AD-A158 918 ARC COLORINBS PRRTIHL PATH GROUPS RND PﬂRﬁLLEL GRAPH
DNTRGCTIONS (U> MARYLAND UNIV COLLEGE PARK CEIITER FOR
AUTOMATION RESEARCH A ROSENFELD JUL 85 CAR-TR-132
UNCLASSIFIED RAFOSR-TR-85-8718 F49620-85-K-0009




4 T S mm

;] & 9 F

AN '.ﬁ;rl ';- l'.-

E
I

= )

)
=
B

==
&
N

I

[ )

-
FERERE[:
HH

i~

12

——

-
o

I

-
-]

3
-8
I

NATIONAL BUREAU OF STANDARDS
GROCOPY RESOLUTION TEST CHART

B

-

- _
EG BNDION
-,

i ~,
T

XX

41‘..""
T *'y’
'




. STt T Sl T Wil 20 ek s S
ISR A S At A,

IR A

'.‘-&3}'« @

CAR-TR-132 F49620-85-K-0009
CS-TR-1524 July 1985

5~ S

AD-A158 918

.

et

ARC COLORINGS, PARTIAL PATH GROUPS,
AND PARALLEL GRAPH CONTRACTIONS

Azriel Rosenfeld

Center for Automation Research
University of Maryland
College Park, MD 20742

g

. - »
. T 2
;
.
. . .
- - g . .
. . ‘ P S
. b -
. M -~ . ’
- . . .
.
-
-
-
.-
.
4
.
.
-
-
L~
o~
.
.
.




..................

..........

F49620-85-1K-0009
July 1985

CAR-TR-132
CS-TR-1524

ARC COLORINGS, PARTIAL PATH GROUPS,
AND PARALLEL GRAPH CONTRACTIONS

Azriel Rosenfeld

Center for Automation Research
University of Maryland
College Park, MD 20742

ERCAE ARSI ANA L A L AP I N

Lo e T ABSTRACT
.We-definesan algebraic structure on the paths in a graph based on a coloring of the

arcs. Using this structure, basic classes of graphs (trees, hypercubes, arrays, cliques, etc.)
are characterized by simple algebraic properties. The structure provides a framework for
defining parallel contraction operations on a graph, in which many pairs of nodes are
simultaneousl collapsed into single nodes, but the degree of the graph does not increase.
Such operations are useful in defining systex}mtic strate’g:s for simulating large networks

of processors by smaller ones, or in building “pyramids*” of networks.
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1. Introduction

Large, uniformly structured networks of processors are a useful class of
models for parallel computation. For example, it has been recognized since the
1950’s that mesh-connected processor networks are a very natural medium for
image processing, and a number of such networks have actually been built.
Ideally, the mesh should be the same size as the image to be processed, so that
each pixel (= element of the image) can be assigned to a different processor.
Meshes of that size are quite expensive to build; but they can be simulated by
smaller meshes, by dividing the image into square blocks of pixels [1] and assign-
ing each block to a processor. Another problem with large meshes is communica-
tion time; to compute global properties of an image, information must be
transmitted from one side of the mesh to the other, which requires a number of
steps on the order of the mesh diameter. This communication problem can be
greatly alleviated by Building an exponentially tapering ‘‘pyramid’ on top of the
mesh [2]. To do this, we divide the mesh into square blocks; connect the proces-
sors in each block to a new processor; and connect all the new processors to form
a new, smaller mesh. This process is repeated, resulting in an exponentially
tapering stack of meshes.

The process used to simulate large meshes by smaller ones, or to build
pyramids of meshes, can be regarded as a ‘‘parallel contraction of the mesh. We
divide the mesh into square blocks; represent each block by a new node; and join

two of the new nodes by an arc if the corresponding blocks were adjacent in the

original mesh. This process is basically one of graph contraction (3], except that
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we are contracting many subgraphs into single nodes simultaneously. Because of

the regular structure of a mesh, we are able to define a parallel contraction pro-
cess that does not increase the degree; the contracted graph is still a mesh. The
fact that the degree does not increase is important in the simulation and pyramid
building applications, since networks of high degree are difficult to realize in

hardware.

It would be of interest to define degree-preserving parallel contraction
processes for other types of regularly structured graphs. This would provide us
with a systematic method of simulating large networks (having graph structures
of one of the given types) by smaller ones [4], or of building pyramids of such

networks.

This paper defines a class of parallel contraction operations based on a color-
ing of the arcs in the given graph. The coloring allows us to define an algebraic
structure on the paths in the graph, and it turns out that basic classes of regu-
larly structured graphs, including trees, arrays, hypercubes, and cliques, have
simple algebraic characterizations. The structure provides a framework for
defining parallel contraction operations for these and other classes of graphs, gen-

eralizing the standard (blockwise) parallel contraction technique used for arrays.
ugcession For
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2. Arc colorings and the partial path group

Let G be a connected graph of degree d, i.e., no more than d arcs emanate
from any node. By an arc coloring of G we mean an assignment of colors to the
arcs of G such that the arcs emanating from any given node all have different
colors. It can be shown [5] that this can always be done using at most d +1
colors, and for many types of graphs (for example, trees or bipartite graphs) d
colors are sufficient. A simple example of a graph requiring d +1 colors is a trian-
gle (or in general, a cycle of odd order), where the degree is 2 but 3 colors are

’

needed.

