AD-A158 902 HICRO-COHPUTER BASED DVNRHIC MRLVSIS LllEﬁR 11
AMPED PLANE FRRHE STRUCTURESCU> TEXAS A AND M UNIV
COLLEGE STATION L GOSHORN AUG 83 N66314-73-R-2112
UNCLASSIFIED F/G 13713

a0

—
v

wAna

3

| S0 Sl S A

L gy
a—m Ty A

25
22
20

L

i
I
0l
.

|2'8
==
———— 1) Wg

1-0

3-5

[

—_—

18

=
I4-5

EFHEE

1-1

—_—
—_—
—
——

16

1-4

=1

NATIONAL BUREAU OF STANDARDS
MICROCOPY RESOLUTION TEST CHART ‘

R I aa 2af
\d ‘.“‘—-‘g‘ - P,-:'q‘

AD-A158 902

,,,,,,,,

Micro-Computer Based Dynamic Analysis
of
Linear Undamped Plane Frame Structures

submitted to Dr. James Morgan
in partial completion of the requirements
for Degree of Master of Engineering

bt _E EC
LECTE
DN SEP QD s s

o
TR

E

by Larry Goshorn

|‘ T,.',“. J:.V‘l m;,,.. -.pb‘ . >

g e August 1985

- . DA
. ~,:.'_:...

T S -“‘-\"\('.T;M-:‘:":':-f"“(“'"“_-.' ettt 2 T T T L M R . St s |
REPRODUCED AT GOVERNMENT EXPENSE
a »- . - B . ye T ew e B AR B -\ — e
-
AD NUMBER DATE
Lynch, J{M. . . DTIC ACCESSION

NOTICE

1. REPORT IDENTIFYING INFORMATION REQUESTER:

1. Put your moiling address on
NAVAL POSTGRADUATE SCHOOL, MUNTEREY, CA 93943 reverseof form _
3. Compiete items | and 2. ,
{elglzlg?iﬂ‘&rﬁaaéffﬁ%" Sr"ggzmdby and Eme rge?cy 3. Attach form to reports l
enerat ing Systems maliled 1o DTIC.

C MONITOR REPORT NUMBER 4. Ut;’ unclassified information
only.

A ORIGINATING AGENCY

v L stichael Lynch., Jdune 1984 Texas A§M
O PREPARED UNDER CONTRACY NUMBER

NO66314~73-A-2112

2. DISTRIBUTION STATEMENT

APPROVED TFOR PUBLIC RELFASE:
DISTRIBUTION UNLIMITED.

OTIC:

I Assign AD Number.

2. Return (o requeeter.

A
FORM PREVIOUS EDITIONS ARE OBS0O 1
DTIC, ... 50 . £ OBSOLLTE
N
) -.‘-

E IRy ¥ 950" K TIOSt,

/

. T NN et A g Y tipmy g
L~ L M v, * I . ~
./’

.
.
.
. L]
~
< [
TP e RRGRIL Ty R R e A@ M"‘m
USSR Mgty PR .)
'“‘_—:--—.‘_4\~ L diael N R TRy WA - W w e
[
\-—__\

.
-
L.-
-
.-u
KH
)
r‘
o

TTeT

CE-685 Larry Goshorn
Term Project August 1985

Synopsis

The- paper presents an assimilation of mathematical models and solutions
needed in order to develop computer based analysis of dynamic structures.
Using the variational formulation and a direct integration technique, a dynamic
finite element model is developed. Modal analysis of unknown displacements of
the structure, and the dynamic reduction of the structure are presented as
alternative solutions. A system of micro-computer based programs which apply
the presented solution techniques is described. The system of programs support
varying cross sections of frame members, application of static, harmonic and
non-harmonic loading conditions, and node dlsplacements in the form of
uniform base motlon or mdependent node movement. ’Zem L= -/ s

AT) r/'f l‘”"f)' Menrtadr o g . =me
Nob314-73- -2112 —_____

1?1'7{?21 umeat Lis besnoopoa
| for prit i raleno A matay U
'tatrit aion s m..itod.

i

..................................

......
..................................
L, W DR I G N A R N R SR PP L DT L R S LY

......................

f CE-685 Larry Goshorn
Term Project August 1985

Table of Contents

Section e —
Introduction 1
Finite Element Formulation 2
Discretizationc i 2
Bar Element 2
Variational Formulation of Governing Equation 3
Matrix Equations 3
ShapeFunctionsot 4
Element Matriceso 4
Beam Element S
Variational Formulation of Governing Equation............. 5
Matrix EQUations i 6
Shape Functions i 6
Element Matrices 8
Frame Element i 8
DesCription 8
Element Matrices 8
Assembling Global Matrices, 9
Apblication of Essential Boundary Conditions 10
Independent Node Motion 10
BaseMovement 10
Time Approximations ... 12
The Newmark method of Direct Integration................ 12
Procedure Summaryc.coiiiniiinnnenn.... 13
Modal Analysiso i 14
The Eigenvalue Problemcoovneeiiiieii . 14
Uncoupling the Equations of Motion 15
Solution of the Eigenvalue Problem 1S |
ProcedureSummarycooiiiiiiiiiini... 17 i
!

A aARIA A Nl Sl RN A ATl IO SN NI NI M e A e A i el B adiart i ettt et B R R S et S Sy ~
s CE-685 Larry Goshorn
Term Project August 1985
4
r Section Page Number.
Reduction of the Equationsof Motion......................... 18
Static Reduction.............. 18
Including Inertial Effects 20
Procedure Summary 22
The Dynamic Finite Element Program 23
DYRFEPmMeNU 23
DynFEP.create data fileooovneiveeeeinn... 23
DYDFEP.MAsSS/StIfIN@SSo oo e 24
nFEPessential BC 24
DUDFEPIOOUCRot e 25
DYnFEP.RIgen SOIVert 25
DYNFEP.UNCOUPIR/SOIVR 25
: DUDFEP . . 27
- DaA FIlRSttt 27
R InformationRataFile.......... 28
X NodeDataFile............... i ... 28
? ElementDataFile................. 29
- Displacement History File................................ 31
. ReductionFile............... ... i, 31
» User defined force or displacement history files............ 32
] Other Permanent datafiles............................... 32
? Temporarydatafiles..................coevevnninnann ... 33
:;': CoONCIUSIONS 34
?‘ Bibliographyo 36
¥ DynFEP.meny Flow Diagram and Listing. A-1
Y r i ' ting................ A-4
b tiff Flow Diagram isting................ A-7
- DynFEP.essential BC Flow Diagram and Listing................... A-11
- DunfEP.reduce Flow Diagram and Listing. A-13

........

. .v":v.v.v. —— ‘*v-

PEp——— " \ an e
R A M RS
]

.

.......................
...........................
.......................

. =L e e Ny e T, ST TR TaT e T TRETR TR QY T L TQW TS RN ARIRR A SN o SRR DA A" o~ A" o/ ~a i~ i i i

CE-685 : Larry Goshorn
Term Project August 1985
Introduction

Computer analysis of dynamic structures has for some time been limited to

mainframe computers. The importance of conducting a detailed analysis of any
structure is evaluated against access to, and the cost of using a mainframe
application to do that analysis. There are situations where analysis by
mainframe is not possible or is not justified. In such cases, solution by hand
may be impractical. There is a need to conduct rigorous analysis of dynamic
structures that are too simple to justify using mainframe applications and too
complicated to be solved by hand. Micro-computers are viewed as a possible
means of satisfying this need.

The large amounts of memory required by the techniques which enable dynamic
structures to be modeled in a form solvabie by a digital computer have restricted
their implementation on micro-computers. However, these techniques continue
to be studied, refined, and combined with other techniques in the attempt to
develop an optimal solution. In addition, micro-computers with abilities to
address memory measured in the multi-megabytes are becoming widely available.
With improved techniques and larger memory capacities, one can expect that
rigorous analysis of simple dynamic structures will soon be done conveniently
and inexpensively using micro-computers.

Toward that end, the mathematical formulations required to modei dynamic
structures on a micro-computer are synopsized. Combining these methods with
a technique of reducing the complexity and number of resulting equations then
results in an useful engineering analysis tool.

The paper first illustrates how the Finite Element Method is used to discretized
the problem and express it in @ matrix form. Next, the Newmark method of direct
integration is used to simplify resulting integrations with respect to time.
Further simplification of the equations are made possible through formulation
and solution of the eigenvalue problem. Finally, a method for reducing the
number of equations which must be solved is presented.

To show how the above techniques are applied to a micro-computer, a system of
programs is described. The programs are capable of solving the resulting
equations for dynamic analysis of undamped linear plane frame structures using
any of the presented solutions. Flow diagrams and program listings are provided.

......
.........................
....................

PPt e = i Sl

F~- T R R A N R N S T T R N N T T N N Y Y YN TN SR T TRTR TN T

r CE-685 Larry Goshorn
’. Term Project August 1985

Finite Element Formulation

The Finite Element method is widely used in the analysis of structures. It has
the ability to systematically describe a structure in a matrix form which is
easily applied to computer computation. Understanding the methods by which the
matrix form is arrived at is important in understanding the capabilities and
limitations of a computer application which empioys the method.

The derivations presented in this section draw heavily from a text by J. N. Reddy,
"An Introduction to Finite Element Method” (see the bibliography).

Di tizati

This mode! will describe a structure as an assemblage of two node frame
elements. Each node will have three degrees of freedom, horizontal, vertical,
and rotational movement. Mathematically, the frame element will consist of a
superimposed one-dimensional bar element and a two-dimensional beam element.
The bar and beam element are superimposed in a3 manner that assumes the
transverse and rotational deflections/loads are independent from axial
deflections/loads.

Bar Element
The governing differential equation for the bar element is:
9 du *
m— + — |AE— | +F(x) = 0
otz o ox '

where F(x,t) is an axial forcing function which varies linearly with x, m is the 1
mass per unit length, A is the cross sectional area, and E is the modulus of .
elasticity. Damping has been ignored.

The variational formulation is found by integrating the governing equation w
against a test function over h, the length of a bar element.

CE-685 Larry Goshorn

Term Project August 1985
h
2w 9 du
m— - — |AE— | +F(t) |dx=0
otz ox ox
Integrating:
h x=h
3% ov du au
vm— + AE — — +PF(xt) |dx - VAE— =0
ot2 Ox O ax
0 x=0

The last term of the above expression corresponds to the natural boundary
conditions at either end of the bar element and will be denoted as Py, the axial
force on the left side and P,, the axial force on the right side of the element.

Assume that u is interpolated by a linear expression of the form:
2
us J uj(t) $j(x)
7!

Assuming that u and t can be separated, for any given time t>0, the above
expression is substituted for u, and v = Wi(x). The matrix formulation results:

MHu") + IKHu) = {(F()}

where (*) means differentiation with respect to t and:

h h a¥; dv:
"ij = m'h'#j dr Kij = [Aﬁ—b—."j dx
0 0 dx dx
h
Fi = $iF(x.t) dx + P;(t)
“0

Note that in the physical meaning of the above expressions, nij Kij do not vary
with time. While F; and P;(t) vary with time, solutions will be based on the
specific values of F(x.t) and Pi(t) at given points in time.

............................
......................................

...........

PPV

........
.......

- CE-685 LarryGoshorn
Term Project August 1985

The interpolation functions ¥; (for i=! to 2) must be sufficiently differentiable,

independent of one another, compiete, and must satisfy the essential boundary
conditions. The expressions ¥, = a; + a,x and Y, = 3; + a,X are sufficiently
differentiable, independent, complete, and values for the coefficients can be
found to satisfy the essential boundary conditions. Below the Seredipity method
is used to derive the interpolation functions:

B J

~—

The boundary conditions are:

i

P $i(x=0) = 1 $,(x=0) = 0

t ¥i(x=n) = 0 ¥o(x=h) = |

E Solving for coefficients:
‘h(O) = = 1 '#z(h) =g = 0
'{'1(h) =1+ azh =0 \pz(h) = azh =1
Y=o . 2

1 " ¥, = .

These interpolation functions are used in the above expressions for ni]-. Kij' and
F; to derive the element matrices. In the derivation, the cross section of the

element and the distributed force F(x,t), are allowed to vary linearly with x. The
modulus of elasticity, was assumed to be constant.

E 1 -
KI=—(A;+ Ap) []
2h -1 |

Ml = h (3m| + mz) (m, + mz)
12 (my+mp) (my+3my)
6 20+ P

(F}=— 1t 1

h f1 + 2f2 "Pz

Where the subscripts indicate values at the left and right end of the bar element.

]
Y
!
]
1
‘
*
1
3
8
J
4
4
§
1
q
q
. R

TR B I Wy P i 2

CE-685 Larry Goshorn
Term Project August 1985

Ihe Beam Element
The governing equation for the beam element is

9y 92 £l 2 FRl) = 0
m— + — —_— + F(xt) =
ot2 9x? o2

Where m is the mass per unit length, F(x,t) is a distributed transverse forcing
function. Integrating the governing equation against a test function over the
domain of the beam element gives

h
A P R t)Lu 0
v |m - + F(x,0) 1dx =
otz ox2 w2 J
0
Integrating:
h - x=
2y 9v d 2y 3 o2
rm - El +vF(x,t) |dx+ev— |El—— =0
0 ot2 ox Ox ox2 ox o2 0
x:

The last term of the above expression corresponds to the shear (natural boundary
condition) at either end of the element and will be denoted as Q, (shear at the
left end) and Qs (shear at the right end).

Integrating the second term again:

ettt Ak

h x=h x=h
) c 32y S P . v d% 0 .
ym + El +VF(xt) [dx+¥Q | - El—— = :
ot2 Ox2 dx? ' Ox Ox? |
0 x=0 x=0

The last term of the above expression corresponds to the moment at either end
of the element (natural boundary condition), and will be denoted as Q, (moment 4
at the left end) and Q4 (moment at the right end).

CE-685 Larry Goshorn
Term Project August 1985

The displacement is again interpolated by an expression of the form:
2
u= 2 uj(t) ¥;(x)
il

Substituting the above expression for u, and v=¥;(x) resuits in the matrix
formulation

My} + [KHu) = {F(1)}

where (*) means differentiation with respect to t and

h h 02‘},. 021,.
nij = M‘Pi‘l',' ax Kij =I AE—-—'—J' dx
0 0 dx2 dx?
h
Fi = | ¥F(xt) ax + Q(t)
0

The interpolation functions ¥; (for i=1 to 4) must be sufficiently differentiable,

independent of one another, complete, and must satisfy the essential boundary
conditions. The expressions ¥,=a;*a X+azk2+aks and ¥,=aj+a %+ azk2 +agx’
are sufficiently differentiable, independent, complete, and values for the
coefficients can be found to satisfy the essential boundary conditions. Below
the Seredipity method is used to derive the interpolation functions.

The boundary conditions (* denotes differentiation with respect to x):

$1(x=0) = 1 $2(x=0)= 0

¥'(x=0) = 0 ¥,'(x=0) = -1

¥y (x=h) = 0 Yo(x=h) = 0

¥y(x=h) = 0 ¥o'(x=h) = O

Solving for the coefficients:

$,(0) = 3, = 1 ¥,(0) =3, =0
$1(0)=3a,=0 ¥2'(0) = a; =-1

‘}'|(h) =1+ 33h2 + a4h3 =0 ‘}‘2 (h) =-h+ 83h2 + 84h3 =0

\;‘]'(h) = 2azh + 334'12 =0 Wz'(h) = =]+ 2azh + 384h2 =0

CE-685 Larry Goshorn
Term Project August 1985

[n2 n3] as =§-1 [n2 n3] as| _|n

2h 3h2] |a, [o 2h 3n2] |a4 1

2 43 2 %3
Y= 1-3— + 2— Yp2 g+ 20— - —
' h2 h3 2 h K2

The boundary conditions (* denotes differentiation with respect to x):

Y3(x=0) = 0 ¥4(x=0)= 0
¥3'(x=0) = 0 ¥4'(x=0)= 0
\P3(x=h) =1 \P4(X=h) = 0
¥3'(x=h) = 0 Y4'(x=h) = -1
Solving for the coefficients:
$3(0) =2,=0 ¥4(0) =2 =0
¥3(0)=a,=0 ¥4(0)=2,=0
$3(h) = asgh? + aghd = 1 ¥4(n) = azh? + agh3 = 0
\P;'(n) = 233h + 384“2 =0 4’4'(“) = 2a3h + 334“2 = -1
[h2 h3] a3 ; 1 [h2 h3] a3 _ 0
2h 3h2] |a,4 l 0 2h 3n2] |a, -1
%2 %3 ¥ 3
23— - 2— S — - —
¥3 22T Ya T

These interpolation functions are used in the above expressions for ”ij' Kij- and
Fij to derive the beam element matrices. The cross section of the element and

the transverse loading function F(xt) are allowed to vary linearly, but the
modulus of elasticity is held constant.

