed the discussion
above. A report of those experiments will be published in IAHR
conference (Amsterdam - September 82).

During the same year, a NEYRTEC/CEA/EDF/CNRS contract showed

that the nuclei content was the same in tap water and water

containing large quantities of mud. The measured concentration
was in both cases very low.

Figure 9 shows the large discrepancies between a scattering me-

thod and a venturi system.
n/cm3 /I.

1000
500

"m.n/cm3

50.

SCATTERING 0.0 - - - - -

METHOD VENTURI
40 0.06-- ----

0.04 - -.- '...

0.05

£ Fig. 9

5 40 20 3050 o0 r"

(c) 1980-1982 : In order to know the nuclei concentration in sea
water and simulate it in model tests using the above-mentioned "
s(aling laws, a special apparatus was built to measure "in,

situ" nuclei distributions down to 100 metres. Typical results
of preliminary tests are given in figure 10. It was planned to

use this system in January 1982 in a cooperative programme
between the Naval Sea Systems Command and the French Navy 3
(Bassin d'Essais de Car~ne).

*_ Unfortunately, the weather made it impossible to perform suc- S
cessful tests.

i!?iii -..-..

~4%4

-1AL/ ....... % .. . .. . . .. . .

% * 4. . 4 . * 4 . - -t'. , r ~ .

z ,,'. ,.. ' 4 ' .. ,-4 .., :,,' ,, 4 4.. .' ,.., ,,'' 4 4.-. , - . 4 - .,., ,. .,, ,.,f , ,. .,.- ., . .. .- ,.' -. .. ,,. ,,.. ." .,. .', ,. , .... ,,,



228

Nuclei concentration n/cm3

0.3-

Doptl: 11.5m
24.4m v '

a 4 32.2 m

0.2

VENTURI -

I ~~.%.. %

0.4 A
. --

o , ,.* ..'\A

Critical
-"essure .-

310"5 2.t0-5 40-5 5404 PV PC PO)

Fig. 10 - Nuclei spectrum in sea water .. ' .

VII. VALIDATION OF SCALING LAWS (1982)

After the above-mentionned studies, it appeared important to
carry out tests in industrial conditions with the following aims

I. Verify the proposed scaling laws between full scale and models,
namely

ai based on P5 and not on Pv.

nuclei concentration scaling as X3.

2. Demonstrate the operational feasibility of the techniques deve-
loped for nuclei control (artificial nuclei injection and mea-,
suring methods).

3. Give recommendations for future applications in the design and
operation of cavitation facilities.

-- ..:.,.

A. Description of the experiments

Two types of test were conducted. The first was a comparison
of the lift curves and cavitation inception conditions of two geo-
metrically similar hydrofoils. . 9.

4'.p* .%
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The second type of test compared the thrust of two propellers.

The hydrofoils (NACA 16209) were two-dimensional. The larger
one had a chord length of 600 mm and a width of 900 mm. The smaller
one was geometrically similar at a scale of 1/6. The two cavitation
test sections including the contraction and diffuser were also si-
milar at the same scale ratio.

The propellers were installed in the big cavitation tunnel. The

larger propeller had a diameter of 330 mm and the smaller a diame-
ter of 165 mm.

During these tests, the water was seeded with artifical nuclei,
the 36 injection points being equally distributed upstream from
the contraction. The length allowed for mixing was sufficient to
provide a homogeneous distribution of nuclei in the test section.

The lift of the hydrofoils was measured for 5 incidence va-
lues (-1, 0, 1, 2 and 30) and different velocities (5 to 15 m/s ).

A typical test consisted in gradually lowering the a value until
cavitation extended downstream from the hydrofoil. For all these
tests, nucleation was systematically varied and measured by venturi
and scattering methods.

Inception conditions were determined with and without injection.

The Reynolds numbers used were in the range of 0.4 x 106 to

1.2 x 106 for the small hydrofoil and 3.6 x 10 to 4.8 x 106 for
the large one.

Propeller thrust was measured for different J values extending

from 0.5 to 0.9 , and typical tests were similar to i"i
the ones made with hydrofoils (cavitation inception and force mea-~~~surements) . __

Most of the tests were made with travelling bubble cavitation

and high speed movies and photographs were taken throughout.

B. Results "

1. Cavitation inception

p.' Cavitation inception conditions for a given geometrical con- 7.j
figuration (same incidence angle for the foils or same J for the
propellers) were exactly the same when nuclei injection was
applied. In the case of the propellers, the ai value under these

conditions was compared with theoretical calculations made by

"Bassin d'essais des Car~nes". The inception a conditions were

found to be very close to the minimum C p value for J = 0.6.

..... .-........ ..... ........ ... . . . .. . -. . -. 4 . . , t. . . . ,- . .- .
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These inception values did not depend on the scale, velocity,
testing procedure or dissolved gas content. Of course, in this
case, ai = ad. ad is the so-called desinent a.

When no nuclei were seeded, the ai value was highly dependent on
the overall test conditions. For example, with hydrofoils, it was
possible, using highly degassed water, to perform tests at a
a value of 0.5 and an incidence of 30 without cavitation. .'..

This corresponds to highly developed cavitation and even to a
drop in lift when nucleation is applied.

This clearly shows that inception conditions cannot be correctly
determined if no artifical nuclei are used.

Moreover, to determine ci, which represents a limit between sub-
cavitating and cavitating conditions, it is not necessary to con-
trol the number of nuclei, but only to know that a "sufficient"
number of them have a critical pressure very close to the va-
pour pressure.

A more detailed discussion of this point can be found in ref. 7.

2. Developed cavitation %

" -Hydrofoiis

The main difficulty during these tests was to obtain nuclei con-
centrations with the large hydrooil which were low enough to si-
mulate conditions corresponding to low nuclei contents with the
small hydrofoil. A

The X3 law requires equivalent concentrations in the big cavita
tion tunnel which are 196 times lower than in the small one. It
is practically impossible to measure such a low concentration in
the big tunnel as its order of magnitude is less than: ,. '

I nuclei/JO 1.

Such a measurement is statistical in nature and difficult to
interpret.

In practice, we succeeded in having no measurable nuclei in
either tunnel when the tests were made in both cases with very
highly degassed water.

The results of figure 11 give the C1 - a curve for the big
hydrofoil with and without nuclei injection.

• ..~ ' ..
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04

0.!AC 462"

0 0-5 4'.

Fig. 11 - Effect of nuclei injection on the lift of the big
hydrofoil i = 20

On figure 12, for the same incidence, the drop (AC) in CL is

presented in both cases in the form

ACL Li

CL subcavitating '

V.

The curves show that this drop in lift is the same when the nu-
clei concentrations scale as A3.

This has been verified for all the experimental points at which
bubble cavitation occurred.

V.A Ci/
C ~ ~ ~ ~ ~ .2.2voice j/fcW j~~i

-0-00

-so

A%,

Fig.~~~~~~~~ 12 Rltv.rpi Lbtee eae ae n ae

with ~ ~. .....d nule whncnetaiosaesae

as. 
....-. X3
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4~ 50c m

Cavitation bubble on the big hydrofoil Flow

nuclei concentration ivo direction
Photo I

* -- 1

'10 cm

Small hydrofoil
Flow concentration 2!0 Photo~ 2

directio0n

j%:* .7
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21 50 cm .

Big hydrofoil -concentration ne 0.04 /cm 3  Flow

Photo 3 direction

4 %.

40 cm

Small hydrofoil-. concentration 2! 2.2/cm3  
.

Flow
Photo 4

direction

%-.~.
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Photographs no 1, 2, 3, 4 show the aspect of cavitation on

the two hydrofoils. Photographs no I and 2 correspond to a
db low nuclei concentration.

Photographs n°3 and 4 correspond to nuclei concentrations of
0,0/an3 for the big hydrofoil and and 2.2/cm3 for the small one.

It is obvious that the flow geometries also scale under these
conditions.

It is to be noted that the isolated bubbles shown on photograph b'"9

n °  I on the big hydrofoil with degassed water have a diameter

of about 150 mm -

It was also verified that at high incidence angles, when sheet
cavitation was present, nuclei injection had no influence on the
geometry of the flow or on the resulting lift.

Propellers

The results for the propellers are very similar to those obtai- .

ned with the hydrofoils.

A typical KT curve is given on figure 13 showing the effect of
nuclei injection and (for a J of 0.66) the effect of an increased

number of injected nuclei.

=- . - ,

K~r

Y~ 44

:'. Prp~lie t- A . p.With-at' ,w cte.
O.. .0k

.4A A.00

..--...,*+>

' 0.5~ 0.6 0.7 0.1 o0.9 ,I'Jx ,.
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Fig. 12 - KT curve obtained with and without nuclei
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In this case also, the concentration to be injected to obtain

an equivalent KT was scaled as X3 as with the profiles and the

flow geometry was also similar under these conditions.

.. .- .

-JJ

0V 4

Fig. 14 -Noise emitted by the small hydrofoil with and
without nuclei injection

Noise

Although no systematic study of the noise emitted was made, a

tremendous effect of nuclei population on radiated noise was
observed. The lower the concentration, the higher the noise

generated.

Figure 15 gives a comparison of noise intensity recorded on the -. -

small hydrofoil at two different nuclei concentrations. The va-

lidity of making such measurements in the frequency-intensity

plane could be questioned and this result must be considered

" only as a global effect.
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CONCLUS ION

.,

The main object of this paper was to describe experimental
research work conducted at NEYRTEC from 1968 to 1982 to develop
simulation procedures for cavitation scaling. Only the principal .

results obtained during the 15 year period are presented but these ..

relate both to basic research and to more practical applications.

Most of the results are concerned with bubble cavitation as
this is greatly influenced by nuclei populations. It is not of A
course sufficient to control nuclei populations to scale all as-
pects of cavitation behaviour perfectly. Reynolds effects still
remain important because they are responsible for the type of cavi-
tation produced. However, their influence on inception is probably -.-".*
not as important as previously thought.

Concerning full scale nucleation in natural waters, many ques-
tions remain to be answered about the physical and biological na-
ture of nuclei. Currently, the only practical way of gathering the
missing knowledge is to carry out in situ experiments at sea, but

these are not readily performed.

Care must be taken when representing natural nucleation on j.-.

models. Most of the existing water tunnels are not equipped with
artificial nuclei injection systems. Full scale data are still
needed under varying experimental conditions to provide practical
scaling recommendations for model tests.
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Discussion

V.H. Arakeri (Indian Institute of Science)

The authors have shown a vivid pictorial presentation of cavita-
tion phenomena. Their method of seeding the flow with nuclei is most
interesting and effective. However, it appeared from the film that
the number density of nuclei in the flow upstream of the propeller,
for example, is rather too high. It is well known that in two-phase
mixtures containing water and air bubbles the speed of sound can de-
crease by an order of magnitude to values as low as 10 mls. In view
of this, it would be interesting to know the void fraction in the flow

N" with nuclei seeding and whether the authors feel that the compressibil-
ity effects due to the phenomena discussed are not likely to be impor-
tant in their experiments.

S. Gowing (DTNSRDC)

The authors of this paper have indicated that the effect of cavi-
tation nuclei concentrations on traveling bubble inception prediction
may be properly scaled by varying the total concentrations of the nu-
clei according to the geometric ratio only (X3). Research at DTNSRDC
has shown model size to affect the size range of microbubbles that is
eligible for cavitation. This is especially true for the case of
"large" (-100-pm) bubbles having an insufficient residence time in the
low-pressure zones of small models to blow up. would the authors r

please comment on their conclusions regarding the effects of size dis-
tribution of the microbubble nuclei used in scaling inception test
results of different size models?

K.R. Suhrbier (Vosper Thornycroft (U.K.) Limited)

My comments refer to the discussion in Section VII and in partic-
ular to the data given in Figure 12 for the 165-mm propeller.

The effect of the nuclei seeding described on Kt is clearly
very pronounced and certainly much greater than what could be achieved
by simply changing the total gas content of the tunnel water. The
authors' method may therefore be of interest when dealing with scale
effects in the case of high-speed propellers since the coefficients of
the models often tend to be too high, unless special test techniques
are used.

Perhaps it would have been interesting to have seen the data for ..-*,:.

the 330-mm propeller. Presumably, the same thrust coefficient was
obtained for the concentration scaled as n3, rather an equivalent
KT as stated in the paper.

I. .% %
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May I ask the authors whether they had an opportunity to corre-
late any model propeller test results, obtained with their procedure,
with full-scale data?

E.A. Weitendorf (Hamburg Ship Model Basin)

I appreciate the photographic and movie material of the authors,
hereby, one can observe the physical processes of the different tests
in detail. Regarding the utilization of the venturi or of the
scattered light system it should be mentioned that the first system is
not suitable for the measurement of a nuclei histogram containing
concentrations and diameters, since those nuclei distributions are
responsible for the creation of sheet cavitation. Moreover the
venturi system can only be used for very degassed water not occurring
in normal cavitation tests. This means a limitation of the
applicability of the venturi system when the input data for the
physical process of the inception of the sheet cavitation have to be
measured. Concerning the efficiency of the model Francis turbine (in
Figure 8 of the paper), it would have been appreciated if a proof of
these values for the prototype had been given by the authors aLter
applying the scaling law proposed by the authors.

Finally, a word concerning the validity of the paper having the
embracing title "Nuclei and Cavitation" should be made. The results
given in the paper were concerned with bubble cavitation only. Until
now, this type of cavitation was never observed in full scale. This
bubble cavitation seems to be a physical process occurring in model
tests only. All full-scale cavitation observations have revealed
sheet cavitation. This means that the value of the paper in under-
standing the physical phenomena "Nuclei and Cavitation" is restricted, -"-

since, moreover, each type of cavitation is governed by its own scal-
ing law.

Author's Reply

J.P. Le Goff and Y. Lecoffre .*.'. *,*

To Mr. Arakeri

~.%
The question of changing the speed of sound in the cavitation

tunnel may be an important one when artificial nuclei are applied. ,,'-.-**
In our case, the order of magnitude of the maximum microbubble

flow rate was 3 X 10- 5 m3/s, when the total water flow rate in the
cavitation tunnel was about 4 m3/s.

The average void fraction in the cavitation tunnel was roughly
10- and cannot lead in this case to a very low speed of sound.

Note that 64,000 bubbles 5011 in diameter have the same volume as
one 2-mm bubble. Of course, the same void fraction made up of 2-mm

,. .. -*...--....-...........*-.....
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bubbles does not lead to the same "milky" appearance of the flow.
However, concerning the attenuation of sound even for such very

low void fractions, a marked effect has been found when we tested the
Sydney express propeller.

S. As the type of cavitation was permanent sheet cavitation, no in-
fluence of nuclei injection on performance or type of cavitation could
be found. Nevertheless, the noise level measured was lower in the •
whole range of frequencies when microbubbles were injected.

To Mr. Gowing

When making our cavitation inception tests, we compared the re-
sults obtained with and without microbubble injection. The shift in
ai values was found to be extremely large (insofar as ai can be defined
when no nucleation is applied as cavitation events appear in a rather
stochastic manner in this case).

When nucleation was applied (Reference 8), the ci values, incip-

ient or desinent, were found to be the same. They were compared with
calculations in the case of the propeller and were found to be very

close to the (CPmin) value.
It should be noted that the propeller used was specially designed

to exhibit bubble cavitation and had a smooth pressure distribution,
giving the cavitation bubbles sufficient time to grow.

Concerning the tests made at a lower sigma value, where the cavi-
tation is more developed, the nuclei are subjected to a low negative
pressure. In this case, the time effect on *big nucleim (>100 1) is
less pronounced.

The nuclei distribution used in most cases was in the range of 30 A
* to 100 'i' (mean diameter 50 11). Owing to the fact that the pressure

distribution is always rather smooth in bubble cavitation, we think
that such a nuclei distribution did not lead to large discrepancies
in ai.

Of course, for a much smaller scale, the effects could be impor-

tant.

To Mr. Suhbier -

The 330-mm propeller led to equivalent results as stated in the ,a
paper, that is: same effect on cavitation appearance and same effect
on the order of magnitude of the thrust when nucleation was scaled as

X3.
Unfortunately, until now we have not had the opportunity to com-

pare such model tests and sea trials. The tests described are the
first ones we have made on propellers, and these have been specially
designed to entrance traveling bubble cavitation for these specific
experiments.

More work is necessary to make the comparisons you mention.

l_
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To Mr. Weitendorf

As a general comment, the principal reason why this research pro-
gram was made was that very large discrepancies have been found in
model cavitation tests in our laboratory.

Some of those tests concerned the development of a hydrofoil
craft, and problems arose with exactly similar overall operating con-
ditions (same tunnel, same hydrofoil, same velocity, and same sigma
value). Further, it is well known that tests made in different facil-
ities also show similar discrepancies. Thus, such discrepancies can

- only be due to changes in the "quality" of the water.
When testing model hydrofoils, which was, at the time, our pri-

mary concern, traveling bubble cavitation was always found at low
incidence angles, and it could be shown that only this type of cavi-
tation was influenced by nuclei content as far as lift measurements

* were concerned. As stated in the paper, the order of magnitude of the
discrepancies found could be as high as 30 percent of the lift.

The purpose of the present study was to devise a method of making
reproducible experiments. As explained in the paper, this was done by:

o studying the traveling-bubble cavitation type and the asso-
ciated scaling laws at reduced scale,

o developing means of controlling the nuclei distribution,
o checking that traveling-bubble cavitation actually could

exist at a large scale and that the scaling laws proposed
for nuclei distribution hold true.

Moreover, numerous tests made by us and others relate to other
types of traveling or unsteady cavitation, where the influence of
nuclei is also important, especially regarding the ai values (Refer-
ences 1 and 6) and the noise generated.

we do, of course, agree that each type of cavitation is governed --.

by different scaling laws.
Concerning the use of the venturi system or the scattering method,

our opinion is as follows: when the nature of nuclei is not known,
which is the case for measurements in natural or industrial water, the
only available instruments that can measure the nuclei population are .*.

what we call the direct ones, which are the ones in which nuclei are
actually forced to cavitate under gradually changing pressure levels.

* When the nature of nuclei is known, this being the case of the
water used in cavitation tunnels when it is seeded with microbubbles,
any method that can detect these efficient nuclei can be used (scat-
tering, holography, venturi). The main limitation of the venturi sys-
tem is obviously the density of nuclei it can measure. Practically, .. - .

..-.. . .. . .. . ..... . .:,:.:
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% the maximum measurable density lies between 5 and 10 nuclei per cm3 .
In our opinion and from our measurements, this corresponds to an ex-
tremely large amount of efficient nuclei in natural water. It also
corresponds to high concentrations in cavitation facilities when no
artificial nucleation is applied under conventional testing conditions.

When artificial nucleation is applied, in our laboratory we use
either a bypass scattering method or the venturi, depending on the
microbubble concentration generated. The two methods yield similar
results in the range of concentrations where they both work.

Thus, the utilization of the venturi system is not limited by the

total air content (saturated or degassed water) but basically by the

number of efficient nuclei present in the water, which is usually much
less than 1/cm 3.

Turning to the problem of the efficiency of the Francis turbine,
the preliminary remarks made in this discussion are also, in our opin-
ion, applicable.

Moreover, it should be noted that the sigma values used in indus- L_-fl
trial prototypes are normally much higher than those for which a loss
in performance is measured in model tests. The main reason is to avoid

erosion. Thus, direct industrial comparisons are not possible.
The main results of the tests in the Lausanne Laboratory were

that the drop in efficiency due to a change in head on the model was
suppressed and that the so-called standard sigma was the same for the

two heads utilized (8 m and 16 m). A more detailed report of these
tests can be found in Reference 7 of the paper.

The second point is that it happens quite often that severe ero-
sion is found in prototype turbines when no apparent cavitation was
obtained on the model. Applying artificial nucleation, in our opinion,
reveals the zones where cavitation is likely to appear on the proto-
type, and, hence, possible erosion zones.

To conclude, regarding the problem of traveling bubble cavita-
tion or any cavitation initiated by nuclei, most facilities exhibit
nuclei concentration that are several orders of magnitudes too low.

:1% N.
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A Numerical Approach to Nonlinear
Ship Motion
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Tor Vinje, Xie Maogang*
The University of Trondheim, Trondheim, Norway

Per Brevig
The Norwegian Hydrodynamic Laboratories, Trondheim, Norway

ABSTRACT

A numerical method for simulation of nonlinear 2D ship
motion problems is presented. The method is based on poten-
tial theory and the problem is treated as an initial value
problem. The full non-linear free surface condition is [ A
assumed in an inner domain and this solution is matched
along an assumed comr,on boundary to a linear solution in
the outer domain. The results agree fairly well with re-
sults from linear theory regarding a submerged cylinder in
forced motion and with an incoming wave. Noticable non-
linear effects, even breaking, are observed for cylinders
close to the free surface.

INTRODUCTION

Whilst linearized hydrodynamics give extremely useful
prediction of the forces on and the motion of ships under
normal operating conditions, the basic underlying assump-
tions of the theory preclude application to extreme wave
heights and large motion amplitudes. Even though higher
order asymptotic solutions have shown to predict well cer-
tain nonlinear phenomena, such as slow-drift oscil-
lation of moored vessels, we are still lacking an analytic
tool for prediction of extreme ship motions, such as cap-
sizing. Even prediction of the local hydrodynamic forces
acting on bow-flare sections of ships running in reasonably
low waves is not covered by these asymptotic methods. To
cope with these extreme cases different numerical approaches
have been applied, all taking into account the non-linear
free surface conditions and allowing the body to perform
finite motions.

Since the early seventies the "particle-and cell"
technique has been applied to these kind of problems.
This method is in general a very powerful one, but the dis-
advantage seems to be that the material free surface is not

* Permanent address: China Ship Scientific and Pesearch
Center, VWuxi, China.
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that well described in the framework of the finite differ-
ence method to really account for large curvatures (see
Nichols & Hirt (1975)). This short-coming seems to be
accounted for by introducing curve-linear coordinates (see
Coleman & Haussling (1982)), which unfortunately, in turn
introduces computational difficulties. It must also be
mentioned that till now this method seems to be the only
one that has been extended from 2-D to 3-D problems.

It was not until Longuet-iggins & Cokelet (1976) and
Faltinsen (1977) introduced the Euler/Lagrangian method
that it seemed to be possible to follow the free surface
properly in time. Longuet-Higgins & Cokelet (1976) managed
to describe the development of the plunging deep water
breaker up to the point where the plunger's jet has been
fully developed, which was very promissing when regarding
it from a numerical ship hydrodynamicist's point of view.
Faltinsen (1977) applied a similar method to the forced
motion problem of a surface piercing circular cylinder and
managed to follow the motion of the fluid for a consider-
able period of time. . "

Longuet-Higgins& Cokelet's and Faltinsen's ideas were
followed up byVinje & Brevig (1981a) where the developrent of
the plunging breaker on finite water depth was simulated
in time, following the breaker until it's jet hit the wave
front.

In the present paper an extension of this method to
cover the existence of submerged and surface piercing
cylinders is presented and discussed.

First the numerical framework for the space-periodic
problem will be presented together with the results from
applying this method and secondly a hybrid method that
takes into account the incoming wave and the possible dif-
fraction effect from the body will be presented. Some
results from use of this method will be presented and the
advantages and shortcomings of the method will be discussed AN
Finally possible improvements will be discussed.

SOLUTION OF THE PROBLEM

The mathematical formulation will be given for the
2-D problem of a submerged cylinder under breaking waves.
At the end the modifications caused by the existence of a""
surface piercing body will be indicated. Further more, ..-.
the solution will be assumed to be periodic in space, which
will later be modified by introducing a hybrid method.

The problem is stated as an initial value problem de-
scribed in mixed Eulerian/Lagrangian formulation: we follow

1-
-- .'-".
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the motion of marked particles on the free surface referred
to a stationary coordinate system. Since the fluid is *c.*
homogenous, incompressible and the velocity field irrota-
tional we can admit the complex potential:

6(z,t) = 1(x,y;t) + if(x,y;t) (1)

where z = x + iy.
, the velocity potential, and p, the stream function

both satisfy Laplace's equation and consequently 8 is ana-
lytic in the fluid domain. Hence Cauchy's theorem is -A.
valid: :-.

- -.-
+ " dz = 0 (2)

Z - Z 0

where the contour of integration C is shown in figure 1
and z is outside the fluid domain. Assuming C to consist
of C and C where is given on C and i is given on C
we o~tain a Fredholm's integral equation of the second
kind:

c l(xo0,y;t) + Re{ P + i-dz} = 0 (3)0 0 0  ...z

C

for z on C and
0

a41 x y ;t) + Re{i{ L + -91} 0 (4)
0

C

for z on CiI
Here a is the angle between the two tangents of C at

z0  When z is on a smooth part of C, a is equal to 7.As wilT be shown later is given on the free surface

and hence this is part of C On the bottom we assume
=0 and hence this is part of C On the moving cyl-

inder we have i known but for a c~nstant, but examining
equation 4 we see that the value of this constant is im-
material since:

i dz = 1 z 0 (51)."
zz - z 0(

CYL CYL

when z is outside the cylinder and0
Re{ dz} Re{i27T} =0 (6)R{ z -z

CYL 0

-ft N-- -.- b.. "Ti%
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For a moving rigid cylinder the kinematic condition \~

on the body reads:

-2

iplx,y;t) = k(-y - le R + C (7) '.

where (x G1YG) are the coordinates of the center of gravity
of the cylinder and the dot denotes the ime deriv tive, 2
ethe angular velocity of the body and R =(x-x )+(y-y

When solving the problem equation 7 is intr8duced
into equations 3 and 4 and C is determined from equation 3 ~-
after the problem has been solved.

The free surface kinematic condition is

Dz u+ iv =_w* (8)

where D/Dt is the material derivative, th~e asterix denotes
complex conjugation and w is the complex velocity:

w(z,t) =u(x,y;t) - iv(x,y;t) = I(zt (9)-
44

aThe dynamic condition on the free surface is given by
Bernoulli's equation as:

*1 4-44 L.4
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2 PS (10)=_ 1 wwgy -(1)...

where p is an arbitrarily applied pressure, p is the density
of the Fluid and g is the acceleration of gravity. The
material derivative of 0 is given by:

D 1 pD Iww* - 1) y

From equations 8 and 11 the position of the free sur-
, face and the velocity potential on the free surface can be

integrated in time. This in turn makes the free surface
part of C

For transient problems like overturning of breaking
waves, capsizing of vessels and so on, it seems reasonable
to apply periodicity in 0 and l as the boundary conditions
on the vertical boundaries. The validity of this assump-
tion will be discussed more thoroughly later in the paper. ....-..-

With these boundary conditions introduced ( + i) is
uniquely determined (except possibly for an imaginary con-
stant).

To calculate the force acting on the body a/3t has
to be calculated. For forced motion this quantity can be

*? calculated by means of f.i. central or backward diffe-
rences in time. Whilst for problems where the motion of
the cylinder is caused by incoming waves, use of back- M
wards differences leads to numerical instability (for the
integration schemes chosen). This is probably caused by
the estimation of the "added mass term" by means of back-
wards differences in time. This is easily demonstrated by
approximating the equations for the harmonic oscillator:

(m-P) Z + kZ = 0 (12)

by

mZt) + (Zlt) - Z(t-At)) + kZ(t) = 0 (13)
AtL A

which causes the same kind of numerical problems as for our .N" _
more complicated case, due to the "stiffness" of the
differential/difference equation. ,: -

This means that for problems where the body-motion is
governed by Newton's second law the force acting on the
body has to be calculated in the form:

F = - E a .ij + f (Eilt; geometry) (14)

% %
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where F include the forces for three modes of motion for
a 2-D cplinder and p are the displacements for these
modes. This in turnpmeans that ; /t along the body has
to be expressed in the form: _

tt = Ej j +J 6 o(%jt; geometry) (15)

This is done in the following way: on the body is given
from equation 7,which in turn yields:

=b. F. + (16).1-t j JJ ] t v-'

where the expressions for b. and ap /3t are given by Vinje
& Brevig (1981b). On the fiee surface Bernoulli's equa-
tion yields /3t directly, on the bottom 9^ /at = 0 and
on the vertical boundaries periodicity is iniroduced for

a /t and 3P/3t. Since (ao/at + i;p/at) is analytic,
D /at and h/at are found bn the boundary according to the
solution procedure given by equations 2 through 4, sol-
ving the four different problems indicated by equations 15
and 16 where the inhomogenous part of ac/at on the free
surface contributes to a P/t only.

The expression (equation 15) for ; /at then leads to
equation 14 by integration over the wetted surface of the
cylinder, where f gets an additional contribution from
the velocity-square term and the static pressure term from
Bernoulli's equation.

The generalized forces from equation 14 are now intro-
duced into the equations of motion of the cylinder (where
the center of gravity is used as the reference point)
yielding: M

(mppj + apj)E. = f (jt; geometry) (17)
• . ) p j

Elimination of E. from equation 17 then transforms the
equation of moti~n into the standard form:

= Fj ,t: geometry) (18) "

The problem is solved as an initial value problem,
following in time marked particles on the free surface,
integrating equations 8 and 11 for each particle. In
addition equation 18 has to be integrated. The integra-
tion of equations 8, 11 and 18 is done by means of

9..,,.:,.
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Hamming's fourth order predictor/corrector method with a
Runge-Kutta starting procedure. At each time step equa-
tions 3 and 4 have to be solved twice. The solution scheme
for this is shown in appendix A.

Results from application of this method have been
published earlier. Brevig et al (1981b), (1982) have cal-
culated the motion of and the forces from breaking waves on
submerged wave power devices. One example, showing themotion of a freely moving cylinder is given below:

5.... ° -

t:OOs tlOs t=20s t=30s t=3.7s

t =37s

IO Os O

Figure 2 - The motion of a submerged cylinder under a
breaking wave (from Brevig et al (1981)).

Vinje & Brevig (1981c) have compared the forces calculated
from this method with the forces calculated from the "long
wave-length theory" and found that the effect of breaking 9
on the force was small, except when the cylinder was very
close to the free surface.

- * More recently Greenhow & al (1982) have simulated the
capsizing of the wave-power devise "Salter's Duck" in

- breaking waves. The results showed good agreement with the
experiments done at the University of Fdinburgh. This was
the case for both the motion of the device and the free
surface form. One problem with the surface-piercing body
was commented on in this reference, namely the problem
with a possible singularity at the intersection between

' the free surface and the body. This made it necessary to
make some assumptions about this contact point. For the
details about this the reader is referenced to Greenhow
& al (1982). A computer output of these calculations are

S. shown on figure 3.

. -... ,
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* 2 , '

Figure 3 -Capsize of "Salter's Duck" (from C reenhow et al. i/.

* - - ,. - .

(1982)).

Although the results of Greenhow & al (1982) are very
promissing the method still has some shortcomings. One of
them is that the hydrodynamic problem is periodic in space,
which excludes the possibility of taking properly into
account the diffraction effect of the body and the response
to waves generated far away from the body. The possi-
bility of reaching a state where the vessel is performing
periodic response to periodic waves is also excluded.

To take the above effects properly into accout means
that the solution in the non-linear "inner domain" should A
be matched to a non-linear solution in the "outer domain",
which contains an incoming wave plus the non-linear dif-
fraction effect (which is not independent of the incoming
wave). As far as the authors know, no such "outer" solu-
tion is yet found. Not even a perturbation solution to
second order is in general "available".

To get around this problem (when regarding the dif-
fraction effect) Baker & al (1982) have introduced arti-
ficial energy absorbing boundaries far away from the body.
This seems to work reasonably well for forced motion pro-
blems, where no incoming wave is present. One might be
tempted to try to stretch this a bit further, assuming the

x,..'." k-
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potential to consist of the potential for the incoming
waves plus a diffraction problem and introduce the absorbing
boundary concept for this added potential. Unfortunately
this will violate the non-linear free surface condition in
the "inner domain" where it is assumed to be of much im-
portance to take it properly into account.

One is then more or less left with assuming the "outer
solution" to satisfy the linear free surface boundary con- - -

ditions. This, of course, restricts the applicability to
problems where the non-linear effects are noticable in the
"inner domain" only,as f.i small amplitude motion of the
bow-flare sections or slightly submerged cylinders,
simulation of ship motions in breaking waves gene-
rated by the transient testing technique or the larger
amplitude forced motion problem up to the stage when the
waves in the outer domain become "non-linear".

As a first step, the problem with a breaking wave on
a sloping beach was simulated, assuming the wave to be
generated by imposing a sinusoidal wave at the interface
between the "outer" and "inner domains". This, contrary
to Baker & al (1981) excludes wave reflection, but allows
for an incoming wave. The computer output from a preli-
minary run is shown on figure 4. Here a long wave was
introduced from the left and the calculation was continued
until the wave broke. The results seem qualitatively to be
in good agreement with what we would expect to happen, even
though the results are not checked thoroughly.

It is worth noticing that in this case the particles
do not cluster close to the jet's front, as for the deep .

water breaker, which makes this kind of computations more
costly.

The obvious shortcomina of the above approach is that
reflection (or diffraction) is totally neglected. This will
for ship motion problems lead to unreliable results when
trying to reach steady state solutions. One might in this
case just as well apply the spacial periodicity assump-
tion. To expect to get a reasonable answer one has to
assume the "outer solution" to be capable of absorbing
energy from the "inner domain" at the same time as an in-
coming wave is imposed on the "inner domain". The simi-
larity with the problem leading to the hybrid formulation
in linear theory is striking (see f.i. Yeung (1982)),and
the matching technique developed in this context might be
applied for the present problem as well.

In the linear theory the "outer solution"

is assumed to consist of a series of eigensolutions, with
coefficients determined from the matching with the "inner
solution". In this case the solution in the outer domain
can be constructed in different ways, but the basis is the

.b".' ...
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potential of the time-dependent source 'see 'ehausen &
Laitone, (1960) eq. 13.54).

One way of determining the "outer solution" is given
by Daoud (1975) who gives the near-bow solution of the
wave-making problem in terms of a distribution of time -
(or rather space-) dependent sources over the boundary. In
the present approach we will apply a much simpler approxi-
mation to the linear solution in the "outer domain",
namely assuming that it is given by a set of discrete
sources and dipoles situated well inside the "inner domain"
and below the free surface, which implies that the "outer
domain" also is assumed to form the "far field" of the
linear solution. Accordingly,the complex potential in the
"outer domain" is written:

(x,y,t) + i (x,y,t) = K <.(t)Gj(z-C ,z-*) L *
O 0j J J

t -
+ X f K (T)H (t-Tz-c)dT + ( (xy,t)+iT(x,yt))

j 0 (19)

where i. is the complex coordinate of the pole/dipole j. U
z is tha complex coordinate of the field point and the
asterix denotes complex conjugation. G. is the complex
potential for the impulsive pole/dipole Aumber j, and H. .. ,-
denotes the kernel of the convolution integral in time3,
which is developed on the basis that (. + iT.) = 0 along
the free surface for t = 0 (See Wehausgn & LAitone (1960))
K. (t) is real and denotes the time dependent pole/dipole
s~rength number j. ((D + iJW) is the complex potential of
the incoming wave. Equation 19 can be written in the form:

T4 + iYo = 
7" K (t).G + ( 0 +  ) (20)

where (0 + i ) consists of the part of (4 + iT') which .
is in pryncipay known at time t: the sum oY the convolu-
tion integrals plus the complex potential of the incoming
wave. T K.G. is unknown and has to be determined by the
matching Jto3te "inner domain".

Assuming that is "known" on the common bounaary be-
tween the "outer" and "inner domains" from the solution in
the "outer domain", the problem in the "inner domain" is
formulated as indicated on figure 5 (where C is undeter-
mined as shown earlier).

.4 %
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Figue 5 Forulaioen ofth h"ne rol

This means that the solution in the "inner domain! is found
as:

(D+ iT K .(Oi + i p 1 .) + ( 0+ u 10) (21)

where ( +i .)and (~o+ i410 ) are the solutions of

the problgms deiined on figure 6.

C ~ ~ T -
-.---0

..o. ..

Figure 6 -Formulation of the problems of equation 21..

The matching procedure now requires a (minimum norm) fit
of P and (D along the "matching boundary", which in turn
yielhthe f11win equations for determination Of K.:

yiel~ owin
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- Gk)' (*Ij - Gj)>Kj + - )>=0

(22) .-

where <a,b> denotes the "inner product" according to the
norm chosen.

. The calculation of 9/9t on the body boundary is in
principle performed the same way as for the "periodic"

.*. problem, except that the unknown quantities (dK./dt) have
to be determined by the matching between the "oter" and t.
"inner" solution at each time step. This implies that the

,',* "Laplace-equation-solver" is introduced 2(j+1) tires (in '." addition to 5 times from the body-motion modes) at each

predictor (or corrector) point.

NUMERICAL RESULTS

First the results will be shown for forced motion of a
submerged circular cylinder (as given on fiqure 7). The
cylinder is started impulsively from rest and for t ;I-fLit
is given a displacement D(t) = P2 r sin(wt), where /w2r/g
is chosen as /O.47 = 1.12 (the wavelength is 5r). The cor-
responding initial free surface condition is 4 = 0 along an
undisturbed (i.e. flat) free surface.

jhl.3r

.. DO-

Figure 7 - The initial position of the circular cylinder

In the first example A2 is taken as 0.15, corresponding
to an amplitude of half the initial gap between the top of
the cylinder and the free surface. This is a situation
where the amplitude of motion is small compared with the

4'4
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wavelength (A2r/X 0.03), reasonably small compared with
- the diameter of the cylinder (A2r/2r = 0.75) and of the

same order as the gap (A2r/(h-r) = 0.5). This means that the
waves at inifinity are expected to (nearly) satisfy the
linearized free surface conditions and that some non-

"* linear effects are expected to appear in the near-field
the cylinder. - -

On figure 8 the elevation of the free surface forir. is
shown at four stages of the development, one period apart.

,'~*.-- -.

i. °. -. •

: '; L: -::Jll

, , 0

Figure 8 - The development in time of the free surface form.
A2 = 0.15. The vertical scale is amplified by a
factor of 5.

The cylinder has just passed its highest point (wt=7/3+2n7) L.
and is on its way down with a velocity of 0.5 times the
maximum velocity. The vertical scale has been amplified '. \.
by a factor of 5 compared with the horizontal (except on the

. %



, 259 -

last drawing). On figure 9 the development from wt=w/3+4...
to wt=7/3+67 is shown in more details. It is interesting to
observe that the outgoing waves show the Stokes' wave char-
acteristics for sharper crests than troughs, indicating a
significant nonlinear effect.

,c. - -2

- %

r

10 Figure 9 -Detailed development of the free surface form
for wt between (7/3+47) and (7/3+6n). A = 0.15. %
The vertical scale is amplified by a factor of 5.'''-

-- -. ;
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From figure 8 it seems that the fluid motion close to
the cylinder becomes periodic after about two oscillations,
whilst the "outgoing wave" seems to reach the "matching
boundary" after about three periods (which corresponds to
the time estimate from the group velocity). After this time
a significant asymmetry appeared and the computation of the 4k.AA
free surface form became unreliable.

We have not had time yet to investigate this problem
properly, but the most probable source for this is, of
course, a programming error, and in that case most probably
connected to the introduction of the convolution integral in .
the outer solution which accounts for the outgoing waves in
this domain. Another possible source is the formulation of
the problem as such, letting a Cp- and a Cq-contour inter-
sect at the free surface. This might very well introduce a
weak singularity in the inner solution at this corner point.
In the programming we tried to minimize the influence of
this by regarding the corner point as a part of C , giving
the potential from the outer solution at this point and
avoid determining anything, not even the position of this
point, from the values computed at the point. If this is
the source, the problem has to be reformulated completely,
giving 0 on the boundary and determining the additive con- 61
stant of i from the matching. A third possible source is
that the introduction of the matching to the linear solu-
tion does not work, at least not for the convolution inte-
gral part (we know from Faltinsen (1977) that it works for
the impulsive source, which is shown here also). In that
case we are in trouble introducing an incoming wave and are
left with the costly procedure introduced by Greenhow & al
(1982). The asymmetry-problem will be regarded in near fu-
ture and hopefully the final conclusion will be that the
matching technique is applicable for the problems regarded
in the introduction.

Since the forces are given from the near-field solution
and this seems to become periodic before the problems occur
at the boundary, some conclusions about this quantity can be
drawn from the computations. On figure 10 the total verti-
cal force on the cylinder is drawn as a function of time.
From this sketch it is obvious that the nonlinear effects
are more pronounced here than for the wave form. The force
seems to have reached a state of periodicity in time after -
about 2 periods and later shown much sharper troughs than
crests. The mean drift force is estimated to be zero,which
corresponds well with Ogilvie's (1963) result (figure 7 of -
the reference. va = 1.26 and 2vh = 3.27).

On figure 10 a sine-curve with frequency w is drawn.
Comparison between the force and this sine-curve shows that
the force mainly is in phase with the displacement (corre-
sponding to positive added mass in the linear case) and the

,.J.:2
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F
tpr3W2 A2

0.5 -

The vertical force

/ \i/

' / ,,\, tiT .,_~=,
\ , / 2 S /"

0. The vertical force k,

Figure 10 - The vertical force as a function of time.
A2  0.15. The time-scale is given in terms of
periods of oscillation. The dotted line shows
a sinusidal curve.

phase shift corresponds to a positive damping coefficient
for the linear case.

On fiaure 11 the strength of the vertical dipole is
given as a function of time. The deviation from a cosine
curve is sicnificant. This deviation can be caused by
several effects, but it does probably not reflect the in-
fluence of the convolution integral on the matching. The
initial value seems to correspond well with the results
from matching of the exact solution taken at infinity,
yielding the value 0.8777 = 2.76. Our computed value is .

2.83 with the matching taken at the circle with radius
7.5r = 1.5X.

Figure 12 shows (-a2 2 ) (from equation 14, E2 = y),which
is the added mass calculated for 0 = 0 along the actual free
surface and with the cylinder situated at its actual posi-
tion. The wavy form is caused by these two nonlinear ef-
fects, partly cancelling each other. For a flat free sur-
face with the cylinder at its actual position, a2 2 woul'
have been oscillating with an amplitude of about 0.12,whilst
the numerical results show an amplitude of about 0.08. The
decrease is due to the effect of the free surface elevation j
above the cylinder being in phase with the displacement of

.......... m%
.5, , -,., .. .. ,. . ,,.-,. , .. . -- , , ,, .- -°-. . -.. .- . .; .. .. . . . . . - . . .. . . . - .. . .- .. - , , ; -
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Z ).~ . d-. ;LA

12 3 Time,t/T

". .....,.

8
N -

Figure 11 - The strength of the vertical dipole as a func-

tion of time. T is the period of oscillation. -.

the cylinder.
In the next example the cylinder is oscillated with an

amplitude A2  0.25 (or 83% of the initial gap). In this
case the nonlinear effects really dominate and the matching
does not really come into effect at all. On figure 13 the
development of the free surface elevation in time is shown
(for slightly less than the first cycle). Here both the
cylinder and the free surface elevation are drawn to scale.
The figure first shows the cylinder at its maximum ele-
vation during the first cycle, next at its initial posi- jo
tion on its way down, then at its lowest position and fin-
ally close to the initial position. As seen, a vertical .

%

. . -
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1 Tim.t/T

.'- I"

a, . -a .,

Figure 12- (-a22) from equation 14. (-a22 ) becomes (-i)-

at infinite depth.

jet has developed between the two last stages and continues
to move upwards. Shortly after this the computation broke
down.

This development is similar to what is reported for
standing waves with a large energy input in terms of the ,.

initial free surface elevation (see Srokosz (1981)). The.-,'

element length along the free surface is in the present
case so large that the formation of the jet cannot be de-
scribed in any detail. This would have been interesting to
investigate further, but at the moment it mainly serves as
an indication that the strong nonlinear effects found for

A2 = 0.15 are real.
The possibility that the formation of the jet is caused

by numerical instability is ruled out by the repeatability
of the results when decreasing the time step. The physical
significance of the results are not confirmed, but experi-
ments to that effect will be brought through in near future.

A numerical experiment with forced motion of a submerged
rectangle close to the free surface showed that numerical
instability can occur in the present calculations when
letting the element length becoming small enough (or the
time step too long). This shows to be a removable in-

stability since it disappeared when the time step was
shortened. The numerical experiments with the submerged
rectangle have not been continuted due to computational
costs.

Yow the results for a fixed cylinder (as shown on

figure 7) exposed to incoming, harmonic waves with wave-

length 5 5r will be shown. Brevig & al (1981) and Vinje

& Brevig (1981c) have discussed the case with a small cyl-

,NiI
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- -~

.,
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Figure 13 - The development of the free surface form.
A2 = 0.25. Drawn to scale.

inder acted upon by breaking waves (see figure 2). For
these calculations the periodicity assumption was applied,
which is reasonable for transient problems. The calcula-
tions showed that the forces can be estimated fairly well
from linear theory if the cylinder is not situated too
close to the free surface (i.e. in the wave crest). For
the case discussed here the waves will be assumed to be low -
(H/X = 0.008 and 0.02 respectively) and with a fairly low
ratio between the amplitude and the gap between the cylin-
der and the free surface (H/2(h-r) = 2/30 and 1/3). On the
other hand, the cylinder is fairly large compared with the
wavelength (2r/X = 2/5, (h+r)/X - 1/2), which might cause
certain nonlinear effects. Initially the free surface

P 5.. 5,
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elevation is sinusoidal with the potential given from linear
theory.

-• -

*. t~ m~

Figure 15 -The development in time of the free surface
form. H/A = 0.008. The vertical scale is ampli-
fied by a factor of 10.

on figure 15 the development of the free surface ele-
a vation is shown for wt = nnr (n = 1,...,6). This shows that

waves are introduced continuously from the left and that the
cylinder modifies the waves on the lee side noticably.
What is not that easily seen is that a reflected wave is
created from the "matching boundary" on the lee side, pene- .~ '

trating into the "inner domain". This is more easily seen
on figure 16. From the experience with the forced motion '-

L~a"L A '---~. *~.% * 4 % S ~ . , . , **.*"-
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problem one would not expect the matching to work very well
with an incoming wave present; Ogilvie (1963) showed that
according to linear theory, there would be no reflected
waves and that the transmitted wave only shows a phase lag
compared with the incoming wave. In the transient develop-
ment from our initial conditions to this "steady-state"-
solution one might expect some reflected waves to be created
even from the matching boundaries. In view of the dis-
cussion of the forced motion problem we tend to regard it
as due to improper matching.

On figure 17 the vertical and horizontal' dipole strengths
are shown. For the reflected wave to disappear and the
transmitted to have the same amplitude as the incoming wave,
the vertical and horizontal dipole strengths have to have
the same amplitude and be 90 out of phase. Further more:
the amplitudes of the dipole strengths have to depend on
the incoming wave only, and not on the radius of the cyl-
inder (but on the assumed position of the dipoles). Figure
17 does not show any of these characteristics, and the fact
that the horizontal dipole strength dominates the vertical
indicates that the cylinder mainly acts as a "wavebreaker".
On the other hand, the characteristics indicated from
Ogilvie's results are far-field, convolution-integral-
effects. Since the convolution integrals are not expected
to have any great influence on the solution at this early
stage, one cannot expect to find the far-field characteri-
stics present yet.

On figure 18 the horizontal and vertical forces are
shown. As for the forced motion problem these Quantities
seem to reach steady state long before the free surface
form and show a periodic behaviour after about 2 cycles.
The amplitudes are about equal (horizontal/vertical = 0.93)
and both show negligible drift force, which coincides with
Ogilvie's results. The vertical force shows slight non-
linear (higher order) effects in its form.

On figure 19 the free surface elevation for an in-
coming wave of amplitude r/10 is shown. What characterizes
this case is that the nonlinear effects seem to dominate
close to the cylinder, leading to breaking after about two
periods.

On figure 20 a more detailed picture of the breaking is
shown. It is interesting to notice that a steep wave is
formed on the "upstream" side of the cylinder, and that
this reaches its maximum after having passed the top of the
cylinder and then decreases before it really breaks.

,, .,''i 4i? .o.. . .,' .  ..'o.%.-* . . - . •"",-* : ..• -.. °..... - . ..• . .-- ..°..°.. .- -. . ..
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Figure 17 -The horizontal and vertical dipole strength
=/ 0.008.

F

01The horizontal force Th oizna

-* force

S The vertical force

Figure 18 -The horizontal and vertical force. F/X =0.008
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Figufe 19 - The development in time of the free surface form
H/X 0.02
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CONCLUSIONS

A time simulation method calculating forces on 2-D sub-
merged bodies is presented. The problem is solved by
matching a fully nonlinear inner domain to a linear outer
domain. Pesults are given for fixed circular cylinders in
incoming waves, and for circular cylinders in forced heave
motions. In both cases the cylinder is close to the free
surface.

In the case of a fixed cylinder in incoming waves, the
simulated values of the mean horizontal drift forces agree
well with Ogilvie's (1963) results. However, in these
simulations some problems occured which we believe are due
to the matching. "The impulsive dipole part of the matching"
(as successfully also applied by Faltinsen (1977)) seems to
work satisfactory, and we therefore expect these problems to
be caused by the convolution integral.

The results of the forced motion simulations agreed well
with Ogilvie's (1963) results for the vertical drift-forces.
Significant nonlinear effects were observed for amplitudes
of displacement of order of the gap between the cylinder
and the free surface. The same problems occured as for the
fixed cylinder, but at a later stage.

If we are able to solve the problems connected to the
present matching procedure satisfactory, we will proceed
to extend the method to comply with surface piercing 2-D
bodies also. As pointed out by Vinje & Brevig (1981) and
Greenhow & al (1982) there are certain problems connected
to the intersection point between the body and the free
surface that have to be resolved, which makes this problem
much more complicated than for the submerged cylinder.

. .... .
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APPENDIX A NUMERICAL SOLUTION

To solve the Cauchy equation for 8 and 3/ t we
assume a linear variation of these functions in z between
the nodal points on C. The influence function of the
variables at the nodal point z, is therefore

A (z) for z on C between z. and z
j ( = j +I

- (A.1)z Z

A.(z) for z on C between zj_1 and z.
J z - zj -

.j-1

and zero elsewhere on C.
Introducing this influence function into equation 3 .

gives the following matrix equation:

dz T ki Bj = 0 (A.2)
z z k j JCJ

where j = B(zj;t) = p(xj,yj;t) + il(xj,yj;t), and
Z. Zj.I" " 3i zj+ 1

z-z-1 dz + dz

Fkj = J z.-z. z -z Z. z-z kJ"'-
z j-1 k z j+1 k----

- (A.3)
kj_ zjzk ZkZj+l Zj+l -Zk
Zk-Zj I ln zj_ + ln J - "

z* z Z z . z Z Z~
j zj 1  l-Zk zj-zj+ l k

with limiting values applied when k = j-1, j or j+1. If

Z. z

zJ- z (A.4)
3 - zk ,

Z. z.; .zj+ - z. *

- (A.5)
Z. - Zk -

are both small then we can uce asymptotic expressions for
the logarithms in equation A.3 giving:

W.:
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k [1 (A. 6) We-

kj 23

Use of the asymptotic expression equation (A.5) when
(E,6) less than 0.2 reduces the cost of running the program
by about 40%.

Points around the contour C are labelled consecutive-
ly, but points across the branc cut (see figure 1) are con-
sidered to be neighbours. When zk lies on the submerged
body then integration over the branch cut moves us into
the next Riemann surface, causing a difference of ± 27ii in
the F functions. The program first checks that the dif-
ference of the angles included at neighbouring points
does not change by more than 27 (we stay on the same Rie-
mann surface) and then accommodates the branch cut by
adding or subtracting 27Ti from rkIj accordingly.
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Discussion

A. Chwang (University of Iowa)

I would like to ask a question regarding the "matching" between
inner and outer solutions. Analytically, it is done relatively simply
by equating the inner limit of the outer solution to the outer limit
of the inner solution. However, your paper is a numerical one. How
do you choose the matching boundary? I suspect that your numerical '"
solution will depend very much on the size of boundary you choose.

A.Y. Odabasi (British Ship Research Association) -

We at BSRA are very much interested in the work of Professor Vinje
and his colleagues since we are also building up a real-time simulation
system for large-amplitude ship motions. The points I would like to
raise are as follows:

1. In lateral motions, in particular for large amplitude rolling
motion, nonpotential forces and moments make up a larger part of
the fluid reactive components, which are not considered in the 

lei

present work. "* --
2. For surface piercing nonaxisymmetric bodies the instantaneous

center of roll does not necessarily pass through the center of .:-.

gravity owing to the constraint imposed by the presence of a free
surface. The result manifests itself in two ways:

a. Stream function on the body, i.e., Equation (7), should be c-.-.c

written in such a way that R will be measured from the in- 4.

stantaneous center-of-rotation. -

b. Additional gyroscopic terms will appear in the governing -

equations.

3. When the problem is posed as purely two dimensional and poten-
tial, the need to split the domain into an inner and an outer
region may be avoided. Given the fact that the real and imagi-

nary parts of the complex potential is defined on the domain
boundaries, one can obtain an explicit solution by utilizing the
results of Keldysh and Sedov after the transformation of the com- .--.--

"'" putation domain onto the upper (or lower) half of an auxiliary
complex plane. Hence, the problem is reduced to the numerical
construction of a conformal mapping function for each time step
that will map the boundary of the region onto the real axis.

"'A. 
-
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A. Papanikolaou (University of Berlin)

Referring to the time domain technique used in this paper, I would
like to raise a few points:

1. Commenting on a time-domain technique for second-order prob-
lems of the type described, one has to worry about the radia- "
tion condition at infinity. I do not understand how a fully
nonlinear problem is appropriately treated by a linear bound-
ary condition at the "outer" domain. In that respect, per-
turbation methods, working in the frequency domain, e.g., I. %

Ref. 1, have worked more successfully in solving very differ-
ent second-order problems (forced motions, diffraction, etc.)
and surely more efficiently in the computational sense.

2. Referring to Figures 11 and 17, I would like to ask whether
a steady-state behavior was expected to occur, and how the
numerical results for surface piercing bodies are. In your
paper (1981b) you reported on negative horizontal drifting
forces of floating cylinders. How is the numerical stabil-
ity of your results for more difficult, e.g., flared sec-
tions (nonvertical entrance at the waterline), if any?

3. The method is based on the theory of analytic functions.
How would you proceed in solving the three-dimensional
problem of floating ships?

References
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1. A. Papanikolaou and H. Nowacki, "Second Order Theory of-,

Oscillating Cylinders in a Regular Steepwave," Proc. 13th ONR
Symposium, Tokyo, 1980. '.

Author's Reply ..

.'.- .

T. Vinje (University of Trondheim) .R.. .

To A. Papanikolaou

Dr. Papanikolaou raises the question about consistency in the
matching of the nonlinear inner solution to a linear outer solution.
We do not claim that this matching is consistent, rather, that it is
expected to yield a reasonably good solution for nonlinearities local-
ized in the inner domain. I tend to agree with Dr. Papanikolaou's
statement that the perturbation method is much better fit to solve a
second-order problem than is the present method, especially since a
second-order problem is defined according to a perturbation scheme.
On the other hand, I do not see how the example shown in Figure 13 of
our paper can be solved easily by means of a perturbation scheme.

VNN~*
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To the second question: We have not applied the present method
to surface-piercing problems. What the discussor refers to is that
during the intial stage (~l- cycle) of a simulated record the ship
was moving against the wave, which probably is caused by nonmatching
initial conditions. To conclude that there is a negative mean drift
force present, the body has to have a mean acceleration in the nega-
tive direction. I am not able to draw that kind of conclusion from
the simulated data. As a reply to the third question I will say that
Laplace's equation for the three-dimensional problem might be solved
by F.I. Green's theorem, the source/sink method, or the finite-element
technique.

To A.T. Chwang

The "matching boundary" is chosen as a half-circle connecting the
points at the free surface of the inner domain that are furthest away.-- A
For the examples that are discussed in the paper, the radius of the
semicircle is 7.5 times the radius of the circular cylinder. I sus-
pect that the size of the boundary will influence the solution, de-
pending on the nature of the nonlinearity. For problems where the
nonlinearity will penetrate out into the outer domain, the solution
will quite surely become erratic after a certain time.

To A.Y. Odabasi

I must only agree with Dr. Odabasi's first statement when regard-
ing large-amplitude rolling motion. For the final stage of capsizing
of ships in beam seas, when this is caused by breaking waves, the re- :77777

sults of Greenhow et al. (1982) seem to indicate that potential theory
, is adequate.

To statement 2: I agree that the center of rotation does not
necessarily coincide with the center of gravity of the body. This
does not mean that the center of gravity cannot be used as the ref-

erence point for the rigid body motion; closer to the contrary. For
the development of Equation (7), Dr. Odabasi is referred to Vinje &
Brevig (1981b) or to the standard textbook on hydrodynamics by Milne-
Thomson. Regarding statement 2.b: there cannot be any gyroscopic
effects for a strictly two-dimensional problem; the additional terms . -5
in the equation of motion are caused by a moving point of reference.
The position of this point (the center of rotation) is found from two
second-order differential equations equivalent to the ones for deter-
mination of the position of the center of gravity.

To his third statement: I have the feeling that the procedure ..- -.
indicated by Dr. Odabasi involves a solution of Laplace's equation in
a semi-infinite domain, just like we try to do. I have the feeling
that we here are dealing with the fourth principle of conservation: ..

conservation of difficulty...*. *%*

-. %.S. V. -i



Slowly-Varying and Mean Second-Order
Wave Forces on Ships and Offshore

Structures
R G Standing and N M C Dacunha k ,

National Maritime Institute, Feltham, Middlesex, UK .

SYNOPSIS
This paper describes the main results of a recently-completed

research programme on wave drift forces. Methods for predicting both
mean and low-frequency components of the drift force are reviewed. ..

A simple parameter gives some indication of the relative importance

of viscous drag and wave diffraction effects. Numerical procedures,
based on so-called 'near-field' and 'far-field' expressions for the -
drift force, are described. Calculated forces on a moored drill-ship,
obtained using the NMIWAVE computer program, are compared with simple
analytic solutions and with experiment.

Predicted mean forces and first-order response motions agree well - -
with measured values in regular waves and in wave groups. Mean forces
in irregular random waves agree slightly less well. Discrepancies are
attributed to a mixture of numerical and experimental causes.

The paper also discusses the validity of three different methods
for estimating the low-frequency force: the NMIWAVE solution, which "
calculates the full quadratic transfer function, and two more approxi- ,.
mate methods. The main features of these three methods are related to

the effects of wave diffraction, and of spatial gradients associated
with both the first and second-order wave fields. These in turn are %
related to three simple parameters. General conclusions based on these %

parameters are borne out by numerical and experimental data. The s.

importance of the second-order wave is discussed. It is difficult to
simulate this component adequately either numerically or experimentally.

-'.'.•4-
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1. INTRODUCTION

Wave drift forces and 9rift motions have recently attracted much ;" .:-

research interest. They appear in several different guises and in a
wide range of situations. They are clearly involved in the drifting of
disabled ships (Dand, 1981), but also in the added resistance of ships
advancing through waves (Salvesen, 1974). Moored ships and structures
often experience low-frequency drifting motions (Stammers et al., 1977),
which can cause severe loads in mooring hawsers, or affect the design

of dynamic positioning systems. Low-frequency heave and pitch motions
of semisubmersibles (Naess and Borresen, 1978) may have a similar origin.

These forces and motions can arise in several different ways. The

underlying causes are often complex, and involve several different types
of non-linearity, which are hard to disentangle. The process may
involve wind and current loading, variations in mooring stiffness,
particularly where both mooring lines and fenders are used (Lean, 1971).
The equations of motion may have unstable solutions; this occurs, for
example, with ships at single point moorings (S;rheim, 1981) and tethe-
red buoyant platforms (Rainey, 1978). Various non-linear wave forces

may also be involved. The present paper discusses this last item.
More specifically it discusses various theoretical procedures for
predicting the mean and low-frequency components of the second-order

wave force.
It is well known that an unmoored ship tends to drift down-wave,

and sometimes also changes its heading. Havelock (1940, 1942)
developed simple mathematical formulae to predict the wave drift force,
and his concepts form the basis of more recent computational procedures.
Havelock's formulae predict the mean force. He assumed perfect wave

%," "0 'q ....,
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reflection, as at a plane vertical wall. Later authors (e.g. Maruo,
1960; Longuet-Higgins, 1977) allowed for partial wave transmission,
while Newman (1967), Kim and Chou (1973) and others have extended these ., p

techniques to calculate mean forces on ship-like forms by means of
slender-body and strip theories. Salvesen (1974) incorporated forward
speed, so as to predict the added resistance of ships travelling
through waves. Faltinsen and Michelsen (1974) extended Newman's theory,
so as to calculate mean forces on structures of quite general form, by .--

using linear 3-dimensional wave diffraction theory. They found good i.'..

agreement between predicted forces and experimental values. This
finding was later confirmed by Pinkster (1980) and by the present
results.

All the above procedures calculate the mean force from changes in
wave momentum far from the structure, and are therefore often classified
as 'far-field' methods. Pinkster and van Oortmerssen (1976) employed

the alternative 'near-field' approach, calculating second-order forces
acting directly on the structure. This approach is computationally .

more expensive than the corresponding far-field method, but has two
great advantages. It gives considerably more insight into the mechanism
of wave drift forcing, and can also be used to calculate mean vertical

and low-frequency components of the wave force. .. , .-5
The low-frequency force involves a quadratic transfer function

describing the force caused by interacting pairs of regular wave trains
with different frequencies. Newman (1974) and Pinkster (1974) had

earlier proposed an approximate procedure for estimating low-frequency

foices, in which the quadratic function is replaced by the mean force ,

acting in regular waves at the mean frequency. This approximate proce- e

dure is widely used in design: it is cheap and easy to apply, and the

required mean force data are more readily available (from either experi-
ments or theory) than the quadratic function. Rye et al (1975) commented

on the sensitivity of the resulting force spectrum to small variations

in the mean force function, and there were no clear crite.ia for judging

the accuracy or validity of this method.
Bowers (1976) also proposed an approximate formula, suited to the

estimation of surge drifting forces on moored ships, and requiring no
diffraction input whatsoever. Again there were no clear criteria for

its use.

All the above approaches are based on classical Airy wave theory,
which assumes inviscid flow. Huse (1977), Pijfers and Brink (1977) had

proposed a mechanism by which drag forces may give rise to drifting of

semisubmersibles and similar tubular structures. Criteria for judging

the importance of drag and viscous effects were also lacking.
The present paper describes the results of a research programme on

wave drift forces, undertaken at the National Maritime Institute so as

a' to:

a) extend the existing NMIWAVE computer program, which could

already calculate first-order wave diffraction forces and responses,

in order to predict second-order mean and low-frequency forces, using

both the far-field and near-field techniques,
b) clarify the conditions in which this technique is valid, in

particular for the neglect of drag forces,
c) clarify ranges of validity of the Pinkster/Newman and Bowers

approximations.

V. --. e.



L- M- ...

282 P

2. PHYSICAL AND MATHEMATICAL PROCESS

Ships moored at jetties or exposed offshore locations are often
seen to undergo large-amplitude, long-period drifting motions, which can
cause severe loads in mooring lines. Multi-point mooring arrays usually
constrain the vessel to make simple surge, sway and perhaps yawing
motions, with characteristic periods in the range 30 seconds to several
minutes (see, for example, Stammers et al., 1977). These motions may
sometimes be excited directly by very long-period swell waves. Little
is known about such waves. Conventional waverider buoys cannot detect
them, and they are difficult to distinguish from second-order set-down
and related effects. The 'linear' process by which these long-period
swell waves cause drift motions is essentially the same as that
occurring at higher frequencies, and will be discussed no further here.

A wide range of complex non-linear processes can also cause drifting,
and are probably of greater significance in most situations. These non-
linearities may be divided conveniently into these associated with the
response process, and those involved in wave loading. The first process
requires no direct excitation at the response frequency: the low-
frequency response occurs as either a subharmonic or unstable solution
of the equations of motion.

Non-linearities in the wave loading process are perhaps more
fundamental, and affect a wider range of design problems. Particular
attention is focussed here on the second-order contribution to the
wave force. This force has both mean and low-frequency components,
causing excitation at frequencies below the range of direct wave action.
These components are often known collectively as 'wave drift forces', . -

and arise either through non-linear interactions within the wave field,
or throug. non-linearities in the mechanism by which these waves act on
the structure. Forces of the first kind are associated with the second-
order wave, and are particularly difficult to calculate. They include
effects of set-down (a lowering of the water surface beneath wave groups)
and surf beats, which are particularly important at inshore locations
(see Bowers, 1980a). Forces of the second kind are the second-order
consequences of first-order waves acting on the structure. They can
be expressed in terms of products of first-order quantities, and are
relatively easy to compute. Both contributions will be discussed in <..
the following sections.

A structure in perfectly regular sinusoidal waves experiences a
mean force, but no low-frequency variations. These variations occur in
an irregular sea, and are associated with wave grouping. The process
can be described in simple mathematical terms. Second-order forces
depend on various products of first-order quantities. Two such quant-
ities X and Y may be expressed in the form:

X = Xn an cos (Ont - Yn - P'n)
n=1

N
Y = Yn an cos (Ont - Yn - vn)

n= 1

.... . -.

>] ".. . ,. .
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where the surface elevation at the origin of coordinates consists of N
superimposed cosine waves:

N
= T an cos (Ont - Yn)  (2.1)

n=l

Their product

N N
XY = F XmYnaman {cos [Corm + On)t - (Ym + Yn) - (4m + Vn)]

m=l n=l

+cos [(o m - On)t - (Ym - Yn) - (Pm - vn)]} I-

The first term represents a force at a frequency higher than those

in the incident waves, and is of no direct relevance in the present

context. The second term represents the wave drift force, which

can be expressed more generally in the form

(2) N N
F = Y F T aman cos[(Om-On)t - (m-Yn) - 6mn] (2.2)

m=l n=l

where Tmn, &mn represent the quadratic transfer function and phase of

the force relative to the wave group envelope. It is immediately clear :

that:
a) the mean force arises from terms with m = n, and involves

no coupling between wave components;
b) each pair of wave components interacts to produce a force at

their difference frequency lOm-On;
c) the bandwidth and resolution of the second-order force

spectrum are identical with those of the first-order wave spectrum. A
This has important consequences for the simulation of random wave

conditions (see section 5.4);
d) the transfer functions for amplitude Tmn and phase 6mn depend

on the wave frequencies am, On, but not on the amplitudes of those wave -.-.

components, nor on any other components present. Transfer functions

computed for pairs of superimposed regular waves ('regular wave groups' 9
or 'beating waves', as shown in figure 1) can therefore be used to

predict the force spectrum in an irregular sea. A procedure for

calculating Tmn, 6mn, and superimposing forces in irregular seas, will
be described in later sections.

The low-frequency forces are themselves of limited interest. They

are usually much smaller than wave-frequency forces. They become

important, however, when the system has a low natural frequency and the

damping is light, by exciting a large resonant response. In these

circumstances the mooring force can be many times larger than the low-

frequency wave exciting force. The process is illustrated in figure

2. The incident wave spectrum (top left of figure) causes both wave-

frequency forces and small low-frequency drift forces (top right). The

response characteristic (bottom left) is that of a lightly-damped system

with a long natural period. It acts as a band-pass filter, causing an C
enhanced natural-period response, and an attenuated wave-frequency motion.

Low-frequency components thus dominate the response spectrum (bottom

4~C ~rf *-~~*,- z~: ..............,.............................. ................................ ,. ..
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right of figure).
The response process can be described in terms of the equation of

motion of a linear system. For each frequency o of wave forcing the
response r2)satisfies an equation of the form

.(2) '(2) 2 (2) IF (2)"'"-1 + 2o 0 T + (3 2 cos (ot-6)
M

where IF is the amplitude of the wave force, M the system's inertia,
o its natural frequency, and f the damping ratio, The amplitude of the

system's response at its natural frequency is IF 2)I02o M, and the
corresponding mooring load is IF (2)/2[(.A typical value of a for a moored
ship in surge might lie in the range 0.02 to 0.05, so that the maximum
mooring force might be 10 to 25 times the maximum wave force at the
ship's natural surge frequency. It is worth noting that although the

peak amplification factor increases with -1, the bandwidth of response
simultaneously decreases, so that the root mean square response in an

irregular sea only varies with 3- (see Standing et al., 1982).
It is, therefore, not the non-linear wave forces that are oF

importance to the designer, but rather the consequential effects of this

forcing on dynamic response, mooring loads and fatigue. These effects
may be enhanced by non-linearities in the response equations themselves,

a process which will not be discussed further here (see van Oortmerssen,
1979).

3. MEAN FORCES

3.1 Roles of Wave Diffraction, Inertial and Drag Loading
Two fundamentally different methods are used in offshore design to

predict first-order (wave-frequency) loads on structural members. One
method is empirical, and the other mathematical, and they have different
ranges of validity and use. According to the first method, Morison's

(1950) equation represents the wave force as the sum of separate drag .
and inertial components with appropriate empirical coefficients Cd and
Cm. This method is most widely used for analysing tubular frameworks.

The second, more theoretical, approach is applied to ships and wide-
V body structures. Hydrodynamic equations describing wave diffraction

and radiation by the structure are solved either analytically or
numerically. This method usually assumes classical linear wave theory
and ideal flow.

It is instructive to compare the physical roles of wave diffraction,

inertial and drag loading in the drift force process by reference to
these two techniques.

It is convenient to start with a discussion on the mean drift
force. The mean force has been studied over many years, both theoreti-
cally and experimentally, and is relatively well understood. Criteria

and techniques for calculating this component will be discussed before .-1.

transferring attention to the less well-understood low-frequency
component.

Two simple criteria are often used to assess the relative import- '--
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ance of drag, inertial and diffraction contributions to the first-order
wave force:

a) drag forces are assumed negligible if the ratio 6/D < 1,

b) diffraction effects are assumed negligible if D/X < 0.2,
where 6 is the diameter of a typical water particle orbit, D a typical
member diameter, and X is the wave length. Physical limitations on %7.
wave steepness ensure that 6/X is small, so that drag and diffraction
forces on a member are rarely important simultaneously. The use of

S.' linear diffraction theory, based on ideal flow assumptions, may thus be

justified.
These simple criteria are based on measured forces and theoretical

predictions for a single fixed vertical column, and there are, of course,
many exceptions and practical. complications when considering mure complex A

and realistic structures. For examplp weil-submerqed members are less
likely to experience effecLs of wave diffraction, while dynamic structures
may be more susceptible to effects of damping and drag than these simple
criteria suggest. ..

In the same spirit, and with the same note of caution about special
cases, some simple criteria will now be sought for describing the
relative magnitudes of drag, inertial and diffraction effects on the
second-order force. -

The role of wave diffraction is fairly clear. Wave diffraction
changes the momentum carried by the wave field, and this change implies
a mean force acting on the structure. Forces of this kind are associated
mainly with short-period waves, with wavelengths typically less than the
dimensions of structural members. Longer waves are less affected by the
structure, and the mean force is reduced. This is particularly true
when the structure is free to respond with the waves, as shown by
Faltinsen and Loken (1978).

Drag affects the wave drift force in at least two distinct ways:
a) on fixed structures, drag forces act between the mean and

instantaneous free surfaces, and provide a non-zero mean load,
b) on responding structures, the amount of hydrodynamic damping

affects the phase difference between first-order forces and response

motions, particularly near resonance. One component of the drift force
involves the product of first-order forcing and response. Huse (1977)

attributed observed negative drift forces on a semisubmersible to the
phase difference between heave forces and pitch motions.

The inertial term in Morison's equation is associated with a local
disturbance in the flow pattern. This disturbance does not affect
momentum in the first-order wave field, and so there is no mean drift
force. (The structure also disturbs the second-order 'set-down' wave,
however, and an inertial-type force results. This force has no mean
component, and so discussion will be deferred until the next chapter).

The relative sizes of drag and diffraction contributions can be
assessed most simply by calculating wave forces on a fixed vertical 9
column of circular section, as in the first-order example quoted above.
The mean force due to conventional drag and inertial loads acting
between the mean and instantaneous free surface is :

O- i. -Vp "_-N
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2 2r 2H %N lco d
Tj -CmP 4  (T-2) sin 0 + CdPD() COS 1' COS d6

where the wave is described by linear deep-water theory. The inertial
contribution integrates to zero, as noted above. The drag contribution

S1,is 7TCdpDH'/3T.
Havelock (1940) obtained an analytic solution for wave diffraction -"-,

by a circular column, and Karpinnen (1979) has shown that the mean
force may be approximated by the expression pqDH (TD/X) 3/3when D/X is
small.

Comparing the above two expressions it is seen that diffraction eff-
ects dominate the mean force when HXA/D 3<60,and drag effects when this-..A %,
ratio )> 60. This result and the corresponding first-order criteria are
represented pictorially in figure 3. It is immediately clear that when
either drag or diffraction affects the first-order force, the same is
true of the mean force. The situation is less clear when both 6/D and
D/A are small. Semisubmersible platforms come into this category,
particularly in long-period waves. Pinkster (1980) has found good
agreement between experiment and theory based on a linear diffraction
analysis, while in other cases Pijfers and Brink (1977) and Huse (1977)
invoke a drag-force mechanism. Both effects are relevant: diffraction
in moderate sea states, and drag forces in large waves and strong
currents. I -lei

In relating these parameters to practical structures the underlying ,- -

assumptions must be borne in mind. The appropriate dimension D is that -.. •
associated with wave diffraction: this will generally be the width of
the member presented to waves at the free surface. Dynamic response
may modify or invalidate these criteria, as may submergence of large
parts of the structure. These parameters are intended simply to help
the designer towards an understanding of wave drift forces, and the
reasons why one design procedure may be preferred rather than another.

3.2 Simple Theoretical Methods ,..

From this point onwards the theory will be based on classical linear
waves and ideal flow assumptions. The drift forces are associated with
inertial, diffraction and radiation iffects, and all viscous and drag i. i .

effects are neglected. It is also assumed that no current is present, -

and that the ship or structure has no forward speed. Cartesian coordi-
nates will be used, as shown in figure 4.

It is convenient to start with a two-dimensional model. Maruo
(1960) showed that the mean force on a two-dimensional object in deep
water may be expressed as pgH 2R', where R is the reflection coefficient
(ratio of reflected to incident wave height).

Havelock (1940) assumed perfect reflection, as at a rigid vertical
wall, so that R = 1, and showed that the mean longitudinal force acting
on a ship may be expressed

fB/2
pqH B f sin 20 dy %

-B/2

..............
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where the integral is over the ship's beam B along the portion of
waterline exposed to waves, and 0 is the angle between the waterline
and the wave direction. This formula may be extended straightforwardly

to give the transverse force and turning moment. It is widely used in
ship design, because of its simplicity, and does in fact represent the
mean force fairly well in very short waves. It seriously overestimates
the force, however, in long-period waves.

A smaller proportion of the wave energy is reflected, and more
transmitted, as the wavelength increases. Vessel response also affects 0 .
the drift force. Newman's (1967) analytic solution takes account of wave
scattering and vessel response, and is also fairly easy to evaluate. It
invokes slender-body assumptions to represent flow around a slender ship. "
The theory assumes that the ship's beam B is small compared with the
wavelength X.

Figure 5 compares Havelock's short-wave and Newman's long-wave
methods with a more accurate numerical procedure based on 3-dimensional
diffraction theory, and described in the next section. This figure .. . ,
shows longitudinal and transverse forces on a ship moored at an angle
to waves. It is clear that Havelock's method works well in short waves,
and is in fact a convenient means of extrapolating numerical results
to very high frequencies. Newman's formulae agree rather poorly with
diffraction theory over most of the relevant part of the frequency range.
This is because it is a long-wave theory, and the drift forces are
mainly associated with short and moderate wavelengths. Faltinsen and
Liken (1978) reached similar conclusions, and investigated a range of ft
other procedures, including one based on Newman's theory but solving the
first-order problem by strip theory rather than slender-body methods.
This approach should be valid for moderate and short wavelengths, except
in head and following seas. The full three-dimensional approach,
described below, should be used for ships or structures of fuller or
unusual form, and also for ships in head and following seas.

3.3 Three-Dimensional Wave Diffraction
John's (1950) wave diffraction theory describes the scattering of

small-amplitude waves by large objects in the sea. NMIWAVE is one of a
growing number of computer programs based on John's theory. Programs {:-sI..
of this type are used by designers to estimate wave loads on large
fixed storage tanks and gravity platforms, and the response motions of
larqe free-floating or moored structures. . i

Linear wave diffraction theory is based on classical Airy wave and
ideal flow assumptions: I'.-.

a) the wave height H is small compared with the water depth and
typical body dimensions, so that the hydrodynamic equations may be made
linear in H; .- - -

b) the response motions of the structure are similarly small, so
that the relevant response equations may also be linearised; I *

c) the flow is inviscid, incompressible and irrotational, and may 77
therefore be described in terms of a velocity potential (i).

d) It is also assumed that the ship or structure has no mean
forward motion relative to the water, and that the water is of uniform
depth d.

-.. 4 "
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The velocity potential in regular waves of frequency a is expressed
as the sum of incident, diffracted and radiated components: %

1= ( +  s + E njj)e.,-. j=l

The diffraction component 4s represents wave scattering by the fixed
structure, and components pj represent wave radiation associated with

structural motion in each of its J degrees of freedom. The
hydrodynamic equations are solved for cs and each . separately; forces

and moments are then calculated from pressures acting over the structure's
surface. Forces associated with wave radiation are converted to added
masses and dampinq coefficients, which are incorporated into the struct-
ure's response equations. These equations are then solved for nj.

Standing (1979) gives details of the NMIWAVE program and of a numerical
procedure for solving the hydrodynamic equations. The solution is obtai-
ned in terms of a distribution of pulsating fluid sources, with density

fj (), over the surface S of the structure. The velocity potential at
the-point x is

h (r W fj(E) G(x, )dS

where the source influence function G satisfies sea-bed, free-surface
and radiation conditions, as well as the Laplace equation in the fluid.
The body surface So is divided into a finite number of facets, and
equations representing the boundary condition at the centre of every
facet are solved simultaneously for every f .

There is a one-to-one correspondence between frequency components
of the wave history, forces and response motions. The amplitudes of
the force and response at frequency a are directly proportional to the
wave amplitude at the same frequency. Mean and subharmonic forces and

motions do not occur.
This linear solution represents the first-order term in a power ..r .'

series expansion of the form:

% (1) 2D (2) 3 (3)
% ( =E D E + C +--

with associated forcing

F F F(0) +F(1) + E 2F (2) + C 3F(3) +-F~F +rF-+---

where E is a small parameter related to wave steepness, and F(epresents

the (zero-order) hydrostatic force. The problems of calculating mean
and low-frequency components of F(2 ) will now be addressed.

3.4 Mean Wave Drift Forces by the 'Far-Field' Method
The mean force can be calculated in either of two different ways.

The first, and computationally more straightforward, of these is the
so-called 'far-field' method. The mean force is inferred from momentum

in the incident, diffracted and radiated wave fields far from the struc- '-"-"-
?%. ture. Salvesen (1974) has shown that mean second-order horizontal forces -

"% a,
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depend only on the first-order wave field, and not on second-order waves.
This fact greatly simplifies the process of calculating these forces.

Newman (1967) has shown that the mean force on the structure in the
x-direction may be expressedpF - EP cos 0 + PUR CUR cos e - Ue sin 0)] RdOdz
where p is the first-order hydrodynamic pressure, U is fluid velocity
with radial and tangential components UR, U6 ; S. is a large cylindrical
control surface with radius R. The bar denotes the mean over a complete
wave cycle. Faltinsen and Michelsen (1974) expressed the pressure and
velocity components in terms of source densities fC(C), so that

q0s(k) [s--kd k q() cos 0 cos 6 - k q(6) cos edO]

where s(k) = sinh 2kd + kd, 6(0) and q() are defined by .5

q( i 6 ) 2Ei(-k) [fs(&) + Z rjfj( )]
so (j=l

cosh k(d+z') exp [-ik(x'cosO + y'sin 6)]dS '''..

= (xy'Z'), \) = 02/g = k tanh kd. Further details, and similar
expressions for the y-component of the force and turning moment, are
given by Standing et al. (1981).

3.5 Mean Wave Drift Forces by the 'Near-Field' Method
The far-field approach requires little computational effort beyond

that required for the first-order solution, but can only describe mean
horizontal components of the wave force. Pinkster's (1980) alternative
'near-field' method can predict mean vertical forces as well as the
low-frequency components. This method shows more clearly the relation-
ships between the drift force and fundamental physical parameters, such
as surface elevation, velocities and pressures. It is, however, more
cumbersome to program on the computer, and more demanding in terms of
computer time and storage.

Pinkster has shown that the mean and low-frequency forces may be
expressed as a sum of six components: K

-hPgj r2 n'odt + p1 ijV72 n0dS
Lo  S

0 ~O (2)

- mV- n] nodS + R7 + K -p 5t nodS (3.1)
So So

where Lo is the mean waterline, and So the mean underwater surface of the
structure; a. is the normal to So and n' is the normal to Lo; & is the
translational motion of the structure at a Doint on its surface, and the
3 x 3 matrix R represents a vector cross-product with the first-order
rotation of the structure. The force F represents the total first-order .
fluid force, including both hydrodynamic and hydrostatic components.

**'*% .' .. . .. .- '.
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is the free surface elevation relative to the structure. All the

above (n, R, F,Cr), and the velocity potential (, represent first-order

quantities. The fifth and sixth terms will be explained below.
The above terms can be interpreted physically. The first compone-

nent (called term I in subsequent sections) represents forces acting

between the structure's mean waterline and the instantaneous free

surface. The second component (II) represents second-order pressures, •

- pU 2, integrated over the structure's surface. The third component

(III) describes the change in the force due to first-order motions of
the structure through the first-order pressure field. Term IV

represents changes in the direction of the force due to first-order

.-. rotations.

Term V was omitted by Pinkster, and is in many cases zero, but .
represents second-order motions of the structure's centre of buoyancy

and waterplane due to first-order response. It contributes to the

vertical forces; the heave component is, for example:

- pgzc A(n4' + n5 )

where zc is the z-coordinate of the point at which first-order motions

are defined, A is the structure's waterplane area, n4 and n5 are its

first-order roll and pitch response motions.

Term VI represents the effect of the second-order wave,and ) is

the second-order velocity potential. This term does not contribute to

the mean horizontal force for reasons given earlier, though it may make

a hydrostatic-type contribution to the vertical force. Term VI will be

discussed further in the context of low-frequency forces (sections 4

and 5).
Standing et al (1981) give further details of the numerical process

adopted at NMI for evaluating these terms. Once the first-order solution
is obtained by John's diffraction method, it is in principle straight-

forward to substitute first-order quantities into the above expressions

for terms I-V, and integrate over appropriate areas of the hull surface

and waterline. Results are presented in section 5.

%..

Interest has recently tended to shift from mean drift forces to the

less well-understood and less easy-to-compute low-frequency component. W4

This shift has occurred as designers have recognised the underlying

causes of low-frequency resonant motions of moored structures, and as

computational procedures have advanced. The damping of the system is

also important in this context, of course, and is in many ways less

well-understood than the loading. The damping problem is mentioned here

. merely as an aside, and is outside the scope of the present paper.

Because of difficulties in predicting the full quadratic transfer

function for the second-order force, various simplified procedures have

been devised. Two particular simple methods will be examined because

. they throw some light on the complex range of parameters involved. Some . .

quantitative comparisons will be made between these methods in section

....................
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5.3. There were several reasons for selecting these particular tech-
niques: they are fairly simple to use, the first method is widely used
in design, and their assumptions are somewhat complementary.

a) The first such method is that proposed by Pinkster (1974) and
Newman (1974). They replaced the quadratic transfer function T(om, On) .

by the mean force acting at the mean wave frequency T(a ,Omn), where
U m n

Omn = (om + On). For this method to be valid they require that 0i

0m - 0n<< (Om + On)

where am, On are typical frequencies of two wave spectral components.
The underlying assumptions are similar to those of Hsu and

Blenkarn (1970), though are more rigorously formulated. Hsu and Blenkarn
treated each half-cycle of an irregular wave as part of a regular wave
train with the same amplitude and period. The slowly-varying force
then emerged as variations in the mean force between successive half-
cycles.

The merit of the Newman/Pinkster or Hsu/Blenkarn approach lies in
the fact that it is easier to compute (or measure) mean forces in regular
waves than slowly-varying forces in irregular seas or regular wave ..

groups. There is now a considerable body of data on mean wave forces,
but little reliable information on low-frequency components. This
simpler approach allows maximum use to be made of existing data, with
minimal computational problems. ...

b) Bowers (1976) was particularly concerned with low-frequency
surge motions of moored ships in short-wave head seas. In such circum-
stances his neglect of all wave radiation and diffraction effects would
appear reasonable. The low-frequency force is defined entirely in terms
of properties of the undisturbed incident wave: both first and second-
order components. There is no mean force, because there is no mechanism
for scattering the waves. Bowers found two distinct force components, -.-
both associated with spatial variations along the length of the ship.

* These variations are in the surface elevation (term I of equation 3.1)
and in the second-order 'set-down' wave (term VI). These terms are of p
opposite sign. * ,

It is immediately clear that the Newman/Pinkster approach represents .','

wave diffraction effects and variations with time, but no spatial gradient
effects. Bowers represents local variations in time and space, but
neglects wave scattering. Thus the assumptions are somewhat complementary.

The third procedure to be discussed in this paper is the more exact
numerical method described in sections 3.5 and 4.2. This method repre-
sents all the above effects, though continues to approximate the 'set-
down' term, as in Bowers's theory.

4.1 Roles of Wave Diffraction, Spatial Gradient and Set-down Effects
The purpose of this discussion is not to define precise and absolute

criteria for applying various prediction techniques in design. The
purpose is rather to understand the physical roles of wave diffraction,
spatial gradient and set-down effects, and of some of the governing
parameters.

,%'. .%-
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It is assumed first that wave diffraction effects may be charact- ,
erised by means of the mean force acting on a vertical fixed column of

diameter D. Havelock's (1940) analytic expression was evaluated "/-
numerically by van Oortmerssen (1971). For present purposes the main
features of their mean force (its asymptotic high-frequency behaviour
and rapid fall-off at low frequencies) may be reproduced more simply -..

by the formula '

()qDa2 K (kD)

where K(kD) = (kD) 3 /3 for kD < 1.26 ; --

=2/3for kD -1 1.26,
and n2 = gk. These formulae relate to deep-water regular waves of
amplitude a and frequency .-

The simplest type of wave form in which slowly-varying forces occur
is the regular wave group, consisting of two superimposed regular wave
trains with amplitudes a, a2 and frequencies oi, 02 (see figure 1).
According to Newman's (1974) approximate theory the amplitude of
variations in the drift force on this simple column is

pgDal a 2 K (kcD) (4.1)

where kc is the wave number associated with a regular wave of mean 3
frequency ac =(0 1 + 02):

gk c = (1 + 02)"

Equation 4.1 will be used to characterise wave diffraction effects, and
as a measure of force variations predicted by Newman's technique.

Bowers's (1976) formula for the surge force on a ship in head seas
contains two terms, both representing spatial gradient effects. The
first is associated with variations in the first-order wave field, and
more specifically in the surface elevation around the ship's waterline
(c.f. term I of equation 3.1). The second term represents the force due
to the second-order 'set-down' wave (term VI), and is somewhat analogous
to the inertial term in Morison's equation. Standing et al (1982) show -7
how Bowers's formulae may first be extended to deeper water, and secondly
simplified when the ship's length L and beam B are both small compared ,
with the wave group length: Ikl-k 2IL < 1. The amplitude of the low-
frequency force then has two components -

0pgBLal a2 k-k 2 1 (4.2) .

representing the surface elevation term I, and

UpgBLa1 a2Ikj-k 2Ihf 1 2  (4.3)

representing term VI, where h is the ship's draft and .

f12= max (l/d, 1kl-k 2 )

.• . . .... .
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Removing a common factor pgala2 from equations 4.1, 4.2 and 4.3,
three simple quantities are left:

2DK(k D), Ik -kNI BL and 1kl-k 2 1 BLhf1 2.

It seems reasonable to suppose that these three quantities will charact- ,.- ..

erise the relative importance of (respectively) wave diffraction, -
gradient terms depending on the first-order wave field, and second-
order set-down effects.

There are, of course, difficulties in relating these very simple
parameters to realistic structures in irregular seas. The character-

istic dimension D will normally be that associated with wave diffraction: -

probably the width of the structure presented to waves. The fall-off -'

factor (kD)3 /3 may need to be modified to allow for vessel response or
draft. In most cases the releva;it difference frequency 60 =I01 - 021
will be the natural response frequency of the structure, but it is not ,

always easy to choose an appropriate mean frequency 0c . This may be . . -

near the peak of the wave spectrum, or perhaps at a slightly higher
frequency..

Standing et al (1982) draw the following conclusions from sample

calculations on a large ship (200000 DWT VLCC), a smaller drill-ship
(which will be discussed in greater detail in subsequent sections), and I -asemisubmersible platform. '

(1) In all cases diffraction effects tend to dominate when the

to aveengh ~~e.kc> 1), particularly1%structure is large in relation to wavelength (i.e. kc >ipriual /'".

when the natural frequency of the system is very low. In such

conditions the Newman/Pinkster approximate method is likely to be valid.
(ii) Gradient terms of both types become significant when typical

member diameters are small compared with the wavelength (i.e. slender
tubular members), or when L is large (i.e. very long ships in head '.4 .-

seas), and when the system's natural frequency is fairly high (i.e. a . .-
fairly stiff mooring arrangement).

(iii) The second-order set-down wave has a gradient-type effect.
It becomes important if the vessel's draft is a substantial part of the p
water depth, or is more than about 1/6 ofthe relevant wave group length. -

(iv) The diffraction parameter decreases very rapidly with both
kc and D: it varies in fact with the fourth power of D and the sixth ..- '
power of frequency oc . This means that the relative importance of ,( ..

diffraction and gradient-type terin can depend very sensitively on
structure dimensions and wave spectral content. This is particularly

in advance which of the various effects will dominate in any given sea

condition. The second-order wave term may be particularly siqnificant.
So too may be viscous draq, particularly in very larqe waves or strong
currents. -'"

(v) Conclusions of Rye et al (1975) may be interpreted in these

terms. They compared low-frequency surge spectra for a 'Condrill'
platform, calculated by means of the Newman/Pinkster formula, with

experiment. They found the response spectra to be highly sensitive to
small variations in the force transfer function, and found that Newman's

I -M
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theory worked best (though, even then, not particularly well) when the
wave spectrum contained a substantial amount of short-wave energy. .0?

(vi) The above three simple parameters were also calculated for
large and small moored ships. Results suggest that the diffraction
process will tend to dominate sway motions rather more than surge, and
will be most significant if the ship's natural surge or sway period is
lonq. More exact numerical comparisons will be made in section 5.3
between the Newman/Pinkster, Bowers and more complete theories. These
comparisons show that the first-order response of the vessel has an .'-'.

important modifying influence, which is difficult to describe in terms
of simple parameters.

4.2 Computing Procedure
Pinkster's (1980) near-field procedure, described in section 3.5,

may be used immediately to prelict low-frequency forces. There are only
two complications: first it is necessary to represent interactions
between pairs of waves at different frequencies, and secondly the
second-order (set-down) wave has to be approximated in some way.

As regards wave interactions, Pinkster's (1980) approach is
followed. Terms Tmn' Tnm in equation 2.2 may be combined together in
various possible ways, but it is convenient to set

P = (T cos 6 + T cos 3

mn mn mn nm nm

Qmn = (Tmn sin 6 n - Tnm sin 6nm)

so that Pmn, Qmn are symmetric and antisymmetric respectively.
Corresponding amplitude and phase functions are defined by

F = P 2  
+ 

2

mn mn mn

tan amn = Qmn/Pmn

so that amn represents the phase of the maximum force relative to the
phase of the wave envelope (see figure 1).

Forces in a random irregular sea can be obtained by superposition

If S(o) is the wave spectral density function, then, following Pinkster
(1980), the spectrum of second-order forces can be expressed

, 1 ,... - -,

SF(o') 8 S(o) S(O' + a) F2 (a, a + o')da (4.4)

. - where F(Om, On) = Fmn in the above notation. The mean force

F = 2 S(o) F(o, u)da (4.5)
0

* There are several different ways in which the second-order wave
contribution might be estimated (term VI of equation 3.1). Lighthill
(1979) showed that the complete second-order force can be calculated,
without approximation, in terms of an integral of first-order quantities
over the free surface. The amount of effort required to evaluate this

-".-
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integral would be considerable, though less than that required to solve -
the full second-order problem (see Garrison, 1979; Isaacson, 1981).

Pinkster (1980) approximated the set-down term by treating the .-

second-order wave as a first-order component with a modified phase speed,
assuming that the structure was fixed. He thus represented the effect
of the structure's added mass, but not second-order wave scattering, nor
effects of the structure's first-order response. This method was found
to predict forces on a floating cylinder rather poorly: a case for
which an exact analytic solution was available.

NMI therefore adopted a rather simpler approximation, which neglects
disurbances due to the structure altogether. This approach is analogous

*. to the Froude-Krylov approximation for the first-order force, in which
the pressures acting on the structure are those in the ambient wave
field. The purpose of this approximation is to indicate quickly and -

easily whether the set-down term is important. Bowers's (1976) formulae
are used, but modified to allow multi-directional waves, and both deep
and shallow-water group effects. Full details are given by Standing et
al (1982).

Finally second-order motions of the structure are calculated
assuming that the response equations are of the usual linear form (see
section 2).

5. NUMERICAL AND EXPERIMENTAL STUDIES "7

NMI's new computer programs require various first-order quantities
to be evaluated at points on the structure's underwater surface. They
rely on the existing NMIWAVE diffraction suite for this purpose. These
earlier programs and their validation were discussed in a series of "W.-
papers, notably that of Standing (1979).

The new second-order programs were validated in four separate ways:
a) against each other. The near and far-field methods provide " -

independent routes by which to calculate the mean drift force. Results
from these two programs were found to agree within the limits of -

numerical accuracy, as will be shown in the next section;
b) against analytic solutions. Comparisons were made with -.-.

analytic solutions describing the mean force on a vertical fixed circular -'..-

cylinder, and low-frequency forces on a vertical infinite wall. Good
agreement was found, as shown, for example, in figure 6. This figure ..
shows van Oortmerssen's (1971) evaluation of Havelock's (1940) formula,
NMIWAVE results for the fixed cylinder, as well as a reworking of -

Havelock's solution in terms of fluid sources and Faltinsen's (1974)
formula given in section 3.4. This last result is labelled 'Havelock/ ---
Faltinsen'. Finite depth terms are included in all cases.

c) against numerical data. Similar programs have been developed
elsewhere, notably a 'far-field' program described by Faltinsen and
Michelsen (1974), and a 'near-field' program developed by Pinkster (1980).
NMI's calculations agreed well with Faltinsen's mean forces on a floating '*.*

caisson, with Pinkster's mean vertical force on a horizontal cylinder,
and with Pinkster's mean and low-frequency forces on a simple barge.

% %

%"- ""
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Figure 7 shows the separate near-field contributions to the mean force

on the barge. It is clear that the waterline integral (term I) dominates
but is of opposite sign to all other terms. The net force is sensitive
to variations in any of its component parts. Standing et al (1981)

recommended that the waterline, required to evaluate term I, should be
defined with twice as many points as neighbouring hull-surface facets,
in order to minimise numerical inaccuracies. These inaccuracies are

associated particularly with the surface-singularity (point source)

representation of the hull;
d) against experimental data. Experiments were undertaken in NMI's

No. 3 wave tank, specially for the purpose of validating the new drift

force programs. Results will be discussed in the following sections. . .

5.1 Mean Forces on a Moored Drill-Ship
A full description of the experiment and its analysis will be

found in two reports by Standing et al (1981, 1982). The present paper
will concentrate on the results of that investigation, and its impli-

cations for design.
The drill-ship was moored by 4 lines attached to its bow and stern.

The mountings were strain-gauged, providing a direct measurement of

mooring loads. Motions of the vessel were measured in all six degrees
of freedom, and the measurement procedure allowed both wave-frequency
and low-frequency surge, sway and yaw to be obtained. The initial
heading of the vessel was at 1260 to the incident wave direction, and

its principal dimensions (at full-scale) were:

length (Lpp) = 94m
-beam =15.2m

draft = 5.8m
Comparisons were made first between measured and predicted first- -

order (wave-frequency) motions of the vessel. Figure 8 shows the
response amplitude operators i,.. rtgul:-.r waves. The calculations assume
potential flow, except that some (3% critical) viscous roll damping
has been added in order to obtain realistic motions at the natural "

roll period. Agreement between the computed and measured motions is
generally good. The theoretical model slightly underpredicts the .

natural roll period, pitch motions, and heave response at long wave

periods.
Figure 9 shows mean drift forces and the turning moment in regular

waves, and includes theoretical curves based on both the near and far-

- field methods. There is good agreement throughout.
Experiments were also performed in regular wave groups (two

superimposed regular wave trains). Figure 10 shows two sets of experi-
mental data corresponding to difference frequencies 6a L/g = 0.26 and .

0.52. The mean frequency oc and wave height H were derived from the
measured wave spectrum (see Standing et al, 1981). Measured values in

3 wave groups are compared with the corresponding theoretical curve for

regular waves (i.e. 6( 0 0Hz). Some differences were to be expected,
*- due to variations in 6o,and also to uncertainties in measured values

of cc and H. .
Figure 11 shows mean forces in irregular random waves. The theore-

. . .
%
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tical forces are consistently higher than measured values. It is not
entirely clear why this is so, nor which of the two data sets is more

" reliable. There are, however, several possible indications.
a) The mean force (see equation 4.5) is particularly sensitive to

variations in either the wave spectrum So) at high frequencies, or in
the transfer function F(a,o ) at low frequencies. Numerical and experi- .
mental results are both likely to be inaccurate at these extremes.

b) Experimental results in very short regular waves had already
been discarded because of wave generation and measurement difficulties. .>.

Reflections from the tank walls and model caused particular problems.
The irregular wave spectra inevitably contained these troublesome short-
wave components.

c) The theory assumes that the waves superpose linearly. Short
waves in the tank were fairly steep, and may have become somewhat non-
linear in their behaviour.

The results of this investigation nonetheless encourage confidence
in using both types of second-order model to predict mean drift forces.
Theory and experiment agree well over a wide range of practical wave
frequencies and conditions.

5.2 Experimental Investigations into Low-Frequency Response
The drill-ship experiments were also intended to provide low-

frequency surge, sway and yaw motions of the vessel, and thus to provide
indirect validation of the predicted low-trequency wave forces. Tests
in random irregular waves proved hard to interpret. Some clear conclu-
sions, however, have been drawn from experiments in the much simpler ...

regular wave group.
The wave group consists ideally of two superimposed regular wave

trains with amplitudes a1 , a2 and frequencies ol ' 02. A series of
experiments were performed, keeping the difference frequency 6a = 1 o-021
nominally constant, and varying the mean frequency ac = (oi + 02).
This series of experiments was repeated, once with 6oV 7 = 0.26, and .

then with 6oL/g = 0.52. The natural frequencies of the ship in surge
and sway lay very close to the first of these two values.

In order to make the model fairly realistic it was thought essential
*i to allow the ship to respond freely at wave frequencies. Substantial

low-frequency motions then occurred. It was not possible, therefore, to
measure the low-frequency wave force directly, but was necessary to infer a'. -
it from the vessel's response. The forcing and response are related by . __
means of the ship's total (structural + added) mass, the stiffness of
the moorings and the total amount of damping present. Of these the total
mass was considered known with most certainty. Comparisons between
theory and experiment are therefore made here at the higher of the two
values of 6n, where the response equations are inertia dominated.

Figure 12, therefore, compares measured and predicted forces when
SL--L/g = 0.52. Experimental values were inferred from the measured
surge and sway response motions. The solid curve represents the full
quadratic transfer function, and the dotted curve represents the Newman/
Pinkster approximation, based on mean forces. The experimental values

show a slight preference for the full quadratic theory, particularly at

q. N. "%.
.
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long wave periods (small values of oc). This is in fact where differen- ", -
ces between the two theories are most apparent, and where the set-down
term becomes particularly important. The set-down component (term VI of
equation 3.1 is only approximated in NMI's computer program, and this
fact probably explains much of the observed discrepancy between theory .-
and experiment at low values of ac . There is another possible source of
error: small amounts of spurious high-frequency wave energy may have
been present in the tank spectrum, due to reflection from the tank walls
and model, wave breaking and non-linear wave interactions. As noted
already, drift forces are particularly sensitive to short-wave components
of the spectrum.

Bowers (1980b) performed similar experiments on an oscillating
water column (OWC) wave energy device. These experiments confirmed the
importance of set-down at long wave periods (see also section 5.4).
Brendling (1982a) compared Bowers's results with predictions based on
the NMIWAVE solution, and reached conclusions similar to those obtained

above. Figure 15, for example, shows that theory and experiment agree -

fairly well at short wave periods, but, as before, theory tends to
underpredict the forcing at long wave periods. Errors due to approxi-
mating the set-down term may become important in these latter conditions.
Note that in figure 15 L is the width of the device, and is 35.5m.

5.3 Approximate Procedures
Section 4 outlined two approximate procedures, due to Newman/Pinkster

and Bowers, for estimating the low-frequency drift force. Likely ranges
of validity were discussed, using simple order-of-magnitude expressions
to represent the effects of wave diffraction, spatial gradients and
set-down. More precise numerical comparisons will now be made, using
results from the NMIWAVE analysis of the moored drill-ship. The results
generally bear out the earlier conclusions, though with certain .
important modifications to account for vessel response. . .

Figure 13 shows longitudinal and transverse force transfer functions
for the moored drill-ship. The quadratic transfer function varies with
both the mean wave frequency 0c and with the difference frequency 6a.
The earlier figure 12 showed all six components (terms I-VI) of the
force combined. Figure 13 now shows separate first-order product (terms
I-V) and second-order wave (term VI) components. Terms I-V are calculated .. .

exactly, within the limits of numerical accuracy, whereas term VI is only . -

approximated. In the Newman/Pinkster method the full transfer
function is replaced by that corresponding to 6o = 0.0.

Figure 14 converts these transfer functions into second-order force
spectra by means of equation 4.4. Only the surge component is shown.
Figure 14 shows results from both approximate methods, as well
as the more complete numerical result, in two different sea states:

(i) an idealised Jonswap narrow-band wave spectrum with signifi-
cant height H = 3.42m and mean zero-crossing period T = 6.14 sec,

(ii) a groader-band spectrum, based on the Pierson-Moskowitz
formula, but actually as measured in the wave tank, with Hs = 3.92m and
z 7.53 sec.

A number of conclusions have been drawn, as follows:

7--
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a) The Newman/Pinkster Method
Confirming earlier conclusions, the Newman/Pinkster approach is more 6

satisfactory for predicting the transverse (sway) component of the
force than for the longitudinal (surge) component. The sway force is,
however, less well predicted than earlier order-of-magnitude parameters
would indicate, and the surge force slightly better predicted. There
are two principal reasons, both associated with vessel response, the
effects of which are difficult to represent in terms of simple para-
meters.

Firstly, and as noted earlier, heave, sway and roll motions of the
vessel tend to reduce the amount of wave energy reflected in the trans-
verse direction, and thus reduce the mean sway force. Terms excluded - "
from the Newman/Pinkster theory then become relatively more important,
and its range of validity is reduced. This method is nonetheless quite
satisfactory for predicting sway motions of the drill-ship, the natural '•
frequency of which was around 0.012Hz.

Secondly, terms III and IV, which are both associated with vessel
response and make only small contributions to the mean force, make
increasingly important contributions to the quadratic force function as
6a grows. They tend to cancel other components of the surge force, so
that the set-down term VI is relatively more important than the earlier
order-of-magnitude parameters suggest.

Figure 14 shows that the Newman/Pinkster method works rather better ':-.
in the broad-banded Pierson-Moskowitz sea state than in the narrow-band
Jonswap spectrum, because the former spectrum contains more short-wave
energy. Ranges of validity in these two spectra go up to frequencies
of about 0.05 and 0.03Hz respectively. In this example the natural -

-

surge frequency of the vessel was around 0.013Hz.
b) The Bowers Method

This approach fails completely at low frequencies, and is therefore
inappropriate for predicting mean forces, or for vessels with very
elastic moorings. It works fairly well at frequencies above about
0.03Hz in the Jonswap sea state, but seriously overpredicts forces in
the same range of the broader-banded Pierson-Moskowitz spectrum. The 08
Bcders method was also found to overpredict forces in a Jonswap spectrum
with a longer mean wave period, because it makes no allowance for the .

vessel's first-order response. The waterline integral (term I), in

particular, is calculated using the absolute surface elevation instead
of the relative elevation r.

This formula therefore has a restricted range of validity. It is
only appropriate for slender ships in surge at fairly stiff moorings.
The sea spectrum should be narrow-banded, with waves long enough to .
remain undiffracted, yet short enough to cause little first-order
response.

c) The Set-Down Contribution

There are important differences between both approximate solutions and - S
the full numerical result over certain frequency ranges. In such
conditions the full solution is to be preferred, but even here the

second-order wave (set-down) contribution is approximated. This
contribution is important at long wave periods and short resonance periods, '-

%' n
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and may therefore be particularly significant for small stiffly-moored
ships in long waves, for tubular structures, or those with much of their...volume well-submerged. Important modifying effects of vessel response i': [.

can, in fact, make the set-down term rather more significant than the
earlier simple parameters (section 4) suggest. In such circumstances
there will be a considerable degree of uncertainty in computer predic- *0 V
tions. Great care also needs to be taken (see section 5.4) if the set- .

down wave is to be represented correctly in experiments.
Brendling (1982a, 1982b) reached similar conclusions in studies on

the OWC wave energy device and on a floating storage platform.

5.4 Further Implications for Experimental or Numerical Modelling
Dacunha et al (1981) drew attention to the need for very long .

sequences of waves when modelling the effects of wave drift forces and 16.

low-frequency response. They examined variations in the mean square
response arising through the use of a discrete wave spectral model.
They represented the wave spectrum as a series of lines at regularly-
spaced frequency intervals. As noted earlier, the spacing between the
lines of the second-order force spectrum is the same as that of the ".
original wave spectrum. These lines must be sufficiently close together .. ,.-

to define the low-frequency response peak, the width of which is roughly
proportional to f0 , where B is the system's damping ratio and fo its i
natural frequency. Both B and fo are typically small for a moored
ship in surge, and the spectrum has to be resolved very finely. ..-

Figure 16 shows how the root mean square surge response of a typical
model of a moored ship varies with the frequency spacing 6 f. Estimates
vary widely, both above and below the limiting value as 6f * 0. Dacunha's ,
preliminary study suggests that the frequency spacing should be at most
Bfo (or 0.2f if B > 0.2). This means that there should be more than
1/B (or 5) resonant cycles during each test sequence. During that
sequence the waves should be random or pseudo-random.

Dacunha's investigation assumed that the phase angle of each wave
component was random, and averaged over all possible choices of phase
angle. This averaging process greatly simplified the analysis, but _
removed one possible source of variability. Bowers (1982) avoided this.. •
assumption. He measured the surge motions of a moored vessel experimen-
tally, and found that at least 40 resonant cycles were needed in order
to obtain a stable rms response. This criterion is comparable with
Dacunha's, if it is assumed that the damping ratio B 0.025.

These criteria have to be satisfied regardless of the relative
sizes of the second-order wave and first-order-product contributions

to the drift force. Further criteria must be satisfied if the second-
order wave term is significant. As already noted, there are serious
difficulties in computing this term accurately. There are also
serious experimental difficulties in modelling the set-down correctly
in a wave tank. Bowers (1980a, 1980b) has shown that a long-period . !
free wave may have to be superimposed, in order to remove a spurious
component associated with the wave-making process. Bowers (1980b) has
shown that this spurious component is significant in precisely the
same conditions in which Brendling (1982a) found the theoretical set-down .

%.
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contribution to 1e important. 301

6. CONCLUSIONS ..

(i) Wave diffraction and viscous drag both play important roles

in the drift force process. When diffraction effects dominate, mean "
second-order forces may be calculated directly from first-order wave -
diffraction theory, using either the so-called 'near-field' or the 'far-
field' approach. The theory makes ideal flow assumptions.

(ii) Theoretical predictions of mean forces on a moored drill-ship %. ,
agreed very well with experimental values, particularly in regular waves

and wave groups. Agreement in random irregular seas was slightly less
good; several possible reasons are put forward. ...

(iii) In an irregular sea the drift force has a low-frequency
component associated with wave grouping. Force variations depend .

partly on local changes in quantities which are associated with wave
diffraction, and therefore with the mean force. They also depend on
spatial gradients, present in both first and second-order wave fields.
These three sources of variation (diffraction, spatial gradients associ-
ated with first and second-order wave fields) have been characterised by
three simple parameters. Order-of-magnitude comparisons between these i _6
parameters help to clarify the underlying physical processes. They also
suggest when the full NMIWAVE solution may be needed, and when two appro-
ximate procedures due to Newman/Pinkster and Bowers might be used.

(iv) These parameters suggest that diffraction effects will tend
to dominate when the waves are short in relation to vessel dimensions, '.
and when the natural period of the system is very long. The force
associated with diffraction falls off very rapidly as the wavelength
increases, and the relative importance of the various terms may be very
sensitive to slight variations in wave spectral content. Gradient-type
effects become more significant as the wavelength increases, and as the
system's natural response period decreases. The second-order wave has a
gradient-type effect, and becomes particularly significant if the vessel M
is deep-drafted.

(v) The low-frequency component of the second-order force can be
expressed in terms of a quadratic transfer function relating pairs of
frequencies in the underlying wave spectrum. This transfer function may
be calculated by the 'near-field' method. Contributions are of two
distinct types: terms representing products of first-order quantities,
and a term associated with the second-order set-down wave. Components .

of the first type may be calculated directly from linear wave diffraction
theory. The NMIWAVE computer program has been extended for this purpose.
It approximates the second-order wave term.

(vi) Experiments on a moored drill-ship in regular wave groups
gave confidence in this technique. Experiment and theory agreed well in . ,
short-period waves, but relative errors increased in longer waves, as
the set-down component became more significant.

(vii) Numerical comparisons were made between the full NMIWAVE
solution, the Newman/Pinkster and Bowers approximate methods. The

a,.b
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Newman/Pinkster approach works fairly well in diffraction-dominated
conditions (see conclusion (iv) above), and predicted both sway and surge

forces on the moored drill-ship quite well. Bowers's method has a
restricted range of validity, but may be useful for simple estimates of

*! the surge response of slender ships, provided that the ship's natural

surge period is fairly short, and provided the wave spectrum covers a
*" certain narrow band of frequencies. In other circumstances a full .*--.

numerical solution, based on expressions for the quadratic force function,
is to be preferred.

(viii) These comparisons also demonstrate important modifying effects * ..

of first-order vessel response. Caution must therefore be exercised
when applying the simple parameters discussed above: they do not

provide precise criteria, because they take no account of vessel response.
(ix) The set-down contribution may be more significant than these

simple parameters suggest, because of cancellation between other compo-
nents, associated with the vessel's first-order response.

(x) Accurate estimates of rms low-frequency response can only be
obtained, either from experiment or numerical simulation, if the wave

sequence is random or pseudo-random and extends over many (perhaps 40)
natural response cycles. If set-down is important, care must also be
taken in experiments to ensure that the second-order wave is correctly -.

represented.
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SELECTED NOTATION LIST

A waterplane area
an amplitude of wave component n
B vessel's breadth
C, Cm  drag and inertia coefficients
D typical member diameter
d water depth
Fmn quadratic transfer function for amplitude of low-frequency

force -- ..
Fx, Fy mean force components in x, y directions
IFx( 1 , IFy( 2 ) lamplitudes of low-frequency force in x and y directions
fj() source density
G(x,[) source influence function

g acceleration due to gravity
H wave height
h vessel's drafti z/- '"l"

M,-.-.
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k wave number
kc wave number associated with frequency c
L vessel's length
so  vessel's underwater surface in still water
S(a) wave spectral density function
T wave period

Tmn quadratic transfer function for low-frequency force
4* t time ""

U fluid velocity
x,y,z Cartesian coordinates (figure 4) .

.mn phase angle of force relative to wave envelope
damping ratio

Yn phase of wave component n
fluid particle orbit diameter"...- -

6mn force phase angle

6o difference frequency 101-021 V
E" wave steepness parameter

En phase angle of wave component "- " 1I

. , velocity potential
' j response of structure in mode j

In(2)J amplitude of low-frequency response
X wavelength
P water density
a angular frequency of wave component n
Uc  mean wave frequency (oi + 02)

surface elevation
surface elevation relative to vessel

REFERENCES
Brendling W J (1982a). Drift forces on wave energy devices: a

comparison of theory and experiment, Nat. Marit.
Inst. Rep. R141.

Brendling W J (1982b). A comparison of two methods for calculating
drift forces, Nat. Marit. Inst. Rep. R137.

Bowers E C (1976). Long-period oscillations of moored ships .' .
subject to short-wave seas, Trans. R. Inst.
Na. Archit., London, 118, 181.

Bowers E C (1980a). Long-period disturbances due to wave groups,
Proc. 17th. Int. Conf. Coastal Eng., Sydney.

Bowers E C (1980b). Second order wave forces on wave power devices,
Hydraul. Res. St. Rep. Ex 958.

Bowers E C and R G Standing (1982). Environmental loading and response.
Proc. Conf. Offshore Moorings, Inst. Civ.
Eng., London.

Dacunha N M C, N Hogben and R G Standing (1981). Responses to slowly
varying drift forces and their sensitivity to .-.

wave spectral modelling: a preliminary
assessment, Nat. Marit. Inst. Rep. R101.

% ~-
r.1 -



304

Dand I W (1981). Model studies of freely-drifing and towed
disabled tankers, Proc. Symp. Behaviour %
Disabled Large Tankers, Roy. Inst. Nav.
Archit., London.

Faltinsen 0 M and F C Michelsen (1974). Motions of large structures in
waves at zero Froude number, Proc. Symp. Dyn.
Mar. Vehicles Struct. in Waves, Inst. Mech.
Eng., London.

Faltinsen 0 M and A E Loken (1978). Drift forces and slowly-varying
forces on ships and offshore structures in

waves, Norw. Marit. Res., 6 (1), 2.
, Garrison C J (1979). The consistent second-order theory of wave/

structure interaction, Nav. Postgrad. Sch. '
Monterey, Rep. NPS-69-79-010.

Havelock T H (1940). The pressure of water waves on a fixed obstacle,
Proc. R. Soc., London, A175, 409.

Havelock T H (1942). The drifting of a ship among waves, Philos. Mag.,
33, 467.

Hsu F H and K A Blenkarn (1970). Analysis of peak mooring force caused
by slow vessel drift oscillation in random seas,
Offshore. Technol. Conf. paper OTC 1159, Houston.

Huse E (1977). Wave induced mean force on platforms in direction I S
opposite to wave propagation, Norw. Marit.
Res., 5(l), 2.

Isaacson M de St Q (1981). Steep wave effects on large offshore struct-
ures, Offshore Technol. Conf. paper OTC 3955,
Houston.

John F (1950). On the motion of floating bodies, parts I and
II, Commun. Pure Appl. Math., 2, 13 and 3,
45.

Karpinnen T (1979). An approach to computing the second order steady %
forces on semnisubmerged structures, Helsinki
Univ. of Technol., Ship Hydrodyn. Lab. Rep. 16.

Kim C H and F Chou (1973). Prediction of drifting force and moment on an
ocean platform floating in oblique waves, Int.
Shipbuild. Progr., 20 (230), 388. %%'. -

Lean G H (1971). Subharmonic motions of moored ships subjected
to wave action, Trans. R. Inst. Nav.
Archit., London, 113, 387.

Lighthill M J (1979). Waves and wave loading, Proc. 2nd. Conf.
Behaviour Offshore Struct. (BOSS '79), London,
i , 1. "-.'

Longuet-Higgins M S (1977). The mean forces exerted by waves on floating
or submerged bodies, with applications to sand
bars and wave power machines, Proc. R. Soc.,
London, A352, 463.

Maruo H (1960). The drift of a body floating in waves,
J Ship Res., 4 (3), 1.

Morison J R, M P O'Brien, J W Johnson and S A Schaaf (1950). The force
excited by surface waves on piles, Pet. Trans.,
AIME., 189, 149.

-, ' , ' -.- . -.- - - -' -' .' , . -..% .' ' .,' -' - - . - -, ' : .' '2 .' - . " , , -' , ' .' . v .' , - . " '- ' - " - "

. - . ,' '% % ' 5 , "% , . ' , , .. % . ",, . . . . , . . - , , . - . " " " . " , . " " . " " , " " . . . • , . -. -. -.; , , . - - , . ." .



305 .. ,.•..

Naess A and R Brresen (1978). On experimental prediction of low-
frequency oscillations of moored structures,
Offshore Technol. Conf. paper OTC 2879,
Houston. _

Newman J N (1967). The drift force and moment on ships in waves,
J Ship Res., 4 (3), 1.

Newman J N (1974). Second-order slowly-varying forces on vessels
in irregular waves, Proc. Symp. Dyn. Mar. i%

Vehicles Struct. in Waves, Inst. Mech.
Eng., London, 182.

Oortmerssen G van (1971). The interaction between a vertical circular
cylinder and regular waves, Symp. Offshore .-"
Hydrodyn., Wageningen, NSMB publ. 375,
chap. XI.

Oortmerssen G van (1979). Non-linear dynamic mooring problems, NSMB,
Wageningen, publ. 617.

Pijfers J G L and A W Brink (1977). Calculated drift force of two
semisubmersible platform types in regular
and irregular waves, Offshore Technol. Conf.
paper OTC 2977, Houston.

Pinkster J A (1974). Low frequency phenomena associated with vessels
moored at sea, Soc. Pet. Eng., AIME, paper
SPE 4837.

Pinkster J A (1980). Low frequency second order wave exciting
forces on floating structures, NSMB, Wageningen,
Rep. 650.

Pinkster J A and G van Oortmerssen (1976). Computation of the first
and second order wave forces on bodies oscillating
in regular waves, Proc. 2nd Conf. Numer. Ship .. ,
Hydrodyn., Berkeley, 136.

Rainey R C T (1978). The dynamics of tethered platforms, Trans. ..

R. Inst. Nav. Archit, London, 120.
Rye H, S Rynning and H Moshagen (1975). On the slow drift oscillations ;A

of moored structures, Offshore Technol. Conf.
paper OTC 2366, Houston.

Salvesen N (1974). Second-order steady-state forces and moments "- -....
on surface ships in oblique regular waves,
Proc. Symp. Dyn. Mar. Vehicles Struct. in
Waves, Inst. Mech. Eng., London.

S~rheim H R (1981). Analysis of motion in single-point mooring
systems, Norw. Marit. Res., 9(1), 2.

Stammers A J, R Brockbank and C J Wennink (1977). Investigation of
vessel mooring subject to wave action, Dock ".f-ffl
and Harbour Auth., 57 (677), 429.

Standing R G (1979). Use of wave diffraction theory with Morison's
equation to compute wave loads and motions of
offshore structures, Nat. Marit. Inst. Rep.
R74.

Standing R G, N M C Dacunha and R B Matten (1981). Mean wave drift
forces: theory and experiment, Nat. Marit.
Inst. Rep. R124.

% .h ....

~ ~ ~~:( ~Q :..L~jm~ ~\, ' . * . -. •



306

Standing R G, N M C Dacunha and R B Matten (1982). Slowly-varying
second-order wave forces: theory and experiment
Nat. Marit. Inst. Rep. 138.-

.101

40

%,

0S % -

,, .. .



11 r-r ,-'. 'W'W'WI '

307

Figure 1. Surface wave elevation and second-order drift force in a
regular wave group with component frequencies a110PC
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Discussion

A. Papanikolaou (Tech. University of Berlin)

In your paper you are claiming that the presented NMI wave solu-
tion includes the full quadratic transfer function, e.g., synopsis.

Indeed, you are considering only a part of the full second-order trans-

fer function, especially the part referring to the slowly varying andmean drifting forces in irregular response to regular waves. In the

calculation of the slowly varying forces you need some information
about the second-order potential, which takes into account the second-
order hydrodynamics, e.g., second-order forced motions and couplings,
second-order diffraction. I failed to discover what kind of
second-order potential you included in your calculation or what the
difference is to the approximate method of Pinkster (1980).

Author's Reply

R.G. Standing (National Maritime Institute)

To A. Papanikolaou

Dr. Papanikolaou has misunderstood our use of the word "full."
We have, in fact, included all six terms of Equation 3.1, unlike 

some 7..

other investigators, and, therefore, represent the full theoretical
expression. The sixth term is difficult to calculate exactly, how-
ever, and we have adopted an approximate "Froude-Krylov" approach, as
indicated in Section 4.2. Our approach does not pretend to accuracy,
but simply indicates whether the set-down contribution is important,
and the likely reliability of our calculations. .

Differences between our own and Pinkster's approaches are noted 1_

in Section 4.2. Pinkster takes some account of the body's distur-
bance on the second-order potential by treating the set-down as a
quasi-free wave and then solving a conventional diffraction problem.
In order to do this he has to adjust g, the acceleration due to gravi-
ty, so as to obtain the correct "dispersion" relationship for set-down.
The accuracy of this approach is unclear.

5. 
%
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'.



Experimental Study on Second-Order
Forces Acting on Cylindrical Body in

Waves
Yusaku Kyozuka

National Defense Academy, Japan :'.

The second-order forces acting on a cylindrical body which oscil-

lates with an arbitrary frequency at a free surface of infinitely deep
water are calculated on the basis of the perturbation thoery.

The first and second-order boundary value problems are solved by
the Boundary Element Method (BEM) which includes both boundaries of the
body and the free surfaces. The pressure distribution including the U

- quadratic terms of the Bernoulli equation is evaluated from the
solution. The hydrodynamic forces acting on the body are obtained by
the integration along the instantaneous wetted contour of the body.
Finally, motions of the body in waves are determined by the solution of
the equation of the motion up to the second order.

Experiments are carried out for the radiation problems of the
heaving and swaying oscillations, and the diffraction problems for a

* fixed body and a free floating body in steep regular waves.

Those results are discussed in comparison with the numerical cal-
* culations.

* NOMENCLATURE

S- . .

A area of cylinder cross section
aF, (i=1,2,3) amplitude of forced oscillation in i-mode

a wave amplitude
* w

B2b waterline beam. '. %

a b borly boundary condition, q(7
d 'fdnhn q(
Cv viscous damping coef. in roll, eq.(75) . - .
c(t)=CoiAC(t) wetted body contour at time t ].P"
Co wetted body contour in a position of equilibrium
AC(t) wetted surface change at time t i ng e
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Df=-oF2) drifting force in sway, eq.(40)

F i.)  first-order force of J-mode caused by i-mode

F(2 (k=0,2) second-order force of j-mode caused by i-mode oscil.k ij k denotes frequency parameter, eq.(27)

2F(2)(i), (i=1,5) each component of second order force, eq.(33)

2 F" (2(i), (i=m,b,f) each force due to second-order potential, eq.(59)

f(1) f(2), (2)
Of 2f (i) non-dimensional expression for F(. ) and F(2 ,
Ij ieqs.(70)) (71) i3 kw- j°

M metacentric height from center of gravity
g acceleration of gravity

H-(K) Kochin function of j-mode, eq.(51)

2 h(2) second-order body boundary condition due to motions
(2) of bi-harmonics, eq.(60)

h.2? second-order body boundary condition due to quadra-
tic terms of first order motions, eq.(6 0)

Hm=0 F() steady heeling moment, eq.(4 2)
3

I=M r2  mass moment of inertia with respect to Z, eq.(39)G

lw moment of inertia of the waterline, eq.(32)
K wave number
k spring constant of a mooring coil, eq.(41)

M mass of a body per unit length
n unit normal vector, positive into the fluid
OM metacentric height from coordinate origin
o-xy inertial right-handed Cartesian coordinate system
o-xy body fixed right-handed Cartesian coordinate system

pl first-order hydrodynamic pressure, eqs.(3),(27)

p 2) second-order pressure of frequency parameter k, eqs.
k" (27),(28)
Q(x) second-order inhomogeneous condition on the free

surface, eq.(26)
q(x) normalized expression for Q(x), eq.(60)

r-(t) relative wave elevation at time t, eq.(32)

rG radius of gyration, eq.(39)

Sf=0F(2z  sinkage force, eq.(42)

V normal velocity on body surface, eq.(7)n
x(n body motion of J-mode of order n, eq.(13)

*i

.5 * . * P *'. J. ,•t
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x' ,y' tangential derivative on body, eq.(1 6 )
(xG,yG) center of gravity of the body

(xBYB ) center of buoyancy of the body
perturbation parameter, E=a /b or E=a./b

P fluid density or radius of yurvature df body contour ..-

eq. (18)
W circular frequency of incident wave and first-order

motions
A wave length, eq.(23)

(n1
free surface elevation of order n, eq.(lO)

no free surface elevation of incident wave, eq.(2 4 )(n) (n):
6' n ) 6Pn  phase lag between force and incident wave, 1. t

eqs.(70',(71) -" --

a. phase lag between motion and incident wave,
J) eqs.(70),(7l)¢(n)" '.."".-'"

velocity potential of order n, eq.(9)

f G) (1first order complex potential of j-mode, eqs.(45),

S,-.•(6)

~(2(k=m,b,f) second-order potential split into each component,
eq.(5 8 )
source potential placed at the coordinate origin

D doublet potential placed at the coordinate origin

wave free potential, eq.(52)

R radiation potential of unit velocity of j-mode
oscillation

1. INTRODUCTION

In the field of seakeeping quality of ships in waves, many
remarkable achievements have been made on the prediction of the hydro-
dynamic forces and the ship motions in the past decade. It is evident
that the huge and fast computer enables us to calculate the exact
hydrodynamic characteristics on the basis of the wave theory. ".
Nowadays, Strip method has become a standard tool and the pure three
dimensional calculation has been attempted in the linearized theory.

On the other side, many researchers have attempted to the nonline- -
ar problems. The nonlinear forces are generally thought to be very
small compared with the linear forces in this field, and are usually
neglected. However, they sometimes play a primary role in the problems
such as the drifting force, the slowly drifting oscillation or unstable
swaying oscillation of the moored body, the parametric oscillation in

...........................................................
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roll and the springing vibration of the ship.
Maruo[l] introduced the well-known formula of the drifting force

which enable us to calculate it by the reflected wave amplitude of the
linear solution. 0gilvie[2] obtained the hydrodynamic forces on a
submerged circular cylinder by the perturbation theory and showed
interesting results on the steady forces. However, those steady forces
are only a part of the complete second order forces.

Lee[3] and Parisis[4] showed independently the complete solutions

of the second order forces on a cylindrical body heaving at the free
surface, Lee by the method of multi-pole expansions, Parissis by the
method of integral equations. Their formulation seems to have provided
the fundamentals of the investigation thereafter.

Potash[51 extended the problem to sway, heave, roll and their
coupling oscillations and to arbitrary section of a cylinder by the
method of integral equations. S5ding[6] showed the formulation for
all problems including the diffractions and showed that the second
order forces can be obtained by the integration of the functions of the
first order potential on both boundaries of the body and the free
surfaces. Masumoto[7] extended Lee's method and Papanikolaou[8,9] did
Potash's method to all the problems. Kyozuka[lO,11] applied the Bound-
ary Element Methnd which includes both boundaries of the body and the
free surfaces to the second order diffraction and radiation problems.

The theory in the investigations mentioned above would be summa-

rized as follows:

(1) The quadratic terms of the Bernoulli equation are included.
(2) The boundary condition at the free surface is satisfied in the

accuracy of the second order.

(3) The boundary condition on the body is satisfied at the instan-
taneous position.

(4) The forces are obtained by the integration of the fluid pressure
at instantaneous position and over the wetted contour.

To solve this nonlinear problem, the perturbation method is 5
applied and the problem is reduced to the linear problems of the same
perturbation parameter. Although the theoretical formulations are
simple and straightforward, the solution procedure seems to be so
complicated as seen in the analysis of Papanikolaou and Nowacki[9].
The potential and its second derivatives must be calculated exactly orn
the boundaries.

Several researchers derived the approximate solution in the radi-

ation problem. C.H.Kim[13] showed an approximate solution of heaving
triangular cylinders by the iteration method from the zero-frequency
solution. Yamashita[14] derived an approximate solution neglecting the
conditions of (1) and (2) in the heaving oscillation of thin cylinders
and showed good agreements up to the third order. 5

On the other side, there are few reports about experiment on the

full second order forces except the drifting force in waves. Tasai and
Koterayama[151 presented the experimental results of various cylinders
in radiation problem of heaving oscillation and compared them with the
calculations of Lee, Parisis an( Potash. Yamashita[lh] also carried ,

...................
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out the experiments of the same problem up to third order and compared
with his theoretical calculations. Kyozuka[10,11] showed those of the
diffraction problem and the radiations of heaving and swaying oscilla-
tions. Further, he showed the results of two cylinders which had the
same beam/draft ratio and the sectional area, one intersected at right
angles at free surface and the other did at a half of right angles[121.

Those experiments would provide valuable information about the
validity and the limit of theory, and it is hoped that more experi-
mental studies should be performed in the future.

Recently, Faltinsen[16], Nicholas and Hirt[17], and Vinje and i S
Brevig[18] are attempting to treat the same problem as an initial value
one which satisfies the whole conditions rigorously in time-domain.
Although those attempts would have the possibility of wide application
to the large amplitude problems and the transient phenomena, the larger ."" ""

and faster computer would be needed for the practical use. It can be "
said without doubt the information of the perturbation theory would be , B
useful to such a simulation in time-domain.

In this paper, the following two points are emphasized under the
background mentioned above, that is,

(1) To propose the practical calculation by the simplification of the -
numerical procedure

(2) To discuss the validity of the theory in comparison with the
experiments

2. MATHEMATICAL FORMULATION

2.1 Boundary Conditions

Let us suppose the motions of a floating body in waves as shown in
Fig. 1. We employ two coordinate systems, o-xy be a right-handed j1
coordinate system fixed in space with o-y vertical downward and o-x
lying in the undisturbed free surface, o-xy be a system fixed in the
body and coincides with o-xy when the body lies in a position of
equilibrium.

Let the displacement of the motion denote x (t), where subscript .-".- . ".J
j=(1,2,3) refers to sway, heave and roll motionsirespectively, then the
relation between the two systems is as follows:

x(t)=X cos x (t)-_ sin x3(t)+x (t) --
3 3(1).

3 3 2
cos): xO X(t)+i sin x 3 (t)+x 2 (t) '-[- [

Here, we assume the floating body oscillates about its equilibrium
position and the drift motion is restrained, that is, the external
force cancels out the drifting force acting on it.

