
ARD-AlSO 912 MICROi-COMPUTER BASED DYNAMIC ANARLYSIS OF LINEAR l,'l
UNDAMPED PLANE FRAME STRUCTURES(U) TEXAS A AND M UNIV

COLLEGE STATION L GOSHORN RUG 85 N663i4-73-A-212

UNCLASSIFIED F/G 13/13 N

*5

-J

1.8

1*5 14
-INIIII.

NATIONAL BUREAU OF STANDARDS
MICUOCOPY RESOLUTION TEST CHART

%N

..

i - - - - - - -. I , w e o . • - r . r - . r- - r . % . o . . • - o *. o o . " • .

. ; . " "" " .- "-" .-..

• ~~~~~~~..-. ... , •.. . . -. -. ''--...-......-..,......o..................
...........

'"" , T. ;,r ,,m
,

".................... i....

o

Micro-Computer Based Dynamic Analysis
of

Linear Undamped Plane Frame Structures

submitted to Dr. James Morgan
in partial completion of the requirements

f or Degree of Master of Engineering

L -:-TE

I,' E

r ~ ~ ~ ~ b :.tt ~ .-- bLarry Goshorn
.. -,August 1985

85 9 0 3

REPRODUCEn AT GOVERNMENT EXPENSE

Lyn,-h, M.DTIC ACCESSION
NOTICE

1. REPORT IDENTIFYING INFORMATION RQETR

A. ovvirfw~rofL. Put~c -Gu "umif address o If

qAVAL POSTGRADUATE SCHOOL, MoNTEREY, CA 93143 reve ffr
_,jj ,,Le~r' -yNs 2. ndEere Comptewte *mslIsoed2
.M yRT. 0 n09 o tnby ancmrery3, Attack form to reports

;i'nerataile tn vtm o DTIC.
en ra MONTO9 SysemsT U 4. Use unuclassified Informastbnu

C MOITORREPOT NUBERonly.

)V: . ~Icic1Lynch. Junie 1984 Tvxas AMM
o PRE PAMED LUNDER CONTNACT NUM090DIC

6it31 4-73-A-2 112
____ ___ ___ ____ ___ ___ ___ ____ ___ ___ ___ I Assigin A[) Number.

2. DISTRIBUTION STATEMENT 2. Return cc) requester.

APPROVEI) FOR PUJBL IC EELEAME:
DISTRIBUITIONh UNLIMITED1.

DTI,'rR"'50P~f VIOUS Iu[H I IO1NS APE OI3SOLL T E

all.

ftpg

CE-685 Larry Goshorn
Term Project August 1985

('K

Sgnopsis

-The paper presents an assimilation of mathematical models and solutions
needed in order to develop computer based analysis of dynamic structures.
Using the variational formulation and a direct integration technique, a dynamic
finite element model is developed. Modal analysis of unknown displacements of
the structure, and the dynamic reduction of the structure are presented as
alternative solutions. A system of micro-computer based programs which apply
the presented solution techniques is described. The system of programs support
varying cross sections of frame members, application of static, harmonic and
non-harmonic loading conditions, and node displacements in the form of
uniform base motion or independent node movement. .- lA , .

A I ,

for) .r •--,

. ptrtl~i%-J et,

,-t-

• . ,° -.- - -.- -.-. .' -. o.- , .. .* .. o.- °- *% . % " '. . " . . , . " % % % . , %t i .b- *

o'** '. o~t'z.'.' '%*' , =,% --'. .'= *'. . % .' '% ." .% .%' .% .% '. ', :." . % .'- *. '- " -'' '% % " "-,. ° ",% ' " **t " C.

C CE-685 Larry Goshorn

Term Project August 1985

Table of Contents

-aection aae Number-
Intro ductio n ... 1

Finite Element Formulation 2
Discretization 2
Br .i e ; nt .. 2

Variational Formulation of Governing Equation 3
Matrix Equations .. 3
Shape Functions ... 4
Elem ent Matrices .. 4

Beam lemnt 5
Variational Formulation of Governing Equation 5
Matrix Equations .. 6
Shape Functions ... 6
Elem ent Matrices .. 8

Frame Element .. . 8
Description ... 8
Element Matrices .. 8

Assembling Global Matrices 9
ADlication or Essential Boundaru Conditions 10

Independent Node Motion 10
Base Movement ... 10

Time Approximations .. 12
The Newmark method of Direct Integration 12

- Procedure Summary 13

M Modal A nalysis 14
The Elaenvalue Problem 14

Uncoupling the Equations of Motion 15
Solution of the Eigenvalue Problem 15

Procedure Summary 17

CE-685 Larry Goshorn
Term Project August 1985

Sorction Pag Number-
Reduction of the Equations of Motion 18

Static Reduction .. 18
Including Inertial Effects 20
Procedure Summary 22

The Dynamic Finite Element Program 23
DuFEP.menu .. 23
DUnFEP.create data file 23
DunFEP.mass/stiffness 24
DynFEP.essential BC .. 24
DunFEP.reducg ... 25
DunFEP.eigen solver ... 25
DUnFEP.uncouole/solve 25
Dy F ,E .. 27
Data Files .. 27

Inform ation Data File 28
Node Data File .. 28
Elem ent Data File .. 29
Displacement History File 31
Reduction File 31
User defined force or displacement history files 32
Other Permanent data files 32
Temporary data tiles 33

Conclusions 34

B ibl Iographg .. 36

DunFEP.menu Flow Diagram and Listing A-I
DunFEP.create data file Flow Diagram and Listing A-4
DunFEP.mass/stiffness Flow Diagram and Listing A-7
DUnFEP.essential BC Flow Diagram and Listing A-Il
DunFEP.reduce Flow Diagram and Listinq A-13
DunFEP.eien solver Flow Diagram and Listin A- 16
DuFEPuncouple/solve Flow Diagram and Listing A-19
DunFEP Flow Diagram and Listing A-24
Listing of Universal Sub-Proarams A-29

CE-685 Larry Goshorn

Term Project August 1985

introduction

Computer analysis of dynamic structures has for some time been limited to
mainframe computers. The importance of conducting a detailed analysis of any
structure is evaluated against access to, and the cost of using a mainframe
application to do that analysis. There are situations where analysis by
mainframe is not possible or is not justified. in such cases, solution by hand
may be impractical. There is a need to conduct rigorous analysis of dynamic
structures that are too simple to justify using mainframe applications and too
complicated to be solved by hand. Micro-computers are viewed as a possible
means of satisfying this need.

The large amounts of memory required by the techniques which enable dynamic
structures to be modeled in a form solvable by a digital computer have restricted

their implementation on micro-computers. However, these techniques continue
to be studied, refined, and combined with other techniques in the attempt to
develop an optimal solution. In addition, micro-computers with abilities to
address memory measured in the multi-megabytes are becoming widely available.
With improved techniques and larger memory capacities, one can expect that
rigorous analysis of simple dynamic structures will soon be done conveniently

*: and inexpensively using micro-computers.

Toward that end, the mathematical formulations required to model dynamic
structures on a micro-computer are synopsized. Combining these methods with
a technique of reducing the complexity and number of resulting equations then
results in an useful engineering analysis tool.

* The paper first illustrates how the Finite Element Method is used to discretized
the problem and express it in a matrix form. Next, the Newmark method of direct
integration is used to simplify resulting integrations with respect to time.
Further simplification of the equations are made possible through formulation
and solution of the eigenvalue problem. Finally, a method for reducing the
number of equations which must be solved is presented.

To show how the above techniques are applied to a micro-computer, a system of
programs is described. The programs are capable of solving the resulting
equations for dgnamic analysis of undamped linear plane frame structures using
ani of the presented solutions. Flow diagrams and program listings are provided.

Pap Ipa-#
,- ' -. .,'-'- . .-- " . ,- ,' ,. '.. .: • --. , , ', ' .. '. ,. , . ,- . ..,..,,,. . ,, '. .

CE-685 Larry Goshorn
Term Project August 1985

Finite Element Formulation

The Finite Element method is widely used in the analgsis of structures. It has
the ability to systematicallg describe a structure in a matrix form which is
easily applied to computer computation. Understanding the methods bg which the
matrix form is arrived at is important in understanding the capabilities and
limitations of a computer application which employs the method.

The derivations presented in this section draw heavily from a text by J. N. Reddy,
"An Introduction to Finite Element Method* (see the bibliography).

Discretization

This model will describe a structure as an assemblage of two node frame
elements. Each node will have three degrees of freedom, horizontal, vertical,

* and rotational movement. Mathematically, the frame element will consist of a
superimposed one-dimensional bar element and a two-dimensional beam element.
The bar and beam element are superimposed in a manner that assumes the
transverse and rotational deflections/loads are independent from axial
def lections/loads.

- The governing differential equation for the bar element is:

a 2u 8) AE.u 1
m- + AE- + F(x,t) 0
at2 ax ax

v Where F(x,t) is an axial forcing function which varies linearly with x, m is the
mass per unit length, A is the cross sectional area, and E is the modulus of

* elasticity. Damping has been ignored.

i The variational formulation is found by integrating the governing equation
* against a test function over h, the length of a bar element.

Peg 2
.- . . " . ",.-. •..- . • , -...-..-.......- ,,-

= CE-685 Larry Goshorn
Term Project August 1985

v m- - [AE- + F(t) dx= 0
0

Integrating:
h x=h

82 8u Bu 8u
1vm + AE -- +vF(x,t) dx - MAE- = 0

aI ax ax x=0

The last term of the above expression corresponds to the natural boundary
conditions at either end of the bar element and will be denoted as P1, the axial
force on the left side and P2. the axial force on the right side of the element.

Assume that u is interpolated by a linear expression of the form:

2U E ujt) +j (x)

j=l

Assuming that u and t can be separated, for any given time t>0, the above
expression is substituted for u, and v = +i(x). The matrix formulation results:

[MlJ{u") + [Klfu) = (F(t))

Where (') means differentiation with respect to t and:

Mij m Ji~j dx Ki AE- dx
I 0 0A dx dx

h
Fi J 'iF(xt) dx + Pi(t)

0

Note that in the physical meaning of the above expressions, Mij KIj do not vary

with time. While Fi and Pi(t) vary with time, solutions will be based on the

specific values of F(x,t) and Pi(t) at given points in time.

Pae*3
I '. " • . .° " ". ." .'. . . . ° .o ° . *. % .° " ' ' ' ' '.°. ' ' ''.°- . ' . * .

CE-685 Larry Goshorn
Term Project August 1985

The interpolation functions +i (for i=l to 2) must be sufficiently differentiable,

independent of one another, complete, and must satisfy the essential boundary
conditions. The expressions +1 = a, + a2x and 12 = a, * a2x are surf lclentlu
differentiable, independent, complete, and values for the coefficients can be
found to satisfy the essential boundary conditions. Below the Seredipity method
is used to derive the interpolation functions:

The boundary conditions are:
j,1(x=O) = 1 ' 2(x=O) = 0
+,(x=h) 0 ,2(x=h) = I

Solving for coefficients:
+,(0) = a, = 1 i2(h) = a, = 0
+1(h) = 1 + a2h = 0 + 2(h) = a2h = 1

x x+1I + - *2 = -h h

*' These interpolation functions are used in the above expressions for Mij, Kij, and

*" Fi to derive the element matrices. In the derivation, the cross section of the

element and the distributed force F(x,t), are allowed to vary linearly with x. The
modulus of elasticity, was assumed to be constant.

[KI- (A, A2)
2h

h [(3m,+m 2) (m1+m2) 1
[MI - I

12 (Mi i M2) (m 3m2)

6 2f, + f2 1 P1
(F) +

h , f 2f2 -P2

*r Where the subscripts indicate values at the left and right end of the bar element.

Pag*4
."* *

CE-685 Larry Goshorn
Term Project August 1985

The Beam Element
The governing equation for the beam element is

8 2U 02 r 2U 1
m- + - Elj- + F(x.t) =0

t2 ~x 2 [8x 2

Where m is the mass per unit length, F(x,t) is a distributed transverse forcing
function. Integrating the governing equation against a test function over the
domain of the beam element gives

S [82U 02 r 8 2u

v m- - - El- + F(xt)Ixd=0
at2 Bx2 8 X2 j]0

Integrating:
h x=h

vm- -- El - vF(x,t) dx~v- El- = 0
at2 ax 8x aX2 ax aX2

10 JJx= 0

The last term of the above expression corresponds to the shear (natural boundary
condition) at either end of the element and will be denoted as Q (shear at the
left end) and Q3 (shear at the right end).

Integrating the second term again:

h x=h x=h

m +2u El- - + vF(xt) dx+vQ i El- 0O mx 2 Ox2 ax ax2

0 x=O x =O

The last term of the above expression corresponds to the moment at either end
of the element (natural boundary condition), and will be denoted as Q2 (moment
at the left end) and Q4 (moment at the right end).

Page #5
., .. .',..,:.,,,- "'' . . .-. .. .- ,;,- .'.-.-' ..- . -..'.'.., ". - .- .',.. :-.. %-*.. - .* .q- -...... :

CE-685 Larry Goshorn
Term Project August 1985

The displacement is again interpolated by an expression of the form:

2
U = 7. uj(t)f j(x)

j=1

Substituting the above expression for u, and v=i(x) results in the matrix

formulation

[Ml(u") + [Kl{u) = (F(t))

Where (') means differentiation with respect to t and

h rh d241 d2fP
MIj m4ifj dx Kij AE=AE dx

0 0 dx2 dx2

h
Fi = J +iF(x,t) dx + Qi(t)

0

The interpolation functions +i (for i=1 to 4) must be surficiently differentiable,

independent of one another, complete, and must satisfy the essential boundary
conditions. The expressions j|=a,.a2x+a3x2 +a4x3 and f2=a,+a 2x+a3x2 a4x3

are sufficiently differentiable, independent, complete, and values for the
coefficients can be found to satisfy the essential boundary conditions. Below
the Seredipity method is used to derive the interpolation functions.

The boundary conditions ('denotes differentiation with respect to x):
-,(x=o) = I i 2(x=O) 0
+i,'(x=O) = 0 ',2'(x=O) -1

0 (x=n) 0 o2 (x=h) 0
+,'(x=h) = 0 12'(x=h) 0

Solving for the coefficients:
+ $(0) = at = 1 +z(0) = a 0 =0
+'(0) = a2 = 0 +2'(0) a2 =-l
,1 (h) = I + a3h2 + a4h3 = 0 +2 (h) =-h + a3h2 + a4h3 = 0

+.'(h) = 2a3h + 3a4h2 = 0 +2'(h) = -1 + 2a3h + 3a4h2 = 0

Page 6

- ,. '. *.,.. * .l,.-... 1,., m, --". .JL 4, - ' I IaW Im m -* k * . * *'
i j l #i# ' .II " llI ,I !I% I l ' I#.li-Ii e l II . ' IIIII II i i

"
, i"III"I -IIi

CE-685 Larry Goshorn
Term Project August 1985

h h3 a3 [-1 h2 h,3 a3 h
2h 3h2 Ia4 0 }2h 3h2 I a4} 1

X2 X3 X2 X3

I -3- +2- 42 =-x+h 2- -2
h2 h3 h h2

The boundary conditions ('denotes differentiation with respect to x):
4/3 (x=0) = 0 4 (x=0) = 0

D(x=0) = 0 44'(x=0) = 0
+43 (x-h) = 14(x-h) 0

4 3 °(x=h) = 0 4*4 '(x-h) - -1

Solving for the coefficients:
+3 4/(0) = al = 0 4 4 (0) = a, = 0
f43 '(0) = a 2 = 0 4 4 '(0) = a2 = 0

+p3(h) = a3h
2 + a4

h 3 1 4 (h) = a 3h2 + a4 h3 = 0

+3'(h) = 2a3h + 3a4h2 = 0 +4'(h) = 2a3h + 3a4h2 = -1

2h 3h2 a4 0 2h 3h2 IIa 4 [1

X2 X3 X2 X3

43 = 3- -2- 4
h2 h3 h h2

These interpolation functions are used in the above expressions for Mij, Kij, and

Fij to derive the beam element matrices. The cross section of the element and

the transverse loading function F(xt) are allowed to vary linearly, but the
*. modulus of elasticity is held constant.

Page #7

-, . o . ._ ,, . . ,- '. ,- . , . . . ; , , , " . ' . , " ,

CE-685 Larry Goshorn
Term Project August 1985

601 +12) -h(411 + 212) -6(11 + 12) -h(211 + 412)

E h2(311 +I2) h(411
+ 212) h2(11 + 12)

h3 (sym) 6(li + 12) h(211
+ 412)

11h2(1 * 312)

h(Om1 +.3m2) -h2(151, + 712) h(9mt + 9m2) h2(7m, + 6m2)

" II h3(5m, +3m2) -h2(6m1 + 7m2) -h3(m, + m2)[M =-
830 (sym) h(3m, + lOm 2) h2(7ma + 15m 2)

h3(3m, + 5m2)

15(ft-3f2) 0l

h -h(3fl + 2f2) 02(F} = -

60 3(3f1 I 7f 2) Q3

h(2fa + 3f2) Q4

*Frame Element
The bar and beam elements are now superimposed upon one another to form the
frame element. It is assumed that forces and displacements in the axial
direction and in the transverse direction are independent of one another. The
resulting element matrices are shown below.

h2(A 1+A2) -h2(A I+A2)

12(1+12) -2h(41 1+212) -12(I1+12) -2h(211+412)

E 2h2(31 1+12) 2h(411+212) 2h2(1 1+12)
[K

h2 (AI+A 2)

(sum) 12(1+12) 2h(211+412)

22(I 1+12)

Page 48

7-. -,, 7 .7 -. - .. .