Let the colors be ¢y, . . ., ¢, ; then any string of colors ¢;, - - - ¢;, defines
a possible path from a given starting node P. The interpretation of such a string
of ¢'s is as follows: Move from P = P, to the unique neighbor P, joined to P
by an are of color ¢;; move from P, to the unique neighbor P, joined to P, by
an arc of color Ciy and so on. Note that f<‘>r a given P, this path may not be
realizable; there may be no arc of color ¢; emanating from P, or no arc of color

¢;, emanating from P,, and so on.

This process of interpreting the colors as moves allows us to define an alge-
braic structure on the nodes of G, with the colors as ‘‘generators”. For conveni-
ence, let us define a fictitious *“‘blank’ color ¢, representing ‘‘no move’. (This is
equivalent to introducing a loop at each node of G and coloring it with cg;

applying ¢ to any P thus leaves us at P.) Let a=1¢, - - ¢; be a string of

colors; then o defines a partial function on the nodes of G, where P « is the ter-




minal node of the path defined by «a starting from P, provided this path is realiz-
able. These partial functions evidently satisfy the following properties:
a) Forall P, Pcis defined and Pcy = P.
This follows from our definition of ¢,. We can thus think of ¢4 as an
identity element.
b) For all P and all ¢;, if Pc, is defined, so is Pc,?, and Pc,2 = P.
Proof: If there is an arc colored ¢; at P, then there is an arc colored ¢;
at P’s neighbor Pc;, and if we move along that arc, we come back to
P . Thus each ¢; is its own inverse.
c) For all P and all ¢, ¢j, if Pe; and (Pe;)c; are defined, then P(cici)is
defined, and P (c; ¢;) = (Pe; )e; .
This follows from the definition of P (c;¢;). Thus our algebra is associ-
ative, provided both sides are defined.
Note that if ¢; £ ¢g and Pc; is defined, we cannot have Pc; = P; thus the
identity element ¢ is unique. Similarly, if ¢; % ¢; and Pc;c; is defined, we
cannot have Pc¢;¢; = P. (The arc joining P and Pe; has color ¢;; the node

joined to Pc; by an arc of color ¢; cannot be P.) Thus inverses are also unique.
Using properties (b —c ) and induction, we immediately have
Proposition 2.1. Let o ! denote the reversal of the string a, i.e.,

(e;, e,y =v¢; ¢, Then for all P and all a, if Pa is defined, so is

1

(Pa)al, and (Pa)a' = P.//




Proposition 2.2. Let af denote the concatenation of the strings a and 3, i.e.,

(e, - ei e, - ¢i) = ¢, - ¢cic; ¢, Then for all P and all o, 3, if

P a and (P a)B are defined, so is P (afB), and P(af) = (Pa)b.//

These observations show that the structure defined on the nodes of G by
the strings of colors resembles a group structure in many ways. It has an iden-
tity; any string of colors has an inverse (wherever it is defined); and concatena-
tion of strings is associative (provided both sides are defined). We shall call such
a structure a ‘‘partial group” or ‘‘half-group’”. From now on we shall refer to

this partial group as the partial path group of G defined by the given coloring,

and denote it by II(G ).




3. Free partial path groups and trees

Let a=¢; - - ¢, be astring of colors. The string o is called an elemen-

tary reduction of a if one of the following statements is true:

a) k>1; for some 1<7 <k wehave ¢; =cgand o/ =¢; ~ -~ ¢; ¢; "~ ¢
b) k>2; for some 1<5 <k we have Ci =€ and
od = € Cig " Ciye

c) k=2 ¢ =c;;and o =c,.

The string o is called a reduction of o if there exist strings
a=aqaya, ..., o, =a such that a; is an elementary reduction of &1
1<i<m.

Proposition 3.1. If o’ is a reduction of «, and Pa is defined, then Pa' is

defined and Po' = P a.//

Note that if P o' is defined, P @ may not be defined unless the elementary reduc-
tion steps involved in obtaining o' from a were all of the form (a).

We call a irreducible if it has no (elementary) reductions. (In particular, if
k =1, a is irreducible.)
Proposition 3.2. a 5 ¢, is irreducible if and only if any two consecutive ¢ 's

are distinct, and none of them is ¢,.//

We call a fully reducible if a = cy, or if ¢ is a reduction of a. Evidently, if
a is neither irreducible nor fully reducible, it has a reduction that is irreducible;

and a is both irreducible and fully reducible only if a = ¢,

........
...........
..................




Corollary 3.3. If a is fully reducible, and P a is defined, then Pa = P.//

Let P=Py P|,..., P, =P beacyclein G, ie., a sequence of nodes
such that k£ >2; F; 5 P;_, for all 1<i <k; and P; , # P, _, for all 1< <k.
Let the color of the arc joining P;_, to P; be ¢;, 1<7 <k. Then the string
a=-¢c

¢

, is evidently irreducible. Conversely, let a = ¢;, " c; be any

P
irreducible string; let Pa be defined, and suppose that Pa = P; and let
P ==P0, P1=POC,'1, P2=Plc,-2, v 'Pk =P,,_1c,~b. Then P09Pl: ey Pk

is evidently a cycle in G.

We call TI(G ) free if Pa = P implies that o is fully reducible.

Theorem 3.4. If [I(G ) is free, G is a tree.

Proof: If G had a cycle, say P = Py P, ..., P, = P, then by the remarks
in the preceding paragraph there would exist an irreducible string o such that

Pa=P.//

Theorem 3.5. For any arc coloring of a tree G, I1(G ) is free.