We will now assume that the fluid is ideal(invicid, imcompressible) - -

and its motion is irrotational. Hence there exists a velocity poten-

.. . . . . . . . .... ". . - -. " --.- ' -'-. -
~~~~.....................,.... . ............
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tial ( (x,y,t) satisfying Laplace's equation

[I V 2 (p = p + qi =0 . (2)[ x yy

The fluid pressure P(x,y,t) is determined by Bernoulli's equation

P--- p t - ( VD) 2+ pgy +Po , (3)

where p is the fluid density, g the gravitational acceleration constant
and Po a constant of integration.

On the free surface two boundary conditions must be imposed. If
the free surface is described by y=T (x,t), the kinematic boundary
condition is

0= -2-(Y- n (X , t )) 'D - 'D nj - on y= TI(x ,t) , ( )-- .< ::
Dty x x t- -'"-] :

and the dynamic condition is obtained from the Bernoulli's equation on
the free surface where the pressure should be atmospheric constant, we

choose as P=Po

Tj (I  i + iV4)V4) on y= T (x,t) ()"[

9 t

From these conditions, we obtained the nonlinear free surface boundary
condition

D16
[F] Ot( (D +yV4)V(- gy)

= t -g4 + 2VOV4t + 2V4V(VIVD ) on y= (x,t) (6)
tt 'y t 2

If the body surface is described by C(x,y,t)=Co( ,y)=O, the kine-
matic boundary condition on it states that the fluid at a point on
the body must have the same velocity component in the direction of the ..

normal to the body.

[H] (D n(xy,t)= V (x,y,t)

K _ x . _Z + on C(x,y,t)=O
3n t +  n 3t

where the subscript n denotes the unit normal on body into the fluid.

If the fluid has a horizontal bottom at y=h, the kinematic bound-
ary condition is

[B 1 (x,h,t)=O ( )":::'[

y

If it is infinitely deep, then

=. •• - o ." -

... . . .
. . . . . . . . . . . . . .. . . . . . . . . . .i
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[B] lrn (D =0 .()

*The remaining boundary condition is a radiation condition at infi-
nity, i.e., the waves must be propagating outward at a large distance
from the body.

2.2 Linearized Problems

The problem formulated above is nonlinear and the boundaries in
which the velocity potential is defined change with time. In order to -

* reduce the nonlinear boundary conditions, we assume the potential (D can
be expanded in a perturbation series in terms of E

(P (x'Jyjt) = E: 4) (1)(X,y,t) + £2(D(2) (X,y,t) + 0( E ,(9

where C denotes a small perturbation parameter and may be defined such
as the ratio of the incident wave amplitude to the half-beam of the
body.

Similarly, the free surface elevation is assumed to be expanded:

fl~~x~t) 1) f'(xt) +E:2 r,(2) (X t) + 01 6 3 (0

The boundary condition on the free surface can be reduced by
expanding 4 (x,y,t) in Taylor series about y=0 like as:

4)(x, ni ,t) =(1(x,0,t)+F2{Tfl(11)(X,0,t)+dtA2)(X,0,t)}+0( E3 ) (11)

Then we obtain the first and second order boundary conditions on i
the free surface as:

[F] D :j)- g(D(1)= 0
tt y (2
tt y x xt y yt

t yy g tty

Further, we will assume the body motions are also small as the
amplitude of the incident waves and expand as:

x.(t) = ex9~t Ex2()+o (J=1,2,3) .(13)

'3Therefore eq. (1) can be reduced as

W- = (1))~3 +E:(X(2)_ - (2)_.Lxc1)2) + 0( C~ )

y- £x~~+~ ~')+~(x2) LC2 X-(1)2) + o( E3~
2_ 3X()+-X()+ 2 () X2

-p.Y

2 2 3.

% . . . . . . . ... *.- -... *...-C
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Nwe epnbohsides of eq()in Tyoseisautits
mean pootsiTalrteresabu

n n xn yn n

n Ty 3 1 3 1l ' 3  23 )}()

3n n 3 2 3 2 3 YX
where X. -tx (J=1,2,3)

*.And using the following relations

D -f D S (16)

- x Z: -x ,

we trasform eq.(15) to tangential arnd normal components of the body
surface and obtain the following results[6 1.

[H] n t$~f1
on Co(x,y)0O, (17)

E2 4(D L f (2 ) +x (1) dL~xl (1) M f (1) 4)(1) d(P) 4(1)
ni t 3 t 3 s nnm sri

where

d(nl) c(ni)+(n) h(n) -, (n) -, (ni) f(n)h(n) (Cn) (~,)

And we can use the following relations ~,,'

D (1)- 1 (D)(O
nnl ss p n (8

sn ris p s

y/ y'' x''' ;p: radius of the curvature.

Neglecting the transient response, we may expand the velocity - *

potential associated with the each harmonic components using the funda- -

mental angular frequency of the incident wave

(D(x,y,t) Ref co 'q)x) 1~ (19)
n-lk=l k

Further we can reduce the combination of n and k in eq.(19) as is
* already proved by Leet31

Nx~yt) T~eEJ11) iWt+ 2 ((O( 2 )+2( 2 )2iWt)}+ 0(6 3 ) ,(0

and OTf is also proved to contribute only to the mass transport of the
fluid and not contribute to the pressure or the force of the body, then

U:
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"* ."we will omit hereafter.
The second order incident weve potential is expressed as follows,

if the fluid has a horizontal bottom at y-h,

-0(x,y,t )  Re{ eiJ+ 2 ( it 1W 2(()1) ..00 e0 :J-.-

a
w cosh K(y-h) iKx0 W cosh Kh e (21)

2*
22).. i3w cosh 2K(y-h) i2Kx",0 8 sinh Kh e

where a ; amplitude of the incident wave.
w

Both d satisfies the following dispersion equation

- = K tanh(Kh) (22)

If it is infinitely deep, then

'. ig e-Ky+iKx

E£ 2 y(2 o , (23)
2

_)2 =K =2w/
g 2rr/9

The free surface elevation in this case is given as

)0(x,t) = r (i) eiwt+ 2 n2) ei2wt }+ 0(63)

0  0
(1 )_ iKx

eri0  -- _a e (24) -

(2h
- a 2  

* ". i "

2 (2) K w i2Kx£ 0 - 2

The first and second order boundary value problems in infinitely
l deep water are summerized as follows:

First order problem

IL] V2 p(1)(xy) = 0

[F] {K +=-1....,(x, ) 0

[H] ()= iWf ( 1)  on Co , (25) .. -n ¢. -" -4

[B] 0f(')(x,o) = 0
y

%' *.. .o.

* * , --. ,-. .-1. '..
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[R] f iKle Y

where K= - =2r/\ wave length,
g

[R] is well-known as Sommerfeld's radiation condition.

Second order problem (2 121 if 1f21

EL] V2 'fl2l(X,y) 0,

[F] f 4K+}1 12 )(X, 0) Q(x)

[H] ff.2 -f d( (1)' on Co ,(26)

[B] Cf(xcn) 0

ER] { -+j)4K}T(2)(±Ooy) 0

where Q(x)=-!{-2( v~')-f~ f"+'~~}
2g yy y

2.3 Pressure, Forces and Moment

Solving the boundary value problem of eqs.(25) and (26), we obtain
the distributions of the velocity potential and the pressure. -

Let expand the pressure and the hydrodynamic forces in accordance
with eq.(20)

P(x,y,z) =Re{C-p(1e t+6A(op( + 2P 2e
2 t + 0(61)

F.(t) = e{cF(.)e ~+F OF (2) + 2Fc2)e2 t + 0(61) (7
J .

pressure on the body surface are determined by eq.(3)

(1)= 1 (1)I l,aUx()I2 ,,(1 1

2P2

4 3 4 ~ 2 x y

whee C')denotes the complex conjugate of

We will calculate the potential distribution and its derivatives on the
body surface from the solution of the first order problem as follows:

=Vfl) (LfD) 2 + 1)2

=(f(D)+ 
q12

(29)
(x -x

X yn

p.%
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The forces and moment are obtained in the following form by integ-
rating the pressure along the body surface at instantaneous position
and wetted contour.

F (t) =PPo (t) ds (30)

where c(t) denotes the wetted contour; C(t) =Co + AC(t)

AC(t) may be expanded with the same perturbation series as eq.(l0)
and we take into account this effect in the hydrodynamnic force to the
accuracy of the second order and obtain

F -y '-xx Ill 1 yIx(1)2

2 3)AM

C (t) a c1 -h'x'

3- 3

= FPo -y- I x")- - xlx ds + (P-Po) X-1 'ds . (29)

cCo ~1  AC(t) aj

Second term of the right hand side of eq.(31) can be calculated by
applying Leibniz's rule as

r (r(t)
- ((DPo -xjd (P-Fo)dy,'[]-i.

t) 3n'O in (b,o)

((t 1

-In (-b,O)' (2

where -E{ 3 g+

relative wave elevation from y=0 .1

Now, we will decompose the second order forces into five terms as

F 2 F(.21(n)
J n=l

() (2) (2)

FP) F ( G+ () 1(0)2- (1)'.(t ds

3 2 x3 P~f Tnx

Cot
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(2) (2) (2)
Fj(2) = oF.(2) + 2Fj(2)

t (R)11+ (YXj ds,-"",'

(2) (2) (2)

F.(3) = 0F.(3) + 2F.(3) (33)

o x ds
(2) (2) (2) I . .

F.(4) = 0Fj(4) + 2Fj(4)

21 - 2 -1 

-. ,
PgL [(r+  Ix/ y' (r-)  2'y = ,'"

a/y a/y 3
(b,O) (-b,O)

(2) (2)
F.(5) 2F.(5)

2ij - L ds ' "

(2)

where F. (n) refers to the followings;

n=l coupling motion term
n=2 effect of displacement of the motion
n=3 quadratic terms of the Bernoulli equation

n=h wetted surface change
n=5 second order potential term.

If the body is symmetric about y-axis, we obtain

F- -2gbx2 C(1 (1) - ds , (34) On
P = .-g(Iw-Ay)X 3 -gAx 1

1 2 Ax(1) x(1)*- 2 3
OF.(1) -- wbx x (5

2 3..-.*..:.-
- 'ol) = 2gbx -7gAx3 X3  +-x 3 " ctdy

(2) 1 2 ()(.)* i(1) .. -
-g(Iw-A y)oX3 -W Ax x -"

1 2 A (n Co ,,-w.,%
B0 3 2'-1,2'. x2

23
(2) (2) 2

32Fj (2) = gbx - 3 X3)Co 'ft  dy ,(36)
_g(lwAYB)21 - (21 ! - --( x() dy

2x3 1 - X2 2Co

... ,,

%- ..
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where t b :"4,.

Iw = bX 2dx moment of inertia of the waterline with respect to

. i-b the coordinate origin,

A = (ox dy dx sectional area of the body,

(xB,YB)=(0,YB) coordinate of the center of buoyancy.

The first term in the rolling eqs.(34),(35) and (36) can be written as:

-g(Iw-AYB )=-gA( Iw/A-y3 )

=-gA OM ; O : metacentric height,

and the following relation is used in eqs.(35) and (36) from the first
order equation of the heaving motion[22] L

pg2b (1) ' ,()dx .(37)
2  O

)Co

The aforementioned formulation can be simply applied for the radiation
problem of j-mode, if we substitute the following equations.

. ~~~~(1)..,-,-'-v.

a =x a
W j J L (38)

TO 0

2.4 The Equation of the Motion

The inertia forces with respect to the origin o fixed on the body
are determined with the consideration of displacements of the motion
in eq.(1). Equating them to the pressure forces of eqs.(34) and (35)
we obtain the following results.

First Order
"Cl.. .. 1 )

M(x1 -YGX 3 ) F1
M x2  =F 2  (39)

" .. ( ) ( ) . .. (1) ( 1( ) "-"-"-'-
Ix +Mgy -M(yX 1 +gxI ) =F
3 ~G3 M K 1 3

where
M = PA ; mass of the body per unit length,

I ((x2+y 2 ) dxdy = 2; mass moment of inertia of the body with
respect to the coordinate origin,

(xG,YG)=(0,yG) center of gravity of the body.
G .G

". -. --. "'......2- " "" "- " " " " " ".4i..: ~ ..



* . * '-.."-".
".

332

The rolling equation in eq.(39) can be written in the usual expression.

+Mg GM x3 -MYGX1  -ads. _ -."_

Quasi-Hydrostatics of the second order

"' We have assumed the external force which cancels out the drifting
force. Let the Df denote the external force as follows.

-- ( 2)

Df -n__ OFI ( n)
n=i1

' (2)
iOF (n) (4o)n=1 2 .

(2) 4 (2)
Mgy 0x =E~ oF (n)

*G 3 n~i 3

If the external force are provided by the restoring force of a

mooring system, it may be expressed in the form.

where Df=kx ,

k spring constant of the mooring system,

(2)
OX :drifting displacement in sway.

Further, let us define the sinkage force(Sf) and the steady
heeling moment(Hm) as follows:

Sf(2) 4 (2)("

S 2pgbox 2  =noF2 (n) +2pgbox (Sf= bo 2  n=1 (42)

- (2) ' (2) (2) .\.,-...
Hm MGMox3  =noF (n) - Mg yGOX33 n=! 1 3..-. -.x

These steady forces may be obtained from the drift displacement of the

motion in the free floating problem in waves.

Hydrodynamics of the second order

Although the heaving equation is influenced by the first order .. .

rolling motion, the swaying and rolling equations are the same as the
first order case.

M( 2x 
_)  x .(2) F ((2) jM( xI  - 2 3 ) E 2F I  (n).' -.
1 G3 n=1 '1il :

...
:v vk
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(2)(1) 2 5 (2) ( 3 •[ -eX+ ) }] Z 2F (n) (43)
2 yGt 3 X3 +k 3  n 2

.. (- .5

3 +g2X (2) 2F ( ' (n)

3. SOLUTION OF THE PROBLEM

3.1 First Order Problem

The boundary value problems formulated in the preceding chaper can
be reduced to the first order theories which have been solved by making
use of the methods of multi-pole expansions, Green functions and vari-
ational method.

However, in the second order problem there appears inhomogenous
boundary condition on the free surface. This means that we must evalu-
ate the potential and its derivatives to caluculate the pressure dis-
tribution on it and also evaluate their contribution to the body by
integrating over the free surface. These processes may be simplified *
by applying the Boundary Element Method(BEM) which enable us to deal
with the free surface as same as the body surface.

As for the problem treated here, Yeung[19 showed the numerical
examples and found its satisfactory accuracy in the two and three
dimensional radiation problems. He obtained the solution by integrating
all the boundaries around the domain in which the potential satisfies
Laplace equation. We will formulate the same problem by a slightly
modified approach. .

The potential can be expressed in the following form by applying
Green's theorem.

CI(P) = -l -(Q)-J(Q)- )log r(P,Q)ds(Q) ,(44) -,i,

2Tr + nan0

C+F+B+R-

where P=(x,y), Q=(x',y') and r2= (x-x')*+ (y-y')

C,F,R and B denote the each boundaries on the body, free
surface, right and left radiation boundaries and bottom of the
fluid.

Now, we will decompose the first order potential into the follow-
ing terms.

(X ) = 0(x~(y) +j I xj j( xy) (45) 0

where subscript j=(0,1,2,3,4) refers to the incident wave, sway, heave,
roll and diffraction respectively.

*..". .. ""4-".*"-
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Further we will normalize the potentials as

ig for J=0,4
W iaw xj~ (46)

E C, iWx C ~-gK -d.for J=1,2,3
w

*where a = amplitude of the incident wave
w=angular frequency of the incident wave .-

g = gravitational acceleration
K 2/g =wave number.

* Therefore, the total potential is expressed as

1gw - 1) (1) K _ (1) (1) U i~)=x.)a .(

w o~ 4 j=1 A* i3 w

Surface elevation of the first order is given by

wher e-Ky+iKx
wee 0  e.

The boundary conditions for each subproblems are rewritten as:

a ( )
[F] {K +- . ,0)= 0

ay

[H] -) -xfor j=1,2,3 (49)

= for *J=4

[B] =0

[R] {.LIiK} C)( +o,y) 0

For a problem symmetrical with respect to y-axis, let 4x,y) be a

source potential placed at the origin. Then 5(x,y) can be expressed by

S 7r) + an s s 3
C+F+R +B a

i-ky

where 4,denotes the Cauchy's principal value.
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Asymptotic expansions for 4S and 4j are well-known as[20]:S
ie-Ky-iKx as x-(51":C( P ) - as x +00

?P) , iH-(K)e - Ky  x as x + .,-

+ (.) a KyiKx

where H_ K) ( t" '--- efe " ds Kochin function.
Co

Let 4N(P) be a new potential defined as follows:
N (1),+

4,N(P) =f(P) - (P) (52)
- S '(5)-

then, at infinity

tN(P) 0 as x +-

Therefore, we may call this potential a wave-free potential and can

express it as:

) ( -- n N(Q)- N(Q)-n)IOg r(P,Q)ds(Q) (53)
4N( =- ) + an......"N N an

C+F+R-+B

If we take the radiation boundaries R far from the body and the+

problems are restricted in deep water case, the integration on R and

B will vanish and we obtain the following equation.

4(B) = -4 (Q)-4, (Q)-L)log r(P,Q) ds(Q)
N -r an4N N a n

C+F

--1 ~ ~ a (4 -4 -)log r ds--If (K) rd2) an j jn2Tr j an
C+F C+F (54)

Thus we obtain the following integral equation making use of the free

surface condition and taking into account log r becomes singular when
P approaches the boundaries.

.(, (P) + ) an log r as + K log r ds
"n~ £P ) +vn f j(55) -. -'-

C+F F

-1H (K){fS+ -!-log r ds+K log r ds} = -n, log r ds
S S an San
C+F F C

Similary, for anti-symmetry problems let D(x,y) be a horizontal
D '

doublet potential placed at the origin

00 *P*

- .~- .
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1D(x,y) -n D- )log r ds
+

C+F+R-+B .,","

ke sin kx -Ky
k-K dk -iKe sinKx (56)

-+KeKy+1 ~ as x -+ .

Therefore, we introduce the following potential

N (x,y) = K iH+j (K) D (x,Y) ,(57) .'..'
,].. K j .'D-'-'-

and the same procedure as used in the symmetry problem will be applied.
The similar procedures can be applied to the diffraction problem

if the potential is split into two parts, symmetry and anti-symmetry
with respect to y-axis.

3.2 Second order Problem

We will decompose the second order potential into three components
in the second order boundary value problem of eq.(26), and normalize as

(2) (2) (2) ( 2)
-- j mfj+ b'j f- -

•a(2) a(1) 2g -+iw ,. ( :I
-g a (2) +i~ --- g W 2) (2) 's

2w m + 2w b +f (58),.

(2) -, - '
where m ; second order potential due to the motion of bi-frequency

m
b( ; due to the second order body surface condition '

due to the second order free surface condition.
f. ,

Then, the force due to these potentials are also split into each terms

as:

(2) (2) (2) (2)

2F (5) =2F (M) +2F* (B) +2F (F) (59)

(2)
where 2F. (M) second order force due to the motion of bi-frequency

which produces the added-mass and damping forces of 4K

2F ()B) ; due to the second order body surface condition

(2)
2F (F) ; due to the second order free surface condition.

Therefore, the boundary value problems for each three potentials are ..-
rewritten as:

. . . . . .. . . . .. . . . . .
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(2)[L] V ii 0 (i=m,b,f) ":'' '"-. . . ..

[F] f4K%} (me (2) (2) (2))=( ""'"""-o Y=3yf 0,O,q(x)) on y0a ( 0(2),b () ( 2) (r2) (€2) ,.:-0.)-
[H] 0 mfr2)(2h hnj0 on Co (6o) .-.

[B] 0y* 0 (i=m,b,f)
Dyi

[R] -i4K}. (2)(-±_•y)=0, (i=m,b,f) -1

where q(x)=-2(Vo (1)) 2+0(1)( 4 () )+(1)) q (x) +i q (x)Cyy ey ) c( i s(X

2h( z) =4 f (2) /a ( 2 )

w

h2?=K) c(i -_x( -( 1) -f 4( ) -d(00) r
ij 3 3 s nn sn

4(2)d (2)
The problems for an are the same as the first order problems
in eq.(25), by replacing to 4K. The essential difference b( ween the
first and second order problems appears in the problems of which
must include the boundary condition on the free surface. However, it
may be solved easily by applying the BEM described in the preceeding

4 section in the same way as used in the first order problems.
Now, we consider the pressure distribution on the free surface,

q(x). In the radiation problems of a single mode, we obtain the poten-
tial and the pressure distribution from eqs.(47) and (60):

K (j=1,2,3)

q (x) = K2{-2(V) ) +. )(.)+K4

3a esle 3as3ly y apligteB3y srie ntepeedn

At a large distance from the body, these terms can be expressed in the
asymptotic expansions.

.1)iH (K)
4)J iH (K)as x -+ (61)
qj (x) 0 J
In the case of a symmetric body with respect to y-axis it can be

simply shown by the symmetry relation

q (x) = q (-x) (62)

Moreover, we find the following relation for radiations of a single
mode oscillation of a symmetric body

(2) (2) I S
h. (x,y) = h. (-x,y) (63)

(2) (2)
Therefore, the hydrodynamic forces caused by ) and always act
as vertical forces even in the swaying or roling osciflations.

Nextly, we consider the incident wave problems, in which the

L..4

- . .. .,. - .., . - . -....,--, -.- ,- -..,, .,," ,.., , ... : . .' - .. .' -'.: ..'- i .: { .: .: .> ' .:< ..
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potential far from the body may be expressed as:

(W) -Ky+iKx + 3 _ (1) + -Ky~iKx
e+i(H +K ExH_)easx +o

4 =133

Therefore, we obtain

. + 3 _11) +
qjx) = -iBK 2(H 4 + K Z x. H. as x -+ cn (

q(x) = 0 as x 00 (64

The complex constant of the pressure on the free surface of the weather
side appears from the standing waves made by the interaction of the
incident waves and the reflected waves.

The forces are given in the non-dimensional form.

(2)
(2) F.

f. (F) 4 _ (xjd (j=1,2,3) .(65)

3 ()Ea 2  3n~
wCo

For the evaluation of this term, we introduce three potentials which
satisfy the following boundary conditions.

[I v2  (x,y) =0

[F] {4K+-c .(X,0) = 0
y 3

[HI d-, (66)

[B]. (x5-) =
y

R

These can be identified as the first order radiation potentials of
wave number of 4K. Then, we choose the free surface instead of the
body surface for the integral path by applying Green' s theorem []

(2)~

Co ~ Co

4n q . ds +~q~2 %y f y%)

01 (2) R (2) R

q(x)~d _14 (2)4 R) ~dy .(67)

F R-
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if we take the R- at infinity the integral on R- vanishes because of

the radiation condition for and2) n R.. Although the integrand on the

" free surface of x-positive side never converges as eq.(64), we could

solve it as shown in Appendix. However, we could estimate practically

it as the mean value of the integral as:

c - ds = (mean value of){ - q(x)4 dx } (68)

These treatments were pointed out by S~dingL6]. Also Kyozuka[10]

experienced in the numerical computations the variety of the solutions

which strongly depend on the truncation of the free surface in the -.-..-

second order diffraction problems. These difficulties arise from the - -
fact that the reflected waves by the body make a standing waves with . -. --

the interaction of the incident waves which nondecay and last at infi-

nity in the two dimensional diffraction problems.
In the three dimensional problems, Molin[21] derived the same pro-

cedures and obtained the second order wave forces upon fixed axisym-
metric bodies without any difficulties.

In thi.; study, the second order forces due to the nonlinear free

surface condition are evaluated by eq.(68) making use of the wave-free
potential aforementioned. Consequently, they can be obtained by the

solutions of the first order problems without solving the second order

boundary value problems.
In the radiation problems, the second order forces are obtained by

two methods, the one by the direct solution of the second order bound-

ary value problem, and the other by eq.(6 8 ). They show good agreement

each other.

3.3 Numerical Results

,, The first order potential distribution on the body for a swaying -

circular cylinder at Kb=l.O is shown in Fig.2, where the segments on

the body(NC) and the free surface(NF) for a half-section are (NCxNF)
=(i0x25) and (20x 60) respectively. These results show good agreement 46

with those of Green function method as shown in the figure. The first

order hydrodynamic forces such as the added mass and the damping coeff-

icients are also compared with those of methods by multi-pole expan-

sions and Green functions, and they show satisfactory accuracy in the

whole range treated here.
However, it should be noted that some irregularities like irregu-

lar frequencies by Green function methods are observed in the present . ... '.
method near the wave numbers

KR nlT/2 , n=1,2,3, (69)

where R- = x-coordinate of the radiation boundary. •

It might be explained by the eigen solutions of the domain, and it is

improved easily by the choice of the radiation boundary between R±/b =
5.5 and 9.5 depending on the wave number in this study.

In Fig.3, the potential distribution on the free surface for a

4....-.................................................................-

' ',. -'- -" ' /" 
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swaying circular cylinder is shown. In the figure, the wave-free
potential which excluding the progressing wave term is also shown.
The wave-free potential is found to be so monotonous with respect to x
that it may be differentiated nummerically with a good accuracy.

The second order boundary conditions on the free surface for a 6-

circular cylinder in swaying and heaving oscillations are shown in Fig.
4, and for the diffraction problem of a fixed circular cylinder is
shown in Fig.5. In Fig.4, the pressure distribution on the free sur-
face seems to approach to zero at a distance of two or three times of
the body breadth from the body, while in the diffraction problem it
approaches to a complex constant at the weather-side, and does rapidly ...
to zero at the lee-side. Therefore, the hydrodynamic forces due to
this condition in eq.(68) seem to strongly depend on the pressure dis-
tribution and the radiation potential in the vicinity of the body.
The standard computations in this study are performed by the segments
of (NC x NF)=(2Ox60), and the segments on the free surface in the vici-
nity of the body should be smaller because the boundary condition must

be more impotant there.
In Figs.6(a) and 6(b), each components of the second order bi-har-

monics of a heaving circular cylinder are compared for the real and the
imaginary part respectively. Figs.6(a) and 6(b) show that the force
due to the body surface condition is dominant in the real part, while
that due to the free surface condition is dominant in the imaginary
part.

In Figs.7(a) and 7(b), the same comparison is made for the diffra-
ction problem of a fixed circular cylinder between two components, the
quadratic terms of the velocity in Bernoulli equation and the free
surface condition. It is clear that the latter force is dominant as
shown in the figures.

The other second order forces are also evaluated for each component
and the drifting force shows good agreement with the result of Kim and
Dalzell[22]. The other results are presented in Fig.9 through Fig.28
together with the experimental results.

All the quantities are non-dimensionalized as follows.

Radiation -.

x (t) = a cos Wt _ = a./b (i=1,2,3)' 3

ij = IFi (pgbiai) -cos(wt + 6Oi) (J=1,2,3) (70)

(2) (2) ,12 - (2) (2),+\-2) ":'-2)
fij = ij ij 213ijl a -  (  ij"

Diffraction
(awOS Ka 2 co St ,£=a/

n(t) = Cos Wt + aw cos 2wt) a/b

x = x.) (a) cos(Wt )l
3 w

x3  x3 1(Ka cos(wt + a ) (J=3)

3,3"K "

' ''"' "' - -." ; "-"."." ''-."" 4""..",' ,' . . ' """- "' "" " "-' "." " '"''" ''' '"" """ J""
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-(2)) 2 (2) .-
2X -2X lb (a cos(2wt + a) (j=1,2,3) (71)

j bjw".~ ~ ~ 1 M € ) ) ;''"
f() F j(pgb a )-cos(wt + 6 (j=1,2,3)

j .w
Of (2) OF(2) 1 pa2 -- J=1,2,3)"-"-'

(2) (2) 12
2 

1
2 I( ga w)-1 (2)) (J=1,2,3) I. ..

where b denotes as: bl=b2=b, b3=b2 (b=half-beam at waterline)

4. EXPERIMENTS

All the experiments were carried out at a small tank (LxBxD=gmxl.2

mxl.2m) of the Defense Academy.

4.i Radiation Problem

A model for radiations has 0.3 m length by the limitation of the
capacity of the load-cell and its principal dimensions are shown in
Table 1. In order to realize the two dimensional condition, narrow
waterway of 0.31 m width and 4 m length are constructed in the tank, in
which the forced oscillation tests are carried out. A wave absorbing
beach is set at both sides of the waterway.

The forces acting on the model are measured by the three component
load-cell which are installed on the model, and the progressing waves
are also measured by the wave probe at a distance of i m from the center K--
line of the model. All the measured records are analized numerically by
Fourier analysis.

A ball-screw mechanism is used for the forced swaying apparatus
which are driven by a D.C. motor controlled by the frequency oscillator
and the Scotch-york mechanism for the forced heaving apparatus.' '

An example of the record of the swaying case is shown in Fig.8. - A

In this case, the second order force is observed directly in the ,-..
vertical force (Fy). In the figure, the horizontal force (Fx) contains
the high frequency components which seem to be mechanical noises of the -. ,
apparatus.

As the linear forces have been reported to show good agreement
with the calculations by Vugts[23], they are omitted in this paper.

The steady sinkage forces of the semi-submerged circular cylinder
in swaying oscillation are shown in Fig.9 and the second order varying
forces(bi-harmonics) in the vertical force are shown in Fig.10 together
with the calculations.

It should be noted that the phase difference of the second order
3J forces between sine and cosine systems. In this paper, the phases of -

the forces are defined as follows (downward positive in y-axis)

% . . .. -

..'"- :-

:- ..*. -,

.............
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x. a. cos (Wt)
... 1 1 (.1) ',V

F.= F cos (Wt+6.i*) (72)ij "':' i''"

(2)= () 2
2F j2F (2 1 cos (2wt+6!.

where subscripts i,j refer to i-mode oscillation and J-mode force.

On the other side, Lee et al. define them (upward positive in y-axis) "_"_-'

=i a isin (wt)

F. I ijIs in  (t6 )(L)) (73)

-.. (2) (2) (2)

2F.. 12F. sin (2wt+6 (L))

And the second order phase angles are determined in the range from zero
to N in the experiment because they are bi-harmonics.

(2) (2)
0 6 (L) < -Tij ' J '•'''r

Hence, there are the following relations between the two systems.

(1) (W)

(2) () T (2) (2) 3
6() 6..(L) - , or . = 6. (L) +

The results show good agreement generally with the calculations.
In Fig.10, the bi-harmonics of the experiments become smaller in the
range of K-b exceeding 1.6, while the steady forces show good agreement

with the calculation. This might be explained as viscous effects which
appear in the high frequency range over Kb=l.6.
The second order forces do not appear in the horizontal force theoreti-
cally, but exist in the experiments. However, the second order hori-
zontal forces appeared in the experiments are so small that we can re-
gard them as zero. Careful experiments must be necessary for achieving
precise results when the amplitude of the motion is small.

In Fig.ll and Fig.12, the results of the heaving case are shown .. .

together with the present theory. The same experiments are reported by . ..
Tasai and Koterayama[15] and Yamashita[li], and the present results of
the experiments show good agreement with those. The present theory
gives slightly higher value in the bi-harmonics of the second order
forces, although the phases of them show good agreement. This differ-
ence is not clear, but the theory might give the values of upper .',':

limits.
The bi-harmonics components are also small in high frequency range

as is the swaying case, which might be interpreted as the viscous
effects appearing over the range of Kb=l.6, because the progressing
wave reaches its limit of wave height as shown in Fig.13.

- 6 . .. .. . . ... .
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4.2 Diffraction Problem for a fixed body

A model used for the diffraction test has 0.6 m length and its
principal dimensions are also shown in Table 1. In this test, the
width of the waterway is broadened to 0.61 m, where the wave exciting
forces on the fixed model are measured by the three component load-
cell. The incident waves are measured in the other side of the
waterway, therefore it is possible to measure precisely the phase
angles between the waves and the forces. The amplitude of the incident
wave is approximately 1.5 cm in the whole range, hence aw/b = 0.15.

An example of the experimental records is shown in Fig.14, where
nonlinear effects can be observed in the heaving force.

An example of the results of the first order wave exciting force is
shown in Fig.15 for the vertical force. The horizontal and vertical
forces agree well with the theory for both amplitude and phase angle,
while the moments of the excitation with respect to the coordinate
origin show slightly lower than the theoretical ones. The cause of this
difference might arise from the very small absolute value of the moment
and the experimental error.

The results of the second order steady forces are shown in Fig.16
through Fig.18. Although these forces are very small in quantity the
results show good agreement with the theory. It is found through both
theory and experiments that the vertical force acts as a sinkage force
in the whole range, and the steady heeling moment acts to incline the
body toward the lee-side. The numerical results for the drifting force
coincide with those by Maruo's theory.

The results for the second order bi-harmonics are shown in Fig.19
through Fig.21. The agreement in heaving component is very good in
amplitude and phase, while swaying and rolling ones seem to have
different tendencies. However, in general experiments are on the same
order of the numerical ones.

4.3 Motions of a Free Floating Body in Waves -.-

A model for the free floating experiment and the set-up are the
same as used in the diffraction experiments. Motions of a body are
measured by the potentio-meters on the regular guide and sub-carriage
apparatus. The drift force is measured by the elongation of a mooring
coil, and the effect of the mooring coil on motions of the body may be
neglected because the spring constant of it is very small(20.6 g/cm).
Phase differences between the motions and the incident wave should be
determined by taking account of the swaying drift of the body.

Main purpose of this experiment is to observe the steady heeling
angle of the body in waves, so that the metacentric height(GM) is set
to be extremely low as shown in Table 1. In this condition, the body
can be easily inclined by a small moment.

An example of the experimental records is shown in Fig.22, where
the drifting shifts are observed in swaying and rolling motions.

In Figs.23 to 25, the first order responses of the motion are
shown in both amplitude and phase, where the dotted lines in sway and "''' u

." * .* -- * ' . .. ... ,* . . - , ; .. -'.. '- .
•
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roll responses designate calculat- ns considering the viscous damping

in roll which are described latter. Although some differences between

the theory and experiments are found in the phase response especially
in tne high frequency range, the amplitudes are shown in good agreement
with each other. Those differences of the phase might be attributed to
the experimental errors due to such as the slowly oscillation of a

.. oored body.
The results of the steady forces are shown in Fig.16 to Fig.18,

corpared with those of the fixed body. The numerical results for the

Jri:'tir force in this case also coincide with Maruo's theory.
Experiments show good agreement with theory generally. The sinkage .. _.
'orce acts as buoyancy in a low frequency range of Kb< 0•7, while the

steady heeling moment always acts to incline the body toward lee-side.

The fir't order response of the rolling of the body is very abrupt
in the aire 'ion of the sinkage around the resonance. Such abrupt
response 'tur be suppressed by making viscous damping coefficient

increase as shown in Fig.17. The viscous damping effects are written

in the following equation from the results of the free oscillation test
in roll.

(n)+ C v; + Mg Yx n3 - M(YG gxl n ) 1 =Fn) (n=1,2) , (75)

where C = 0.1 x = (viscous damping coef.). -U

The second order motions of bi-harmonics are shown in Figs.26 to
28. It is found in both calculation and experiment that the second

order bi-harmonic motions in sway and roll are very small except narrow

range of the first order rolling resonance as shown in Figs.26 and 28.

The blunt peak in the swaying response is appeared near the range of [ ,
the first order heaving resonance. On the other hand, there appears

three peaks in the calculation of the second order heaving response as
shown in Fiv.2Y. The first peak appears near the resonance of the
firsr order rolling motion, which would be suppressed easily by the

viscous damping effects in roll as shown in the figure. The second one
appears near the resonance of the second order heaving motion, of which

wave number is given as one fourth of the first orders. The third one
appears near the resonance of the first order heaving motion. ...

Although experiments give small value at the low frequency range,

general tendencies seem to be similar to the calculation.
It would be of interest when two resonances of the first order and

second order motions coincide with each other.

5. CONCLUSION

The first and second order forces on a cylindrical body in waves 0
are calculated on the basis of the regular perturbation theory along
with the previous pursuers.

The second order boundary value problem of the radiations could

• °. .. . . . . . . . . . . . . . . .... . . . . . ."°" " " " ° "" " °" ". . . ."" "."" .""" " " ° " °
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be solved without any difficulty, while some considerations should be
paid in the diffraction problems. The second order solutions of the
diffraction problems strongly depend on the truncation of the free
surface condition. However, the forces acting on the body due to these
potentials could be obtained reasonably by the mean value of the inte-
grals on the free surface applying Green's theorem. Consequently, the
second order forces can be obtained by making use of the first order
solutions without solving the second order boundary value problems.

The Boundary Element Method which includes both boundaries of the
body and the free surfaces is applied to simplify these procedures,.4
then it enables us to deal with the free surface as same as the body
surface. Those numerical results show good agreement with other
theories.

Experiments are carried out for not only the radiations of heaving
and swaying oscillations but also the diffractions for a fixed and a
free floating body in waves. Generally speaking, the present theory -
shows good agreement with experiments of all the problems, although the
second order forces are very small in the extent of the phenomena
treated here. The steady heeling angles of a floating body in waves
are observed in the experiments as are predicted by the calculation.

Therefore, we conclude that the present theory can be utilized for
the purpose of the predictions of the hydrodynamic forces and the ship 3
motions in wave. r

The remaining interests should be turned toward the extremely
larre amplitude problems and the transient problems. It is hoped that
further investigations of such problems will be performed in the
future.
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Appendix

Solution for the Problem, of a Constant Pressure Distribution on a
*Free Surface

Let T (x,y) be a velocity potential which is determined by the
following boundary value problem..4..

[L] V'11 (x,y) =0

{K +-}I'(x,O) = 0 X < X1 , X2< X (A.1)

ay
[B] (.i-±1K q(o,y) =0

Y- y

wher q is a complex constant.

This solution can be written in the form.

where = --C SRe~iKz E iKz.. iiKz ]+i7Re[eiKz]}dx, (A.2)

wee z=(x-x') + iy
00.

1 z) t
±sign corresponds to the case of (x-x') < 0

If x< x, or X2 < X, then

Lf(x,y) =L(x,y) + i-c-eKsini (X 2 -XI)e 1(2) (A.3)K 2

X2

where L(x,y)-'q Refe KE (iKz)] dx' 4 . 4

If X1 < X < X2 , then . .

9y_ 005- o K(x-xl+x2)ei2(xZ-xj)] (A.4)'J(x,y) = ~ K-- 2 .0

The L(x,y) can be interpreted as the local disturbance, and is
integrable even if x2

4- . However, 'f(x,y) strongly depends on the
truncation of the pressure distribution by the second term of eqs.(A.3)
and (A.4). The T(x,y) will oscillate periodic depending on x1 and X2.
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In the second order diffraction problems, the pressure distri-
bution on the free surface of the weather side radidly approaches to a
complex constant as shown in Fig.5. Therefore, the samne consideration
should be paid for solving the boundary value problems.
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Table 1. Principal dimensions of models

Radiation model (Circular cylinder)

Half-beam/Draft 1.0
Sectional area coef. .785
Length (M) .3
Breadth (M) .215
Draft (M) .1075
Displacement (Kg) 5.45

Diffraction model (Lewis-form)

Half-beam/Draft 1.25
Sectional area coef. .95
Length (M) .6
Breadth (M) .2
Draft (M) .08
Displacement (Kg) 9.12

Center of gravity OG'/b .031
Metacenter height : /b .080
Radius of gyration rG/b 1.182

Heave resonance Kob(2) .75
Roll resonance Kob(3) .056 "
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Fig. 2 Distribution of the potential on the body for a swaying
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Discussion

A.Y. Odabasi (British Ship Research Association)

Owing to the time limitation it was not possible to study the
paper adequately and explore the new features of this work. There
are, however, two points I would like to raise:

1. Since the models used in the present experiments are quite small,
I would like to know whether the author performed checks against
well-established data, such as those by Vugts [24]. These experi-
ments clearly demonstrate the amplitude dependence of hydrodynamic
derivatives for roll and sway. Given this fact, one would like to

know what were the amplitudes in the experiments used for compar-
ison.

2. Although it is customary to use discrete frequencies, i.e., 2w,
3w, etc., to study the higher-order (or nonlinear effects) in a
continuous media, such an assumption is not correct and the non-
linearity manifests itself by the existence of frequency deter-
ioration. Therefore, in a morp realistic approach, the instan-
taneous frequency will be allowed to vary, i.e., w = w (T), T = -.-

et. Introduction of this variation will produce additional terms
in the second-order theor', since

= (x,y,z) [iW + iew +..],

where w dw/dT. Furthermore, an additional equation to determine the
variation of w with time will also be obtained in the usual manner by
the application of the asymptotic technique of Bogoliubov and Mitro-

polskii.

A. Papanikolaou (Technical University of Berlin)

This is a valuable contribution to the solution of the
* second-order ship motions problem. I will comment on a few results

and ask for the author's opinion:

1. Referring to Figure 16 and similar results by others, it seems
that the value of one is not a physical or computational limit of
the normalized horizontal drifting force. Maruo's theory, which
the author is referring to, does not apply to the situations of
resonant study motions nor does it include any finite amplitude
effect as the "near-field" method under discussion. Also, the
energy of a second-order wave, i.e., to a steep wave in the sense

of Stokes, is slightly greater than the corresponding one of a
linear wave of equal amplitude and frequency.

;.............-
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2. Referring to Figures 27 and 28, the second-order motion calcula-
tions are in poor agreement with the experimental results. Vis-
cous damping must be included in the corresponding comments on
the value of such comparisons.

3. In my experience (Reference 9), triangular sections are the most
sensitive ones to nonlinearities, both hydrostatically and
hydrodynamically. What are the experiences of the author with

such section forms, if any?

Author's Reply

Y. Kyozuka (National Defense Academy)

To A. Papanikolaou

The first question is summarized as whether the normalized drift-
ing forces could exceed the value of unity. The author believes that
both Maruo's theory and the present results are valid in terms of the .

second-order theory even in the resonance of the body motion. The
steady forces such as drifting force are the second-order forces, but
they can be obtained from the first-order solutions. Maruo's theory
is derived by changing the integral pass from the body surface to
control plains placed far from the body. Therefore, the near- and
far-field solutions should coincide with each other. In near-field
method, the second force due to the wetted surface change is most
dominant in the drifting force, so that we should obtain the potential

at the intersection of the body surface and the free-surface precisely.
The drifting force that is discussed by Dr. Papanikolaou seems to

be the force the order of which is higher than the second.
The second question is on the discrepancies of the second-order

motions between the theory and the experiment. It might be attributed
to the viscous damping as the discussor points out. However, I think
it necessary to carry out more experiments to clarify it. K.

In the last question, the discussor refers to the effects named

as "wedge effects" by the late Professor Tasai. I also carried out
the calculation and the experiment for two cylinders; one is a tri-
angle-like section that intersects the free surface with an angle of
450, and the other is a Lewis-form section that has the same area co-

efficient and beam/draft ratio. According to their results, the wedge
effects were important for the vertical forces but were negligible for
the horizontal forces. More details are shown in Reference 12 of the
present paper.

A,.A
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To Y.A. Odabasi

The present experiments were, of course, compared with the exist-
ing data such as those of Tasai-Keterayama (Reference 15 of the-'
present paper) and Yamashita (Reference 14 of the present paper).
They show good agreement with each other where the hydrodynamic forces
are expressed as the summation of Fourier components.

However, the results of Vugts (Reference 23 of the present paper)
refer to the amplitude dependency in the added-mass and the damping
forces. Such nonlinear effects could be treated in the third-order
theory along with the present method.

Vugts also showed some measured records in the diffraction prob-
lems. However, they seem to be fairly different from the present £. -."
records such as Figure 14. Although the models used in the present W.
experiments are quite small, tools for the measurement should be more
reliable. *

The next suggestion seems very interesting to me.
In the present study, the phenomena are assumed periodic and the

quantities are expanded into each Fourier component. Furthermore, the
nonlinear forces are mainly caused by the boundary conditons due to h

the periodic displacements of the body and the free surface, where the
perturbation parameter is defined as the ratio of the incident-wave
amplitude to the half-beam of the body.

The discussor proposes an application of the asymptotic technique
by introducing a new parameter that varies frequency with time. The
method of asymptotic expansion is useful for some problems, especially
transient phenomena, as a tool of the solution method. However, as
the hydrodynamic forces are given as a function of the frequency and
the amplitude in general, the problem will be complicated.
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ABSTRACT

A nonlinear method for the time-domain prediction of the
large-amplitude motions of a slender body is presented. The three-
dimensional potential-flow problem is approximated by a set of two- L-V
dimensional initial value problems for which nonlinear free-surface
and "exact" hull boundary conditions are formulated. The free-surface
condition is linearized for the implementation of this procedure in
a computer code. The resulting large-amplitude two-dimensional
initial value problem is solved using a spectral free-surface repre-
sentation and a distribution of simple sources on the instantaneous
wetted hull.

This work is still in progress. Linear damping computations for
a submerged ellipsoid with forward speed are presented and compared
with linear three-dimensional results and strip theory. Preliminary
results for the added mass and damping coefficients for the destroyer
Friesland are presented and compared with those of experiments and
other theories.

INTRODUCTION

During the last twenty years it has been demonstrated that linear
ship-motion theories can solve many seakeeping problems related to '...

the average performance of ships with good accuracy. However, the
linearized approaches cannot be used to forecast some of the more
important responses of a ship even in moderate sea conditions. As an
example, relative bow motions for an arbitrary heading are predicted
poorly by strip theory. In addition, there is information which
linear theory cannot provide such as the effect of the above water
hull geometry on motions, broaching and the occurance of green water

.- on the deck.
Recent work by Buckley (1980) and others indicate that signifi-

cant damage to ship hulls results from episodic waves, single wave

383 -'...-.
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events which cannot be represented by linear wave statistics. 4
There has been much effort expended to characterize these wave
events. A non-linear time-domain simulation is the appropriate tool %
for the study of the ship response to such events.

The non-linear ship motion problem is so complex that there
-I. have been few attempts to develop computational methods for solving ...-.

such fully three-dimensional problems. Salvesen (1982) and Paulling
and Wood (1974) developed methods with nonlinear hydrostatic effects
for large-amplitude low-frequency motions. Paulling and Wood had some
success determining the capsizing of ships due to roll response in
following seas. A second order perturbation procedure for predicting .
nonlinear ship motions and wave induced loads was developed by Jensen
and Pedersen (1979). •-'." '

In this report we present a method for studying finite ampli-
tude ship motions. Using the assumptions that the ship is slender, .. '

the wave slopes in the longitudinal direction are small and ignoring
any forward radiation of wave disturbances the nonlinear three-dimen-
sional boundary value problem is approximated by a sequence of non-
linear two-dimensional initial value problems. This approach follows
that used by Chapman (1976) for a yawed flat plate with forward speed.
It has also been applied to the radiation problem by Chapman (1975)
and Yeung and Kim (1981), but only for the linear problem.

In principle the nonlinear two-dimensional problem can be
solved using techniques such as those of Vinje and Sreviq (I~l) or
Baker et. al. (1981). We choose here, fo? practical considerations,
to linearize the free surface boundary condition but still allow the
motion amplitude to be finite. Use of a linearized free surface .-

together with the "exact" hull boundary condition is inconsistent but
offers substantial computational simplification<. The important hull
geometry effects are still correctly modeled, and the results should in
general be valid, especially when the frequency of body motion is
relatively low.

The two-dimensional problem is confined *- a plane normal to
the mean direction of the ship at a fixed location in inertial coor-
dinates. At a time previous to the entrance of the hull the fluid is .,

at rest in the plane. As the ship passes throuqh the nlane the hull
cross section on which the body boundary condition is applied grows
in time to some maximum profile then contracts and disappears as the
ship stern exits. The location and local velocity of the boundary are
functions of both the hull motions and the rate of change of hull
shape in the longitudinal direction.

The free surface wave field in the two-dimensional problem con-
tains the integrated effect of the passage of all previous hull sec-
tions. Thus, the effect of forward speed enters the problem through
the rate at which the free surface disturbances produced by upstream
hull sections are convected down the hull.

In the zero speed limit there is no convection of the wave dis-

turbance down the hull and the slender body approximation reduces
identically to strip theory as shown in the Appendix. Thus our method
can be viewed as a generalization of strip theory in which the

, " % .
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relative motion between the free surface and hull is treated explic-
itly. This result is surprising since the assumptions used to obtain -. Z
the slender body approximation imply that it is valid for long waves

and relatively high Froude numbers whereas the strip theory is valid
for short waves and low Froude numbers. At low speeds our results
should be at least as satisfactory as those from strip theory.

A computer code designed to perform the finite-amplitude time-
domain simulation has been written and is in the process of being val-,"
idated. To date some comparisons with linear computations have been
made. These preliminary results are presented. This paper is a pro- -_
gress report on the first steps of a systematic investigation of a

MATHEMATICAL FORMULATION

The fluid is assumed to be inviscid, incompressible and homo- .%..''

geneous and the flow irrotational. If x = (x,y,z) are cartesian coor- V
dinates fixed in space with gravity acting in the negative z direction' "
and t denotes time, then the fluid velocity ( ,t) can be represented -
as the gradient of a velocity potential 4(d*,t). The conditions on
are:

2 0 z < n(x,y,t)

- I 2  p g z p z i(x,y,t) (

it + n x x +Tiy 1 'y - z =O z = (x,y,t)

ny qi n +  y n2 + z n on S(x,y,z,t) = 0

and a suitable radiation condition. In the above rl(x,y,t) is the free .

surface elevation, po the atmospheric pressure, p the fluid mass den- . ,
sity, g gravity and S(x,y,z,t) = 0 defines the hull boundary. The ".. ,...,-
generalized unit normal n i and velocity qi are defined:

(n1,n,n 3) = s/Ivsl

(n4,n ,n6) x x s/Ivsl (2)

4 5v

(q4,vq 5,q6) = 0Wk[ .

Here, Vk and wk are the velocity and rotation rate of a hull
fixed coordinate system denoted by Z = (xk,yk,zk) and located at
amidships at the waterline. Positive xk is forward and yp2 is to

port. The two systems are related by -

i . %-. .. *% °.**- . '. • ..
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It
-(t) x k(t) + 9T + k(T) x 9( dT (3)

Slender Body Approximation

Practical ship shapes are slender, in addition the pitch dis-
placement 02 is generally of the order of D/L, the draft to lenqth
ratio, and the yaw displacement 03 is of the order B/L, the beam to
length ratio, thus

n << n2 or n3  (4)

We further assume that the longitudinal component of the ambient 1:

wave is of the order of L. It follows that, in the near field, the
flow varies an order of magnitude more rapidly in the transverse direc-
tions than in the longitudinal direction and that .

<< i!?!.:i
x y, 3Z

Applying (5) to equations (1) we obtain:

D + = 0 z < rl(y,t;x) i
yy zz

-P(t - P(! D + D - pgz = P z = n(y,t;x)

rt + y Dy -) z  0 z rl(y,t;x)

q n yn2  + n3  on S(y,z,t;x) = 0

(D _:0 t< t
0

where
('(y,z,t;x) = q(x,y,z,t). (7) Al

The dependence of D on x is implicit and occurs only through the
hull boundary condition. Thus, the three-dimensional boundary value
problem (1) is reduced to a set of initial value problems in two dimen-
sions each fixed at a given x location in inertial coordinates.

In deriving (6) it is implicitly assumed that disturbances may
only propagate downstream. Thus, D(tl) is dependent on all D(t) where
t < t but independent of all 0(t) where t > t1 . The last condition E l
in (6, in which to is the time the hull first enters the section, is
then a consequence of this assumption and the radiation condition.

Physically the problem may be viewed as taking place in a plane

normal to the longitudinal axis of the ship, with the hull boundary
condition being applied on the instantaneous wetted cross section of
the hull. The forward motion of the hull through the plane fixed in
x, the oscillatory motions of the hull and the change in the local I.i

.'. ..-".. "." *'' - * *%*'.' - - .". -'. -- * - " - '.* -'.-.- .''.•'."".' -."."." ''-'; ., -
. ,) ' :, , . ,; .,4, : *. . ,.> : .. ,'....,.v ,- ..•---- ... ,,,-.--.-- ,
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wave height will all influence the section shape on which the body
boundary condition must be applied.

In addition to the convection of the free surface disturbances
down the hull, the forward speed enters the formulation through therate of change of the boundary contour in the initial value problem

and through the nI ql term of the hull boundary condition. The time . -

dependence of n, can be shown by expressing the vector element in
terms of ni, the elements of the unit normal resolved in hull fixed .- J.

coordinates:

n1 = 1ll 1 + 1 12 -2 + 113 n3  (8)

where jii is a time dependent tensor made up of the elements of the
unit vectors for the hull fixed coordinate system. The tensor ele- ....- '

ments 1112 and 1113 are proportional to the hull yaw and pitch rotations
and the last two terms of equation (8) correspond to crossflow veloci-
ties induced by the interaction of forward speed and the yaw and pitch
of the hul l. •'- :

The ]jll n, term is associated with the resistance potential. In r--,

the absence of all other motions except forward speed there will still
be a non-zero potential similar to that associated with the divergent
wave field in a three-dimensional wave resistance problem. Since the
Oxx in the field equation and Ox nx in the hull boundary condition are
dropped, fluid normally displaced in the x direction due to the motion
of the body is restricted to move in the y and z directions.

All of the physical consequences of these assumptions are not
known. However, it is clear that forces in the x direction will be
poorly modeled and that the transverse waves which may propagate ahead
or behind a ship with steady forward speed or oscillating motions will
be omitted. The flow near the stagnation points at the ends of the
body will also be poorly modeled.

Linearizing the Free-Surface Boundary Conditions

While the fully nonlinear initial value problem can in principle
be solved using techniques such as those of Vinje and Brevig (1981)
and Baker et. al. (1981), we choose here for practical considerations,
to linearize the free surface but still allow the motion amplitudes
to be finite. After linearizing the free surface, equations (6)
become:

Dy + D =0 z <0
yy ZZ ". -.

p -pgz = p z 0

t- = 0 z=0 (9)

q. n. = @ n2 + (P n3  on S(y,z,t;x) - 0
i y 2

.- .
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-, -_- 0 t < t ... .-.-

The finite-amplitude slender body approximation given in (9) is
implemented in a computer code presently under development.

Equations (9) may be further linearized by assuming small motion
amplitudes and satisfying the hull boundary condition at its mean pos-
ition. Chapman (1975) applied this linear formulation to an oscilla-
ting flat plate with forward velocity. Yeung and Kim (1981) used a
similar approach for conventional hull shapes with forward speed.

At speed, the effect of wave disturbances generated by all pre-
vious hull sections are included in the force computation at a given , _
section. In the zero speed limit, there is no relative motion between
the hull and the wave field and the small-amplitude motion problem
reduces to strip theory (see Appendix). Although the assumption that

(D << 4) and (z implies that the Froude number must be high, the
sfender body approximation should perform at least as well as strip
theory at low speeds.

Summary of Mathematical Formulation

Three levels of approximation of the nonlinear three-dimensional -.

problem stated in equations (1) have been presented:

(i) Slender body approximation only, nonlinear free-surface and
"exact" hull boundary conditions, eq. (6)

(ii) Linearized free-surface with "exact" hull boundary condi-

tion eq. (9)
(iii) Infinitesimal motion with hull boundary condition applied

at the mean hull location. See Appendix.

Our intention is to eventually solve the nonlinear initial value- ]
problem associated with the slender body approximation (i). At the
present time we have developed a computer code capable of solving the
finite amplitude transient problem (ii). A description of this comp-
utational method will be presented here; however, the method is still
in the verification stage. Numerical results will be presented only

for the linearized case (iii).
Since our primary interest is in solving the nonlinear problem, ,'-'-.-

our approach even in case (iii) differs from the linearized method of
Yeung and Kim (1981) in some important ways. Instead of using time-
dependent Green's functions for the 2-D transient solutions, we employ
a more explicit representation in terms of a combination of a distri-
bution of simple sources on the body and a spectral free-surface
representation. Aside from helping in the physical understanding of
the problem, this explicit representation is more directly numerical
and therefore especially suited to the nonlinear problem. For example
models for nonlinear effects such as viscous forces can be included
readily in the present framework.

-V
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SOLUTION OF THE INITIAL-VALUE PROBLEM

A spectral method similar to that described by Chapman (1979) is
used to solve the finite-amplitude initial value problem (9). To fac-
ilitate the computation of the pressure field about the hull and in
particular near the free surface, a cubic B-spline representation is •
used to describe the hull geometry and source strength distribution.
The use of B-splines, described in De Boor (1972), makes the regenera-
tion of section shapes at each time step very efficient and produces
a smooth source density distribution using relatively few collocation- _
points.

The spectral method uses an integral representation for the free-
surface potential and elevation. The body is modeled by a distribu- ....
tion of simple sources on the wetted hull and its negative image. The
total potential is given as the sum of the free surface, body and .

ambient potentials which together satisfy the boundary condition on lt
both the hull and free surface:

': +~ + lO

A B S (10)

where 4A is the ambient wave potential, (DB the body potential and 4S
the free surface potential. The sum 4B +-(S is equivalent to the sum
of the radiated plus the diffracted potentials, however, there is not
a one to one correspondence between the individual potentials. .

At each time step the body source distribution is solved for by
satisfying the body boundary condition at evenly snaced points on the .'.

.. section contour. Assuming that the body source distribution is con-
stant over the next time step, the free surface and body position are
integrated in time. This process is repeated until the hull passes
completely through the section. In the following, the spectral free
surface (in the absence of the body), the body representation and the
influence of the body on the free surface will be discussed in turn.

Spectral Free Surface

The free surface potential (DS and elevation r are represented by
the real part of the following integrals

co k(z+iy)
D s(y,z,t) = B(k,t) e dk z < 0 (11)

and
00 kiy

n(y,t) ; A(k,t) e dk (12) -

where B(k,t) and A(k,t) are complex functions of the wave number k and
time t. Substituting the above representations into the free-surface 0
conditions (9) the following differential equations are obtained

B (k,t) = - g A(k,t) (13)

V .. :-.- .- -

a. % - I
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and
A (k,t) = k B(k,t) + D(k,t). (14)

t

Because of the negative image, the body potential is zero on the
free surface and does not enter into eq. (13). However, its vertical
derivative is non-zero and its contribution to eq. (14) is given by
D(k,t). The evaluation of D will be discussed later.

Assuming D(k,t) constant over one time step the following evolu- '"-

tion equations for A(k,t) and B(k,t) can be obtained: .-- -?

B(k,t+At) = B(k,t) coscAt-g A(k,t) sincAt - D(k,t)(l-cosoAt)
aY k (i5)

A (k, t+At) = A(k, t) cos aAt + k B(k,t) sincAt + D(kt) sinoAt
ay G

where a2 = kg.

The functions B(k,t) and A(k,t) are discretized in k-space, the
integrals for 1S and fl are evaluated by Filon's method (Abramowitz and
Stegun (1972)) and spatial derivatives of 4s and r are computed form-
ally. The time derivative of 4S can be obtained by substituting
-g A(k,t) for Bt(k,t) in eq. (11).

Body Representation :

The body potential is represented by a sontinuous distribution of
simple sources over C(t), the submerged port'on of the section, and

its negative image above the free surface:

8D 2 c f y(s) log R'R/(- R- ) ds (16)

where R is a vector from a point Rn the section contour to *, is a
vector from the image contour to P, y(s) the source density and s is

the arc length along the section. Cubic B-splines are used to repre-
sent y and C as continuous functions of s.

From the hull boundary condition (9) 4D must satisfy

q i n i 17N .-(1)

where N equals (n , n2 )• The source density is obtained by satisfying
(17) on a set of poin s equally spaced along the section.

Body Influence on Free Surface

The presence of the body induces a vertical velocity at the free

surface which is included in the kinematic boundary condition through

D(k,t) in eq. (15). The complex function D(k,t) is obtained by

expressing aB/ z evaluated at the free surface in integral form
oo kiy !(8 :""

Re D(k,t) e ki (18)
6 z 0 0k

z=O ,'-. -.-.

"%QJ.*
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For a simple source located at (yB,zB) and its negative image
~~B~y,:) _ z~ B~2( )2(B ( y ' 0) .%¢...--

az - 2z /(Z2 +  (Y-YB))'" " °-,"---'

and k(z B
D(k,t) =2 e.. .- -.

Then integrating over the hull contour

D(k,t) = 2 f y(s) eds (19)
C(t)

SOLUTION OF THE EQUATIONS OF MOTION

The equations of motion for the time interval t to t + At may be -
written in hull fixed coordinates as

t+At """"."''

M q (t+At) - qj(t) V T) - M (T) j(T)dT (20)
iij j f Jt

i,j= 2,6

where Mij is the hull mass matrix, MHii the impulse mass matrix and
F i the total hydrodynamic force with tle mass effect removed. To a
truncation error of At2, eq. (20) can be written as

[Mij + MHiIj(t)] (qj(t+At) - qj(t)) = Fi(t)At (21)

from which the updated velocity q.(t+At) or the mean acceleration

qi(t+At/2) = (q (t+At) - q (t))/At

can be obtained.

Hydrodynamic Impulsive Mass .-.

If the body is given a unit acceleration there will be a force
on the body equal to the rate of change of momentum in the surrounding
fluid. This force is included in the integration of pressure over the

hull surface. Since the force is proportional to the instantaneous
acceleration, it must be computed explicitly to permit the formulation
and solution of a set of linear equations for the body motion.

At each time step the impulsive mass for the sway, heave and roll
modes are computed for each section. The impulse potential i must
satisfy:2

) + =0 Z < 0 -'.%
ay2 az (22)

i = 0 z =0 " :::

% =:' . . . . :
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Ni = n on (Y'KZ't;x) = 0 i - 2,4

and 2
as y +Z

The impulse mass for the section C(t) in mode j due to a unit

acceleration in mode i is

I.i(t;x) = - Q . n. ds i,j = 2,4 (23)J ~ ~ ~(;x) i J>.-

M (t) is obtained by integration of I.. along the hull. The impulse -
Hii I

mass computation is performed simultane usly with the calculation of

the hull source density distribution with little additional effort.

At each time step the submerged hull shape changes and the impulse

mass matrix must be recomputed.

Force Computation ,

The total force and moment are computed in hull fixed coordinates

as follows
L/2

F. Cf,x +Ut) p(t;x z + Ut) n. ds dx (24)

The Bernoulli equation requires the evaluation of the time deri-

vative of DB at a fixed point in sDace. However, since the sec-

tion shape deforms in time, a convective like derivative is more

easily evaluated numerically. The desired quantity can be written in

terms of the convective derivative: ----

q) B(P2't2)-( (P tl)
- (P2,t2) = t- V2 " B ( 2,t2) (25)

where P] an P are points on the section at times t1 and t2 respec-
tively and V2 ?s defined by

V2 = (P2-P)/At (26)
2 2 1:-

The choice of which on the section at time tI to align with a

particular P2 at time t is arbitrary, however, the approximation is

most accurate when H2 - l is minimized. Substitution of (25) into

the second equation in (6) yields the following for the non-linear -

pressure [ B (- 2 ' t2 )- B (P l 't I ) +( -/-"-
P(P2't2 )  = - P21 At 2 V " B  '29 : :_:, ,-

(27)

- 2_
t *S (P2' t2)+DA (P2, t 2 )  - Vd(P 2 ,t2 ) -Qgz

Integration of Body Position

The hull velocity and displacement are obtained by explicit

4 . -• " ° • °
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forward Euler integration. The free surface is integrated analytically
from t to t+At, assuming that the hull influence is constant over the
interval. These steps are summarized below

1. Set up section geometries
2. Compute section source distributions eq. (17)
3. Compute section impulse mass eq. (23)
4. Sum force and mass over hull eq. (24)

" 5. Compute body influence on DS eq. (19)
"5 6. Update (PS eq. (15)

7. Update hull position eq. (20)

, To initialize the nonlinear problem for regular incident waves,
we first solve the linear motion problem in the frequency domain. The .-

resulting displacements and potentials for the hull and free surface
- are used to initialize the nonlinear problem.

- PRELIMINARY RESULTS

At the present time the development of a computer code capable of
solving the large-amplitude slender-body problem (ii) has been com-
pleted. The code is now being verified and we shall only present
results computed with a linearized version of the code. As examples,
the damping coefficients for a submerged ellipsoid with forward speed
and the added mass and damping coefficients for the Friesland destroy-
er hull are given here. In linearizing the pressure calculation the
V*D2 term in eq. (27) is dropped, therefore the effect of the resis-
tance potential on these calculations is omitted. When the code vali-
dation is complete it will be applied to large-amplitude computations.

The test case of a submerged ellipsoid was chosen because a
three-dimensional computation of the damping coefficients [Newman
(1961)] showed a strong Froude number dependence which was not modeled
by strip theory. Newman's results included the wave resistance poten-
tial which had been dropped in the linearized slender-body approxima-
tion here. On the other hand, the image of the free surface within
the body is included in our slender-body results but is omitted by

.. ~Newma n. o-
The ellipsoid is defined by

x2 2 2
- + L- + - = Ia a2/a 2 ai/a 7
a2 a2 a2 2 3 a1 2 7
1 2 3 ,.~

The centerline of the ellipsoid is at z = -2a2 . Figures 1-4 are .- *, ,
plots of the damping coefficients in heave, pitch, sway and yaw.

In general the Froude number dependence of the three-dimensional
computations and that of the slender-body approximation have the same

* qualitative behavior and are close in numerical value. In the yaw | .
and sway modes the agreement is good and is uniform over both Froude
number and frequency ranges. In the heave mode the slender-body
approximation predicts a stronger dependence on Froude number than
Newman's approach. This difference increases with frequency.

V5.
N_ %.
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There are two effects which contribute to differences in the pitch
damping predictions at low frequencies and Fn=O. 2. First, since the
slender-body approximation omits the transverse wave field, it does

not model the singular behavior near ujU/g - 1/4 which is modeled by

the three-dimensional approach. The critical frequencies for Fn=0.2

and 0.4 are indicated by arrows on the abscissa of Figure 2. Second,
both theories predict a qualitative change in the low-frequency behav-
ior near Fn=0.2, however, the slender body approximation makes the

transition earlier. Newman's results for Fn=O.l have the same general
behavior in the low frequency limit as the slender body approximation

has for Fn=0. 2 .

Our comouted off-diagonal damping coefficients for the ellipsoid
satisfy the Timman-Newman (1962) relations to within 5% for the given
range of frequencies and Froude numbers.

Strip theory predicts the following quadratic dependence on for-
ward speed for the pitch and yaw damping coefficients:

B =B
55 55 2 33

! 2 338
B + o (28)"
66 66 2 2 2

q where the superscript zero indicates a speed independent term which is

the integration of sectional damping coefficients along the hull.
Since the sectional damping is positive, B5 5 and B6 6 must always
increase with increasing Froude number. However, the dependence pre-

dicted by the slender-body approximation and Newman is more complex.
As the Froude number increases, the damping coefficients above w al/g

2 drop significantly while the coefficients below it rise. Strip

theory does not have the correct trends in the Froude number depen-
dence and overpredicts the damping coefficients for most of the fre- -: S' .
quency range. This difference may not be as significant for surface

*" piercing hull forms, for example see figures 5 and 6 in Yeung and Kim

(1981).
Figures 5-8 are plots of the added mass and damping coefficients

for pitch and heave for the Friesland destroyer hull. These results
are preliminary and are presented here to indicate the present level
of validation of the basic program.

The spectral free-surface representation allows for direct and
efficient evaluation of the instantaneous surface profile. Figures r
9 and 10 are plots of the linear free-surface disturbance associated

with the oscillatory motion of the Friesland in heave and pitch respec-

tively. The wave field associated with the steady forward speed of
the vessel is not shown. In both cases the vertical scale has been
amplified for clarity. The surface within the ship waterplane has
been assigned a constant height to accentuate the free-surface profile

*. along the hull. In both plots the wave field oscillates in time.
The free-surface displacements shown correspond respectively to the
instant in time when the maximum vertical heave velocity and nose
down pitch rate occur. Wave field plots present a large amount of ..

information in a concise form and facilitate the interpretation of the

• ,°. '%
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resu lts.
Using very conservative computational parameters for the ellip-

soid: 30 spline points on each of 29 sections, 12 frequency points
were computed in about 6 minutes of CPU time on the SAI DEC-10 comput-
er. A surface piercing body such as the Friesland generates shorter
waves and requires a wider representation in the spectral frequency
space and more stations along the hull. Using as many as 40 stations,
an equivalent calculation for the Friesland took 18 minutes of CPU.
These time estimates are very conservative and adequate accuracy can
in practice be expected with substantially coarser discretizations.

• ,- ."

CONCLUDING REMARKS . -

A method for solving the large-amplitude motion of a slender body
moving with forward speed is formulated. By invoking a slender body
approximation, the three-dimensional nonlinear problem is reduced to
a set of two-dimensional nonlinear initial value problems in the trans-
verse planes. To implement this procedure in a computer code, the
free-surface boundary condition is further linearized but the "exact"
hull boundary condition is retained. A special numerical approach,
utilizing a spectral free-surface representation in conjunction with a I
cubic B-spline description of the body geometry and the density dis-
tribution of simple hull sources, is found to be very effective espec-
ially for nonlinear computations. This work is still in progress,
however, preliminary linear results indicate that this slender-body . -

approach models important Froude number dependent effects not pre-
sent in strip theory.
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APPENDIX

LINEAR MOTION PROBLEM

In the linear motion problem the body boundary condition is
applied on the mean location of the hull surface rather than the
instantaneous location. All the boundary conditions are linear and
the resistance, diffracted and radiated wave potentials can be ._
treated separately. Here we only discuss the radiated wave potential
produced by a ship with steady forward speed and oscillating in heave
and pitch. The generalization to roll, yaw and sway is straightfor-
ward. The j1Tj2 term in the pressure calculation eq. (27) is dropped, I
therefore, the effect of the resistance potential on the added-mass *..'*.

and damping coefficients is omitted.
Consider twc cartesian coordinate systems, (x,,yj,z) located at

.. ..::S.

".r
'
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the mean position of the ship center of gravity and (x,y,z) fixed in :
space, such that x = x, + Ut, y = yZ and z =z The body extends
from x = L/2 to xk = -L/2 and is defined by S x4,ykzZ) = 0.

At each x location there is an initial value problem which defines
a two-dimensional velocity potential in inertial coordinates:

+P + =(D z < 0,- " .
Cyy zz, ..,. f

( t t +  g  ( t z =  0 z = 0" -.- , :
Th z -iwt N-onSN + 0 N = w e N on S(x-Ut,y,z) =0 -
y y Z Z Z - .

-D _ 0 t < (X - /) U C . :

where w=I for heave, w-x. for pitch and N = (N ,N).
The solution to the above initial value p ob em can be written as

a convolution integral of a time dependent impulse response potential - .H(a,T) which satisfies . C]

H + H =0 z < 0
yy zz

TT TZ (A-2)

H N + H N = 6(T-) N on S(x-Ut,y,z) = 0 '
yy z z z

H -- 0 T < -.

where T is a time like variable. H(a,T) is the potential at time T

resulting from an impulsive heave velocity at time T= . The resulting
sectional force at time T is -.. ,

f(t,T) = -p N H T(a,T) ds (A-3) "":"
-(x-Ut,y,z) z

The total sectional force at T is the integral of the contribu- 1
tions of all upstream (or earlier) sections,

-iwt L/2 iW(U + T)

G(T,t) e f(- ,T) e dZ. (A-4) 72-UT"

The heave force and pitch moment are obtained by the integration of

* G(T,t) along the hull,

,-1/ TT •Wl
L/2

F GUdx

f-.. .

..................................................................... '.*-** ...-
-L .. .. ... i..:..:-..,..1-......:. :' -::.-:.-:.-.-...-.:,.6
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L/2 __
-9 fF~'  53 (t) f -/ xg G. t t) dx kr..

-. -e JxL/ e'Uf ' -u" -0- e d2g.-L/2

If we define

E(x) f f(-i, _xk) e- dk
x-

then F and F are
i'e t fL/2 -iwx9/U

F3(t) =e E(x e dx (A-5)

and
-iwt L/2 -iWX /U

F53 (t) = -e jL/2 xk E(x ) e dx,, Wt I

where E(x ) is the sectional force at xk due to all upstream hull
sections. E(xk) can be computed directly by solving a complex trans-
ient problem for a control plane fixed in space.

If added-mass and damping coefficients are defined as

F (t) = (-iw A + B3) ei~t
3333 3 (A-6)

Fs3 (t) = (-iw A + B53) e
-i t

then, the real and imaginary parts of the integrals in eqs. (A-5) are
proportional to the damping and added-mass coefficients respectively.
Similar expressions can be written for the remaining coefficients. ..

The zero forward speed limit for this approach is the same as
that for strip theory. This can be shown by examining G(T,t) defined
by eq. (A-4). If the forward speed is zero there are no contributions
from upstream sections. All of the contributions come from the pre-
vious history of the motion of the particular section at xg2x. For a
steady heave oscillation G(T,t) will equal' .

G(Tt) = (-iW a + b3) e

U where a and b are the sectional added-mass and damping coeffici-
ents. ubstitu{on of these results into the equations for F33 and
F5 3 yields the strip theory results directly.

1%
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-0--- STRIP THEORY (SALVESEN et. a]. 1970)
- - - -FULLY THREE DIMENSIONAL LINEAR (NEWMAN 1961)

SLENDER BODY APPROXIMATION
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Figure 1. Submerged Ellipsiod -Heave Damping
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-0 STRIP THEORY (SALVESEN et. a]. 1970)
- - - -FULLY THREE DIMENOI0NAL LINEAR (NEWMAN 1961)

SLENDER BODY APPROXIMATION
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-g------STRIP THEORY (SALVESEN et. a]. 1970)
- - - -FULLY THREE DIMENSIONAL LINEAR (NEWMAN 1961)
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-0-- STRIP THEORY (SALVESEN et. a]. 1970)
- - - -FULLY THREE DIMENSIONAL LINEAR (NEWMAN 1961)
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00 Expt. (Smith, 1966) 2
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0'a Xiv (mt, 96
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Discussion

J.N. Newman (MIT)

It appears that with the hull boundary condition linearized, this
theory should be essentially the same as that of Yeung and Kim. If .'-
that is correct, the numerical results should be identical. It would

be helpful to know more precisely how the present work differs from
that of Yeung and Kim.

T.F. Ogilvie (MIT)

The authors imply that, by limiting T = wU/g to a range t > ,

they avoid having transverse waves. Of course, they do avoid upstream
transverse waves, but there are transverse waves downstream as well, ,
and these are simply lost in the authors' model, as in all mathemati-
cal models based on a two-dimensional Laplace equation. Ship length .'

should be much smaller than the shortest transverse-wave wavelength
(measured along the shiptrack) for the authors' approach to be valid.
They could easily determine how this condition restricts the range S
of w and U for which their method may be expected to give realistic
results. These restrictions are probably severe: U should be large,
but w should be not large.

A. Papanikolaou (Technical University of Berlin)

what I found interesting was that the time-dimain technique

supplied started from initial values given by a frequency-domain
technique. In that respect, starting from a second-order frequency-
domain solution should be more successful. Here, neglecting the
nonlinear free-surface boundary condition, especially if all wave
systems of a ship advancing in waves are considered, one cannot judge
the importance of nonlinearities in ship motions and sea loads. Why
did you compare only linear quantities (added mass, damping) to other
linear theories (e.g., Newman) and not any nonlinear features? .

N. Toki (Mitsubishi Heavy Industries)

I would like to ask the authors' opinion on how to apply their

nonlinear simulation method for large-amplitude ship motions to a
practical design. The assumption of linear super-position makes many
things easy. We can carry out the statistical estimation to get a ___--

design value after obtaining a linear amplitude operator or a rela-
tively short time history. However, dealing with nonlinear responses,
the situation becomes different.

... '...... ............. ...... ... .-............ .. J''.',/ ;."-' ..' ' ..... t.. .Y _.. ...... .S. .. ..... : .• =" . "r_ -
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The ways that I think of are:
1. To carry out a long enough simulation to pick up extreme

values directly. Or to repeat simulation many times using
different incident wave time histories.

2. To finish the statistical consideration at first and obtain
a (few) representative time history of the incident wave for
a certain extreme condition. And then to carry out a (few)
simulation as a deterministic process to obtain design
values.

I think the second one is reasonable and more economical. How -
then can we select the representative? As a first step toward answer-
ing this question, I recently surveyed a variety of extreme wave shapes

*. by using an irregular wave model composed of a number of elementary
waves. Figures A-C show the wave shapes with respect to space coordi-

nate having the maximum wave elevation close to 1/10,000 highest mean
wave elevation at time = 0 and x = 0. Figure A shows an example hay-
ing a large value of crest front steepness. Figure B, on the contrary,
shows another example having a large value of crest rear steepness and
a small value of crest front steepness. The extreme wave shapes have
such variety. Figure C shows an example that the present discussor
proposes to use as an interim "design irregular wave" having a consid-
erably large value of crest front steepness.

Author's Reply

D. J. Loeser, N. Salvesen, and 0. Yue (Science Applications, Inc.)

As noted by Professor Newman, our slender-body formulation, first Z
used by Chapman (1975, 1976), is indeed similar to that of Yeung and .,. _
Kim (1981) in the linearized case. As discussed in the paper, our
numerical approach is quite different from that of earlier authors.
Our linear results for the Friesland are only preliminary; with re-
finement, they should compare well with Yeung and Kim. ,.

Professor Ogilvie is correct in pointing out that the transverse .

wave fields are omitted in any approach using only a two-dimensional
Laplacian.

Our original assumptions imply that the method is applicable to
high Froude numbers and low frequencies. However, since the zero speed
limit of our procedure is identical to that of strip theory and the
submerged ellipsoid results agree uniformly with those of Newman over
the frequency range, it appears that the requirement that a/ax << a/ay
and a/az may be less restrictive than indicated by the original as-
sumptions. Any final test of the range of applicability of this pro-
cedure will be comparisons with experiments and fully three-dimensional -.-

calculations.

%° %M %..=
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As commented by Dr. Papanikolaou, the nonlinear code could be
initialized using a second-order frequency-domain solution rather than
the linear solution. However, the additional complications and cost
would probably not be justified.

Our present method using a linearized free surface still allows
us to study important large-amplitude features such as the effect of
above-water geometry on the ship response. The formulation allows for - .-.

the systematic extension of the computer code to include a nonlinear
free surface. This extension is part of our long-term objective.

The authors agree with Mr. Toki that, since linear superposition
cannot be used for nonlinear problems, it is important to choose ap-
propriate inputs to the time-domain simulation to ensure that the re-
sults will be useful for practical ship design. This is a difficult
problem, and further research in this area is much needed.
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Prediction of Relative Motion of Ships in
Waves

Choung M. Lee

Office of Naval Research, Arlington, VA 22207, U.S.A.

John F. O'Dea and William G. Meyers
David W. Taylor Naval Ship R&D Center

Bethesda, MD 20084

ABSTRACT

An analytical method is developed for predicting the vertical
motion of a point on a ship relative to the free surface. The method -
accounts for the deformation of the free surface caused by diffraction
and by the waves generated by the motion of the ship. Computed results
are compared to experimental results for two hull forms. The phase

relations among the incident, diffracted and radiated wave components
are found to play a significant role in determining the total free-
surface motion. The strip theory used in the present work appears to
be inaccurate in predicting correct phase relationships for these
components.

INTRODUCTION

In an assessment of the seakeeping qualities of a ship the deck

wetness, bottom slamming, and rudder or propeller emergence are some of

the important factors to be taken into account. The occurrence of these
events is directly governed by the so-called "relative motion." The
relative motion is the measure of the vertical motion of a ship with
respect to the undulating free-surface motion.

For instance, if a ship is sailing in a long swell, the vertical
motion of any points on the ship would be in unison with the vertical *

motion of the free surface directly below or above the hull points;
hence, the relative motion would be zero. On the other hand, when a '
large ship is moving in small waves and, therefore, there is practically
no motion of the ship but steady forward motion, the relative motion of

the ship would be the negative of the wave motion.
Current practice in computing ship relative motion usually neglects

interference effects caused by ship-generated waves on the incoming
waves. The main reason for neglecting the deformation effect on the
oncoming waves has bpen due to the difficulties involved in its computa- .- .

tion. A ship moving in waves creates various wave components which

417
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would interfere with the oncoming waves. These interfering waves are
generated by the forward motion, the wave-excited oscillatory motions
in six degrees of freedom, and the diffraction by the ship hull. The
importance of calculating accurate free-surface motion alongside a ship
hull in the relative motion calculation has been well recognized by
ship motion researchers because of the clear experimental evidence pre-
sented by Cox and Gerzina (1974), Cerzina and Woo (1975), and Bales
et al. (1975), showing the discrepancies in the existing theoretical
methods. The purpose of the present investigation is to compute the
aforementioned individual components of the ship-generated waves and
incorporate them into the calculation of relative motions of ships.

To check the validity of the various assumptions made in the theo-
retical analysis, the calculated results are correlated with model ex-
perimental results obtained at the Maneuvering and Seakeeping Basin of
DTNSRDC.

The analytical method developed here is based on a two-dimensional
approximation within the context of strip theory, which was described 9
in detail by Lee (1982). The main reasons for employing the two-
dimensional approximation are first, for its simplicity in incorporating
into an existing ship motion computer program which is also based on
strip theory given by Salvesen et al. (1970) and second, for checking

the validity of the relative motion prediction based entirely on a strip
theory. Since there has been no conclusive evidence to demonstrate that
ship motion is better predicted by three-dimensional theories than by
strip theory, the present investigation, until a reliable other method
is developed, is deemed as the necessary first step toward improving the
prediction of the relative motions of ships within the present state-of-
the-art in ship motion theory.

THEORETICAL ANALYSIS

Formulation of the problem is made under the assumption of an ideal
fluid, the velocity vector field of which can be represented by the
gradient of the velocity potential function D. It is assumed that the
depth of the water is infinite and that no current and wind exist. It
is also assumed that the response of a ship to the wave excitation is
linear and that the irregular ocean waves can be represented by a
linear superposition of various harmonic wave components. Thus, the
ship response to the irregular ocean waves can be obtained by determin-
ing the frequency response function of the ship to harmonic wave excita-
tions.

The coordinate system to be used in the analysis is a right-handed
Cartesian coordinate system which translates on the calm-water plane
with the mean speed of the ship. The origin is located on the calm-
water plane directly above or below the center of the gravity of the

ship at its mean position. The x-axis is directed toward the mean
course of the ship, and the z-axis is directed vertically upward, as

shown in Figure I.

. . .".:.. S . .
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WAVE "'-'-
0. ,. ~~DIRECTION ". '.

I= 180 Degrees Corresponds to Head Waves

= 90 Degrees Corresponds to Starboard Beam Waves

= 0 Degrees Corresponds to Following Waves

43

z

C 45 Y

X

AP FP

41 = SURGE 43 = HEAVE 45 = PITCH

42 = SWAY 4 = ROLL 46 = YAW

Figure 1 - Description of Coordinate System

Total fluid disturbances generated by the progressive sinusoidal
waves of length A, heading angle p, and amplitude A' with a ship of
slender geometry undergoing oscillatory motion at a mean speed U, can
be described, within the linear analysis, by

i 0 t .- 'L

4(x,y,z,t) = -Ux + s(x,y,z) + Re[ 0(x,y,z)e e (1) ¢.'.'4*.

where s represents the disturbance of the fluid by the ship at the
steady speed U in calm water; $o represents the oscillating fluid
disturbance generated by the incident wave and the motion of the ship;

i, t and we, respectively, are the imaginary unit, time, and the wave-
encounter frequency which is related to the incident wave frequency
w by we = w-27UcosI/X, and Re means the real part of what follows.

The oscillatory velocity potential o, which is given in the form
of complex amplitude, can be further decomposed into

6

0 = I + + kk(2)

k=l

where I represents the incident-wave potential; 4D the diffraction

potential; k the radiation wave potential associated with the kth

mode of motion of the ship; and Ck the complex amplitude of the

%U
. . *. . . . .. . . . . . . . . . . .
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displacement of the ship from its mean position in the direction of the . -

kth mode of motion.
The incident-wave potential I is explicitly given by

g_A -iK(xcosli + ysinp) + Kz (3)4)(x,y,z) = i e (3)

where g is the gravitational acceleration and K = w2 /g = 2rr/X is the
wave number in deep water. The diffraction potential D hould satisfy
the diffraction principle of water waves, i.e.,

D + 0 - (4)

on the ship hull surface So at its mean position where / n means the
normal derivative on S o and the normal vector n is into the hull.

The free-surface elevation C(x,t) can be obtained in terms of ( .-

from the Bernoulli equation by

(Xyt) - U- )(x,yO,t) + 0(D2)
x t

- .(XyO) + P0x(x,y,O)e et9I
W iw t
g e e (5)

i - 4.,- 0 -

where the subscript x means the partial derivative with respect to x
and Re is omitted with the understanding that, hereafter, whenever a
product involving e is present, only the real part of it will be
real ized.

If C is decomposed into the steady and oscillatory parts, we can _
define

iw t

=C + C0e (6)

where

U(xy) - x(X,y,O) (6a)

(xy) [U (x,y,0) - iW 4 ] (6b)
g ox e 0

7-:! % L",~
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If we denote the displacement of the ship from its mean position
by k(t) where k=1,2,...6, indicates the surge, sway, heave, roll,
pitch and yaw, respectively, we can express the time dependent vertical
displacement of a point x = (x,y,z) on the ship, v, which is often
referred to as "absolute motion," by

v(x,t) = 3 (t) - x 5 (t) + y 4 (t) (7)

for a given initial vertical position z. Thus, the relative motion R ....
at the point x is obtained by

R(x,t) = v(xt) - C(x,y,t) (8)

To determine if a chosen point on the deck will be immersed under

the free surface or a point on the ship bottom will be raised above 9
the free surface we can examine whether K RI is greater than Iz+ s-sl
where z is the vertical coordinate of the point and s is the vertical
displacement of the point due to sinkage and trim of the ship.

As described in the foregoing, in order to determine the relative

motion and the chance of immersion of deck or emergence of ship bottom,
we need to know the absolute motion v, and the oscillatory and steady p
free surface elevation, r, and %s, and the sinkage and trim of the
ship. These quantities can be obtained if we can determine the velo-
city potentials, ts, and qk for k=1,2,...,6.

STEADY EFFECTS

When a ship is advancing in waves, the mean freeboard may be
changed by several effects. These include sinkage, trim and wave pro-
file due to forward speed in calm water, plus a possible additional
mean shift in these quantities caused by the oscillatory motions of

the ship and waves, and its forward speed. Various theoretical methods
are available to calculate the steady effects associated with a ship-R
at a constant speed in calm water, ranging from simple thin-ship theory
to three-dimensional source panel distribution methods as shown by Bai

and McCarthy (1979). From the model experiments conducted in the past, . -- 2
it is well known that the steady wave profile Cs can be significantly
influenced by the sinkage and trim of a ship; however, due to the ex-

treme complexities in the mathematical modelling of the bow-wave" -

phenomenon no existing computational methods have succeeded in cor-
rectiy predicting the effect of sinkage and trim on Cs. Since the

main focus of the present study is on the prediction of the relative -- H
motion -R, no attempts will be made to improve the prediction of Cs

with more rigorous analysis.

In the present study, an empirical method derived by Bishop and
Bales (1978) is used to predict calm water sinkage and trim, and a
thin-ship assumption is made to calculate the bow wave profile. The
empirical formulas for sinkage z o , and trim 00, are given as quadratic
and cubic equations, respectively, which are based on a regression

"... '. -
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analysis for a number of destroyer type hulls. The equations may be

given in nondimensional form as

/L = a, F + a2 • (Fn)2 (9a)
0o n n__.-

"0 = b1 • F + b2  (F)2 + b3  (Fn) 3  (9b)
on 2 n 3 n

where L is the length of the ship and Fn is the Froude number based on
ship length. The coefficients have been derived separately for hulls

with and without bow domes or bulbous bows, and are given in Table 1. .

Table 1 - Coefficients for Predicting Sinkage and
Trim in Calm Water

For Ships With For Ships ' N'

Bulbous Bows Without Bulbs

a I  -0.00120 0.00081

a2  -0.01492 -0.02095

b -1.137 -0.682

b11.793 8.507

b -23.779 -17.129

STEADY-WAVE POTENTIAL

Assuming that the beam B, of the ship is much less than the length |

L, we use the well-known thin-ship theory first introduced by Michell

(for a concise description see Wehausen (1973)) to obtain 4s which is
given by ---

4(x,y,z) = d~dC '

S(O) ) .

77 Gox-'Y.+) jf d~ (10)

S(O)

% 
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where S denotes the longitudinal center plane of ship; f is the
half local beam; and the Green function G0 representing a source of
unit strength translating in the direction of the positive x-axis with
a constant velocity U at the depth of 4 from the calm water surface is
given by

1 ~ f ir ~ k(z+4)=,XEyZ+ 9 dOf dk ek - + - - -..
i x/(x-) __) _2+y2+(z+) 2 TU2 dJdk

0 0 X ..

cos[k(x-)cosO]cos(ky sinO)

2e /u2
:, ~~~~kcos20-gU ... ,

I%
_g (z+C)seC26

+ d~sec2 e e sin -(x-)sec
2  

2,.. .

0

• cos (i ysinesec2e) (1)"

in which -f means the principal-value integral.
Within the first-order of B/L, the wave profile along the side of

the hull can be obtained from Equations (6a), (10), and (11) by

Cs(X,O) - -- (x,0,0) Re 2 1 f1 dd_

0dsecO e dk + k k0sec 2
a dk I0 0 0 0 k--I

_ 2gL-- f E dd f2 dsec ec2 Z' (12)

S(o) 0 0

S" " --'.°

.'"" ... " . ' . .' v .- .:.". '.",. . , . - . - v " : : ' ' . - . .' v " . . -v - ' .

.* .'... *-.'%. . .
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where

ko = g/U and Z' = C + i(x-E)cos-

RADIATION AND DIFFRACTION POTENTIALS

In the foregoing section we assumed that the beam of the ship is

much smaller than thu length. We further assume that the draft T is
also much smaller than the length, and that the longitudinal slope of
the ship is much smaller than the transverse slope. In mathematical
expressions, the above assumptions correspond to B/L, D/L, n1 = 0(E)
for small positive number 6 where nj is the x-component of the unit
normal vector n = (n,, n2 , n3) on the ship surface. We often call
the body which fits the geometric property described above a slender
body. In parallel with this slender body geometry, if we assume that """_-
the disturbances of the fluid due to the wave diffraction and the
oscillatory body motion are 0(E) in the x-direction compared to those
in the y- and z-direction, we can approximate D and k for k=1,2,... ,6 .
by the so-called strip theory. That is, for given x these potentials
can be treated as functions of y and z only.

For the radiation potentials k for k=2, 3 and 4, the two-dimen-
sional solution for infinitely long horizontal cylinders having ship-
like cross sections is well-known [Tasai (1959), Porter (1960), and
Frank (1967)]. Then invoking the slender-body assumption, we can
determine (Salvesen et al. (1970)] that

= U ) (y,z;x) (13)

= (x - ) 2 (y,z;x) (14)

The diffraction potential D is obtained in the same manner as
for the radiation potentials 2 and Fa [Lee (1982)] except for imposing
the kinematic body-boundary conditions as follows:

2 Kz
=N - AA e [N2sinpcos(KysinI)

+ N sin(Kysinp)] = the odd part of

(- -N 4)with respect to y (15)

S
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43 K Kz
N iWC e [N2sinlisin(Kysinp)

- N cos(Kysinp)] = the even part of

(16)

where the tilda sign is used to differentiate the potentials from 2

and 5 and N = (n2, n3) is the unit normal vector in the y-z plane.
Then we obtain the solution for D by

D  = 2 + )3 (17) .

Strictly speaking, cD obtained by Equation (17) may only be valid
for = +/2 (beam waves) or relatively long waves of order of ship
length. However, the approximation of Equation (17) is maintained in
the present work with the anticipation that it will not significantly
degrade our solution for the relative motion.

MOTION OF A SHIP

The displacement of a ship from its mean equilibrium position in
six degrees of freedom is obtained by solving two sets of linearized

coupled equations of motion which are shown below

iti t
(A 11 + M) i + B1141 + Mz 0o 5 = F1e e (1~a)

i= t
(A 3 3 + M) 3 + B3 3 3 + C + A35~5 + B35 ~5 + C Fe e (18b)

5+ A5 3 3 + B 5 34 3 + C53&3 + (A55 + I .N .

iW t
+ B 55Z5 + C = F5e e (18c)

(A22 + M)C2 + B2 + (A24 - Mz 0 ) 4 +B24

iWt . v
e

+ A 2 6 6 + B266= F2 e (19a)

%-

-. '.-,-,',
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(A4 2 -Mz 0 ) 2 + 42 k2 +A 44 + I4) 44Z+

iW t

+ 444+ (A4 6 - 146)K6 + B4 6 k6 = F4e e (19b)

A6 2 2 + 6 2 2 + ( 64 - 46) 4 + 6B 4

iW t

+ (A6 6+ I6) 6 + BFee (19c)

In the foregoing equations M is the mass of the ship; 14, 15 and

Iare the mass moment of inertia about the x-, y-, and z-axis, re-
spectively, and I_ = fff P xz dv where jfdv is the ship volume

integral, Pm the point mass density; Cij's are the hydrostatic restor-

ing coefficients which are given by9

C33 Pg fdxdy (20a)

AW

C 35 =C3 3 =-PgJ x dxdy (20b)

AW

Mg GM(20c)

C 5  Mg GM~ (20d)

where is the integral over the waterplane area and GMand GMe are,

respectively, the transverse and longitudinal metacentric heights.

The hydrodynamic coefficients A.- B.. and Fi represent the added
mas1'ajexcitation forces. .

aes, damping coefficients, anUWV ve
According to the strip theory, the expressions for the hydro-

dynamic coefficients in terms of the radiation potentials ~kcan be
given by: (see e.g., Lee (1976))*

A Re P (21) ., .

The difference in the sign from Lee (1976) is due to the change in the

harmonic time dependence from eie to eiWet in the present work.

p .i"

%. *~**,
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B Im ik (22)

where, with the notation j indicating the imaginary unit, .-

Hik=f (iN(YZ;X) - 2UN 36is + 2UN2
6i6) k ds (23)

so

(~e) ~ [ N-2
1 f [jN + (0j(y~z;x) j~w 036J5

So

2U ~
+ 6 i/- J ds (24)

(e) ~ Tw 2 -6.7.' '-

and 6. is the Kronecker delta.
Since the equations of motion given by (18) and (19) are linear,

we can readily set

iw t
-e

Ie (25)

where is the complex amplitude of the ith mode of motion independent

of time. Substitution of Equation (25) into Equations (18) and (19)
yields two algebraic equations, which can be easily inverted to find
the solutions for Ci for i=1,2,. ..,6. The amplitude and phase of each
mode of motion then can be obtained by

gi = 
=i e e (2 6a')

at. =arctan(IME /ReE (26b)

where a is the phase lead referred to the incident wave crest at the
coordinate origin, and Im means the imaginary part of what follows.

•...

EXPERIMENTAL PROCEDURE

The relative motion experiments were conducted in the Maneuvering
and Seakeeping (MASK) Basin at DTNSRDC. This basin is 110 m long by
73 m wide. Pneumatic wavemakers are mounted on two adjacent sides of.- -
the basin, and there are sloping beaches on the opposite sides to
absorb the waves. The towing carriage is supported from a rotatable

-p- ".-• " -

. . . . . . . . . . . . . . ,_ I

= .7.._ N 1.1%

ai =arcan(m~i/e~ i  (25) "' '" %

%hr ii h hs edrfre oteicdn aeceta h ...- :
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bridge. By proper alignment of the bridge angle and appropriate choice .-- \ "

of wavemaker bank, any desired heading of a ship model relative to wave . --

direction can be obtained.
Two ship hull forms were selected for the purpose of validation.

The first, designated Ship A, is a modern, high speed containership.
The second, designated Ship B, is a typical Naval combatant hull form.

Body plans of the two hulls are shown in Figure 2, and their principal
characteristics are shown in Table 2. Ship A has a relatively large
bulbous bow and cruiser stern, while Ship B has no bulb but does have

a wide transom stern. d"

. A

Body Plan for Ship A Body Plan for Ship B8 3

Figure 2 - Body Plans for Ship A and Ship B

Table 2 Principal Characteristics of Ship A and Ship B

.=_." - \2 .

Ship A Ship B

LWL 274.3 m 124.4 m

B 32.2 m 13.7 m%

T 10.4 m 4.5 m

CB 0.53 0.46

C 0.94 0.75

CP0.56 0.61

GMT 1.28 m 1.33 mn

N

, p. - -

- %.

%
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The models were attached to the carriage by means of a heave
staff. A roll-pitch gimbal was attached to the bottom of the staff,
so that the models had three degrees of freedom: heave, roll, and

pitch. The models were constrained from surging, swaying or yawing.
In addition, experiments on one model (Ship A) were done with the hull
rigidly restrained, in order to measure diffraction effects in waves.

Because of varying requirements regarding the placement of instru-
mentation on each model they had different radii of gyration for pitch
and roll. Ship A had a pitch radius of 0.25 times the length, but
because of certain heavy instruments on centerline the roll radius was *

only 0.24 times the beam. On the other hand, Ship B had a more realis-
tic roll radius of 0.38 times the beam, but because of instruments
located far forward the pitch radius was forced to a value of 0.27
times length.

All experiments were performed in regular head (p = 1800) and bow "-'. -"1
2250) waves. All measurements were made electronically and fed

to a carriage-mounted digital computer. Rigid body motions were mea-
sured by potentiometers mounted to the heave staff, Incident wave
elevation was measured by an ultrasonic transducer mounted approxi-

mately one-half model length in front of the bow. Relative motions
alongside the hulls were measured using resistance-type wave probes. K, -
These probes were flush-mounted in the side of the hull in the case of
Ship A, but were mounted slightly off the side on short outriggers for
Ship B. Ultrasonic transducers could not be used for relative motion .-
measurements near a hull, since the hull side would reflect the sonic
pulse and cause spurious measurements.

All data were harmonically analyzed and the first harmonic of the
incident wave and all responses were used to calculate linear transfer

functions. Mean values were calculated by averaging signals over an
integer number of cycles of the first harmonic.

RESULTS

The presentation and discussion of results may be separated into
the kinematic and nonkinematic components of relative motion. The .e.
kinematic components are simply the rigid body motions and the incident .77
wave elevation. The vector combination of these components, taking
proper account of phase angles, results in the kinematic estimate of
relative motion. The additional dynamic components are those due to
the diffraction of the incident wave by the presence of the ship plus -AD
the radiation of waves due to the oscillation of the ship. Further-
more, there are the mean shifts caused by the steady forward motion of
the ship.

The mean sinkage and trim measured in calm water are compared to ...

calculations using Equations (9a) and (9b) in Figure 3. The agreement
for sinkage is generally satisfactory for both ships, but is less so
for trim. Part of this latter discrepancy is caused by the mean mea-
sured trim angles being of the order of magnitude of one-tenth degree,
which is near the limit which the instruments can resolve. However,

7.
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for the case of Ship A at Fn = 0.30, an absolute vertical motion trans-
ducer was mounted at the stern, which confirmed that there was a slight
bow up pitch attitude.

Steady wave profiles are compared in Figure 4. The measured
values have been corrected for sinkage and trim. The results are in
qualitative agreement with Equation (12) for both ships. However, the
shape of the wave profile for Ship A is not well predicted at Fn = 0.30,
possibly because of its bulbous bow (see Figure 2), and the wave pro-
file for Ship B does not rise near the bow at Fn 0.15, as predicted

by Equation (12).
Predicted and measured rigid body transfer functions are presented

in Figures 5 and 6 for Ship A and Ship B, respectively. In these
figures, heave has been nondimensionalized by the incident wave ampli-
tude, while pitch and roll have been nondimensionalized by wave slope.
Positive heave is defined upward (see Figure 1), while positive pitch
is bow down and positive roll is starboard side down. Phase angles
are defined as phase leads with respect to maximum wave elevation at
the longitudinal center of gravity. Absolute vertical motion near the
bow (Station 2 for Ship A and Station 2.5 for Ship B) has been calcu-
lated according to Equation (7) using experimental and theoretical
heave and pitch transfer functions, and is shown in Figure 7. ,

The correlation between theory and experiment in head waves for
these motions is generally satisfactory for Ship A at the lower speed -
(Fn = 0.10). However, at the higher speed (Fn = 0.30) the measured
heave does not show the strong resonant peak predicted by strip theory,

and pitch magnitudes are also somewhat less than predicted. As a re-
sult, the predicted absolute motion in Figure 7 is substantially higher
than measured at Fn = 0.30. In the case of Ship B, the correlation for
heave is excellent, but measured pitch is larger than predicted at both
speeds. Consequently, the measured absolute motion shown for Ship B
in Figure 7 is slightly greater than predicted.

The trends in bow waves (V = 2250) are similar for pitch and
heave. In the case nf roll, the correlation between theory and experi-
ment is poor. The magnitude and frequency of the peak arc poorly pre-
dicted. It is suspected that these results are caused by a combination
of inaccurate roll damping estimates, together with the fact that the
model tests were conducted with sway and yaw restrained. In any case,
as will be shown below, roll has only a minor effect on vertical rela-
tive motion at the bow in bow waves. It will have a more important
effect in the vicinity of the midship and for beam or stern waves.

The various components of relative motion are discussed in detail
below. At low speeds, the previous relative motion theory which only
computes kinematic terms appears to give adequate predictions. The
consequences of large relative motions are more severe at high speeds,
and the dynamic components associated with diffraction and radiation -.

are also larger. Therefore, in the following discussions emphasis is
placed on the higher speed case, Fn = 0.30.

For completeness, all the components of absolute and relative
motion for Ship A at one speed and heading are tabulated in the Appen-

dix.
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Figure 3 - Comparison of Predicted and Measured Sinkage
and Trim in Calm Water
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ABSOLUTE MOTION "'

THEORY MEASURED SHIP A SHIP AON5 F 010 0 HEAD WAVES BOW WAVES
4 F 0 30 0 STATION 2 STATION 2

2 0 0

1%
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2 00 %
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A/L

Figure 7 - Theoretical and Experimental Results for Absolute
Vertical Motion Near the Bow for Ship A and Ship B in

Head and Bow Waves

The components of wave elevation due t, motion (radiation compo-
nent) and diffraction are shown in Figures 8 and 9 for Ship A. In
Figure 8, the individual component magnitudes are shown, together with
their phase angles while in Figure 9 the predicted components are
shown combined, resulting in the total modified wave elevation. The
combination of incident plus diffracted wave is shown in Figure 8 for
comparison to experimental results for Ship A, since the diffracted
component can only be measured in combination with the incident wave
in an experiment. As shown, the predicted diffracted wave is only of
significant magnitude for short wavelengths in bow waves, and even in
this wavelength region in head waves, the diffraction effect is quite
small. On the contrary, the measured diffraction effect on Ship A was
significant over the entire wavelength range in both head and bow S
waves. Regarding the phase angles, it is important to note that the
phase angles are changing rapidly in the region of N/L 1.0, and it
is in this region that the relative motion transfer functions reach
their peak values. It is also significant that the radiation and
diffraction components at long wavelengths have approximately the same
magnitude, while their phases are approximately 180 degrees apart. S
This indicates that these effects will tend to cancel out to make the
incident wave remain unmodified at long wavelengths, even though the

t-ft r-- -
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individual components may be significant. Finally, it should be noted

in Figure 8 that the predicted diffraction component is approximately

90 degrees out of phase from the incident wave at all wavelengths.

However, the phase of the measured incident plus diffracted wave was

a so close to that of the incident wave alone that the diffraction compo-

nent appears to be in phase with the incident wave, within experimental

accuracy. The fact that the measured amplitudes of the incident plus

the diffracted waves are greater than those of the incident wave alone

implies the closeness of the phases for these two wave components. On

this basis of reasoning, the discrepancy between the predicted and AD
measured results of the amplitudes of the incident plus the diffracted

waves at long wavelengths shown in Figure 9 on the weather side could

be resulting from the erroneous prediction of the phase angles of the

diffracted waves by the strip theory employed in this work. As will . -

be shown below, there is also reason to believe that the phase angle

of the radiated waves, as predicted by strip theory, also differs from

the actual radiated phase angle by approximately 90 degtees.

INCIDENT b DIFFRACTED WAVE
DIFFRACTED WAVE
INCIDENT WAVE

- - MOTION GENERATED WAVE

MEASURED INCIDENT PLUS DIFFRACTED

S2.0
of  1

IHEAD WAVESBOWAE

W F'--V. 0 0 0 WET.01S 1

1.0 1

0. --. ~ " •___ _ __ __

18001

S90 0
L "~• " -.

-90 \-<-

.1800 Io- -

0 12 3 12 3

Figure 8 - Wave Amplitudes and Phases Due to Motion and

Diffraction at Station 2 on Ship A at Fn = 0.30 for
Head and Bow Waves
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. - ,oINCIDENT PLUS DEFFRACTED WAVE
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Figure 9 - Amplitudes of Incident Plus Diffracted Waves, Motion
Generated Waves and Total Waves at the Weather and Lee Sides

at Station 2 of Ship A at Fn 0.30 for Bow Waves

The relative motion transfer functions of both Ship A and Ship B
are shown in Figure 10 for head waves and Figures 11 and 12 for bow
waves at two different speeds. The agreement between theory and ex-
periment is somewhat variable, and in general the inclusion of diffrac-
tion and radiation effects does not provide a significant improvement.
In fact, in some cases the prediction is slightly worse when these
effects are added. The difference between the weather and lee sides
in bow waves is small, except in short waves where the diffraction
component in the new theory predicts a sheltering effect. The effect
of roll is only noticed at long wavelengths, where the absolute motion
as predicted by Equation (7) shows a slight difference between weather
and lee sides.

Careful examination of all the components of relative motion
(either predicted or measured) shows that relative motion is strongly

affected by both magnitudes and phases of these components. In order
to more clearly illustrate these effects, Figures 13-15 are presented
in the form of vector diagrams. In these illustrations, the complex
amplitude of the various components (motions and waves) are represented
as vectors whose magnitude is the absolute value of the quantity and
whose phase is as defined in Equation (26b). Phase angles are measured
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Figure 10 - Theoretical and Experimental Results for Relative3
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for Ship B at Fn=0.15 and 0.30 in Head Waves
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as positive counterclockwise from the real axis, and all amplitudes
have been nondimensionalized by the incident wave amplitude.

The various components of calculated oscillatory wave motion at

Station 2.5 on Ship B are illustrated as vectors in Figure 13 for one

speed and one wavelength. The sum of the incident, radiated (from both
heave and pitch) and diffracted waves is defined as the "modified"

wave. In addition, the effect on the modified wave of shifting the

phases of the radiated and diffracted waves by -90 degrees is shown.

The complete vector construction of relative motion for the same
condition is shown in Figure 14. The absolute vertical motion is

simply a vector combination of heave and pitch according to Equation

(7). The relative motion denoted "old" is the absolute motion with ,,.*.,..

the undisturbed incident wave subtracted. The "new" relative motion

includes the predicted radiation and diffraction effects. In other

*' words, it is constructed by subtracting the modified wave from the

absolute vertical motion. As can be seen in Figures 10 and 14, the

new method shows no improvement over the old, except for the phase

angle, when compared to experimentally measured relative motion. How- ..-

ever, when the radiated and diffracted phases are shifted by -90 de-

grees, the agreement is significantly improved. Although not illus- .--.

trated, a similar result is found at other wavelengths in head seas. , ,

The various components of relative motion illustrated for Ship B

in Figures 13 and 14 are based on strip theory calculations of absolute

motions, radiated and diffracted waves, since in this particular case

the experimentally measured absolute motions agreed closely with the

predicted values, and no measurements of the radiated or diffracted

components were available. In the case of Ship A, there was consider-

able discrepancy in the absolute motion at high speed, particularly

in the heave motion. Furthermore, experimental measurements of dif-

fraction effects (see Figure 8) were available for this hull form and

also differed significantly from the predicted values. Therefore, the
complete relative motion was constructed in Figure 15 using measured

values of the various components, where available. Since no forced

oscillation experiments were done to measure the radiated wave compo-
nent, this component was determined by combining the radiated wave

potentials k obtained by the strip theory with experimentally deter-

mined complex motion amplitudes Ek" The absolute vertical motion at
Station 2 was also calculated from the measured motions, rather than

being directly measured with a displacement transducer at that station.

The calculation of the relative motion by the new method shows slightly

better agreement with the measurement than the old method. However,
when the estimated radiated wave component is phase shifted -90 de-

grees, there is excellent agreement in both magnitude and phase.

The results presented above have been for a station near the bow ..-

for both ships in head and bow waves. Relative motions near the bow

usually affect ship operations the most because of their influence on g
such phenomena as slamming or deck wetness. However, there may be
cases where relative motions further aft along the hull are of concern, . ..- ]

particularly where freeboard is small or operations such as replenish- %

ment have to be carried out over the side. Figure 16 is presented to

• .. .,-
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show the relative motion along the full length of Ship B for several ."'' ..

values of X/L. The agreement between prediction and measurement is
generally satisfactory except at Station 2.5 at X/L = 1.0 and 0.5.
Interestingly, the agreement at the bow (Station 0) is better than at
Station 2.5. This is apparently due to the fact that there is little --

or no radiation or diffraction at this station. The bow of Ship B has
a raked stem line and no bulb or dome.

One unexpected phenomenon discovered in the experiments was a
shift in the mean values of various quantities when running in waves,
as compared to their values in calm water at the same speed. Some of .
these results are presented in Figures 17 and 18, for Ship A. Mean
shifts were detected in heave, pitch and relative motion near the bow.
The signal from a vertical absolute motion transducer at the stern was
also available and served to independently confirm the heave and pitch
mean shifts. As shown in Figure 17, the heave showed a slight rise (or
decrease in sinkage) in the wavelength region near X/L = 1.0, compared
to the level in calm water. Similarly, pitch had a small bow up ten-
dency at the same wavelengths. Vertical motion at the stern became
more negative (increased sinkage), which is consistent with the bow up
pitch shift. The net result of these shifts is that the absolute
vertical motion of the forward part of the ship increases in waves,
compared to the trim in calm water at the same speed. 3

The mean value of relative motion at Station 2 becomes less nega-
tive in waves (bow is rising relative to local free surface elevation)
which is consistent with the direction of mean shift in absolute
motion. However, the magnitude of rise in relative motion is less

than would be expected from the rise in absolute vertical motion at
this station. This implies that there is an absolute rise in the mean
free surface near the hull. At Station 0, on the other hand, the mean
shift in relative motion is negative at all wavelengths. This means
that there is a mean rise in the free surface which is even greater
than the mean rise of the bow.

The data in Figures 17 and 18 are a sample of the mean shifts
observed. Similar results were found in bow waves, and in the data
for Ship B at Fn = 0.30. Mean shifts were not clearly detectable for
either ship at the lower speeds. At present, we know of no analytical ,. .'

prediction method for these mean shifts. It is suspected that they are
caused by quadratic interactions between various components of the
first order oscillatory potential. In other words, it could be analo-
gous to added resistance or drift forces, except in this case the mean
force and moment of interest are the heave and pitch excitation. Since
this is still an open question, and we do not have sufficient experi-
mental data to determine whether the shifts vary linearly, quadrat-
ically or in some other fashion with wave amplitude, the data of
Figures 17 and 18 have simply been made nondimensional with respect
to ship length. |

.. . . ..
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The mean shifts in waves are quite small compared to the static

freeboard, as are the shifts due to sinkage, trim and bow wave profile
in calm water. However, accurate prediction of these components is
ultimately as important as the prediction of transfer functions of the
oscillatory components, because the frequency of occurrence of events
such as slamming and deck wetness in random seas is a sensitive func-
tion of the mean draft or freeboard. For instance, under the assump-
tion of Rayleigh's law of probability distribution the average number
of occurrences per hour that a given level F is exrP ded. is given by:

2

n (.e (27)

wnere G x and av are the standard deviation of relative motion and
relative velocity, respectively, and the relative velocity standard
deviation is obtained from the second moment of the relative motion
spectrum. Thus, the frequency of occurrence is an exponential function

- of the square of the level to be exceeded (which could be freeboard in

.',...*.
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the case of deck wetness or propeller depth in the case of propeller
emergence), and even a small change in the mean can have a relatively
large effect on the frequency of occurrence.

CONCLUDING REMARKS

The computed and measured results reveal no conclusive evidence
that inclusion of the diffracted and motion-generated waves, as com-
puted by strip theory, provide much improvement for the computation of
relative motions, compared to the old method for which only the kine-
matic terms are included. However, there is strong evidence from the .-... -,

experimental results that the magnitudes of these terms are signifi-
cant and that improved prediction of the associated phase angles will
noticeably improve the correlation between predictions and experiments.. " "-.
It is also felt that improvements in prediction of the magnitude of the

diffraction component must be made.
The deficiencies of strip theory in predicting relative motion may -

come from several sources. The free surface elevation from Bernoulli's
equation (Equation (5)) includes a term proportional to the product of
forward speed and the axial derivative of the oscillatory potential.
Since in strip theory this term is considered to be of higher order

than the time derivative term, it has not been included in the present I 3
calculations. However, for an actual hull form which has substantial
longitudinal curvatures in the bow and stern regions, this term may be
comparable in magnitude to the time derivative term. The nature of the
term could also expain why phase angle computations appear to be less .
satisfactory at higher speeds and in head waves.

In order to accomplish a significant improvement in the prediction
of relative motion, it is strongly felt that improved theoretical
methods beyond the strip theory and thin-ship theory for free-surface
motion as well as body motion including the nonlinear effects should
be developed in association with carefully conducted systematic experi- "
ments.
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APPENDIX--AMPLITUDES AND PHASES OF MOTIONS, WAVE COMPONENTS GENERATED
BY EACH MOTION, INCIDENT WAVE, DIFFRACTED WAVE, TOTAL
MODIFIED WAVE, ABSOLUTE MOTION AND RELATIVE MOTION AT
STATION 2 FOR SHIP A AT F = 0.30 IN BOW WAVES 7 1

Amplitudes and phases of the rigid body motion, together with the
wave components generated by the corresponding degree of freedom, are
shown. Magnitude and phase of the diffraction and modified waves are .
also shown. Magnitudes of the wave components and translational mo-
tions are nondimensionalized by incident wave amplitude, while those
of rotational motions are nondimensionalized by incident wave slope.
All phase angles are degrees of lead with respect to maximum wave
elevation at the origin.
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Table 3 -Amplitudes and Phases of Motions, Wave Components
Generated by Each Motion, Incident Wave, Diffracted Wave,

Total Modified Wave, Absolute Motion and Relat~ive
Motion at Station 2 for Ship A at Fn = 0.30

in Bow Waves
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Discussion

J.H. Pattison (Naval Sea Systems Command)

In recent years, various research programs in ship hydrodynamics
have provided hull form designers with valuable tools for predicting
seakeeping performance.* Results of the predictions have allowed the
designers to choose hull form and appendage parameter values for best
seakeeping performance. Even so, the tools are most accurate for
predicting absolute motions of the center of gravity of a ship and
least accurate for predicting relative motions between points on the
ship and the water surface. This limits the accuracy with which deck
wetness and damping are predicted. The authors are to be complimented
for developing an analytical method for predicting relative motion
that includes the effects of the moving ship on the wave field. It is
hoped that this methodology can be included in improved tools for the - V

hull form designer in the near future.
The work presented represents a good step toward accurately rep-

resenting relative motions in that they include both dynamic and steady
effects not previously incorporated into the predictive tools. The
dynamic effects include wave diffraction and reflection by the ship as

* well as wave generation by the moving ship. The steady effects include _

sinkage, trim, and the steady-wave profile caused by the forward move-
. ment of the ship. However, to make the problem tractable, the authors

chose the linear equations of motion, which limits the applicability
to linear ranges of ocean waves and ship responses. For predictions
of absolute motion, the limit occurs at Sea State 6, or lower, depend-
ing on the size of the ship. It occurs to the discussor that nonlinear
effects on relative motion may occur at lower sea states.

Another limitation in the work reported is that only the under-
water hull form is considered. Above-water features, such as knuckles
and flare, are expected to have significant effects on the predicted
relative motion. Also, it is not clear that results obtained in regu- | .

lar waves are directly applicable to irregular waves.
The discussor agrees with the authors that a systematic series of

ship model tests are needed to verify and improve the methods for pre-
dicting relative motion. Furthermore, the series should include both
the underwater hull form and above-water hull form and features. To
be useful to the hull form, parameter and feature variations should be L-A-L
kept within reasonable, practical bounds.

* *Meyers, W.G., T.R. Applebee, and A.E. Baitis, "User's Manual for the
Standard Ship Motion Program, SMP," DTNSRDC Ship Performance ..

Department Report DTNSRDC/SPD-0936-01 (Sept. 1981).

• . . , . .. •.
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* ~,. E.N. Comstock (Naval Sea Systems Command)

*' The results of this improved predictive method, as presented in
Figure 16, raise a question relative to experience we have had in

using existing relative motion predictive techniques without radiated
or diffracted wave potentials. Specifically, we have observed an
appreciable increase in predicted relative motion between stations 10
and 12 for several ships. This phenomenon, which yields a characteris- - . -'-

tic "W" shape to the relative motion profile, has been observed with
regular and irregular waves at various speeds in head and bow seas.
This characteristic increase in reactive motion has been observed and
confirmed by model tests. Would the authors please comment on whether
they have experienced this same effect and their thoughts relative to
our experience.

L.J. Doctors (University of New South Wales) -F

Equation (12) gives the wave profile along the side of the hull
on the assumption that the ship is "thin." The two test cases, whose
body plans are reproduced in Figure 2 would probably be better de-
scribed as either "flat" ships or "slender" bodies. Do the authors
feel that there would be much error in the results because of their U
choice of these test cases?

H.T. Wang (Naval Research Laboratory) '-

I wish to commend the authors for taking a first step toward com-
puting the total wave profile alongside a ship consisting of the inci-
dent wave, the wave due to steady forward motion, radiation waves, and
the diffraction wave. The authors use thin-ship theory to calculate
the steady-wave and slender-body theory to calculate the radiation and
diffraction waves. These theories are reasonably accurate over most
of the ship. However, in the bow area, where the authors calculate
the relative motion, the ship cannot be considered either thin or
slender. For example, the term 3f/91, the longitudinal derivative of
the ship half beam, - c at the forward perpendicular in the authors'
Equation (12) for the steady-wave profile.

I would like to ask how the bow geometry was modeled by the au-
thors and if they made any attempts to make corrections to their the-
ories at the bow area. In particular, did they attempt to make use of
the many studies on the bow-wave profile conducted by Professor Ogilvie
and his students at the University of Michigan? Or did they try the
singularity gap technique, initiated by Professor Landweber, where the
singularity distribution does not extend all the way to the blunt edge?
The extent of the gap is a function of the geometric properties of the
leading edge, principally the radius of curvature.

-- a.,'."
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Author's Reply

C.M. Lee, J.F. O'Dea, and W.G. Myers (DTNSRDC)

Mr. Pattison raises questions as to whether regular wave results
can be directly applied to irregular waves and whether nonlinear tech- _7_

niques including the effect of above-water hull form will be needed.
To the extent that linearized absolute motion calculations are valid, L .
we feel that relative motion calculations should be valid also. The
sea state limitation depends as much on the size of the ship as on
wave height. Some limited experimentation has been done with our Ship
A in waves as large as Sea State 7, and there were no serious discrep-
ancies noted in the relative-motion tranfer functions, when compared
with the regular wave results. However, we do agree that in predict- L
ing deck wetness, the statistical extremes rather than just transfer
functions are important, and this may very likely require that nonlin-
ear effects be included. Toward that goal, DTNSRDC is at present en-
gaged in a combined analytical and experimental program to determine
the effect of above-water bow-shape variations on flare slam loads and
deck wetness in very steep waves. 3

Mr. Comstock has asked about the shape of the relative motion
response curve, as a function of axial position on the ship. We cal-
culated the relative motion only at locations for which we had experi-
mental data, so we may have missed details of the shape of this curve.
It is certainly possible to have more than one inflection point in the
curve along the hull. One way of examining this point is to consider
the expression for relative motion in head waves (neglecting radiated -
and diffracted waves):

ikx
R - -

The magnitude (squared) of this is &R& * where * denotes the complex

conjugate. Taking the derivative of te magnitude squared with respect
to x and setting it equal to zero will provide an equation in x deter-
mining these points of inflection (assuming 1A =1):

2A

X I - Re C3 Re C5 - Im 3 Im &5

+ cos Kx(Re C5 - K Im 3 + Kx Im C5) + sin Kx (Im C5 + K Re 3 - ..

Kx Re C5) = 0

This expression may have several zeros for - L/2 < x < L/2, depending -

on the magnitudes and phases of the pitch transfer functions. The
char- acteristic "W" shape curve described by Mr. Comstock would of
course have three zeros.

I...-..,(

- * - * '..". -- .. ".-

.. .. ..- .,....... .. ,. . . .. .'t ... ,. ,'."'."'.-°-.'.-," ',.,._'. '.. ., '° " "... . . .".-".-.. . . . . .,.. . ...- o. .v -.. . .". .... . . ... ".. .-. ... .,.-..,'...".. . .-.



452 -

Dr. Doctors asks if we feel that flat-ship or slender-body theory
would provide less error than the thin-ship theory we used. We can
only reply that the agreement between our theory and experimental mea-
surements does not seem to be inferior to that found using much more
complicated computational procedures as shown by Bai and McCarthy,**
and the use of any other computational scheme does not seem to be
justified at this time.

As to Dr. Wang's question on the validity of applying either
slender-body or thin-body assumption at the bow region, our answer is
that we have not used the so-called Nconsistent perturbation expan-
sion" in our work. In regard to the question of the possible singu-
larity caused by the term 3fi5 at a rounded edge stem, it can be
simply shown that by taking an integral by parts of Equation (12),
"f/C can be reduced to f which vanishes at the stem, and, hence, the
appearance of the singularity resulting from the term 3f/is actually .. "-,
nonexistent. However, the singularity does appear even at a sharp-
edged bow in the second-order approximation as shown by Landweber and
Celik at the Ship Wave Resistance Workshop in Japan in 1980. But,
Landweber presented the numerical results that showed that the singu-
larity effect on the wave-resistance computation is not serious enough
to be concerned with. In our calculation, we have taken twenty sta-
tions along the ships, and the numerical integration was performed
based on the values of the integrand at these stations with the inte- _
grand value at the bow assumed to be zero.

**Bai, Kwang June, and Justin H. McCarthy, Proceedings of Workshop on
Ship Wave-Resistance Computations, DTNSRDC, November 1979. - -"
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Relative Motion Components for a
Mathematical Form in Regular Waves

Robert F. Beck ! ,.

Department of Naval Architecture

and Marine Fnqineerinq
The University of Michigan

*--.-- .'-_.

ABSTRACT Joe

The total relative motion in the bow region of a ship is made up '
of components which result from the incident waves, ship motions, radi-
ated waves, diffracted waves and waves due to steady forward speed.
Each of the components has been experimentally and theoretically inves- I l

tiqated for a mathematical form in head seas.
Strip theory is used to predict the ship motions and the radiated

waves. A slender-body theory is used to predict the diffracted waves.
The experiments show that all the components are linearily additive.
The agreement between theory and experiment for the total relative
motion and the radiated wave components is reasonable. 'Vne agreement -
for the diffracted wave components is poor.

INTRODUCTION

One of the major detriments to ship operation in a seaway is green -'.

water on deck. In small amounts it makes working on deck difficult and '
%" may wash overboard small items which are not securely fastened. in ex-

cessive amounts severe structural damage can result. Oreen water will
come on deck whenever the relative position of the water surface in the
bow region exceeds the freeboard. Since the sea is a random process,
the prediction of deck wetness requires a knowledge of both the hydro-
dynamic and statistical aspects of the problem. In this paper, we
shall only examine the hydrodynamic problem. It is presumed that pre- .

sent day statistical techniques and linear system theory are adequate," ..--

given the proper hydrodynamic information. Assuming linear theory is " "
valid, the required hydrodynamic information is just the relative mo-,-
tion between the bow and the water surface in sinusoidal waves.

The water surface elevation in the bow region is made up of sever-
al components. The principal component is the incident wave system.
The second is the diffracted waves. Finally, the ship-qenerated wave
system includes both the waves due to steady forward motion and the ra-
diated waves generated by the unsteady ship motions. In linear theory

453 .
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all the components are additive. To obtain the relative motion between
the ship and the water surface, the ship motion must be subtracted from
the water surface elevation.

In this paper, the wave amplitude in the how region of a mathema- -

tical model will be examined. The mathematical form was chosen in or-
der to eliminate the unknown effects of bow flare and a bulbous bow.
The final results should be a valid comparison between slender-body

*u. theory and experiments. Both theoretical and experimental results will
be given for the individual components of the wave amplitude and the
total relative motion. The discussions are restricted to head seas be-
cause the experiments were onlv conducted in incident waves coming from '., .
the bow.

% ~THEORETICAL TFrCHNIOTTES -"-

The axis system used throughout this paper is shown in Figure 1.
The origin is located in the midship plane at the waterline. The z-
axis is positive upward and the x-axis is positive out the bow. in the
moving coordinate system, the incident wave potential is given bv

*oeiWet = iq a ekz eikx eiwet (1)

where o = incident wave potential

q = acceleration of gravity
a = incident wave amplitude
k = wave number S.-.

= wavelength "
We = frequency of encounter

= Wo + kUo
wo = absolute wave frequency
Uo = forward speed.

z

y%Y

U0

n eiWet= a.- (kxw.,

Figure 1. Coordinate System
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In the coordinate system moving with the ship, the free surface

elevation is given by

ne~t 1 a a . I _
:eiWet - - - uo (2)

q 3t ax -o- -

where * = perturbation potential.

Thus, the incident wave elevation is given by

rioeiwet = a ei(kx+wet)

Diffracted Wave System

The theory which is used to compute the diffracted wave amplitude

is presented in Beck and Troesch (1980). The theory was originally de-
veloped by Maruo and Sasaki (1974) and involves the use of the method

of matched asymptotic expansions to solve the diffraction problem. In
this technique the complete diffraction problem is reduced to a series

of problems in the so called inner and outer regions. In the inner re-

gion the problem reduces to solving the Helmholtz equation in the
cross-flow plane subject to the free surface and body boundary condi-

tions.
In the far field, the ship is represented by a distribution of

sources along the x-axis whose density is given by a(x) exp (iwet+ikx).

The value of a(x) is found by matching with the inner region solu-

tion. Maruo and Sasaki (1974) considered the first and second order

problems simultaneously so that a Volterra integral equation must be

solved to obtain a(x)
As shown in Reck and Troesch (1980) the free surface amplitude in

. the near field due to the incident plus diffracted wave is

nI+D eiwet O(x) Wo 1 0 -
-- =1 - w(,0;x)e+ikx eiwet
a ga r30(x)

where '(y,0;x) is the value on z=0 of the solution to the two-

dimensional, inner-region problem. BO(x) is the source strength in

the multi-pole expansion of the inner region solution. It is computed

as part of the inner region solution and is a function of body shape

and frequency. -.

Radiated Wave System

The radiated waves generated by the forced oscillation of the ship I -

are computed using the strip-theory approach of Salvensen, Tuck, and
Faltinsen (1970). They define the unsteady perturbation potential due -.-

to forced oscillations as

N,* %,'Jkp .S. -. % - %%t .. ..''.'/ --" " ,%;$'.z .-.- . [ ." .. . ' -' .-'. ",",: % 'k
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6
iwet = ee t  

(3)
j=1

where Cj = amplitude of motion in the jth direction
potential due to unit motion in the jth direction.

Substituting equation (3) into the expression for the free surface
elevation (eq. (2)) we find

nRe i -
et  (iwe Uo Cj-j eieti (4)

q ax Iz=O

where nR is the radiated wave amplitude. We will find it convenient

to discuss the radiated waves due to each mode of motion separately.
Thus we write

6

= nj (5)
j =1

where *j - - U0  jUj

= component of radiated wave system due to the jth mode of -%

motion.
Assuming the potential due to steady forward motion and the un-

steady perturbation potentials are independent, Salvesen et al show
that the j potentials can be related to the zero speed potentials as
follows:

=j : 0  j = 1,2,3,4

11~ +-0 N05 = 50+- 3
iwe (6)

U 0
7= 6 i 20
'.we

where 4j 0 = "zero speed" potential.

The relative motion at any point along the ship length is defined

as the free surface elevation at that point minus the vertical ship
motion. Thus, we write A

P(x)eiwet = n(x)eiwet - F(x)eiwet (7)

where p(x) = complex relative motion
n(x) = free surface elevation

w . r

J ,
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&(x) = vertical displacement of the ship at the side

=3- x 5 + YV4 ", '-.$

The total relative motion due to radiated waves can be separated into
its individual components by substituting equation (5) into equation .,".
(7) as follows:

6
P = Pj (8)

j =1

P1 n1 P4 n4 YC4

" P2 = n2 P5 = n5 + xC5 (9) " . .

P3 n 3 C 3 P6 = n6

In order to compute the radiated wave height we must first evalu-
ate the zero speed potential. At this point in their analysis, Salve-
sen et al assume the frequency of encounter is sufficiently larqe that
a strip-theory approximation can be used. Thus, the zero-speed poten-
tials may be evaluated by using the two-dimensional potentials for the
appropriate section. In this paper, we are only concerned with the ra-
diated waves due to heave and pitch motions. If we define *3(x) as
the two-dimensional potential due to heave motion of the ship cross
section at x, then the zero speed potentials for heave and pitch are

*33
(10)S-.€5 0 = -xip)3  . G'-,'

:... ... .- ,.

Substituting equation (10) into equations (6) and (5), the final -
expressions for the radiated wave amplitudes due to heave and pitch are _

1a I '. "' 1"

n3 = - (iwe*3 Uo C3

(11) ______-_'

1 1Jo2  a@,3  I I
5= -- ((2tJo - iwex)*3 + (Uox - )-) 5 ".." "

q iwe ax z=0 ..'

The relative motions due to heave and pitch are found by substitutinq
equations (11) into equations (9).

It should be noted that the strip-theory approach to computinq the
radiated wave height raises several interestinq questions concerning
the forward speed effects. First, because of the high frequency as- .-.-

sumption, the retention of both terms (one proportional to iWe and ,.. -.-
the other Uo a/ax ) in the equation for the wave amplitude (equation
2) is mathematically inconsistent. Secondly, the strip-theory approach

-:A A

Lt

. .,...........-.'
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of Salvesen et al has a priori excluded the interaction between the
steady forward motion wave system and the unsteady radiated waves. In
the final section of this paper, we shall see that the simple strip
theory predicts reasonably well the radiated heights.

EXPERIMENTAL TECHNIQUES

Experiments were conducted to measure each of the components i -.
making up the total free surface elevation in the bow region. The
experiments were conducted in the main tank at the rTniversity of
Michigan's Ship Hydrodynamics Laboratory. The main tank is 360' long ,
by 22' wide with an average depth of 10' It is fitted with a plunger- --.
type wavemaker at one end and a beach at the other.

The experiments were conducted on a mathematical model which had
parabolic waterlines and rectangular section shapes. The bilqe radius
was approximately 1/2". The model particulars are given in Table 1.
The model was constructed of plywood and had a clear varnish finish.

TABLE 1 '

Mathematical Model Definition

L = 12' Aw = 17.454 ft2  V = 10.82 ft3  L/B = 5.5
B = 2.18' CB = .667 kvv = 2.274' B/T = 3.52
T = .62' 1/2 entrance angle = 20.83"

Parabolic Waterlines

1 12
Local - beam = - (I-(x/6) 2 )

2 11

The model was fitted with 2-wire capacitance wave probes mounted
on the side of the model at the fore-perpendicular, and stations 1, 2,
3, 4 and 5. The wires of each probe were .025" in diameter and mounted
1/4" from the side of the model. Several times during a day of testing
the probes were statically calibrated. rThev held their calibration ex-
tremely well. In addition, one probe was dynamically calibrated on a.*
special test stand. For the dynamic calibration test, a piece of ply-
wood finished like the model was attached at the appropriate distance
from the probe. The dynamic tests verified that over the frequency
ranqe of interest the use of the static calibration was acceptable.

During the actual experiments the amplitudes and phase angles were
ibtained using a carriage mounted data acquisition system. :br this
particular set of experiments, the analogue signals from the wave
probes and motion measuring devices were first diqitized. The diqitiz-
ed signals were then properly conditioned using tend removal and the
application of a cosine taper window. Finally, a Fast Fourier Trans-
form was used to obtain the amplitude and phase angle of the first bar-
monic. The data reduction program automatically applied the appropri-
ate calibration constants, non-dimensionalized the data, and corrected *- .
the phase angles for the desired axis system.

- % %. , - -.-.-. ,
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EXPERIMENTAL AND THEORETICAL RESUILTS

The experimental and theoretical results are shown in Figures 2-
40. Figure 2 shows the wave amplitude along the side of the model due
to steady forward motion in calm water. Ihe various components of the
unsteady relative motions are shown in Figures 3-40. For organization-
al purposes and to help clarify the results, the plots have been divid-
ed into two sections. In this section all the results are plotted ver- ->.'
sus distance along the ship length for three wavelengths (L/X = .8,
1.0, 1.2) and two Froude numbers (Fn = .15, .25). In Appendix A the
results are plotted versus frequency for each station at which experi-
mental measurements were taken. The graphs based on distance along the
ship are cross-plots of the frequency based graphs. Because of the
volume of data presented in Appendix A, it is easier to examine the.--.
smaller number of cross-plots. Appendix A is presented for the re-
searcher who would like the complete experimental and theoretical re-.

In the experiments, some runs for each of the different cases were
repeated using a different incident wave height or forced motion am- r ''
plitude. In all cases the results showed that the linearity assumption - °"
was valid. For this reason, in the plots (Pigures 17-40) showing the
experimental results no differentiation is made between results obtain-
ed from the high or low wave amplitude or forced-motion amplitude.

0.600

0.1400

N 0.200

_j Fn 15

0.0

- -0.200
w

-0. 400 "-"'J

0.0 0.20 0.410 0.60 0.80 1.00 1.20 1 _-

X/ (L/2)

FIGURE 2
STEADY WAVE AMPLITUDE ALONG SHIP LENGTH

. .. -... ........... -.. ......... ................................-..... . ............. "...........

m~t'L ',, % - ' .', ".. " . m vv v- . , - ' ~ - 2 'K'-'L'- -L'nmt a *- "-:dl *- " 1 *.I-. m -- . . .
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Relative Ntion due to Steady Waves

The first set of experiments measured the steady wave amplitude at
the two test Froude numbers of Fn = .15 and .25 . The results are
shown in Figure 2. The steady wave amplitude is nondimensionalized as

Tj5q/Ua
2

It should be noted that the wave amplitude was only measured at
stations 0 through 5. Thus, the lines drawn in Figure 2 pass through
each experimental point, but in between the stations the graph only ap-
proximates the actual wave amplitude.

The steady wave amplitude is not actually used because the un-
steady amplitudes were processed by first subtracting out the mean
shift; they are presented to give an estimate of the relative magni- . -

tudes of the steady and unsteady wave amplitudes.

Relative motion due to Forced Heave

Figures 3 and 4 show the amplitudes and phase angles of the rela-
tive motion along the model length due to forced heave. The relative
motion amplitude is nondimensionalized with respect to the forced heave -

amplitude. The complete results at each station are presented in Fig-
U ures 17 to 22 in Appendix A.

As can be seen from the figures, phase angles are almost indepen-
dent of frequency, distance along the ship and Froude number. The
agreement between theory and experiment is very good. On the other
hand, the amplitudes are moderately Froude number dependent, and show
large frequency dependence near midship. Both the theoretical and ex-
perimental results show an increase in the relative motion amplitude as
one moves aft from the bow. The magnitude of the relative motion com-
ponent due to heave is significantly larger than one. Thus, neglecting
the radiated wave component in relative motion calculations can lead to
significant errors.

Near midship the theoretical predictions are larger than the ex-
perimental results. The experiments show the same tends as theory, and
the predictions are good in the bow quarter of the ship. The reason S
for the over prediction near midship is unclear.

It should be noted that the theoretical predictions show an upturn
at the bow and a downturn at the stern. These end effects are even
more noticeable in the pitch results (Figures 5 and 6). The upturn and
downturn are caused by the derivative with respect to x in the equa-
tion for the wave amplitude (Equation 11). They are the result of the
strip-theory approximation and do not occur at zero forward speed.
Since one does not expect strip theory to be accurate at the ends, it
is not suprisinq that the experimental results do not show a marked up- -

turn. It appears that a three-dimensional theory will have to be de-

veloped for the end regions.

Relative Motion due to Forced Pitch

The longitudinal variation of the relative motion due to forced

* ,-...-.. . . . .

-= -. - o -.. • - . . % - . . . . . . .
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pitch is shown in Figures 5 and 6. The variations with frequency for
each station are presented in Appendix A. The relative motion ampli-
tudes due to pitch are nondimensionalized by

Ps* =  Psl(IC51L12) -

where IC51 is the forced pitch amplitude. The nondimensionalization
measures the relative motion in relation to the amplitude of motion at .--.

the bow. While it might be more convenient to nondimensionalize with
respect to the local vertical motion, this definition breaks down at x L ..
= 0 . The straight line in Fiqures 5 and 6 represent the nondimension-
al, local vertical amplitude. Thus, by comparinq the actual results
with the straiqht lines a measure of the amplitude of the relative mo-
tion versus the local vertical amplitude may he obtained.

As can be seen, the theoretical and experimental results agree
very well. The trends with longitudinal position, frequency and for- a
ward speed are well predicted for both the amplitude and phase. As we
previously discussed under the forced heave case, the marked chanqes in
slope at the ends of the theoretical curves are the result of the
strip-theory approximation.

*Relative Motion due to Wave Diffraction

The relative motions produced by the diffraction of sinusoidal in-
cident waves are shown in Figures 7, 8 and 29-34. Because the model is
fixed in the diffraction case, the relative motion is qiven by the sum
of the incident plus diffracted wave. In the figures, the relative mo-
tion amplitude is nondimensionalized by the incident wave amplitude.

Fiqures 29-34 show that there was some scatter in the experimen-
tally measured amplitudes. The phase angles show very little scatter.
Since the scatter was much less in the forced oscillation tests, it is
presumed that the scatter is caused by the noise in the incident waves
rather than inaccuracies in the wave probes.

Comparing the theoretical and experimental results, it can be seen
that the aqreement for the phase angles is very good. In particular, -

the linear variations of the phase anqle with distance along the ship
. is confirmed by the experiments. it is also obvious that the ampli-

tudes are qreatly under estimated by the Maruo-Sasaki theory. In gen- ."-

. eral, the trends of the experimental results with frequency and lonqi-
*" tudinal distance are correctly accounted for. It is the absolute maq-

nitide which is too low.
The reasons for the discrepancies between the theoretical and ex-

" perimental amplitudes is unclear. In previous (cf. Beck and Troesch
(1980)) comparisons using the Maruo and Sasaki approach, the agreement
for the pressure distribution over the underwater portion of the hull
was reasonable. Te discrepancies could result from three-dimensional
effects, interference effects between the steady and unsteady wave svs- .

tems, or non-jinearities.
The linearity of the results with input amplitude has been experi-

- mentally verified by testing at several different amplitudes and com-

...... . . .. ..
%............ ............-........ ................. ° - . - .. ....-..-. °. . . .'..... .o , . . ." ° "-...'." ...-... .. .- °-..° ". . °
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paring the nondimensional results. In all cases the nondimensional am-
plitudes agree within experimental accuracy. In the discussion con-
cerninq the total relative motion we shall also show that the various
components of the wave amplitude in the bow region can he linearly add-
ed. Thus, it appears that the effects of non-linearities are small.

It appears that the discrepancies result from a combination of
three-dimensional effects and intereference between the steady and un-
steady wave systems. We are presently trying to ascertain the influ-'
ence of each of these effects by studying the zero speed problem. The
work in progress includes zero speed experiments and numerical calcula-
tions using a three-dimensional source panel method. 4o results are
yet available.

It is possible that the how geometry of the mathematical model has
exaggerated the difference between slender-body theory and experiments.
The model entrance half-angle of 20.830 is large for a CR = .67 ship.
In addition the model has a flat bottom with a very small bilge radius.
On a typical C8 = .67 ship, the bilge in the bow region is slack and
the bottom is faired into the sides.

Total Relative Motion

The total relative motions for the model free to pitch and heave
in head seas are shown in Figures 11-16 and Figures 35-40. The heave
and pitch motions are presented in Figures 9 and 10 respectively.

The theoretical predictions were made using a strip-theory program
based on the Salvesen, Tuck, Faltinsen (1970) theory and using lewis
forms to compute the two-dimensional added mass and damping. As can be
seen the theoretical results over predict both the heave and pitch mo-
tions, particularly around resonance. This is apparently due to the
under prediction of the damping. The increased damping in the experi-
ments is probably due to the model hull shape. The model was wall-
sided with a flat bottom and very little bilge radius; a shape which .6"
presumably leads to increased viscous damping. In addition the heave
staff added to the damping, but its effects should be small since the
heave staff was especially designed to have low friction.

Figures 11-16 show the total relative motion as a function of dis-,C. .

tance along the ship for three frequencies and two Proude numbers. The
results for all frequencies at other stations are presented in Appendix
A. Five different cases are plotted as follows:

i) The solid line is the experimental results. This is a
cross-faired curve from the actual experimental data points
given in Figures 36-40.

ii) The dashed line is the strip-theory line. It was obtained
from the strip-theory computer program which computes the
relative motion by subtracting the vertical motion at any
station from the incident wave amplitude at that station.
Thus, the strip-theory line disregards the radiated and
diffracted wave components.

iii) The dotted curve results from computinq the relative motion ,..%6
by subtracting the experimentally measured vertical motion

,.. V.-.-.----.-..- , . -:J
,, . . . . .. . . ., .° -. - . . - . : . - .- - ' . - : ., . , - ., , - . - j . . ..,, . . .. . - .- . .. .. . -- - - . .. - . -. .. -.A. . -
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at any station from the incident wave amplitude at that
station. This curve is the experimental equivalent to the
strip-theory curve.

iv) The triangles are the sum of the theoretical calculations
including the radiated and diffracted wave components. The
theoretical heave and pitch motions are qiven in Figures q
and 10.

v) qe octagons are the sum of the experimentally measured

components.
As expected, the qeneral characteristics of the curves in Figures