CE-685 Larry Goshorn
Term Project August 1985

70h(3m I +mn2) 70h(m I +m2)

24h(1 Om 1+3m 2) -2h2 (15m 1+7m2) 54h(m I in2) 2h2(7m 1+6m 2)

1 h3(5rn 1 3m2) -2h 2(6rn 1+7m2) -3 3 (m 1 m2)
[MI-

840 70h(m 1+m2)

(sym) 24(3m I+1 O 2) 2h2(7m I+ 15m2)
h 3m 1+5m2)

10h(2fI + f2) PI

l5h(fr-3r2) O

I -h2(3f, + 2f2) 02
(F) = -

60 loh(r1 + 2f2) -P2

3h(3r + 7f2) 03

h2(2f1 I 3f2) 04

Assembling Global Matrices
Prior to assembling the element matrices into the global matrices, the element

- local coordinates must be converted to global coordinates. This is done by
premultiplying the stiffness and mass matrices with the following
transformation matrix. The element force matrix is premultiplied by the

* transpose of the transformation matrix. The angle e is measured from the friom
* the positive x direction clockwise:

cose -sine

cose
o -" " 1

cose -sine

(sym) cose

When the element matrices are assembled, the internal element forces, PI, Q1, Q2,
." P2, Q3, and Q4 are canceled out by the internal element forces of adjoining

elements. There may, however, be externally applied loads at the nodes, if this

Page*9
_*."

CE-685 Larry Goshorn
Term Project August 1985

is the case, they are added Into the formulation as shown in the above expression
for the force matrix. Note however, that since the loads are applied directly to
the nodes, that the coordinate transformation is not appropriate.

ADluing Essential Boundaru Conditions
In the development of the mass and stiffness matrices, the shape functions were
developed in order to account for essential boundary conditions but essential
boundary conditions were never actually applied. As a result, the stiffness
matrix is currently singular and can not be inverted (ie, the problem can not be
solved as is). One consequence of this is that this configuration can not be used
to solve for displacements of structures which are not anchored in some way to
an immovable object (as an example an object floating in space). Application of
essential boundary conditions constrain the structure and the stiffness matrix
becomes non-singular. 0

There are two approaches to apply the essential boundary conditions. Since the
, displacement of a node in a particular degree of freedom is known, the
- corresponding equation in the matrix formulation is simply changed to reflect

the known value. The Guass elimination scheme used to solve the simultaneous
equations will insure that the influence of the displaced node is properly

*: reflected thorough out the structure. This is the method used in the program
* DynFEP. It has the advantage that all constrained nodes need not all move at

once or in the same directions, in addition rotations of individual nodes can be
Investigated with this approach.

. An alternate approach is described in the referenced text by Clough & Penzien.
The common approach used in earthquake analysis, is to drop the row and column
corresponding to the displaced/constrained node from the formulation, reducing

*- the number of simultaneous equations to be solved. Then effects of base motion
:* are added into the formulation. This is done by adopting a coordinate system

where the unknown displacements are relative to the movement of the base of
the structure. Then an Inertial term is added to the right hand side of
appropriate equations. As an example, if the base of the structure experienced a
horizontal displacement, then an inertia term would be added to every equation
in the matrix formulation which pertained to horizontal displacements. In
matrix formulation an acceleration vector accounting for horizontal and vertical
movement is developed and premultiplied by the mass matrix to obtain the
inertia term, this column matrix is then added to the right hand side of the

Papg 10
* ' oO . • ° .- o . o =.• • == - o°= ,. . . -. ., ° - - , •* . - , -. .* *- % • .- • • . - .- - -

%,q i o • • ° -. •.
o

••-. *• • . • .• . *, *o.•• . . *• = • .-

CE-685 Larry Goshorn

. Term Project August 1985

*- equations.

Rotations are normally disregarded in this approach. First because earthquakes
seldom display any rotational components and second because the bookkeeping

" chore is very burdensome. The inertia effect of a node rotation on another node
is proportional to the lever arm between the two nodes. Thus, for each node that
rotates the lever arm between it and all other nodes must be found in calculating
the inertia term. In addition, its very difficult to conceptualize the inertial
effects of one node on another when several nodes are rotating.

* The DynFEP.uncouple/solve and DynFEP.reduce programs presented below are
formulated in the above manner.

Page* 11

* .* *°. - , . .

CE-685 Larry Goshorn
Term Project August 1985

Time Approximations

The Finite Element Method provides a method of converting the differentials with
respect to x in the governing equations into a linear algebra problem suitable for
solution by computer. During the derivation it was assumed that displacements
with respect to space and time could be separated. We are now faced with
solving the resulting matrix differential equation in time.

[M]{u") + [K]Iu) = (F(t))

In order to utilize a computer based solution, the above differential equation

must also be simplified to an algebraic form. The Newmark method of direct
integration is a commonly used technique to accomplish this. The Newmark

, method is described in referenced texts by Reddy, Clough & Penzien, and Batte &
* Wilson. It is based on the following assumptions:

[:: u')t.,t = u'}t + [(0 - fi){u" t + Sfu"}t+',tlbt (I)

U)t.t (U)t + (U')tAt + [(1/2 - c)(U"t + oc(U")t ,t)At 2 (2)

Where o and 8 are parameters that can control the integration accuracy and
stability. When 8=1/2 and o=1/6 the above expressions correspond to a linear
acceleration assumption. When 8=1/2 and O(=1/4 above expressions correspond to
a constant-average-acceleration assumption.

- Working with equation (2), acceleration for a new time increment can be
: expressed in terms of current displacement and values from the last time

increment.

.o{U"t+.tAt = U~t ,t -(U~ t -(U'}At -(1/2 - o)(U")t At

1: 1 (1/2 - o)

{U")t,-t = O ((U)t+,t - (U)t) - _.._ (U')t - __ (U")t

- (u)t) - a2(u'}t - a3(u")t (3)

Pog 12
-..................................

"" . . . =-.a . ,. .. , . -~n= -,~a~im uhnl gkm.Ii 6-

CE-685 Larry Goshorn
Term Project August 1985

Substituting equation (3) into the discretized equations of motion:

[M(a((u)t,=t - ut) - a2(u'}t - a3(u")t) + [Klu)t+t = (F)t+,t

(al[M] + [K])ut+;,t = (F)t+,t + [MI(tu)t + a2fu)t + a3 u") (4)

Using the above equation the procedure for direct integration is as follows:

1) Knowing displacement, velocity, and acceleration from the last time
step (or from initial conditions), find displacements for next time step using
equation (4) above.

2) Using equation (3) find current acceleration.
*3) Using equation (1) find current velocity.

4) Proceed to next time step.

- The Newmark method is unconditionally stable for cx=l/ 2 and 8=1/4 and is
normally stable for (=1/2 and 8=/r. In order to also insure accuracy of the
method, At should not exceed:

Atm Tmin 2

T1" Wmax

rPage 13

I "'. '- -.."- -""- .'- . ". -. .-...."." ;;. .-- -"-- .;- . .'.:. : .'.i.' P...egs.-. ' .. .-: I3. '
........... -. . . -. . - -. .- ., ; = , " " I"- ,- "r

'
% ' " ',-'"'"

CE-685 Larrg Goshorn
Term Project August 1985

Modal Analysis

The Finite Element Method and the Newmark method, are used above to convert
the differentials which govern movement of plane frame structures to a set of
simultaneous algebraic equations. These equations are then solved repeatedly in
small time steps to obtain the displacement response of the structure over time.
Given this method of solution it should be obvious that anij means to further
simplify the solution process will be valuable.

* The texts by Clough & Penzien, and Bathe & Wilson present a widely used method
to uncouple the simultaneous equations so that they mag be solved independentlg
of one another. The method involves expressing the equations of motion as an
eigenvalue problem, solving the eigenvalue problem, and then re-expressing the
equations of motion in a coordinate sgstem which has been generalized bg the
eigen vectors.

The Eigenvalue Problem
If the structure in question is in free vibration then the forces on the right hand
side of the equations of motion are equal to zero, [Miu")+[Kiu)=(O). The
solution for each degree of freedom is then (u)={P)sin(wt). Substituting this
solution into the equations of motion

_-W2 [Mil 0isin(wot) + [Kllfisin(wt) = (0)

&IK _-W2 [Ml){9))sin(w t) = (0)

Since sin(wt) is not equal to zero for all t,

([K] -w2[M1)(J) = (0)

A non-trivial solution to this sgstem of simultaneous equations exists onig
when I[KJ -0 2[MI =0. When this determinate is expanded, it results in an
algebraic equation of the ni degree (where the dimensions of [K] and [M are
n-be-n). The n roots to this equation, wi (where =, 2,. . .., n), represent the
frequencies of the n modes of vibration that are possible in the sgstem. The

Pogp 14

i ,.............*-a ll
, ,i

eiiiil i-i .*--.-H .r

CE-685 Larry Goshorn
Term Project August 1985

associated elgen vectors, (. describe the relative displacements of the

structure nodes in the A-tJ response mode. The total response is given by the sum
of the mode responses each multiplied by a currently unknown amplitude.

The eigen vectors are [K] and [MI-orthogonal. Thus {Oi)T[MP i}=[Mn] , where

[Mn] is a diagonal matrix, and ([I)T[K]{fi)=[Kn, where [Kn] is a diagonal matrix.

In addition {ji)T[MIPj }=[O], and [pi)T[KfP j=[Ol where ixj.

The advantage of the modal analysis is seen when a generalized coordinate
system is defined as (u) [R }U. Where [41 is a matrix made up of the individual
eigen vectors. Premultiplying the original equations of motion by [R]T and
substituting the generalized coordinate system into the equation of motion
results ir

[] {[Mp "},- +]+TK[H)[t:}=]T[F(t)}

[Mn]{&"} + 11(n]{(0 = [,t]T{F(t)}

Stated in terms of the generalized coordinate system, the equations of motion,
are uncoupled. Since [Mn] and [Kn] are diagonal matrices each equation in the

above system of equations is independent of the others.

Solution of the Eigenvalue Problem
Clough & Penzien describe a matrix iteration method originally developed by
Stodola to solve the eigenvalue problem. The eigenvalue problem is restated as
follows:

[K]{(O} = W2[Mi{ O}

Rearranging:

[K- 1 [MI}J) = - M}

The Stodola method consists of using a guessed trial mode shape, Wtria on

the left-hand side of the above equation to calculate a new guess on the

POP*5 ..

CE-685 Larry Goshorn
Term Project August 1985

right-hand side. The square of the frequency is obtained by dividing any
component of the new guess by the same component of the original guess. The
new guess will always be better then the old guess, and the process will
converge to the lowest mode or frequency.

Using the orthogonal properties of the eigenvectors it is possible to eliminate
the components of any particular mode from the total response of the structure.
By eliminating the first mode components from the total response it is possible
to use the above method to find the second mode response (since it v'ould now be
the lowest). Extending this approach, succeeding modes can also be found.

Expressing a trial mode shape in terms of its modal components and then
premultiplying both sides by {fP)TIM]

n
ifotrial (i)Ai = (SOIAI + (' 2)A2

+ ('93)A3 (n)Ani 1

({SI}T[MI{ftrial)= ({O)T[MI(01)A,+ (S)T[MI{p 2)A2 , + S (1}T[M{Sn}),n

• '- { 0}T[M]{ Str ia i }= [ITM] °}

Solving for A,:

A, { lT[]if{trial}A1 =~ 1 TM~c 1

Subtracting the first mode shape from the original trial mode shape results in a
new trial with no first mode components, {IO trial(,) "

D {SO1){fot}T[M !{ftrial(1) =ftrial} - {9 1)At = [trial} - {strial
- {dp)}T[Ml{Sp1}

* This can also be expressed as {'trialo } [S1]{Ttrial , where:

(pI}[(1I)T[MI

lsll = Ill - 1)

Pap 16
: {SO|}TI.I]* ..

I. r 0 -

CE-685 Larry Goshorn
Term Project August 1985

The [S11 matrix is referred to as the first mode sweeping matrix. It has the
property that when multiplied by any trial vector it removes the first-mode
component. Sweeping matrices which remove more then one mode shape can be
constructed in a similar matter. As an example, a sweeping matrix which will
remove the first, second, and third mode shape components from a trial vector

*would be constructed as follows:
{i}{ I} 1T[M] { }IzT[MI 0}{}TM

[S 31 [1 1 - [(p1 }f 2fT[M 3) ((} - (TM I (f-3)(p3} T [M

The resulting Stodola matrix iteration model to find the fourth mode shape and
eigenvalue becomes:

[K - ' [MIS 31{(c 1- -({9

The method of solution suggested by the above methods consists of the
following:

1) Find lowest mode shape and eigenvalue using the matrix iteration.
2) Using the newly calculated first mode shape eliminate the first mode

components.
3) Repeat the procedure for the next mode shape and eigenvalue.

- Each successive mode shape is based on eliminating the previous mode's
components. According to Clough & Penzien, numerical roundoff errors which
allow any previous mode components to remain In the sweeping matrix are
accumulative. Thus In order for the sweeping matrix to perform effectively for

- higher modes It is necessary to retain a great deal of precision In calculating the
lower modes.

* The eigenvalues and eigen vectors are now used to form the uncoupled equations
" of motion. The Newmark method is applied to the resulting independent
_- equations. The independent equations are solved in the terms of the generalized

coordinates, Qc), while stepping through time. In each time step the real
* displacement vectors are found from the relation (u) = [.JP:).

Page#17
° - * ~ . . : ~ - - * '

=° oo:° - ;. ;. o oo- **.-.*o- °°-.-.* *oo° o.-- * * -. °., -... Q o°o/.- .- f-..-°o. .:.o. .,= = o°-.°-.'-.

CE-685 Larry Goshorn
Term Project August 1985

Reduction of the Equations of Motion

When the above methods are applied to real structures, very large matrices and
*correspondingly large computer capacity are required to solve the resulting

equations. It is thus desirable to reduce the number of equations which must be
solved. In the study of structures it has been determined that only the first few
response modes contribute significantly to the overall response a structure. It

r is therefore reasonable to ignore the higher modes of response if it will reduce
," the number of equations to be solved.

Robert J. Guyan described such a method of reducing the number of equations to
be solved in a paper to the AIAA Journal. The method consists of a static
reduction of the structure. Working with the static description of the structure,

*. the matrices are partitioned by the nodes which will be retained in the solution
" (referred to as the primary nodes), and the nodes which will be eliminated from

the formulation (referred to as the secondary nodes). It is assumed that no
external loads will be applied to the secondary nodes.

[[Kp1 [K 5I J(up) (f) 1
I.[Kspl [Kssl (us) (fs J

This results in the following two matrix equations:

[Kppl(up) + [KpslU s) = fp) (5)

IKsplJu p) . [K+sIus) = (fs) = (0) (6)

. Multiplying the second equation by [KpsIKss1- 1

[K HUKSV [I lu) + [K SHK [K H [K INu5 (0)
.,i~i [ps][ss] - [sp p} +[ps [ss] - [ss l s } 0

[KpsI[Kss l- I [Kspl(u p) + [Kps(us) = (0) (7)

Pap # 18
.

CE-685 Larry Goshorn
Term Project August 1985

Subtracting equation (7) from equation (5) gives:

,=: [K*Ilup = fp

Where [K*] is the reduced stiffness matrix, found by the following expressiorn

[K.] [K=1 - [Kps1[Kss- 1 [Ksp]

In addition, from equation (7) a transformation matrix can be obtained to
*convert between the primary and secondary displacement values.

(Kpsllu s } = -(Kpsl[Kss 1- 1 [Kspllup)

(us) -[Kss] - I [Ksp(lu p) = -[Tl(up) (8)

Rearranging:

[u] (up)

The kinetic energy of the structure can be expressed as:

T = 1/2(U')T[Miu)

. Substituting the above expression for (u) results in:}',)TI [MP }MS] U
T =1/2 (u'p)T U-pT1, [rls [rl -ITl

1-[T] [M9pl [INS1 -[Ti] up

* *.* . . . i . ~Paps 19 .. *

.'-. -i " - --. . -/ .. ' , . ' .. -. - ,. -. . .- . -, . - . I ' . . - '. -. %,. . .-.

CE-685 Larry Goshorn
Term Project August 1985

Thus it can be seen that the reduced [M] can be expressed as:

[T] [Msp][IMss [-[TJ

Expanding the above expression and substituting the expression for [TI we obtain

the simplified expression for [M*:

[M]= [MppI- [MpsI[Kss] -1 [Ksp - [Kps][Kss] ([Msp- [Mss][Kss]- I [Ksp]) (9)

The above method has reduced the mass and stiffness matrix of the structure and
therefore the number of equations which must be solved. However, the

.- transformation matrix [TI used to find the displacement of secondary nodes has
ignored any inertial effects. The exact expression for [TI is found by expressing
the eigenvalue problem in the partitioned form:

[K I [KpSI -Y2 [[M5 I [11[[p I[MPS] 1 [p~)1

Working with the second partitioned matrix equation the exact transformation

matrix for the elgen vectors is obtained:

[Ksp[fp) + [KssIf Os) - 1 2[Msp][f) - c2[Mss](S) = (0)

((02[M SO - [Kss])(Fs) = ((2[MspI [Ksp){ p}

[T] = (02[MsI - [KsI)- 1 (W2[Ms - [KspI)

* Note that if the inertial terms in the above expression are neglected, the same
transformation matrix developed earlier, based on a static derivation, is
obtained. The above expression, however, involves an eigenvalue based on the
complete set of equations and requires that an inversion of the (W2 [Mss] - [Kssl)

. term be found for each eigenvalue.

Page #20
* o o

CE-685 Larry Goshorn
Term Project August 1985

Charles Miller describes a transformation matrix which is more accurate then
the one derived previously and more convenient then the exact formulation in a
paper to the Journal of the Structural Division, Proceedings of the ASCE.

Mr. Miller notes that (2[MSsO and W)2[Mspi are normally small when compared to

[K55 1 and [Kspl. With this in mind he expands the (W2[Mss]- [Kss]) -1 term of the

exact formulation about [Kss] - 1 dropping the 034 terms in comparison to 0)2

terms. This results in a revised [TI:

[TI = [Kss] -1 [Ksp] + 0)2(-[Kss] - ! [Msp] + [Kss] -1 [Mss][Kss] - [Ksp])

Expressing the first equation of the partitioned eigenvalue problem in terms of

FP1

[K pp p} + [KpsI[Tlp) - W2[Mpplp} - 2[MPsI[Ti{p) = 0)

Expanding the a[Mps][TIq)p) term again dropping the Oj4 terms

(W2[Mps][TI(Tp) = -W2[Mpsl[Kss - i [Msp|j(p)

Expanding the [KpI[TI(fp) term

~[Kps][T]{fp} = ([Kps][Kss i - i [Ksp]

ps [Kss] -1 [Msp] [Kss] - [Mss][Kss] - [Ksp]) (p}

* Substituting these expanded expressions into the eigenvalue problem:

([KppI + [K 5 I[K 1 [KsI -()2[KpsI(-IK l-1 [MspI[Kss l - ! [MssJ[Kss - ! [Ksp]

- ()2[Mpp] + W2[MpsI[Kss] - [MspI)(p} = (0)

Page 21
...