Proof: Suppose we had Pa = P with a not fully reducible; then either a itself
or some reduction o of a would be irreducible, and we would have Po/ = P.
Thus in either case we have P 3 = P where 3(= a or o) is irreducible, and by
the remarks in the preceding paragraph, this implies that G has a cycle, contra-

diction.//




Note that the arcs of a tree of degree d (this is graph degree, not ‘‘tree
degree’) can always be colored with d colors. Indeed, start with any node P,
and color the arcs emanating from it with (at most) the d colors. Let Q be a
neighbor of P joined to it by an arc of color c; ; then the remaining neighbors of
Q@ can be colored with (at most) the d-1 remaining colors
€ €1 Cyp - - -, Cn. This process can be repeated for all the neighbors
of P, all the neighbors of these neighbors, and so on. Since a tree is connected,
every arc eventually receives a color. Since a tree has no cycles, when a node is
reached by this coloring process it has not previously had colors assigned to any
of its remaining arcs; thus the procuss never leads to a contradiction (where two
arcs emanating from the same rode are assigned the same color).

If G is an infinite tree in which every node has degree exactly d, and we
color the arcs of G with d colors ¢, . . ., ¢4, then for any string of colors a,
P « is always defined. Thus in this case we can regard II(G ) as a group on d
generators ¢y, . . ., ¢4, with identity ¢, such that ¢;2 = ¢, for all 4, but the

group is otherwise free. Note that if some nodes have degrees <d, and in partic-

ular if the tree is finite, some P a's will not be defined.

—-—w— -




4. Strings, cycles, and cliques
If G has degree 1, it can only consist of a single node or of two nodes joined

by an arc (recall that we assume G to be connected). In the first case, the only

irreducible string in II(G') is ¢y, and in the second case, the only irreducible
! strings are ¢ and ¢;. Thus in the first case we can regard II(G ) as the trivial
&
S group, while in the second case we can regard it as the cyclic group of order 2

(note that Pcy and Pc | are both always defined).

"~ Theorem 4.1. TI(G) caunotl ve a cyclic group unless the group has order 1 or 2.

Proof: If there is only one color ¢ 7 ¢4, G has degree 1.//

If G has degree 2, it must be a (finite or infinite) string or a cycle. If it is a
string or a cycle of even order, its arcs can be colored with two colors ¢, ¢,; in
the string case the colors satisfy the relations ¢ = ¢ = ¢, while for a cycle
of length 2m we have the additional relations (¢ ;c2)™ = (co¢ )™ = c4. Con-
versely, if II(G ) is free, by Theorem 3.4 G is a tree, and since it has degree 2, it

must be a string.

If G is a cycle of odd order, three colors are needed to color its arcs. In par-
ticular, if G is a triangle we have ¢ = ¢ = ¢f = cqg; C(Co=1Cqoc;=Cg
CoCg==C3gtg=1Cy, €3] == CC3= Ca. (Actually, at any given node P, there
are arcs of only two of the three colors; hence, e.g., ¢ ;¢4 and ¢,¢ | are never both

defined.) Note that these are the relations that hold among the generators of

the Klein 4-group.

PR MY Y
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We call TI(G ) closed if for all ¢,, ¢;, and all P such that Pe;¢; is defined,
there exists a ¢; such that Pc;¢; = Pc; .

Proposition 4.2. If G is a clique, then for any arc coloring of G, II(G) is

closed.

Proof: Any two nodes P,Q of a clique are joined by an arc; hence Pe; ¢; must

be a neighbor of P, say Pc,.//

Theorem 4.3. If II(G ) is closed, G is a clique.
Proof: Let P,Q be any two nodes of G. Since G is connected, there exists a

path P =Py, Py, ..., P, = Q from P to Q. This path defines a sequence

of colors ¢; - - ¢,

Since P, ¢;, is defined, there exists a color ¢, such that
Pe; e;, = Pe,; since Pc;lc; is defined, there exists a color ¢;' such that
Pc,-z’c,-s = Pc; 3’; and so on. Hence by induction on the definition of closedness,

there exists a color ¢, ’ such that Pc;k’ = . Thus @ is a neighbor of P, prov-

ing that G is a clique.//

A clique having d +1 nodes (degree d ) can be colored with d colors if d is
odd, but requires d +1 colors if d is even. For d even, a coloring with d +1
colors can be obtained as follows: Let d = 2k; let the nodes be labeled
1,2, ..., d+1; and let the arc between nodes ¢+ and 7 be given color
¢; +(k +1)j-i)(modulo 2k +1). Evidently this gives the same color to arc (/.5 ) as
to arc (7,+); indeed, i +(k+1)(j-¢) = j +(k +1)(i -7 ). since (2k +1)1 = (2% +1)7

= O(modulo 2k +1). Also, the colors at any node are all distinct: for a given 1,
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the factors j-1 take on all the values 1,2, ..., d = 2k(modulo 2k +1), and
since k +1 is relatively prime to 2k +1, the multiples of k+1 by 1,2, ..., 2k
also take on all these values. Note that in this coloring, the arcs at node ¢ have

every color ezcept c; .