Term Project

..............

August 1985

Larry Goshorn

[6(]1 + '2) ‘h(4l| + 2]2) '6('1 + |2) 'h(2'| + 4'2)
[K]" E h2(3l| *]2) h(4|| + 2]2) hz(h + lz)
h3 (ng) 6(]1 + l2) h(2|| + 4'2)
hz(h + 3'2) y
[h('omf"sz) ‘h2(15'| + 7'2) h(Qm, + 9m2) h2(7m| + 6m2)]
[”] _ 1 h3(5m| +3"]2) 'h2(6m| + 7mz) 'h3(m| + mz)
830 (sym) h(3m, + 10m,) h2(7m; + 1Sm,)
h3(3m, + Sm,) |
. . - .
15(f|'3f2) Q|
h -h(3f, + 2 Q
LY 3+ 20 | | Q|
60 | 33, + 71,) Qs
h(2f| + 3f2) 04
Frg' e Element

The bar and beam elements are now superimposed upon one another to form the
frame element. It is assumed that forces and displacements in the axial
direction and in the transverse direction are independent of one another. The
resulting element matrices are shown below.

Snbebechadecindion i

[h2A+A)) H2(A +A,)]

120441 -20dl+21) 1200g4y) 22l w

_E 2231 +1,) M 2) 224y -
tk1= 23 h? (Ay+A)) j
(sym) 120+15) M2 y+4l,) f

! M2 4lp)]]

.......

Tk YA L

CE-685 Larry Goshorn
Term Project August 1985
[700(3m y +ms) 70h(m {+m,)
24N(10m y+3my) ~ZhZ(15m (+7m,) Samy+my) 202(7m+6mo)
[r11=—|—- h3(5m y+3m) 242(6m y+7my) -3h%(m +mo)
840 70h(m y+m,)
(sym) 243m+10my) 2h2(7m y+15my)
h3(3m +5my) |
fonizr, + 1,0 | [Py]
ISh(f,=31,) Q
{F}= " 1 G+ 2M) b+ 4 @ »
1ON(r + 215) -P,
(31, + 71,) Qs
| 20 30) || Qe

Assembling Global Matrices

Prior to assembling the eiement matrices into the global matrices, the element
local coordinates must be converted to global coordinates. This is done by
premultiplying the stiffress and mass matrices with the following
transformation matrix. The element force matrix is premultiplied by the

transpose of the transformation matrix. The angle © is measured from the from
the positive % direction clockwise:

cose -sind

coso

cos® -sind
(sym) cose

| |

When the element matrices are assembled, the internal element forces, Py, Q;, Qp,
P2, Q3, and Q4 are canceled out by the internal element forces of adjoining
elements. There may, however, be externally applied loads at the nodes, if this

P A L D T e e R D e

CeE-685 Larry Goshorn
Term Project : August 1985

is the case, they are added into the formulation as shown in the above expression
for the force matrix. Note however, that since the loads are applied directly to
the nodes, that the coordinate transformation is not appropriate.

Applying Essential Boundary Conditions

In the development of the mass and stiffness matrices, the shape functions were
developed in order to account for essential boundary conditions but essential
boundary conditions were never actuaily applied. As a result, the stiffness
matrix is currently singular and can not be inverted (ie, the problem can not be
solved as is). One consequence of this is that this configuration can not be used
to solve for displacements of structures which are not anchored in some way to
an immovable object (as an example an object floating in space). Application of
essential boundary conditions constrain the structure and the stiffness matrix
becomes non-singular. *

There are two approaches to apply the essential boundary conditions. Since the
displacement of a node in a particular degree of freedom is known, the
corresponding equation in the matrix formulation is simply changed to reflect
the known vaiue. The Guass elimination scheme used to solve the simultaneous
equations will insure that the influence of the displaced node is properly
reflected thorough out the structure. This is the method used in the program
DynFEP. It has the advantage that all constrained nodes need not all move at
once or in the same directions, in addition rotations of individual nodes can be
investigated with this approach.

An alternate approach is described in the referenced text by Clough & Penzien.
The common approach used in earthquake analysis, is to drop the row and column
corresponding to the displaced/constrained node from the formulation, reducing
the number of simultaneous equations to be solved. Then effects of base motion
are added into the formulation. This is done by adopting a coordinate system
where the unknown displacements are relative to the movement of the base of
the structure. Then an inertial term is added to the right hand side of
appropriate equations. As an example, if the base of the structure experienced a
horizontal displacement, then an inertia term would be added to every equation
in the matrix formulation which pertained to horizontal displacements. In
matrix formulation an acceleration vector accounting for horizontal and vertical
movement is developed and premultiplied by the mass matrix to obtain the
inertia term, this column matrix is then added to the right hand side of the

2gn g o

I R R T R N R T TR Ty ot Tr werwowrlye==

CE-685 LarryGoshorn
Term Project August 1985

equations.

Rotations are normally disregarded in this approach. First because earthquakes
seldom display any rotational components and second because the bookkeeping
chore is very burdensome. The inertia effect of a node rotation on another node
is proportional to the lever arm between the two nodes. Thus, for each node that
rotates the lever arm between it and all other nodes must be found in calculating
the inertia term. In addition, its very difficult- to conceptualize the inertial
effects of one node on another when several nodes are rotating.

The DynFEP.uncouple/solve and DynFEP.reduce programs presented below are
formulated in the above manner. :

CE-685 LarryGoshorn
Term Project August 1985

Time Approximations

The Finite Element Method provides a method of converting the differentials with
respect to x in the governing equations into a linear algebra probiem suitable for
solution by computer. During the derivation it was assumed that displacements
with respect to space and time could be separated. We are now faced with
solving the resulting matrix differential equation in time.

(MHu”) + KM} = (FQ))

é In order to utilize a computer based solution, the above differential equation
must also be simplified to an algebraic form. The Newmark method of direct
- integration is a commonly used technique to accomplish this. The Newmark

method is described in referenced texts by Reddy, Clough & Penzien, and Bathe &
wilson. It is based on the following assumptions:

{U'}tut = [U'}t + [(' = 8){U"}t + S{UH}UAt]At (l)

{U}t*at = {U}t + {U'}tAt + [(‘/2 - “)(U"}t + “[U"}t,‘t)Atz (2)

Where o« and § are parameters that can control the integration accuracy and
stability. When 8=!/, and x=/¢ the above expressions correspond to a linear
acceleration assumption. When 8=/, and ="/ 4 above expressions correspond to

‘,!_ a constant-average-acceleration assumption. {

working with equation (2), acceleration for a new time increment can be

- expressed in terms of current displacement and values from the last time

o increment.

g odu"}y, At = {udy, ¢ - (U}, - (WAL~ (V5 - o)u), A]
('/2‘00

| 1
Wk, p = e ({udgs ot - ludy - — {v) - v (v} «

;: (u"}t’tt = a'(IU}t*‘t = (U}t) - az(u.}t = a;[U"}t (3)

B A A AR A AT AP - o RS A~ A S = AR i~ i~ i o ettt i i it i et i St b S S A R

CE-685 Larry Goshorn
Term Project August 1985

Substituting equation (3) into the discretized equations of motion:

M3 ({uly, ¢ - (W}) - 3{u’), - aslu”}y) + [KHu)y, 4 = (Fly, 4

(afM] + KD{uy, 3y = (Fly, o * IMICHUY + 300}, + 250D (4)
Using the above equation the procedure for direct integration is as follows:

1) Knowing displacement, velocity, and acceleration from the last time
step (or from initial conditions), find displacements for next time step using
equation (4) above.

2) Using equation (3) find current acceleration.

3) Using equation (1) find current velocity.

4) Proceed to next time step.

The Newmark method is unconditionally stable for «='/, and §=!/4 and is
normally stable for «='/, and 8§='/5. In order to also insure accuracy of the
method, At should not exceed:

3
At - min - 2
" ©Omax

...

CE-685 Larry Goshorn
Term Project August 1985

Modal Analysis

The Finite Element Method and the Newmark method, are used above to convert
the differentials which govern movement of plane frame structures to a set of
simultaneous algebraic equations. These equations are then solved repeatedly in
small time steps to obtain the displacement response of the structure over time.
Given this method of solution it should be obvious that any means to further
simplify the solution process will be valuable.

y The texts by Clough & Penzien, and Bathe & Wilson present a widely used method
k to uncouple the simultaneous equations so that they may be solved independentiy

of one another. The method involves expressing the equations of motion as an
eigenvalue problem, solving the eigenvalue problem, and then re-expressing the
equations of motion in a coordinate system which has been generalized by the
eigen vectors.

N The Eigenvalye Problem

If the structure in question is in free vibration then the forces on the right hand
side of the equations of motion are equal to zero, [MHu"}+[KHu}={0}). The
solution for each degree of freedom is then {u}={9}sin{wt). Substituting this
solution into the equations of motion

-2 [MK9)sin(wt) + [KHPIsin(wt) = {0}
(IK] -w? MD{$)sin(wt) = {0}
Since sin(wt) is not equal to zero for all t,

(IK] -0?MD){9} = {0}

A non-trivial solution to this system of simultaneous equations exists only
when |IK] -w2[M]|=0. When this determinate is expanded, it results in an
algebraic equation of the nill degree (where the dimensions of [K] and [M] are
n-by-n). The n roots to this equation, w; (where i=l, 2, . . ., n), represent the

frequencies of the n modes of vibration that are possible in the system. The

o CE-685 Larry Goshorn

Term Project August 1985
associated eigen vectors, {¢;}, describe the relative displacements of the
* structure nodes in the 10 response mode. The total response is given by the sum

of the mode responses each muitiplied by a currently unknown amplitude.

The eigen vectors are [K] and [M]-orthogonal. Thus {<Pi}T[l'1]{(Pi}=[r1n], where
M) is a diagonal matrix, and Wi}TlKlWik[Knl. where [K.] is a diagonal matrix.
In addition {¢i}T[H1{<Pj}=[0], and {(Pi]T[Kl{(P]-F[O] where izj.

~v

The advantage of the modal analysis is seen when a generalized coordinate
system is defined as {u}=[#HE). Where [#] is a matrix made up of the individual
eigen vectors. Premultiplying the original equations of motion by (417 and
substituting the generalized coordinate system into the equation of motion
resuits in: ‘

-1wv-':'w e

21T IMHE HE") + [#1TIKIS HE) = [81TF(1))
M HE"Y + [K,HED = [21T(F (1))

Stated in terms of the generalized coordinate system, the equations of motion,
are uncoupled. Since Myl and [K,} are diagonal matrices each equation in the

above system of equations is independent of the others.

frrT_V.v.'r. (v"rff‘: —

luti igen i
Clough & Penzien describe a matrix iteration method originally developed by 3
Stodola to solve the eigenvalue problem. The eigenvalue problem is restated as _!
follows:

[K)($} = w2AMH9) 5
4
Rearranging:
-] l
K171 M9} = — (9}
w2 4
1
The Stodola method consists of using a guessed trial mode shape, {95 }. on
the left-hand side of the above equation to caiculate a new guess on the

CE-685 Larry Goshorn
Term Project August 1985

right-hand side. The square of the frequency is obtained by dividing any
component of the new guess by the same component of the original guess. The
new guess will always be better then the old guess, and the process will
converge to the lowest mode or frequency.

Using the orthogonal properties of the eigenvectors it is possible to eliminate
the components of any particular mode from the total response of the structure.
By eliminating the first mode components from the total response it is possible
to use the above method to find the second mode response (since it v’ould now be
the lowest). Extending this approach, succeeding modes can also be found.

Expressing a trial mode shape in terms of its modal components and then
premultiplying both sides by {‘PJT[HI

n

{Piriat} = 2 (934 = (93A; + {P0A, + {P3dAg+ - - - +{Pn)An
i=

(PTIMHDyr i 1= (9 TIMHPIA (O TTMHPI AL+ - - + (9TIMHPIA,

(OHTIMU Py 1= (9 TIMND A,

Solving for Ay

) (9T Pria)
(9 TIMK)

Subtracting the first mode shape from the original trial mode shape results in a
new trial with no first mode components, {§ trialy,).

(9. H$)TM) o)
(9)TIMigy

{Ptrialgy 1 = (Ptriar) - (93A = (Dyriq)} -

This can aiso be expressed as {9yi5; } = [S1HPyriz). where:

(9,19} TIM]

s, = 11 -
' (97N o)

...............

....................
.........

TR Pia Juien Bt dree B ntitte. Siine i i Mt Biwe &Ae A e e R A a0 S A0S Sl Ara Sl Tl Shadr i e A SRt R T el A A

CE-685 Larry Goshorn
Term Project August 1985

The [S,] matrix is referred to as the first mode sweeping matrix. It has the
property that when multiplied by any trial vector it removes the first-mode
component. Sweeping matrices which remove more then one mode shape can be
constructed in a similar matter. As an example, a sweeping matrix which will
remove the first, second, and third mode shape components from a trial vector
would be constructed as follows:

(919} M) (9, 19,)TIM) _ {9sHe5)TIM
(PTIMIe} (9 TIMHY,) (95} TIMI95)

[53] =1} -

The resulting Stodola matrix iteration model to find the fourth mode shape and
eigenvalue becomes:

1
K1 [MMS33P) = —(9)
@

The method of solution suggested by the above methods consists of the
following:

1) Find lowest mode shape and eigenvalue using the matrix iteration.

2) Using the newly calculated first mode shape eliminate the first mode
components.

3) Repeat the procedure for the next mode shape and eigenvalue.

Each successive mode shape is based on eliminating the previous mode's
components. According to Clough & Penzien, numerical roundoff errors which
allow any previous mode components to remain in the sweeping matrix are
accumulative. Thus in order for the sweeping matrix to perform effectively for
higher modes it IS necessary to retain a great deal of precision in calculating the
lower modes.

The eigenvalues and eigen vectors are now used to form the uncoupled equations
of motion. The Newmark method is applied to the resulting independent
equations. The independent equations are solved in the terms of the generalized
coordinates, {£}, while stepping through time. In each time step the real
displacement vectors are found from the relation {u} = [#]{}.

CE-685 LarryGoshorn
Term Project August 1985

Reduction of the Equations of Motion

[APFSF e i A 4

when the above methods are applied to real structures, very large matrices and
correspondingly large computer capacity are required to solve the resulting
equations. It is thus desirable to reduce the number of equations which must be
solved. In the study of structures it has been determined that only the first few
response modes contribute significantly to the overall response a structure. It
is therefore reasonable to ignore the higher modes of response if it will reduce
the number of equations to be solved.

Robert J. Guyan described such a method of reducing the number of equations to
be solved in a paper to the AIAA Journal. The method consists of a static
reduction of the structure. Working with the static description of the structure,
the matrices are partitioned by the nodes which will be retained in the solution
_ (referred to as the primary nodes), and the nodes which will be eliminated from
4 the formulation (referred to as the secondary nodes). It is assumed that no
2 external loads will be applied to the secondary nodes.

[[KDD] [Kpsl {UD} - "D]
[Ksp] [Kss] {Us} [fs}
This results in the following two matrix equations:

[KppHup} + [KpgHug) = (1) (5)
[KgpHup} + [KgHug) = {7} = (0) (6)

At Sand.

Multiplying the second equation by [Kpsl[Kgsl'l
-1 -1 -

[KpglKssl ™ IKgpHup} + [KpcHug) = (0))

...
..

-,
............................

CE-685 Larry Goshorn
Term Project August 1985

Subtracting equation (7) from equation (5) gives:
[K*Hup} = (1)}

Where [K*] is the reduced stiffness matrix, found by the following expression:
IK*1 = [Kpp) - IKpglKggl ™ IKgp)

In addition, from equation (7) a transformation matrix can be obtained to
convert between the primary and secondary displacement values.