CE-685 Larry Goshorn
Term Project August 1985

Rearranging gives:

([Kpp] - [KpsI[Kss] - ! [Ksp){ }
0)2([Mppl-[MpsllKss] - i [Ks0I-IKpsI[KssJ- ! ([hspl-[MssllKss] - i IKsplop)

[K*]{ Op W 2[hM*[p

The revised transformation matrix results in the same expressions for the
reduced mass and stiffness matrices. The revised transformation matrix
requires only one inverse of a partition of the stiffness matrix, not a new
inverse for each eigenvalue. In addition, the revised transformation matrix
should provide more accurate displacements since it partly accounts for inertia
terms. The more accurate displacements provide a more accurate basis for
approximating internal forces.

The process suggested by the above formulation proceeds as follows:

1) Partition mass and stiffness matrices and find reduced matrices using
equations (8) and (9).

2) Solve the eigenvalue problem for reduced mass and stiffness matrices.
3) For each eigenvalue find the transformation matrix.
4) Use each .transformation matrix to obtain full eigen vector.

Once the full eigen vectors are found the solution proceeds the same as under
Modal Analysis. It should be noted, however that the dimensions of various
matrices have been changed.

Where n equals the number of unknowns in the structure, and m equals the number
of modes retained in the solution, the dimensions of the eigenvalue matrix is

*mxm and the dimension of the complete elgen vector matrix [f) is nxm. When the
generalized mass matrix is found from the relation [tfT[M][§1, its dimensions
are mxm. Due to the orthogonality of the eigen vector matrix, the generalized
mass matrix is still diagonal and there remain only m independent equations to
be solved. Converting the generalized solutions to real coordinates using the
relation (u) = results in full size displacement matrix ([#] is dimensioned
nxm and R)} is dimensioned mxl).

Page 22
. . .**

CE-685 Larry Goshorn
• Term Project August 1985

The Dgnamic Finite Element Program

The Dynamic Finite Element Program is a system of programs developed to apply
the methods presented above. The programs are written in Micro-Soft Basic for
the Apple Macintosh, version 2 (Micro-Soft Inc. is currently developing versions
of this advanced version or Basic for IBM compatible machines). Flow diagrams
and listings of the programs are provided in Appendix A. A description of each

* program and its operation follows.

DunFEP.menu
The DgnFEP.menu program serves to connect the system of programs together. It

*provides a menu from which the user can choose to create data files which
describe structures, or to solve problems which have been defined earlier.
Problems may be solved in any of three ways, using dynamic reduction, using
modal analysis, or direct numerical integration of the equations of motion using
the Newmark method.

The DynFEP.menu program maintains control of the flow of execution by passing
five variables to each program in the system. The five variables are: the number
of global nodes labeled as GN; the number of elements labeled as NE; the number
of unknowns remaining after application of the essential boundary conditions
labeled as n (if essential boundary conditions are applied by reducing the number
of equations); the number of modes to be retained in the solution labeled m (if
the structure is to be reduced); and a string variable describing the chosen
solution method labeled as PathS.

DUnFEP.create data file
This program creates the data files which describe the structure, and forcing
functions and displacements applied against it. Data describing the structure is
entered using Basic DATA statements. A separate Basic program listing

*i containing the only the desired DATA statements is prepared and saved under
ASCII (text only) format. The program assumes that such a program has been
prepared and merges with it. When the resulting new program is executed, it will

-: read the prepared data and create the required structure data files.

g" Page * 23

CE-685 Larry Goshorn
Term Project August 1985

*: The DATA statements must be formatted to match the READ statements in the
DynFEP.create program. This is normally accomplished by copying a previously
created set of DATA statements, and modifying them to fit the new problem

*: using Basic's editing capabilities.

DunFP.mass/st if fness
This program reads previously created structure data files and assembles the
global stiffness matrix, the global mass matrix, and the global static forces
matrix. The program steps through the structure elements, and constructs the
element matrices using the relations presented above. The orientation of the
element is checked and the matrices are transformed if necessary. Then the
element matrices are assembled into the global matrices in accordance with
their end node points.

The program will be executed as determined necessary by the DynFEP.menu
program. The above matrices will be assembled once for any particular
structure, it is not necessary to reassemble the global matrices for different
applied dynamic forces or specified displacements. When the program completes
assemblage of the global matrices it will check a specified solution-pathway
which was set by the DynFEP.menu program. There are two possible paths,

*: directly to DynFEP if non-modal analysis is to be done, or to DynFEP.essential BC
*: if modal analysis is to be done. The program will chain to the appropriate

program.

DunFEP.essential BC
This program reads the structure node information file, determines where
essential boundary conditions are to be applied, and then applies the conditions
by eliminating the appropriate rows and columns of the global mass, stiffness,
and static force matrices. The program also creates a boundary condition index

- which will be used by succeeding programs to reduce the global dynamic force
matrix, and to add the inertial effects of moving nodes into the global

- formulation (ie, to finish applying the essential boundary conditions).

"- The program will be executed if the chosen solution method is modal analysis or
*dynamic reduction of the structure. When the program completes its execution,
-* it will check the specified solution-pathway and chain to the appropriate
" program. There are two pathways possible, the program will chain to

DynFEP.eigen solver if modal analysis is the chosen solution method or it will

Page #24
p? S

CE-685 Larry Goshorn
Term Project August 1985

chain to DynFEP.reduce if dynamic reduction is the chosen solution method.

Dunf EP~reduce

This program reads the reduce index created by DgnFEP.create (from user input)
*' and reduces the number of equations using the methods presented. In addition

the program prepares two matrices (stored in temporary disk files) which are
used by DynFEP.uncouple/solve to transform the primary eigen vectors (eigen
vector of the reduced structure) into a eigen vector describing the full structure.

The program is executed along the dynamic reduction solution pathway. It
executes after DynFEP.essential BC. When it completes execution it chains to the

* DynFEP.eigen solver program.

DunFEP.eigen solver
*This program loads prepared mass and stiffness matrices and solves the

corresponding eigen value problem using the Stodola method and a sweeping
matrix as presented above. The result or the program are competed matrices of
the eigenvalues and eigen vectors.

The program assumes that the global matrices have had the rows and columns of
constrained degrees of freedom (ie, specified static and/or dynamic
displacement) removed. The program uses the five variables passed to it by the
DynFEP.menu program to determine if the global matrices have been reduced. If

- the matrices have been reduced, the program finds the transformation matrix for
each mode frequency (using information prepared by DynFEP.reduce) and uses it
to transform the partial eigen vectors into a full eigen vectors.

* The DynFEP.eigen solver will execute if the dynamic reduction or modal analysis
* •method of solution is chosen. The program chains to DynFEP.uncouple/solve
". upon completion.

DunFEP.uncouDle/solve
,* This program pulls together the work of previous programs and solves the

problem to its completion. Its execution results in a displacement -vs- time
history, for each node, stored on disk. The displacements recorded are relative

. to the movement of the base. Information provided by the user regarding
specified note displacement is assumed to be accelerations of uniform base
movement.

Page 25
• °. . .

CE-685 Larry Goshorn
" Term Project August 1985

The DynFEP.uncouple/solve program loads the static force matrix, the boundary
conditions index, the mode shape matrix, the eigenvalues, and the mass matrix.
If the structure has not been reduced the program also loads the initial

* conditions and converts them to the generalized coordinates to be used to start
the Newmark direct integration scheme (If the structure is reduced the mode
shape matrix is not square and can not be inverted to find the initial conditions

*. generalized form. Therefore, if the structure is reduced, all initial conditions
must equal zero). The program then finds the generalized mass matrix and starts
the numerical integration scheme.

*The first operation for each time step is to find the new dynamic force matrix
including the inertial effects of base motion. The dynamic forces for applied to
nodes or members are first found for everg node in the structure; the dimension
of the matrix in this form is 3(GN)xl (where 3(GN) means three times the number
of global nodes). Then the essential boundary conditions are applied, resulting in
a nxl matrix (where n is equal to the number of unknown node displacements).
The inertia forces are obtained by multiplying a base acceleration matrix by the
mass matrix (after essential boundary conditions, therefore matrix is nxl). The
dynamic, inertial, and static force matrices are then summed. Finally the force
matrix is transformed to its generalized form by premultiplying it with the
transpose of the mode shape matrix. The dimension of the generalized force
matrix is either nxl, or mxl if the structure has been reduced (where m is equal
to the number of retained modes).

*- The equations are now in their uncoupled form. The Newmark method is applied
to solve for the generalized displacements, velocities, and accelerations for the
current time step. Once the generalized displacements are calculated the real

- displacements are found by premultiplying the generalized displacements, and
eTtheir derivatives, by the mode shape matrix. The real displacements are then

i stored and the program goes to the next time step. The program proceeds for a

:: specified number of time steps.

The DynFEP.uncouple/solve program is the ending program for either the dynamic
reduction solution method or modal analysis. Upon completion the program

:: chains to the DynFEP.menu program.

Page 26

_'..: ...-. . - ..' ",,-'-/.:• .: . ,.., ',- . ,- - . ', ', ,,.-..,.',,-..' .,'A ! ",, ,,.,.,..--..-.. . ..-. .,, .,.. ,,.-,•.,... . .,.-... .,.

CE-685 Larry Goshorn
Term Project August 1985

The DynFEP program loads the full mass and stiffness matrices, and the initial
conditions. Using the Newmark method and Guass elimination it solves the
problem in its complete form. The result of the program is a displacement -vs-
time history of every node in the system. The displacements recorded are
absolute with regards to the coordinate system. Information provided by the
user regarding movement of nodes is assumed to absolute displacement also.

The first operation for each time step is to find the new dynamic force matrix.
The program reviews the node and element loading and displacement information
stored in the structure data files (displacement information is assumed to be
absolute displacement). If appropriate time history files for non-harmonic
forces will also be accessed. The new dynamic force matrix is constructed and
added to the static force matrix. During this process the program also
constructs a boundary condition index.

The Newmark method is applied, then the boundary condition index is used to
apply the essential boundary conditions. The essential boundary conditions are
applied by modifying the equations which express the known displacement. The
program will again access node information stored on disk to find the specified

!* displacement, accessing time history files where appropriate for non-harmonic
displacement of nodes.

The equations are now solved using a Guass elimination technique, time is
incremented and the process is repeated. The program continues for a specified
number of time steps.

The DynFEP program executes oniy when this method of solution has been chosen.
When the program completes execution, it returns control to the DynFEP.menu
program.

Data FesR
Information describing the structure are contained in five primary files, the

*information file, the node file, and the element file, initial conditions, and
reductions (when dynamic reduction is to be used). These files are created by

- DynFEP.create from information provided by the user. A summary of these data
files and their structure is presented below.

Page 27
. • -. . . . • -.. . *° * -

o

% . = - o o ." . % . ' °,, ,-°. °. .. o. .
.-.. ..--.. -.-. .-...."....-.-..'.-.. -..... - . -,.,, .-.,. . .., ',,. '

.,.- -. -- i '- , . . . ,. . _ . - ; ,. , . . b .7-- . . , . - . .. p .

CE-685 Larry Goshorn
Term Project August 1985

-. Information Data File:
Name: <Structure Name>
Type: permanent, sequential text
Info: Field Field

Description Length Name Remarks
number of global nodes n/a
number of elements n/a
number unknown displacements n/a
number of retained modes n/a

Node Data File:
Name: <Structure Name>.Nodes
Type: permanent, random access
info: Field Field

Description Length Name Remarks
Flag describing boundary cond. 12 Flgl$ string variable

X global coordinate 4 N$0) single precision
Y global coordinate 4 N$(2) single precision

Horz. Static Load or Displ. 4 N$(3) single precision
Dyn. Load or Displ. Amp. 4 N$(4) single precision
dynamic frequency 4 N$(5) single precision
dynamic phase angle 4 N$(6) single precision
time history file name 8 N$(7) string variable

Vert. Static Load or Displ. 4 N$(8) single precision
Dyn. Load or Displ. Amp. 4 N$(9) single precision
dynamic frequency 4 N$(O) single precision
dynamic phase angle 4 N$(1) single precision
time history file name 8 N$(12) string variable

Rot. Static Load or Displ. 4 N$(13) single precision
Dyn. Load or Displ. Amp. 4 N$(14) single precision
dynamic frequency 4 N$(15) single precision
dynamic phase angle 4 N$(16) single precision
time history file name 8 N$(17) string variable

Pag# 28
"• o." " " •°° . .- .• ° ° o .° . . - '- . , . -. ° . '% . . - - , % - o .o - , ' , °o .°.-.-.-%O * • " • - -- o

L CE-685 Larry Goshorn

Term Project August 1985

Meaning of flag variable:
Horiz. load or displ. (1=load, O=displ.)
Horiz. static load or displ. (1=yes, O=no)
Horiz. dynamic load or displ. (1=yes, O=no)
Is dynamic load harmonic? (I=yes, O=no)
Vert. load or displ. (]=load, O=displ.)
Vert. static load or displ. (1-yes, O-no)
Vert. dynamic load or displ. (l=yes, O=no)
Is dynamic load harmonic? (1=yes, O=no)
Rotational load or displ. (l=load, O=displ.)
Rotational static load or displ. (l=yes, O=no)V Rotational dynamic load or displ. (l=yes, O=no)
Is dynamic load harmonic? (l=es, O=no)

-- - "- ----- ---- 12 character flag (string variable).

The above file structure allows the user to specify both a static and a dynamic
load or displacement at any node (the modal methods of solution do not support
independent displacement of nodes). The DynFEP programs will interpret the

" stored information to be either a specified load or a specified displacement
depending on the above twelve character flag. The flag also tells the program to
whether or not to look for static or dynamic loads and whether the dynamic

* loads are harmonic or non-harmonic. The inclusion of a phase angle allows
nodes to be loaded or displaced out of phase of one another for harmonic
displacement or loading.

Element Data File:
Name: <Structure Name>.Elements
Type: random access
Info: Field Field

DescriPtion Lenath Name Remarks
Flag describing element loading 6 FIg2$ string variable

Global node number of left side 2 LtS integer
Global node number of right side 2 Rt$ integer

Pae 29
" ' g" " " " "" "-"%" %"' " ° " " ="%° %" "e"" " "'" " "' " ... •...., . -. ..

CE-685 Larry Goshorn
Term Project August 1985

Field Field
Description Logth N= Remarks
Left side moment of inertia, 11 4 E$() single precision

cross sectional area, A1 4 E$(2) single precision
mass per unit length, m1 4 E$(3) single precision

Right side moment of inertia, 12 4 E$(4) single precision
cross sectional area, A2 4 E() single precision
mass per unit length, m2 4 E$(6) single precision

Modulus of elasticity, E 4 E$(7) single precision

Transverse static load left side 4 E$(8) single precision
static load right side 4 E$(9) single precision
dynamic amplitude '4 E$(1O) single precision
dynamic frequency 4 E$(l) single precision
dynamic phase angle 4 E$(12) single precision
name of time history file 4 E$03) single precision

Tangential static load left side 4 E$(14) single precision
static load right side 4 E$(15) single precision
dynamic amplitude 4 E$(16) single precision
dynamic frequency 4 E$(17) single precision
dynamic phase angle 4 E$(18) single precision
name of time history file 4 E$(19) single precision

Meaning of flag variable:

Distributed transverse static load (1=yes, O=no)
Distributed transverse dynamic load (l=yes, O=no)
Is dynamic load harmonic? (1=yes, O=no)
Distributed tangential static load (=yes, O=no)
Distributed tangential dynamic load (l=yes, O=no)
Is dynamic load harmonic? (l=yes, O=no)

_6 character flag (string variable)

The above file structure allows the user to apply static and dynamic loads at the
same time. In addition static distributed loads can vary linearly (they can have

Page 30

CE-685 Larry Goshorn
Term Project August 1985

different values at each side of the element). Though use of the above flag,
element loading may also be harmonic or non-harmonic.

Displacement History File:
Nafne: <Structure Name>.displ
Type: permanent, random access

Info: Field Field
Description Length N= Remarks
displacement of node 8 n/a (actual or relative,)
velocity of node 8 n/a (see program notes)
acceleration of node 8 n/a (for explanation.)

The purpose of this file is to store the initial conditions of the structure, as
defined by the user and to store the displacement -vs- time history of the
structure after solution. Each record contains the displacement, velocity, and

: acceleration of the appropriate degree of freedom of the node. The first 3(GN)
(3 degrees of freedom times the number of global nodes) records the initial
conditions of the structure, t=O (supplied by the user). The next 3(GN) records
report the conditions of the structure at time step 1, and so on.

Reduction File:
- Name: <Structure Name>.reduce

Type: permanent, random access
Info: Field Field

Description Lenh Name Remarks
1 st reduction of Node/DOF 8 n/a * between 1 and 3(GN)
2nd reduction of Node/DOF 8 n/a 0 between I and 3(GN)

8 n/a * between 1 and 3(GN)
i1t reduction of Node/DOF 8 n/a * between 1 and 3(GN)

The purpose of the above file is to store a list of equations to retain in the
.. matrix formulation. The DynFEP.create data file constructs the above file with

information provided by the user.

To support the use of non-harmonic forcing functions or specified displacements
of nodes, the programs are capable of reading a time history file. Each record of

" the file contains a time and a magnitude of the force or displacement. The
* programs will Interpolate between two time steps if the required time is not on

Pae #31

CE-685 Larry Goshorn
* Term Project August 1985

file. A rapid search is employed by the program to find appropriate time, it
assumes that the file is sequential in time. The first record in the file must

-! contain the total number of time steps recorded in the history file.