For d odd, a coloring with d colors can now be obtained in a very simple

way. Start with a clique having d nodes, and color its arcs with d colors
€y --., €4 using the construction in the preceding paragraph, so that no arc of

color ¢; is incident on node i. Now add a (d +1)st node, join it with an arc to

v r v ovy s
AP PRI

each of the d nodes (thus yielding a clique having d +1 nodes), and give each of
these new arcs the previously missing color, i.e., the arc from the new node to old
node 1 gets color ¢;. Evidently this is a correct coloring of a (d +1}node clique

with d colors.

As we saw earlier in this section, a clique having three nodes (i.e., a triangle)
has a partial path group that is abelian ‘‘by default”; at any node, if ¢c, is
defined, ¢q9¢, is not, and so on. A clique having four nodes, colored with three
colors using the scheme defined in the previous paragraph, turns out to have a
partial path group that is actually abelian. For example, if we denote the colors

by A ,B,C, we might have




Here every color exists at every node, and we always have AB = BA,

BC =CB, and CA = AC. In fact, here again we have AB = BA = C,

BC =CB =A,CA = AC = B, as in the Klein 4-group.

For a clique having five nodes, we need five colors, e.g.,

Here, if we start at node 1 and move along colors B and E, we reach node 2, but
if we move along colors E and B, we reach node 5. Thus this [I(G) is not
abelian. In the next two sections we will consider classes of graphs for which the

partial path group is always (nearly) abelian.

12




5. Free abelian partial path groups and hypercubes

A partial path group I1(G ) will be called abelian if for all P and all ¢, 7, we
have Pc; ¢; = Pc; ¢; provided both sides are defined. (As we saw in the triangle
example, even if one side is defined, the other needn’t be.) Evidently, if II(G ) is
abelian, « is any string of colors, and a* is any permutation of «, then

Pa= P ax+, provided both sides are defined.

Let o be a string of colors. Any reduction o' of a permutation of o will be
called a p-reduction of a. [Note that Pa' may not be defined even if Pa is
defined.] We call a p -irreducible if it has no p-reductions, and fully p -reducible if

a = cqyor o has ¢ as a p-reduction.

Proposition 5.1. a 3£ ¢ is p-irreducible if and only if it consists of distinct ¢'s

other than ¢4 (so that in particular, it has length <d).//

Proposition §.2. a 3 ¢y is fully p-reducible if and only if each color other

than ¢y occurs in a an even number of times.//

A partial path group II{G ) will be called free abelian if it is abelian, and if
P a = P implies that « is fully p-reducible. We saw in Section 3 that [1(G ) free
corresponds to G being a tree. In this section we shall show that II(G ) free
abelian corresponds to G being a subgraph of a hypercube.

A d-dimensional hypercube is a graph G defined as follows: G has 2¢

nodes, which we may label with d-tuples (¢, . . ., €;) in which each ¢; is either

0 or 1. We join nodes (¢;, . .., €;) and (¢, . . ., €;') with an arc if all but

......................................
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one of the ¢'s is equal to the corresponding ¢. Thus each node P of G has
degree d, since there are just d nodes that differ from P in the value of exactly
one of the ¢’s. If we think of the ¢'s as coordinates in d-dimensional space, then
the nodes of G correspond to the vertices of a d-dimensional unit hypercube
located in the first hyperoctant (all coordinates >0) and with one vertex at the

origin.

Theorem 5.3. Let G be a subgraph of a d-dimensional hypercube; then there
eXists a coloring of the arcs of G with d colors such that II(G ) is free abelian.

Proof: Each arc has a “direction” in d-dimensional space, in the sense that along
that arc, exactly one coordinate changes. Assign color ¢; to the arcs having
direction ¢ (i.e., the arcs between nodes (e, ..., €;) and (¢, . .., €;) such

that ¢;' 7% ¢; but ¢;' =¢; for all j 5 i). Since the arcs emanating from a given

node all have different directions, this scheme assigns distinct colors to all the

A

arcs at a given node. Evidently, the colors commute wherever they are defined; if
we change two coordinates, it doesn't matter in what order we change them. Let
P a = P; then  must have changed every coordinate of P an even number of
times, so that each ¢; occurs in d an even number of times. Evidently, any such

a is fully p-reducible.//

There exist arc colorings of a hypercube for which I1(G ) is not abelian. For
2 example, let d = 3, and let the edges of the unit cube be colored with colors

A, B, C as follows:

- v,
rd .. n'.
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(1,0,1)

c c

A
0,1,0) +/l/(l,l,o)
'

(0,0,0) (1,0,0)

This is an admissible coloring, but if we start at (0,0,0), moving along colors A

and C gives us (1,0,1), while moving along colors C and A gives us (0,1,1).

Theorem 5.4. Let I1(G ) be free abelian; then G is a subgraph of a hypercube.