[KpsHug) = ~IKpglKegl ™ IKgpHup)

lug) = ~IKggl ™" [KgpHup) = ~ITHup) (8)
Rearranging:
|
W - (11 {up)
-[T] {Up}

The kinetic energy of the structure can be expressed as:
T =, MKv)

Substituting the above expression for {u} results in:

.
Ll [mwl Mgl] | 11

{u,)
an [Limgg) mggtd J-m [P

.......................
.......................

.............
...................

I P PP

el

‘a

P PEr)

. .. . « e e
LIS PIPRIPLPAT S AP LT T S R

CE-685 Larry Goshorn
Term Project August 1985

Thus it can be seen that the reduced [M] can be expressed as:

T
| M M l
(1] = (1 [[ppl[psl {1

1 [L imgpd Mgl] |-

Expanding the above expression and substituting the expression for [T] we obtain
the simplified expression for [M*] : '

The above method has reduced the mass and stiffpess matrix of the structure and
therefore the number of equations which must be solved. However, the
transformation matrix [T] used to find the displacement of secondary nodes has
ignored any inertial effects. The exact expression for [T] is found by expressing
the eigenvalue problem in the partitioned form:

) (ys)

[[Kppl (Kpsl] 1 U9p} [[[ppl ‘”DS‘] M - (o)
[Kspl [Kgsld [{95} ‘ (Mspl IMsel

working with the second partitioned matrix equation the exact transformation
matrix for the eigen vectors is obtained:

[Kspl{(Pp} + [KggH9s) - wzmspl(‘Pp} - WM H9) = (0}

(wAMgg] - [KgsD{9g) = (wAMg] - [Kgp DS}

[7] = (wAMgg] - [KggD ™! (0AMgp) - [KgpD)
Note that if the inertial terms in the above expression are neglected, the same
transformation matrix developed earlier, based on a static derivation, is

obtained. The above expression, however, involves an eigenvalue based on the ;
complete set of equations and requires that an inversion of the (w?[Mgcl - [KggD]

term be found for each eigenvalue.

......
........................
...................................

L R L T T G Ry T R TS T T TR TR R i S St ive . I o

CE-685 Larry Goshorn
Term Project August 1985

PR UL

Charles Miller describes a transformation matrix which is more accurate then
the one derived previously and more convenient then the exact formulation in a
paper to the Journal of the Structural Division, Proceedings of the ASCE.

Mr. Miller notes that ‘”2[”55] and w2[r15p] are normally small when compared to
[Kgl and [Ksp]- with this in mind he expands the (m"’[r‘l,__.,.__.,]-[Kss])‘I term of the
exact formulation about [Kss]" dropping the w4 terms in comparison to w?
terms. This results in a revised [T):

[T = [Kgg] [Kgp] + @2(-IKggl ™ IMgp) * IKggT ™! IMg MKl ™ IKgpD)

Expressing the first equation of the partitioned eigenvalue problem in terms of

(9}
IKpp MO} + KT} - wM H, Y - 02MHTHY,) = (0}
Expanding the w?[M,gIlTHY,} term again dropping the w? terms
WM HTH,) = -wM KT Mg)9,
Expanding the [Kps][T](%} term

(Kol THRY = (IKpglKgsl™ [Kgp]
~0AKp M- IKggl ™! IMgp Ik IMgg MK g1 IKgp DI,)

Substituting these expanded expressions into the eigenvalue problem: A

(IKpp] + [KpgllKggl ™ [Kgpl ~wKpH-Tkggl ™ IMgp 1K gg] ™ Mg HKgeT ™! [Kgp)
- WMy, + WM, MK T Mg DH9,) = (0)

..

.....
.....

LarryGoshorn
Term Project August 1985

Rearranging gives:

-' -
(IKpp! - [KpgllKegT™ [KgpIN9p) =
wIMpp}-IMpMKggl ™ IKgp) -TKp MK gl ™! (IMgpl-IMg MK gl IKgpDIS,)

(K<} = A Iy}

The revised transformation matrix results in the same expressions for the
reduced mass and stiffness matrices. The revised transformation matrix
requires only one inverse of a partition of the stiffness matrix, not 3 new
inverse for each eigenvalue. In addition, the revised transformation matrix
should provide more accurate displacements since it partly accounts for inertia
terms. The more accurate displacements provide a more accurate basis for
approximating internal forces.

The process suggested by the above formulation proceeds as follows:

1) Partition mass and stiffness matrices and find reduced matrices using
equations (8) and (9).

2) Solve the eigenvalue problem for reduced mass and stiffness matrices.

3) For each eigenvalue find the transformation matrix.

4) Use each transformation matrix to obtain full eigen vector.

»”

Once the full eigen vectors are found the solution proceeds the same as under
Modal Analysis. It should be noted, however that the dimensions of various
matrices have been changed.

Wwhere n equals the number of unknowns in the structure, and m equals the number
of modes retained in the solution, the dimensions of the eigenvalue matrix is
mxm and the dimension of the complete eigen vector matrix [$#] is nxm. when the
generalized mass matrix is found from the relation [#17(MI¢], its dimensions
are mxm. Due to the orthogonality of the eigen vector matrix, the generalized
mass matrix is still diagonal and there remain only m independent equations to
be solved. Converting the generalized solutions to real coordinates using the
relation {u} = [#{Z) resuits in full size displacement matrix ([#] is dimensioned
nxm and (£} is dimensioned mx1).

.................

LV /Y DR I,

..............
'''''''''''

BN S S e m e e e e b st S it A e /e 5 o e e Jine, M AN e et A et i B A B Rt i i S A v i

CE-685 Larry Goshorn
Term Project August 1985

The Dynamic Finite Element Program

The Dynamic Finite Element Program is 3 system of programs developed to apply
the methods presented above. The programs are written in Micro-Soft Basic for
the Apple Macintosh, version 2 (Micro-Soft Inc. is currently developing versions
of this advanced version of Basic for IBM compatible machines). Flow diagrams
and listings of the programs are provided in Appendix A. A description of each
program and its operation follows.

DynFEP.meny

The DynFEP.menu program serves to connect the system of programs together. It
provides a menu from which the user can choose to create data files which
describe structures, or to solve problems which have been defined earlier.
Problems may be solved in any of three ways, using dynamic reduction, using
modal analysis, or direct numerical integration of the equations of motion using
the Newmark method.

The DynFEP.menu program maintains control of the flow of execution by passing
five variables to each program in the system. The five variables are: the number
of global nodes labeled as GN; the number of elements labeled as NE; the number
of unknowns remaining after application of the essential boundary conditions
labeled as n (if essential boundary conditions are applied by reducing the number
of equations); the number of modes to be retained in the solution labeled m (if
the structure is to be reduced); and a string variable describing the chosen
solution method labeled as Path§.

DynFEP.create data file

This program creates the data files which describe the structure, and forcing]
functions and displacements applied against it. Data describing the structure is 3
entered using Basic DATA statements. A separate Basic program listing '
containing the only the desired DATA statements is prepared and saved under
ASCII (text only) format. The program assumes that such a program has been 1
. prepared and merges with it. when the resulting new program is executed, it will
read the prepared data and create the required structure data files. ;

CE-685 Larry Goshorn
Term Project August 1985

The DATA statements must be formatted to match the READ statements in the
DynFEP.create program. This is normally accomplished by copying a previously
created set of DATA statements, and modifying them to fit the new problem
using Basic’s editing capabilities.

DynFEP.mass/stiffness

This program reads previously created structure data files and assembles the
global stiffness matrix, the global mass matrix, and the global static forces
matrix. The program steps through the structure elements, and constructs the
element matrices using the relations presented above. The orientation of the
element is checked and the matrices are transformed if necessary. Then the
element matrices are assembled into the global matrices in accordance with
their end node points.

The program will be executed as determined necessary by the DynFEP.menu
program. The above matrices will be assembled once for any particular
structure, it is not necessary to reassemble the global matrices for different
applied dynamic forces or specified displacements. When the program completes
assemblage of the global matrices it will check a specified solution-pathway
which was set by the DynFEP.menu program. There are two possible paths,
directly to DYnFEP if non-modal analysis is to be done, or to DYnFEP.essential BC
if modal analysis is to be done. The program will chain to the appropriate
program.

DynfFEP essential BC

This program reads the structure node information file, determines where
essential boundary conditions are to be applied, and then applies the conditions
by eliminating the appropriate rows and columns of the global mass, stiffness,
and static force matrices. The program aiso creates a boundary condition index
which will be used by succeeding programs to reduce the global dynamic force
matrix, and to add the inertial effects of moving nodes into the global
formulation (ie, to finish applying the essential boundary conditions).

The program will be executed if the chosen solution method is modal analysis or
dynamic reduction of the structure. When the program completes its execution,
it will check the specified solution-pathway and chain to the appropriate
program. There are two pathways possible, the program will chain to
DynFEP.cigen solver if modal analysis is the chosen solution method or it will

o B a- e

FEEP I e Y B W |

2 M anta

...

‘ Larry Goshorn
Term Project August 1985

chain to DynFEP.reduce if dynamic reduction is the chosen solution method.

DynFEP.reduce

This program reads the reduce index created by DynFEP.create (from user input)
and reduces the number of equations using the methods presented. In addition
the program prepares two matrices (stored in temporary disk files) which are
used by DynFEP.uncouple/solve to transform the primary eigen vectors (eigen
vector of the reduced structure) into a eigen vector describing the full structure.

The program is executed along the dynamic reduction solution pathway. It
executes after DynFEP.essential BC. When it completes execution it chains to the
DynFEP.eigen solver program.

DynFEP.eigen solver

This program loads prepared mass and stiffness matrices and solves the
corresponding eigen value problem using the Stodola method and a sweeping
matrix as presented above. The result of the program are competed matrices of
the eigenvalues and eigen vectors.

The program assumes that the global matrices have had the rows and columns of
constrained degrees of freedom (ie, specified static and/or dynamic
displacement) removed. The program uses the five variables passed to it by the
DynFEP.menu program to determine if the global matrices have been reduced. If
the matrices have been reduced, the program finds the transformation matrix for
each mode frequency (using information prepared by DynFEP.reduce) and uses it
to transform the partial eigen vectors into a full eigen vectors.

The DynFEP.eigen solver will execute if the dynamic reduction or modal analysis
method of solution is chosen. The program chains to DynFEP.uncouple/solve
upon completion.

DynFEP.uncoupie/solve

This program pulls together the work of previous programs and solves the
problem to its completion. Its execution results in a displacement -vs- time
history, for each node, stored on disk. The displacements recorded are relative
to the movement of the base. Information provided by the user regarding
specified note displacement is assumed to be accelerations of uniform base
movement.

........
..........................
.............................
............

.....
..................................

CE-685 Larry Goshorn
Term Project August 1985

The DynFEP.uncouple/solve program loads the static force matrix, the boundary
conditions index, the mode shape matrix, the eigenvalues, and the mass matrix.
If the structure has not been reduced the program also loads the -initial
conditions and converts them to the generalized coordinates to be used to start
the Newmark direct integration scheme (If the structure is reduced the mode
shape matrix is not square and can not be inverted to find the initial conditions
generalized form. Therefore, if the structure is reduced, all initial conditions
must equal zero). The program then finds the generalized mass matrix and starts
the numerical integration scheme.

The first operation for each time step is to find the new dynamic force matrix
including the inertial effects of base motion. The dynamic forces for applied to
nodes or members are first found for every node in the structure; the dimension
of the matrix in this form is 3(GN)x! (where 3(GN) means three times the number
of global nodes). Then the essential boundary conditions are applied, resulting in
a nxI matrix (where n is equal to the number of unknown node displacements).
The inertia forces are obtained by muitiplying a base acceleration matrix by the
mass matrix (after essential boundary conditions, therefore matrix is nxi). The
dynamic, inertial, and static force matrices are then summed. Finally the force
matrix is transformed to its generalized form by premultiplying it with the
transpose of the mode shape matrix. The dimension of the generalized force
matrix is either nx1, or mx! if the structure has been reduced (where m is equal
to the number of retained modes).

The equations are now in their uncoupled form. The Newmark method is applied
to solve for the generalized displacements, velocities, and accelerations for the
current time step. Once the generalized displacements are calculated the real
displacements are found by premuitiplying the generalized displacements, and
their derivatives, by the mode shape matrix. The real displacements are then
stored and the program goes to the next time step. The program proceeds for a
specified number of time steps.

The DynFEP.uncouple/solve program is the ending program for either the dynamic
reduction solution method or modal analysis. Upon completion the program
chains to the DynFEP.menu program.

Ll AL A S R SE i Avil i e ™ el el A SRS S bt A Sntt Sha sl ainin. Sl R 2y T v A ST YT W T W Y T TR TR MR T Ty Ty Ty

CE-685 LarryGoshorn
Term Project August 1985

DUDfFEP

The DynFEP program loads the full mass and stiffness matrices, and the initial
conditions. Using the Newmark method and Guass elimination it solves the
problem in its compiete form. The result of the program is a displacement -vs-
) time history of every node in the system. The displacements recorded are
" absolute with regards to the coordinate system. Information provided by the
user regarding movement of nodes is assumed to absolute displacement also.

The first operation for each time step is to find the new dynamic force matrix.
The program reviews the node and element loading and displacement information
stored in the structure data files (displacement information is assumed to be
absolute displacement). If appropriate time history files for non-harmonic
forces will also be accessed. The new dynamic force matrix is constructed and
added to the static force matrix. During this process the program aiso
constructs a boundary condition index.

The Newmark method is applied, then the boundary condition index is used to
apply the essential boundary conditions. The essential boundary conditions are
applied by modifying the equations which express the known displacement. The
program will again access node information stored on disk to find the specified
displacement, accessing time history files where appropriate for non-harmonic
displacement of nodes.

The equations are now solved using a Guass elimination technique, time is
incremented and the process is repeated. The program continues for a specified
number of time steps.

The DynFEP program executes oniy when this method of solution has been chosen.
when the program completes execution, it returns control to the DynFEP.menu
program.

Data Files

Information describing the structure are contained in five primary files, the
information file, the node file, and the element file, initial conditions, and
reductions (when dynamic reduction is to be used). These files are created by
DynFEP.create from information provided by the user. A summary of these data
files and their structure is presented below.

S P Sl) L g S e e e R T R L W T W W W W T W v eSS &~ L Lpad ond
........................... D R T A A A N N i L~ e

CE-685 Larry Goshorn
Term Project August 1985

Information Data File:
Name: <Structure Name>
Type: permanent, sequential text

Info: Field Field
Description Length Name Remarks
number of global nodes n/a
number of elements n/a
number unknown displacements n/a
number of retained modes n/a

Node Data File:
Name: <Structure Name>.Nodes
Type: permanent, random access

Info: Field Field

Description Length Name Remarks

Flag describing boundary cond. 12 Figl$ string variable

X global coordinate 4 N$§(1) single precision

Y global coordinate 4 N$(2) single precision

Horz. Static Load or Displ. 4 N§(3) single precision
Dyn. Load or Displ. Amp. 4 N$(4) single precision
dynamic frequency 4 N$(5) single precision
dynamic phase angle 4 N$(6) single precision
time history file name 8 N$(7) string variable

Vert. Static Load or Displ!. 4 N$(8) single precision
Dyn. Load or Displ. Amp. 4 N$(9) single precision
dynamic frequency 4 N$(10) single precision
dynamic phase angle 4 N$(11) single precision
time history file name 8 N$(12) string variable

Rot. Static Load or Displ. 4 N$(13) single precision
Dyn. Load or Displ. Amp. 4 N$(14) single precision
dynamic frequency 4 N$(15) single precision

4
8

dynamic phase angle N$(16) single precision
time history file name N$(17) string variable

....................

[-'~‘.'.‘-“ IR A A A e A M AR S 50h SR A A B RO "R MR R Tt i i g A B gt et AR At A e A

CE-685 Larry Goshorn
Term Project August 1985

Meaning of flag variable:

Horiz. 1oad or displ. (I=load, 0=displ.)

Horiz. static load or displ. (1=yes, 0=no)
Horiz. dynamic load or displ. (1=yes, 0=no)

Is dynamic load harmonic? (I=yes, 0=no)
Vert. load or displ. (1=load, 0=displ.)