11-16 show the relative motion increasing toward the how. The dip in
the relative motion amplitude at the fore-perpendicular, particularly
for a Fn = .25 , was unexpected but is consistent with the previously
discussed individual components. l the component waves show this dip

.4% to some degree. It is most apparent in the diffracted wave component
at Fn = .25

a Examininq the octagons and the solid curve we see that linear
super-position of the various wave components gives very good agreement
with the total experimental results. It thus appears that relitive mo-
tion in the bow region can he considered a linear process; the total

relative motion is linearly proportional to the incident wave amplitude
o-*# and the various wave components are additive. -
,*- A comparison of the solid and dotted curves is an experimental
- measure of influences of the radiated and diffracted wave components
[ when computing the relative motion. As can he seen, the differences
[ can be significant, particularly at the higher Froude number and in the

bow region. In general the relative motion is increased by including
the radiated and differential wave components.

The effects of the radiated and diffracted waves in the theoreti-
cal relative motion calculations can be measured by comparing the tri-
angles with the dashed line. Aqain it can be seen that radiated and
diffracted wave components tend to increase the relative motion. It
appears that the difference between the solid and dotted curve is
greater than theoretical predictions. rhis is to be expected since we
have already seen that the theoretical diffracted wave amplitudes are
very low.

The agreement between the experimental and the strip-theory curves
is reasonable in most cases. -bwever, it should be noted that this
agreement is fortitous because the heave and pitch motions are over
predicted by theory and the radiated and diffracted wave components are
neglected. This may be a possible explanation for why conventional
ship-motion programs, which neglect radiation and diffraction wave ef-

. fects, obtain acceptable values for relative motion. The pro;rams tend
to overpredict the ship motion in the reqion of maximum motion and this

* overprediction tends to cancel out the neglect of the radiated and dif-
f racted waves.
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CONCLUS IONS

Tu summarize the findings, we can say that:

The use of a strip approach to compute the radiate waves is reason-
able except very near the how where the derivatives with respect to
x become large. The relative motion amplitude due to pitch and the

phase anqles for both heave and pitch radiated waves are well predic-
ted. The relative motion amplitude due to heave is sliqhtly overpre-
dicted.4

* The linear variation of the diffracted wave phase anqle with distance
from the bow is well verified by the experiments. %he diffracted
wave amplitudes are poorly predicted by the Maruo-Susaki slender-body
theory.

* The various unsteady relative motion components are linear functions
of the input amplitude. The components can also be added linearly to Aa,
arrive at the total relative motion. ..

* The radiated and diffracted waves tend to increase the relative mo-
tion 10 to 30% over the simple incident wave minus the local verticalmotion calculations. ,.i

At the hiqher Froude number, the total relative motion is a maximum
aft of the fore-perpendicular. The decrease in the total relative 3;
motion at the fore-perpendicular appears to be related to forward
speed effects.
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Discussion

L.J. Doctors (University of South Wales)

P Will Professor Beck please elaborate on the reasons for choosing a
ship model with rectangular sections? It would seem that a model with ' --

parabolic sections, for example, would be more suitable for comparison".-

with physical experiments, as flow separation would not then occur.

M. Matsuura and T. Takahashi (Mitsubishi Heavy Industries)

We are very much interested in this paper on the results of a
rigorous investigation into the components of relative motion because
we have performed relative motion measurements for two ship models and
obtained a semiempirical estimation formula based on the strip method
by Salvesen, Tuck, and Faltinsen. The tested models are one for a
cargo ship (Cb = 0.71) and another for a tanker (Cb = 0.82). We
carried out the measurements of diffraction component and total
relative motion. As the result, we obtained empirical coefficients in
the following formula: L- *

=1 i (+ eD. D + R.R --

where, : Total relative motion
I : Incident wave component

D : Diffraction wave component

R : Radiation wave component
( D, R are calculated by the strip method)

: Vertical motion of the point ".

'I, aD, cR : empirical coefficients

The results for ship models are similar to the author's. However,
we obtained a larger discrepancy for the diffraction component at the .

bow near portion than the author's. This is probably because of the
effect of flare (especially for a cargo ship), and larger entrance
angle (especially for a tanker).

The author did not deal with relative motion near the stern. How-
ever, it is also important in relation to propeller racing, etc. By
our experiments, it was noticed the incident-wave component is reduced

to about a half near the stern...
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M. Ohkusu (Kyushu University)'.4. *'1-

The discrepancy between theoretical prediction and that measured
for the wave elevation due to the forced heaving motion around midship,
which is given as the difference between 1.0 and the curves in Figures
3 and 4, seems to be surprisingly large, 30 percent. We are convinced -
of the discrepancy close to the far end of the model considering the
theory used is strip theory. In my experience, however, we do not have
such a big discrepancy in the radiation wave elevation due to the heav-
ing motion, although at the location half a ship length transversewise -
away from the hull surface, if we compute the wave elevation with the
expression valid in outer region. In this respect I would like to pro-
pose that the author try to compute the wave elevation at midship even ;.-,
on the hull surface with the outer region expression for the radiation
wave to compare with the measured ones. ,

Author's Reply

.-.- -

R.F. Beck (University of Michigan)

To Prof. L. Doctors

The model with rectangular sections was originally chosen to con-
duct diffraction experiments. As you may know, Stoker gives the ana-
lytical solution for the wave diffracted by an infinite draft wedge.
We were originally planning to develop an equivalent finite draft wedge
solution and compare it with the diffracted waves in the bow region of
our model. Subsequently, the test series was greatly expanded but the
model had already been constructed. In hindsight, I would have pre-
ferred a model with slacker bilges on perhaps even a rounded-type bot-
tom. - -

To Mr. M. Matsuura

I agree with Mr. Matsuura that relative motion at the stern is
important. Unfortunately, the number of channels of data that we could
record was limited so that we could not measure the relative motion
along the entire length of the ship.

I am interested in hearing that Mr. Matsuura also found large dis-
crepancies between theory and experiment for the diffraction-wave compo-
nent. Because Mr. Matsuura did not give any values for the coefficients

• in his formula, my results and his cannot be compared directly.

To Prof. Ohkusu

I thank Professor Ohkusu for his suggestion. I do not know the

reason for the large differences between theory and experiment for the
heave-radiated wave component near midship. This is one of the results
that needs more investigation. Perhaps it is the result of forward

*" speed effects.

... % -. ?-............, ........---
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Cavitation Inception Scaling by
Roughness and Nuclei Generation

Jan H.J. van der Meulen
Maritime Research Institute Netherlands _

and

Ye Yuan-Pei .. .

China Ship Scientific Research Center

ABSTRACT

Scale effects on cavitation inception are mainly caused by viscous and
nuclei effects. This paper describes an experimental investigation of.-".

* artificial means to eliminate these scale effects. The study concerns
bubble cavitation inception on a NACA 4412 hydrofoil at an angle of
attack of 20. The tests comprise measurements of the pressure
distribution, holographic recordings of (a) the boundary layer flow,

- (b) cavitation and (c) bubble populations, cavitation inception measure- .

ments and photographic recordings of cavitation. Two configurations are
tested where bubbles are generated by a cavitating wire ahead of the
foil. The influence of artificial roughness is studied for five
different configurations. Without the application of roughness, the
boundary layer is laminar till a midchord position where transition to
turbulence occurs, whereas the type of cavitation observed is travelling
bubble or transient spot cavitation. When roughness is applied, early '. '-

transition to turbulence occurs but this has no effect on the inception - '".

or appearance of cavitation. However, when nuclei generation ahead of.-
the foil is applied, or when the roughness elements on the foil are
cavitating and thus seeding nuclei, the type of cavitation changes and
attached bubble cavitation is observed. Besides, in one case the
application of roughness is found to eliminate all scale effects.

I. INTRODUCTION

Modelling of cavitation on marine devices is strongly influenced by
scale effects. Apart from effects caused by surface imperfections, these

scale effects may be classified into nuclei effects and viscous effects.
In recent years appreciable progress has been made in deriving predic-
tion methods for the scaling of limited cavitation (Huang and Peterson .-

(1976), Billet and Holl (1981)). Another approach in solving scaling
problems is to eliminate scale effects by introducing artificial means

in the experimental procedure. Albrecht and BjBrheden (1975) reported
on the use of micro air bubble generators in a free surface cavitation
tunnel and attained realistic conditions for the inception and extent -
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of cavitation on model propellers. Noordzij (1976) introduced electro-
lysis in the NSMB depressurized towing tank and was able to restore the
reproducibility of cavitation patterns on model propellers. The above
methods were both aimed at eliminating nuclei effects. A method
originally intended to eliminate viscous effects was introduced by
Kuiper (1978). The method consists of boundary layer tripping by the 5.'

application of sand roughness on the leading edge of propeller blades.
Visualization of the boundary layer by using a paint technique showed
the method to be quite effective in producing a turbulent boundary layer
on the propeller blades. Later on, it was observed (Kuiper (1981, 1982a))
that the roughness elements were often cavitating and, apparently,
generating nuclei. In this way the application of sand roughness would
be able of eliminating both viscous and nuclei effects. Kuiper (1982b)
also discussed the risks of applying sand roughness in terms of leading
edge pressure distribution effects and cavitation inception effects on
the roughness elements proper.

The artificial means mentioned above seem promising tools in a
eliminating or reducing certain scale effects on cavitation. However,
the lack of reliable well-documented full scale cavitation observations
complicates the final achievement of "realistic" cavitation patterns on
model scale. It is therefore important that the basic mechanisms induced
by artificial means are well understood and, if possible, quantified.
Studies aimed at these objectives can best be made by using less compli-
cated models such as axisymmetric headforms or hydrofoils. For such
models accurate data on the boundary layer flow behaviour and pressure
distribution are relatively easy to obtain. A first approach using
distributed roughness on a Schiebe headform was made by Billet and Holl
(1980). The results showed that it was possible to eliminate scale
effects for travelling bubble cavitation by applying distributed
roughness. The mechanism involved in this process was not fully under-
stood, but it was suspected that the roughness produced micro-bubbles.

The main objective of the present paper is to provide experimental
evidence in explaining some basic mechanisms involved in the application
of nuclei generation or leading edge roughness for the scaling of bubble
cavitation inception. The tests were made with a NACA 4412 hydrofoil at
an angle of attack of 20. A full description of the viscous flow and
cavitation behaviour of this hydrofoil in a wide range of angles of
attack was presented in an earlier paper by Van der Meulen (1980) at the
13th ONR Symposium. Additional tests were made to obtain the pressure
distribution for the original hydrofoil in the test section environment.

2. EXPERIMENTAL METHODS

Test Facility and Holographic Method

The facility used is the high speed water tunnel of the Netherlands Ship
Model Basin. The test section had a 40 mm x 80 mm rectangular cross
section with a maximum attainable water speed of 40 m/s. In-line holo-
graphy was used to obtain detailed information on the cavity type and
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boundary layer flow on the hydrofoil and to measure the nuclei (bubble)
population. Visualization of the boundary layer was effected by
injecting small amounts of a 5 percent sodium chloride solution into the
flow through a small hole (dia 0.21 mm) located at the leading edge of
the foil. A schematic diagram of the in-line holographic system is shown
in Figure 1. A ruby laser (X = 694 nm) with a 30 mJ single mode pulse

* duration of 30 ns was used as a light source. Agfa-Gevaert 8E75 HD
Holotest plates with a resolution of over 5000 lines/mm were used as a
recording medium. In the reconstruction set-up a 2mW HeNe laser
(A = 633 nm) served as a light source. Further details on the applica- P .
tion of in-line holography for the visualization of boundary layers and
cavitation phenomena on axisymmetric headforms and hydrofoils are given
by Van der Meulen (1976, 1978, 1980) and Van der Meulen et al.(1982).

Test Models and Configurations r
Most tests were made with the original NACA 4412 hydrofoil used in
earlier experiments (Van der Meulen (1980)). The chord length of this
foil is 70 mm and the span 40 mm. The foil is slightly tapered to enable
flow visualization. Thus, the chord length and the maximum foil thick-
ness at the side walls are reduced by 3 percent. In the discussion on
the paper by Van der Meulen (1980), questions were raised on possible S
deviations from the two-dimensionality of the flow caused by the
tapering. Therefore, an additional two-dimensional NACA 4412 hydrofoil
with a chord length of 70 mm was made and tested. To obtain data on the
pressure distribution, a third NACA 4412 hydrofoil, instrumented with
pressure taps, was manufactured. This foil is a replica of the original
tapered foil. The foils were all made of brass and the foil surfaces
were polished. For the original foil the mean roughness height was
measured and found to be 0.18 pm.

Several configurations were tested for which either nuclei
generation or roughness was applied. These configurations are all
related to the original tapered hydrofoil. *... .-

Nuclei generation was effected by a cavitating wire spanning the
full height of the test section (80 mm) and positioned in the vertical ". -
centerplane, ahead of the hydrofoil. Its distance to the leading edge
of the foil amounted 22 mm. Some initial tests with a I mm dia stain-
less steel wire were made at a water speed of 8 m/s, but the wire .*.--.

broke within 30 minutes. The use of nylon wires solved this problem. In
the final tests two configurations were used: a I mm dia nylon wire and
a 0.25 mm dia nylon wire. At a water speed of 10 m/s, the maximum
deflection of the wires was about 2 mm, whereas at 20 m/s a maximum
deflection of about 8 mm was observed.

Five configurations were tested where roughness was applied. In the
first configuration a distributed roughness was obtained by spraying a
thin layer of paint on the entire foil surface. The mean roughness
height was found to be 0.65 lim and the maximum roughness height 3-4 Jim.
In the second configuration a trip wire with a diameter of 50 pm was
glued to the hydrofoil nose. The position of the wire in chordwise
direction was x/c = 0.015. The wire extended over a length of 10 mm in

%." -.".,.. . .
• ~...'....°. o"o ... 2...
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spanwise direction in the central part of the foil. In the third confi-
guration a trip consisting of sand grain roughness was applied to the -.
hydrofoil nose. The size of the sand grains was 30 pm, but the total
height of the roughness amounted to 60 pm. The sand roughness covered a
length in chordwise direction of x/c = 0.0054 - 0.0100. The trip
extended over a length of 10 mm in spanwise direction in the central
part of the foil. In the fourth configuration 30 jrm sand grain roughness
was applied to both the upper and lower part of the hydrofoil nose. The
sand roughness covered a length in chordwise direction of x/c = 0-0.050
on the lower part of the nose (pressure side) and x/c = 0-0.015 on the

TABLE 1. Designation of Configurations Tested

Configuration Description

I .- original, tapered hydrofoil -

II two-dimensional hydrofoil
III I mm dia wire ahead of foil
IV 0.25 ins dia wire ahead of foil
V distributed roughness
VI trip wire

VII trip of sand roughness
VIII narrow band of sand roughness

IX wide band of sand roughness

upper part (suction side). At x/c = 0.015 on the upper part of the nose
a rim was observed with a height of 100 pm. The narrow band of sand
roughness extended over a length of 29 mm in spanwise direction in the
central part of the foil. In the fifth configuration 30 Urm sand grain
roughness was evenly applied in a rather wide band to both the upper
and lower part of the hydrofoil nose. The sand roughness covered a
length in chordwise direction of x/c = 0-0.036 on the lower part of the
foil and x/c = 0-0.072 on the upper part. The wide band of sand rough-
ness extended over a length of 32 mm in spanwise direction in the
central part of the foil. A survey and designation of all configurations
tested (apart from the foil used for the pressure measurements) is given
in Table 1.

Procedure

The pressure measurements performed with the tapered hydrofoil provided
with pressure taps were made at the following angles of attack a:
00, 20, 40, 60 and 80. All other tests performed with configurations I
through IX were made at a = 20 (+ 0.1° ). These tests comprised hologra-
phic recordings of the boundary layer flow, holographic recordings of
cavitation or bubble populations, cavitation inception measurements and
photographs of cavitation. The photographs were made with a camera

-..
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TABLE 2. Stations and Ordinates of Pressure Orifices

Orifice No. Station, Ordinate,

100 x/c 100 y/c

I 6.1 -2.6

2 2.7 3.55
3 7.35 5.7
4 11.9 7.1
5 16.7 8.25

6 21.7 9.0
7 26.1 9.5

8 30.7 9.75

mounted vertically above the hydrofoil, so that its field of view
through a plexiglass window in the top of the test section covered the
whole length of the hydrofoil and a width of about 28 mm. For each
configuration the tunnel was refilled and the water deaerated till a -,-

total air content of about 4.6 cm3/l was reached (1 cm3 of air per
liter of water at STP corresponds to 1.325 ppm by weight). The water
temperature was usually around 200 C. All observations were related
to the center part of the hydrofoil, away from the test section walls. .- -.

3. EXPERIMENTAL RESULTS

Pressure Distribution

The pressure measurements were made with a tapered NACA 4412 hydrofoil

instrumented with 8 pressure taps. The orifices, each 0.3 mm in dia-
meter, were drilled perpendicularly into the foil surface and are all
located in the central plane of symmetry. The locations of the pressure
orifices in terms of stations and ordinates in percent of the foil
chord c are given in Table 2. The pressure measurements were made at ..

= 00, 20, 40, 6' and 80. The results are expressed in terms of the
pressure coefficient Cp, defined as

P - P

C = 0 ,
P pV2

where P0 and Vo denote the undisturbed static pressure and flow velocity
in the test section, P the static pressure on the foil and p the fluid
density. For cc = 00, 20 and 40 the pressures were measured at Vo =

5, 10, 15 and 20 m/s, whereas for a = 60 and 80 the measurements were
made at V0 

= 5, 10 and 15 m/s. All pressures were measured twice. The

Cp-values for Vo = 5 m/s slightly deviated from those at 10, 15 or 20 .
m/s. Therefore, averaged Cp-values were only derived from the measure-
ments made al these higher velocities. The maximum deviation thus

J.
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TABLE 3. Measured Values of Pressure Coefficient -Cp for p

Different Angles of Attack

Orifice 00 20 40 60 80

No.

1 0.526 0.151 -0.140 -0.395 -0.571
2 0.035 0.544 1.092 1.716 2.407
3 0.459 0.853 1.248 1.681 2.155
4 0.682 1.020 1.355 1.701 2.092
5 0.783 1.085 1.374 1.678 1.990
6 0.819 1.085 1.336 1.594 1.848
7 0.867 1.105 1.335 1.574 1.768
8 0.889 1.105 1.305 1.517 1.673

found within one set of measurements was within 2 percent of -CPmin.

Averaged values of -Cp at each orifice on the hydrofoil and for all
angles of attack are tabulated in Table 3. The data are plotted in
Figure 2. Also plotted are -Cp-curves derived from accurate measure-
ments made by Pinkerton (1936) for (I = 00, 20, 40 and 80. These
measurements were made with a two-dimensional airfoil with a chord
length of 127 mm, provided with 57 pressure orifices, at a Reynolds
number of 3.1 x 106. Since the Reynolds number effect is negligible,
the differences observed in Figure 2 are mainly caused by blockage
effects in the present test section.

It is interesting to estimate the influence of tunnel blockage on
the value of -CPmin for small angles of attack. In Table 4 -CPm i -values
are presented, derived from Pinkerton's measurements and from tfe
present measurements for a = 00, 20 and 40. The ratio Cp mn/CPmi2can
be approximated by "'--.

[(1h + 6)/h]2 = 1.464,

where h is the height of the test section (80 mm) and 6 the maximum

thickness of the hydrofoil (8.4 mm). The correction factor originally
used by Van der Meulen (1980) is too conservative.

The -Cp • -value to be used in the ultimate comparison with the
cavitation inception numbers measured with the configurations I through

IX at a = 20 is 1.105. The approximate location of the minimum

pressure is: (x/c)p 0.28.

Flow Observations

The boundary layer flow behaviour of the original, tapered NACA 4412
hydrofoil at X = 20 had been studied before by Van der Meulen (1980).
Typically, the boundary layer remains laminar till a midchord position
for a Reynolds number up to about I x 106 (Vo = 15 m/s). Below Vo =

% % i%
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TABLE 4. Values of -C Derived from Pinkerton (1936) and ,.Cpmin . . .
from Present Measurements

Angle of -Cp , CPmin CPmin
Attack m 2 min min2

Present Pinkerton

0°  0.895 0.61 1.467
02 1.105 0.75 1.47340 1.375 0.92 1.495

4 m/s, midehord laminar separation was observed followed by transition

to turbulence further downstream. The transition data are replotted in
Figure 3.

Boundary layer flow visualization studies were also made for the .
configurations III through IX. For configuration III (I mm dia wire),
the injected sodium chloride solution was unable to follow the surface
of the hydrofoil, since it was strongly affected by the outer flow.
Apparently, Von Karman vortices generated by the oscillating wire ahead
of the foil interfered with the boundary layer on the foil. A photograph
showing this interference is presented in Figure 4. The flow direction
is from left to right and the flow speed is 8.8 m/s. The photograph
seems to represent a vortex pattern perpendicular to the foil surface,
just after injection. Also for configuration IV (0.25 mm dia wire) the
boundary layer flow in the centerplane of the tunnel was affected by
vortices, but the influence was more moderate. In the photograph
presented in Figure 5, a vortex perpendicular to the foil surface is
clearly visualized at x/c = 0.022. The flow speed is 3.0 m/s. The main
character of the boundary layer is still laminar. In the hologram,
transition was found to occur at a midchord position. Since only a part

of the sodium chloride was able to follow the foil surface, the exact
position of transition could no longer be established. The tendency,
however, was that transition occurred much earlier.

Transition data obtained with the configurations V through IX are

plotted in Figure 3. For configuration V (distributed roughness) the
transition data are not much different from the original data up to LK'i
Re = 7 x 105 (Vo = 10 m/s). A detail of the transition region is shown

in the photograph of Figure 6. The flow speed is 8.8 m/s. The location
of the end of the vortex tongue is at x/c = 0.512. At speeds in the
range 10 - 18 m/s (Re = 7 - 12 x I05) transition has moved to an
approximate location of x/c = 0.2. For configuration VI the flow
separated at the trip wire and reattached to the surface as a laminar
boundary layer up to Re = 6 x I05 (Vo = 8 m/s). Transition occurred in -.j---
the reattached boundary layer. At higher speeds (V0 > 9 m/s) transition
occurred in the separated layer and the flow reattached to the surface

as a turbulent boundary layer. A photograph showing this phenomenon is

presented in Figure 7. The flow speed is 10.2 m/s. The trip of sand

4~. . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . . .. .'
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roughness (configuration VII) caused transition to occur at the trip
for Reynolds numbers above 4.5 x 105 (Vo = 6.5 m/s). For configuration
VIII (narrow band of sand roughness) the trip had hardly any effect up
to Re = 1.5 x 105 (Vo = 2 m/s). In this range laminar separation -
occurred at a midchord position, followed by transition. A photograph
showing the final stage of transition is presented in Figure 8. The
location of the end of the vortex is at x/c = 0.70. The flow speed is
2.05 m/s. However, the situation has been drastically changed at Re =
2 x 105 (Vo = 3 m/s), where transition occurs close behind the rough-
ness zone. A photograph showing this phenomenon is presented in Figure -
9. The location where vortices start to grow is at x/c = 0.036. The
flow speed is 4.1 m/s. A more gradual shift of the location of
transition was observed for configuration IX (wide band of roughness).
Transition at the end of the roughness zone (x/c 0.072) occurred at
Re = 5.5 x 0 (Vo  8 m/s).

Bubble Populations

For each configuration, except configuration II, a series of holograms
was made for different speeds and different cavitation numbers. The
definition of the cavitation number a is given by

P- P
0 v

SV2
0

where Pv is the vapour pressure of the liquid. As indicated by
Peterson (1972), a parameter which may be of some importance for the
bubble population in the test section of a cavitation tunnel is the air
content ratio CC/LTS, where a is the total air content and (TS the
saturated air content referred to test section pressure and temperature.
Holographic measurements made in the NSMB large cavitation tunnel at a
constant value of a = 12.5 cm3/l confirmed Peterson's observations. At
e/OTS = 0.8 the number of bubbles/cm 3 was found to be 0.2, whereas at

t/C=TS 1.6 the number of bubbles/cm
3 was 3.

The holograms made in the high speed water tunnel provided data
on nuclei populations. Due to the high quality of the filtering system
in the present set-up, and due to the test procedure used, the water in
the tunnel did hardly contain detectable particulates. Therefore, only
data on bubble populations will be provided. The small value of the
total optical pathlength between the bubbles and the holographic plate,
and the high resolving power of these plates enabled a discrimination
between bubbles and particulates down to a diameter of 5 Jm.

- The most consistent results were obtained in the wake of the
cavitating wires used for the configurations III and IV. Bubble popula-
tions were derived from holograms taken at cavitation numbers around
1.19, which happens to be the mean value of the cavitation inception
number for configuration IV. In each hologram the location of the
analyzed surface, relative to the foil contour, is: 3 - 13 mm behind
the nose of the foil and 9 - 113 mm above the chord line. For configura-
tion III bubbles were only counted over a depth of 5.0 mm, which

U:-

U
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TABLE 5. Bubble Populations in Wake of I mm Dia Wire
(Configuration III)

Hologram No. 1.2 1.6 1.10 1.14 1.18
Velocity, m/s 7.88 9.82 11.73 14.65 19.52
Cavitation No. 1.16 1.18 1.19 1.19 1.19
L/ TS 0.68 0.42 0.30 0.19 0.11

Bubble dia- Number of bubbles per cm3

meter range,

Jim

<10 2476 3482 3477 3611 2021
10-20 1689 1657 1640 1296 331
20-30 889 398 302 66 28
30-40 321 36 25 - 14
40-50 103 6 6 --

50-60 62 6 6 -
60-70 27 - -"'

> 70 -....

Cumulative 5567 5585 5456 4973 2394

TABLE 6. Bubble Populations in Wake of 0.25 mm Dia Wire
(Configuration IV)

Hologram No. 3.2 3.5 3.9 3.13 3.17
Velocity, m/s 7.94 9.93 11.74 14.73 19.74
Cavitation No. 1.17 1.17 1.21 1.21 1.19

O/T 0.59 0.40 0.26 0.16 0.10

Bubble dia- Number of bubbles per cm3

meter range,

Pm

<10 3136 3758 3905 1755 878
10-20 1537 1420 722 284 111
20-30 164 73 ... - '

>30 - - - - -

Cumulative 4837 5251 4627 2039 989

covered the width of the wake of the 1.0 mm dia wire. Thus, the total
volume analyzed was 0.154 cm3 . For configuration IV (0.25 mm dia wire) -

the wake had a width of 2.6 mm. The total volume analyzed was 0.081 cm3 .
Because of the extremely high bubble concentrations found in both wakes,
these samples are sufficiently large. The results of the bubble popula-
tion measurements for different velocities are presented in Table 5

.. ' °% " .
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(configuration III) and Table 6 (configuration IV).
It is interesting to note that the total number of bubbles per

cubic centimeter is almost independent of the condition in the test
section with regard to speed, pressure or c./(ITS. In 7 out of 10 holo-

grams the total number of bubbles/cm 3 is of the order of 5000. However,
the condition in the test section does have a marked influence on the
bubble population. In the absence of bubble generation, the total
number of bubbles/cm3 is at least two orders of magnitude lower than
with bubble generation. Besides, all bubbles are smaller than 20 pm and
most of them smaller than 10 pm. Some bubble population measurements
were made with the original foil (configuration I). The total volume
analyzed was 0.154 cm3 . The results for three different velocities
are presented in Table 7.

Cavitation Observations and Inception Measurements

Cavitation inception measurements were made for all configurations
listed in Table 1. They comprised measurements of the beginning or
inception of cavitation, yielding data on the incipient cavitation
number oi, and measurements of the disappearance or desinence of
cavitation, yielding data on the desinent cavitation number ad. For
reference purposes, two series of inception measurements were made with
the original, tapered hydrofoil (configuration I). One series was
measured in 1979, the other in 1982. The data are plotted in Figure 10. .77.7
The speed range covered was 8 - 22 m/s, whereas at Vo = 22 m/s the
water temperature was allowed to increase to about 350 C to obtain
higher Reynolds numbers. Also plotted are data from two series of
inception measurements made with the two-dimensional hydrofoil (confi-
guration II). These measurements were made in 1981 and 1982. The S
average values of 52 measurements of the cavitation inception number
for both configurations are:

Gi,d (tapered) = 0.990

and

Fi,d (2-dim.) = 0.995.

Although the data plotted in Figure 10 show some scatter, the average
inception values for both configurations are essentially equal. The
results point out that, at least for a = 20, the influence on inception,
caused by the fact that the tapered foil sli.ghtly deviates from a two-

dimensional foil, can be neglected.
In the absence of scale effects on inception, the following rela-

tion is valid:

a. =-Ci,d Pmi
Cmin "

. . .".. . . . ..- °-7
. 
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TABLE 7. Bubble Populations in Test Section for Original

Hydrofoil (Configuration I)

Hologram No. 5.4 5.9 5.13
Velocity, m/s 9.92 11.85 14.73
Cavitation No. 1.20 1.19 1.21 .

" 
-

o/aTS 0.49 0.35 0.21

3
Bubble dia- Number of bubbles per cm
meter range,

P'm

<10 39 6 6 ,.: 4

10-20 6 6 6
>20 - -

Cumulative 45 12 12

Since -Cpmin was found to be 1.105, cavitation inception on the
tapered foil is subject to moderate scale effects.

Up to a speed of about 15 m/s, the type of cavitation observed on
the tapered foil is mainly travelling bubble cavitation. Most of the
bubbles are attached to the surface and travel with the main flow. At
speeds between 15 and 18 m/s, transient spot and travelling bubble
cavitation are both observed. At speeds above 18 m/s, the type of
cavitation mainly observed is transient spot cavitation. This is an
attached, wedge-shaped type of cavitation for which the location of the
wedges is constantly changing. The types of cavitation observed on the
two-dimensional hydrofoil were the same as observed on the tapered
hydrofoil. Photographs of travelling bubble cavitation (Vo  7.9 m/s,
0 = 1.04) and transient spot cavitation (Vo = 19.8 m/s, a = 0.96),
observed on the tapered foil, are presented in Figure 11.

Inception data for configurations III and IV are plotted in
Figure 12. These data refer to cavitation inception on the foil, in the

wake of the wire ahead of the foil. Average inception values are: *

a. (I mm dia wire) = 1.24
i,d

and

i,d (0.25 mm dia wire) = 1.195. -..

These values are considerably larger than -Cp min The abundant supply
of nuclei should have been sufficient to eliminate any scale effect.
However, the vortices generated by the wires ahead of the foil apparent-
ly created additional spots of low pressure on the foil surface, thus

enabling premature cavitation. The type of cavitation observed on both

.-. ' . ,,
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hydrofoils is typically attached bubble cavitation. This type was
observed at all speeds. Photographs of attached bubble cavitation for
configuration III are presented in Figure 13. These photographs were
taken at Vo = 7.9 m/s (a = 1.18) and Vo = 19.6 m/s (a = 1.18). Similar
photographs for configuration IV are presented in Figure 14. The _
conditions are: Vo = 7.9 m/s (a= 1.175) and Vo = 19.7 m/s (a = 1.15).
A photograph taken from a hologram, showing an attached cavity for
configuration IV, is presented in Figure 15. The flow speed is 14.7 m/s
and a = 1.205. The location of the beginning of the cavity is at x/c
0.182.

Inception data for configuration V (distributed roughness) are
plotted in Figure 16. Different types of cavitation were observed. At
low speeds (8 - 10 m/s) travelling bubble cavitation appeared. At
moderate speeds (11 - 14 m/s) travelling bubble and transient spot
cavitation appeared, whereas at high speeds (15 m/s and higher) the
observed transient spot cavitation was preceded by fixed spot cavitation.
In the latter case, the cavities are attached to fixed spots on the foil g
surface, and the shape resembles a wedge with a small apex angle. The
data in Figure 16 refer to either travelling bubble/transient spot
cavitation or fixed spot cavitation. The average value of the inception
data for travelling bubble/transient spot cavitation is:

0 (distr. roughness) 1.05.i,d

The d-values for fixed spot cavitation are considerably larger.
Besides, they are well above -CPmin. Photographs of travelling bubble
and fixed spot cavitation are presented in Figure 17. The conditions
are: Vo = 7.9 m/s (a = 1.0)) and Vo = 19.7 m/s (a = ).]]). In Figure 18,
a photograph is presented showing the birth of a fixed spot cavity. -

The photograph refers to a speed of 19.6 m/s and a = 1.05. At x/c =

0.128 a small cavity with a length of 0.22 mm is observed, apparently
attached to a small surface irregularity. The cavity is followed by more
isolated cavities, finally leading to a spot cavity with a length of
over 10 mm (observed in the hologram). A photograph taken at the same
position, but at a lower pressure (a = 0.96) is presented in Figure 19.

Inception data for configurations VI and VII are plotted in Figure ..

20. For configuration VI (trip wire) the type of cavitation observed at " "
inception was the same as observed for configuration I. The average
value of the inception data is:

0. (trip wire) = 1.025,
i ,d

and thus close to Gi d for configuration I. For configuration VII
(trip of sand roughness) inception occurred on the roughness elements
up to a speed of I m/s. High values of Od are found in this speed

range. However, above I m/s the roughness elements were not (yet)
cavitating at inception and the appearance of cavitation was the same
as observed for configuration I. The average value of the inception

1> - -
7U
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data in this speed range is:

iy. (trip of sand roughness) = 1.00

and thus essentially equal to Ui d for configuration I.
Finally, inception data were obtained for configurations VIII and

IX and the results are shown in Figure 21. For both configurations it

was observed (visually and holographically) that at inception a number
of minute cavities were attached to the roughness elements. These
cavities generated nuclei and the type of cavitation observed at all -"-

speeds was attached bubble cavitation. The average values of the
inception data for both configurations are:

0. (narrow band of sand roughness) = 1.105
i,d

and

Gld (wide band of sand roughness) = 1.15.

Hence, for configuration VIII we have: Cri,d = -CPmin , whereas for
configuration IX, d is somewhat larger than -Cpm. .Photographs of
attached bubble cavitation for configurations VIII and IX are shown in
Figures 22 and 23 respectively. In Figure 22 the conditions are:

Vo = 9.9 m/s (a = 1.03) and V o = 19.7 m/s (a = 1.08). In Figure 23 we
have: V o = 9.9 m/s (a = 1.06) and Vo = 19.7 m/s (a = 1.08). The shape
of the cavities could be determined from holographic observations. In
Figure 24 a photograph is presented showing attached bubble cavitation
on the foil of configuration VIII. The speed is 11.8 m/s and 5 = 1.07.
The beginning of the first cavity is at x/c = 0.212. Another photograph
showing attached bubble cavitation (configuration VIII) is presented in
Figure 25. The speed is 9.9 m/s and a = 1.05. The beginning of the -
first cavity is at x/c = 0.267. The fact that the minute cavities
attached to the roughness elements generated nuclei could be detected

from the holograms. The fact that these nuclei were actually responsi-
ble for attached bubble cavitation was proved by the holographic obser-
vation that the plane in which the first cavities appeared coincided

with the plane in which a minute cavity was generating nuclei. A photo-
graph showing a minute cavity attached to the roughness and generating
such nuclei is presented in Figure 26. The photograph refers to confi-
guration VIII; the speed is 7.9 m/s and a = 0.935. The end of the cavity
is at x/c = 0.025. The part close to the end of the cavity was further
enlarged and a photograph showing this part is presented in Figure 27.
The arrows indicate the positions of three nuclei (bubbles) very close
to the foil surface. The diameter of these nuclei is roughly 10 Jim.

D'."'"
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4. DISCUSSION AND CONCLUSIONS

Most studies on the effect of roughness on boundary layer transition,
described in the literature, refer to a flat plate. A distinction is
made between the effect of two-dimensional and three-dimensional
roughness elements. For single two-dimensional roughness elements, . =

Dryden (1953) found a single functional relation between the transition
Reynolds number Ret (Ret = V xt/v) and the relative height of the
roughness element k/6k*, where k is the roughness height and 6k* the
boundary layer displacement thickness at the position of the element...
It means that there is a gradual forward movement of transition when the
speed is increased. The trip wire in the present study shows exactly the
above behaviour (Figure 3). For three-dimensional roughness elements
(spheres), Klebanoff et al. (1955) found a critical roughness Reynolds
number Ukk/V to exist, where Uk is the velocity at the height of the
sphere, below which the roughness is essentially without effect, and
above which transition is brought to the roughness location. It means j
that there is a sudden progression of transition to the
roughness location when the speed is increased. In the present study the
trip of sand roughness and the narrow band of sand roughness show this
behaviour (Figure 3).

For configurations VI through IX the critical speeds at which
transition occurred at the roughness location itself were found to be: U
9, 6.5, 3 and 8 m/s, respectively. Hence, the boundary layer on the
foil is essentially turbulent for the full range of speeds (8-20 m/s)
for which cavitation observations and inception measurements were made.

Gates and Acosta (1978) and Katz and Acosta (1981) compared
various results of nuclei distribution measurements performed in
different experimental facilities and in open sea. The nuclei distribu-
tions were reduced to the number density distribution function N(R) and
were plotted versus the nuclei radius R. It was found that the values of
N(R) could differ by several orders of magnitude, but all the data had
approximately the same slope. When the present data are plotted in a
N(R)-R diagram, it is found that they also have this slope. The values
of N(R) without bubble generation have the same order of magnitude as U
those measured by Gates and Acosta (1978) in their low turbulence water
tunnel. However, when bubble generation is applied the values of N(R)
are increased by at least two orders of magnitude. According to
Lecoffre and Bonnin (1979), bubble cavitation is correctly scaled when
the nuclei concentration for the model is X 3 times higher than for the
prototype, where X is the scale ratio. In a qualitative sense it would
mean that bubble generation is always necessary in model testing.

Usually, the dimensions of the prototype are at least one order of
magnitude larger than those of the model. The same applies to the
Reynolds number. It is generally assumed that the prototype environment
has no lack of nuclei. Following the nuclei scaling relationship
proposed by Lecoffre and Bonnin (1979), the nuclei concentration for
the prototype is allowed to be low and thus the previous assumption may
easily be confirmed.

Before proceding with the results of the cavitation tests let us S!I.
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first consider the question which type of bubble cavitation is to be
expected in a full-scale or prototype condition. Unfortunately, full-

scale observations of bubble type cavitation are extremely scarce.

Rutgersson (1979) reported on some full-scale cavitation observationsI on a propeller for a torpedo boat. The cavitation pattern was shown to
consist of small bubbles. However, the bubble cavitation was preceded

by leading edge sheet cavitation and, therefore, can not be regarded as
typical for midchord bubble cavitation. Some unpublished observations

of midchord blade root cavitation seem to point at an attached type of..'.
cavitation and could thus resemble the presently observed attached L.
bubble cavitation. c.-. .

The trip wire and the trip of sand roughness (for Vo above II m/s)
did not cavitate or generate nuclei at the instant of inception. For
these configurations it was found that the appearance and inception of
cavitation were essentially the same as for the original foil, in spite J.
of the fact that the boundary layer was turbulent. Therefore it is
concluded that bubble cavitation is not affected by viscous effects. It
means that the mere application of roughness for boundary layer tripping.
has no effect whatsoever on eliminating scale effects on bubble

cavitation.
The generation of nuclei by the wire ahead of the foil or by the

roughness on the foil did increase the inception number and changed the
appearance of cavitation into attached bubble cavitation. Since this
type of cavitation occurred irrespective of the flow speed (or Reynolds
number) it is suggested that this type of cavitation may resemble the
full-scale appearance. The scale effect on inception experienced by the
original foil was more than compensated for by the application of a
cavitating wire ahead of the foil. The bubble concentration should have
been adequate to eliminate the original scale effect, but the

- simultaneous generation of vortices caused an additional effect. The J,
original scale effect was effectively eliminated by the application of
sand roughness as used for configuration VIII. The essential observa-
tion in this case was that very small bubbles were generated by the 7.-

roughness and that these bubbles travelled with the flow along the foil
surface. Apparently, it is less important whether nuclei are generated

ahead of the foil or on the foil. It seems essential, however, that a
sufficient number of small nuclei can penetrate into the boundary layer

on the foil. When bubbles are generated ahead of the foil, the
population should be such that the fluid contains a large number of
small bubbles since, according to Johnson and Hsieh (1966), large
bubbles may be pushed away from the foil surface. The above condition

- is fully satisfied for the bubble populations obtained with the cavita-
Ling wire ahead of the foil.

In conclusion, it is shown that the application of sand roughness
can be regarded as an effective means to eliminate all scale effects on
bubble cavitation. The method has the advantage of avoiding the
complications involved in obtaining a high bubble concentration in the

flow ahead of the body. However, the application of sand roughness is

rather critical. Configurations VI and VII were without effect,

whereas for configuration IX the effect was somewhat too large. The use'.""'."
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of distributed roughness on the entire foil surface had the disadvantage

of promoting the occurrence of fixed spot cavitation.
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Figure 15. Attached cavity for configuration IV. The location of the
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K%

J. P _P

w . . . % ", . - . - . -- . " , % . - . , % - . - " % - . - - . - . - - ,. - . - . - % "



525

Figure 19. Same phenomenon and location as for Figure 18 but at lower
pressure (Vo = 19.6 m/s; a = 0.96).
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Figure 23. Photographs showing attached bubble cavitation for
configuration IX.
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Figure 24. Attached bubble cavitation for configuration VIII. The
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Figure 25. Attached bubble cavitation for configuration VIII. The I A
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Discussion

H. Tanibayashi (Mitsubishi Heavy Industries)

As a result of this work, particularly the throwing of light into
the microstructure of boundary-layer flow as interacted with nuclei, I
learned the effectiveness of the narrow-band sand roughness, which I
think deserves application to the propeller experiments. But on look-
ing at the cavity shape in Figure 22 centered around the midspan and
not distributed as spots over the span, i.e., lack of two dimensional-
ity, may I ask the authors if there are still some other factors to be
considered about spanwise scale (effect) of cavities?

R. Sato (Ishikawajima-Harima Heavy Industries)

The authors must be congratulated for success in taking pictures
to prove nuclei generation from sand roughness.

1. In the extension of this discovery, can we also find the
growing process of nuclei, if we enlarge only the upstream
part of the picture of the attached cavity, for example, in
Figure 25?

2) I think many microbubbles are scattered in some range along
the direction normal to the foil surface at the end of the
minute cavity attached to the roughness. why were only three
bub- bles very near the surface were shown in Figure 27?

. R.L. Waid (Lockheed Missiles & Space Company)

1. The incipient cavitation numbers presented for most of the
roughness models (between 40 and 90 percent of the data for
each configuration) are greater than the dissonant cavitation
number at the same Reynolds number. Most previous test data
indicate that incipient conditions are lower than dissonant
conditions. Is there any explanation for this new result?

Can it be explained by the test procedure that preconditions
the nuclei population in the entire tunnel?

2. The three nuclei shown in Figure 27 apparently are in the
laminar sublayer of the boundary layer, while the cavitation
attached to the roughness elements is as large as the full ..-.-.. ,
height of the boundary layer. Since these roughness-gener-

ated nuclei are apparently the source of the attached cavi-
.* tation further downstream, the mechanism for their occurrence

in the near-surface layer may be critical to the effective-
ness of the roughness in affecting scale effects. If the

*1 -
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nuclei are injected farther from the wall, but still within
the boundary layer, attached cavitation may not occur but
traveling-bubble-type cavitation would be expected. Do you
have an explanation for the apparently selective injection
nuclei from the roughness cavitation into the near-surfacelayer? j-'.-

V.H. Arakeri (Indian Institute of Science)

The inception observations have been conducted with several con-
figurations, among which the method of leading-edge roughing has been
utilized. Is the primary aim of adding leading-edge roughness to stim-
ulate turbulent boundary layer? If so, then the roughness location has

to be chosen extremely carefully so that cavitation inception charac-
teristics of the basic profile are not altered. If roughness is located
in the critical areas near the minimum pressure point, then the incep-
tion characteristics are determined by the combined effects of the pro-
file geometry and roughness. In view of this, it is somewhat surprising
that the authors find Gi values greater than -CPmin values. It
would be interesting to know from the authors the reasons behind
observed values of 0

i being greater than -CPmin values.

S. Gowing (DTNSRDC)

The demonstration of the independence of traveling bubble cavi-
tation from viscous effects discussed in this paper is significant.

The results of this study seem to vindicate a correlation of the

inception index with the nuclei concentration. It might be possible
that the index was higher for Configuration III than IV because of the
greater number of nuclei, as opposed to the low-pressure fluctuations
from the wire vortex shedding. Also, one would expect more nuclei to
be generated by Configuration IX than VIII because the larger area of
roughness and the inception index are indeed higher for Configuration
IX than for VIII. Because the increasing number of nuclei with dif-
ferent configurations do not produce an asymptotic approach of the
inception indices to -CPmin, the conclusion of the study might be
that the inception index is numerically related to the nuclei concen-
trations and does not approach -CPmin in the limiting case of "suffi-
cient3 nuclei.

T.T. Huang (DTNSRDC)

The cavitation observed in this paper is limited to the traveling- •
bubble-type cavitation. The occurrence of cavitation events depends on
microbubble population. Artificial seeding by electrolysis or rough-
ness has been shown to reduce scale effect on cavitation. Most of your

* roughness devices were located near the leading edge. A beneficial
advantage of using these roughness devices to reduce scale effect on

~~. .. . . -" , .. . . . . . . . . .- •. . . . . . . . ... . - - , 0 " " . ." " ," o -- . - - • "
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traveling bubble cavitation had been clearly demonstrated by the au-
thors. Your fundamental finding is a significant contribution to our .2
field of cavitation research.

For attached sheet cavitations near the leading edge of hydrofoils
or propellers, most of your roughness devices are difficult to apply. - -
However, distributed roughness with size around 30 pm had been used at

"* DTNSRDC. These distributed roughnesses were found to eliminate almost
all the cavitation-scale effect on headforms and hydrofoils. The at-
tached cavitations were observed around the location of the minimum
pressure points, and the values of oi were found to be equal to the

. values of -CPmin.

. Author's Reply

Jan H.J. van der Meulen and Ye Yuan-Pei ,

We agree with Dr. Tanibayashi's remark on the lack of two-dimen-
sionality observed in the cavitation pattern of Figure 22. In this

case the generation of nuclei by the roughness elements was not quite
- evenly distributed along the span. Another factor that might affect U
*. the two dimensionality of the cavitation pattern is the sidewall bound-
*. ary layer (Jacobs, 1980). To eliminate this influence as much as pos-

sible, the present study was concerned with the central part of the
hydrofoil only.

With regard to Dr. Sato's questions on the growth of nuclei, in
analyzing the relevant hologram we did observe nuclei ahead of the cay- L

". ity shown in Figure 25. However, to study the actual growth of such
nuclei it would be necessary to make a series of holograms at short

". time intervals, in other words, to use high-speed holocinematography.
*" The application of this technique is described by Lauterborn (1979).

Dr. Sato and Mr. Waid both raise questions on the interpretation of
Figure 27. In the hologram it was observed that the cavity did not
only generate nuclei in the viscous sublayer but also in the outer
boundary layer. we agree with Mr. Waid's suggestion that nuclei gener-
ated in the viscous sublayer lead to attached bubble cavitation, where- "

., as nuclei generated farther away from the wall lead to traveling-bub-
ble cavitation.

The observation, as pointed out by Mr. Waid, that in a consider-
able number of cases ci was found to be slightly larger than cd
has, in our opinion, no physical significance. In performing these

* measurements, od has always been measured first. Human factors in- ---

volved in attempting to apply the well-known 50-percent criterion for .
inception may well have caused certain discrepancies.

Dr. Arakeri emphasizes the importance of the roughness location _
relative to the minimum pressure point. The present study has shown
that stimulating a turbulent boundary layer should not be regarded as"--
the primary aim of adding sand roughness in the case of bubble cavita- 2- .K '-
tion inception. In the case of sheet cavitation, where the minimum

: .- * i-

*~..:.;.~..:j:.::.:.:..i-::2 --......

.. ,.9... -%"-.



-C702- - - - - .T O I

545

pressure point is usually located near the leading edge of the foil,
the situation is not yet clear. We do not know the reason for the fact
that Gi,d was found to be somewhat larger than -CPmin for config- .I.-
uration IX. We expected ai,d to be equal to -CPmin. Mr. Gowing
suggests that it could be due to having a greater number of nuclei gen-
erated by configuration IX than VIII. However, an analysis of the
relevant holograms showed that the number of nuclei generated by con-
figuration VIII was actually greater than for configuration IX.

Dr. Huang's finding that distributed roughness was able to elimi-
nate scale effects in the case of attached sheet cavitation deserves
full attention. We are anxious to learn more about the detailed test .
results and the mechanisms involved. -
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The Role of Microbubbles on Cavitation
Inception on Head Forms

The Catholic University of America
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ABSTRACT

Water tunnel observations of the inception of cavitation on head-
forms and hydrofoils have shown a wide variation of results obtained at
different testing facilities. Free stream microbubbles are known to
play a significant role in the cavitation inception process. To quantify

the role of these microbubbles, a light scattering instrument was used
to measure the microbubble distribution in the three Variable Pressure

Water Tunnels at DTNSRDC. At the same time, cavitation observations
were made on headforms having different boundary layer characteristics.

-- A new set of parameters based on bubble dynamics is used to parameterize

the inception problem. A functional relationship is given that corre- 'I
,- lates the cavitation inception index with the surface tension parameter

and the bubble blowup time parameter. The analysis shows that a general
decrease in the cavitation inception index with a reduction in the test ,-
velocity is a result of the change in the ratio of the internal gas pres-

sure to the equivalent surface tension pressure of the microbubbles in
the fluid. The group effect of the microbubble spectrum on the incep-
tion of cavitation is discussed. In general, the parameters show that
cavitation of large-scale, high-speed prototype systems is largely
independent of the size distribution of the available microbubbles,
whereas small scale model systems operating at low speed can cavitate
only when a narrow band of microbubble sizes is available.
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NOMENCLATURE

C -diameter of headform or chordlength of hydrofoil

*C ~ - P )/(pU2/2), pressure coefficient

C =minimum pressure coefficient on flow boundarypmin

*C =minimum pressure coefficient inside the vortex corePC

C =s minimum pressure coefficient inside laminar separation zone

N =number of microbubbles

P -absolute local pressure

P -absolute minimum local pressure
min

P -absolute ambient pressure
wo

P -o absolute ambient pressure at cavitation inception

AP P - P ,maximum pressure drop
min min wo,

P =initial partial pressure of air inside the bubble

P =total initial gas pressure inside the bubble
go -V,

P =2a/R9 ,initial pressure due to surface tension
G0o

P =vapor pressure of fluid. k

R, R =bubble radius and initial radius
0

*R Reynolds number
e

T =t /t ,blowup time parameter
u b9

U =mean flow velocity
0

X, Y =horizontal and vertical coordinates normalized by C9
respectively
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r = .~(~A~I)-O.5/R. viscous parameter

n1, Ti. P 'ItiJP minl 1,Pwoi 'JAPmin' bubble cavitation parameters

=P /P.09 surface tension parameter
wo 0

t =time

t =C /(I-c )0.5 U01A characteristic time for the bubble tou pmin o
pass through the low pressure zone.

t = OR /U (-C ./2)0.5, characteristic time of blowup
b 0 o pmin

a percent saturation of gas in liquid at standard temperature
and pressure .

a =percent saturation of gas under conditions in the test sec-
tion of water tunnel

percent of G in which C /C > 0.95
p pmin-

r) RIR , normalized bubble radius

=viscosity of liquid -

P mass density of liquid

o = surface tension of liquid

P .P
a = wo]. V incipient cavitation index

0

( jA1*~j ~ .5 normalized time
P /R

*0
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INTRODUCTION ... ,.

Most heavily loaded hydrofoils or propellers will develop tip vor-
tex and surface cavitation at high speed. The occurrence of cavitation
leads to undesirable changes in hydrodynamic performance, noise genera-
tion, and physical damage from vibration and erosion. Therefore, the
ability to predict the occurrence of cavitation becomes an important
engineering problem. Because of the complexity of physical processes
involved with cavitation inception, the prediction of cavitation per-
formance has relied heavily on model experiments and extrapolation of
the results to full scale. Unfortunately, the physics involved in the
inception process have not been fully understood.

It has often been observed that cavitation takes a variety of forms
which may differ from facility to facility with a similar model or even
the same model. The famous example is the testing of the ITTC (Inter-
national Towing Tank Conference) standard headform. Tests on this flat-
faced ellipsoidal body were carried out in many different laboratories
throughout the world. Measured cavitation inception indices on this
single headform ranged dramatically from 0.4 to 1.0 [1]. Even the ap-
pearance of the cavitation varied, some forms looking totally dissimilar
from one another. These apparently chaotic results were clearly pointed --

out by Lindgren and Johnson [2] and further discussed by Acosta and
Parkin [3]1.

Parkin and Kermeen were the first to show clearly in their photo-
graphs that cavitation on e hemispherical headform [4] was preceded by
a region of microbubbles which grew in the boundary layer. Subsequent
works by Arakeri [5] and Arakeri and Acosta [6] showed that these micro-
bubbles were associated with a zone of laminar flow separation.

Ripkin and Killen [7], were the first to measure microbubble size
distribution and demonstrated the importance of microbubbles for certain
types of cavitation. Subsequent work at California Institute of Tech-
nology [8], Pennsylvania State University [9,10] and DTNSRDC [11,12]
has shown the dependence of traveling bubble cavitation on microbubbles.
However, the size range of traveling microbubbles that contributes to
the explosive growth and collapse of cavitation is not adequately known.

In order to apply measurements of traveling bubble cavitation to
the prediction of full-scale cavitation performance, the size distribu-
Lion of free bubbles in laboratory testing facilities and in the sea
must be measured. Work to characterize the influence of free bubbles on
cavitation at sea is currently being undertaken at DTNSRDC. Presently,
two optical techniques have been developed for nuclei measurement [13].
The holographic technique produces a hologram of a known volume of water
from which the concentrations of different diameter nuclei are counted.
The light scattering technique utilizes the light scattered from indivi-
dual nuclei passing through a light beam to determine their size. The
light scattering device developed by Ling was used in this investigation.
A brief description of this device is given in Reference [13].

The present paper presents the measured microbubble distributions
in the 12, 24, and 36-inch Variable Pressure Water Tunnels at DTNSRDC
and their influence on the inception of cavitation on two headforms. 110
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One of the headforms was hemispherical, and under all test conditions
experienced laminar separation ind a decrease in surface pressures
downstream of the minimum pressure location. As will be shown below,
when sufficient microbubbles were present, cavitation inception of the
traveling bubble type occurred near the minimum pressure location; for
reduced microbubble content, cavitation inception of the ring type oc-
curred downstream of the minimum pressure location in the separation
region.

The second headform was a blunt cylindrical headform which experi-
enced turbulent separation at its leading edge, and under all test con- -4
ditions the pressure coefficient distribution on the headform remained
essentially unchanged. Cavitation inception for all microbubble popu-
lations was of the vortex type. Within the range of test conditions, no
direct effect of Reynolds number on the flow regime or the pressure
distribution was evidenced.

Although the mechanics of cavitation has fascinated scientists for .
over a century, two fundamental aspects of the problem still remain
unresolved; namely, the mechanics of the inception of cavitation and the
mechanics of erosion by cavitation. There is a general lack of proper
parameters for defining the inception of cavitation as well as a lack
of knowledge concerning the high energy physics associated with the
implosive collapse. It is the purpose of this paper to clarify the JiD

former problem.
Historically, the inception of cavitation has been linked to the

boiling or outgassing phenomenon. Boiling is an evaporative process -

which is initiated when a liquid is heated or the absolute ambient pres-
sure Pwo is lowered below the vapor pressure of the liquid Pv. Outgass-
ing is a diffusive process which is initiated when the liquid becomes
supersaturated with dissolved gases. Therefore, it is customary to
parameterize the cavitation inception by an index defined as

P P
wo - v (1)

where U0 is the reference ambient flow velocity and p is the mass den-
sity of the fluid. The term Pwo - Pv of Equation 1 represents the ex-
cess static pressure that prevents evaporation or outgassing, while the
denominator pU2/2 represents the dynamic pressure of the flow system
that can produce low pressure for cavitation. For most physical prob-
lems involving cavitation over headforms and hydrofoils, however, the
inception of cavitation is due to the relatively faster process of
direct expansion of the precompressed, noncondensible, microair bubbles
that persist in all real fluids [14]. That is, the initial equilibrium
gas pressure Pgo = Pao + Pv in the microbubbles is responsible for the
blowup when the external balancing pressure is reduced, where Pao is the -
partial pressure of air in the bubble. More precisely, it is the net
internal pressure Pao + Pv - Po = Pwo that is responsible for the fast
blowup process, where Poo is the pressure due to the surface tension,

Pwo is the ambient pressure and the subscript o indicates the initial

..................................................
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equilibrium condition. Both the evaporative and diffusive processes

are considered to be too slow to have z, direct contribution to the
dynamic processes; they may, however, have a strong influence on the - '
initial size and concentration of bubbles in the fluid system which in

turn will affect the cavitation. This is what makes the subject of
cavitation inception such a difficult and complex problem. With our {
present capability to measure the size concentration of microbubbles,
we shall discuss the microbubble effect on the inception of cavitation.

From the preceding discussion it is clear that the parameter that
influences the potential blowup of microbubbles is Pwo and not Pwo - Pv.
Fortunately, Pv for most physical problems at ambient temperatures and
pressures is negligible with respect to Pwo. For example, in the case

of water at atmospheric pressure, the ratio of Pv/Pwo is approximately
0.02. However, for certain low speed water tunnel tests Pv may no
longer be small with respect to the low ambient pressure Pwo used in the
tunnel. In this case, both evaporative and outgassing processes may
become important. It is the lowing of the ambient pressure on the flow
boundary by the dynamical flow system Cpmin (PUo/2) = Pmin - Pwo = APmin
that is responsible for the cavitation process, where Cpmin is the mini-
mum pressure coefficient of the flow system, Pmin is the absolute mini-
mum pressure over the flow boundary, and APmin is the corresponding maxi-
mum pressure drop. It will be shown later that a meaningful nondimen-

sional pressure parameter can be expressed in the form

P P
wo wo

-C _pnPU2/2 lAP.i (2)
pmin 0min

Note that if v << P the E term can be related to the usual cavita-

tion index ai as Ei = oi/(-Cpmin), where the subscript i indicates the
state of incipient cavitation. -.

Since the inception of cavitation is a problem associated with
bubble mechanics, it will be shown that a second major pressure param-
eter for the problem is the surface tension parameter defined as

= /P (3)

wo nyo

If this parameter is small (4 < 10), the surface tension effect will
strongly inhibit the blowup of microbubbles. The influence of i on
cavitation may sometimes have been mistakenly attributed to an apparent

dependency of the cavitation inception index on the Reynolds number of

the flow.
A third parameter, a characteristic time, can be devised to param-

eterize the response of the microbubble to the pressure change the bub-

ble experiences as it is convected along the flow boundary. It is
e defined as the blowup time parameter

T = t/tb (4)

where tb is the characteristic blowup time of the microbubble and tu the
-e.,

I.
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characteristic time for the bubble to traverse the low pressure zone of : -:
the flow boundary. It will be shown later that this parameter can be
used to relate the dynamic response of the bubbles to the Ni and

parameters. If T is very large, the index of cavitation will be insensi-

tive to the model size.

A fourth parameter a is the percent of saturation of noncondensable -"

gases in the fluid. It will be shown later that this parameter has a
significant influence both on the distribution and the mechanics of mi-
crobubbles. Another important parameter is the equilibrium condition of
the microbubble approaching the headform. Computations by Ling [141
showed that large size bubbles will exhibit oscillatory motion when the

bubbles are subjected to a step pressure drop, such as that encountered

by bubbles passing through the contraction nozzle of a water tunnel. .
This initial os-illating motion of the large bubbles will then have a
significant effect on the bubble blowup characteristics.

It is clear that the inception of cavitation is too complex a Am

phenomenon to be parameterized by a single oi parameter. Thus with

proper parameterization many unresolvable problems may now be clarified. .

In order to quantify the parametric values for the inception of
cavitation, it is necessary to define the state of incipient cavitation.
In general, the unstable blowup of microbubbles is considered to be the

state of cavitation inception while small stable bubble oscillations are

not. A more specific definition becomes a diffcult subject. For prac-

ticality in the present analysis, we shall define inception of cavitation
as the condit±oi in which bubbles blow up to more than 10 times their
original equilibrium size and reach a visible size greater than 0.5 mm

in diameter. The criterion for blowing uplO diameters is related to
the ability of the bubble to produce a significant collapse pressure. A

more customary specification is to define the inception condition by a
minimum number of cavitation events per unit time. This is related to
the number density of microbubbles and has no direct connection with the

mechanics of cavitation. We shall see in the following sections how

these parameters and specifications are interrelated.

STATEMENT OF THE PROBLEM "N"

It is well known that all real fluids are not absolutely pure,
instead they generally contain a significant amount of solid nuclei and .*,

noncondensable gas in both free and dissolved states. Hence, it is ".\

-p' reasonable to assume that the inception of cavitation should mainly
depend on the mechanics of microbubbles, and we shall use it as a base
for all subsequent analysis. This paper will be limited to the treat-

* ment of microbubbles moving over hydrodynamically smooth boundaries.

Cavitation involving substantial evaporative and diffusive processes,
and cavitation involving rough surfaces and other special conditions are.,. ...

considered as special problems and not treated in this paper. Indivi-

dual bubble mechanics will first be treated and then be followed with %

:-.:%

%,. "%! %:!



- - 5 4 - ---

5A4

the discussion of the effects of groups of microbubbles. The computed
results will be compared with the experimental observations in the
DTNSRDC water tunnels.

Governing Equations

The basic equation governing the dynamics of a spherical micro-

bubble can be expressed by the Rayleigh-Plesset euqation given as,
Ling [14]

1 P(T)
1

2 + 4r R 1) -- +(5)
q4.2 I A-- pminl'.. • -

where the normalized bubble radius n is defined as R/Ro; R is the radius ' "
.

of the air bubble and subscript o indicates the initial state; I and n g
are the normalized bubble wall acceleration d2ri/dr 2 and velocity dn/dT, ;-.•..
respectively; and the time t is normalized as

____m_ t (6)O R "
/ 0

The normalized viscous parameter is defined as r = p(pIAPminl)-0-5/Ro,
where vi is the viscosity of the fluid; and P(T) is the ambient pressure
the bubble experiences as a function of the normalized time T. The
pressure parameters H and q are defined by Equations 2 and 3, respec-
tively. Equation 5 can be solved numerically for any combination of the
1! and i parameters and the pressure time history P(T) that the micro-
bubble experiences as it is convected along a given flow boundary. Un-
less the fluid is very viscous compared with water, the r parameter does ".'
not play a significant role in the present problem.

Equation 5 does not admit a general solution for the inception of
cavitation. The Hi parameter has to be solved by an iterative procedure .

for each individual case. However, it will be shown later that within
a practical range of parametric values a functional relationship among .,-

Ri , p, and T parameters can be obtained, see Figure 1. Detailed discus- :---
sion of this function will be given in the following sections. For the
following studies, microbubbles flowing over the flow boundary were as-
sumed to be convected at the speed dictated by the potential flow field
with no consideration for the boundary layer effect. Thus, the ambient
pressure P(T), which the bubble experiences as it slides along a given

flow boundary, can be obtained directly from the given distribution of
pressure coefficient Cp after proper transformation of the space and
time coordinates.

It will be shown later that the T parameter in Equation 4 can serve
s a useful variable relating the bubble mechanics to the external forc-

ing function P(t). We define the characteristic time tb for the micro-
bubble to blow up as the time for it to reach an unstable size of n > 3.

,,w. ,. ' # " . , , . ,, -. ,-* * . . , ..-....-.. ,.....*,% .... . . .. . . .. , ..... % ...6. %. j V S. S
*., %..., %' - % ~ . * .- 5 5
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For the case of a step change in Pmin the normalized time T for the .-,.",-%

bubble to blow up was found to be approximately 10, see Ling [14].
Therefore, from Equation 6 we have tb = 10 RO (JAPmin/p)-0.5 =

10 Ro/Uo (-C min/2)0 .5 . We further define a semiempirical character-

istic time the bubble is subjected to a low ambient pressure of
Cp/Cpmin >0.95 as tu = C(I - Cpmin)0 .5 Uo, where C is the diameter of '-.

a headform or the chord length of a hydrofoil, a is the fraction of
chord length in which Cp/Cpmin >0.95, and (1 - Cpmin)0 "5 Uo is the
effective convecting velocity in the low pressure zone. Therefore, the
blowup time parameter T can be expressed as ..

T t /t = (7)u b1 0.514 R (I)
o Cpmin

The numerical solutions from a few headforms and hydrofoils show that
for a characteristic time T greater than 40 the physical size of the
model becomes unimportant in dealing with the scale effects of travel-
ing bubble type cavitation inception. This is because there will be
sufficient time for the bubble to blow up. Note that the rate of growth
required to reach a blowup state for a large bubble is slower than for
a smaller bubble as indicated by the functional form of T in Equation 6.
Hence, a large bubble may suffer from a lack of time to blow up on a
small model. As an example, for a typical hydrofoil with Cpmin = -1.0,
=0.1, and R. = 0.001 cm, a minimum model chord size of C greater than

8 cm is required in order to achieve T greater than 40 and hence avoid
size scaling effects.

TESTING FACILITIES AND EXPERIMENTAL SETUP

Cavitation observations on two different headforms representing
different boundary layer characteristics were carried out in the

"" DTNSRDC 12-, 24-, and 36-inch variable-pressure water tunnels.
The 12-inch water tunnel is equipped with an open jet test section.

This tunnel has a bypass deaeration system that provides simultaneous
water filtration and deaeration to as low as 2% of saturation at stan-

"-' dard temperature and pressure (STP). The maximum testing velocity for
this tunnel is 7.2 m/s.V" Both the 24- and 36-inch water tunnels are equipped to operate

either as an open jet or a closed jet testing system. For the present
investigation, only the closed jet test sctions were used. The 24-inch
water tunnel does not have a bypass filtration/deaeration circuit as

does the 12-inch water tunnel. Deaeration is accomplished by pulling a
vacuum on a free surface inside the tunnel. The minimum attainable air
content using this technique is about 25% of saturation at STP. The
maximum operating speed is approximately 14 m/s.
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The 36-inch water tunnel, unlike the 24-inch and 12-inch tunnels, '
was used with its bubble resorber in place. The resorber consists of
an equivalent of four folded lengths of 2 4.4m long pipe whose bottom
elevation is 35 m below the test section. The long residence time of
the bubbles in the resorber combined with the resorber's high hydro-

static pressure are applied to drive the microbubbles into solution.
This tunnel is also equipped with a deaerator. The minimum air content
achieved is approximately 25% of saturation at STP. The maximum speed
of this tunnel is 22 m/s. -.

A hemispherical headform and a blunt cylindrical headform were
selected for the present investigation. All headforms used in the 12-
and 24-inch water tunnels were manufactured from brass with the surface
highly polished. The hemispheric headform was 7.6 cm in diameter,
while the blunt headform diameter was 5.7 cm. Each headform was equip-
ped with 12 piezometric taps for pressure distribution measurements.
The headforms used in the 36-inch water tunnel were 10.2 cm in diameter
and were made of plastic. No pressure taps were made for these models.
The influence of surface materials on cavitation had been studied by
Peterson [11]. So long as the headform is smooth, the surface material

°. has no effect on bubble cavitation.
A pitot tube was used for monitoring the mean velocity Uo . The

static tap of this tube provided the reference pressure for the mean T
flow-field. All pressure taps were connected to a bank of mercury
manometers for monitoring the pressures. Alignment of the headform . .
axis with the flow was checked by taking the pressure distribution
measurements at different angular locations on the headform. All ab-
solute pressure measurements were referred to the center line of the
headform.

The general view of the microbubble detector used in this experi-
ment is shown in Figure 2. It is based on a dark-field, specular-
reflection technique to differentiate a solid particle from a micro-
bubble [131. Water was continuously withdrawn from the high pressure
end of the water tunnel, just upstream of the flow contraction section,
through a 2-inch plastic pipe to the bubble detector. The water was
then returned through the downstream end of the test section. Since
the pressure at the bubble detector was different from the pressure in.....
the test section, this pressure difference was noted and a small cor-
rection for the measured bubble spectra was made based on the ideal gas
law and bulole mechanics. C.

Measured bubble spectra obtained in the 12-, 24-, and 36-inch water
tunnels are shown in Figure 3. The corresponding test conditions are
given in Table 1. The influence of these microbubble spectra on cavita-
tion inception will be discussed in the following section.
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FIGURE 3. Measured bubble spectra. Curves A, B, C, H, and I are
* from the 12-inch water tunnel; Curves D and E are from the9
* 24-inch tunnel, and Curves F and G are from the 36-inch tunnel.
*The corresponding water tunnel operating conditions are

listed in Table 1.
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. E.S AN70 UISCUSSION

Thc U. Sfulness of the dynamic Equation 5 was first tested against
oita obtained experimentally by Van der Muelen [15], who tested a NACA

4412 hydruf, il section having a chord length of 7 cm. The computed
potential flow pressure distribution for the hydrofoil at an attack
angle of 0 degrees is shown in Figure 4. For the conditions of the test
case, viscous effects are expected to be unimportant in the region of
cavitation inception. For a mean flow speed of Uo = 10 m/s and a cavi-
tation index of oi = 0.68, the solution of Equation 5 indicates that this
test case corresponds to the critical conditions required for the blowup . -.

of a R. = 10 um bubble. The corresponding values for the new cavitation
inception parameters are Hi = 0.86, p = 2.3, and T = 57. Thus, it may
be seen from Figure I that, the inception of cavitation is sensitive
to changes in the value of the surface tension parameter about i = 2.3 _

and insensitive to changes in I about T = 57 which implies insensitivity
to the size of the model. The relatively large traveling bubbles devel- - 'oped over the hydrofoil as predicted by the theory are shown in the

lower part of Figure 4. It was further found that microbubbles in the
range of 10 im < Ro < 200 pm will all blow up and collapse almost with
the same pattern; i.e., growing approximately to the same maximum size
and collapsing at the same chord position. This phenomenon has also
been reported by Kodama, et al [161. The patterns of traveling bubble
cavitation predicted are essentially the same as those observed experi-
mentally by Van der Meulen [15, Figure 44] for the same flow condition

but with a slightly higher ci index of 0.70.

he-iiisp :urical Headform.

We next study in detail the cavitation inception characteristics
of a 7.6 cm diameter hemispherical headform. The computed and the mea-
sured pressure distributions for the headform are shown in Figure 5 as -
the continuous curve and data bars, respectively. Laminar flow separa-
tion was found to start at X = 0.46 and reattach at X = 0.52 to 0.54
depending on flow speed. The flow separation was measured using an oil
paint technique, see Figure 6. The same result of flow separation was
observed by Carroll [10].

For this specific problem, the computed results for Hi are plotted
as a function of the dimensional variables Ro, Uo, and Pwoi as shown in
Figure 7. The nondimensional form of Figure 7 is given in Figure 1.
We note that for a given test speed U0 , only a limited band of micro-
bubble sizes can blow up. In general, smaller values of Ro are limited
by the surface tension parameter y, while the larger values of Ro are
limited by the blowup time parameter T. As an example, for a test speed
of 10 m/s, with Ii = 0.88 or Pwoi = 0.3 atm, only a narrow band of bub-
ble in the range of 10 ,im < Ro < 100 u= will blow up. As the test speed
is increase' the bubble cavitation parameter hi tends to approach 1.0
in the lim.,. due to the blowup of small bubbles in the range of 1 um to

A
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10 i m. This is because of the large increase of Pwoi with the increase
of Uo, such that y Pwo/Po becomes very large and the Hi parameter

becomes independent of the surface tension effect, see Figure 1. This
general increase of Hi or ai with the testing velocity is sometimes
referred to as an apparent Reynolds number effect. For bubbles with

Ro > 50 im, the reduced value of Hi is constant and independent of the
test velocity at large Uo . In this case, the T parameters for Ro =

50 lim and 100 m are 7.2 and 3.6, respectively, see Figure 7.
It is important to note that in the range of i < 10 where bubble

blowing is sensitive to surface tension, with Ri having a large slope
dlli/dU o , the bubble blowup is very distinct; i.e., the bubble blowup or .9
no blowup condition is separated by a very small range of values of Ri
or oi. In the range of T<20 where bubble blowup is sensitive to the T
parameter, with Hi having a small slope di/dUo, the blowup character-

istic is not sharp; in this case a minimum bubble blowup size of 0.5mm
in diameter and n >10 are defined as the state of blowup. We shall use
Figure 7 as a basis for interpreting the test results obtained in the -
12-, 24-, and 36-inch water tunnels.

As a first example, consider the maximum operating speed of Uo =

"*"" 7.2 m/s in the 12-inch water tunnel. The bubble cavitation parameter ''"
Hi was found to be 0.86, with Pwoi = 0.17 atm and the air content at the
test section ao = 27% of saturation. It is found from Figure 7 that the
bubble sizes involved in the blowup at this test condition are in the
range of 20 jim < Ro < 100 m. The computed locus of the blown up bubble
diameter for these bubbles is shown as the dot-dashed curve in Figure 5.
This pattern is generally confirmed by high speed photography. The
measured bubble spectrum is shown in Figure 3 and marked as curve A.
From this spectrum we found that there were approximately 3 x i0

4

bubbles/m3 of Ro = 20 to 100 wm bubbles. Considering that a 2 mm layer .
of water surrounding the headform was associated with the cavitation
process, it may be shown that there will be approximately 100 events of '-

cavitation per second. The inception point was called by visual obser-
-. " vation under a strobe light when there was, on the average, one observed

blowup event per second. The strobe light flashed for a duration of
10- 3s and ran at a maximum rate of 20/s. This rate was limited in
order for the eyes to retain a frozen image. The blowup lifetime of a

bubble was approximately 0.002 of a second. Thus, for a duration of
0.002s per event there would be two observable events per second. This
value is about the same order of magnitude as we have observed on the
model. In this test, high speed photography also shows occasional
glassy sheet cavitation at the zone of laminar separation.

As a second example, we consider the case of a test speed of 6.8
m/s, with the Ili parameter value increased to 0.89, Pwoi = 0.16 atm and

0 41%. The inception condition was found not to be as sharply
defined as in the first case. The measured bubble spectrum is shown as
Curve B in Figure 3. There was a large increase in bubble concentra-
tion by a factor of 4 larger than in the previous case. This was prob-
ably due to cavitation of the tunnel impeller which tended to produce
more microbubbles at low values of absolute tunnel pressure. From ,- .

Figure 7, one notes that only large bubbles in the range of 40 to 100 wm
blow up, and the blowup condition was strongly limited by the influence

;..", ~.. -. ........ ..... . ..........V- % "-., - ,." ,. .
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C (potential flow)

0 0. 00.0608-.
-0.4.

-00.2

00

FIGURE 4. Pressure distribution over the top surface of NACA 00-4412
hydrofoil at 0 deg attack angle. Lower curve shows the locus of the
bubble diameter for the cavitation inception of a RO= 10 pim bubble

with U0 =10 rn/s and achord of C 7cm.

cp

0.5

FIGURE 5. Computed and measured pressure distribution over a
hemispherical headform for Re = 4 x 105 o16 ou fbbl

diameter for the cavitation of a to 06 Loso bubblea
initial bubble oscillation of 50% of R0 and Hi = 1.0 is shown

as the dashed curve. The cavitation of a R0 = 10 pim with
Hi 0.86 is shown as the dot-dashed curve.
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a.-

C.

FIGURE 6. Visualization of the laminar flow separation on hemi-
spherical headform using oil paint.

a. In 12-inch water tunnel with Re = 4.6 x 105
b. In 24-inch water tunnel with Re = 7.5 x 105~
c. In 36-inch water tunnel with Re = 1.7 x10
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of the T parameter. Hence, the condition for cavitation was found not
to be distinct, and it could be called over a range of HR values. The
concentration of bubbles having values of Ro between 50 um to 100 pm was
found from Curve B of Figure 3 to be 2 x 104 /m3. Therefore, one could
account for calling cavitation inception at a higher value of ni than
in the preceding case.

As a third example, we consider the case with a test speed of 6.9
m/s and a near saturated air content of Q = 80%. The measured value
of the 71 parameter was 1.01 with Pwoi - 0.19 atm. Although the bubble
spectra for this case shows a further large increase in the bubble con-
centration, as indicated by Curve C of Figure 3, it is seen from Figure
7 that no equilibrium bubbles of any size could have blown up under this
testing condition. High speed photographs indicate that the cavitating
bubbles appeared like regular traveling bubbles, but the cavitation oc-
curs as far forward as X = 0.3 measured from the tip of the headform.
This is very far forward of the Cpmin location. The photograph shown
in Figure 8 was taken at a H value slightly lower than that at the in- -
ception condition. It is further noted that this photograph was taken
after the flow visualization with the thin oil paint in the laminar
separation zone still visible on the headform surface. Simulation by . -
Equation 5 of a large Ro = 50 um bubble with Hi = 1.0 and an initial

* oscillation of 50% of its initial size was found to blow up. On the
other hand a smaller oscillation will cause no blowup. The locus of the
oscillating bubble diameter is shown in Figure 5 as the dashed curve.

*-o. From Curve B of Figure 3, the concentration of bubbles in the size range
-R, = 50 pm to 100 pm was 1.5 x 10/m 3 . Again there would be enough bub-

bles to cavitate under this mode and for fli to be measured at 1.01.
It is postulated that the initial oscillatory mode of the large

bubbles could be caused by the step pressure drop when a bubble moves .
. . from the high pressure section of the tunnel into the low-pressure test-

section of the tunnel [14]. For this test, the maximum upstream tunnel
pressure Pwo was at 0.84 atm and the low pressure in the test section
was at 0.19 atm. Hence, the equivalent H parameter, Pwo/IAPminj = 1.3, -.
could cause large bubbles upstream to continue to oscillate at a fre-
quency of approximately 29 kHz and an amplitude of more than 1.5 times '
their equilibrium radius at the headform. Smaller bubbles, due to their
higher frequency of oscillation and damping, would have no significant
oscillation left when they reached the headform. Thls, if the large
microbubble concentration is greater than 105/m3, their nonsteady oscil-
lation mode can also affect the cavitation index. It is noted that the
maximum theoretical value of bubble cavitation parameter Hi is 1.0.
However, experimental values of Ri greater than 1.0 were observed under
many test conditions. It is believed that the blowup of large size
bubbles due to initial oscillation is the reason for experimental values
of Hi to be greater than 1.0.

The same hemispherical headform was tested in the 24-inch cavita-
tion tunnel. Consider a case with U0 = 13.8 m/s, 7i 

= 0.94, Pwo = 0.68 S
atm and a, = 42%. The bubble spectrum for this case is shown as Curve D
in Figure 3. Except for the presence of more smaller microbubbles, the
general distribution in this case is similar to Curve B for the 12-inch
tunnel. This result as expressed by a triangle and D mark in Figure 7,

"o- . . . . . . .
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FIGURE 8. Travelling bubble cavitation in 12-inch water tunnel with
U. 6.9./s and 1• 1.0.

FIGURE 9. Ring and travelling bubble cavitation in 24-inch water

tunnel with U n18.8 /s and 0.84.
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indicate.s a general increase of the Hi parameter with the increase of
Uo , when the bubble spectrum remains nearly constant. By lowering the
tunnel pressure to 0.61 atm or Ri = 0.84, both traveling bubble and
ring types of cavitation were observed; see Figure 9. In general, the
bubble characteristics of this tunnel at lower test speeds were similar
to those of the smaller tunnel, i.e., the concentration of large micro-
bubbles tended to increase greatly at low absolute tunnel operating pres- - -
sures. The concentration of these large bubbles could cause early in-
ception of cavitation due to undamped bubble oscillations initiated by
the tunnel flow contraction; see operating point E in Figure 7. It
should be noted that the impellers for the 12- and 24-inch tunnels are
located at 4.1 and 5.8 m below the test section, respectively. This
fact together with the lack of a bubble resorber in either tunnel may
have contributed to the uncontrollable production of large microbubbles .. -
in these tunnels. , -,

We next consider similar tests conducted in the large 36-inch
cavitation tunnel. This tunnel was equipped with the bubble resorber, .
and the impeller is located at 8.7 m below the test section. Hence, the
measured bubble distributions under a wide range of Uo, co, and Pwo
showed no tendency to produce extra microbubbles as shown by Curves F
and G in Figure 3. Curves F and G are for the conditions of Uo = 6.1 m/s
and 21.3 m/s, with ao = 94% and 11%, respectively. Bubble concentrations
for similar values of ao were much less than in the two smaller tunnels
not equipped with a bubble resorber. Only ring-type cavitation was
observed in the 36-inch water tunnel, which occurred at oi = 0.62 or
-i 

= 0.80. The leading edge of the ring coincided with the leading edge
of the laminar separation bubble as indicated by the oil paint flow .-
visualization. The cavity appearance was similar to that observed by
Arakeri [5,6] and by Katz [17]. The bubble ring cavitation reported by
Parkin and Kermean [41 was not observed. Because the concentration of
microbubbles in the flow field was so low, no traveling bubble type
cavitation was observed in this test facility.

Due to the fact that microbubbles circulating inside the separated
flow zone could have very long residence times, they could grow by both
the evaporative and diffusion processes until they reached visible
sizes. Since these bubbles did not experience the lowest value of
Cpmin = -0.78 and were subjected only to the minimum separated flow
pressure of Cps = -0.62, see Figure 5, the Ri parameters for these bub-
bles in a separated flow should be redefined as

Pwoi . (8)C = UZ__2
Cps -0.. ..

The ai data for ring cavitation measured by Huang [20], Carrol [101,
and Gates [21] are recomputed in terms of Hi from Equation 8, and shown
in Figure 7. The values of inception parameter Ri for all cases fall
within 0.93 to 1.02. It is in a zone where no equilibrium microbubbles
should have blown up. Hence, these bubbles are of the nonequilibrium out-
gassing type; see Parkin [18,19]. Very similar to ring cavitation is

X.-
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the so-called spot or patch cavitation. Both ring and patch type
cavitation are found to be associated with highly deaerated water where
the number of bubbles with Ro greater than 10 pm is less than 104 /m3 .

Thus, due purely to the lack of cavitation events the cavitation index
is generally lowered to cause substantial production of the diffusive N.
gas bubbles. The small increase of Ki with Uo for these bubbles can
also be explained by the effect of the p parameter; see Figure 7. -

Blunt Headform

A distinctive type of cavitation known as vortex type cavitation
can be found to develop near the leading edge of hydrofoils when the "-
hydrofoil is at a high angle of attack, see Van der Meulen [15]. High
speed photography indicates that this type of cavitation is associated
with the line vortices developed through turbulent flow separation. The 9
inception of this type of cavitation can be studied by the use of a
blunt cylindrical headform. A 5.7 cm diameter blunt headform was used
to study vortex cavitation.* Tests were first conducted in the 12-inch
water tunnel at Uo = 5.6 m/s. The measured pressure distribution along
the headform is shown in Figure 10. The value of Cpmin was found to be
-0.7. The inception index ai was found to be 2.66, with Pwoi = 0.42 atm
and ao = 24%. The measured bubble spectrum is shown as Curve H in
Figure 3. High speed photography showed that the cavities were in the
form of thin cavity lines that appeared like hairs originating near the
wall, located approximately at one-half diameter downstream from the
leading edge of the headform. The cavity lines streamed away from the
wall at an angle of approximately 45 degrees, and terminated at the edge
of the separated flow which is one-quarter diameter from the wall; see
Figure 10.

By lowering the tunnel pressure, honeycomb-like vortex line pat-
terns became visible. This may be attributed to the self-induced twist-
ing between pairs of vortex lines before the outward-looping vortex
lines are stretched into hairlike vortices by the mean shearing velocity
field of the separated flow; see Figure 10. With a further lowering of
the tunnel pressure, one begins to see the caviation of individual lines .
of ring vortices being generated by the separated flow field. We fur-
ther noted that there was no substantial difference in the character-
istics of the cavitation, when the closed solid cylinder was replaced
by an open ended pipe section. This indicated that the vortical field
of the ring vortices were generated locally in the separated flow zone.
Furthermore, the drag coefficient for such a headform is known to be
quite independent of the Reynolds number when Re based on the size of
the headform is greater than 10. Therefore, we expect that the Ri
parameter should be quite independent of Re and should be only a function

*The type of vortex cavitation investigated here is not of the same ori-

gin as the hub and tip vortex types of cavitation occurring on

propellers.

.• ~~ .- ,' "
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f the ' and T parameters. Since vortex line cavitation must also start

as spherical microbubbles, the condition for incipient cavitation should

be the same as for traveling bubbles.
We assumed for this test case that there were sufficient concentra- 9

tions of large microbubbles which could contribute to a R i parameter of

1.0. Although we do not know a priori the net APmin of the system, one
may assume that APmi can be expressed as the sum of the C min of the
headform and the minimum pressure C in the core of the lne vortices.

Since we know that the drag coefficlent of this headform is constant
for Re > I04 , one may assume both Cpmin and Cpc are constant and inde- . .

pendent of Re for the present experiment. The cavitation inception
"* index for the blunt headform can be redefined as

P. P o.
- wol woi 1 (9) ""

" i -(Ci + C )PU2 /2 -(C +Cp(9
Imin pmin PC 0 pmmfl PC

Hence, taking Hi 1.0 and oi  2.66, we have (Cpmin + Cpc) -2.7.

Based on this net minimum C value and 8 0.5, one may obtain from

Equation 5 the functional relationship for Hi with respect to Uo , Ro ,
and Pwoi as shown in Figure 11. For the Ro = 100 pm bubbles the T

parameter is 17. We note that this size of bubble is relatively free I r

from the T parameter effect. With an increase in the test speed Uo
from 5.6 m/s to 6.8 m/s, the measured Hi parameter was found to reduce to

0.9. This can be explained by the significant reduction of large bub-

bles as indicated by the bubble spectrum Curve I in Figure 3 in compari-
son with Curve H. Similar behavior was observed in the 24-inch water
tunnel. Depending on the bubble spectrum, the Hi parameter could vary

over a wide range of values from 0.80 to 1.05. Values of the cavitation

parameter Ii > 1.0 are possibly due to tunnel induced oscillation of
large numbers of large microbubbles.

Data from tests conducted in the large 36-inch water tunnel are

plotted as the dashed line in Figure 11. One notes that the observed
value of the Ili parameter increases with test speed in an orderly

manner. This can be explained by the fact that the bubble spectrum

shown as Curve F in Figure 3 shifted only slightly as the tunnel test
pressure was adjusted from 0.3 atm to 3.8 atm. At a test speed of Uo=20

m/s, Ili was found to be 0.96, with aO = 6%. Hence, from Figure 11, one
notes that all bubbles having radii from Ro=2 pm to 100 pm will blow up.

From Curve G of Figure 3, we computed that there were 2 x 10
4 /m3 of

these bubbles, which would give approximately 150 cavitation events per

second. This would provide few observable events per second under the
strobe light illumination. The calling of cavitation inception at

fli = 0.96 was again explainable. From Figure 11, if one assumes that

the majority of bubbles had Ro = 2 pm at a test speed of 20 m/s then _

* when the test speed was reduced to 6.0 m/s, we note from Figure 11 that

the Pwo would have to be lowered to 0.3 atm. Hence, the 2 pm
bubbles would have expanded to 5 pm with a corresponding Hi
of 0.75, as we have observed experimentally. It is now clear V

that in order for the cavitation inception index Hi to behave as . ,

% -"- -. • "
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-. analytically predicted, the bubble spectra in the test facility must
also behave with no large increase or decrease in the number of micro-
bubbles as the testing parameters are varied. In this respect, the
36-inch water tunnel is superior to the two smaller facilities.

In summary, the value of cavitation parameter Hi required for
microbubbles to blow up is governed by both the surface tension param-
eter * and the bubble blowup time parameter T. A functional relation-
ship between Hi, p, and T can be obtained from Equation 5 and is plotted
as Figure 1. One notes that for < 10, the Hi parameter is dominated
by the surface tension effect, and the condition for blowup is very
sharp and distinct. In this zone, for * < 10, the effect of surface
tension is commonly attributed to an apparent Reynolds number effect.
When t is greater than 10, the Hi parameter becomes independent of . -
and tends to approach 1.0 in the limit when the T parameter is greater
than 40. The T paramter effects the Ni parameter only for large ' .. -•-

values; a cutoff effect occurs for the large bubbles, i.e., big bubbles £
will not blow up due to a lack of reaction time. On the other hand,
the . parameter controls the cutoff effect for the smaller bubbles.

' Thus a small model system operating at a low test velocity is highly
*[ selective of a narrow band of bubble sizes for cavitation, while a

large prototype is not. A large prototype system operating at a large
ambient pressure and velocity can cavitate over the whole band of bub-
ble sizes from Ro = I pm to I mm at Hi = 1.0. Figure I can be used for
constructing bubble cavitation inception characteristic curves similar
to those shown in Figures 7 and 11. For example, consider the case
where Cpmin = -0.78 for a hemispherical headform, 0 = .1 and diameter

- C = 7.6 cm. To plot the characteristic curve of Hi versus Uo and Pwoi
for Ro = 50 im, we first find from Equation 7 that T = 7.2. The equiva-
lent surface tension pressure for Ro = 50 jim is 0.029 atm. For Pwoi =

2.0 atm, we find =2/0.029 = 69. From Figure 1, with i =69 and T =
7.2 we find I> = 0.92. Finally, from Equation 2 we find the corres-
ponding U0  Pwoi/Cpmin4ip) 5 = 23.5 m/s. Proceeding in a simi-

lar manner, the characteristic curve as shown in Figure 7 for Ro = 50 pm
can be constructed. Hence similar characteristic curves for any other
headforms or hydrofoils can be constructed from Figure 1.

Under the normal range of ambient temperature, the effects of
evaporative and gaseous diffusion on prototype cavitation will be mini-
mal, if the microbubble concentration in the fluid is more than 104 /m3.

..' For microbubble concentrations much less than 104/m3 a reduction of -

the Hi value to less than 0.8 is necessary to cause significant cavita-
tion by gaseous diffusion. This is because, like the submicron traveling
bubbles, gaseous diffusion bubbles must also overcome strong surface
tension forces in their initial growth. In addition, these submicron .'

• "bubbles require sufficient resident time in the low pressure zone to
achieve initial growth by slow evaporative and diffusive processes; for
example, within microcracks, behind micro-roughnesses, and in separated

• laminar flow zones on the flow boundary. Therefore, it is also neces-
sary to know the bubble spectrum of the prototype system before conduct-
ing a laboratory simulation. .".-
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CONCLUSIONS AND RECOMMENDATIONS
01.

We have demonstrated that due to different tunnel designs and
operating characteristics microbubble concentrations can vary over a
wide range. Since cavitation inception is closely related to the blowup
of these bubbles, it is strongly affected by microbubble concentration
and distribution.

Two different forms of cavitation inception on hemispherical head-
forms were observed in the DTNSRDC Water Tunnels. The cavitation
occurring in the 12- and 24-inch tunnels was the traveling-bubble type.
The measured microbubble spectra in both tunnels were found to be very
similar. However, due to the existence of the resorber in the 36-inch
water tunnel, the measured total bubble population in this facility was
an order of magnitude less than those measured in the 12- and 24-inch
tunnels. The cavitation observed on the hemispherical headform in the
36-inch water tunnel was of the ring-type located at the zone of laminar
separation. The threshold of bubble concentration required to exhibit
traveling bubble cavitation versus ring-type cavitation was found ap-
proximately to be 0 bubbles/ 3 for microbubbles having diameters

larger than 10 vim.
Cavitation on the blunt cylindrical headform occurred in the core

of the vortex lines of the separated flow field. Quantitative estima-
tion of the minimum core pressures of the vortex lines due to the
stretching of these vortex elements can be made from the observed cavi-
tation inception.

Irrespective of the sources of microbubbles, the bubble blowup
process is governed by three key parameters, the pressure parameter ,
the surface tension parameter i, and the blowup time parameter T. Based
on the mechanics of microbubbles, the apparent dependency of the cavita-
tion inception index on the Reynolds number, sometimes observed in the
past, may be explained as an effect of surface tension.

The important effect of the microbubble content on the scaling of
cavitation inception is illusLrated in the following example. If a
prototype hemispherical headform of Im diameter is operated 15m below
the free surface, and the water is known to contain more than 104-

bubbles/m of Ro >10 pim bubbles, it is required to find out which of the
three testing facilities and testing conditions will best simulate the
prototype system. From Figure 1, we find that for Ro = 10 to 100 " m,
with corresponding ., = 10 to 100 and T = 470 to 47, the average 1i =
0.99 or = 0.77 for the prototype system. If model tests for bubble

spectrum B in the 12-inch tunnel and bubble spectrum D in the 24-inch
tunnel. were used, a respective correction factor of 1/0.90 and 1/0.95
would have to be applied to the measured indicies in order to obtain
the correct inception index for the prototype. Test results for bubble
spectrum G in the 36-inch water tunnel would give a 71i parameter based
on the Cpmin of 0.78 or = 0.61, which is 21% lower than the prototype i
value; because the microbubble population is too small to simulate the
conditions for the prototype. At this low microbubble population cati-
tation is found to occur only at the zone of laminar separation, which

% %
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is precluded by turbulent transition on the prototype. However, if

bubble spectra similar to spectra B and D, and Uo  20 m/s were used

in the tunnel, the result would be Hi = 0.98 or ai = 0.77, and no cor-

rection would be needed. Therefore, it is recommended that both the

measurement of microbubble spectra and preconditioning of the micro-

bubble distribution in the testing fluid should be undertaken as part
of the general testing procedure. The same is true for field measure-
ments, especially for the bubble concentration, although the bubble

spectrum is of less importance.
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Discussion

G.L. Chahine (Hydronautics, Inc.)

Professor Ling's effort to synthesize the knowledge on spherical
bubble dynamics to answer the practical needs of the engineer concern-
ing scaling effects on cavitation inception is to be recognized. Ear- -

lier, more precise and therefore more complex studies attempted to
consider the problem* but have drawn only academic attention. Unfor-
tunately, several oversimplifications in Professor Ling's paper cast in
my opinion a serious doubt on the usefulness of the proposed parameters -.-.-.

and curves in their present form. I will discuss here only the blow-up .

time parameter, T. The author defines the blow-up time, tb, as the

time that the bubble needs to reach "the unstable size of n > 3." In
reality, the critical value of n, after which the bubble radius is un-
stable depends on the initial bubble radius. By a simple static equi-

librium approach one finds

3 Ro:
cr 2 g a

In a dynamical approach, one has to solve Equation (5) when a sudden -.

pressure drop is applied. One finds two types of behaviors depending
on the value of (Pwo - Pv)/IAPmin , which is approximately the

parameter 11 (when Pv is neglected). Physically, if Pmin is above a
critical value, the bubble oscillates around an equilibrium value
corresponding to Pmin- This is not the case of interest here. If

Pmin, is below Pcr, then the bubble expands continuously and
rapidly attains an asymptotic behavior easily obtained from the Ray-
leigh-Plesset equation, for >> 1. Not neglecting Pv one finds

p -p
= wo v

'~min
Neglecting Pv this becomes

2 =-

and 2

and-

n 1 + 1-fl t

(This can be obtained from Equation (5).) However, there must be a

printing error, since at t = o one finds P(O) = 0 instead of Pw -
These remarks show that to attain a fixed value of n, the glow-up

time' tb, as defined by Professor Ling, is directly proportional to
(1 - M-1/2 This makes the parameters T and R strongly dependent,
and, unless R is very small compared with I, Equation (7) is not valid. v-. h

*G.L. Chahine, "Comportement d'une bulle dans un champ de pression

sinusoldale" Journal de Mecanique, Vol. 15, No. 2, 1976.
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Author's Reply

S.C. Ling

To G.L. Chahine

It is clearly stated in the paper that Equation (5) does not admit

a general solution for the inception of cavitation. The T parameter is
introduced as an approximate parameter to correlate within a limited
range of practical values the general relationship among the basic pa-

. rameters. The blow-up time tb is intended to define a characteristic ,.
' .. time for the blow-up of a bubble from n = 1 to 3, similar to the defini-
-_ tion of the time constant for a first order system (see Reference 14).

It is incorrect to relate tb functionally to the time for critical
blow-up size ncr, or n >> 1, derived under a static or a step pres-
sure change condition, because we are concerned with the general re-
sponse of a bubble to a pulsed pressure field normally encountered over
a well designed headform or hydrofoil. It should be noted that the
expression of ncr derived by Chahine is not generally valid (see
Reference 14). Also the expression for n >> 1 by Chahine should be
proportional to T and not t.

In the present paper, the T parameter does not directly enter into
the solution for Equation (5). It is only used to correlate the results
from a large number of solutions for different headforms and hydrofoils.
The average of these results is represented by Figure 1. Finally, the
term P(T) in Equation (5) should be properly redefined as the change in
the ambient pressure experienced by the bubble as it traverses along
the flow boundary; i.e., for the simplicity of numerical calculation .
the net ambient pressure experienced by the bubble is expressed as P
Pwo + P(T). For more critical applications, one should obtain solu-
tions directly through Equation (5), while Figure 1 should be sufficient

., -. for general application.
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Cavitation Erosion Tests with Oscillating
Foil Section

Claus F.L. Kruppa and Gero R. Sasse
+

Institut fiir Schiffs- und Meerestechnik
Technische Universit.t Berlin - -

I. SUMMARY S

Cavitation erosion is known to be primarily caused by unsteady
flow effects, resulting in transient cavities and cavity break up -
linked with the phenomenon of cloud cavitation. Unsteady flow effects
are largely responsible, for example, for the root erosion often ex- '
perienced in high-speed inclined-shaft propellers.

In order to evaluate the effect of unsteady flow on cavitation
erosion, tests with an oscillating foil were carried out, in the small
cavitation tunnel K28 of the Institut ftir Schiffs- und Meerestechnik.
A NACA 16-006 foil, spanning the width of the two-dimensional test sec-
tion, was forced to oscillate about its quarter-chord position at va-
rious reduced frequencies, cavitation numbers, mean angles of attack
and pitch amplitudes. For measuring the erosion rate the SSPA stencil
ink method was used, in a slightly modified version.

The testing procedure was standardized with regard to auplication ".. -.
of coating, evaluation of erosion rate and sequence of routine measures ..

to be observed during the tests. For evaluation of the erosion rate a ,-
method was developed which is based on measuring the rate of change of
light reflected by the foil due to eroded surface areas. The testing
technique was refined to an extent that erosion patterns and erosion

rates could be reproduced after intervals of several months.
The results of the tests are given in graphical form as erosion

rate versus reduced frequency, as a function of cavitation number and
mode of oscillation. There is also comprehensive photographic documen-
tation of erosion and cavity flow patterns, accompanied by high-speed
film material.

The test results clearly reveal a strong influence of reduced
frequency on erosion rate. One also has to draw the conclusion that
visual observation of cloud cavitation can not be regarded as suffi- -....

ciently indicative of erosion. Consequently, erosion tests are re-
quired if the danger of rapid erosion is to be predicted.

*Dr.-Ing., Professor of Ship Hydrodynamics. ..-. "

+Dipl.-Ing., Scientific Assistant
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II. SCOPE OF TEST PROGRAM% A p -

The work on cavitation erosion testing of oscillating foil sec-
tions was initiated by repeated experience with cases of severe root
erosion in high-speed propellers, operating under inclined-shaft con-
ditions. In some cases the extent of blade erosion in the vicinity of
the propeller hub was so extensive, after only a few hours of high

* speed trials, that the propeller design had to be completely modified.
And yet in other comparable cases, hardly any erosion - or even none "i
at all - was experienced.

Propeller model erosion testing was successfully used to predict
the probability of rapid full scale erosion, both with regard to loca-
tion and extent of the erosion zone, and with regard to operating con-
ditions, the latter being characterized by shaft inclination, advance
coefficient and cavitation number (Kruppa and Sasse, 1977). In these
erosion tests a slightly modified version of the SSPA stencil ink me-
thod (Lindgren and Bjhrne, 197h) was successfully employed, the SSPA
method being probably the most simple and most widely used soft surface
technique.

As a result of the inclined-shaft model propeller erosion tests,
it was found that for a given propeller model the operating conditions,
connected with rapid root erosion, were usually confined to a fairly
narrow range of parameter combinations. At the same time it became ob-
vious that rapid blade root erosion was always accompanied by large
fluctuations in size of the cavities generated at the leading edge of
the root sections, depending on angular blade position. Obviously,
these fluctuations are caused by the variations in effective angle of
attack, which for propellers in oblique flow reach a maximum at the

". propeller hub.
Rather than exploring the phenomenon of root erosion in high-speed

,. inclined-shaft propellers, by systematic erosion tests with model Dro- *,.

- pellers, it was decided to make use of an existing facility for the
two-dimensional testing of foil sections. This facility had been used
for determining the conditions for cavitation onset of oscillating
foil sections (Radhi, 1975). It only needed limited modifications for
cavitation erosion tests with the existing foils.

.. Tests of similar nature had been carried out before and were .-..

thoroughly reviewed in the Cavitation Committee Reports of the 15th
(1978) and 16th ITTC (1981). Among others, the investigations by Ito
(1962), Tanibayashi and Chiba (1977), Miyata et al. (1972) as well as
Shen and Peterson (1978 and 1980) are concerned with cavitation pheno-
mena on pitching foils. All authors arrive more or less at the conclu-
sion that cloud cavitation can be generated by oscillating foils, as a
result of large size leading edge sheet cavities collapsing and final-
ly breaking up into numerous small size cavities. Cloud cavitation was
found to occur at reduced frequencies in the vicinity of p = 0.4. Of
course, a high noise level and the danger of rapid erosion were expec-
ted as unavoidable consequences of cloud cavitation, although no actual
measurements of the erosion rate are reported as far as oscillating
foil sections are concerned. On the other hand however, the fact that .. .

V%
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similar looking cloud cavitation may not be accompanied by the same ca-

vitation erosion intensity has apparently been observed in model pro-

pellers (Kurobe and Takie, 1980). No simple explanation can be given

for this phenomenon, mainly because of insufficient knowledge of the

generation of cloud cavitation and its mechanics in terms of bubble

dynamics (Proc. 16th ITTC, 1981).

In this context, the test program described in the following was
conceived, from the very beginning, to identify those operating condi-

tions of oscillating foil sections where cloud cavitation is linked

with high erosion intensity.

It has been stated in the past that the paint coating method is

only suitable to detect the location of erosion susceptibility, but not

its intensity. Somewhat in contrast to this opinion, the oscillating .

foil erosion tests were carried out with the intention to use the paint

coating method also for quantitative assessments of erosion intensity,

as suggested by Kato et al. (1978) and successfully proven by

Georgijewskaja et al. (1981).

III. EXPERIMENTAL FACILITY

The oscillating foil tests were carried out in the small cavita-

tion tunnel K28 of the Institut ftlr Schiffs- und Meerestechnik at Tech-- - -

nische Universitit Berlin. The tunnel is usually operated with a free

surface test section and has a large degassing tank downstream of the

test section (Figure 1). For the oscillating foil tests a closed-throat

two-dimensional test section of 70 mm width and 200 mm height (Figure 2)

was installed (Radhi, 1975). The associated contraction nozzle had a

contraction ratio of 6.2 : 1 which lead to a velocity distribution in

the test section with maximum local deviations of less than + 0.5 % of

the mean value, outside the wall boundary layer with a thickness of

about 5 mm.
The drive motor, transmission and gearbox to generate the sinus-

oidal pitching motion of the foil sections about the quarter-chord po-

sition was modified at several occasions, with the aim to reduce the

effect of critical frequencies. The design of the gearbox is such that

a pure sinusoidal pitching motion would have been achieved at constant

motor speed if the system was fully balanced dynamically. All modifi-

cations were measures to reduce the unbalanced masses and finally re-

sulted in a satisfactory sinusoidal foil motion, up to motor speeds of

f = 20 Hz.
In order to be able to observe visually and to photograph the flow

past the foil sections at predescribed instantaneous foil angles a

trigger mechanism for actuating one or more stroboscopic light sources

or flash lights was designed and successfully used.

The family of foil sections of the type NACA 16 a = 0.8, available

from the earlier cavitation onset tests (Radhi, 1975), had a chord

length of c = 60 mm and an effective span equivalent to the test sec- -.
tion width (b = 70 mm). Additional 10 mm of span were provided on both

sides for support. The foils were made of high tensile stainless steel .*. -

.""y
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classified as X21CrW12 (containing 0.21 % carbon, 12 % chromium and
0.5 % tungsten) and manufactured by a rotating disc grinding machine
in which the disc profile was diamond-cut from a scaled-up contour
pattern (5 : 1) by special palpating equipment. The accuracy of the
finished foil sections was checked by a universal microscop and re-
vealed maximum local deviations in section offsets of not more than-7...+15 m.b:.,

Originally it was planned to test as many foils of the existing
family as possible. However, in view of the actual test duration
- quoted below in section IV C - only one foil was investigated so far,
i.e. the uncambered foil

NACA 16-006.

With regard to the requirement of two-dimensional flow this was
found to be satisfactorily achieved with the existing foil and test
section dimensions, at least outside the immediate vicinity of the tun- i-.-
nel walls and as long as measurements of cavitation onset are con-
cerned. As will be shown later, the flow is no longer two-dimensional
during the process of collapse of large leading edge cavities when
cloud cavitation is generated. For this reason only a 30 mm strip in
the centre of the foil is evaluated for erosion, leaving out of con-
sideration the two strips of 20 mm width adjacent to the tunnel walls.

IV. TEST PROCEDURES

A. Application of Coating L
After several years of experience with the SSPA stencil ink method

(Kruppa and Sasse, 1977) this type of soft surface technique was used
throughout the test program. One obvious advantage of this technique is - V'.
the strong contrast in color between the coating and the metal surface
of the model, rendering this technique suitable for optical methods to
assess the erosion rate in terms of eroded area.

Difficulties in applying the coating have been reported in the
past (Proc. 15th ITTC, 1978) and were also experienced in the early
stages of the oscillating foil program. However, by strictly following
a standard routine in preparing the foil for an erosion test these dif-
ficulties were completely overcome. In this routine the following steps
had to be adhered to:
- Roller system stencil ink S-1 (black) was diluted at a ratio of one

part ink to two parts in volume of ethyl alcohol. The diluted ink
would never be stored for longer than two weeks. In this way varia-
tions in paint composition were avoided.

- Prior to application of the coating the model was thoroughly cleaned
with ethyl alcohol.

- The diluted ink had to be carefully stirred before dipping the model
into the mixture for about one minute, moving the model slowly but
steadily.

- The coating was allowed to dry in air for about 20 minutes with the

E -. °%,
I%.°
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leading edge pointing upward, in order to avoid the ink to concen-
trate locally at the nose of the foil.

- Drying was completed in an oven at a temperature of 500C for further

20 minutes.
- After application of the coating the erosion test would be carried

out within the next two hours.
- Complete removal of the coating after optical evaluation of the ero-

sion rate was easily achieved with the help of ethyl alcohol. "".
Coating thickness was never actually measured. However, consisten- -"

cy of the results in terms of erosion rate and location was achieved, .

even if the tests were repeated after several months. Neither a tenden-

cy of the coating to peel off or break away in flakes nor brittleness'- . ,

were ever observed. Thus, removal of the coating by cavitation can
justifiably be referred to as erosion.

B. Evaluation of Erosion Rate U
Considerable effort was spent in developing a technique to evalu-

ate quantitatively the erosion rate E. As a result, a test rig was con-

structed (Figure 3) which was based on the principle presented schema-

tically in Figure 4. By this technique the degree of diffuse reflection
of light off the foil surface is used as a measure for the degree of
erosion. 3

In detail, the test rig consists of a directional white light

source. With the help of a number of achromatic doublets, stops etc. a

parallel light beam of sufficiently uniform intensity is directed to
the foil surface which is mounted in a fixed position in a darkened

test chamber. Only a centre strip of the upper foil surface is exposed ..-.".
to the light beam. This strip has a width of 30 mm in the spanwise di-

rection and a length equivalent to the foil chord length of 60 mm. -.-.--

After passing through a system of achromatic doublets and a diaphram
the reflected light is measured in terms of output voltage of a photo-

multiplier V.
Due to the convex curvature of the foil surface the degree of

*diffuse reflection varies with the chordwise position of an eroded sur-
face element of given dimensions A. In order to calibrate the measuring q'.

system for chordwise position of the eroded area, and in order to check

t.. on linearity between eroded area and photomultiplier outnut voltage,
a special procedure was adopted. In this procedure the light beam di-
rected towards the uncoated foil was reduced to a narrow strip of
3 mm width in the chordwise direction by an appropriate aperture (Fi-
gure 5). By varying the length of the strip in the spanwise direktion

Ab, areas of different dimensions were exposed to the light beam. By

moving the strip in small steps from leading to trailing edge, cali-

bration curves were obtained as shown in Figure 6. If the results were
normalized by the area of exposure a correction factor C for the chord-
wise position of the erosion zone could be derived (Figure 7).

Whereas the check on linearity between exoosed strip area and

photomultiplier output voltage was only carried out once, from .-

a principal point of view, the correction factor C for chordwise po-

sition had to be assessed at regular intervals, in particular after

%!
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light bulb replacements and associated adjustments of the test rig. For
this purpose a standard aperture of .6b = 30 mm span and 3 mm width was
used.

All tests for the actual evaluation of the erosion rate involved
three separate measurements:
,- photomultiplier output reading Vc for the coated foil, with an ex-
posed area of AO = 30 x 60 = 1 800 mm 2,

- photomultiplier output reading Ve for the coated foil after the ero-
sion test, with an exposed area of Ao

= 1 800 mm 2,
- photomultiplier output reading Vb after complete removal of the soft

surface coating, with an exposed area of Ao  1 800 mm 2 .
From these measurements the relation

v - v (1-E)
e c

Vb

was used to define the erosion rate

A Ve -V
E A CV -V 0

Ao 

.b .c
where the factor C had to estimated from the type of characteristic
shown in Figure 7.

For various uncoated surface elements of well-contoured shape,
clearly defined area A and fixed chordwise position x the formula for
the erosion rate was thoroughly checked and found to yield satisfacto-
ry results, with maximum deviations of less than + 1%.

In applying this definition of erosion rate to actual erosion pat-
terns one has to realize that these are not usually well-contoured,
that a transition zone may exist between soft surface coating and S
eroded surface area, that isolated erosion spots may appear, or that
the erosion pattern may consist of several larger erosion zones. Con-2:..'. sequently, the physical meaning of a set of values of the photomulti- .. ,

plier output readings (Ve, Vc, Vb) and of an estimated position of the
erosion zone, in order to derive the correction factor C(x), is no lon-
ger that of an area ratio, but rather its virtual equivalent, in terms
of diffuse reflection of light.

C. Routine Testing
In view of the exploratory character of the test program the num-

ber of variable parameters was kept to a minimum. The desire to cover .,-..-

a wide enough range of reduced frequencies on one hand, and the limi-
tations in the maximum rotational speed of the drive-gearbox system S
(f P0 Hz) on the other hand, lead to the selection of a test section
velocity of V = 6 ms -I a figure which limited the Reynolds number to

S ° ° - -.•
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Rn = 3.6 x 1o5 and the reduced frequency to i 4 0.63. Obviously
higher test section velocities would also have permitted a reduction
in the standard test duration. Under the prevailing conditions this
was finally selected to be ,3t = 30 min.

If the pitching motion about the quarter-chord position is de-
scribed by the instantaneous angle of attack

= "( + sin (ot,

with

. t = 2 ft

the mean and additional angles of attack were restricted for mechani-
cal reasons to

L
-7 7 0

0"0 0 9 0. "

For a test section velocity of V = 6 ms the lowest cavitation
number achievable in the test section was ", = 0.6, if cavitation of .
the contraction nozzle was to be avoided. This restriction limited the P .
test parameter range even further.

With the restrictions mentioned the only parameters systematically
varied were

c,,' c n-fr""
- the reduced frequency = cf

2V V _A
- the cavitation number = (p - pv)/ V2

- the mean angle of attack "
0

- the pitch amplitude in terms of
the additional angle of attack "1

In order to guarantee otherwise unchanged test conditions through-
out the program the following steps were taken in sequence as a rou-
tine:
- Coating of the foil as described in section IV A,
- reading of the photomultiplier output voltage Vc for the coated foil

as described in section IV B, "-.
- mounting of the foil in the test section, setting of tunnel water

speed and depressurizing the tunnel for about 20 minutes, with the
foil set at "x. = 00,

- degassing the tunnel for about 20 minutes at low pressure, in order
to obtain stabilized test conditions, with regard to dissolved gas
content and free gas nuclei, with the foil set at ,' = 00 (as a con-
sequence the gas content ratio was always slightly higher than

Sg/ st = 1, where ' st is the gas content of the saturated water
g.- -.t
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under ambient conditions in the test section, with regard to pressure
and temperature),

- performing of erosion test with a duration of 30 minutes for a given
set of parameters,

- dismantling of the foil immediately after completion of erosion test,
- reading of the photomultiplier output voltage Ve for the eroded foil

and taking a photograph of the eroded foil,
- removal of the coating as described in section IV A and taking a
photomultiplier output voltage reading Vb of the uncoated foil,

- daily filtering of tunnel water for one hour after completion of a
days testing.

On the average, not more than two or three erosion tests could be
performed during a day. Thus, for the 139 tests documented in this pa-
per about 60 complete testing days were needed. For initial test rig
setup and calibration, maintenance and repairs, photography, taking of
high-speed film and repeatability checks at least the same amount of
time was required.

V. PEESENTATION OF RESULTS

The results of the erosion tests are presented in graphical form
in Figures 8 through 13, in terms of erosion rate E versus reduced fre-
quency 4. In Figures 8 through 11 the cavitation number is systemati-
cally increased in the range o.6 w -r. 0.9, with the pitch amplitude
as parameter (70. c- 1 90 for = 00). In Figures 12 and 13 the
mean angle of attack I is selected to be 20 and 40 for T = 0.7, with
the pitch amplitude as parameter (50.°  

- 70 and 30 5' 1 re-

spectively). Most of the tests which did not lead to visible signs of
erosion have not been included in the documentation.

As examples, the erosion patterns were photographed for the curves
of maximum erosion rate in Figures 8 and 9 arid are presented in Figures
14 and 15. The photographs show the appearance of the centre portion
of the upper foil surface as evaluated by the optical method, i.e. of
an area of 1 800 mm2•

Some representative cavity flow patterns were photographed from
above and are presented in Figure.s 16 through 21. For the test condi-
tions leading to the curve of maximum erosion rate in Figure 8 and to
the erosion patterns in Figure 14, the cyclic changes of the cavity
flow patterns can be seen from Figure 16, for a reduced frequency of

0.5. Under these conditions, the erosion intensity was severe
enough to cause erosion starting to develop close to the trailing
edge, even during the limited time needed for taking the photographs.
This can best be seen at r = 2100.

For the test conditions leading to the curve of maximum erosion

AL rate in Figure 9 and to the erosion patterns in Figure 15, the cyclic
changes of the cavity flow patterns are presented in Figures 17

through 19, for three reduced frequencies (@ = 0.25, 0.425, 0.525).
Again in Figure 18 high erosion intensity starts to lead to erosion
zones, not only at the half-span position but also close to the tunnel
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.4. walls. This type of erosion, starting to develop close to the tunnel
walls, is even more pronounced in Figure 19 where no erosion was ex-
perienced on the centre strip.

For a reduced pitch amplitude (cx = 70) and an increased cavita-
tion number (ar = 0.9) the cavity flow patterns are presented in Fi-
gures 20 and 21 respectively, for a reduced frequency of 4 = 0.425 and
a mean angle of attack x = 00.

0In addition to the photographs taken at discrete foil positions
(s') the flow conditions of Figures 17 through 21 have also been docu- -- "
mented on high-speed film, at a rate of 3 000 frames/s.

VI. INTERPRETATION OF RESULTS ,... .,-

A number of qualitative conclusions can be drawn straight away
from Figures 8 through 13: -1 *
- For the limited test section velocity of V = 6 ms and the standard
test duration of t2 t = 30 min the maximum instantaneous angle of
attack had to be xo + Ly ;7 70 for signs of erosion to appear.

-At a given reduced frequency 4 and cavitation number c- the erosion
rate E increases with pitch amplitude c--

- There seems to be a cavitation number r- for which the erosion rate E
becomes a maximum, for fixed values of reduced frequency v and pitch
amplitude .-\Il•

- There is a marked effect of reduced frequency I on erosion rate E
(e.g. see also Figure 15). %

- Maximum erosion occurs at reduced frequencies 0.3-.. jL -i-0.5 for

o = 0, shifting to higher reduced frequencies as the mean angle of
attack is increased (0.4 - 0.6 for co = 20 and 0.5 :.t t :0.65
for ,eo = 40).

- If the erosion rate exhibits more than one maximum this is always
caused by the presence of more than one erosion zone, each having its
maximum intensity at a different reduced frequency.

- No erosion could be detected for pitching motions approaching
steady-state conditions ( .0.2).

From the erosion patterns in Figures 14 and 15 it can be seen that
these are by no means two-dimensional, with the exception of those
close to be trailing edge in Figure 14 for reduced frequencies
0.375 :. 0.525. However, there is apparently a symmetry in the ero-
sion patterns with respect to the half-span position.

When interpreting the sequential photographs of the cavity flow
patterns in Figures 16 through 21 it should be kept in mind that these
have been taken at clearly defined instantaneous foil angles, but of
course not during one and the same pitching cycle. Consequently, the
extent of deviations from symmetry will not only show up in individual

flow patterns but also in the sequential presentation.
,* Regarding three-dimensional flow effects the following can be de-

duced from Figures 16 through 21:
- - The process of formation of transient leading edge sheet cavities can
" be classified - within limits - as two-dimensional, as long as the
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downstream end of the cavity does not show signs of breaking up.
- Cavity collapse and break up are highly three-dimensional processes.
- Evaluating the erosion pattern at the mid-span position is a some-
what arbitrary measure, with the possible consequence that, for
larger or smaller geometric aspect ratios, different quantitative re-
suits, in terms of erosion rate E, might have been obtained. .77

With one exception, all cavity flow patterns in Figures 16 through
21 exhibit fundamentally the same phenomena, i.e.

- - cavitation onset in the form of leading edge sheet or bubble cavita-
tion at 30 0 .% , 600,

- leading edge sheet cavity growth beyond the half-chord point, follow-
ed by first signs of cavity collapse at the rear end with the asso- .- C

ciated loss of transparency,
- formation of cloud cavitation during the process of cavity break up

at the rear end,
- sheet cavity detachment from the leading edge,
- cloud cavity collapse and rebound.

This sequence is delayed in phase as the reduced frequency is in-
creased. Although cloud cavitation is generated in all cases it only
causes erosion on the centre strip for the test conditions in Figure
18. The two-dimensional erosion pattern for the reduced frequency

0.5, shown in Figure 14 and starting to emerge in Figure 16, has
been found to result from the bubble cavitation which is generated
close to the trailing edge at -200_- .-f, -- 300, this being the exception
indicated above.

VII. CONCLUSIONS

. ., The original concept of presenting the test results for a whole
family of foil sections was found to be unrealistic, owing to the ex-
tremely time consuming test procedure. In spite of this shortcoming
however, the erosion test results obtained with the foil NACA 16-006
have clearly demonstrated that there is a pronounced effect of reduced
frequency on erosion intensity. By visual detection of cloud cavita- _0
tion alone these results could not possibly have been predicted in a
quantitave way.

Of course, with the limitations in test section velocity %
(V r.. 6 ms-1 ) and cavitation number (c w 0.6) erosion was only experi-
enced at fairly large maximum instantaneous angles of attack (c<0 +,NI),
larger than those occurring in propeller flow. However, it can be as- -
sumed that similar results would have been obtained for smaller pitch
amplitudes, but at reduced cavitation numbers, if the test section ve-
locity could have been significantly increased.

As to the significance of the test results for prototype condi-
tions there are basically three possible sources of scale effects to
which the results at model scale are subjected:
- Cavitation inception may be associated with the phenomenon of laminar
separation.
Whether or not the phenomenon of cloud cavitation, in particular in
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terms of its extent and location, is subject to scale effects is - \"

still waiting to be resolved. .
Erosion intensity - whatever its definition - and the associated time
scale are, of course, strongly dependent on such factors as test ve- k
locity, type of soft surface technique etc.

The last of the three scale effect areas is not addressed in the pre- -""

sent context and has been discussed elsewhere (Kato et al., 1978).
Thus the question remains as to whether or not the rather small

Reynolds number (Rn = 3.6 x Io5), at which the tests were performed,
may significantly affect the flow pattern, the generation of cloud ca-
vitation, its extent and location and finally, as a result of the flow - I
pattern, the erosion intensity. There is, of course, evidence from un-

*" steady airfoil theory that the type of flow occuring in oscillating
foil sections is largely governed by inertia forces and thus can be .

described by potential flow theory. However, this has still to be pro-
ven, preferably with the help of geosim tests.

It is therefore planned to pursue the test program in the follow-
ing directions, hopefully in the near future:
- Erosion tests with a NACA 16-006 foil in the large cavitation tunnel

K27 of the Institut fUr Schiffs- und Meerestechnik for reduced fre-
quencies 4 _. 1.2 and at a Reynolds number Rn 3 x 1o6,

-depending on the influence of scale effects, extension of the present
test series in the small tunnel K28 with foils of different thick-
ness-chord and camber-chord ratios,

- investigation of the influence of geometric aspect ratio on cavity
flow and erosion patterns in two-dimensional test sections of vary-
ing width. .
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IX. FIGURES

FIGURE 1. Cavitation Tunnel K28 " .....
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FIGURE 3. Optical Test Rig for Evaluation
of' Erosion Rate
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DIRECTION OF FLOW
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Discussion

N. Chiba (Mitsubishi Heavy Industries)

The bubble cavities can be seen at 00 300 in Figure 16. Do
they have anything to do with erosion patterns?

Erosion is concerned with both material strength and cavity
strength. Therefore the test results may be affected by the material
of the soft surface. Have you any plan to measure the pressure on the
foil directly by a method such as used by the discussor (Chiba, 1975)?

Reference

Chiba, N., Behavior of Cavity Collapse as Cause of Cavitation Damage
of Propeller Blades, ASME Symposium on Cavity Flow, Minneapolis
(1975).

H. Kato (University of Tokyo)

If the authors could show how the pressure distribution changed
at noncavitating condition, it might be helpful for the understanding
of the erosion mechanism. 4.

The discussor also would like to see photographs taken from a
side window, because erosion intensity changes markedly if the cloud
cavity collapses very close to the surface.

To Sasajima (Mitsubishi Heavy Industries)

The erosion rate defined by the authors is a parameter of the
erosion area caused by the cloud cavitation, the intensity of which is
higher than the level of removing the stencil ink. But the discussor
thinks it rather difficult to generalize the erosion rate, since both
types of erosion near mid-chord and trailing edge are included togeth-
er, this results in a strange change of the erosion rate with reduced
frequency (see Figures 9 and 12). Erosion near trailing is more trou-
blesome, since removal of the material near the trailing edge and bent
trailing edge are related to this type of erosion. On the contrary, j

erosion near mid-chord is not so severe if the material is sound,
according to our experiences. Thus it is interesting and informative
if the erosion rate is defined for each type of erosion.

As to the erosion near the blade root of a propeller operating in
inclined flow condition, extension of erosion depth there is more
critical than in the area on the blade surface. Since the erosion
rate does not give any information about it, the discussor doubts if
the erosion rate is useful in predicting root erosion in full scale.
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It is easy to analyze the data in relation to the reduced fre-
quency in the tests with an aerofoil. But it is rather difficult to
extend these data to the case of propellers, since occurrence of cloud
cavitation is three dimensional and also the definition of the reduced
frequency is arbitrary.

E.A. Weitendorf (Hamburg Ship Model Basin)

In supporting Professor Kruppa concerning the question from Mr.
Takao Sasajima, it may be mentioned that there is a cooperation
between the Institut fir Schiffbau in Hamburg and Professor Kruppa's . .
Institute. In a paper1 from the IfS Hamburg an approximation method
is applied in order to treat the coupled integral system for the

.- source-sink and vortex distribution of the unsteady loaded hydrofoil.
The comparison of the calculation with the measurements of the authors
shows that the cavity extent Ce(t) is calculated reasonably, the
phase between maximal angle of attack and cavity length is well
described, and the cavity thickness n (t) attains reasonable values,
i.e., maximal thickness for the largest cavity extent. The theory has
now been extended to propellers and will be partly presented in a
paper2 at the Schiffban-Technische Gesellschaft at Berlin in
November 1982.

References

1. Alwaerdt, P., and W. Gleine, Kavitation an instationgr belas-
teten Flugel-profilen, 16. Kolloquium des Sonderforschungs-
bereicher 98, Hamburg, June 1982.

2. Chao, K.Y., N. Westphal, and P. Alwardt, Berechnung der Druck-
verteilung, der Kavitations erscheinungen sowie der indurierten
Druckschwankungen an der Aussenhaut far Propeller im Nachstrom,
Jahrbuch STG, Vol. 76, 1982.

Author's Reply

Claus Kruppa

Dr. Chiba is asking whether the bubble cavitation visible in
Figure 16, for phase angles 00 < * < 30, is in any way related to
erosion patterns. This is indeed so. In fact, the only case where
erosion was ever found not to be caused by cloud cavitation, but had
to be interpreted as a consequence of the occurrence of bubble cavi-
tation, was associated with the flow pattern documented in Figure 16.
The corresponding erosion pattern can be seen in Figure 14, close to
the trailing edge of the foil. The effect of the soft-surface mate-
rial strength on erosion is realized, of course. But, at the moment,
it is not planned to carry out direct pressure measurements.
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In reply to Professor Kato's question it should be mentioned
that, for pitching foils, pressure distributions based on theory are
available in the literature, at least for thin-foil sections. Unfor-
tunately, very little experimental data exist for foils of finite
thickness. In the case of the test program presented it must be
stated that the actual foil dimensions were too small for attempting
to obtain both erosion patterns and pressure distributions at the same
time. For future tests, it is planned to take photographs from side
windows as well, because it is realized thaL the distance of cloud
cavity collapse from the surface is an essential indication of the .
danger of erosion.

Dr. Sasajima realizes that the strangely peaked erosion rate
characteristics in Figures 9 and 12 result from two or more erosion
zones on the foil surface, each having its maximum at a different re-
duced frequency, and, as a consequence, he suggests that each erosion
zone should be evaluated separately. With the evaluation technique
selected in the test program this is, of course, very difficult. In
addition, it can be seen from Figures 14 and 15 that erosion zone
boundaries are often not well defined. As to the usefulness of the
data obtained so far for predicting the danger of root erosion in pro-
pellers, it is believed that one still has to go a long way before
this problem is solved. The critical remarks with regard to erosion
depth, as distinct from the definition of erosion rate used in the
paper, are very much appreciated. The same applies to the usefulness
of two-dimensional foil tests for predicting propeller flow in general.

Finally, with regard to Dr. Weitendorf's remarks, it should be
added that the high-Reynolds-number tests planned for the future will
also reveal possible scale effects on cavity dimensions such as max-

* imum length, maximum thickness, and phase angles.
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Comparison of Computational and
Experimental Unsteady Sheet Cavitation

Frederick Stern
Science Applications, Inc., Annapolis, Maryland .

ABSTRACT . , ,

A recently developed nonlinear method for predicting unsteady sheet

cavitation on marine propellers is partially validated by comparing its
results with model and full-scale experimental data. The method employs
a dynamical approach in which the form of the instantaneous cavity sur-
face is modeled at each propeller cross section as a semiellipse. Values
for the cavity length (major axis), thickness (semiminor axis) and posi-
tion along the section chord are determined such that the nonlinearcavi-
ty surface boundary conditions are satisfied approximately. The pres-
sure on the instantaneous cavity surface is obtained using a two-dimen-
sional, thick-section, unsteady potential flow computer program. Three-
dimensional propeller effects are included by correcting the harmonics
of the vertical component of the section inflow using the results from
an unsteady propeller lifting-line computer program. The vertical com-
ponent of the section inflow is obtained fromthe nominal wake modified
to represent an effective wake using data for axisymmetric bodies. A
review of the computational method is provided.

Comparisons are made with experimental data for two different un-
steady cavitation applications: a pitching hydrofoil and the Naval
Auxiliary Oiler (AO-177) propeller. For the AO-177 propeller applica- -

tion there is a close agreement between the computational and model-
scale experimental results for cavitation inception, duration and ex-
tent. The full-scale values are also similar, except the cavitation
duration and extent are reduced. A part of this discrepancy is due to
scale effects associated with the difference between model and full-
scale Reynolds number. Much of the full-scale cavitation behavior ob-
served on the AO-177 propeller is also predicted by the calculations.
The maximum cavitation is at the .85 radius; the cavities collapse
towards the section trailing edge; and the principal effect of the fins
is a reduction in cavity volume and collapse velocity due to a decrease
in cavity thickness. For the pitching foil application the computation-
al method yields best results in predicting the cavity dynamics. For
fixed cavitation number, mean foil angle and pitch amplitude, the cavity
dynamics, such as maximum cavity size and cavity surface behavior, are
shown to depend on the ratio of the cavity natural frequency of oscilla-
tions for the foil fixed at the maximum pitch amplitude to the foil re-
duced frequency. The experimental results appear to confirm the compu-
tational trends up to the point that experimental data was obtained.
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SECTION 1: INTRODUCTION """.•'•

The various forms of cavitation which occur on marine propellers
are a major problem for both naval and commercial ships. There can be
numerous deleterious consequences such as damage to the propeller blades
and the hull, radiation of large amplitude pressures causing noise and
contributing to the hull surface vibratory excitation and alteration of
both steady and unsteady propeller forces. An accurate method for pre-
dicting propeller cavitation is needed both by the propeller designer
and as a necessary ingredient in procedures for predicting its conse-
quences. In this paper a recently developed nonlinear method for pre-
dicting unsteady sheet cavitation on marine propellers (Stern and Vorus,
1982) is partially validated by comparing its results with model and
full-scale experimental data. The method employs a dynamical approach
which is intended to model the gross features of unsteady sheet cavita-
tion: cavity length, thickness, position and surface behavior includ-
ing rates of deformation and movement. The method differs significant-
ly in a number of ways from the linear quasi-steady and unsteady pro- .-

peller cavitation theories. The form of tht instantaneous cavity sur-
face is modeled at each propeller cross section as a semiellipse. Val-
ues for the cavity length (major axis), thickness (semiminor axis) and
position along the section chord are determined such that the nonlinear
cavity surface boundary conditions are satisfied approximately. This
cavity model does not constrain the leading edge of the cavity to the
leading edge of the foil. An interaction between cavity cross sections
can be included in a slender body theory sense with a spanwise itera-
tive procedure; however, this was not included in the present applica-
tions. The unsteady pressure distribution on the cavity surface and
not on the foil surface is used in predicting the cavity's deformation
and motion. Also foil thickness is included in the unsteady pressure
computation. This eliminates the singularity of the pressure at the
foil leading edge that mars thin foil theories. Tulin (1980) has shown
that by including foil thickness in his linear steady cavity solution,
better agreement is obtained with experiments for foils with thickness.

The conventional quasi-steady theories use Guerst's (1961) or sim-
ilar two-dimensional linear steady cavity solutions to obtain the sec-
tional cavity characteristics (for example, Noordzig, 1976, and Kaplan, .•"

et al., 1979). The cavitation patterns predicted by these theories
tend to overpredict the cavity extent and show a phase difference for
the volume variation as compared to observations. Chiba, et al. (1980)
shows better agreement with observations by including empirical correc-
tion factors for the cavity extent and phase in their quasi-steady
theory. Yuasa, et al. (1980) and Frydenlund and Persson (1981) depart
from the conventional quasi-steady theories by obtaining the sectional
cavity characteristics using an adaptation of the numerical (vortex/
source lattice) linear steady cavity method of Jiang and Leehey (1977).

'... .e,°.- -. , -
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In this method cavitation is determined stripwise along the propeller
blade in a manner that certain three-dimensional effects can be in-
cluded. The results reported by Yuasa, et al. and Frydenlund and
Persson indicate an improvement over the conventional quasi-steady
theories. Lee (1980) presents a numerical (vortex/source lattice)
method which uses a linear unsteady cavity solution to obtain the sec-
tional cavity characteristics. A spanwise iterative procedure is used
to allow for an interaction between cavity cross sections. Lee's
results show better agreement with wake screen experimental data than
with full-scale observations.

In this paper comparisons are made with experimental data for two
different unsteady cavitation applications: a pitching hydrofoil and
the Naval Auxiliary Oiler (AO-177) propeller. In Section 3 results are
given for the AO-177 application. There is a close agreement between
the computational and model-scale experimental results for cavitation
inception, duration and extent. The full-scale values are also similar, N
except the cavitation duration and extent are reduced. A part of this
discrepancy is due to scale effects associated with the difference be-

tween model and full-scale Reynolds number. Much of the full-scale
cavitation behavior observed on the AO-177 propeller is also predicted ---

by the calculations. The maximum cavitation is at the .85 radius; the
cavities collapse towards the section trailing edge; and the principal
effect of the fins is a reduction in cavity volume and collapse veloc-

ity due to a decrease in cavity thickness. In Section 4 results are
given for the pitching foil application. The computational method
yields best results in predicting the cavity dynamics. For fixed cavi-
tation number, mean foil angle and pitch amplitude, the cavity dynamics,
such as maximum cavity size and cavity surface behavior, are shown to
depend on the ratio of the cavity natural frequency of oscillations for..-
the foil fixed at the maximum pitch amplitude to the foil reduced fre-
quency. The experimental results appear to confirm the computational .
trends up to the point that experimental data was obtained. A review
of the computational procedure is provided in Section 2. The reader is
referred to Stern and Vorus (1982) and Stern (1980) for more details.
The method under consideration is still in the development stage. Pos-
sible areas of improvements to the method are discussed in Section 5.

SECTION 2: COMPUTATIONAL METHOD

The computational method separates the fluid velocity potential
boundary value problem for unsteady sheet cavitation on marine propel-
lers into two parts -- a static part and a dynamic part -- which are
solved sequentially in a forward time-stepping procedure. The static
potential OS describes the flow around the cavity fixed instantaneously
relative to the propeller while the propeller rotates through the non-
uniform wake field. The dynamic potential OD represents the instanta- .

neous reaction of the cavity to the static potential field and thus
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predicts the cavity's deformation and motion relative to the blade. For
known cavity surfaces Sc(t) the static potential boundary value problem
is solvable by standard methods since the boundary conditions are exclu-
sively kinematic. Therefore, with regard to the dynamic potential
boundary value problem the static potential and its derivatives are con-
sidered as known at any time. A solution is obtained for the dynamic
potential by using the concepts of slender body theory to define near
and far field potentials which are matched to form the complete solu-
tion. In the far field the cavity is represented by a three-dimensional
line distribution of sources. In the near field the cavity is approxi-
mated at each cross section as a semiellipse with semimajor axis a .-Al
(cavity half-length), semiminor axis b (cavity thickness) and position
k along the section chord. The instantaneous cavity surface is shownschematically in Figure 1.

2 x/c

Figure 1. Cavity and Propeller Blade Section Geometry

It can be shown that the dynamic boundary condition on the surface of -

the cavity can be satisfied in a least square sense by requiring that
its Fourier-Cosine coefficients be zero. The first three Fourier-Cosine
coefficients provide conditions for determining a, b and 9.. These con-