- It should also be noted that the DynFEP program assumes that information
.presented in this file is absolute displacement, while the DynFEP.uncouple/solve
program assumes that the information is accelerations.

User defined Force or Displacement History File:
Name: <User specified file name>
Type: permanent, random access

- Info: Field Field
Description Length Name Remarks
Number of time steps in file 8 n/a First record only
Not used 8 n/a First record only

Time 8 n/a normal record
Displacement or Force magnitude 8 n/a

,* During the solution of the problem other permanent and temporary files will be
. created. The purpose of these data files is first to provide storage of matrices
- necessary in the solution and there by reduce the amount of memory space

required. Secondly, these data files eliminate the need to recalculate matrices
. to analyze different loading conditions or use alternative solutions. A summary
. of these data files is presented below.

Permanent data files:
File name Description Size

<Structure Name>.K&F.c stiffness and static forces before BC 3(GN)x3(GN)+1
<Structure Name>.M.c mass matrix before essential BC 3(GN)x3(GN)

<Structure Name>.K&F stiffness and static forces after BC nx(n+l)
<Structure Name>.M mass matrix after essential BC nxn

. <Structure Name>.K" reduced stiffness and static forces mx(ml)
- <Structure Name>.M* reduced mass matrix mxm

<Structure Name>.reduce listing of nodes to be retained mxl
. <Structure Name>.S structure mode shapes mxm
: <Structure Name>.eigen eigenvalues of structure nxm

Pa, 32

CE-685 Larry Goshorn
Term Project August 1985

Temporary data files:
" File name Decription Size
, <Structure Name>.Kpp partitioned stiffness matrix mxm
* <Structure Name>.Kps partitioned stiffness matrix mx(n-m)

<Structure Name>.Ksp partitioned stiffness matrix (n-m)xm
<Structure Name>.Kss partitioned stiffness matrix (n-m)x(n-m)
<Structure Name>.P1 needed to calc mode shape [T] (n-m)xm
<Structure Name>.P2 needed to calc mode shape [T] (n-m)xm
<Structure Name>.D dynamic matrix [K] 1 [MI mxm

Where n is equal to the number of unknown displacements and m is equal to the
number of modes retained in the answer. Note that if the structure is not reduced
then m is equal to n.

Pp #33

.............

;. a.*A.a.a.a.

CE-685 Larry Goshorn
* Term Project August 1985

-* Conclusions

A set of micro-computer programs capable of an~alyzing the dynamic behavior
- plane frame structures has been developed from the set of assumed governing

differential equations. The system of programs allow different approaches to be
used in analyzing a dynamic structure. The capability to use different approaches
provide a means of building confidence by comparing the results of the different
methods, and the flexibilities provided by the different approaches.

Each solution approach presented has unique abilities and limitations. While the
straight numerical integration performed by DynFEP has the ability to include the

*independent displacement of nodes, it must process the formulation with no
"* reduction or further simplification. The added capability has come at the cost of
• not being able to analyze larger structures and in a longer computation time. The

modal analysis approach presented offers a faster computation time but
sacrifices the ability to effectively handle independent movement of nodes. The

* dynamic reduction approach offers the ability to do larger structures with little
.. or no additional computation time, but at some sacrifice for accuracy.

The choice of which solution approach to use will normally be based on the type
;- of problem to be solved. As an example, in Civil Engineering programs such as

these would be used primarily for the analysis of structure response to
. earthquakes. The dynamic reduction approach presented above would be most

useful in this situation as it offers the best computation time to size advantage
and can support the boundary conditions imposed by an earthquake.

* The programs as presented here are capable of handling about 50 nodes when run
on a system with 370K of memory available (assuming 8 bytes of memory is
required for each double precision variable used). There are two primary

* approaches which could be employed to increase the capacity of the programs.
First the assemblage of the global matrices could be done in upper-banded form.
Since mass and stiffness matrices are normally very sparse, this would
substantially increase the capacity. Secondly the global mass and stiffness

* matrices could be done on disk rather then in core (also the application of
'- boundary conditions, and the reduction of the mass and stiffness matrices).

Page #34
• -..-.'-............-. '.....,..'.. .''. . .-,..... " .. .-,-...-,-.,.. .- *,.- - - .•.,.. .*

CE-685 Larry Goshorn
Term Project August 1985

While this would slow down execution because of increased 1/O activity, the
capability to handle larger structures is limited only by the amount of disk space
and the number of retained modes. Since a typical micro-computer system in a
professional installation will include between 10 and 20 megabytes of hard disk
storage, the analysis of structures with several hundred nodes is seen to be
reasonable.

In addition to increasing the capacity of the programs presented, there are other
enhancements which would make them more valuable as an engineering tool. The
programs now simply grind though a specified number of time steps. It would be
desirable for them to have the ability to check selected parameters during the
processing and determine for themselves with to stop the processing. Such
parameters might include critical stresses in selected members, a maximum
stress in any member, completion of a full cycle of all forcing functions,
achievement of a maximum deflection, etc.

. The ability to handle three dimensional plane frames is a very natural expansion
to the program capabilities. Other enhancements could include an interactive
input of information in a CAD/graphics orientated format, and graphic replay of

*. structure response.

All of these enhancements are within the current computing capability of today's
micro-computers. While the analysis on truly complex structures will remain in

* the domain of mainframe computers, the dynamic analysis of small structures is
- within the realm of processing by micro-computer systems. Such smaller

structures are those that can be described in several hundred nodes or less, or
simplifications of more complex structures which are being used for preliminary
design or investigation prior to a more detailed analysis on a mainframe. The

, methods and programs presented in this paper form a corner stone for building
the enhanced systems which are required to fill this expanding field of

* engineering analysis.

Page U35

_: 2t

CE-685 Larry Goshorn
Term Project August 1985

Bibl iography

*Guyan, R. J., "Redulction of Stiffness and/lass1f%#rices," American Institute
of Aeronautics and Astronautics Journal, Vol. 3, No. 2, Feb., 1965.

* Clough, R. W. and Penzien, J., 'VgnamIcs of Structureso M cGraw-HillI Book
company: New York, New York, 1975.

- Bathe, Klaus-Jurgen, and Wilson, E. L. , Wufmerica/ i1ltods in Finite Element
* Analgysis' Prentice-Hall, Inc: Englewood Cliffs, New Jersey, 1976

Miller, C. A., Dynamic Rieduiction of Strulctulral flodels " Journal of the
* Structural Division, Proceedings of the American Society of Civil Engineers,
* Vol.106 No.ST1O, Oct., 1980.

Reddy, J. N., 'An introduiction to the FInIte Elemnent tietbo" McGraw-Hill
Book company: New York, New York, 1984.

Pag 36j

CE-68 Larry 6oshorii
Term Project August 1985

DpFE~menuI Flow Diagram

Pollfor ser -FNotes:

Program Variables:

selecionGN number of global nodes.
VWG aftnowNE -number of elements.

f n -num ber of unknown displacements
OPM Ys Ownfilein structure.

soonoutI no II Im -number of retained modes; (if no
110 reductions then rn-n).

$,aPath$* -string donining the choosen
St~ slecedfttw"meto or solution.

Chai toam W ItsValid M enu Selections:

If no structure data file is open, then
valid selections include. Open File,

MISS aStiffand Create New File.
existIfra structure data tile is opened, then

me "saol selections are valid.

Psqe4 A -I

CE-685 Larry Goshorn
*Term Project August 1985

-- ' ------------------------ 4

I DynFEP~menu
J--------------------------

*CWIIOI GN,NE,DOF,n,m,FN$,Path$

*Start: 'set up menu
*WINDOW 1,,(110,30)-(365,54),2: GOSUB BigText

WINDOWJ 1:CALL MOVETa(2l,16): PRINT 'Dynamic Finite Element Program';
* WINDOWJ 2,,(130,70)-(350,306),4

B UTTON I,1,*Create New Data Filel,(20,20)-(200,40),1
* BUTTON 2,1,'Open Existing Data File',(20,45)-(200,65),1

- BUTTON 3,O,'Direct Integration Only',(20,80)-(200,1lO),1
*BUTTONI 4,O,'Modal Analysis',(20,105)-(200,125),1

BUTTON 5,O,'Dynauic Reduction',(20,130)-(200,150),1
BUTTON ,,Qi'(2015-2015,
IF LEN(PN$))G THEN GOSUB Look.at.File

* GOSUB NormalText

*loop:
CALL MOVETO(1fl,2OO): PRINT 'Problem name =';FN$
CALL MOVETO(1O,212): PRINT USING 'Global Nodes =H#';GN

*CALL MOJETO(IO,224): PRINT USING 'Elements =1';NE
W HILE DIALO6(O)01: WEND 'wait for the user to do something

* ON DIALOGMI GOTO Create,Existing,FII,todal,Reduce,Ouit 'branch according to menu selection

Create: Path$-'Create New Data File'; GOSUB Change.Windo.
- F$-'Basic Disk 1:DynFEP.create data file'

- CHAIN F$: END

Existing:
RNS=FILES$(1,*DY?&') ' get Problem Name from user
IF PNS{)" THEN GOSUB Look.at.File

* GOTO loop

FBI: Path$='Direct Integration Only': GOSUB Change.Uindo.
IF n(O THEN F$=-'Basic Disk 1:DynFEP.mass/stiffness' ELSE FSt'Basic Disk 1:DynFEP' 'no need to reassemble gobal matric

es.
CHAIN F$: END

* Modal: Path$'odal Analysis': GOSUB Change.Uindow
*IF n(0 THEN Fi$=-Basic Disk 1:DynFEP.mass/stiffness' ELSE Fl='Basic Disk I:DynFEP.essential BC' 'no need to reassemble

gobal matrices.
CHI1N F$: END

* Reduce: Pathl='Dynamic Reduction': GOSUB Change.Uindaw
IF n(O THEN F$='Basic Disk I:DynFEP.mass/stiffness' ELSE F$l'Basic Disk l:DynFEP.essential BC' 'no need to reassemble

* gobal matrices.
- CHAIN Fi: END

Quit: Pathil'Output UWndow': GOSUB Change.Uindow
* END

Subroutines Below

Pagel A - 2

*CE-685 Larry Goshorn
Term Project August 1995

Look.At.Filt: DOF-=3 A find status of processing
OPEN FW$ FOR INPUT AS 11: INPIJTII,94,NE,n,m: CLOSE 11
FOR i=3 TO 5: BUTTONI i,1: NEXT i 'activate buttons

RETURN

*Chaage.Window. WJINDOW CLOSE 1: WINDOW CLOSE 2: CLOSE
* WINDOW I,Path$,(5,40)-(265,Z98),1: RETURN

Biglext:CALL TEXTFONT(0):CALL TEXTSIZE(I2):RETUiM4 ' Chicago
LittleText:CALL TEXTFOHT(I):CALL TEXTSIZE(9):-RETURN Geneva
Normallext:CALL TEXTFONT(I):CALL TED(TSIZE(1O):RETURN Geneva

* FormatedText:CALL TE)(TFCNT(4):CALL TEXTSIZE(9):RETURN M Ionaco

Pagel A - 3

7 7 T7-

CE-M6 Larry Goshorn
Term Project August 1985

Fr..Rt-ataan 1W.m Notes:

Program Variables:

PA pgle Wn 6N - number of global nodes .s
NE a number of elements.

PAN O, -ofn - number of undnown displacementss
WA W. of 91In structure.

m - number of retained modes (if no
as" ~t~areduction then rn-n)

Path$ - string variable Indicating the
choosen method or solution.

OWW n "d1100The program assumes that a data Text
file has been prepared. Format of the
mie is that of a BASIC DATA statement

ftedel ftt I-All data shown In the discription of
the data file structure must be included.

Rued reduAtIM fla8g ReMto

butlmEnd

sar. reductimn dt

Psqe* A- 4

CE-685 Larry Goshorn
Term Project August 1985

S' I DynFEP.create data file I

. COMMON N,NE,DOF,n,m,PN$,Path$

, WINDOW 2,,(110,250)-(380,300),2: BOSUB 9igText: WINDOW 2
PRINT '1 you have not created a text file of'
PRINT 'Basic DATA statements for this program,'
PRINT 'press the 'Cancel' button!'CHRS(7);
RFNSF]LES$(I,'TEXT') 'get data file name from user
WINOWJ CLOSE 2: IF FN$='" THEN STOP 'user hit cancel button
PRINT 'Type '60TO Start' to continue.'CHRS(7)
MERGE PNS 'load user created data file & execute with it

Start: DIM NS(17),E$(19):r/=-1

60SUB FormatedText
READ PN
Ft=N4S+'.nodes': OPEN Ft AS I1 LEW-92
FIELDII,12 AS F191t, 4 AS N$(I), 4 AS N$(2), 4 AS N$(3), 4 AS N$(4), 4 AS N1(5), 4 AS N$(6), 8 AS N(0), 4 AS Nt(S), 4 A
S N$(9), 4 AS N(IO), 4 AS N(11), 8 AS NS(12), 4 AS N$(13), 4 AS N$(14), 4 AS NS(15), 4 AS N(16), 8 AS NS(17)
Ft=FN$4'.elements': OPEN F$ AS 02 LEN=94

"* FIELDI2,6 AS F1g2$,2 AS Ltt,2 AS Rt$,4 AS Et(l),4 AS E$(2),4 AS E$(3),4 AS ES(4),4 AS Et(5),4 AS E$(6),4 AS ES(7),4 AS E
1(8),4 AS E$(9),4 AS E$(10),4 AS E$(11),4 AS Et(12),8 AS E$(13),4 AS E$(14),4 AS E$(15),4 AS Et(16),4 AS E$(17),4 AS E$(
18),8 AS Et(19)
FS=PN$: OPEN Ft FOR OUTPUT AS 15

READ NunNodes7
FOR i=] TO Numode.

READ at: LSET Flgli=a$
FOR j=1 TO 17
IF j=7 OR j=12 OR j=17 THEN READ at: LSET NS(j)=a$ ELSE READ a: LSET NS(j)KSt(a)

NEXT ,i
I PUTII,i
" NEXT i

READ NmElements7
FOR i=1 TO NumElements7

READ at,Lt7,Rt7: LSET Flg2t=a$: LSET Ltt-1K]S(LtX): LSET Rt$t1KIS(Rt.)
FOR j=1 TO 19
IF j=13 OR j=19 THEN READ at: LSET E(j)=a$ ELSE READ a: LSET Et(j)=MKS$(a)

NEXTj
PUT2,i

NEXT

* !ttttt!1t!!tttttttttltf!lflt debug
".. 'TRON

DIM UI(NumNodes7X3,3) ' initial conditions
FOR i-! TO Nunflodes7.3

READ U#(i,1),U1(i,2),UI(i,3)
NEXT i: n3=3: n~Nufode.*3
CALL Display.Matrix(n,n3,Ul(),'lnitial Conditions')
CALL store.Natrix(n,n3,UI(),PN$4'.initial',n3)

L J' " 'eeleultetinieiieuttitiie i debug

Pagel A - 5

" "" "" " " " , -: " " ".,._, " '." ; ' ' :'_''' ' :, ''' ' '' , .' .' -. * .:.r.

CE-68 Larry Goshorn
*Torm Project August 1985

* 'TROFF

INPUT 'Reduction info in this data (y/n);at$
a-0:~ IF a$'Y* THEN GUTO finish.up

READ m: OPEN PNS+.reduce' AS 14 LM 8: FIELD#4,8 AS aa$
*FOR i=1 TOma: READ r: BSET aa$=MED6(r): PUTU4,i: NEXT

4inish.up:.
INPUT 'Hav~e global matrices been assemled (y/nk)';at

* IF 60OY' THEN n=-l ELSE nz-O
WRITE#5,NwfdtsX,NmElefettsX.,n ,i
GRm4wi4odes7X: NE=NumElements7X: DOM3
CLOSE: NAME PNS AS FN,DYM*

Pagel A - 6

CE-M Larry Goshorn

Term Project August 1965

DWNEP.Mms/stlfin...

fto 10-nomintoNotes:

F 11@4 left MW"O t ing-I,~ Program Variables:

C41%1VWt IWMt 6tiffRS UI 6 N -number of global nodes.
4 NE -number of elements.

Fc-ountglwK stticlamROMn o number of unknowns in the structure.
CU~dIU~ EIU~t tatc filS ~iXm - number of retained modes (if no reduction

J7 then rn-n).
~ E..~ m .t..y Path$ - string variable Indicating the choosen

method of solution.
r Mo"60sloaent~am ate(K I provides storage for the global stiffness

slow tric"matrix. and the static force matrix.
The stiffness matrix is a square matrix
with dimensions equal to GN Limes 3.

low 19"I ft OWThe static force matrix Is stored with
the stiffness in en addition column.

Voo [M] provides storage for the global mass
nte Mt sttc oc matrix. It Isa square matrix with

ifS dimensions equal to GN times 3.

AsUutle static fal W SIe 60100

N" ilefac DOMtri

VIV

3WVslw tifn" Psate A
.,.