Vert. static 1oad or displ. (1=yes, 0=no)
Vert. dynamic load or displ. (1=yes, 0=no)

Is dynamic load harmonic? (I=yes, 0=no)
Rotational load or displ. (1=load, 0=displ.)
Rotational static load or displ. (I=yes, 0=no)
Rotational dynamic load or displ. (I=yes, 0=no)
Is dynamic load harmonic? (1=yes, 0=no)

____________ 12 character flag (string variable).

F The above file structure allows the user to specify both a static and a dynamic
- load or displacement at any node (the modal methods of solution do not support
- independent displacement of nodes). The DYnFEP programs will interpret the
i stored information to be either a specified load or a specified displacement

= depending on the above twelve character flag. The flag also tells the program to
whether or not to look for static or dynamic loads and whether the dynamic
. loads are harmonic or non-harmonic. The inclusion of a phase angle allows
f- nodes to be loaded or displaced out of phase of one another for harmonic
9 'displacement or loading.

Element Data File:
Name: <Structure Name>.Elements

I Type: randomaccess
A Info: Field Field
Description Length Name Remarks

Flag describing element loading 6 FIg2$ string variable

Global node number of left side 2 Lt$ integer
Global node number of right side 2 Rt$ integer

r CE-685 Larry Goshorn
. Term Project August 1985

Field Field
Description Length Name Remarks
Left side moment of inertia, |, 4 E$(1) single precision
cross sectional area, A, 4 E$(2) single precision
mass per unit length, m; 4 E$(3) single precision

Right side moment of inertia, I, 4 E$(4) single precision

cross sectional area, A, 4 E$(S) single precision
mass per unit length, m, 4 E$(6) single precision
Modulus of elasticity, E 4 E$(7) single precision
Transverse static load left side 4 E$(8) single precision
static load right side 4 E$(9) single precision
dynamic amplitude "4 E$(10) single precision
dynamic frequency 4 E$(11) single precision
dynamic phase angle 4 E$S(12) single precision
name of time history file 4 E$(13) single precision
Tangential static load left side 4 E$(14) single precision
static load right side 4 E$(15) single precision
dynamic amplitude 4 E$(16) single precision
dynamic frequency 4 E$(17) single precision
dynamic phase angle 4 E$(18) single precision
name of time history file 4 E$(19) single precision

Meaning of flag variable:

Distributed transverse static load (i=yes, 0=no)
Distributed transverse dynamic load (1=yes, 0=no)
Is dynamic load harmonic? (1=yes, 0=no)
Distributed tangential static load (1=yes, 0=no)
Distributed tangential dynamic load (I=yes, 0=no)

l Is dynamic load harmonic? (1=yes, 0=no)
vevyy I 1

6 character fiag (string variable)

The above file structure allows the user to apply static and dynamic loads at the
same time. In addition static distributed loads can vary linearly (they can have

...
..

ORI o . e e T e e e e e e T e S e e e e e e e e el e e e el
AR S Ity S RS A L e e T T e e N RN

CE-685
Term Project

Larry Goshorn

August 1985

different values at each side of the element). Though use of the above fiag,
element loading may also be harmonic or non-harmonic.

Displacement History File:
Natne: <Structure Name>.displ
Type: permanent, random access

info: Field Field
Description Length Name Remarks
displacement of node 8 n/a (actual or relative,)
velocity of node 8 n/a (see program notes)
acceleration of node 8 n/a (for esplanation.)

The purpose of this file is to store the initial conditions of the structure, as
defined by the user and to store the displacement -vs- time history of the
structure after solution. Each record contains the displacement, velocity, and
acceleration of the appropriate degree of freedom of the node. The first 3(GN)
(3 degrees of freedom times the number of global nodes) records the initial
conditions of the structure, t=0 (supplied by the user). The next 3(GN) records
report the conditions of the structure at time step 1, and so on.

Reduction File:

Name: <Structure Name>.reduce

Type: permanent, random access

Info: Field Field
Description Length Name Remarks
1 8L reduction of Node/DOF 8 n/a # petween 1 and 3(GN)
20 reduction of Node/DOF 8 n/a = between | and 3(GN)

------ 8 n/a * between 1 and 3(GN)

it reduction of Node/DOF 8 n/a # between 1 and 3(GN)

The purpose of the above file is to store a list of equations to retain in the
matrix formulation. The DynFEP.create data file constructs the above file with
information provided by the user.

To support the use of non-harmonic forcing functions or specified displacements
of nodes, the programs are capable of reading a time history file. Each record of
the file contains a time and a magnitude of the force or displacement. The
programs will interpolate between two time steps if the required time is not on

......

...............

PR VU S Y

oo B e S B Bl i e

L A e 8 A M A o A . "

-

CE-685 Larry Goshorn
Term Project August 1985

file. A rapid search is employed by the program to find appropriate time, it
assumes that the file is sequential in time. The first record in the file must
contain the total number of time steps recorded in the history file.

It should also be noted that the DynFEP program assumes that information

presented in this file is absolute displacement, while the DynFEP.uncouple/solve

program assumes that the information is accelerations.

User defined Force or Displacement History File:
Name: <User specified file name>
Type: permanent, random access

Info: Field Field
Description Length Name Remarks
Number of time steps in file 8 n/a First record oniy
Not used 8 n/a First record only
Time 8 n/a normal record

Displacement or Force magnitude 8 n/a

During the solution of the problem other permanent and temporary files will be
created. The purpose of these data files is first to provide storage of matrices
necessary in the solution and there by reduce the amount of memory space
required. Secondly, these data files eliminate the need to recalculate matrices
to analyze different loading conditions or use alternative solutions. A summary
of these data files is presented below.

Permanent data files:

Eile name Description Size
<Structure Name>K&F.c stiffness and static forces before BC 3(GN)x3(GN)+1
<Structure Name>.M.c mass matrix before essential BC 3(GN)*3(GN)
<Structure Name> K&F stiffness and static forces after BC nx(n+t)
<Structure Name>.M mass matrix after essential BC nxn
<Structure Name>.K* reduced stiffness and static forces mx(m+1)
<Structure Name>.M* reduced mass matrix mxm
<Structure Name>.reduce listing of nodes to be retained mx{
<Structure Name>.S structure mode shapes mxm

<Structure Name>.eigen eigenvalues of structure nxm

CE-685 LarryGoshorn
Term Project August 1985

Temporary data files:

File pame Description Size
<Structure Name>.Kpp partitioned stiffness matrix mxm
<Structure Name>.Kps partitioned stiffness matrix mx(n-m)
<Structure Name>.Ksp partitioned stiffness matrix (n-m)xm
<Structure Name>Kss partitioned stiffness matrix (n-m)x(n-m)
<Structure Name>.P1 needed to calc mode shape [T] (n-m)xm
<Structure Name>.P2 needed to calc mode shape [T] (n-m)xm
<Structure Name>.D dynamic matrix [K]™! M) mxm

where n is equal to the number of unknown displacements and m is equal to the
number of modes retained in the answer. Note that if the structure is not reduced
then m is equal to n.

CE-685 Larry Goshorn
Term Project August 1985
Conclusions

A set of micro-computer programs capable of amalyzing the dynamic behavior
plane frame structures has been developed from the set of assumed governing
differential equations. The system of programs allow different approaches to be
used in analyzing a dynamic structure. The capability to use different approaches
provide a means of building confidence by comparing the results of the different
methods, and the flexibilities provided by the different approaches.

Each solution approach presented has unique abilities and limitations. While the
straight numerical integration performed by DynFEP has the ability to inciude the
independent dispiacement of nodes, it must process the formulation with no
reduction or further simplification. The added capability has come at the cost of
not being able to analyze larger structures and in a longer computation time. The
modal analysis approach presented offers a3 faster computation time but
sacrifices the ability to effectively handle independent movement of nodes. The
dynamic reduction approach offers the ability to do larger structures with little
or no additional computation time, but at some sacrifice for accuracy.

The choice of which solution approach to use will normally be based on the type
of probiem to be solved. As an example, in Civil Engineering programs such as
these would be used primarily for the analysis of structure response to
earthquakes. The dynamic reduction approach presented above would be most
useful in this situation as it offers the best computation time to size advantage
and can support the boundary conditions imposed by an earthquake.

The programs as presented here are capable of handling about S0 nodes when run
on a system with 370K of memory available (assuming 8 bytes of memory is
required for each double precision variable used). There are two primary
approaches which could be employed to increase the capacity of the programs.
First the assemblage of the global matrices could be done in upper-banded form.
Since mass and stiffness matrices are normally very sparse, this would
substantially increase the capacity. Secondly the global mass and stiffness
matrices could be done on disk rather then in core (also the application of
boundary conditions, and the reduction of the mass and stiffness matrices).

............................
...

..........

S— :
o

AR AR WANAA
v,.-.-.u'-.l.l, ""/'.'.'

CE-685 Larry Goshorn
Term Project August 1985

while this would slow down execution because of increased /0 activity, the
capability to handle larger structures is limited only by the amount of disk space
and the number of retained modes. Since a typical micro-computer system in a
professional instaliation will include between 10 and 20 megabytes of hard disk
storage, the analysis of structures with several hundred nodes is seen to be
reasonable.

In addition to increasing the capacity of the programs presented, there are other
enhancements which would make them more valuable as an engineering tool. The
programs now simply grind though a specified number of time steps. It would be
desirable for them to have the ability to check selected parameters during the
processing and determine for themselves with to stop the processing. Such
parameters might include critical stresses in selected members, a maximum
stress in any member, completion of a full cycle of all forcing functions,
achievement of a maximum deflection, etc.

The ability to handie three dimensional plane frames is a very natural expansion
to the program capabilities. Other enhancements could include an interactive
input of information in a CAD/graphics orientated format, and graphic replay of
structure response.

All of these enhancements are within the current computing capability of today's
micro-computers. While the analysis on truly complex structures will remain in
the domain of mainframe computers, the dynamic analysis of small structures is
within the realm of processing by micro-computer systems. Such smaller
structures are those that can be described in several hundred nodes or less, or
simplifications of more complex structures which are being used for preliminary
design or investigation prior to a more detailed analysis on a mainframe. The
methods and programs presented in this paper form a corner stone for building
the enhanced systems which are required to fill this expanding field of
engineering analysis.

inabad Bodecko fusdeoit dnsdoiinofiid

dclhdnti b

S

.........................

P Ao A S R S Rl Al . ad ¢

CE-685 LarryGoshorn
Term Project August 1985

Bibliography
Guyan, R. J., “Aeduction of 5tifTness and/1ass Matrices, © American Institute
_ of Aeronautics and Astronautics Journal, Vol. 3, No. 2, Feb., 1965. gy
g Clough, R. W. and Penzien, J., Dynamics of Structures . McGraw-Hill Book
i company: New York, New York, 1975. f]
, Bathe, Klaus-Jurgen, and Wilson, E. L., “Mumerical Methods in Finite Element “
E Analysis“. Prentice-Hall, Inc: Englewood Cliffs, New Jersey, 1976 4
L Miller, C. A, “Dynamic Reduction of Structural Models’. Journal of the ?
- Structural Division, Proceedings of the American Society of Civil Engineers,]
VoL.106 No.ST10, Oct., 1980. ' 3
1
Reddy, J. N, “4n /ntroduction to the Finite Element Method” McGraw-Hill 4
Book company: New York, New York, 1984. X

CE-685 Larry Goshorn
Term Project August 1985 -

DyYnFEP.menu
Flow Diagram

Notes:

Program Variables:

GN = number of global nodes.

NE = number of elements.

n = number of unknown displacements
in structure.

m = number of retained modes (if no
reductions then m=n).

Path$ = string defining the choosen

{ Store selected Pathwey | method of solution.

Chain to appropriste

Valid Menu Selections:

If no structure data file is open, then
valid selections include, Open File,
and Create New File.

if a structure data file is opened, then
all selections are valid.

N
Psge® A - | 1

_ e e e T T NN ey

..............
........ R Tl L ..

.l St P S “w
. R . W . - o -) . . . N . . - - - . - . - - . -~ . . " M -
DR AR S AT LA A W T AT T P N Antdinadintinant Sttt e dninde --;-;'L‘L'-‘n'.:;x.' LIRS W AP W R W .-'L';._-

CE-483 Larry Goshorn
Term Project August 1983

~

L e di]
<
=<
S
o)
™
‘o
-
=
~
=
=

o omw o

COMMON GN,NE,DOF ,n ,,PN$,Paths

Start: ‘set up menu
WINDOW 1,,(110,30)-¢345,54),2: GOSUB BigText
WINDOW 1:CALL MOVETO0(20,16): PRINT “Dynamic Finite Element Program®;
WINDOW 2,,¢130,70)-(350,304) ,4
BUTTON 1,1,°Create New Data File®,(20,20)-(200,40),!
BUTTON 2,1,°0pen Existing Data File®,(20,45)-(200,45),1
BUTTON 3,0,"Direct Integration Only*,(20,80)-(200,100),1
BUTTON 4,0,"Modal Analysis® <20,105)-(200,125),1
BUTTON 5,0,"Dynamic Reduction®,(20,130)-(200,150),1
BUTTON é,1,"Quit®,¢120,145)-(200,185),1
IF LEN(PNS$))0 THEN GOSUB Look.at.File
GOSUB NormalText

loop:

CALL MOVET0(10,200): PRINT "Problem name = " ;PN$

CALL MOVET0{10,212): PRINT USING "Global Nodes =H¥" ;6N

CALL MOVET0¢10,224): PRINT USING "Elements =i";NE

WHILE DIALOGC0)()1: WEND ‘wait for the user to do something

ON DIALOGS1) GOTO Create,Existing,FEM,Modal,Reduce,Quit ’branch according to menu selection

Create: Path$="Create New Data File": GOSUB Change.Window
F$="Basic Disk 1:DynFEP.create data file"
CHAIN F$: BND

Existing:
PNS=FILES$(1,"DYNA®) ’ get Problen Nane from user
IF PN$<)*° THEN GOSUB Look.at.File
5070 toop

FEM: Path$="Direct Integration Only®: G6OSUB Change.Window

IF n{0 THEN F$="Basic Disk 1:DynFEP.mass/stiffness® ELSE F¢="Basic Disk 1:DynFEP* ‘no need to reassemble gobal matric
es.

CHAIN F$: END

Modai: Path$="Modal Analysis®: GOSUB Change.Window

IF n{0 THEN F$="Basic Disk 1:DynFEP.mass/stiffness® ELSE F$="Basic Disk 1:DynFEP.essential BC" ‘no need to reassembie
gobal matrices,

CHAIN F$: END

Reduce: Path$="Dynanic Reduction®: GOSUB Change.Window

IF n{0 THEN F$="Basic Disk 1:DynFEP.mass/stiffness® ELSE F$="Basic Disk 1:DynFEP.essential BC" ’‘no need to reassemble
gobal matrices.
CHAIN F$: END

Quit: Paths="Output Window": GOSUB Change.Window
END

Subroutines Below

Paged A - 2

e s

(PPN Yo

Pdnta e — TR ‘1
|
CE-485 Larry Goshorn }
Tern Project August 1985 “
Look.At.File: DOF=3 ’ find status of processing :
OPEN PN$ FOR INPUT AS #1: INPUTH1,G6N,NE,n,m: CLOSE #1]
FOR i=3 TO 3: BUTTON i,1: NEXT i ‘activate buttons 9
. RETURN , 4
[- J
2 Change Window: WINDOW CLOSE 1: WINDOW CLDSE 2: CLOSE]
- WINDOW 1,Paths,(5,40)-(265,298),1: RETURN)
b BigText:CALL TEXTFONT(0):CALL TEXTSIZEC12):RETURN ‘ Chicago i
LittieText:CALL TEXTFONT(1) :CALL TEXTSI2E(9):RETURN ‘ Geneva
: NormalText:CALL TEXTFONT(1):CALL TEXTSI2EC10):RETURN / Geneva 1
N FormatedText:CALL TEXTFONT(4):CALL TEXTSIZE(9):RETURN ‘ Monaco ;
b |
3 :
L
]
4
{
l
4
s
- .
- :
fo]
s K
o 9
.
{
1
!
Paget A - 3 .
.............................. e e e e T e T e e e e et T e
.“ .A- ;. ,..' N :.';.. :.' AT ";'-‘ ':;.'-:.'L.".‘\‘A'-;";'-..'!' VAT W AL LR Y ‘,-'. .-. SO e e o . e ;“L'.A.'-;‘‘j

Larry Goshorn

August 1985
DUnFEP.create data file \
Flow Diagram ,
R
Bt nama of dets flie
Lrom er. Notes:
| Mergeantatite | :
(=] -
[Mesdoreviemnems | GN = number of global nodes.s
NE = number of elements.
foed 6N, ®of nodes n = number of undnown displacementss

nd IS, Zof sloments in structure.

m = number of retained modes (if no
roigsedmalll ey reduction then m=n)
Path$ = string variable indicating the
choosen method of solution.
Done? = Mot node The program assumes that a dats Text
file has been prepared. Format of the
Yo file is that of a BASIC DATA statement
Resd slement dete | Al data shown in the discription of

the data file structure must be included.