ditions yield the cavity equations of motion in the form of three cou-
pled nonlinear second-order ordinary differential equations with time
as the independent variable. The cavity equations can be put in the
form

=fl(a, a, b, b, . Rn9 A rt PO, P'2

. f 2(a, a, b, .,Rn , Ar" PO. P2).(1)

=f,(a, b, b, 2,n PI)

where Rn Uc/v is the Reynolds number, Ar is the cavity aspect ratio
and

P f= IPcos nndn n 0, 1, 2 and n , (2)n ITnbr in
0

are the first three Fourier-Cosine harmonics of the fluid pressure

°'.-.i.

... .. .. .. .. .. .. .. .. .. .. .. .. .. ,A
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P =+ Cp (3)

evaluated on the instantaneous cavity surface S (t). In equation (3) a
is the cavitation number 

-

P. 
. -

P - Pc • :(4)

-:: ~ pU2  1 ...

where p, is the ambient pressure, Pc is the cavity pressure, U is the
steady section speed, and p is the fluid density; and C is the known
static potential pressure coefficient. The following terms which are
included in the more general form of the cavity equations have been
neglected in equation (1) for convenience: the cross product term be-
tween the static and dynamic potentials; the slender body theory inter-
action between cavity cross sections; and the surface tension pressure.
The unsteady cavitation prediction results are in the form of response All
curves (a, a, b, 6, Z, ) vs. time which are obtained by numerically
integrating the cavity equation (1). For fixed Rn (damping coefficient)
and Ar in equation (1) the cavitation response is controlled by the
specification of P = P(1, t), equation (3). When P = P(f) is constant
in time the cavity equations have constant solutions, (a, 5, ). These
constants are determined by the equations such that the first three
harmonics of the fluid pressure are zero on the ellipse, that is, the
equations fit an ellipse, in a least square sense, to the zero pressure
line in the fluid. In earlier work it was shown that thelinear response
of the cavity about the equilibrium values (a, b, 24 is damped periodic
oscillations. The frequency of the oscillations is referred to as the
cavity natural frequency. When P = P(1, t) is not constant in time

.. the cavity equations have unsteady solutions. The character of the un-
steady solution depends on the specific form of P(X, t). In the appli-
cations presented in this paper P(1, t) is of the general form

N

P : Re ()einkt (5)

n=O

In equation (5) k is the section reduced frequency 71
k = wc/2U (6)

where w is the excitation frequency and c is the section chord length.
The ratio of a representative value for the cavity natural frequency
to the excitation frequency k will be shown to have an important af-

fect on the unsteady cavitation response.
The integration of the cavity equations requires the determination

of the static potential and its derivatives at each time step. It was
stated earlier that the static potential boundary value problem can be
solved by standard methods. However, it should be recognized that the
semielliptical cavity form itself cannot be used in the solution of
the static potential problem because it is only an approximation to the

UL
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cavity surface. Ostensibly, it provides the necessary information
(cavity length, thickness and position) which can be suitably repre-
sented in the static potential solution. Presently a thin-cavity ap-
proximation is used for the static potential. This procedure distrib-
utes sources on the unwetted portion of the foil surface to account for
cavity thickness effects in the fully-wetted flow pressure field. The
details of this procedure are provided in Appendix A. Further research
is needed for determining a more accurate procedure for calculating
the static potential.

The fully-wetted flow is calculated using a thick-section unsteady
representation of the fully-wetted flow unsteady pressure field that is

sensitive to changes in the section geometry (thickness, camber and ."..
angle of attack) and the hull wake section inflow. A description of
the theory implemented by this program is provided in Appendix B. For
propeller applications, three-dimensional propeller effects are includ-
ed by correcting the harmonics of the vertical component of the section - -

• inflow I using the results from an unsteady propeller lifting-line com-
puter program (Vorus, 1982). This program utilizes Brown's (1964) the-
ory as implemented and extended to skewed propellers by Vor-s. In the
present application of the method to the AO-177 propeller, V was ob-
tained from the AO-177 nominal wake modified to represent an effective
wake using a procedure based on the data presented for axisymmetric
bodies by Huang and Groves (1980). This procedure is explained in
Appendix C.

SECTION 3: NAVAL AUXILIARY OILER (AO-177) PROPELLER

i-i -The AO-177 experienced excessive vibration/noise during builder's
trials in the stern region over the propeller. Erosion and damage were
found after the trials on the back side of the propeller blades from
the .85 radius to the tip. The damage was most pronounced at the .85

- .< radius. Vibration and propeller viewing trials were conducted to docu-
ment and determine the probable cause of the problem (Kelly and Jessup,

S. 1981). The results of the trials indicated that violent sheet cavita-
tion collapse was causing the vibration/noise problem. Model-scale
experiments were performed to aid in determining a solution to the prob-
lem (Bjorne, 1980). Subsequently, flow-modifying fins were installed
on the AO-177 for the purpose of reducing the cavitation/noise problem. Ii.
After the installation special trials were conducted in order to deter-
mine the effects of the fins (Koh and Jessup, 1982). Wilson, et al.
(1982) provides a detailed account of the AO-177 vibration/noise prob-

* lem and the fin repair. Also included in Wilson, et al., are results
from some other propeller cavitation methods for the AO-177 propeller.O0
Pertinent ship and propeller characteristics are given in Table 1.

I-.
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Table 1. Pertinent Ship and Propeller Characteristics

(from Koh and Jessup, 1982)
Ship Characteristics

Lnth Overall (LOA). ft (m) 591.5 (180.3).-

Length Betwaeen Perpendiculars (1.81), ft (mn) 550.0 (167.6)
Breadth. Molded (Maxilewi), ft 'C 8.0 (26.8) .

Design Full Load Displacement. tanS (metric tons) 27,235 (27,672)

D esign Full Powern. sep (W8 24.000 (17.897)

Design Shaft RPM4 100
Design Ship Speed, knots 20

Propeller Characteristics

Diaister. ft (in) 21.0 (6.41
Pitch @ 0.7R. ft (an) 26.2S (8.0)

Weight, lb. (kg) 69.400 (31.479)

Nwitser of PropellersI
Mumper of Blades7
Expanded Area Ratio 0.771
Projected Area Ratio 0.590
Mlean Width Ratio (MWR) 0.216

Blade Thickness Fraction (BTF( 0.067

Rotation Right-Rand

rIB C/o P/S 0, (deg)( t/C fw/c

0.2 O.2070 1.12S 0.0 0.2000 0.0490

0.3 0.2456 ( 1.223 2.2 0.1625 0.0444
0.0 0.2722 1. 288 7.1 0.1325 0.0367

0.5 0.2817 1.318 13. 1 0. J0a0 0.0314
0.6 0.2684 1.309 20.0 0.0880 0.0300
0.7 0.2320 1.250 27.7 0.0175 0.0295
0.8 0.1IBIS 1.140 34.5 0.0590 0.0261

0.1180 0.970 40.3 0.0500 0.0263

0.000 0.722 45.0 10.0450 10.0240

The details of the propeller design and design procedure are given by
Valentine and Chase (1976). Valentine and Chase record that a most
thorough state-of-the-art design effort was done. Unfortunately, as
shown by the actual propeller performance, the cavitation considera-

4%, tions used in the design were inadequate. This points out the need
for more advanced methods to insure the success of future designs.
Methods like the present one in which cavitation inception, extent and
dynamics are considered.

Computational Results

Calculations were made for the AO-177 both with and without the
flow-modifying fins mounted on the hull and for the full load trim con-
dition. Results were obtained at the radial sections, r/R = .65, .75,
.85 and .95. For propeller applications the pressure coefficient C~ in
equation (3) is given by equations (B-6) and (B-8). Also the cavita-
tion number a in equation (3) is modified to include the change in

* hydrostatic head due to the blades proximity to the free surface during
its rotation

epp

C.
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with

" - a- + F-2 h- R cos(kt ,)] (8)
h 2PUT n I 0~

where Pa-is the atmospheric pressure, Fn = U//g is the section Froude
number, h = 2h/c is the nondimensional propeller shaft immersion, R =
2R/c is the nondimensional section radius and OS is the section skew.

The size of the region of negative pressure in the fully-wetted
flow pressure field is an indication of the extent of cavitation. The
thick-section unsteady potential flow computer program (see Appendix B) -- -

can be used to calculate the isobars in the vicinity of the foil sur-
face. The vertical component of the section inflow which can be thought
of as an angle of attack variation greatly affects the size of the nega-
tive pressure region. Figure 2 shows the nominal, effective and un- -.

steady lifting-line corrected vertical component of the section inflow
for the AO-177 without fin wake at the .85 radius. The fully-wetted,
unsteady flow isobars calculated using the lifting-line corrected in-
flow (dotted curve on Figure 2) are shown in Figure 3 for blade angles

OB = 00, 200, 400, 600 and 800. Also shown in Figure 3 are the fully-
wetted, steady flow isobars. Figure 3 shows a substantial region of
negative pressure for eB = 200, 400 and 600. This is due to the large
angle of attack the section experiences at these blade angles. Next
the results from the integration of the cavity equations are presented.

11.3 .20-

-8.5- > As S8.nominal inflow

0 --- effective Inflow
S............. unsteady lifting-line corrected Inflow

> 5 Is positive In the direction of the propeller's.2, roqMlltion and measured from the section trailing . .

edge such that On -0when the generator lineIs at top-dead-clnter

2.9o .05."

_-j. .:..

CLC

30 E 0 1.

AOS77Wtou inWk atte.5Rdu...I.1..

... ... .. ... .. ... .. ... .. ... ..

*-47 generator fine '~- .--.-..

re a to 0

5.7 -. 10 -4-
0 30 60 9 ." 1 0 16"0 210 20.,- 30 3310 --.310

Blade Angle. OB (degrees)

Figure 2. Vertical Component of the Section Inflow for the
AO-177 Without Fin Wake at the .85 Radius.
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Steady Pressure Field Blade Angle = 400- I
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"Fin Wake at the .85 Radius.
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The radial extent of cavitation during one propeller revolution is
shown in Figure 4. From Figure 4 it is seen that the inception angle
decreases towards the outer radii. This is primarily due to the effects
of skew. Inception occurred when the sections entered the high wake
region and for a sufficient angle of attack. The results from the
integration of the cavity equations for the .75, .85 and .95 radius
are shown in Figures 5 and 6 for the cases with and without the fins,
respectively. In Figures 5 and 6 the numbers above each cavity config- 0
uration correspond to the blade angular coordinate. The cavity growth
phase is shown by the dashed line configurations and the collapse phase
by the solid line. The results show extensive cavitation at the .95
and .85 radii. The cavitation initiates at the leading edge and grows ..- C
to cover most of the section. The cavities are thick. The cavitation
at the .75 radius is much less severe. The cavitation also initiates
at the leading edge but only grows to cover about half the section and
is not nearly as thick as the outer radii. The cavitation calculated _

at the .65 radius is similar to the .75 radius except the cavities are

very thin. The maximum values of cavity length lm, cavity thickness tm
and area Am at each section are given in Table 2. The most severe cavi-
tation is predicted at the .85 radius. Figure 4 shows that at the .85 -
radius the duration of cavitation is greatest. Also, the maximum cavi-
ty area is at the .85 radius (see Table 2). At all the radii the cavi- S i
ties collapse towards the section trailing edge. The collapse position
lc/c moves closer to the trailing edge for the inner radii. This is due
to high frequency effects associated with a decrease in the ratio of
the cavity natural frequency rn to the section reduced frequency k.
The cavity natural frequency was calculated using the steady section
pressure field with the ambient pressure specified to give a cavity
about the size of the maximum unsteady cavity predicted at that section. -.7
Values for lc/c, ^n and k for each section are given in Table 2. The
cavity volume and volume velocity are obtained by integrating the area j
and area velocity values radially at each blade angle for the duration
of the cavitation. These results are shown in Figures 7 and 8.

The results show a 19.26% reduction in the maximum cavity volume
due to the flow-modifying fins (see Figure 7). FromTable 2 it is seen
that this reduction is principally due to a decrease in the cavity

thickness. Figure 8 shows that the maximum and minimum cavity volume
velocities are also reduced by 22.11% and 12.67%, respectively, due to
the fins. The fins effect a small phase shift such that the angle at
which the cavity volume is maximum is shifted from 710 to 750 and the
collapse angle increases from 1100 to 1150 (see Figure 7).

Comparison with Experimental Data

The model-scale experiments were conducted at the SSPA large watertunnel (Bjorne, 1980). An identical model to that that had been used

previously for the nominal wake measurements was used. The model was
mounted in the test section with the water surface represented by ply-
wood sheets placed at the design water line. Turbulence stimulating

O'-t, 4"
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AO-177 without Flow-Modifying Fins AO-177 with Flow-Modifying Fins
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Figure 5. Cavitation Prediction for the AO-177 Propeller .\

at the .75, .85 and .95 Radius for the Without
Flow-Modifying Fins Condition.
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Figure 6. Cavitation Prediction for the AO-177 Propeller
at the .75, .85 and .95 Radius for the With
Flow-Modifying Fins Condition.



626

2.2 -Wiot

with fi
2019.26% reduction hI

a 1 .8 % lo x -d ue w ~ t o f m%

1.4I

= 6 If If

.44f.

00 10 20 30 4050600 70 80 do0100 110
Ead. Anal.

Figure 7. Cavity Volume Prediction for the AO-177 Propeller.

30 2L1 'rm

20
102 04 000 O i 6 i

HM ros

I eldfnI

I~~~~~1 6123466069101

% . . . .



I -. . .. .. - - -r

....- *b.wt- .C - r - .r s

627

nets were placed on the model surface in front of the propeller aper-
ture. Experience at SSPA has shown that better correlation between
model and full-scale results is obtained with the use of the nets.
Apparently, the action of the nets on the model boundary layer reduces
the effects of the lack of similarity between the model and full-scale..
Reynolds number. No new wake survey was conducted on the model with
the nets attached. Consequently, the effect of the nets in the calcu-
lations could not be determined. The experimental cavitation patterns -,.-.

were determined from visual observations and photographs. Unfortunate-
ly, no measurements were made of the cavitation thickness or volume
variation. For the full-load trim and without fins condition fairly
thick sheet cavitation was reported in the experiments to extend radi-
ally from the .6 radius to the tip and at blade angles of 3450 to 1050.
The sheet cavitation collapsed near the blade trailing edge where it
merged into foaming cavitation. When the fin was installed the dura-
tion of cavitation was reported to increase from 1050 to 1150. Figures 9
4, 9 and 10 show the experimental results described above. The compu-
tational results are also shown on the figures for comparison. Figure
4 shows the radial extent of cavitation during one propeller revolution.

so* 40. 0 20* 10, 0.

C MU IALR RULTA

KEY FOR EXPERIMEMTAL RESULTS
sSHEET CAVITATION

A) {!:;... BUBBLE CAVITATION

,U , FOAMING CAVITATION WHEN
N BUBBLES AND SHEET COLLAPSE

110" 100 •  goo 80" 70. so* 0

Figure 9. Chordwise Extent of Cavitation at Different Blade
Angles for the Without Flow-Modifying Fins Condition.
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50" 40" 30' 20, to' 0.
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KEY FOR EXPERIMENTAL RESULTS

O SHEET CAVITATION

BUBBLE CAVITATION •

•. FOAMING CAVITATION WHEN
BUBBLES ANO SHEE" COLLAPSE

MODEL-SCALE EXPERIMENTAL RELTSl
110, 100 90' To'0 60'

Figure 10. Chordwise Extent of Cavitation at Different Blade
Angles for the With Flow-Modifying Fins Condition.

The calculations compare well with the experiments, particularly with
regard to the inception angles. The calculations show an increase in
the duration of cavitation over the experimental results for the inner
radii. It was pointed out earlier that in the calculations one of the
effects due to the fins was a small phase shift such that the angle at
which the cavity volume was maximum and the collapse angle showed an
increase. Figure 4 shows that the experimental results also indicate -

an increase in the collapse angle due to the fins. Figures 9 and 10
show the chordwise extent of cavitation at different blade angles for
the duration of the cavitation. Figure 9 is for the condition without
fins, and Figure 10 is for the condition with fins. Here again the
computational results compare well with the experimental results.

Full-scale sea trials were conducted on the AO-177 for the purpose
, of viewing and photographing the propeller cavitation and measuring the

vibration/noise. Trials were conducted for both the without (Kelly •
and Jessup, 1980) and with (Koh and Jessup, 1982) fins conditions.
The propeller was exposed using a periscope inserted into tubes in-
stalled through the hull plating. Some of the results from the trials
are shown in Figure 11. For the full-load without fins condition

9--
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sheet cavitation was reported to extend from the .7 radius to the tip
and for blade angles of 200 to 700. Initially, at the 200 blade angle,
the chordwise extent was 50% to 70%. At 350 the radial extent is some-
what reduced, the chordwise extent is to the trailing edge and at the
tip the cavity begins to sweep off the blade. At 50 the chordwise
extent is to beyond the trailing edge where the sheet cavity breaks up
into a large thick cloud. The cavity collapse is violent and occurs
at a blade angle of approximately 700 near the .85 radius trailing edge.
A loud banging noise was heard when the cavity collapsed. For the full-
load with fins condition a substantial reduction in cavity volume was
observed. The reduction was primarily due to a thinning of the cavity.
The radial and chordwise extent of the cavitation was only slightly
reduced. The violence of the cavity collapse and the associated noise
was also reduced.

Both the model-scale experimental results and the calculations.
which use model-scale wake data show an increase in the duration and 2
the radial extent of cavitation compared with the full-scale experi-
mental results. This is due in part to scale effects associated with
the difference between model and full-scale Reynolds number. The model
and full-scale experimental results show cavitation extending over most " "
of the sections' chord with cloud (foaming) cavitation shed from the
cavity trailing edge into the propeller wake. The calculations also
show cavitation extending over much of the sections' chord. In sum-
mary, the calculated cavitation shows many of the trends observed ex-
perimentally both for model and full-scale. The inception, amount and
duration of cavitation is similar. Both the full-scale observations
and the calculations show maximum cavitation at the .85 radius. The
trailing edge collapse phenomena is shown in the calculations. The
effects of the flow-modifying fins are also correctly reflected in the .
calculations, that is, a substantial reduction in cavity volume and
collapse velocity due to a decrease in cavity thickness.

SECTION 4: PITCHING HYDROFOIL

Shen and Peterson (1978 and 1980) conducted experiments at the
David W. Taylor Naval Ship Research and Development Center (DTNSRDC)
36-inch water tunnel with a Joukowski hydrofoil of 10.5% thickness and
aspect ratio of 3.2. The foil was oscillated in pitching motion about .... -

an axis located 3/4 of the chord from the trailing edge. The instan-
taneous foil angle of attack awas given by

S= o + alsinwt (9)

where ctc, a1 and w are the mean foil angle, pitch amplitude and circu-
lar frequency of the pitch oscillation respectively. The experimental
test section, coordinate system and notations used for the computations
are shown in Figure 12.

....................
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2y/c -XxR, yR) .

Figure 12. Exeimna Tes Setin

• 25 -1
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PC-- .25.0::-

2 X/c 2 .... l

Figure 12. Experimental Test Section. ":"':

The most important nondimensional parameters describing this type of
flow are the cavitation number a (equation (4)), the pitch amplitude
ct1 and the foil reduced frequency k (equation (6)). Calculations were
made with the cavitation number fixed at one value in order to investi-
gate the effects of the reduced frequency and the pitch amplitude on
cavitation inception and the cavity dynamics. Unsteady cavity calcula-
tions were made for cavitation number a = 1.13, mean foil angle o ='
3.250 and for two values of pitch amplitude al = .950 and 1.550. Steady
cavity calculations were made for two values of foil angle cot = 4.30 and
to = 4.80. These angles correspond to the maximum foil angles attained
for the oscillating foil conditions. The conditions for the calcula-
tions were chosen to simulate the experiments. Wherever possible, com-
parisons are made between the computational and experimental results.

Cavitation Inception

Cavitation inception was determined computationally by the condi-
tion of the first occurrence of negative pressure on the foil surface
P < 0, where P is given by equation (3). For the pitching foil appli- .

cation the pressure coefficient c in equation (3) is given by equa-
tions (B-6) and (B-7). For steadq flow (k = 0) inception occurred com- -

putationally at a foil angle of ao = 3.280. The inception location was
2x/c = 1.97. Experimentally, for this same condition, inceptionoccurred
at a foil angle of 3.5o and a location of 2x/c = 1.96. This difference
is due to the simple scaling law used in the computations for cavita-
tion inception. Consequently, the unsteady inception angles determined
computationally were corrected by the difference between the computa-
tional and experimental steady inception angles. In Figures 13 and 14 J

a comparison is made between the unsteady inception angles obtained
computationally, experimentally and from Shen and Peterson equation
(15). The Shen and Peterson equation is based on unsteady potential
theory and the experimental steady inception angles. Figure 13 is for
pitch amplitude cc = .950 and Figure 14 is for al = 1.550. All three
methods demonstrate that for k < 2 there is a delay in inception due to
foil oscillation. This delay is seen to increase with pitch amplitude
ct. The computations and equation (15) from Shen and Peterson both
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predict the maximum inception delay to occur at k .25 for both values
of al. The experimental results show that for high frequency the
amount of cavitation inception delay is reduced. The computational
results show that the reduction is substantial and that for k > 2 the .
unsteady inception angle is actually less than the steady inception
angle. This effect is quite pronounced for the a, = 1.550 condition.
The experimental results show, in general, larger inception angles
than the theories. Shen and Peterson point out that part of the dis-
agreement may be due to the lack of accurate resolution in measuring
the foil angles in the experiments. This is the reason that, in some
cases, the experimental results are designated as a range of angles
instead of a single value.

The inception position was found in the computations to move back
from the leading edge towards the trailing edge as the reduced fre-
quency increased. For a1 = .950 the inception position moved from
2x/c = 1.962 for k = .23 to 2x/c = 1.89 for k = 6.9. This trend was_-
even more pronounced for al = 1.550. In fact, for a = 1.550 and
k = 6.9 upper surface inception occurred at a foil angle of 2.10
(before amin) and at 2x/c = .5, and lower surface inception occurred
at foil angle of 4.5o (before amax) and at 2x/c = 1.95. This change in
the inception position was not observed in the experiments. Shen and
Peterson report that inception occurred at 2x/c 1.96 for all k inves-

tigated (.23< k< 2.3).

j



633

Cavity Dynamics

Steady cavity constant solutions (a, b, )are obtained by using
the cavity equations with estimates of the solutions as initial condi-
tions and large damping (small Rn in the equations). The cavity equa-
tion response is periodic oscillations about the constant solution.
Using a Rn = 100, the constant solution obtained for zo = 4.30 is
(2a/c, 2b/c, 2i/c) = (.1152, .048, 1.848), and for ao = 4.80 is (2a/c,
2b/c, 21/c) (.1305, .0612, 1.839). The ao = 4.30 solution is shown
by the dashed curve on Figure 15. The nondimensional natural frequency

nc.. W = (10).-- "
n 2U (10)

obtained for cao = 4.30 is 3.34 and for ao = 4.80 is 3.24. Experimental
results were also obtained for cto = 4.30 and with Rn = 2.8 x 106. For e
this condition extensive cloud cavitation was observed. Cloud cavita-
tion refers to the condition when an instability in the cavity surface
occurs and a portion of the cavity separates, developes the appearance
of a cloud and subsequently is shed downstream. The cloud cavity shed-
ding process was reported to be periodic with a frequency of 42 hz.

ZERO PRESSURE LINE

- - - CAVITY EQUATION CONSTJANT
SOLUTION WZif. 26k. 2.LM)

S1.7 .0

Figure 15. Steady Thin-Cavity Solution for a 1.13 and
o% 430.
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The cavity length reported was Lo/c = .39. Using the experimental values
for the Rn = 2.8 x 106 (light damping) and a small displacement from the
constant solution for the initial conditions, the cavity equation response
is large amplitude oscillations. The frequency of the oscillations is
close to the natural frequency. This type of cavitation behavior sug-
gests an instability of the cavity surface, such as cloud cavitation.
This notion is supported by the fact that the natural frequency ^n when
expressed in equivalent units and for the experimental conditions is
51 hz. This is close to the cloud cavitation shedding frequency of 42
hz observed in the experiments. The value of the computed cavity length
for cto = 4.30 is only about 30% of the experimental value for this con-
dition. A part of this discrepancy is due to the approximate nature
of the thin-cavity model used for the static potential. However, it is
possible that a part of the discrepancy might be due to the imprecision
of determining the cavity length by visual observations in the experi-
ments.

Unsteady cavitation computational results were obtained for Rn =
2.8 x 106, = 950 and six values of reduced frequency, k = .23, .6,
.98, 2.32, 3.34 and 6.9. The reduced frequency range, O< k< 7, was
chosen after consideration of the linear cavity equation systemresponse.
The peak amplitude of the linear response depends on the ratio an/k.

O For small 4n/k small peak amplitudes occur compared to quasi-steady

response. For n/kl large peak amplitudes occur compared to quasi-
steady responses. For large 2n/k essentially quasi-steady response
occurs. The nondimensional cavity length, L/c = 2a/c, response for
each frequency is shown in Figure 16. For the lower values of reduced
frequency (k= .23, .6 and .98) the cavity response is seen to be large
amplitude oscillations during the cavity life cycle. The oscillatory
cavity response at low reduced frequency (large 'n/k) is a result of

S.. the fact that the cavity has sufficient time to adjust to the fluid
pressure field. For the higher values of reduced frequency (k = 2.32,*- 3.34 and 6.9) the cavity response is seen to be a relatively slow,

" - stable growth phase followed by a rapid collapse phase. Results were
also obtained for Rn = 2.8 x 106, (1 = 1.550 and three values of reduced

frequency, k = .23, .98 and 2.32. The al = 1.550 cavity response is
similar in character to the a, = .950 response, however, as a result
of the larger pitch amplitude, the cavity size is increased. Further-
more, the response velocities were found to be larger than the a = .950 ;-
values resulting in larger amplitude cavity oscillations at the low
frequencies (k .23 and .98) and a more rapid collapse phasc at the
high frequency (k= 2.32).

Figure 17 shows a comparison of the computational and experimental
maximum cavity length Lk/c results as a function of reduced frequency.
The steady maximum cavity length Lo/c values are also shown on Figure
17. The computational results underpredict the experimental results.
This has been pointed out and discussed previously for the steady cavi-
ty solution. The same discussion is also valid for the unsteady cavity
solution., Figure 18 shows a comparison of the computational and experi-
mental , = .950 maximum cavity length results normalized using the
steady cavity results. This removes the absolute cavity size without

.: >.-v-." .;.,.-;-.-',.......,... -....-.-.. .. *- -. ..*. .'--.--,. , --. -.-. '..-....--.--.-..1
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effecting the cavity dynamics. The computational cavity area normalized .,.-

using the steady cavity area is also shown. In Figure 18 both the
reduced frequency k and the ratio 2n/k abscissa scales are shown. Fig-
ure 18 clearly shows the dependence of the cavity dynamics on the ratio
in/k. It is seen from both the experimental and computational results
that there is a minimum cavitation response for a low value of reduced
frequency. The computations have a minimum cavitation response for
k-.5 and the experiments for k= 1. The computations show that as k
increases from the value at the minimum cavitation response, the cavi-
tation response increases reaching a maximum at k= 2.5 ( /k = 1.3).
Then for even higher values of reduced frequency (low wn/P) the cavita-
tion response decreases again. For k = 6.9 the response is below the
k = .5 minimum. The experimental results seem to confirm the computa- %

tional trends in that they show an increase in cavitation response for
k greater than its value at the minimum cavitation response; however,
experimental results were not obtained for k> 1.65. Figure 19 shows the ,
same comparisons as Figure 18 except for the l = 1.550 condition. The
same cavity dynamic behavior discussed in connection with Figure 18 is
found in Figure 19 for the frequency range 0< k< 2.5. The major dif-
ference between the figures is the amount of reduction in cavitation
response at the minimum. Both the computational and experimental re-
sults predict less reduction in response. For the computational results U
this is due to the larger amplitude cavity oscillations at low fre-
quencies found for ct1 = 1.550. If results had been obtained for Ot=1 .55

0

and k> 2.5, it is not expected that the cavity dynamics would be similar -
to the at = .950 results, at least for the high frequency k = 6.9.
Examination of the , = 1.550 and k = 6.9 unsteady surface foil pres-
sures indicated a large upper surface cavity originating near the foil
trailing edge and moving forward to the leading edge. Lower surface
leading edge cavitation was also indicated.

Figure 20 shows for the cti= .950 computational results the foil
angles when the cavity area and length were maximum and the foil angle
at collapse. It is seen that the cavity area and length are maximum
when the foil angle is at its maximum 4.20 except for the high reduced
frequencies. At the higher reduced frequencies the cavity area and
length are maximum at smaller foil angles reached after the foil passes
its maximum position. The foil angle at collapse shows a similar trend
in that the collapse angle is reduced at the higher reduced frequencies.
Figure 21 is similar to Figure 20 except for x = 1.550, and it also .'
includes experimental results. The trends are similar to those dis-
cussed in connection with Figure 20; however, the experimental results
predict larger reductions in foil angles than the computations and at
lower values of reduced frequencies. In the computations the cavity
position on the foil at the time of the cavity collapse was found in
all cases to occur near the foil leading edge. Experimental values for
the cavity collapse position were not reported.

Shen and Peterson report that many of the experimental cavities
were accompanied by cloud cavitation. For the steady cavity condition
(k = 0) and for low reduced frequencies the cloud cavitation shedding .' .'-

i~
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could be very periodic. For the higher reduced frequencies the cavities
were reported to be relatively stable up until the final stages of the i
cloud cavitation collapse. For t = .950 and at low reduced frequencies
(k <1.2) only light cloud cavitation was reported to have been present
in the experiments. For this same condition and at the reduced fre-
quency k = 1.646 heavy cloud cavitation was reported. For a, = 1.550
and at all values of reduced frequency heavy cloud cavitation was re-
ported in the experiments. Cavitation noise measurements were also
made in the experiments. Cavitation noise was reported to increase with
the occurrence and intensity of cloud cavitation. For unsteady cavita-
tion the peak noise occurred near cavitation collapse. When the rela-
tive sound power is plotted vs. reduced frequency, Shen and Peterson
show the existence of a "noise bucket"; for the steady condition and at
low reduced frequencies the noise level is relatively high; for the 41
mid-range reduced frequencies the noise level is minimum; for higher
reduced frequencies the noise level increases above the k = 0 value.
The differences between the a, = .950 and a = 1.550 noise response are
seen to be at the low and high frequencies, where the a, = 1.550 noise
response shows an increase over the a, = .950 values. Results from the--.
computations can be used with standard methods to calculate cavitation
noise. These calculations were not made. However, since a measure,
in part, of the predicted cavitation noise is the intensity of the
response velocities certain qualitative information can be deduced
from the results. The computational results appear to contain trends
that are similar to the experimental trends concerning cloud cavita-
tion and cavitation noise. The low frequency (k = .23) response shows
large amplitude oscillations of the cavity surface. The oscillations
are particularly intense during the cavity collapse phase. As pointed
out earlier, the , = 1.550 response velocities were larger than the

%
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cl= .950 resulting in even larger amplitude oscillation at low fre-
quency. For the medium frequencies (k = .6 and .98) where the cavita- '.
tion response was shown to be minimum, the oscillatory behavior and
response velocities are lower than the k = .23 condition. For the
resonance frequencies (k = 2.32 and 3.34) where the cavitation response ,.,

was shown to be maximum, the oscillatory behavior is not present; how-
ever, extremely large velocities are found at collapse. This suggests
a different type of cavity instability than was found at low frequencies
which is associated with the rapid and violent collapse of the large
cavity. For a, = .950 and for the high frequency (k = 6.9) where the -
cavitation response was shown to be reduced, the response velocity was
also reduced. For a, = 1.550 and for high frequencies calculations
were not made; however, as discussed earlier an examination of the un-
steady foil surface pressures for k = 6.9 indicated much more extensive
and no longer leading edge cavitation.

The computational results show that for fixed o, ai, and Rn the
cavitation response such as maximum cavity length and cavity surface
behavior (and possibly noise and cloud cavitation) depend on the ratio

an/k. The steady cavitation condition is given by n/k =-(k = 0).
The cavity equation response is large amplitude oscillations about the
equilibrium solution. For l< n/k< -, the response is quasi-steady;
however, the intensity of the oscillations is reduced and for a certain
value of Wn/k = 7 a minimum response is obtained. For en/k < 1 the
response is no longer oscillatory; the response is a slow stable growth
phase followed by a rapid collapse phase. A resonance condition is
indicated for an/k = 1 in that the response levels are largest. For

a, = .950 and in/k << 1 the response levels are reduced below the
an/k = 7 value. For ct1 = 1.550 and in/k << 1 the leading edge cavi-
tation is no longer present and large responses are indicated. The
experimental results appear to confirm the computational trends up to
the point that experimental data was obtained.

SECTION 5: CONCLUDING REMARKS

Results from the computational method for cavitation inception,
extent, duration and cavity dynamics including surface behavior and
collapse position are shown to closely approximate model and full-scale

*. experimental data. Observed trends due to the propeller geometry and .-..
ship wake are also correctly reflected in the calculations. The method
shows promise towards the development of an engineering tool for pre-
dicting unsteady sheet cavitation. At its present state of develop-
ment, the method contains certain approximations which should be re-

SI moved in order to further improve the accuracy of the results. An
improved method is needed to determine the effects of the cavity on
the instantaneous foil/cavity pressure field. The thin-cavity approxi-
mation presently used for this is of uncertain accuracy, particularly
when the predicted cavities are thick. The mathematical problem which
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needs to be solved in order to remove the thin-cavity approximation is
equivalent to a nonlinear solution for the flow field of a foil and a
fixed (steady) cavity. This problem can be solved numerically using
a mixed boundary value problem formulation in conjunction with a free
surface adjustment scheme. This solution would also be useful for
evaluating the semielliptical form presently used to model the cavity
surface. It may be advantageous to use more general forms to model the
cavity surface; for example, forms with cusped leading and/or trailing
edges. Another component of the computational method which can be im-
proved is the manner in which three-dimensional propeller effects are
included. Presently, results from an unsteady propeller lifting-line
computer program are used for this. An improvement would be to use
results from an unsteady propeller lifting-surface computer program.
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APPENDIX A: THIN-CAVITY APPROXIMATION FOR THE STATIC POTENTIAL

The integration of the cavity equations requires the determination
of the static potential and its derivatives at each time step. The
boundary value problem for determining the static potential is

V2
S = 0 in V (A-1)

-n _ Vf(t) on S + Sc (t) (A-2)

s = 0 on S., (upstream). (A-3)

In equation (A-2) SR is the wetted portion of the foil surface, Sc is
the cavity surface (see Figure 1) and Vf is the inflow velocity for.*i
coordinates fixed in the foil. In addition to satisfying conditions
(A-i) through (A-3) the static potential must also satisfy a Kutta con-
dition at the foil trailing edge, and proper consideration must be made
for the foil wake. The calculations in this paper were made using a
thin-cavity approximation for the static potential. For a thin cavity
the static potential can be assumed to be a perturbation on the fully- _
wetted flow,

0S = fw + EdSp (A-4)

where c is a small parameter related to the cavity thickness. The per-
turbation potential, ¢SD, satisifies the static potential boundaryvalue
problem with the kinemaic boundary condition, equation (A-2), replaced
by

aSp + v on SBUW (A-5)an Vtncx n BU.-

- 0 on S (A-6)

where SBUW is the unwetted portion of the foil surface (see Figure 1),
Vt is the fully-wetted surface velocity, ncx is the x component of the
cavity normal and vn is the normal velocity on the cavity surface. The --
kinematic conditions, equations (A-5) and (A-6), are obtained fromequa-
tion (A-2) by expanding (A-2) in a Taylor series about the foil surface
and retaining terms of 0(E). In order to facilitate the use of the .-
existing fully-wetted flow computer program, condition (A-6) was ignored
and in condition (A-5) vn was neglected and ncx was approximated by the
x component of the foil normal, nx. This simply adds the term Vtnx to

- .. . . . . . . . . . ............... . .
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the source strengths on the unwetted portion of the foil surface, SBUW.

APPENDIX B: THICK-SECTION UNSTEADY POTENTIAL FLOW SOLUTION

The fully-wetted flow potential Pfw in equation (A-4) is the solu-
tion to the static potential boundary value problem (A-i) through (A-3)
with the kinematic boundary condition (A-2) satisfied on the complete
foil surface, SB + SBUW (see Figure 1). Below 4 fw is referred to as ¢ .
and is nondimensionalized as are all variables using the foil semichord
c/2 and steady section speed U. For the pitching foil application the
kinematic boundary condition on the surface of the foil is

n + a Re + k(-(y-yR)n + (x-xR)ny eik (B-I)n x  y x. :. -

where a1 is the pitch amplitude and (xR, yR) is the location of the
pitch axis (see Figure 12). In obtaining (B-i) terms of 0(al2  have been
neglected. For propeller applications (B-i) is replaced by

N V

n - ny Ree Vn eink(x+t) (B-2)

where Vn are the complex amplitudes of the Fourier series expansion of
the vertical component of the section inflow I (see Figure 1). Consider-
ing (B-I) and (B-2) 4 is assumed to be of the form

N

Re On einkt (B-3)

A solution for 4 can be obtained from Green's theorem for doubly con-
nected regions

0 G 1 G - ds f A0 ds (B-4)
m B + SBUW SW

where G = .n v(x-)' + (y-n)2 is the two-dimensional Green's function
A0 is the potential jump across the foil trailing wake sheet SW, and
m = 1 or 2 depending on whether 0 is evaluated on SB or a field point
respectively. As is depicted in Figure 1, SW is constrained to the
-x axis. From the condition of pressure continuity across SW ,
A0 r(x+t) where r is the foil circulation, .. -

N
tRe e (B-5)

n= 1
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The surface values of * in equation (B-4) and the circulation r are
determined from (B-4) evaluated on So in conjunction with the Kutta .-..-..

* condition. The Kutta condition requires that the difference in tan-
gential velocity between the upper and lower surface at the trailing
edge is equal to the instantaneous loss in foil circulation -dr/dt.
Once this is accomplished, field point values for 0 (orits derivatives)
are obtained by direct application of (B-4). The necessary integra-
tions in (B-4) or spatial derivatives of (B-4) can all be performed
analytically if 0 and 30/an are assumed constant on line segments rep-
resenting SB. The pressure coefficient,

Ni ,,'. " '. ',1

Cp = Re Ceinkt (B-6)

is obtained from the Bernoulli equation. In (B-6), CPO = - -

0oy 2 and for the pitching foil application,

Cp 2a, [y - ikoi - ox(y-yR)k + Oy(x-xR)k

+ ioy- Ox - *oyoly (B-7)

and for propeller applications,

Cpn 2 x - oy~ny -2V yeinkx] (B-8)

In (B-7) terms of 0(a1
2) and in (B-8) terms of O(V 2 ) are neglected.

The computer program implementing this theory was validated bycom-
paring its results for unsteady surface pressure on a pitching hydro-
foil with the method of Geising (1968) and the experiments of Shen and
Peterson (1978). Figure B-I shows a comparison between the theories
and the experiment of unsteady pressure magnitude per radian, ICpiI/a1 ,
for three foil locations, 2x/c = (1.934, 1.8, 1.5), and for the reduced
frequency range, 0'k<2.5. Figure B-1 also shows a comparison for the
phase angle. Figure B-1 shows that the theories compare well with the
experiments. However, on the average, Geising's results are closer to
the results from the experiment for the pressure magnitude. Stern's
results show somewhat small pressure magnitudes. In Geising's singu-
larity distribution method the location of the foil trailing wake sheet
is determined as part of the solution, where in the present theory it
is constrained to the -x axis. This may account for the differences in
their results.

APPENDIX C: EFFECTIVE WAKE PROCEDURE

The vertical component of the section inflow is given by

.- '-
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Figure B-1. Fully-Wetted Flow Unsteady Surface Pressure Magni-
tude and Phase on a Pitching Hydrofoil.
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Figure C-2. Ratio of Effective and Nominal Wake Axial
Velocities for Three Axisynmnetric Bodies.
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V = Vx cosa I + VT sinS I  (C-i)

where VX and VT are the effective (propeller/hull) axial and tangential
wake velocities and al is the hydrodynamic pitch angle. Experimentally
it is difficult to measure an effective wake; consequently, measurements
are made without the propeller (nominal wake). The nominal wake tends
to overpredict the wake deficit since propeller suction tends to accel-
erate the flow, particularly in retarded flow regions. Huang and Groves
(1980) have shown good agreement between theory and experiments for the
effective wake of axisymmetric bodies. Some researchers have construc-
ted effective wakes for ships by applying Huang's theory to nominal
ship wakes at blade angle intervals. This procedure is not felt advis-
able since ship wake profiles do not resemble axisymmetric wake profiles
at most blade angles as can be seen from Figure C-I. Figure C-i shows
the AO-177 without fin nominal wake profiles for blade angles from 00
to 1800 and an axisymmetric body nominal wake profile. For the calcu-
lations made in this paper the nominal wake was modified to represent
an effective wake by using data from Huang and Groves rather than apply-
ing the theory directly. Figure C-2 shows curves of ue/ux vs. ux for
three different axisymmetric bodies with propeller loading and speed of
advance values near the values for the AO-177. ue is the effective wake
axial velocity and ux is the nominal wake axial velocity, both of which
are nondimensionalized using the ship speed. It is seen that the curves
are very close. A mean curve from Figure C-2 was used to calculate an
effective wake for the AO-177. This was done by multiplying VX 'in equa-
tion (C-i) at each blade angle by the factor ue/ux obtained from Figure
C-2 for ux = VX. Since the AO-177 had lower nominal wake values than
Huang's data, the curve had to be extrapolated. This procedure is only
intended as an estimate of the effective wake. It assumes that the
effect of the propeller in the ship boundary layer is the same as in an
axisymmetric boundary layer for the same wake deficit. The calculation
of an effective wake for a propeller/hull is clearly an area of needed
research. One possible improvement is to construct ship wake profiles
at constant depths where they would resemble two-dimensional profiles
and then apply a theory like Huang's. However, the effort would pos-
sibly be better spent by scaling the wake using the results from
boundary layer calculations for the ship both with and without the pro-
peller. This would also allow for Rn scaling when making calculations
for full scale.

..
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Discussion

T.T. Huang (DTNSRDC)

Please give a detailed illustration of the differences in your re-
sults using nominal and effective wakes as inputs. Are we sure that TI
proper use of effective wake is the only parameter affecting the com-"
puted cavitation geometries rather than the models you used? The im-
portance of determining proper effective wake for unsteady propeller
theory operated in three-dimensional nonuniform inflow.

R. Sato (Ishikawajima-Harima Heavy Industries)

If we want to calculate the pressure fluctuations on ship the
hull, I think it is important to calculate the behavior not only of
the cavity on the propeller blades but also of the cavity that appears
behind the trailing edge. Is it possible to apply this method to cal-
culate the behavior of this type cavity?

0. Scherer (Hydronautics, Inc.) I *
Figure 2 indicates a correction to the effective inflow velocity

from unsteady lifting-line theory. Could you please explain the nature
-of this correction?

M.B. Wilson (DTNSRDC)

The author has shown a lot of ingenuity in combining approxima-
tions with a nonlinear formulation of the two-dimensional cavity be- .. ....

havior. To a great extent, the ultimate consequences of the various
approximations and assumptions have not been addressed directly, but
are supposed to be evident in the comparison given with results of
experiments in the two examples. One example used by the author deals

with features of the cavitating propeller flow on the Naval Auxiliary
Oiler AO-177. This single-screw ship encountered problems on its
Builders Trials associated with intermittent propeller cavitation, and
these problems were subsequently relieved significantly by the instal-
lation of a wake-improving fin. The details of this fix are not rele-
vant here, but some caution needs to be exercised with implications
conveyed by the author about how the present analysis scheme could be
used to analyze the flow problems involved with this particular ex-
ample.

For the record, it is important to state clearly and accurately
what problems the ship actually encountered. The AO-177 did not dis-
play excessive levels of vibration in the usual sense of this term.

V
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That is, the hull girder vibration levels were not excessive according
to either Navy standards or the ISO recommended levels. This applies

to (a) the maximum vertical vibration on main structural members on
the ship centerline near the fantail and (b) the maximum horizontal
vibration at the top levels of the deckhouse. The principal unsatis-.
factory feature about this ship was the excessive level of propeller- .
excited inboard airborne noise, which was found to dominate all other
noise sources in most compartments aft of Frame 94. The distinction
is important in terms of the frequency content of the exciting pres-
sure pulses. High levels of airborne noise were measured especially
in the frequency range of 30 to 250 Hz.

A seconday problem with the AO-177 was the propeller damage. It
is somewhat misleading to use the term "erosion damage" in this con-
nection without some qualification. After the Builders Trials, and
roughly 40 hours of full-power operation, the propeller blades were
found to have patches of burnished and dimpled surface damage that
should be termed initial-stage or incubation-zone cavitation damage.
This means that there was no material weight loss or gaping ragged
holes on pits that are characteristic of what is commonly referred to
as erosion damage. Each blade suffered a 6-mm (1/4-inch) lip or bent
trailing edge (curled toward the pressure face) between the 0.8R and
0.9R radius that had the appearance of being rolled or beaten over.
This early-stage surface distress, typical of cloud cavitation damage,
was all concentrated at or very near the trailing edge of each blade.

One has the impression from the present paper that the procedures
and results described could somehow have helped avoid the difficulties
with the observed AO-177 propeller-wake interaction problems. I think
that it may be premature to conclude that the method is accurate enough
or that it covers all the physical effects involved. Consider the
following observations:

1. It appears to me that neither the predicted history of the
chordwise cavity termination position (see Figures 5 and 6)
nor the apparent collapse position agrees well enough with
the experimental findings (see sketches in Figures 9 and
10). In the cavitation sketches, the cavity termination
appears to occur at or beyond the trailing edge of the blade
(at the transition between the bubble and cloud (foaming)
cavitation regimes). The leading edge of the cloud cavita-
tion would seem also to indicate the location of the breakup
of the sheet cavity at or near the trailing edge. Actually,
the photographs of the blade cavities (Bjarne,1980) are need-
ed to show this. The theoretically predicted cavity termi-
nation location occurs no farther aft along the blade than 4.

about 0.88 chord at the 0.85R radius, and during the col-
lapse phase, the rear end of the cavity moves forward. At
this point, the paper gives no indication of what the pre-
dicted cavity termination or collapse location and severity
have to do with the formation of cloud cavitation or erosion
tendency.

2. The cavities predicted seem unrealistically thick (6 inches
thick over a 1.5-inch-thick foil section at 0.85R radius).

........~- .
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Perhaps this is a consequence of tne semielliptical cavity
shape assumed.

3. In order to derive information about the excitation source
level that would be important to the actual problem of the
AO-177 (excessive airborne noise), it would be necessary to
analyze harmonically the cavity volume velocity for its
spectral content at the frequencies 3 to 20 times the blade-
rate frequency. At least at blade-rate frequency, the
results of the paper correctly indicate that the cavity .i.
volume velocity could be reduced by the action of the fin.
Certainly, some favorable trends are evident. However, fur-
ther progress with this work should be encouraged in order
that the analysis scheme described be useful for trouble-
shooting actual propeller flows.

Author's Reply

Fred Stern

In response to Dr. Huang, the representation of the effective
wake is certainly not the only parameter affecting the predicted cavi-
tation; however, proper inclusion of propeller suction effects on the -lei
nominal wake is important. This can be seen from Figure 2, which shows ..-

that the reduction in the wake peak due to the effective wake proce-
dure used (31 percent) is of the same order as that due to the unsteady V
lifting-line correction (36 percent). The principal effect on the -. ..
predicted cavitation due to these reductions is a decrease in the cav-
ity thickness. This is indicated from Figure 22, which shows the
fully wetted, unsteady-flow zero-pressure lines calculated using both
the nominal and effective wake. Figure 22 is for the AO-177 propeller
at the .85 radius without-fins condition and for blade angle - 450.

In response to Dr. Sato, the method allows for free migration of
the cavity in response to the fluid pressure field; therefore, it is
possible to have cavities shed from the trailing edge into the wake.
The fragmentation of the cavity into cloud cavitation is beyond the
scope of the method. However, as shown in Section 4, the method does
show trends that are similar to experimental trends concerning cloud
cavitation.

In response to Mr. Scherer, in the unsteady propeller lifting-line
method certain three-dimensional downwash corrections are applied to
the harmonics of the vertical component of the two-dimensional sectioninflow. The propeller blades are modeled by skewed lifting lines.

The downwash corrections include the effects due to the bound vortex
representing the other blades and the effects due to the trailing ra-
dial and streamwise vortices from all the blades. The effects of the
bound streamwise vorticity is neglected. Also, interaction effects
between the different radial sections on the index blade are neglect-
ed. Figure 2 shows the effects of the downwash corrections on the
inflow at the .85 radius of the AO-177 propeller. The downwash correc-
tion reduces the maximum angle of attack by 36 percent. Although this

.:. ,..-................................................%6.......................*...
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seems to be a large reduction, the downwash correction may be conser-
vative. A comparison of the bearing force results from the unsteady
lifting-line method with lifting-bearing force results from the un-
steady lifting-line method with lifting-surface theories and with
experimental data indicate this. If the downwash correction is under-
predicted, then the section angle of attack variation would be exces-
sive, implying lower suction pressures resulting in thicker cavities
in the present analysis.

I would like to thank Dr. Wilson for setting the record straight
with regard to the specifics of the problems encountered by the AO-177.
With regard to Dr. Wilson's observations concerning the computational
results, I would like to point out that the method is intended to model
the gross features of unsteady sheet cavitation: cavity length, thick-
ness, position, and surface behavior, including rates of deformation
and movement. With this in mind, I think the results are reasonable;
however, improvements are possible, and I agree that the predicted
cavities are too thick. This is most likely due to an overestimate of
the section angle of attack variation. In response to Dr. Wilson's
comments concerning the AO-177 cavity-excited noise problem, the cav-
ity volume velocity (see Figure 8) has been harmonically analyzed (see
Figure 23) and the free-space pressures calculated (see Figure 24) for .
comparison with the experimental data (see Wilson et al., 1982, Figure
39). A value of 2 was used for the reflection coefficient in the
free-space pressure calculation. Although the results using this
approximate procedure for calculating hull pressures are seen from
Figure 24 to be below the model and full-scale experimental results,
they do show the same trend as the experiments with regard to the
effects of the fins; that is, a reduction in the pressure magnitude
except for directly over the tip where the effects of reduced tip
clearance offset the reduction due to the fin in the seventh harmonic -.

of the cavity volume velocity, V7.

AO-177 .85 Radius

1.e- BLADE ANGLE - 45"

1. - EFFECTIVE WAKE WITHOUT FINS

....... NOMINAL WAKE WITHOUT FINS

0.8-

OA- 0.0 ----- 0.0 @

02-

J2.
-0.2 0.0 0.2 0.4 0.6 0 0 tO 1. 2 1.4 1.4 1.e 2.0 12 2A 29

Figure 22. Fully-Wetted Unsteady Flow Zero Pressure Lines Calcu-
lated Using Both the Nominal and Effective Wake.
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Theoretical Treatment of Unsteady
Cavitation on Ship Propeller Foils

Hiroshi Isshiki and Mitsunori Murakami

Hitachi Zosen Corporation -
Osaka, Japan

ABSTRACT

The propeller surface force due to a cavitating propeller is
closely related to the volume variation of the cavity on propeller
foils. So, the correct estimation of the propeller surface force
requires the correct estimation of the cavity. For the purpose, the
unsteady, nonlinear and three-dimensional effects should be introduced
into cavity theory. In the present theory. the unsteadiness is theo-
retically investigated.

The usual "quasi-steady" approach can not take full account of the
unsteady effects, that is, the so-called hysteresis effects such as the

* phase delay of the cavity growth.

In the present paper, the problem of the two-dimensional leading
edge cavitation is first discussed, and the theory is then applied to
the problem of a ship propeller.

Although the present theory is of approximate nature, the numeri-
cal results for the two-dimensional problem may be thought to be, at
least qualitatively, correct.

With regard to the propeller problem, the effect on the cavity
pattern, the effect on the cavity volume and the effect on the
fluctuating pressure on the hull surface are discussed. Through these
investigations, some aspects of the hysteresis effects of the unsteady

cavity on propeller foils seem to be clarified. The estimation of the
- cavity pattern, for example, seems to be improved.

The variational principles of the linearized unsteady cavity flow
- theory are also discussed. Some comments about the exact boundary

conditions on the foil surface are also given by using the complex

acceleration potential.

NOMENCLATURE

" A sectional area of the cavity on a foil
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c chord length of a two-dimensional hydrofoil

D propeller diameter

C1  function of Vc and Vc

y fu(x), fL(x) equations of the upper and lower surfaces of a
two-dimensional hydrofoil

g (x,t) thickness of the cavity

KT = T/pn'D' thrust coefficient

Kpt = Pt/Pn D2  hull fluctuating pressure coefficient (total)

Kpn = pn/pn2D2 hull fluctuating pressure coefficient (harmoniccomponent of n-th multiple of the rotational

frequency)

9,o, k inception and termination points of the cavity

m 10 Vc/OtUc unsteadiness parameter -

n no. of revolution (r.p.s.) of the propeller

Pa ambient pressure (pa=Pa(t))

Pv vapour pressure in the cavity - -"

Pt hull fluctuating pressure (total)

Pn hull fluctuating pressure (harmonic component of n-th multiple -,-. -

of the rotational frequency)

t time

T propeller thrust

u, v x-, y- components of the fluid velocity

U advance velocity of the hydrofoil

Vc cavity volume

Vco steady cavity volume

(x,y) coordinate ( figure 1)

cv angle of attack (c=,r(t))

7
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2 cos- A. 7/ for the partial cavity
* = { -1il.l

2 cos c/7 for the super cavity

6* cavity end thickness or height of the plate placed at the

cavity end (independent of time)

fluid region (linearized) ".*

velocity potential ?
2

(Pa - Pv)/4 oU cavitation number (o=o(t))

oT equivalent cavitation number (- equation (19))

(n=(Pa Pv)/-IPn 2 2

P density of the fluid (constant)

1j V* experimental parameters (-+ equation (16)) -.

A, Xo camber of the two-dimensional thin parabolic wing

1. INTRODUCTION

It is well known that the propeller surface force due to a
cavitating propeller is closely related to the volume variation of the
cavity on propeller foils. So, in order to get correct estimation of
the propeller surface force due to the cavitating propeller, it is most
important to estimate the cavity on the propeller foils correctly. For
the purpose, the introduction of the unsteady, non linear and three-
dimensional effects into cavity theory may be required. In the present
paper, the unsteady effects are, among other things, theoretically
investigated.

In common practice, the quasi-steady approach is adapted, and
unsteady effects are not fully taken into account. The quasi-steady
approach can not explain the so-called hysteresis effects such as the
phase delay effect which is usually observed in experiment (Chiba et
al., 1980; Hoshino, 1980).

In the present paper, the problem of the unsteady cavity on two-
dimensional hydrofoils is first discussed (Isshiki and Murakami 1981),
and the theory is then applied to the problem on foils of a propeller
operating in a ship wake (Isshiki and Murakami, 1982a, 1982b).

The two-dimensional problem is based on the following assumptions:

..,"'- -"
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(1) According to Tulin-Hsu theory (Tulin and Hsu, 1980), the term
which expresses dynamic effect is neglected for the pressure on the
cavity surface.

(2) The cavity volume is obtained by using a relation based on
relationship between cavity length and volume of the steady cavity.

(3) The effect of the trailing vortices due to the lift variation
is neglected. But this assumption may not introduce a significant error
when the method is applied to a propeller operating in a wake, since the
main effects of the trailing vortices is taken into account through the -
calculation of the equivalent sections by the unsteady lifting surface
theory.

A calculation method based on the above mentioned assumptions and linear
cavity flow theory is obtained for the leading edge cavitation.

The unsteady cavity on propeller foils behind a ship is then
estimated by using the above mentioned two-dimensional theory. For the
purpose, a practical method of the calculation is developed by
introducing an idea of "effective flat foil". According to the idea,
the attack angle-cavitation number ratio of the effective flat foil is
calculated by assuming that the quasi-steady cavity length of the
effective flat foil should be equal to that of the actual propeller foil
section under the same cavitation condition. The quasi-steady cavity
length on the actual propeller foil is obtained by a method similar to
the Ukon-Kato method (Kato and Ukon, 1979; Ukon, 1979). And, by using
the above mentioned attack angle-cavitation number ratio, the unsteady
effects are calculated for the effective flat foil.

With regard to the effects of the unsteadiness of the cavity on the
propeller foils, the effect on the cavity pattern, the effect on the

cavity volume and the effect on fluctuating pressure on the hull surface
are studied.

In order to deepen the physical understanding about the unsteady
cavity flow, some discussions on the variational principles and the
exact boundary conditions on foil and cavity surfaces are also given.

2. CALCULATION OF THE TWO-DIMENSIONAL UNSTEADY CAVITATION

2.1 Formulation of the Problem

As shown in figure 1, a two-dimensional hydrofoil of the chord
length c is placed in a uniform stream of the velocity U, and the
direction of the flow relative to the foil is ct(t). The origin of the
coordinate system is taken at the leading edge, and the x- and y- axes
are taken parallel and perpendicular to the line joining the leading and

M"
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trailing edges respectively. to and Z are the inception and termination .

points of the cavity on the suction side of the foil respectively, and .".
6* is the cavity end thickness which may be considered to be the height
of the plate placed at the cavity end (the efflux U6* of the fluid from
the plate is assumed). y=fL(x) and fu(x) are the equations of the foil
lower and upper surfaces respectively, and g(x,t) is the thickness of

the cavity. pa(t) is the ambient pressure, and Pv is the pressure in
the cavity, that is, the vapour pressure of the liquid.

Then equations of the linearized unsteady cavitation are given as
follows: 7.

Equation of continuity

u v
+ - in Q ................................... (1)

Equation of irrotationality

u in . .............................. (2) 3

Mechanical condition on the cavity surface ( Appendix A)

+
_ - 1 on to < x < , y = +0 .......... (3)

U 2 u 2

Kinematical condition on the wetted surface

+ dv = U d fu(x) on 0 < x < to, k < x < c, y +0 ..... (4)

A f(x) on 0 < x < c, y = -0 ................ (5) '.

dx

Cavity end condition or the so-called closure condition
( Appendix B)

B dx = U6* + dt -................... ...... (6)t ody dt"-'':-..

Um

Kutta condition

+ m% " .

u u at x = c, y =0 .............................. (7) "'-. "

. .. .. .. " . -. -... . - -.. - .......-. ..-.. - ..-....

- ... 2 " ...***. -' -.. .''"" .. '' - .. ,. ' ' ' '.2 " . . " '-..,- .' " ' . •- ' " -"
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Condition at upstream

u U v -* UC as x-* - ........ . .. . (8)

--------------------------------------------------------------------------------

Kinematical condition on the cavity surface

a a +
(~+ U-) Qg+ f ) =v onko < x <k, y +0...........(9)

Cavity volumej

Vc = f gdx...............................................(10)

Mechanical condition of the trailing vortex wake

(Tt+ -a) (- -+UL-D-) 0 on c < x, yO0........ (11)

Kinematical condition of the trailing vortex wake

+ -

V =v on c <x, y 0..............................(12)

where i
t time

u, v x-9 y- components of the fluid velocity

velocity potential

= - 12a~t) la~t) VI/~U ) cavitation number

P: density of the fluid (constant)

Vc(t) cavity volume,

and "Body" means the internal boundary surface of the linearized fluid
region ~2defined by
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Q2 -{(x,y)--xxo, -oo<y<oo - {(x,y)l 0 < x c, y =01 .... (13)

The underlined terms in equations (3), (6), (9) and (11) are the terms
which reflect the unsteadiness. In the steady problem, equations (1)
through (8) form a closed problem, and equations (9) and (10) are used
to obtain the cavity thickness g and the cavity volume Vc.

In order to deepen the physical understanding about the unsteady
cavity flow, the variational principles equivalent to the above
mentioned boundary value problem are shown in Appendix C.

Some discussions about the boundary conditions on the foil and

cavity surfaces are given in Appendix D.
According to the Tulin-Hsu Theory (Tulin and Hsu, 1980), if the

degree of the unsteadiness is assumed to be small, the second term on
. the righthand side of equation (3) and the third term on the right

hand side of equation (6) may be neglected, that is',

+ (+o) on 9.o < x < k, y +0 .................... (14)

u dVc
d = dU6 + .................................... (15)fiBody"' + -

* However, it must be mentioned that there also exist an unsteady
term which originates from the trailing vortices due to the unsteady
lift. From the same reason as equation (3) is approximated by
equation (14), the trailing vortex terms are also neglected. This
assumption may not introduce a significant error when the present theory

- is applied to a propeller behind a ship, because the unsteady lifting
surface calculation to obtain the equivalent sections includes the
effect of the trailing vortices due to the unsteady lift.

The cavity volume Vc should be obtained by integrating equations
(9) and (10), but very complex calculation may be required to do this.
In the present theory, it is assumed that Vc is calculated by using the
cavity volume - extent relation for the steady cavity, that is, .., .

;"$ vc(t) = (1 - v - v* Vc

-P c - - ..... ) Vco (Z; Zo,6*) .... (16)

where Vco is the volume of the steady cavity for the given values of 2,

"o and 6" and p* and v* are assumed to be parameters determined, for
example, by experiments. Equations (9) and (10) are now replaced by
equation (16). •

Therefore, the above mentioned system of equations, that is,
equations (1), (2), (14), (4), (5), (15), (7), (8) and (16) form a
closed system. Furthermore, if the value of Vc is designated, this

equation system (excluding equation (16)) is formally identical with a

Y-....
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steady problem for which the thickness of the cavity end is given as 6*
+ Vc/U. Hence, in the following section, a theory of steady cavity
with a given cavity end thickness is used (Geurst, 1959; Geurst, 1960;
Geurst and Verbrugh, 1959; Hanaoka, 1965a, 1965b; Hanaoka, 1966;
Kato, 1979; Nishiyama and Ota, 1971; Noordzij and Officier, 1977;
Tulin and Hsu, 1980; Wade, 1967; Yamasaki and Takahashi, 1979).

2.2 Calculation of Unsteady Cavity on a Flat Foil

In the following, the cavity inception point is assumed to be at .
the leading edge.

The calculation method is explained, at first, for a flat foil.

For the partial cavity, the cavity end condition which gives the
relation between the cavity extent and the cavitation number is given as 7P
( Appendix E)

Uc [(I + sin2Y)cos-y (sin sin2-2 osn--(- (1

2 * id*c
_ (U - + -. ) ................................... (17)

IT (X a dt

where

" -cos- ( - ...-............................. (18)2 2 -2 ".

The cavity volume Vc is approximately calculated by using the
cavity volume-extent relation of the steady cavity. For this purpose,

an equivalent cavitation number o* is defined as the cavitation number
which gives the same cavity extent Z for the steady cavity with the
cavity end thickness 6* as that calculated by equations (17) and (18).

.f Hence, 0* is calculated by

Uc [(I + sin Y Y (l-si ) sin 2 U2 (19)

The cavity volume is then calculated as

Vc TTc2 y y
_-'"- C1  [2(1+siny-) (l-3sin-) sin- cos-

1 I 6 2f 2_ 2 2

S2)(-sin) (-l-3sin- + 2sin- + 6sin Y ) . ...... (20)

,............................................. ... .. (0 :-
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Cl is a function of Vc =dVc/dt, Vc d avclt defined as I~equation
(16))

Cl I Vc-~ .~ Vc . . . . . . . . .(21)

U-c iTY

where 11 v, *. are considered to be, for example, experimental
parameters. The function Cl is introduced to take account of the

*unsteadiness of the cavity volume-extent relation, but in the present
calculation, p1~ V,*. are assumed to be zero.

*For the super cavity, the similar relations are derived as follows:

(a) The cavity end condition

l+sin y2 y 0y 2 1* dVc
U([Cos-- - sin-I (U- + -...- ) ... (22) 4
Uc 2ysX 2 c 2 2r ctdt

where

Y I~cos-v'rCI......... ............................... (23)

(b) The formula for the equivalent cavitation number a*

Uc( ~ ~~ ~ ~ 2y 1 a y 2 6*..............(4

(c) The formula for the cavity volume Vc

Vc C1  - [2 coy(- + iY) +10 M + 4 s' -n 2 s in) --V
16(1-sin-)L(- si) )(2

* 2
....... (25)

In the following, the method and results of the calculation based
on the equation (17) through (25) are shown.

(1) Figure 2 shows the relation.o P./c and adoa where m is the
unsteadiness parameter : m = lOVc/(cxUc). From this chart, it may be
seen that the cavity extent Z at the same ci/ is shorter for Vc > 0
than for Vc <0. This means that the growth of the cavity is depressed



662

at the growing stage.

On the other hand, it is well known that physically appropriate
solutions can not be obtained in the range 0.75 < i/c < 1.15, and the

point of i/c = 0.75 and 1.15 are called the critical points of the

partial and super cavities respectively. In order to eliminate this

limitation, a proper correction must be introduced in figure 2.

(2) In the present paper, the method illustrated in figure 3 is

adopted. Figure 3 shows the relations of i/c - a/a, Vc/(ac2 ) - a/a and
Vc/(ac) - i/c. In the figure, the broken line is the theoretical

result as shown in figure 2, and the points (Ap, Bp, Cp) and (AS, BS,

CS) are the critical points of the partial and super cavities. On

these charts, the linear interpolations between these critical points

are shown by the chained lines. The linear interpolation may give a

correction method, but in the present paper, a method as shown by the

solid lines is adopted.
The details of the method is as follows. In the chart of the

Vc/(ac 2 ) - i/c relation, a line which is tangent to the curves for the
partial and super cavities is drawn, and the tangential points are

refered to by Dp and DS respectively. The points Dp' and DS '

corresponding to the points Dp and DS respectively are found in the

chart of the i/c - a/a relation, and three power curves Dp'AM and AMDS'

are drawn where AM is the midpoint of A-K-. Dp'AM is tangent to the

curve for the partial cavity and Tp-M, and AMDS' to AMAS and the curve
for super cavity. Furthermore, the Vc/(ac) - c/o relation is also

obtained from the i/c - a/a and Vc/(ac2 ) - i/c relations. The case

when m # 0 is also treated in the similar manner,

(3) According to the above mentioned idea, figure 4 is obtained as a

correction for figure 2. The following calculations are based on

figure 4.
Since the cavity volume Vc is considered to be the function of the

cavity extent Z, £ may be considered to be the function of Vc. If this

relation is introduced into the closure conditions (17) or (22), the

closure condition may be considered as the ordinary differential

equation of the first order for the unknown function Vc. Actually,

the Vc/(cxc 2 ) - i/c relation as shown in figure 3 are used instead of

equations (20) and (25), and the i/c - c/a relation as shown in figure

4 instead of equations (17) and (22). The flow of the calculation is

illustrated in figure 5.
In the following calculation, n/a is considered to be a given

function of time t. ".-.

(4) Figures 6 and 7 show the results for the case that the extent of

the corresponding quasi-steady cavity is smaller than 0.75c. The
maximums of (/ are same for both cases, but the difference is the

degree of the unsteadiness. The unsteadiness effect is stronger in

figure 7 than in figure 6. From these results, it may be seen that

the phase delay occurs because of the unsteadiness, and the maximum

of the cavity extent and volume become smaller as the unsteadiness

. .:.. . : .
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increases.
If the results in figure 7 are plotted on the chart for the P/c -

Ct/a relation, it may be found that a hysteresis loop is formed as shown
in figure 8, and the unsteady cavity extent is shorter than the quasi-
steady one at the growing stage, but longer at the decreasing stage.

(5) Figures 9 and 10 show the case when the extent to of the quasi-
steady cavity satisfies 0.75 < max(to/c) < 1.15. The maximums of c./a
are taken equal for both cases, and the results similar to those in
figures 6 and 7 are obtained.

(6) Figure 11 shows the case for max(90 /c) > 1.0, that is, the superI "cavity, and the initial value of CL/G is taken as 0.08. Although the
variation of ct/a is pretty strong in this case, the maximums of 9 and
Vc are rather large. This may be related to the adoption of the £/c -
ct/a relation as shown in figure 4. In this case, ct/a approaches a
non-zero value, and it takes fairly long time to recover to the quasi-
steady results.

(7) Figure 12 shows the results for the cases when ct/O oscillates. As
*can be seen from the variation of a/a, the case® is more unsteady than

the case®. They show little difference at the growing stages, but a _
4 pretty big difference at the decreasing stages.

(8) The numerical results in the present paper are given for V* = *=

0 in equation (21). If p* is taken positive, the cavity volume becomes
smaller at the growing stage and, on the other hand becomes larger at
the decreasing stage. The results for i* > 0 and i = 0 are compared
in figure 13. According to the results, the difference of Vc is small,
but the maximum of Z/c for V* = 0.5 is attained at the earlier time.
This means that Vc continues to grow even after £/c attains its
maximum. This seems to agree with the viewpoint of Dr. Hoshino (Chiba
et al., 1980; Hoshino, 1980). If the unsteadiness is introduced into
the cavity volume-extent relation, the results are modified as mentioned
above. Hence, there is a room for future study about the calculation of
the cavity volume. When the present results are plotted on the Z/c -
ct/a chart, a hysteresis loop is obtained as shown in figure 14, and the
loop for p* =0.5 is drawn smoother than that for 11* = 0.

(9) The inception delay can not be evaluated by the present theory.
The inception delay itself must be calculated by other theories, and
built into the present theory. According to an instruction given by
Professor H. Kato of the University of Tokyo, a nuclei is necessary for
the cavity inception, and the time delay originated from nuclei density
in water causes the cavity inception delay.

As a test, a calculation was conducted by assuming that an
inception delay was given. The result is shown in figure 15. In
figure 15, it is assumed that a nuclei meets the foil at the time when
ct/a = 0.03. The initial value of dVc/dt may be calculated as a positive
value by using the Q/c - ct/a relation as shown in figure 4. From figure

,.I ' . .- ..'
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15, it is found that, after some time, the result with the inception
delay coincides the result without the inception delay.

2.3 Effective Flat Foil Method to Calculate the Unsteady Cavity

on a Foil . -

In this section, a practical method of calculation of the unsteady
cavitation for a foil is introduced based on the method for a flat foil
which is stated in section 2.2.

First, the discussions are made on how to treat practically the
unsteady cavity on a thin parabolic foil.

For the partial cavity, the cavity end condition of a thin parabo-
lic wing of camber Ao as shown in figure 16 is given as

Uc [(1 + si Cos- + 4 (1 - sin-- sin-

+2X 5 ,nyLOs3Y} 2 6* + dVc
c 2 cos~ ~ U-- a-).................... (26)'-"

where the same notations are used as in the case of a flat foil, and 3
the underlined term reflects the unsteadiness.

Equation (26) is derived by modifying the results by Geurst (Geurst
and Verbrugh, 1959). Namely, the cavity end thickness 6* and the
unsteady term dVc/dt are introduced in the same way as in the case of
a flat foil (-+ Appendix E). " "

Again, the cavity volume Vc is calculated based on the cavity
extent-volume relation for the steady cavity. Namely, an equivalent
cavitation number (3* is calculated by

Y + *Uc [" + sins) Cos 2 a ( (1- sin-) sin7 -.
+ X 3Yl 2 6*

+ 2Xo si cos 2± ] = - ....................... (27)
c .2. . ' a .

The cavity volume is then calculated as

Vc+ (
-= - C, Tc [2(1 siny-) (1 3iy- iny_- cosl±

16 2* 2y 2
2a 3

+ -(2 ) (1 - sinl2)(-I - 3siny2 + 2sin 1 + 6sin Xi)
2 (Y 2 2 2 2

2 3
+ - (I - sin Y) (1+ + si-r 4sin ) cos ]  ........... (28)

cCL ~ -Ui 2' 2.

where C1 is a function defined by equation (21).

For the super cavity, the relations corresponding to equations

Ve

U%................................. "-". - ..-. •• -- •.- , .- . .. .,.•. ... ... .. . .. . :.-:.
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(26), (27) and (28) are derived respectively as follows: r'
(a) The cavity end condition

Uc Y Y 1 a y
[( + sin){cos 2 - 2(j) sin-}

1 AO.) 5~ 2 6* 1dVc+ -l (-o) sin cos, = (U- + d-) ................ (29)2~~ a 7 t dt

(b) The formula for the equivalent cavitation number o*

Uc 1(1 + sir2){cos-_ (I si }
2Y 2 2 22Cos-
2

lAo 2 6
+ ( ) si cos I 2 U. .... ......................... (30)

(c) The formula for the cavity volume Vc

Y 2"2 2Y
( Y 26(lsi) [2cos 2-2+ )(i + in - 2sin

(Xo 2Y 2 Y Y Y -1
- -(-)(cos - sin -J)(l - sin-) (cos--) ............... (31)

In the following, the calculated results by using equations (26)
through (31) are shown. Furthermore, a practical calculation method is
examined for the purpose of applying to a ship propeller in a wake.
(In the present paper, the two-dimensional unsteady cavitation theory
is applied to the equivalent sections of propeller foils which are
calculated by Hanaoka-Koyama's method of the lifting surface theory
(Koyama, 1975). Therefore, the equivalent angle of attack, camber and p. .
cavitation number change according to the angular position of the blade.

The equivalent sections are, furthermore, approximated by thin
parabolic wing sections of camber Xo as shown in figure 16.)

(1) In figure 17, some results are shown for cambered thin foils. In
this case, u is taken as 50, and the cavitation number a is considered
to be a function of time. According to these results, as the camber
becomes large, both the quasi-steady and unsteady results are found to
become large. But the unsteady effects do not seem to be much affected
by the camber.

In this case, only the cavitation number 0 is subjected to
variation, but for equivalent sections of a propeller foil, at which
the application of the present theory is aimed, not only a but also the
attack angle u and camber X are subjected to variation according to the
angular position of the propeller blade.

(2) Figure 18 shows the results for the cambered foil (X/c = 0.035).
The broken lines show the case when the angle of attack cz is taken
constant, that Ji, 50 and the cavitation number a is subjected to

%
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variation. On the other hand, the solid lines show the case when a is
taken constant, that is, 1.09, and a is subjected to variation. The
variation of a/a is same for both case. In practical situations, both
a and a are considered to change at the same time. (In the case of the
propeller behind a ship, X is also considered to change.) But from
these results, it can be easily confirmed that the a-constant case and
the a-constant case give almost the same effects each other. (There- - ".
fore, in the practical applications to a ship propeller, the calculation
may be simplified in such a way that the one of these factors a and a is jjjj
fixed on a mean value while the other is subjected to the effective
variation.)

(3) It is natural that the variations of cavitation number, equivalent
angle of attack and equivalent camber corresponding to the angular
position of the blade should be considered in the unsteady cavity
calculation. However, the calculation will then become much compli-
cated. Then, the simplified calculation method, namely, called
"effective flat foil method" is introduced.

In figure 19, the unsteady cavity calculation results for a
cambered foil of /c = 0.035 are shown in comparison with those for the
effective flat foil.

The concept of the effective flat foil is as follows, u/0
variations represented by a broken line and a solid line are for the U
cambered foil and the effective flat foil, respectively. The broken
line a/a is given by the operating condition of the propeller. The
solid line a/a is, on the other hand, calculated so that it gives the
same quasi-steady cavity length for the flat foil as for the cambered .
foil. The unsteady cavity length and cavity volume of the effective
flat foil are shown with solid lines. On the other hand, those of the
cambered foil are shown with broken lines. From these results, it is
easily confirmed that the unsteady calculation results for these two
foils give good coincidence. ..

In figure 20, the unsteady cavity calculation results for the
cambered foil of A/c = 0.020 are shown together with those for the
effective flat foil. Since the camber in this case is smaller than
that in figure 19, it is clearly found that the difference between the
results for the cambered and effective foils is getting smaller. The .-.
effective flat foil method may be sufficiently useful and convenient for
numerical calculations of unsteady cavitation on ship propeller foils,
since the equivalent camber for actual ship propellers is not so large. '- -

3. CALCULATION OF THE UNSTEADY CAVITATION ON SHIP PROPELLER FOILS
AND THE HULL FLUCTUATING PRESSURES

3.1 Cavitation Pattern .-.-

(1) Figure 21 shows the comparison between theoretical and experimen-
tal results of cavity extent on a foil section (0.88 R) of a propeller

__ _ _ _ _.,. , .. - + , _. *+ "=+
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behind a ship. The quasi-steady calculation result is expressed by
the chained line, and a steady cavity flow theory of a thin parabolic
foil is adopted in this case. The unsteady calculation result is
obtained by using the quasi-steady calculation result and the effective
flat foil method stated in section 2.3. From this figure, it is easily
noted that the tendency of the unsteady calculation result becomes much -
closer to that of the observed result. Namely, the cavity extent shows

a depressed growth in the growing stage and, on the contrary, shows a
rather rapid decrease in the decreasing stage. K

However, in the early part of the growing stage of the cavity, a
rather big difference between the unsteady calculation and observed

* results is recognized. This may be due to the so-called inception
delay of the cavity. Though the problem of the inception delay is not

.* treated in the present paper, a little is discussed in section 2.2.
For a theoretical treatment of this phenomenon, another point of view
may be necessary. The result in which the inception delay is taken .

into account by applying the same assumptions as stated in section 2.2

is shown for a reference.
Furthermore, it is observed that the depression of the maximum

cavity extent is considered to be not so large as expected in the

previous section. Namely, in general, in case of a propeller behind a ..

ship, the non-dimensional frequency is not so large. p oil

(2) In figures 22 and 23, the calculated cavitation patterns on a foil
of Propeller -( behind a ship is compared with the observed patterns. .

(Propeller is the test propeller of the cooperative study betweenthe Ship Research Institute of Japan, Kawasaki Heavy Industries, Ltd.

and Hitachi Zosen Corporation.) The quasi-steady and unsteady results
are compared with the observed ones in figures 22 and 23, respectively.
For the quasi-steady calculation in the range of the radial sections

between 0.75 R and tip, the cavity flow theory is adopted, and on the
contrary, in the other range of the radial sections, the lift equivalent
method is adopted following the Ukon-Kato method (Kato and Ukon, 1979; ....

Ukon, 1979). The unsteady calculation in figure 23 is based on the __

quasi-steady calculation in figure 22 and the concept of the effective
flat foil. The unsteady calculation results seem to be in good " ."
accordance with the observed ones. The calculated results are much
improved in the growing stage, especially in the range from -400 to O0
of the foil angular position. 4

It is also observed that the unsteady calculation results in the the to
radial sections between the root of the blade and 0.75 R do not seem to

give good coincidence with the observed ones in the decreasing stage,
though the unsteady results are improved in comparison with the quasi-
steady ones. For this disagreement, a problem is considered to be left
in the quasi-steady theory itself. To solve this problem, it seems to
be necessary to introduce the effect of the laminar separation point
(Taoka et al., 1981) due to the viscosity of fluid, and the non- . .- .. $,
linearity such as originating from the blade thickness and the leading
edge roundness (Tulin and Hsu, 1980; Yamaguchi and Kato, 1981).

Figures 24-25 and 26-27 show the comparison of the cavitation '.
patterns between the calculation and the observation for Propeller -®.

, .
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(Data for Propeller -® are offered by Naikai Shipbuilding &
Engineering Co., Ltd.) Figures 24-25 and 26-27 are for the ballast 'h..$
and full conditions, respectively. From these figures, the tendency of .. .

the improvement obtained by the introduction of the unsteady calculation
is similar to that in case of Propeller -0. Especially, in case of
the full condition, the agreement between the theory and experiment is
more satisfactory than that for the ballast condition. However, for
both of these conditions, the inception delay of the cavity is clearly
recognized in the growing stage. As already stated, the inception delay
of the cavity can not be treated theoretically at present.

Figures 28 and 29 show the comparison of the cavitation pattern 4
between the calculation and the observation for Propeller
Differing from those mentioned above, these figures show an example
which is not in good accordance with the observation even after

corrected by using the unsteady theory. An improvement on the cavity .*.--

extent is surely given in the growing stage. However, it does still
give a considerablly large difference between the unsteady calculation

and the observation in the decreasing stage.
At the angular position of 30', for example, the observed pattern

shows a wavy form. Therefore, for the radial section of 0.8 R, for -

example, cavity occurs on the two parts on the blade. On the other
hand, in the present theory, the cavitation is treated as the two- __
dimensional leading edge cavitation for every radial section. Hence, U
the cavitation patterns of the above mentioned type may not be predicted
satisfactorily at present. To treat cavitation patterns like this, it
may be considered that the three-dimensionality of the cavity should be
introduced.

(3) In the following, the observed and calculated cavitation patterns
(SR 183 Report, 1982) are compared between a conventional propeller and
skewed propellers, namely MAU type CP (Conventional Propeller : SR183
MP. No. 1), Forward and Backward Skew type 450 HSP (Highly Skewed
Propeller : SR183 MP. No. 2) and Forward and Backward Skew type 60' HSP
(Highly Skewed Propeller : SR183 MP. No. 5), respectively.

The quasi-steady and unsteady calculation results for the cavita-
tion patterns on a foil of SR183 MP. No. 1 are compared with the observ-
ed results in figures 30 and 31, respectively. Judging from the observ-
ed patterns, the unsteadiness effect on the cavitation patterns may not

be so large.
For example, a distinct difference is not observed between the

cavitation patterns at ± 100 of an angular position. Therefore, in
this case, it is possible to estimate cavitation pattern to some extent
by the quasi-steady theory. The much improvement is not attained by
introducing the unsteadiness since the unsteadiness is small in this
case. But the moderate improvement in the growing stage of the cavity
is confirmed.

Figures 32-33 and 34-35 show the comparisons between the calcula-
ted and the observed cavitation patterns for SR183 MP. No. 2 and 5,
respect ively.

The effect of the skew angles is estimated by a simplified method.
This simplified method uses an assumption that the estimations for HSPs

."
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are obtained by shifting the calculated results for the conventional
propeller by the corresponding skew angles in every radial section.
This is based on the fact that, in case of not extremely large skew
angles, pressure distributions in radial sections for HSPs are
approximately equal to those shifted from the conventional propeller by .- .

the corresponding skew angles (Yamasaki et al., 1981).
It is obvious from these figures that the simplified method can

estimate the cavitation patterns on HSPs to some extent.

3.2 Cavity Volume

Figure 36 shows a comparison between the calculated and the
observed cavity volumes for SR183 MP. No. 1 with respect to the angular
position of the blade. It is obviously confirmed from this figure that .,2.

the unsteady calculation result properly catches the total tendency of _

the cavity volume variation in comparison with thequasi-steady
calculation result. Namely, the unsteady calculation surely gives the
depression and the phase delay of the cavity volume expected as the

unsteadiness effects.
For the radial distribution of the cavity volume, the tendency of

the calculation is, however, considerably different from the measured ,
one as shown in figures 37 through 39. Figures 37, 38 and 39 show the
comparisons between the calculated and the measured cavity volume
distributions in the radial direction for SR183 MP. No. 1 at the angular -- .
position of -30', 0* and 200 respectively. In these figures, "the
quasi-steady +20°" means the quasi-steady result which is shifted by
200 to include the phase delay effect (chiba et al., 1980). It is
confirmed that the actual cavity areas have their maximums near the tip, '" .

on the contrary, the calculated ones have their maximums around the
radial section of 0.6R.

Bar charts on the left side of these figures show a comparison of
the cavity volumes estimated by different methods. From these results, -.
though considerable differences are observed in the radial volume 9
distributions, the unsteady calculation seems to give a relatively good .....

correlation with the measured ones on the whole.
The disagreement in the radial volume distributions should be

attributed to the inaccuracy of the quasi-steady theory which forms the
basis of the unsteady theory. Consequently, it is absolutely necessary
to make efforts to improve the quasi-steady theory, for example, by
introducing the non-linearity due to the thickness of a foil and the
leading edge roundness, as mentioned before.

3.3 Fluctuating Pressure on Hull Surface - j

The calculation of the fluctuating pressures is based on the
method (Yokomachi et al., 1981). Figures 40 through 42 show the results
of hull fluctuating pressures with the condition: KT - T/(on2D4 ) =
0.137, a- )/ n2D) = 1.649 (Ukon et al., 1982; SR183 Report,

2
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1982). In the present report, principal purpose is to show the
difference between the quasi-steady calculation results and the unsteady
ones. Hence, the measured results and the estimated results based on
the observed patterns are shown only for a reference. Station 8
corresponds to the point just above the top of the propeller. Propeller
rotates clockwise when looking forward, and these figures show the
fluctuating pressures in the transverse direction.

Figure 40 shows the result for SR183 MP. No. I propeller. In the
Ist harmonics, the unsteady results are little different from the quasi-
steady ones in magnitude, but it is observed that there exists a
qualitative difference. A phase delay is observed for the unsteady
results. In the 2nd harmonics, there exist not only the same qualita-
tive difference as the ist harmonics but also the quantitative differ-
ence. Namely, the unsteady results give considerably small values in
comparison with the quasi-steady results.

Figures 41 and 42 show the results for SR183 MP. No. 2 and 5
propellers, respectively. Similar tendencies are observed as in the
case of SR183 MP. No. 1. The fluctuating pressure decreases clearly as
the propeller skew angle increases. The reason for this is considered
as follows:

The approximate method of introducing the effect of the skew angle
is to shift the calculated cavitation pattern for the conventional

. propeller by the corresponding skew angle in every radial section.
Therefore, if we consider the whole blade, the total amount of cavity
volume and its variation may become small at every blade angle.

Figure 43 shows a comparison of the fluctuating pressure components
at station 8 with respect to the skew angle.

In the following, the hull fluctuating pressures due to Conven-
tional Propeller -A shown in section 3.1 are discussed.

Figures 44 and 45 show the results at a condition: Kt = 0.187,
(n = 2.06. Figures 44 and 45 show the pressure distributions in the
transverse and longitudinal directions, respectively. Station 1 refers
to the top position of the propeller. The measured data are, again,
shown here only for a reference.

It is obviously confirmed from these figures that in the 1st
harmonics there exists a qualitative difference, and, in the higher
order harmonics, there exist not only qualitative but also quantitative
differences between the quasi-steady and unsteady results, in the same
way as SR183 MP. No. I propeller. Figures 46 and 47 show the results of

the same propeller (Propeller -@) at the condition: Kt = 0.187, On =
1.55. In this case, the cavitation is considered to occur more strongly
than in case shown in figures 44 and 45. Hence, the difference between
the quasi-steady and unsteady results becomes more evident in the first
harmonic. For the higher order harmonics, the tendencies of the
difference are similar to those at the above mentioned condition: Kt =
0.187, On = 2.06.

Figure 48 shows the comparison of the fluctuating pressures at •
station 6 with respect to the order of the fluctuating pressure • .

components.
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4. CONCLUSIONS

Through a theoretical investigation concerning the unsteady effects
on the leading edge cavity on two-dimensional hydrofoils and its appli-
cation to a cavitating propeller operating behind a ship, the following
results are obtained:

(1) By investigating the unsteady effects on the two-dimensional cavity,
the so-called hysteresis effects such as "phase delay", "depression of
the growth" and "slow growth and rapid decrease" are clarified. When
the unsteadiness is larger, these phenomena become more eminent.

(2) By introducing an idea of "effective flat foil", a practical method
is obtained in order to estimate the unsteady effects on the cavity on
foils on a propeller behind a ship. When the unsteadiness is taken into
account, the cavity patterns on propeller foils seem to be more
realistic.

(3) The gross tendency of the cavity volume seems to be much improved,
but there exists a big difference in this radial distribution between
the estimated and experimental values. This is because the accuracy of
the quasi-steady estimation which is the basis of the present unsteady
estimation is not sufficient.

(4) With regard to the fluctuating pressure on ship hull, there exists
a qualitative and quantitative difference between the quasi-steady and
unsteady estimations. The difference is large especially in the higher
order components. t.;

(5) From the above mentioned results, the authors believe that the L I
unsteady effects should not be neglected for the estimation of the
cavity on foils of a propeller behind a ship, The unsteady effects
may be more important in full scale than in model scale, since the
unsteadiness becomes stronger in full scale because of the scale effect
of the ship wake. ,-

(6) In the present method, the estimation of the unsteady effects on .. -

the cavity on propeller foils is based on the quasi-steady estimation of
the cavity, but the accuracy of the quasi-steady estimation is not
sufficient at present. In this respect, it seems to be very important
to clarify the nonlinear and three-dimensional effects. ..-.

(7) The variational principles of the linearized unsteady cavity flow
theory are derived in order to deepen the physical understanding of
the unsteady cavitation.

(8) Some suggestions are obtained for the exact analytical solution of
the linearized unsteady cavity flow by using the complex acceleration
potential.

. . . . . ......... ........
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APPENDIX A MECHANICAL CONDITION ON THE CAVITY SURFACE

When x is a function of time t, the pressure p_ in the upstream
is expressed as

"P -c = -1 (t)Uv + Pa(t) .................................. (A.1)

Equation (A.1) may be easily obtained by substituting ii = U and v =

,(t)U into the Euler equation of motion and integrating it.
* By applying the Bernoulli integral, the mechanical condition on the

cavity surface may be written as

Pv +  L + ! (u) + v + p) + (U + (U')

v t 2 it2

, .'. .-- . •-

. . .. . .. ... ....... .... . .. (A.2) " "

"-. ..77- .
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Then, the substitution of equation (A.1) leads to the linearized x.-
mechanical condition on the cavity surface, that is,

o(t) =-Pa(t) pv =2 a u
Note : 7t n + 2u - 1). ..................... (A.3)

Note: In case of a bubble of the radius R, the term aO/at on the
righthand side of equation (A.3) becomes

-~- =-2R - RR on the bubble surface ................. (A.4) r .

Equation (A.4) suggests that the first terms on the righthand side of
equation (A.3) is the order of (wcIU) 2 , where c and w is the chord of
the foil and frequency of variation, respectively. Hence, if the
unsteadiness is small (wc/U << 1), the above mentioned term may be
neglected.

APPENDIX B CAVITY END CONDITION OF THE UNSTEADY CAVITY

By integrating the kinematical conditions (4), (5) and (9) around
the foil surface, the following relation is obtained:

dfu(x) dfL(x) x,.. .

d - dx - f U dx vodyV 0 dx o dx

R,(t) a a -:
+ f ( + U ) g(x,t)dx

£o(t) .. -... '

I(t) a af( + U k) g(x,t)dx

ko(t)

ag(x't)d+U*
f ~~~ 2 + U6 .................. (B.1)

Zo(t)

where 6* is the cavity end thickness.
Then, the substitution of an integral formula:

d X(t) x(t) a2'.d.
f- J g(x,t)dx ; f ag(xt + g, t) ..... (B.2)
ko(t) 90(t)

into equation (B.1) leads to the cavity end condition of the unsteady
cavity, that is,

=vdx- - 6* + U * ........................ (B.3)
dd dtr

dt . ... .. ... (.3)..

%-'9 %~
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where Vc Vc(t) is the cavity volume.

APPENDIX C VARIATIONAL PRINCIPLES OF THE LINEARIZED CAVITY FLOW
(Isshiki et al., 1981)

Let Wu, v') and 01 be the perturbation velocity vector and7:
potential respectively, that is,

u U + U"v atu + v.. ...............................(C.1)

= Ux + ctUy + 01 ............................................... ...... (C.2)

The Kelvin-type variational principle may be given as

0 = 6K [u', V' g; 1']

-~ ~ f dt[f( 2 +v')dxdy + f (Pv-.pa)g(x,t)dx]

co

+ pUf dt f u'(.xl,+O,t)dxl 6g(tk, t)...................... (C.3)

tl -00

under -

+ IV,- 0 in S2..................................(C.4)

U x fjj(x) - COl + (,t+ U' ax g(x,t)

on to < x < Z, y - +0..................(C.5)

v U {!- f U(x) -c}on 0 < x < to, t< x < c, y =+0 .. (C.6)
dx

3V dx fL(x) -a} on 0 < x < c. y - -0...............(C.7)

v~ v' on c < x, y -=0....................(C.8)

u'+ =ut' (Kutta condition)............................(C.9)

where r = (t) is the bound vortex on the foil. In the above mentioned

44g
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variational principle, ul, v' and g is subjected to the variations, and
. r should be determined by the Kutta condition (C.9). Furthermore, to

and k are assumed to be given in this case.
If the Lagrangian multiplier 0' which has the physical meaning of

the velocity potential is used, the Kelvin-type variational principle
may be relaxed as

- t2 (U2+ V,2
0 f dt I f/(u v'2)dxdy +f (Pv-Pa)g(xt)dx

/tI  to

" + 0 /f ¢,(au' 3v' - . ,.,
+P ff~ 0'(u,+ a-)dxdy

0 ax ay

+ Pf 0'+ [vV+ - - pf + U-)g(xt)dx0 UffUx)1d to at axII

- Pf 0'- - :' - U{'L(x)-a}ldx +pfo'+ (v - v')dx]
0 c

+ t2 dx f pr(t - ,--)6v'-dx .-ti  c

2

+ pU f dx f u'(xl,+O,t)dxI 6g(t,t) ............. (C.10)

under the Kutta condition (C.9).
From equation (C.lO), the natural conditions of the Kelvin-type

variational principle are given as

i 3x , v' in S2 ............................ (_C. )ax Dy

a a - -- + =Pv -Pa + t pax+I}) ~ 0 
'~

on to < x < Z, y -+0 ............. (C.12)

on c < x, y 0 ................... (C.13)

If the irrotationality given by equation (C.ll) is constrained in" the variational principle (C.10), the Dirichlet-type variational

principle may be derived as

0 = 6M [0' g; F]

6 t' dt [- ff{ ( '")}dxdy
tl x~

%. a7

('.- ..y . ' . "- ,.- ..

J MA .6 L .. "...........
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Sc +d
+ ( Pa) g(x,t)dx- pUf { (x)

o 
; .x

c d 9
+ pUf t 1fL(x) - a}dx - pf ' (E + U -- ) g(x,t)dx

co 
o'% 

*'

(p f W+ - #'-) dx] + pf2 dt ) (t- - - ) -dx
C aC+ uf dt"(ay0t pgiLt 2 ." (0.14)2'0c t I  c -- i

t2+ p,.., dt 0'c9,,-o,t) 6sgct.t) .......................... (C.14) .. :
tI -

under the Kutta condition (C.9).

The natural conditions of the Dirichlet-type variational principle
are given as *.

+ - = 0 in n. .............................. (C.15)

Pv Pa +  P(- + U ' 0=0

on to < x < t, y = +0 ............(0.16)

= U d fu(x) - c + ( +v)g(x, t)
y dx 3t --- gx

on to < x < k, y = +0 ........... (C.17)

- U =! -- fu(x) - a} on 0 < x < to, Z,<x < c, y = +0 (C.18)
-y dx

= U - c} on 0 < x < c, y = -0 .......... (C.19)

0,+ ' t - c) on c < x, y =0 ............... (C.20)

1'+ a '--
- on c < x, y 0 .......................... (C.21)

The bound vortex r should be determined by the Kutta condition
(0.9).

APPENDIX D SOME COMMENTS ON THE EXACT BOUNDARY CONDITIONS ON THE FOIL
SURFACE '." " "

Let 4' (x,y,t) be the conjugate harmonics of the perturbation
velocity potential $' (x,y,t) (- equations (C.1) and (C.2)). Then, the

%%
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kinematical conditions on the foil and cavity surfaces on the suction
side of the foil are given as (+ equations (4) and (9))

_ U dfu(x) on 0 < x < to, < x < c, y - +0

'- Bax -U L dx-""--
............................................ (D.1)

%4 4 1  [dfU(x) ( a + aax _ x [..+u g(x,t)

on to < x < t, y =+0......... (D.2)

By integrating equations (D.1) and (D.2) and operating (a/at + U
a/ax), the kinematical conditions on the wetted surface on the suction
side of the foil may be written as

(Tt + V (x,+O,t) =
adttaxdt

" - U [U dfu3(x) dc ,"q q
U U dx d x - cU] on 0 < x < to, y = +0 .. (D.3)

- +U-) x dp'(O,O,t)
t ax dt

[U dfU(x) da .dx -d'"x-cU ..2V'

2 2kId2Vc *d2t""-..'''
dt- + 6d on £ < x < c, y +0 ............. (D.4)

In the similar way, the kinematical condition on the pressure side
is rewritten as

a. a t d'(0,0,t)
t + U--x) = dt -

'"t)
-UdfL(x) da '7"" '

d x [Ut x  - U ] on 0 < x < c , y = -0 . . (D . 5 ).' . ,. .

-UU dx dt .. "

When a complex variable z and a complex acceleration potential w'
are defined as

z x + iy .............................................. (D.6)

w'(z, t) (7 + U-z) + #_p.

(t + ) '(x,y,t) + i ( . + a W'(x,y,t) ...... (D.7)

the boundary conditions on the cavity and foil surfaces can be written

'. :i" -

* .4.-

- Or.

4.... ... . .. . ., .. .. . . . . .. ,. • ,. . , .. ., . , , ., , . . • . . ,-. 2 Z
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as (+equations (D.3), (3), (D.4) and (D.5))

Im[w'1 -dV'(O,O't) - [U dfu(x) _a dx L)
dt dx dtx U

on 0 < x < to, y =+0.........(D.8)

2

Imw' -d4"(0,0,t) - [Udfu(x) _dct

dt dx dtX ~

d 2VC *d29.

Im w ] =d W' 0 0 t 2f~ x u dd t2 on k < x < c, y = +0 ..............(D.10)

dt [U dx d

on 0 < x < c, y =-0,................(D.11)

where Re I Iand Im [ Imean to take the real and imaginary parts of
the quantity in the square bracket.

The mechanical and kinematical conditions of the trailing vortex
wake given by equations (11) and (12) lead to a following condition for
the complex acceleration potential w':

2VC 2

- w' = -T. dc + " 6-. ................... (D.12)

The boundary conditions (D.8) through (D.12) may give some
suggestions about the exact solution.

APPENDIX E CAVITY END CONDITION OF THE STEADY CAVITY OF A FLAT FOIL
WITH THE NON-ZERO CAVITY END THICKNESS

The cavity end condition may be written as

JB dx =(*+ - ) .......................... (E.1)

Introducing a complex function w = u - iv, then equation (E.1) may
be written as

Bod u - wdz] = Im [27ri{res.w} za........(E.2)

where z =x +iy

Using the result of Geurst (Geurst, 1959), the function w is

%'. -6 %

%~~ .
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obtained as

w U la0 + ib0 +zalc+2) .....1................. (E.3)

where, an and bn (n =0, 1 ....... are real constants defined by Geurst.

Consequently, the cavity end condition is given as

I~cl 1dtc ,............................ (E.4)

where the real constant a1 is given as

11 --' s y y i ' 7T --

+ 2 r72-+sin22) sin--- - +os (1 -I T......(4}

A= 1 + sin T 'Y..................(E.5)

4O 2 4...................... (E.6)

cL+(,O t- 2Cos- -4 +Isi2......... E7

Substituting......q...t..........5)................................(E.4),
the clsr odto cadt bewitna

3 0

4c[lsn)o r- ix

..... ..... .... ..... .... ..... (E.8
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FIGURE 1 Partially cavitated hydrofoil
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". Discussion

J. Matusiak (Technical Research Centre of Finland)

This extension of the steady, two-dimensional cavity model result-
ing in a cavitation history being much closer to the observed on pro-
pellers is certainly an interesting and valuable result. I understand
that the necessary data for the cavitation extent and volume computa-
tion you take from the results of a lifting-surface program. I presume
that these results are produced in the form of the time-dependent span-
wise distribution of load on a blade. Could you explain, how do you
obtain the effective camber and angle of attack of the hydrofoil? Is
it done as proposed by Kaplan et al. at the RINA Symposium on Propeller

*" Induced Vibration, 1979, i.e., the camber is related to a steady load
component, and the angle of attack includes only nonstationarity of
load? If so, does your concept of the effective flat foil neglect the
steady component of load when computing the cavitation, or do you cal- -.
culate the instantaneous angle of attack from the total load?

The disagreement in the radial cavitation volume
distributions obtained by the authors should be primarily attributed to
the limitations of the two-dimensional approach and not to the inaccu-
racy of the quasi-steady theory as stated by the authors. The merging I U
of sheet cavitation with the tip vortex cavitation is in my opinion
responsible for the high cavitation volume at the blade-tip region. In
other words, the cross-flow at the blade tip, not taken into account
when applying two-dimensional approach, is the reason for the volume
increase of cavitation at this region. It is generally known that the -
unsteadiness of flow decreases the cross-flow and thus has an opposite L
effect on the spanwise distribution of cavitation.

Author's Reply

H. Isshiki (Hitachi Zosen Corporation)

The authors use the unsteady lifting-surface computer program de-
veloped by Dr. Koyama of the Ship Research Institute of Japan to calcu-
late loading distributions under noncavitating conditions.

The equivalent foil section at every radial section is obtained by
using the above-mentioned chordwise load distribution. Namely, the load
distribution is substituted into the integral relation of a two-dimen-
sional steady foil in a uniform flow that is usually understood as an ..-.-

integral equation to obtain the chordwise load distribution (or the
vortex distribution) from the given shape of a foil centerplane, which
is obtained by solving the above-mentioned integral relation for the 1 •
given load distribution.

% .- .. -.-.%,-*
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In Japan, this method is widely known as Sugai's Method. Dr. Sugai
" ]." belongs to the Ship Research Institute of Japan and is an ITTC

Propeller Committee member.
Your comment on the importance of the tip vortex is surely agree- .

able. Some researchers in Japan include the tip-vortex effect on the
, "thickness of the sheet cavity by multiplying the thickness by a correc-

tion factor that is determined experimentally.
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The Numerical Prediction of Unsteady
Sheet Cavitation on High Aspect Ratio

Hydrofoils
Robert J. Van Houten

Department of Ocean Engineering

Massachusetts Institute of Technology

ABSTRACT

The unsteady sheet cavitation of high aspect ratio hydrofoils is

a problem of considerable interest in that it provides a simple model

of the type of cavitation which can occur on propeller blades operating

in a non-uniform ship wake. Its solution is complicated by the fact

that the three-dimensionality of the flow field must be considered in

computing the lowest order inner solution. The author separates the

influence of the three-dimensional flow into two components. One

component affects the mass-like resistance of the fluid to changes in

the rate of change of local cavity volume. This component is included

in the inner solution by proper selection of a source potential. The

other component, which must be computed in an iterative manner, is

shown to be small when the cavity extent is moderate.

The inner solution is solved in the time domain by direct

numerical solution of the integral equations representing the linear-
"* ized boundary conditions of the flow. Because the cavity length is

allowed to vary from zero to several chord lengths, the solution is
nonlinear in that a sinusoidal disturbance does not cause a sinusoidal
response. Since nonlinear thickness effects cannot readily be
incorporated in this theory, the analysis is restricted to foils of
zero thickness.

Solutions of the inner problem are presented for a flat-plate '
foil at various aspect ratios, gust amplitudes, and reduced frequen-
cies. In addition, the convergence of the iterative procedure for
computing spanwise interactions is demonstrated.

NOMENCLATURE

AR aspect ratio

c chord

C constant in source potential •,
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C 2 lift coefficient
L 2

1/2 o U c

CM= 2 22 moment coefficient

P - P-
C2 pressure coefficient r . .-

1/2c U..

gn coefficient of expansion of outer
potential

k spanwise wave number " -

k reduced wave number of gust
r

K nth order modified Bessel function of
second kind

cavity length

L lift force

M moment about leading edge

n number of discrete vortices along chord

nc number of sources representing cavity

p pressure

Pc cavity pressure

Pi interaction pressure,-" "

q source distribution
pi

Q total source strength -

Qi,j strength of ith source at jth time step

r radial coordinate, non-dimensionalized
on span

radial coordinate, non-dimensionalized j
on chord " -

s span of hydrofoil

t time

U free stream speed

.-

%4

A:.
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v vertical gust velocity

x,y,z cartesian coordinates (see Figure 1)x ,x. ..

SX xipositions of ith source, vortex

Ax Ax7 length of foil represented by ith
Q i source, vortex

angle of attack L..

amplitude of gust-induced angle of attack . -

Ct cmean angle of attack
m

y vorticity distribution; Euler's constant

total bound vorticity 5

i,j" strength of ith vortex at jth time step

At length of time step

C inverse aspect ratio

C dummy spanwise coordinate

camber coordinate

0 transformed position along chord

dummy streamwise coordinate

, fluid densitySPo- Pc *1l
2 cavitation number

1/2 7

" cavity thickness

perturbation velocity potential

(P total velocity potential

4 X solution vector

W frequency of unsteady flow

.3. " 0°. .

% ,.
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INTRODUCTION

The unsteady cavitation of high aspect ratio hydrofoils is a

problem which has been studied for many years, but which has yet to
yield to a definitive solution. Although early attempts at solving
this problem idealized it to one of two dimensions, there exists a
fundamental difference between two-dimensional flow and a three-

dimensional flow of high aspect ratio, namely the fact that in two-
dimensional flow a non-constant growth rate of the cavity volume
produces an infinite pressure at infinity. Benjamin (1964) pointed
out the fact that the singular behavior at infinity matches with the
behavior of a three-dimensional outer potential at small distances
from the foil. Benjamin went on to infer that in the solution of the
inner problem, one would have to take the time-varying volume
velocity to be a completely arbitrary function, imposed by the outer

solution. This conclusion ruled out the use of matched asymptotic
expansions, and led the way to the use of fully three-dimensional

theories to treat the problem. These theories, however, generally
treated the supercavitating case only and assumed that variations in

cavity length were small compared to the mean cavity length. This
simplification allowed the problem to be treated in the frequency. ...

domain.
A relatively recent impetus to research in the field of unsteady

hydrofoil cavitation was the recognition that marine propellers

operating in non-uniform wake fields can experience transient cavita-
tion and cause severe hull vibration. Due to the transient nature of
this cavitation, frequency domain solutions could not be applied
successfully. Instead, a theory was needed which allowed for

significant variations in cavity extent. There have been numerous
attempts at formulating such a theory, using a variety of theoretical
approaches. Since marine propeller blades are generally of moderate
aspect ratio, the three-dimensional nature of the flow must be
considered. Some of the approaches used, howevar, have incorporated
some elements of two-dimensional and high aspect ratio theories. As
a result, the question of unsteady high aspect ratio hydrofoil
cavitation is still a research topic of current interest.

Tulin and Hsu (1977) formulated a theory for steady, "short",
leading edge cavitation on two-dimensional foils with thickness, in
which the perturbation due to the cavitation was considered to be a

small disturbance compared to the steady, non-cavitating flow. This
non-cavitating flow was found using non-linear theory and therefore
accurately described the behavior of the flow in the leading edge -.-

region. Tulin and Hsu showed that the effect of thickness is to
reduce significantly the extent of cavitation. This result would
presumably not follow from a completely linear model, since in that
case the contribution of thickness would be to reduce the pressure
everywhere on the suction surface, and thereby increase the extent of

cavitation. However, this matter is clouded by the possible role of
viscous effects, which may delay the start of sheet cavitation until
separation of the laminar boundary layer (Arakeri, 1975), or transition

% .
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to a turbulent boundary layer (Kuiper, 1979). This delay of cavitaLion
inception may well cause the cavity to begin in a region where the
surface pressure is not badly approximated by linear theory. It is,
therefore, quite possible that the effect of thickness on cavitation

extent is exaggerated by potential flow theory. In any event, Tulin
and Hsu postulated that in those cases where the cavity was of high
aspect ratio, their two-dimensional results could be applied to a three-

dimensional non-cavitating flow, such as that provided by a propeller
lifting surface program.

In 1980, Tulin extended this two-dimensional theory to the
unsteady case. By restricting his analysis to thin wings of moderate
aspect ratios, where the product of the reduced frequency and the
natural log of the aspect ratio is of order one, Tulin concluded that
the boundary conditions of the unsteady flow are, to leading order,
identical to those of the steady flow, with the exception of the
closure condition. In effect, Tulin's conclusion was that under the 9
assumptions he made, added-mass type pressure terms, which are infinite
in the two-dimensional limit, are negligible compared with the steady
terms at aspect ratios such that kr U (AR)= 0(1) . The role of the - - -
unsteady closure condition was seen as causing growing cavities to be
thinner than steady cavities of the same length, and collapsing
calrities to be thicker, particularly towards the rear.

For the case of a flat-plate hydrofoil Tulin generalized the curve
of cavity length versus C /c (Acosta, 1955 and Geurst, 1959) to yield
a family of curves, each of which corresponded to a particular growth
rate. He went on to derive some general results with regard to
unsteady cavitation, such as:

A) The instability of the upper branch of the cavity length vs C /a
L

curve for flat plate foils. Cavities longer than the

equilibrium condition were shown to grow and those shorter
were shown to collapse.

B) In the case of periodic loading,

1) The hysteresis apparent in the trajectory of cavity length
versus C / , "-.

L --2) The phase lag between cavity length and lift coefficient,
3) The inverse relationship between maximum cavity length and

reduced frequency,
4) The rapidity of cavity collapse compared to cavity growth,

and
5) The possibility that part of the cavity will be torn off as

the remainder of the cavity collapses toward the leading edge.

Stern (1980) also divided the problem into a three-dimensional "
outer problem and a more or less two-dimensional inner problem. He,

IA however, included the kinematic effects of the cavity in the ouLer
solution, and satisfied only dynamic boundary conditions in the inner
problem. These dynamic boundary conditions included those unsteady
terms which Tulin concluded could be neglected. Stern's inner solution % N %

*%
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modeled the cavity as a semi-ellipse on a ground plane, whose semi-
axes and position were determined by satisfying the dynamic boundary . -.

condition in a least-squares sense. He matched his inner solution with .'-.

that of an assumed outer solution consisting of a three-dimensional
line source of varying strength, as was first demonstrated by Benjamin.

Stern obtained solutions to simple flows which demonstrated such
observed behavior as:

A) The pullback of the cavity from the leading edge of the foil, and

B) The thickening of the cavity at collapse.

Stern also found that in obtaining a steady solution as an initial

" value problem the cavity would oscillate about an equilibrium condition,

and he proposed that these oscillations were physical rather than an
artifact of his solution procedure. If this, in fact, is the case,
this instability would be intrinsically different from that of Tulin,
whereby any oscillations in steady flow would be accompanied by a
tearing off of part of the cavity.

Stern (1981) compared results of this theory against the experi- -. -

mental results of Shen and Peterson (1978). The predicted cavity
lengths were significantly less than those observed in both steady and
unsteady flow. The oscillations which were apparent in simpler flows 3
were once again found in these comparisons. Stern proposed that their
presence indicated the occurrence of cloud cavitation, and concurrent
cavitation noise.

Peters, Goodman, and Breslin (1980) considered the problem of a
high aspect ratio cavitating flat plate foil moving through an unsteady
gust. They took the classical approach of expanding the flow quanti- At
ties in powers of the inverse aspect ratio, E . Their conclusions were -

"'

that the second time derivative of the cavity cross-sectional area was
of at least second order in . In reaching this conclusion they made *4

two assumptions which conflict with the work reported here: ,

I) They assume that the lowest order term of the outer velocity
potential is of order E . i4..

2) They imposed a condition on the inner problem that the pressure
decay to zero far from the foil, rather than that it be matched
to the inner expansion of the outer problem.

Thus Tulin, Stern, and Peters, et al. are in direct disagreement
on a very essential question; namely, the influence of aspect ratio on
the time-variability of source strength. Tulin finds that for moderate ,..
aspect ratio the effect is nil. Peters, et al., find that the influ-

ence is quite drastic, and even go so far as to speculate that a

propeller blade of high aspect ratio may cause less severe hull 0
vibration than one of lower aspect ratio. Finally, Stern finds that
the effect of aspect ratio is important, but not of overriding x
significance. . .-

" 
-"
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The present author's association with the problem of unsteady
hydrofoil cavitation was in developing a two-dimensional unsteady
cavity numerical model which was generalized to the case of a propcl .l-
operating in a non-uniform wake by Lee (1980). Lee's work was
completely three-dimensional, and did not involve any aspect ratio
assumption. However, if one matches the two-dimensional inner solution
to a three-dimensional outer flow, as was done by Benjamin and later I"%"

Stern, the influence of aspect ratio on cavity volume variations aMl
be readily determined by this model. Although the proposed method
utilizes matching ideas similar to those of Stern, its treatment ol th .
inner flow is completely different. The dynamic and kinematic boundary
conditions are solved simultaneously, rather than sequentially, and no
assumptions are made as to the shape of the cavity, other than that it
starts at the leading edge of the foil. The proposed method is, how-

ever, a linear theory in that the disturbance of the streaming flow
due to both foil and cavity is considered smail. In this sense it
probably does not properly account for foil thickness. However, the

" possible role of viscous effects makes the true role of thickness
poorly understood at present, and it is not clear that a nonlinear,
potential flow model such as that used by Tulin or Stern is a real
improvement. In any event, the present work is restricted to foils (it
zero thickness, where these considerations are not relevant.

THEORETICAL FORMULATION -

An early attempt at solving unsteady cavity flow problems by A
numerical lifting surface techniques was by Jiang and Leehey (1977).
They primarily addressed the case of unsteady supercavities on three-
dimensional hydrofoils, and compared their results with experimental ..

data. Although they also presented two-dimensional results these did -".
not explicitly include the effect of aspect ratio. Although their
method allowed large variations of cavity length, and was solved in
the time domain, the results they presented were for cases where the
variation in cavity length was small compared to the mean cavity length.
The work reported here is an extension of the method of liang and
Leehey to partially cavitating flows where changes in cavity length are

of the same order of magnitude as the mean cavity length. Only high
aspect ratio foils will be considered, since the three-dimensional
extension is straightforward and has been presented in the case of
propellers by Lee (1980). The flow situation is sketched in Figure 1.

The Inner Solution

The flow is assumed to be inviscid and irrotational, with the
exception of a wake of infinitesimal thickness and with the exception 9
of any incident gust. The streaming flow U is assumed to be constant,
and is taken as unity. The chord c is taken to be of unit length. %
The forms of unsteadiness which are considered are gust velocities -4--

normal to the free stream, v(x,t) and transverse motions of the foil,

• - -A .
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such as pitch and heave. Reduced frequencies --- are assumed to be oi
2 Uorder 1. The conditions on thLe inner solution are the following:

A) On the cavi tv surface the pressure must be equal to the cavi tv
pressture, or in non-dimension;ll terms,

C = - -(t) (U ..
p

where C is the local pressure coeff icier t and is the cavitat ion
number p which we have allowed to vary with time. From Berno l I is --
equat ion , we have_-

D + 1/2 2 = l/2(o(t) + 1) (2)
t

where '(x,%,t) is the total velocitV potential. Here we have
ignored hvdrostatic effects. U

B) On tile ,WCet ted port iens o f the foil I the(- fl1ow mt be tangent to
tile foil, or

,...n + v(x,t)n. n (3)
J n

where n represents the unit normal vector, and V is the component
of foil motion in tile direction of n.

C) Kelvin's condition must be satisfied, so the total circulation
around the foil and wake must be zero.

D) A Kutta condition must be satisfied at the trailing edge of the
foil, or

j-,1(( ,O,t)[ < (4) '''''',

E) There must be no pressure dif ference across the wake. '0

F) At large radial distances from tile foil, the potential must be
matched with that of the outer problem.

In order to linearize the problem, the angle of attack, a(x,t) __i_._

and cavitation number, a , are assumed to be small and the cavity is 41
assumed to be thin. With these assumptions, the perturbation veloci- . . ..
ties will be small compared to unity. For convenience, the velocity

potential can be expressed in terms of a perturbation potential,
S(x , v,t ):"-'.- 1

I(x,y,t) x + P(x,v,t) 3)

Consistent with these assumptions, the flow can be represented as a

I% -. * -*.*&$~ I .2.... .Ze.-..L.- 4'.
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distribution of source strength q(x,t) over the projection of the
cavity on the x axis, and a distribution of vortex strength y(x,t)
over the projection of the foil and its wake. The perturbation
potential can therefore be expressed as:

L 2 q(){b1 (x-)2+ y2 + Cldr +__--

0

y _ () arctan (x- )d- p (t)dt (6)

Note that in effect an unknown function of time has been added to -
in order to match correctly with the outer flow. This function of time
has been arbitrarily divided into two parts: One which is proportional
to total source strength of the inner flow, Q(t)

C ( t)CQ(t) (7) i']/
-- ' q(TW 2

27i 2

and the remainder, which is expressed in terms of an interaction
pressure, p. (t), which is determined by the outer flow. These will
be found by matching to the outer solution.

Consistent with the above linearization, the boundary conditions
may be imposed on the x axis rather than the exact foil and cavity
surface. The linearized pressure condition becomes:

$x(x,0+,t) + (x,O+,t) = u (t)/2 (8)

In terms of the singularity distributions, this becomes:

I2(t) ._____
y(xt) 1 1( t )  d (9) et(t)

2 2 t 0y(C,t)d + -- -L x- (9)

+ 2- -t q( ,t){ :tlx- J+ C~d = + .''"i

0

0 < x < e(t)

The linearized tangency condition becomes:

:., $ b " + d 1 ""

x +. . v (x,t) (10)

Here r](x,t) is the caberl ine of the foil. In terms of the
singularitv distributions this becomes:

......................
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_L)__ + L_ 4) dT  - __ + _ v(x t) (iL)2 2 T 0 x- e) X ct

0 x < I

Since the cavity is represented solely as a source distribution,
the closure of the cavity must be explicitly stated, as T(O) = 0,
where t(x) represents the thickness of the cavity. This can be
written in terms of the source strength bv using the relationship:

q(x,t) = T (Xt) + T (x,t) (12)

x t

T(x,t) thus satisfies the wave equation, and can be written:

(x

Tr(x,t) = q( ,, t-x + O)d (13)
0

so that the closure condition becomes
Ct)

q(,, t-(t) + ,)d = 0 (14)

The closure condition appropriate for steady flow is:

q(,,t)d= 0 (15)

The Kutta condition requires continuity of vorticit' at the
trailing edge of the foil. In addition, Kelvin's condition requires
that the total vorticity on the foil and in the wake he zero.
Vorticity must therefore be shed at the trailing edge as the bound
circulation changes with time. In order to satisfy the condition that
there be no pressure jump across the wake, the shed vorticity must he
convected downstream at the free stream velocity. If the cavity is ai
supercavitv, this wake condition assures the satisfaction of Equation
9 on the lower surface as well as the upper one.

It should be noted that due to the fact that the pressure boundary
-, condition is applied on a variable length e(t), the problem is

inherently nonlinear. The technique used to solve it is to first solve
an appropriate steady problem as an initial condition, and then to
march out the so lution with rime.

1 
14

% J

"-. . . . . . .....-. .
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The Outer Solution

In order to find the correct values of C and pi(t) in Equation 9,
one must match the inner potential to the outer one. Since the
critical element of this matching is the potential due to time
dependent source strength, only the source-like outer potential will be
dealt with. The following analysis follows Benjamin (1964).

The outer perturbation potential due to a cavitating hydrofoil of
high aspect ratio (neglecting the bound and trailing vortex systems)
can in general be expressed as a harmonic series:

¢out(Z~r, t) = Z I ikz-lin . (k' n  -t ,t e K (kr)g(k,t)dk (16)

n=r ek n (16)

where r and z are the radial and spanwise coordinates, respectively,
non-dimensionalized on the span. The axially symmetric component is:

ikz
(zrt) K g (k,t)dk (17)

out~ 0 (kr
t  0 0(

If the spanwise variations in source strength have a length scale on
the order of the span, g0 (k) will differ significantly from zero
only in the region k < 2-r or so. In the matching region r < 1
and kr 1- 1, so this potential can be expanded as follows:

( ikz 2)}g

out e {- kr) - y + O (k,t)dk (18)

where y is Euler's constant. Letting E be the inverse of the aspect
ratio, one can relate the inner variable R = xi 2 2 to r by the
relationship R = r/c. Furthermore, a new outer potential, expressed
in terms of inner variables, is defined as cut =. "

0ut out .
Substituting these new variables in Equation 18, one gets: ..

.. 1 ikz 1 ikz k + .". .out-, I go(k,).t( d -R d e [2 - y + 0( 2 ) ] g O ( k t ) d k

(19)

This potential must be matched with the symmetrical portion of

the inner potential at large R, which is

in 2+ C I pi(zt)dt (20)

%-.

. . .

. .- . . . .
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"Matching, we get"'.

-Q(zt) = 2 r ikzQ (z t- E e 90 (k , tdk (21) __ _

C = c (22)

pi(z,t) I : ikz y k 0 d' *
= e + Y g (kt)dk (23)

E: i t--'- 0
P

o)r sin1c e

42(k,t) E O(z,t) eikzdz (2/)

=---1(z ....) " - -ik(C-z) k + y -k-(25
( (c,t)e [ell ( + Y ddk (25)-£ P 4 -rT'

The Magnitude of the interaction pressure

In Equations 6 and 9, the contribution of the three-dimensional
, flow was broken down into two components, one of which was proportional

to local source strength, and the other of which depended on the
solution at other spanwise positions along the foil. The former
component can be found as part of the essentially two-dimensional inner
solution. This decomposition can be exploited if the remaining term
is small compared to the terms obtainable from the two-dimensional
solution.

In order that the term in Equation 9 containing C be of order one .
in E. , and thereby balance the other terms, one must have: .

c dQ = 0(i) (26) "
2Tr dt

or, since C = en c ,

-l1

Q, [fl E] and go (27)

This is a fundamentally different result than was obtained by Peters,
et al., who assumed that the lowest order of g0  allowable was of
order E , and then provd that that term was in fact zero.

Since Q , E[ J j- , p.(z,t)/.) is likewise of that order. * ,4
This is a disappointing result, since it is unlikely that C would,
in any practical situation, be so small that [61 ]E would be ¢-.'*'

4 F.;

I..'''.-°' ." - ," . . . ..". ... . ..-.-.-'. ..".,". '. ..-.-. -. *' '*," ..... " •" .* .,.* * - ... ,-',..,*..% '..'.-, .. .,.-. .-.-.. . . . .... "-..-'*,_
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convincingly small. Presumably, this result led Benjamin to his

conclusion that the flow is essentially three-dimensional. However,

under certain circumstances, pi(z,t)/p can be shown to be a small
quantity compared to other terms in the pressure equation, such as a

For simplicity, consider a cavitating flat plate in a harmonic

disturbance, where the cavity volume is essentially zero during some
porticn of the cycle. The total source strength at any time is the

time rate of change of the cavity volume. The maximum volume will be

on the order of:
at0

VOL n f(-) (28)

where a0  is a representative angle of attack. Here the fact that

a/a is a similarity parameter of the flat plate solution has been

used. For simplicity, the dependence of f on the type of the

unsteadiness has been suppressed. The total source strength is then of • ''
order

a0
Q a W f( - ) (29)

The time derivative of Q is of order
2 0 (3)-

From Equation 25, one finds that likewise - '-

- aciW f(-) (31)
p 0"a

The ratio of this quantity to a is

Pi/_ 2 a0  a0  (32)

a f( a

Since p./p acts as a time-dependent change in a , this ratio can be

expresses as

- A 0  a0)-- ~ - f( - ) (33) . .
a a ar
0

Although the exact form of f( /,V) will depend on the nature of the

motion, it will in general be monotonically increasing with
In the case of steady flow, its behavior for small values of 10/1
was shown by Guerst (1959) to be:

0 0 3 0 4
f( - ) 160a ( - ) + 0( - ) + ... (34)

...... ..................... .... ,
5-,*. ,, , . , . . . . . t t . , ,, ,,' .*. . . . . . . . . . . .. . . \ ,
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If f('AO/) is in general cubic for small 0/ , we have
00 0 .

0

J 0 4 (35)

and the change in the local value of 'A lo due to tile interaction
0

pressure will vary as the fifth power of A /0. Therefore, for
sufficiently small values of a lo the magnitude of the interaction-L .4
pressure should be fairly smali?. 'In fact, since in the steady case
partial cavitation occurs for -&c less than .1 or so, it is not
unreasonable to expect that so long as the cavity is shorter than a
chord length or so, the interaction pressure p i(z t)/Q will be small '"-""-

compared to o
Note that the smallness of pi(z,t) is not equivalent to saying

that three-dimensional effects are small. Rather it is equivalent to

saying that the influence of the aspect ratio on the inner solution

is mainly through the determination of the proper form of the source
potential, which has been shown to be, for a source at the origin,

-q 9_n r (36) -i

source 2i(3

where r is non-dimensionalized on the span of the foil, rather than

the chord.

An Iterative Solution Procedure

in those cases where p.(z,t)/D is expected to be small compared
1

with o, an iterative procedure suggests itself. The interaction
pressure p.(z,t) can first be set equal to zero, and the inner solution,
and specifically the total source strength Q(z,t), found at various
spanwise positions. Equation 25 can then be used to find a first
approximation to p.(z,t)/o . This estimate of p.(z,t)/c can be added
to Equation 9 and the inner solution again found. This procedure can
be repeated until Q(z,t) converges to an asymptotic value. The
resulting solution is the correct inner solution to zeroth order in E .

For a rectangular planform with constant section characteristics, 
N.. -'*

Q(t) as first calculated will be the same for all sections. In this

case, one can compute the value of /p as a function of z due to
unit source strength per unit time per unit length along the span:

Pi(z) 1 2 1 14(
2 )

)
__ __ - - n(l - 4z (3-7)

20
This function is sketched in Figure 2. Since its value is zero at z=O .r1

it can be seen that the initial solution, with p.(z,t) 0, is based on-
the assumption that the section in question is tie mid-span section of. .

a hypothetical rectangular hydrofoil whose flow characteristics arc

%* .•*., '" ,Z ', .< .' '<'< /",r:'.' ' , %'',.. " .'%"-'"..'.:''-.''>:"''. ., ' .%.",:. ,. . . - -* ', .r,'¢; -." ". "'_,-,-%
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constant along its span.

p.

-.5 .5
iz

-. 1-.- ..

-.2

FIGURE 2. Interaction pressure due to

unit Qt at all spanwise locationsit

If the planform is other than rectangular, such a simple
calculation cannot be made, since the distribution of source strength
will not follow the shape of the planform. The tips of the hydrofoil
will operate at a different reduced frequency from the rest of the
hydrofoil, so the cavitation of the tips will differ from that of the
central portion of the hydrofoil.

It is convenient in the case of non-rectangular planforms to take
the local chord as unity and to take the value of C to be the same
(in "local" units) for all sections. This results in an extra term
being added to pi(z,t) , so that Equation 25 becomes:

A

P i(z ,t) 1 e i C - - '
(,t) 4 2  tik(,-z) [en k + y + tn c ,dcdk (38)

2 i -

- where c* is the midspan chord.

-:

1Z V
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For reduced frequencies of order unity, James (1975) showed that

unsteady downwash corrections to the inner flow are of second
order in E , so that only the mean downwash need be included to have
a solution which is accurate to order c . Due to the non-linearity of
the inner solution, the complete solution would have to be re-calcu-
lated with the mean downwash from the zeroth order solution included. "'

NUMERICAL SOLUTION

Discretization

In order to obtain a numerical solution, the source and vorticity --

distributions are represented by discrete sources Q.i and vortices I'. on
the foil and in the wake. The positions of these singularities are
fixed for all time, but the ncmber of sources allowed to be non-zero

will vary as the cavity length varies. The advantage of this method
is that matrix inversion need be done only once for each discrete ... '

cavity length. Since the integral Equations 9 and i require the

local contribution from one distribution and the Cauchy principal-value
integral of the other distribution, the discrete singularities are
alternated, and the tangency condition is satisfied at the location of
a source, xQ , and the pressure condition satisfied at the location
of a vortexi x1, The portion of the foil whose vorticity is
conceni-rated i into T. is that which lies between the two adjacent
sources, or Axf = X - Xi . Similarly, the length of the

element whose i 1 i-1 source strength is concentrated in
Q. is Ax x - x

Q i+l i
The time domain is divided into time steps, of length At, so that

the strength of the discrete sources and vortices are found at specific ..
instants of time. Let n represent the number of vortices on the foil,
and n represent the number of sources over which the cavity extends* c.
at j time step j. Furthermore, let the ith source and vortex
strengths at the jth time step be represented by Q. . and F
respectively. If time derivatives are calculated %

by backwards differencing, Equations 9 and 11 can be approximated as
follows:

PtP

%-. ..

%--..
-. P.-. . . . . . ... "... . .

,~~~~~~~~...-....... ...--.. ,. .. :.. ,,
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n nC C.
--i Ii- c. _kj ,...

-+ +Q[£nx- X[+CI
2Ax. 2At k ,j 2 L x - x 27At Lk, r j-tn' x k

k k " Qk k 1k

n• .i-1 c.- 1  -'"

k+-1Q ktn Ih -+C] + (39)
2 2 it k-j- 2-At k.1 k

+ +
kj 1
r'L n . 1 oo"'i- l jiik ,

2Ax Q 2k7 x - x Ax t v. 2 - - ' "'Q. -Q 1, 2  xn~ -Q x r
i i k 1 i k N

0 i n (40)

Here p. represents the interaction pressure at time step j and v.. is
the lo~al, instantaneous gust velocity. The integral of vorticit'4

from the leading edge to a pressure collocation point does not include
vorticity due to the vortex at the collocation point. This inter-

pretation is consistent with the backward differencing procedure, since
the first two terms on the left-hand side of the pressure equation,
which represent the jump in pressure across the x-axis, will be
identically zero in the wake when the equation is discretized in this
way.

The closure condition as given in Equation 14 is not very

convenient for numerical computation. Instead, Equation 12 can be

approximated by:

Q. . . T i j T logj Ax i-l,j + i-l,j A i-l,j-I (41)
Ax Ax At _€

Here T. . represents the thickness of the cavity at the position of the % W
(i+l)t 'Jvortex, at the jth time step. Using this difference equation,
and the initial condition T t = 0, the closure condition TnJ = 0 can
be approximated in terms of the set T. , i= O,n , c
which are known at time step j, and the set Qi, i = 1,no, which
are unknown. The result is: ",.

n n Ax n -1 Ax n Ax
C c Qk c Q c Q
V, kl(= i+l k

:_ " "At i,j-i At
I k=i+1 i=l i+2

% %.

Z.: -A .
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If At Ax( , Equation 41 becomes simply:
n

c

Qn - -i, j-I (43)
c, j c ,

when the cavity is shrinking, the cavity source strength may be non-
zero in elements which lie downstream of the cavity termination at the

present time step. The magnitudes of these sources may be obtained
from Equation 41 as:fromi

T (44)40Qi,j i-l,j-" At

Fhe Kutta condition is not explicitly imposed on the solution.
James (1972) found that for fully wetted, steady flow, with constant

spacing of elements over the chord of the foil, and with vortices
placed at the quarter chord positions of each element and collocation

points placed at the three-quarter chord positions, the Kutta condition
was automatically satisfied in the case of parabolic camber lines at
an angle of attack. Although no equivalent work has been done in the
case of unsteady flows, it is expected that the Kutta condition will
at least be approximately satisfied implicitly. In any event, the
solution to the problem as posed is unique without the imposition of
a Kutta condition.

Kelvin's condition of constant circulation is met by requiring

the sum of all the vortices to be zero:

F .=0 (45)
all i

For convenience, the time step size can be taken to be equal to the 2
(constant) distance between vortices in the wake, so that a wake
vortex is convected exactly one element length in one time step.
This means that only the first wake vortex is unknown at each time 41
step, and it can be obtained from Kelvin's theorem as minus the

difference between the sum of the bound vortices at that time step and
that at the previous time step. .,

Although the actual value of n is known, the value which cor-
responds to a given value of n is unknown, and must be solved for.C

Since there are n unknown vortices, and n unknown sources, there are
a total of n + n + 1 unknowns. If Equation 39 is satisfied at n

vortex locations, and Equation 40 is satisfied at n source locations,
and the closure condition (42) is satisfied, there are likewise a
total of n + n + 1 equations. However, due to the alternate spacing
of vortex and source singularities, a pressure or tangencv condit ion
cannot be imposed at the singularity closest to the leading edge. A
substitute equation has to be found, as will be discussed later.

...:. -: -
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Solution Interpolation

Although the actual cavity may end anywhere along the chord or
in the wake, the numerical scheme allows the cavity to be ended only
at a finite number of different positions. Each position results in
a different solution vector. Let Xk and ak represent the solution -- "'
vector and the cavitation number (included in Xk), which result from
the assumption that n = k. To obtain the actual solution vector,
the solution is iterated until the mth source is found, such that
a is lower than the actual value of a, and a is higher than a.
Tie actual solution vector is then obtained by lirst lengthening the
solution vector Xm by the addition of the source strength Q, which
was a known quantity in the solution of the casenc = m-l, an then

averaging xm and ym_l as follows: :.--.

A m-i - A + - (46)
1 m m Cm-1 m

For cavities shorter than that length represented by two non-zero
source strengths, a similar interpolation is done between the

solution for n = 2 and the fully wetted solution. Here the inter-C

polation is quadratic in 1/a. This is the behavior of Guerst's (1959)

solution for the steady cavitation of a flat plate.

Singularity Spacing

Jiang and Leehey divided the chord into equal length segments,
but with the first two segments further divided in half. A vortex and
pressure control point was placed at the quarter chord point of each N
segment and a source and tangency control point was placed at the
three-quarter chord point. The only exception to this rule was
implemented at the leading edge, where the positions of the first
source and first pressure control point were reversed.

In the present work, a different discretization scheme is used.
In order to be able to model small, partial cavities with some

precision, a higher density of singularities is desired near the
leading edge. Furthermore, in order to improve convergence, the
distance between singularities should vary smoothly with position along
the axis. Therefore, the transformation x = (1-cose) is used, where
e varies from zero to /2 along the chord. The position of the vortices

and sources are evenly positioned in 0, so that

x.= 1 - cos 2n and x =1 -cos (47)
2 n Q 2n

The distance between vortices in the wake is taken to be equal to the
distance between the last two vortices on the foil. The sources in the
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wake are placed half way between adjacent vortices. The vortex at the
trailing edge of the foil represents the vorticity shed during the
current time step. The mapping of sources and vortices from 6 to x
is shown in Figure 3.

.° .°I, I

, 2n

II

x=0 x=l

L.E. T.E. .. _

FIGURE 3. Spacing of Discr~ete Singularities ":

With this discretization scheme, the pressure Equation 39 cannot .-...
be solved at the leading edge vortex. This is the same problem.'..]
encountered by Jiang and Leehey, leading them to switch the positions

of the first source and the first pressure control point. The •" "

approach used here is to recognize that the strength of the quarter- ..

root singularity in source strength is the same as that of the. ..
quarter root singularity in vorticity. If the number of singularities i -

is large enough, the first source and first vortex will be located in ''''''

a region where their strength is dominated by the quarter-root"-..-.°
singularity, so that the strengthi of the first source can be related "--'""

to that of the first vortex, as follows:

%: %

% %

Ii I- " -n

Ill .I I I- I 
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/1-cos 7.T

-1/4
x dx ,'....

Q 0 4- 43/4 (48)
cos n0 -1/4 d '--'

COMPARISON WITH ANALYTIC RESULTS

Steady Flow

In order to determine the accuracy of the above discretization
scheme, the steady flow about a partially cavitating flat plate was
computed numerically and the results compared with those of Geurst
(1959). Equations 39 and 40 reduce in this case to:

n .

C.i 1~ c Qk G
2Ax. 2- 2 (49)

1 k=l e Qi

I k

+ -a =-(50)
2Ax. 2 x -x

1 k=0 Q

Here a is the angle of attack of the foil. The closure condition

reduces to:

n
SQi --

i=l 1

The solution was carried out for n ranging from 2 to n for various
c

values of n. Figure 4 shows cavity lengths versus a/a , where a is
the angle of attack, for a flat plate foil in steady flow. The solid 4-

line is Geurst's result. It can be seen that the numerical scheme
gives results fairly close to the analytic solution when at least ten
elements are used.

The results of the numerical scheme was also compared with the
analytic results of Geurst and Verbrugh (1959) for the case of a 2%
parabolic camber line. The resulting cavity lengths are shown in
Figure 5. Although the agreement with theory is less good than in the
case of a flat plate, the results converge toward the exact solution

quite rapidly as the number of elements is increased.
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The numerical results for a supercavitating flat plate in stcad.

flow were compared with the analytic results of Geurst (1960). These
are shown in Figure 6. The agreement is quite good.

Unsteady, Fully Wetted Flow

Another check on the numerical scheme was performed by comparing
unsteady results at an extremely large value of j with the known
solution for a fully wetted flat plate hydrofoil flying through a gust
with a reduced wave number of unity. The amplitude of the lift

coefficient was overpredicted by 7% using both 10 and 20 elements. , :Zz
The phase angle was within 2' of the analytic result. The mean lift -

coefficient was underpredicted by 4 and 2 percent using 10 and 20
elements, respectively.

RESULTS

Inner Solution

The results presented in this section are from the first

approximation of an actual three-dimensional flow, wherein the aspect

ratio of the foil is used to determine the proper form of the source
potential, but where the interaction pressure is taken to be zero.

The type of unsteadiness selected is that of a sinusoidal vertical
gust, fixed in the free stream, so that

V (x,t) 7 v(t-X)

Before the gust is encountered, at t-x 0, the hydrofoil is assumed

to have a constant angle of attack equal to the mean angle of attack

in the sinusoidal gust. The amplitude of the gust is assumed to

increase smoothly during the initial period from zero to the amplitude
of the periodic gust which exists after the first period. li

v(x,t) = a + f(t-x) a sin[2 kr (t-x)]

r

0 t-x< 0

k (t-x) 2 k (t-x) 3
where f(t-x)= [r 2[ ] 0 t-x

t -x
k

% %

,-°-

. . . . . . . .. 4.-

"-..,"'-



7560

.8 
-jrs 

19 9

4. 5 element -
* 10 element

o 20 element

.6

CN

.4

.2

.02 .04 .06 .08 1.0

FIGURE 4. Comparison of steady results with theorv
for partially cavitating flat plate

S7 S



757

PS..6

ce

0

.2

.02 .04 .06

FIGURE 5. Comparison of steady results with theorv
for 2% parabolic camber, I' angle of attack



758

2.2

Geurst (1960)

5 element '

2.0 10 element
o 20 element

1.8 V

1.6

1.4

1.2]

.1.2 .3 .4 .

FIGURE 6. Comparison of steady results with theory
for supercavitating flat plate



w 759

TIME=.030 71ME= .S28

TIME= 080 TIME=. 578

TIME-. 130 71ME-.628

TIME=. 180 TIME=.678

TIME=.229 TIME=.727

TIME=.279 TIME=.777

TIME=.329 TIME=.827

TIME=. 379 TIME=. 877

rTIME=.429 TIME=.927

TIME-. 478 71ME-.976

FIGURE 7A. CAVITY PROFILES VS TIME
* VERTICAL GUST, ALPH-A=0-. 1.. SIGMA=1 .0, AR=10, K1l

ZA 8% -- , ", . zz _ 7.
_-L :: j- "% 'At



760 
-

1 2 3 4 5

NUMBER 0OF PERIODS
FIGURE 7B. CAVITY LENGTH OVER 5.75 CYCLES
VERTICAL GUST, ALPHA=0-.1, SIGMA=1.0, AR=10, K~1

.30 .

.20

:t.

.2S so0 .75

TIME / PERIOD
FIGURE 7C. CAVITY LENGTH OVER ONE CYCLE
VERTICAL GUST, ALPHA=0-. 1, SIGMA=l .0, AR=10, K-I

L-L 7



761

-.. -.9-•008 """"

006 .

•e .5 .7.- .

" " ,-..-F-".. I*.SO. 5 .-. .

I I

TIME / PERIOD
FIGURE 7D. CAVITY VOLUME
VERTICAL GUST.. ALPHA=O-.1, SIGMA=I.0, AR=Ie, K=t

; I

0.4.

.26 .50 .76

I I 0 I

TIME /PERIOD
FIGURE 7E. LIFT COEFFICIENT
VERTICAL GUST, ALPHA="-. 1 SIGMA=1".0, AR=10, K=

. . . . .. . . .. +...,.. -. .. -. a - S. *

. . . . . . . . . . ... + .. . . . . . . . .,,.,

* -*... -....--. *.- .. a,.'.

2' 8 S "-"".'-"



762

.4 
. %

-. 30
..~ . . .. ... .

.25 .50 .75

TIME /PERIOD
FIGURE 7F. CENTER OF EFFORT (FROM L.E.)k i
VERTICAL GUST, ALPHA=0-.1, SIGMA-I .0, AR=I0, K=1

.2S

.20 *

.26 .60 .76 4

TIME/ PERIOD
FIGURE 7G. BOUND CIRCULATION
VERTICAL GUST.- ALPHA=O-.lI SIGMA-I .0 AR-IG, K=t



763

I - - II I- . " ,-

TIME=.030 TIME= 528

TIME=.080 TIME=.578 "

TIME-. 130 TIME-. 628

TIME= 180 TIME=.678

TIME=.229 TIME=.727

TIME=.279 TIME=. 777 -

TIME=. 329 TIME=.827 .1.1

TIME=.379 TIME=.877

TIME=.429 TIME=.927 ... ,.

TIME-. 478 TIME-.976

FIGURE 8A. CAVITY PROFILES VS TIME
VERTICAL GUST, ALPHA=O-. 1, SIGMA=0.5, AR=10, K=1

,'*-. ---.

"--% ,, .



764

-1.2

.. 4

-.2

1 2 34

NUMBER OF PERIODS
FIGURE 8B. CAVITY LENGTH OVER 5.75 CYCLES
VERTICAL GUST, ALPHA=0-. 1, SIGMA=0.S, AR=10, K-1

-1.

T~n mit+ n 10

0 n 20
1.0

80.4

-0.2 
*--

.26 so8 .76

TIME /PERIOD --

FIGURE 8C. CAVITY LENGTH OVER ONE CYCLE

VERTICAL GUST, ALPHA=8-. 1, SIGMA=8.5, AR=10, K=l

%.% V



765

010

Qn 20

E36 t -P

C341

.d I

.25 .50 .75

-~~ TIME /PERIOD **
FIGURE 8D. CAVITY VOLUME
VERTICAL GUST, ALPHA=O-. I, SIGMA=O.S, AR=10, K=t -

-0.6

12b. E3i

0.22

.26 .50 .76

TIME /PERIOD 777-
FIGURE 8E. LIFT COEFFICIENT
VERTICAL GUST, ALPHA=8-. 1, SIGMA=0.5, AR=10, K=1



*~~~~~~~~~~~~- .. .. a ~ ~ w r W rw r.- *.~ - - .~~ ,

766

.8+ n =10
t3 M U n =20 E

.183
*1~n

.3 1 - -------____ __

TIME / PERIOD
FIGURE 8F. CENTER OF EFFORT (FROM L.E.)
VERTICAL GUST, ALPHA=O-. 1,, SIGMA=0.5, AR=10, K=1

0.3 +t3

0.2

+ n =10
on = 20

1.6 .2 TIME PERIO7D

FIGURE 8G. BOUND CIRCULATION
VERTICAL GUST, ALPHA=8-. 1.. SIGMA=0.5, AR=10, K=t



_m -7. - -

767

TIME==.30 TIME=.528

TIME=.080 TIME=. 578

*TIME-. 130 TIME-.628

*TIME=. 180 TIME=.678

*TIME=.229 TIME=.727

TIME=. 279 TIME=.777

* .TIME=.329 TIME=.827

TIME=.379 'TIME=.877

TIME=.429 TIME=.927

* TIME-.478 TIME-.976

FIGURE 9A. CAVITY PROFILES VS TIME
VERTICAL GUST, ALPt-A=O-. 1 SIGMA=.25, AR=1te. K1l



768

-L . I

12 3 4 6

NUMB~ER OF PERIODS
FIGURE 9B. CAVITY LENGTH OVER 5.75 CYCLESW

- -~.VERTICAL GUST, ALPHA=O-. 1, SIGMA-.26, AR=te, K=1

o~.4

.26 .60 .7

TIME PERIO
FIGUE 9C CAVTY LNGTHOVERONE YCL

VRICAL GUT ALH=-1 .A.5 A=0

.4 4 *..* V



769

V.04

L02  a
.2S .50 .76___ _

TIME! PERIOD
FIGURE 9D. CAVITY VOLUME
VERTICAL GUST,. ALPH-A=-.1I. SIGMA.25, AR=10, K=I

V.60
-.20 + f

.2S .60 .76

TIME /PERIOD
FIGURE 9E. LIFT COEFFICIENT
VERTICAL GUST., ALPHA=0-. 1, SIGMA=.25, AR=t0.. K1l