CE-685 Larry Goshorn
Term Project August 1985

---4----------------------- 4

I DynFEP.mass/stiffness I
- -4 ---- - - - .-----

*COMONG ON,NE,DOF,n,m,PN$,Path$: 60T0 Start

Subroutines below

Assembleorcelat:
FOR i=1 TO ON: 6ETII,i ' read specified nodal loads
FOR A= TO DOM-
index-(i-1)a00F4j41 :k-345*j

'---tNadeStatForces:
* Sloa&-O: A=14j*4

IF NID$(Flgi$,A,2)=*'11 THEN Sloa&-CVS(N$(k)) ' static load
KI(index,n+I)=K#index,nil)4Sload 'add in force; positive to right, upward, clockwise

NEXTj,i: RETURN

*El ementliatrixAssembler:
FOR ELENENT=1 TO NE
6OSUB BuildElementtlatrices
l1R-(NY.-1)*DOF:10(NZ.-1)IDOF

'---Assen.K.M.Stat.Elem.Forces:
FOR i=1 TO DOF

* KI(IR4i,n4I)=KI(IR4i,n+1)4AN(i,7) 'element forces stored in column 1nf41

FOR ,i=l TO DOF
KI(IR4i,IRsj)=KI(1R41,1R4j)4A#(j,j) 'assemble stiffness matrix
KI(IRsi,ICsj)=KI(IRfti,IC~j)+AU(i,j400F)

* KEI]Ci,IRsj)=KI(ICi,IRj)4A1(i4D0F,j)
KI(lC~i,IC+j)=KN(ICi,ICj)4'A#(isDOF,j4DOF)
MI(IRi,IRsj)zNI(IRei,IRej)4BI(i,j) ' assemble mass matrix

* NI(IRii,ICsj)411(IRi,ICej)'BI(i,j.DOF)
MI(ICi,IRsj)4 U(ICei ,1R4j)eBI(isDOF,j)

* NI(IC~i,IC~j)411(ICi,IC~j)401(isDOF,j400F)
NEXT j,i

NEXT element

BuildElementtatrices:
6ETI2,ELENENT:N1X=CVI(Lt$):NZ/.CUI(Rt$) I get left and right global node I's
6ETII,NI%:XIC'JS(N$()):YI=C.S(NS(2)) ' get left side coord's
GETUJ,NZI.:X2IJCS(N$(1)):Y2C-VS(N(2)) ' get right side coord's
L=SQR((YI-Y2)'2+(X1-X2)'2) ' find el ement length
SOSUS Elem.K.M.Stat.Forces
IF XI-X2=-O THEN angle=SGN(YI-Y2)'PiU/2 ELSE angle=2iPiI-A7N((YI-Y2)/(XI-X2))
IF angle)2*PiI4.003 OR angle(2*PiU-.003 THEN 60SU9 Transform
RETURN

*El m.K.M.Stat.Forces:
1CYVS(EV(1:2-CUM) ' moments of inertia
A1=CVS(E$(2)):A2=-CVS(E$(5)) ' areas

*m1zCVS(E$(3)):m2-C'JS(E$(6)) I mass/length
EC'JS(EI(7)) 'elastic modulus

Page$ A - 8

. . .*.

CE-685 Larry Goshorn

Term Project August 1985

FOR i=1 TO 6:OR j=l TO 7:AO(i,j)=O:NEX(T i,i /initialize/build element stiffnesses

AO(2,2)=E*6'(11412)AL'3:AI(5,5SWA#(2,2) :AI(2,5W-A(2,2)
AI(2,3)u-EI(411142*12)/L'2:A#(3,5)-41(2,3)
AI(2,6W=-EI(211144*12)/L'2:A#(5,6)-AI(2,6)
A4(3,3)=EI(3*II412)/L
AI(3,6)=E*(11412)IL
A#(6,6)=EI(I1+3112)IL
FOR i=2 TO W:OR j=l TO i-1:AI(i,j)=A1(j,i):NEXT j,i 'symetrize stiffness
FOR i=1 TO 6:FOR j=l TO 6t9I(i,.j)=0:NEXT j,i 'initialize/build el ement matrix
81(1 ,D)701L1(3114m2)/94O
B1(1 ,4)=70*1*(m14m2)/84O
BI(2,2)=24*L1(IO'm143*m2)/840
BI(2,3)u-2*LU2*(51m1+7'm2)/84O
81(2 ,5)=54*L*(ml 4.2)1840
B#(2, 6)=21L*2*(7*m! 4612)1940
BI(3,3)=L31(51M143im2)/84O
96(3,5)=-2*L2*(6iml.71.2)/840
BI(3,6)=-3*L3(m14m2)1840

* 8B1(4, 4)=70*L*(ml 43*m2)1840
9I(5,5)=24111(31m1 4101.2)1840
B1(5 ,6)=2*L'2*(71.14151.2)/840

* B1(6,6)uL'3e(31m1451m2)/840
FOR i=2 TO 6:.FOR j=1 TO i-1:9I(i,j)=BI(j,i):NEX(T j,i 'symetrize mass matrix
DSloadl=0:DSload2=0O:TSloadl=0:TSload2=0O / find element loading
IF MID$(F1g2$,1,D)'1' THEN D$loadl=CVS(E$(8)):DSload2-CVS(E$(9)) / distributed static load
IF MIOI(Flg2$,4,l)='l* THEN TSload1=O.JS(E$(14):TSlaad2-CVS(E$(15) ' tangential static load
AI(1,7)=L*(20uTSloadl~lOuTSload2)/60 /positive to the right
A#(2,7)=LI(-15*DSloadl*45*DSload2)/60 'positive upward

* AI(3,7)=-L'21(3aDSloadl42iDSload2)/60 'positive clockwise
A#(4,7)LIC*TSloadl42GITSload2)/60 / positive to the right
AI(5,7)uL*(9*DSloadl42laDSload2)/60 ' positive upward
A#E6,7)=L2(2DSoadl43*DSload2)/60 'positive clockwise
RETUN

*Transform: 'Subroutine to transform Stiffness, Miass, and Force element matrices
605UB BuildTrinsformatiotlat
FOR i=1 TO W:OR j= TO 6:CI(i,j)=0:FOR Wu TO 6:CI(i,j)=Cl(i,j)4T#(k,i)IA#(k,j):NEXT k,j,i 'transpose[T]'EKe]
FOR i=l TO W:OR J=l TO 6:AI(i,j)=O:FCR Wu TO 6:AI(i,j)uAI(i,j)4C#(i,k)IT#(k,j):NED(T k,j,i 'ItrinsposefT]*~el]'ETJ
FOR i=l TO 6:CI(i,1)uO:FOR Wu TO 6:C#(i,1)=CI(i,1)4TI(k,i)IA#(k,7):NEXT k,i:FOR i=1 TO 6:AI(i,7)=C1(i,1):NEX(T 'tran[Ti
W(e)

* FOR i=1 TO W:OR jul TO 6:CI(i,j)=O:FOR Wu TO 6:CI(i,j)=CI(i,j)4TI(k,i)*B#(k,j):NEX(T k,j,i 'transposeU[laflie]
FOR i=1 TO W:OR jul TO 6:BI(i,j)u0:FOR Wu TO 6:BI(i,j)=Bli,j)4C#(i,k)ITl(k,.0:NEXT k,j,i 'ftranspose1Tl*flle]]'(TJ

RETURN

BuildTraftsformationlat: ' build (71
* FOR i=1 TO W:OR jul TO 6:TI(i,j)=O:NEXT j,i 'initialize

IF angle MOD PiIl/2 THEN T1I,lDuCOS(&ngle) ELSE T#I,1)=O
* TI(4,4)=T#I,I):T#(2,2)uTI(1,1):TI(5,5)=T#I,l)

IF angle MOD Piu THEN TIUJ,2)=-SIN(inqle) ELSE 70(1,2)=G
* TI(4,5)WTI(1,2):.TI(2,1)u-TI(1,2):TI(5,4)=TI(2,1)

TI(3,3)xI:T1(6,6)=I
RETURN

Page# A -9

CE-685 Larry 6oshorn

. Term Project August 1985

Start: n=GMDOF: al=]: a3=3: CRS=CHRS(13): PiI4*ATN(])
SDIM KI(n,n4]),HI(n,n),AO(6,7),93(6,6),CI(6,6),T#(6,6),N$(17),Et(19)

F$=PN$4'.nodes':OPEN FS AS I LEN=92
FIELDII,12 AS F193$,4 AS N(I),4 AS NS(2),4 AS N$(3),4 AS N$(4),4 AS NS(5),4 AS N$(6),8 AS N$(7),4 AS N$(8),4 AS N$(9),4

AS N$(IO),4 AS N(1),8 AS NS(12),4 AS NS(13),4 AS Ns(14),4 AS N$(15),4 AS N$(16),8 AS NS(17)
- F1=PN$4'.elements':OPEN FS AS 12 LE?=94
* FIELDI2,6 AS Flg2$,2 AS Lt$,2 AS Rt$,4 AS E$(1),4 AS E$(2),4 AS E$(3),4 AS E$(4),4 AS E$(5),4 AS E$(6),4 AS E$(7),4 AS E

"" $(8),4 AS E$(9),4 AS EV(O),4 AS E$(11),4 AS E$(12),8 AS ES(13),4 AS E$(14),4 AS E$(15),4 AS ES(I6),4 AS E$(17),4 AS ES(

18),8 AS E$(19)

Build.6lobal.iatrices:
6OSUB Element~atrixAssembler
ERASE AI,BI,CI,TI

Build.Static.Force.Mat:
DIM UGl(n,3),Ul(n,3),OQ(n)
GOSUB AssembleForcelat
CALL Store.Natrix(n,n4l,K#(),PN+'.K&F.c',a3) ' store stiffness and force matrices
CALL Store.tatrix(n,n,tl(),PNt4'.N.c=,a3) ' store stiffness and force matrices

'IUII lHIH* IH h*l ' debug
CALL Display.Matrix(n,nsI,Kl(),'Stiffness')
CALL Display.Natrix(n,n,Ml(),'Mass')

n:O: OPEN PN$ FOR OUTPUT AS 13: WRITEI3,GN,NE,n,m: CLOSEI3: NtME PNS AS PN$I'DY '
CLOSE
IF Pathi='Direct Integration Only' THEN CHAIN 'Basic Disk I:DynFEP' ELSE CI]N 'Basic Disk]:DynFEP.essential BC'
END

SUB-Programs below

Pagel A - 10

.. %

CE-685 Larry Goshorn
Term Project August 1985

DgnFEP~esrnnttul BCI Flow Diagram
'age

Notes:
Program Variables:

OC InfoGN - number of global nodes.
IF NE - number of elements.

AN Inot ne n -number of unknowns in the structure.
m -number of retained modes (if no reduction

then m-n).
NortnodsPath$ - string variable Indicating the choosen

Donsmethod of solution.
Yes (K provides storage for the global stiffness

matrix, and the static force matrix.
Th e stifness matrix is a square matrix
with dimensions equal to GN times 3.
The static force matrix is stored with

spieenmn ' Iust mm/lust the stiffness in an addition column.
"Kiled? MI provides storage for the global mass

q ; matrix. It is a square matrix with
ft Ov'Ra pg Iure"dimensions equal to GN times 3.

end CW fr M~ SII 11 (BC) provides storage for the boundary
condition index, a column of I /0's.
If 0 then~ displacement has been specified.

V"

Ch ~ Paq A-IlS

.ae A - I I

I.I
CE-685 Larry Goshorn
Term Project August 1985

I DynFEP.essential BC I

COMMON gN,NE,DOF,n,m,M$,Path$
•---------------------...-------... --------... ---------- --..... - ..

Subroutines Below

Switch:
FOR j= TO n: SWAP K#(i,j),K#(k,j): SWAP M#(i,j),M#(k,j): NEXT j
FOR j=1 TO n: SWAP KI(j,i),K#(j,k): SWAP M#(j,i),M#(j,k): NEXT j

RETUIBI

Start: n=N*DOF: al=1: a22
DIM BC#(n,l),K#(n,nl),Ml(n,n),N$(17)
F$=PN$4'.nodes':OPEN FS AS #1 LE=92
FIELD#l,12 AS Flgl$, 4 AS N(1), 4 AS N$(2), 4 AS N(3), 4 AS N(4), 4 AS N$(5), 4 AS N(6), 8 AS N$(7), 4 AS N(8), 4 A
SN$(9), 4 AS N$(O), 4 ASN$(II), 8 ASN$(12), 4 AS N$(3), 4 AS N$(14), 4 AS N$(5), 4 ASN$(16), 8 AS N$(17)
CALL Retrieve.Matrix(n,nsl,KI(),PN$4'.K&F.c',a2)
CALL Retrieve.Natrix(n,n,M#(),PN$+'.M.c',a2)

Define.Essential.BC:
FOR i=1 TO 04: 6ETII,i
FOR j=1 TO DOF

index=(i-l)*DOF+j: k-1+4*(j-)
BC#(index,!)--VAL(M]D$(FlgI$,k,]))

NEXT j,i
•14 *flI**************** **** debug

CALL Display.Matrix(n,al,BC#(),'B. C.')
CALL Display.Matrix(n,n+I,K#(),'Stiffness')
CALL Display.Matrix(n,n,M#(),'Mass')

CALL Store.Matrix(n,al,BCN(),R4$4S .BC',a2)

Apply.Essential.BC: k=O
FOR i=l TO n
IF BCI(i,)=1 THEN k=kfl: IF i Ok THEN GOSUB Switch

NEXT i
k=O: FOR i=1 TO n: k=k+BC(i,1): NEXT i: n=k
FOR i=1 TO n: SWAP KI(i,n+I),K#(i,GN'DOF4I): NEXT i

• uuu*u* *an*u****t*Wenu**u** uu * debug

CALL Display.Matrix(nn41,K#(),Stiffness')
CALL Display.Matrix(n,nM#(),'Mass')

', 4*4***1*fl*Iflf**4441tt*Itfll

CALL Store.Matrix(n,n4I,Kl(),lN$4'.K&F',a2)
CALL Store.Matrix(n,n,M#(),PN$4'.M',a2)

IF Path$='Modal Analysis' THEN i~n 'if not m has been set by DynFEP.create
OPEN R$ FOR OUTPUT AS 12: WRITE#2,GN,NE,n,m: CLOSE12: IAE P$ AS PN$,'DYNA': CLOSE
IF Path$='Modal Analysis' THEN CHI]N 'Basic Disk l:DynFEP.eigen solver' ELSE CHIN 'Basic Disk l:DynFEP.reduce'
END

* / Sub-Programs Below
-- -- -- SUB Retrieve.Matrix(r,c,A1(),F$,k)

Pagel A - 12

CE-685 Larry Goshorn

Term Project August 1985

DunFEP.reduce
Flow Diagram

Fro Notes:
OWlEPm1wtfaIl KC

Ld aon ,u, tix Program Variables:

+ GN = number of global nodes.
u..wuco.wto N iE - number of elements.

IPPLtton fWatitWo AtrIK n = number of unknowns in the structure.
SIIPPL IkpeLI (KL {.l i m - number of retained modes (if no reduction

then m=n).
IKppI, Ia4l1ool, [Kuil Path$ - string variable indicating the choosen

method of solution.
FIrAS n ,UmmJ [K] provides storage for the global stiffness

.W -OCI-DBMIli~wVKupI matrix, and the static force matrix.
The stiffness matrix Is a square matrix

-Cir msmsq with dimensions equal to GN times 3.
The static force matrix is stored with

Load n L ~mbix ithe stiffness in an addition column.
- tix [M] Drovides storage for the global mass

matrix. It is a square matrix with
Ube rafs In to dimensions equal to GN times 3.Partitig orn mamtrlx

ItiIPPL n R1'PL [R) provided storage for the reduce index
MI. 0"It is a list of equations to be retained.

I PI I and [P2] are calculated and stored to
CttIMI from for use by elgen solver in transforming

eigen vectors.
ftoe -fs peRtIor

f Ipl, Owl. 1II 1 I I

+ Available Sub-Programs,

Display.Matrix
Fiuatire. r, w mtrix Store.Matrix

H IkssI~pp-lInlgc 1o-lIK lnkrnne6I-lflsIKa~llsIkD JRetrieve.Matrix
Mat.time.Mat

FI NStore IP I I "- P21 Mat.plus.Mat
PII a 'OIOVIKWII Invert.MatrixF1P2I • -,I1.wfl'eIIkrIlinlbhikimlnvOOwl

End

Chan to

Paqe* A - 13

-. - *- I....-l

CE-685 Larry Goshorn
*Term Project August 1985

* '4------------------------

*'I DynFEP.reduce I
4-------------------------- 4

*C0tMON 94,NE,DOF,n,m,PN$,Patht

Start:- al=1. pm.: sn-m: n1#N
DIM KN(n,nt41),RI(n,),Kpp(p,p),Kss(s,s),Ksp#(s,p),KpsI(p,s): IF p)s THEN &p ELSE ds
DIM T1I(d,d),T21(d,d) 'temporary storage
CALL Retrieve.Matrix(n,n41,KE(),FN$4'.KF',aI)
CALL Retrieve.Matrix(m,al,RIO),RI$4'.reduce',al)

I4IIuIII*II444~uII~uI4Ifi44*Iu*44 debug
CALL Displax.Matrix(m,al,RRO),'Equations to be Retained')

FOR i=1 TO m ' move equations to be retained to the top
IF i<)RIi,1) THEN FOR 1=1 TO n: SIP KI(i,j),KI(RI(i,1),j): NEXT i 'swap row
IF iO)R#i,1) THEN FOR k=1 TO n: SWAP K#(k,i),KI(k,RR(i,1)): NEXT k 'swap column

NEXT i

FOR i=1 TO p: FOR j=1 TO p: KppI(i,JW=KI(i,j): NEXT 3 'build partitioned matrices
*FOR kp41 TO n: Kps#(i,k-p)=K#i,k): NEXT k,i

FOR i=p41 TO n: FOR j=p41 TO n; KssI(i-p,j-p)=KI(i,j): NEXT i
FOR W= TO p: Kspt(i-p,k)=K1(i,k):. NEXT K,i

* 'fh44flhflhIfl44444I4~fllfl4I~lh4uI~l~flu4Ilh4flh**4*fl debug
CALL Display.Matrix(p,p,KppIO),'Kpp'): CALL Display.Matrix(p,s,Kps#O),'Kps')
CALL Oisplay.Matrix(s,p,KspIO),1(sp');. CALL Display.Matrix(s,s,KssIO),'Kss')

CALL Invert.Matrix(s,KssIO)) 'find [Kss] inverse then save partitioned matrices
CALL Store.Matrix(ppp,Kpp#(),PN$4'.Kpp',al): CALL Store.Matrix(p,s,KpsE(),PNS4'.Kps',al)
CALL Store.Matrix(s,p,KspIO),PN$4'.Ksp',al): CALL Store.Natrix(s,s,KssE(),PN4'.Xss',aI)

CALL Mat.times.Mat(s,p,s,KssIO),KspIO),TIE()) 'find the reduced stiffness matrix
CALL Mat.timesdlat(p,p,s,KpsE(),TIIO),T2#())
CALL Mat.plus.Mat(p,p,nlI,KppIO),-nhI,T210))