Creste node, siement, and tnfa
omte fles

T

Reed reguction fieg

[mmmnm]

lsun reduciion dete

It e Sy B S A S A A S TP AR S S n O T e -t - i Bt et S i B Sest B i B S i A ki S e P Lol e gt gl Svencds

CE-483 Larry Goshora
Tern Project August 1985

DynFEP.create data file

~
- -
> —

COMMON GN,NE, DOF ,n ,,PN$, Pa ths

WINDOW 2,,¢110,250)-(380,300),2: GOSUB BigText: WINDOMW 2
PRINT "If you have not created a text file of"

PRINT "Basic DATA statements for this program,"

PRINT “press the ‘Cancel’ button!°CHR$(7);
PNS=FILES$(1,"TEXT®) ‘get data file name from user

WINDOW CLOSE 2: 1F PN$="" THEN STOP ‘user hit cancel button
PRINT *Type ‘60T0 Start’ to continue."CHR$(7)

MERGE PN$ “load user created data file & execute with it

Start: DIM N$(17),E$(19):20=-1

60SUB FormatedText

READ PN

F4=PN$+* .nodes®: OPEN F$ AS #1 LEN=92

FIELDR1,12 AS Figls, 4 AS N$C1), 4 AS N$(2), 4 AS N$(3), 4 AS N$(4), 4 AS N$(S), 4 AS N$(4), 8 AS N$(7), 4 AS N$(B), 4 A
S N$(9), 4 AS N$(10), 4 AS NS(11), B AS N$(12), 4 AS N${13), 4 AS N$(14), 4 AS N$(15), 4 AS N$(14), 8 AS N$(17)

F$=PN$+" .eTenents”: OPEN F$ AS #2 LEN=94

FIELD#2,6 AS Fig2$,2 AS Lt$,2 AS Ri$,4 AS E$(1),4 AS E$(2),4 AS E$(3),4 AS E${4),4 AS ES(5),4 AS E${4) 4 AS ES(7) 4 AS E
$(8),4 AS E$(9),4 AS E$¢10),4 AS E$(11),4 AS E$(12),8 AS E$(13),4 AS E$(14),4 AS ES$(15),4 AS E$(14),4 AS ES(17),4 AS ES¢
18),8 AS E£$(19)

F4=PN$: OPEN F$ FOR OUTPUT AS #5

READ NunNodes?.
FOR i=1 TO NunNodes,
READ a$: LSET Flgls=as
FOR j=1 T0 17
IF j=7 OR j=12 OR j=17 THEN READ a$: LSET N$(j)=a$ ELSE READ a: LSET N$(j)=MKS$(a)
NEXT j
PUTHL i
NEXT i

READ NunElements’
FOR i=1 TO NunElements/,
READ a$,Lt/,Rt%: LSET Flg2¢=a$: LSET L$=MKI$CLU!): LSET Rt$=MKIS$(Rt%)
FOR j=1 TO 19
IF j=13 OR j=19 THEN READ a$: LSET E$(j)=a$ ELSE READ a: LSET E$(,)=MKS${a)
NEXT j
PUTHZ,i]
NEXT i .

AP AR AR IR debug)
“TRON

/ BRIFSAARSREARRRN T RANAN IR ANRHAAAAY

DIN UN(NunNodes/23,3) ‘ initial conditions

FOR i=1 TO NunNodes’/*3

READ UWCi,1),UNCi,2),UNC,3)

NEXT i: n3=3: n=HumNodes/#3

CALL Display.Matrix¢n,n3,UNC),*Initial Conditions®)

CALL store.Matrix(n,n3,UNC) PNS+®,initial®,nd)
/SHERREEERAR AR AR RRERERRRENE debug

Paged A - 3

CE-683

Larry Goshorn
Tern Project

August 1985

TROFF
/ B EHHEEEH ERE R EEE

INPUT "Reduction info in this data {y/n)*;a$

n=0: IF a${)"y" THEN 60TO finish.up

READ m: OPEN PN$+".reduce® AS #4 LEN=8: FIELD#4,8 AS aas
FOR i=1 TO m: READ r: LSET aa$=MKD$(r): PUTH4,i: NEXT i

278 s % 9 2

finish.up:

INPUT "Have global matrices been assembled (y/n)®;a$
IF a$)"y" THEN n=-1 ELSE n=0

WRITENS NumNode s NumElementsi,n ,n

GN=NunNodes?,: NE=NunElements): DOF=3

CLOSE: NAME PN$ AS PN$,*DYNA*

Paged A - 6

ST T Tttt et c .t

....................
...........

...........

August 1985
DyYnFEP.mass/stiffness
Flow Diagrasm
| Moot Eloment info | Notes:
" | oot loft and right Neds info | Program Variables.
- [Conatruct Eioment stiffoaes mmtrtx | GN = number of global nodes.
3 NE = number of elements.
? 2 n = number of unknowns in the structure.
| Comstruct Eiement stetic force metrix | m = number of retained modes (if no reduction
F.- then m=n).
k- [cometruct Eloment mess metrix | Path$ = string variable indicating the choosen
method of solution.
PPy re—" (K] provides storage for the global stiffness
‘:l:m mm’:.'m e matrix, and the static force matrix.
The stiffness matrix is a square matrix
with dimensions equal to GN times 3.

The static force matrix is stored with
the stiffness in an addition column.
(M] provides storage for the global mass

‘ matrix. It is a square matrix with
I fo%d Hode stetic force ""q dimensions equal to 6N times 3.

Assemble stetic force into Globe!
force metrix

Yes

3tore Globe! stiffness, stetic
f

ane Cersrese ooy

" Term Project

DynFEP.mass/stiffness

-~
> e
& =

COMMON 6N,NE,DOF ,n,n,PN$,Paths: 60TO Start

’

Subroutines below

’

AssenbleForceMat:
FOR i=1 TO ON: GET#l,i ’ read specified noda! loads
FOR j=0 TO DOF-1
index=(i-1)2D0F+ j+1 :k=345%j
’---NodeStatForces:
Sload=0: A=1+j%4
IF MID${F1g1$,A,2)="11" THEN Sload=CVS(N$<k)) / static load

K#Cindex,n+1)=K¥(index,n+1)+5l0ad / add in force; positive to right, upward, clockwise

NEXT j,i: RETURN

ElenentMatrixAssenbler:
FOR ELEMENT=1 TO NE
GOSUB BuildElementMatrices
IR=(N1%-1)*DOF : IC=(NZ/-1) #D0F
‘---fissem.K ,M.Stat.Elen.Forces:
FOR i=1 T0 DOF
KBCIR%i,n¢1)=KHCIR4i,n+1)4ANCi,7) * element forces stored in column Hnt)
KHCICHi ,n41)=KHCIC+i ,n+1)4ARCi+DOF ,7)
FOR j=1 T0 DOF
KRCIR+i IR)=KAC IR+ IR4j)4ANCI ,j) 7 assenmble stiffness matrix
KNCIR i JC+j)=KRCIR+i , 1C+) +ANCH , j+DOF)
KBCICHi IR+ j)=KNCIC+i IR+) +ANCi4DOF,)
KRCIC+i ,IC+j)=KRCIC+i , 1C+j)+ANCi +DOF , j+DOF)
MACIRi IR+ j)=MNCIR+i IR+ jD4BNCi,j) ’ assemble mass matrix
MECIR$ i, IC+j)=MBCIR+i IC+j)¢B(i, j+DOF)
MECIC+i IR+ j)=MACICHi , IR+)+BRCi4DOF, j)
M¥CIC#i,IC+j)=MRCIC+i,IC+)+BNCi +DOF , j+DOF)
NEXT j,i

?

NEXT element .

BuildElenentMatrices:

GETH2,ELEMENT :N1/=CVI(L1$) :NZ/=CVI{Rt$) ’ qget left and right global node #'s
GETH#1 N1Z:X3=CUS(N$(1)) :Y1=CVS(N$(2)) ‘ get left side coord’s

GETHI NZ{:X2=CUS(N$(1)) 1Y2=CUS(N$(2)) ’ get right side coord’s
L=SARC(Y1-Y2)*2¢(X1-X2)°2) ’ find element length

50SUB Elem.K.M.Stat.Forces

IF X1-X2=0 THEN angle=SGN(Y1-Y2)#Pi#/2 ELSE angle=2#Pi#-ATNC(Y1-Y2)/(X1-X2))
IF angle)2#PiR+.003 OR angle{2#PiN-.003 THEN GOSUB Transform

RETURN

Elen.K.M.Stat.Forces:

11=CVS(E$(1)) :12=CVSCE$(4)) ’ moments of inertia
A1=CVS(E$(2)) :A2=CVS(E$(T)) ’ areas
ni=CVS(E$(3)) :m2=CVSCES(4)) * mass/length
E=CVSCE$<7)) elastic modulus

Paged A - B

Larry Goshorn
August 1985

- —
S ansaoonng anoone

CE-485 Larry Goshorn
Tern Project August 1985

FOR i=1 T0 4:FOR j=1 TO 7:A8Ci,j)=0:NEXT j,i ‘ initialize/build element stiffnesses
ANCT, 1)=E3(A14A2)/(250) :ARC4,)=AN(T 1) :ANKCT , D)=-AK(L D)

AN(2,2)=Ex6%(11412)/L° 3:AN(T,3)=AK(2,2) :AR(2,5)=-AK(2,2)
AR(Z,3)=-Ex(451142812)/L " 2:A%(3,5)=-AN(2,3)

AN(2,48)=-EX(2%1144%12)/L° 2:AN(3,8)=-A¥(2,4)

A(3,3)=Ex(32]14]12)1/L

A3, 8)=Ex(]1+12)/L

ARCS,4)=Ex(]143412)/L

FOR i=2 T0 4:FOR j=1 TO i-1:ANCi,j)=RHC),i)INEXT j,i * smetrize stifiness
FOR i=1 TO &:FOR j=1 TO &:B#i, j)=0:NEXT j,i “ initialize/build element matrix
BE(1,1)=703L3{3sn1n2)/840

B¥(1,4)=705L(n]1+n2)/840

B#(2,2)=24xL*(]103nl +3302)/840

B#(2,3)=-23L"23(1531+73n2)/840

B(2,5)=542L#(n14n2)/840

B¥(2,4)=2%L"2%(73n] +43n2)/840

B(3,3)=L"3(5%n]+32) /840

Bi#(3,5)=-24L"2%{$3n] +74n2) /840

B#(3,4)=-32L"3%{n] m2)/840

B#(4,4)=70%L#(n] +33n2)/840

BN(S,3)=243L#(3] +10302) /840

BA(S,4)=23L"23(7301 +154n2) /840

BAC4,8)=L"3%(3un145102)/840

FOR i=2 TO 4:FOR j=1 TO i-1:BR(i,j)=BNCj,i):NEXT j,i / symetrize mass matrix
DS1oad1=0:DS10ad2=0:TS10ad1=0:TS10ad2=0 ’ +find element loading

IF MID$(F1g28,1,1)="1" THEN DSload1=CVS(E${8)):D510ad2=CVS{E$(9)) ’ distributed static load
IF MID$<¢F1g28,4,1)="1" THEN TSload!=CVS{E$(14):T510ad2=CVS(E$(15) ’ tangential static load
AR(1,7)=L%(20¥TS10ad1+10¥TS10ad2)/40 * positive to the right
AR(2,7)=L%(-153D5) 0ad]1+45%0510ad2) /60 ’ positive upward

AN(3,7)=-1"24(3%051 0ad142%DS10ad2)/60 ’ positive clockwise
AN(4,7)=L¥(10¥TS10ad1 ¢20%TST10ad2)/60 * positive to the right
AR(5,7)=L#(92D510ad1+21#0510ad2)/é0 * positive upward

ANC4,7)=L"22(2¥DS1 0ad1+32D510ad2)/60 ’ positive clockwise

RETURN

Transform: ‘Subroutine to transform Stiffness, Mass, and Force element matrices

GOSUB BuildTransformationMat

FOR i=1 TO 4:FOR j=1 TO &:CN(i,j)=0:FOR k=1 TO &:CNCi,j)=CHCi,j)4THCK, i) %ARCK, i) sNEXT K,j,i ‘transpose{T]*[Kel

FOR i=1 TO &:FOR j=1 TO &:ANCi,j)=0:FOR k=1 TO &:ARCi,j)=ANCi,j)+CHCi KO¥TH(K,§) NEXT K,j,i ‘[transpose(TI*[Kell¥(T]
FOR i=1 TO &:CNCi,1)=0:FOR k=1 TO &:CHCi,1)=CBCi , 1)4THCK, i) #ANCK,7) sNEXT K,i:FOR i=1 T0 &:A0Ci ,2)=CHCi 1) :NEXT ‘tran(T)
#{Fe)

FOR i=1 TO &:FOR j=1 T0 &:CH(i,j)=0:FOR k=1 TO &:CNCi,j)=CHCi) +4THCK, i) %BHCK, §) :NEXT K,j,i ‘transposelT]#[Mel

FOR i=1 TO 6:FOR j=1 TO &:B%i,j)=0:FOR k=1 TO 4:BNCi,j)=BNCi,j)4CHCi K)#THCK,§) sNEXT K,j,i ‘[transposelT]1#(Mell*(T]
RETURN

BuildTransformationMat: ’ build [T]

FOR i=1 TO 4:FOR j=1 TO 4:TH(i,j)=0:NEXT j,i / initialize
IF angle MOD Pi#l/2 THEN Ti(1,1)=C0S(angle) ELSE TH(1,1)=0
THCA,4)=TH(1,1):TH(2,2)=TI(T,1) TS, 5)=Ti1,1)

IF angle MOD Pi® THEN TH(1,2)=-SINCangle) ELSE TH(],2)=0
T4, 9)=TH(1,2):TH(2,1)=-TH{1,2) 1 TS, 4)=TK2,])
TH(3,3)=1:Th(4,4)=1

RETURN

A S A e ot N T P P e T T —— p——— P S e Al dng S B ot B - -
................. - . L. . - .