~~~~~~Z................................................- ..



770 f

-. 500

*..40

-. 10

.25 .50 .75

TIME / PERIOD
FIGURE 9F. CENTER OF EFFORT (FROM L.E.)
VERTICAL GUST, ALPHA=0-. I, SIGMA=.25, AR=10, K=1

.20

.2S .7

FIUR 9G.. BON ICLTO

VERTCAL USTALPH=O 1, SGMA=25, R=10 K=



771

Here x. is the mean angle of attack and A is the amplitude of the
variations in angle of attack after the first period. k is the
traditional reduced frequency of encounter which i this case is
7/,, where X is the wavelength of the gust.

Figures 7 through 9 show results for a flat plate of aspect ratio
10 in a gust of reduced frequency k = 1, using 10 elements along the

r
chord. Each figure shows results for a different gust amplitude:

2! - = .05 in Figure 7, .1 in Figure 8, and .2 in Figure 9. In
J•

order that the cavity profiles be easy to visualize, a value of
fta = = .05 was chosen for all the figures. Since the cavity length

for a flat plate depends only on the function (t)/:(t) these figures
can be scaled to obtain results at other values of a if a and •
are scaled accordingly. The value of i corresponding ato the plotted
results is, in some cases, too large for the linearizing assumptions
to hold. For these cases, it is necessary to scale the results to
smaller angles of attack to obtain realistic solutions.

Figures 7-9b show the computed cavity length for the entire
initial value problem, starting with the initial steady flow. For the
cases shown, the solutions quickly approach a periodic respqnse.
Figure 7-9a show the cavity profiles during the last cycle of oscil-

lation, beginning and ending at the time of zero gust velocity at the
leading edge of the foil. Figures 7-ac, d, e, f and g indicate
cavity length, cavity volume, lift coefficient, center of effort

. (measured from the leading edge), and the bound circulation for the
last oscillation cycle. The cross marks indicate the calculated points,

and the dotted lines represent the functions reconstructed from the
first eight harmonies.

At the higher gust amplitudes shown in Figures 8 and 9, the
, cavity length has a saw-toothed character, indicating slow growth and

quite sudden collapse. This behavior was demonstrated by Tulin (1980)
and Stern (1980), and is often observed on propeller blades where the
nature of the flow is quite similar to the present examples. Cavity
volume is somewhat saw-toothed in character, but less so than cavity .-
length. This is due to the fact that cavity thickness variations
tend to be out of phase with cavity length. The cavity tends to
thicken, then lengthen, then thin, and then shorten, so that cavity"

* collapse from a volume viewpoint takes place over the periods of
thinning and shortening rather than just the latter. This is a somtj-
what different behavior than was hypothesized by Tul in (1980) on tile
basis of tile form of the unsteady closure condition alone.

The curves of cavity length and volume demonst i-ate that the
cavity trailing edge can move smoothly over the trailing edge of th " "
foil. This is significant in that analytic resuits for steady
cavitation of a flat plate indicate that a maximum of the vs

cavity length curve occurs at the three-quarter clord point, as .L'L'n
in Figure 4. Tul in (1980) showed that partial caviti os longer than
three-quarters chord are unstabIe and theref-ore not physicall v

.
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realizable. It has been supposed that if a/c were to be slowly
increased so that it approaches the maximum value which is associated ,
with partial cavitation, the cavity would become unstable and jump to

a supercavity. The present results indicate than an unsteady flow
situation would differ significantly from a quasi-steady one, and a
sudden jump in cavity length need not occur.

An apparent similarity between the exact solution and the
numerical unsteady solution can be seen in the lift coefficient. The ""
steady theory predicts that the lift coefficient becomes infinite
when the cavity trailing edge corresponds to the trailing edge of the
foil. In the unsteady results there is a peak in the lift coefficient
when the cavity trailing-edge is in this location. It is particularly
large when the cavity is in a collapsing mode. One can also see an
augmentation in the circulation strength at this time, although the
relative smallness of this effect indicates that the peakiness of the
lift coefficient is due primarily to unsteady contributions. The
similarity with the steady results is therefore more apparent than L *.

real.
Figures 8c, d, e, f, and g also give results obtained using 20

elements over the chord. Due to the fact that the wake element size

(and consequently the time step size) is fixed in relation to the
foil element size, the twenty element solution has approximately
twice the number of time steps than does the ten element solution,
which for the case k =1 has approximately twenty time steps per
cycle. The differences in the results are always within a few per-
cent, except for the lift coefficient, which exhibits higher and ]
sharper peaks in the twenty element solution. Because the results are
so similar, all solutions for k r I were found using ten elements
over the chord. rThe effect of aspect ratio variations is shown in Figure 10,

which shows the variation of cavity volume over one flow cycle for
aspect ratios of 100, 101, 102, and 103 . The flow conditions were
the same as in Figure 8 above. It can be seen that a factor of 10
in aspect ratio reduces the amplitude of volume variations by .1

approximately 8%, and the phase of these variations by approximately
200, the low aspect ratio response leading the high aspect ratio
response due to the increased "added mass" in the latter configuration.
Figure 11 shows the corresponding results for cavity length. Here the

major effect of varying the aspect ratio is to change the time of
cavity collapse. 7

Figure 12 shows how the maximum and minimum cavity lengths
depend on the wave number of the gust. The flow situations are the
same as those shown in Figures 7, 8, and 9, except that the reduced

wave number is varied from .5 to 2.0. Ten elements per chord were
used for k = .5 and 1.0, and twenty elements were used for k =r r1.5 and 2.0. For the two highest frequencies at the largest gust

amplitude a subharmonic response was excited. In these cases, the
cavity lengths were averaged over the last two cycles. As expected,
the general trend is for the cyclic variation in cavity length to
decrease as the frequency increases.

L
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Iterative Three-Dimensional Solution

In order to test the convergence of the iterative scheme to
account for spanwise interactions, it was applied to the case of a

* flat-plate hydrofoil of symmetrical, elliptical planform with an
aspect ratio of 10. The unsteady flow investigated was a vertical
gust of am = .05 and a = .05, with a reduced frequency based on

.

a
, midspan chord of unity. The cavitation number a was .5. Using 10
, elements per chord, the inner solution was computed at five equally

spaced sections, from z=0 to z=.4. (The midspan solution is that shown .-- ,__.
in Figure 8.) Three iterations were performed. After each iteration,
the RMS value of the difference between the function pi(t)/P used in
the solution of the inner problem and that computed from the resulting
total source strength, using Equation 38, was calculated. This RMS
difference was divided by the cavitation number to obtain a measure
of the error magnitude at each iteration, which is shown in Table 1.
As expected, the RMS interaction pressure is quite small, of the order , N
of 2 to 4 percent of the cavitation number. This indicates that the
initial solution, with p.(t) = 0, is a good approximation of the
actual three-dimensional flow. The calculated error is significantly
reduced in each successive iteration, particularly the low frequency
components. Table 1 shows the error reduced roughly by a factor of
two by each iteration if all harmonics are considered, and by a factor
of 7 for the first harmonic alone. The more rapid convergence of the
lower harmonics is significant in that these are the ones most
effective in causing changes in the inner solution. Table 2 shows the
RMS change in computed cavity volume in the second and third iterated
solutions.

Figures 13 a-e show, for each of the spanwise positions, the
cavity volume variations as computed from the first and third
iterations, as well as the sum of the first three harmonics of the
computed interaction pressure, p.(t)/p. Once again, one can see that
the initial solution is quite a good approximation of the three-
dimensional flow. As might be expected, a positive interaction
pressure reduces the cavity volume, and a negative interaction pressure
increases the volume, but only after a significant time delay.
Comparing Figure 13 with Figure 10, one can see that the effect of the
interaction term on the amplitude of the volume variations is the same
order of magnitude as the effect of a factor of 10 in aspect ratio, -.
but its effect on the phase of the volume variations is very small.
This latter result may be true only for the particular flow
situation investigated.

Computation Time

All computations were performed on an IBM 370/168 computer. A 10-
element solution required approximately .1 seconds of CPU time per O
time step, so that six cycles at a reduced frequency of one required 12
seconds. A 20-element solution required .4 seconds per time step. ...
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CONCLUSIONS

The method of analysis presented in this paper is a powerful
method of solving the problem of unsteady cavitation on high aspect
ratio hydrofoils. It allows three-dimensional effects to bc incorpor-

ated systematically in the inner problem, so that a good first ".
approximation to the flow can be achieved in an essentially two-

dimensional solution. By varying the assumed aspect ratio in this
inner solution the dependence of cavity volume and length on the aspect
ratio of the foil has been demonstrated. This dependence appears to
be much weaker than that proposed by Peters, et al. (1980), but it is
still significant.

The iterative method proposed here for the determination of the
interaction pressure has been shown to converge for a typical hydrofoil
of aspect ratio 10. Although it was argued that the iteration scheme . .-

should converge in the limit of low values of (x/3, this parameter
varied from 0 to .2 in the case investigated. Indeed, the cavity was A'
larger than one chord over a portion of the cycle. This suggests that
the iteration procedure is likely to converge for most cases of .
interest. The relatively small difference between the first approxi-

mation to the flow and that obtained after iteration indicates that for
many purposes the first approximation of the inner solution should be
sufficiently accurate.

The numerical technique proposed here for the solution of the

inner problem is simple, and relatively undemanding of computer time. .%.r- ,
The numerical convergence of the solution to a periodic response in
the case of a periodic disturbance has been demonstrated. With the
exception of occasional subharmonic responses, the solution is quite

stable. It does not exhibit the high frequency oscillations found by
Stern (1980). The method has been shown to predict such observed
phenomena as slow cavity growth and rapid collapse, and the inability
of the cavitation process to respond to high frequency variations in

the flow field. It predicts the smooth transition from partial to
supercavitation which is observed in the case of propeller blades " "
operating in a non-uniform wake. The predicted behavior of the lift
coefficient during this transition is a surprising result which has
not previously been encountered.

The major limitations of the present theory are two-fold. Firstly,

foil thickness can be included only in a linearized way. The effect
of thickness in reducing cavity extent which is predicted by Tulin &
Hsu (1977) is a nonlinear effect which cannot easily be incorporated.

Viscous effects may have to be considered in determining the true
effect of thickness on sheet cavitation.

The second limitation of the present theory is the assumption that
the cavity separates from the foil at the leading edge. It is some-
times observed that during cavity collapse part of the cavity tears off

and collapses downstream as cloud ,avitition. Ti is hIav ior cannot be
predicted by the present theory.
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FIGURE 13C. VOLUME AND INTERACTION PRESSURE, Z=.2
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TIME /PERIOD~
FIGURE 13E. VOLUME AND INTEPTION .

VERTICAL GUST, ALPHA-. ", MAr...
-I>iL+ .RMS Error in Interaction Pressure p Non-dimensio- I on o

"tcration I Iteration 2 Iteration 3

All Harmonics
020 .0071 .0040

.1.0189 .0063 .0022

*.0204 .0086 .0053

*.0310 .0159 .0113

.0432 .0206 181

First Harmonic only

) .0129 .0015 .0003

-. .0127 .0011 .0001

.2 .0124 .0014 .0003

.3 .0126 .0018 .0008

4-. .4 .04 .0027 .0010

TABLE 2. RMS Change in Volume

z Iteration 2 Iteration 3

0 .00528 .00125

" .1 .00548 .00062

.2 .00497 .00111

.3 .00590 .00211

.4 .00835 .00474

.... 6•1.....--
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Some extensions to the present theory would be quite simple to
incorporate. In Van Houten and Sayre (1982) the theory was modified
to, account for the presence of air in the cavity. In that work, it
was assumed that the mass of cavity air was a constant over the flow
.vcle. At each time step the solution was iterated until cavity
volume and cavity pressure satisfied the ideal gas law. Other
cxtensions that should be quite simple to incorporate are cavity
buoyancy effects and pressure side cavitation. This latter extension
woild be important in studying propeller flows, since face cavitation
i-, generally regarded as a major cause of blade erosion.

A difficulty in evaluating any theory for high aspect ratio hydro-
.,il cavitation is the fact that due to structural considerations "*.

'igh aspect ratio foils are not used at speeds where cavitation is
*icl 'to be experienced. Experimental data is lacking for the same
r.i-dc. Perhaps the most important extension of the present theory is
t , 1,ianflrms of moderate aspect ratio. Three-dimensional lifting
"ir11cc programs using similar techniques have been developed by Jiang

Imd Leliev (1977) for planar supercavitating foils, and by Lee (1980)
:,,r propellers.
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Discussion

J.P. Breslin (Stevens Institute of Technology)

Our response to Dr. Van Houten's remarks 1 and 2 on page 6 of the
paper is as follows:

If one starts with the author's velocity potential, which we may
designate is *, then one can find the corresponding acceleration
potential P*. The boundary problem posed on P* can be completely
solved by function theoretic methods (as in Reference 1). It then turns
out that after cavitation is established, (second-time derivative and
cavity area) Att must be zero in order to satisfy the boundary con-
dition on the upper side of the foil abaft of the cavity and the clo-
sure condition.

This result rests on the assumption that the variation of the cav-
ity length C*(t) is such that the implicit equation A = C*(X+ t - x)
passes one root X1.

After * is admitted, the result does not depend on any asymp-
totic expansion and furthermore holds both for P*, which possesses a
logarithmic singularity at infinity, and the acceleration potential P
(regular at infinity) of our report (Reference 1).

Thus, we find that the first order approximation that yields
Att = 0 is a consequence of enforcing the boundary conditions on the
approximate two-dimensional problem rather than a consequence of " "
matching assumed asymptotic expansions.

Van Houten apparently does not find that At = 0. This may be
due to the fact that the cavity length he discusses does not satisfy
the condition arising in the analytical solution, namely, that X be ,.,
such that I = C*(X+ t - x).

However, his analysis is numerical, and it seems that in the numer-
ical work the boundary condition on the upper side of the foil abaft of
the cavity is not strictly enforced. In the text following Equation
43, he states that "... When the cavity is shrinking, the cavity source
strength may be nonzero in elements which lie downstream of the cavity
termination at the present time step. The magnitudes of these sources
may be obtained from Equation 41 as: AXQi --.=

Qi,j - Ti-l,j- - -)" -

In accordance with the boundary conditions, the source strength
q(1) = yt]y<o ([P ] being the jump in the vertical velocity on
y = 0) must always be zero abaft the trailing edge of the cavity. This
may indeed account for the discrepancy between the behavior of his
numerical solution and that of our analytically derived result.

?

- .. - . 44,
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Reference

I. A.S. Peters, T.R. Goodman, and J.P. Breslin, "A Partially

Cavitating Hydrofoil in a Gust," Report SID-DL-80-2118, Davidson
Laboratory, Stevens Institute of Technology, November 1980.

Author's Reply

R.J. Van Houten (MIT)

The source of the discrepancy between the results of Peters, Good-

man, and Breslin (1980) and those presented here is not clear. However,
it is extremely unlikely that it lies in the use of Equation 44 in

assigning source strength to singularities downstream of the current
cavity termination. This equation applies only to singularities that

*- were in the cavitating region at the immediately preceeding time step
and is a consequence of the discretization scheme used to approximate

*- Equation 12. The magnitude of the error introduced can be systemati-
cally reduced by increasing the number of singularities used to repre-
sent the foil. Figures 8c through 8g show that for the case kr = 1
the solution does not change significantly as the number of vortices *i
over the chord is increased from 10 to 20. The discretization error

would therefore appear to be small.
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Hydrodynamic Pressure Measurements
on a Ship Model Propeller

Guus G.P. Versmissen and Wim van Gent

Maritime Research Institute Netherlands, Wageningen

ABSTRACT

The results of a feasibility study with regard to the measurements of . 'I

hydrodynamic pressures on propeller blades in a towing tank are des-
cribed. Instrumentation, mounting and accuracy problems are carefully
treated. An analysis of all error sources, prior to measurements, leads

to an estimate of the total error within + 3 per cent. This is consi-
dered to be satisfactory for the aim of the pressure measurements.
Measurements have been carried out on a ship propeller model with a
diameter of 0.48 m in uniform flow. In total 40 pressure transducers
were mounted, 25 on the suction side and 15 on the pressure side. The
transducer type selected was based on strain-gauge techniques. Its small
dimensions, diameter 6 mm and thickness 0.6 mm, make it especially
suitable to be mounted close to the leading edge. For system calibration

the hydrostatic pressure variations, obtained from slow propeller -.

rotation, are used.
The measurement series, for two loading conditions. have been .''

repeated under identical conditions after six months. Checks on the

possible error sources give the same estimate of accuracy. The scatter
in the experimental results is larger than this estimate. However, for _n"

most transducers the scatter is smaller than the maximum, which has
been found as a result of an extensive testing of one of the transducers.

The developed method is especially suitable in extensive investiga-
tions, when a large number of transducers have to be mounted and many

data have to be collected.

NOMENCLATURE

C Pressure coefficient (p-po)/(ipv2 ) m ".
c Chord of propeller section m
D Propeller diameter m
fmax Maximum camber m

J Advance ratio (U)/(nD)

KT Thrust coefficient Ii"
KQ Torque coefficient
n Number of propeller revolutions s- l

787
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P Pitch m.
p Pressure mbar

Po Static pressure in undisturbed flow mbar
r Radius on propeller section m •

R Outer radius of propeller m
tmax Maximum thickness m 0 1.

U Axial velocity of propeller ms-I
V Undisturbed inflow velocity of a propeller section ms- 1

V2 = U2 + (27nr)2

x Chordwise distance from the leading edge of a propeller
section m

y Ordinate of propeller blade section m
P Specific mass of fluid kg m- 3

I. INTRODUCTION

Various calculation programs, based on lifting surface theory are now
existing to determine the pressure distribution on propeller blades. To
verify the results of these calculations there is a need for comprehen-
sive and accurate sets of measured pressure distributions. A number of
attempts have been made. (Mavludoff (1966), Hobby (1970), Kato (1977),
Takahashi and Oku (1977), Yamasaki (1978), Dohrendorf et al (1978),
Takei et al (1979). However, instrumentation problems prevented exten-
sive measurement programs to be carried out with sufficient reliability.

The most important instrumentation problem related to propeller
blade pressure measurements, being the mounting of suitable pressure
gauges in the blade, can be solved better now by the recent developments
in miniature pressure transducers. Takei et al (1979), described
measurements, carried out successfully, with 5 pressure gauges on one
propeller blade chord. In our case it was thought necessary to measure
the pressure distribution over a sufficiently large area of the blade in
order to widen the scope of correlation between calculated and measured

data.
The work described in this paper has been undertaken to ascertain

the feasibility of blade pressure measurements on the complete blade
with sufficient accuracy for correlation purposes. First a study of the
instrumentation problems has been carried out (choice of pressure Ak

transducer, analysis of achievable accuracy, etc.). Next, introductory
measurements have been executed on a propeller in open water without
cavitation, to assess the reliability and the reproducibility of these
measurements.

2. THE PROPELLER MODEL r .

The selection of the propeller to be tested has been based on the
following considerations:
Availability of further characteristics of the propeller on open-
water performance, bo-ndary layer and cavitation properties. These

--..
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aspects are reported by Kuiper (1981).

- Blade sections are sufficiently thick to allow for mounting pressure
transducers close to the leading edge.

- A relatively small pressure gradient near the leading edge is

preferred.
The selected propeller was designed to exhibit bubble cavitation.

The propeller geometry, given in Figure I and Tables 1, has been made as
simple as possible: no rake, no skew, an elliptic blade contour and one
type of sections over the whole radius.

The propeller has thick, cambered profiles to avoid sheet cavitation
and a strongly reduced pitch at the tip to avoid tip vortex cavitation.

The model has been made in bronze with a large diameter (0.48 m).
The measured open-water characteristics are given in Figure 2. One blade
of the propeller has been prepared to measure pressures at 40 locations.
Figure 3 shows the distribution of the measurement locations at both
suction side (25 points) and pressure side (15 points). ..

3. DESCRIPTION OF MEASUREMENT SYSTEM

3.1. Pressure transducer

In recent years much progress has b.en made in the field of miniaturi-
zation of pressure transducers. Thin-film and semi-conductor (piezo-
resistive) based techniques allow sensitive gauges in very small
housings. Two basic configurations of miniature pressure gauges are
available nowadays: the cylindrical type with a small circular sensitive
area (e.g. I mm diameter) but with considerable length (e.g. 12 mm) and
the flatline type, which is thin (e.g. 1.2 mm) but has a bigger
sensitive area (2 to 4 mm) and an even bigger surface (e.g. 4 x 10 mm).
It will be clear that for our purpose a transducer is needed with a very
small sensitive area, combined with an extremely small thickness, which
up till now is technologically impossible, so some compromise must be

made.
Interesting for the future is the very recent development of ultra-

thin capacitive pressure gauges (thickness e.g. 80 pm) which could be
simply glued on the blade surface. (Portat et al (1982a, 1982b)).
However, as reported, more research is required to make these gauges
water resistant.

In the present case a transducer was selected based on ordinary
strain-gauge techniques. This gauge (manufacturer KYOWA, type PS-21KA)
is an rather small (0 6 mm) and thin (0.6 mm) device in which a bridge
circuit is formed using a foil strain gauge as transducer element. Being
a low-cost transducer (price abt. Dfl. 200.--) its use in bigger
quantities is possible, while its thickness of 0.6 mm permits mounting
in the propeller blade close to the blade's leading edge. In Table 2 the
manufacturer's specifications of this gauge are presented. A drawback L
formed by the relatively low output sensitivity can be met by the use of
accurate and stable electronics. .,:S. .%,

Though the specifications of this gauge are not excellent compared

F•
• .,.-...'.
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to bigger transducers, own calibrations and investigations of this gauge
in the present application have shown very acceptable results. In its
operation area of 0 - 150 mbar the transducer was tested on linearity,
hysteresis, and temperature effects. A maximum non-linearity of + 0.75%
of the actual measured value has been observed while the other effects
accounted for a maximum error of + 1.75% of the actual measured value.
Considering the small physical dimensions of this transducer, these
characteristics are in every respect acceptable. ".

One blade of the propeller , described in Section 2, was fitted with
40 gauges. By machining small chambers in the blade, the gauges could be
flush mounted. Also the required wiring was countersunk in the blade,
see Figure 4.

A special problem was caused by the sensitivity of the transducers
for flexure of the blade. Originally the gauges were bonded in the blade
by special cement, which caused some influence on the pressure signal
by blade flexure. Therefore in the final test set up all gauges where
embedded in their chambers with a radial play of abt. 0.5 mm, using
parafin wax, which reduced the influence of blade flexure by a factor %

of abt. 5.

In Figure 3 some data concerning this influence are presented. To
simulate the hydrodynamic load on the blade a point force of 50 N has
been applied at 0.95R. For 5 transducers the resulting output signals
expressed in mbar are given. These crosstalk signals are small compared I ;
to the actually measured pressure signals. I-..',j

To assess any influence of centrifugal load on pressure transducer
outputs the propeller was driven in air at 360 rpm. No measurable
transducer output was detected.
To smooth the gauges and wiring in the propeller blade, a thin layer of
parafin wax was applied on the blade (with a thickness of abt. 30 pm).
After this treatment virtually no disturbance of the nominal blade

sections was recognizable.

3.2. Measuring apparatus

During the tests the propeller was driven by a Z-drive which originally
was designed for dynamical measurements of fluctuating and weak signals
from propeller blade stresses, blade torque of CP propellers ect. 54

Figure 5 shows a schematic of the test arrangement, while Figure 6 shows
some photographs of this apparatus. It is capable to measure simultane-
ously 6 fluctuating or DC signals. The propeller is mounted on a heavy
shaft, acting as a flywheel (seismic mass) which rotates in a heavy

bronze housing, to keep the resonance frequency of the measurement
system as low as possible. 4---"

The 6 measurement channels (usually strain gauge bridges) are .- "
powered via a 16 channel rotary transformer. The measurement signals are
pre-amplified by shaft mounted amplifiers and then connected, via the
rotary transformer, to 6 AC - strain gauge conditioners. Electrical
calibrations of each channel can be performed by switching a precision
resistor in parallel to one arm of the strain gauge bridge, thus
simulating a known unbalance of the bridge. Also a rotary encoder is

A. built in to generate I and 360 pulses per propeller revolution.

A% I....-.-¢-.,
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This shaft is driven by an electromotor via a transmission including a
transmission ratio of 31 to 26, to prevent possible vibrations from the
transmission gear from interfering with blade rate frequencies.

The principal characteristics of the apparatus are:
- 6 measuring channels (strain gauge bridges)
- crosstalk - 60 dB
- signal transmission by low Multi Channel Rotary Transformer
- 6 pre-amplifiers on the propeller shaft

gain adjustable between 10 and 500
frequency: 0-5 kHz 100% ampl. 00 phase shift L

-10 kHz 99% ampl. 50 phase shift
- electrical calibration through switching of precision resistor,

+ 5 ppm/°C, of known value in parallel to bridge arm
- Rotary Encoder providing I and 360 pulses per revolution -'2

- 6 channel AC strain gauge amplifier, carrier frequency 1000 Hz
- propeller submersion adjustable between 200 and 700 mm
- shaft provided with flywheel to enable measurements of fluctuating
phenomena at propeller

- mass 210 kg.
An assessment has been made of the overall accuracy of the test set

up. In the electronics of the shaft no errors of any importance could be
detected, regarding non-linearity, drift etc., while for the AC strain
gauge amplifiers an error smaller than + 0,5% could be measured.

During the measurements the pressure signals were recorded both
on magnetic tape and with a digital data acquisition system, with a 12
bit A/D conversion causing neglectable errors.

3.3. System calibration

As described under 3.2 the pressure transducers were calibrated, both
in air and in water, versus high-precision pressure gauges, to make an
assessment of their accuracy. For the actual measurements, however, "'
another procedure has been followed.
Before every test run in the towing tank the 6 at that time connected
pressure transducers were calibrated by slowly rotating the propeller
shaft (abt. 0.15 rps). The sinusoidal pressure signals, thus obtained
could easily be analysed. From the DC levels of these signals the zero
pressure levels were derived. The sinusoidal signals were digitally

-' filtered (with a cut-off frequency of 0.25 Hz) where upon the average
peak-to-valley values were derived corresponding with the variation in
static pressure of the pressure gauges during a revolution.
The radial position of the gauges being exactly known, this procedure ..
proved to be very reliable to calibrate the entire measurement set up.
This calibration was reproducible with a standard deviation better than
0.4%..\..

The other test parameters, towing carriage speed and propeller rpm *i*

were stabilized by thyristor controllers, allowing a standard deviation
of less than 0.5%. .

From the error sources as presented in Section 3.2, a good estimation
of the total error of the blade pressure measuremen sec'ns to be + 3%, ..

which is mainly produced by errors from the pressure gauges. In view of

le-
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4. RESULTS OF THE MEASURIMENIS

The results of the preliiminary inv est i gat i just 1! i ed the execution

of a measuremen t sir is to f urt her assess t he lias i b i Ii tV of easur ing
blade pressures with the equipment as described above.
Measurements have been carried out on the propeller, described in
Section 2 in the open-water condition, without cavitation for the .
following advance coefficients: .

x'; ~~~~~~-I adn 60 p)".
J = 0.6 (with U = 1.74 ms and n = 6.02 rps).
J = 0.4 (with U = 1.00 ms and n = 5.18 rps)

During one test run 6 pressure gauges could be measured and recorded

simultaneously. To ascertain the repeatability of successive test runs,
pressure gauge No. 14 (located at r/R=0.7, x/c=0.4) was measured during

all test runs.

To assess the reproducibility of these measurements on the long term ..j.l
the complete measurement series was repeated after 6 months.

Table 3 presents a review of the repeatability measurements as _

carried out with pressure transducer No. 14. Successive tests were carried 3

out with an interval of abt. I hour. During this interval the propeller
and drive-unit where taken out of the water to connect 5 other trans-
ducers to the circuitry. From the table it can be concluded that the

reproducibility of the pressure measurements slightly improved from 3.0
and 3.2% in the first series to 2.0 and 2.1% in the second series
respectively. This is attributed to a more stable alignment of the

mounting frame of the equipment and to a better procedure to stabilize
the temperature of the transducers.

Figure 7 shows typical registrations of 2 pressure signals versus
time. The sinusoidal pressure fluctuations with a frequency equal to
the propeller rotation frequency are clearly perceptible.
In this figure 8 seconds of the total analysed signal length of 60
seconds is shown. This figure also gives an impression about the
steadiness of the pressure signal. *i.

In tables 4 through 7 the measured average pressure levels are
presented together with the related pressure coefficients C The C
values were calculated using the undisturbed inflow velocit9 of the p

propeller section:
"= ' ~~P-Po ' ' '

Cp 0
P V2

P--2 2 2
. with: V2 = U +(2rr n r)

Also, accomplished repetition measurements (apart from transducer •
No. 14) are included in these tables. All information is presented
graphically in Figures 8 through 12. -.

Frrom these figures it can be concluded that in general each

• ~, ..°.
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measurement series in itself provides a consistent set of data with a
small scattering in the repetition measurements. However, some discre-
pancies seem to exist between the two measurement series mutually.
Especially from the results at the sections r/R=0.5 - 0.6 - 0.7 the
propeller seems to have been heavier loaded in the second series of
measurements than during the first series. In general this heavier
loading occurs both at suction- and pressure side of the blade. No
experimental explanation could be found for this phenomenon. Calibrations
at low propeller rpm reproduced quite satisfactory (within 0.5%) between
both measurement series. Also each measurement series individually
reproduced well. Besides no deviations of propeller rpm or axial speed
were detected. Between the two measurements all pressure gauges remained
in the propeller blade together with their protective layer of wax.
After termination of the second measurement series the propeller -

geometry was checked without finding any changes in the blade contours,
From the observations of transducer No. 14 in all measurements, it

can be concluded that the maximum scatter is about AC =0.022. When the
scatter is assumed to be the same for all transducersp the scatter AC
at other radii becomes: P

r/R = 0.4 0.5 0.6 0.7 0.8

AC = 0.060 0.040 0.029 0.022 0.017
p

It can be concluded that the differences between the two measurements
for most of the transducers fall within this range. The question
remains, however, whether the scatter is due to the properties of the
transducers or to environmental conditions. The latter possibility is
suggestee by the sometimes rather systematic differences between both
measuremrcnts series.

5. COMPARISON WITH CALCULATIONS

The experimental results have been compared with theoretical calcula-
tions. The computer programmes used are based on linearized propeller
theory, in which the effects of camber and thickness of the blade
profile are described by separate equations (Van Gent, 1977). Moreover,
the effect of camber is primarily a pressure difference between pressure
and suction side, i.e. lift; while the effect of thickness is primarily
on the pressure level, i.e. mean pressure (arithmetic mean of pressures

.-. on both sides).
The computer programme for lift calculation has been developed for

prediction of the propeller thrust and torque, Van Gent (1977, 1980).
Recently the improved numerical scheme, developed by Vis (1975) has been
implemented for standard use. In combination with two-dimensional foil
theory it is also in use for cavitation prediction, Kuiper (1981). The

calculated open-water characteristics of the investigated propeller
compare well with the experimental results: k

.............. . ...."..... . .. .. '...--.-.-.. -.-...... - P.
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Advance ratio J = 0.4 J 0.6

K calculated 0.197 0.111measured 0.185 0.110

KQ calculated 0.0266 0.0170

measured 0.0237 0.0159

The computer programme for calculation of the mean pressure has .

been developed by Wels (1977).
In Figures 13 through 17 the theoretical and experimental values for

lift and mean pressure are collected. The experimental values for both
measurements have been averaged at the three chordwise positions x/c=0.2
- 0.4 - 0.6, where transducers are located on either side of the blade.

The agreement for lift and mean pressure at the lighter loading,
J=0.6, is satisfactory, except for the smallest radius r/R=0.4. For the
higher loading, J=0.4, the agreement is less, especially for the mean
pressure at lower radii.

The most likely reason for the discrepancies has to be found in the .
restriction of the theoretical models. In both models the induced
velocities are approximately normal to the resultant velocities.
Especially at the inner radii these components are not necessarily
perpendicular. Within the theoretical models used a more accurate deriva-
Lion is not possible. Effects of heavy loading, slipstream rotation and
contraction, can be estimated, however, and introduced as corrections
on the resultant velocities. For the lift this has been undertaken by
Van Gent (1977); it seems also worthwhile for the mean pressure.

6. CONCLUSIONS

- Size and price of modern pressure transducers make it feasible to
instrument a model propeller blade with a large number of transducers.

- Mounting of the transducers can be done without problems of blade
flexure and allows for a stable calibration. ---.

- Calibration of the transducers is possible by using standard equipment
for dynamic measurements on propellers.

- The test program up till now has revealed that in actual measurements
the scatter in results is larger than the estimated accuracy. Further
investigations are required to find out whether this is due to the
properties of the transducers and/or due to environmental conditions
in a towing tank beyond control.

- For comparison with theoretical predictions the experimental results
are quite satisfactory and appear reliable.

- In theoretical models attention has to be paid to the flow around the
inner blade sections. It is speculated that a better estimate of the
onset velocity per section will improve the correlation with experi-
mental results. .

- The measurement method for propeller blade pressures is suitable for
extensive experimental programs, were many data have to be collected.

Especially when the operating conditions become more complicated
(oblique flow, wake field, cavitation) this may be of decisive impor- . -

Lance.

.............................
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r/R c/D P/D (at midchord
fmax/C t /c

ax max

.200 .24264 .74411 .02189 .19787

.250 .26176 .80202 .02515 .18202

.300 .27794 .83125 .02797 .16865

.400 .30367 .85937 .03141 .14467

.500 .32352 .86397 .03176 .12102

.600 .33676 .84595 .02882 .09770 --.

.700 .33970 .79503 .02288 .07575

.800 .32352 .70661 .01573 .05681

.850 .30257 .65753 .01196 .04860

.900 .26691 .60937 .00792 .04132

.950 .20367 .55772 .00415 .03610 ..-*.- .-,-

.975 .14963 .52996 .00245 .03685

Table IA: Geometry of blade contour of propeller.

r/R 0.200 0.250 0.300 0.400
x y/c s y/c p y /c s y/c Y/c s y/c p -

0.0 .08890 .06519 .07679 .05495 .06647 .04623 .04961 .03223
2.5 .11072 .04764 .09734 .03930 .08597 .03219 .06705 .02091

5.0 .12438 .03803 .11037 .03093 .09847 .02486 .07846 .01531
7.5 .13502 .03122 .12059 .02510 .10853 .01987 .08759 .01169 1....
10.0 .14407 .02578 .12933 .02051 .11683 .01601 .09548 .00898
15.0 .15897 .01745 .14379 .01360 .13093 .01030 .10868 .00520
20.0 .17047 .01164 .15502 .00891 .14194 .00657 .11909 .00296
25.0 .17955 .00738 .16392 .00554 .15070 .00396 .12742 .00154
30.0 .18685 .00402 .17108 .00290 .15776 .00194 .13415 .00047
40.0 .19556 .00057 .17969 .00032 .16630 .00011 .14236 -.00020 u , .
50.0 .19788 .00000 .18202 .00000 .16865 .00000 .14467 .00000
60.0 .19369 .00243 .17797 .00204 .16471 .00170 .14100 .00116
70.0 .18105 .00982 .16575 .00823 .15282 .00688 .12991 .00471
75.0 .17137 .01557 .15639 .01306 .14373 .01093 .12144 .00752

80.0 .15922 .02289 .14467 .01925 .13235 .01615 .11087 .01118
85.0 .14465 .03177 .13062 .02677 .11873 .02250 .09822 .01567
90.0 .12791 .04195 .11447 .03538 .10306 .02978 .08367 .02080
95.0 .10929 .05312 .09650 .04480 .08562 .03771 .06744 .02634
97.5 .09933 .05903 .08687 .04978 .07626 .04189 .05873 .02924
100.0 .08890 .06519 .07679 .05495 .06647 .04623 .04961 .03223

Table IB: Geometry of blade sections.

-
.
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r/R 0.500 0.600 0.700 0.800

x/C
x 100 y/c s y/c p y/c s y/c p y/c s y/c p y/c s y/c p

0.0 .03602 .02148 .02596 .01411 .01986 .01012 .01670 .00864
2.5 .05115 .01254 .03847 .00722 .02917 .00527 .02297 .00544
5.0 .06120 .00837 .04687 .00415 .03572 .00295 .02769 .00364
7.5 .06932 .00581 .05369 .00237 .04116 .00152 .03170 .00238
10.0 .07637 .00400 .05964 .00117 .04585 .00061 .03511 .00156
15.0 .08823 .00166 .06969 -.00023 .05370 -.00038 .04081 .00059
20.0 .09765 .00050 .07771 -.00075 .06004 -.00076 .04543 .00005 L .
25.0 .10522 -.00008 .08417 -.00087 .06511 -.00080 .04914 -.00020
30.0 .11134 -.00048 .08939 -.00090 .06918 -.00075 .05204 -.00026
40.0 .11887 -.00039 .09584 -.00044 .07429 -.00037 .05577 -.00021

50.0 .12102 .00000 .09771 .00000 .07576 .00000 .05682 .00000
60.0 .11773 .00075 .09492 .00048 .07357 .00035 .05521 .00035
70.0 .10780 .00306 .08653 .00196 .06702 .00141 .05045 .00133

75.0 .10022 .00492 .08013 .00317 .06201 .00231 .04675 .00220
80.0 .09077 .00738 .07216 .00480 .05570 .00358 .04213 .00335

85.0 .07948 .01042 .06263 .00683 .04814 .00519 .03667 .00472
90.0 .06648 .01388 .05167 .00914 .03959 .00687 .03052 .00615
95.0 .05198 .01759 .03943 .01158 .03010 .00858 .02376 .00757
97.5 .04419 .01951 .03285 .01283 .02505 .00939 .02023 .00818 3'
100.0 .03602 .02148 .02596 .01411 .01986 .01012 .01670 .00864 "

r/R 0.850 0.900 0.950 0.975
X/c
x 100 y/c s y/C p y/c S y/C p y/x s y/c p y/c s y/c p

0.0 .01607 .00860 .01632 .00916 .01755 .01024 .01984 .01210 * '
2.5 .02094 .00606 .01984 .00718 .01996 .00864 .02193 .01049
5.0 .02476 .00445 .02279 .00570 .02211 .00727 .02387 .00901
7.5 .02805 .00326 .02532 .00455 .02402 .00608 .02561 .00769."-.
10.0 .03087 .00242 .02758 .00360 .02575 .00503 .02722 .00649
15.0 .03556 .00131 .03130 .00226 .02862 .00342 .02990 .00455
20.0 .03934 .00064 .03421 .00141 .03083 .00228 .03200 .00308
25.0 .04238 .00024 .03655 .00081 .03259 .00144 .03366 .00197

30.0 .04472 .00005 .03836 .00042 .03395 .00082 .03492 .00114
40.0 .04775 -.00011 .04067 .00001 .03564 .00012 .03645 .00021
50.0 .04860 .00000 .04132 .00000 .03610 .00000 .03686 .00000
60.0 .04728 .00036 .04028 .00041 .03527 .00050 .03605 .00061 0
70.0 .04334 .00143 .03715 .00164 .03283 .00195 .03368 .00238

75.0 .04030 .00232 .03474 .00262 .03093 .00309 .03195 .00368
80.0 .03651 .00347 .03178 .00384 .02872 .00440 .02989 .00519
85.0 .03206 .00481 .02836 .00520 .02622 .00582 .02762 .00683

90.0 .02708 .00620 .02459 .00659 .02347 .00732 .02511 .00860
95.0 .02167 .00755 .02048 .00801 .02048 .00890 .02239 .01049
97.5 .01883 .00817 .01832 .00870 .01892 .00968 .02098 .01144
100.0 .01607 .00860 .01632 .00916 .01755 .01024 .01984 .01210 "' "

Table IB: Geometry of blade sections (Continued).

L.,\..
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Radius Suction side Pressure side
Semi-axes Semi-axes

r/R a/c b/c a/c b/c

.200 .1432 .0596 .0613 .0365

.250 .1684 .0600 .0586 .0324

.300 .1944 .0604 .0543 .0287

.400 .3061 .0661 .0479 .0228

.500 .9769 .0996 .0451 .0181 -

.600 15.5087 .3250 .0418 .0140

.700 - 2.5964* .1019 .0400 .0105

.800 .9360 .0448 .0419 .0079

.850 .2526 .0199 .0429 .0069

.900 .1238 .0118 .0398 .0060

.950 .0599 .0074 .0378 .0056

.975 .0413 .0065 .0386 .0059 , i .

Table IC: Leading-edge ellipses. (*hyperbola)

Type : KYOWA, PS-2KA

Range : 2 bar
Output sensitivity (nominal) : 0.8 mV/V + 25%
Non-linearity : 1% F.S.
hysteresis : 1% F.S.

Bridge voltage- max. allowable : 3V (AC, DC)
Temperature effects -

on zero : 0.2% F.S. / C
on output 0.1% F.S. /C

Input/output resistance 120 Q + 10%

Natural frequency : abt. 14kHz
Allowable operating

temperature range : -20 - +700 C
Allowable overload : 150% F.S.
Mass : 7 gr.
Dimensions : diameter 6 am, thickness 0.6 + 0.1 mm
Sensitive area abt 0 4 mm

Table 2: Specifications of strain-gauge pressure transducer.

%
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1st. measurement series:

J = 0.4 J = 0.6

Test Pressure (mbar) Cp Test Pressure (mbar) Cp

1 -40.98 -0.265 1 -49.67 -0.229
2 -39.95 -0.259 2 -49.11 -0.226

3 -40.09 -0.259 3 -48.98 -0.226
4 -39.00 -0.252 4 -49.09 -0.226
5 -39.40 -0.255 5 -47.42 -0.218
6 -37.83 -0.245 6 -47.66 -0.220 .--
7 -38.21 -0.247 7 -50.51 -0.233
8 -41.50 -0.269 8 -52.84 -0.243

Average : -39.62 -0.256 Average -49.41 -0.228
Standard Standard
deviation: 1.19 0.0078 deviation: 1.60 0.0073
% 3.0 3.0 %: 3.24 3.2

2nd. measurement series:

J = 0.4 J =0.6

Test Pressure (mbar) C Test Pressure (mbar) Cp
p

1 -39.70 -0.257 1 -48.91 -0.225
2 -39.23 -0.254 2 -50.05 -0.231
3 -39.47 -0.255 3 -50.65 -0.233
4 -40.28 -0.261 4 -50.71 -0.234
5 -40.31 -0.261 5 -50.88 -0.234'
6 -40.83 -0.264 6 -50.30 -0.232

7 -40.41 -0.262 7 -50.74 -0.234
8 -40.47 -0.262 8 -51.40 -0.237
9 -40.87 -0.265 9 -51.00 -0.235

10 -41.13 -0.266 10 -50.48 -0.233
H1 -38.34 -0.248 11 -50.44 -0.232
12 12 -50.78 -0.234

Average : -40.09 -0.260 Average : -50.53 -0.233
Standard Standard
deviation: 0.79 0.0052 deviation: 0.59 0.0028
% 1.97 2.0 %: 1.17 1.20

Table 3: Review of repeatability measurements carried out with pressure

transducer 14 located at r/R = 0.7, x/c = 0.4. -. "

.r,
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Transducer location Ist test 2nd. test

No. r/R x/c Side Pressure Cp Pressure Cp~~(mbar) (mbar)'" :&

1 0.4 0.10 Suction -28.35 -0.527 -
6 0.4 0.20 side -27.83 -0.517 - .

11 0.4 0.40 -27.64 -0.514
16 0.4 0.bO -18.60 -0.346
21 0.4 0.80 - 9.19 -0.171
2 0.5 0.10 -31.21 -0.384

7 0.5 0.20 -32.17 -0.396
12 0.5 0.40 -31.90 -0.392
17 0.5 0.60 -27.30 -0.336
22 0.5 0 80 - 8.38 -0.103
3 0.6 0.10 -38.20 -0.333
8 0.6 0.20 -38.80 -0.339
13 0.6 0.40 -34.79 -0.303 -34.68 -0.302
18 0.6 0.60 -33.19 -0.289
23 0.6 0.80 -15.77 -0.137

4 0.7 0.083 -28.14 -0.182
9 0.7 0.20 -33.90 -0.219
14 0.7 0.40 -39.40 -0.255
19 0.7 0.60 -35.50 -0.230
24 0.7 0.80 -18.47 -0.120 -18.21 -0.118
5 0.8 0.10 -44.70 -0.223

10 0.8 0.20 -36.88 -0.184
15 0.8 0.40 -38.56 -0.193
20 0.8 0.60 Suction -37.14 -0.185
25 0.8 0.80 side -22.05 -0.110

, 26 0.4 0.20 Pressure 1.89 0.035
31 0.4 0.40 side 1.79 0.033
36 0.4 0.60 - 2.33 -0.043 ...
27 0.5 0.20 3.81 0.047

32 0.5 0.40 3.84 0.047
*-."37 0.5 0.60 2.31 0.028

28 0.6 0.20 4.63 0.040
33 0.6 0.40 5.47 0.048
38 0.6 0.60 1.48 0.013
29 0.7 0.20 7.65 0.050 7.36 0.048
34 0.7 0.40 7.64 0.049 7.55 0.049
39 0.7 0.60 3.91 0.025 3.56 0.023
30 0.8 0.20 5.91 0.030
35 0.8 0.40 Pressure 4.14 0.021 4.24 0.021
40 0.8 0.60 side 0.73 0.004 0.83 0.004

Table 4: Results of first series of blade pressure measurements average
values in uniform flow, J = 0.4.

%.. ..
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Transducer location 1st. test 2nd. test i
No. r/R x/c Side Pressure Cp Pressure Cp

(mbar) (mbar)

1 0.4 0.10 Suction -26.75 -0.497
6 0.4 0.20 side -27.54 -0.512

11 0.4 0.40 -26.96 -0.501
16 0.4 0.60 -18.61 -0.346
21 0.4 0.80 - 9.20 -0.171
2 0.5 0.10 -30.34 -0.373

7 0.5 0.20 -36.14 -0.445
12 0.5 0.40 -33.31 -0.410
17 0.5 0.60 -28.48 -0.350
22 0.5 0.80 -12.54 -0.154 -11.65 -0.143
3 0.6 0.10 -33.38 -0.291 -35.19 -0.306

8 0.6 0.20 -38.68 -0.337
13 0.6 0.40 -41.10 -0.358
18 0.6 0.60 -33.88 -0.295

23 0.6 0.80 -16.66 -0.145 -15.70 -0.137
4 0.7 0.083 -29.94 -0.194
9 0.7 0.20 -44.21 -0.286

14 0.7 0.40 -39.47 -0.255
19 0.7 0.60 -39.13 -0.253
24 0.7 0.80 -21.84 -0.141
4 0.8 0.10 -33.88 -0.156

10 0.8 0.20 -40.78 -0.204
15 0.8 0.40 -39.09 -0.195
20 0.8 0.60 Suction -31.63 -0.158
25 0.8 0.80 side -25.08 -0.125 -25.68 -0.126

26 0.4 0.20 Pressure - 0.72 -0.013
31 0.4 0.40 side 1.29 0.024

36 0.4 0.60 - 1.57 -0.027
27 0.5 0.20 4.56 0.056
32 0.5 0.40 4.42 0.054

37 0.5 0.60 - 0.20 -0.004 - 0.38 -0.005
''"28 0. 6 0. 20 3.35 0. 029 3.87 0. 034 i ''

33 0.6 0.40 1.96 0.017 2.95 0.026
38 0.6 0.60 1.58 0.014 1.96 0.017
29 0.7 0.20 5.75 0.037
34 0.7 0.40 5.25 0.034

39 0.7 0.60 0.10 0.001
30 0.8 0.20 1.00 0.005 1.58 0.008
35 0.8 0.40 Pressure 1.82 0.009

40 0.8 0.60 Side - 5.92 -0.030

Table 5: Results of second series of blade pressure measurements
average values in uniform flow, J 0.4.

-A%.
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Transducer location Ist. test 2nd. test

No. r/R x/c Side Pressure Cp Pressure Cp

(mbar) (mbar)

1 0.4 0.10 Suction -23.09 -0.285

6 0.4 0.20 side -31.38 -0.387

II 0.4 0.40 -40.12 -0.495

16 0.4 0.60 -34.62 -0.427

21 0.4 0.80 -20.33 -0.251 __ ._

2 0.5 0.10 -25.14 -0.213

7 0.5 0.20 -35.23 -0.298

12 0.5 0.40 -44.74 -0.379

17 0.5 0.60 -42.61 --0.361

22 0.5 0.80 -18.64 -0.158

3 0.6 0.10 -30.41 -0.186

8 0.6 0.20 -40.00 -0.245

13 0.6 0.40 -45.92 -0.281 . I
18 0.6 0.60 -49.56 -0.303

23 0.6 0.80 -27.41 -0.168

4 0.7 0.083 - 8.93 -0.041

9 0.7 0.20 -32.44 -0.149
14 0.7 0.40 -48.98 -0.226
19 0.7 0.60 -49.93 -0.230 - "

24 0.7 0.80 -29.04 -0.134

5 0.8 0.10 -34.39 -0.123

10 0.8 0.20 -33.94 -0.122 ..

15 0.8 0.40 -47.96 -0.172

20 0.8 0.60 Suction -51.10 -0.183

25 0.8 0.80 side -32.41 -0.116 .

26 0.4 0.20 Pressure -10.79 -0.133
31 0.4 0.40 side - 5.34 -0.066

36 0.4 0.60 - 9.37 -0.116

27 0.5 0.20 - 9.86 -0.083 1 4D

32 0.5 0.40 - 3.39 -0.029
37 0.5 0.60 - 2.88 -0.024 ., ,

28 0.6 0.20 - 9.65 -0.059

33 0.6 0.40 0.19 0.001 ,

38 0.6 0.60 - 4.36 -0.027

29 0.7 0.20 - 7.96 -0.037 -8.38 -0.039

34 0.7 0.40 0.72 0.003 0.92 0.004

39 0.7 0.60 - 1.85 -0.009 -1.97 -0.009

30 0.8 0.20 -12.42 -0.045

35 0.8 0.40 Pressure - 5.34 -0.019 -4.72 -0.017

40 0.8 0.60 side - 5.81 -0.021 -5.87 -0.021

Table 6: Results of first series of blade pressure measurements

average values in uniform flow, J 0.6.
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Transducer location Ist. test 2nd. test

No. r/R x/c Side Pressure Cp Pressure Cp

(mbar) (mbar)

1 0.4 0.10 Suction -22.27 -0.275
6 0.4 0.20 side -31.36 -0.387

]] 0.4 0.40 -38.44 -0.474
16 0.4 0.60 -33.18 -0.409
21 0.4 0.80 -18.82 -0.232

2 0. ' 0.10 -23.92 -0.203
7 0.5 0.20 -39.88 -0.339
12 0.5 0.40 -45.48 -0.386
17 0.5 0.60 -44.28 -0.376
22 0.5 0.80 -23.25 -0.197 -22.52 -0.191 . -

3 0.6 0.10 -25.09 -0.153 -25.75 -0.158
8 0.6 0.20 -42.11 -0.258 N
13 0.6 0.40 -55.11 -0.337
18 0.6 0.60 -51.04 -0.312
23 0.6 0.80 -28.40 -0.174 -27.42 -0.168
4 0.7 0.083 -13.70 -0.063 -13.58 -0.063
9 0.7 0.20 -46.82 -0.216 -46.86 -0.216
14 0.7 0.40 -50.65 -0.233 -50.71 -0.245
19 0.7 0.60 -52.84 -0.243 -52.61 -0.242
24 0.7 0.80 -33.69 -0.155 -33.52 -0.154
5 0.8 0.10 -15.64 -0.056 -14.99 -0.054
10 0.8 0.20 -38.05 -0.136 -37.85 -0.136
1' 0.8 0.40 -47.58 -0.171 -47.29 -0.171
20 0.8 0.60 Suction -42.61 -0.153 -42.18 -0.151
25 0.8 0.80 side -35.71 -0.128 -35.43 -0.127

26 0.4 0.20 Pressure -13.23 -0.163
31 0.4 0.40 side - 5.24 -0.065

36 0.4 0.60 - 6.14 -0.076
27 0.5 0.20 - 8.42 -0.071

32 0.5 0.40 - 1.06 -0.009
37 0.5 0.60 - 6.28 -0.053 - 8.49 -0.072
28 0.6 0.20 -10.97 -0.067 -10.57 -0.065 ,
33 0.6 0.40 - 4.95 -0.030 - 4.26 -0.026
38 0.6 0.60 - 3.66 -0.022 - 2.91 -0.018
29 0.7 0.20 -10.28 -0.047
34 0.7 0.40 - 1.46 -0.007
39 0.7 0.60 - 6.38 -0.029
30 0.8 0.20 -18.95 -0.068 -15.55 -0.056
35 0.8 0.40 Pressure - 7.51 -0.027
40 0.8 0.60 Side -14.53 -0.052

Table 7: Results of second series of blade pressure measurements

average values in uniform flow, J = 0.6.
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MEASURED DATA POINTS

U son 4 KT~ 101( 0

(ins1 ) (RPM)

0.4084 719 .100 .290 .314
0.8160 720 .200 .257 .292
1.2244 720 .300 .222 .267
1.6323 722 .400 .185 .237.%
2.0399 721 .500 .148 .194
2.4481 720 .600 .110 .159
2.8559 720 .700 .068 .123
3.2662 721 .801 .022 .067

073.6742 720 .900 - .034 .001
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0.4

0.3

0.2 
T

ADVANCE COEFFICIENT J0

FIGURE 2
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Discussion

S.D. Jessup (DTNSRDC)

I would like to discuss recent work at DTNSRDC to measure propel-
ler-blade pressure distributions. Measurements have been made on two
2-foot-diameter propellers, one of conventional blade shape and one
highly skewed. Forty pressure measurements were made on each propeller -

using individual pressure gauges installed in cavities connected to the
blade surface with pressure taps.

Tests were run over ranges of advance coefficient and Reynolds
number in uniform and inclined flow. Measured results of steady pres- -

sure distributions correlated reasonably well with design predictions '-

in the midspan regions of the conventional propeller. Reynolds number
effects were observed at various parts of the blades, some of which were
attributed to real flow effects. Some of the problems that we encoun-
tered were effects of loading on the pressure of gauge response, cen-
trifugal effects, and smoothness of the surface of the blade where
measurements were made.

One possible effect that the authors may have omitted is that of
varying wave height above the propeller during towing basin runs. Also,
it is recommended to run tests over a range of Reynolds number at con-
stant advance coefficient to determine possible experimental errors. A
DTNSRDC report is now available on this work with unlimited distribu-
tion.

H. Kato (University of Tokyo)

This is only my quick suggestion: Did you check carefully the sur-
face of wax filled in the play between the foil and pressure pickup?
If the surface became convex or concave after the first series of tests,
it might be reason for the difference of pressure measurement between

two series.

E.A. Weitendorf (Hamburg Ship Model Basin)

Do the authors see any chance to install pressure pickups further
toward the leading edge? Otherwise, the possibility for a comparison
of calculated and measured pressure distributions in the range of the .*,. " "
propeller profile, which is decisive for the cavitation, seems to be
rather hopeless.

3 "J.

i.<--- ..

. ..-- .-- -
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Author's Reply

w. van Gent and A.G.P. Versmissen (MARIN) -"

To S.D. Jessup

It is encouraging to hear of attempts undertaken by others to solve

the measurement problems. Some of them differ from ours as the princi-
ple is different.

The differences we found between the two measurement series could S
not be explained by corrections for the wave height; the lift was as
well affected as the mean pressure.

Reynolds number variation was avoided by maintaining speed and rpm
very strictly constant for each advance constant. But we agree that
such a variation may be helpful in tracing the reason for the remaining
discrepancies. 1-Mr,

To H. Kato

Besides the check on the blade contour after the second measurement
series, we also inspected the surface condition after both series. We 
could not find any difference. But we appreciate Professor Kato's re- _
mark and will continue to take care of this possibility.

To E.A. Weitendorf

In the continuation of the project we are installing the trans-

ducers at x/c = 0.05 from the leading edge, while in the present case
it was x/c = 0.10.

* .-.. ,... .. . .~ .~ - a- . *~**.4.- **-.---

o*=. . ." °

.4. d . .....

. -K- . •.o.
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Flow Field Computations for Non-
Cavitation and Cavitating Propellers

Justin E. Kerwin

Department of Ocean Engineering L "
Massachusetts Institute of Technology

ABSTRACT
I N

This paper describes two propeller field computation procedures:

a) The time-varying velocity field of a non-cavitating propeller
with steady loading.

b) The time-varying velocity potential of a propeller with un- L a
steady loading with or without Lnsteady cavitation.

A variety of sample calculations is given, together with experi-
mental data obtained in the MIT water tunnel using a laser-doppler

velocineter.

INTRODUCTION i i
Knowledge of the free-space flow field of a propeller is essential

to the understanding of a variety of steady and unsteadv hull-propeller
interaction problems.

The steady component of the flow field is directly responsible for
thrust-deduction, and for the alteration of the nominal wake field.
The unsteady component of the flow field gives rise to vibratory hull
excitation. A major source of the latter is the presence of inter-
mittent cavitation generated by non-uniform inflow. -

Numerical lifting-surface representations of a propeller may be
readily adapted to provide flow field information, either in the form

of velocities or velocity potentials. Errors due to discretization,
which are a major concern in determining velocities on the blades, are ... ,

fortunately much less of a problem at distant field points.

823
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FIELD POINT VELOCITIES INDUCED BY A NON-CAVITATING
PROPELLER IN STIADY FLOW

Method of Solution

For a propeller in steady flow, the induced velocity field is
independent of time in a coordinate system rotating with the blades.
Hence, for any fixed axial and radial position, angular variations in
induced velocities in a blade fixed coordinate system are equivalent
to time variations in a non-rotating coordinate system advancing with
the propeller. Computation of the steady induced velocity at a sequence
of angular coordinates then provides the necessary information to con-
struct the time history of velocity at a fixed point. These computa- ".* '-
tions can be readily made given the geometry of the blades and of the - -.
trailing vortex wakes and the strengths of the singularity distributions
representing propeller loading and thickness.

The present field point velocity computation scheme uses a vortex/ .
source lattice representation of the propeller, and requires as input
the results of either the PUF-2 or PSF-2 propeller analysis programs
developed at MIT. A description of the former may be found in Kerwin
and Lee (1978) and of the latter in Greeley and Kerwin (1982). While

*g the PUF-2 program can accomodate both steady and unsteady non-cavitating
propeller flow, its use in the present application is limited to steady ,
flow. The newer PSF-2 program treats only steady non-cavitating pro-
peller flow, but incorporates a more realistic trailing vortex wake
representation, and a more accurate latttice arrangement. Since these
differences are reflected in their individual lattice coordinates and
element strengths, the outputs of either analysis program may be treated
with identical logic in the field point program. ]

In either PUF-2 or PSF-2, the strengths of the individual vortex
lattice elements on the blades and in the trailing vortex wake are
obtained by imposing a condition of zero net normal velocity at a set
of control points on one "key" blade. For efficient computation, a
finer grid is used on the key blade, as is evident from the lattice
arrangement shown in Figure 1. S

However, this is not a desirable feature in performing field point
calculations since velocities may be required at points which are close
to one of the coarsely represented blades. The assymetry thus intro-
duced will then result in erroneous harmonic content of the angular
variation of induced velocity.

This problem can be avoided by calculating the velocity induced .
by the key blade only, for a sequence of angularly spaced field points
covering one complete revolution. The velocity field of a K bladed
propeller may then be obtained by summing this result K times, with
the record shifted one blade space each time,

K= I Vl~v ( , + ) .. .. '.
k= 1

k = ~Kl k-= 1, 2, . K (1)
k K

U% . . . °. . -
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where v and v denote, respectively, and desired component of the

induced velocity field of one blade and K blades, and 6k is the angle

between blades. This, of course, generates a periodic function whose
fundamental is at blade frequency. K B-

SPANWISE VORTEX/

SOURCE

CHORDWISE

BLADES

FIGURE 1

Alternatively, one can construct v(0) by summing the blade fre-

quency harmonics of vl(O) multiplied by the number of blades. The
two approaches are equivalent.

If the field point calculation is performed at NR equally spaced
points over one complete revolution, the angular spacing will be

= 2 r(2)
R

, and the number of field points in one blade interval will be N N /K.
B RThe maximum number of blade frequency harmonics which can be computed

from the tabulated data will be N /2.
% B

.......................

i
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The Fourier representation of any component of the induced veloc-

itv v(O) may be written as

NB/2 N B2-1

v(9) = A0 + ) An cos(Kne) + B sin(KnO)
n
=  n=i

N /2
B

A 0 + C cos(Kn+ n  
(3)

n=l

where the harmonic phase angle is

= tan (4)Sn -A- -+ -i

and the amplitude C is
n

2 9 . .

C = +B . (5)
n n n

This definition of phase angle is consistent with the complex

representation of the function v(9)

Sninei()+ .

v(e) = Re c e (6)

where the real and imaginarv parts of the complex coefficients c are ''
n

C a +ib = cne n-,3
n n n n

tan (b /a (7)
O 0 0 "*+

The real and imcginary parts of c are related to the Fourier coeffi-

cients as follows,

a A
n n

Sb =-B (8)
n n

The problem is now reduced to that of finding the velocity in-

duced bv one blade of a propeller of given geometry and loading at a

specified point in space.

- .. .. . . .
* .. ,'... .. .%

S " ' - ". -!--. + ' +. --- ." ". 
,
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As shown in Figure 2, the discretized version of a blade and its
vortex wake consists of three parts, the blade itself, a transition
wake in which the vortex sheet contracts and rolls up, and an ultimate
wake represented by a single helical tip vortex and a hub vortex. The
first two parts are shown to a larger scale in Figure 3. Each sin-
gularity element consists of a straight vortex or source segment whose
space coordinates and strengths are determined in PUF-2 or PSF-2

I BLADEITRANSITIONL ULTIMATE WAKEJ
WAKE

*-TIP VORTEX

HUB VORTEX

* FIGURE 2

The primary singularities consist of the line source strengths
q obtained from thin wing theory and the spanwise vortex strengths-,,- ~nm -.-.- ,

(S)F ( obtained from the normal boundary condition. Here the first
innlex, n, denotes chordwise position and the second index, m, denotes
spanwise position as illustrated in Figure 3. The remaining sin-

* gularities, whose strengths follows from consideration of conservation
of vorticity, consist of the chordwise vortices Tnm(c) , the transi-
tion wake trailing vortices nm(tw) , the ultimate tip vortex (t)
and the ultimate hub vortex .(h) While the transition wake n

and tip vortex elements are given both a streamwise and spanwise sub-
script, their strengths are independent of streamwise position so that
the index in this case only serves to identify the position of the
element in question.

The chordwise vortices originating from the outer end of the tip
panel require special treatment. These are considered to represent
a separated vortex sheet, so that a chordwise vortex leaves the blade
surface at the outer end of each spanwise vortex, and proceeds to a
collection point a specified distance above the blade at the trailing
edge. The elevation of the collection point is loading dependent,
thus introducing a non-linear lift contribution which is shown in
Kerwin and Lee (1978) and Greeley and Kerwin (1982) to be essential for
accurate results at advance coefficients below design.

For the case shown in Figure 3, the advance coefficient corre-
sponds to the design value so that the deviation of the tip chordwise ".
vortex from the blade is not evident, and each of the N separated

......- o

, . ..... .... . ._... . . . . . . . ..% ' ... ' *. . .,- ,., . .. .. z.*,t.% .. ,r, ....
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M:M KEY BLADE :::.J:

TRANSITION
WAKE

mn=N
n=lL

n N. (Nwm);. '..
#S

FIGURE 3

vortex lines appear to be coincident.
Induced velocities are then obtained by summation of the product

of these singularity strengths with the appropriate velocity influence

functions. Let us denote H and Hnm as the vector velocity inducednm ruf p

at the field point in question by a unit strength line vortex and

source, respectively, situated at the position of a lattice element , "-

designated symbolically by the particular indices n and m. The veloc-
ity induced by the spanwise vortices and sources is

U

V77-
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N M .. ';::
- N (s)-r

s rn H nm

n=l m=l n" n

NM '
v = q (9)q n~m=l n rm

where N is the number of elements over the chord and M is the nunber
of panels over the span. ..

The velocity induced by the chordwise vortices, including the
separated sheet at the tip is,

N-1 M N N-n+l
(c ,(ct) (

c n=l m=l nm nm n=l n= ( N

The Z index in the second summation denotes the individual chordwise . -

elements of the vortex shed from the outer end of the n'th spanwise
vortex. Hence, the chordwis vortex shed from the spanwise vortex
closest to the leading edge consists of N elements, while the one S S
shed from the spanwise vortex closest to the trailing edge consists
of a single element connected to the collection point.

The transition wake induces a velocity

M+] Nw(m)-1"
twvt = I H (11)

m=l n=l nm nm

where N (W) is the number of points used to describe the path of the
trailing vortex shed from the inner extremity of F,* The (M+l)st
transition wake element originates from the collecmon point of the
separated tip vortex. ,.

The ultimate tip vortex induces a velocity

N -1
U

v= F F H (12)
n=l

where N is the number of points used to form the piecewise linearU

approximation to the helical ultimate wake. The first point describ-
ing the helix coincides with the last point in the tip element of the
transition wake.

Finally, the hub vortex, which consists of a single line element
extending the same distance downstream as the ultimate tip vortex -

induces a velocity .

-4 - t -1 r """"
vn F H (13)

X -. .
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The total induced velocity is then obtained by summing (9) - (13).

: ., ..>.
Steady Field Point Velocity Calculation

Steady field point calculations are shown here for a five bladed

propeller operating at a design advance coefficient, J, of 0.889 in
homogeneous flow. This propeller is one of the skew series developed
by Boswell (1971) and Nelka (1974), and its vortex lattice representa- p--...

tion is shown in Figures 1-3.
Figure 4 shows the results of a field point computation at a" "

radius r/R = 0.929 in a plane situated upstream of the propeller with
a longitudinal coordinate x/R = -0.25. The longitudinal origin is the
mid-chord of the root section. However, since this propeller has no -

mid-chord rake, the section mid-chords at all radii are located in the

plane x=O. The leading edge at r/R = 0.929 is located at x/R = -0.082.
Computations were made at 60 field points over the circumference which
results in an angular spacing of 6 degrees. Summation over five
blades, from ( 1) then results in 12 computed values of induced
velocity, yielding Fourier coefficients up to the sixth harmonic of
blade rate.

The first five harmonic coefficients are tabulated on the left
side of the graph. The symbols plotted over the first blade interval U
are the computed points, while the continuous lines are generated from
the resulting Fourier coefficients. The latter are plotted over one
complete propeller revolution to provide a better visual impression .. .
of the velocity time histories. At this relatively distant field

point they appear to be almost sinusoidal, with the second harmonic
of blade rate being of the order of ten percent of the fundamental.

The computed value of the mean tangential velocity provides a .' .

check on the accuracy of the computational procedure. The mean value
must, of course, be zero for any contour which does not cut through
the blade or its trailing vortex wake, and this can be seen to be true .

in this case.
Figure 5 shows a typical result obtained at a point much closer

to the leading edge. In this case x/R = -0.128 which corresponds to,-
a distance of 0.046R ahead of the leading edge.

To capture the sharp gradients near the leading edge, 120 points :$. '.
were used, corresponding to three degree spacing. While the maximum
number of terms is used in Fourier representation of the velocity,
only the first five harmonics are tabulated.

Figure 6 shows the velocities computed just beyond the tip, at --,'

K r/R = 1.05. Again, 120 points were used due to the sharp velocity
gradients encountered at this small tip clearance.

Finally, Figure 7 shows the results of a velocity computation .-.

downstream of the propeller within the transition wake region. Some
care must be taken in selecting field point positions at longitudinal _
positions and radii which intersect either the blade or its trailing
vortex wake. The vortex lattice representation of continuous vortex
sheets is invalid in the near field except at control points which are

<< .--.. !
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" properly located. Thus to compute velocities through the transition
wake, one specifies the indices of a particular lattice element, and

-. the coordinates of a field point properly centered in this grid are
computed. Circumferential spacing at the desired angular increment
then proceeds from this point. For convenience in visualization, the
angular coordinate is shifted by the amount required to place the
vortex sheet in the middle of one blade interval, or 36 degrees in this
case.

The mean tangential velocity is not zero in this case, but is
related to the total circulation, F, around the blade at the lattice
element in question,

w t ..iiiS
KF = -2T.u (14)

where r is the radius of the field point in the transition wake and
ut is twe circumferential mean tangential velocity. In this case
ut/V = -0.302, so that the non-dimensional circulation should be, .

r r u
G uts = 0.0331 (15)1• 2 7TRV R

s 5

while the corresponding value cf circulation obtained by PSF-2, and
used to compute the field point velocities is 0.0328. Thus the compu-
tational inconsistency in this case is about one percent.

Correlation with Experiments

Direct measurement of propeller induced velocities has beco'e
feasible in recent years with the introduction of the laser doppler .4

velocimeter. A complete description of the system installed in the
MIT water tunnel, together with experiments and correlation with an
earlier version of the field point program is given in Min (1978).
In Min's experiments, the signal to noise ratio of the time measure-
ments of velocity was improved by means of an analog signal averager
triggered by a magnetic pickup on the propeller shaft. A substantial
improvement, both from the point of view of convenience and accuracy
resulted from the addition of a laboratory mini-computer with a fast
analog-digital conversion capability. This development was reported
in Kobayashi (1981), (1982) who addressed the problem of determining
sectional drag from velocity field measurements.

A current development in propeller flow field measurement
techniques consists of a refinement in the averaging process. A
laser doppler velocimeter functions by recording the instantaneous
velocity of a random sequence of particles which enter a small measure-
ment volume fixed in space. If the flow field is unsteady in a fixed
coordinate frame, the ability to measure a sharp velocity peak is
dependent on the presence of a reflecting particle in the measurement
volume at the time of the peak. If no particle is present, the

% - -- - -,
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recorded velocity is "frozen" and will therefore correspond to the -

vilue present at an earlier time. Single averaging, which is essential - '
to redut .il noise, will inevitably round off the velocity peaks due to
the aCcumulat i.on of non-peak velocity measurements.

The most recent refinements consists of modifying the averaging

Procedure to include only those velocities which correspond to recently
obs.erved particles. if the velocity measurement has been frozen for
longer than a specified amount, it is not included in the averaging -

1) .") "e° e. 4

Samilp] e measurements with this system, which is being developed as
part of a Master of Science thesis by Schoenberger (1983) are shown
in 1 igur s 8 - 11.

in these experiments the 1 foot (.3048 m) diameter propeller model
was run at 1200 revolutions per minute with a water velocity set to .'. -

prOduce 'In advance coefficient, J, of 0.889 after application of the .'-

jitlsoiiil closed jet tunnel wall correction, Glanert (1959). All
Ii ,id point velocities were then non-dimensionalized with respect to t S
the corr ect ed tunnel velocity, which in this case was 4.3% less than the
,"te, ;Iured volumetric flow in the test section. This correction is
valid ofly in the plane of the propeller, but is assumed to be appli-
cable. oe r the range of measurements.

Phas, it',sL were measured relative to a starting pulse generated
I-% the- interuption of a small laser beam by the leading edge of each -
bla. This produced a very sharp, repeatable pulse which is essential
!,r a'curate, averaging. However, its absolute phase with respect to
prel ,r otrd ntes was not adjusted precisely, and was considered
to have a possible error of 5 to 10 degrees. For purposes of correla-
tion witl tho.ry, an adjustment to the experimental phase was made to
-Pest fit the computed data. The necessary correction was well within [
the expected error in all cases.

Ulhi]le the phase agreement in Figures 8 - 11 is therefore irrele-
Vant, the corrections were small enough for the experiments to serve
as a clheck against sign errors in the theory. In Figures 8 - 11, the
experimental velocities are shown as continuous lines which are gener- -.--

-ited b straight lines connecting the approximately 350 points measured I *
durLng each revolution. The symbols represent the corresponding field
-oint calculations as shown in Figures 4 - 7.

Good agreement is found for all field points outside the slip-
stream, including points very close to the leading edge. The almost
perfect agreement in the very distorted wave forms shown in Figure 9
is particularly encouraging. In the wake region, the experimental
traces show a distinct velocity defect associated with blade viscous
drag, which has been analysed by Kobavashi (1981). The displacement
t(ffeet of the velocitv defect region influences tne potential flow
rcaiol outside the vortex wake, thus explaining the poorer overall
agree,nt in this case.

ThC c,:.perimentallv determined circumferential mean tangential -

velc it within the sl ipstream provides an experimental determination -- "
o)I the circulation, as given by (14) and (15). However, as pointed "
out hy Sayre, (1980), an error is introduced if the path used to . -*-

N/N
-, . 7
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evaluate the circulation does not cross the viscous wake at right
angles. This is because the viscous wake contains vorticitv which is
essentially radial, and thus in the same direction as the bound circu-
lation on the blade. The net wake vorticity contained in a region
between two transverse cuts through the wake will be zero only if
those cuts are normal to the axis of the wake. Since this is not the .*".-

case when cutting the wake with a plane normal to the axis of revolu-
tion, the tangential component of the viscous vorticity defect con-
tributes to the mean tangential velocity.

The mean tangential velocity derived from the experiment after
artistic removal of the viscous wake dents is approximately -.32 as P -
compared with the computed value of -.302. The measured and computed
mean axial components are .36 and 0.352 respectively, which agree
fairly well. Finally, the measured radial velocity is very similar in
form to the calculated results, but its mean value indicates greater
flow contraction. This may be due, in part, to the transition wake
geometry assumed in PSF-2, but may also be influenced by the absence I. S

of a hub in the theory.

UNSTEADY CAVITATING FLOWS

Method of Computing the Field Point Potential U

We will now consider the more complex problem of a propeller
operating in a non-uniform wake field under conditions resulting in
unsteady sheet cavitation. The determination of hull exciting forces
under these conditions is a topic of great current interest, and meth-
ods of solution have been developed by Vorus (1976) and Breslin (1978)..

Since the flow is now unsteady, even in a coordinate system rotat-
- ing with the propeller, the determination of pressures acting either

in free space or on the surface of an adjacent body requires a know-

ledge of the time derivative of the velocity potential. In fact, as
shown by Breslin (1982), one only needs the propeller velocity poten-
tial, rather than the velocity field itself to determine exciting
forces on a body. -.

If the time history of the singularity distributions representing
propeller loading, thickness and cavitation are known, the associated
free-space potentials may be readily computed. The determination of
these singularity distributions is much more difficult than in the case
of steady, non-cavitating flow. A numerical vortex/source lattice pro-

cedure for doing this was developed at MIT by C. -S. Lee (1980),
and its present version is designated PUF-3. As with PUF-2, the un-
steady solution is obtained in discrete time steps of six degrees of
propeller rotation. At each time step, the strength of each vortex/
source element representing blade loading and thickness, and the

strength and extent of the source distribution representing the
instantaneous sheet cavity is determined by an iterative solution of
non-linear boundary value problem.

V. •.." --"
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Once these discrete singularity strengths are determined, the
computation of the free-space potential can proceed in a manner very I-"

similar to that described previously for steady non-cavitating flow.
We must first determine the potential of an individual line

source and vortex element. This is very easy for the source, where
the potential of a three-dimensional point source is simply

- -Q (16)

where Q is strength of the source expressed as a volumetric flow, and
r is the distance from the source to the field point. A line vortex
-is not as simple, since there is no direct analog of Biot-Sovart's
law for the potential of a three dimensional vortex. However, one
can m-ake use of the equivalence between a closed vortex line and a
uniform sheet of normal dipoles distributed on a surface bounded by it. * _

A vortex lattice representation of the propeller and its wake can
be readily decomposed into a set of vortex quadrilaterals, which, in
turn, can be replaced by normal dipole sheets. Finally, since we are
relatively far from the blades, the dipole distribution in each vortex
quadrilateral can be replaced by a single point dipole, whose potential
is

- FA(n * r) (17)
3 

(7
4rr

where I is the strength of the vortex line bounding the quadrilateral
element, A is its area and -A is a unit vector normal to the element. -

The results of a direct numerical calculation of the velocity
field induced by a point dipole, and by a vortex quadrilateral showed
that an error of less than one percent can be expected for field .. ,
points located more than four lattice widths away. This criterion
would almost always be met for normal propeller-hull clearances, with
a blade lattice consisting of at least ten spanwise and chordwise
elements.

Consistent with this approximation, the line sources representing
blade and cavity volume may also be represented by point sources with
total flux equal to that generated by the equivalent line elements.
Hence, equation (16) and (17), summed as before over each of the
elements representing the blades and trailing vortex wakes, are all A.
that is required to obtain the potential at a given field point at a
sequence of discrete time steps of the propeller.

Two additional complications, however, should be mentioned.
First of all, since the propeller loading is unsteady, shed vorticity
is introduced into the transition wake. This shed vorticity is
assumed to be convected downstream to the roll-up point, but is
ignored beyond this point in the ultimate wake. Since the strengths
and positions of the discrete shed vortex elements are known, one
simply has one additional summation to deal with. The ultimate wake

7 ... 
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is represented by concentrated helical tip vortices and a hub vortex,
a single point dipole approximation to the "real" dipole sheet con-
necting these two is obviously inaccurate. Auxiliary helical vortex
lines must then be introduced which then divide the wake into quadri-
lateral elements whose size is small enough to meet the distant field
criterion. Numerical experimentation has shown that the introduction
of three additional helical lines, producing four elements over the
radius, provides sufficient accuracy. Once this auxilliarv geometry
is determined, the computation of the potential again involves simple
summation of the individual dipole contribution given by (17).

For a given field point representing a specified point on a nearby
hull surface, one can compute the total potential due to one blade and'
its wake at sixty times stops during the course of one complete revolu-
tion. The contribution of a K bladed propeller is then found by multi-
plying the blade rate harmonics of the resulting time history by the
number of blades. Higher multiples of blade rate may be computed sub-
ject to the limitation imposed by the six degree spacing employed in
the computation of the propeller singularity distributions, and by
interrent inaccuracies in the propeller solution.

Sample Calculation of Potentials

Calculations of unsteady loading and cavitation have beem made for
DTNSRDC propeller 4497 operating in the axial wake field shown in "
Figure 12. This wake field is representative of a fine form single-
screw vessel, and results in propeller cavitation over a relatively
narrow extent near the top. Figure 13 shows the computed single bladed
non-dimensional cavity source strength as a function of propeller rota-

tion angle for a cavitation number

P -P
n - 3.9 (18)

.n D

at a design volumetric advance coefficient ...

V
A

S0889 (19)

Figure 14 shows the longitudinal variation in the blade rate . -

amplitude of the potential computed at a set of field points located
above the propeller at a radius of r/R = 1.4 and an angular coordinate

= 0. The upper curve is the total potential, including blade load-
ing, thickness and cavity volume. The lower curve includes only the
effects of blade loading and thickness.

Table (1) gives the first fifteen harmonics of the normalized
potential due to cavitation only at a field point directly above the
propeller at a radius r/R = 1.4. The amplitude of the normalized

.,.,.,,.-... ..... ... . ... . .,.... '.,,..,.-,".,,,,,.,,,... •, , , .-, .""- ," ':',"--
,. - ., .. -. .. . .... * -. . .. .*.. • . .. . . . -..... ' *... ,* .., ' - . .,,,. '," \ '" " " .- ,_
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6.70

potential, N' is defined as follows,

~~N rf - r (0

N (20)

'N

where the subscript N is the shaft rate harmonic number. 0Q j s t he_[N'th harmonic of the total cavity source strength and ir - ri
is the magnitude of the distance from a fixed point in space, r --

to the field point. The point may be thought of as an "effec~ive
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cavitation center", and is taken here to be at x=O, r/R = 0.9, -"=O.f
The normalized potential is therefore the ratio of the actual "

potential to the potential that would result if the total space and .k , ..
time dependent cavity volume were concentrated at a fixed point. The
normalized phase is simply the phase of the actual potential, as de- __
fined in ( 4), relative to the phase of the corresponding harmonic of 7-

Q.

If the normalized potential is close to unity in amplitude and
zero in phase, one can compute cavity induced potentials very simply
using a point source approximation. This is not as much of an advan- ______
tage as one might first think, however. To do this, one needs to have
the appropriate harmonics of the time rate of change of cavity volume
and this can only be obtained by a detailed calculation of the time .-.

history of cavitation extent. Having put this much computational effort
into obtaining the cavity volume, one might as well compute the "exact"
field point potential!

A far more significant consideration is the validity of experi- 5
mental procedures for determining cavity volume harmonics. If the
cavitation can be modelled as a stationary pulsating source, reciprocal
calibration techniques as described, for example, by Whalen, Van Houten
and Kerwin (1982), may be used to determine cavity volume experi-
mentally.

TABLE 1

Harmonics of Normalized Field Point Potential r'-,.
at x = 0, r/R = 1.4, e = 0, for DTNSRDC Propeller 4497 .7.
Operating at o = 3.9 in Wake Field shown in Figure 13.

n

Harmonic of Amplitude of Relative Phase
Shaft Frequency Normalized Potential Angle, Degrees

N N N
1 .656 15

2 .756 14
3 .821 15
4 .884 18 N. "
5 .918 26
6 .856 43 e
7 .536 57
8 .316 27

9 .409 2
10 .525 -l
11 .608 1
12 .660 5
13 .691 12
14 .668 20
15 .567 23

... , . :..:o... . . . .. . ** . .. * o *.."*... *-. - .... .. ,. . . °" ... . " -"• ." . -- ".. . .%. .•- :. : :: : : : : : : :: -: ::,.* . ..*,.:.: :55* 5:5 *-..'-,!:'.* .. :.-:: : ? ii
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From Table (1) we can see that the blade rate component of the .*

potential due to cavitation is well represented by a stationary point "
source, but that twice and three times blade rate would be in error by -

about a factor of two.
While these results are all based on computations for a five

bladed propeller, the time history of cavitation on a single blade -.-.

%! would be qualitatively similar for propellers with different numbers
of blades with suitably adjusted pitch. Thus, we see that the point
source approximation would be reasonable for a 3, 4, 5 or 6 bladed
propeller as far as fundamental blade rate is concerned.

These conclusions are valid only for this particular wake field -
" and cavitation number, but are expected to be applicable to other

situations in which the angular extent of cavitation is comparable.
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FIGURE CAPTIONS

FIGURE 1. Vortex/source lattice representation of DTNSRDC propeller
4497

FIGURE 2. Representation of key blade and aligned trailing vortex
wake for propeller 4497 operating at design J = 0.889.

FIGURE 3. Perspective view of key blade and transition wake showing - 4

element indices.

FIGURE 4. Computed field point velocities for DTNSRDC propeller 4497
at a point upstream.

FIGURE 5. Computed field point velocities for DTNSRDC propeller 4497
at a point just ahead of the leading edge.

FIGURE 6. Computed field point velocities for DTNSRDC propeller 4497
at a point close to the tip.

FIGURE 7. Computed field point velocities for DTNSRDC propeller 4497. .N '
at a point inside the transition wake region.

FIGURE 8. Comparison of laser-doppler velocimeter measurements -. .
(solid lines) with computed values (plotted symbols)
for the field point shown in Figure 4.

FIGURE 9. Comparison of laser-doppler velocimeter measurements

(solid lines) with computed values (plotted symbols) .
for the field point shown in Figure 5. ,..,.

FIGURE 10. Comparison of laser-doppler velocimeter measurements
(solid lines) with computed values (plotted symbols)
for the field point shown in Figure 6.

FIGURE 11. Comparison of laser-doppler velocimeter measurements
(solid lines) with computed values (plotted symbols) -
for the field point shown in Figure 7.
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FIGURE 12. Axial wake field used for PUF-3 computation of cavitation
and loading time histories. This vake field was measured
by a laser-doppler velocimeter in front of DTNSRDC
propeller 4497 operating at design thrust. An effective
wake was constructed by subtracting from these values the
circumferential mean propeller induced velocities calcu-
lated by the steady field point program.

FIGURE 13. Variation of total single blade cavity source strength
with propeller angular position computed by PUF-3. The
source strength is non-dimensionalized by the factor

2 2 21/2
2-rR UR, where UR = [VS + (0.7R) .

FIGURE 14. Variation in amplitude of blade-rate potential with axial
position. Positive x is downstream of the propeller.

The potential is non-dimensionalized by the factor
2 TRUR.
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Discussion

T. Sasajima (Mitsubishi Heavy Industries)

We understand that the system of discrete vortices and sources,
especially configuration of transition wake, is one of the key points
of success in the numerical lifting-surface approach of a propller -

(Kerwin and Lee, 1978). To understand this model in detail from the
viewpoint of flow field, the discussor would appreciate very much if
the author could show us the shape and pitch distribution of the slip
stream based on this model and also the contribution of each induced
velocity component, i.e., -s, V Vc- Vtw' and Vn to the induced A

velocity at a point inside the transition wake region, as shown in
Figure 7.

E.A. Weitendorf (Hamburg Ship Model Basin)

I would like the author to comment regarding two points:

1. Tip vortex: At the Hamburg Ship Model Basin (HSVA) we found
by our laser Doppler velocimeter that distribution of the
axial-induced velocities, plotted over the radius in a plane
at a distance of 1.2 of the propeller diameter, displays a
maximum at the 0.5-0.6 radius. The velocity distribution was

by no means constant over the propeller radius. Is, maybe,
the disagreement between the calculated and measured results
in Figure 11 a reason for the fact that in the calculation a
rolled-up tip-vortex is taken into account, whereas in
reality the vortex sheet is not yet rolled up?

2. Cavity thickness of skew-back propellers: At the last meet-
ing of the cavitation committee of the ITTC the fact was
discussed that there is a strong difference of the cavity
thickness between conventional and skew-back propellers. For
the latter, the thickness is obviously larger. This fact
seems to be connected to the flow behavior around the leading
edge. To the knowledge of the discussor there exists no ,
theory that can explain the larger cavity thickness of a ...
skew-back propeller at its leading edge. I would like to
know the opinion of the author concerning this problem.

el1

t L r-
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"" Author's Reply

Justin E. Kerwin

To Dr. Sasajima

Dr. Sasajima has requested a detailed breakdown of wake geometry
and individual contributions to the total induced velocity. Such data
are, of course, too voluminous to provide for all the cases shown in
the paper. However, I have included in this response a complete
tabulation of propeller and wake geometry and of lattice singularity
strengths for the propeller computed in Figures 4-7 and a tabulation of
a breakdown of induced velocity contributions for the case shown in
Figure 5. The latter results are given in 12 degree increments, rather
than for 3 degrees. These additional data should serve to document the
steady field-point computational procedure. (See Tables 2-6.) 8

To Dr. Weitendorf

Dr. Weitendorf raises the question of the validity of the assump-
tion of complete roll-up of the tip vortex. We believe that this is an
idealization that is valid for computation of velocities near and ahead
of the propeller but that is not locally correct. As with the analo-
gous case of a wing, the outer edge of the vortex sheet rolls up into a
complex spiral shape that is finite in extent. while the concentrated I.
vortex approximation is not locally valid, it is still far more realis- .

tic than the assumption of a helical sheet.

Our laser measurements of axial velocity are in agreement with Dr.
Weitendorf's findings, although it is clear that the radial distribu-
tion tends to become more uniform with increasing downstream distance.
This is evident from Figure 39 from "Numerical and Experimental Methods
for the Prediction of Field Point Velocities Around Propeller Blades,"
by Keh-Sik Min (MIT, Report No. 78-12, June 1978) reproduced here.

The calculations shown in Figure 11 are much closer to the propel-
ler and are in the transition wake region. We believe that the princi-
pal discrepancy here is associated with viscous effects.

Dr. Weitendorf also raises the question of the influence of skew
on cavity thickness. Our experience to date with the PUF-3 program
indicates that skew tends to decrease total cavity volume, which is
consistent with experimental findings. There are subtle leading-edge
viscous effects associated with skew that may influence cavity thick-
ness, but this effect is not considered in PUF-3.

The author would like to point out an inconsistency in the unsteady
cavitating results that was discovered after the presentation of the

.* paper. The extension of the unsteady c-avity closure condition as pre-
sented in "The Numerical Prediction of Unsteady Sheet Cavitation on
High Aspect Ratio Hydrofoils" by R. J. Van Houten, 1982, to PUF-3 con-
tains an error. The integral of total cavity strength over one complete --

cycle of growth and collapse must be zero, yet this is not the case for

-f
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Table 2. Blade Lattice Geometry

N4497
NBLADE.MM.NN.NPUW: 5 8 8 36
NSW(M): 14 13 13 12 12 13 13 14 14
VSR: 1.00000
---------- X(N.M)----------

-0.1643 -0.1416 -0.0979 -0.0393 0.0257 0.0875 0.1368 0.1636
-0.1907 -0.1650 -0.1151 -0.0475 0.0279 0.1000 0.1580 0.1897
-0.2018 -0.1754 -0.1234 -0.0525 0.0272 0.1039 0.1664 0.2004
-O.1999 -0.1743 -0.1234 -0.0535 0.0254 0.1017 0.1643 0.1984
-0. 184 -0.1627 -0.1153 -0.0502 0.0234 0.0946 0.1531 0.1851
-0.1650 -0.1440 -0.1020 -0.0444 0.0206 0.0837 0.1355 0.1638

-0.1369 -0.1194 -0.0846 -0.0369 0.0171 0,0694 0.1124 0.1358
-0.1022 -0.0892 -0.0631 -0.0274 0.0129 0.0519 0.0840 0.1015
-0.0428 -0.0374 -0.0267 -0.0118 0.0051 0,0215 0.0350 0.0424
------------- Y(N.M) ----------

0.2102 0.2154 0.2212 0.2235 0.2209 0.2151 0.2098 0.2066
0.3008 0.3079 0.3156 0.3172 0.3097 0.2960 0.2831 0.2751
0.3959 0.4037 0.4110 0.4090 0.3938 0.3697 0.3471 0.3331 ..

0.4943 0.5012 0.5059 0.4978 0.4727 0.4366 0.4030 0.3826
0.5946 0.5989 0.5984 0.5821 0.5462 0.4983 0.4542 0.4277 9
0.6937 0.6938 0.6856 0.6597 0.6133 0.5554 0.5034 0.4724
0.7855 0.7802 0.7632 0.7277 0.6735 0.6101 0.5546 0.5220
0.8590 0.8484 0.8240 0.7829 0.7274 0.6669 0.6155 0.5858
0.8701 0.8603 0.8414 0.8149 0.7839 0.7533 0.7287 0.7150

---------- Z(N.M) ----------

-0.0761 -0.0598 -0.0324 0.0011 0.0342 0.0609 0.0771 0.0854 ,..
-0.1022 -0.0781 -0.0358 0.0170 0.0706 0.1152 0.1440 0.1588
-0.1133 -0.0813 -0.0244 0.0474 0.1203 0.1813 0.2216 0.2420 I 0
-0.1078 -0.0686 0.0015 0.0900 O.1802 0.2555 0.3057 0.3310
-0.0802 -0.0358 0.0444 0.1456 0.2483 0.3342 0.3920 0.4208
-0.0252 0.0224 O.1081 0.2160 0.3251 0.4163 0.4779 0.5086
0.0654 0.1124 0.1970 0.3028 0.4096 0.4990 0.5601 0.5906
0.2015 0.2424 0.3156 0.4070 0.4994 0.5777 0.6322 0.6598
0.4433 0.4619 0.4955 0.5380 0.5823 0.6214 0.6500 0.6650

NBLADE = Number of blades
MM = number of lattice intervals over span
NN = number of lattice intervals over chord

- NPUW = number of elements in ultimate wake

NSW(M) = number of elements in transition wake at the m'th radius
VSR = ratio of ship speed to reference velocity '-
X(NM) - - -Y(NM) = Cartesian coordinates of blade lattice. The n index

Y"- M) is chordwise and the m index is spanwise-..," Z (N , M) ,-' .,

the example given in Figure 13. A check indicated that this error is
not present in the results given by Van Houten. .-

The error is now being corrected, and this will result in some
changes in predicted field-point potentials. However, the results given
in this paper are expected to remain qualitatively correct. ... j

A .
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----------------------- XTIP(N.M) .YTIP(N,M) .ZTIP(N.M) ----------

-0.0428 -0.0374 -0.0267 -0.0118 0.0051 0.0215 0.0350 0.0424

-0.0374 -0.0267 -0.0118 0.0051 0.021S 0.0350 0.0424 0.0434 -

-0.0267 -0.0118 0.0051 0.0215 0.0350 0.0424 0.0434 0.0

-0.0118 0.0051 0.0215 0.0350 0.0424 0.0434 0.0 0.0- -

0.0051 0.0215 0.0350 0.0424 0.0434 0.0 0.0 0.0

0.0215 0.0350 0.0424 0.0434 0.0 0.0 0.0 0.0

0.0350 0.0424 0.0434 0.0 0.0 0.0 0.0 0.0

0.0424 0.0434 0.0 0.0 0.0 0.0 0.0 0.0
0.0434 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.8701 0.8603 0.8414 0.8149 0.7839 0.7533 0.7287 0.7150

0.8603 0.8414 0.8149 0.7839 0.7533 0.7287 0.7150 0.7132

0.8414 0.8149 0.7839 0.7533 0.7287 0.7150 0.7132 0.0

0.8149 0.7839 0.7533 0.7287 0.7150 .0.7132 0.0 0.0

0.7839 0.7533 0.7287 0.7 150 0.7132 0.0 0.0 0.0

0.7533 0.7287 0.7150 0.7132 0.0 0.0 0.0 0.0

0.7287 0.7150 0.7132 0.0 0.0 0.0 0.0 0.0

0.7150 0.7132 0.0 0.0 0.0 0.0 0.0 0.0
0.7132 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.4433 0.4619 0.4955 0.5380 0.5823 0.6214 0.6500 0.6650
0,4619 0.4995 0.5380 0.5823 0.6214 0.6500 0.6650 0.6669

0.4955 0.5.38O 0.5823 0.6214 0.6500 0.6650 0.6669 0.0

0.5380 0.5823 0.6214 0.6500 0.6650 0.6669 0.0 0.0

0.5823 0.6214 0.6500 0.6650 0.6669 0.0 0.0 0.0 f
0.62f4 0.6500 0.6650 0.6669 0.0 0.0 0.0 0.0

0.6500 0.6650 0.6669 0.0 0.0 0.0 0.0 0.03

0.6650 0.6669 0.0 0.0 0.0 0.0 0.0 0.0

0.6669 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 3. Separated Tip Vortex Geometry ~*

XTIP(NM) Cartesian coordinates at n chordwise

ZTIP( NM) positions of separated vortex originating
from outboard end of m'th spanwise vortex
of tip panel.

6PU
% P % % % %
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Tnble 6. Breakdown of induced velocity
components in Car-tesian coordinates

for ne _complet e revolution of a single blade

x y z
-0. l2,'00 0.192900 0.00000-- field point coordinate
0.00477 -0.00473 0.00224- ultimate wake

-0.04281 0.02-617 -0. 00-09 -- blade vortices and sources
0.00124 0.00044 -0.00017-- separated tip vortex
0.012973 0.00383 -0.00635-- transition wake

-0. 02407 0 -0 25 71 -0.00637-- total induced velocity

-0. 12800 0.90870 0.19315
0.00494 -0.00447 0.00146
-0.10299 0.01614 0.04091
0 .00215 0.00026 -0.00065 Sm saoewtf ield point incremented
0.01465 0.00609 -0.00760

-0.08124 0.01801 0.03413 12 degrees

-0.12,800 0.84368 0.37786
0.00511 -0.00410 0.00081

-0.05347 -0.14513 0.05297
0. 00724 -0.00557 -0.00627 2 ere
0.01690 0.00778 -0.01008

-0.02422 -0.14702 0.03743

-0.*12800 0.75158 0.54605
0.00528 -0.00364 0.00031
0.03421 -0.09565 0.01206 36 degrees
0.01668 -0. 03232 -0.03007
0.01947 0.00356 -0.02090
0.07564 -0.12806 -0.03861

-0. 12800 0.62162 0.69038
0.00544 -0.00314 -0.00004
0.04442 -0.03709 -0.01478 48 degrees
0.00645 -0.01470 -0.01458 0
0.01826 -0.01653 -0.05386
0.07456 -0.07145 -0.08326 .- --

-0.128300 0.46450 0.80454
0.00560 -0.002162 -0.00023
0.03219 -0.00841 -0.01165 60 degrees
0. 00231 -0.00362 -0.00388
0.,01129 -0.01772 --0.06617
0.05138 -0.03236 -0.08193
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Table 6 (continued)

-0. 12800 0.28708 0.88353
0.00575 -0.00212 -0.00026
0.02307 0.00048 -0.00586 72 degrees

0. 00 132 -0.00130 -0.00159 -
0.00872 -- 0.00662 -0.06130 --
0.03886 -0.00956 -0.06902

-0. 127800 0,09711 0.92391

0.00589 -0.00166 -0,00016
0.01708 0.00288 -0.00244 84 degrees

0.00093 -0.00061 -0.00087 '

0.00802 0,00433 -0.05247

0.03192 0.00494 -0.05593

-0.12800 -0.09711 0.92391

0,00603 -0.00129 0.00007
0401301 0.00326 -0.00044 96 degrees

0.00073 -0.00032 -0.00056
0.00758 0.01245 -0,04317
0.02735 0.01410 -0.04409

-0. 12800 -0.28708 0.88353
0.00614 -0.00097 0.00041
0.01012 0.00298 0.00078 108 degrees

0.00061 -0.00019 -0.00040

0.00711 0.01781 -0.03439

40*02398 0.01963 -0.03360

-0.12800 -0.46450 0.80454

0.00624 -0.00074 0.00083
0.00800 0.00247 0.00152 120 degrees

0.00052 -0.00011 -0.00030
0*00660 0.02094 -0.02649
0.0 213 6 0.02257 -0.02445

-0.12800 -0.62162 0.69038

0.00629 -0.00058 0.00132
0.00639 0.00191 0.00197 132 degrees
0.00047 -0.00006 -0.00024

0.00611 0.02238 -0.01960
0,01927 0.02365 -0.01655

%0
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% Table 6 -(contin-ued)

-0. 12800 -0*7 5 15 8 0.54605
0.00630 --0.00048 0.00188
0.00513 0.00135 0.00224 144 degrees
0.00043 -0.00003 -0.00020
0. 00569 0.02253 -0.01372
0. 017 55 0.02337 -0.00981

-0.12800 -0.84868 0.37786
0.00624 -0.00042 0.00249
0.00411 0.00082 0.00238 156 degrees a
0.00040 -0.00001 -0-00017
0.00537 0.02173 -0#00882
0.01612 0.02212 -0#00412

-0.12800 -0.90870 0#19315
0.00609 -0.00036 0.00316
0.00326 0.00031 0.002143 168 degrees
0.00038 0.00001 -0.00015
0.00518 0-02021 -0.00484
0.01490 0.02016 0.000600

-0,12800 -0.92900 0.00000
0.00583 -0.00028 0.00390
0.00253 -0.00018 0.00241 180 degrees

* 0,00036 0.00002 -0.00014 .

0.00514 0.01816 -0.00174
0.01385 0.01773 0.00444

-0.-12800 -0,90870 -0.19315
0.00545 -0.00014 0*00472
0.00188 -0,00065 0.00232 19ders
0.00035 0.00003 -0.00012
0.00524 0.01574 0.00055

*0.01292 0.01498 0.00747

-0.12800 -0.84868 -0.37786
0.00499 0.00002 0.00558
0.00127 -0.00111 0.00218 204 degrees

0.00034 0.00004 -0.00011
0.00545 0.01311 0.002092
0.01206 0.01205 0.00974
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Table 6_qn tinu ed1

K-012:800 -0.75158 -0.54605
0.00451 0,00014 0.00645

0.00068 -0.00157 0.00196 216 degrees

0.00034 0.00)005 -0.00010
o.00574 0.01043 0.00297
0.01127 0.00905 0.01128

-0.12?800 -0.62162 -0.69038
0.00407 0,00012 0.00724
0.00009 -0.001203 0.00167 228 degrees

0.00034 o.00006 -0.00010
0.00604 0.00788 0.00329
0,01054 0.00602 0.01210

-0.,12800o -0.46450 -0.80454

0.00375 -0.00011 0,00785
-0.00054 -0.00250 0.00127 240 degrees

0.00035 0.00007 -0.00009
0,00632 0.00559 0.00320
0.00987 0.00305 0.01223

-o.12800 -0.28708 -0.88353

0,00358 -0.00058 0000819
-o.00124 -0*00295 0.00073 252 degrees
0.00036 0.00008 -0.00009 re

0.00Q655 0*00365 0.00280
0,00925 0.00019 0.01164 S.-

-0.12800 -0.09711 -0.92391
0.00353 -0.00125 0.00825

-0,.00204 -0.00336 0.00001 264 degrees

0.00037 0.00009 -0.00009
0.00677 0.00209 0.00218

0.00863 -0. 00243 0,01035

-0. 12800 0.09711 -0.92391

0.00358 -0.00202 0,00802-k
-0.00301 -0.00366 -0.00097 276 degrees

0.00039 0.00010 -0.00008
0,00700 0.00091 0.00140
0.00796 -0.00469 0.00837

Ir
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Q- Table 6 (continued)

-0.1 2800 0.28708 -0.88353
0.00370 -0.00281 0.00753

-- 0.00421 -0.00379 -0.00226 288 degrees
L**0.00042 0.00012 -0.00008

0.00728 0.00009 0.00050
0.00718 -0.00639 0.00568 -

-0. 12800 0.46450 -0.80454
0.00385 -0.00352 0.00683

-0.00578 -0.00351 -0.00396 300 degrees
0.00046 0.00015 -0.00008 --

0.00766 -0.00037 -0.00051
0,00619 -0.00726 0.00227

-0.12800 0.62162 -0.69038 *

0.00403 -0.00411 0.00598
-0.00792 -0.00247 -0.00611 312 degrees
0.00051 0.00018 -0.000081%
0.00818 -0.00046 -0.00161
0.00481 -0.00687 -0.00182

-0. 121800 0.75158 -0.54605
0.00422 -0.00454 0.00504

-0.01098 -0.00005 -0.00857 324 degrees
0.*00059 0.00022 -0.00008
0.00890 -0.00015 -0.00278
0.00272 -0.00452 -0.00639

-0.12800 0.84868 -0.37786
0.00440 -0.00478 0.00407

-0.01573 0.00474 -0.01075 336 degrees ~ ~ ~.
0.00070 0.00028 -0.00008
0.00986 0.00064 -0.00399

ii-0.00076 0.00087 -0.01075

-0.12'800 0.90870 -0.19315
0.00459 -0.00484 0.00312

-0.02413 0.01337 -0.01069 348 degrees
0.00089 0.00036 -0.00009
0.01112 0.00195 -0.00519 .\
-0.00754 0.01084 -0.01285

N-I. 
%
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The Effects of Hull Pitching Motions and__
Waves on Periodic Propeller Blade ...--

Loads
Stuart D. Jessup and Robert J. Boswell

David W. Taylor Naval Ship Research and Development Center
Bethesda, Maryland 20084

- . s-'..b. .

* ABSTRACT

Fundamental investigations were made of the effects of periodic
hull pitching motions and waves on the periodic loads on propeller
blades and bearings. These periodic loads were measured during care-
fully controlled model experiments in which the periodic hull pitching
motions, regular waves, and relative phase of the hull pitching to the
wave encounter were systematically and independently varied. The pen-.
odic blade loads were calculated using trocoidal wave velocity pro-
files, and representation of the propeller based on a quasi-steady

method.
The results of both theory and experiment show significant modula-

tion of the amplitudes of the periodic blade loads with hull pitching
motions and wave frequency of encounter. Further, the experiments con-

* firm the theoretical assumption that the individual influences of the
* wave velocity profile and the induced velocities due to vertical hull
- motions can be linearly superimposed. The influence of the hull sig-
-- nificantly modifies the amount of modulation of the shaft frequency
Sloads due to both the periodic vertical motion of the propeller and the

trochoidal wave velocity profile in the absence of the hull. However,
trends of shaft frequency loads are well predicted by simple periodic
variations of the velocity into the propeller, and a simple quasi-

steady representation of the propeller. Trends of the results are
shown to be consistent with available full-scale data. Therefore, for
engineering purposes, the modulation of blade loads due to waves and
hull motions for transom type hulls can be estimated by simple trochoi-
dal wave velocity profiles, quasi-steady propeller theory, and constant
multiples derived from the experiments presented in this paper.

I. INTRODUCTION

The mechanisms by which rough seas and resulting ship motions
influence the time-average and periodic loads on propeller blades and
propeller shafts and bearings are complex. Factors include the in-
creased time-average propeller loading due to increased hull resistance .*.

and the increased periodic loading resulting from the influence of the
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free surface and modification of the flow pattern into the propeller

disk. This flow pattern is influenced by (1) direct orbital velocities
from the ocean waves, (2) relative velocities of the propeller due to
ship motions, and (3) modification of the hull wake pattern due to the
ship motions in the rough sea.

In general, the rough sea modulates the amplitudes of the periodic
loadings on the propeller blades and bearings from the corresponding

values in calm water. The periodic loads on individual blades, includ-
ing modulation bv a rough sea, must be considered in the design of the
propeller blades from consideration of fatigue. This is especially
important for controllable pitch (CP) propellers. Periodic bearing
forces, including modulation by a rough sea, are important for consid-

eration of ship vibration, especially in the main propulsion system,
noise, and fatigue strength of components of the main propulsion system.
Extreme modulation of the periodic thrust in the main propulsion shaft-

ing can result in reversals of the thrust on the main thrust bearing -

which can cause extensive damage.
Procedures for calculating periodic propeller blade and bearing

loads in calm water are reasonably well refined. These procedures have
been summarized by Boswell et al. (1968, 1981), Breslin (1972), and

Schwanecke (1975).
Procedures for calculating the blade and bearing loads in a seaway

are much less refined than for steady operation in calm water. Lipis
(1975) and Tasaki (1975) review the mechanisms and procedures for pre-
dicting the effect of the seaway on periodic bearing forces which, in

principle, also apply to unsteady loading on an individual blade. Keil
et al. (1972), Watasabe et al. (1973), and Lipis (1975) present data
from strain measurements on the blades of full-scale propellers in both

calm and rough seas. Gray (1981) presents the modulation of blade rate
hull vibration due to ship motion in a seaway.

These existing data and procedures provide valuable information

regarding increases in periodic blade and bearing loads due to operation
in a seaway. However, they address the overall complex problem in a
statistical manner including the net influence of a complex sea state,
complex ship responses, and numerous interactions. However, to the _
authors' knowledge, before the present study there were no experimental
measurements of periodic loads on individual propeller blades that

demonstrated the influence of waves and ship motions in a controlled
environment.

An extensive systematic model experimental program was undertaken
to obtain f.undamental information on the influences of rough water and -
ship motions on periodic propeller blade loads on high speed open-shaft
transom stern configurations. The experiments were conducted under
carefully controlled idealized conditions in which sinusoidal hull pitch-
ing motions and regular head waves were independently varied. Experi-
ments with hull pitching were conducted on three hull forms, two of
which were reported previously by Boswell et al. (1976a, 1976b, 1978)

and Jessup et al. (1977), and the third of which is presented in this
paper. Restrained model experiments in waves, including forced sinus-
oidal pitching of a model in waves, were conducted on only one model,

and are presented in the present paper. Experiments were conducted in

-:....5
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calm water with no ship motions, in calm water with forced sinusoidal

pitching of the hull, in regular waves with no ship motions, and in

regular waves with forced sinusoidal pitching of the hull at the fre-
quency equal to the wave frequency of encounter. The experiments with L_
forced hull pitching in waves were run over a range of relative phases

between the hull pitching and the wave encounter. Six components of
blade loads were measured during the dynamic conditions simulated.

The modulation of the blade load variation was correlated with pre-
."°' dictions calculated from trochoidal wave theory and the periodic verti-

cal motion of the hull. The assumption of superposition of the effects

of pitching and waves was evaluated. Trends of modulations of thep periodic bearing loads were determined from the modulations of the
pertinent harmonics of the single-blade loads. ,i-

The objective of these experiments was to obtain accurate system-

atic experimental data showing the effects of hull pitching and waves on '. .

periodic and time-average blade loads under carefully controlled experi-
mental conditions so that the effects of ship motions and waves on peri-
odic and time-average blade loads could be isolated. It is anticipated
that these data will serve as a basis for developing procedures for cal-

culating periodic and time-average blade loads for operation in a com-

plex sea state.
In these experiments the model speed and propeller rotational speed

were held constant at the values corresponding to operation in calm water

with no ship motions. In practice, when a ship operates in rough seas
the ship speed and propeller rotational speed at a given delivered power
decrease from the corresponding values in calm water due to increased
shaft torque resulting from increased resistance of the hull and change
in the propulsion coefficients (involuntary speed loss) (Lewis, 1967,
Oosterveld, 1978, Day et al., 1977). Furthermore, in rough seas the

delivered power is often deliberately reduced from the calm water value
(voluntary speed loss) as discussed by Day et al. (1977) and Lloyd and
Andrew (1977). Therefore, the difference in blade loads between opera-
tion in calm seas and operation in rough seas can be represented as
being made up of two major parts:

1. Differences in loads resulting from the difference in ship

speed and propeller rotational speed between calm seas and rough seas,
and

2. Increases in loads due to the direct influence of waves and
ship motions at a given value of ship speed and propeller rotational
speed.

The changes in propeller rotatiunal speed, ship speed, and Taylor

wake fraction due to operation in rough seas can be estimated experi-

mentally or theoretically using methods or data summarized by Oosterveld
(1978), Day et al. (1977), and Lloyd and Andrew (1977). The resulting
changes in periodic blade loads can be estimated based on the systematic
experimental data or theoretical methods described previously by Boswell
et al. (1976a, 1976b, 1978). The experiments described in the present

paper provide information on the direct influence of the waves and ship .- -
motions on periodic and time-average blade loads.

V..
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II. EXPERIMENTAL TECHNIQUES

A. Dynamometry

All experiments were conducted using the hull and propeller shown
in Figure 1 on Carriage II at the David W. Taylor Naval Ship Research
and Development Center (DTNSRDC), using basically the same dynamometry
and hardware described by Boswell et al. (197 6a, 1976b, 1978). The
starboard propeller, on which blade loads were measured, was located in
its proper position relative to the model hull but was isolated from
the hull and driven from downstream (see Figure 2). This downstream :-..-

drive system was necessary in order to house instrumentation required to
obtain the frequency response characteristics of the system for measur-
ing unsteady loading.

The sensing elements were flexures to which bonded semi-conductor .
strain-gage bridges were attached. The design of these flexures has. .
been described by Dobay (1971). Three flexures were necessary to meas- .-..

ure all six components of force and moment. Flexure 1 measured Fy and
My, Flexure 2 measured Fy and Mx, and Flexure 3 measured Fz and Mz; see
Figure 3. The flexures were mounted inside a propeller hub specifically
designed for these experiments. Only one flexure could be mounted at a
time because of space limitations, and this necessitated three duplicate
runs for each condition. The flexure calibration procedure was identi-
cal to that described by Boswell et al. (1976a, 1976b, 1978).

The port propeller, on which blade loads were not measured, was
driven from inside the model hull as would be the case in a self-propul-"
sion experiment. The propeller rotational speed, which could be con-

trolled independently of the starboard propeller, was measured via a
toothed gear pickup and recorded on a digital voltmeter. The time-
average thrust and torque were measured for selected runs by a trans-
mission dynamometer.

B. Hull Pitching and Wave Simulation

The downstream body which housed the drive system was modified
from the configuration used by Boswell et al. (197 6 a, 1976b, 1978) so
that it could be operated fully submerged. This was necessary in the
present experiment because the large shaft angle necessitated deep sub-
mergence, and the operation in waves caused an additional disturbance
to the water surface. The modifications included a waterproof housing
for the drive motor, waterproof electrical cables and connectors, re-

moval of the upper apron which had extended the sides of the boat, and
the addition of a nonwaterproof top to the boat. Both the body housing
(the drive system was soft mounted to this body) and the model hull were
rigidly attached to a pitch-heave oscillator which was driven by a
hydraulic cylinder. The pitch-heave oscillator was rigidly mounted on
the towing carriage. This arrangement enabled the model hull and the

drive system to be dynamically pitched together while maintaining .. •-]-"
independent support from one another.

./.,'..-.
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For operation in waves, regular head waves were generated by a

pneumatic wavemaker (Brownell et al., 1956). The level of the water
surface was measured as a function of time by a pulsed ultrasonic probe
that was mounted on the carriage; see Figure 4. The output of this
probe, which was filtered using a low pass filter to remove the influ-
ence of small irregularities in the water surface, yielded the amplitude

and frequency of encounter of the wave.
For operation with forced dynamic pitching of the model hull in

-_.'. waves, a servomechanism was used to ensure that the pitching of the
Pmodel hull maintained the desired phase relative to the wave at the

propeller throughout the experimental run. Figure 4 presents a schema-
* tic diagram of this servomechanism. In this servomechanism, a servo-

control unit subtracts the feedback signal from the hydraulic cylinder,
ep, from the signal from the wave height probe, ew, and sends this dif-
ference signal, or servo signal es, to the servo valve. Based on this --

servo signal, es, the servo valve slightly adjusts the frequency of the
hydraulic cylinder so that es seeks the null signal. When es is null,

ep is in phase with ew; that is, the pitching is in phase with the
waves. With this system small corrections to the frequency of the hy-
draulic cylinder are made continuously to maintain es near the null, and
thus to maintain the pitching of the model in phase with the waves. The
phase of the wave at the propeller plane was varied relative to the
phase of the model pitching by moving the wave height probe used in the
servomechanism forward or aft a prescribed distance relative to the
plane of the propeller. For example, for setting the phase of the

pitching, 1,, equal to the phase of the wave at the propeller plane, D,
the wave height probe was placed in the propeller plane. For setting

- - = 90 degrees, the wave height probe was placed a three-quarters
of a wavelength forward of the propeller plane.

A second wave height probe, which was not used in the servomechanism,
remained in the propeller plane for all co.aditions. The output of this

probe was input for the computer and served as a reference for analyz-
ing the blade force and moment data as a function of position in the
wave cycle. In all cases, the wave height probes were placed suffi-
ciently far from the model in the transverse plane so that the model did
not disturb the water surface at the points at which the water levels
were measured.

C. Experimental Conditions and Procedures

Experiments were conducted at several conditions including steady
ahead operation in calm water with no ship motions, simulated periodic
pitching of the hull in calm water, operation in regular head waves
without pitching of the hull, and operation in regular head waves with

V" periodic pitching of the hull. All conditions were run with the model
hull rigidly attached to its support, with no freedom to sink or trim,

and with essentially equal rotation on the port and starboard propel-

lers.

-' .",;-.'..'.
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The basic condition, which simulates steady ahead self-propulsion
in calm water with no ship motions, is defined as Condition 1 in Table 1.
The propeller rotational speed, trim and draft at this condition were
obtained from model self-propulsion data. No cavitation occurred on the
model propeller at any model experimental condition described in this
paper.

Runs simulating hull pitching and/or the effect of waves were con-
ducted at the same conditions as the run in calm water with no hull
pitching, except that the hull pitch was varied and/or the model was
run in waves (Conditions 2 to 6 in Table 1). These experiments were
conducted for forced pitching of the model in calm water, for operation .
in regular head waves without pitching of the restrained model hull,
and for forced pitching of the model for operation in regular head
waves. For forced pitching in waves, the phase of the wave at the pro-
peller, !., was varied relative to the phase of the hull pitching, D.
Three relative phases were evaluated:

1. Wave crest at the propeller plane when the stern of the model ,
hull is pitched up at its maximum value, $ - D = 0 (Condition 4 in
Table 1).

2. Wave crest at the propeller plane when the stern of the model
hull is pitched down at its maximum value, - 4= 180 degrees (Con-
dition 5 in Table 1).

3. Wave crest at the propeller planes when the hull pitch is _

passing through its mean value (41AX - MIN ) / 2 from stern down to stern
UP =90 degrees (Condition 6 in Table 1).

Por the unsteady hull-pitch simulation in calm water, the hull-

pitch angle ', was varied sinusoidally about the calm water equilibrium
trim angle (, CW) witp an amplitude 4 A of 1.33 degrees and a frequency
f, of 0.8 hert, f Ljip/g2 = 2.63. For operation in waves without the
hull pitching, the model hull operated in regular head waves with a
single amplitude rA of 0.118 m (0.39 ft), CA/LW = 0.019; a wavelength
LW of 9.20 m (30.20 ft), LW/LM = 1.62; and a wave velocity VW of
3.79 m/s (12.43 ft/s). At the experimental model speed of 3.58 m/s
(6.96 knots) the frequency of encounter is 0.8 hertz which is the same
as the model pitching frequency. Operation in waves with pitching of
the model hull necessitated a reduction in the amplitude of the pitch
of the model hull and/or the amplitude of the waves from the afore-
mentioned values in order to prevent flooding of the model hull. The
minimum amplitudes of the hull pitch and the waves were 0.67 degree and
75 mm (0.25 ft), respectively (see Table 1). The frequency of the hull
pitching and the frequency of encounter of the waves were both 0.8 hertz
for all experimental conditions with pitching and waves.

The selected amplitude and frequency of encounter of the waves,
and amplitude and frequency of the hull pitching were within the scaled,
predicted operating and response characteristics at full scale of an
equivalent transom-stern ship.

Air-spin experiments were conducted with all three flexures over a S
range of rotational speeds in order to isolate the effects of

% . . -.-: -?$i
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centrifugal and gravitational loading from hydrodynamic loading. Sup-
plemental experiments were conducted to assess the influence of the
downstream dynamometer boat on the flow in the propeller plane. These
supplemental experiments consisted of wake surveys in the propeller
plane in calm water without the hull pitching (Condition 1 in Table 1)
with and without the downstream body. These wake surveys yielded a
direct measure of the change in the velocity distribution through the
propeller disk attributable to the downstream body.

D. Data Acquisition and Analysis

Data were collected, stored, and analyzed on-line using a mini-
computer. A computer program was written with options for analyzing
each of the two basic types of runs: (1) operation in calm water with-
out hull pitching, and (2) operating with periodic hull pitching and/or
operation in regular waves. Data were collected and analyzed in the
same manner as described by Boswell et al. (197 6a, 1976b, 1978). For a
given run, the computer collected force, moment, propeller rotation

speed, model speed, hull pitch angle, and wave height at 4-degred in-
crements of propeller angular position over 200 to 300 propeller revo-
lutions.

For operation in calm water without hull pitching, the computer
was used to analyze and print the data. The average force and moment -..

signals for each 4-degree angular position were printed along with the
average model velocity and propeller rotation speed for the run. The
standard deviation of the accumulated data for the run was also calcu-
lated for V, n, and the force and moment signals at each position. A
harmonic analysis was performed on the force and moment data providing
the mean signal and amplitude and phase of the first 16 harmonics of
shaft speed.

For runs simulating hull pitching or waves, the force and moment
- data were selectively analyzed over the range of pitch angles or wave

heights measured. Initially, the values of pitch and wave height were -
averaged over each revolution of a given run. An analysis was
used to search through a series of similar runs extracting propeller

revolutions of force and moment data corresponding to prescribed values

of pitch or wave height with a prescribed slope and tolerance band. . -

Typically, 50 to 200 revolutions were averaged at each value of pitch or
wave height. Twenty-six positions in the pitch or wave cycle were L
selected for analysis.

For runs with pitching in waves, both the pitch angle and the wave

height were fed into the computer. The blade loading data could be
sorted based on either of these two signals. To check the proper phas-
ing between the two signals, the pitch and wave data were also analyzed
in the time domain. For each run, a strip chart record of the pitch

angle and wave height variation was printed, along with analysis of the . .

average frequency, amplitude and phase of the two signals. Runs with
consistent wave and pitching frequency, amplitude, and phases were
selected for blade loading analysis.
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!inal analvsis was conducted after the experimental agenda was
repeated for each of the three flexures representing the six components
o blade load. Corrections for interactions between the various load
components were performed for a representative condition in calm water
without hull pitching, as outlined by Boswell et al. (1976a, 1976b,
1978). The resulting load corrections were applied to all other condi-
tions in the experimental agenda. The total loading components were
corrected for the centrifugal and gravitational loads to obtain the

hydrodynamic loads. Corrections were also made to the mean loads to
account for the influence of the dynamometer boat.

E. Accuracy

The accuracy of the experiment was generally similar to that de-
scribed by Boswell et al. (1976a, 1976b, 1978). During the experiments,
the on-line analysis averaged data over many revolutions and computed
standard deviations of speed V, rotation speed n, forces, and moments, 

.

assuming a normal distribution in the variation of these quantities.
From this, a variation in the measured quantities was calculated with a
95 percent confidence level. Model speed V, and rotation speed n varied

Z_ by +0.5 percent from calculated mean values. For the condition in calm

water with no hull pitching, the force and moment signals at each angular
position measured, varied by +2 to +10 percent of the calculated average
value. Figure 5 shows the measured variation in the raw Fx signal.
Note that the variation in ferce at each angular position was greatest
when the blade was nearest the mouel hull. The variation of the loading
components during the pitching and wave conditions was +10 to +20 per-
cent of the mean values at each angular position. These variations were

* greater than the still water condition because each run was evaluated
over a certain tolerance range in pitch or wave height. It should be
noted that the variations from the mean represent the band in which 95
percent of the measured data lie. The accuracy of the mean values cal-
culated will be higher than the variations calculated.

Besides the fluctuation in signals occurring in a given run, the
overall accuracy of the data can be represented by the repeatability

between different runs. An effort was made to set experimental condi-
tions identically on repeat runs; however, the propeller rotational
speed and model velocity were set by hand, so some variation was unavoid-
able. The variation in the measured experimental conditions and the
blade loading data for repeat runs is similar to that documented by
Boswell et al. (1978) and Jessup et al. (1977) showing that the varia-
tions in the mean forces and moments were +4 percent over all the runs.

As discussed in the section on data acquisition and analysis, for

S.' operation with periodic pitching either with or without waves, the data
were sorted and analyzed based on instantaneous position in the pitch

. cycle, and for operation in waves without hull pitching, the data were
sorted and analyzed based on instantaneous position of the propeller in
the wave cycle. For periodic pitching runs, selection of a propelle".
revolution at a specified pitch angle y, in the pitch cycle necessitated

a tolerance of 0.05 degree to *; however, the average value of , for

P
J. . .. •
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which data were presented during the periodic pitching runs was generally "-*
within 0.02 degree of the target p. For runs in waves without hull ',
pitching, the selection of a propeller revolution at a specified instan-
taneous water level within the wave necessitated a tolerance of 5 mm
(0.20 in.) of the target water level.

Considering all sources of error including deviations during a run
and inaccuracies in setting conditions, the model scale forces and
moments presented in this paper are generally considered to be accurate
to within (plus or minus) the following variations:

F F M
MAX MMAX

N (lb) N (lb) N-m (in-lb) N-m (in-lb)

Calm water without 0.4 (0.1) 0.9 (0.2) 0.02 (0.2) 0.05 (0.4)
hull pitching

Pitching and/or 0.9 (0.2) 1.8 (0.4) 0.05 (0.4) 0.09 (0.8)
waves

The values are somewhat more accurate for the runs in calm water
without pitching than for runs with pitching and/or waves, because the
experimental conditions could be controlled more precisely for runs in
calm water without waves and the measured forces and moments were aver-
aged over many more revolutions of the propeller. The time-average
values per revolution (based on 90 samples per revolution) are slightly
more accurate than the maximum values (based on one sample per revolu-
tion) which took into account the variation with blade angular position.
Further, the peak values may have been slightly influenced by the dyna-
mic response of the flexures.

,'* .- .

III. DISCUSSION OF EXPERIMENTAL RESULTS

A. Loading Components i-)1.

The basic loading components are shown in Figure 2. For a right-
hand propeller, as used in this case, the sign convention follows the
conventional right-hand rule with right-hand Cartesian coordinate
system.

Each component of loading is represented as a variation of the in-
stantaneous values with blade angular position, 0, and as a Fourier
series in blade angular position in the following form:

N
F,M(e) = (F,M) + Z (F,M) cos{n6 - (4 F, n} (n)

n-"'. F,

...---

- - " - " " " . . . " . •" " - " ",. - - - -%
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In general, the loads consist of hydrodynamic, centrifugal and

gravitational components. However, in this paper, only the hydrodynamic
component of blade loading is presented. The results considering total
loads showed the same trends as results including only hydrodynamic
loads. Centrifugal and gravitational loads were measured to permit the
hydrodynamic loads to be determined by subtracting the centrifugal and

gravitational loads from the total experimental loads. The centrifugal
and gravitational loads were, of course, independent of hull pitching
and waves since all conditions were run at the same propeller rotational
speed, n.

B. Centrifugal and Gravitational Loads 0

Centrifugal and gravitational loads were determined from air-spin
experiments with each flexure over a range of rotational speed n. The
centrifugal load, which is a time-average load in a coordinate system L A :

rotating with the propeller, should vary as n2 . The time-average experi-
mental data followed this trend. The gravitational load, which is a
first harmonic load in a coordinate system rotating with the propeller,
should be independent of n. The first harmonic experimental data
followed this trend.

The centrifugal and gravitational loads measured during these ex- ,
periments agreed with the values determined by Boswell et al. (1981),

and the gravitational loads agreed with values deduced from the weights
of the blades and associated flexures. Therefore, these results will
not be repeated here.

C. Influence of Dynamometer Boat .

The results of the wake survey with and without the downstream body
(dynamometer boat) 

are presented in Figure 
6. Harmonic analysis of 

%Z' 16

these data indicate that the downstream body had only a small effect on

the circumferential and radial variations in the flow and only a small
effect on the harmonic content of the flow. However, they also indicate
that the downstream body reduced the volume mean speed through the pro-
peller disk by approximately 12 percent. These results are, of course,

without the propeller in place.

The change in effective speed through the propeller due to the
downstream body was deduced from thrust and torque identities between
the mean thrust and torque measured during the blade loading experi-
ments and mean thrust and torque measured during the corresponding self- ,

propulsion model-experiment. These results, which include the effect of , .

the propeller, indicate that the downstream body reduced the effective

speed through the propeller disk by approximately 14 percent; i.e.,
without the body, (l-wT) = 1.00 and (l-wQ) = 1.00, whereas, with the •
body, (l-wT) = 0.86 and (l-wQ) = 0.85. This agrees quite closely with 777.7

the 12 percent reduction in the volume mean speed due to the downstream
body as deduced from the wake surveys at the corresponding conditions.

% %
0'..,.'-



871

Based on these results, it was concluded that the downstream body
reduced the mean speed into the propeller by 14 percent for all con-
ditions. These reductions are somewhat larger than the 12 and 5 percent
reductions obtained by Boswell et al. (1976a, 1976b, 1978), respectively,
in which essentially the same dynamometer boat was used behind other
model hulls. However, in the earlier experiments the dynamometer boat
was not fully submerged.

- '. The downstream body will disturb the location of the shed and ....

trailing vortex sheets from the propeller. This may influence the
periodic and time-average propeller blade loads. No correction was made
for this effect.

Z- After the effects of centrifugal force were subtracted from the
S.measured loading components as discussed previously, the time-average

value per revolution of each hydrodynamic loading component was cor-
rected for the downstream body as follows: From the measured hydrodyna-
mic blade thrust (FxH ) and hydrodynamic blade torque (MxH), effective
advance coefficients based on thrust identity (JT) and torque identity
(JQ) were deduced from the open water data (Figure 7). These values
were multiplied by (1/0.88) to obtain corrected values of JTand Jo-
i.e., without the downstream body. The corrected values of Fx and M

* were then obtained from the open water data at the corrected a vance
coefficient JT and JQ, respectively. It was assumed that the downstream
body did not affect the radial centers of thrust FXH and tangential
force FyH . Therefore,

M corrected = (F corrected/F measured) (M measured)
XH XH Y

F corrected = (MH corrected/M measured) (FyH measured)-0

No corrections are made to FzH and Mz for the effect of the down-
stream body; however, FZH, MZH are small fMr all experimental conditions,
as discussed later. -

No correction for the effect of the downstream dynamometer boat
was made to the measured circumferential variations of the loading com-
ponents. Calculations made by the methods of Tsakonas et al. (1974)
and McCarthy (1961) indicated that the influence of the downstream body
alters the peak-to-peak circumferential variation of the loads by no
more than 2 percent.