Proof: Let the colors (# c) be ¢y, . . ., ¢4. Pick any node P of G and label
it with the d-tuple (0, . . ., 0). Let Q be the neighbor of P joined to it by an
arc of color ¢;; then label Q with the d-tuple (0, ..., 0,1,0, ..., 0), where the
1 is on the jth place. In general, if any node has been labeled (¢, . . ., €;),
where each ¢; is 0 or 1, and it has a neighbor joined to it by an arc of color ¢y
label it (e, . . ., €y €601, - . -, €4), Where ¢;" £ ¢; (ie., if ¢; is 0, ¢ is 1,
and vice versa). Since G is connected, this process assigns a label to every node.
Suppose it assigns two labels to the same node R ; then there are two paths from
P to R, corresponding to two strings of colors o and 3, and we have

Pa=Pp3=R. By Propositions 2.1 and 2.2, it follows that P (a@!) is defined

16
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and equal to P. Since II{(G ) is free abelian, a8™! must be fully p-reducible. By
Proposition 5.2, this means that af™! contains each color other than ¢, an even
number of times. Thus if r; is the number of times a contains ¢;, and s; is the
number of times § contains ¢;, r; and s; must have the same parity, 1<+¢ <d.
It follows that the labels assigned to R when it is reached from P along the two
paths o and 3 are the same. Thus the labeling process assigns a unique label to
each node of G. If we regard the labels as coordinates, this shows that G is (iso-

morphic to) a subgraph of a hypercube.//

16
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8. Near-abelian partial path groups and arrays

A partial path group I1(G ) will be called near-abelian if each ¢; 7 ¢, com-
mutes with all but one of the other ¢’s, and does not commute with the remain-
ing one. It follows that there must be an even number of ¢;’s (other than ¢).

Indeed, let the colors be ¢y, ¢y, . . ., ¢, . Let ¢, commute with all of the ¢'s

except (say) ¢o; then ¢, must commute with all of the ¢’s except ¢;. Thus ¢3
must commute with ¢, ¢o, and all of the other ¢’'s except (say) ¢, hence ¢,
commutes with all of the ¢'s except ¢ 3, and continuing in this way, we see that
m must be even. In the remainder of this section, we shall denote the colors by
Cor Cp - -+, Cks €4, ..., ¢!, where ¢; commutes with all the colors except
¢;y 1<i¢<k. If k =1, II(G) is near-abelian by default, since ¢, and ¢’ need
not commute; we shall assume from now on that k >2.

A permutation of a string of colors will be called admissible if it never rev-
erses the order of any ¢; and any ¢;' (1<i <k). Any reduction o' of an admissi-
ble permutation of o will be called an a -reduction of a. [Note that P o’ need not
be defined even if Pa is defined.] We call a a-irreducible if it has no a-
reductions, and fully a -reducible if @ = ¢, or a has ¢ as an a-reduction.
Proposition 8.1. « 7 ¢ is a-irreducible if and only if ¢ does not occur in a,
and for each ¢ #£ 0, ¢; and ¢;’ occur in a alternately (not necessarily adjacent to

one another).//

Proposition 6.2. o is fully a-reducible if and only if, for each 5 # 0, the

(sparse) substring of a composed of ¢;'s and ¢; s (ignoring all the other colors) is

17




fully reducible.//

A partial path group II(G) will be called free near-abelian if it is near-
abelian, and if Pa = P implies that a is fully a-reducible. In this section we
shall show that I1(G ) free near-abelian corresponds to G being a subgraph of an

array.

An infinite k-dimensional array is a graph G defined as follows. The nodes
of G are labeled with k-tuples (a,, . . ., a;), where each g, is an integer (posi-
tive, negative, or zero). Nodes (a,, ..., a;) and (a,, ..., ¢ ') are joined by
an arc if and only if all but one of the a’s is equal to the corresponding a’, and
the pair that are unequal differ by exactly 1. Thus each node P of G has degree
2k , since there are just two nodes that differ from P by exactly 1 in the value of
exactly one coordinate. If we think of the a’'s as coordinates in k-dimensional
space, then the nodes of G correspond to lattice points (i.e., points with integer

coordinates).

Theorem 6.3. Let G be a subgraph of a k-dimensional array; then there exists

a coloring of the arcs of G with 2k colors such that II(G ) is free near-abelian.

Proof: We define the coloring as follows: Let P,Q be two nodes joined by an
arc; thus all but one of the coordinates of P is the same as that of Q. Let the
coordinates that differ be a; and ¢;’; since they differ by 1, exactly one of them is

. to the arc between P and Q; if

even, say ¢;’. If ¢, = a;'+1, assign color ¢; )

a; = g; -1, assign color c]-’ to it. Thus if we move along a “‘row” of the array,

allowing only the jth coordinate to change, the colors ¢; and ¢;' alternate. The

18




arc between aj’ =0 and ¢; =1 has color ¢;, and that between ¢; =0 and
a; = -1 has color ¢;’, and this completely determines the colors of the arcs along
the row, no matter what the values of the other coordinates. A portion of such a

coloring for k¥ = 2 is shown below.

) ) ) ) i)
! c c,' c ' c
D=2, 2)—A— (-1, 2)—2L——1 0, 2) (1, 2)—21—(2, 2)—L
c2‘ c2' cz' c2' cz'
c,' c,' ' c
e —hqo2, 1)—Hq-1, 1)—T—( 0, 1)—2—( 1, 1)—L—y( 2, 1)—.
CZ CZ Cz C2 C2
' c c,' c c,' c
=1 (-2, O)—L— (-1, 0)——too( 0, O)——L—( 1, O)—A—vo 2, O)—t - -
c,’ cy’ ' c,! <y’
' c c,' c c,' c
D (-2, -1y (-1, -1)————( 0,-1)———( 1,-1)——( 2,-1)—* -
C2 C2 C2 C2 C2
' c,' c ' c
c (22, - 2) (-1, =2}k 0,-2)———( 1,-2)————( 2,-2)—% -
czl czl c2l czl c2|