'IeeIIIIIIIIII~fliIIIIII*IiIIIIEI debug
CALL Oisplay.Matrix(p,p,KppO),'Reduced Stiffness')

*CALL Store.Matrix(p,p,IKppIO),PN$4'.K"',al) 'store the reduced stiffness matrix
ERASE KI,KppI,KspI,KpsI,KssU

*DIM MI(n,n),MppI(p,p),MssR(s,s),MspN(s,p),MpsN(p,s)
CALL Retrieve.Matrix(n,n,MN(),PN$4'.M',aI)

FOR i=1 TO m 'move equations to be retained to the top
IF iORN(i,1) THEN FOR j=1 TOnf: SWAP NI(i,j),NI(RI(i,1),j): NEXT i 'swap row

*IF i ORI(i,1) THEN FOR k1l TO n: UIP MI(k,i),MU(k,R#(i,)):. NEXT k 'swap column
*NEXT i

FOR '1l TO p: FOR j=1 TO p: Npp#(i,j)411(i,j): NEXT j 'build partitioned matrices
FOR kzp~l TO n: MpsI(i,k-p)=tl(i,k): NEXT k,i

FOR izp41 TO n: FOR jzp41 TO a: MssI(i-p,j-pW=MI(i,j): NEXT ,i
FOR k1l TO p: MspI(i-p,k)1(i,k): NEXT k,i

*ERASE NO

Page# A - 14

CE-685 Larry Goshorn
Term Project August 1985

'H~fh*I**I*****fIf****E.*if***IfEI*EIII*.II******I,****debug

CALL Display.Matrix(p,p,tlppIO),'Mpp'): CALL Display.Matrix(p,s,MpsE(),'Mps')
CALL Display.Matrix(s,p,MspIO),'Msp'): CALL Display.Matrix(s,s,tss(),tMss')

DIM KppI(p,p),KssN(s,s),KspI(s,p),Kps#(p,s) 'reload the partitioned stiffness matrices
CALL Retrieye.tatrix(p,p,KppIO),FN$4'.Kpp',al): CALL Retrieve.tatrix(p,s,KpsIO),PN$4'.Kps',aI)

*CALL Retrieve.Matrix(s,p,KspE(),RI$4'.Ksp',ail): CALL Retrieve.Matrix(s,s,KssIO),PNS4'.Kss',al) 'recall stored [Kss] inve
rse

Find the reduced mass matrix and (P1H and (P21 for use in finding [T] by DynFEP.eigen solver
FOR i=1 TO d: FOR j=1 TO d: TII(i,j)=O: T21(i,j)OQ: NEXT j,i 'mnit TIN and T2#
CALL Mat.times.Mat(s,p,s,Kss(),Ksp#(),T1UO)) ' 1Ti1 = (KsslinvCKsp) = [P1]
CALL Store.Natrix(s,p,TII(,N+'.P',al) 'used by DynFEP.eigen solver

CALL tat.times.tat(p,p~s,MpsIO),TIIO),T210)) ' 1T21 [Mps][Ksslinv[Ksp]
CALL tat.plus.tat(p,p,nl,Mpp(),-nlI,T2#()) ' (tippi (Mpp] - (tps[Ksslinv[Ksp]
FOR i=1 TO d: FOR j=I TO d: T21(i,j)=O: NEXT j,i 'mnit T21
CALL Mat.times.Mat(s,p,s,Mss#(),T1ICP,T230)) ' [T1 = Mss][Ksslinv(Ksp]
CALL Mat.plus.tat(s,p,nI,MspIO),-nII,T210)) ' [isp] (lisp] 4 [Mss][Kssliny[Ksp]
FOR i=1 TO d: FOR j=l TO d: TII(i,j)=O: NEXT j,i 'mnit T1N
CALL tat.times.Iat(s,p,sKssIO),T210),T1IO)) ' [TI] = CKsslinv[Mss][Ksslinv[Ksp]
FOR i=1 TO d: FOR j=1 TO d: T21(i,j)=O: NEXT i,i 'mnit T2#
CALL Mat.times.Mat(s,p,s,Kss#(),tspIO),T2E)) '1[21 = (Ksslinv(Msp]
CALL tat.plus.Mat(s,p,n#,T1IO),-nlI,T210)) ' [TI] = -[Ksslinv[lsp] + CKsslinv[tlss][Ksslinv(Ksp] = P21

*CALL Store.Matrix(s,p,TIIO),PN$4'.P2',aI) 'used by DynFEP.eigen solver
FOR i=1 TO d: FOR j=i TO d: TII(i,j)=O: T2#(i,j)=O: NEXT ,j,i 'mnit Tl1 and T20
CALL Mat.times.Mat(s,p,s,KssIO),MspIO),TIIO)) ' T1 = EKss~inY(tMSpI 4 tMSS][Kssinv(KspI)

*CALL Mat.times.Mat(p,p,s,Kps(),T1IO),T230) / [1 [Kps][Kssliny(tlsp] * [tss]CKsslinv[Ksp])
CALL Mat.plus.tat(p,p,nl,MppIO),-n11,T2#()) ' MppI = [Mpp] - (Mps][Ksslinv[Ksp] - [Kps]lKsslinv((Msp] * [tlss][Ksslin
Y[Ksp])

* 'IUC~l*Iu~flflhI**ICIIIIII~fl debug
CALL Display.tatrix(p,p,Mpp#(),'Reduced Mass")

CALL Store.Matrix(p,p,MppIO),tf$'.M.',al) 'store the reduced mass matrix
ERASE tpp#,Mps#,MspI,llss#

CLOSE: KILL FtfS.'.Kpp': KILL PNS*'.Kps': KILL PtfS..Ksp": KILL PN$4.Kss' 'distroy temporary Wies
CIMIN 'Basic Disk 1:DynFEP.eigen solver'

* END

' Sub-Programs Below

Page# A - 15

CE-685 Larry Goshorn
Term Project August 1985

D:WEP.elgen solver
V Flow Dia lrsm

Lo. eed n ~x Load mWrl Notes:

Lasi rami etliftmu wMfl LaW Uff~ ~a Program Variables.

GN - number of global nodes.
W^t still NE - number of elements.

n - number of unknowns in the structure.
m - number of retained modes (if no reduction

I Bthen m-n).
Paths - string variable indicating the choosen

method of solution.
fMS 1) and M52) provides storage for the mode

shape vectors. The 1 and 2 refer to the
and improved Iterative values.

[M] provides storage for the mass matrix.
"Oft e OM Its dimensions are mxm.

[K] provides temporary storage of the
stiffness matrix or its Inverse, depending

I . hm, Ion the stage of the program.
[D] provides storage for the result of

I eo, .= IA [Klinverse * [MI. it is used to iterate
I m,,z, ~adh, Itoward the correct mode shape.

[T) if the structure has been reduced, this
provides storage transformation matrix
to convert reduced mode shapes to full
ones.

[PI) and [P21 provide storage for matrices
used in constructing the above trans-

J011t lowaft Imation matrix. IT). They are dimensioned
Vol(n-e

[SI provides storage for the sweeping matrix.
This matrix is used to remove last mode
shape.

lr If'tIPI I1U X Available Sub-Programs:

Display.Matrix
Store.Matrix
Retrieve.Matrix

M, w'l so21 e , is Mat.times.Mat
S' -atTrans.times .Mat

F I ,- =,, 9!0I fl Mat.Plus.Mat

• .'" out = meIMcw
I m no r4-U',I

"V

: .P i,,-,.,.I pog* A - 16

CE-6.5 Larry Goshorn
Term Project August 1995

4 -- - - - -- - - - -- - -

I DynFEP.eigen solver .1

COMMON GN,NE,DOF,n,m,PN$,PathS$: GOTO Start

/ Subroutines Below

Remove .Last .tode-
FOR i=AI TO m: TII(AI,i)=O: FOR j=AI TO m: T21(i,j)=O: NEXT j: NEXT i: T31(Al,AI)0O 'init temp storage

* CALL IatTrans.times.Mat(A,,m,MSIUO),#I,T1IO)) ' ITI] = {ISI)tran[M]
CALL tat.tims.Mat(m,m,AI,SI,TIUO),T210)) ' 723 = {HSI)(NS)tran[M]
CALL Mat.times.Nat(A1 ,AI ,m,TII() ,NSIU() ,T310) ' T3 = (NS1ltran(M](NSIJ
aac1/T3I(A1,AI): CALL Mat.plus.Mat(m,m,a#,SIO),-aal,T210))
'CALL Retrieve.Matrix(m,m,T2IO),FN$4'.D',A3) I load original ED] into T2#
FOR ixAI TO a: FOR j=A1 TO.a: T2#(i,j)=DI(i,j): DI1i,j)0Q: NEXT ,i,i ' init ED)

* CALL Mat.times.Mat(,m,m,T210),S(,D#()) ' newED] = original[DlCSllatest
*RETURN

Create.Eigen.Files:
RL=m'8: Ft PNS4'.Sn: OPEN F$ AS 11 LEN:RL: FIELDIIRI AS 90$ ' the shape file
a$=MKD$(Q): FOR i=1 TO a: bt=b$4a$: NEXT i ' load shape file with zeros
FOR i=1 TO n: LSET BWb: PUTII,i: NEXT i
RL=B: F$--4fi .eigen': OPEN F$ AS 62 LEN-RL: FIELDU2,RL AS CC$ ' file for eigenvalues

RETURN
-- -

Start: Accuracy-.O1/100: aizi: a2--2: a& 3: al11: GOSUD Create.Eigen.Files
*CALL TEXTFOt4T(I): CALL TEXTSIZE(9): IF mOn THEN Flagt'4'2 ELSE Flag$=

DIM O~,),SN,,I MZ~,I TEI,),3(II
DIMI KI(m,m+1):IF Flag$=**' THEN CALL Retrieve.latrix(m,m,KUO),PN$4'.K*4,a3) ELSE CALL Retrieve.Matrix(m,m4,KNO),PN$+.K

'naunuueaaunuaeaeaaneenaaai 'debug
* PRINT USING 'N:- 0# mm It Flag$=)'(';n,m,f lagS

IF Flagt=4' THEN CALL Display.latrix(m,m,I(IO,'Reduced Stiffness') ELSE CALL Display.tiatrix(m,m4l,KUO),'Stiffness)

* CALL Invert.Matrix(m,KIO))
*DIM MI(m,m): CALL Retrieve.Matrix(m,m,MIO),Rl$s.M'Flag$,a3)

- '4111114iinifliII~u~ui~fh~uiII 'debug
CALL Display.Matrix(n,m41,KIO),'Inverted Stiffness')
CALL Display.Matrix(m,m,MUO),'Mass')

*CALL Mat.times.Mat(m,m,m,KIO),MIO,D#()) ' D] x IK~inv(MI
*CALL Store.Natrix(m,m,DIO),F4$'.D',a3) 'temporary file

ERASE KU ' clear some memory
DIM SIn,m),72l(m,m): FOR i=Al TO m: S6(i,i0Al: NEXT i 'init (SI as CI]

*IF nOm THIN DIM PI#(n,m),P21(n,m): CALL Retrieve.latrix(n-i,m,PIO,PN+'.PI',a3): CALL Retrieve.Matrix(n-m,m,P2#(),PN$
* *.P26,a3'load PI P2

*FOR tigen=A1 TO m begin solution
-FOR ixAI TOma: MSII(i,AI)rA1: NEXT

1:2: ieigen: Signz-AI ' create a first guess, should have one less sign change as eigen
WHILE j):-i: FOR kr-i TO n: MSI(i,AI)=Sign: NEXT k: Sign-Sign: ii+AI: WEND

ChangezAt

Page# A - 17

CE-685 Larry Goshorn
Term Project Auigust 1985

WHILE Chang.)Accuracy
CALL Mat.times.Mat(m,AI ,m,D#() ,NSII() ,1S210))
Freq2ImrlJlS2#(AI ,At): Change4O
FOR i=A1 TO m

NS2#(i,Al)=52#(i ,A1)IFreq2I
NuiwABS((tlSI(i,AI)-N521(i,AI))AIS2#(i,AI)): IF Num>Change THEN Change4Ium
MS1I(I,A1 WtlS2#(i1I): MS2#(i,AI)0O

NEXT
'iI~I*IHIIIH**I~fhI4*I~i*IIU*I 'debug

*IF z-O THEN CLS
* CALL NUJETO(2,50):z--z4l: PRINT USING 'TryIII';z

PRINT Change
'CALL Display.Natrix(n,aI,MSIIO),'Trial Vector')

LdEND:z:O

-IF nm THEN FOR i=1 TO m: MS2I(i,AI)=1511(i,AI): NEXT i: G0TO Skip 'transform if structure not reduced
FOR i=1 TO n-is: FOR j=1 TO m: T#(i,j)=O: NEXT jji 'store [P11 in IT]
CALL Hat.plus.at(n-,m,I,TIO),Freq2I,P21IO) ' find IT) then below create matrix with [I] over -[T]
FOR i=1 TO n-m:FOR j=l TO m:TI(i~m,j)=-T#(i,j):NEX(T ili:FOR i=1 TO m:FOR j=l TO m:T#(i,j)=-(ij):NEXT i,i
FOR i=mT70 n: MS2#(i,AI)=O: NEXT i 'finish initializing N52#

* CALL mat.times.iat(n,A,m,TIO),MSIO(,MS2#()) ' full eigenvector stored in MS2#
Skip:

* 'H~uI~uI4I*I4II~lflIII~lhI 'debug
*PRINT USING 'Mode Shape ## Freq =11E"';eigen,SR(Freq2#)

CALL Display.Matrix(n,A1,MS210),'iode Shape')

*'Prepare for next mode shape
L t-(eigen-A1)*B: Rt=(m-eigen)i8

* FOR i=1 TO n: GET#I,i: a$=BBS
aiLEFT(a,Lt)iNKD(MS21(i ,))sRIGHT$(a$,Rt)
ISET BBa$: PUTII,i ' store element in eigen vector matrix

-NEXT i
- LSET CC4IKD(Freq2I): PUTI2,eigen ' store square of eigenvalue

IF eigen~n THEN GOSUB Remove.Last .Mode
NEXT eigen

CLOSE: KILL FN64'.D': KILL P041'.01: KILL PNS+'.NI: KILL FN64'.PI': KILL PN$4'.P2'' distroy temporary files
* '**H*HHHHIIIflfIH~f**f*HH 'debug
CALL Retrieve.1atrix(n,m,SIO),PNS+'.S',a1)
CALL Display.Matrix(n,m,SI(),*Mode Shapes')

* CALL Retrieve.Matrix(m,I,EIO),F$4'.eigen',aI)
CALL isplay.tlatrix(m,nl,EIO),'Eigen values')

CHAIN 'Basic Disk 1:DynFEP.uncouple/solve'
*END

Sub-Programs Belw

-,Page$ A - 18

CE-6115 Larry Goshorn
Term Project August 1985

I IMnFEP~uncouple/solve
From wo saic orimFlow Diagram

Notes:

FlidMars g n2d m nwtmx3 Program Variables:

Lood bAWWV UGN -number or global nodes.
(00 NE - number of elements.

n -number or unknowns in the structure.
m -number of retained modes (if no reduction

FUN 511aensostnitwothen rn-n).
Path$ - string variable Indicating the choosen

V" method of solution.
(S] provides storage for the mode shape

+ matrix.
AeMJ Umh~dWU Cardilto (MI provides storage for the real or generalized

mass matrix, depending on the stage in the
POW find..~ to.~ program. Its dimensions are mxm.

Role131NMI LW neft etril (IOI and (U I I provide storage for the current
and last generalized displacement,
velocity, and acceleration vectors.

Lmi~t~~iU5ITreated mathematically as 3 column
matrices, they are stored as a nx3.

Fil MWWa (U] provides storage for the current real
Al W AS. 46,47A1 displacements. Its dimensions is nx 1.

Fnd idp.,wc force fram [El provides storage for the eigenvalue
forea aftms, for on matrix. Mathematically It's a square

*ie ttu ofoifme di agonal matrix, itUs stored as a mx 1.
(Fd) provides storage for generalized dynamic

F1feindgamllaformotal forces. It is dimensioned as mxl1.
Wd) a isuiu. * usO (Fs) provides storage for static forces. It Is

dimensioned as nx 1.