CE-485 Larry Goshorn
Ternm Project August 1985

Start: n=GNSDOF: al=1: a3=3: CR$=CHR$(13): Pil=d#ATN(])

DIM K¥(n,nt1),M(n,n) ,AR(4,7),BH(6,8) ,CHC6,6),THCE,6) NSCI7) ESCID)

F$=PN$+° .nodes® :0PEN F$ AS #1 LEN=92

FIELD#1,12 AS Flgi$,4 AS N$C1),4 AS N$(2),4 AS N$(3),4 AS N$(4),4 AS N$(5),4 AS N$C6),8 AS N$(7),4 AS N$(8) 4 AS N&(9) 4
AS N§C10),4 AS N$C11),8 AS N$(12),4 AS N$(13),4 AS N$(14),4 AS N$(15),4 AS N$(16),8 AS N$(17)

F4=PN$+" .elenents® :0PEN F$ AS N2 LEN=94

FIELO#2,6 AS F192$,2 AS Lt$,2 AS Ri$,4 AS E$(1),4 AS ES(2),4 AS E$(3) 4 AS E$(4),4 AS ES$(D),4 AS E$(6),4 AS EH(7),4 AS E
$(3),4 AS E$(9),4 AS E$¢10),4 AS E$(11),4 AS E$(12),8 AS E$(13),4 AS ES(14),4 AS ESC15),4 AS E$(16),4 AS ES(17),4 AS ES(
18),8 AS E$(19)

Build.51obal Matrices:
GOSUB ElementMatrixAssembler
ERASE A¥,B4,CH,TH

Build.Static.Force.Mat:
DIM UGN<(n,3) ,U1K(n,3),28n)
GOSUB AssembleForceMat
CALL Store.Matrix{(n,nt] KRO) PN$+® . K&F.c®,ad) ’ store stiffness and force matrices
CALL Store.Matrix{n,n,M#(),PN$+* M.c",ad) ’ store stiffness and force matrices
/ BRIRAREAREARESRRE R HHEERHEREHRERRRHERE 7 debug
CALL Display.Matrix¢n,n¢1 KB() *Stiffness*®)
CALL Display.Matrix{n,n,MN() "Mass")
S HAEHAEHE IR S TR R R A A R R R R
n=0: OPEN PN$ FOR OUTPUT AS #3: WRITER3,GN,NE,n,m: CLOSEN3: NAME PN$ AS PN$,*DYNA®
CLOSE
IF Paths="Direct Integration Only® THEN CHAIN "Basic Disk 1:DynFEP" ELSE CHAIN °Basic Disk 1:DynFEP.essential BC®
END

SUB-Prograns below

et ia Aol

RT Y

) e T % et e AL P RS A WA IR, S TAL AT AL I IR AT TIPS SIS T TP N IAL DAIAE S GIL WAI . WAL AL Al ".;L..‘_\:.',-.J

CE~-685 Larry Goshorn -
Term Project August 1985 |

DynFEP.ecssential BC

Flow Diagram

From Lo0d StIfTResS metrix
DynFEP.mess/stif iness ixl

Notes:
Losd mess metrix
o Program Variables:
| Moed node BC tnfo [GN = number of global nodes.
NE = number of elements.
[(A%4 inte 10 0C ingex | n = number of unknowns in the structure,
m = number of retained modes (if no reduction -
then m=n).
o = Next node Path$ = string variable indicating the choosen
method of solution.
[Kl provides storage for the global stiffness

matrix, and the static force matrix.
The stiffness matrix is a square matrix
with dimensions equal to GN times 3.
The static force matrix is stored with
the stiffness in an addition column.

[M] provides storage for the global mass
matrix. It is a square matrix with

I — dimensions equal to GN times 3.

. and cotammne from (K] sac I} {BC) provides storage for the boundary

! condition index, a column of 1/0’s.

if O then displacement has been specified.

— T

Paqo‘ A-11

...................................

...................................

.....................................
................................

ERE R CRAEIAE Y-t Sandh A sl dadi St oS St it el Sl g thadCia) 2l 2l it Sl i Dt v o L el t EaA i T F YT T e v T T

CE-485 Larry Goshorn
Term Project : August 1985

+
‘| DynFEP.essential BC

- ——

COMMON GN,NE,DOF ,n,n,PN$,Paths

’

Subroutines Below

’

Switch:

0 n: SWAP KRCi, i), KECK,j)s SWAP MNCi,j) MaCK,j): NEXT |
FOR j=1 TO n: SWAP KE<j, i), KN,k s SWAP MNCi, i) MB(j, k) NEXT §

Start: n=GN#DOF: al=1: a2=2

DIM BCH(n,1) ,Ki(n,n+1) MBCn,n) N$C17)

F$=PN$+* .nodes” :0PEN F$ AS ¥l LEN=92

FIELD#1,12 AS Figl$, 4 AS N$(1), 4 AS N$(2), 4 AS N$(3), 4 AS N§C4), 4 AS N$(S5), 4 AS N$(6), B AS N§(7), 4 AS N$(B), 4 A
SNS(9), 4 AS N$(10), 4 AS N$(11), 8 AS N$(12), 4 AS N$(13), 4 AS N$(14), 4 A5 N$(13), 4 A5 N$(14), B AS N$(17)

CALL Retrieve.Matrix{n,n+1,KN() PN$+" K&F.C",a2)

LALL Retrieve.Matrix(n,n MB() PN$+* . N.c*,a2)

Define.Essential .BC:
FOR i=1 TO GN: GET¥,i
FOR j=1 TO DOF
index={i-1)%DOF+j: k=1+4%{j-1)
BCH<index,1)=VAL(N1D$(F1g1$,k,1))
NEXT j,i
7 ERRAARE R debug
CALL Display.Matrix{n,at,BCH(),*B. C.")
CALL Display.Matrix(n,n+] ,K¥(),*Stifiness®)
CALL Display.Matrix(n,n ,MN(),"Mass")
/FRRREETHIHE
CALL Store.Matrix{n,a},BCH(),PN$+" BC",a2)

Apply.Essential .BC: k=0
FOR i=1 TO n
IF BCHCi,1)=1 THEN k=k+1: IF 1Ok THEN GOSUB Switch
NEXT i
k=0: FOR i=1 70 n: k=k+BCN(i,1): NEXT i: n=k
FOR i=1 TO n: SWAP Kil(i,n+1),K¥Ci ,GN2DOF+1): NEXT i
/SRR R R R AR RN AR RARARANARARY debug
CALL Display.Matrix(n,n+1 Ki(),*Stiffness")
CALL Display.Matrix(n,n ,M¥(),"Mass®)
/SAERHARHPH R AR R AR AR AR Y
CALL Store.Matrix(n,nt] ,KN() PNS4" K&F®,a2)
CALL Store.Hatrix(n,n,Hl(),PNi*'.H',aZ)
IF Paths="Modal Analysis® THEN n=n ’if not m has been set by DynFEP.create
OPEN PN$ FOR OUTPUT AS #2: WRITEWN2,GN,NE,n,m: CLOSEN2: NAME PN$ AS PN$,"DYNA": CLOSE
IF Path$="Modal Analysis® THEN CI-NN *Basic Disk 1:DynFEP.eigen solver® ELSE CHAIN "Basic Disk 1: DynFEP reduce”
END

! Sub-Prograns Below

4

SUB Retrieve.Matrix(r,c,AN() F$) 7=~

Pagel A-12

1 e P
PP LY S S S | L

T TR Ty a—— ————————y L sl L eam s s s e afes oy

CE-685 Larry Goshorn
Term Project August 1985

DYnFEP.reduce
Flow Diagram
A R R R R R RN R RN

777777

From Loed reduce fndex Notes:
OynFEP sssentiel BC (R}
Loed .“"L powry. Program Veriables:
v GN = number of global nodes.
Mu': m"" ndex tom NE = number of elements.
on 8 ness matrix - H
(Kool IKps), (KsoL, (Kss] n = number of unknowns in the structure. -
m = number of retained modes (if no reduction
Store stiffness pertitions then m=n).
1Xpol, IKpe], [Kspl, [Kss] Path$ - string variable indicating the choosen
t ‘ * method of solution.
Tind/Store reduced stifTness (K] provides storage for the global stiffness
(Xppl - XpaNKashinviKspl matrix, and the static force matrix.
The stiffness matrix is a square matrix
[Cloar memory | with dimensions equal to GN times 3.
The static force matrix is stored with
the stiffness in an addition column.
Loed trt
""..‘5"" - (M] provides storage for the global mass
v matrix. It is a square matrix with
Use reducs index to dimensions equal to GN times 3.
Partition mass matrix {R) provided storage for the reduce index
triol. Pips), (e (res) It is a list of equations to be retained.

[P1) and [P2) are calculated and stored to
(Claor tH] from memory | for use by eigen solver in transforming
gigen vectors.

Store mess pertitions

(Mpp), iMps), iMep), IMsel
Available Sub-Programs:
Reload stiffness pertitions
[Xpp), (Kpsl, (Kep), (Kes}
—T—_‘ Display .Matrix
Find/Blore reduced mees metrix Store.Matrix X
I-{MpeliKeslinvikepl-IKpsliKeslinwiMepl-IteskeslinvikepD] Retrieve Matrix)
Mat.time.Mat
Find/Stors (P1] & (P2] Mat .plus.Mat
P11 » KXeslinviKep} i
(P21 « -KeslinviMapeKsalinviasKeshmiXep! Invert.Matrix

Chein to
P.ol solver

{
Page® A - 13 1

...................

....................................
......................................

CE-483 Larry Goshorn
Tern Project August 19835

- ——

2 DynFEP.reduce

F COMMON GN,NE,DOF ,n,n,PN$,Path$
i~
. Start: al=t: p=m: s=nn: nlk=l
4 DIM K¢n,n+1) ,RH(n,1) ,KppH(p,p) ,KssH(s,s) ,Ksp#(s,p) ,Kpsk{p,s): IF p)s THEN d=p ELSE d=s
' DIN T18(d,d) T2Kd.d) ’tenporary storage
CALL Retrlwe Matrix{n nel KO PN$+* K&F" a))
; CALL Retrieve.Hatrix(n,al,RI(),FNSG'.reduce',al)

S ERRERA RN AR R AR E R AR RARR LSRR AR R ERRERRRER debug

CALL Display.Matrix(m,al,RH(),"Equations to be Retained")
 FRRARHHR R R AR

FOR i=] TOm / move equations to be retained to the top

IF i<OR®Ci,1) THEN FOR j=1 TO n: SWAP KN(i,j) KNCRECi,1),i): NEXT § ‘swap row
IF i OOR#Ci, 1) THEN FOR k=1 TO n: SWAP K¥CK,i) KNCK,RHCi 1)) NEXT kK “swap column
NEXT i

FOR i=1 TO p: FOR j=1 TO p: KppMi,j)=K¥(i,j): NEXT j ’build partitioned matrices
FOR k=p+! T0 n: Kps#(i k-p)=Ki(i k)¢ NEXT k,i

FOR i=p+1 TO n: FOR j=p+1 TO n: Kss{i-p,j-p)=KNCi,j): NEXT j
FOR k=1 TO p: Ksp#Ci-p,K)=K#(i k)2 NEXT k,i

! BEEEEEEHHHEEOEH R R R debug
CALL Disptay.Matrix{p,p,Kpp#(),"Kpp®) ¢ CALL Display.Matrix<p,s,Kpsk(),"Kps")
CALL Display.Matrix{s,p,Ksp#(),"Ksp®): CALL Display.Matrix(s,s Kssk(},*Kss®)

b /BAERREHHEHH R O R R R AR R R R AR AR RN

i CALL Invert.Matrix(s,Kss#()) ‘find [Kss] inverse then save partitioned matrices
’ CALL Store.Matrix{p,p,Kpp#C) ,PN$+" Kpp*,al): CALL Store.Matrix{p,s,Kps#() PN$+* Kps®,al)
CALL Store.Matrix(s,p,Ksp#(),PN$+* Ksp®,al): CALL Store.Matrix(s,s,Kss#() PN$+¢" . Kss®,al)

CALL Mat.times.Mat{s,p,s,KssH() KspR() ,TIH()) ‘find the reduced stiffness matrix
CALL Mat.times.Matip,p,s,KpsHh(),TI1H(),T20())

B CALL Mat.plus.Mat(p,p,n1¥,KppR(),-n18,T28())

- / SHHH RS debug

CALL Display.Materix{p,p,Kpp#(),"Reduced Stiffness")

 BREHH TR AR A R AR

CALL Store.Matrix{p,p,Kpp#() ,PN$+* K**,a1) ‘store the reduced stiffness matrix

ERASE KN,Kpp®,Ksph,Kpsh,Kssk

DIM MM¥(n,n) ,MppR(p,p) ,Mssh(s,s) Msp¥{s,p) ,Mpsh(p,s)
CALL Retrieve.Matrix(n,n MR() ,PNS+" N°31)

_:I FOR i=1 TOm ‘ move equations to be retained to the top
IF i ORNCI 1) THEN FOR j=1 TO n: SWAP MNCi,j) MNCRACI 1),)¢ NEXT j “swap row
A IF i ORNCi, 1) THEN FOR k=1 TO n: SWAP MNCK,i) MWCK,RACi 1)) NEXT K “swap column

- NEXT i
A FOR i=1 T0 ps FOR j=1 TO p: MppWCi,j)=MNCi,j): NEXT j ‘build partitioned matrices
- FOR k=pt1 TO n: Mps(i K-p)=MA(i k) NEXT K, i
» FOR izp+i TO n: FOR j=p¢1 TO n: MssH(i-p,j-p)=MN(i,j): NEXT |
- FOR k=1 TO p: Msph{i-p,K)=MR(Ci k)3 NEXT K,i
ERASE MI
- Paged A - 14

.......................
...............
.............
........

- - K

A Zhatih e it Tt Jhi Sonr dauiy Mt Adede s gy 2 v . MG R g T TR ———

Larry Goshorn
Term Project August 1985

/SRR R R R R R S R R R AR A RS debug
CALL Display.Matrix(p,p,Mpp8C),*Mpp®): CALL Display.Matrix(p,s,Mpsi(), Mps®)
CALL Display.Matrix{s,p,Msp¥{),"Msp®): CALL Display.Matrix(s,s,Mss8(),"Mss®)

BRI E T R I R R R R

DIM Kpp¥<p,p) ,Kss#(s,s) ,Kspl(s,p) ,Kps#(p,s) ‘reload the partitioned stiffness matrices

CALL Retrieve.Matrix{p,p,Kppl() ,PN$+* Kpp®,a1): CALL Retrieve.Matrix(p,s,Kps#() ,PN8+® Kps®,al)

CALL Retrieve Matrix{s,p,Ksph() ,PN$+* Ksp®,a1): CALL Retrieve Matrix(s,s ,Kss#() ,PN$+" Kss*,al) ‘recall stored [Kss] inve
rse .

’ Find the reduced mass matrix and [P1] and [P2] for use in finding [T} by DynFEP.eigen solver
FOR i=1 TO d: FOR j=1 TO d: Ti8(i,j)=0: T28(i,j)=0: NEXT j,i “init T1# and T2H
CALL Mat.times.Mat(s,p,s,Kss#(),Ksp#(),TIN()) * (T1] = [Ksslinv[Ksp) = [P1]
CALL Store.Matrix(s,p,TI#(),PN$+°,P1*,al) ’used by DynFEP.eigen solver
CALL Mat.times.Matip,p,s,Mps8(), TINC),T20()) / (T2) = [Mps}{Kss)inv(Ksp)
CALL Mat.plus.Mat(p,p,ni¥ Mpph<),-n18,T200)) / ([Mpp] = [Mppl - [Mpsl(KsslinvIKspl
FOR i=1 70 d: FOR j=1 TO d: T2#(i,j)=0: NEXT j,i “init T28
CALL Mat.times.Mat(s,p,s,Mss#() ,T1#(),T280)) / [T2} = [Mssl{Kss}inv(Ksp)
CALL Mat.plus.Mat(s,p,ni¥ Msp#(),-n1¥,T200)) ’ [Msp) = [Msp] + [Mss)[Kss)inv[Kspl
FOR i=] TO d: FOR j=1 T0 d: Ti8Ci,j)=0: NEXT j,i “init TIN
CALL Mat.times.Mat(s,p,s,Kss#() , T200),TIH()) / (T1] = [Ksslinv[Mss1[Kss)inviKsp]
FOR i=1 7O d: FOR j=1 TO d: T28¢i,j)=0: NEXT j,i ‘init T2%
CALL Mat.times,Mat(s,p,s,Kss#() Msph() ,T20)) ‘ 1(T2] = [Kss)inv(Msp)
CALL Mat.plus.Mat(s,p,ni#, TIRO) -ni8,T20()) / [T1] = -IKss)invIMsp] + [Kss)inv[Mss){KsslinvIKsp] = [P2]
CALL Store.Matrix{s,p,TI#() PN$+° P2" ,a1) ‘used by DynFEP.eigen solver
FOR i=1 70 d: FOR j=1 T0 d: Ti¥i,j)=0: T2#¢i,j)=0: NEXT j,i ‘init T1¥ and T24
CALL Mat.times.Mat(s,p,s,KssH() Mep#C), TIHC)) © {T1) = [Ksslinu{IMsp) ¢ [Mss){Ksslinv[Kspl)
CALL Mat.times.Matip,p,s,Kpsh(), T1HO),T20C)) 7 [T2] = [Kpsl(Ksslinv([Msp] ¢ [Mssl{Kss)inv[Kspl)
CALL Mat.pius.Mat(p,p,ni# MpphC),-n18,T200)) / ([Mpp) = [Mpp) - [Mpsl(Ksslinv[Ksp) - [KpsI[KssJinu([Msp] ¢ [Mss][Ksslin
vlkspl)
FHEEHEE R AR R AR debug

CALL Display.Matrix{p,p,Mpp#(),"Reduced Mass')
/ FRFRFARFARIRRI IR RR R RAR LR R AR RARAARARY

CALL Store.Matrix(p,p,Mpph(),PN$+* M2*,a1) ‘store the reduced mass matrix
ERASE Mpp® ,Mpsh Mspl ,Mssd

CLOSE: KILL PN$+° .Kpp®: KILL PN$+° .Kps®: KILL PN$+° .Ksp®: KILL PN3+" Kss® ‘distroy temporary files
CHAIN "Basic Disk 1:DynFEP.eigen solver®
END

.~ NN

Sub-Prograns Below

Pl it Sy S dnH g ot 2 A B 2 3 SR T i e i a8

Larry Goshorn
August 1985
sas L DYnFEP.eigen solver '
Ve Flow Disgram
reduced?
| %
Losd reduced mass metrix Lﬂmmfnx NOtes
))
) ¥ L
Loed reduced stiffasss metrix Load sUIffaees metrix Program Variables:
w " ™)
v GN = number of global nodes.
Invert stiffness metrix NE = number of elements.
stere in] n = number of unknowns in the structure.
m = number of retained modes (if no reduction
| Fine i0) = ictinverse = iri | then m=n).
Path$ = string variable indicating the choosen
m method of solution.
{MS1) and {MS2) provides storage for the mode
shape vectors. The | and 2 refer to the
and improved iterative values.
[M] provides storage for the mass matrix.
r———ﬂ Ouses mm its dimensions are mxm.