D. Operation in Calm Water Without Hull Pitching

For operation in calm water without the hull pitching (Condition 1 .

in Table 1), Table 2 presents the time-average loads, Figure 8 presents
the variation of the Fx component of hydrodynamic blade loading with
blade angular position, and Figure 9 presents the amplitude of the .....

first 25 harmonics of the Fx component of hydrodynamic blade loading.
Based on the dynamic calibration by Dobay (1971), it was judged

that for all loading components the data are valid for the first 10



W -°7 V_ ,

872

har-mor-'cs. In addition, the wake data show no significant amplitudes
for harmonics greater than the tenth. Therefore, all data and analyses
except Figures 8 and 9 are based on reconstructed signals using the
first 10 harmonics. The symbols shown in Figure 8 indicate unfiltered -
values determined from the experiment; each represents the average value
at the indicated blade angular position for over 200 propeller revolu-
tions. The variation in measured values at a given angular position is
discussed in the section on accuracy. The lines on Figure 8 indicate
that the variations of the signals with blade angular position are
adequately represented by the number of harmonics retained.

The variations of all measured hydrodynamic loading components L .
with blade angular position for simulated propulsion in calm water with- '. ..-J
out hull pitching are shown in Figure 10. The amplitudes and phases of
the harmonics of these loading components are presented in Figure 9.

These data show that for hydrodynamic loading the variation of all
loading components was predominantly a once-per-revolution variation.
The extreme values for all loading components, except Fz and Mz, occur-
red near the angular position of the spindle axis, e = 114 and 270
degrees; i.e., within 24 degrees of the horizontal. The propeller eval-
uated has a projected skew angle at the tip of approximately 11 degrees;
therefore at the positions of extreme loading the blade tip is within
approximately 13 degrees of the horizontal. This suggests that the
tangential component of the wake is the primary driving force; see I '
Figure 6. The extreme values of Fz and M z occur within 20 degrees of
the extreme values of the other components. The reason for this varia- " "
tion in location of extreme values is not clear; however, it may be .J
partially due to experimental inaccuracy with the Fz-Mz flexure as dis- ,.
cussed by Boswell et al. (1976a, 1976b, 1978). Further the net stresses
in the blades are generally less sensitive to the Fz and Mz components
than they are to the other force and moment components.

The results presented here for circumferential variation of hydro-
dynamic loads follow trends similar to results presented by Boswell etal. (1976a, 1976b) for a single-screw transom-stern configuration and

results presented by Boswell et al. (1978) and Jessup et al. (1977) for
a twin-screw transom-stern configuration.

The circumferential variations and first harmonics of all loading
components except Fz and Mz were substantially larger fractions of their
time-average values for the condition evaluated here than they were for . %
the conditions evaluated previously on the models reported by Boswell
et al. (1976a, 1976b, 1978). For example, (Fx)I/Fx was 0.66 for the
present case, 0.40 from Boswell et al. (1976), and 0.R2 from Boswell et
al. (1978). The differences in the ratios of the circumferential vari-
ations of loads to the time-average loads for these three cases arise
from many factors including the propeller time-average loading coef-
ficients which are essentially independent of the unsteady loading, the

_magnitude of the circumferential variation of the wake (primarily the
amount of shaft inclination for the three cases under consideration
here), and propeller geometry especially the blade width and pitch-
diameter ratio. The ratio of the unsteady loading to the time-average
loading is useful for evaluating the unsteady loading of a given

- .- %
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propeller over a range of ship and propeller operating conditions; how-
ever, this ratio is not a good parameter for comparing the unsteady .
loadings on different propellers on different ships with different oper-
ating conditions. Analytical calculations, not presented here, confirm
that the periodic loading components for operation in calm water with
no ship motions should be larger fractions of the respective time-average .7I
loading components for the propeller-hull combination described in the
present paper than for those described by Boswell et al. (1976a, 1976b,

"" 1978). ..

E. Operation in Calm Water with Hull Pitching

Figure 11 shows the variations of peak values per revolution, time-
average values per revolution, and first harmonic values of the Fx and
Mx components of hydrodynamic blade loading with hull pitch angle 1P
(Condition 2 in Table 1). The F and M components showed similar vari-".' ations as in Figure 11, and the Fz and kz components were found to be '
relatively independent of hull pitch, and therefore are not shown.
Table 4 summarizes the maximum absolute values of the peak loads, first

harmonic loads, and time-average load per revolution for operation in
calm water with hull pitching.

Figure 11 shows the loading components at the individual pitch
angles analyzed. Spline curves were fit through the points shown. An
oscillatory behavior is shown in the peak and first harmonic loads at
the time when the hull is moving from stern-up to stern-down position.
This behavior was believed to be caused by observed slight transverse
oscillation of the dynamometer boat probably caused by vortex shedding.
This did not occur in the experiments described by Boswell et al. (1976a,
1976b, 1978) because the dynamometer boat was not completely submerged
in those experiments as it was in the present experiments. This be-
havior was believed to have no significance, since the model hull did
not oscillate transversely in a similar fashion. Therefore, this os-
cillation is faired out in the curves shown in Figure 11.

The time-average values per revolution for each of the two loading
41. components remained within 5 percent of their values in calm water

without hull pitching throughout the pitch cycle presented. The trends
in variations of the time-average values of the various components with
position in the pitch cycle are similar. The largest absolute values
of the time-average values per revolution of all loading components L
occurred near the time at which the hull pitch was passing through its

-*" equilibrium value from stern-up to stern-down; i.e., near (*- CW) =

The maximum absolute values of the peak loads increased by as much
as 22 percent relative to the time-average loads in calm water without
hull pitching above the corresponding peak loads in calm water without

'. hull pitching. Similarly, the maximum values of the first harmonic
loads increased by as much as 13 percent relative to the time-average ,

*. loads in calm water without hull pitching. The maximum absolute values
of both the peak loads and the first harmonic loads for all components

-f
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occurred approximately over the angular positions of 145 to 230 degrees
in the hull pitch cycle shown in Figure 11. This corresponds to the
portion of the cycle in which the hull was passing through its equili-

briui value from stern-up to stern-down; i.e., near w c te 0, <0.
ThiJs is the same portion of the pitch cycle during which the maximum
time-average values per revolution occurred; therefore, the maximum
increase in the time-average loads per revolution and the maximum in- .-. .
crease in the unsteady loads per revolution tend to add (they are in

phase rciative to the hull pitch) to yield the maximum increase in peak
loads. The smallest absolute values of time-average, peak loads, and
first harmonic loads occurred near - as the hull passed from the
stern-down to the stern-up portion of the cycle; i.e., (P - PCW) = 0,

<0.
Figure 12 shows the variation of the Fx component with blade

angular position for times in the pitching cycle where the minimum and
maximum peak loads occur. The effect of pitching motion is most extreme
at blade position angles around 135 degrees, where the maximum blade
loading occurs. This explains why the time-average loads and the peak
loads occur in phase during the pitching cycle.

The unsteady loads are important from consideration of fatigue of
the propeller blades, and of the hub mechanism for controllable pitch
(CP) propellers. Since a ship may operate for an extended period in a
rough sea, the effect of the ship motions, such as hull pitching, on

unsteady blade loads is significant. The difference between the peak
load and the time-average load per revolution is a measure of the un-
steady loading. With this difference as a measure of the unsteady load-
ing, the results with hull pitching showed that the unsteady hydrodyna-
mic loading for the various components increased by 26 to 38 percent
above their corresponding values for P = pCW without hull pitching.
This indicates that the effect of ship motions can significantly in-
crease the unsteady loading on the blades. Z..-

The difference in the unsteady loading with and without the hull
pitching is probably due to an additional relative velocity component

arising from the motion of the hull during pitching. As the hull passes
through 1 = cw the vertical velocity of the hull (and propeller) is a
maximum. As the hull goes from stern-up to stern-down through = CW,
the upward velocity component relative to the propeller plane tends to
increase above the values at fixed hull pitch at iP = CW. This tends
to increase the amplitudes of the first harmonic of the tangential
velocity, and thereby increase the unsteady loading (and increase the "
peak loading). The maximum vertical velocity of the propeller for
sinusoidal pitching with ( ipA W - CW) = 1.33 degrees and frequency = 0.8
hertz is approximately 0.29 m/s (0.96 ft/s). This is equivalent to
additional tangential and radial velocity component ratios (Vt/V and
Vr/V, respectively) of 0.082. For P fixed at p = W ((Vt0.7)l/V)

*0.199 and (VrO 7 )1 /V = 0.145 (from a harmonic analysis of the wake sur-
vev data). Therefore,

*6 .. '

. .. . .. . . . %
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(V) + V .%-
(tO.71 0.199 + 0.082 = 1.41(Vt71 0.199 =14 :,.'

and
(V )+v V'r0. 7 1 , 0.145 + 0.082

(V 0.145 = 1.56

These maxima occur at 0* = 180 degrees which essentially agrees with the
value of N at which the maximum loads were measured. The measured
increase in unsteady loads arising from hull pitching was somewhat
smaller than these calculated increases in tangential and radial veloc-
ity component ratios, for example:

F
xMAXI 0.89 . '...

F -F 0.72 =1..2
x~ xxMAX x"." ' -

Theoretically, the increase in unsteady loading should be approximately
proportional to the increases in tangential and radial velocity compo-
nent ratios; however as shown by Boswell et al. (1981) including calcu-
lations in the authors' closure to this paper, the tangential velocity
component appears to have a greater influence on periodic blade loads
than does the radial velocity component. This simple analysis provides
an upper bound to the dynamic pitching load, since the hull boundary
above the propeller would tend to reduce the dynamic pitching-induced,
upward velocity component relative to the propeller.

Other aspects of the data show the influence of the hull boundary
on the upward velocity component relative to the propeller. Figure 13
shows the propeller plane and hull configuration. It is clear that an
upward vertical fluid speed relative to the propeller due to pitching
would be minimum near the hull centerline corresponding to a blade ir
position angle of 270 degrees. The vertical fluid speed due to pitch-
ing would be a maximum at a blade position angle of 90 degrees where it
is close to the edge of the hull. Also, some outward turning of the
flow would be expected in this region as the hull moves downward into
the fluid.

This general character of the flow is represented qualitatively in
the effect of pitching on the blade load variation with angular posi-
tion, shown in Figure 12. As discussed earlier, the effect of pitching
is greatest at the outboard blade positions around 100 degrees, where
the vertical velocity component due to pitching is greatest. At the
inboard positions around 270 degrees, the blade loading is little af-
fected by the pitching motion since the hull boundary restricts the ....

relative vertical velocity. Also shown is a phase shift in the peak

. . . . . .. i, J.- -. . . .. . . . • . ,. .... ~.*. . . . . . . * , .. & .- _-t~~~~~...... ....... .,.............. . ,.. ..... A- .,. ,,.,, ..-



876 f

"" loadlrg between 90 and 135 degrees (also see Figure 11), which may be
related to the outward turning of the vertical velocity due to the hull.

Table 3 compares the results presented here for hull pitching in
calm water with the same type of results presented by Boswell et al.
(1976a, 1976b) for a single-screw transom-stern configuration, and with
results presented by Boswell et al. (1978) and Jessup et al. (1977) for
a twin-screw transom-stern configuration. The results presented in
Table 3 indicate that the experimental results on these three configu- -"-"-

rations are consistent. The unsteady loads presented in this paper
increased by smaller fractions of their values without hull pitching
than did the unsteady loads reported by Boswell et al. (1976a, 1976b, |
1978); however, this results from the smaller fractional increase in the
vertical velocity component relative to the propeller with hull pitching
of the present model than with the models reported by Boswell et al.
(1976a, 1976b, 1978). The estimated increase in vertical velocity com-
ponent due to hull pitching was larger than the measured increase in
unsteady loading with hull pitching for all three configurations. F U

Hull pitching was the only one of the six components of ship mo-
tions (surge, heave, sway, roll, pitch and yaw) for which blade loads
were measured. These experiments showed that hull pitching affects
primarily the peak and unsteady blade loading and that this effect

* appears to be controlled by the ratio of the maximum vertical velocity
of the propeller to the ship speed. It appears that the increases in U
the peak and unsteady blade loading due to the vertical velocity compo-
nent of the propeller are independent of the type of ship motions pro-
ducing this vertical velocity. Heave and roll (for propellers off the
ship centerline) also produce velocities in the vertical plane of the
propeller. Therefore, the effect of heave and roll on the peak and un-
steady blade loading can be deduced from the experimental results with
hull pitching by calculating the equivalent hull pitching required to
produce the same vertical velocity component of the propeller as pro-
duced by the specified heave and/or roll.

Surge, sway, and yaw do not significantly alter the flow relative
to the propeller in the vertical plane, therefore it is expected that
these ship motions would have an insignificant influence on the peak or
unsteady blade loading. The primary cause of this unsteady blade load .
in calm water without ship motions for hulls of the type under consider- ..---

ation here is the upward vertical wake velocity component relative to
the propeller plane, therefore any transverse velocity which is small
relative to this vertical wake velocity is insignificant when vectori- -

ally added to the vertical wake velocity component.
Blade loads were measured for only one pitching frequency. However, ..

any realistic hull pitching frequency is small relative to the propeller
rotational frequency; therefore, pitching frequency should not signifi-
cantly alter the trends of the experimental data. The magnitude of the
maximum vertical velocity for a given pitch amplitude is directly pro-
portional to pitching frequency; therefore the peak and unsteady com-
ponents of blade loading tend to increase as the pitching frequency
increases.

:'2 '~~~~~~..-...2" .. ... .... ".. . - ,. .. "... ....-.. ,-,. .... . - . -.. -. ... ""'''
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Blade loads were measured for only one amplitude of pitching. How-
ever, the maximum speed due to pitching is directly proportional to
pitching amplitude for a given frequency; therefore, the peak and un-
steady blade loading tends to increase as the amplitude of pitching in- -

creases. At large amplitudes of pitch the propeller may draw air near
the stern-up position. This would tend to unload the blade in the upper
portion of the propeller disk so that the unsteady blade loads would

increase but the peak loads would not increase. However, this is not

the portion of the pitch cycle at which the maximum vertical velocity of
the propeller occurs, therefore it appears that maximum steady loads
would be controlled by the maximum vertical velocity of the propeller

rather than by the air drawing.
Based on these results and those presented by Boswell et al. (1976a,

1976b, 1978), the increase in blade loads due to hull pitching can be
estimated for transom stern configurations as follows:

1. Time-Average Loads Per Propeller Revolution

Hull pitching increases the maximum time-average loads per revolu-

tion by only a small amount over the time-average loads per revolution in
without hull pitching. This increase can be approximated as follows:

= (Q)(2, A  z M )(A M-::'•'
AX, P A. A

where AL = maximum increase in time-average loads per revolution .13
with hull pitching over the value in calm water

L = time-average load in calm water

L = time-average load in waves

WA amplitude of the variation in hull pitch angle in

radians

In practice, this maximum increase in time-average loads per revolution

due to pitching is negligible relative to the corresponding increase due
to waves, as discussed later. '..-..'.

2. Periodic Loads

Hull pitching (in calm water) substantially increases the maximum
periodic blade loads over the corresponding periodic loads without hull ..-

pitching. The primary controlling parameter is the ratio of the verti-

cal velocity of the propeller resulting from the hull pitching to the
ship speed. The maximum periodic loads occur when the velocity of the
propeller and stern are maximum downward. This downward velocity of the
propeller effectively increases the inclination of the inflow relative

to the propeller and thereby increases the periodic loads. Due to the

* - . . . . * %-**"...
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displacement effect of the hull above the propeller, the vertical speed .

of the proptIler relative to the local fluid particles is only 60 per-
cent or less of the vertical speed of the propeller. Therefore, for .
ships with high-speed transom sterns with exposed shafts and struts, the
maximum periodic blade loads due to hull pitching can be approximated
from the corresponding loads without hull pitching as follows:

0.6 V ,
' MAX,'i V . ,.

where L = maximum increase in periodic loads with hull pitching
"lx over the values without ship motions

L periodic blade load without ship motions

V = vertical component of spatial average crossflow velocity fl

in propeller plane without ship motions

V" maximum vertical velocity component of the propeller

due to the pitching motions

3. PeA k Loads

The maximum values of the periodic variation of loads with angular
position and the time-average loads per angular position occur near the
same point in the pitch cycle. Therefore, the increase in peak loads
due to hull pitching is approximately the sum of the increases in these
compnnentc3:

PEAK, MAX, + AL ,"X,.

The nZ-1, nZ, and nZ+l harmonics of blade loads directly contribute
to the perLodic loads on the propeller shaft and bearings. Full scale
measurements (Tasaki, 1975) indicate that the amplitudes of periodic
bearing loads are modulated by the influences of a rough sea. The maxi- .

mum amplitudes of these modulated loads at blade rate frequency are ....-.

commonly more than a factor of two greater than the corresponding ampli-
tudes of the loads measured in a calm sea as discussed by Lipis (1975)
and Tasaki (1975). In the present investigation, the influence of hull
pitching on periodic bearing loads was investigated by evaluating the
influence of pitching on the pertinent harmonics of blade loads.

In the investigations described by Boswell et al. (1976a, 1976b,
1978), no analvsis was made of the harmonics of blade loads beyond the
dominant first harnonic because of their small amplitudes which were,
in many cases, around one percent of the time-average thrust (for
forres) and torque (for moments). However, for evaluating the effects
of waves and pitching on periodic bearing loads, the variations of these .'

- '.,:-... "':":'4. "
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quantities with wave and pitching parameters are more important than the

* actual values of the small, pertinent higher harmonics of blade loads.

Figure 14 shows the variations of the first 10 harmonics of the Fx
component of blade loading with location through one pitch cycle. The

value of each harmonic amplitude is nondimensionalized on its calm water
.* value. The variations of the amplitudes of the second, third and fourth

harmonic are similar in magnitude to the dominant first harmonic of . ,
blade loading. These components are the major contributors to the blade -.

loading variation with blade angle, as shown in Figure 9. The ampli-
tudes of the fifth through the eighth harmonics show much larger varia-

tions with pitch angle relative to the respective time-average values.
This result implies that the relatively small, higher harmonics of blade

loading associated with unsteady bearing forces, are very sensitive to

relatively small changes in the wake pattern.

F. Operation in Waves Without Hull Pitching

Figure 15 presents the variations of the peak values per revolution,
time-average values per revolution, and the first harmonic values of the

Fx and Mx components of hydrodynamic blade loading with wave height for
operation in waves without hull pitching (Condition 3 in Table 1). The

Fy and MY components showed similar variations zs I Figure 15, and the l

Fz and Mz components were found to be relative,:. independent of wave

height. Table 5 summarizes the maximum absolute values of the peak
loads, first harmonic loads, and time-average loads per revolution for

*" operation in waves without hull pitching.

The maximu: absolute values of the time-average loads per revolution

LMAX, increased by as much as 14 percent above the corresponding time-

average loads in calm water without hull pitching LMAX" This is quite
different from the corresponding result with hull pitching in calm water
where the time-average loads per revolution increased by a maximum of
only 5 percent above the corresponding time-average loads in calm water

without hull pitching. The variations of the time-average loads per

revolution approximately followed the local wave elevation in the pro-
peller plane so that the maximum and minimum time-average loads per

revolution occurred at approximately 36 degrees of the wave cycle of
encounter before the time at which the wave trough and peak, respective-
ly, were in the propeller plane.

The variations of the time-average loads per revolution with posi-

tion in the wave are consistent with trends reported by McCarthy et al.
"" (1961). McCarthy et al. measured the low frequency variation of pro-

peller shaft thrust and torque with position in the wave for steady
ahead operation in regular head waves without ship motions and without
a nearby hull. They did not measure individual blade loads; however,

"* the variations of low frequency shaft thrust and torque are essentially
the same as the variations of thetime-average values per revolution of
blade thrust Fx and blade torque Mx . The results of McCarthy et al.

agreed with the results of the present investigation in that the maxi-

mum values of the thrust coefficient KT and torque coefficient KQ

% %.
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occurred when the trough of the wave was near the propeller plane, and
the minimum values of KT and KO occurred when the crest of the wave was
near the propeller plane.

The variations of the time-average loads per revolution are also
reasonably consistent with trends predicted by a combination of tro-
choidal wave theory and the quasi-steady propeller theory of McCarthy
(1961). According to trochoidal wave theory, the orbital velocities in

• °the head waves vectorially combine with the propeller speed of advance
so that speed into the propeller is a maximum when the crest of the
wave is in the propeller plane, and the axial velocity component into

. the propeller is a minimum when the trough of the wave is in the pro- -
peller plane. According to simple quasi-steady propeller theory, which
should be valid for the low frequency variation of the velocity compo-
nents in a wave, the maximum and minimum time-average loads per revolu-
tion occur when the speed into the propeller plane is minimum and

maximum, respectively.
The maximum absolute values in waves of time-average thrust per

blade FH,MAX,, and time-average torque per blade MxHMAX, , were corn-

pared with values caluclated by trochoidal wave theory and quasi-steady
propeller theory. In these calculations, the spatial average velocity
through the propeller disk under the trough of a trochoidal wave was
determined using the formulation of McCarthy et al. (1961). This formu-
lation does not consider any possible effect of the hull on trochoidal
wave velocities. This spatial average velocity and the quasi-steady
procedures of McCarthy (1961) were used to calculate the values of

XHMAXC and MXHMAX, . The comparison with experimental results is as .''

follows:

Experimental Theoretical

F /F 1.12 1.14

XH,1,AX, X'H

M1.09 1.11

This agreement between theory and experiment is considered to be
satisfactory and correlates well with the findings of McCarthy et al.
(1961) and others as summarized by Tasaki (1975). The small differences
between theory and experiment may be due to the influence of the hull on
wave velocity distribution. The effect of the hull may account for the
discrepancy between theory and experiment of the relative phase between
the maximum mean loads and the wave trough. The measured result showed ".'''
the phase of the maximum load leads the theoretical result by approxi-

mately one-eighth of the wavelength.
The maximum absolute values of the peak minus time-average loads

per revolution L increased by as much as 12 percent of the time- -. 9-

average loads in caii water without hull pitching above the correspond-
ing peak minus time-average loads in calm water without hull pitching,
LMAX-L (see Table 4). Similarly, the maximum values of the first

'. :-.'
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harmonic loads (L)IMAX, increased as much as 9 percent of the time-
average loads in calm water without hull pitching above the correspond-
ing first harmonic loads ii. calm water without hull pitching, (L)1 . The

variations of the peak minus time-average loads per revolution and the
first harmonic loads approximately followed the local wave elevation in
the propeller plane so that their maximum absolute values occurred at
approximately 45 degrees of the cycle of encounter before the time at
which local wave elevation passes through the calm water level from
negative to positive (c = 0, c>0). V.0

The variations of the peak minus time-average loads per revolution L
and first harmonic loads are reasonably consistent with trends predicted
by trochoidal wave theory. According to computations by McCarthy et al.
(1961) using trochoidal wave theory, the longitudinal components of the -hA.

orbital velocities are essentially independent of location in the pro-
peller disk; therefore, the longitudinal components of orbital veloci-
ties do not contribute to the circumferential variations of propeller
blade loads. Trochoidal wave theory predicts that the vertical compo- •
nents of the orbital velocities in the head waves reach their maximum
values in the upward direction at the position where ¢ = 0 and >0.

.*.- The wake into the propeller disk for the present hull is predominantly
,- an upward velocity due to the inclination of the propeller shaft rela-

tive to the hull (see Figure 6); therefore, at = 0, L>0 the orbital
velocity and the wake velocity vectorially combine to produce the maxi-

. mum upward velocity relative to the propeller, which is equivalent to

.* the maximum first harmonic of the tangential velocity. The first har-
monic of the tangential wake is the primary cause of the unsteady blade
loads on the present hull operating in calm water without pitching;

- therefore, the maximum unsteady loads in trochoidal waves should occur L
at r = 0, >0. The measured results show the phase of the maximum

-" unsteady loads leads the predicted result by approximately one-eighth
"" of a wavelength. ,..

The ratio of the maximum variation of blade loading with blade -*.$.'

angular position in waves to the corresponding variation of blade load-
ing in calm water should be proportional to the ratio of the maximum
vertical velocity in waves to the corresponding vertical velocity in
calm water (since the vertical velocity is proportional to the first
harmonic of the tangential component of velocity). The temporal maxi-
mum upward vertical velocity in the propeller plane (this velocity is
essentially constant over the propeller disk) in a trochoidal wave
corresponding to Condition 3 in Table 1 was calculated using the formu-
lation of McCarthy et al. (1961) to be 0.235 m/s (0.772 ft/s). This is r.-.
equivalent to an additional tangential velocity ratio Vt/V of 0.066.

.j The value of (Vt0.7)l/V for operation in calm water is 0.199 from the ....

wake survey results. Therefore, ... ..

t(Vt .7) IMAX /V 0.199 + 0.066- = = i~. 33 ..-..
(Vt0 .7) I/V 0.199

'A" %:
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This maximum ratio, which does not consider the effect of the hull on
the vertical component of the trochoidal wave velocities, is predicted
to occur when the wave elevation at the propeller plane is increasing
through the calm water level, i.e., C = 0, >O. The measured increase
in the variation of loads with blade angular position for operation in
waves was somewhat smaller than this calculated increase in tangential .
velocity; for example:

/(F -T) 1.17

(F) /(F) = 1.12
X 1MAX,C xl1

This simple analysis is believed to provide an upper bound to the in-
crease in variation of loads with blade angular position due to opera- "
tion in waves, since the hull boundary above the propeller would tend
to reduce the vertical component of the trochoidal wave velocity. The
corresponding measured increase for other components of blade loading

4are presented in Table 5.
The maximum absolute values of the peak loads per revolution in- 0

creased by as much as 22 percent of the time-average loads in calm water
without hull pitching above the corresponding peak loads in calm water
without hull pitching (see Table 5). This increase in peak loads is
made up of the increase in the time-average loads per revolution (up to
14 percent) and the increase in the circumferential variation in loads,
or peak minus time-average loads per revolution (up to 12 percent).
The increases in the time-average loads per revolution and the increases
in circumferential variations of loads are thought to arise from dif-
ferent physical characteristics of the flow as discussed previously;
however, the maximum increase in the time-average loads and circumfer-
ential variations of loads occur in the same portion of the wave period.
Therefore', these two separate increases tend to add almost in phase
relative to the wave period so that the maximum increase in peak loads
is almost the algebraic sum of the maximum increases in the time-average ,, .

loads per revolution and the maximum increase in the circumferential
variation of loads.

Figure 16 shows the variation of the Fx component of blade load
with angular position for different times during one wave cycle. The .

variation of the circumferential distribution to waves appears to be
more complicated than the corresponding variation due to pitching. This "•.°" ''
is attributed to the combined effect of the longitudinal and vertical

velocities induced by the wave. As in the case of pitching, the great- .. ..

est magnitude of loading occurs at blade angles around 90 degrees,
corresponding to the outboard position of the blades relative to the
propeller shaft. Also, the phase angle of the maximum load varies with -

position relative to the wave, but with the combined effects of mean and
unsteady load variations no clear trends are observed. The variation

JIM-
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in first harmonic phase shown in Figure 15 indicates a significant
change in vertical flow direction due to the hull.

' Blade loads were measured in regular head waves at only one wave

amplitude and wavelength. The experiments showed that the increases in
both the time-average loads per revolution and the unsteady loads due to -

waves appears to be controlled by the orbital velocity in a trochoidal
wave. It appears that the increase in both the time-average loads per
revolution and the unsteady loads are proportional to the orbital veloc-
ity. The orbital velocity, and thus the approximate increase in loads, .

is directly proportional to the wave height and inversely proportional
to the square root of the wavelength (Lewis, 1967, McCarthy et al., L ...
1961), neglecting any possible influence of the hull on these trends.

The vertical component of the orbital velocity, which controls the
increase in unsteady blade loading due to waves, is independent of the
direction of the waves relative to the ship heading. Therefore, the
increase in unsteady blade loading due to waves is essentially inde-
pendent of the relative direction of the waves. The component of the
orbital velocity in the direction of the ship velocity, which controls
the increase in the time-average loads per revolution due to waves, is
proportional to the cosine of vi, the angle between the direction of the
waves and the ship heading. Therefore, the increase in the time-
average loads per revolution is essentially proportional to cos v,
neglecting any possible influence of the hull on these trends. * S

Based on these results the increases in blade loads due to waves
can be estimated for transom-stern configurations as follows:

1. Time-Average Loads Per Revolution

Waves (without ship motions) substantially increase the maximum
time-average loads per revolution over the corresponding time-average
loads in calm water. The primary controlling parameter is the change
in effective advance coefficient due to the longitudinal component of
orbital wave velocity. The hull boundary above the propeller does not
appear to significantly influence the longitudinal component of orbital

wave velocity. Therefore, the maximum increase in time-average loads
per propeller revolution due to waves can be adequately predicted by
the use of the trochoidal wave theory neglecting the influence of the
hull on the waves, and simple quasi-steady propeller theory using the
open-water characteristics of the propeller.

2. Periodic Loads

Waves (without ship motions) substantially increase the maximum
periodic blade loads over the corresponding periodic loads in calm
water. The primary controlling parameter is the ratio of the vertical
component of the orbital wave velocity in the propeller plane to the
ship speed. The maximum periodic loads occur when the vertical compo-
nent of the orbital wave velocity in the propeller plane is maximum
upward. This upward orbital velocity component effectively increases
the inclination of the inflow to the propeller and thereby increases

%.'j
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the periodic loads. Due to the hull boundary above the propeller, the
maximum upward orbital velocity into the propeller is only 50 percent
or less of the corresponding upward orbital velocity in an unbounded
fluid for ships with high-speed transom sterns and exposed shafts and
struts. Therefore, for these ships the maximum periodic blade loads due
to waves can be approximated from the corresponding loads without waves
as follows:

0.5V 0.5V
AIAX (V z L

where At -maximum increase in periodic loads with waves over the -.

values in calm water

- periodic blade load in calm water

V = maximum vertical component of the orbital wave velocity
in the propeller plane neglecting the influence of the
hull

(V t0.7) i first harmonic of the tangential wake at the 0.7 radius
in calm water

V - vertical component of spatial average crossflow velocity
in propeller plane in calm water

3. Peak Loads

The maximum values of the periodic variation of loads with angular
position and the time-average loads per angular position occur near the
same point in the wave cycle. Therefore, the increase in peak loads due
to waves is approximately the sum of the increases in these components:

AL 4AL + ALPEAK, MAX, MAX, C..

Figure 17 shows the variations of the higher harmonic amplitudes
of the Fx component of blade load through the wave height cycle. For
the case of waves, it appears that the second through fifth harmonic
amplitudes show distinct periodic variations up to 50 percent of the
calm water values. The sixth through tenth harmonic amplitudes show a
more random variation of a lesser extent. This is contrary to the
pitching results where less variation occurred over the greater and
lesser harmonics and extreme variations occurred in the fifth through
eighth harmonics. The large variation in the third, fourth, and fifth 9
harmonic amplitudes of Fx would lead to significant modulation in the
periodic bearing forces produced by the four-bladed model propeller.
The large variation in the second through fourth harmonic amplitudes

%~
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of Fthe amplitudes of which range from 2 to 13 percent of the time-
average value, also explain some of the complexity of the wave forms
shown in Figure 16. These harmonics have consistent variations in phase

angles of up to 45 degrees.

As discussed in the section on experimental conditions and pro-

cedures, for forced pitching in waves the phase of the wave at the pro-
peller 4D was varied relative to the phase of the hull pitching DP. .
Three relative phases were evaluated:

a. Wave crest at the propeller plane when the stern of the model
hull is pitched up at its maximum value, (D -4 = 0 (Condition 4 in
Table 1),

b. Wave crest at the propeller plane when the stern of the model
hull is pitched down at its maximum values, - (= 180 degrees (Con- '

dition 5 in Table 1), and "-.

c. Wave crest at the propeller plane when the hull pitch is pass- , .

ing through its mean value - from stern down to stern up,
- = 90 degrees (Condition 6 in table 1).
Experiments for each of these conditions were conducted at the

same model speed, propeller rotation speed, pitching period, wave
period of encounter as were the condition in calm water with hull pitch-
ing, and in waves without hull pitching, as described in the preceding
sections (see Table 1). However, in order to ensure a large influence
of the pitching or waves on blade loads while not flooding the model
hull, it was necessary to run each of the four pitching conditions with

a different pitch amplitude PA, and each of the four conditions in
waves with a different wave amplitude CA (see Table 1).

The primary objectives of this portion of the experimental program
were:

a. To determine the validity of linearly superimposing the in-
crease in blade loads due to pitching in calm water, and the increase
in blade loads due to waves without hull pitching, to obtain the net
increase in blade loads due to hull pitching in waves,

b. To determine the influence of the phase of the hull pitch
relative to the phase of the wave ( - on the maximum absolute 72
values of the peak, unsteady and time-average blade loads, and

c. To determine the values of (& - D)O which result in the
largest values of peak, unsteady and time-average blade loads for dif-
ferent relative values of pitching amplitude *A and nondimensional-
wave amplitude, 1A/Lpp.
Therefore, the experimental results will be discussed and interpreted
from the viewpoint of these three objectives.

In order to determine the validity of linearly superimposing the
increase in blade loads due to the pitching only and the increase in
blade loads due to waves only, the experimental results with hull pitch-
ing in calm water and the experimental results in waves without hull
pitching were linearly combined to simulate the blade loads for the ,

%.\\
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three experimental conditions with hull pitching in waves. The linear
superposition accounts for the phase differences between the hull pitch-
ing and the waves, and for the differences in amplitudes of pitching .
and waves for the various experimental conditions. It is assumed in
this linear superposition that the increases in loading due to hull
pitching and waves are directly proportional to the amplitude of the
hull pitching and the amplitude of the waves, respectively.

From the experiments in calm water with hull pitching (Condition 2
in Table 1) the increase in loading due to a unit pitch amplitude is:

AL (t,)/, A = (L (t,) -L)/A
4) A 4))A

AL (t)4 M, ~ )-f.(t)/A =(.t)- (LMA x - -f))/'PA":'" '"

From the experiments in waves without hull pitching (Condition 3 in
Table 1) the increase in loading due to a unit wave amplitude is:

AL (t )/ A = (L (t) - L)/A

A LMAXL)/
, :.- AL(t )I A =(L(t)- (M x - lA"""

Linearly superimposing the above increases in loading due to pitching
only and due to waves only, the predicted loads with pitching amplitude
SA*, wave amplitude CA*, and with the wave leading the pitch by
(C - D)TE/27 seconds is

L (t) = AL(t) + L((t + (0 - )T/20)* + L

" )~ ,(tA)L=, (/t) VIA* + Ai ((t + (0 '0)TE/2 )A* + (LMA L)

L (t)=L + (t)
FiuePEAK,4),C U ' '

Figure 18 compares Fx component loads calculated by this linear

superposition procedure with loads measured in waves with hull pitching N-
for the three conditions run, OC - 0, 4 - 0= 180, (P - * - 90 .'

degrees. Figure 18 shows that the linear superposition gives a reason-
- ably good estimate of both the magnitudes and the variations with posi-

tion in the pitch and wave cycles of the peak loads, unsteady loads, and
time-average loads per revolution. For most conditions the values based
on linear superposition are slightly larger than the measured results.

". - ,

---.-. --....- ,.... . ..- .

p_ .. - .. - - : . % ' . .. .. - . -,- . - . - -. . . . . . .. . ....t . .... P- f - - -t . . - - , . . .. .
.,-':-:f. % p *:-~f..> .- %-'-.>C-. -.- -



887 A_

Therefore, it is concluded that linear superposition of the separate
increases in blade loads due to pitching and waves gives a good, or
slightly conservative, estimate of net increase in blade loads due to
operation in waves with hull pitching.

In order to evaluate the relative importance of the amplitude of
hull pitching, the amplitude of the waves, and the phase difference
between the hull pitch and the wave at the propeller, the experimental
results with hull pitching in calm water and the experimental results in
waves without hull pitching are linearly combined as described previously
to simulate blade loads for the following values of $A, and CA/Lpp:

WA = 1.0 degrees, CA/Lpp = 0.01 - representing calm to moderate
sea conditions

A 2.0 degrees, A/L 0.03 - representing moderate to rough
A A PP

sea conditions v -.

Figure 19 presents the maximum values of the Fx component time-
average loads per revolution, peak loads per revolution, and the peak
minus time-average loads per revolution calculated by linear superposi-
tion for the selected values of pitch amplitude and wave amplitude over
the complete range of the relative phase between the pitch and the wave.
Only the Fx component is shown since the pertinent trends are basically
the same for the Fx, M , MX, and Fy components. The abscissa of these
curves, D - O1, is the phase angle by which the pitch lags the wave at
the propeller relative to the frequency of encounter or the pitching

frequency.
The results shown in Figure 19 indicate that for given amplitudes

of waves and pitching the maximum values of the time-average loads per
revolution, peak loads, and unsteady loads (peak loads minus time-
average loads per revolution) vary substantially depending on the dif-
ference in phase between the hull pitch and the wave at the propeller,
D - (p. The peak loads are more sensitive to this difference in phase
than are the unsteady loads which, in turn, are more sensitive than the
time-average loads per revolution. The time-average loads, peak loads,

and periodic loads are near their respective largest values in the
region where -30 degrees <(4D - @W)< 120 degrees; i.e., where the crest
of wave reaches the propeller between 120 degrees before and 30 degrees -.

after the maximum stern-up position in the pitch cycle. Over this
region of O- D the maximum increase in loads due to pitching in calm
water and the maximum increase in loads due to waves without hull pitch-
ing add almost algebraically, i.e., there is very little cancellation |

due to phase differences between these increases. The values of the
maximum peak loads and maximum unsteady loads reach their smallest .

values near P - D = 240 degrees. These trends hold true for the Fx,
My, Fy and Mx components for all combinations of amplitudes of hull
pitching and amplitude of waves which were evaluated.

In summary, the experiments with hull pitching in regular head
waves with pitching frequency equal to the wave frequency of encounter
showed the following:

........-... -...... . . . . .
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a. For given amplitudes of waves and pitching the maximum values
of the time-average loads per revolution, peak loads, and the periodic
variation of loads with angular position vary substantially depending
upon the difference in phase between the hull pitch and the wave at the
propeller. The time-average loads, peak loads, and periodic loads are
near their respective greatest values for any difference in phase where-
by the crest of the wave reaches the propeller between 0.3 and -0.1 of
the period of encounter before the maximum stern-up position. ..- '

b. Linear superposition of the increases in blade loads due to
pitching in calm water and due to waves without hull pitching, taking
into account the phase between the waves and the pitching, gives a sat-
isfactory, or slightly conservative, estimate of the net increase in .
blade loads due to operation in waves with hull pitching. For engineer- . 9

ing calculations, it is recommended that the absolute values of the ..-

maximum increases in time-average, peak, and periodic loads due to the
separate influences of waves and hull pitching be added without regard
to the relative phase between the wave and the hull pitching. A

IV. DISCUSSION . .

The results presented in this paper showing the effects of hull
pitching and waves on the dominant once per propeller revolution varia-
tion of loads provide extensive insight to the flow patterns in the
propeller plane under these conditions. These data and insights should
form a basis for developing and validating a computational procedure for
predicting blade loads under these conditions.

The experimental results presented here are applicable to only high
speed transom stern configurations. The influences of the hull bound-
ary of more complex stern geometries, such as for full stern cargo
ships, are more complex. Experiments of the type described in this
paper would serve as a valuable guide for validating any computational
procedure applied to cargo ships. U

The prediction of the modulation of bearing loads due to waves and
pitching cannot be performed using the simple procedures described in
this paper. More elaborate models of the interaction between the pro-
peller wake and the waves and pitching influences may capture the
fundamental nature of the modulation of the bearing loads.

All results presented in this paper are in the absence of cavita-
tion. It is anticipated that if cavitation were sufficiently extensive
to influence blade loads it would reduce the maximum time-average and
periodic loads. Therefore, it is Judged that neglecting cavitation
results in a conservative estimate of maximum loads.

A.
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V. SUMMARY AND CONCLUSIONS

Fundamental investigations were made of the effects of periodic hull
pitching motions and waves on the periodic loads on propeller blades and
bearings. These periodic loads were measured during carefully con-

trolled model experiments on a twin-screw, transom-stern hull. The
objective of these experiments was to obtain systematic accurate experi- . -

mental data showing the effects of hull pitching and waves on periodic
* and time-average blade and bearing loads under carefully controlled

experimental conditions so that the effects of ship motions and waves on .. 4
periodic and time-average blade and bearing loads could be isolated.
The experiments were conducted under steady ahead operation in calm

" water with no ship motions, in calm water with forced sinusoidal pitch-
ing of the hull, in regular waves with no ship motions, and in regular

* waves with forced sinusoidal pitching of the hull at a frequency equal
to the wave frequency of encounter over a range of phases between the

pitching motion and wave encounter. An error analysis indicates that
the experimental results are sufficiently accurate to support the con-
clusions drawn. The periodic blade loads were calculated using trochoi-
dal wave velocity profiles, and a representation of the propeller based
on a quasi-steady method. ..*

The experimental results show the following: * U
a. The amplitudes of the periodic blade loads are significantly

modulated hull pitching motions and wave encounter.
b. The time-average blade loads per propeller revolution vary

significantly with wave encounter but only slightly with hull pitching
motion.

c. The peak blade loads per revolution vary significantly with "
hull pitch~ng m-tions and wave encounter.

d. The individual influences of the wave velocity profile and the
induced velocities due to vertical hull motions can be linearly super-
imposed for transom stern configurations.

The results show that the hull significantly alters the amount of
modulation of the shaft frequency loads due to both the periodic ver- .

tical motion of the propeller and the trochoidal wave velocity profile
in the absence of the hull. However, trends of shaft frequency loads
are well predicted by simple periodic variations of the velocity into
the propeller, and a simple quasi-steady representation of the propel-
ler. The quasi-steady representation of the propeller is sufficient for
this application because the frequencies of encounter of the waves and
of the hull pitching motions are low relative to the propeller rota-
tional speed; i.e., the reduced frequency is low. Therefore, for engi-

neering purposes, the modulation can be estimated by simple trochoidal
wave velocity profiles, quasi-steady propeller theory, and constant - .. .-

multiples derived from the experiments presented in this paper.
The experimental results show that the first eight shaft rate

harmonics of blade loads are modulated and increased by hull pitching - '.

motions and waves relative to the respective values in calm water without
hull pitching. Comparable modulations and increases in bearing loads

%. %
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are anticipated, where the number of blades determines the pertinent
harmonics of blade loading. However, the data are not sufficient to
quantify the modulations of bearing loads due to hull pitching and waves
nor to provide guidance for predicting these modulations.

Trends of the results for both blade loads and bearing loads are
consistent with available full-scale data.
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NOTATION

6'**

c Chord length

D Propeller diameter
- (F)n  nth harmonic amplitude of F

Fx,y,z Force components on blade in x,y,z directions

-JQ Effective advance coefficient based on torque identity

JQ Effective advance coefficient based on thrust identity
KQT Torque coefficient, Q/(pn

2D5 )

KT Thrust coefficient, T/(pn
2D4 )

L Any of the measured components of blade loading . -
Lpp Length between perpendiculars
LW  Wavelength .. -. --

S(M) n  nth harmonic amplitude of M
Mx~y~z Moment components about x,y,z axes from loading on one blade
n Propeller revolutions per unit time
R Radius of propeller
r Radial coordinate from propeller axis
TE Period of encounter of waves
TQ Period of pitching
t Time
t(r) Maximum thickness of propeller blade section

V Model speed or ship speed
VA Propeller speed of advance
VC  Vertical component of the spatial average crossflow velocity

in propeller plane in calm water without ship motions

Vr(r,eW) Radial component of wake velocity at propeller plane,
positive towards hub

Vt(r,ew) Tangential component of wake velocity at propeller plane,

positive counterclockwise looking upstream for starboard
propeller (right-hand rotation), positive clockwise looking %
upstream for port propeller (left-hand rotation)

(Vt)n  nth harmonic amplitude of Vt
VW  Wave velocity

Vx(r,OW) Longitudinal component of wake velocity at propeller plane,
positive forward

V Maximum vertical velocity component of propeller resulting

from hull pitching motions
WQ Taylor wake fraction determined from torque identity

,- , Taylor wake fraction determined from thrust identity
Wake fraction determined from volume mean longitudinal - -

velocity component through propeller disk determined from
a wake survey, (V-Vv)/V

x,y,z Coordinate axes rotating with propeller; see Figure 2
Z Number of blades

Instantaneous wave elevation, positive upward from undisturbed

surface

A Wave amplitude

e.,
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-. . " "'."' -

-i• %



893

0 Angular variable in cycle of wave encounter, 2 lT/TE; =

when C = 0, C>0"
O Angular variable in cycle of hull pitching, 27t/Tp; 0G =0

when i = 0, ->O
a Angular coordinate used to define location of blade and vari-

ation of loads measured from vertical upward; positive clock-
wise looking upstream for starboard propeller (righ-hand
rotation), positive counterclockwise looking upstream for

port propeller (left-hand rotation), = -W

oW  Angular coordinate of wake velocity measured from upward
vertical; positive counterclockwise looking upstream for
starboard propeller (right-hand rotation), positive clockwise
looking upstream for port propeller (left-hand rotation),
ow = - .

vI Angle between the direction of the waves and the ship
centerline

p Mass density of water
(PC Phase of wave at the propeller plane based on sine series,

C(t) = CA sin (OC + I)
P Phase of hull pitch based on sine series, '(t) = 'A sin

(N +
'(r) Pitch angle of propeller blade section, tan-1 (P/(27rr))
(OF,M)n nth harmonic phase angles of F,M based on a cosine series,

-N

(F,M) (F,M) + Z (F,M)n cos (no - (0,)n)
n=l F,M) n)

'P Pitch of hull, positive stern up

A Amplitude of hull pitch angle

Subscripts:
CW Value in calm water
Exp Experimental value -,

H Arising from hydrodynamic loading
h Value at hub radius
M Model value
MAX Maximum value | ,
MIN Minimum value
p Port propeller
PEAK Peak value including variation of both time-average value per

revolution and variation with blade angular position
s Starboard propeller
x,y,z Component in x,y,z direction
0.7 Value at r = 0.7R

Value for operation in waves
'Value for operation with hull pitching motion

Superscripts:
- Time-average value per revolution

Unsteady value, peak value per revolution minus time-average
value per revolution

* Rate of change with time

-7I
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Table 1 - Experimental Conditions

FOR ALL EXPERIMENTS: VM = 3.58 ms (6.96 knots)

nM = 18.80 rps

v =0.86
01 -w T = 1.00 • .-*' ", , .

JT =0.86* K .

+ WA (DEG) f (H.) f A 1pp f (H1) L/L p 0 - 1)

1 Calm Water without Hull Pitching 0 NA NA 0 NA NA NA

2 Hull Pitching in Calm Water 1.33 0.80 2.63 0 NA NA NA

3 Waves without Hull Pitching 0 NA NA 0.021 0.80 1.62 NA

4 Hull Pitching in Waves 0.67 0.80 2.63 0.014 0.80 1.62 0

5 Hull Pitching in Waves 1.09 0.80 2.63 0.022 0.80 1.62 180

6 Hull Pitching in Waves 1.03 0.80 2.63 0.020 0.80 1.62 90

• Effective value without dynamometer boat S.

+ Number of Condition

Table 2 - Time-Average Hydrodynamic Loads for Operation in Calm
Water without Hull Pitching*

F 32.64 N + 7.338 LB ++ K~2  0.0383 ++

M 2.463 N-m + 21.801 IN-LB ++ KMY 0.0130++

F 19.92 N + 4.480 LB ++ K 0.0234 ++Y Fy-

1.549 N-m + - 13.712 IN-LB++ K -0.0082++

F - 25.47 N - 5.725 LB - 0.0289 . ,. ',

M z  - 0.194 N-m - 1.719 IN-LB KMI - 0.0010
A 

".-

Condition 1 in Table 1

+ Effective value without dynamometer boat

++ Corrected for influence of dynamometer boat

~' -.' . "

~.... ..... .... ..... ..... .... ........
_....-
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Table 3- Comparison of Measured F with Other Transon-Stern
x

Configurations for Operation in Calm Water .. \
with Hull Pitching

PRESENT MODEL SINGLE SCREW TWIN-SCREWM O D EL H U LL TW IN -S C R EW ,•

Boswell et ol Jessup et al (19771
Reference - 1976a, 1976b1 Boswell at ml 11978)
Amplitude of Pitching, w A (deg) 1.33 2.00 1.85 .

Period of Pitching T (soc) 1.25 1.25 1.25
Model speed, VM (m/sec) 3.58 3.33 3.25 "-_" _

Maximum pitching velocity of propeller, VIVM 0.082 0.1450 0.133

(V W. 7 )I/V 0.199 0.156 0.123

((V t, )(Voe 7)I+V /(V .), 1.41 1,93" 2.08 " -. .

F I F 0.89 0.59 0.60 " "\ ' '
X MAX,

IF -F), 0.72 0.38 0.42
NMAX

FMX~ TM
M 1.24 1.55 1.43. -

," - . MAX. X MAX "

AX F K M.W - T 0.17 0.21 0.18

1.03 1.03 1.10
MAX~w

F /F 1.03 1.02 1.05
XMAX "W

/(F - - 1 0.59 0.59 0.40
K MAX,w MAX

[I tlO 7 1+V 1/(V W. -1

The subscript ip refers to operation in calm water with huh pitching, whereas absence of the subscript
W refers to operation in calm water without hull pitching.
The subscript MAX with superscript - indicates the maximum absolute value of the time-averege load ,, .,,,,.:,;
per revolution.
The subscript MAX with no superscript indicates the maximum absolute value of the peak load per
revolution.
The subscript MAX with superscript Indicates the maximum absolute value of the peak minus time -
average load per revolution.
- A numerical error was found in the values presented by Boswell etal 1976. 1976b). This error has
bean corrected In the values presented in this Table.

........

* - !:*::
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Table 4 Summary of Maximum Values of Hydrodynamic Loads for

Operation in Calm Water with Hull Pitching

_ _ _ _ -- • "-- -_.

LOADING COMPONENT F M F M

,-, 1.03 1.04 1.04 1.05
MAX.W

LMAX," 1.91 1.92 1.84 1.82 L ._

LMAX/r 1.71 1.70 1.62 1.61

(LMAx - D/(LMAx- ) 1.28 1.31 1.35 1.34

ILMAX, - LMAX)I[ 0.20 0.22 0.22 0.21

L MAX,/L MAX  1.12 1.13 1.14 1.13

LMAX.~ /1 0.89 0.88 0.80 0.78 i
L AX/(LMAx - ) 1.25 1.26 1.29 1.28

MAXp MAX(ILMAx. , - (L MAX - C)/X 0.18 0.18 0.18 0.17 " J

(L)1 Max/ 0.79 0.77 0.73 0.69

(L)/" 0.66 0.64 0.59 0.59

IL) 1MAX,/(L)1 1.20 1.20 1.24 1.17

((L)IMAX - IL)Il 0.12 0.12 0.13 0.10

(N OR N-m) 32.65 2.46 19.93 1.55

L refers to any one of the indicated loading components; i.e., Fx, My F a. MX

The subscript w, refers to operation in calm water with hull pitching (Condition 2 in Table 1 ), whereas
the absence of the subscript W refers to operation in calm water without hull pitching (Condition 1 in
Table 1).
The subscript MAX with superscript - indicates the maximum absolute value of the time-average load
per revolution.
The subscript MAX with no superscript indicates the maximum absolute value of the peak load per
revolution.

The subscript MAX with superscript - indicates the maximum absolute value of the peak minus time-
average load per revolution.
The subscript 1MAX indicates the maximum value of the first harmonic load per revolution.

. . . . -. . .

I . '. : . .:A%..:rT ,.*. .... .. .
"

... ,. P--... . -. . P. , ,,
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Table 5 - Summary of Maximum Values of Hydrodynamic Loads for
Operation in Waves without the Hull Pitching - -

LOADING COMPONENT F Y F M

ii1.12 1.14 1.08 1.09MAX., -

L /C 1.90 1.92 1.77 1.77 ,.- " L~~MAX.4/",-

L / 1.71 1.70 1.62 1.61

MAX .~

(LMAx' - i/(LMAx -L ) 1.27 1.31 1.24 1.26

(LMAX.4 - LMAX)/[ 0.19 0.22 0.15 0.16

LMAx /LMAx 1.11 1.13 1.09 1.10 ,' - "

L- LMAX /1 0.81 0.82 0.72 0.70

L ( -- L) 1.14 1.17 1.16 1.15

ILMAx. - (LMAX -)1/L 0.10 0.12 0.10 0.09 .

(LI 1MAX./L 0.74 0.73 0.67 0.65

IL)1 /L 0.66 0.64 0.59 0.59

T(L) MAX. /(L)? 1.12 1.14 1.14 1.10
) ((LIMAX (L) I1" 0.08 0.09 0.08 0.06

jjC(N OR N-rn) 32.65 2.46 19.93 1.55

L refers to any one of the indicated loading components; i.e., F., My, FY, M'.

The subscript 4 refers to operation in waves without hull pitching (Condition 3 in Table 1), whereas V . -
the absence of the subscript refers to operation in calm water without hull pitching (Condition 1 In - .
Table 1).
The subscript MAX with superscript - indicates the maximum absolute value of the time-average load -..

per revolution.
The subscript MAX with no superscript Indicates the maximum absolute value of the peak load per
revolution.
The subscript MAX with superscript - indicates the maximum absolute value of the peak minus time-
average load per revolution.
The subscript 1 MAX indicates the maximum value of the first harmonic load per revolution.

-. %

%SU, '''' ,
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Discussion
" 'J . .%. '

J.P. Breslin (Stevens Institute of Technology)

This experimental study reveals important modulations of shaft
forces. I think that it would be important to examine a single-screw
configuration in the same fashion. For such cases the basic blade-

frequency force measurements in calm water without hull-motions wave
revealed modulations in amplitude by factors as much as 3 presumably
due to large-scale variations in wake flows across the propeller disk
emanating perhaps from boundary-layer intermittancy. Would the authors
comment on this aspect for this twin-screw configuration.

J.N. Newman (MIT)

This work provides a welcome opportunity for discussions between ..-

specialists in seakeeping and propulsion. A few obvious thoughts from
the former viewpoint relate to the possible frequency dependence of
these results. While the reduced frequency of the propeller blades is
small, one may expect the oscillatory inflow to depend on the frequency
of pitching and/or incident wavelength. Thus I would expect the quoted
50 percent reduction factor for the hull effect on pitching inflow to
be dependent to some extent on the frequency. Similarly, the "Froude-
Krillof philosophy," where the horizontal component of orbital velocity
is not affected by the hull, should be modified in short wavelengths
owing to hull diffraction effects.

Author's Reply

Stuart D. Jessup and Robert J. Boswell

Professor Breslin expressed interest in the modulation of periodic
blade rate (shaft) forces in calm water without hull pitching and cited .7.1
an example of a single-screw ship experiencing blade frequency modula-
tions of as much as a factor of 3 in calm water without hull motions.

This effect was not investigated in experiments described in the
present paper, and, unfortunately, the original raw experimental data
no longer exist. However, the statistical variation of the data for
operation in calm water without hull pitching show that at a given -" -

blade angular position 95 percent of the thrust data fall within a band- " -j
width of ±5 percent of the time-average thrust (see Figures 5 and 8
of the paper). The blade-rate harmonic of thrust based on the statis-

tical average of the data is approximately 2 percent of the time-average

%%j-

.............S ..

......... *.



914 . .

thrust (see Figure 9 of the paper). Based on these statistical varia-
tions, it is possible, but appears unlikely, that the blade rate harmon-
ic of thrust varied by as much as a factor of 3 for operation in calm
water without hull pitching.

In the paper it was concluded that the relatively small, higher
harmonic blade load amplitudes were very sensitive to the small changes
in the wake pattern. This effect could lead to large modulations of
the relatively small, blade-frequency shaft loads in calm water without
hull motions. For transom stern ships in calm water without hull mo-
tions, periodic wake inflow could be caused by oscillatory flow about
the shaft and struts. For these configurations the propeller generally .
operates outside the hull boundary layer, so it would not be signifi-
cantly affected by hull boundary-layer intermittency. For single-screw
merchant ships, the propeller is not outside the hull boundary layer,. -

so significant influences of the hull boundary-layer intermittency
would be expected.

Professor Newman discussed the possibility of a dependence of the
blade-load modulations on frequency. He expects that the modulated
inflow to the propeller would be dependent on the frequency of encounter
of the waves or hull pitching frequency. The authors agree that this
dependence may exist; however, the experiments described in the paper
were conducted at only one representative frequency for the hull con-
figuration under consideration. For design purposes this is probably
sufficient.

A0
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Analytical Prediction of Pressures and
Forces on a Ship Hull Due to Cavitating

Propellers
Paul Kaplan, James Bentson and Mo'she Benatar

Hydrorechanics, Inc.

ABSTRACT

An existing technique for determining free space pressures
generated by a cavitating propeller operating in a ship is used as the
basic input for determining the pressure distribution on various ship
sections. The procedure involves establishing a boundary value prob-
lem on the ship section and the free surface, with appropriate con-

*formal mapping operations that allow conversion of the problem to a
* rmore simplified boundary, viz, a flat plate and its adjacent free

surface which represents the boundary for the lower half-plane. The
integral equation for solution of this problem to determine the
pressure is established and solved analytically, with evaluation
carried out by means of digital computation in terms of the various

- physical parameters and those obtained from the mapping procedure.
The solution provides the pressure distribution at different

sections on the hull, from which the total forces are then determined
via integration with this strip theory approach. In addition the
effects of different imode shapes of hull vibration are incorporated
in order to obtain generalized forces for determining hull vibration
responses. Illustrations of results are given for a representative
naval auxiliary vessel.

The effect of different section shapes and dimensions in estab-
lishing body solid boundary factors (relative to the free space
pressure) is also demronstrated. An extension of the basic analysis
is applied to the problem of a ship section with adjacent rigid
boundaries on the free surface similar to the case of particular

cavitation tunnel test facilities, thereby providing a method of
evaluating boundary effects of laboratnry test facilities relative7i
to full scale flow conditions.

0 INTRi)DUCTION

During the past 25 years extensive studies have been carried out,
both theoretically and experimentally, relating to the bearing forces
actingj on a propeller in a ship wake as well as determining the free

* 915
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space hydrodynamic pressure generated by such a propeller in that
operating mode. While most of these studies were initially concerned .,-

with propellers for which cavitation was not present, the occurrence
of cavitation on the propeller has led to free space pressures that
are an order of magnitude larger than those associated with the non-
cavitating propeller. The occurrence of cavitation is usually present
in a limited angular region about the upright (i.e. 12 o'clock)
position of the propeller blade as it encounters a wake field that
varies significantly in that region. This large pressure due to
cavitation results from the rapid growth and collapse of the cavity
volume which begins in the region of the blade tips. _42

In view of the importance of this effect of cavitation which
leads to these high pressures, and the interest by designers in various
propeller modifications that could result in reduced tiP clearance and
changes in the local hull shape in proximity to the propeller, it is
important to have a method that could predict the magnitude of the
pressures as well as the forces acting on the ship hull due to the
effects of the cavitation that may occur on the propellers under those
conditions. Some work has been previously published (Kaplan et al,
1979) that allows determination of the vibratory hydrodynamic
pressures arising from propeller cavitation, and that work has demon-
strated a fair degree of success in prediction and correlation with __"_"

a number of experimental measurements (both model and full scale). I 3
This particular tool can be used as a basic element to determine the
extent of possible vibratory problems associated with design variations
of propeller-hull form configurations for different applications. .71

The method of (Kaplan et al, 1979) is primarily concerned with
determining the basic free space pressures associated with the
occurrence of cavitation. What is important for further practical
utility would be a method that allowed accurate determination of the
pressure distribution on various sections of a ship hull due to these
cavitating propellers. The usual procedure has been to multiply the
free space pressure by a factor of 2, reflecting the influence of a
large flat boundary. Since all ship sections do not necessarily have
such a characteristic, an appropriate analysis should be made to
determine the proper pressure distribution on a ship section.

In addition to the determination of pressure per se, it is
recognized that any vibration analysis would require determining the
total forces acting on the ship hull due to the propeller-induced
pressures. There are a number of different ways in which this can be
done at present, either by solution of a diffraction problem as in
the work of (Breslin and Eng, 1965) or by use of the reciprocity
relations derived by (Vorus, 1974). Another possibility would be to
integrate the pressure distribution along each section, if that in-
formation is available. Regardless of which way is considered for
determining the force by any of the methods discussed above, an ex-
tensive degree of analysis and/or computation is necessary in order
to determine the total forces with the present state-of-the-art.

The present paper describes a technique for determining the
pressure distribution at various ship sections as a function of the

5..,' -
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ship section geometry, using information on the free space pressure
field due to a cavitating propeller in a wake. Another element of ... .

this work is a simple determination of the total force on different . -.

ship sections, from which the entire vibratory force can be evaluated.
A description of the procedures that are used to obtain all of these
results is given in the following sections of this paper.

FREE SPACE PRESSURES, INCUDING CAVITATION EFFECTS
Since the present work applies and extends the procedures I .

developed by (Kaplan et al, 1979), some of the basic concepts used .
in that particular study are described here. The procedure in
(Kaplan et al, 1979) initially makes use of an existing computer prog-
ram and analysis (Tsakonas et al, 1976, 1977) developed at Davidson
Laboratory to predict the blade forces acting on a non-cavitated
propeller operating in a ship wake. The information on the radial
distribution of blade forces from (Tsakonas et al, 1976) is used to
establish values of local camber and angle of attack distributions
along the propeller span. These quantities, which establish local
propeller blade section inflow velocity, cavitation index, etc., are
used to evaluate the cavitation quantities appropriate to a particular
propeller and wake at each propeller section of interest by use of a lei

two-dimensional quasi-steady model of cavity flow (Geurst and
Verbrugh, 1959). The cavitation quantities of interest in this case
are the section force coefficients (CL, Cm, etc.) and the local cavity
area for each section, which are found for conditions appropriate to c. ._
partial cavitating flow (Z/c<l, where Z = cavity length and c = chord
length), supercavitating flow (Z/c<l), and the important "transition" .
range between these two cavitation regions.

With the basic cavitation properties described above, the analysis
of (Kaplan et al, 1979) establishes a general representation of the
velocity potential and hydrodynamic pressure field associated with a
time-varying cavity on a propeller blade. The expressions contain
terms associated with the effect of changing thickness and loading of
the propeller, as well as the important source-like contribution .
associated with the changing volume of the cavity on the propeller ....

(obtained in terms of the distribution of cavity sectional area along -
the span of each propeller blade). The total free space pressure at
any point is then four. by the sum of the terms corresponding to the
cavitation effect (cavity source effect and loading) as well as the
effects of the non-cavitating propeller found from (Tsakonas et al,
1977). In most practical cases the non-cavitating propeller contri-
bution is essentially negligible in comparison with the contributions
arising from cavitation.

The expression for the field pressure due to the cavity effect
on the propeller is given in terms of variables related to the co-.-
ordinate system shown in Figure 1, and is given by

IV
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C-f c

PC 2rp r + sin +o _ _ .F[ '" PC =  7 -. r +2r 3 s

r ( C (1)

+ ~~ ~ -7 dr -. '-?"

In this exoression R is the distance fram any blade element to the
field point; U is the mean axial velocity averaged over the propeller
disc; r is the radial coordinate alono the propeller blade; Ac is the -
cavity area; Qis the propeller angular velocity; as is the skew
angle of the blade. The radiated field oressure due to the cavity
can be seen to contain sources with strength proortional to Ac/t2
and dipoles (axial and transverse) with strength Procortional to
3Ac/Dt, together with a dependence on the cavity length and its
variation with time. . - ,

The field pressure due to the chan,7e in loadina arisina from . -

cavitation is expressed by

_1 6 f ((,)L (r,t) dr (2)

where the inteqration is carried out over the cavitated reqion on the
blade. The quantity ALcav is the change in lift of each radial secticn
of the propeller blade due to cavitation, and the operation a/an repre-
sents the normal derivative relative to the helicoidal surface. The
various operations to obtain the lift due to cavitation, the angle
of attack, force coefficients, cavity characteristics, etc. used in .
the evaluation of Ecns. (1) and (2) are described by (Kaplan et al,
1979).

The values of pressure due to cavity gecoetry variations (frm--
Eqn. (1)) and pressure due to load changes due to cavitation (fran
Eqn. (2)) are added together to produce the total pressure due to
cavitation for a single blade. This is evaluated as a function of
time (or blade angle) during a single propeller rotation, and the
resulting time history is then Fourier analyzed in terms of the shaft
rate and higher harmonics. With proper allowance for relative blade
phasing the total effect for the entire propeller is obtained by
summing all the harmonic cxiponents, which results in final output
pressure at the propeller blade rate and its harmonics.

The results obtained by this method (Kaplan et al, 1979) showed
good agreement for measured point pressures on a ship hull, for both
model and full scale conditions. The model test results were obtained
in European research establishment water tunnels using simulated wakes .- -

and dummy stern regions, while full scale data was obtained frm-
direct measurements at sea. In view of the good agreenent with -
measurenents exhibited by (Kaplan et al, 1979),which includes

-19
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the important higher harmonics of blade rate, the basic theory used
there appears to be a valid representation of the important effects
occurring due to propeller blade cavitation.

MTHOD OF ANALYSIS - PRESSURE DISTRIBUTION ON SHIP SECTIONS

With knowledge of the free space pressure due to the propeller
it is necessary to determine the effect of different ship sections
on the actual pressures experienced on the ship hull boundary, i.e.
the effect of the ship hull in changing the magnitude of the incident
free space pressure. The basic method of analysis used here assumes
that a strip theory method is applicable, with the effect of the ship
hull section determined by means of a two-dimensional analysis. This
procedure is considered to be applicable to the present case since the
rate of spatial decay of the pressure field is primarily due to the
changing volume of the cavity, which acts as a source whose rate of
spatial variation is much smaller than that due to loading variations
that has been the primary influence for non-cavitated propellers.

The effect of the ship hull section is evaluated by assuming
that the sections can be represented in terms of a multi-parameter
conformal mapping that generalizes the Lewis form method (Lewis,1929)
for ship sections. In the present case the incident flow field is
that due to the free space pressure field of the propeller, which is
evaluated in the plane of the ship section of interest. The method
of formulating the boundary value problem appropriate to this type
of approach is given below.

Boundary Value Problem

The boundary value problem is established in terms of the
pressure as the dependent variable, with the pressure determined
by a linear operation on the velocity potential, i.e.

P=-pf( + U (3)

where D = the velocity potential and the pressure is expressed with
respect to atmospheric pressure as a reference. On that basis the
boundary value problem for any ship section is expressed as shown in
Figure 2, where the pressure is assumed to be zero on the free surface
due to the high frequencies associated with propeller vibratory

- effects. The requirement that the normal derivative of the pressure
is zero on the section boundary follows from the requirement that
a(/an = 0 on that boundary; since pressure is defined in terms of .-,. ,
linear differentiation operations on the potential, this boundary
relationship then follows.

The problem can be simplified further by decomposing the pressure
field into a sum of contributions due to the incident flow field pp
due to the propeller free space pressure, Pi due to the image with
respect to the free surface, and the additional pressure P' repre-

,V~....................-..............•.,...-.-,.............,..-...... . . • . • . .,
,~ ~ ~~.,.' .- , , ......... ...... ,...-.. ..... .. '..-o ' -. ' .•..- . .. .- , % '.'.. . .. "." .'
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senting the effects of the ship section

P = Pp + Pi + p '  (4)

The image pressure is selected so that pp + pi = 0 on the free surface. L mA

This is easily accomplished using the representation in Ecqns. (1) and
(2) (Kaplan et al, 1979) with a simple change in the definition of .. -

the distance R for the image terms. The resulting boundary value
problem on the free surface and on the ship section boundary is
given in Figure 2 in terms of values of the pressure p', i.e.

.J ,
p' = 0 , on free surface (5) •

,q. and

- n + - , on the section boundary (6)
3n h n/

The normal derivative of the propeller free space pressure and its
image are known functions determined from the properties of the pres-
sure field due to the cavitating propeller, which can be determined
from the work of (Kaplan et al, 1979).

This boundary value problem can be put into a simpler form by
means of conformal transformations from a ship section to a unit * U
radius semicircle and from there to a flat plate. In this manner
the various boundary values of the pressure and its derivatives are
also transformed in such a way that the problem complexity is reduced
and the boundary is simplified. -." -

Introducing the complex potential W, whose real part is taken
as the pressure, the complex derivative of T4 in the physical body L
plane defined by Z = v + iz is given by

7 =p _i (7)dZ ay 3z.' .' ..-,

The flow in the body./ plane is then transformed to the circle plane
(C- plane) by means of a conformal mapping defined by

Z = a +E an+ 1 (8)

The mapping function from the body plane to the circle plane defined
by Eqn. (8) recuires an+, to be found in order to relate the coordi-
nates in the body plane to points along the semicircle. The coef-
ficient a1 is selected as a normalizing factor so that the trans-
formation goes from the body to a semicircle of unit radius.

The complex pressure gradient determined from the complex -.-

potential W is then transformed into the circle plane by means of the -

operation
c. = dW dZ (
dC dZ de (9)-'.-,

..S, -..,'
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With ¢ = +i = e on the unit circle, Eqn. (9) then becomes
d1- a, [-'-..

d -(2n-l)an+ (10)

which leads to

a L (2n-1) a+ cos2n -a, (2n-)a sin2n (11)

and y L 2-l n+i _a n=l ..1

P a, 1c (2n-1) a sin 2n (12)

As shown in Figure 3, the mapping then proceeds from the unit
semicircle to a flat plate (w-plane) by means of the transformation

+ (13)

where w a + i3. The oressure gradient relations are then

dl,7 i Lp  L (14)

where

dA = i +  0 (15)
VW-."--

Since in conformal mapping procedures the normal to the surface is
preserved, the pressure gradient 3p/3B normal to the flat plate cor-responds to the transformed value of the normal derivative of the i [-[

pressure on the original body section. For the lower surface of the
flat plate, which corresponds to the body section boundary, this
leads to

p L: ap _(16)

The boundar. value problem is then shown in Figure 3 as a mixed
boundary value problem for the pressure p' along the entire real axis
of the w-plane. All that is needed for establishing the values of the - -

normal derivative along the plate boundary are the values of the an
quantities in the transformation to the circle plane given by Egn.. (8).
Those values are found by a method based upon a least squares-seciuen-
tial iterative procedure (von Kerczek and Tuck, 1969) for which a
computer program was established. The program considered 7 values
of the an+1 coefficients (plus the value of a1 ) for proper repre-
sentation of ship sections of oractical interest.

° °-i°°
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INTEGRAL EQUATION - FORMULATION AND SOLUTION

The boundary value problem on the flat plate Plane (w-plane) can
be solved by establishing an integral equation by the use of Green's
theorem. The Green's function is selected as

G(u,v;x6,) = £n /(u-a)2 + (v-B)2 - kn /(u-t)2 + (v+B)Z (17)

for which

G(u,0;a, ) 0 (18)
-2

G (u,O;a,B) -2) (19)
v (u-a) +

Applying Green's theorem to a contour along the real axis with a large "
iircular arc in the lower half-plane and small arcs about the points
-1, and on the limit as the small arcs 0 and the radius of the large
circle c, this leads to

p' ( ) = - (Gp' - P'G )du

real (20)axis

- .JP' (u,0) + du
-1.

which is the Poisson fonula for the half plane.
Since p' is known on the plate, differentiate with respect to B

leading to

p' , P'(Ui) = 1 p'Fu-u,-n )2+ B2 du

-' (21)J il
?I (u) zn u-)0 + a du

by means of the Laplace equation. Integrating both sides with respect
to a (fram -1 up to a), and letting B-0 while taking appropriate limits
and values, leads to

rAJ 10

c + f(s)ds = 1 du (22)

where f(L) is the known value of p' along the flat plate. As dis-
cussed previously that value is found at any ship section fram know- 0
ledge of the propeller and free surface image pressure gradients and
the mapping coefficients (multiparameter transformation fram Z to
r-planes), with the basic expressions shown in Eqns. (11), (12) and

. - . . .. " - .-
-.. . . .. . . . . . . . . - -
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(16).
The singular integral equation in Eqn. (22) is essentially the

same as that in (Kaplan and Sargent, 1972) and the solution is also
similar. With the requirement of the solution being bounded at both
ends (±1), it is given by

P' 1 (23)V-u (u-C)"

as indicated by the methods in (Muskhelishvili, 1963).
The solution in Eon. (23) is evaluated by defining new variables,

Si.e. u = cos e ,a = cose , and it is assumed that the integral ,-(s)ds
-. '.. can be expanded into a Fourier series form in terms of -"

cosines, viz.

o

f (s)ds =JA cos nO (24)

- n=l"
Substituting the new variables and the Fourier expression of Eqn. (24)
leads to

00

P'(a) = An sinnOo (25)

where 00 = cos c , by use of the Glauert integrals of airfoil theory
(Glauert, 1937).

The pressure distribution along the ship section boundary of
interest is found by adding the contribution from Eqn. (25) together
with the free space pressure of the cavitating propeller as well as
its free surface image. The computational procedure considers the
separate sine and cosine harmonic terms at blade rate and higher har-
monics from each constituent term, adding all contributions to each
oscillatory function and then determining the resulting amplitude
and phase of the final total pressure signal on the boundary.

The pressure distribution is determined at points along the
section boundary that correspond to points that are equally spaced
in the unit circle in the c-plane, i.e. equally spaced angles. This
procedure assists in the determination of the Fourier cosine coef-
ficients in the expansion of Eqn. (24). The location of the points
on the section in the Z-plane is readily determined by use of Ecn. (8),
which establishes the locations at which the pressures and pressure
gradients from the cavitating propeller and its free surface image are "
to be calculated.

The total lateral and vertical force on each section are deter-
mined by integrating the pressure along the boundary, with appropriate
account of directions, separate sine and cosine components for each
harmonic of blade rate, etc. With knowledge of the sectional forces
obtained in this manner the total forces are obtained by integrating
the section forces along the length of the hull, which is the con-

U,
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ventional procedure employed in strip theory analyses. Devoting the
local sectional forces as FP (x) and F (x) for the vertical an- lateral
forces, the total vertical and lateral forces on the ship due to the .•4
pressures arising from a cavitating propeller are represented by

F7 =JF' (x) dx , F =jF' (x) dx (26)

The integrations in Eqn. (26) extend over a length region for
which appreciable pressures and forces exist on the ship, which is
determine either computationally, or by establishing a cut-off level,
or arbitrarily to some location such as up to midships at which the
pressures and forces will generally be negligible. When considering
the force information to determine forced vibratory response of a
ship, Li use of a nmodal method of analysis as an example (McGoldrick,
1960), the toLal force inteqral is weighted by a nda weighting
function, viz. the nonmal mode shape Xi(x) for the i normal mode. -
The generalized modal force is then represented by

Ff j z (x)X i Wxdx (27)

as a typical example, with appropriate consideration of the particular "-.< "
blade rate harmonic force values being used in such expressions. The
use of a strip theory approach, with modal weightina from response
analysis, has been used in various ship dynamic problems such as
slamming response analysis (Kaplan and Sargent, 1972) and has proven
to be a useful method for response predictions.

*, " APPLICATION AND DISCUSSIXN OF RESULTS

out. In order to illustrate the nature of the results obtained from
the preceding analysis, some representative calculations are carried
out. The basic computational procedures that are necessary for the
case of a cavitating propeller for a particular ship are described in
block diagram form in Figures 4 and 5. The procedure in Figure 4
represents the various steps associated with the calculation of the
pressure field arising from a particular propeller in a specified
wake field, as described by (Kaplan et al, 1979). The diagram in
Figure 5 essentially describes the procedures developed in the present
paper.

The particular case illustrated here considers the auxiliary
naval vessel designated as AO-177, which is a sinqle screw tanker
vessel. The propeller has 7 blades, with 45 deg. skew angle, with a
21 ft. diameter. This ship has been studied in a number of special
investigations, with consideration of the occurrence of cavitation on
the pro_)eller blades due to the particular ship wake, e.g. (Bentson
and Kaplan, 1981 a,b). Model tests have been carried out by David
Taylor Naval Ship Research and Development Center for the basic ship
to measure its wake field, as well as for the case where special flow-
modifying fins were installed on the ship, with that data provided as -.

,"•U0-
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input information that is used for the present calculations.
For the present purpose the particular wake, oropeller desiqn,

etc. of the AO-177 is used only as a means of illustrating the nature
of results for representative ship sections when using the present
analysis. The various representative shio sections used for il-
lustrating the present results are not necessarily those of the AO-177,
although the flow field from which the propeller cavitation disturbina
flows arise does correspond to that particular ship. The first case -: .

illustrated is that of a flat plate with a width of 60 ft. which is . *..

located in the free surface, where that section is assumed to be
located at a distance of 5 ft. aft of the propeller plane (i.e. x=5
ft.). The wake field is that corresponding to the AO-177 fitted with

. the fins.
alongCalculations were made to determine the free space pressure
along this flat plate section, as well as using the methods of the
present analysis to determine the actual pressure inclusive of all
other flows that wuld satisfy the boundary conditions of the present
oroblem. An important feature of the results is not necessarily the
oressures cer se, but the ratio of the pressure along the plate to that
of the free space pressure at each point along the plate. The results
of this computation are shown in Figure 6 illustrating the ratio of
the pressure on the plate to the local free space pressure. Two
curves are shown here in order to illustrate the accuracy of the
results as a function of the number of points along the plate that
are taken as input information for the integral ecuations. The dif-
ferences due to the different number of points are more predominant
in the region of the larger pressures, although the extent of such
differences is not very significant. It can be seen by examination of
Figure 6 that the pressure on the plate increases to a value of the
order of 2.6 times the local free space pressure, with the values of ' ..

the oressure falling off to zero at the ends of the plate as expected.
The average oressure for this distribution was found by means of
integration, and was found to be 1.94 as is also illustrated in ..-. *

Ficrure 6, with that value being close to the usual assumed value of the
factor of 2 that is applied to free space pressures when determining
pressure effects along a boundary.

,hile the results in Figure 6 are informative, that only il-
lustrates information appropriate to a particular special case. Other :,. ..'
results are described below which have different numerical values and
provide a different interpretation for the effect of the interaction
of a representative ship section and the incident flow from a cavi-
tating propeller. Another case considers a flat plate section of
21.6 ft. width which is located in the free surface at the same
position (i.e. x=5 ft.) in the wake due to the AO-177 with fins. The
ratio of the pressure to the local free space pressure due to the
propeller along this plate is shown in Figure 7. It can be seen that
this ratio has a maximum value of just under 1.4, with that maximum
occurring near the plate center but slightly to port. This result
illustrates the nature of the influence of the size of the plate
relative to the disturbing flow field and/or the propeller.

%97 L.-,-..
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Another application of the analysis considers an actual ship
section taken from the AO-177, with that section being the profile -, -

corresponding to Station 19.5 on that vessel as illustrated in
Figure 8. This section is essentially a shallow V-wedge shape, with
the total lateral extent equal to 21.6 ft. Assuming that this par-
ticular section is located at the oosition corresponding to x=5 ft.
relative to the propeller, and with the wake the same as that of the
AO-177 fitted with fins (the same case as for Figures 6 and 7), the
ratio of the pressure to the free space pressure along this section is "' *

shown in Figure 9. In that situation the ratio reaches a maxi"m
value of 2.0, with that maximum occurring somewhat to the starboard .
of the middle of the section. This result, when contrasted with that
in Figure 7, illustrates the effects of the actual section shape as
well as the influence of the proximity of the center of the wedge
region relative to the propeller tip.

Another illustration considers the same section corresponding to
Station 19.5 of the AO-177, with the propeller operating in the
basic wake of that ship without any flow-modifying fins. The section
is assumed to be located 6 ft. forward of the propeller plane (x=-6 ft"
and the results for the ratio of the pressure along the plate to that
of the local free space pressure due to the propeller are shown in
Figure 10. In that case the maximum value of this particular pressure "biJ
ratio is 1.4, occurring somewhat to port of the center of the section. 3

All of the above results illustrate the effect of the size of the
section as well as its shape in regard to determining the magnitude
of the pressures along different ship sections. The so-called boundary
factor that accounts for the influence of the body section results in
an increase in the value of the free space pressure to some factor that -"- [
ranges both above and below the number 2, with the particular maximu.
value dependent upon the nature of the lateral size extent of the
section, the shape of the section, the nature of the distribution of
the free space pressure, etc. In addition the requirement that the
pressure goes to zero at the ends of the section at the free surface
is also a significant aspect of the present analysis that will affect
the magnitude of the pressure distribution acting on various ship
sections. All of these features influence the resulting pressure
distribution values, indicating the basic camplexity of determining
the pressures on different ship sections and reducing the significance
of the use of simplified factors for prediction of propeller-induced
pressures and forces. I-.

EFFECT OF RIGID FREE SURFACE CONDITIONS

In the preceding analysis the mathematical problem was formulated
with the boundary condition corresponding to p=O on the free surface.
This particular boundary condition applies to the physical conditions
corresponding to high frequencies, which is generally appropriate for
the case of propeller-induced unsteady flows. There has been some
previous analysis which considered the effects of different boundary

........................
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conditions on the free surface (Vorus, 1976), where that analysis was
"- applied to noncavitated propellers and was concerned with the total
% force as well as the local force on a strio section of a semi-infinite

flat plate.
Aside from the basic interest in the influence of the free

surface boundary condition, the consideration of a rigid wall free
surface condition is important because it is representative of the
flow conditions associated with model test procedures for ships in
specialized water tunnel facilities that simulate full scale operation.
In that case the free surface region is covered by rigid plates whose_-
extent laterally can generally be representd by employing the
boundary conditions of a riid wall out to - . On that basis the
boundary condition for the pressure would correspond to p/Tn = 0 for -
the free surface as well as on the ship section boundary.

This problem can be analyzed by methods similar to that used for
the case with a free surface boundary condition corresponding to =0 L
by introducing a special image flow that results in satisfying the - B
condition ;p/;z = 0 on the free surface. This particular image is
essentially the negative of the previous free surface inage used for
the earlier boundary condition, so that the total pressure can be
represented by the expression

p p +p +p' (28)
p r

where p = the pressure induced by the rigid wall image (p =-p., as
defined previously). The resulting boundary value r on the
ship section and the free surface is given by

M 0 , on the free surface (29)

S an

2L + on the section boundary (30) 'a n 'n a-n." " -.

where the required normal derivatives can be found from the cavitating
propeller and the appropriate image. _ _

By carrying out the same mapping procedures to the ¢ and w-planes,
the resulting boundary value problem in the w-plane is shown in

Figure 11. This boundary value problem can be solved by the use of
Green's theorem, with the Green's function selected as

G(u,v;c,B) = n /(u-e%) +(v-B)2 + Zn (u-()4+(v+a)L (31) -5--

for which..".[.

G(u,0;ot,B) 2 n /-)"+- (32)

Gv (u,0;(,i) = 0 (33)

By applying Green's theorem to the same type contour as was done
previously, the basic solution for the pressure is given in terms "-' ,a\a
of the values of the derivative p on the plate, which is represented
by the function g(a),in the form ,.

A . ,
.* 5..-.."."m4-. ,

--. .... . ..,. .. .. .. .. .. ,. . . .. -. ... . . ... . . . .-.- -.. . .., . . . . .".-.-.-.-, . , , -', .... . .' 25 '-'
" .. -.. "- -".... ".j... - ......-... ... '. '..'..'..' ...'..'..- .- .. .'..'.. ..' "....'..' . .V ...-......- ,-..... ; . .. .-....C .- .'..".......'..'..C
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p' (U) = [Jg(u) 9n u-cIJdu (34)
-"

The value of g(c) is determined from the same basic relations as in
Eqn. (16) applied to the combined pressure values found from the
propeller and the rigid wall image. With the expression for the value
of p' on the flat plate given above by Eqn. (34), this value is then
transformed back to the appropriate points along the actual ship
section boundary in the body plane. To this value is added the
pressure values arising from the propeller and the rigid wall image,
resulting in the total pressure distribution as defined by Eqn. (28).

The above procedure describes the method for determining the
pressure distribution on the ship section when considering a rigid wall *.:.*.

free surface boundary condition rather than the conditions that are
appropriate to the real physical case in full scale. Numerical
evaluation for particular cases (which is not done here) will provide
information on the pressure distribution appropriate to both sets of
boundary conditions on the free surface, so that ccmparisons can then
be made between the different results that arise from each set of con-
ditions. In that way it is possible to evaluate the influence of the
boundary effects applied in laboratory test facilities that do not
employ an actual free surface, so that the influence of these boundary -.- *

effects can be determined relative to what would be present for full
scale flow conditions.

CONCLUSION

The method of analysis described herein provides a technique for L
determining the pressure distribution along different ship sections
due to a cavitating propeller, with appropriate account of the effects
of the free surface boundary condition and the influence of the body
shape. The major results are presented for the case wherein the free
surface boundary condition corresponding to zero pressure is imposed,
with the resulting pressure distribution illustrating the manner in
which the pressure reduces toward zero at the intersection of the . *.

section with the free surface. The fiqures illustrating the results
demonstrate the difference between a more orecise method of solution - ".
and the simplified methods that are usually applied in engineering
practice.

As a result of the analysis presented here, a straightforward
procedure is then available for determining pressure distributions,
local forces at various sections of a ship, and also the total force
due to the disturbing flows arising from a cavitating propeller, in-
cluding a procedure for modal weighting for use in vibratory analysis..."- -

The analytical tool described here is recommended for further practi-
cal applications to various problems of interest involving propeller-
excited vibrations.

The analysis in the case of a rigid wall free surface boundary ,.
condition provides an entirely different tvpe of solution that
describes the pressure distribution under such a boundary condition.

%...° . ..
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Since that type of boundary condition corresponds to the physical

characteristics associated with particular types of model test
facilities used for determining propeller vibratory pressures on ship
hull sections, the analysis shown herein provides a means of repre-
senting the effects due to an imposed propeller pressure field. Com-
parisons can be made between the results predicted with the rigid wall
boundary condition vis-a-vis those from the zero pressure free surface
condition as a means of illustrating the effects of model test
facility boundary influence on measured pressures on ship hulls ob-
tained from tests in such facilities.

It is reconriended that extended calculations be carried out by
these different approaches in order to provide guidance that will
assist in interpreting the relation of model test values to the actual ..-.
full scale pressures on ships with cavitating propellers. In view of
the present use of such test facilities for predicting propeller-
induced vibratory pressures and their associated effects, as well as
possible new facilities being built with the same basic testing
concept, such an investigation has practical importance.
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Discussion

T. Sasajima (Mitsubishi Heavy Industries) '

This paper describes the calculation method of a surface force
acting on the ship hull induced by a propeller operating in wake. ,

As to the solid boundary factor, Hoshino (1979) calculated the
pressure fluctuation induced on a solid wall by a pulsating spherical
bubble, which moves along the solid wall, as shown in Figure A. Since
it can be said that the pulsating spherical bubble is a good first- I ...
order approximation of the unsteady cavitation near the blade tip, the
solid boundary factor nearly equal to 2 obtained from the Figure A has
been used in the calculation of the pressure fluctuation in the ship -.
hull at this stage of calculation. The authors' calculation of pres- '
sure fluctuation on the flat plate shows the same results (see their
Figure 6).

It is interesting to point out that the effect of the size of the
"" ship bottom is relatively larger if we compare their Figures 6 and 7. ,''''

Thus these results imply the importance of the design of the ship

. bottom above the propeller. Since the results of the calculation are
limited, further calculation changing bottom shape of the ship and tip
clearance will be highly appreciated from the practical application

* point of view.

Reference " .4.

Hoshino, T., Pressure Fluctuation Induced by a Spherical Bubble Moving - '.

with Varying Radius, The Western-Japan Society of Naval Archi-
tects, No. 58 (1979).

J.P. Breslin (Stevens Institute of Technology)

This paper advances a strip theory procedure for the calculation U
of the pressures and sectional forces induced on ship hulls by the
action of the normal derivative of the pressure field of a cavitating
propeller and its image in the water surface. Strip theory is appli-
cable to incident flows and body geometries that vary slowly with the 7 1
longitudinal coordinate. First, the geometry of many ships changes
rapidly in the longitudinal coordinate in the vicinity of the propel-
ler. Second, and more significant, the incident pressure field of the
propeller in the presence of the free surface decays rapidly with dis-
tance from the propeller. The slowest decay is exhibited by the com-
ponent arising from the second derivative of the qnth harmonic of
the cavity volume, which varies as 1/x2 with x in multiples of the

* propeller radius (which is small compared to ship dimensions). There
are many other components, which are significant in the near field,

Z-
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that decay more rapidly. It is, therefore, questionable that strip

theory can give realistic results.
It would seem mandatory that the authors justify their assumption

of strip theory by comparisons with measurements. As this has not
been done, the applicability of this procedure remains to be proven. L -

Some measure of the effectiveness of strip theory in application
to propeller-generated hull excitations may be gleaned by considering
simple geometries. First, consider a circular cylinder of infinite
length in the presence of an intermittently cavitating propeller. At
field points beyond about one diameter, the cavitating blade appears
to act as a pulsating point source located at the axis whose strength L--
is the time derivative of the cavity volume at the axis. The geometry
of this configuration is shown in Figure 1.

The total potential of the cylinder and the source is found to be -. ..

M M(t) E dk kx
*C-7L=ra A A cos(nx-me)

moo n=-= -T W m,n

where

I m(1kI s)K+ n (!klh) i u
m,n Kn "'-a)"

and the I's and K's are the modified Bessel functions of the first and
second kind.

Only the term m = 0 represents the stationary pulsating source
and only n - 1 can contribute to the force density on the cylinder.
The ratio of the vertical force density from the three-dimensional
solution to that from strip theory (in which the normal flow at each
section is imposed parametrically) is, for the source on the axis,
(x 0):

7 dX K,(h'X)cosx';X 9
I3o (1) .-. -

d (11(A) +X1l (X1 K1(h'X)cosx'X "". -.

0

where h' = h/a, the interaxial distance/cylinder radius
x' = x/a, the station location from the propeller in fraction of

cylinder radius.
Evaluation of Equation (1) for h' = 1.375 (corresponding to a tip

clearance of 0.25 propeller diameter and a cylinder of radius equal to
4 propeller radii) yields the variation with x' shown in Figure 2.
Here it is seen that, in the interval lx'l < 0.7, the three-dimensional
force density is less than that from strip theory and that for

Ix' > 0.7 the three-dimensional result is in excess of that from

w . .
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strip theory, rising to a maximum ratio of 1.65. We see a consider-
able difference between three-dimensional and strip theories. 7-

Asymptotic analysis for large x' yields the ultimate ratio to be

Z 2
1 + (0) 1.529 (in ths case) (2)

to which the computed curve appears to be descending. Another check
on the calculations is provided by the fact that the total force on
the cylinder is the same by three-dimensional or strip theory. This
can be shown directly or from global considerations. Integration of ..-

numerical values of the numerator and the denominator showed agreement ---.

to within 2 percent. The result for the force at frequency qn is for
an n-bladed propeller:

= -noa 2  iqne M
(Z) (Z) (qnw)2 R (Vqn ) (3)
3qn 2 qn h e qn

where Vqn is the complex amplitude of the qnth harmonic of the
cavity volume. It is seen that the force (for constant Vqn) decays
slowly with tip clearance T as h in propeller radii is (1 + a + T). "
(In practice, Vqn will depend on tip clearance because of the
changing flow in the hull boundary layer.) The force given by
Equation (3) applies to a cylinder floating half submerged in the
wafer surface.

A corresponding calculation of the force density on a flat plate
of infinite x-wise extent and of finite width 2b beset by the flow
from a source located on the propeller axis, as shown in Figure 3,
involves the solution of an integral equation:

f K (ijlIy-nj) """"
-bf u(&,n)dn - 2w ({,y) (1)ly-nl s

where K1 is the modified Bessel function of the second kind, i is a
"dipole" density, Ws is the x-wise Fourier integral transform of the
vertical velocity due to the source on the plate and E the transform
variable. The equation reduces to the airfoil integral equation for

0. The equation, when converted to an equation of the second
kind, is inverted by computer.

Results for the ratio of the force densities Z'3/Z'2 are shown in .
Figures 4 and 5. Here, in contrast to the cylinder, the
three-dimensional densities are larger for small x and less for large
x than the strip values. Again, the force on the plate is the same
and, hence, the density ratios must act as they do with x. The results
are, therefore, artifacts of the doubly infinite x-wise extent of these
simple forms.

More realistic forms are afforded by slender spheroids. The Neu- ...

mann potential of a spheroid in the presence of an offset source as

. . . . . . . . . . . . . . . . . . . . . . . . . . .
. .,-. - " %
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depicted in Figure 6 can be written down by analogy to the solution of

the Dirichlet Green's function given in Reference 1. The ratio of the
vertical force densities is given by -

_n r, n + I+) n n 0 '1 0 nl1
IZ31 n-1[

jz_,1rZ
r . + ( ] Z:::::::'.......

/r (x)lh{( Z q Q 1 7h-) Q 12}4-f(Z2 -
h 1/2-1/)

where Pi, Qn are the associated Legendre functions
Qn/2 are the associated Legendre functions of the second kind

of half-integer order and of argument Z ..

Z = x2 + r2 (x) + h' ; r(x), the spheroid local radius

2hr (x)

c the semi-interfocal length; o, no the source location
El defines the spheroid (Ci <  o).
Evaluation for a spheroid of 6:1 length/diameter with a source on -'-

the axis of the propeller below the after focus at a distance h = 3.12
propeller radii (a propeller disk having a local tip clearance of 0.25
diameter) yields the values shown on Figure 7. Here we see that, for
x < 1.75 radius ZJ/Z is less than unity, and beyond this distance the
force density ratio rises to a maximum of 1.42. Again, the total
force by either process may be close, but the local force variations -N.
are considerably different in the region of significance. It is also
interesting to note that our calculations show that the three-dimen-
sional force density falls only to about one tenth of its maximum
value at 5 diameters forward of the propeller on this body, which has
a length of 30.77 propeller diameters. Hence, more than one sixth of
the body is sensibly loaded by cavitation-induced pressures (and that, -
indeed, one should account for phase shift due to the speed of sound
in water at blade frequencies at such distances).

Those who espouse the procedure of multiplying the incident pres-
sure field by 2.0 to allow for the reflecting effect of the body may %
be interested in the ratios of the three-dimensional densities to those %.
due to twice that induced by the source alone. The force density due -
to the source alone is

110l r (x +h 2+r 2 x f\ -.

-. - 1.
PMI 12 2hrWx )."

The ratios are given in Table 1.

............

........... ,*,.
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TABLE 1

x IZ/2Z,-,
0 0.188
1 0.204
2 0.240
4 0.291
6 0.242

10 0.232

This comparison clearly suggests that the expedient of doubling i
free-space pressures grossly overestimates the force densities for
curvilinear bodies.

The authors show pressure ratios in their Figure 6 on a flat plate

(doubly infinite in length becadse of their two-dimensional theory)

that are in excess of 2.0. This is an artifact of the infinite extent

of the plate, as similar results have been found by the discussor for *
locations close to the propeller, whereas at distance the ratios are

always less than 2.0 (also as implied by my Figures 4 and 5). In a

discussion of a paper by Reed et al.,2 I have shown that, for a flat ...

surface in the water plane of finite longitudinal and transverse ex-

tent, as is provided by a disk, the pressure on the boundary is less
than twice the incident pressure field and approaches that limit

monotonically from below as the disk radius is increased. Hence, the

authors' results are artifacts of their strip theory!
The effects resulting from lack of modeling of the water surface .'-.

in water tunnel facilities are indeed significant when the draft is - -

reduced in way of the propeller. Calculations made on behalf of the
Swedish Maritime Research Centre (SSPA) have shown that corrections
should be made to propeller-induced hull pressures to account for the

replacement of the water surface by a wood cover. Indeed, the SSPA

subsequently devised empirical corrections for cases in which propel- . .
ler submergence is sufficiently small to warrant them. As the new
facility being planned by the U.S. Navy embodies this lack of scaling
of the water surface, I have been urging that calculated correction
factors should be determined from our three-dimensional procedure.

At Davidson Laboratory, we have developed a three-dimensional
procedure in which the hull is represented by an array of normal di-
pole panels. The effects on hull pressures of the free or rigid sur-
face condition on the locus of the water surface are directly secured.
The authors do us a rank disservice by citing only our first effort
made way back in 1965. To correct its gross omission, I cite seven
references to publications of DL work on hull forces and pressures
that have demonstrated good agreement with model measurements for

non-cavitating conditions.3 - 9 A forthcoming paper to be presented
at the SNAME Annual Meeting in November 1982 provides good to excel-
lent correlations with pressure measurements made in the SSPA water •

tunnel when account is taken of the effect of the boundary condition
imposed in that facility.

, *
_'-~~~~. .. . ..-.. ...- ". ................. -......... e ,.
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Having made these points, I commend the authors for an ingenious

development that can be used for estimates of propeller-induced
excitations. Indeed, in view of the uncertainty of our knowledge of

ship wakes, many may be content to use this less complicated procedure.
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C-A. Johnsson (Swedish Maritime Research Centre SSPA)

Representing a laboratory possessing what is referred to in the •
paper as "specialized water tunnel facilities that simulate full-scale
operation" I would like to comment on the practical consequences of
this interesting paper.

IR

* ... *..-...*.*

¢ : 1"- .- " ? '--.-. '' .',]. ," . ." " . .. . .,... , ... -*.• -. *.,-. - .. . .,• ., .•... .Z. .



947

First, one remark concerning the boundary conditions. The main
part of the paper is devoted to establishing a relation between the
propeller-induced pressure amplitudes on a ship-like section placed in

a water surface and the corresponding free-space amplitudes and some
results of these calculations are given. In the last part of the
paper the authors discuss how the corresponding relations could be
established when replacing the free surface by a rigid wall indicating
that this case is the proper representation of a ship model in a ...

cavitation tunnel without a free surface.
This may be true for most tunnels of this kind but does not apply .

to the large tunnel at SSPA. In this tunnel the model is submerged in
water, the thickness of the water layer above the water line being 850 .

mm which, for most models, corresponds to more than twice the draught
of the model. Thus the free surface is replaced by a water-wood-water
transition and results of experiments with the propeller replaced by a --.....
loudspeaker or hydrophone indicate that the reflection of the wall is
very small, although somewhat frequency dependent. Accordingly, this
arrangement would be best represented in the calculations by a ship
submerged below a flat plate, a case which could be expected to be
somewhat closer to the free surface case than the one discussed in the
paper.

Turning to the diagrams of the paper I would like to ask the
authors if they can explain why the results of Figures 7 and 10 are
almost identical in spite of the fact that they were obtained for
different shapes of the ship section, different flow fields for the
propeller and entirely different positions relative to the propeller.
On the other hand, the results of Figures 7 ant 9 differ appreciably,

the only differences in input data for the two cases being different
shape of the ship sections.

Finally, I can mention that we have noticed, at our model-full
scale comparisons, an increasing effect of the lack of a free surface
in the tunnel when the interest was changed from large tankers, for
which full scale results are normally available at fully loaded
draught, to container and Ro-Ro-ships, ferries, etc. The latter types
of ships have in general smaller draught than a tanker and the
influence of the free surface is amplified by the fact that most of
the full scale measurements of pressure amplitudes are made in ballast
condition for these ships. ..,,

In order to explore the effect of the free surface several .
investigations were started, one being to carry out the loudspeaker
tests referred to above, another to give a contract to Dr. Breslin to
carry out some theoretical calculations.

A third way of identifying this effect was to make a careful
analysis of the model-full scale comparisons available. The kind of
results obtained so far from the last type of work is illustrated by
the diagram of Figure 1, which will be discussed below.

As the height of the stern wave is important for this effect, the
Froude number has to be considered, if the nominal water line should
be used as the basis for the analysis. Accordingly, different plots
of the ratio amplitude full scale/amplitude model scale were made for
different Froude numbers, the one shown in Figure 1 applying to

. . .. . . . . . . .. ..
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0,15 < FnL<0,20. The horizontal axis shows the immersion of the

transducer relative to the water line at zero speed, normalized with
the length of the ship. Similar diagrams are available for other

ranges of Froude number and for blade frequency, as well as twice

blade frequency amplitudes. The correction factors read in these

diagrams are at present applied when predicting the full-scale

excitation amplitudes to be used for estimation of the vibration
levels.

A lot more could be said about the advantages and disadvantages
of not having a free water surface at the model tests but, summarizing
our experiences so far, we have found that, much because of the

presence of the stern wave, the influence on the amplitudes of blade
frequency and its first multiples is not large for the majority of
projects tested, considering the general accuracy of the measurements '.'-. .-

of this kind.

Author's Reply

Paul Kaplan, James Bentson, and Moshe Benatar

Since the paper by Hoshino is something with which we are not
familiar the discussion by Mr. Sasajima is certainly appreciated, and
we can only make a short statement in response. That particular
analysis makes use of the solid boundary factor equal to 2, which has
been used in almost all of the work discussed in the past. It is
because people have only used such a factor for a solid boundary that
we felt it necessary to provide the results in our paper, which shows
the importance of the influence of the free-surface boundary condi-

tion. Only in the case of a very large flat plate does the boundary
factor equal 2, and as shown in our paper the factor approaches zero
at the ends.

We do appreciate the fact that Mr. Sasajima has recognized the
differences in the boundary factors due to both the size of the ship
bottom as well as its shape characteristics. Our results are only
illustrative for these effects, and certainly further calculations
would be useful for specific practical applications. Such results
have to await the opportunity to apply them to specific cases, using
the procedure described in our paper.

Dr. Breslin's comments are wide-ranging and require an extensive
effort for response. Since it is not possible to check the details of
the complicated mathematical forms that he presents in his discussion,
we can only respond in general and hope that we may have an opportuni-
ty to examine the results of his analysis in more detail when a com-

pletely published version is available. As far as the capability of

strip theory is concerned, we considered the disturbance to be that due
to a source alone, where the pressure field decays in an inverse linear
fashion with distance from the propeller. When considering the pres-
ence of the image that decay is certainly much faster, but the pres-
ence of the image is only applied in the course of our analysis in
order to simplify the form of the boundary conditions and the solution

L
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of the integral equation. This particular issue can be argued further,
but it is perhaps only a matter of what point of view is adopted ini-
tially when viewing the problem.

It does not seem possible that the assumption of strip theory can
be justified simply by means of comparison with measurements, since
two different effects are present simultaneously. It is necessary to
represent properly the free-space pressure field of a cavitation pro-
peller and then also account for the influence of the ship boundary
surface. This would be the case when considering an actual ship model
in a test facility with a free surface present. Since adequate exper-
iments of this nature are not really available at present, it still
remains difficult to prove the utility of strip theory per se by this
means. Perhaps a set of simplified experiments in an appropriate test
facility for a flat-plate surface in the presence of a simple source
disturbance could be used for that purpose, but even then it is an
overcomplicated approach relative to the real practical problem to
which our analysis is directed.

Since our analysis deals with pressures, any comparisons made in
Dr. Breslin's discussion cannot be directly applied since he uses in-
tegrated sectional force values for simplified bodies. As mentioned
earlier, the mathematical results in the form of integrals of Bessel

function quantities do not allow us to determine the nature of the
procedures used in arriving at such results and the extent of their
validity. However, we do appreciate the fact that the analysis by Dr.
Breslin shows that the total force on various bodies is the same by
use of either three-dimensional analysis or by means of strip theory.
-Since the vibratory response of any vessel subject to oscillatory-type
disturbances from a propeller is generally dependent on the total
force, and since that is the major problem of engineering interest to
which the present analysis is directed, it appears that our ap- proach
is certainly useful for that case.

The information in Table 1 that Dr. Breslin presents also
supports our conclusion that the free-space pressures should not be
multiplied by a factor of 2 when accounting for the presence of a ship
hull section. No direct comparison can be made between our results
and those of Dr. Breslin since he is using force densities, applying
the results to only a simple source, the geometry is different, etc.

we do not believe that our results for the pressure ratios are
necessarily artifacts of strip theory due to the general complexity of
the pressure field associated with a cavitation propeller. The fact
that even the ratios shown in Dr. Breslin's presentation extend both
above and below 1, depending on the location along the body, is an
indication of the general complexity of arriving at guidelines for the
behavior of the pressure distribution due to this type of propeller.

we do appreciate the point of view expressed by Dr. Breslin that
different corrections should be made to propeller-induced hull pres-
sures in accordance to whether a free surface or a rigid surface is
present in a test facility. The prospective appearance of a paper at
the SNAME meeting (November 1982) as well as a possible future publi-
cation that provides a detailed description of the methods used by Dr.
Breslin are certainly items that we would hope to examine in order to

... j;... :...-.. .. . .::1 ,
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determine the basis for the conclusions presented in his discussion.
We also thank him for the fact that he does recognize that the method
we presented can be used for estimates of propeller-induced excitation
effects, which was the basic intent of the procedure that we have pre-
sented in this paper.

The discussion by Mr. Johnsson is appreciated, especially in view
of his experience with a specialized water-tunnel test facility. The
points made in his discussion regarding the results shown in Figures
7, 9, and 10 are well taken. The similarity of certain results, even
though they are obtained for different flow fields, different posi-
tions, different section shapes, etc. does illustrate the fact that -
only a theoretical approach could provide such results. In most cases
the shape of the curves would tend to be similar since they go to zero ".'.
at the ends and exhibit a peak somewhere near the center, with the .....-

shape of the distribution of pressure ratio being almost elliptical.
However, since the results are given in the form of ratios, the actual
pressure distributions themselves would be very different in magnitude t 4
(and possibly shape also) since the free-space pressures for the cases
in Figures 7 and 10 are different. The differences in the results for
Figures 7 and 9 are primarily due to the effect of the shape of the
section, and that is consistent with our expectation that the flow
around different shapes would produce different pressure distributions.

The importance of the effect of the lack of a free surface in the .
SSPA water tunnel is most evident for vessels that have smaller draft,
which would then be closer to naval ships. The fact that there are
differences between full-scale results and those obtained in the water
tunnel can possibly be ascribed to the effect of the boundary condi-
tions, which has been separately mentioned within the discussion by
Dr. Breslin. We cannot tell from Figure 1 of Mr. Johnsson's discus- -
sion whether the main effect illustrated there is due to the influence
of the free surface and the boundary conditions used in the water tun-
nel, or whether the effect is due to accounting for the height of t'ie .

stern wave.
There does not appear to be any definitive conclusion of what the

major effects are for any particular type of model test facility. ',
Almost all laboratory facilities still need some type of correction in
order to predict full-scale values, with the correction based on-.-..-
hydrodynamic flow principles as well as empirical comparisons with
full-scale values. We hope that more detailed comparisons between
theory and experiment, as well as between model and full-scale results,
will allow a useful resolution of the major factors influencing the 9
flow about ship-hull sections associated with cavitation propellers.

we do appreciate the comments made by the discussors and hope . .
that we have satisfied them with our responses. The particular prob-

lem areas discussed in our paper still remain of significant impor-
t-ance and interest in naval hydrodynamics, and we are pleased that our LA
work has made some contribution toward a more complete understanding
of these phenomena.
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A Streamline Curvature Method for
Computing the Flow Near Ship Sterns

~ La~-:.:.and Lar -Erik Johan-son

wedis!. Naritim 1 esearch Centre SOPA, G;teorg, Sweden , -

ABSTRACT

The SSPA -ITTO Workshop on Ship Boundary, Layers, held at SSPA in June
190, clearly showed that none of the ordinary first order boundary

layer methods was capalie of computing the flow near the ship stern.

One main r-ascn for this seems to be the fact that the normal curva- 0
ture of the surfce is nerlected. A very severe effect of this approxi-
nation is that the co-ordinate system does not fit into the space
outside the hull, which means that the continuity of the flow is not -

maintained as the boundary layer develops downstream. Assuming that
this is the essential deficiency of the common methods, a generaliza-
tion has been male of the 2-P and axisymmetric streamline curvature
methods previously develped at SSPA. In this approach, the flow equa-
tions are solved along the streamlines inside the boundary layer, and,

since only the longitudinal velocity component is non-zero in this -,

system, the equations become very simple. However, the location of
the streamlines, and thus of the co-ordinate system, is unknown
beforehand and must be part of the solution. In the paper the develop-

ment of the new method is described. As a pilot case, the boundary
layer developing on a flat plate, and disturbed by an obstacle, is
investigated. Thereafter the method is applied to the two test cases
of the Boundary Layer Workshop.

.-.- ' _
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L'IST OF SYMBOLS

a radius of cylinder '"

-f,g velocity similarity functions, see (17) -(19) ,?-_
G pressure gradient vector .,.
i,j,k indices, see figure 3 .-..
K ,K normal and geodesic curvature resp.,of streamlines ' ."
1 2 1 3 'l

] ~m ix in g l en gt h."-. -.,

static pressure

Pt o t a l h e a d- .._. .-P0
r, polar coordinates, see figure 7 .[-k

s't non-orthogonal coordinates in the grid, see figure 10 .--%\
s , s ,s stress terms of the Reynolds equations ""'

U undisturbed velocity (in the X-direction) .
Up Wp potential flow velocities in the X and Z directions <....;-. .

Urp Up potential flow velocities in the r and directions..--._"'"

u'v'w velocity components in the x, y, z coordinate system (<...
u evelocity at the edge of the viscous region,--;
eUlU velocities along and across the reference direction

uT friction velocity (V7w wp) . -..<""""

X, YZ goawatsa oriaesefgr '-.'
x, y9 z lobal Cartesian coordinates, see figure 4 "'"

YD modified distance from the wall, see figure 10 .[;''-'

YD' y +at the junction between the two velocity laws (18), (19)AL

+ YD UT /V

aty angles, see figure 7
e,,ydirection cosines in the X, Y, Z system.
8 ~cross flow angle , ,-
8 w  cross flow angle at the wall

6 thickness of the viscous region (boundary layer)
Ceddy viscosity, see (23) "-av"- -
r) YD/6:""'

, ~angles, see f, gure 11--
), viscosity, kinematic and dynamic, resp.

P d e n s i t y. .. " -
puv, Vw,etc. Reynolds stresses '"-" "-"
G V/27f, where V is the volume flux .,..'.-
T shear stress at the wall :'"-.w
T ,T shear stresses
xY zy :.-,-:



N V 3 V _.I -7 7r- -. -r. 
o 

1

.. 957

4..N NH0DUCTl01

In recent years,considerable achievements have beer, made in th. .
computation of the flow around ship hulls. Thus, in the 1970's the
growing capacity of the computers made possible a strong development

c f calculation methods for viscid as well as inviscid flows. Although
"he bas.:ic theories are much older, not until now have methods which

L'%v lecome useful for practical purposes started to appear. A good in-
uacaton of the state of the art was given in the two workshops orga-

rizea in cooperation with the ITTC Resistance Committee by DTNSRDC in
1979 (bai and McCarthy, 1980) and by SSPA in 1980 (Larsson, 1981). While
rotential flow calculationr were the subject of the former meeting, ship

boundary layer computations were presented at the latter. It turned
out, that the best of the potential flow methods were able to predict -. .
the wave resistance with fair accuracy, and reasonable results were ob-
tained for most of the boundary layer methods over the main part of the - AM
hull. However, one weakness was definitely revealed: none of the first
order boundary layer methods could predict the flow near the stern of
either of the two test cases considered (one cargo liner, the SSPA
Mod 720, and one tanker, named the HSVA tanker). The methods incor-

poratirng higher order effects seemed to produce more reasonable results
and, at least for two of them, the excessive girthwise variations found
in most results were reduced to a reasonable level. Quantitatively the

results were not very good, though.

At SSPA,a research program for developing calculation methods for
ship stern flows has been under way for about five years. Unfortunately,
none of the methods were ready at the time of the workshop, where the

two SSPA entries were of the first order type. Not very long there-
after, however, the first SSPA method of higher order was presented at

the Thirteenth Symposium on Naval Hydrodynamics, see Larssoni and Chang

(1980). In that work an extension of the first order method developed
by Iarsson (197 4 a)was applied to a mathematical hull form for which wave

resistance calculations with and without the displacement thickness were ..... ,
also carried out. Quite good results were obtained for this hull.

The higher order method had however some weak points. Thus, gradi- ,
ents of surface curvatures were required, which made it difficult to N
apply the method to real ships. Further, it turned out that the fully
3-D solution produced considerably less accurate results than the small
cro's-flow approximation, a somewhat disturbing fact. The further de-
velopment of this method was therefore postponed.

Receritly, the development has proceeded in two directions. In co-
operation with Chalmers University of Technology quite a complex method
of the partially parabolic type, using an analytical body fitted co-
ordinate system, is being developed. This will become very expensive ". "
and its full development will require another two to three years of'

work. There is, however, an urgent need for a simple method, good

enough for di.uiriguishirg between various alterna3tives at an early stage
in the ship design process. Ideally, it should be easy to apply, and
the cost should riot be too high, if several alternativeF are to be
evaluated. On the other hand, it might riot, be necessary to as-k for
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results, aF accurate a- the one., expected from the method of the partial ]..
parabolic type.

In the present paper the development of a method which might sati-.
fy the above requirements will be described. It should be pointed out
at once,that there is still some work to be done before the full poten-
tial of the method can be exploited, but the results obtained already
are quite interesting.

FEATURES TO INCORPORATE IN THE NEW METHOD

The task of producing a stern flow method, which works as well,
or better, than the more established ones, but at a lower cost, might
seem presumptuous. However, it should be borne in mind, that practically .

all methods which have been used for computing the viscous flow around
the hull have been designed to work all the way from bow to stern, or
at least in the entire region, where the flow is of the same type (i.e. I ,l
laminar or turbulent). This is probably not the best way to proceed, ..

since different approximations may be made in the viscous flow region

near the stern and in the boundary layer further forward.
In the boundary layer area, essentially three different types of

approximations are used, one for the pressure, one for the stresses and
one for the coordinate system. The pressure is assumed constant across
the boundary layer and equal to the one computed in the potential flow -.

on the surface. Most stresses are neglected; only the two shear stresses
in the plane of the surface are retained. The metrics, finally, in the
curvilinear coordinate system needed for ship flow calculations are also
assumed constant across the boundary layer.

In principle, none of these approximations should be made for the £

flow near the stern, where the thickness of the viscous region approaches
the local radius of curvature of the surface. However, since the momentum . .

loss due to shear stresses is almost exclusively concentrated to the .",

boundary layer part, turbulence modelling might play a much less import- ..

ant role near the stern. ." ._
It is conceivable that the major weakness of all first order boun-

dary layer methods when applied to the stern flow is the neglect of
variation in the metrics with y. This means that the normals to the sur-

face are parallell to one another, i.e. the surface is assumed to be flat.

On a ship model the transverse curvature may well be o large that the -

normals intersect within the boundary layer. Neglecting this effect
means essentially that the continuity of the flow is not maintained.
The flow may escape in an uncontrolled manner when the computation pro-
ceeds downstream. '.

Figures 1 and 2 support the above findings. In Figure 1 the magni-
tude of the terms in the longitudinal boundary layer integral equation
is shown. The calculations were carried out for the SSPA model 720

using Larsson's integral method CLarsson, 1974a), and the re-
suits are given along a streamline, which is on the bilge at mid-
ship and at mid-girth at both ends. It appears, that the skin friction
term (1) is by far the largest on the forebody, but drops to zero near ,
the stern. It is, however, counteracted by some other terms near the ,

.:-.,. ... . ..,. . ... .-. -........ .... .. .... . .-.. . ... . ... .. . . . . . . .. . . . . .. . .. . .. . .. . . . .... .'..-. :.
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f2tart of the calculation, so the increase in momentum thickness, ter.' ,
(5), is not very high initially. At X = 0 it has reached a fairly con-
stant level. The magnitude of the term (2) is quite interesting. This
represents the influence of the longitudinal pressure gradient, so im-
portant in 2-D flows. It can be seen here that it has a very small

2-*" effect on the results. The terms (3) and (4), on the other hand, greatly .

influence the solution. (3) represents the effect of convergence-diver- -.
gence of the potential flow at the edge of the boundary layer, while
(4) is a measure of the convergence-divergence due to cross flow. Terms -

"" of this type, directly related to the continuity, therefore determine
the increase in momentum thickness near the stern. It may of course be
argued, that the figure is based on computations which may not be very
accurate in this region, but the results correspond quite well with measure-
ments at X = 0.5 (25 % LBP from AP, see Figure 4) and reasonably well
at X = 0.7, so the trends near the stern should be all right.

Further evidence of the small influence of the shear stresses in
the stern region is given in figure 2, based on recent measurements at .
SSPA (L6fdahl, 1982). Profiles of the 07a- shear stress are given at four
locations along a streamline close to the one of figure 1. It appears
that the stress is appreciable only very close to the wall, while in the

*'. major part of the boundary layer the stress is much smaller than the one . -.

in the flat plate boundary layer, shown as reference. Particularly the
y-wise gradients, which appear in the momentum equations, are much re-

* duced.
The third type of boundary layer approximation related to the

"*" pressure, should not be made near the stern. Thus the pressure variation - * '

across the viscous region should be considered, as well as the inter-
action between this region and the potential flow.

Summing the requested features of the new method, unlike an ordinary
boundary layer method, it should consider correctly the continuity and
the pressure variation including interaction. Turbulence modelling is

not too critical.

BASIC PRINCIPLES OF THE NEW METHOD .

A possible way of satisfying the requirements put forward would be
to extend to 3-D the streamline curvature method, developed for 2-D .,
and axisymmetric cases by Dyne (1980, 1978). This method has shown
excellent performance when applied to wing sections and axisymmetric ,
bodies, but its extension to 3-D is by no means straight forward, since
the lateral displacement of the streamlines causes considerable diffi-

culties. This is however the approach chosen, and the basics of the .- ,
method may be described as follows.

The Reynolds equations in Cartesian coordinates for turbulent, in- "

compressible, steady mean flow may be written | -0

:..-.% :.
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where V2 is the Laplace operator and the other symbols are given in the
List of Symbols.

Assume that the x-axis is locally directed in the mean flow direc-
tion. Such a system is shown in figure 3, where it appears that the
z-axis is also along a stream surface (to be defined) and the y-axis
is at right angle to it. For a fluid element at the origin, v and w
are zero, although their gradients are not. If the exact form of the
stress terms is left for later discussion the equations for this element
are

u D_ P s l 4 4 -"
+UDx + S-

- U-D W = +-s 3 
(2 )

where sj, S2, S3 are the stress terms. By definition, the normal curva-
ture K12 of a streamline may be expressed as

K (v/u) =1 9v u V ("3)-"12 Ux Ita- VT xU 9K = .:_T ax.

since v is zero. A corresponding relation holds for the lateral curva-
ture of the streamline, K . The equations may then be written .. .

;= S (ha)

Pu 2K +S2('sb)
12 ay 2

=U K13 ~ S3 (4c)

where p is the total head
0

PO P + 2pu

The total hcad loss along a streamline is thus determined by t.he

%.................................. % . . . . . .
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. ction of' the stresles (grxdients), ard the norma nr..: lateral curva-
tures of the streamline are determined by the pressure gradients in the
corresponding directions, and the stresses. These equations are to be
solved in connection with a suitable form of the continuity equation.

Obviously, the simplifications obtained in this streamline co-
ordinate system are considerable. The disadvantage is that the location
arid orientation of the coordinate system are not known beforehand, but
must be part of the solution. It is thus necessary to introduce a global
coordinate system, X5 Y, Z, defined in figure 14.

The solution of the problem may be explained with reference to
figure 5, where a simplified flow chart is given. (See also figure 3.)

1. Give initial data (velocities and stresses) for the streamlines at
an initial plane X = Xi, and an estimated pressure distribution on the
surface. (From a potential flow solution, possibly modified, as ex-
plained later.)

2. Assume a pressure distribution outside the surface (for instance N
p = const along a normal).

3. Compute the necessary stress gradients in the plane (x-gradients
will hardly be used) and determine sj, s2 , S3. All streamlines.

~4. Compute the lateral pressure gradient p/Dz and the curvature K.3
from (4c). All streamlines.

5. Use the known direction and location of each streamline in the
known X-plane, and the computed curvature K1 3 of the streamline to
obtain a first approximation in the next plane (at y = const). One
"layer" (j = const) at a time. -'

6. Let the streamlines four by four (-1 k, j-1 k+1, j k+1, j k)
define corners in a streamtube and compute for each streamline the
velocity at the new plane, knowing the pressure and the viscous losses

s during the step. Compute the average velocity in the stream tube and
m~ve the outermost two streamlines (j k+1, j k) of each tube outwards
in such a way that the continuity is maintained within the tube, see
figure 6. When one layer is computed return to 5.

7. After tracing the streamlines all the way back, compute the normal
curvature K1 2 for each streamline at all X = X. using the known loca-

tion in the X, Y, Z, system. Use (4b) to obtain the normal pressure
gradient.

8. Integrate the pressure gradient from the outermost stream surface :77

inwards to get a new pressure at all grid points in the entire region.
(Points 7 and 8 are not carried out until point 9 has been performed at
least once.)

9. Use the outermost stream surface (defined by the outermost row of
streamlines) to define a body shape and recompute the potential flow - - -
to obtain the pressure at this- surface.

In this scheme it has been assumed that the Reynolds stresses can
be computed from local conditions, but transport equation for turbulent

.w.
........................ " '-"'"A'" ;" "-**-~** "*~** ".-" " " '"" "' "" ' .'..."
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quantities may readily be introduced if necessary. Since the same simpli-

fications are obtained for such equations as for (4) it should not be
too difficult to introduce them.

Comparing the features of the method with the ones requested, it
is seen that it should be very well suited for the purposes. In par-
ticular, the continuity of theflow is maintained exactly (within the

numerical approximation). Further, the cost may be kept low, since the
solution is essentially one-dimensional; the streamlines are traced
one by one from Xi to Xi I .

So far, the method has only been developed to point 6, so the
pressure corrections of points 7-9 are not included in the results pre-
sented. Nevertheless, as will become evident, they seem quite reasonable.

THE PILOT CASES

Although the procedure outlined is in theory quite simple, difficulties ,
could be foreseen in its practical implementation. Accurate streamline
trading in space, for instance, might present problems, particularly
if the lines meet or curl. Therefore, the simplest possible 3-D bound-

ary layer flow, namely the boundary layer on a flat plate, intersected

perpendicularly by a line source, was used as a pilot case. To simpli-
fy the problem as much as possible, shear stresses and pressure varia- U
tion across the boundary layer were neglected. A computer program was
written for this test, and it may briefly be explained with reference

to figure 7.

The velocities in the potential flow are (0 is the source strength)

U = U + cost (6 a)
p r

W =_sine (6b)
p r

and the pressure, from the Bernoulli equation

p . + 2U 2 cos¢] (7)
r oD r

Differentiation with resect to r and 4 yields the components of . .'-

the pressure gradient vector G, whose angle, a, to the radius vector

becomes

c tan n' 1(8)
<':+ coso -'

U'r

Its magnitude is %

02 cos + U"(9) -,.U

Neglecting shear stresses, (Lc) yields

%'-

°°. ~.1
V °

"-:"*"d -, -..." . - , ' " ". . ' *-, ' - '.- • . " -"- -- .-"- " ... . ..-.- .. . , .. . . . . . . . '" "
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,u- K1  = - 3 -',-. .

If the streamline direction, x, is at an angle y to the X-axis, the nor-
mal, z, is at an angle y+7r/2 to this axis and at an angle y + 7/2-)-a to

the pressure gradient 1. Thus

G cos (y4 - - a(i)

But

K- - cosy (12)

so, using (10), (11) and (12)

G cos(y + 7/2- - a) (13)

PU cosy

" Now, if a rectangular grid is put at X =X and all grid points are
considered starting points for streamlines, the direction of all lines
at a new X station may be computed. In the program the integration is
carried out using the Runge-Kutta method, which is thereafter applied
once more to the equation

dZ = tany (14)
dX i i- I

to get the Z coordinate at the new station. In the starting grid the
velocity is assumed to vary according to the 1/7-th power law and the

pressure is computed from (7).

Having marched one step the velocity is obtained from (4a), again
assuming zero shear stress and constant pressure across the boundary
layer. The streamlines close to the surface must however be considered

separately, since the no-slip oondition violates the assumption of
constant total head. Therefore, the velocity at the innermost 10 lines -lob

is computed from a power law, whose exponent is computed so as to
yield a smooth junction at the 11th line.

Knowing the velocity, stream tubes according to point 6 above are 22.!

formed, and the exit area is enlarged in the Y-direction so that the
initial volume flux can be maintained. Since adjacent streamtubes
generally have different displacements, the average is taken at the
common boundary.

In this manner all streamlines were traced downstream, until sep-
aration occured, i e the streamlines close to the surface merged into
an envelope. No particular problems were encountered, but the grid

•. ; . . -.

turned quite distorted downstream. The expected features, such as the
more rapid turning of the inner streamlines occured, but since no ex-

periments for this case were known to us at that time* no quantitative
evaluations could be made. An example of the results is given in

• The first part of this work was carried out in 1978. One year later
measurements for the line source case were reported by Krogstad (1979). .->..

% -V
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f gurt c. C'.
i,. enable some nuartitate a-omjrions, a change was made to the

original potenrial fluw. Equations (6a, L,) were replaced by
a 2

rp r

Up - U00 sins (1 + ', (Thb)

corresponding to a circular cylinder with the radius a. This case has
been experimentally investigated by East & Hoxey (1969).

Using the measured initial data the calculations were carried down- .
stream until separation. This occurred coniiderably further downstrea,
in the measurements, but as can be seei, from fi Fure 9 the correspondence
between the measured and computed momentum thickness (at least at the
symmetry line, where it was evaluated) is surprisingly good, despite
the neglect of the shear stresses. This is due to the fact that thisN
case is strongly dominated by pressure forces, which are indeed con-
sidered in the method.

The experiences from the pilot cases were considered so promising
that it was decided to start the development of a method for ship stern
flow.

DETAILS OF THE STERN FLOW METHOD

The general principles of a method of this kind were explained in
the points 1-9 above and in figure 5. If proper account is taken of the

Reynolds stresses, a full solution of the Reynolds equations might be
accomplished in this way.

In the present work two types of simplifications have been intro--
duced.

1. Since the Reynolds stresses seem to play a very limited role
near the stern, only the largest ones, considered in ordinary
boundary layer methods, i e p-QV and pVw are taken into account.

2. The scheme 1-9 i interrupted after point 6, so there is no•.
iterative updating of the pressure. This approximation will be
removed in future work.

The details of the method may conveniently be explained following the
scheme 1-G.

A. Input

All calculations presented here have been started at X = 0.5.
using 18 grid points (streamlines) circuxnferentially and 1' in the nor-
mal direction. The velocity distributions along the eighteen normals
are computed from analytical formulae to yield smoothinitial data. In-
put parameters are the friction velocity, u . the boundary layer thick-
ness, 6, and the wall cross flow angle, 6w Since the purpose of the
present calculations is to test the method, measured input parameters

r "% .

- J -
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are used. In further applications the data should be taken from boud- ... -

ary layer calculations upstream.
The longitudinal velocityu, is computed fror. a formula combining

smoothly the linear part of the velocity profile with the wall-wake
law. (y is the distance from the surface.)

D
u U-- = - (I f (16)

u ue
e

where

g = 1 -r 2 (3- 2rt); ( =1 7) ,--.'.

f-Y for y+ YD (18)

f n y. in + + 5 49 for y+ >y (19)

+ (20)

C and yD are chosen so as to yield a smooth distribution of u and

u /yL; at the junction.

Alternatively, the 1/7th power law may be used for the longitu-
dinal flow

. qV7
u
e

The cross flow is obtained from Mager's formula

u u= (1-r) tanB (21)
U U W """"

" " "

e e

and as reference direction (6 = 0) the potential flow direction on the L U
surface is used.

Also in case of the pressure on the surface, measured data are
used as input when comparing the results with measurements. Some ex-
amples from theoretical pressure distributions are however also given.

B. The Pressure Outside the Surface

Since the pressure iteration procedure is not applied here an assump-
tion has to be made for the pressure outside the surface. Some improve-
merit of the ordinary boundary layer assumption i, obtained if the
pressure is assumed constant across each layer of stream tubes, i e in
principle at right angles to the stream surfaces. This simplification
is adopted at present, and it will, in the future, be used as the first
approximation of the pressure iteration.

12A1

-:. .........
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C. Stresses and Stress Gradients

The simple mixing length model is used for the shear stresses, i e

T p(V + a)u (22a) --
xy .

w (~~22b).'',-.-
T '" = P(v + )-

where the eddy viscosity, c, is computed from

=2 IN (23)

and the mixing length,_i ' from

1 = 0.0856 tanh (4.82 - ) (24)

according to Michel et al (1968). This function is similar to the more
commonly used ramp function but produces a smoother distribution of the

shear stress.

Close to the wall, lm is multiplied by the van Driest damping
factor

F 1 - exp(- y  (25)

To be able to obtain y u is needed. This is computed after each
step from the innermost points, starting with the one closest to the
surface. By matching u/ue to the equations (16), (19) a value of uT
may be found. If this yields an y+ which is larger than YD' it is
kept. Otherwise the next point for k = const is tested, etc. Having

found u, the velocity for all points for which y < YD is adjusted

to follow (16), (18).

At the initial station the grid is generated at right angles to
the surface so the definition of YD is straightforward. At all other
stations, however, the grid is distorted, so the computation of YD -.-.
is not that simple. In accordance with the assumption for the pressure,

YD is computed along lines which are at right angles to the stream sur-
faces, see figure 10, (each layer is considered as a boundary layer).

The fact that the normal to the surface is not in the plane X = const
is thus neglected when computing lm.".-. .

In fact, neither Ynor z are in the X = const plane. The direc-
tion cosines of the 2, , z unit vectors in the X, Y, Z system are ob- "'-:
tained as follows.

" x= (ax, x, Yx) is computed by upstream differencing between the
points (i-I, j, k) and (i, j, k). To obtain g,aunit vector tis intro-

duced along the intersection between the stream surface and the plane
X = const, see figure 10. This is found from central differencing be-
tween the points (i, j, k-i); (i, J, k) and (i j, k+1). (The other

"4. .

UJ
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direction in the grid corresponds to a unit vector , computed from
the points (i, j-1, k), (i, j, k) and (i, j+1, k)). At the boundaries
one-sided differences are used. is found from the relation

TlYTI (26)

and 2 from4

X x[(27)

When computing y-derivatives of velocities and shear stresses,
derivatives in X are neglected. /y may then be obtained from

- + (28)

where / Y and a/DZ are found from the relations

""s "t -- (29a) "L.
Y '* 8  Y

t Os s t-
•~~~ . ts ot ".s.

"s t ts (29b)

and the derivatives with respect to t and s are obtained from differ-
ences between the points mentioned above.

Having computed the shear stresses from (21a, b) the stress terms
of (4a, c) may be evaluated. Since the boundary layer assumption is
employed for the stresses, derivatives with respect to x and z may be
neglected in comparison with the ones with respect to y. The terms sj,
S3 thus become

-y (30a)

.y (30b)

D. The Lateral Pressure Gradient and the Geodesic Curvature of the
* - Stream-lines

" To obtain a derivative with re.spect to "', derivatives with re-
spect to x and t may be employed

3q

Iz - *x (31)

dt

t,. -. IF.-.,
;..-.'. . . . . . . . . . . . .-..- -..- .,...-. .... ... ... ...
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= *t anid 0-1 (2dt dt

S the pressure at all grid pointE mvy be obtained according to

section , p/(iz can be computea from (31). It is now possible to get 4.

the geodesic curvature of the streamlines at X Xi using (4c) where
all quantities but K1 3 are known.

• L _

E. The step from X X. to X =Xi+

The step is carried out in the x,z-plane, see figure 11, between

the intersections with the planes X = X. and X = X and the new1 -- --

location in the X, Y, Z, system may be expressed by A" t

Xi+l = X. + Ax-x + At .t (33)

where X= (X,Y,Z)

At may be found from the sine theorem, see figure 11

sin(r/2+iL cosi ..--
At i+1 sin(fr/2-0-0) zi+1 Cos((+2)

.4 .. . .

and Ax is simply

AX X (36)

It remains to determine Q, q and zi+1[q[; '. .- '

1= cos-'(t .z) (37)

= tan- 1 1() (38)
dx i+1

zi+1 and (dz/dx). may be obtained by series expansion about
i+1 i+1

.i xx.=0. Since by definition yi 1 and y1 = 0, there is obtained

. % .% -_
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dz x 2 z --".X4z. = A + 9Xx (39) • ..

i+1 d2 2
dx .-t .\. .

where the second derivative may be found from

2 d2z 2 V6

K + +--X 2 (41)

F. Continuity

After the step, the change in total head, p is computed from
(4a), knowing the shear stress term s Since the0 pressure p may be
found according to section B, the new velocity is taken from (5).
When one layer of streamlines has been marched forward the lines are
used four by four to define comes in the stream tubes and the aver-
age longitudinal (X-wise) velocity is computed. Since the volume

' flux, V, is known from the start of the steps, the required new area
.. *can be found. As explained in figure 6, the two outer stream lines -.

(j,k and j,k+l) are moved so as to create the exact area. Now, this -.*
must be done without displacement sidewards, i.e. in the z-direction,
because otherwise the lateral curvature will be changed.

Several attempts were made to find a good solution to this
problem. A straightforward way would be to start at the lower
symmetry line (k=1), assuming a bondary condition, for instance
constant thickness of the first streamtube. Since adjacent tubes must
have a common outer corner, (j,k) to yield a smooth stream surface,
only one of the corners (j, k+1) could be moved, in the second stream
tube to get the required area. This corner being determined, the next
tube could be computed, etc. Unfortunately, this method turned unstable,
and after some other attempts a two-step procedure was adopted.

This procedure may be described with reference to figure 12, which
explains how the location of point (j,k) is found. First, normals arecomputed through the filled circles, representing the location of the '

streamlines after the step. The base points of the normals are connec- .. ,
ted by straight lines, with which the dotted lines are parallel. The
locations of the dotted lines are determined so as to yield the correct
areas. A first approximation of the location of the streamlines has
now been obtained (open circles). However, as appears from the figure,

%
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there is a gap between the stream tubes. The point (j,k, a cross) is

therefore, in the second step, computed to give a common corner with -

the total area of the two stream tubes unchanged.
The formulae for this procedure follow from simple 2-D geometry

but are rather lengthy. They will not be given here.

G. Special features

When testing the computer program two difficulties were encoun-
tered. As found in the pilot tests, the grid got quite distorted.
downstream, so problems arose when trying to satisfy the continuity . 0
of the very skewed stream tubes. The other problem was linked to the
assumption of constant pressure in the y -direction. Since stream- 7. "
lines are traced downstream, the computation is bound to meet with -.
problems if separation is encountered, i.e. if the streamlines merge
into an envelope. An ordinary finite difference method might not be &I*f

so sensitive, since the grid is usually independent of the solution,
at least in the z-direction, so all quantities will be smoothed by
the coarseness of the grid. Now due to the pressure assumption,

there is a feed-back missingbetween the streamline convergence and the
pressure. In a real flow, if the streamlines in some way would be

forced to converge rapidly, continuity would require a large normal
velocity, i.e. a large upward bend of the streamlines. This, in turn
would create a large normal pressure gradient towards the surface,
where the pressure would be increased. The streamlines would then be
moved apart, and the convergence reduced. Since this link is missing, .

separation will be predicted too early.
To overcome these difficulties, a procedure for creating a new

grid was developed. The program thus continuously tests the distortion
of the stream tubes and the convergence (divergence). If certain
limits are exceeded a new grid is generated after the step. In this "-
grid the stream surfaces (j = const) are kept, but the stream tubes
between the surfaces are rearranged~more uniformily Linear interpola-
tion around the girth, i.e. in the t direction, is used for all

quantities, when generating the new grid. It should be mentioned,
that it is the thickness of each layer of stream tubes which is
interpolated, not the Y, Z coordinates. In this way large smoothing
is avoided.