FWll USII # AO*UC1 # A20M * A3*U01) / AO 11L)

+ Available Sub-Programs:
Find cornat 1iem a12001 rattain & voloeit. ipayMti
WPI~litAI(WI - 4101) -A20J0i- A304fUisly.ati

fWJ)31 # W(- DeOUI01 * Do1*Ohli)Oeft~mT Store.Matrix
Retrieve.Matrix

swel ful WH amMat .times.Mat
fw oort inve$upMatTrans times .Mat

+ Mat .Plus.Mat

Paqe* A - 19

*CE-685 Larry Goshorn
Term Project August 1995

*' ------------------------ 4

I DynFEP.uncouple/solve I

COMMONI GN,NE,DOF,n,m,ft*,Path$: 60TO Start
-- - - - - - - - - - - -- - - - - - - - - - - -- - - - - - - - - - -

/ Subroutines Below

ReadistoryF ile:
* OPEN History$ AS 14 LEN-I6: FIELD 14,8 AS Z$(I),8 AS Z$(2)

6ETI4,1: Max-CVS(ZS(1)): Min=2: i=INT((Ilax-Ilin)/241)
6ET14,i: 71=CVS(Z$(1))
WHILE Max)tlinel AN4D TIOTephaze

* IF TI(T4phaze THEN Mini: itlin4INT((tlax-i)/2)
IF TI)Tphaze THEN Iaxi: i=Max-INT((i-lMin)/2)
6ET14,i: TI=CVS(Z$(1))

* -WEND: IF Tephaze=Tl THEN 4fCVS(Z$(2)): 60TO found
GETI4,Ilin: T1=LVS(Z$I)): f1=CVS(ZS(2)): IF T~phaze=Tl THEN ff : 60T0 found
SETI4,llax: T2C'JVS(Z$(1)): f2C-VS(Z$(2)): IF Tephaze=Tl THEN f4f2: 60T0 found
4f(T4phaze-T1)I(42-fI)/(T2-TI).fI interpolate

found: CLOSEM4 RETUN

*AsseebleForcellat: lastl
* FOR i=1 TO ON
* FOR j=Q TO DOF-I: index=(i-l)'DOFepl

IF BC#(index,1)=1 THEN 6OSUB NodeDynFarces
NEXT j,i: RETURN

NodeDynForcts: X=3#5*j: Dloa&-Q: k-]+ja4. IF last Oi THEN 01TII0: lastzi 'set index's and read node dynamic forces
* IF MIDS(Flgl$,A42,2)=811' THEN ap=CS(N$(k41)) :angle=CVS(N$(k42)) :phase=CVS(NS(k'3)) :Dloadamp*SIN(teangleephase) Harm

*Load
IF MID(Flgl,A42,2)=lI0 THEN HistoryS=E$(k44) :6OSUB ReadistoryFi Ie:loadm4 ' non-harmonic load
Fd#(index,l)=Fd1(index,l)+Dload I add in force; positive to right, upward, clockwise
RETURN

Inert lalForces:
*FOR i=1 TO 2: 6ETIIIEBC7(i,1): j=EBCY.(i,2): k-34(j-1)u4: k=34(j-l)15: DisplO0

IF NID6(FlgI$,A42,2)=511 THIN amp=CUS(N$(kel)) :angle-CVS(N$(k42)) :phaseCLVS(N$(k43)) :DiSpl=DiSpl4amp*SIN(t*angle~phas

*IF MID$(Flgl$,A42,2)=6IO' THEN History~zE$(k44):6OSUB Read~istoryFile:Displ=Displ44 non-harmonic Displacement
* FOR kzl TO ON: index=(k-1)IDOF~j: Ffflindex,I)=-Displ: NEXT k
* NEXT i : k=O
-FOR i=1 TO GNINE apply essential BC

IF BCI(i,I)=1 THEN kzk.1: IF i Ok THEN SWAP FdI(k1),Fd0(i,I)
* NEXT i

CALL Nat.times.tat(n,nl,n,K(),FdIO),T2$())
RETURN

El ementtlatr ixAssembl er:
FOR ELMENTa! TO NE
60SUB BuildflementHatrices
IRm(N1X-1)*DOF:IC=(NZ/n-1)uDOF

--Assem.Dyn.Elem.Forces:
FOR ial TO DOF: FdI(IR~iql)zFd1IlRi1)e44(i): FdI(IC~i,I)=FdI(ICi,1)4fI(isDOF): NEXT

Page$ A - 20

'Z * -**-***-.*.---* .*-.-* * .. *

CE-685 Larry Goshorn
Term Project August 1I85

NEXT element: RETUN

Blu i ldElemenfflatr ices:
6ET12,ELEMEN7 :N1X=-CVI(Lt):NZ~LVI(Rtt) get left and right global node V's
GETII,N1X:XI=-LVS(N$(1)):Y=CJS(NS(2)) 'get left side coord's
5ETl1,NZ.:X2-CVS(NS(1)):Y2-CVS(N(2)) /get right side coord's
L=SQR((Y1-Y2)'2+(X1-X2)^2) ' find element length

--Elea.Dyn.Forces:
DDl oad-O:TDl oadOC
IF MID6(Flg2S,2,2)hll'5 THEN amp=OS(E$(lfl)) :angl e=CVS(E$(Il)) :phaze:C'JS(E(12)):DDload-mpiSIN(tiangle~phase)'Hara

Dyn
IF MID$(Flg2S,2,2)='1O' THEN History$=EV(13):6OSU8 ReadHistoryFile:DDloa&-f ' non-harmonic dyn load
IF MIDS(Flg2l,5,2)='11' THEN amp=LVS(E$(16)) :angle=CVS(E$(17)) :phaze=-CVS(E$(18)) :TDloa&-ampiSIN(t*angle~phase)'Harm

TanDyn
IF MID(Flg26,5,2)='IO' THEN History$4E$(19) :GOSU8 ReadHistoryFile:TDloadf 'non-harmonic tan dyn load
fl(1)1'TDload/2:f1(4)=f1Q) / positive to the right
fl(2)=LeDDload/2:fl(5)=fl(2) ' positive upward
fl(3)=-12DDoad/12:fl(6)-f#(3) ' positive clockwise

IF XI-X2=-O THEN anglezSGN<Y1-Y2)aPil/2 ELSE angle-2'Pil-ATN((YI-Y2)/(XI-X2))
IF angle)2*Pi#+.003 OR angle(2*Pi#-.003 THEN TransformDynForce

RETURN

TransformDynForce: 'Subroutine to transform Stiffness, Mass, and Force element matrices
'--Build~ransformationtat: ' build [TI

FOR i=i TO 6:FOR j:I TO 6:TI(i,j)=O:NEXT j,i ' initialize

TN(1,2)COS(angle):TI(4,)TI(1,):I(2,)=TI(1,):U(5,)=T(,)

TI(3,3)= :TI(6,6)=1

FOR i=1 TO 6:CI(iqI)=O:FOR X=1 TO 6:Cli,1)=Cl(i,I)4Tl(k,i)efl(k):NEXT k,i:FOR i=1 TO 6:fU10KCIO,):NEXT 'tran[T1*(f)
RETURN

Get.deltaT.and.7ime.Steps:
Del taT=2/SQR(EI(m,I)): T$=STRS(Del taT): TS=4-STR(INT(SR(EI(Il))/DeltaT),I) ' max del taT and min #cycles
WINDOWd 3,,(250,22)-(505,132),-4
CALL TEXTSIZE(10): CALL MOJETO(5,26): PRINT 'Enter time step (max. shown)': CALL TE(TSIZE(12)
EDIT FIELD ITt,(5,30)-(250,45)
CALL TD(TSIZE0lO): CALL MIOJETO(5,61): PRINT 'How many time steps?': CALL TEXTSIZE(12)
EDIT FIELD 2,TSl,(5,65)-(25a,8e): EDIT FIELD I

* eBUTTON 1,1,'OK',(200,84)-0:50,102)
i=1

* loop:
&-DIAL06(0)
IF &I OR &-6 THEN done 'got OK button or RETURN

*IF dm2 THEN i=OIALOG(2):. EDIT FIELD i 'got field selection
IF &d7 THEN iz(i MOD 2)41: EDIT FIELD i 'got TAB key

* GSOTO loop
* done: CALL TECTSIZE(1O): DeltaT-JL(EDT(1)): NumStepsZV(AL(EDITS(2)): WINDOW CLOSE 3

RETURN

*Start: Pi~s41ATN(1): CflCHR$(13): nl=1: n3: n4=4: oneliz1
*DIN 00(7)IE$19)
* F4.nods':OPEN FS AS #I LEBm92

Page$ A - 21

CE-683 Larry Goshorn
Tomn Project August IM8

FIELD1I,12 AS FIit 4 AS 16(1), 4 AS NS(2), 4 AS 145(3), 4 AS 145(4), 4 AS N45(5)9 4 AS 145(6), 8 AS N60(), 4 AS NUB8), 4 A
S N$(9)9 4 AS NS(16), 4 AS NV5(1), 8 AS N$012), 4 AS N$5(13), 4 AS N$5(14), 4 AS N$0(5), 4 AS 145(16, 8 AS NV517)
FFN4'.elements':OPB4 F$ AS 12 LEN-94

*FIELDI2,6 AS F1g26,2 AS Ltt,2 AS Rtt,4 AS ES(l),4 AS E$(2),4 AS E$(3),4 AS ES(4),4 AS E$(5),4 AS Et(6),4 AS Et(7),4 AS E
$ (B),4 AS E$(9),4 AS E$(10),4 AS E$(11)94 AS E$(12),B AS E$(13),4 AS ES(14),4 AS E$(15),4 AS E$(16),4 AS E$(17),4 AS E$(
18),B AS E$019)
F$1PN44.displ': OPEN Ft AS 13 LENJ-24
FIELDI3,8 AS U1$, 0 AS 0t, 8 AS Act

IF n~m THEN Flag$='u5 ELSE Flag$=' ' flag reduced structure
DIN K1(n,n+I),Fs#(n,1): CALL Retrieve.Matrix(m,m+1,KIO),R454'.K&F',n4)
FOR i=1 TO n: FsI(i,I)=KI(i,n+1): NEXT i: ERASE KU ' load static force matrix

'Find/Stare Generalized Mass Matrix
DINI MI(n,n),Mdial(m,nl),TII(n,n): CALL Retrieue.Matrix(nln,MI(),N4.M*,n4)
DIM SI(n,m): CALL Retrieve.Matrix(n,m,SIO),PNS4'.5,n4) ' load mode shapes

CALL MatTrans.times.Mat(m,n,n,SIO),MIO,T1IO))
FOR =1I TOma: FOR j=1 TO a: N1(i,j)=0: NEX(T j,i 'init NO
CALL Mat.times.Mat(m,,n,T1IO),SIO,MIO)): FOR i=I TO a: Mdial(i,1)t11(i,i): NEXT i /store dia. in Mdial

'II*IIII*U~lIHH***IIIIH**I*debug

CALL Display.Matrix(m,m,MIO),6eneralized Mass Matrix')
CALL Display.Jltrix(n,m,S),'Modt Shapes')

CALL Retrieve.Matrix(n,n,MI(),FNS.'.Ml,n4) ' [M) needed to find inertial forces
ERASE '11 ' clear some memory
DM EI(n,1): CALL Retrieve.Matrix(m,nl,EIO),FN$4'.eigen',n4) ' load eigenvalues

DIM DCI(14190F,1):p-GNUDOF: CALL retrieve.Matrix(p,n1,BClO),RPIS4.8C',n4) ' load boundary condition index
'iu~uua~iuuiiu~uuuuuuuiuuuiin debug

CALL Display.Matrix(WGIDOF,n,BCIO),9oundary Condition Index')

DIM UOI(m,3),UI1(GN0IE,3): 60T0 Skip 'trouble with initial conditions file, can't resolve
IF Flag-*** THEM Skip ' initial conditions must=O if structure is reduced
CALL Invert.Matrix(n,SIO))

*u~ueuueeuaeueu..uueuntn.. debug
CALL Display.Matrix(n,n,SIO),'Inyerted Mode Shapes')

- CALL Retrieve.Matrix(W4IDOF,n3,UlIE),P1454'.initial',n4): k0O
FOR i=1 TO ENeDOF 'apply boundary conditions to intil conditions

IF BCI1i,1)zl THEN kzk#]: IF iOk THEN FOR j=1 TO 3: SWA~P UII(k,j),UJI(i,j): NEXT ,s
NEXT i

*CALL Mat.times.Mat(n,n,n,S$O),UIIO,UOIO) ' find generalized initial conditions
CALL Retrieve.Matrix(n,m,SlO),PN4'.S',n4) 'reload mode shapes

Skip: 'CALL Store.Matrix(n,n3,UIIO),PNW'.displ',n4) 'store initial conditions in displacement file

WILdE j(=: ial: indO--ij=1 DF ' find out where uniform base movement stored
* IF BCO(index,I)=O THEN EB(.(j,I)zi: EOC/(j,2)zj: jj+I: i0Q

WENDI

*'Get or calculate constants
delta=1/2:alpha=1/6. GOSUB Bet.deltaT.and.Time.Steps
AO=/(alpha'DeltaT'2) :A21l/(alphauDel taT) :A~m/(2Ialpha)-I I calculate constants

* A6zDe1 tTf(1-del ta) ,A7ndel tauDel taT

Pagel A - 22

CE-685 Larry Goshorn
Term project August 1985

FOR Counter-mi TO NumSteps 'begin solution loop

Dynorcelat: FOR i=1 TO U4*IE: FdI(i,1)=O: NEXT i: FOR ia) TO n: T21(i,1)0:. NEXT i 'mnit FdI & T21
GOSUD InertialForces: GOSUB Assembleorcellat: GOSUB ElementtlatrixAssembler
FOR ial TO GM*NE 'apply essential BC

IF BCI(i,1)1l THEN k~kf1: IF i0k THEN 3MP FdI(k,1),Fd#(i,I)
NEXT
CALL Nat.Plus.Mat(n,nt,onel,FdIO),onel,T210)) 'add node/element forces and inertial forces
CALL tatPlus.at(n,n,one,Fd(),onel,Fs#()) 'add dynamic and static forces
FOR i1i TO n: T21(i,1)0O: NEXT i 'miit T21
CALL MaitTrans.times.Mat(m,nl,n,S(),FdIO),T210)) ' find generalized dyn. force matrix

Solve:
FOR i=1 TO a

U1U(i ,1)(FdI(i,1)AMdiaI(i,I)4AOIUOI(i,1)4A2U1(i,2)4A3U1(i,3))/(AO4E(i,))
NEXT i
FOR i=I TO m ' find V and A vectors and store displacements in U
UI(i,3)=A01(UII(i,1)-UO#(i,l))-A2'UOI(i,2)-A3IUOIi,3)
UIU(i,2)=UOI(i 2)4A6'UO(i,3)4A7'Uli(i,3)
FOR s1- TO 3: U0I(i,j)=U1(ij):. UI1(ijj)=0: NEXT i ' EUOI =(Ut] for next time step, ifit [Iii]

NEXT

Find.Store.real .dispitcoments:
CALL tat.times.Mat(n,n3,m,SIO),UIO,UIIO)) ' (Ul] = ISIIUC] convert from generalized coordinates

'C~fh~ilh*fl4*I~f*I***Ifl* debug only
CALL Display.Matrix(n,n3,UII(),'Oisplacement, 'Jelocity, Acceleration')

FOR i=1 TO n
LSET UL"KSM(UII,))LSET V$MKS(UIU(i,2)):LSET AcI4KS$(UII(i,3)):ji4Counteren:PUTI3,j 'save to disk

NEXT i

T=T.DeltaT 'next time step
*NEXT Counter

*CLOSE: CH'AIN 'Basic Disk 1:DynFEP.menul
END

Sub-Programs Below

Page$ A - 23

CE-M8 Larry Goshorn
Term Project _______________ _____August 1 985

DanFEP
................... Flow Diagram

FFUD LMsied ~ amf fueS ltic lW Notes:

4 Program Variables:

614- number of global nodes.
NE =number of elements.

LMa MU mitl l ili n - number of unknowns In the structure.
00"I Im = number or retained modes (ir no reduction

then rn-n).
Path$ - string variable indicating the choosen

FUN F*MW Contw"method of solution.
[K I provides storage for the global stiffness

matrix, and the static force matrix.
FINS dWWMlC farce fra The stiffness matrix is a square matrix
faren w eiain. farce M with dimensions equal to 614 times 3.
f so M Wl The static force matrix is stored with

the stiffness In an addition column.
[M) provides storage for the global mass

matrix. It is a square matrix with
la -ffecti* Iai dimensions equal to GN times 3.

(P3 lF0* I 131UO 4 A21u01 *S(UW1) (UQ I and IU I1I provide storage for the current
and last displacement. velocity, and
acceleration vectors. Treated a,? 3 column

3e1w slautumm @aqm matrices, they are stored as a nx3.
(Fd) provides storage for generalized dynamic

forces. It is dimensioned as mx 1.

Available Sub-Programs:

I Display.Matrix
9WO fll W 401Store .Matrix

far Mt t~lE stoplft.I Retrieve .latrix

Paqes A - 24

CE-685 Larry 6oshorn
*Tomi Project August 1985

* ' I DynFEPI

* COIIWI GN,NE,DOF,n,m,PNS,Path$: 6010 Start

Subroutines Below

ReadistoryFile: BUTTON 10,2
* OPEN History$ AS 14 LEN:46: FIELD #4,8 AS Z$(1),8 AS ZS(2)

GET#4,l: Max-CVS(Z$(1)): tlin=2: i=INT((tlax-tlin)/2+1)
* 6ET14,i: T1:CVS(Z$(1))

WHILE Max)tlinil AND TiO)Tiphaze
IF T1{T4phaze THEN Min-i: itlin+INT((Max-i)/2)
IF TI)T~phaze THEN Mlaxi: ixlax-INT((i-tlin)/2)
6E114,i: T1CV S(Z$(1))

WEND: IF T~phaze=Tl THEN f=CVS(Z$(2)): 6010 found
* 6~ETl4,Min: TI=CVS(MMl): 41=C'JS(Z$(2)): IF 74phaze=TI THEN ffl: 6010 found

GET14,Nax: T2C'.S(Z$1)): 42CVS(Z$(2)): IF lphaze=-T1 THEN ff2: 6010 found

found: CLOSEM4 BUTTON 10,1: RETURN

Guass: BUTTON 14,2
-FOR i1I TO n:M#1K1(i,i):FOR j=1 TO N41:K(i,j)=KI(i,j)/II:NEX(T i

FOR k=1 TO n:IF k Oi THEN I1N=K#(k,i):FOR j=i TO n41:K#(k,j)=K1(k,j)-K#(i,j)*1I:NEXT j
NEXT k,i,: BUTTON 14,1: RETURN

Assembleorcelat: BUTTON 7,2
* FOR i=1 TO GN: 6ETI,i ' read specified nodal loads

FOR .i=O TO DOF-!
index-(i-1)*DOF4j4I :k:345*j

--NodeDynForces:
Dload=0: A.3#j14

* IF tID$(Flglt,A,2)='ll' THEN aap=OJS(N$(k41)):angie=CVS(N$(k42)):phase=CVS(N$(k43)):.Dloa&-amp*SIN(teangle4phase)'ha
rm

* IF MID$(FlgIS,A,2)=910* THEN History$-Ei(ks4):605U9 ReadHistoryFile:Dloa~f ' non-harmonic load
* Fd#(index)=FdI(index)+Dload I add in force; positlue to right, upward, clockwise

UII(index,1)0:k=1441j:IF NID6(Flg1$,k,I)='0 THEN U11(index,1)=1 ' Flag essential B.C., used later
NEX(T j,i: BUTTON 7,1: RETUM4

*Essential .B.C: BUTTON 13,2
DisplO0: Node=INT((i42)/DOF): j:(i+2) MOD DOF: km34j15: A=14j:1F j=O THEN 6ET1I,Node
IF KIDS(FlglIA41,I)=11 THEN Displ=CVS(NS(k)) 'static displacement