Evidently this scheme uses only 2k colors, and the colors assigned to the arcs
emanating from a given node are all different, since a different pair of colors is
used when each of the £ coordinates changes. Changes in the values of different
coordinates evidently commute; hence each ¢; or ¢;’ commutes with all the ¢,’s

and ¢;"s for j 7 {. Let Pa = P;then a must give rise to as many positive as
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negative changes in each coordinate of P. Each succes;ion of positive changes in
the jth coordinate corresponds to an alternating sequence of ¢;’s and ¢;”s (not
necessarily adjacent to each other), and similarly for each succession of negative
changes. Let a succession of positive changes, corresponding to the alternating
sequence (3, be followed by a succession of negative changes, corresponding to the
alternating sequence ~ (or vice versa). The § must end and ~ begin with the same
color (¢; or ¢;'), so that o can be a-reduced. If 8 and v have the same length,
this a-reduction cancels them completely; if one is longer than the other, the
shorter one is cancelled, and the length of the remaining one is the difference of
the original lengths. Since the number of positive changes is still equal to the

number of negative changes, this argument can be repeated until all the ¢;’s and

.”

;s are eliminated. This can be done for every 7 ; thus o can be fully a-reduced.

¢
[Note that this proof does not depend on P o being defined for any of the inter-
mediate a-reduced strings o’.] Thus we have proved that when G is colored in
this way, I1(G ) is near-abelian. [The proof is longer than that of Theorem 5.2,

because we have no simple characterization of fully a-reduced strings; and it is

longer than that of Theorem 3.5, because we cannot assume that o is irreduci-

ble.]//

There exist colorings of an array for which [I(G ) is not free near-abelian.
For example, let ¥ = 2, and let the arcs be colored with colors, 4 ,B,C.D as fol-

lows:




A B
0,00+ (ﬁ) 4(2,0)

Here, at node (1,1), A and B commute with neither C nor D.

Theorem 6.4. Let II(G) be free near-abelian; then G is a subgraph of an
array.

Proof: Let the colors (#% cg)becy, ..., ¢, ¢y, ..., ¢’

Pick any node P of
G and label it with the k-tuple (0, . . ., 0). Let @ be the neighbor of P joined
to it by an arc of color ¢; (or ;'); then label Q@ with the k-tuple
©0...,010 ...,0)0r (0,...,0,-1,0,...,0), where the 1 or -1 is in the
J th place. In general, if any node has been labeled (a;, . . ., a;), where the a's
are integers, and it has a neighbor joined to it by an arc of color ¢j, then if a; is
even give that neighbor the same label except that a; is replaced by g; +1, and if
a; is odd give the neighbor the same label except that a; is replaced by a;-1;

and similarly if the color of the arc is cj', with the roles of odd and even

reversed. Since G is connected, this process assigns a label to every node of G.
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Suppose it assigns two labels to the same node R ; then there are two paths from
P to R, corresponding to two strings of colors a« and (3, and we have
Pa=PPf=R. As in the proof of Theorem 5.4, it follows that P(ag™!) is
defined and equal to P, and since [1(G) is free near-abelian, af" ! must be fully
a-reducible. By Proposition 6.2, this means that the substrings of o™} composed
of ¢;’s and ¢;"’s, for each j, are reducible. It follows from this that if we start at
P and make the sequence of moves defined by af!, the net change in each com-
ponent of the label must be zero, so that P{af™!) is given the same label
(0, ...,0) that P had originally. It is not hard to see that when we start at
P o = P 3 and make the sequence of moves defined by 3!, we produce the same
set of changes in the label components, in reverse, that we produced by starting
at P and make the moves defined by 8. Since the net effect of the label com-
ponent changes defined by P 3 and by (Pa)g™! is zero, it follows that the set of
label component changes defined by P a and that defined by P 4 must be the
same, in some order. Thus the labeling process assigns a unique label to each
node of G. If we now regard the labels as coordinates, this proves that G is

(isomorphic to) a subgraph of an array.//
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7. Some other types of arrays

The triangular array

Let G be a subgraph of the graph obtained by tessellating the plane
into equilateral triangles, regarding each triangle as a node, and joining two
nodes by an arc if the corresponding triangles share a side. Thus G has
degree 3, and its arcs can be colored with three colors A, B, C, eg., as

illustrated below:

Note that in this coloring no two of the colors commute, but they satisfy
other constraints, namely ABC = CBA, ACB = BCA , BAC = CAB.
The hezagonal array

Let G be defined analogously to case (a), but using a hexagonal
instead of a triangular tessellation. {Using a square tessellation evidently
gives us a two-dimensional array, which we have already studied.] Then G

has degree 6, and its arcs can be colored with six colors 4 ,B,C,D,E . F,
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e.g., as illustrated below.

In this coloring, A commutes with C and D, but not with B, E, or F, and

similarly for other combinations.

In [6], Mylopoulos defined a different type of group structure on an array; in
this structure a generator corresponded to a move in a given direction, and moves
in opposite directions were inverses of one another. A k-dimensional (square)
array gives rise in this way to a free abelian group on 2k generators (k genera-
tors and their inverses); and other types of arrays (triangular, hexagonal, etc.)
give rise to other types of abelian groups whose generators satisfy additional rela-
tions. In our scheme, square arrays correspond to free near-abelian groups, and

other types of arrays have more complicated characterizations; but our scheme
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also allows us to treat other classes of graphs, such as trees and hypercubes, in

el
DTN

addition to arrays, and they turn out to have very simple characterizations.
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8. Parallel contraction

We now show how parallel contraction operations can be defined for arc-
colored graphs. We define a parallel contraction of a graph G of degree d as fol-

lows:

(1) G is partitioned into a set of node-disjoint subgraphs G,, . .., G,, where

the number of nodes in each G; does not exceed some constant m .