[K] provides temporary storage of the
stiffness matrix or its inverse, depending

Fing Lw""". pmr.. on the stage of the program.
s [D] provides storage for the result of
Find sigenveivs snd {Klinverse * [M], it is used to iterate
Aormalize mode shape toward the correct mode shape.
182) » a2)/eigen2 [T]if the structure has been reduced, this
provides storage transformation matrix
~ - to convert reduced mode shapes to full
Accurete ones
[P1) and [P2] provide storage for matrices
Yoo used in constructing the above trans-
DUBtiCats good mods sneps mation matrix, [T]. They are dimensioned
D1) = ¢132) (n-mXMxm.

[S] provides storage for the sweeping matrix.
This matrix is used to remove last mode

shape.
""""mmm' Available Sub-Programs:
= ‘ P Display .Matrix
(192} = fTHMS 1) Store Matrix
v Retrieve Matrix
propmer——— Mat times Mat

‘ made metrix @l MatTrans.times.Mat
"1 DA s Mat Plus Mat

Stare sigenveive Invert Mat

sigenvelus metrin

Aemeve leet mode frem
sSweeping metrix

A
s e

PR R — R i — — T r—————— LN aank i dedh J0uih il AR Jeutt e Jaatl Phads st oy

CE-483 Larry Goshorn
Term Project August 1985

?

+
* 1 DynFEP.eigen solver

?

- -

COMMON GN,NE,DOF ,n,m,PN6 ,Paths: GOTO Start

?

Subroutines Below

s

Remove.Last.Mode: :

FOR i=A1 TO m: TIB(AL,i)=0: FOR j=A1 TO m: T2R(i,j)=0: NEXT j: NEXT i: T3WAL,ARD=0 ‘init temp storage
CALL MatTrans.times.Mat(Al ,m,m,MS14C) MRO) TINRC)) ‘ [T11 = (MS51)tran(M]

CALL Mat.times.Mat(nm,m A1 NSIHC) ,TINC) T280)) 7 [T2) = (MS1)(MS)tran[M)

CALL Mat.times.Mat(Al,Al,m,TIHC) MSINC) ,TIRC)) 7 T3 = (MSI)traniMI(MSI]}

aal=1/TIHCAL A1) s CALL Mat.plus.Mat(m,m,adl,SH(),-aal,T2K())

’CALL Retrieve Matrix{m,m,T28() ,PN$+*.D" ,A3) ’ load original [D] into T24

FOR i=Al T0 m: FOR j=A1 TO m: T2R(i,j)=DNCi,j): DRCi,§)=0: NEXT j,i ’ init (D]

CALL Mat.times.Mat(m,m,n,T28¢) ,5#(),08¢)) / newlD] = original{DI[S]1atest

RETURN

Create.Eigen.Files:
RL=m#8: F4=PN$+".5": OPEN F$ AS 41 LEN=RL: FIELD#1,RL AS BBS ’ the shape file
as=MKD$(0): FOR i=1 TO m: be=bé+as: NEXT i / load shape file with zeros
FOR i=1 TO n: LSET BB$=b$: PUTH1,i: NEXT i
RL=8: F$=PN$+° .eigen": OPEN F$ AS #2 LEN=RL: FIELDN2,RL AS CC$ * {file for eigenvalues
RETURN

Start: Accuracy=.01/100: al=1: a2=2; a3 3: ak={: GOSUB Create.Eigen.Files
CALL TEXTFONT(1): CALL TEXTSIZE(9): IF m{)n THEN Flag$=*#" ELSE Flags=""
DIM D¥(m,n) ,M51#(m,AL) MS20{n A1), TIR(AL ,m) , T3R(AL ,A])
DIM KN(m,m+1):1F Flag$="#" THEN CALL Retrieve.Matrix(m,n KN() PN$+* K** a3) ELSE CALL Retrieve.Matrix{m,m¢1 KNC) PN$+° K
&F",ad)
'n;nniuuuuﬂununuunuuui “debug
PRINT USING "n= 4% o= M Flags=)'(";n,n,flag$
IF Flags="#" THEN CALL Display.Matrix(m,m,KN(),*Reduced Stiffness") ELSE CALL Display.Matrix(m,m¢]1 ,KNC),*Stitfness®)
7 BREREFHPHHHE T R R
CALL Invert.Matrix(m,KRO)
DIM Mi(m,n): CALL Retrieve Matrix(m,m,M¥() ,PNS+° M"+Flags,ad)
/ BREEHEHE R R AR/ debug
CALL Display.Matrix(m,m+i Ki(),"Inverted Stiffness®)
CALL Display.Matrix(m,m,M¥(),"Mass"®)
/SRR ES IR T III A R A R IAR
CALL Mat.times Mat(m,m,m,K¥() ,MNCO),DRO)) 7 (D] = [K1invIM]
CALL Store.Matrix(m,m,DW() PN$+".D",23) ’ temporary file
ERASE K§ * clear some memory
DIN SH(n,m),T20(m,m): FOR i=A1 TO m: SB(i,i)=Al: NEXT i “init (S} as [1]
IF n{)m THEN DIM PiN{n,m) ,P2R(n,m): CALL Retrieve.Matrix(n-m,m,P1¥() ,PN$+" P1® ad): CALL Retrieve Matrix(n-n,m,P200) PN$
+°,P2°,a3)’10ad P1 & P2

FOR eigen=Al TOm ’ begin solution

FOR i=A1 TO m: MS18(i A1)=Af: NEXT i

i=2: j=eigen: Sign=-A1 ’ create a first guess, should have one less sign change as eigen
WHILE j>=is FOR k=i TO n: MSIH(i A1)=Sign: NEXT K: Sign=-Sign: i=i+Al: WEND

Change=Al

PageR A - 17

...............

Larry Goshorn
Tern Project August 1985

WHILE Change)Accuracy
CALL Mat.times.Mat(m,Al,m,DH(),MS10C) MS2R0))
Freq2B=1/MS28A1 ,A1): Change=0
FOR i=A1 TO n
NS28(i ,A1)=M528(i ,A1)#Freq2i
Nun=ABS((MS1HCT ,A1)-MS28(i ,A1))/MS20(i ,A1)): IF Num>Change THEN Change=Nun
MSINCi,A1=MS28(i A1) 1 MS2HCi ,A1)=0
NEXT i
BHEHRHH T R/ debug
IF 2=0 THEN CLS g
CALL MOVET0(2,50):2=2+1: PRINT USING “Try##d®;2 b
PRINT Change K
‘CALL Display.Matrix(n,a] ,MS18¢(),"Tria} Vector") .
/ERRRRRRARARRRERRERARERBRERRERERRRERRRRE
WEND:2z=0

IF n=n THEN FOR i=1 TO m: MS20(i ,A1)=MS1¥#(i ,A1): NEXT i: 6OTO Skip ‘transform if structure not reduced
FOR i=1 TO n-n: FOR j=1 TO m: T#(i,j)=0: NEXT j,i ‘ store [P11 in [T]
CALL Mat.plus.Mat(n-m,m,at,TH() Freq2d,P200)) ‘ find (T] then below create matrix with [1] over -[T)
FOR i=] TO n-m:FOR j=1 TO m:THCi+m,§)=-TH(i,j) :NEXT j,isFOR i=1 TO m:FOR j=1 TO m:T¥Ci,j)=-Ci=j) NEXT j,i
FOR i=m T0 n: MS28(i ,A1)=0: NEXT i ‘finish initializing MS28
CALL mat.times.Mat{n,Al,m,THC) MSIRC) MS2HC)) / full eigenvector stored in MS24
Skip:
B R / debug
PRINT USING "Mode Shape W% Freq =WN.¥¥°*°°®;eigen,SOR(Freq2h)
CALL Display.Matrix{n,Al ,MS2K(),"Mode Shape®)
S ERER AN S R R RS

9 '._ | Wawves

]

‘Prepare for next mode shape
Lt=(eigen-A1)#8: Rt=(n-eigen)#8

FOR i=1 T0 n: GETH1,i: a$=BB%

as=LEFT$(a$,L 1) +MKDSCMS2MC i , 1)) +RIGHTSCa$ Rt)

LSET BB$=a$: PUTA1,i ’ store element in eigen vector matrix
NEXT i

LSET CC$=MKD${Freq2f): PUTH2,eigen ’ store square of eigenvalue
IF eigen{n THEN GOSUB Remove.Last.Mode
NEXT eigen

L. TRy WU T U

PR U U S

CLOSE: KILL PN$¢®.0%: KILL PN$4" .Kx": KILL PN$+" Mx": KILL PN$+°.P1%: KILL PN$¢°.P2° ’ distroy temporary files
/ BRRHARREHER R R AR R R R AR R AL/ debug
CALL Retrieve Matrix(n,m,S0() PN$+",5° al)
CALL Display.Matrix(n,m,58(),"Mode Shapes®)
CALL Retrieve .Matrix(m,ai EN() PN$+" eigen’,al)
CALL Display.Matrix(m,n},ENC),"Eigen values®)
SR AR RN AR
CHAIN "Basic Disk 1:DynFEP,uncouple/solve®
ND

| Sy

’ Sub-Programs Below

'ata it B ik &8 $a0" 0"

Paged A - 18

.........

LY

Larry Goshorn
August 1985

CE-685
Term Project
From Lesd stelic ferces
ssiver| re}
K
Lood mede shepe metrin

Find/Stors generelized mess metrix
M) = [StUMNS)

v

Losd um;cu)munl

Lowd Inftiel
Conditions [Uo)

[Aoty Boundary Cancitions 1

Find gonereiized coor. Loed mess metrix
[Uo) « {S1kuol g
Load sigenvelues
{E)
v

Fing Newmerk constents
Al AZ A3 AS, AT

Find dynamic forces from

‘ forces on nodes, forces on
» ecloments, inertisl forces

from esssmtisl BC

v

Find generatized force metrix
{F@) = ISLK(FA) « (Fe))

DUnFEP.uncouple/solve

Saive SDOF squetions
U1 = (FOI/M © AQSUOY * AZ%UG't + A3™UO™) / (AD ¢ £1)

y

Find current generslized accerstion & velocity
MUI1°} = AT(UT) - UO)) = A2*(UO’) - A3*(U0")
U1 = U0 » ((1- DeI}*(UO™) +» Del®(U) "})*DaltaT

)

Swes (U1) ene (U0}
for next Lime step

y

Find/3tore reel ceory. velves
UL, UL, U1« (U, LY, U]

Available Sub-Programs:

N

Flow Diagram

Program Variables:

GN = number of global nodes.

NE = number of elements.

n = number of unknowns in the structure.

m = number of retained modes (if no reduction

then m=n).

Path$ = siring variable indicating the choosen
method of solution.

(S] provides storage for the mode shape
matrix.

(M] provides storage for the real or generalized
mass matrix, depending on the stage in the]
program. Its dimensions are mxm.

{UO] and [U1] provide storage for the current
and last generalized displacement,)
velocity, and acceleration vectors.]
Treated mathematically as 3 column :
matrices, they are stored as a nx3.

{U] provides storage for the current real
displacements. Its dimensions is nx 1.

[E] provides storage for the eigenvalue
matrix. Mathematically it's a square
diagonal matrix, it's stored as a mx1.

(Fd) provides storage for generalized dynamic
forces. it is dimensioned as mx1.

(Fs} provides storage for static forces. It is
dimensioned as nx 1. 1

Display .Matrix
Store.Matrix
Retrieve Matrix
Mat.times.Mat
MatTrans Llimes.Mat
Mat Plus.Mat
Invert.Mat

Ty ——

i assaad

CE-483 Larry Goshorn
Tern Project August 1985
‘ | DynFEP.uncouple/solve |
‘7 4

COMMON GN,NE,DOF,n,m,PN$,Path$: GOTO Start

4

Subroutines Below

’

ReadHistoryFile:
OPEN History$ AS 34 LEN=14: FIELD #4,8 AS 28(1),8 AS 2$(2)
BETH4,1: Max=CVS(24{1)): Min=2: i=INT((Max-Min)/2+1)
6ETH4,i: Ti=LVS(2¢¢1))
WHILE Max)Mint1 AND T1(T+phaze
IF T1{T+phaze THEN Min=i: i=Min¢INT((Max-i)/2)
IF T1)T+phaze THEN Max=i: i=Max-INT((i-¥in)/2)
GETH4,i: Ti=0VS(28(1))
WEND: IF T4phaze=T1 THEN $=CVS(2$¢2)): GOTO ¢ound
GETH4,Min: TI=CUS(28¢1)): 1=CVS(24¢2)): IF T+phaze=T! THEN f=¢1: GOTO found
BET#4,Max: T2=CU5(28(1)): 2=CVS(2${2)): IF T+phaze=T1 THEN =¢2: GOTO found
f=(Tephaze-T1)#(§2-¢1)/(T2-T1)441 ’ interpolate
found: CLOSEN4: RETURN

AssenbleForceMat: last=0
FOR i=1 TO ON
FOR j=0 TO DOF-1: index=(i-1)%DOF+j+}
IF BCW(index,1)=1 THEN GOSUB NodeDynForces
NEXT j,i: RETURN

NodeDynForces: k=345%j: Dload=0: A=1+j24: IF last{)i THEN GETH),i: last=i ’set index’s and read node dynanic forces

IF MID$(F191$,A+2,2)="11" THEN amp=CVUS(N$(K+1)):angle=CVS(N$(k+2)) :phase=CVS(N$(k+3)) :Dioad=amp*SIN(t#angie+phase)’Harn
Load

IF MID$(F1gi$,A+2,2)="10" THEN History$=E$(k+4):60SUB ReadHistoryFile:Dload=¢ ’ non-harmonic load
Fd#(index,1)=FdW(index,1)+Dload ’ add in force; positive to right, upward, clockwise

RETURN

& InertialForces:
- FOR i=1 TO 2: GETMI,EBCACi,1): j=EBCL(i,2): A=34(j-1)44: k=34(j-1)45: Displ=0
k IF MIDS$(F1g1$,A+2,2)="11" THEN amp=CVS(N$(k+1)):angle=CVS(N$(K+2)) sphase=CVS(N$CK+3)):Displ=Displ+amp#SIN(t*angletphas
; e)
= IF MID$(F1g1$,A42,2)="10" THEN History$=E$(k+4):60SUB ReadMistoryFile:Displ=Displ¢¢ ‘ non-harmonic Displacement
b FOR k=1 TO GN: index=(k-1)#DOF+j: Fd#(index,1)=-Displ: NEXT X
" NEXT i3 k=0

FOR i=1 TO GNsNE ’ apply essential BC .