* IF MIDS(Flg1$,A42,2W='1' THEN4 amp=CVS(N$(k41)):angle=CVS(NS(k42)):phase:CVS(N$(k43)):Displ=Displ4ampuSIN(teangle~phase

IF MID$(FlgIS,A42,2)=610* THEN History$-E$(k44):6OSUB ReadHistoryFile:Displ:Displf ' o-harmonic Displacement
BUTTON 13,1: RETURN

Elmment~atrixAssembler: BUTTON 8,2
* FOR ELBIENT=I TO NE
* GOSUB BuildElementtlatrices

'--- Assm.Dyn. E In. Forces
*FOR izl 70 DOF: FdI(IR4i)zFd1(IR4i)4f1(i): FdI(IC4i)=FdE(IC4i)4fl(i4DOF): NEXT

Page# A - 25

CE-685 Larry Goshorn
*Term Project August 1985

NEXT element: BUTTON 8,1: RETUNI

BuildElementflatrices: BUTTON 9,2
GETI2,EL~iENT:N1%.=CVJI(Lt$):NZ{.=CVI(Rt$) 'get left and right global node I's

* 6GET#1,N1%:X1CV.S(NS(1)):Y1CYS(N$(2)) get left side coord's
GETI1,NZ/-:X2-CUS(N$(1)):Y2-CVS(N(2)) ' get right side coord's
L=-SOR((Y1-Y2)2+(X1-X2)2) ' find element length

Elem.Dyn.Forces:
DDl oa&-O :.TDl oa&-O
IF NIDS(Flg2$,2,2)='11' THEN amp=CS(E$(1)):angle=CS(E$(11)):phaze=CVS(E$(12)):DDload-amp*SIN(txangle4phase)'harm

*IF MIDE(Flg2$,2,2)='1O' THEN Historyi=E$(13):6OSUB ReadHistoryFile:DDload-f ' non-harmonic dyn load
IF MID$(Flg2S,5,2)='1' THEN amp=CVS(E$(16)):angle=CVS(E$(17)):phaze=CVS(E$(18)):TDloaamp*SIN(tangle4phase)'harm

*IF MIDS(Flg2S,5,2)='10' THEN Historyi=E$(19):OSJB ReadHistoryFiie:TDload-f 'non-harmonic tan dyn load
fl(1)=L*TDload/2:f1(4)=f1(1) 'positive to the right
fl(2)=L*DDload/2:fI(5)=f1(2) 'posi tive upward
1l(3)=-LU2DDload/12:f#(d)-f#(3) positive clockwise

IF XI-X N0 THEN angle=SGN(YI-Y2)*PiL'2 ELSE angle=2*Pi#-AM((Y1-Y2)/(XI-X2))
IF angle)2*Pi#4.003 OR angle(2*Pi#-.003 THEN GOSUB TransformDynForce
BUTTON 9,1: RETURN

*TransforaDynForce: BUTTON 1I,2:'Subroutine to transform Stiffness, Mass, and Force element matrices
* GOSUB BuildTransformationMat

FOR i=1 TO 6:CI(i,1)=0:FOR k=1 TO 6:C#(i,1)=C(i,1)sT#(k,i)fl(k):NEXT k,i:FOR i=1 TO 6:f~i)=C1(i,1):NEXT 'tran[Tl*{f)
BUTTON 11,1: RETURN

* BuildTransformationlat: BUTTON 12,2; ' build IT]
FOR i=1 TO 6:FOR j=1 TO 6:T#(i,j)=0:NEX(T j,i ' initialize
IF angle MOD Pil/2 THEN T#(1,I)=COS(angle) ELSE T1Q(,1)=0
TI(4,4)TU1(1,1):TI(2,2)41N(1,1):T#(5,5)TI,1)
IF angle MOD Pul THEN TI(1,2W=-SIN(angle) ELSE TI(1,2)0C
T#(4,5)41(I ,?) :TI(2,1)-TEI ,2) :TI(5,4)=TN(2,1)
11(3,3 WI :11(6,6)21
BUTTON 12,1:RETUIRI

G et.deltaT.and.Time.Steps:
T$1'Enter time step t.': TS**='Now many time steps?' 'max deltaT and min #cycles
WJINDOW 3,,(250,22)-(505,132),-4: CALL TEXTFONT(1)
CALL TEXTSJZE(12): CALL MOVETO(5,26): PRINT 'Enter time step (max. shown)': CALL TEXTSIZE(12)
EDIT FIELD 1,T$,(5,30)-(250,45)
CALL TEXTSIZE(12): CALL MOVETO(5161): PRINT 'How many time steps?': CALL TEXTSIZE(12)
EDIT FIELD 2,TS4,(5,65)-(250,80): EDIT FIELD I
BUTTON 1,1,'OK',(200,84)-(250,102)

* i=1
* loop:

&-DIALD6(C)
IF &I OR &-d THEN done 'got OK button or RETURN4
IF &-2 THEN i=DIALOG(2): EDIT FIELD i 'got field selection
IF 6c7 THEN i=(i MOD 2)41: EDIT FIELD i 'got TAB key
SOTO loop

done: CALL TD(TFONT(4): CALL TD(TSIZEM9: DIltaT-VAL(EDIT$(1)): NumStepsAJVAL(EDIT$(2)): WINDOW CLOSE 3
*RETURN

Big~ext:CALL 7EXTFONT(O):CALL TD(TSIZE(12):RETUN Chicago

PageS A - 26

;orlText:CALL TEXTFONT)CALL TEXTSIZE(9)RETURN Geev
LttleText:CALL TEXTFINT(1):CALL TEXTSIZE(1):RETUINI Geneva

Start: CRStCHRS(13); Pil=4*ATN(1): nl=l% n3:3 n4=4, n-GN*DDF: BOSUB Formated~ext

/create status windows
F$t'DynFEP.inlo':OPEN ft AS #1 LEW-40
FIELDII, 2 AS XiS, 2 AS YIt, 2 AS X2$, 2 AS Y2$, 30 AS Title$, 2 AS Type$
WINDOW 2,'DynFEP Input/Output Window',(14,61)-(512,263),J
WINDOW4 1,'DynFEP Status Windaw*,(4,41)-(424,161),1
FOR i=1 TO 1,: 6ET1I,i
xl=CVI(Xlt): y1=CVI(Ylt): x2-CVI(X2t): y2=-CVI(Y2t): A$--Titlet: Kin&-CI(Typet)
WHILE RIGHTS(a4,l)=' ':aS*-LEFT (at,LEN(at)-1):UB'ID:BUTTON i,1,a$,(xl,yl)-(x2,y2),Kind
NEXT i:CLOSEI1

*DIM KI(n,n4l),MI(n,n),FdI(n),UDU(n,3),UII(n,3),N(17),E(19)
F$-PN$+'.nodes:.OPeN F$ AS #1 LEN;-92

*FIELD11,12 AS Figlt, 4 AS Nt(1), 4 AS N$(2), 4 AS NS(3), 4 AS N$(4), 4 AS NS(5), 4 AS N$(6), 8 AS Nt(7), 4 AS NS(8), 4 A
S NS(9), 4 AS NS(1O), 4 AS Nt(01), 8 AS N$(12), 4 AS N$013), 4 AS NS(14), 4 AS N$(15), 4 AS NV(1d, 8 AS N$(17)
F**FNt4.,elements':OPEN Ft AS #2 LEN-m?4

*FIELD#2,6 AS F]92$,2 AS Lt$,2 AS Rtt,4 AS Et(1),4 AS E$(2),4 AS Ei(3),4 AS ES(4),4 AS Et(5),4 AS Et(6),4 AS E$(7),4 AS E
V t8),4 AS Et(9),4 AS Et(I0,4 AS ES(11),4 AS E$(12),8 AS E$(13),4 AS E$(14),4 AS E$(15),4 AS E$(16),4 AS Et(17),4 AS E$(

*18),8 AS Et(19)
*FSPN+'.displ': OPEN Ft AS #3 LEN24: FIELDI3,8 AS Ut,B AS Vt,8 AS Act

*Load.Global.Matrices: BUTTON 1,2
CALL Retrieye.Matrix(n,n+,KE(),PN$+s.K&F.c',n4)
CALL Retrieve.latrix(n,n,#(),PNt4'.t.c",n4)
CALL Retrieye.Matrix(n,n3,UOI() ,FNS.'.initial' ,n4)

*FOR i=1 TO n 'start 'displ' file 2 zero
LSET UJ$tlKDS(UOI(i,l)):LSET Yt=tiKDt(UOU(i,2)):LSET Ac ~KDt(UOI(i,3))

PUTI3,i:NE(T i
BUTTON 1,0

'iiiiuiiiiiiin~ii~i**iuxux debug onl1y.
CALL Displaytatrix(n,n*,KI),'Stiffness')
CALL Displaytatrix(n,n,MIO),'Mass')
CALL Displaytatrix(n,n3,UOO,lnitial Conditions')

*'Get or calculate constants
delta-J/2:alpha=l/4: GOSUB Get.deltaT.and.Time.Steps
AO=1/ailpha*Delta*2):A2=I/(alpha*Delta):A31/(2ealpha)-I calculate constants
A6-DeltaTe(1-delta) :A7--del taiDeltaT

FOR Counterl TO NumSteps 'begin solution loop

Find.Dyn.Force.Mat: BUTTON 2,2 ' status report
GOSUB Assembleorce~at: GOSUB ElementilatrixAssembler
BUTTON 2,1 ' status report

Find.E44ectiye.Mat: BUTTON 3,2 ' also apply BC
FOR i1I TO N:.K#(i,n+!)=K1(i,n#I)4Fd1(i): FdI(i)=O 'add in dyn forces and init NOl for next time step
IF UII80,1) 01 THEN FOR j=l TO N:KI(i,N41):KI(i,n~l)4M1(i,.01(ADIUOI(j,1)*A2IUOI(j,2)4A3*CO(j,3)):KI(i,j)=KI(i,j)sAOC

MI(iqj):NEXT j
Page$ A - 27....................- ~X

CE-685 Larry Goshorn
Tem Project August 1985

IF UIl(i,1)=i THEN GOSUB Essential.D.C: FOR j=l TO n:KI(i,j)=-(i=j):NEXT j:K#(i,n4l)=Displ 'set spec'd displacement
NEXT i
BUTTON 3,1 ' status report

Solve: BUTTON 4,2 ' status report
GOSUB 6uass: BUTTON 4,1: BUTTON 5,2
FOR i=I TO n ' find V and A vectors and store displacements in U

*UiI(i,1I):KI(i,nsI)

Ull(i ,3)=A0(UII(i ,i)-U01(i ,1))-A2*U01(i,2)-A3UOI(i13)
UlI(i ,2)=U(i ,2)Ad*UOI(i ,3).A7*UII(i,3)
LSET U$I-KDS(U1I(i,1)):LSET VIKD$(U1I(i,2)):LSET Acl=NKD$(U1E(i,3)):j=iCounter*n:PUTI3,j ' save to disk

NEXT i: BUTTON 5,1 ' status report
'uI*I*I~ittutiuluuaaaaeea. ***a~u aia~ debug only

CALL Displa&yatrix(n,n3,Ul,(),'Displacement, Velocity, and Acceleration')
WINDOW 2: PRINT USING 'Time step l of ill .';counter,NumSteps
PRINT USING 'T = lN.l1. Time step = N#.#...;TdeltaT: WINDOW 1

'IIHHUtfltfftfltftttitfltfteftttI*I

NextTimeStep: BUTTON 6,2: WINDOW OUTPUT 2 ' status report
T:T~deltaT: WINDOW I
FOR i=1 TO n: FOR j=1 TO 3: UOl(i,j)WUll(ilJ): NEXT j,i ' intialize
CALL Retrieve.Matrix(nnIKI()PN$'.K&F.c',n4)
BUTTON 6,1 'status report

NEXT Counter

CLOSE: WINDOW CLOSE 1: WINDOW CLOSE 2: CHAIN 'DynFEP.menu': END

, ' Subprograms Below

Pagel A - 28

* . *

. * * *.o."* . - ** . -*. . **' *t.* * * * - * * * * . * -

CE-685 Larry Goshorn
Term Project August 1985

A subset of the following SUB-Programs are used in most of the DynFEP programs:

IF Sub-Programs Below

SUB Retrieve.Matrix(r,c,A1(),F$,k) STATIC
IF UBOLND(AI,I)<r OR UBOLWID(AI,2)(c THEN PRINT CHR$(?)'Fatal error": STOP
RL-c*8: OPEN F$ AS lk LE =RL: FIELDIk,RL AS AA
FOR i=1 TO r: GETik,i: FOR j=1 TO c

BS--)S(MI,8*(i-1)i1 ,8): AI(i ,j)=CVD(BV)
*" NEXT j,i: CLOSEIK

END SUB

SUB Store.tatrix(r,c,Al(),F$,k) STATIC
IF UBOLND(AI,I)<r OR UBOUND(AI,2)(c THEN PRINT CHRS(7)'Fatal error!': STOP
RL-c*8: OPEN FS AS Uk LEN=RL: FIELDIk,RL AS Af
FOR i=1 TO r: B ': FOR j=I TO c
B$=814KD$(AI(i,j))

NEXT j: LSET MI=BS$: PUTIk,i: NEXT i: CLOSE #k
END SUB

SUB Display.Matrix(Row,Col,Ai(2),Ti) STATIC
CALL TEXTFONT(M): CALL TEXTSIZE(9): PRINT TS
FOR i=1 TO Row: FOR j:I TO Col
PRINT USING '+i.1l ';AI(i,j);
NEXT ,j: PRINT: NEXT i: PRINT
INPUT 'Press 'RETUI' to continue*;a$

END SUB

SUB Mat.times.Mat(rA,cB,cArB,AI(2) ,BI(2),RI(2)) STATIC
SCA! I [B] = ER]
I'rA Trows in [A] cAre = Icols in (A] and Irows in [e]
'cB = Icols in 6I] (RI is dimensioned rA X c6
FOR i=l TO rA: FOR j=1 TO cB: FOR Mu= TO cArB
RI(i,j)=RI(ij)+Al(i,k)*Bl(kj)

NEXT k,j,i
END SUB

* SUB MatTrins.times.Hat(cA,cB,rArB,AI(2),BI(2),RI(2)) STATIC
'(A ,transpose] * (B] = (R]
'cA: Icols in (A] rarB = rows in (A) and #rows in 181
'cB : Icols in (B] [R] is dimensioned cA X cB
FOR i=3 TO cA: FOR j=1 TO ce: FOR k=l TO rArB
RI(i,j)=Rl(ij)+Al(k,i)*Bi(k,j)

NEXT kj,i
SEND SUB

SUB Mat.plus.Mat(r,c,CII,AI(2),C21,BI(2)) STATIC
'CI*IA] + C2*(B] = result stored in (A]
FOR i=1 TO r: FOR j=! TO c: AI(ij)=Cl iiA(i,j)*C2uBil(i,i): NEXT i,i

,D ISUB

SUB Invert.atrix(n,AI(2)) STATIC

Pagel A - 29

CE-685 Larry Goshorn
Term Project August 1985

'Takes [A] * [A]-1 = (1] AND changes TO I1 I [A]'-I = [A]'- (based on 6uass elimination)'[A]P-] replaces [A] 2

DIM 1I(n,n): FOR i=l TO n: 1l(ii)=1: NEXT i 'identity matrix
FOR i=1 TO n: mAI(i,i): FOR j=! TO n: A#(i,j)=A(,j)/nd: II#(i,j):(i,j)/mI: NEXT j
FOR Ik=- TO n: IF kOi THEN m=A1(k,i): FOR j=I TO n: AI(K,j)=A0(k,j)-A(i,j)ull: lI(k,j)=I(k,j)-I(i,j)Im#: NEXT J
NEXT ki
FOR i=1 TO n: FOR j=] TO n: AI(i,j)=I#(ij): NEXT j,i: ERASE I# ' store inverse in A#

END SUB

SUB Determinant(n,AI(2),Det) STATIC
'Uses pivital condensation to find the determinant of [Al]
Mult=l: Sign=l

WHILE n=)2
i=1: WHILE AI(i,1)=O AND i(=n: i=i4l: WEND 'check for zero in first column, then correct
IF i)n THEN De O: 60TO Finished '1st col has all zeros
IF i)1 THEN Sign=-Sign: FOR j=! TO n: SWAP AI(i,j),A#(i,j): NEXT ,j 'swap rws and change sign

Mult=lult/A1 ,1)I(n-2)
FOR i=2 TO n: FOR j=2 TO n: AI(i,j)=A(1,1)A#(i,j)-AI(ij)*Al(i,i): NEXT ji
FOR i=1 TO n-1: FOR j=! TO n-i: AI(ij)=Al(i4l,j+l): NEXT j,i
nzn-1

WEND
Det=SigntlMultIl(1 ,1)
Finished:

END SUB

Page# A - 30

..

5......
* S -~

Lynch, J M. OTIC ACCESSION
NOTICE

1. REPORT IDENTIFYING INFORMATION REQUESTER:
A. ORIGINATING AGENCY

J. Put your mwiling a~ddress on
qAVAL POSTGRADUATE SCHOOL, MONTEREY, CA 93 43 reemo om

L A OR N2. Complete ltev~u I and 2.
-eiia;19rilrY'5^rng "of Sgtandby and Emerget Cy3. Attach form to reports
-e.ner.,ing Systems rl to DTIC.

SNIR 4. Use unclaifid nformaton
C. MNITO REPRT NMBERonly.

hJ. Michael Lynch. June 1984 Texas A4 M
0. PREPARED UNDER COTRCT NumRMIN DTIC:

' 6314-73-A-21 12 __

I Assiun AD Number.
2. DISTRIBUTION STATEMENT

2. Return to req re r.

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED.

DTICF:-)" 50PREVIOUS E-DI TIONS ARE OBSOLETE

4,SD o TLA/Rrellly.oerg dyan mreiy.,+.hotmo:.. ;enera................ .o. ..C

., -- .

* .. , -- *

-I

FILMED

-- 10-85

DTIC