H. Boundary conditions

The no-slip condition is applied on the surface, and, as mentioned

above, for streamlines below y+ < y' (=33) the wall function.(16), (18) '
is used. D

At the edge of the computed region the total head will continuously
KU drop. Since no new streamlines are introduced into the computations as

they proceed downstream, part of the viscous region will be missed.
This is not a very serious problem, though, since the velocity drop is
only a few per cent.

At the lateral boundaries the streamlines are forced to stay in
the symmetry planes.

," . .. .
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RESULTS %

The two cases used for testing the method were the ones of the
SSPA-ITTC Ship Boundary Layer Workshop (Larsson 1981), namely the
SSPA Mod 720 cargo liner model, tested by Larsson (1974b), and the
HSVA tanker model tested by Hoffman (1976) and Wieghardt and Kux
(1980). Extensive sets of data are available for both. %

A. The SSPA Model 720

The calculations were started at X = 0.5, i.e. 25% LBP from
the AP, using u /u , 6+ and 6 from 7 measured velocity, profiles,

T ew
distributed around the girth. The data were interpolated to 18 girth-
wise locations, where the input was given. 12 grid points were used in
the normal direction, located at 0, 5, 10, 16, 25(10)85, 100 per cent ..
of the boundary layer thickness. Some reduction of the measured cross-
flow angles were made to make the analytical cross-flow profiles more ,

similar to the measured ones. (The measured cross-flow was large only
very close to the surface). The Reynolds number R was 5 " 106.

nL
A separate program, using spline approximation was run to

interpolate the measured pressures and the coordinates of the hull to
18 points per section of interest, X = 0.5(0.025)0.7(0.01)0.94.

In the figures 13-17, computed isowakes are compared with measure-
ments. The latter have been interpolated by hand from the velocity
profiles given by Larsson (1974b) and the former are direct computer .

plots of the output from the program. Linear interpolation has been used
to get the isowakes.

In general, there is good correspondence between the calculations
and the measurements. The thickness and the shape of the viscous region ,-

is well predicted all the way back and the velocity distribution inside 
%

the region is realistic, except close to the surface at the aftermost '
stations. In the keel region, the measurements indicate a low speed
area which is not found in the calculations. A possible explanation for
this is that the convergence of the flow has been reduced too much by
the new grids. Note that the isowakes have been made dimensionless by
the undisturbed velocity, U ,.not by the edge velocity ue, as in the•D e9 <[
Boundary Layer Workshop. That is why the velocities are larger than
unity at stations X = 0.5 and 0.6. %

It might also be of interest to see the shape of the grid at some
stations. In the figures 18 and 19 computer plots of the grid at
X = 0.5 and X = 0.9 respectively, are given. As mentioned, the stream
surfaces (j=const) are the same in the two plots, while the lateral
divisions have been changed.

Another point of interest is the influence of the shear stresses.
What would be the result if these were removed, i.e. if the method
were purely inviscid? Since this is very easily accomplished in the . ..

present method by putting the terms s and s equal to zero, a separate -.- ,l 2 - ... .

6 % ,

.- i.
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run was made. The result may be seen in figure 20, which gives therun iswas made resut sen-.-give

isowakes at X 0.9. Note that the 0.95-line is now complete. The
thickness of the region is reduced somewhat, but not very much, so
the importance of the viscous terms is not very great, although the '-"-
stresses are considerably larger in the computations than in the
measurements close to the stern.

B. The HSVA tanker model

The calculations for the HSVA model (RnL= 6.8 106) started

at the same station, X = 0.5. It was first attempted to use the same
type of input as for the SSPA model, but the resulting velocity profiles
from equations (16) - (20) corresponded very badly with the measured
ones. This is due to the fact that the measured skin friction is
unusually large (which yields a large u /u ). A much better fit to the . 'Ie
measured initial velocities was obtaine using the 1/7-th power law,
so this was adopted. In this case, the grid points were located at
7, 13, 19, 25(10)85 and 100 per cent of the boundary layer thickness.

In figure 21, the computed isowakes at X = 0.9 are compared with
the very detailed measurements by Wieghardt and Kux (1980). Unfortuna-
tely, there is some difference between the shape of the sections in
the computations as compared with the measurements. In rarticular,
the depth of the measured model is slightly smaller. This does not seem
to influence the results, however, since the correspondence between
calculations and measurements is again quite encouraging. The only
major difference is near the surface on the keel, when the accuracy
is low also on the SSPA model.

C. The pressure distribution

All comparisons so far have been made for results based on the
measured pressure distribution. To test the computer program at this '-..
stage, such an approach is justified. However, in the final computa-
tional procedure it is of course necessary to start from theoretical
calculations both for the pressure and for the initial data.

Tests with the purely theoretical pressure on the surface did not
work too well, so an ad hoc adjustment was made. The major difference
between the theoretical and the experimental pressures seem to be that
the latter is more even, girthwise, near the stern. Since the conver-
gence (divergence) depends on the second derivative of the girthwise

-' pressure distribution this effect must be important. It was therefore
decided to assume a constant pressure, c = 0.1 at X = 0.9 and to let, P -." .J0 ..
the adjusted c_ vary linearly with X between the theoretical one and -.

0.1. The adjustment started from zero at X = 0.5.
A In figures 22 and 23 the computed results at X = 0.9 are shown.

Obviously the adjustment works quite well for the SSPA model and
reasonably well for the HSVA model. In any case this approach might
be taken as a start of the iteration process of the full, iterative
procedure.

L' . . ...... ... ...• ~ ~ ~ ~ ~ ~ ~ - W.. . ..: . . . . , ... --. .-- ..... . ... .
. , -., '. ..- ,' .', .'. -.., ..' / .. o ,' '. , ' , ; ° : .'- - ' ; -. , - .., • ., . . • %
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CONCLUSIONS

It has been suggested that the major effect to take into account
when computing stern flows is the rearranging of the momentum loss
from the boundary layer further forward. This rearranging is due to flow

convergence (divergence), which must therefore be computed accurately.
On the other hand, turbulence modeling might not be too important in
the stern region.

Some preliminary evidence for these assumptions have first been
given in the paper. Thereafter, a method based on the assumptions has
been presented. Although considerably more work is needed to fully
develop the procedure, already at this stage, the presented results
must be considered most encouraging.
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a. calculated

b. measured

FIGURE 13. Isowa1kes at X =0.5.(u/UC = 0.7, 0.8, 0.9, 0.95, 1.0, 1.05)
SSPA model. 
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a. calculated

b. measured

FIGUR~E 14. Isovakes at X 0 .6. (u/UJ 0.7, 0.8, 0.9, 0.95, 1.0, 1.05)

SSPA model.
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a.5 calculated

b. measured ' "

FIGURE 17. Isowakes at X =0.9. (u/U = 0.6, 0.7, 0.8, 0.9, 0.95) :

SSPA model
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FIGURE 22. Calculated isowakes at X =0.9. Modified, theoretical -
Pressure. (u/U=. 0.6, 0.7, 0.8, 0.9)
SSPA model.
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Discussion

T. Nagamatsu (Mitsubishi Heavy Industries)

Predicting the flow field near the ship stern is one of the most

difficult and important problems for us.
The authors indicated by computations that the shear stresses do j

not play an important role in the stern region. The discussor has also
obtained the same results by an experiment (Nagamatsu, 1980). The
inertia and pressure terms of the Navier-Stokes equation were calculat-
ed from the measured velocity and pressure field, and the summation of
them was found to be nearly equal to zero in the outer half of the
boundary layer (see Figure 1). This implies that the shear stresses
seem to be small.

It is well known that the bilge vortex exists in the stern flow
and affects significantly the iso-wake contour curves at the plane of
propeller as shown in Figure 2. Therefore the flow prediction taking
the bilge vortex into account is important. I would be grateful if the
authors would comment on this point.

References
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Form Ship, Theoretical and Applied Mechanics, Vol. 30 (1980).

V.C. Patel (University of Iowa)

It is apparent from the results presented by the authors that the
method being developed holds considerable promise. The success of the
method is presumably due to the use of the law of the wall to treat the
region of large gradients near the surface and the careful explicit
solution of the equation of continuity, two of the features that also
became evident from my review of the existing experimental evidence on
thick boundary layers.

I would like to point out one interesting difference between the
experimental and calculated iso-wake lines of the authors' Figures .c

15-17. In the region of the maximum boundary-layer thickness, the
measured iso-wakes close to the hull have a pronounced dip toward the
surface. I believe that this is associated with the local divergence

and would also explain the measured bulge in the iso-wakes on both
sides. A somewhat similiar situation exists in the HSVA model data

shown in their Figure 21. The failure of the method to reproduce these
features appears to indicate that the method does not accurately

calculate the local rates of change of streamline curvature. This may,
in turn, be due to the assumed pressure field and stress gradients. A0
Would the authors expect the solutions to improve when viscous-inviscid
interaction is taken into account, or is the problem a numerical one?

a.q

,,R2,.,• -



991

c-S
C

4b.

a)

o ..

00

H >0

oo" B" °° .+

0

I 4

all

, \ "+*"k

> ...'... ";,,

oo 0

0r0.0 0 9 " '._ S.

0

0 0 0 0 0 0 0Q- o o 0 """ "i"

. . .... . . .-. ...

....................... *.- -- -- -- - -- -- -



-W W1 WE.: - r - -- -W . -~ - W % - , - ___ -. -.

992 -- 1

K. Mori (Hiroshima University)

The determination of streamlines is essentially important in the
present method. This is because all the solutions depend on them. The
method proposed in the present paper does not give exact streamlines.
They should be determined to satisfy the streamline equation.

The discussor understands that the present computation is not the
final one. But he would raise an objection to the assumption of the
constant pressure in the lateral direction. Though the lines along
which the pressure is assumed constant are not always the same as those
used in the ordinary boundary-layer calculation, the scheme is no more
than the boundary-layer approximation, if his understanding is

,*-, correct. The main reason for the success to continue the calculation
- close to the stern without any breakdown is the use of the measured
, pressure distribution. (There must be discontinuity in pressure at the

edge of the boundary layer.)

Y.A. Odabasi (British Ship Research Association)

This paper, by using the information available to the authors,
attempts to design a computational scheme for the computation of the
flow near ships sterns. Since a similiar study has been continuing at U
BSRA since 1974, I fully appreciate and agree with the main objectives
of the authors, i.e., the aim of stern boundary layer and near-wake
calculations is not so much to replace the need for scaled model tests
but to identify good and bad flow features both to assess a given hull
design and to assist in the design of more favorable hull form. A
scheme developed for this purpose at SSRA is demonstrated in the
authors' Figure 24. Since, however, our data included detailed wind-
tunnel boundary-layer measurements of three hull forms (up to and
including triple velocity correlation terms) including near wakes as
well as the corresponding total in flow-velocity measurements on full-
scale ships at the propeller plane, the assumptions adopted in our com-
putational scheme differ considerably from those adopted in the pres- 3
ent paper. Below, some of these differences are highlighted with the
aid of experimental data and computed results.

1. Computational Grid The choice of a computational grid, to a
certain extent, is arbitrary except for some broad guidance
that one of the coordinates is aligned with the mainstream
(and hence the marching direction) and one of the other

.-. coordinates should be aligned with the normal to allow for
certain simplifications to be made. Therefore, to specify

- one coordinate system being superior to the other is not
correct. Here the main problem is related more to the
accurate representation of the hull form and the usual mesh _

representation, and the associated planar panels in the
computation potential flow create larger sources of error
than any other possible error resulting from a variety of ...-

choices that are available within the broad guidelines given "-

. . . . . . . . .
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above. For this reason a B-spline surface patch system
(named B-SURF) is being used at BSRA, which provides all the
necessary surface information needed both in the potential
flow and boundary-layer/near-wake computations, including .
metric coefficients. The use of curved normals is desirable
and were adopted at BSRA (Odabasi and Saylan, 1980), since ... \
the beginning in the interactive scheme by setting both the
hull surface and the external matching surfaces as constant
coordinate surfaces, i.e., n = 0 and n = 1 surfaces.

2. Effect of Longitudinal Pressure Gradient The authors state

that contrary to two-dimensional boundary layers, the longi- 1 -9
tudinal pressure gradient does not play a significant role in
stern boundary-layer development. In our experience, this
assumption is not justified and is a result of the implicit
assumptions employed in the method of Larsson (1974). The
authors' Figures 25 to 28 display the role of the longi-
tudinal pressure gradient in the development of the momentum | ,

. thickness by using Gadd's integral method (1978). To qualify
this statement, the following information may be useful.

In a computatinal scheme the influence of hull form on
the boundary-layer development by affecting the external flow.- "
is felt in two ways:

a. Convergence and divergence of the external streamlines
as a result of continuity,

b. Formation of streamwise and crossflow pressure gradients.

As will be discussed in the following parts, the role of
the pressure gradient is, by no means, less than the former. P 0
This, however, will not be felt within the method proposed in
the paper owing to the neglect of certain terms. They are:

a. The assumption used in the velocity profiles near the - .

wall region, i.e., Equations (16) to (21), is valid only
for equilibrium boundary layer; a change in the pressure I....
gradients will only be felt in a very indirect and inac-
curate manner. A more detailed study, cf. McDonald
(1969), Townsend (1976), and Van den Berg (1976), clearly
links the flow in the near-boundary region to the pres-
sure gradients, which is of paramount importance in the
prediction of stern flow. I .O

b. If one carries out a dimensional analysis similar to the
one carried out by Kader and Yaglom (1978), it can be
shown that the boundary layer contains a pressure- ..

gradient length scale, 6 = u2/a, a = (i/p)3 /as?
and, by the use of this length scale, flow p~operties
can be predicted or matched in a better manner. .

c. Formation of near wake to a large extent depends on the
relative location of the weak singularity, i.e., shear

separation, and the maximum adverse pressure gradients.
If the former precedes the latter, a severe flow retar-

.- . -. .
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dation results, whereas if they are close to each other
a weak or strong vortex forms depending on the relative

location and the rate of acceleration, as shown in the

authors' Figure 29 (cf. Odabasi, 1980). Recently, this
process has been used in the design of the stern region

of a Ro-Ro, and model tests conducted in both SSPA and
NHL proved the validity of this concept, i.e., paint
tests showed a smudged region near the location of shear
separation whereas tuft tests proved smooth flow result-
ing in low wake nonuniformities in all three tested
draught conditions. .....

3. Role of Turbulence Terms Based on limited data, the authors
state that turbulent shear-stress terms, and, hence turbu-
lence, are not important and the choice of a turbulence model ...

is, therefore, trivial. Their Figure 30 gives a comparison
of the measured turbulence production terms at x/L = 0.875
and 0.9675. While one may justify the assumption for the
profiles given for x/L = 0.875, the measured data further
downstream refute this argument. The situation is not too
different in the near wake as shown in their Figure 31, where
shear reversal regions are also identified with the
accompanying bursts of turbulent production. -

Since there is a simple way to demonstrate the role of turbulence
this will be used in this discussion. In a tuft flow visualization the - %

presence of turbulence is demonstrated by the fluctuations of the tufts,--.
since turbulence production terms are mean-square values of the fluc-
tuating velocity components. As the observation of even, wild, fluc-
tuations of tufts near the stern is a common observation, this proves
the presence and the role of turbulence-related terms, since an ideal
rotational flow would produce no tuft fluctuation.

Accepting that turbulence-related terms play an important role,
modeling of turbulence also gains importance. Since, however, this
subject will be raised in the discussion of other papers of this sym-
posium I shall be content with stating that the isotropic eddy viscos-
ity assumption is the least appropriate to choose. .

In concluson, I would like to suggest that the authors reconsider
their assumptions as they do not agree with the experimental data.
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Author's Reply.' . .-~ .

L. Larsson

To T. Nagamatsu

Our statement that the shear stresses are not very important near
the stern, except close to the surface, is based on direct shear-stress
measurements by Lofdahl (1982). Since such data are extremely rare, we *

are most satisfied to learn that Mr. Nagamatsu has reached the same V
conclusion by determining the stresses in an indirect way.

We agree that bilge vortices may be quite important for the flow
pattern near the stern, but, at present, our method is not able to com-
pute vortical flows since, in that case, the normal pressure gradient
must be taken into account. Furthermore, the stream tubes and the grid
would become quite distorted in such flows, so new grids must be gener-
ated frequently. It would probably be necessary to carry out a two-

'" dimensional interpolation when generating the new grid. In the present
version of the method, one-dimensional interpolation is carried out .-
along the stream surfaces, which are kept unchanged downstream. Both %
modifications to the present procedure will be considered in future
work. V

To V.C. Patel

We share Professor Patel's opinion that the pronounced dip of the
iso-wakes close to the surface in the region of maximum boundary-layer
thickness is due to local flow divergence. This feature is not real-
ized in the computation, and the most likely reason for this is the un-
intentional smoothing that occurs when generating the new grids. Thus,
it seems to be a numerical problem, which will be further investigated. ,
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, To K. Mori

Professor Mori is quite right in pointing out that an important
reason why the calculations can be carried all the way back without
problems is the use of the measured pressure distribution. However, it
is not true that the method, even in its present form, is equivalent to
the ordinary boundary-layer approach. The main difference is that the
continuity of the flow is maintained exactly (within the numerical
approximation), while in boundary-layer methods the lateral curvature
of the surface, which is neglected, may cause appreciable errors. As
appears from the paper, we claim that this source of error is the most
important one in the boundary-layer approximation.

To Y.A. Odabasi

Dr. Odabasi raises several important questions in his discussion.
Our replies are as follows:

1. Computational Grid The most important feature of the present -.
method is the orientation of the coordinate system, with the
x-axis along the local streamline. The entire procedure is
based on this orientation. We do not claim, however, that
this is the only possible system. In fact, virtually all
other methods would require a body-fitted coordinate system,
and this can be designed in many, equally good ways. what is
important is that the system really fits to the body and the
space around it. In the ordinary boundary-layer approach,
the system does not fit into the space (the metrics are in-
dependent of y). This is a serious disadvantage of the or-
dinary boundary-layer methods.

2. Effect of Longitudinal Pressure Gradient The discussor claims
that our conclusion as to the magnitude of the convergence
terms, relative to the magnitude of the longitudinal precsure
gradient term, in the momentum integral equations, is due to -,_

some implicit assumption in Larsson's integral method. It'
would have been interesting to know what assumption the dis-
cussor had in mind. We recommend that the discussor use the
measured quantities found in Larsson (1974b) for computing -..- . -

the various terms. Since the results from the computations
agree very well with measurements, except close to the stern,
there is no way the orders of magnitude of the terms could be -

changed by such an exercise, we would also like to give one
striking example of the importance of the divergence of the
flow. In our Figure 32 a line plan for the SSPA model 720 is
shown. Eight potential flow streamlines are drawn on the
surface. At the after part of tne keel the flow is divergent. •
Streamline 2 diverges from streamline 1 (at the plane of sym-
metry). Our Figure 33 shows that along streamline 1 (1) the
pressure increases, (2) the skin friction is high, and (3) "A

the momentum thickness is strongly reduced. In spite of the .. ,,. .
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.fact that both the pressure and the skin friction cooperate
to increase the momentum thickness, the strong divergence
makes it decrease rapidly.

It should also be pointed out that the longitudinal
pressure gradient is indeed considered in our method. Only
inside y+ = 33, i.e., in the viscous sublayer and the buffer
region, are similarity functions used when marching the solu-
tion downstream. The wall law is only used when generating
the initial velocity profile.

3. Role of Turbulence Terms Our statement that the turbulence

terms play a relatively minor role in the thick boundary lay-
er, except close to the surface, is based on the very detail-
ed measurements of twenty turbulence profiles in the stern ..

region of the SSPA model 720, carried out by Lofdahl (1982).
These are, to our knowledge, the only data from such measure-
ments that are available in the open literature, we were,
however, also guided by axisymmetric results obtained by
Patel, Nakayama, and Damian (1974) when developing the method.
After writing the paper, we were pleased to notice that
Nagamatsu has reached the same conclusion indirectly from
mean-flow measurements on a full ship form (see his dis-
cussion above), that Hatano and Hotta have unpublished data
for the Wigley hull supporting this assumption, and that
Grooves, Belt, and Huang in their very recent measurements on
an elliptic body also found very small Reynolds stresses near
the stern. The latter three sets of data are discussed in
the paper by Patel at this symposium. If the discussor has
data that contradict the findings of these five experiments,
we would oe most interested in seeing a full report on the
work.

_Sin

" 13

Fig 32. SSPA Model 720 with computed potential flow ,
streamlines.
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Fig 33. Measured momentum thickness, skin friction and]
pressure coefficient along streamline Nol,
SSPA Model 720.
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ABSTRACT

Available experimental information on thick three-dimensional
turbulent boundary layers on bodies of revolution and ship forms is
reviewed in order to identify general features which may be used to
develop suitable approximations and solution procedures. It is
shown that the primary mechanism responsible for the thickening of
the boundary layer is streamline convergence, and that prolonged
convergence of the external flow leads to divergence close to the . ..

surface. Thick boundary layers are accompanied by viscous-inviscid -.-
interactions and cross-stream gradients of velocity and stresses,.. "
which cannot be neglected a priori as in the first-order thin
boundary-layer theory. Experiments also indicate the absence of
flow reversal in the direction of motion. These features are.. ..
incorporated in the so-called partially-parabolic equations whose
complexity is intermediate between the exact Reynolds equations and
the first-order boundary-layer equations. A form suitable for ship
sterns is suggested. The available turbulence measurements
indicate a two-layer structure of thick boundary layers: a thin
near-wall layer whose properties are similar to those of thin
boundary layers and a much larger outer layer in which the stresses
and stress gradients are small and the flow may be assumed to be
rotational but inviscid. The importance of the various general
features observed in thick boundary layers is discussed with
reference to the development of suitable flow models and
calculation methods.

1. INTRODUCTION 0

Several methods are now available for the solution of the
classical first-order boundary-layer equations for the flow past
arbitrary three-dimensional bodies. These equations are obtained
from the Navier Stokes or Reynolds equations under the assumption
that the boundary layer is thin in comparison with some -.-.

characteristic length(s) of the body. The most important aspects
of the approximations are that the pressure is assumed to remain
constant across the boundary layer and stress gradients in V
directions parallel to the surface are negligible in comparison
with those normal to the surface. The former uncouples the

*- boundary-layer equations from those of the external inviscid flow, --
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while the latter implies that the transport of momentum and energy
by viscous and turbulent stresses occurs predominantly in the
direction normal to the wall. Together, the approximations make
the equations parabolic or hyperbolic, and conventional marching
techniques can be used for their numerical solution.

This paper is concerned with a class of flows which, for one
reason or another, do not satisfy all of the underlying
approximations of thin boundary-layer theory. For lack of a more
precise term, we shall refer to them as thick boundary layers. In
this paper, we shall discuss the occurrence and origin of such
thick boundary layers, the characteristics which have been observed
experimentally and the equations required for their description,
and then review the requirements of calculation methods which -.-.-

address the important features of such flows on ship hulls.

I1. ORIGIN OF THICK BOUNDARY LAYERS N

It is well known that, in two-dimensional flow, the boundary-
layer equations breakdown in the neighborhood of separation.
Separation is usually preceeded by a short region of rapidly
thickening boundary layer and, even in the absence of turbulence,
the local flow does not satisfy the usual boundary-layer
approximations. In general, however, separation is not a
requisite for the occurrence of thick boundary layers. This is
well illustrated by the axisymmetric boundary layer over the tail
of a body of revolution (Fig. 1). Even in the absence of
separation, the boundary layer continues to thicken as the body
radius diminishes and leads to a wake whose diameter is of the
order of the maximum diameter of the body.

This particular flow has been explored rather extensively in
recent years (Patel et al., 1974; Patel and Lee, 1977; Huang et
al., 1979, 1980). It is useful to briefly review the main results
for this relatively simple case in order to identify the
similarities and differences in the more general three-dimensional
case.

Experiments indicate that the thickening of the boundary layer
is accompanied by increasing normal component of velocity and
variation of pressure across the boundary layer, implying a
coupling between the boundary layer and the external flow, and,7
therefore viscous-inviscid interaction. Together, these
observations suggest that first-order boundary-layer equations .-.

cannot be used. In addition, it is found that all Reynolds
stresses are considerably smaller than those in a thin boundary
layer.

The experimental information has provided an impetus to the
development of calculation methods (Nakayama et al., 1976; Geller, -

-?T)~~......,...-..-.-.....-..-. .......... ....................... . . . . -•.--- ,.
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1979; Dietz, 1980; Dyne, 1978; Huang et al. 1976; Hoffman, 1980)
which use more general thick boundary-layer equations with varying.'-S.. '.
degrees of sophistication and couple their solutions in an
iterative manner with those of the external flow, either directly
at the edge of the boundary layer or indirectly through a :.- .
displacement thickness or an equivalent source distribution. In
general, only the turbulent stress responsible for momentum
transport normal to the wall is retained in the equations, and its
observed decrease is accounted for in a turbulence model by means
of direct or indirect corrections for surface curvatures or by 49
empirical correlations for simple eddy-viscosity and mixing-length -.
d i s t r i b u t i o n s . -'; .. .

There is of course a natural tendency to assume that the
various features observed in axisymmetric flow apply in the more
complex three-dimensional case and that the methods found suitable
for the former could be used in the latter. Unfortunately, the
differences are not small enough to guarantee the success of such
an approach.

The principal reason for the growth of a thick boundary layer
in the axisymmetric case is the convergence of the streamlines in
planes parallel to the surface. The equation of continuity then
demands an increasing normal velocity, streamline curvature normal
to the surface and hence static pressure variation across a
thickening boundary layer. Thus, the development of the flow is
controlled by a simple kinematical requirement stemming from the
diminishing cross-sectional area of the body. Fig. 1 shows that * ;
the fluid in the thin upstream boundary layer comes to occupy a ,

. much larger area near the tail of the body, and entrainment of the ...
external fluid into the boundary layer plays a much smaller role
than in a thin boundary layer. The streamline convergence and the

"" body geometry are related through the parameter

1 3 1 dr0K31  h3 hI ax - ro dx

negative values indicating convergence.

In three-dimensional flows, the streamlines within and
exterior to the boundary layer are curved in planes parallel to the
surface, in addition to being convergent or divergent. In
streamline coordinates, where x and z are directed along and normal
to the streamlines in planes parallel to the surface, the curvature
and divergence indicators are K13 and K31 , respectively. Here |"
again, the primary agent for the development of a thick boundary
layer is streamline convergence. This is illustrated by three
examples involving different geometries.

.. i :i ::-'-.*- .:,
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Figure 2 shows the geometry and the potential-flow (without

boundary-layer corrections) streamlines of the ship model SSPA 720
investigated by Larsson (1974) and later by Lofdahl (1982). The
mean-flow data from the earlier experiments were utilized as one of
the two test cases at the SSPA-ITTC Ship Boundary Layer Workshop
(Larsson, 1981). The evolution of the thick stern boundary layer
is illustrated in Fig. 3. It is obvious that the boundary layer
remains thin along the keel along which there is strong streamline
divergence, and the region of most rapid, almost explosive, growth
coincides with the strong convergence of the external streamlines
from both sides along streamline 5. Although the actual
streamlines outside the boundary layer will be different from the
potential-flow streamlines used here as a frame of reference, it is
seen that the streamline convergence is responsible for packing the
boundary layer fluid into an area whose girthwise dimension
decreases while the normal dimension increases rapidly. In fact,
the detailed velocity measurements indicate that the crossflow
angle in the boundary layer along streamline 5 is everywhere less
than 3 degrees except at the last section, where it is 5 degrees.
Also, the prolonged convergence of the external streamlines leads
to a divergent flow in a region close to the surface. Thus, the

• boundary layer development along this streamline resembles that
along a plane of symmetry into which flow converges from both sides
(often referred to, rather confusingly, as a line of detachment)
and, as we shall see later, offers an opportunity to examine, in
detail, some of the interesting characteristics of thick boundary
layers.

As an aside, Fig. 3 points out the danger of extending
measurement techniques of thin boundary layers to thick boundary
layers: due to the concave transverse curvature of the hull at
section 1, the measurement of velocity profiles along the local -

surface normals led to the duplication of data in the triangular
region over streamlines 2 to 7 and a paucity of data over a large
part of the stern flow. Secondly, it should be noted that the data
of Larsson are used here since they are particularly well
documented, although similar measurements have been made elsewhere ,
on other hulls (see, for example, Hoffmann, 1976; Wieghardt, 1982;
Hatano et al. 1978; Hatano and Hotta, 1982; Nagamatsu, 1980). 9-..

The second example is shown in Fig. 4. These are the recent
measurements of Groves, Belt and Huang (1982) on an elongated body
of 3:1 elliptic cross section. The boundary layer over the rear 15
percent of the model length thickens rapidly as in the axisymmetric .*- -.

case, but the rates of growth along the minor (0 = 00) and
I major (e = 900) axes are quite different. The velocity profiles

indicated crossflow angles within the boundary layer to be less
than 5 degrees everywhere. Here again the dfferential rates of
thickening may be attributed to the different rates of convergence
of the potential-flow streamlines in planes parallel to the

i" '
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surface. The divergence of streamlines along e = 00 is responsible
for the relatively thin boundary layer, while flow convergence into
the e = 900 plane of symmetry leads to the much rapid growth in
thickness. The boundary-layer development along the latter indeed
resembles that along streamline 5 in the previous example.

The final example is the boundary layer on a body of
revolution at incidence. Fig. 5 shows some aspects of the
measurements of Ramaprian, Patel and Choi (1981) on a combination
hemisphere semi-spheroid body at an incidence of 15 degrees. The
potential-flow streamlines diverge out of the windward s
plane (e = Ou) and converge into the leeward plane (e = 1800)
resulting in a gradual thickening of the boundary layer over the
leeward side. The prolonged convergence into the leeside plane of
symmetry eventually leads to a divergence of the streamlines close
to the surface and, further downstream, the region of maximum 40.
boundary layer thickness coincides roughly with the line of
circumferential flow reversal into which the surface streamlines
from the windward and leeward sides converge.

The foregoing examples indicate that the primary mechanism
responsible for the development of thick boundary layers, both in
the axisymmetric as well as the general three-dimensional cases, is
the convergence of the external-flow streamlines in planes parallel
to the surface. This convergence is, of course, brought about by
the body geometry but it cannot be predicted by potential-flow
theory alone since the external inviscid flow is modified very
dramatically once the boundary layer becomes thick. In short, the
problem is one of a strong interaction between the viscous and
inviscid flows. The level of this interaction is well illustrated "','.
in Fig. 6 by the surface pressure measurements on the body of
revolution. It is seen that the actual pressure distribution, and
hence the pressure field around the body, is very different from
that calculated by potential-flow methods, and that the greatest
differences are observed on the leeside where the boundary layer
thickness is largest.

An important common characteristic of all the thick boundary-
layer examples presented here is the absence of separation.
Although the detailed measurements (see, for example, Wieghardt,
1982) indicate the generation of longitudinal vorticity and the . -
development of a weak vortical motion in the thickening boundary
layer, there is no hint of a free-vortex type of separation such as
that observed on long slender bodies at large angles of attack.
Perhaps the matter is one of semantics but, insofar as ship hulls
are concerned, it is safe to say that the vortical motion is weak
and diffused, and there is no detachment of the vortex from the .-
surface except in the wake itself. Furthermore, there is no
evidence of a singular or closed separation which requires

* longitudinal flow reversal.

. . .... . . . ... 7...-.1..
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Finally, it remains to provide a working definition of a thick
boundary layer. In this regard, we may use the experience in -
simpler flow geometries. In two-dimensional boundary layers,
longitudinal surface curvature influences the turbulence
when K6 = K 2 6 - 0.01, well before curvature has to be taken into
account explIcitly in the momentum equations. On the other hand,
experiments on axisymmetric bodies indicate that thick boundary-
layer effects, in the turbulence as well as the mean flow, are

: observed when 6/r K 6 1. Here we have used the usual -.
32notation for the ongiudinal (K1 2 ) and transverse (K3 2 ) surface

curvatures. The above values serve as guidelines tor three-
dimensional flows.

111. LIMITATIONS OF FIRST-ORDER BOUNDARY-LAYER THEORY

For simplicity, we consider the equations of motion in
Cartesian co-ordinates for a three-dimensional incompressible 
flow. The exact equations of continuity and momentum of the mean
flow are, respectively,

U-au + 1VU W.
x ay z

2 -2 2)

au(1) "- -

~av + ~VI+K~ + + + vv ) + --v-w -~V .(P- + V 2 V 2 + 2v+ 0rx, y az By P ;z ay2  az
+ a _.2 ay 2  a-- } '-'-2'-

E C C E 2 -1

- 2 W - 2-

VN +. -. '2 + + + 1 (P+.+

(U,V,W) are mean velocities in the (x,y,z) directions,
respectively, and the barred quantities are the Reynolds
stresses. Let x be the predominant direction of flow.

The thin boundary-layer equations are derived from the above
by considering high Reynolds-number flow on a surface y = 0. The
influence of viscosity and turbulence is then confined to a

"-"-boundary layer of thickness 6, which is much smaller than a

.- - . -%. -.
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characteristic length of flow development, L, which may be measured
along a reference streamline from the origin of the boundary
layer. In the usual boundary-layer approximations it is then
assumed that

cL i v 0(E2) - "..E- E<<I, V O(,

u, 0 (1), V (c -)

, 0(i), o( -) etc. .. ..-

ax az a

'-ji " 0(E) %

the last of these being supported only by experimental evidence.
The orders of magnitude of the various terms are then as shown
below the equations. If terms of 0(c) and smaller are neglected,
we obtain the first-order boundary layer equations. From the third
equation, the pressure variation across the boundary layer is due
only to the normal-velocity fluctuations and the total change in
pressure from y = 0 to y = 6 is of 0(E).

If terms of 0(c) are retained, in addition to those of 0(1),
we obtain what are often called the "second-order" boundary-layer
equations (Nash and Patel, 1972). These may be useful in the
determination of the errors involved in first-order boundary-layer
theory, but should not be confused with the equations required for
THICK boundary layers.

From the examples cited in the previous section it is obvious
that not all of the above approximations are applicable in thick
boundary layers. In fact, it is observed that when thin boundary-
layer equations are used to continue the solutions in the region of
thick boundary layers, the results indicate, without exception, a
much more rapid boundary layer growth and, in some instances,
premature separation. This is well illustrated by all the
calculations presented at the SSPA-ITTC Workshop (Larsson, 1981) on
ship hulls, those of Groves, Belt and Huang (1982) on the elliptic
cross-section body and of Patel and Baek (1982), Hayashita (1982)
and others on bodies of revolution at incidence.

IV. THICK BOUNDARY-LAYER EQUATIONS

The departures from thin boundary-layer behavior do not
necessarily imply that all of the simplifications of boundary-layer
theory must be abandoned and recourse had to the original Navier-
Stokes or Reynolds equations. In fact, there are many other
commonly observed flows which exhibit features similar to those of
thick boundary layers. For example, the boundary layer along a

1, .. 
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corner (wing-body junction), developing flows in square and -- '. .- "
rectangular ducts, and three-dimensional wall jets share the same
common features, namely viscous-inviscid interaction and lateral or
cross-stream gradients which are not negligible. For such flows, a
consistent set of equations may be obtained by assuming that

a 0 ), a a O -1)....
ax Oa) z y .v .-. J

The equation of continuity then suggests

U o(1); V,W o(E)

and, if the2 largest viscous and turbulence terms are to be P .
0(1), v O(E) and u.u. - O(E). Then the orders of magnitude of
the terms in the momefitim equations are as indicated below.

W Lu~ 2 _--V a lu + 0
TX w (P. tu-) + (ia) az (UW) - 2 ay 2, -. '

uax ax z
2 -2 - 2  7

+ + - 0
ax- y') + , +  z vX 2 +y 2 + 2  (2)

C C

+ + VEW + 1(1 L + P2  -a'
ax ay 3z ax ay- y

(2 -1 C-1)

If we retain terms of 0(1), two terms may be dropped in the x-
momentum equation, but the only terms remaining in the y- and z-
equations are those containing the Reynolds stresses! If terms
of 0(E) are also retained in the last two equations, then the
resulting set of equations is similar to, but not identical with, * _
the so-called 'PARTIALLY-PARABOLIC' or 'PARABOLIZED' REYNOLDS
EQUATIONS (see Patankar and Spalding, 1972) in which all x-
derivatives of the Reynolds and viscous stresses are neglected.
Note that the differene between these and the present equations
lies only in the terms - (uv) and - (uw) in the y- and z-momentum
equations, respectively, and thereI~re the present approximations
are consistent with the partially-parabolic approximations for
laminar flow. The x-derivatives of the Reynolds stresses can be
neglected only if it is assumed that the turbulent transport of

-.-----.
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momentum in the x-direction is negligible. This is a question that
can be settled only by experimental data. In the interim, we may
make such an assumption and conclude that the equations of thick
boundary layers are the same as the partially-parabolic equations,i .e., -'-

j 2v 2v
au a aU a U)

+ V _U W 2U - (Pay- az)f
Nax ay az ax P azy

aw aw )a a ~ v a 32v 3
-1 Py +z WVy + C,

ax ay az ay az + jaY
(3) i:-"'

U + + 0.-".."
ax ay a3aWz a

au + + A 0:::.:
ax ay az

The order of magnitude considerations indicate that the
gradients of pressure in the x-direction may be of the first order,
while those in the y- and z-directions are of O(e) . A simple
example is the developing flow in a duct, where the pressure is
essentially constant across the cross-section but varies with x.
Equations (3) contain the pressure as an unknown and therefore
provide a coupling with the external inviscid flow. They are
termed partially-parabolic since they are elliptic in the y-z plane
and parabolic in the x-direction. A numerical procedure for an -
iterative solution of such equations was first proposed by Patankar .
and Spalding (1972) and has been applied to the flow over ship
sterns by Abdelmeguid et al. (1979) and Muraoka (1980, 1982). In
this approach, an initial guess of 3p/ax is first made, from a
potential-flow solution say, the equations are integrated by a
downstream-marching technique, and the pressure field is updated in
successive solutions to satisfy the prescribed boundary conditions
at the edge of the thick boundary layer. Thus, the conlexity of
equations (3) is intermediate to the exact elliptic Reynolds
equations and the parabolic or hyperbolic thin boundary-layer
equations.

In addition to the approximations considered above, there is
yet another which has been employed in special classes of ii .
problems. This is the so-called 'thin-layer approximation'
(Baldwin and Lomax, 1978), in which all viscous and Reynolds-stress
terms except those which appear in the usual thin boundary-layer
equations (i.e., the normal derivatives of the two primary shear
stresses) are neglected. Thus, the pressure is again regarded as
an unknown and the normal momentum equation is retained. The thin-

i................. --...........-..............
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layer equations have been used by Pulliam and Steger (1980) and
others in the calculation of three-dimensional flows over bodies
and by Larsson and Chang (1980) for ship stern flows. The thick
axisymmetric boundary-layer equations recommended by Patel (1974)
and used subsequently by many other investigators also fall in this
category. The thin-layer equations are obviously more restrictive
than the partially-parabolic equations since they do not contain
the transverse stre derivatives. Also, apart from the problem of
modelling the additional turbulence terms, there is no
computational advantage in making the restrictions concerning the
stress gradients.

Thus far, we have considered the equations written in
Cartesian coordinates. It is interesting to note that the various
approximations have been discussed primarily by resort to
experimental information, and the thick boundary-layer equations
have been derived under the assumptions that the transverse and
normal stress gradients are comparable, and much larger than the
longitudinal gradients, and that the thickness 6 of the viscous,
turbulent flow is small in comparison with a characteristic
streamwise length of flow development. Although these physical
features of thick boundary layers are usually observed on curved
surfaces, it is also possible for such flows to occur on flat
surfaces, e.g., the flow behind a vortex generator in a flat-plate
boundary layer, or the flow along a streamwise corner.
Consequently, the incorporation of surface or coordinate curvatures
in the equations can be regarded as a geometrical problem rather
than a physical one. This view is in contrast with the usual
approach adopted in the derivation of the higher-order boundary-
layer equations, where the Navier-Stokes or Reynolds equations are
written in general curvlinear surface-fitted coordinates and terms
of order higher than K6, where K is the largest surface curvature,
are neglected. This procedure is described, for example, in Nash
and Patel (1972) using a triply-orthogonal curvilinear coordinate
system and, more recently, in Hirschel and Kordulla (1981), who
employ generalized coordinates. However, as noted earlier, such
higher-order equations should not be confused with either the thin-
layer or the partially-parabolic equations although the techniques
required for their solutions may be similar, or even identical.

In the treatment of thin three-dimensional boundary layers on
arbitrary surfaces, it is possible to use a variety of orthogonal
or non-orthogonal body-fitted coordinates since changes in the -
metrics in the direction normal to the surface are neglected. The
equations then contain only the metrics and curvatures of the
coordinate lines on the surface. Although this simplification is
not possible in the case of thick boundary layers, the choice of •
coordinates is still vast if the restriction of orthogonality is
not imposed. In the spirit of the assumptions made, the only -
requirement is that one of the coordinates, say x, should be

?~41
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aligned with the primary flow direction, along which the stress
gradients are neglected. However, if we seek an orthogonal body-
fitted coordinate system, there is only one system, namely that in
which two sets of coordinate surfaces intersect the body in its
lines of principal curvature. The construction of such a system k

for an arbitrary body, such as an airplane fuselage or a ship form,
is non-trivial and, in the final analysis, the resulting
coordinates may not be the most convenient ones from a
computational point of view. On the other hand, it may be possible
to identify a convenient coordinate system for a class of shapes,
e.g., ship sterns, without much loss of generality. An example is
the distorted cylindrical-polar coordinated used by Muraoka (1980,
1982). In the following we shall derive the equations in a
modified form of that system, eliminating one source of numerical
inaccuracy in practical computations. 7

An examination of the available data in the flow over ship
sterns (e.g., Nagamatsu, 1980; Wieghardt, 1982) indicates that, to
a first approximation, the primary flow direction x, along which
the stress gradients are neglected in equations (3), may be taken
as the direction of ship motion rather than a coordinate along the
hull. Suitable local corrections can be applied, for example in
the near-wall region, to take into account significant departures
from this assumption. For computational convenience and numerical
accuracy it is also desirable to choose the grid net in the y-z
plane such that one coordinate coincides with the hull section and
the other with a boundary just beyond the outer edge of the viscous
flow. As shown by the various examples, the latter varies greatly
in the transverse direction.

The above requirements can be accomodated in a variety of ways
by adopting some of the recent numerical grid-generation techniques -.
(Proceedings of Symposium or Numerical Generation of Curvilinear
Coordinate Systems, etc., Mississippi State University, 1982). For
the purposes of illustration, however, we consider a cylindrical
polar coordinate system (x,r,e) distorted by the following
transformations

r- r S r- r 

_
n - rs (4)

where x is measured along the projection of the undisturbed water

surface on to the center-plane and, as shown in Fig. 7, rn and rs
represent the radial distances to the outer and inner (hull)
boundaries, respectively, of the integration domain, and = /2 is

the extent of the domain in the circumferential direction.
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Thus n and c vary between 0 and 1, and boundary conditions are
applied along n = 0,1 and € = 0,1.

The partially-parabolic equations, when transformed using
equations (4), become

2U + (V-FU-GW) + - aW ,-.

+ (K21)U + (k32)V + (k2 3 - k32G)W = 0

U v 'U+(-UCW) I 2U + W !!+ -2(P) j. '2?),. U aU aU at p A an ;P

an 1 a A Lan

2)_LI+ 2U 1DU 2G I a2 o
a (v1 + + k. G 0(P.+k 2
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G' 2 U I a2 U l aU 2Gia 2 U ""'"

2 an h32 a€2 k 32 ,n W 3 -A,

S"**"." .. "... .
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In the above equations, the coordinates are ( ,n, ) but the
velocities (U,V,W) are in the original (x,r,e) directions, and the
following abbreviations have been introduced

-- r. - r-

F -- + 3A.

ax1  ax~G , {a n rs @}rs jhal rs +nia} --1 """""". .

r lae ae r+nAf ae ae

h - (rs + n)P (6)

K 1cLb....oL,

21 fa~ iTT X

k I a A 1 1.a.

K23 A a¢Ae - - -

k23 f a (rs+n A) f -e

k32 r (r+ )

Note that the nonorthogonality of the coordinates is taken into
account by the metrics A, h3 and the curvatures K21 , k23 , k32, and
these can be evaluated to any desired accuracy from the hull
geometry and the thickness A of the integration domain.

Equations (5) differ from those of Muraoka (1980) in two
respects. The first is that an eddy-viscosity assumption has not
been made to relate the Reynolds stresses to the mean rates of
strain and the second is the introduction of the normalizing
parameter A. The latter serves to provide a better grid
distribution in the regions where the boundary layer is thin (near 4 0
the keel) and, at the same time, to define a match boundary between
the viscous and inviscid flow. Thus, A can be a pre-selected
smooth boundary for the computation of the external inviscid flow
with boundary conditions (e.g., normal velocities or singularity
distribution) provided by the solution of the viscous flow. Such a
technique has already been found to be quite successful in
axisymmetric and two-dimensional flows (Nakayama et al., 1976;
Mahgoub and Bradshaw, 1979).

IV. TURBULENCE MODELS

Comparison of the thin boundary-layer equations (1) with those I •
for thick boundary layers (3,5) indicates that the former contain
only two Reynolds stresses while the latter contain all six. Thus,
for thick boundary layers, the turbulence models have to be, at
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- -- * -- -. - ~ r. ~ ~ ---- -. '-.°,---- ". S ."

1012

least in principle, more general. For a review of the various
models that may be employed for the closure of the partially-
parabolic equations, reference may be made to the recent article by
Rodi (1982) and the literature cited therein. Instead of examining
these, however, we shall address the question: What is the
relative importance of the Reynolds-sress terms in the equations?
Since detailed measurements required to evaluate the magnitude of
each term in the equations are not yet available, we shall rely
upon the available information and the now extensive experience
with thin boundary layers and thick axisymmetric boundary layers to
gain some insights. These could then be used to guide future
experiments and select appropriate turbulence models and solution
procedures for thick three-dimensional boundary layers.

Several sets (Lofdahl, 1982; Hatano and Hotta, 1982; Groves et
al., 1982; Okuno and Himeno, 1982) of Reynolds-stress measurements
in thick three-dimensional boundary layers have been reported in B
recent years. Among these, the data of Larsson (1974) and Lofdahl
(1982) on a double model of a ship form are perhaps the most
complete and best documented. Although a comprehensive analysis is
beyond the scope of this paper, it is interesting to follow the
flow development along streamline 5 which, as noted earlier, is in
the region of maximum flow convergence and boundary-layer
thickness.

The longitudinal and transverse surface-curvature parameters
along this streamline are compared with those on the low-drag
axisymmetric body tested by Patel and Lee (1977) in Fig. 8.
Following the guidelines mentioned earlier, we note that both [ - -
curvatures are large enough to influence the turbulence but only
the transverse curvature is strong enough to have an appreciable
effect on the mean flow. What is more interesting, however, is
that the curvatures on the ship model are considerably smaller than
those observed on the axisymmetric body over the last 20 percent of
the body length.

Fig. 9 shows the parameter K 6 which is a measure of the rate
of convergence or divergence of 3"he streamlines. The continued
convergence of the external streamlines in the axisymmetric case
has been noted already. The corresponding convergence on the ship
model is much smaller and the rate of growth of the boundary layer
is therefore relatively slower. Also, the near-wall measurements

indicate an important phenomenon, namely flow divergence close to
the surface under the influence of convergence in the outer part of
the boundary layer. In fact, the flow along streamline 5 resembles
that along the leeward plane of symmetry of a body of revolution
(Ramaprian, et al., 1981; Patel and Baek, 1982) where continued t O
convergence of the external flow leads to flow divergence near the
wall and eventually to a free-vortex separation. However, on the
ship model, the divergence is not strong enough to lead to a
decrease in the boundary layer thickness.

T* .M--
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The mean-velocity and Reynolds-stress distributions in the
boundary layer can now be examined in the framework of the
curvature and flow-convergence parameters presented above. The
velocity profiles measured by Larsson (1974) along streamline 5 are
shown in the usual wall-layer coordinates in Fig. 10. As noted
earlier, the crossflow along this streamline is very small and
therefore we may set aside the arguments about the validity of the
law of the wall. The figure shows that the usual law of the wall " -

applies all the way upto the last measurement section 1, x/L = 0.95
(see also Fig. 3). The most significant observation to be made
here is that the region of validity of this law is nearly constant

" in terms of y* (-150) but decreases from about 0.056 at section 4
(x/L = 0.8) to about 0.026 at section 1 (x/L = 0.95). Thus, the
wall layer, through which we normally assume a linear variation of
the turbulence length scale, has diminished from roughly 0.156 in a
thin boundary layer to about 0.026 at the stern (2 mm in a 83 mm
thick boundary layer at section 1 along streamline 5!). Thus,
near-wall turbulence models developed for thin boundary layers
appear to remain valid in thick boundary layers but in a much
smaller fraction of the boundary-layer thickness.

Fig. 11 shows the profiles of the Reynolds stress uv measured
by Lofdahl (1982) along streamline 5. The other five components of
the stress tensor show similar features and their relative
magnitudes are similar to what would be expected in thin boundary
layers. Note that, inspite of the thick boundary layers,
measurements could not be made in the very thin logarithmic layer
commented upon earlier. The turbulence measurements indicate the
evolution of a distinct two-layer structure. This is already
evident at section 5 (x/L = 0.75), where the boundary layer is
moderately thick (see Figs. 8 and 9) and is well developed at
section 1 (x/L = 0.95). It is also apparent in the mean-velocity ..-
profiles at sections 2 and 1, in Fig. 10, from the marked changes
in the velocity gradient in the region 200 < y* < 500. Fig. 11
suggests that the inner one-fifth of the boundary layer contains
relatively large stresses and stress gradients while the turbulence .
in the outer 80 percent remains at a low and nearly constant
level. The stress distribution in the inner part is compatible
with the wall shear-stress determined from the mean-velocity
profiles and the local pressure gradients, and is quite similar to
that in a thin boundary layer. The outer, low-turbulence layer
appears to ride over the inner layer and continues to grow in
thickness.

The foregoing observations raise two important questions:
What is the origin of the two-layer structure and what are its
implications relative to turbulence models for thick boundary
layers? It has been apparent from almost all turbulence . .

measurements in thick boundary layers, including those in
axisymmetric flow, that the Reynolds stresses are much smaller over ,.
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a large part of the layer than would be expected in a thin boundary
layer. As a consequence, eddy viscosities and mixing-lengths, when
scaled by the boundary-layer thickness, show a marked decrease.
The reduction in mixing length is shown in Fig. 12, where data from
three sources are reproduced. The similarity among these, and the
earlier axisymmetric data, is indeed striking but it should be
noted that these results correspond only to regions when the
crossflow is absent or small, there is as yet no satisfactory way
of predicting the observed reductions in the mixing length, and
such correlations are restricted only to one component of the
stress tensor. Thus, the practical utility of the correlations in
the closure of the partially-parabolic equations is severely
limited. From the earlier observation concerning the law of the
wall, we would expect i - ky, where k is the Karman constant, over

" a very small region near the wall (y/6 < 0.05 say), and therefore
the departures from this in what is usually regarded as the wall
region (0.05 < y/S < 0.2) should not be viewed in the context of
the law of the wall. In other words, the turbulence measurements
appear to indicate a thin layer close to the
surface (y/6 < 0.05) where the usual law of the wall, or its
extension to three-dimensional flow, applies, a layer adjacent to
it (0.05 < y/6 < 0.2) in which the stresses and the stress

" gradients are large, and an extensive outer layer characterized by
a low level of turbulence, small stress gradients, and nearly
constant but small mixing length. The flow in the first two
regions is similar to that in a thin boundary layer and therefore
it may be possible to adopt a conventional turbulence model,
including corrections for the extra rates of strain effects, to
describe its dynamics. The total boundary layer thickness cannot,
however, be used as a relevant length scale. The outer layer, on
the other hand, is a product of the thickening boundary layer due
to the strong convergence of the streamlines, and appears to be a
region in which the turbulence produced upstream is convected and
diluted simply by the increase in boundary layer thickness.
Further analysis of the data and some supporting calculations are

Sobviously required to confirm these preliminary observations.

VI. STERN-FLOW CALCULATION METHODS

From the examples and characteristics of thick three-
dimensional boundary layers discussed in the previous sections it
is clear that simple extensions of thin boundary-layer calculation
methods are unlikely to succeed in providing an adequate
description of the flow over a ship stern. This was demonstrated
at the SSPA-ITTC Workshop (Larsson, 1981). Among the major

S features of thick boundary layers to be addressed by calculation
methods are the following:

(a) an interaction between the viscous and inviscid flows
leading to a modification of the pressure field from
that predicted by potential-flow theory alone; .

.... .°-. - o° .• • ..............................................................................-...... -°°'.
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(b) large transverse variations in the thickness of the
viscous flow, implying strong cross-stream gradients of
velocity and stresses;

(c) a two-layer structure of the viscous flow: a small
inner layer that resembles a thin boundary layer and a
large outer layer which consists of weak mean shear and
low turbulent stresses.

The partially-parabolic equations formally embody the first two
features provided their solution is matched correctly to that of
the external inviscid flow at the edge of the viscous-flow
domain. However, the third feature must be reflected in the
turbulence model that is selected to effect closure of the
equations.

Solutions of the partially-parabolic equations, in conjunction
with the basic k-e model of turbulence, has been pursued by
Abdelmeguid et al. (1979) and Muraoka (1980, 1982) with encouraging
results. In the applications to date, however, the partially-
parabolic solutions are obtained over a much larger domain than
required by the local boundary-layer thickness and are matched at
the outer edge of this domain with a potential-flow solution
obtained in the absence of boundary layers. Thus, the matching
between the viscous and inviscid regions is unrealistic and the
numerical procedure is wasteful, and possibly inaccurate due to
inadequate resolution in the region of thin boundary layers. The
introduction of a normalizing parameter A in equations (6), .
selection of a smooth match boundary just encompassing the boundary .
layer, and iterative matching with the external inviscid flow,
taking into account the influence of the boundary layer, are some
of the features which would lead to improvements in such methods.
The performance of the k-c model, and the isotropic eddy-viscosity
assumption accompanying it, is also untested in thick boundary
layers and modifications to the model may be needed to account for
the observed turbulence behavior.

An attractive alternative to the direct numerical solution of
the partially-parabolic thick boundary-layer equations is to
develop approximate techniques that exploit the two-layer structure
noted earlier. In such an approach, it may be assumed that the
inner layer satisfies the usual thin boundary-layer equations and 71
hence can be calculated using existing methods. These solutions
have to be matched with those of the outer layer in which the flow
may be treated as inviscid but rotational and fully three
dimensional. Several methods exist for the solution of such
problems. Conceptually, such an approach is feasible but its
success would depend largely upon the solution of problems arising
from matching the inner and outer layers, and the outer layer to -
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the external inviscid irrotational flow. This suggestion is
somewhat similar to the assumptions implicit in the 'streamline
curvature' method proposed by Dyne (1978) for the thick
axisymmetric boundary layer and near wdke, and being developed by
Larsson (1982) for application to ship sterns.

VII. CONCLUSIONS

Examination of the available experimental information on thick
three-dimensional boundary layers over a variety of shapes
indicates several common features. It is shown that the primary
mechanism responsible for the thickening of the boundary layer is
streamline convergence, and that prolonged convergence of the
external flow leads to divergence close to the surface. Thus, the
equation of continuity must be handled with special care in the
numerical solutions. Thick boundary layers are accompanied by
viscous-inviscid interaction and cross-stream gradients of velocity
and stresses which cannot be neglected a priori as in the first-
order equations. Also, the examples cited suggest an absence of
singular separation or flow reversal in the primary direction.
These features are embodied in the partially-parabolic equations,

* the coupling between the viscous and inviscid flow region being
established through the unknown pressure field. The available
turbulence data suggest that the thick boundary layer is composed
of two layers: an inner layer whose properties are similar to
those of a thin boundary layer, and a much larger outer layer in

- which the stresses and stress gradients are small. This
characteristic may be exploited in the development of approximate
solution procedures as an alternative to the numerical solution of
the partially-parabolic equations. Finally, it appears that, in
general, the success of prediction methods for thick boundary
layers will be determined more by the manner in which the flow
geometry and the pressure field are handled than by the precision
of the turbulence model.
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Discussion

K. Mori (Hiroshima University)

1. We can obtain the partially parabolic approximation consistently
under the assumption

-"a a a "0(. ...
ax (l), y (z E.

If the Reynolds stress can be expressed in terms of the mean

velocity, ffv, for example, is written in the form of

uV -V (2- + _U)
t ax ay

where vt is the kinematic eddy viscosity whose order we assume
O(r 2 ). Then we can have

S= - t  -au + 0(r 2 )
UV t ay

Similarly we can have

vv _(C2), _ = (-2 .

Now -Uj is not of the same order any more; VW is higher. This
may be consistent with experiments.

Picking up the leading terms, we have the following equation
for the y-equation:

av + V av + W av + (uv) + a (L + , + a .. <...:ax ay az ax ay p 3 -

-V a" + + 0(r2 ) = 0

Though Equation (5) seems still to have a transportation of the

Reynolds stress in the x-direction, the fourth term of Equation
(5) being given by Equation (3), we can conclude that Equation -O
(5) has been parabolized.

Similarly we can have the parabolized z-equation.
2. The discussor supposes that, in the case of ship-like bodies, the

important aspect of the partially parabolic approximation lies in
retaining the pressure term rather than the a3/az 2 term. This is

.0 because, first, in the two-dimensional case or the axisymmetry 5
* **. case, the partially parabolic equation is no more than the

.. U'



1033

boundary-layer equation except that it retains the pressure term;
and also because the author has had experience calculating the
near-wake flow of ships by making use of the vorticity transport
equation with the same approximation as the boundary layer;

2-Vq

where and ' are the velocity and the vorticity vectors,
respectively, Equation (6) is the same as the boundary-layer
equation except the pressure is released (kept unknown). The- .
calculation was quite stable, and results were satisfactory.*

Such equations, where just the pressure term is retained,
can be obtained consistently under the assumption of orders

which is likely in the case of ship-like bodies. The equations
must be similar to those used by Larsson and Chang (1980). Appre-
ciable simplifications in numerical calculation can be expected.

3. What kind of scheme are you going to use for the Reynolds stresses
instead of the mean rates of strains? U

**K. Mori; Mem. of Fac. of Eng., Hiroshima University, Vol. 7, No. 2
(1980).

A.Y. Odabasi (British Ship Research Association)

Professor Patel presents an excellent review of the state of the
art on stern boundary layers, based on the information and data avail-
able to him, and proposes a possible calculation scheme based on these
findings. Unfortunately, his data do not include the wind-tunnel
measurements undertaken at NMI on three hull forms (one V-stern, one .
U-stern, and one bulbous stern form) nor does it include the analytical
and numerical studies conducted at BSRA, apart from one by Odabasi and
Saylan (1980), as this information was confidential to the sponsors of
the research. I would therefore like to complement some of the points
raised in this paper using the information available to us. Since a
more detailed discussion of the flow structure will be presented in a I *
paper by Odabasi and Davies (1983), the comments will be kept to a
minimum here.

Potential Flow Computation The present paper pays little atten-
tion to the accuracy of potential flow calculations. Although for
axisymmetric forms this is a relatively easy task to achieve, for the
general forms encountered near the stern (or the bow) of the ship forms
the accuracy of calculation depends very much on the method employed.
The use of singularity panel methods does not automatically guarantee
success since the choice of panels both in terms of aspect ratios and
the area ratios of neighboring panels greatly influences the results.

,-,. *-. ,. *..,
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A possible remedy to this problem is to link a surface representation
with the potential flow and boundary-layer calculations ani reduce the
compound error. Although this may appear laborious at the outset if
one remembers that a proper surface representation is needed both for
detailed design and production, implementation of such a scheme does
not add extra cost to the overall design or assessment program. At
present, a hull surface representation using parametric spline surface
patches (a program called HULLSURF) is being used for this purpose,
which produces hull surface panels as well as their geometric features
(i.e., areas, direction cosines of normal, and metric tensor) by
mapping the principal curvature lines on the surface. These lines .
also form the coordinate lines on the hull surface (n = 0 surface).

Coordinate System As pointed out in the paper, there exists a
great deal of flexibility in the choice of a coordinate system for the
boundary layer calculations, provided that they remain within the broad
guidelines given by Wesseling (1969), i.e., one of the coordinates is
aligned nearly with the mainstream direction and one of the other
coordinates should be close to the surface normal. While the impor-
tance of the first requirement is self-evident, the need for the lat-
ter arises from the fact, in one form or another, that the governing
equations are derived by employing assumption on the variation normal
direction making the resulting equations semi-invariant with respect
to coordinate transformations. within this context the proposed U
coordinate system (Figure 7 of the paper) does not satisfy the second
requirement unless a second transformation is conducted, which adds to
the complication and introduces additional errors in the numerical
execution of the transformation. Furthermore, for ships with bulbous
stern a vertical shift of axis system is needed, which introduces fur-
ther arbitrariness.

Modeling of Governing Equations Professor Patel vividly dis-
plays how the so-called order theories can be manipulated by choosing
different assumptions on the order of magnitude of different terms.
While this may look arbitrary, a more rational basis for the choice of
assumptions may be conceived by considering the ratio of simple shear
(U/n) to the extra strain rates (e) due to the effects of accelera- ,l
tion (deceleration), curvature, convergence, swirl, etc., cf. Bradshaw
(1972), Odabasi (1980). Accordingly, one may broadly state that a
layer is a

Simple shear layer if 9U/Dn >> 10e
Thin shear layer if DU/3n >> e
Fairly thin shear layer if 3U/3y > 10e
Strong distortion layer if 3U/3y < l0e
Rapid distortion layer if DU/ay < e

where - implies a ratio between 10 and 100.
In principle, only in rapid distortion layers may one ignore the S

effect of Reynolds stresses, as proposed in the paper, and consider
the flow field as ideal flow with vorticity. A glance at Figures 8
and 9 of the paper indicates that this assumption is quite justified
for the axisymmetric body, since the distortion imposed by the external

. .1. V
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potential flow will be far in excess of the simple shear, apart from a
* very small region near the wall. However, the same figures illustrate

also that the situation is quite different for even a fairly fine V-
* form ship (SSPA model 720). In practice, depending on the form of the

aft-end form, the flow in the stern region falls within the fairly
thin shear-layer range, approaching a strong distortion layer when the
angle of runs and convergence is high. Therefore, the assumptions

* related to the relative role of Reynolds stresses ceases to be valid.
Figure 13 displays that turbulence production further downstream is

-. quite evident. Wake and turbulence intensity measurements of HSVA
tanker form, shown in Figure 14, also support BSRA.

When one combines this principle together with an order-of-magni-
tude of analysis of the wind tunnel data on ship forms, momentum trans-

- port equations show certain differences compared with the partially
parabolic equations. For example, the transport equation in the
normal direction becomes

U1  2 U 'U2 U a02 a P 2 -

X 3 a x X 1a 3
1 2 2 3x 2P 1x 3 2

which, in fact, is important .n the computation of pressure in succes-
- sive sweeps.

An important point, at least in our experience, is the role played _
by the extra strain rates imposed on the main flow. While the method
proposed by Bradshaw (1972) is, in principle, not derived from a rec-
ognized principle, it at least produces results in the right direction,
especially when used in conjunction with a dissipation length scale
transport equation, cf. Odabasi and Davies (1983). It is therefore
strongly suggested that this effect should be taken into account in a i

*' scheme for stern bounday-layer calculation.
It is also important to recognize that the mechanism gives rise

Cto the formation of vortices in the wake, i.e., shear separation.
- Figure 15 displays measured velocity profiles at the location of shear

separation, and Figure 15 shows the profiles along the same streamline
in a further downstream location. The corresponding shear profiles

* (streamwise components) are demonstrated in Figure 17. In numerical
computation one observes a weak singularity in the location of shear .- -

separation, which can be overcome by adopting a scheme similar to
FLARE, cf. Odabasi (1981).

Turbulence Models While it is not possible to produce a univer-
sally valid turbulence model or assume that one can determine simpler

- equations than Navier-Stokes equations, within a fairly restricted
*" class of flows an assessment may be possible. Experimental data on
.stern flow clearly indicate that an isotropic eddy viscosity asssump-

tion is not valid and therefore should be avoided. The assumption of
Bradshaw on turbulence production generally holds, i.e., the shear-
energy conversion constant a varies between 0.17 and 0.18 depending S
on the pressure gradient. A dissipation length scale, or equivalently
a dissipation rate, transport equation improves the performance of the
calculation methods. Data also indicate that both convective and -

gradient diffusions assumption are not supported and a complete re- .. o

-1! 2".*"."..
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thinking may be necessary for more realistic diffusion modeling, cf. -
Odabasi (1981).

Viscous-Inviscid Interaction While I would like to express my
full support for the views expressed by Professor Patel, I would like
to point out that early knowledge of this fact may help to introduce
the interaction effect by modifying the potential flow computation
results prior to the first iteration in boundary-layer calculations.
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I. Tanaka (Osaka University)

In your Figures 2, 11, and 12(a), you referred to SSPA model 720,
but, it seems to me, each figure has a different description about the
measured locations in Square Stations. I would like to know the
correspondence between them.

In Figure 11, assuming that station 55 is upstream (and station
15 downstream), let me ask the following:

1. Near the wall, why is the value at station 55 (upstream)
smaller than the value at station 15 (downstream)?

2. Is it possible to give physical explanations for the differ-

ence of shapes of stresses between the two stations, noted
above, near the wall? '-.

3. What is the physical explanation about a sudden flat plateau
formation of stress shape in outer layer? It seems to me
that it may be homogeneous in the girthwise direction in .. ;
this nature. Is it true?

In Figure 12: .-.-

1. How was 6 determined (in each figure)?

K .. ..:
* .~**1 .. '7-ii
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2. Among three figures, the configuration near y/6  1.0 is
different. Could you show us the intermittency factor
distributions for each figure? What is the main cause of
different values of 1/6 at the edge of 6?

Mr. Fukuda of Mitsui's Akishima Lab made a measurement of stresses
around a Series 60 model and published it in the Journal of the Society
of Naval Architects of Japan, 1981.

H.T. Wang (Naval Research Laboratory)

I would like to thank Professor Patel for presenting an instruc-
tive overview of thick boundary layers. I would like to point out a
calculation method that is not mentioned in the paper. I am refer-
ring to the potential flow/boundary-layer computer program developed
at DTNSRDC by Dr. Thomas Huang and myself. It is an extremely simple
calculation procedure, which nevertheless includes the essential thick
boundary-layer features given in the paper.

Details of the program are given in Wang and Huang (1979).
Briefly, the method uses the displacement body-wake concept to calcu-
late the pressures on as well as off the body. The calculated pres-
sure on the body is used to solve the thin boundary-layer momentum
equation (but including the effect of transverse curvature) for the
tangential velocity. The eddy viscosity is modified by a simple alge-
braic equation to account for the small shear stresses in the thick
boundary-layer region. The calculated tangential velocities are then
modified by the calculated off-body pressures such that, at the edge
of the boundary layer, the modified tangential velocity is exactly
equal to the potential flow value. Finally, the normal velocity is
simply determined from the continuity equation. The procedure
basically decouples the boundary-layer and pressure calculations.
Also, the boundary-layer calculations are no more complex than those
for the thin boundary-layer case.

The calculated results have been validated in the Reynolds number
range 106 to 107 for a series of bodies, see Wang and Huang (1979). .'-.

The paper presented by Dr. Coder at this symposium to some extent
validates the program in the Reynolds number range 107 to 108.

Reference, .

Wang, H.T., and T.T. Huang (1979), Calculation of Potential Flow/Bound-
ary Layer Interaction on Axisymmetric Bodies, Turbulent Boundary
Layers, ASME, New York, pp. 47-57.
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.., Author's Reply

V.C. Patel

To Prof. I. Tanaka

1. The correspondence between the notation used in Figure 2 and that
in Figures 11 and 12 (a) is indicated in Figure 3. Since the
mean flow was measured by Larsson (1974) and the turbulence mea-
surements were made by Lofdahl (1982), both types of data are not
available at all stations.

2. In Figure 11, station 55 is upstream (X/L = 0.75) of station 15
(X/L = 0.95).

a. The near-wall Reynolds stresses are increasing with down-
stream distance presumably owing to the increasing adverse A
pressure gradient along this streamline. Note that the wall
shear stress is decreasing.

b. The evolution of the stress field in the wall region may be 2_4

attributed to a variety of factors, including the local

pressure gradients, streamline convergence and divergence,
and possibly surface curvature. At this stage, it is not
yet possible to isolate these effects, but, as indicated in
the paper, it would be useful to perform additional analysis
of the data and supporting calculations. .. -'N.

c. The plateau in the shear stress is not expected to be homo-
geneous in the girthwise direction since the boundary layer
along the keel is still thin and may not indicate this fea- -

ture. In the thick boundary layer, however, its presence

may be attributed to the convection of turbulence from up-
stream rather than local production and diffusion.

3. In Figure 12: • . g%

a. The values of 6 are those quoted by the investigators using
the usual definition based on either mean velocity or total-

pressure profiles.
b. Intermittency measurements have not been reported in any of

these investigations. The differences in 1/6 at the outer
edge are most certainly due to lack of accuracy in the de-
termination of 1 from experimental data, since it is the
ratio of the square root of the diminishing Reynolds stress ..

and the mean velocity gradient.

4. The turbulence measurements of Fukuda and Fujii (JSNA, Vol. 150,

1981) on a Series 60 model also show some of the qualitative fea-

tures of thick boundary layers noted here. In a later, unpub-
lished report (STG Meeting, Tokyo, May 1982), however, these
authors presented a revised method for the analysis of hot-wire
data that casts some doubt on the accuracy of the method used in
the previous publication. ,I.',

r . P
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To Dr. H.T. Wang

The paper of Wang and Huang (1979) incorporates several addition-
al features in the method of Huang, Wang, Santelli, and Groves (1976)
referenced in my paper and could have been quoted in my brief survey .L
of the analytical treatment of thick axisymmetric boundary layers in
Section II of my paper. However, as the title suggests, the present
paper is concerned primarily with thick three-dimensional boundary
layers with special emphasis on experimental evidence.

To Prof. K. Mori

1. Any attempt at making an order-of-magnitude analysis of the terms
involving Reynolds stresses in the equations of motion has to ,.

rely on experimental evidence. In this paper, I have assumed
that all turbulent stresses are of the same order. Instead of
using these measurable quantities, Professor Mori suggests the
use of a derived quantity, namely an isotropic eddy viscosity.
Once this is done, and a magnitude assigned to it, the equations
reduce to those of a pseudo-laminar flow and the order-o -magni-
tude analysis can be made as if the flow were laminar. It is
interesting to note that the net result is the same, although the
eddy-viscosity approach enables the retention of the x-deriva-
tives of the Reynolds stresses in the partially parabolic equa-
tions through relations such as Professor Mori's Equation (3)
used in conjunction with continuity.

2. For ship-like bodies, the most important aspect of the partially
parabolic equations may turn out to be their capability to relax
the pressure field rather than the transverse gradients of stress-

• es. This will be true if it can be shown that all the secondary NR
motion (in the yz plane) is of the first kind, i.e., driven by the
pressure forces. The partially parabolic equations are, however,
more general insofar as they can be used also to describe second- \- _.
ary motion of the second kind, which is driven by the transverse
gradients of Reynolds stresses (e.g., flow along a streamwise edge
or corner). In view of this, it is perhaps better to work with
the complete equations while recognizing that some terms may be
small for an entire class of flows or in a subregion of a given
flow. Professor Mori's Equation (6) results from the so-called
thin-layer approximations, in which only the stresses responsible
for transport normal to the shear layer are retained. The success
of Professor Mori's solutions may be due more to the elimination ... *:

of the pressure by the use of the vorticity transport equation
rather than to the neglect of the extra turbulent transport terms.
Needless to say, the solution of the vorticity equation poses -
other problems stemming largely from boundary conditions at solid

walls.
3. It is apparent from the paper that the author has not yet made up

his mind on any particular turbulence closure model since it is
not clear at this stage which, if any, of the existing schemes
would best reproduce the observed features.

A. .. -
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To Dr. A.Y. Odabasi

The author does not have access to the confidential experimental

and computational information noted by the discussor. The following
response is confined to those items that can be addressed without

* recourse to that information.
Potential Flow I agree that the calculation of the external

irrotational flow and its matching with the viscous flow is of crucial
importance. However, it is not certain whether existing irrotational-
flow calculation methods can be generalized to account for the thick
boundary layer and near wake of arbitrary bodies with sufficient ac- .
curacy.

Coordinate System I do not see why the local surface normal has
to be a coordinate for thick boundary layers of the type depicted in
Figure 3. Once the appropriate equations are written down, e.g., the
partially parabolic equations, the choice of coordinates is vast and
must be determined by numerical considerations. The coordinates of
Figure 7 have been chosen for illustration and may not be adequate for
all sterns. Nevertheless, the example shows that it is not necessary
to make further coordinate-related approximations once the basic gov-
erning equations have been selected and, in the case of partially pa-
rabolic equations, a marching direction decided on.

Modeling of Governing Equations The scheme proposed by Bradshaw
for the classification of shear layers on the basis of "extra strain

'.%'° -.

rates" is physically appealing for flows in which there is a primary
strain rate. The examples of thick boundary layers shown in the paper

¢. indicate that it is not possible to put them in a single class since
there are regions where the flow behaves as a thin shear layer next to
regions where it may be regarded as a rapid distortion layer. As in
my response 2 to Professor Mori's discussion, I believe it is safer to

• .use the most general equations required to describe the various

possibilities while recognizing that not all the terms in the equations
may be important everywhere. With regard to the classification itself,
I believe its most useful function is to provide a guide for the selec-
tion of turbulence models and further refinements therein.

Turbulence Models My conclusions concerning the relative impor-
tance of Reynolds stresses in the wall and outer regions of thick
boundary layers have been derived from an examination of the published
and readily available data. I believe that much more careful analysis

of such data is required before endorsing or rejecting specific turbu-
lence models. Unfortunately, experimenters do not always report all
the details in a form required for such an analysis. This became
apparent at the 1980 AFOSR-HTTM-Stanford Conference, where an attempt
was made to select experiments that could be used as test cases for

.* computation methods. Also, computers very seldom make comparisons
with detailed turbulence data, even when those are available, and

p- thereby forego the opportunity to advance the state of the art in tur-

bulence modeling. I shall look forward to a detailed examination of
the new BSRA data introduced by Dr. Odabasi at the discussion when
they are reported in the open literature in full.

Viscous-Inviscid Interaction I agree with the discussor's com-
ments.

c *'..'*¢

%* % .. .. .' .~ .S .. .5 . .- %
.. ,..-~.,~- '.



i ,t. l

A Streamline-Iteration Method for
Calculating Turbulent Flow Around the
Stern of a Body of Revolution and Its

Wake
Zhou Lian-di

China Ship Scientific Research Centre
Wuxi, Jiangsu, China

Abstract

This paper presents a new numerical method for calculating viscous 11
flow around the stern of a body of revolution and its wake using a two-
equation (K-c) model developed by Harlow and Nakayama (1968) and mod- IAF
elled by Launder and Spalding (1972). The features of this method are:
I) The grid points calculated are taken on mean-flow streamlines and on
radial straight lines, thus the convection terms of the governing equa-
tions for t"-al pressure, turbulent kinetic energy and its dissipation
can be writtcn in the form of their variations along streamlines. For
static pressure the radial pressure gradient equation is used. These
equations are convenient for numerical calculations. The mean-flow
streamlines, however, are not known beforehand and must be determined
by an iterative scheme. 2) By means of a system of coordinate trans-
formations, the calculating region is extended to infinity in both ra-
dial and axial direction. By doing so, the free-stream condition and
the parabolic flow condition may be used at the outer and the down-
stream boundary respectively. The flow in the boundary layer and the

potential flow outside the boundary layer can be determined by an uni-
form equation system. 3) Assumptions for a thin boundary layer and
partially parabolic flow, etc., are exempted.

The velocity profiles, the variations of static pressure and tur-
bulent properties calculated theoretically at some axial stations are
compared with the experiments by Huang et al. (1978), the agreements
being satisfactory. For the wake, the accuracy of the present method

".[- is higher than that of Muraoka's method (Muraoka, 1980a, 1980b). I
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NOMENCLATURE

Alphabet Symbols

Cl, C2, CD ; constants of the (K-E) turbulence model

C ; pressure coefficient (p-p.)/ V2 "-
p

f; distribution profile of K

g ; distribution profile of Z.
m

K • turbulent kinetic energy

"" " distance along spatial streamline

unit vector in spatial streamline direction (

; mixing length
m

L ; length of a body of revolution J

m ; meridional streamline, distance along meridional F
streamline

p ; static pressure (time-averaged)

P ; total pressure p + pV2

p ; free-stream static pressure

q ; arbitrary spatial curve, distance along an
arbitrary spatial curve

Q mass rate of flow A
r, , z cylindrical polar coordinates

r ; local radius of a body of revolution
0

r ; maximum radius of a body of revolution
max

R ; Reynolds number ' .%-L

e

S " distance from the leading edge .',* .",

u,v,w ; axial, radial and circumferential velocity com- 3
ponents in a cylindrical polar coordinate system .

(time-averaged)

7%
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V ; velocity /u2+v2. I. I"

V ; meridional velocity /u2+v 2  A
V ; free-stream velocity

z ; axial coordinate

Greek Symbols

a ; angle made by meridional streamlines with
the z-axis

6,6 ; boundary layer thickness
r

C ;dissipation rate of turbulence energy

coordinate transformations of y and z

v; coefficients of viscosity . -

p ; density |

af', a Prandtl/Schmidt number.: °~eff,K <'eff,E" '' " "-" ".°2

T ; stress

a general fluid variable

W ; relaxation factor used to modify the location

of streamlines

% %
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A- A STRFAMIINE-ITERATION METHOD FOR CALCULATING TURBULENT FLOW AROUND
THE STERN OF A BODY OF REVOLUTION AND ITS WAKE

Zhou Lian-di
China Ship Scientific Research Centre

Wuxi, Jiangsu, China

.I N'I'RODUC[1 ION

Theoretical predictions of flow field around ship stern and its
wake are among the most important problems in naval hydrodynamics. In.I
order to reduce cavitation erosion, vibration excitation and noise due
to propeller-hull interaction and to prepare guidelines for aft-end
design of ships, it is considered necessary to predict the flow around

ship stern and its wake. Many research workers are engaged in this
work. Among the methods for calculating turbulent flow around ship

stern, the numerical method adopting two-equation turbulence model
(K-E) and partially parabolic flow assumption is the most effective
and popular one at present. As mentioned by Markatos and Wills (1980),
however, there is a serious limitation in the above method, namely, the
necessity of prescribing the locations of the outer and the downstream
boundary and of determining boundary conditions at these boundaries by
potential flow solution. As a result, additional calculations have to

be carried out to determine boundary conditions, and the accuracy of 4
computed results also deteriorates. In this paper, the external flow
field extended to infinity in both radial and axial directions is
transformed into an internal flow field within a finite region by means
of a system of coordinate transformations. By doing so, the free-
stream condition and the parabolic flow condition may be used at the
outer (infinity in radial direction) and the downstream boundary
(infinity in axial direction), respectively; and the boundary layer
flow and the potential flow outside the boundary layer can be deter-
mined by an uniform equation system, thus evading this serious limita-
tion. Further steps will be taken to generalize this method to be

applied to the case of ship stern.
Ii this paper the streamline-iteration method, which has been

widely employed for calculating internal flow field in turbine machine
channels, is further generalized to the calculation of turbulent flow
around the stern of a body of revolution and its wake using the popu-
lar two-equation turbulence model (K-c) bv following our previous works
(Jian and Zhou 1981 and Yan et al., 1982). A curvilinear nonorthogo-
nal coordinate system is employed. One set of coordinate lines

S 1044 a
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coincide with the mean-flow streamlines, the other set are made of ra-
dial straight lines. So the convection terms of the governing equa-
tions for total pressure, turbulent kinetic energy and its dissipation -""

in turbulent flow can be written in the form of their variations along
streamlines. For static pressure the radial pressure gradient equation
is used. These equations are convenient for numerical calculations.
The mean-flow streamlines, however, are not known beforehand and must

be determined by an iterative scheme. First, assume the initial loca-
tions of the streamlines and the initial distributions of the fluid
variables along streamline, then solve the governing equations to
evaluate the new distributions and the new locations of the stream---
lines. Repeat the calculation procedure until convergence is obtained.
On solving differential equations, assumptions for a thin boundary
laver and partially parabolic flow, etc., are exempted.

Calculations have been carried out by using the present method for
a body of revolution which is named Afterbody 1 by Huang et al. (1978).
The calculated results agree with Huang's experiment satisfactorily. * -

For the wake, the accuracy of the computed results by using the pre-
sent method is higher than that of Muraoka's (1980a, 1980b).

IT. BASIC EQUATION '

In calculating the three-dimensional incompressible turbulent flow
by two-equation turbulence model (K-c), the unknown variables are:

u,v,w ; axial, radial and circumferential time-averaged
velocities in a cylindrical polar coordinate system

p ; time-averaged static pressure

K,E ; turbulent kinetic energy and its dissipation rate

In a cylindrical polar coordinate system, the time-averaged
velocity components and static pressure are governed by following
equations: . .-. $,

Continuity equation: . -.

?U + 1 D (rv) + I aw 0 .
3z r 3r r - 0

Axial momentum equation: -

3 3 1 i 1 1 ( -S(uu)+ (ruv) +- (uw) + z (

) z r -, r.. ..

o°P

. a ,- .

-" "i .? -i-.- .

-";-.7 -; -.-.
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-- ) + ( * (2)r -r (r rz 9 z .....

Radial momentum equation:

(vu) +rr (rvv) + -- (vw) . .= - 1 --- +re r - .. .P.ar
(T iT

lii ++1 L ] [-(r ) rO J - - (3)
p z (rz +  (rr) + r ) r

Circumferential momentum equation:

- wu (rwv) +- (ww) + .. . +
az r ar r 3e r pr O

ira a T- (Tz) + (rre) + (T0)] +- (4)ez rr r ee6 r) V~

where p is the density; T denotes the stress, which can be repre-
sented by the velocity gradient and the effective viscosity variated ..-..

in the flow field. Its tensor form can be written as

[T] = Ieff(VV + V T  
(5)

where 3'
3v aw au
ar Dr ar

DV +1 3V V1 3v w I aw v 1au (6)
Dr r r 0 3 z r r r 30 r r ra

av aw au
3z az az

The components of T are:

= f(2 3v)
rr leff a r

Tee = neff[2( - + -)]

auT ( 2 -u ")"'.-
zz eff az a w"lay (7)

3w _w + 1 -Lv() - -
TrO Tor = eff(3r r r+ )

T T e lau + aw)
ze Oz eff r ae -.

T =T =
zr rz eff(ar + z)

In the formulas of this section, the underlined terms were ne-
glected in the approximate assumption of the Spalding's partially
parabolic flow (see Abdelmeguid et al., 1978).

---. 'S

-- ~ . i i *
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In expressions (5) and (7), pj is the effective viscosity and de-
fined by ef

'eff 91f D f+[PK 8

*where o' and P. are the laminar and turbulent viscosity respec-
tively.t

The governing equations for turbulent kinetic energy K and its
dissipation rate are:

K - equation:

D11 a 1 1 D ' eff 3K(uK) + (rvK) +- (wK) =- - -

z r r~ 6 p ~rar ef f,K 3

1 D Iheff aK)1 a I eff 3K1
+-- + -G~~I+E-P (9)

eff,K aeff K

c-equation:
(1( ra p w)= r eff 3 )(u)+--(rvK) + -~ ('Hw

1 (3 ef DE)1 + 3 eff E 2f f~
+ e~ -e + +- +CGE--C P- j

r2D eff,c 3 z (aeff,E a£ 1 K (10)

where

rt au) 2  + (D aw1+ W w 1
GEa Pt( +ra r) +rDO++

+ u (a + 2v 2 + 1 3u + a 2)l(1
Dr azl _r ra8 z

In these equations, a efK and ayef are Prandtl/Schmidt numbers;
effK Eff:

19C2 and C D are proportionality constants. The values of C1, C 2,

C D5 a efK and a efc are given in Table 1.

Table 1. VALUES FOR PRANDTL/SCHMIDT NUMBERS AND
PROPORTIONALITY CONSTANTS

ClC C d a eff,K 0yeff,c_

1.44 1.92 0.09 1 1.23 ..

Equations (1) through (4), (9) and (10) may be used to obtain the
six unknown variables u, v, w, p, K and so they are closure. How-

* ever, as these equations form a coupled system of non-linear equations,
it is very difficulty to solve them straightforwardly. Based upon the
partially parabolic flow assumption, these equations were solved by
using the marching integral technique in the works of Spalding's group.

. .N.
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This paper does not adopt the partially parabolic flow assumption and

the streamline-iteration method is used to solve above equations.

(ing to the fact that the grid points calculated are situated on the -.

mean-flow streamlines, these equations can be rewritten in following

simple forms.
Continuity equation: We employ its integral form

f f V • dA = 0 : const (12)
0>- A

where A is the area of any cross section in the channel; Q is the
mass rate of flow prescribed beforehand. 0.

Energy equation: Substitute expression (7) and equation (1) into
equations (2) through (4), then

Au ')u W 3 u I _' j~ f f u " )u 1:)1u -,-+v __--+ +- ____ + .... +u r r z z 2  3r 2  r orr- .' -

1 ogeff 1 log eff .-eff

O zr r 0 zO " zz (13)

,)v D vw 3v w2  1 3p+ eff +.. 32 v+ 1 3v + 32v v 2 )w

3z 3r r ,30 r p r p r 3r27 2r 2  r r
"log 3log 1 e.:' +1 ("log "eff +1 o eff eff )

+- x T + T (14)
3r rr r D0 rO 3z rz,

3w 3w w 3w vw I i +eff / 2w+_ 2w 1 w+ 1 32w+ 2 3v w"
"z Dr r 30 r pr 36 pr 2  r 'Ir r2 362 r2 r"

+1 31 reff  +1 3log 1eff eff (5) '.', .(15
+ P 3r T Or r 30 06 6 z 3zz (15)

* Equations (13) through (15) can be grouped as - "

1 Vp + eff 1
(V V) V = -- Vp+ V2 + iV log P 1ef (16) -

P peff

Substitute the formuia of vector operation ,

(V V) V =V (-) - x (V V) (17)
2

into equation (16), then

= (V X %) + r 2
V(f + 2 V) + + V .lo..g(.

Now if total pressure p

Fl

h.... °.. - . -°

;4 - ...... . .. . . . . .. , . . .. .. . . . . . .. .="-

. v" . # ..- .. ,. "k. ...- ,-.-....... .......-.......-... ... ,°,....--.......... -
o,¢- L C..f.,- ... .,: M -. , -,, .,:: , ..... . . . . .- , ," • , - , . . . . - " ". .- - . . . ... .. . .
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P +  (19)

is introduced and the following relations are utilized

92 7(P + 92 - V ~ \ -° ( 2 )  • - along streamline

Z x (V x V) = 0

where Z is an unit vector in spatial flow direction, then following
equation can be obtained from equation (18)

dp
Z 0o { V+V log f [11} (20)d ~~~eff ef -.- :

along streamline e e.'

Equation (20), which is called the energy equation of the incompress-
ible turbulent flow, denotes the change of total pressure of turbulent
flow along the streamline. When i = 0 , i.e., the fluid is in-eff ' '=" "

viscid, equation (20) becomes dp /dZIalong streamline = 0 It means

that total pressure remains constant along the streamline and becomes
the well-known Bernoulli's equation for ideal fluid. -

Pressure gradient equation: After shifting the terms, equation

(16) can be rewritten as

Vp =- Q(V . 7) V + V 2 V + 7 log Peff [T] (21)
ef eff-

Pressure gradients have to satisfy the above equation, which is called
the pressure gradient equation. For any spatial curve q , equation -
(21) can be written in the form of direction derivative along curve q

qo V V V2V + V log 11eff [T1 (22)dq q " + 1 eff e.

where q is an unit vector in the direction of curve q . Curve q
can take three arbitrary linear independent directions. Tf we take
the direction of the streamline to be one of the directions of curve

q , then the energy equation (20) can be obtained from equation (22).
For equations (9) and (10), if we utilize equation (1) and fol-

lowing relation

-+ i+~ - diP (23)
(U z (rrVhd

along streamline along streamline

then the left-hand side of equations (9) and (10) can also be rewritten

as direction derivative along the streamline

-d K 1 D 1eff +eff K
d Z{V r e 0 Dr4 -+

along streamline efrfK -r r eff,K +' eff ,Kr f , - -,-
Oieff K + GE - (24)

eff,K 
.

77q

,- ',\'

."%,, % "

P'+." .+. '+- .-"- "-'"-"." "-" ."%".." - -" " '.",' .- ",'."' ".. ' "."".""." .',-" -".. . . . ... .--. .,..... ... ... '. .". ."..,.• "... . . . . . . . . .".. . ." "2 "
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dE: 1 i_ r V( eff E ) + 1 _ ( Oeff E--
dIPr 3r a o r 2 a 0 Jalong streamline eff,E r eff ,c

+ " " -+ f ) + C 1 G E 2- C 2 p ( 2 5 ) IL I
e f f ,.

For the turbulent flow around the stern of a body of revolution
and its wake which is discussed in this paper, the flow is axisymmet-
ic. Then w = o , and partial derivatives of all flow variables with

respect to 6 must be equal to zero. The above basic equations can
" be further simplified and we can disscuss the flow case only in a

meridian plane. For the axisymmetric turbulent flow, the basic equa-
tions are:

Continuity equation:

r (z)

f 21Trudr Q0 =const (26)
r (z) 0

where r (z) and r (z) are the locations of the lower and the upper

boundary of the channel in the meridian plane (z,r)
Energy equation: Since

di= du (27)
d.-along streamline along streamline along streamline

where V is the meridian velocity, dp/dm along streamline andm deoedPdl4ngsraln n

d/dZlalong streamline denote the direction derivatives of i with

respect to the meridian streamline m and z along the spatial
streamline respectively, the axisymmetric form of equation (20) can be
written as

1 u2 u l

d - l ( O f f u I - + - 1 2  ~ 2
dz along streamline -az, r r

1I' - VJe+f (DDu+ v'eff ( u
.. .. " + 1 - V v + u t 2 Tu + - - -r + "[ ') i

r dr r2 • ,.-r

" " "eff [ 3u 3v- +e f f (2 8)-
3z L 3z D r 2 rj (2

Radial pressure gradient equation: For an axisymmetric flow, we
may discuss the pressure gradient equation (22) only in the radial

- direction. Thus we have

J' °L- -
"": " :-':UV. ** * 

':' . '
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dp -udv + 2v + 2v + 1 v v +.-----..
dv + 11vv +

dr along streamline azeff z2  3r2  r r r

+ eff +u v eff (2-'r) (29)
Dz D r 3z r ~r)

K-equation:
dK aln3 I'eff -K 3 1 f f 3K' 1
da =ufrf 3K ) + e K +CE-pi](30)

along streamline a eff,K aeff,K 4z

c-equation:

dF- 11 eff AK + 3 'ef f 3K~
dz P ur ar u Dr +  z a 3z ,along streamline eff, c eff ,K

+ CIGE- CP - (31) . fl

where

GE = vt{ 2 [(v)2 + (r) + - ] + - + + Yz + (32)
t r 3r 3z Dr 3z

For an axisymmetric turbulent flow, the unknown variables are u,

v,p,K and c . So equations (26), (28), (29), (30) and (31) are
closure, and can be used to evaluate these unknown variables

numerically.

III. COORDINATE TRANSFORMATIONS OF THE FLOW REGION AND

CALCULATIONS OF THE DERIVATIVES OF FLOW VARIABLES

The physical flow region of the turbulent flow around the stern

of body of revolution and its wake extends to infinity both in the
radial and the axial direction (see figure 1). It is impossible to

perform finite difference calculation in this infinite region. In
practical numerical calculations, it is a common practice to cut off

the infinite region with finite boundaries (dotted lines in figure 1),
resulting a region for performing numberical calculations. However,
this practice arouses some difficulties: how to determine the locations

and boundary conditions of the radial outer boundary and the axial
downstream boundary rationally. Additional calculations have to be
carried out to determine these boundary conditions (in Maraoka's works .. -.

the locations of the boundaries were prescribed empirically and the ..-..- >c'.-
potential flow solutions were taken as the boundary conditions) and

the accuracy of computed results also deteriorates. In this paper, we
adopt a technique which transforms the infinite flow region into a
finite region with a set of coordinate transformations. As a result,

i .

N p~.'.-......--- - v...-...,.......... -.--..... -'. .. ,-.,...-,-. -. °.-,:.-.--"-...----;,,,%,:
;'.-, '" -,- -:-""-""-''." . 1* * "-' : :-" *" . - ".". ". "* ..- " . . ."" "•. . '. . "°. .- ' :. ," . .. - -' . - ." ." " , "i., . 'X
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the free-stream condition and the parabolic flow condition can be em-
ployed at the outer and the downstream boundary respectively. Coor-

dinate transformations are realized by using following expressions

r
C

2_ arctg( ) 3)

z
where C and C are radial and axial characteristic lengths. C

r z r
is taken as the sum of the radius and the boundary layer thickness at
the inlet station, and C is taken as the length of the stern. From

z
expression (33), it is obvious that for q = 0.1 , r = 0,o° and for

= 0,0.5,1 , z = 0,C ,o thereby, equations (26) and (28) through

(32) can be solved in the transformed flow region in the coordinate
svstem (f,F) , see figure 2. In this paper, the intersecting of the
straight-lines in i-direction (corresponding the radial straight-lines

in physical meridian plane) and the transformed meridian streamlines
are taken as the grid points. At these grid points, the partial
derivatives of flow variables with respect to r and z and the -
direction derivatives appeared in equations (28) through (31) can not
be evaluated straightforwardly. Some operations must be made. '

Let I denote a certain flow variable. The first and second
derivatives of t with respect to E and n along the streamlines
and the station-lines (straight-lines in q-direction), di/d,
d2 '/d&2 , di/dn , d 2 /dq2  can be obtained by numerical differential
method with the non-equidistant three point difference format (Jian,
1981). Then, by the derivation rule for compound functions, the
direction derivatives of i can be obtained in the following form '

...- .,.. --.

d_ dip (1-n)

dri rn
. along station-line r

d - 2  C d ICJC
dr2  d2 r r

along station-line

dp dip 21 2" ,(34)
-- - - cos(- ,)

dZialong streamline d 7 Cz  2

d= _ cos2(_ )1 2 d1 di tg( ) .,.,,
2 C 2 _1 L d 2 Id t 2

along streamline

In order to obtain the partial derivatives of flow variables with re-
spect to r and z appeared in equations (28) through (31) the deriv-
ative properties and the meridian flow angle a in physical meridian ..e
plane must be utilized. From figure 3, it is easy to obtain

N '...

.. . .. . .. . .W %.---

~5***. . . .. . . . . . . . .-. ' A_. '-d .*pL.A..
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"7.j

__ - -tgcx

dzalong streamline L
(35)

drialong station-line )r
v Thus, we have

r dralong station-line ~ g~

~ip _dip -(36)

;)z dzalong streamline

Perform the derivation operation once again on expression (35), we
obtain

~ 2 ~p d~ip(37)

Jr2  dralong station-line

__ _ __ __ 2 tgi apd
52 ip _ d~~ip - tg ct-2 ~a g~y-2

Dz2  dz2 along streamline ~r z along streamline

(38)

On the right-hand side of expression (38), D2ipIDz~r and
* d2r/dz'lalong streamline are still unsolved. With the obtained aiP/ar

* and 52 52  , 
2 ipI3z~r can be derived from the following expression

:it _ ip-d i )i tga (39)
z~r 3z ri dz 3ri along streamline Dr2

S.I~V(~rIalng sreamine by numberical dif-

ferention of Sip/Sr ,and then use the third equation of (34) to cal-
* culate d/dz(S /Sr)Il 0 gsraln appeared on the righthand side

of (39). d2r/dz2laogsraln in (38) can be obtained by deriva-

* tion of compound functions, employing the coordinates of the

grid points in the transformed meridian plane.

d2r 2 o2r ) jd n~1

z lalong stream line z &C 2

___ (40)+(dn2(r C

rh

low5
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Thus, being given the coordinates n,C of the grid points and
flow variable i on these points, we may evaluate its direction deriv-
atives and partial derivatives.

IV. BOUNDARY CONDITIONS

In order to solve the flow variables u,v,p,K and c from equa-
tions (26) and (28) through (31), it is necessary to determine the
boundary conditions at each boundary of the flow region. They are
defined as follows:

(1) Wall Surface '-..

u =v= K = 0

(2) Wake Centreline
uv • . -.=0> v=0 • _~~~~u 3 v D- a_ e _ _ _ -i>>.

3r 3r 3r Dr Dr

(3) Outer Boundary (infinity in the radial direction)

aK a E
u=uo , v=O ; P=P- ; - = 0r

where v and p are free-stream velocity and static pressure

respectively.
(4) Inlet Boundary
The inlet boundary may be located at about 75% of the length of a

body of revolution, where thin boundary layer assumption is valid in
general. Thus, the boundary layer thickness can be calculated either
by the thin boundary layer theory or by Schlichting's formula for flat

plate "

v s -1/5

6 0.37 S (41)
(rii.

where v is kinematic viscosity; S is the distance from the leading
edge. The velocity components u and v are as follows1/7.

( r -r ° )
f rL <J 6

u = (42)
V r-r > 60

v O

For static pressure p , either radial uniform distribution and
p = p or uniform distribution within and linear variation outside

. .. ,,

-.a:.., -. *...,....'.. . a., . .. . .. .. ............. ..... .. . . .
' - 5 ". " '' 
" ' ' ' "  

''"."' ." ;'" "" "- '-' " -'- '' -'' "'" " - .a ...'" " - " ' " '- ''' ."" ' " ' " ' "' - ' ' ' "
., ,. •, -, , , .. . .... .. . ..- .-. -. . - .--- ,-.• . -. . .. .. - ---.., .v -, ...- .- , .- .-. .. --.-. .- -- ,,. v . ' ,- .. ,, -. -. .. ,.-. .. , :::::a .-
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the boundary layer are assumed.
In order to predict turbulent properties in the flow region pre-

cisely, Muraoka improved the inlet conditions for K and E (Muraoka,
1980a). For K , this paper adopts his proposal, i.e.,

f(r-r )V 2  r-r < 6
K = 0

0 r-r >6
0

where f(r-r ) is determined from the experiment data of Klabanoff

for flat plate (e.g., Rotta, 1972). For the mixing length k , we
adopt the approximation proposed by Huang et al. (1978).

/(r + 6) 2 -r2
0. 0

m mo 3.336 0 (43)

where k is determined from the value of g(r-r ) which Bradshaw
mo 0

et al., have given for thin boundary layer (Bradshaw et al, 1967)

g(r-r r-r < 1.2 6 .. .
. = - 0 0 -
NO
m. g(l.2 6) r-r > 1.2 6

The value of E is determined from the mixing length as follows

3/4 3/2

(5) Exit Boundary (infinity in the axial direction)
The parabolic flow conditions are used, i.e.,

1)u 3v 1)K 3c = 32U a2V D2K a2c E
z )Z 1)Z )z aZ2  3Z2  az2  az2

V. CALCULATION PROCEDURE

As mentioned above, the present calculation method has to adopt V
an iterative scheme. The sequence of calculation steps is as follows:

(1) Assumptions of the initial locations of the streamlines
and of the initial distributions for u, K and c

The calculation is performed in the transformed flow region
which is in the C-n plane. Between interval [0,11 several straight-

*. lines in n-direction are taken as calculating station-lines. According
to a prescribed distribution principle of the mass rate of flow along-.-.-..-

-. . . . . . . . . .

I """"d''""
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- - the station-line, the locations of streamlines at the inlet station
can be determined frcm the known radial distribution of u at the

14 same station by formula (26). Then, keeping the ratios of distances
between streamlines at other stations to be the same as at the inlet
station, the locations of corresponding streamlines at other stations
can be assessed. Join the corresponding points for same streamlines
at all stations with smooth curves, the initial calculating grid is
formed bv the intersecting points of station-lines and streamlines.

For other stations, the initial radial distribution for u, K and E

on this grid are assumed to be the same as at the inlet station.

(2) Calculations of the meridian flow angle and of the . -.
distribution for v

According to its definition, the meridian flow angle Q can be
obtained bv derivationi of compound functions

=drI dr 2 12 r)
t~~"• _%" - ,-- Co

d z d C 2 1-n
along streamline along streamline z -(45)z ~~~(45) ."""'-

where d/dangsreis calculated from the coordinates
wher dr/d'along streamline

( ,,ri) of grid points by numerical differention method. Then, v can

be obtained from

v = u tga (46) ..

(3) Calculations of new distributions for K, c and p

For each streamline (except on the wall surface and the wake
centreline), equations (30) and (31) can be solved simultaneously to
obtain the new values of K and 6 at the grid points on this stream-
line. Firstly, the terms appeared on the right-hand sides of equations
(30) and (31) are calculated with the distributions for u, K and -:
in previous iteration and the distribution for v in present itera-

tion. Secondly, take the known values of K and c at the inlet
4station as the initial values of the integral, and solve equations (30)

and (31) by marching integration along this streamline from upstream
to downstream. The above calculation procedure is repeated for all
the streamlines in the flow field. For wall surface and wake centre- " ,
line, K and c can be obtained with conditions K= c 0 and 0I
SK/Dr = Dc/r = 0 respectively. Thus, new distributions for K and ...

e are obtained. New distribution for Pefz  is calculated from

formula (8).

(4) Calculation of the distribution for static pressure p
Solve equation (29) for each station-line to obtain the distribu-

tion for p . On the right-hand side of this equation, the distribu-
* tion for u should take values of the previous iteration and the dis-

tributions for v and Peff should take the calculated results at

steps (2) and (3) in present iteration. Those terms being known, 14.
equation (29) can be solved by ordinary numerical integration. The

. -.-- k

i ° " °2°
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interval of integration is from n = 1 to the wall surface or to the

wake certreline and the integral constant may take boundary condition

p = p as its value.
T5) Calculation of the distribution for total pressure po

For each streamline (except on the wall surface and the wake
centreline), the energy equation (28) can be solved in the same way

* as in step (4). Here, all the terms on the right-hand side of equation
(28) are known, so p can be evaluated by ordinary numerical integra-
tion. The integral constant may take the value of p at the inlet

station on the corresponding streamline, p being calculated by ex-

pression (19) using the given radial distributions for u, v and p

at the inlet station.
For wall surface, the wall surface condition p = p (i.e.,

u=v=O) is used directly. For wake centreline, the axisymmetric con-
dition u/ r = 0 utilized to obtain the value of u , then p can

be calculated by expression (19) using the obtained u and p and
the axisymmetric condition v=O

(6) Calculation of the new distribution for u, pot p and tg .

being solved, V and u can be obtained as follows

2(p op)
V (47)

V
u = _ (48)

/1 + tg az

(7) Calculation of the new locations of the streamlines.
From the obtained new distribution for u , the mass rates of flow

at each station-line can be calculated by the formula (26). According
to the prescribed distribution principle of the mass rate of flow along *
the station-line, the new locations of the streamlines on station-line,
ncaI , can be obtained by inversive interpolation of the mass rate of

flow. With a relaxation factor which is less than 1, the assumed new
locations of the streamlines, n can be obtained as follows. Re-

Tnew = nold + W (Cal -old (49)

Repeating steps (2) through (7) until the maximum deriation between the
locations of the streamlines in two successive iteration calculations
is within prescribed accuracy. Then, these distributions for u, v, p,
K and e and the locations of streamlines are the final results for
problem.

*

% . .
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VI. NUMERICAL RESULTS

Numerical calculations are carried out for a body of revolution
which is named Afterbody 1 by Huang et al. (1978). The principal
particulars of this body are given in table 2, and the afterbody con-
figuration is shown in figure 1. Numerical calculations are executed

Table 2. PRINCIPAL PARTICULARS OF AFTERBODY 1

"(m) r (m) R .
max e

3.066 0.1397 6.6 x106 -"

in the transformed flow region which is in the (s-n) plane. The i
calculating inlet and exit station are placed at 0.4131 (z/L
0.7553) and t = 0.9425 (z/L = 11) respectively. The number of the
station-lines is 20 along C-direction and the number of the streamlines
is 25 along n-direction. Station-lines are spaced more closely near
the stern and so are the streamlines near the wall surface and the -.

outer boundary (at n = 1) , see figure 2. The calculated results are
shown in figure 1 to figure 6. The calculated mean-flow streamlines 7"

in the physical and the transformed flow region are shown in figure 1
and figure 2 respectively. From figure 1 it can be seen that in the
region of z/L = 0.90 the mean-flow streamlines are convex in shape
and almost parallel to the surface of the body, and the boundary
layer is thin. But in the region of the last 10% of the body length
the mean-flow streamlines are concave in shape and divergent outwardly
and the boundary layer becomes thick. This conclusion is consistent
with that obtained by Huang et al. (1978) and Patel et al. (1974) from

experiments.
Comparison of calculated and measured velocity components, u/V

and -v/V is shown in figure 4 and comparison of pressure coefficient ,

C is shown in figure 5. It can be seen that the calculated results
p

by the present method have the same high accuracy as Muraoka's numeri-
cal results (Muraoka, 1980b) both being in fair agreement with experi-
ments. The calculated axial velocity profile at z/L = 1.057 by the
present method is in better agreement with experiments than Maraoka's.

For turbulent properties, i.e., turbulent kinetic energy K and .

mixing length Z , no comparison of calculated and measured results

has been given in all the existent papers except Muraoka's (1980a).
Muraoka improved the inlet conditions for K and c and compared
calculated and measured results for the first time. The agreement was
satisfactory in general, but the accuracy of calculation became worse _
as z/L increased. In figure 6 of the present paper, calculated re-
sults by the present method are compared with measured turbulent

.'.- •-.-,

,p"."v

U .'.-7.""Ii-..,-72-"-.i-'.i: .-.1"11 .;. ' .-.•[- .1. -.i"  ¢ -.v '..-'.-',:':'-"..-'-.-,.- -4'-':'l'>--.'>
-. -,,.. . S,...... . . . ...... . ..... ....... .. ... . ....-. ... . . ............-...-......- ,.-, . ,v . .,...-..,-,,. , "I.. . ,
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properties by Huang et al. (1978). The agreement between them is
satisfactory and the accuracy of calculation at z/L=.057 is better

than Muraoka's.
The calculating exit boundary in Muraoka's calculation was located

at z/L=l.182 (Muraoka, 1980b). As the accuracy of his calculation
became worse, thereby no comparison of calculated and measured results
at z/L=1.182 was given, though Huang et al., presented measured re-
sults at this station. This paper presents comparisons of calculated
and measured results for velocity components, static pressure coeffi-
cient and turbulent properties at z/L= 1.183 , the agreement being

satisfactory.

VII. CONCLUDING REMARKS

From the calculated example in the previous section, it may be

concluded that:
(1) Based upon the two-equation turbulence model (K-c) , the

streamline-iteration method presented in this paper is effective for
the theoretical prediction of the turbulent flow around the stern of
a body of revolution and its wake on condition that no separation and
recirculating flow are present. The agreement between measured and
calculated results is encouraging.

(2) The coordinate transformation given in this paper can trans-

form the external flow problem which is extended to infinity both in
the radial and the axial direction into an internal flow problem in a
finite region. Extending the calculating region to infinity in the L
radial direction, permits us to take the free-stream condition as the
boundary condition at the outer boundary and the viscous flow in the -

boundary layer and the potential flow outside of that can be solved by
an uniform equation system. The serious limitation in the existent
differential method, namely the locations of the outer and the down-

stream boundary were empirically prescribed and the potential flow 9
solution was taken as the boundary conditions at these boundaries, can
be evaded. By extending the calculating region to infinity in the .. -

axial direction, not only the parabolic flow condition can be taken as
the boundary condition at the exit boundary, but also the accuracy of

calculation in wake can be improved.
Works will be continued to extend the present streamline-iteration

method to calculations of three-dimensional turbulent flow around ship
stern and of the turbulent flow around the stern of a body of revolu- .:-.

tion and its wake with propeller in operation.

.'. -.-..... 
%*....
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Discussion

A.Y. Odabasi (British Ship Research Association)

The author makes a fine effort to make the K-E turbulence model
of Launder and Spalding (1972) applicable to the calculation of stern
and near-wake flow of ships. I fully agree with the use of a turbu-
lent kinetic energy (K) and a dissipation rate (E) transport equations
for modeling of turbulence, since both of these quantities are measur-
able and have physical meaning. The problem, however, is the use of -.. J
the rather dramatic assumption of isotropic eddy viscosity, which un-
fortunately cannot be justified by experimental evidence. His Figures
7 and 8 display eddy viscosity distributions obtained from measured .
data in a wind tunnel, resolved into its streamwise and cross-flow
components. The clear dissimilarity in streamwise and cross-flow
direction is the proof of unisotropy. Under the flow conditions of
small cross-flow this unisotropy may not be important and by small
adjustment of certain terms and constants the results may agree with
data. However, when the cross-flow becomes larger, the influence of
isotropy becomes more pronounced, leading to substantial disagreements
with the data. His Figure 9 displays a comparison of measured and "
computed velocity profiles (on top) by use of the K-L (L being the -0
dissipation length scale) model with Bradshaw's turbulence modeling
where the qualitative agreement is quite good and the quantitative
differences may not be important for, at least, certain applications.
In the same figure, results of three methods are compared with experi-
mental data at three locations where computation of each method was
performed by the association stated in the figure. This comparison L_,
clearly demonstrates that the K-E model with its partially parabolic
application performs very badly owing to the isotropic eddy viscosity
assumption, and only the BSRA model indicates the presence of flow
retardation. While accepting that the method adopted by us may also
need further improvements, the K-E model requires a complete rethink-
ing on how the shear stresses are related to the turbulent kinetic
energy.

T.F. Hogan (DTNSRDC) '

The variable transformation of (z,r) to (E,n) together with in-
tegrating the equations along the streamlines is an interesting idea.
Similar methods have been used by Patankar and Spalding (1967) and
Markatos and Wells (1980) in connection with parabolic and partially
parabolic flows. There are several key points of the present numer-
ical technique that are not clear and I wish you could address. First,
concerning the overall numerical iteration scheme, is the position of .
the streamlines first obtained for the entire domain, then is u ob-

d~~~~-. • . * .4.-

'. . ,sJ. .*, % . ,. , ,-. , 4 -, . . ..... . -, . . * - . . ... . 4 ,, . , -. ,•~~~ ~~~~~~ ~~~~ % ", e . ". " . ". . " . . ... . . , , -- '....-.. .', . .'
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tained for the entire field from equation (26), then V, k-e, Ps Po,
and finally u, v, and the new positions of the streamlines? That is,
is each equation individually integrated over the entire domain sepa-
rately? Or alternatively, given the upstream flow conditions at a par-
ticular station, is each equation integrated at the next downstream
station and after this is done then the procedure is marched downstream
to the next station?

Second, the system of equations are fully elliptic and, indeed,
if we set the turbulent viscosity Cdk2/S equal to zero, they are
the exact Navier-Stokes equations. Does the elliptic nature of the
flow with full upstream and downstream influences lead to any problems?
Indeed, it would seem that a poor initial guess of any flow variable
can lead to numerical instability especially when calculating the
second derivative with respect to any flow variable that requires
downstream information. In part (7) of the Calculation Procedure
section a relaxation factor of less than 1 was mentioned. What does
this apply to, and is it important in controlling the stability of the
procedure? Also solving elliptic problems requires a considerably
larger amount of computer time over parabolic problems. How many * -

iterations were required to obtain a convergent solution?
Integrating the radial pressure Equation (29) downward from n = 1 -. '.

seems very risky. Do not small errors in the V field lead to large
errors in the p field. In fact using a similar technique with the r
partially parabolic equations, we have found that integrating downward
the pressure from a known streamline or from - leads to an instability
with the pressure oscillating wildly on the body. This has been traced
to small errors in the V field. We have avoided this problem by double
sweeping the pressure (integrating down and then back up) by demanding
that at each station the continuity equation is correct. Has any sim-
ilar problem been encountered in the present work? Also, since the
pressure field satisfies a Poisson equation, what is the exit boundary
condition on p?

Finally, concerning the k-e model, it does not apply sufficient-
ly close to the body (viscous sublayer and the matching layer). Other
authors have typically placed the first point above the body far enough
away from the body so that the model is accurate. Then they have used
the law of the wall to obtain the values of k and e at this station
above the body. Was a similar technique used here? If this is true, *

how was the model extended into the wake where the results agree ex-
tremely well with the experiment?

Patankar, S.V., and D.B. Spalding (1967), A Finite Difference Pro-
cedure for Solving the Equations of the Two Dimensional Boundary
Layer, Int. J. Heat Mass Transl., Vol. 10, p. 1389. ".

Makatos, N.C., and C.B. Wells (1980), Prediction of Viscous Flow
Around a Fully Submerged Appended Body, 13th Symposium on Naval
Hydrodynamics, Tokyo.
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Author's Reply
.p. *'=. .j

Zhou Lian-di

S- To Y.A. Odabasi (BSRA)

In my opinion, some measured results of the turbulence structure
were obtained recently either by flow visualization or hot-wire probe
by using conditional sampling. However, at this time our understand-
ing of the turbulence structure is not complete and investigations
continue. The main objective of the present paper is to provide a
numerical calculation method. As for the turbulence model, I merely
adopted the k- model, which is a popular model at present. Of course,

the present calculation method can also be used for turbulence models
of the other transport equations.

To T.F. Hogan (DTNSRDC)

First, concerning the overall numerical iteration scheme, the
initial distribution of u is first assumed, together with the positions- 1
of the streamlines, then v, the new distributions of k-e, p, po, and
finally the new distribution of u and the new positions of the stream-
lines are obtained. We employed the explicit formula in the iteration
proceudre, i.e., the right-hand sides of Equations (28), (29), (30),
and (31) should take the values of the previous iteration. Equations
(28) and (29) are individually integrated over the entire domain sepa-
rately. Equations (30) and (31) are simultaneously integrated.

Second, as Dr. Hogan has rightly pointed out, in our calculation
by the streamline iteration method a good or poor initial guess of the
positions of the streamlines and of any flow variable will have a very
important effect on the numerical stability. A relaxation factor is
an important means in controlling the stability of the iteration pro-
cedure. But the value of the relaxation factor can only be chosen by
experience and good judgment. It is very difficult to perform the
stability analysis theoretically. On the other hand, owing to the fact
that the system of equations employed by the present paper is fully .'.-."

elliptic, more computer time is required than that for parabolic and
partially parabolic equations. About 50 iterations were required to
obtain a convergent solution in our calculation. But as a result of
that, the ellipticity of the equations is maintained, so the present
method can be extended to the calculation of turbulent flows around
and behind the stern of a body of revolution with propeller in opera-
tion, and of turbulent flow in channels of turbomachinery.

Third, as for solving the radial pressure-gradient Equation (29),

our experience is the same as Dr. Hogan's, i.e., it is very difficult
to compute the pressure accurately enough by integrating Equation (29)
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downward from r - (corresponding to n - 1). Through the transforma-
tions we used, the accuracy of the calculated results can be improved
only partially. In order to improve the accuracy further, a relaxa-
tion factor is also employed in solving the radial pressure gradient
equation; however, the number of iteration is also increased. As to
the exit boundary condition on p, because the exit boundary is located
far downstream, we can assume that the streamlines at the exit bound- .
ary are straight, i.e.,

dr
dz exit boundary- 0

This condition, together with the exit boundary conditions given in
this paper, implies that p = p at the exit boundary from Equation
(20), so that the exit-boundar4 condition on p is not given explicitly.

Finally, concerning the k-c model, it does not apply to the vis-
cous sublayer, which is well known. Like other authors, we avoided the
calculation of the flow in the viscous sublayer by using a numerical
technique that is similar to that using a wall function, although the
choice of applying the turbulence model to the region near the wake
centerline is, up to now, quite debatable. However, after using the
symmetric condition at the wake centerline appropriately, we have never
experienced any trouble in calculating the flow in the wake by the k-c
model. The calculated results at Z/L = 1.057 and 1.182 agree with ex-
perimental data satisfactorily. As for the far-field wake, so far we ..
have no experimental results at hand, so no comparison was made. .

IL L
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Reynolds Number Scaling of Velocities
in Axisymmetric Turbulent Boundary

Layers
David W. Coder

David Taylor Naval Ship Research and Development Center
Bethesda, Maryland, U.S.A.

ABSTRACT

Boundary layer and stern flow measurements were made for an axi- .

symmetric body in the NASA/Ames Twelve-Foot Pressure wind tunnel at
length Reynolds numbers from 12.2 to 150 million, about a decade
higher in Reynolds number than previous experiments using the same
shaped body. Measurements included body static pressure distribution
and boundary layer and stern flow velocity profiles. In order to
investigate tunnel wall effects more thoroughly the tunnel wall -

static pressure distribution throughout the test section and the wall
boundary layer velocity profile at approximately the mid-model
location were obtained.

The potential flow/boundary layer interaction computer program-_
developed by Wang and Huang was utilized to calculate the boundary
layer velocity profiles. The velocity profiles were calculated for
an infinite fluid using computed pressure distributions and for the .-
in-the-tunnel situation using the measured body static pressure
distributions as input to the computer code.

Comparison of the experimental and infinite fluid calculated
velocity profiles showed good agreement for the boundary layers on the
parallel midbody but significant disagreement at the stern location.
The discrepancy in the stern area was traced to an interference effect %

of the large floor-to-ceilling strut located aft of the model in the .
downstream diffuser section of the tunnel. When a tunnel blockage
correction was applied to the measured stern velocity profiles, the
corrected stern flow velocity profiles correlated reasonably well with
the data of Huang et al. obtained at a Reynolds number of 6.6 million.

"" The computed changes of velocity in the boundary layer on the parallel

middle body and stern as a function of Reynolds number show good
agreement with the experimental results. ...
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INTRODUCTION

While data on the flow field around full-scale ships are available
for some isolated cases, in general these data are not available due to
the difficulty and cost of obtaining them. Thus, most data are obtain-
ed from experiments with geosim models performed in towing tanks, water
tunnels, and low speed atmospheric wind tunnels under scaled conditions.
Due to velocity limitations of the facilities and the use of smaller-
than-full-scale models, model Reynolds numbers are usually two orders of
magnitude below those at full scale. Thus, computational methods, veri-
fied by lower Reynolds number experiments, are needed to extrapolate the

lower Reynolds number results to full-scale Reynolds numbers. Such a
computational method has been developed by Wang and Huang (1976,1979) at
DTNSRDC for fully wetted axisymmetric bodies in an infinite fluid. The
method has been validated by experiments conducted at length Reynolds
numbers of 6.6 million [Huang et al. (1978)], which is more than two
orders of magnitude below full-scale Reynolds numbers of interest.

The present paper presents experimental data that were obtained in
a large "pressure" wind tunnel for an axisymmetric body at Reynolds
numbers from about 12.2 to 150 million, which is only one order of mag-
nitude below the maximum full-scale Reynolds numbers of interest. ....

Boundary layer velocity profiles were obtained at several axial posi-
tions along the body and at one location on the stern. Velocity pro-
files were also calculated using the above method and compared with the
experimental results. These comparisons will be made and discussed,
after a brief description, in the next two sections of the experimental
and computational techniques employed.

EXPERIMENTAL TECHNIQUE

The body of revolution model considered in the present paper is a
0.559 m (22 in.) diameter, 6.283 m (20.615 ft) long Series 58 body
[Landweber and Gertler (1950)] modified with a parallel midbody and a
stern sting (to accomodate a wake rake mechanism). The model, shown
schematically in the test section of the NASA/Ames Pressure wind tunnel
[NASA Publication (1974)] in Figure 1, produced about 2.3 percent block-
age at the midmodel location. The model's nondimensional offsets are

given in the Appendix. The cylindrical coordinate system used here is .'".*

also shown in Figure I. The radius (r) is measured from the model
centerline, the angle (@-) is positive clockwise from bottom looking aft, A0
and axial distance (X) is positive aftwards. Static pressure taps were
located on the top of the model (0 - 180 deg) about every one-percent
of model length and in the wall of the tunnel at a much larger spacing

throughout the tunnel test section (@- 45 and 315 deg). Boundary
layer rakes consisting of total head tubes were located to measure
model velocity profiles at (X/L, 4) - (0.158, 270 deg), (0.357, 240 deg)
and (0.595, 210 deg) and at about (0.54, 315 deg) on the tunnel wall.

_J-.-A

--..- .
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FIGURE I. Schematic of model in test section of wind tunnel.

The wake rake located aft of the model on a stern sting was positioned

to measure stern velocity profiles at (X/L, 4) - (0.q67, 270 deg) with
a five hole pitot tube (also known as a pitch-yaw probe) and at (X/L, 4)

Measurements were made at Reynolds numbers and Mach numbers of 12.2

million and 0.09, 22 million and 0.16, 40 million and 0.3, 60 million
and 0.3, 100 million and 0.3, and 150 million and 0.3, respectively.
The tunnel was operated at atmospheric pressure for th4 first three con-
ditions and pressurized for the last three.

THEORETICAL METHODS

Transition

The location of transition from laminar to turbulent flow on the

hydraulically smooth model was calculated using linearized stability
theory and an the e1  transition criterion [Smith and Gamberoni (1956)].
Locations of predicted disturbance amplification ratios (em ) versus
Reynolds number for the model are shown in Figure 2 for various exponent
values. McCarthy et al. (1976) show that for typical bodies of revolu-

. .. ... . . .. .-S. .'.*.¢'. -*.*:.. .. . . .. . ....... .. . .o .".
" '. '.' ,' -' - '. .. .. . . .. .,.,. x," ., .- -. ,, ." . , ., . . .' . . . . . . . . . . , . . .. ,. .- -

. ,.a: °,;;; ,: l,.#..,'" ' . ;, . , , . . ., . . . . . , , . , . .. ,,, . - . ,.. . .. ..-...dP' . - , , . . ,- ' ,- , " ,,. ' .. ' '. , , ,, ',' . ' , ' ' - ., - . -, .I
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FIGURE 2. Prediction of location of
natural transition and virtual origin.

tion, e 9 amplification ratios correlate well with measured locations of '-...
the inception of Tollmien-Schlicting waves and e63 values correlate well
with the existence of fully developed turbulence. Transition, or the
occurence of intermittent turbulent bursting, was found to correlate
with an ell criterion. From the figure, it is seen that the transition S
point is predicted to move forward from about 7 percent at a typical
model Reynolds number of about 10 million, to about 2 percent at a full-
scale Reynolds number of about 1000 million.

In order to move the model transition location forward, the model .

was fitted with a 0.25 mm (0.010 in.) diameter trip wire at X/L = 0.048.
From McCarthy et al. (1976), the roughness Reynolds number has to be
greater than 600 to insure transition. Calculations show that this
condition is met for all but perhaps the lowest Reynolds number of about
12.2 million.

- -...- o- -,
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The virtual origins of turbulence for the trin wir" w"'e calculated
according to the method outlined in McCarthy et al. (1976), values of
trip wire drag coefficient were extrapolated to higher Reynolds number --
using the data of Kozlov (1969), and theoretical drag calculations were
made as a function of transition location on the model in an infinite
fluid using the program developed by Wang & Huang (described later). The
values of virtual origin determined in this way are shown in Figure 2.
Over the Reynolds number range of the experiment, 12.2 to 150 million,
the effective transition location has been moved forward from about 4
to 7 percent to about 2.5 to 3 percent of the model length. Also notice
that the effect of Reynolds number on the location of transition is
minimized by the use of a trip wire. Thus, it is expected that the
model will have a turbulent boundary layer over at least 97 percent of
its length for the range of Reynolds numbers from 12.2 to 150 million.

Boundary Layer and Stern Flow Velocity Profiles

The theoretical method used to calculate the axisymmetric boundary
layer velocity profiles was developed at DTNSRDC by Wang and Huang
(1976, 1979). The method calculates the potential flow around the axi-
symmetric body using the method of Hess and Smith (1966). The potential
flow velocity at the surface of the body is assummed to be th- velocity
at the edge of the boundary layer. The boundary layer over thL body
is then calculated using the differential, thin boundary layer method
of Cebeci & Smith (1974). From these results, the boundary layer dis-
placement thickness is computed and a "displacement body" is defined.
Near the stern, the displacement body is faired into the displacement
wake using a fifth degree polynomial. Use is made of the integral wake

relations formulated by Granville (1953). The potential flow around
the displacement body-wake configuration is calculated and used to re-
define the boundary layer edge velocity. The boundary layer over the
body is then re-calculated. Such calculations of the boundary layer
and displacement body-wake are repeated three times to obtain the final
results. The above method was used to calculate the infinite fluid

case.
A modification of the program allows the experimentally (or other- . ..

wise) determined body static pressure distribution to be used as input.
In this case the velocity at the edge of the boundary layer is deter-
mined from the inputted static pressure using the thin boundary layer
assumption-that the pressure is constant across the boundary layer.
The bc .,dary layer calculations are only performed once since there is -
no need to improve the values of edge velocity. The modified version
of the program was used to calculate the In-the-tunnel situation by
inputting the experimentally determined body static pressure distri-
bution.

.P P
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FIGURE 3. Measured and calculated distributions of static pressure
over the axisymmetric body at a Reynolds number of 100 million.

PRESSURE DISTRIBUTIONS

The in-the-tunnel measured and calculated infinite-fluid model hull
static pressure coefficient distributions for a Reynolds number of 100
million are shown in Figure 3. Results for other Reynolds numbers are
similar with the difference between the two pressure distributions
decreasing with increasing values of Reynolds number. In general, the

44. measured in-the-tunnel velocities are lower (higher Cp) than the infin-
44 ite fluid velocities over the bow of the model and higher (lower Cp) . .

over much of the remaining hull except the region toward the end of the
stern. For the stern region aft of about X/L > 0.90, velocities for the
in-the-tunnel situation are much lower than for infinite flow. This
may be attributed to the pressure field created by the large floor-to-
ceiling strut permanently installed in the diffuser of the wind tunnel.

While the strut creates a pressure distribution which is not axisym-

metric, calculations for uniform irrotational flow around a 2-D strut
show that the pressure field created by the strut is likely to be fairly
flat in the region of the stern where the profiles were measured. At
the location of the stern velocity profile measurements, Cp was calcu- .

lated to be about 0.05 varying about 17 percent across the maximum .. -,
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diameter of the model. Therefore, the disturbance effect is assumed to
be approximately axisymmetric so that the axisymmetric calculational
method used here can be employed. It 4s further assumed that the pres-
sure distribution as measured on the top of the model at , = 180 deg is
representative of the axisymmetric situation.

Using the two pressure distributions, as described above, in-the-
tunnel measured and infinite fluid calculated, the thin boundary layer
velocity profiles at several positions along the parallel middlebody of
the model and the thick boundary layer at one stern location were cal-
culated. These results are presented next.

THIN BOUNDARY LAYER VELOCITY PROFILES

The calculated thin boundary layer velocity profiles at X/L =
0.158, 0.357, and 0.595 using the in-the-tunnel and infinite fluid
pressure distributions are compared in Figure 4 with the experimentally
determined profiles; experimental values of velocities are tabulated in r-w.

the Appendix. The two sets of calculated profiles are not distinguish-
able from each other (and are shown together with a common curve in the
figures) even though the static pressure distributions used to calculate
them are somewhat different. However, all of the calculated velocity
profiles are slightly fuller than the experimental profiles. The maxi-
mum difference in U/Ue between calculated and measured values is on the
order of 0.02 to 0.04.

The effect of Reynolds number on the velocity profiles may be seen
by examining the difference in nondimensional velocity from one Reynolds
number to another. The difference in nondimensional velocity ( U/Ue)
attained by an increase in Reynolds number from 22 to 150 million is
shown in Figure 5. The differences obtained from experiments and cal-
culations show good correlation over most of the profile. The main ... ' .-

exception is for near the wall where the measured values are somewhat -
larger. Other comparisons, obtained by comparing any two Reynolds .

numbers, produce the same general results. This indicates that the --

computational method used can be expected to reflect the effect of
Reynolds number on the change of velocity within a thin boundary layer .

profile. Thus the prediction method may be considered "validated" for . "
the thin boundary layer situation and may be used to extrapolate low
Reynolds number experimental profiles to full-scale.

IL
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FIGIPIE 4. Measured and calculated thin
[boundary layer velocity profiles.
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" -
THICK ST7RN BOUNDARY LAYER VELOCITY PROFILES

The experimental and calculated thick stern boundary layer velocity
profiles at X/L = 0.967 are shown in Figure 6. Experimental values of
velocities are also tabulated in the Appendix. Experimental profiles
were obtained only for Rn = 12.2, 60, and 100 million. The experimental

results represent averaged and smoothed values of velocity data obtained
with the five hole pitot tube (4 = 270 deg) and the hot film probe (. .

90 deg). It is seen that the velocity profiles calculated using the .§11
infinite fluid and in-the-tunnel model hull static pressure distribu-
tions are different from each other and from the experimental results.*

* The difference between the velocity profiles calculated for infinite

fluid and In-the-tunnel situation can be attributed to tunnel blockage .,....-.
effects and may be used to obtain corrections for the measured profiles.
The correction, as a function of radius is shown in the Appendix and may ____ .
be applied to the nondimensional velocity as

(U/Ue) corrected- (U/Ue) measured + (56U/Ue) correction

% ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - -%$.. %%.eF--. ' .
- % *

.,. 4." %. " ," • ",, *I ,p ''?," ." ".'- " -.. . ., -'. . .. . , *'., .," ," ; , .,',.." '1
-. -... • ..- - ,,,. ,,. -..- '.',.'%
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FIGURE 6. Measured and calculated thick
stern boundary layer velocity profiles. ~
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1.0 4J.

0 EXPERIMENTAL

-CALCULATED FOR IN-THE-TUNNEL Cp
0.8 '0 -

0 FIGURE 7. The effect of Reynolds

0.6 number on thick stern boundary
0 layer velocity profiles (change

o R in U/Ue for an increase of . .
0.4 0 Reynolds number from 12.2 to v-.

100 million).

0.2

0.02 0.04 0.06 0.08 0.10

AU/U,

AI

The stern flow velocity profiles calculated using the in-the-tunnel hull
static pressure coefficient distributions are significantly closer to ,
the experimental data than are the calculations made using the infinite
fluid coefficients. Also included in Figure 6 and the Appendix are the
results of Huang et al. (1978) at a Reynolds number of 6.6 million for
a similar model but without the stern sting. The stern velocity profile
of Huang et al. (1978) was obtained by interpolating between measured
profiles at X/L values of 0.953 and 0.976 (corresponding of Huang's X/L
values of 0.977 and 1.000, respectively). It is seen that all of the
experimental velocity profiles are less full than the calculated pro-
files by about the same amount. The discrepancy in nondimensional vel-
ocity increases from zero at the edge of the boundary layer to about
0.05 at r/R of 0.3.

The effect of Reynolds number on the change in velocity profiles
appears to show much better correlation between measured and calculated
results. The difference in nondimensional velocities between Reynolds
numbers of 12.2 and 100 million (AU/Ue), determined from the exper-
imental velocity profiles and the in-the-tunnel calculated profiles, is
shown as a function of radius in Figure 7. It is seen that the dif-
ference between the experimental and calculated values of AU/Ue is on
the order of 0.005 which is well below experimental error. These -A
results indicate that the computational method may be used to predict
the change in U/Ue as a function of Reynolds number change and to make -.-
full-scale extrapolations of stern flow velocity profile data obtained
at lower Reynolds numbers.

J .

%q" %'% %.

\V. .
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CONCLUS IONS 1

1. In-the-tunnel static pressure distributions on the model indicate

that the velocity was lower over the bow and higher over most of the
rest of the model than would be the case for an infinite fluid. The
differences may be attributed to tunnel wall blockage effects and to a

.3large strut located in the tunnel diffuser aft of the model. I
2. Theoretical predictions of thin boundary layer velocity profiles

along the parallel middlebody of the model are in good agreement with
the experimental profiles, only slightly fuller. The measured and
calculated changes of velocity in the boundary layer as a function of 7-..-
Reynolds number are in good agreement, indicating that calculated vel-
ocity differences due to Reynolds number changes may be used to extrap-
olate low Reynolds number thin boundary layer velocity profile data to
full scale.
3. Theoretical predictions of the thick stern boundary layer velocity
profiles using experimental pressure distributions are fuller than
measured velocity profiles. This finding is in agreement with lower
Reynolds number data reported by Huang et al. (1978). The measured and

calculated changes in stern flow velocity profiles as a function of
Reynolds number show good agreement, indicating that calculated velocity

differences due to Reynolds number changes can be used to extrapolate
lower Reynolds number thick boundary layer velocity profile data to _
full-scale.
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APPENDIX

TABLE Al. Model offsets.

X/L r/R Y/L r/R X/L r /r X/L r/R ."

0.00000 0.00000 .16493 1.00000 .53844 1.00000 .81494 .76503
.00097 .09501 .17463 1.00000 .55300 1.00000 .82464 .73601 ,, .

.00340 .17399 .18433 1.00000 .56270 1.00000 .83434 .70405

.00582 .23606 .19403 1.00000 .57240 1.00000 .84405 .66903 , -

.00825 .28603 .20374 1.00000 .58210 1.00000 .85375 .63401 0

.01067 .32802 .21829 1.00000 .59180 1.00000 .86345 .59703

.01310 .36402 .23284 1.00000 .60150 1.00000 .87315 .55405 ", ,

.01552 .39599 .24254 1.00000 .61121 .99902 .88285 .50998 17..

.01795 .42697 .25709 1.00000 .62091 .99695 .89255 .46504 .

.02037 .45500 .27165 1.00000 .63061 .99498 .90420 .40362 "

.02425 .49635 .28620 1.00000 .64031 .99193 .91196 .36304..

.02911 .54500 .30075 1.00000 .65001 .98702 .92166 .30599

.03008 .55383 .31530 1.00000 .65971 .98298 .93136 .25003 I.-

.03396 .58798 .32986 1.00000 .66942 .97796 .94106 .19199

.03881 .62900 .34441 1.00000 .67912 .97098 .95076 .14509

.04366 .66598 .35896 1.00000 .68882 .96400 .95561 .12905

.04851 .70099 .37351 1.00000 .69852 .95604 .95950 .11640

.05821 .76099 .38807 1.00000 .70822 .94800 .96241 .11640

.06791 .81302 .40262 1.00000 .71792 .93597 .96507 .11640

.07761 .85601 .41717 1.00000 .72763 .92495 .96716 .11640

.08732 .89342 .44143 1.00000 .73733 .91306 .97211 .11640

.09702 .92298 .45598 1.00000 .74703 .89997 .97550 .11640

.10672 .94698 .46568 1.00000 .75673 .88502 .98035 .1164) I -

.11642 .96695 .48023 1.00000 .76643 .86800 .98520 .11640

.12612 .98102 .49479 1.00000 .77613 .85099 .99190 .10636

.13582 .99095 .50934 1.00000 .78584 .83299 .99588 .07276

.14553 .99596 .52389 1.00000 .79554 .81096 1.00000 0.00000

.15523 .99902 .8054 .-..-.80

," t2 L
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TABLE A2. Experimental values of model boundary layer velocities.