(2) The contracted graph G’ has nodes P,, ..., P,, each representing one of
the G;’s. P; and P; are joined by an arc if and only if some node of G;

was joined to some node of G; by an arc.

A parallel contraction is called degree-preserving if the degree of G’ does not
exceed d. Recall that we are interested in parallel contractions as a method of
simulating large processor networks by smaller ones, or building ‘‘pyramids’ of
networks. A parallel contraction of G that preserves degree allows us to simu-
late G with a network G’ of bounded degree d, with each processor in the new
network simulating at most m of the original processors. Similarly, if we use G’
as the first step in building a pyramid on top of G, the degrees of the nodes of
the pyramid do not exceed d +m +1 (d connections to neighbors at the same

level, m to ‘‘children” on the level below, and 1 to a ‘‘parent’” on the level

above). Note that if (most of) the G;’s have m >1 nodes, G’ has (close to)—:n— as

many nodes as G, so a pyramid built in this way will taper (nearly) exponen-

tially.
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For simplicity, we shall consider here only the case m == 2, i.e., we contract
G by “merging” pairs of nodes into single nodes. We shall first assume that the

pairs of nodes are neighbors in G.

8.1. Merging pairs of neighboring nodes

Arc coloring provides a natural basis for parallel contraction of a graph by
merging pairs of neighboring nodes. We simply choose a color, say ¢;, and merge
all pairs of nodes that are joined by an arc of that color. (We shall refer to this
process below as “‘collapsing a color”.) Evidently this process can only merge P
with one other node, since at most one arc colored ¢; can emanate from P ; hence
the subgraphs that are merged by collapsing ¢; are guaranteed not to have more

than two nodes each.

Since G has degree d, when we merge a pair of neighboring nodes P and @
(ignoring for the moment the other merges that are occurring simultaneously),
the resuiting new node R has degree at most 2d -2, since P had at most d-1
neighbors other than Q, and @ had at most d -1 neighbors other than P. In
order to insure that our parallel contraction is degree-preserving, we must be able
to guarantee that the degree of R does not exceed d. There are two possibilities
for reducing the degree of R :

(1) If P and Q have A common neighbors, the degree of R will be reduced by

h.

(2) If k£ pairs of neighbors of P and Q are themselves merged by the parallel

contraction (i.e., they are joined by arcs colored ¢; ), the degree of R will be
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L reduced by k.
- We can express possibilities (1) and (2) in terms of arc colors as follows:

. (1) If ¢; ¢; = ¢, for other colors ¢; (this is the ‘“‘closure” property of Section 4),
P and Q will have common neighbors; in fact, the neighbor of @ joined to
it by an arc of color ¢; (if it exists) will be joined to P by an arc of color

¢; » and vice versa.

(2') If ¢;¢; = cj¢; for other colors ¢; (i.e., if ¢; commutes with other colors),
then other pairs of neighbors of P and @ must be joined by arcs of color ¢;
and so will be merged by the parallel contraction. In fact, ¢,¢; = ¢;¢;
implies that the neighbors of P and @ joined to them by arc of color ¢; (if

they exist) are themselves joined by an are of color ¢;.

% These observations tell us that collapsing a color will give us a degree-

preserving parallel contraction in the following cases:

a) Let G be a clique with its arcs colored as described in Section 4. If G has
an even number of nodes, say 2k, collapsing a color gives us a clique G’
with £ nodes. If G has an odd number of nodes 2k -1, collapsing a color
also gives us a clique with £ nodes, because in this case, for any color ¢;,
there is one node at which there is no arc having color ¢;. Note that in
these cases the degree of G decreases (from 2k -1 or 2k -2 to k-1); not only
does a pair of nodes in a clique have many common neighbors (in fact, all
the neighbors are common!), because of the closure property, but many pairs

of these neighbors will also merge. .
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b) Let G be a hypercube of dimension d with its arcs colored as in Section 5.
” Then collapsing a color gives us a hypercube of dimension d-1. Here too

the degree of G decreases, from d to d-1. In fact, because of the abelian

(=commutativity) property, when we merge neighboring nodes P and @ in
a hypercube, each of the other d -1 neighbors of P merges with one of the
other d -1 neighbors of @ .

¢) Let G be an array of dimension k (and degree d = 2k) with its arcs
colored as in Section 6. Here collapsing a color gives us an array of the same
dimension (but with half as many nodes). In fact, because of the near-
abelian property, when we merge neighboring nodes P and @ in an array,
all but one of the other d-1 neighbors of P merges with all but one of the
other d-1 neighbors of Q; the number of neighbors of the new node R is
thus (d-2)+2 =d.

In these examples we have assumed that G is a complete clique, hypercube, or

array. If G is only a subgraph of a clique, hypercube, or array, collapsing a color

may leave too many neighbors unmerged at some node of G . For example, let

G be a subgraph of a two-dimensional array, and let part of G be as shown

D

below:




Then when we collapse color ¢;, node R resulting from the merge of nodes P and
Q will have six neighbors. This type of problem arises when arcs are missing
from G; it does not arise when nodes are missing. Thus collapsing a color yields

a degree-preserving parallel contraction if the array is finite, if it is a complete

finite subgraph of an infinite array; problems arise only when the array is
‘“ragged”, as in the example above.
. Collapsing a color will yield a degree-preserving parallel contraction for any

- arc-colored graph having sufficient numbers of common neighbors and commuting

pairs of colors. For example, if G is the hexagonal array shown (in part) in Sec-

tion 7(b), collapsing color A gives the following result:

Here each node originally had six neighbors, and a pair of neighboring nodes had
two common neighbors. In addition, each color commutes with two other colors;
thus when we collapse a color, two other pairs of neighbors merge. In the case
shown above, nodes P and @ have a total of eight neighbors (because of the two
common neighbors), but when we merge them into R, it has only six geighbors

(because of the two additional merges of pairs). Thus collapsing a color in a




..........

hexagonal array does yield a degree-preserving parallel contraction, because of a
combination of the closure and commutativity properties. On the other hand,
collapsing a color in a triangular array (Section 7(a)) is not degree-preserving;
here there are no common neighbors, and no two colors commute, so when we

collapse a color the degree of a node goes up from d = 3 to 24 -2 = 4.

It should be pointed out that when we collapse a color, the arcs of the new
graph G’ will in general need to be recolored (if we want to use the colors as a
basis for repeating the contraction process). For example, in the hexagonal array
case shown above, node R now has two arcs colored B emanating from it; we
need to reintroduce color A and assign it to half of these arcs. Recoloring is not
necessary for a clique or hypercube, where the degree goes down when we collapse

a color; but it i3 necessary for arrays.

8.2. Merging nodes at distance 2

Collapsing a color will not yield a degree-preserving parallel contraction in
the case of a tree, because there are no common neighbors and no two colors
commute. Thus when we merge two neighboring nodes in a tree of degree d, the
resulting node has degree 2d -2, no matter what other disjoint pairs of nodes we
merge at the same time. Note that if d = 2 we have 2d-2 = 2, so that the
parallel contraction is degree-preserving; a tree of degree 2 is a string, which can

also be regarded as a one-dimensional array (it is near-abelian ‘‘by default”).

We can obtain a degree-preserving parallel contraction of a tree by merging

disjoint pairs of nodes that are distance 2 apart (i.e., that have a common neigh-
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bor), rather than pairs of neighboring nodes. For example, let us merge the cir-

cled pairs of nodes in the following (piece of a) tree of degree 3:

Then we obtain a tree of degree 3.

There is no obvious way of defining this type of merge in terms of arc colors;
if we color the arcs A ,B,C, say as shown above, we see that the merged pairs of
nodes have their common neighbors at the other ends of arcs labeled with all pos-
sible pairs of colors. In fact, suppose we wanted to define a parallel contraction
based on merges of pairs of nodes having a common neighbor to which they are
joined by arcs having a given pair of colors ¢, and c¢,. Given a node P, it (usu-
ally) has a neighbor @ to which it is joined by an arc of color ¢, and @ in turn

" (usually) has a neighbor R to which it is joined by an arc of color ¢4, so we can

- merge P with R. However, P will usually also have a neighbor Q' joined to it

.::f by an arc of color ¢,, and Q' in turn will usually have a neighbor joined to it by
2 v




an arc of color ¢, so we can also merge P with R’. In other words, arc colors
do not provide a basis for defining parallel contractions based on merging disjoint
pairs of nodes that are distance 2 apart.*

Merging pairs of nodes at distance 2 also yields a degree-preserving parallel
contraction in other cases. For example, in the triangular array of Section 7(a),

let us merge the circled pairs of nodes as shown below:

PN

Then we again obtain a triangular array:

*We could provide such & basis by considering the graph G? in_which two nodes are joined by an arc if and only if
they are at distance <2 in G, and introducing an arc coloring on G*. We could then define a paraliel contraction of G
by collapsing a color in G°. Note that the deg{ee of G° will generally be considerably higher than that of G ; for exam-
ple, il G is a tree of degree d, G%has degree d°. We wiil not pursue this possibility further here.
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In this case the pairs of nodes that we merge are all joined to their common
neighbors by the same pair of colors (B and C in Section 7(a)), but we are not

merging all such pairs.

T L LT T

As a final example, in the case of a two-dimensional (square) array, let us

merged the circled pairs of nodes

" "
2

Then we obtain a ‘‘diagonally oriented’’ square array:

Note that here the merged pairs of nodes have two common neighbors. Here
again, there is no simple interpretation in terms of arc colors; for example, we

could have equally well merged the opposite diagonal pairs.
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9. Concluding remarks

Arc colorings provide a basis for characterizing parallel contractions of a

. graph based on merging pairs of neighboring nodes. By introducing arc colors,
S we can define such contractions uniquely; merging all pairs of nodes joined by an
arc of a given color will never cause more than two nodes at a time to merge,

since a node can have only one incident arc of the given color. At the same time,

by introducing an algebraic structure, the partial path group, defined by the arc

colors, we can define conditions under which such contractions will not increase

the degree of the graph.

Merging pairs of nodes that have a common neighbor (i.e., that are at dis-
tance 2) seems to be a more powerful method of defining degree-preserving paral-
lel contractions; it works even for trees, which are a ‘“‘worst case’’ from the stand-
point of merging pairs of neighbors. It would be of interest to characterize the
- conditions (perhaps defined in terms of the partial path group of arc colors on

G ?) under which such contractions are guaranteed to preserve degree.
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