UIU@ FOR Rx 10-6 6.6 x 106t R, 12. x 10 ,= 60 x 106 R= 100 x 10-

XIL (r-R)R 12 22 40 60 100 150 XIL rR UIU rlR UlU. OR UIU OR UIU-

0.158 0.0909 0.964 0.982 0.990 1.000 1.000 1.= 0.967 0.157 0.360 0.185 0.290 0.237 t 0.10 0.362
0.0636 0.9 6 1.000 1.000 0.997 0.99 0.997 0.162 0.374 0215 0.356 0.252 t 0201 0.337
0o.0455 1.00 0.9 .963 0.9m 0.997 0.997 0.168 0.4 O0.244 0.400 0.26 t 022 0.429
0.0273 - - - - - - 0.173 0.391 0.273 0.456 0.282 t 0243 0.473
0.012 0.851 0.24 0.849 0.857 0.870 0.379 0.179 0.400 0.302 0.493 0296 t 0264 0.507
0.0091 0.722 0.708 0.730 0.749 0.765 0.77 0.184 0.409 0.331 0.541 0.312 0.551 0285 0.551 9. .
0.0046 0.628 0.632 0.673 0.684 0.704 0.718 0.195 0.424 0.30 0.582 0.325 0.580 0.305 0.584

S.-- - -- 0.212 0.446 0.39 0.629 0.340 0.608 0.326 0.6090.357 0.1818 1.000 1.000 1.000 1.000 1.0001.0
0.193 . m. .0.N 0224 0.463 0.418 0.659 0.355 0.623 0.347 0.623 ., i0.1363 - - - - - -0.42 0447 0.69 0.37 0.649 0.6 0.648
0.0909 0.978 0.90 0.991 0.995 0.996 0.997 0.246 o.49 0.447 0.673 0.370 0.67 0.360 0.675

0.0636 - - - - - -0.6 0.2 0.7 0.3 0.8 065039 065

0.0454 0.337 0.357 0.863 0.884 0.893 0.900 0.284 0543 0.501 0.774 414 712 0.411 0.706
0.312 0.574 0.55 0.30 0.443 0.748 0.432 0.73300.10,2730750. 07M0. "0.8. 0815 0.80 .834 ,12o7 - 0 ,.070 0 0 :
0.340 0.605 0.564 0.841 0.413 0.785 0.453 0.750
0.368 0.635 0.593 0.374 0.503 0.818 0.474 0.770

0.595 0.2500 0.991 0.999 1.00 1.0 0.999 1.000 0.395 0.664 0.622 0.902 0.532 0.855 0.495 0.800
0.1909 ,0 1.00 1.000 1.00 1.0 00 1.0 0.431 0.699 0.651 0.923 0.561 0.882 0.516 0.835
0.1364 0.966 0.974 0.933 0.93 0.991 0.996 0.467 0.734 &Wm 0.944 0.590 0.905 0.537 0.864
0.090 0.877 0.903 0.916 0.927 0.954 0.943 0.523 0.789 0.709 0.962 0.620 0.925 0.557 0.874
0.0546 0.791 0.820 0.840 0.844 0.963 0.870 0.578 0.835 0.738 0.930 0649 0.949 0.579 0.892
0.0273 0.705 0.742 0.764 0.784 0.793 0.800 0.633 0.374 0.767 0.937 0.678 0.968 0.600 0.920
0.0091 0.589 0.636 0.665 0.693 0.703 0.714 0.711 0.923 0.796 0.922 0.707 0.979 0.621 0.935

*REYNOLDS NUMBER INTERPOLATED DATA 0.708 0.959 0.325 1.00 0.737 0.95 0.642 0.948
AT SPECIFIC RADIUS 0.861 0.977 0.765 0.990 0.663 0.956

0.939 0.90 0.795 0.992 0684 0.972
tDATA INTERPOLATED FROM HUANG ET AL (1978) 1.011 0999 0.825 0.995 0.705 0.984
tOUESTIONABLE DATA 1.083 1.000 0.855 0.997 0.725 0.987

0.384 1.000 0.746 0.997
0.761 0.999
0.7N8 I=- .

1 0

Rn 12 2 * 106

08 Rn-:60.x10
6  

"%"'"

Rn100 10

,,R 06 i FIGUR E Al. Strut interference.-.-- ._L.

correction for stern velocity '"""-
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Discussion

H.T. Wang (Naval Research Laboratory)

I would like to congratulate Dr. Coder on his success in obtain-
ing boundary-layer measurements for Reynolds numbers that are one
order of magnitude higher than those for previous measurements. As
the co-author of the computer program used in this paper, I am pleased
to see the close agreement between calculated and experimental results
for the thin boundary-layer velocity profiles measured over the for- ..
ward portion of the body. Since the theory for thin boundary layers -. .

is well developed, I take the viewpoint that this close agreement k, I

serves as a check on the correctness of the measurement technique and
the existence of axisymmetric flow conditons in this region.

In the stern region, there is reasonably close agreement in the
variation of velocity with Reynolds number, but only fair agreement in , 9
the absolute velocity profile. I pointed out to Dr. Coder that his
original plots contained the calculated tangential velocities not the
total velocities that would correspond with the experimentally mea-
sured velocities. Replotting served to bring the experimental and
calculated results into the fair agreement shown in his Figure 6. One

4 probable reason is the presence of the strut in the tunnel, which de-
stroys both the infinite fluid and axisymmetric flow assumptions made
in the program. Thus, the program is unable to duplicate the measured

.' pressures on the body, and it was necessary to make a series of calcu-
lations in which the measured pressure was input. It is of interest
to investigate how closely the calculated pressure using the resultant
displacement body compares with the input measured pressure. L

It would also be 6f interest to make a series of runs in which a
?ortion of the displacevent wake behind the stern is enlarged to var-
ious diameters to simulate the effect of the strut. A second possi-
bility is that the algebraic correction to the eddy viscosity, which
was previously validated at lower Reynolds numbers, may need to be
revised for higher Reynolds numbers. The above revisions involve

changing only a few lines of computer code and would not add to the
'. complexity of the calculation procedure.

Author's Reply

D.W. Coder (DTNSRDC)

Dr. Wang is the co-author (along with T.T. Huang of DTNSRDC) of
* the calculational method used in the paper to calculate the boundary-
!" layer velocity profiles, so his remarks are especially welcome. I
* essentially agree with most remarks and wish to respond to four of I S

them.

;. . .. . . . . . . . . . . . . . . .. -**.:-**.-,,-*.** **.

". . .. . . . . . . . . . . *..*

~. ~ -.- * .' -.-. '..]
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Dr. Wang has pointed out to me that the variable initially plot-
ted in Figure 6 (in the preprints) is the nondimensional tangential
velocity obtained with thin boundary-layer theory modified only to
account for thick boundary-layer eddy viscosity (to agree with the
Reynolds stresses measured in the stern region by Huang et al. [1978]).
Figure 6 has been replotted and is shown in the present published ver-
sion of the paper using the total nondimensional velocity, which in-
cludes both the tangential and normal velocities and also reflects - -

additional thick boundary modifications as discussed by Wang and Huang
(1979). These calculated velocity profiles (shown in Figure 6 here)
are slightly less full than the previous ones (shown in the preprints) .
and give slightly better agreement between calculated and measured
profiles.

The modified version of the program for which the body static
pressure distribution can be used as input (instead of calculated)
calculates the thin boundary layer (with modified eddy viscosity in
the stern region) once (since there is no need to improve the thin
boundary layer edge velocity). These results are used to obtain a
displacement body-wake surface. The potential flow around this sur-
face is calculated to obtain the off-body velocities used to make the
additional thick boundary-layer modifications to the thin boundary
calculations (with modified eddy viscosity). The comparison (suggest-
ed by Dr. Wang) of the on-body pressures in the stern area as calcu- - I.
lated from this potential flow of the displacement surface with the

' input values shows little agreement. The calculated values are slight-
ly higher than those calculated for an infinite fluid but significantly .-

* lower than the input values. Thus the correctness of the off-body
velocities used to make the additional thick boundary-layer modifica-
tions is in question for the modified version of the program.

In order to obtain a purely calculational method to determine the '...

tunnel strut interference effect (and resolve the above question), I
- have attempted to alter the calculated displacement wake by the addi-

tion of an axisymmetric body to simulate the tunnel strut interference
effect. Axisymmetric bodies that have "equivalent tunnel blockqe" as 1 4
the strut or produce approximately the same potential flow upstream
pressure field in the region of the stern as the strut have been de-
fined. A few initial attempts in getting the program to run have
failed so far. However, I am optimistic that results will soon be
obtained.

Finally, Dr. Wang suggests that a modification to the eddy vis-
cosity model for the thick boundary layer might be in order for the
higher Reynolds numbers. I plan to modify the eddy viscosity model in
the stern, if appropriate, based on stern Reynolds stress measurements .- :-

made during the present experiment but not yet completely analyzed.

0%I
* **

"'-.'"-'t'"--
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Application of the Vortex-Lattice
Concept to Flows with Smooth-Surface

Separation
D. Fredd Thrasher :

David W. Taylor Naval Research And Development Center
Bethesda, Maryland 20084

ABSTRACT

A nonlinear three-dimensional vortex-lattice method which treats
the steady separated flow over an arbitrary body moving through an in-
viscid incompressible fluid at large incidence is developed. The method -

is not limited by body shape, interference pattern, or maneuver so long
as the flow does not reattach, the locations of the separation lines are.- u
known, and vortex breakdown does not take place in the near field. Spec-
ifically, the problem of smooth-surface separation is considered in con-
trast to previous vortex-lattice methods which treated sharp-edge separ-
ation only. In the present case, flow separation is due to an adverse
circumferential pressure gradient and is not associated with any geo-
metric irregularity. -

Following the vortex-lattice concept, we place a lattice of short
straight vortex segments on the body and a number of semi-infinite non-
intersecting curved vortex lines in each wake. Each of the wake vortex
lines emanate from a separation line on the body and extend downstream
along a streamline. Subsequently, each curved wake vortex line is
replaced with a finite number of short straight connecting vortex seg- I -
ments with a straight semi-infinite vortex segment attached to the end
of the last segment. These semi-infinite vortex lines are directed down- . ,
stream parallel to the freestream. -"

A nonlinear iteration procedure is presented which solves for the
circulation distribution that enforces the no-penetration condition at a
finite number of collocation points on the body and simultaneously -,.-

renders the wakes force-free. The pressure distribution on the body can
then be calculated and numerically integrated to obtain distributed and
total loads on the body.

As a numerical example, results are presented for an axisymmetric
body, having a tangent-ogive nose and infinite parallel afterbody, at
angle of attack. The shape of the wakes separating from the leeside of
the afterbody are shown graphically. Comparisons of the resultant
pressure distributions and distributed loads are made with results from
other methods and experimental evidence.
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I. INTRODUCTION

Many problems in aero- and hydrodynamics involve potential flows
where separation takes place on a smooth surface, such as a fuselage,
rather than along a relatively sharp edge, such as the trailing edge of
a wing. In the case of a smooth-surface, separation is due to adverse
pressure gradients rather than geometric irregularities.

To date, most models of potential flows with smooth-surface separ-
ation have been based largely on two-dimensional crossflow analogies
and frequently rely on empiricism. Recently, numerical schemes based
on the vortex-lattice concept have had considerable success in treating -'
the fully three-dimensional separated potential flow over low-aspect --.-...-

ratio thin wings at high incidence. So far, separation has been con-
strained to take place along the sharp edges of wings only. However, in
principle the vortex-lattice method is not limited in application so
long as the convection of vorticity dominates its diffusion and there is , ,
no destruction of vorticity by viscous effects.
For a discussion of the applicability of vortex methods, see J.H.B.
Smith (1980).

We present a nonlinear vortex-lattice method which treats the
steady flow past prolate bodies with open separation. We consider cases
where the flow does not reattach and vortex breakdown does not take t3
place near the body. We assume that the location of the separation lines
on the body are known. Both the strength and shape of the body wake are
found as part of the solution. Specific flows with smooth-surface sepa-
ration are considered as opposed to flows with sharp-edge separation
treated with vortex-lattice methods in the past.

To demonstrate the feasability of the technique, we treat flow over L
an inclined axisymmetric body having a tangent-ogive nose and infinite
parallel afterbody. The separation line is assumed to begin downstream
of the nose but its circumferential location is fixed along the length
of the body.

It is relevant to distinguish various flow phenomena at this point.
Following Maskell (1955), we catagorize separated flows into 'closed'
and 'open' separation patterns as shown schematically in Figure 1. In
flows with 'closed' separation there is a region in the flow field
which is inaccessible to the oncoming flow. In flows with 'open' sepa-
ration the fluid coming from upstream of the body wets both sides of
the wake. Following J.H.B. Smith (1980), by 'reattachment' we mean
that a shear layer, that has separated from the body at some upstream
location, attaches to the body again downstream. The remainder of this
section is devoted to a brief literature review.

Many methods in use may be loosely grouped under the heading of
crossflow-plane analogies. These methods consider the impulsively
started flow over a circular cylinder to be analogous to the flows
viewed in a series of planes perpendicular to the body's longitudinal
axis. Time in the former problem is relatel to axial distance of the
crossflow plane in the latter problem. Hence, the problem reduces to
finding the two-dimensional time dependent flow over an impulsively

%6.
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started cylinder.
The most common formulation using the crossflow-plane analogy

employs the discrete-vortex method to obtain the impulsive flow solution

solution. Originally developed by Rosenhead (1932), the discrete-vortex

method is based on replacing the Karman vortex streets behind the --_
cylinder with point vorticies. At each time step, a new point vortex is
introduced into the outer flow at each separation point. The point

vorticies subsequently travel downstream under their mutual influence.

The discrete-vortex method has been used to calculate the flow over
bodies at incidence with varying degrees of success. Unfortunately, the

approach requires empirical guidance and considerable artwork on the I -
part of the user. For examples of the discrete-vortex method and its

application see Sarpkaya (1966), Gerrard (1967), Sarpkaya (1968), Larnd

(1971), and Sarpkaya and Schoaff (1979).
A similar approach, first suggested by Bryson (1959) and extended

by Schindel (1965,1969), uses a lumped vortex crossflow model. Here, a
point vortex is joined to the body with a feeding sheet of negligible P N
strength. The system is adjusted such that it is globally force-free
with the force on the feeding sheet balancing the force on the point

vortex. In a modification of Bryson's model, called the multi-vortex

model, a number of free point vortices are allowed to roll up and form a
concentrated vortex in each crossflow plane (See Angelucci, 1971;

Marshall and Deffenbaugh, 1974).
In the first fully three-dimensional approach to the problem, Hess

and Smith (1962,1966) treated the non-lifting flow over arbitrary bodies
with a distribution of constant source strength panels on the body sur-

face. Asfar (1978) treated the same problem with a vortex-lattice method

while Asfar et al., (1978) combined Asfar's vortex-lattice method with a

surface distribution of sources of specified strength. .-.

Atta and Nayfeh (1978) solved for the flow over wing-body combin-
ations using a vortex-lattice method for both the body and the wings.

They allowed for separation off the sharp edges of the wing only though.
Wing-body combinations were treated by Uchiyama et al., (1978) who

used distributed sources on the surface of the body and a nonlinear 21

vortex-lattice method similar to Rehbach (1974) to model the wings. S

Maskew (1981) used a combination doublet-lattice and source model

to solve for the flow over thick wings. Flow separation was not confined

to the edges of the wing and thus he treated a problem simila" to. the

one we consider here.
Fiddes (1980) solved for the separation angle on a cone at inci- .t

dence by interacting F.T. Smith's (1978) extension of the two-dimen-

sional triple-deck boundary-layer theory of Sychev (1972) with a soph-

isticated vortex-sheet model while using slender-body and conical flow
assumptions.

The flow over thin wings with sharp-edge separation has been

treated with nonlinear vortex-lattice methods by a number of authors

over a wide variety of planforms. Steady flows were considered by Mook

and Maddox (1974); Kandil et al. (1976); as well as Zorea and Rom

(1978). Unsteady flows were considered by Belotserkovsky (1966); Atta

et al. (1976); Thrasher et al. (1977); and Levin and Katz (1980).

I%
', . . .... •......--.. . .
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Maskell (1955) was among the first to discuss plausible three- --

dimensional separation patterns in qualitative terms. Legendre (1956)
proposed a mathematical framework to conceptualize limiting streamline
patterns which were considered to have the properties of a continuous
vector field; in particular, only one limiting streamline was allowed
to pass through a regular point in the flow field. --

Lighthill (1063) applied the concept of a continuous vector field- . -
to the pattern of skin-friction lines on a body's surface rather than to
the limiting streamlines just above the surface as was done previously. , ..
Hunt et al., (1978) have shown that the notions of elementrary singular
points can be applied to the flow above the surface in planes of sym-
metry, in projections of conical flows (see J.H.B. Smith, 1969) and in
crossflow planes (see Perry and Fairlie, 1974). Other extentions and '.-

applications can be found in Legendre (1972, 1977), and in excellent
reviews by Tobak and Peak (1981a, 1981b) and Peake and Tobak (1980).

General reviews of three-dimensional separated flows were given by
J.H.B. Smith (1975, 1978, 1980).

II. HYDRODYNAMIC MODELING

We consider the steady inviscid incompressible flow past a body U
at an angle of attack. The fluid moves with a uniform freestream
velocity far from the body and its extent is infinite. The angle of

. attack is sufficient to cause large scale separation on the leeside of
the afterbody but is not so large as to precipitate unsteady vortex
shedding. Hence, any asymmetry In the flow is due to geometry rather
than to flow instabilities. Reattachment and secondary separation .
effects are neglected.

* A. Bound- and Free-Vortex Sheets

When the flow separates, vorticity generated within the boundary
layer on the body is shed into the outer flow along separation lines.
This shed vorticity forms the body wake. The resulting flow is fully
three-dimensional and nonlinear. The wake shape and strength are im-
portant in determining the flow field surrounding the body and ulti-
mately the loads.

If the Reynolds number is high, the wake is thin when compared
with the overall dimensions of the body. Consequently, the vorticity
in the flow is concentrated into the thin boundary layer on the body
and thin vortical regions comprising the wake. The flow outside of
these regions is essentially irrotational. As the Reynolds number tends
toward infinity the thickness of each of these regions vanishes so that
they may be represented as bound- and free-vortex sheets. The problem
remains to specify the shape of the free-vortex sheets and the vorticity S
distribution on the bound- and free-vortex sheets.

* *

.1 *.o, *
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B. Kinematic Flow Conditons !,-,

There are a number of conditions which the solution must satisfy.
First, there can be no penetration through the body surface:

(T + V' ) ,-= 0 on the bound-vortex sheet (2.1)

where V is the undisturbed freestream velocity, V is the disturbance

velocity, and n is the unit normal to the body surface.
Second, vorticity is a divergenceless field by construction, or:

div( w ) = div( curl V ) =0

In other words vorticity is spatially conserved.
Finally, according to the Kelvin-Helmhotz theory of vorticity, the

substantial derivative of circulation, r, on a free-vortex sheet is
zero or:

Dr = 0 (2.2)

Consequently, free vorticity is convected downstream with the local

particle velocity and a steady free-vortex sheet is a stream surface.

C. Separation Line Conditions

There are conditions along the separation lines as well. Since we
are posing our problem in terms of the vorticity distribution we seek
a condition on the vortex strength along a separation line. In terms of
vorticity, the appropriate Kutta condition for the flow over two-dimen-
sional airfoils is that the bound-vortex strength vanishes at the trail-
ing edge. The vorticity generated within the boundary layer on a two-
dimensional bluff body is swept into the outer flow at each of the sepa-
ration points and the bound-vortex strength on the body vanishes there
as well. In the vortex sheet model of the steady flow over three-dimen-
sional thin wings with sharp-edge separation, the two-dimensional Kutta .=.'-

condition is applied in a localized manner. That is, on those edges
where separation takes place the vorticity adjacent and parallel to the
edge is immediately swept into the wake and the bound-vortex strength

vanishes there. In a similar fashion, we apply the separation point
condition for two-dimensional bluff bodies along the separation lines
on three-dimensional bluff bodies in a localized manner. Therefore, the

bound-vortex strength adjacent and parallel to a separation line

. . ................ .* .. . . .
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vanishes. Spatial conservation of vorticity demands that this vorticity

be swept into the outer flow where it travels downstream to form the
body wake.

III. Numerical Modeling

The numerical model is based on the vortex-lattice concept of replacing

continuous vortex sheets with arrangements of vortex segments. The
physics of the flow dictates the placement of the vortex segments and * _ *
their interaction. Here, we replace the bound- and free-vortex sheets
with lattices of short straight vortex segments. The position of the

segments in the free-vortex sheet and the strength of the segments in
both the bound- and free-vortex sheets are then found via a nonlinear . - . -

iteration procedure.

A. Bound-Vortex Lattice

We begin by replacing the continuous bound-vortex sheet with cir-
cumferential and longitudinal families of curved vortex lines which lie
on the body's surface. The longitudinal vortex lines start at the nose
of the body and continue back to the body's tail. The circumferential --U
vortex lines form a series of axially spaced vortex rings which enclose

the body. These two families of vortex lines intersect at various nodes
to form rows and columns of vortex panels or elements which cover the
entire body. The vortex lines are placed such that the resulting
arrangement of vortex panels is regular and uniform. The panels which
meet to form the nose and tail are three-sided, while the remaining L
panels are four-sided. Such an arrangment is shown schematically in

Figure 2.
Short curved vortex segments which connect the various nodes on the

body act as edges to the vortex panels. We replace these curved segments . ....

with straight segments connecting the nodes. These straight vortex seg-

ments make up the bound-vortex lattice.
The three-sided vortex panels are flat and triangular while the

four-sided panels are generally nonplanar. In practical applications,

however, the four-sided panels are almost flat.
The area of a four-sided panel is taken to be one-half the magni-

tude of, and its normal direction parallel to the cross product of the
panel's diagonals. This approximation is exact if the panel is flat.
The area and normal direction for a triangular panel are unambiguous.

We satisfy the no-penetration condition on the body in a collocation

manner. That is, we enforce the no-penetration condition at a finite
number of discrete points on the body and do not satisfy it elsewhere.
(Indeed, large unrealistic normal velocities are induced between col-
location points.) We call these collocation points 'control' points S
and place one on each panel.

We place the panel's control point on a plane that contains the

centroid of the panel corners and is perpendicular to the panel's normal.

-.-. . i,. .*.*r..*..~*J".*..*.*-. . . . . . . . ..
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We refer to this plane as the panel plane. If the panel is nonplanar the 0-
centroid will not lie necessarily on the panel surface. In fact, the
panel plane usually does not contain any of the panel's corners.

In their distributed-source method, Hess and Smith (1962) define a
panel plane for each panel in the same manner as is done here and then
project the panel's corners onto the panel plane along a direction par-
allel to the panel's normal. Thus, the corners of adjacent panels are
not coincident as they are here but rather all the panels are flat. -..-

We explore two choices for the placement of the control point on a
panel plane. The first and most obvious choice is to place the control
point at the panel's centroid. These control points are referred to as I.
'average' control points and are used by most authors. A second choice,
investigated by Kelly (1977) and used by Asfar, et al., (1978), is to
locate the control point such that the normal velocity induced by a unit
loop circulation around the panel is a minimum. These control points are
called to as 'optimal' control points and their use can have a profound
effect on the results obtained. I.

We refer to the circulation around a vortex segment as a 'branch'
circulation and denote it with the symbol' r'. Its sign and associated
direction is taken according to the right-hand rule. Each vortex segment
replaces the surface vorticity component parallel to and in an area im-
mediately surrounding it. Thus, longitudinal segments replace the longi-
tudinal components of vorticity on the body surface and likewise for the
circumferential direction. Figure 3 illustrates this concept. If the two
panels bordering a vortex segment have equal areas, the segment receives
one-half of its strength from each of the two panels. However, if the
panels have areas which are widely different, much more of the segment's
strength originates from the panel with the larger surface area. In an
attempt to account for this, we weight the branch circulation with the ..

appropriate panel areas when approximating the vorticity vector, w,
associated with a vortex panel, or:

m _. ' .\.. .
M

i rA
W = 1 -E i (3.1)

A + A -,.,,.

where 1 denotes the vectors connecting consecutive nodes

i of the panel,

r denotes the branch circulations of the corresponding

i vortex segments,

A denotes the panel area,

A denotes the area of the ajoining panel on the i'th side,

and m is the number of panel edges ( either three or four ).

. . . . . . . . . . . .. . . . . . . . . . . . .
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Authors in the past have simply used a one-half weighting for the
branch circulation strength. As demonstrated later, weighting the branch
circulations helps to alleviate some of the problems normally encount-
ered with irregularly spaced lattices.

Spatial conservation of vorticity (or alternatively circulation)
demands that the sum of the branch circulations at any node on a vortex- _- 7
lattice vanish. A convenient way to satisfy this requirement is to define
the branch circulations in terms of loop circulations. This is analogous
to the familiar loop and branch currents in the analysis of electrical
networks. We denote loop circulations with the letter 'G'. In Figure 4
we see that the branch circulation ' ' for the vortex segment bordering
panels labeled 'i' and 'i+l' is given by:

r G - G (3.2)
i i+l

We solve for the loop circulations as primary variables. We can If
then immediately write the branch circulations. We calculate the veloc-
ity field due to any vortex segment with its associated branch circula-
tion by using the Biot-Savart law (See Section IIIE). To find the total
velocity, we add the freestream velocity to the combined velocity due
to all the vortex segments in the flow. This includes the bound-vortex
lattice in attached flow and both the bound- and free-vortex lattices in * 3
separated flow.

B. Attached Flow Solution Procedure

To enforce the no-penetration condition, we write a set of simulta-
neous linear equations for the loop circulations or:

N
A G - V n (3.3)

ii J O i

where A are the influence coefficients,
ij

V is the undisturbed freestream velocity,
OD

are the unit normal vectors for the panels,

and N is the number of panels on the body.

I"% "

9
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The influence coefficent A is equal to the normal velocity induced

at control point 'i' due to a unit loop circulation around panel ' '.

The solution of (3.3) is addressed In Section III.F. In the case of
attached flow, once the no-penetration condition is satisfied we can
calculate the loads on the body, as we describe in Section III.H.

C. Free-Vortex Lattice

We use free-vortex lattices to replace the continuous free-vortex
sheets in much the same way as we use a bound-vortex lattice to replace
the bound-vortex sheet. Each free-vortex sheet joins the bound-vortex
sheet along a prescribed separation line.

lie first arrange the bound-vortex lattice such that each separa-
tion line coincides with one of the longitudinal vortex lines on the
body. Furthermore, we place the circumferential vortex lines such that
each separation line begins and ends on a node. Such an arrangement is S N
shown in Figure 5.

We place a number of semi-infinite non-intersecting curved vortex

lines on the free-vortex sheets. Each wake vortex line emanates from a
node on the bound-vortex lattice on a separation line and extends down-
stream parallel to a streamline. These lines divide each free-vortex
sheet into streamwise strips or 'ribbons' of surface vorticity. The U
vorticity distributed on each of these wake ribbons is subsequently
concentrated into the vortex lines which border it in a fashion similar
to the way we concentrate the bound vorticity into bound-vortex segments.

We now replace each curved vortex line in the wake with a number
of short straight connected vortex segments. The first segment for each
wake line attaches to the bound-vortex lattice, and the remainder extend
downstream a finite distance. At the end of the last segment for each
line we place a straight semi-infinite vortex line which extends down-
stream parallel to the undisturbed freestream.

The separation line condition demands that the bound vorticity
adjacent and parallel to a separation line vanish. In view of the role -
the bound-vortex segments play in replacing the continuous bound-vortex
sheet, we set the branch circulation around each of the longitudinal
vortex segments along a separation line to zero. This is analogus to how
we enforce the Kutta condition on the sharp edges of a thin wing in the . -.

vortex-lattice model appropriate for that problem. Spatial conservation
of circulation then determines the strength of the free-vortex segments.

The problem remains of determining the orientation of the first
wake segment in each line. J.H.B. Smith (1977) has shown that a free-
vortex sheet leaves the body tangentially as the Reynolds number
approaches infinity. We are unable to allow the sheet to do this due to
numerical difficulties with the singular nature of vortex lines. To
circumvent this problem we simply place the first segment in each wake - -

line perpendicular to the body and make it short.
We include the wake lines in the calculation of the influence co-

efficients which correspond to the panels which border a separation line.
This means that the influence coefficent matrix is now a function of

S.-
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the wake shape.
The Kelvin-Helmhotz theory of vorticity requires that free vorti-

city travel downstream with the local particle velocity. If we view the
steady state solution as a typical time step in the solution of an un-
steady problem but with steady flow conditions, then each of the finite
wake vortex segments represent an Euler step in the time integration of
the path followed by a fluid particle. Thus, each wake vortex line is a
pathline. We align each finite wake vortex segment with, and make its
length proportional to the local particle velocity. This provides a
force-free wake. The proportionality constant is the time increment,
which we usually choose to be unity. .

We use the velocity at the upstream end of a wake segment for
directing and sizing the segment. Kelly (l77) investigated using other
points along the segment and found that the fewest iterations were
required and that the predicted loads were compared best with experi-
ments when using the upstream end. Schroder (1978) used the average
of the velocities calculated at the upstream and downstream ends but I, *;
this practice almost doubles the computer time neccessary for a solu-
tion.

D. Separated Flow Solution Procedure

We use the following scheme to obtain a solution:

1. Preset the wake position.

2. Calculate the influence coefficient matrix.

3. Solve for the loop circulations which enforce the no-penetraion
conditon.

• -. ..-

4. Position the wake vortex segments so that they are force-free.

5. Repeat steps 2-4 until convergence is achieved.

In step one, we set the wake either to be flat or at a previous
solution. Step two involves changing only those columns in the Influence

coefficient matrix which correspond to panels bordering a separation
line. Steps three and four require more elaborate calculations and are
discussed in Sections III.F and III.G.

E. Velocity Calculations

We calculate the velocity field due to a vortex segment using
the Biot-Savart law. For a single straight vortex segment, as shown
in Figure 6, the velocity at a field point 'P' is given the following
computationally advantageous form:

* .. . \ .
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r x r r r
V = r 12 1 [ r 1 ( - 2 ) 1 (3.4)

4 r 2 12 "
r xr •r- In

12 1 1 2

where-r ,-r and r are as shown in the figure.

1 2, 12
The velocity due to a vortex segment tends towards infinity as we
approach the segment. To avoid this problem, we insert a viscous

core to replace the velocity field produced by the Biot-Savart law when . ..
we are close to a vortex segment. Here, we simply choose to set the

induced velocity to zero within a certain radius of the vortex segment.

F. Solution of Simultaneous Linear Equations

The efficient solution of the arising set of simultaneous linear S U
equations is important in solving for the flow over the body. This is
especially true in the case of separated flow since we must do it once
for every iteration between the wake position and loop circulations.

In general, iterative methods are particularly well suited for
solving systems of equations when a good initial guess for the solution
is available or when the number of equations prohibits complete storage
of the coefficient matrix in high-speed memory. For an iterative method
we use the modified Gauss-Seidel method (Johnson and Riess, 1977) or the

modified Gauss-Seidel method with overrelaxation, sometimes called the
SOR method (Goult et al. 1971).

In contrast, direct methods are particularly well suited for solv-
ing systems of equation when a good initial guess is not available and
the number of equations allows for complete storage of the coefficient
matrix in high-speed memory. For a direct method we use the Gauss-

*, elimination method with partial pivoting (Johnson and Riess, 1977).
The number of operations ( multiplications and divisions ) for the

2 ~
Gauss-Seidel method is O(N ) per iteration while the Gauss-elimination

r3

method requires O(N /3) operations for complete solution. Of course,

considerable row exchanges may be necessary if pivoting is used.
A number of factors determine the structure and conditioning of [A)

and thus govern the choice of the solution scheme. By inspection, we
can show that if the body has a closed tail, then for any row 'i' in

N
A =0 (3.5)

..!

. . . . . . . . . . . .. . . . . . . . .. 4.---
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Thus, every column of [A] is a linear combination of the remaining

columns and the matrix is singular. This is because the loop circula-

tions are taken as the unknowns in the problem while the branch circu-

lations determine the velocity field. Since each of the branch circula-
tions is defined as the difference between two loop circulations, the

set of loop circulations which produce a particular velocity field are

unique only within an additive constant vector or functionally:

V( [G] ) = V ( [G] + s[C1 ) (3.6)

where s is a scalar and [C] is a vector of ones and is of the same length
as [C].

If the body has a open tail then we can show that for any row 'i'

in [A]:
N

A =d
ij i (3.7)

where d is the velocity induced normal to control point 'I' due to a

unit branch circulation around each of the vortex segments in the last 3
circumferential vortex ring.

For those rows which correspond to panels near the nose of the body,

-4
d can be of 0(10 ) but it grows as we move to elements closer to the tail.

Even though the matrix Is no longer singular, we found that partial

pivoting was necessary to obtain a solution using Gauss-elimination.
In using the modified Gauss-Seidel method, we found that after se-

veral iterations, successive iterates of the loop circulations in both
the singular and non-singular cases could be approximated by

k+l k k .
[G] [G) + s [C] (3.8)

k
where the superscript indicates the Iterate number and In this case s is

a positive scalar. By monitoring the convergence of a few of the branch

circulations during the Gauss-Seidel iteration, we were always able to
find a solution. In most cases, the loop circulations eventually conver-

k
ged as well (that is, s would tend towards zero) but this usually re-
quired a large number of iterations.

If a good Initial guess is available the number of Gauss-Seidel it-

erations is substantially reduced. A good initial guess can come from a

previous solution at another angle of attack or from the previous wake

iteration in the case of separated flow. However, in many cases the

number of iterations was still large enough that Gauss-elimination
was the preferred scheme.

*. :',* .- q
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Control point placement influences the structure of [A] and the re-
sulting loads as well. Use of average control points does not neces-
sarily result in [A] being strictly diagonal dominant. Nonetheless,
the diagonal elements are always greater in absolute value than any of
the off-diagonal elements. However, for the long thin panels near the
nose of the body, the diagonal entries can overwhelm the off-diagonal
elements and this seems to make the matrix product [AI[G] sensitive to
small changes in [G]. Using optimal control points minimizes the
diagonal elements in [Al while leaving the off-diagonal elements es-
sentially intact. Evidently, the use of optimal control points reduces
the sensitivity of the system as fewer Gauss-Seidel iterations are
needed. Also, the calculated loads are different near the nose of the
body but not necessarily closer to experimental values. Numerical ex-
amples in Section IV illustrate this phenomena.

Another source of ill-conditioning is abrupt changes in the lat-
tice spacing. A regularly spaced uniform lattice with gradual changes
in panel size and aspect ratio is recommended for reliable and efficl-
ent solutions. There are also computer resource limitations. If an it-
erative scheme is used, the coefficient matrix can be stored on a low-
speed device (disk or tape) and the matrix retrieved in row order. How-
ever, if a direct method is used, the coefficient matrix is changed
(or destroyed) during the solution process. If the matrix cannot be _
stored in high-speed memory then successive rewrites of the matrix 3
to low-speed storage are necessary. This is time consuming for a large
system of equations and if pivoting is used, the penalties of retrieving
the matrix in column and then row order are considerable. If memory
limitations are severe then an iterative method should probably be
used.

The choice of a solution technique for the system of equations de- L
pends on whether a good initial guess is available, the conditioning
of the system, and the number of equations. We vary our choice of
technique depending on the circumstances.

G. Wake Iteration Schemes

Once the no-penetration condition on the body is satisfied, we po-
sition the wake segments so that they are force-free. Since the influ-
ence of each wake segment is felt everywhere, moving any of the segments .-

changes the force-free position of all the other wake segments and also
results in the no-penetration condition on the body being violated.
While this influence is minimal for those segments far away, the influ- L
ence of near-by segments is substantial. Thus, the order of re-adjust-

% ment of the segments is important. We found that re-positioning the seg-
ments in turn converged faster than re-positioning all of them simultan- -.
eously. Typically, all the segments in the wake must be re-positioned

three or four times for a fixed set of loop circulations before a
reasonably force-free wake is obtained. In practice, the loads on the
body are surprisingly insensitive to the wake position once the wake
has begun to roll up.

----------------------.---a -...
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The physics of the problem suggests judicious choices in the order

of wake segment re-adjustment. If the flow is symmetric, we naturally
re-adjust corresponding pairs of segments on either side of the plane of
symmetry at the same time. Our experience indicates that it is best to
adjust the furthest upstream segments first as their position seems to L_ .
converge rather quickly. We do not adjust the position of the segments 4-
in the last two or three wake lines. Their converged position is diffi-
cult to find and their effect on the loads on the upstream portion of
the body is small anyway. Evidently, the method tends to overestimate
the distance that segments should be moved since underrelaxing the pre-
dicted changes in segment positions usually results in fewer iterations. .. 4
Moreover, underrelaxation tends to stabilize the calculations, numerically.
Relaxation factors as low as a tenth are not unreasonable, especially in
the latter stages of the iteration.

As mentioned previously, our model of the wake corresponds to
tracking the path of vorticity downstream with an Euler time integra-
tion scheme. Zorea and Rom (1978) used both an Euler method and a se- iB
cond order Runge-Kutta method to solve for the wake position, but they
did not comment on the differences they may have encountered between
the two methods. A Runge-Kutta scheme would certainly take more compu-
ter time.

Finding a converged wake position with vortex-lattice methods

sometimes requires several trial iterative schemes in combination with
under-relaxing the wake motion. Moreover, for some problems one combina-

tion of iteration parameters may induce convergence while another
equally plausible combination, may not.

H. Calculation of Loads

We use the steady Bernoulli equation to calculate the pressure on -

the body:

p - p .--
C G o=I "

p7 2

6%where C is the non-dimensional pressure coefficient,

p

P is the freestream pressure,
CO
V is the undisturbed freestream velocity,

*. 
.0

P is the fluid density,

and V is the surface velocity.

- .'. -
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We calculate the pressure coefficient on the body at the control
points. We define the local normal force coefficient for a fixed axial
location on the body as:

2 7r
C = 1 c cos e de

n r p
0

where r Is the radius of the body and e is the circumferential angle r ,
measured from the windward meridian.

The total velocity on the bound-vortex sheet is the sum of the
contributions due to the freestream, all of the vortex segments in the
flow, and the jump in velocity across the vortex sheet. We calculate
this jump as:

V =1 n x w

where n is the unit normal to the sheet and w is the vorticity vector
for the panel as defined in (3.1).

IV. NUMERICAL EXAMPLES

To demonstrate the numerical method, we treat the flow over a
tangent-ogive cylinder at angle of attack with a nose length of three
diameters. The circumferential angle and axial starting location of
the separation line are given.

We measure the circumferential angle, , from the windward mer
idian. The circumferential angle of the separation line we denote as

All the cases considered here are symmetric flows so we show re-

sults for only one-half of the body. We specify a lattice with 'n' axial
panels on the nose and 'i' circumferential panels everywhere on the body "' ....
as a In x m' lattice.

We use a cosine circumferential distribution of elements and adjust
it so that the separation line will fall on a longitudinal vortex line.
By a cosine distribution of elements, we mean that the spacing in the
circumferential direction is related to the difference in the cosines
of equal increments of an angle. This provides a smooth variation in
the size of adjacent panels. We specify the cosine spacing so that it
is symmetric about the midplane of the body.

When comparing results from two different lattices or numerical
with experimental values, pressures are rarely available from all 9
sources at the same axial stations. We use a bi-cubic spline to inter-
polate the results of calculations to the experimental measurement lo-
cations or to a common axial station.

A * %- .
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For the examples presented here, typical computation times for a
Burroughs 7700 are from one to four hours for the separated flow cases ---.

starting with a flat wake. For additonal angles of attack the computer
time, required is reduced about 40%.

A. Attached Flow Results

We first examine the effect of control point placement on the re-
sults. In Figure 7 we show the calculated results for the vortex-lattice
method (VLM) for axisymmetric flow using both optimal and average
control points together with experimental data from Faulker et al. 4
(1964). The use of optimal control points has improved the accuracy -
of the results in this case. In Figure 8 we plot the normal-force co-

0
efficient vs. axial distance along the body for 15 angle of attack
calculated with the present method and the source-distribution method
(SM) of Hess and Smith (1966). The experimental results are from Tinling
and Allen (1962). In this case, the use of average control points re-
sults in a better prediction of the forces. Similar hehaviour is oh-

0 0

served at 10 and 20 angles of atack. It is not obvious why the suit-
ability of the choice of control point placement is different in the
two cases.

We next examine the effect of using area-weighted branch circula-
tions in the definition of the panel vorticity vector on the pressure
distribution obtained when the lattice has an irregularity. In Figure 9,
a plan view view of two lattices is shown. Lattice 'a' has uniform spac-
ing over the entire length of the body whereas lattice 'h' has a sudden
refinement of the axial spacing immediately after the nose-cylinder
junction. Both lattices have the same number of elements in the circum-
ferential direction. In Figure 10 the pressure coefficient distribution
obtained using both lattices with zero angle of attack are plotted along
with the experimental results. Optimal control points were used in all
calculations. As demonstrated by the figure, the use of area-weighting
has all but removed any evidence of the lattice irregularity in the cal-
culated pressures. The difference in pressures obtained by using and not
using area weighting is indistinguishable for the uniform lattice.

B. Separated Flow Results

Here, we compare our results to the calculations of Jepps (1977)
and the experimental results of Tinling and Allen (1Q62) for Reynolds
numbers of 440,000 and 3,000,000. Jepps used the concentrated vortex
core and feeding sheet model treating each separation line on the body
as a locus of crossflow plane stagnation points. We have adjusted the
separation angle such that the location of the control point just below
the separation line is approximately the same in our case as in Jepps'.
Since we used a circumferential spacing which was far coarser than
Jepps, our separation angle is somewhat higher than Jepps'. That is,
the separation line we use is located more towards the leeward side of
the body.

'tie
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.N In Figure II, the wake off one side of the body is shown angle of
0 0 0

attack (CZ) cases of 10 , 15 , and 20 . The separation angle in all

0
c1cses is 140 There are 24 wake lines with the first line having 30
finite vortex segments and subsequent lines having one fewer than the
one in front of it. This allows for many of the wake lines to end at
approximately the same axial location. Figure 12 shows a front view of
the same wakes. The first one or two wake lines do not converge to a
smooth roll-up configuration in this example. Where the wake appears
to have crossed itself, the longer more axially directed wake lines
have extended beyond the envelope of the roll-up cone of wake lines
and their direction has then been diverted outside of the organized
vortex core. The last three wake lines were not adjusted to a force-
free position and the two or three lines preceeding them also point
away from the vortex core. If more elements had been used then all
of the wake lines would have remained within the region of vortex roll
up.

We see that there is a flattening of the wake lines near the plane
0

of symmetery for the l = 20 case. This is because the wake has not yet
fully rolled up.

*.. In Figure 13, we show the surface velocity field for the attached U
and separated flow cases near a separation line. J.H.B. Smith (1978)
showed that the surface velocity immediately behind a separation line
is parallel to the separation line and that the surface velocity imme-
diately in front of a separation line is inclined to the separation
line. We can see that the velocities behind the separation line are more
nearly parallel to the separation line in the separated case than they S
are in the attached case. In both cases the velocities in front of the
separation line remain inclined to the separation line. This suggests
that the method more or less predicts the proper behavior of the surface
velocities near the separation line.

To demonstrate the behaviour of the circumferential pressure dis-
tribution as we move axially on the body from the attached flow region
on the nose to the separated flow region on the afterbody, we compare
the attached and separated circumferential plessure distributions for
consecutive axial stations in Figure 14. The first wake vortex line .-

attaches to the body between stations 12 and 13. After only a few
stations, the shape of the pressure distribution becomes similar in
shape from one station to the next. The presence of the separated vortex -
sheet increases the pressure in front of the separation line. The pres-
sure behind the separation line falls off rapidly, but since there are
only two panels Lehind the separation line we cannot expect the method .

to reproduce the flow details there.
Figures 15 through 17 display the circumferential pressure distri-

.* butions computed by the present method and by Jepps, together with the
0 0

experimental data of Tinling and Allen (1962), fora= 10 , 15 , and

--... -"
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0 0

20 at x/d = 6. The separation angle for the present method was 149.1
0

which corresponds to to Jepps' angle of 144 . In all cases, both methods
overpredicted the rise in the pressure in front of the separation line
and display a sharp drop in the pressure behind the separation line.
Neither method does well behind the separation line. Both do better for

0 0 0

a = 10 and 15 than they do for a = 20 . Jepps' method does better
than the present method on the windward plane. This is partly due to the
coarseness of the lattice used in the present calculations. We see that
the Reynolds number effect on the pressure distributions is larger at - .
higher angles of attack. 7

Figures 18 through 20 display the normal-force coefficient vs.
axial distance. Both the present method and Jepps' technique produces

0 0

forces which level off on the afterbody quickly at 1 = 10 but not at
0

a 20 .The sharp peaks in the results of the present method at the
beginning of the separated region are present because of the sudden de-
parture in the lattice configuration there due to the presence of the
free-vortex sheet. The bound-vortex lattice for these examples was test-
ed to ensure that no irregularites in the forces would be due to irregu-
larites in the bound-vortex lattice spacing. Jepps mentioned that his '
method also fails at the beginning of the separation line and he smooth-
ed the normal force coefficient values there using neighboring stations.
We have not done such smoothing here.

Using a lattice which extended the afterbody a longer distance
would probably result in the force leveling off for the higher angle of
attack cases.

The results for the two separation angles used are shown in Figure":

0

21 fora= 15 • The difference in control point location has caused some
error in the normal force coefficient on the nose.

Figure 22 shows the normal-force coefficient vs. axial distance
along the body for each iteration of the loop circulations. After only A
three iterations the normal-force coefficient has almost converged.

We could probably reduce the computer time needed somewhat by using ,". '

the two-dimensional analogy results for vortex locations as a guide towards
making a good initial guess for the wake position.

V. CONCLUSIONS

We developed a nonlinear vortex-lattice method to treat the flow
over prolate bodies with open separation. The strength and position of

% 9
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the body wake is found as part of the solution. Specifically, flows with--

smooth-surface separation have been considered as opposed to flows with
sharp-edge separation treated with vortex-lattice methods in the past.
As a numerical example, we present results for the flow over a tangent-
ogive cylinder at angle of attack.

Surprisingly, we found that using optimal control points produced
% " more accurate results than average control points for the case of axi-

symmetric flow but less accurate results when the body was at an angle
of attack. We showed that weighting the branch circulations with appro-
priate panel areas in the force calculation helps alleviate errors in
the resultant pressure distributions due to a sudden change
in the lattice spacing.

In separated flow cases, we found that the present method pro-
vided a somewhat more reliable estimate of the pressure distribution
on the windward side of a separation line than does the two-dimension-
al method of Jepps. Neither method is successful behind a separation
line. However, the present method is completely three-dimensional and --

*: accounts for the nonlinear behaviour of the body. It can be extended
to treat appended bodies executing a variety of motions.
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Figure 4. Definition of Loop and Branch circulations.
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ATTACHED FLOW N

S.SEPARATED FLOW .

Figure 13. Perspective view of surface velocity fields with and
without separation. --
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Discussion

I. Tanaka (Osaka University)

What section does your Figure 12 signify? In this figure is the
configuration of vortex filament closest to the section shown? What
is the angle of the filament separating from the separation point?
(The reason I am asking this is that the configuration is extremely
important for pressure value.)

To the discussor, the configuration of the vortex sheet very
close to the separation point is very important in calculating the
pressure distribution over the wall because it has a very strong
effect on pressure value. I would like to know the difference between
the calculation presented here and the one with the vortex sheet shed
from the same separation point tangentially. Also, I would welcome
the comparison of these results with experiments, if any, in the
pattern of vortex-rolling up motion (wake pattern with vortex motion). .

Author's Reply ,j-.:

D.F. Thrasher

The view in Figure 12 is a front view of all the wake lines sepa-
rating from the body. That is, all the wake lines are collapsed onto
the page and the diagram does not represent any one section of the
body but rather all of them simultaneously.

On your second point, the configuration of the vortex sheet close
to the body is indeed important in the resultant pressure and other
calculated quantities. In this paper, all calculations were performed
allowing the vortex sheet to leave the body normally. In fact, the
sheet should leave tangentially (at least in the infinite Reynolds
number limit). The only reason this was not done at this time was to _

circumvent numerical problems with the singular nature of vortex lines.
At present, I am incorporating a scheme to allow the vortex lines to .

leave the body at any angle of choice. "-'" .' 
"

<'_
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Investigation of Stern Flow Field by
Boundary Layer Suction Technique

Ichiro Tanaka, Osaka University
Toshio Suzuki, Osaka University

1. INTRODUCTION

As attention to the stern flow field has been intensified in these -
years, which is necessary for improvement of the propulsive efficiency
of ship and estimation of the propeller exciting force as well as for - ,
study on cavitation of propeller, various measurements of
characteristic quantities of the stern flow field have been done for a
number of model ships. The optimum value of these quantities in
relation to model ship forms can be obtained as the result of these *
measurements, but the question remains if the optimum value under the
model ship condition could apply to the actual ship condition, because
the law of correlation (scale effects) between them has not been fully ....

clarified yet. In the meantime, due to the development of computers,
accuracy of the numerical solution of the three-dimensional boundary
layer equation has been improved, and numerous data on the scale effect
has begun to be obtained. However, the behavior of the flow field
within the thick boundary layer with three-dimensional separation
vortices at the ship's stern has not been thoroughly investigated yet,
so more studies would be necessary to make e.g., an estimate of the
wake distribution at the propeller plane. Although, attempts to
investigate the scale effect experimentally are made with GEOSIM tests
using large scale model ships and even the measurement on board of
actual ship wake distributions are undertaken, the number of these
experiments is so far still limited. (van Manen and Lap,1958.
Taniguchi and Fujita, 1970. Takahashi et al., 1971. Namimatsu et al., 2
1973. SR 107, 1973. Nilsson and Restad, 1976. Gadd, 1977. Fagerjord,
1978)I -

On the other hand, boundary layer suction technique is applicable
to the purpose of making a boundary layer thickness thinner than as it
is, i.e. same as actual ship in relative scale. This may be usefull to
the study of scale effect in wake distribution. (Kowalski, 1965.

Tagori et al., 1968. Huse, 1977)
In view of the above-mentioned situation, authors made the A

investigation, as one of the means to get data for the scale effect of
the stern flow field, on the change of the stern flow velocity '..
distribution and the change of the propulsive characteristics induced
thereby, when the boundary layer suction is applied at the stern. This
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report is the summary of the results of the experiment and some
theoretically calculated results.

2. MODEL SHIP AND APPARATUS OF EXPERIMENT

The model ship employed in the experiment is of the lines shown in
figure 1. Her principal dimensions are shown in table 1. The model is

the mother form of a research project done in Japan called SR 159. -'-

There is no actual ship corresponding to this lines. The fact that
this model ship showed an unstable flow phenomena (Watanabe, 1969. Seo .
et al., 1978) during the self-propulsion test at 65% loaded condition
was one of the reasons to adopt it as the model ship for the present
research. The outline of the devices for boundary layer suction is
illustrated in figure 2. Suction holes of 3 mm diameter with eight
rows are set along the frame lines between square station (S.S.) 2 1/2
and 2 1/4 so that they would not directly affect the three-dimensional
separation along the stern bilges which seems to occur at about S.S. 1.
Items of investigation include; the measurement of velocity
distribution along the frame line immediately abaft the suction holes;
velocity distribution along a streamline at ship's side; wake
distribution at the propeller plane; and the propeller-load variation
test. Change of every items due to change of suction rate was |
investigated at two different rates. Experiments are all made at 65%
loaded condition. Measurements of the flow field were carried out

without propeller but with rudder.

3. ON BOUNDARY LAYER SUCTION AND SCALE EFFECT

In the past, the boundary layer suction technique has been

employed as one of the means of boundary layer control for the purpose
of preventing the separation of flow. But, in the present experiment,
where simulation of flow field corresponding to higher Reynolds number
is aimed at, the way of application of the boundary layer suction r *
differs naturally from that in usual cases, and it must be noted
whether the flow field itself could be simulated or not by the
technique. If a flow in a fluid with very small coefficient of
viscosity for the same ship length and velocity is considered as the
flow field corresponding to higher Reynolds number, the difference in
Reynolds number is presented in the equation of motion as the
difference of the shearing stress. Therefore, in the stern flow field
where pressure gradient takes large positive value and the proportion

of the importance of the shearing stress to the pressure gradient is
relatively small, the method of investigation to measure the flow abaft
the suction devices by changing the boundary layer thickness by way of
the boundary layer suction technique is considered to be effective
means. Taking these consideration thus into account, boundary layer -.-- -

suction in the vicinity of S.S. 2 1/2 would be effective for flow at
ship's side because the pressure appears minimum around S.S.2 1/4.
But, for bottom flow it may not work so good, because the flow turns

Ui [2i
-.. -S-
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around the bilge where the pressure takes the minimum value, after
travelling some distance from the point of suction. This situation may .- .-

brings some disturbing effects of shearing stress term on Reynolds
number similarity under suction. However, if the suction devices are
placed very close to the bilge to relieve this defect, they might
directly affect the three-dimensional separation that was generated in
the vicinity of the bilge. Therefore, for investigation of the bottom
flow, the suction devices were also placed at the same square station
in this series of experiment.

The following consideration was made to determine the flow rate of
suction. Assuming that the potential velocity at the boundary layer . .

edge does not vary with the size of ship, a comparison is made between
" Sasajima-Tanaka's and Tanaka's methods for the scale effect of the flow-

field. (Sasajima and Tanaka, 1966. Sasajima et al., 1966. Tanaka, 1979)
* According to the former method, both the displacement thickness 5* and

the momentum thickness a at a certain location are contracted ..-

altogether proportionally to the value of the frictional resistance 5
coefficient C F , as only the thickness of boundary layer is contracted
proportionally to the value of CF. On the other hand, if Tanaka's '
method is applied, and if specifically his upper bound (F) is adopted, .'

* the contraction ratio in the direction of the thickness of boundary
-*- layer becomes VCF. But, simultaneously the velocity defect (U-u) is

also contracted proportionally to VCF. Consequently, 6* is contracted .
proportionally to CF which is quite similar to the former method.
Therfore, the authors determined, as first approximation, the flow rate
of the boundary layer suction is so adjusted that the ratio of 5*

before and after suction equals to the ratio of CF. Values of Reynolds
number etc. calculated back from the flow rate of suction at the
experiments are shown in table 2. As is shown, two values of suction V.
quantity were adopted in the experiment ; one is the case where 6* is a
little bigger than the assumed actual ship (L=240 m) and the other is
the case where 6* is a little smaller than that. The former is written
as P-1 and the latter P-3.

4. RESULTS OF EXPERIMENTS AND THEIR DISCUSSION

In this chapter the results of measurements are described
comparing with the results of three-dimensional turbulent boundary
layer calculation. Calculation was made by Tanaka-Himeno's method
(Tanaka and Himeno, 1975) for the cases without suction and with
suction. In calculating the case with 3uction, potential flow is

assumed to be the same as the case without suction, but the initial
values of velocity distribution are changed following measured results.
An empirical constant used in an auxiliary equation was also modified
corresponding to both cases.

The points of measurement of the velocity distribution and the
potential streamline calculated by Hess-Smith's method are also
presented in figure 1. The velocity distribution within the boundary
layer measurement at S.S. 2 which is just abaft the location of suction
is shown in figure 3. It clearly demonstrates that due to absence of

.......... i
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low velocity fluid that is sucked away by the suction devices, the
profile of the velocity distribution becomes steeper and the

displacement thickness decreases. This tendency is plausible from the
standpoint of variation of shape factor H, even if it is qualitatively.

Figure 4 shows the value of displacement thickness 6* etc. calculated

from these velocity distribution curves. The measured values vary
reasonably with the change of the suction rate. Their change along the

girth also shows good conformity with the results of calculation.
Next, change of 3, 5* and H along a streamline are shown in figure 5.
Figure 6 shows the comparison of momentum thickness between measured
and calculated values. From this the deviation between measured and
calculated values seems to be greater in ship condition, where it is to
be anticipated that the calculated lines are in the middle of the

measured points of P-1 and P-3. The reason of this discrepancy may be
due to the effect of shearing stress term, which is not completely

simulated to the actual ship's condition by boundary layer suction

technique. The results of calculation along the streamlines at the
bottom part are shown in figure 7. However, because the effect of

three-dimensional separation is not taken into account in this
calculation, obtained values may deviate from the actual velocity
distribution. Figure 8 presents the change of wake distribution at

the propeller plane. It shows that due to the effect of suction, the

distribution region of the wake is gradually getting thinner and the
plateau-like portion of the wake is shifting downward slightly. This

trend agrees with that of the actual ship test conducted with SR 107, *

another project done in Japan under the sponsorship of Shipbuilding

Research Association of Japan. Figure 9 presents the comparison of the
wake distribution of the model ship with the boundary layer suction to

that for actual ship estimated by upper bound value of Tanaka's method
starting from the model condition without suction. Though the shapes
of the curves show good conformity, the measured values at the
plateau-like portion are not affected by suction and tend to follow the

results obtained by Sasajima-Tanaka's method rather than Tanaka's.
With regard to the scale effect of the mass of fluid that is entrained

into this plateau-like portion of the wake, much is left to further

study.
Finally as an example of application, an investigation is . -

conducted on how the unstable phenomenon that occurs at the
propeller-load changing test would be affected by the boundary layer

suction. This phenomenon seems to occur for unusually full ship models

under particular circumstances. For our particular model, this occurs

at 65% loaded condition at some range of propeller load factor. The
results of experiments are shown in figure 10. The amplitude of

fluctuation of the wake fraction decreases according to the increase of

the flow rate of suction. Ranges where the fluctuation occurs are also

different according to the suction rate. These results suggest that
the scaling law of wake fraction is very complicated for such models,
so it is extremely important to know the inflow velocity distribution

to propeller and its stableness in relation to model scale. From the
figure one might also say that chances for occurence of the unstable

phenomena with large scale models would be less and very rare with

...-..-- .-..................... . .............-
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actual ships.

•'2,

5. CONCLUSION

The results obtained in the investigation are summarized as
follows:
1) The method of investigation of the stern flow field by way of the
boundary layer suction is supposed to be effective for estimating
the wake distributoion at the propeller plane of actual ships. In . -
doing such investigation, the method to make the ratio of
displacement thicknesses between model and ship equal to the
ratio of frictional resistance coefficients seems to hold good as the
first approximation for determining the flow rate of suction.
2) Using this method, the scale effect of the unstable phenomena at
the self-propulsion test was also investigated. As its result, the

model ship with suction shows trend to have less unstable
characteristics. So it may be conclued that the actual ships are much
stable than models.

The authors wish to express their gratitude to Messrs. Funaki,
Shimamoto, Nakajima and Okajima for carring out of experiment. .

The work was supported by the Grant-in-Aid for Scientific Research of 3'
the Ministry of Education, Science and Culture.
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TbeIPrincipal Diesosof Model

L B d C8

4.000 0.6667 I0.2416 I0.802
1 = 1.48 % Lpp fore Normal Bow

Table 2 Effective Reynolds No., Ship Length and Ratio Of CF,6*,6

Ratio (Cal.) Effective
Pumps Suct. Rate 6 5*& CF Rn D

0 0 U/s (1.0) 1.0 4QOxOl.. 4..

15.8 (0.86) 0.62 l.5x10e 46

3 15.1 (0.68) 0.34 4.1x1010  >400o

-Ship - (0.68) 0.45 -1.8x 10 2 4O~

x location of velocity distribution measurement
W.L.

I N/

S.L.N0.l ---

2

4 37

3 9.

Figure 1 Body Plan and Streamlines of Potential Flow
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Figue 3Measured Velocity Distributions with and without
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3 6*
3X103  - Cal. Rnz4.5x106

Cal. Rn-2.1x1 9  AW.L.
8,8 o ~ Meas. without suct. -

L L A Meas. with suct.(P-l)

2 -

0. 0 0

n/2 /4e 0
K.L. W.L.

Figure 4 Calculated and Measured Displacement
Thickness and Momentum Thickness
at S.S.2
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-*at the Shaft C.L.
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Ialong the Stream
Line No. Side-i

2.0 - __

1.5 ---

P=0

1.0

0.5 --

xiO
1.0 A

6*/I P=O -

0.5
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Figure 5 Measured Results of Displacement
Thickness, Momentum Thickness
and Shape Factor along
the Streamline No. Side-i 16
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:4 1.07

_ _ _ 6 I8 Calculated along S.L.No.2 Rn=4.5x10 ,

L ---- Do. S. L. No. 3

O Measured without suction /

0.5 0/

7 6 5 4 3 2 1 A.P. -

I Sq.St.-

X10 2

1.0

3 Calculated along S.L.No.2 Rn=2.1x109

I -- -- D. S.L.No.3

* Measured with suction (P1I)

0.5 0 Do. (P=3) -

0

0-
7 6 5 4 3 2 1 A.P.

I Sq.St.

Figure 6 Calculated and Measured Momentum Thickness
along S.L.No.2 and S.L.No.3
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~ X10 2

8 Calculated along S.L.No.1

L Do. S.L.No.5

-- Do. S.L.No.9

0.5 Rn=4.5x106

7 6 5 4 3 2 1 A.P.
9 Sq.St.

8 Calculated along S.L.No.l

F -- - Do. S.L.No.5

- - Do. S.L.No.9

0.5 Rn=g.Ix109

0.5-

7 6 5 4 3 2 1 A.P.
I Sq.St.

Figure 7 Calculated Momentum Thickness along
Streamlines No.1, No.5, and No.9
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wx~wx2 -2

- ihu suct. (P=O)

- it . --- with suct. (P=I

S., 8

4 B.L.

Figure 8 Measured Wake Distributions

W. L.

WXZO. 20. 05

I~x

OL 5.1Meas. with suct. (P-3)

(Tanaka's Method)
r~l i.(upper bound)

B.L4.

Figure 9 Measured and Estimated Wake Distributions
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Discussion

S. Calisal (University of British Columbia)

1. The authors reported a complex and apparently extensive experi-
mental research. I would like to know if they also measured tur-
bulence intensity or (RMS) values and its change with suction?

2. Another point of interest to me is the variation of 6,6* with * .
suction. Calisal* reported that for flat plate with slit
suctions these quantities had a logarithmic dependence on suction .-

rate such as " -

0 _ A in (s)+B, 6* A in -s).
* = A 1n (s)+B

S S

where A,B are constants, s is suction rate, es, 6* are
0, 6* with suction. I would like to know if they observed
similar relationships.

*"Experimental Results with Slit Suction," Journal of Ocean Engineer-

ing, 1978. - --

Author's Reply

I. Tanaka and T. Suzuki (Osaka University)

1. We did not measure the turbulence around the model ship. But we
are now planning to measure it in wind tunnel with and without
suction.

2. We do not have much data now. we only have two data points, so
we cannot check your relationship. If we can add other suction
rate conditions, we will try to check your formulas.

................ ..... .,



Calculation Method for Separated Flows
with Applications to Oscillatory Flow
Past Cylinders and Roll Damping of

Barges

P.W. Bearman, M.J. Downie and J.M.R. Graham
Department of Aeronautics, Imperial College, London, UK N

1. INTRODUCTION

The development of the offshore oil industry in recent years has
*been accompanied by a corresponding growth in the field of heavy marine

transport. Ocean going deck cargo barges have come to play an in-
*creasingly important function in this field. These vessels, which are
* towed to their destination, are typically flat bottomed and rectangular
* in section. Their cargoes are generally secured to the decks by means
* of welded steel sea fastenings. The design of the fastenings, and in

some cases the cargo structure itself, requires a knowledge of the
* stresses and accelerations to which they will be subjected as a result
* of the motion of the barge in a seaway. The need for reliable infor-

mation concerning barge motion response is further accentuated by the
continuing trend towards larger barges carrying heavier and more valu-
able cargoes.

The responses of conventional surface vessels in a seaway have
commonly been predicted by methods which are based upon linear theory.
In these methods, the variables in the equations representing displace-
ments, velocities and accelerations are all of first order, and the exci-
tation forces are assumed to be proportional to the wave amplitude. UnderI
the assumptions that the responses are linear and harmonic, six linear .-

coupled differential equations of motion may be written in the following
form.

ZI (M +A 1 )*5l +Bkk jk +C Fj e~ j 1, 6 (1)j

*where nk represent the six degrees of freedom - surge, sway, heave, roll,
pitch and yaw respectively, Mik are the components for the generalised 0
mass matrix for the ship, Ajk and Bik are the added mass and damping

* coefficients, ~ are the hydrostatic restori~ig coefficients. The forces
*and moments are given by the real part of Fjit w being the frequency

of encounter and also of response. The ship's vertical plane responses
are linearly coupled, as are the lateral plane responses, but in the
case of symmetrical ships the two planes of motion are not coupled with
respect to each other. The equations are referred to a right handed co-
ordinate system fixed with respect to the mean position of the ship with
y vertically downward through the centre'of gravity of the ship, z in

1151
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the direction of the forward motion and the origin in the plane of the
keel. The hydrodynamic forces, that is the added mass and damping, are
calculated according to potential theory.

Experience has shown that such calculations produce realistic pre-

dictions of those degrees of freedom that are heavily damped, but that
large discrepancies may occur between calculated and experimental re-
suits for lightly damped motions. In particular, the roll response of -.-

a vessel near resonance is considerably overestimated, or, to put it
another way, the damping is considerably underestimated. The roll free-
dom is important, not only because it is the motion that is most diffi- . -
cult to predict accurately, but also because it is responsible for some
of the most severe motions experienced by a marine barge under tow.
Potential theory generally underpredicts the level of damping and this

can lead to an expensive overdesign of the fastenings, hence more re- .'-

liable prediction methods are required.

Two possible flow mechanisms that may be associated with the damping, All

yet which remain unaccounted for in the potential flow calculations are,

firstly, viscous boundary layer effects due to the relative motion of
the submerged surface of the vessel and the local fluid and, secondly,
flows associated with vortex shedding. It may be concluded from the

work carried on the frictional resistance to rolling ships (Kato, 1958)

that the former mechanism plays a very small role in the overall damping. U
Similarly, it is reasonable for the most part, to assume that the effect
of vortex shedding is also negligible in comparison with the dominant
effects of wave damping. However, there is evidence to suggest that

vortex shedding does become significant in the case of lightly damped
motion near resonance, particularly if the vessel is sharp edged (Tanaka,
1961) as is the case with many ocean going barges.

It is with the evaluation of the non-linear damping brought about
by the shedding of vortices from sharp-edged keels that this paper is
chiefly concerned.

2. THE VISCOUS DAMPING TERM --
The uncoupled rolling equation, corresponding to equation (1) with

k =4, may be written in the form

I 4 + B(r 4) + Cn4 = F4eic (2)

where the classical damping function is

B( 4 = BI + Bnl n4 n4 . (3)

In order to obtain realistic predictions of the motion response using
linear theory, it is necessary to represent the non-linear character of

the roll damping term within the linear equations. It is common practice
to achieve this by writing the linear damping term as B4 464 and the non-
linear damping term as an equivalent linear damping term B 4 4 . The
drawback of this approach as a theoretical tool is the determination of

W''.. % 1 .
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a suitable equivalent linear damping term without resort to empirical
methods.

One possible solution is to adopt a semi-empirical method based on

the results of such investigations as Tanaka (1961) or Ikeda et al.

(1977). Tanaka investigated the eddy making resistance to the rolling

of ship hulls and developed a method of calculating the force resisting
roll, Rhe, given by

- 2
h(e+w) 'pCSv (4)

where S is the wetted surface per unit length, v is the local velocity
in the vicinity of the keel and C is a force coefficient that is a func-

tion of the ship geometry, its draft and the location of its centre
of gravity. The form of the function defining the force coefficient
for a wide range of ship sections was determined by conducting many for-

ced roll model experiments and subtracting the effects of frictional re- A t

sistance as calculated by Kato's method. Tanaka concluded that the re-
sisting force calculated in this manner was principally due to the

shedding of vortices from the bilge keels, particularly if they were
sharp edged.

An equivalent linear damping term based on Tanaka's results may

be obtained from an analysis of an equivalent energy dissipation, or as
the decribing function for the non-linearity which is the first harmonic

in a Fourier series expansion. An example of a strip theory method em-
bodying a viscous term calculated from Tanaka's results, is that of

Salvesen et al. whose equivalent linear roll damping term took the form

B = Kf 4 x 4  (5)

where the maximum roll velocity, fi4max, is estimated initially and the

motions are recalculated if the difference between the estimated and -. -%

computed values is too large. The roll response calculated by this
method is shown in Figure 1 which also shows the response calculated

without viscous damping and compares both results with experiment.
More recently a method of representing the non-linear contributions

to the roll damping, based on the concept of cross-flow drag, has been
proposed by Kaplan et al. (1982). In this method an expression for the

non-linear roll moment accounting for effects due to the skegs, bottom
and sides of the barge, is derived in which the non-linear roll damping

is proportional to fl4 ]f4 . For the case of regular sinusoidal waves
the non-linear damping term is approximated in equivalent form by

8
Bnllf 4Jf 4 = 7-- BnWlnn4max 4 , (6)

where wn is the roll natural frequency.
Although the non-linearity of the roll damping term is generally

held to be attributable to the generation of vortices from the ship's - . "
keel, to the authors' knowledge, there is no method in current usage
which includes a viscous damping term that has been explicitly calcu-

lated from the forces experienced by the vessel due to vortex shedding.

% .% N - % %
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Until recently there has been no available reliable method for perform-
ing a detailed calculation of this nature. The situation has changed
with the development of the discrete vortex method, and the calculation
of an equivalent linear damping coefficient based on this technique
will be described in the succeeding sections.

3. THE DISCRETE VORTEX METHOD

The discrete vortex method is a technique that has been developed -
for the computation of flow fields in which the vorticity is confined
to small sub-regions. Its most common application is to the calculation
of two-dimensional separated flows around bluff bodies at high Reynolds
number, in which it is assumed that viscous effects play little part
other than in the initial generation of vorticity. In these calcu- "
lations the separating shear layers are represented by arrays of iso- -
lated point vortices which, in the case of sharp-edged bodies, are in-
troduced into the flow in the vicinity of the separation point so as

"" to satisfy the Kutta-Joukowski condition ensuring smooth separation.
The numerical method then follows the roll up of the discretised shear
layers into large vortices and maps the passage of these conglomer-
ations of vortices as they are convected by the flow field around the
vorticity generating body. The forces on the body are obtained by in-
tegrating the pressures on the surface, via the unsteady Bernoulli
equation, or directly through the application of the Blasius equation.

Many computations of this nature have been performed with varying
degrees of success. Comprehensive reviews of the literature may be
found in Clements (1977) and Downie (1981). Calculations involving
flows analagous to barge motions have been carried out by Fink and Soh
(1974), Ikeda and Himeno (1981) and Patel and Brown (1981). Two dis-
crete vortex calculations will be mentioned briefly in this section - *.-.

the first by Bearman et al. (1981) because it incorporates many of the
latest developments in the method and also demonstrates that forces
and flow patterns are realistically predicted by the method even in
difficult flow regimes, and the second, by Graham (1980) because it
forms part of the work to be dealt with in the following sections.

Bearman et al. computed the flow around a two-dimensional flat
plate normal to an oscillatory stKeam oyer a wide range of Keulegan-
Carpenter number, KC, where KC = UT/D, U being the flow velocity ampli-
tude, T its period and D the cross flow width of the body. The time-
dependent flow is calculated in a transformed circle plane by a method
involving a fast Fourier transform solution of the Poisson equation
over a mesh covering the flow field. This method has the advantage of
being able to handle large numbers of discrete vortices. A typical :2" .

flow pattern and a comparison of the results for the force coefficients
with those nbtained experimentally are shown in Figures 2 and 3. The 0
prediction of the forces experienced by a body subjected to a flow of "N.
this nature requires a full discrete vortex calculation. However some
flow configurations may be treated more simply by neglecting any inter-
actions between vortices shed from different edges.

%

N-..-..



At small KG the maximum displacement of the fluid particles in the
* undisturbed flow is small in comparison with the scale of the body.

Thus vortices may only move away from the edge under the influence of
* the velocity field of other vortices, and hence the shedding from a
* single edge may become independent from the shedding from other edges.
*In this instance, the local flow becomes equivalent to an infinite wedge

subjected to an oscillatory flow. Experiments on sharp-edged bluff
cylinders (Singh, 1979) have shown that at low KG the pattern of vortex
shedding from a single isolated edge consists of one vortex pair shed
per cycle. A vortex of the expected sense is shed on each half cycle.
The vortex shed over the first half of the cycle is then swept back to-
wards the growing vortex to form a pair, which moves rapidly away from
the body when the two are of about equal strength.

The discrete point vortex analysis of shedding from an isolated
edge carried out by Graham assumed that just such a stable and regular
process occurs for separated flows below some value of KG of the order
of 10. In this calculation point vortices were shed sequentially from
an infinite edge and then traced as they moved with the fluid particles
of an oscillatory flow. Groups of vortices which could be identified
as representing completely rolled up sheets far from the body were pro-
gressively wound into a central core vortex. The main results for the 3

* case of a 900 edge, are as follows: by taking the appropriate Fourier
* integral of the in-line force over a cycle of the flow, the drag co-

efficient defined as

GD Tr (tIT) CT )
'0 zp2  os (12 dt, (7)

was found to be independent of KG and to have a value of 1.566. The

vortex force, F was shown to be directed at right angles to the bi-

sector of the wedge angle and to be proportional to PeUUL, where L
is a length scale that may be determined from the transformation, and

the free stream velocity is given by

U U i3Cos(2 tJ
The forces experienced by a barge rolling with small amplitude

motion due to vortex shedding, chen,may be calculated by matching the

local flow in the vicinity of the barge keel with the oscillatory flow
around the isolated edge at low KG, providing there is no interaction
between vortices shed from opposite edges of the barges keel.

4. MATCHING THE EDGE FLOWS V

The method of matching the two flows will only be described in out-

line. A detailed account of the procedure is given in Downie et al.

(1982). A rectangular barge floating in still water may be represented
in a complex plane, the z-plane, by mapping a semi-rectangle into a

half-plane by means of a Schwartz-christoffel transformation. The

I "~
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appropriate complex conformal transformation is given by

' -- 2 2 " " "

z = -_d2dC (8)

C

where the notation is consistent with Figure 4(a). If the body in the
real plane is supposed to be rotating about the point 0 with an angular
velocity 4 , the instantaneous boundary conditions may be represented -

in the transformed plane, the 1-plane, by a source distribution along
the C-axis, whose strength per unit length may be shown to be

R{z} y = "":":' ~~ ~~dz Y = 0-:-: .

m( ) =2 -I{z} 4 x 0 (9)

as shown in Figure 4(b), and where R{zl and I{z} are the real and
imaginary parts of z. Thus the velocity at the point d in the trans-
formed plane, corresponding to the shedding edge in the z-plane, and
induced by the source distribution, is given by

q m() d . (10)
d 2Tr - -

b
The motion may be generalised to a rotation about any point P by the

addition of a translational component in the z-plane, which gives rise
to an extra component of the velocity in the C-plane given by

-' ' U = q + h(l-X) 4  ()

where U is the velocity in the transformed plane and h(l-X) is the

distance OP as shown in Figure 4(a). Hence if the roll motion is des-
cribed by i 4=fA4 coswt, the relationship between the rolling motion
and the oscillatory motion in the transformed plane is given by

U = aU lwj 4  (12)
,.. 44 *

where aU is determined by the instantaneous boundary conditions.
In the immediate vicinity of the shedding edge, as z -zD and

C, dl the transformation given by equation (8) reduces to

I-" -~= i4/2 2  
d 3/2 (13)

-i7T/2 (alVJ 3/2 S

-' e a' , (1,)

where the primes denote a shift of origin to the shedding edge and aL

is defined solely by the barge geometry. The conformal transformation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.................

. .. . . u %
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.r. that maps an infinite edge into a half-plane is given by

z = e- (15)

Hence the transformations, and therefore the velocities in the vicinity

of the shedding edge, become identical providing

L 1 1 (16)
L

and the velocities in the respective transformed planes are the same.

Having determined the conditions necessary for the matching of .

- the two flows, it is possible to express a damping coefficient for the
rolling motion of the barge in terms of the drag coefficient obtained -

for oscillatory flow about an isolated edge.

5. CALCULATION OF THE DAMPING COEFFICIENT p g
The damping moment induced by vortex shedding, By, may be written

in terms of the vortex force on a single edge, Fv, as follows

By(t/T) = aR 1Fv (t/T) (16)

where aR is determined by the location of the roll centre, the barge

geometry and the direction of the vortex force, which is at right angles
. to the bisector of the edge angle.

If the damping moment is expressed as a Fourier series

B (t/T) = P I Tw2 B vn cos(nwt) (17)
-- v 4vn

*' and the barge motion is represented by the equation

I 4 + (BI + B*) 4 + Cr4 =Fe~t (18)

then the linear damping coefficient, Bv*, is given by

14 W v P 1'4 (= 4 v vl 4max (19)

* where the vortex damping factor, Bvl, is given by

T B (t/T)
By -- cos(wt)dt . (20)B~vl T 10 P l 4fi"'

The vortex damping factor may now be written in terms of the drag

coefficient for oscillatory flow about the isolated edge, given in

, equation (7), by matching the flow with the barge motion according to
q equations (12) and (16), and may be written as

4 2
Sa a aC (21)
vl i U L R D"(21)

,
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The vortex damping factor has been computed for a number of differ-
ent flow cases and the results are presented in the following section.

6. DISCUSSION OF RESULTS - 4

The value of the vortex damping factor, Bvl, depends upon the as-

pect ratio of the barge, A = 1/h, and the position of the roll centre, .. :

located a distance Xh measured downwards from the mean free surface. . -

Full scale tests on a barge in a seaway (Stewart and Ewers, 1979)

suggest that the roll centre may undergo large excursions, and so the .4.
value of Bvl has been computed for barges of various aspect ratio
(2< A <10) over a range of roll centres (-10<X <10). The results are
presented in Figure 5.

A physical interpretation of the results was gained by performing
flow visualisation experiments involving forced roll model tests. The -:L*- .
mathematical model predicts high damping factors due to the presence of S S

large scale vortices of the opposite sense to the barge roll motion
when the roll centre is well above the mean free surface, i.e. A is large
and negative. As A goes positive, the scale of the vortices decreases
until a situation is reached in which the roll centre coincides with the
intersection of the vortex force vectors, and no vortex shedding occurs.

This point should be attained with zero local flow relative to the 3
shedding edge. Because the method assumes independence of each edge
from the rest of the barge, this does not occur exactly and over a very

small range of A the model predicts a very small negative damping. Fur-
ther increases of A are accompanied by growing vortices, of the same '

sense as the body motion, giving rise to an increase in the damping

factor. A comparison between the predicted scale of the vortices and I.
the actual scale measured from photographs taken in the flow visuali-
sation experiments is shown in Figure 6. Also shown is the flow pat-

tern, taken straight from the computer print-out, predicted by the
isolated edge calculation and which may be compared with the flow visual-
isation photograph of plate I.

Further validation of the method was sought by comparing the re- 5 3
sults with a damping factor derived from Tanakas results, and which
may be written as

r R,...^ 2 IrRh(e+w)
BT = - i cos(owt)dt (22) ,.-.."'

_ r c , (23) 27::::::T [I o "'- "-"'-'-

3T

where r is the distance from the roll centre to the keel edge and the
remaining notation is consistent with equation (4). The results are
shown in Figure 7 and may be seen to show reasonable agreement when the _
roll centre lies between the keel and the mean free surface.

The results were also compared with data obtained from a series

of model tests conducted by Atkins R & D in conjunction with the

f%
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National Maritime Institute for a consortium of companies organised by
Noble Denton and Associates Ltd. Since the results are proprietary,
they are expressed in arbitrary units in Figure 8, which shows the vor-
tex damping compared with the overall damping (both given as a percen-
tage of the critical damping) for barges rolling at their natural fre-
quency over a range of amplitudes of oscillation.

The results are all in conformity with experimental trends and are
of the expected order of magnitude. It is true that vortex damping is
overpredicted, but this is not altogether unexpected. The technique
of matching the isolated edge to the local flow around the shedding edge
of a bluff body has been performed for a flat sharp-edged plate of
finite thickness, a diamond cylinder and a square cylinder, all in low
KC oscillatory flow. Although the force coefficients were in very good
agreement with experimental values for the flat plate, the drag coeffi-
cient for the square cylinder (the worst case) was overpredicted by
about 20% (Obasaja, 1982). If the damping factors are corrected by 20%,
the calculated results for the vortex damping agree with the experimental * .
results for the overall damping. This result lends credence to the
assumptions made by those methods that base their viscous damping terms
on Tanaka's results, namely that the roll damping of sharp-edged vessels

at resonance is principally due to vortex shedding.
The overprediction of the damping might be attributed to a number

of causes. The model assumes that there is no interaction between the r *
vortices shed from opposite sides of the barge, or between the vortex
shedding and surface wave effects. Nor does it make any allowance for
end effects. Finally, Bearman et al. (1981) found that more realistic
forces were predicted for a flat plate in oscillatory flow if due allow-
ance was made for three-dimensional effects by the inclusion of a vor-

tex decay parameter. No such technique was employed in the foregoing P.
analysis.

7. EQUIVALENT LINEAR VORTEX DAMPING COEFFICIENTS

The calculation of barge motion response from the coupled equa-
tions (1) requires the evaluation of the components bik of the matrix
of damping coefficients.

The contribution made by the viscous damping can be represented --

by equivalent linear vortex damping coefficients, each of which de- -'-
pends on the location of the roll centre. ,

The preparation of curves delineating the variation of such co- P .

efficients with the roll centre for the coupled equations of roll and
sway is currently in progress.

8. FUTURE DEVELOPMENTS

The method described in this paper is fairly flexible with regard
to the treatment of different barge geometries. Trial calculations V

have shown that the met:hods may readily be extended to barges with fin ...-

keels, for example. .
Lo 

°
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The logical development of the method is a full scale calculation

in which diffraction and viscous effects are considered simultaneously.
The viability of such a method is currently under investigation.

9. CONCLUSIONS

A discrete vortex method has been developed for the prediction of
the contribution made by vortex shedding towards the roll damping of
barges. Equivalent linear vortex damping coefficients have been cal-
culated for a number of barge geometries over a range of roll centres. 9
The results, when compared with other methods of calculating vortex
damping, and with experimental results, have been very encouraging.
On the basis of this study, then, it may be concluded that the discrete

*. vortex method shows great promise as a technique for the prediction of . -

the viscous roll damping of barges.
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Discussion "

A. Papanikolaou (Techn. University of Berlin)

In your potential flow calculations of the rolling barge you did
not include the free-surface effects. Could you comment what the
free-surface effects on the vortex flow are, especially for relatively
flat barges (large B/T) rolling in waves? Could you include, in your
scheme, Green's function method for the potential flow calculation?
In your Figure 8, I miss some numbers. ' ...

G. McKee (Davidson Lab/SIT)

The one-degree-of-freedom equation for rolling is generally taken
as being Equation (2) with the form of the damping taken as Equation
(3). The authors are to be commended for determining the damping
coefficient and checking it against experimental data. It would be a
desirable extension of this research not only to continue refining the
calculation of the equivalent linear damping coefficient but also to
use the method to check the form of (3). Was the form of the damping
against U4 suggestive of (3)? -

Author's Reply

Martin J. Downie &

To Dr. Papanikolaou

The questions raised by Dr. Papanikolaou may be most conveniently
answered by considering them in the reverse order to that in which
they were asked. The experimental results shown in Figure 8 illustrate
the relationship between the overall damping at resonance (i.e., damp-
ing due to wave radiation as well as other effects, such as vortex -.-.
shedding) and the roll amplitude. These results were obtained from a
series of model tests conducted on behalf of a consortium of private
companies and are therefore proprietary. Nevertheless, although the
figure does not provide actual numbers, it does provide a useful and *
meaningful comparison between the experimental overall damping and the "
computed vortex damping at resonance.

A method is currently being developed for matching the isolated
edge solution to the rolling-barge problem using a Green's function

representation of a point-wave source. Until this calculation has
been carried out, the effect of the free surface on the vortex flow
remains largely a matter of speculation. However, it is worth noting *.:., ..

4 '. %* -. .
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that the computation predicts flow patterns that are similar to flow

visualization photographs of a model barge of aspect ratio 2 and in
which the vortices are of the correct scale (see Figure 6 and Plate
1). Furthermore, in these circumstances, a good discrete vortex model
may generally be relied on to predict realistic forces.

Finally, the tests whose results are shown in Figure 8 were car-
ried out on a scale model of a heavy transport barge typical of those
used in and around the North Sea for offshore work. Since the comput-
ed and experimental results are in reasonable agreement, it might be
concluded that the vortex flow is not influenced overmuch by surface-
wave effects, at any rate for an aspect ratio of 2, and probably not
for aspect ratios large enough to be appropriate to actual working
barges.

To Dr. McKee

In reply to Dr. McKee's question relating to the form the damping
force takes, it must be pointed out that the use of the matching tech-
nique presented in the paper obviates the explicit calculation of the
vortex damping force. The vortex damping coefficients for the rolling
barge were derived directly from the drag coefficient for an isolated
edge in oscillatory flow, which had been computed by Graham (1980) in
an earlier discrete vortex calculation. However, the results of this
earlier analysis indicated that the vortex damping force is indeed
proportional to 1 41 4, as implied by Equation (3), provided that
the internal angles of the shedding edges of the keel are right angles.
The result does not hold for significant departures from this proviso.
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Vortex Shedding Around Two-
Dimensional Bodies at High Reynolds

Number
Odd M. Faltinsen and Bjornar Pettersen L

Norwegian Institute of Technology, Trondheim-NTH

ABSTRACT

A method to predict the flow and associated vortex
shedding around bluff bodies at high Reynolds number is
presented. The velocity potential outside the free shear
layers and boundary layers is expressed as a distribution

* of sources and dipoles. The Kutta condition, the starting
condition and the numerical representation of the free shear [
layers is discussed. An alternative way to calculate the
force on bluff bodies is presented. Numerical results for
unsteady airfoil problems, oscillatory and steady cross-
flow past a flat plate as well as steady cross-flow past a
square cross-section is presented. Satisfactory agreement
with other numerical results and flow visualization

*studies is documented.

". I.OMENCLATURE

total velocity potential _ _
.1 incident undisturbed velocity potential

velocity potential due to the body

(x,y) Cartesian coordinate system

t time

- U free stream velocity

. U maximum free stream velocity

SB body surface, see Figure 1

, v  free shear layer surfaces, see Figure 1 L
(Both sides.) If only one side either + or - is used
as index.

.R  Riemann surfaces, see Figure 1. (Both sides.) ..j
If only one side either + or - is used as index.
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.+ - angle between the free stream velocity and the x-axis

. -4 velocity potential jump across the free shear layer

c chord length of airfoil

* circular frequency of oscillation

* circulation

CL L/(' U2 c)

L lift force on airfoil

H half the height of a flat plate in unbounded fluid
or the height of flat plate mounted to a wall
(see Figure 16)

* 2
i  CN  F/ (U m a x 2H)

F force on a plate of height 2H with symmetric vortex
shedding

As N length of elements describing the free shear layer
KC Keulegan-Carpenter number

mass density of the fluid

1. INTRODUCTION

Flow around bluff bodies and associated vortex shedding
is of importance in several marine hydrodynamic problems.
Examples are wave and current induced loads on piles,
jackets, risers and pipe lines, roll damping of ships and
barges, slow drift oscillation damping of moored structures,
anchor line damping, large amplitude maneuvering forces on
ships and still water resistance of blunt ship forms.

The state of the art in calculating the loads on bluff L-
bodies is not satisfactory. Traditionally the Morison's

. equation has been used in the offshore industry to calcu-
- late wave and current loads on cylindrical shapes applied

in structural work. The formula is semi-empirical and its
coefficients depend on many parameters like Reynolds num-
ber, Keulegan-Carpenter number and roughness ratio.
Furthermore Morison's equation cannot at all predict the
oscillatory forces due to vortex shedding, and it is
questionable to generalize it to the case of non-fixed
structures.

There have been attempts on more rationally based
methods. (Bearman and Graham (1980)) The two-dimensional
discrete vortex method is an example. A review has been
given by Clements and Maull (1975). The discrete vortex
method makes the assumption that the vorticity in the fluid

%



1173 ,

domain is fairly concentrated in thin boundary layers and
thin free shear layers. But the numerical results of the
free shear layer positions by the discrete vortex model are
not impressi-e. Fink and Soh (1974) pointed out that this
was due to the numerical representation of the free shear
layers by discrete vortices. One should instead realize
that there is a continuous distribution of vorticity in the
free shear layers and that the discrete vortices used in
the "discrete vortex methods" are a bad representation of
the free shear layers. Fink and Soh (1974) applied their
procedure for crossflow past flat plates and rectangular
sections. Later Sarpkaya and Shoaff (1979) applied Fink
and Soh's procedure for circular cross-sections. By using
an empirically determined circulation reduction mechanism
they come up with calculated results close to experimentally
derived results for the case of steady incident flow on a
two-dimensional circular cylinder.

In developing a theoretical model for flow around bluff
bodies one should have in mind that the model should ulti-
mately be able to handle

a. General body configurations 4ncluding several bodies in
interaction as well as th . e-fect of marine growth.

b. Arbitrary motion of body and incident flow.

c. Turbulent or laminar boundary layers.

Due to the complexity of the problem it seems wise to start 8
out with a two-dimensional method, but one should have
three-dimensional generalizations in mind. The latter may
be important in studying correlation of wave loads along a
pile.

We have decided to solve for the velocity potential in-
stead of the velocity. The velocity potential is expected
to be less singular than the velocity at possible singular
points. Further we are using a distribution of sources and
dipoles to represent the potential flow. This procedure
can in principle be applied to any body configuration and
it is possible to generalize it to three-dimensional pro-
blems. The latter is not true for the conformal mapping
technique that is commonly used in vortex models. Further
the conformal mapping technique is not easy to use for a
general two-dimensional body-configuration. Our procedure
leads to a Fredholm's integral equation of the second kind
and not the first kind. A Fredholm's integral equation of
the first kind may lead to numerical instability problems.
This is not true for the Fredholm's integral equation of the
second kind.

~~ . . . . * * .* . - 4 * . . ... . * . . . . .

. . . . . . . . . . . . . . . . . . . . .
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There are several difficult problems to solve in vortex
shedding models. Some of the specific problems we will
focus on are:

a. What kind of Kutta condition is used?
b. How is the vortex shedding process started?
c. How do we represent a spiral with an infinite number of

turns?
d. How is the vorticity numerically convected?

Other important problems that we will not discuss are . .4

a. How is the separation point determined when the flow
separates from a continuously curved surface.

b. How is vorticity reduced in the free shear layer.

Both problems have been discussed by Sarpkaya and Shoaff (1979).
Problems with how asymmetry is developed in the wake and
how vorticity is annihilated due to interaction between
different free shear layers have also been discussed by
Sarpkaya and Shoaff (1979). The important problem of sta-
bility of free shear layers has been analyzed by Moore
(1970).

We will in the following text first describe our theo-
retical approach and then how we numerically solve our
problem. In the final chapter we will present numerical --'.--
results including comparisons with analytical, experimental ,-
and other numerical results.

2. THEORY

The theory is based on a timestep integration method.
It is assumed that the vorticity is concentrated in thin
boundary layers and free shear layers. At each timestep
we have to solve a potential flow problem outside the boun-
dary layers and free shear layers. We will write the total
velocity potential as

I

where I is the incident undisturbed velocity potential.
Two-dimensional flow is assumed and we will write

U(t)cosx.x + U(t)sina.y (2)

Here (x,y) is a Cartesian coordinate system, t is the time
variable, U(t) is the free stream velocity and a is the
angle between the free stream velocity and the x-axis.

.............

. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . .. . -
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A possible flow situation around a circular cylinder is
presented in Figure 1, where the curves AC, EF and BD re- .

-'• " present free shear layers. Our procedure will not be
limited to a circular cylinder. In principle we want to be
able to handle any number and types of bodies in inter- - .
action. In practice, however, large computer times may
limit us. Further for a single body there may be one, two
or more separation points.

-VV

SR

B v*.'. ". ,

BS

Figure 1 Flow situation around circular cylinder.

There are different ways to represent the potential
flow. One way is to start out with Green's second identity
and show that the velocity potential at a point (xI1 y l) can .

be written as -..

q(x 1 ,yl) - 2T {.logr- 4 nlogr}dS (3)

where the normal direction n is shown in Figure 1 and

r = /(x-xl 2 + (Y-yl)2 (4)

Further S is the wetted body surface, S. both sides of the
free sheaP layers and SR both sides of the Riemann cuts. 0
Expression (3) is based on that the total circulation
around S +S +S is equal to zero. Let us explain what we ..
mean by R RYem'nn cut by using Figure 1. Since the free
shear layer EF has a non-zero circulation we have to -.-.

U.2

. .. ~ . . . . . . *. . .... .. . .. .. . ... ...-.-. ,..-.-..--..... ......... ....... ,, .... ... "? ''-,
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introduce a Riemann cut from C to E. Across the Riemann
cut the velocity potential is discontinuous. The velocity *•*. -'*.
potential jump will not vary along the cut. The Riemann
cut is mathematical and not physical. This means that all
physical quantities are continuous across the Riemann cut.

Equation (3) will be rewritten. We will use the body
boundary condition

-- V on SB  (5)

where Vn = if the body is not moving. Otherwise it

also includes the normal velocity component of the body
motion. Further ,/5n is continuous across S and S We
can now write V

xy logr dS + Vn logr dS

SB SB vI---

1 j c+ + logr dS (6)

s +S

Here + and - refer to the two sides of a free shear layer
or a Riemann cut. Equation (6) states that the velocity
potential can be written as a distribution of sources and
dipoles over the body surface and a distribution of dipoles
over the free shear layers and the Riemann cuts. This is
not a common way of writing the velocity potential when
vorticity is involved.

It is more common to use vortices than dipoles. But by AD
integrating by parts the dipole expressions in equation (6)
it is possible to replace the dipole distribution by a vor-
tex distribution. We can then write the resulting fluid
velocity due to ¢ as

1x

- 2 Vn fix dS +....

~r
YI-Y cont. next page

-Y. B, ..,. .
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2r J s 2 "
sB •r

- B - (x l  x )  .-J

+ ) dS (7)2.: Tr 6 s 2'".
S+ r

The first term on the right hand side represents a
source distribution while the two last terms represent vor- J.

tex distribution over the body surface and the free shear
layers. There are no contributions from the Riemann cut -0
since ,)/ s is continuous across the Riemann cut. There are
also other ways to represent thd potential flow. The most
common way in vortex shedding problems is to use a conformal
mapping technique. Conformal mapping is not easy to apply
for a general body configuration. Further it is only appli- r...
cable in two-dimensional problems while equation (6) can be -li
generalized to three-dimensional problems by replacing the
two-dimensional source expression "logr" by the three-dimen-
sional source expression. We have preferred to use equation
(6) as our potential flow model. We will later argue more
for our choice.

We should note that equation (6) is only a formal re-
presentation for each time step. Questions we have to dis-
cuss are how do we find the position of the free shear
layers, the velocity potential jump across the free shear
layers as well as the velocity potential on the body.

The position of the free shear layers away from the
separation point is known by moving it with the convection
velocity

Vc = [Ucosa + , + I) 'c 2 x

+ [Us in + 2. 3y + -- ] (8)+~~ [Usin + "Y Yl ) '-""

.... %-.

where i and J are unit vectors in the x- and y-direction,
respectively. Expression (8) can be determined at each
timestep by differentiating equation (6).

How the velocity potential jump ¢+-- across the free I !
shear layer is convected, can be shown by using that the
pressure is continuous across the free shear layer. It then
follows by Bernoulli's equation that

- .. ..".--,.
-p",- ..'v '

d''':'V [
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+ _-

+ U.Co-J u + 2 Nx x

+ [Usin+ + + - 0 (9)

This means that 4+-4- is convected with the velocity V
Equation (9) is also valid at the separation points.

It then tells us the rate of shedding of vorticity +--"
into the fluid. Further by integrating the equation with
respect to time we will know the velocity potential jump at
the separation point at each time instant. The same is
true for the velocity potential jump across the free shear
layers. .-

Equation (9) shows that the separation point cannot be
a stagnation point for all time instants. Otherwise there
will be no vortex shedding. In order to avoid a stagnation
point on both sides of the free shear layers, it is neces-
sary that the flow leaves the separation point parallel to
the body surface on one of the sides of the free shear
layer at the separation point (Maskell (1972)). What side
the flow leaves tangentially depend on the sign of the shed .
vorticity. In the case of separation from a sharp corner
with a non-zero apex angle there will be a stagnation point
on the other side of the free shear layer at the separation
point.

In the case of separation from a continuously curved
surface one may combine potential theory and boundary
layer theory in a quasi-steady manner to determine the
separation point. This has been done by Deffenbaugh and
Marshall (1976) and Sarpkava and Shoaff (1979) in the case
of laminar high Reynolds number flow past a circular cylinder.
Pohlhausen method was used for the boundary layer calcu-
lations. Their approach is likely to be generalized to
turbulent boundary layer including rough surfaces by emp-
loying a different integral method for the boundary layer
calculations. But we will in this context only consider
separation from sharp corners.

In the case of steady lifting flow around an airfoil
one is using the wellknown Kutta condition to uniquely
determine the circulation. The equivalence to a Kutta con-
dition in this problem is that we require +- - to be con-.

-: tinous at the separation point. Since the velocity poten-
tial jump is known at each time instant along the free

3 shear layer, this is a constraint on the velocity potential
along the body surface. In order to determine at the

-,.. body surface we are in addition using equation (6). By
letting (xlYl) in equation (6) approach points on the

1".-.

"*. *.*** -*J*..**. Sr"~*
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body surface we obtain a Fredholm's integral equation of
the second kind for the velocity potential. If we had in-
stead used equation (7) with a source and vortex distri-
bution and satisfied directly the body boundary condition,
it will result in a Fredholm's integral equation of the
first kind. The Fredholm's integral equation of the first
kind is likely to cause numerical problems while this is
not true for the Fredholm's integral equation of the
second kind (Delves and Walsh (1974)). This means it is an
advantage to use equation (6) instead of equation (7).
Another advantage in using equation (6) instead of (7) is i .- 4
that we then solve for the velocity potential instead of
the velocity. The -elocity potential is less singular than
the velocity at possible singular points. Further we need
the velocity potential anyway when we want to calculate the
pressure.

It should be stressed that our equation system is i
linear in the unknown velocity potential along the body,
even if the flow is strongly nonlinear. Basu and Hancock

* (1978) solved a similar potential flow problem as ours for
vortex shedding around airfoils. But their formulation of
the boundary value problem ended up in a nonlinear equation
system which is more incorvenient to solve than a linear
equation system.

When the velocity potential is found as a function of
time and space it is straightforward to use Bernoulli's
equation to find the pressure and integrate the pressure
properly to obtain the force. But there is also an alter-
native way to calculate the force, which is useful from a
numerical comparison point of view. This will be derived
below. We have based our derivation on Newman's derivation
(1977) for the force on a body in non-separated potential
flow.

We can write the hydrodynamic force on SB as

F - pn dS (10)

SB • " !

where

where D is the total velocity potential. Since the pres-
sure jump is zero across S and R
force on SV+SR, i.e.

F = Spn dS

SB+SV+SR

o° .*..o %
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We may now apply Gauss theorem on the fluid volume ex-
terior to S +S +S and interior to a control surface S, at
infinity. Evex if the control volumes is different from
Newman's case, the derivation of the force expressed is from
now on similar as his. We will therefore only state the
result d

C ~ndd= --- 4n dS ' ' -

S B +SV+SR .

+ 1. 2-
- n)dS (12)

Since - Ucosx x + Usinx y at S it can be shown that
equation (12) reduces to

d
- in dS (13)

S B.S +SR

3. NUMERICAL ANALYSIS

Let us assume there are two separation points. The
procedure will be similar for any number of separation
points. Let us for simplicity assume no detached free
shear layer. We will approximate the body surface and the
free shear layer by straight line segments. On each ele-
ment on the body we write

= A. , i = 1,N (14)

where A., i = 1,N are unknown constants and V =V are
n n are

known qKantities. On each element on the free shear layer
we write the velocity potential jump as a linear function,
i.e. _

F -Fi+1

~ +1(s-s i+~ + F1 . (15)si-si+ ".". -i

where s is a curvilinear coordinate system along the free
shear layer. Further si and s are s-coordinates of the
ends of segment number i, and I+lis the velocity potential
jump at s=s.. For each time instant F. are known quanti-
ties.

q. . %.%

............................. , ,.

- - - - -* " . . ....- .. . m 4- .. ..& ' . . ... ,
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By letting (xI ,y ) approach the midpoints of each seg-
ment on the body we an write the discretized resulting
integral equation (6) as -

N
A. + A. .. =B j + DI (16)A3 i=Ii 3i - -. .

Here

ji =  2logr ds (17) L .

The integration in (17) is over segment number i on the ..

body with field point at the midpoint of body element num-
ber j. Further

B V logr ds (18)2f i= I n )--o' '-= 2ri "-- Vn

and M

Dk i+I (s-si logr ds
k-1 i= i si-i+1 n+-

+ F i+I + logr ds} (19)
A Jn

where M and M2 are number of wake elements in each of the
two freZ shear layers. The integrals in (17)-(19) has been
exactly evaluated including asymptotic formulas valid for
field points far from the elements.

Since we have two additional conditions which specify
the potential jump at the separation points we cannot satis-
fy equation (16) at more than N-2 midpoints. We choose to
satisfy (16) at j=1, Ni-I and j=NI+I, N-I. The two sepa- L 'e
ration points are at the ends of segment NI and N (see
Figure 2). We note that in the discretization of the inte-
gral equation we have set equal to a constant over each
element. Another possibility would be to set C equal to a
linear function over each segment. Nothing is gained by
using a linear variation of over the segments which can-
not satisfy the integral equation at midpoint but must be
developed at both ends. The effort is unnecessary since
the result is equivalent to the present method.

%-.
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Mi-N

Figure 2 Numerical geometrical model of body and wake.

The two conditions that specifies the potential jump at
the separation points can be written as

A + A2~ + A~ N-iSN

+A 11 + S N 1 (20)
N N - IS N

s S
~ Ni 1 + Ni

A A A 5Nii + N~

N1N1+ N1+Sii ~ + N +15 i~

N1= N1+1) N122N1

The indices on the right hand side of equation (20) and
(2i) indicates the two separation points. The other unex-
plained quantities in (20) and (2i) are explained in
Figure 3. In setting up equation (20) and (2i) we have

6.1

-A
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linearly extrapolated cpon the body to the separation
points. We should note that our equation system (16), (20)
and (21) are linear in the unknowns, A.,j = 1,N even if the
flow problem is basically nonlinear. hen the unknowns A.
have been found by a standard method we can prepare for
stepping forward in time. -,

-ft
-6N1

'ftN

*Figure 3 Coordinates used in specifying Kutta condition.

The convection velocity of the free shear layer at the
midpoint of free shear layer element j, is given by (8) and
can be written in discretized form as

Nt N

V [Ucosct E.. x1 IdsI '2
c 2r. Dn~ 2~ 2 -T - s

A. i 1 Ar

M F.-F. x-
7 s 1 1+1

A. n ri+1 1n r

x-X sin* (F + F
+ F -( Ids + - T Is .. I

1 cont. next page
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[sn I N y-Y 1_N Y- IY

+ [Usin 2 A. -- I-]ds + V 1 s2.7 i n 2 Ti .n 27d.-.,- -
1fl 21 F -." -f'l) .-

' ~2- s.-s. (-i+1) +- -- d 2''-"-'1 =1 i+ i, on r
_ 1 H F-F

+ F .+i, + cos2 (Fd + F +1) (22)+[ ]a }A s. ..._"(2 )-
i+I + r 2 7 1 As

The integrals in (22) have been exactly evaluated in-
cluding asymptotic formulas valid for field points far from
the elements. Further M is the total number of free shear
layer elements, z is the angle between element number j
and the x~axis and .'s is the length of element number j.

When V has been ound at the midpoints of each element,
cwe perform a linear interpolation to find the convection

velocity at the end points of each segment. The convection
velocity of the end point coinciding with the separation
points is extrapolated from velocities on the body and in
accordance to Maskell's (1972) local flow behaviour around the
separation points. At the free end of the free shear
layers there exists different possibilities. One way is to
directly evaluate the convection velocity by using that
both the ielocity potential jump and velocity jump is zero.
Another possibility is that we have a spiral with infinite .

number of turns. In that case we will represent the inner,:- -
core by a discrete vortex. The calculation of the convec-
tion velocity of the discrete vortex will be further dis-
cussed in connection with the starting process.

The end points of each element are then stepped forward
in time, and according to equation (9) the velocity poten-
tial jump at the convected point will not change by this
process. We have tried two different numerical time inte-
gration procedures. One is the simple Euler method. The
other is Runge-Kutta of fourth order. It turns out that
the Euler method is stable and provides sufficient accuracy.

The convection velocity may be quite different from
element to element. This is for instance true within the

" spiral. If the convection procedure described above is
allowed to go on for a long time, it may lead to quite
different lengths of the free shear layer elements. To
avoid this problem we are rediscretizing the elements at
every step so that all except the ones closest to the sepa-
ration points are of equal length. The potential jump at
the new segment ends are found by a linear interpolation. -....

.:., ~ .......... . . ... . ... ... . .. . .,: . ,.. .. . , .. ... .. ,.,..-. .,,,,
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To find the potential jump at the separation points at
a new time step we are using equation (9) at the separation
point at the preceeding time step.

One of the difficult problems is to start the whole pro-
cess. In the case of an airfoil at small angle of attack
it did not turn out to be any problem. We just started it
up in accordance to the time stepping procedure described
above. The solution will certainly be wrong at the start.
The reason is that there is zero circulation around the
foil which implies infinite velocities at the trailing edge. r .Y

-7 But the solution rapidly converges to a correct flow situa-
tion. In the case of a cross-flow past a plate for in-
stance, we cannot follow this procedure. The potential
flow situation with no circulation around the body would . -.

imply no rate of change of vorticity according to equation
(9). But a solution to this problem can be derived if we , 'o
look on the physical reality. From pictures in Batchelor

* (1970) for instance we see there is a small spiral at the "''
separation point in a very small fraction of time. On the
leeside we may therefore say that the velocity at the
separation point is negligible compared to the velocity
at the windward side of the separation point. Using this
we can proceed with the timestepping procedure described
above. But we should allow for small timesteps in the
beginning accounting for the rapid change of the flow.
Another possibility is to use Rott's (1956) similarity solu- .- "
tion for corner flow as a starting solution. His solution N)
is in the form of a discrete vortex with given position
and circulation. The discrete vortex can in our solution -
procedure be represented in the following way. We can use
a dipole distribution with constant strength over an ele- -. -

ment where one segmentend coincide with the vortex position
E, and the other end C is attached to the rest of the free
shear layer (see Figure 4). The constant potential jump |
over this element will be equal to the circulation of the
discrete vortex. The velocity contribution (9I/xl, I/ y I )
from the segment can be written as

2 [ T (b- -  2 3 ).- .- .- -'
r r 2

= -[I;] rE {21:_XE} [_ (x I -Xc ..--)]°,

I E

The first term can be interpreted as the velocity con-
tribution from the discrete vortex while the last term has
to be considered in connection with the contribution to the
velocity from the rest of the source and dipole distribution.

%%
Id
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Figure 4 Representation of discrete vortex representing
inner core of spiral.

In calculating the cohivection velocity of the discrete vor-
tex we should in the conventional way cxclude the first
term of (23).

one could be attempted to use the more correct simi-
larity solution of Pullin (1978) as a starting solution.
But in our opinion it is too complicated and not necessary
for that purpose. Pullin's solution will rather be used -

later as a control of the further development in time of
our solution.

4. NUMERICAL SOLUTION

As a test of the accuracy of our numerical model we
started out with comparisons with analytical results for
simple non-separated potential flows. We examined flow
around ellipses of thickness-length ratios from 0.01 to 1.0

0 0i

in currents of directions a = 00, 450, 900. The agreement
between numerical and analytical results was very good. We
should note that our procedure will not work for zero thick-
ness. But this does not represent a practical problem since
the procedure works for very small thicknesses.

We have also tried to use a procedure based on equation
(7), i.e. a distribution of sources and vortices over the
body. By satisfying the body boundary condition we end up

. . . . ... . . . . . .

Z. ..

NUMERICAL. . . ... .. .. .. ... .. .. .. .. ... .. .. .. ..
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with a Fredholm's integral equation of the first kind, where
the tangential velocity D / s is the unknown. In the
numerical discretization we assumed a linear variation of
q/ s over each straight line segment approximating the body
surface. The boundary condition is satisfied at the mid-
point of each segment. This procedure created some pro-
blems which worried us. In some cases there was an oscil-
latory tendency in the results. This is illustrated in
Figure 5. We think the oscillations are due to the mathe- -- -

matical nature of the integral equation. We are solving
Fredholm's integral equation of the first kind, which is
known to have stability problems. One may argue that the
oscillations do not seem too serious in the problem pre-
sented in Figure 5. But we did not like this tendency to
instability and decided not to use the procedure.

Vt U

U E

0.3 1:4 ellipse
vortex distribution

.....--- analytical

0.2

0.1

0.2 0.4 0.6 0.8 1.0 s/s

Figure 5 Calculation of tangential perturbation velocity
for nonseparated flow around ellipse.

We have also compared our numerical solution procedure
with analytical results for nonseparated potential flow
around bodies with sharp corners. We then found that the
solution for the velocity potential is not completely satis-
factory for a segment adjacent to a sharp corner. We think |
the reason is that we assume a constant value of the velo- % :
city potential over the segment. Due to the singular na-
ture of the solution around the sharp corner our assumption

," %-A-" '.• :...:.... :. -.. ."- -..:.-.----.. ------..--- :...-.:v .-..-..- -,...,-..--. ..- :...'. .,-- :-.
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about constant velocity potential is particularly bad for a
segment adjacent to the sharp corner. We could probably
circumvent this problem by using a local solution form
around the sharp corner. But since this does not have rele-
vance to the separated flow problem, we decided not to do[[ - ~it. i .o.,,,

As a test of the accuracy in the evaluation of the inte-
grals in the numerical solution procedure, the velocity
field due to a circular vortex sheet of constant circulation "c. -
was calculated. Analytically the velocity is zero inside
the circle while the tangential velocity is

V 2r2" r °  :.? .
0

outside the circle. Here ro is the radial distance from -

the centre of the circle and " is the circulation. The ra-
dial velocity field is zero outside the circle. Before the
numerical evaluation we first integrated analytically the
vortex distribution by parts. This gave a contribution
from the ends of integration together with a dipole distri-
bution with a linear density function. The velocity field
due to the dipole distribution was calculated by dividing
the circle into straight line segments and obtaining the
contribution from each segment in the same way as described
earlier. The results are presented in Figure 6 with a total
number of only 20 elements around the circle surface.

V,

analytical

- numerical e18,
numerical 0 18.15'

-18'

a

3, -.-**...--.

2
- 2R

R I
20 elementsr 20 . . .. --" "'

0.99 1.0 1.0 1 rJ R . - _

Figure 6 Tangential velocity field of a circular vortex
sheet.

.-. - , .-.-. ..- '- ...-..-. -...... ........ -. ...... .. .' " - ....
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The most difficult place to calculate the velocities is
close to the ends of the segments. But we note good agree-
ment between analytical and numerical results even for a
distance which is 0.001 R from a segment end. This is an
important result. The reason is that the velocity field
due to an asymptotic spiral vortex is approximately equi-
valent to an infinite set of distinct uniform concentric
vortex sheets. The results therefore tell us that we may -.-
be able to predict many turns of a vortex spiral with good
accuracy even if the turns are quite close to each other. L

The next step in our test procedure was to compare with
the analytical solutions from linear unsteady airfoil theory
(Newman (1977)). The comparisons for the Wagner problem for
a flat plate of chord length c is shown in Figure 7.

N

CL_
1.0

0.9

0.8

FLAT PLATE ,

0.6- Analytical (Wagner)

+ seesent method
0.5 ' J"'" •

30 elements on the body *

0.4 1% thickness

0.3 n.

0 1 2 3 4 Ut -

c

Figure 7 Comparison of calculated results with the Wagner ,
function. " "

The Wagner function is the time history of the normal-

ized circulatory lift on an airfoil that has been started ",..
impulsively from rest at an angle of attack. Even if we
only used 30 elements totally on the body, the agreement
between our numerical solution and the analytical solution
is good. Giesing (1968) has also calculated the Wagner , .
function for a 8.4% von Mises and 25.5% Joukowski profile
at different angles of attack. The agreement between

* -*'---*-.*,.. ..-C
... . .-.. . .. , , ...-.. % . . -.-. '..;. ,.:,,..'v .'. -'..': ., ........ ,.... ,' ,-.- .. ' ."..,..-%

Lq=. .. =,•. '. .,
"

". ' ". ". . % "..-". , . .'' *• " , ° '.'. % . ,%.1. . " % ,•. * .,*%•.. .% . ' % % ." . .. ' °.'
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Giesing's and our numerical results were similar good as for
the plate shown in Figure 7.

We also compared with the Theodorsen function for a har-
monic heaving flat plate in incident steady flow. The
agreement was good.

We have also studied the nonlinear behaviour of a har-
monic heaving airfoil in incident steady flow. This pro-
blem was studied earlier by Giesing (1968). He found good
qualitative agreement with experimental picture of the wake.
Giesing used discrete vortices to represent the free shear
layer and in one extreme case which will be presented be-
low, the wake has a "mushroom" - configuration. It is "
difficult to see from his results how he could have drawn
a picture of the wake in this extreme case without having
the experimental picture as a basis. Our results for the
same situations as Giesing studied will be presented below.
The airfoil is a NACA 0015. We used 30 elements to repre-
sent the foil numerically. The length of the foil was
chosen to be 10 m and we chose the incident flow along the
longitudinal axis of the airfoil to be 1 m/s. The incident
flow normal to the longitudinal axis was of the form Vcoswt.

In the first case we used a circular frequency of oscil-
lation of w = 0.43 rad/s. The amplitude of heave oscil- U
lation corresponded to an angle of attack of 4.50. We used
a time step equal to 0.5 sec. in our numerical solution -

and the wake after 60 time step is presented in Figure 8.

Figure 8 Wake profile for heaving NACA 0015 airfoil.

In the other case we studied the circular frequency of
oscillation were w = 1.7 rad/s, and the amplitude of heave
oscillation corresponded to an angle of attack of 17.80.
In this case we used a timestep of 0.05 s. The picture of
the wake after 175 time steps is presented in Figure 9.
We see very clearly a "mushroom" configuration in the wake,
and that some of the details are very complicated. Both

*...,...-....

-.. ..'.. ,... ..,,,... ,.., <.. _. . '-.,_.._, ,...._........,...-.....-....................... -. .. ." 1 .-.

?. ' , -J-- -, , ',"-',-, # ,-m J,'..,' .,- "%" - . ."-" "-* ",-*" -, ,","Z'" ". - """" ."'" ' ' ,V.
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of our results in Figure 8 and Figure 9 agree qualitatively .
with experimental pictures of the wake.

A '.-..*. -2-2:

Figure 9 Wake profile for heaving NACA 0015 airfoil.

4m

4.1 Flat plate in steady cross-flow

In rmdelling the flat plate we used a total of 50 elements
around the plate. Cosine-spacing was used on each side of
the plate so that the elements were denser at the ends (see
Figure 10). We cannot use zero plate thickness in our nume-
rical model, but the procedure works for very small thick-
nesses. We used a thickness to length ratio of 1/100

Figure 10 Distribution of body elements. ' '.2

. I

• :-.L-'.-.' -
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We used Rott's (1956) similarity solution for corner
flows as a starting solution. His solution is in the form
of a discrete vortex with given timedependent position and
circulation. We can write the vortex position for steady:::.: cross-flow past a flat plate with infinite initial accele- ":'

ration as (see Figure 11)

:(Xo,yo) A.P.

Figure 11 Placerent of discrete vortex at first timestep. -e

y 2/3

Yo Ut 2/ '""'

= 0.395 Ut (24)

.. 

X
0

=0.0 (25)

Here 2H is the height of the flat plate. The circulation
can be written as

.' :-.'. 5.- '

F = 0 6 Ut 1/3 (26)
26UH - 27 1.-) (26) ..

We started the solution at Ut/H = 0.004. The position
of the discrete vortex at one end of the plate is shown in
Figure 11. The dotted line is a Riemann surface connecting ,..-

the discrete vortex and the plate end. In the following
time steps the free shear layer was shed in a "continuous"
manner. At successive time intervals of length UAt/H = 0.01 4 a_..'

*. a new free shear layer segment was shed from each end of
the flat plate. We tried with sheddinq vorticity only from
the windward side and with shedding vorticity from both the '-

windward and leeward side. The difference in the results .--:
was not important. The configuration of the free shear

.'.\* _5

: " ''.4 S. .-

S .. ....... .. ~ a.\ l .. - . ..
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layer after 100 time steps is shown in Figure 12 and after
150 time steps in Figure 13. We note there are no signs
of instability in the free shear layer. This is in accor-
dance with the stability analysis of Moore (1970).

Figure 12 Two free shear layers with 101 wake elements in
each layer. Ut/H =0.994. Number of body ele-
ments 50.

Fiue1 reserlyrpfl wit 15 aeelmns

Ut/ 1.9.Nme fboyeeet 0

JI-* '
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We could certainly have continued our solution and obtained
more turns in the spiral. But there is a practical limit
due to computer time when too many free shear layer segments
are used. We therefore decided to redicretize the free
shear layer after 100 time steps. There are many ways to do
this. We did a rather substantial rediscretization and re-
duced the number of wake elements from 100 to 14 (see
Figure 14). It was done in the following way. -. -.

t

• . . %

Figure 14 Free shear layer profile with 14 wake elements.
Ut/H = 1.034. Number of body elements 50.

Since the inner turns of the spiral have nearly constant
vortex strength and one complete turn is nearly circular,
we can approximate one turn by a discrete vortex at the
center of the spiral core. Two complete inner turns of the
spiral was approximated in this way. The remaining free
shear layer elements were changed by equalizing four origi-
nal neighbour elements by one element. After the rediscre-
tization we used a time step of UAt/H = 0.04. When a new
complete turn of the spiral was created, we continued to

..... . . . .. . . . . . . . . . . . .
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equalize it by a discrete vortex at the spiral core. The -
free shear layer after Ut/H = 7.39 is shown in Figure 15. "

'..-.<.

Figure 15 Two free shear layers with 66 wake elements in
each layer. Ut/H = 7.39. Number of body ele-
ments 50.

We recognize that each free shear layer is no longer nearly .
circular in form. This is due to interaction with the other .....

free shear layer and the plate. The noncircular form im-
plies that the discrete vortex is not longer as good an
approximation for the inner turns of the spiral. But even
so the procedure seems to work. We should note that we
have forced the flow to be symmetric. If we had made a per-
turbation of one of the free shear layer an asymmetry is
likely to develop and cause vortex shedding. This has not
yet been studied.

In Figure 16 is shown how circulation is developed in". -
one of the free shear layers. Initially our results agree

. ... .... , ....... -,.. - , ,... ,7. .
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well with Pullin's similarity solution but after some time I
it starts to deviate. This is expected since Pullin's re-

sults are for an infinitely long flat plate. We note that a-

our results are in quite good agreement with Fink and Soh
(1974) and Wedemeyers (1961) results for a finite flat plate.

2Tt UH H
U m Present method

H r Wedemeyer
•" Fink and Soh-

Pullin
Flat plate

1.0
0.9
0.8

0.7' "  
0.6 ' le i

" 0.5

0.3 C0.2 -" %

0.1 Ut

0.5 1.0 1.5 2.0 2 5

Figure 16 Time development of circulation shed into one
shear layer for steady cross flow past a flat
plate.

The results are not exactly the same, but the differences
are similar as the differences between Fink and Soh's
results in the initial state.

We have made more extensive comparisons between our
solution and Pullin's similarity solution. We have com-

pared the position of the outer turns of the spiral and the
core of the spiral. This is shown in Table 1. The agree-
ment is good, while the agreement on the position of the
compared stagnation point on the lee side of the plate is
less satisfactory.

We have also compared the results for the normal force
on the flat plate with Fink and Soh's results (see Figure
17). We used two different ways to calculate the forces:.:.:. (see the chapter on the theory). The difference was gene- "":': .."

rally in the third digit and is not shown in the figure.[ (se h cape o°tethor) Te ifeenewa.gn- '

"" ". '. ". "," .''. '.'', '.'', %'', ',''* '.'*, '. ".... . . . . . .. . . . . . . . . . . . . . . . . . . . . .. '.. .-.-. .. . ...... . . . . . . . . . . " -" ,
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Stagnation 
-pont 6

H x

Ut/H x (1) /H y(2)/H x (3) /H y (4) /H x (5)/H 4 y(5)/H x (6) /l

0.2 0.09(0.1) 0.27(0.27) -0.14('-0.13) 0.08(0.08) -0.01(-0.03) 0.16(0.15) -0.4(-0.26)

0.3 0.12(0.13) 0.36(0.35) -0.16(-0.16) 0.12(0.11) -0.04(-0.04) j0.24(0.19)
0.4 0.15(0.16) 0.45(0.42) -0.191-0.2) 0.16(0.13) -0.06(-0.05) I0.28(0.23)
0.5 0.17(0.19) 0.52(0.49) -0.221-0.23) 0.19(0.15) -0.051-0.05)j 0.33(0.26)

Table 1 Initial free shear layer positions for steady cross-
f low past a flat plate. Numbers in paranthesis are
Pullin's (1978) similarity solution.

%..

~~7.,!
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FLAT MLATE I STAY.

- P"MI regu.fft~f~tff~

--- S .4 0.02 rb* SM Sh

, SwI 0.0125 . . t.-

" "

3 4

2

I 2 3 4 5 6 LAIN

Figure 17 Normal force coefficient for a finite plate.

The good agreement between the results by the two force ex-
pressions is a good control of the accuracy of our numerical ..
method. In Figure 17 are shown three different results by . .
Fink and Soh (1974). The one lasting the shortest time is
expected to be the most accurate and vice versa. The reason -
is that the one lasting shortest has a higher density of
free shear layer segments than the one lasting longest. The
agreement between our solution and the one lasting shortest
is very good. We may note a small oscillation in our re-
sults around Ut/H = 0.01. This is due to difficulties in
starting the flow. The small irregularities in our force

results around Ut/H = 1.05, 1.83, 3.4, 4.3 are due to the

earlier described rediscretization of the free shear layer
(see Figure 14).

4.2 Oscillatory cross-flow past a flat plate

The problems we have discussed in the preceeding text
about steady cross flow past a flat plate apply also for •

• , . ft- ft. 2 2

-. . ft-ft--."
"t* 

4
f** ft f .. - .-.- t 

%.ft

,%".. . ,," .. ,. , . - ... " .... . ...,...... . . . . . . . . . . . . .,.. .•.. .... . . .. ... ". ."..". . . . .• . . . . . . . . . ..• .• -. "°".. . .
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oscillatory cross-flow past a flat plate. In addition there
are difficulties when the free shear layers are coming back 12
and close to the body. Numerical inaccuracies may cause the
vorticity to go through the plate and destroy the numerical
soltution. One reason for this happening is that we are
only satisfying the body boundary conditions at discrete
points. Between these discrete points the calculated nor-
mal velocity cannot be expected to be exactly zero. This
problem can be avoided by imposing the analytical normal
velocity on the part of the free shear layer which come
very close to the body, for instance within a distance of
jyj/H < 0.01. The timestep should also be kept relatively
small when the free shear layer is close to the body.

Our studies were for a harmonic oscillatory cross-flow
past a flat plate. The free stream velocity was written as

U(t) =U coswt (27)--

max

The flow was started at t = 0. By writing

Uma x  wA

we can rewrite (27) as

U t
U= UmxCOs(H max

maxco( A H)

where A/H can be interpreted as the ratio of the amplitude
of the distance a fluid particle moves far away from the - -
body relative to half the height of the flat plate. We can

also write this amplitude ratio in terms of the Keulegan-
Carpenter number KC as

KC = TA

We used Rott's similarity solution (see equations (24)-(26))
to start up the flow, and vorticity was shed from both the
windward and leeward sides.

Results for positions of the free shear layer at dif-
ferent timesteps for A/H = 1 is presented in Figure 18.
The arrow indicates the free stream velocity. The corre-
spondence between the timestep, the time t and the free
shear velocity U is given in Table 2. Umax was 1 m/s and
H = 5 m. In Table 2 is also shown the calculated force
values by direct pressure integration and the alternative
formula (13).

The satisfactory agreement between the two force re-
sults is a control of the accuracy of the numerical results. " "

. X. . . .. .. . . . . . . . . . .- *- . . .%" . ,. * . '
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Timestep 20C)

-- Timestep 40 4

(Yj~ Timestep 60

Timestep 80

........ ......

Figure 18 Free shear layer positions at different time-
steps for oscillatory cross flow past flat plate
(KC iT).
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Timestep 120

Timestep 140

Tiete 6

Timestep 160

~ Timestep 200

Figure 18 cont.



1202 AL

LPU max (2H)J

Umaxt U/U pressure alternative
TimestepH max integration formula (13)

10 0.094 0.9956 5.8297 5.9181

20 0.194 0.9812 5.5094 5.6687

30 0.294 0.9571 5.1788 5.1882

40 0.394 0.9234 4.6753 4.6613 ..' -

50 0.494 0.8804 4.2657 4.2536

60 0.594 0.8287 3.8684 3.8314

70 0.694 0.7687 3.4441 3.4024 9
80 0.794 0.7010 3.0142 2. 9837

90 0.994 0.5453 2.1391 2.1381

100 1.194 0.3679 1.2098 1.1324 "

110 .1.394 0.1759 - 0.0864 - 0.1875

120 1.594 - 0.0232 1.8486 1.9440

130 1.644 - 0.0731 - 2.7643 - 2.8613

140 1.694 - 0.1229 - 3.2218 - 3.2604

150 1.744 - 0.1723 - 3.6671 - 3.6457 .

160 1.794 - 0.2214 - 3.7207 - 3.6467

170 1.844 - 0.2698 - 3.4779 - 3.3331

180 1.894 - 0.3176 - 3.3014 - 3.1042

190 1.944 - 0.3646 - 3.0690 - 2.8187

200 1.994 - 0.4107 - 3.1540 - 2.9449

210 2.044 - 0.4557 - 2.9058 - 2.6389 - -

Table 2 Comparison of force calculations for oscillating
*...,, cross flow past flat plate. (KC = T. )

7 7 .%

. .. .. .. . .. .. .. .. . .. .. .. .. . .. .. .. . .. ..

. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . ...-- ° --
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We note that parts of the free shear layers are coming very
close to each other and the plate when the free shear layer
are returning back towards the plate. An enlarged picture
of the free shear layer at one side of the plate at time
step 160 0: Umaxt/H = 1.794) is shown in Figure 19.

"% .°% -. -

.... ,.: ,.-.. .

30.. -

0"40(0G136) s

50

(0088)
Figure 19 Enlarged picture of the free shear layer at

Umaxt/H = 1.79 for oscillatory cross-flow past
flat plate. KC = -- '

The vorticity of the different elements approximating the
free shear layer at the same time step are given in Table 3.
The vorticity for elements 10, 20 etc. are also given in
brackets in Figure 19. We note that the vorticity is nega-
tive at the separation point and changes sign around ele-
ment number 16. Visualization tests of the physical flow
indicates that the part of the free shear layer with posi-
tive vorticity will in reality be detached and thereby
shed. We have not yet incorporated this feature in our
model. Another open question is to what extent the vorti-
city in the parts of the free shear layers which come close
to each other or to the plate will in reality be annihila-
ted. These questions should be studied before processing
with the numerical solution further in time. For numerical
studies with larger Keulegan-Carpenter number it is also
importance to develop asymmetry of the shedding from the
two separation points.

,:.:.-. . . . -. .

S-V . -"-" "L. ." . • . " . ." . .. " " . " . - . ." ' \ '. '-'" " ' ' ' ' '. . ,' ', %,,...
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Wake element Element vorticity Wake element Element vorticity7:
number d' number d

1 - 0.086 46 0.113
2 - 0.292 47 0.105

*.3 - 0.303 48 0.097
4 - 0.308 49 0.091
5 - 0.308 50 0.088

6-0.310 51 0.085
7-0.311 52 0.090

8 - 0.306 53 0.099

10 - 0.248 55 0.108 ~-
11 - 0.195 56 0.114
12 - 0.138 57 0.122 s.-~

13 - 0.086 58 0.132
14 - 0.044 59 0.140
15 - 0.012 60 0.142
16 0.012 61 0.140
17 0.031 62 0.135
18 0.046 63 0.129

*19 0.058 64 0.124
20 0.068 65 0.119
21 0.076 66 0.116

* -22 0.083 67 0.114
23 0.089 68 0.113
24 0.095 69 0.113
25 0.101 70 0.115
26 0.106 71 0.118
27 0.110 72 0.123
28 0.115 73 0.128
29 0.119 74 0.133
30 0.123 75 0.138
31 0.126 76 0.143
32 0.129 77 0.145
33 0.132 78 0.146
34 0.133 79 0.144
35 0.135 80 0.140
36 0.136 81 0.134 ;. x
37 0.136 82 0.126
38 0.136 83 0.116
39 0.136 84 0.104
40 0.136 85 0.093
41 0.135 86 0.082
42 0.133 87 0.074
43 0.130 88 0.069
44 0.126 89 0.067
45 0.120 90 0.064

Jump in velocity potential - at separation point: 17.919.

Circulation of discrete vortex 12.8.

U Table 3 Vorticity of wake elements at Umaxt/l 1.79
for oscillatory cross-flow past flat plate.

%\~%
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4.3 Steady cross-flow past a rectangular cross-section

As a guidance for our numerical solution we first performed
flow-visualization experiments of a steady two-dimensional
incident flow past a rectangular cross-section. We build
a model that was 2.62 m high and of constant cross-sectional
form. The lengths of the cross-dimensional sides were
0.5 m and 0.43 m. The model was towed vertically in the
large towing tank of Norwegian Hydrodynamic Laboratoreis
with the longest cross-sectional side in the towing direc-
tion. The submergence was 2.5 m, and the constant carriage
velocity was 0.3 m/s. This is sufficiently low velocity to
avoid influence of surface waves. Initially the accelera-
tion of the carriage is 1 m/s2. The model was covered with
plastic to avoid effect of roughness. Pictures of the flow
around the cross-section is presented in Figure 20. An
arrow indicates the free stream direction. These pictures
were taken by covering the water surface by confetti. The
pictures were taken successively. The exposure time was
1 sec. Unfortunately we do not have a relative time scale
between the pictures. But the major intent was to get a
qualitative picture of the flow. We do not have a good pic-
ture of what is happening in a very early stage, where the
flow around both the leading and trailing edge are expected
to be similar in form.

In picture number 2 of Figure 20 we note that the form
of the free shear layer is quite different at the leading
and trailing edge. The form of the shear layer is much
more oval at the leading edge than at the trailing edge.
A more detailed picture of the flow after the leading edge
is presented in Figure 21. This picture is taken at a
later timestep than the second picture in Figure 20. It is
interesting to note what is happening as the free shear
layer after the trailing edge grows stronger and bigger _ 411
in form. Initially the free shear layer leaves tangentially

* from the windward side, but after some times it switches over to
leave tangentially from the leeside. This causes a back- .-

flow around the trailing edge. Later on we see that asym-
metry is created in the wake causing alternate shedding of
vorticity from each side. AD

In the numerical calculations a square section was
studied. Rott's similarily solution was used to start the
flow. The position of the discrete vortex for a square
section is given by -.

r 0.2685 (Ut) 3/4

....................................................-- .

b... ."-""
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"'-

Figure 20 Visualization of initial flow around rectangular
cross-section.

i -
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• . - -U•,

*Figure 21 Visualization of flow around the leading edge of
a rectangular cross-section.

* and

x= 56.650

where 2b is the length of one side of the square and the
- radius r and the angle X is defined in Figure 22. The

strength of the discrete vortex is

F = 2.6309 Ub (--).

The offsetpoints describing the elements on one fourth
of the cross-section are given in Table 4. Further U was
chosen to be 1 rn/s. We started the solution at t = 0.2 s.
Later on we used a timestep of 0.05 s.

It is quite difficult to describe properly numerically
the flow around the leading edge. If we did not use a

* .- '.str votx th freserlyrwntesl hog h

body..... f... . Onealso.hae..o.be.carful.
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distribution of body elements to avoid the free shear layerV
to "crash" into the body around the leading edge.

r/ '

2b

Figure 22 Definitions for starting solution of flow around
square cross-section. .

Our two different force calculation procedures were
used to test the accuracy of our numerical results. The
results are presented in Figure 23. *

F~.
F_ pressure integration *

1U 2b U 2bI alternative forrmla (13)
F1U(b Bink and Soh 46

2.0 812b- 1.045

1.0

1.0.

0.1 0.2 0.3 0.4 0.5 Ut
b

Figure 23 Force results for steady flow around rectangular
cross-section.

%. %
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Offset point _Y
number coordinate coordinate

1 5.0000 0.0

2 5.0000 -1.1126

3 5.0000 -2.1694

4 5.0000 -3.1174

5 5.0000 -3.9092

6 5.0000 -4.5048

7 5.0000 -4.8746

8 5.0000 -5.0000

9 4.9810 -5.0000

10 4.9240 -5.0000

11 4.8296 -5.0000

12 4.6985 -5.0000

13 4.5315 -5.0000 ~V
14 4.3301 -5.0000 -

15 4.0958 -5.0000 jr

16 3.8302 -5.0000

17 3.5355 -5.0000

18 3.2139 -5.0000

19 2.8679 -5.0000 .- /

20 2.5000 -5.0000 .

21 2.1131 -5.0000

22 1.7101 -5.0000

23 1.2941 -5.0000

24 0.8682 -5.0000

25 0.4358 -5.0000 %

26 0.0 -5.0000 k

Table 4 Offset points for the square cross-section used
in our numerical studies.

%
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I .... ... ... :-Z:-

taileaing edge of a square crosssection -','-?
(Ut/b =0.43)." "-

%h %

N. . .- -

%1k*
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Figure 24 Numerical results for free shear layer poition

traing edge of a square crosssection
(Ut/b = 0.43).-'
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These results are in fair agreement with Fink and Soh's
(1974) numerical results. The free shear layer position
around the leading edge and the trailing edge at Ut/b = 0.43
are presented in Figures 24 and 25. The points on the body
are the offsetpoints defined in Table 4. These results are

", in qualitative agreement with the flow visualization studies
presented in Figure 20. Our numerical results for the tan-
gential velocity on the body indicate a singularity at the
lee side of the leading edge. The reason to this is not
clear. It may be either of mathematical nature or due to
improper numerical approximation near the leading edge.

5. CONCLUSION

A method to predict the flow and associated vortex
shedding around bluff bodies at high Reynold's number is , B
presented. It is assumed that the vorticity is concentrated
in thin boundary layers and free shear layers. Choice of
solution technique for the potential flow problem is dis-
cussed, and it is decided to represent the solution for the
velocity potential as a distribution of sources and dipoles
over the body surface and the free shear layers. The equi- 1 3
valence to a Kutta condition is a prescribed velocity direc-
tion and continuity of the velocity potential at the sepa-
ration points. Even if the problem is strongly nonlinear,
the resulting equation system at each time instant is
linear. The solution is started by using Rott's similarity
solution to position a discrete vortex with known strength
outside each separation point. The free shear layer is re-
discretized at each time instant so that the length of the
straight line elements approximating the continuous part of
the free shear layer is kept equal. This is important in
order to cope with the nonuniform stretching of the free
shear layer. The inner core of a vortex spiral is repre-
sented by a discrete vortex. In order to reduce computer "-"
time complete inner turns of the free shear layer is
approximated by a discrete vortex at different time inter-
vals. A simple alternative way then calculating the force
by integrating Bernoulli's equation is presented. This
provides a control of the accuracy of the numerical calcu-
lations.

The method has been applied to linear and nonlinear un-
steady airfoil problems. The agreement with results by --

other methods is good.
Steady crossflow past a flat plate has also been stu-

died The results are in agreement with Fink and Soh's re-
sults. The initial part of the solution agrees well with
Pullin's similarity solution for an infinitely long flat
plate.

% .
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Results for oscillatory cross flow past a flat plate
and steady cross flow past a square section are also pre-
sente . The latter resu±ts are in qualitative agreement -_,,)

with presented flow visualization results.
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