IF BCHCi ,1)=1 THEN k=k¢1: IF i <Ok THEN SWAP Fd#(k,1),Fdi¢i,1)

NEXT i

CALL Mat.times.Mat(n,n1,n,MHC) FAl() ,T200))
RETURN

ElementMatrixAssenbler:
FOR ELEMENT=1 TO NE
60SUB BuildElementMatrices
IR=(N17-1)4D0F : 1C=(NZ/-1) 200F
s=== Assem.Dyn.Elen,Forces:
FOR i=1 T0 DOF: FARCIR¢i,1)=FAR(IR i, 1)448CiYs FARCICHi, 1)=FANCICHi 1) +40Ci4DOF) ¢ NEXT i

[

A

i)
Y]

Paged A - 20

. i . - . - LY . a RN T T P S VP At et T, \'..'--'..'~'.~'.-’.1:>'\'-‘-.~'-.'~ “~.~'-'-‘\'-" hd -
............... o~ e T et e e Tt e T T Tt et et et et st e Tt s st e et e e e T T N e T et e N N
et tante e et A e 0D b ST ST SV V. Vel Sl A Tl S AT W W T AP WP AP S S AR WA S W AP AN Y O W U N, WA WL VK W PN P WP vy

e s e .

CE-483 Larry Goshorn
Tern Project August 1985

NEXT elenent: RETURN

BuildElementMatrices:
GETAZ,ELEMENT :NIZ=CVICL1$) :NZ/=CVI(Rt$) ’ get left and right global node #'s
GETH#1 N17%:X1=CUSINS(1))1Y1=CUS(N$C2)) * get left side coord’s
GETH NZ/:X2=CVS(N$(1)) :Y2=CUS(N$(2)) * get right side coord’s
L=SORC(YI-Y2)*2¢(X1-X2)*2) ‘ find element length
/=== Elem.Dyn.Forces:
DDVoad=0:TDload=0 .
IF MID$(F192$,2,2)="11" THEN amp=CVS(E${10)):ang}e=CVS(E$(11)) :phaze=CVS(E$<12)):0D10ad=amp¥SIN(t*angle+phase)’Harn
Dyn
IF MID$(F1g2$,2,2)="10" THEN History$=E$(13):605UB ReadHistoryFile:DDload=f ’ non-harmonic dyn load
IF MID${F1g2$,5,2)="11" THEN amp=CUSC(E$(14)):angle=CVS(E$(17)):phaze=CVS(E$(18)):TD1oad=amp*SIN(t¥angle+phase) Harm
TanDyn
1F MID$(F192$,5,2)="10" THEN History$=£$(19):605UB ReadHistoryFile:TDload=f ‘non-harmonic tan dyn load
#8(1)=LTD10ad/2: {8(4)=¢IC1) * positive to the right
18(2)=L#DD1oad/2:¢8(5)=F4(2) * positive upward
$8(3)=-L"25DD10ad/12:$8(4)=-¥M(3) ’ positive clockwise
IF X1-X2=0 THEN angle=SGN(Y1-Y2)#Pi#/2 ELSE angle=2#Pi#-ATN((Y1-Y2)/{X1-X2))
IF angle)2#Pi#+.003 OR angle{22PiN~.003 THEN TransformDynForce
RETURN

I

TransfornDynForce: ‘Subroutine to transform Stiffness, Mass, and Force element matrices
’--- BuildTransformationMat: * build ([T
FOR i=1 TO 4:FOR j=1 TO &:THCi,j)=0:NEXT j,i ’ initialize
THCL,1)=C05Cangle) :TR(4,4)=THC1, 1) :TH(2,2)=TH(1, 1) : TS, 5)=T1, 1)
TH(1,2)=-8INCangle) :TH(4,5)=TH(1,2) sTH(2,1)=-TH#(1,2) s TI(S,4)=TH(2,1)
TH3,3)=1:TH(6,6)=1

4

FOR i=1 TO 4:C0Ci,1)=0:FOR k=1 TO 6:CHCi,1)=CHCi ,1)4THK, i) #ERCK) SNEXT K, i :FOR i=1 TO 6:#RCi)=CHCi, 1) :NEXT “tranlTI#{$)
RETURN

Get.deltaT.and.Time,Steps:
DeltaT=2/SOR(ER(m,1)): T$=STR$(DeitaT): TS$=STR$(INT(SQR(EN(1,1))/DeltaT)+1) / max deltaT and min Ncycles
WINDOW 3,,(250,22)-(5095,132),-4
CALL TEXTSIZE(10): CALL MOVET0¢5,26): PRINT "Enter time step (max. shown)®: CALL TEXTSIZE(12)
EDIT FIELD t,T$,(5,30)-(250,4%)
CALL TEXTSIZE(10): CALL MOVETO(S,41): PRINT "How many time steps?": CALL TEXTSIZE(12)
EDIT FIELD 2,75%,(5,45)-(250,80): EDIT FIELD 1
BUTTON 1,1,"0K",(200,84)-(250,102)
i=1
loop:
¢=DIALOG(0)
1F d=1 OR d=6 THEN done ‘got OK button or RETURN
IF d=2 THEN i=D1ALOG<2): EDIT FIELD i ‘got field selection
IF &=7 THEN i=(i MOD 2)+1: EDIT FIELD i ‘got TAB Key
6070 loop
done: CALL TEXTSIZE(10): DeltaT=VAL(EDIT$(1)): NumSteps=VAL(EDIT$(2)): WINDOW CLOSE 3
RETURN

Start: Pil=4sATN(1): CR$=CHR$(13): ni=f: n3=3: nd=4: onel=| -
DIN N$(17) ,E$(1D) g
FS=PN$+* .nodes® :0PEN F$ AS #1 LEN=92 1

Paged A - 21 7
4

DAY

CE-485 Larry Goshorn
Tern Project August 1985

FIELDA1,12 AS Flgl$, 4 AS NS(1), 4 AS N8(2), 4 AS N$(3), 4 AS N$(4), 4 AS N$(3), 4 AS N$(S), B AS N§(7), 4 AS N$(B), 4 A
S N$(9), 4 AS N$C10), 4 AS NSC11), 8 AS N$(12), 4 AS N$(13), 4 AS N$(14), 4 AS N$(13), 4 AS N$<14), 8 AS N$(17)

F$=PN$+"® .elements® :0PEN F$ AS #2 LEN=94

FIELDN2,4 AS F1g28,2 AS L1$,2 AS Rt$,4 AS E$(1),4 AS E$(2),4 AS ES(3),4 AS E$(4),4 AS E$(D),4 AS ES(6),4 AS E$(7) 4 AS E
$(8),4 AS E$(9),4 AS E$10),4 AS E$(11),4 AS E$(12),8 AS E$(13),4 AS ES(14),4 AS E$(13),4 AS ES(16),4 AS ES(17),4 AS ESC
18),8 AS E$(19)

Fe=PN$+*.displ®: OPEN F$ AS #3 LEN=24

FIELDN3,8 AS U$, B AS VU$, B AS Acs

IF n{Om THEN Flag$="#" ELSE Flags="" / flag reduced structure
DIM KB¥(n,n+1) ,Fs¥(n,1): CALL Retrieve.Matrix(m,mti Ki() ,PNS+" K&F" (nd)
FOR i=1 TO n: Fs¥Ci,1)=KN(i,n¢1): NEXT i: ERASE KB / load static force matrix

‘Find/Store Generalized Mass Matrix
DM MW(n,n) ,NdiaB{m,n1) ,T18{n,n): CALL Retrieve Matrix(n,n M¥C) ,PNS+" N" nd)
DIM S8¢(n,m): CALL Retrieve.Matrix{n,m,58(),PN$+*.5",nd4) ‘ load mode shapes
CALL MatTrans.times.Mat(m,n,n,SHC) MBCO) ,TINC))
FOR i=1 TO m: FOR j=1 TO m: M8(i,j)=0: NEXT j,i ‘init M¥
CALL Mat.times.Nat(n,m,n,T18C) ,S#C) MAC)): FOR i=1 TO m: Mdial(i,1)=MNCi,id: NEXT i “ store dia. in Mdiall
 FEREREHHEHEHH AR R AR R AR R AR debug
CALL Display.Matrix(m,m,MH() ,"Generalized Mass Matrix")
CALL Display.Matrix(n,m,58¢(),"Mode Shapes®)
/ BERRRIFANAIRARIRR RN HRE AR AR A AAARAAS
CALL Retrieve Matrix(n,n,MN(),PN$+* M* ,nd) ‘ [M] needed to find inertial forces
ERASE 7184 “ clear some memory
DIN EN(m,1): CALL Retrieve.Matrix(m,n],ENC) ,PN$+° cigen®,nd) ’ load eigenvalues

DIM BCH(GN*DOF,1) :p=GN%DOF: CALL retrieve Matrix(p,ni,BCH() ,PN$+°.BC",nd) ‘ load boundary condition index
/AR R debug

CALL Display.Mateix(GN*DOF a1 ,BCHC),"Boundary Condition Index®)
/ HEEREEH T AR PR R R R R AR

DIM UDN(m,3) ,UINCONANE,3): GOTO Skip “trouble with initial conditions file, can’t resolve
IF Flags="#" THEN Skip ‘ initial conditions must=0 if structure is reduced
CALL Invert.Matrix(n,S8¢))
/A debug
CALL Display.Matrix(n,n,SH(),"Inverted Mode Shapes")
/ SRFHISEEH IR R R A R R R
CALL Retrieve Matrix(GN#DOF ,n3,U1#¢) ,PN$+*,initial®,nd): k=0
FOR i=1 TO GNxDOF ‘apply boundary conditions to intial conditions
IF BCNCi,1)=1 THEN k=k+f: IF i)k THEN FOR j=1 TO 3: SWAP UIN(k,j),UINCi,j): NEXT j
NEXT i
CALL Mat.times.Mat{n,n1,n,S$C),USRC) ,UONC)) “ find generalized initial conditions
CALL Retrieve.Matrix(n,m,S8#() ,PN$+*,5",nd) ’ reload mode shapes
Skip: ‘CALL Store.Matrix(n,n3,U18() ,PN$+*.disp]®,nd) ‘store initial conditions in displacenent file

Find.Essential .BC: i=0: j=!
WHILE j¢=2: i=i+1: index=(i-1)2DOF¢j ’ find out where uniform base movement stored
IF BCW(index,1)=0 THEN EBCV(j,1)=i: EBCA(j,2)=j: j=j+l: i=0
WEND

‘Get or calculate constants

delta=1/2:2lpha=1/4: GOSUB Get.deltaT.and.Time.Steps
AO=1/(alphazDe] taT*2) :A221/(alphasDe) taT) :A3=1/(29alpha)-1 * calculate constants
Aé=Del taTa(1-del ta) :A7=de] tazDelta7

Paged A - 22

g
o i _#

PRSI R P D

& Sam

...................
................

CE-48%
Tern Project
FOR Counter=1 TO NumSteps ‘ begin solution loop

DynForceMats FOR i={ TO GN3NE: Fd#(i,1)=0: NEXT i: FOR i=1 T0 n: T20¢i,1)=0: NEXT i “‘init Foll & T24
G0SUB InertialForces: GOSUB AssembleForceMat: GOSUB ElementMatrixAssembler

FOR i=1 TD GNisNE ’ apply essential BC
IF BCWi,1)=1 THEN k=k+1: IF i{OK THEN SWAP Fdi(k,1) ,Fd¥(i,1)
NEXT i

CALL Mat.Plus.Mat(n,nl,oned,Fdl() oned,T2#{)) ‘add node/element forces and inertial forces
CALL Mat.Plus.Matin,n1,oned FdH<) ,oned,FsH()) ‘add dynamic and static forces

FOR i=§ TO n: T28(i,1)=0: NEXT i “init T20

CALL MatTrans.times.Mat(m,nl,n,58¢) ,Fdi() , T280)) ’ find generalized dyn. force matrix

Solve:
FOR i=1 TOm
UIRCi ,1)=(FdBG 1) Mdiall<i 1) +A0U0NCi , 1) 4A23U0NCI ,2) +A3%UCHCT ,3))/(A04ENCT 1))
NEXT i
FOR i=1 T0m ’ {ind V and A vectors and store displacements in U
UG, 3)=A02CULRCT ,1)-U0NCi ;1)) -A2%U0NC i, 2)-A3#U0NC i ,3)
U18Ci ,2)=U08¢ i , 2) 4A43U0N(i ,3) +A7HUINK i, 3)
FOR j=1 TQ 3: UORCE,j)=UL#(i, i)z UIRCE,j)=0: NEXT j * (U0 = [U1] for next time step, init [Uf]
NEXT i

Find.Store,real.displacements:
CALL Mat.times.Mat(n,n3,m,SHC),UONC),ULRO)) 7/ (U1) = [SI(UO] convert from generalized coordinates
FHEHHEHE R debug only
CALL Display.Matrix{n,n3,UIN(),"Displacement, Velocity, Acceleration®)
 SERFRPRRHEH AR LI I RL AR AR AR NI RRS
FOR i=1 T0 n

Larry Goshorn
August 1985

LSET US=MKS$CUINCi 1)) :LSET VS=MKSS(UINCi,2)) :LSET Ace=MKS$CUIN(i,3)):j=i+Counter#n:PUTN3,j ~ save to disk

NEXT i

T=T+De1taT ‘next tine step
NEXT Counter

CLOSE: CHAIN "Basic Disk 1:0ynFEP.menu’
END

g Sub-Programs Below

’

Paged A - 23

...

.
o
.
’
’
'
AN DV IS Vv e S)

‘]
* o
4
-
4
.
9

RS VP ALY

. .oy

cata b LS L L L C T h L ot

T —— " e LA Jhare fhage Jan Jhess Sate et utee ama aws P e e e

CE-685 Larry Goshorn
Term Project August 1985 -

DyYnFEP

Flow Diagram

M'gnm Load stiffnoes a static forces Notes:
Load ,,,i matrin Program Variables:
(]
GN = number of global nodes.
L NE = number of slements.
Load inftisl conditions n = number of unknowns in the structure,
1 we), o, e | m = number of retained modes (if no reduction
l then m=n).
— Path$ = string variable indicating the choosen
Wewmerk conetante method of solution.
flAz B0 20.47 [K] provides storage for the giobal stiffness
‘ matrix, and the static force matrix.
Find dynamic ferces from The stiffness matrix is a square matrix
ferces en nodes, forces en with dimensions equal to GN times 3.
. :m.‘";.‘m "(:'.', The static force matrix is stored with
the stiffness in an addition column,
‘ [M) provides storage for the global mass
T T rT————— matrix. It is a square matrix with
1K) = AOHPD < 1K) dimensions equal to GN times 3.
(F} = (Fd) « [MIS(AOS(UO) « AZS(UO} + AZ(UO™) [UO] and [U1] provide storage for the current
and last displacement, velocity, and
‘ acceleration vectors. Treated az 3 column
Solve simuiteneous equetions matrices, they are stored as a nx3.
{Fd) provides storage for generalized dynamic
‘ forces. It is dimensioned as mx1.
Find current eccerstion & velocity

UI%) = AIR{UT) = (UO)) - A2*(UO) - AS*fU0")
QY = (U0 « ((1- Dat}*(UO") + Dal*{U1*))*DeiteT

.1
N
L
4
K

Avasilable Sub-Programs: 1'

-

Display .Matrix 4

Store.Matrix 5

Retrieve Matrix]

Increment Time <
R

Relesd stiffness ’?
m ’

1

]

J

]

N

N

)

4

CE-483 Larry Goshorn
Tern Project August 19835

‘) DynFEP

> —

COMMON GN,NE,DOF ,n,n,PN$ Paths: GOTO Start

4

Subroutines Below
ReadHistoryFile: BUTTON 10,2
OPEN Ristory$ AS #4 LEN=14: FIELD #4,8 AS 28(1),8 AS 24¢2)
BETRA,1: Max=CU5(2$(1)): Min=2: i=INT((Max-Min)/2¢1)
GETH4,i: T1=CVS(Z4(1))
WHILE Max)Mint1 AND T1{)T+phaze
IF T1{T+phaze THEN Min=i: i=Min+INT((Max-i)/2)
IF T1)T+phaze THEN Max=i: i=Max-INT((i-Nin)/2)
GETH4,i: T1=CVSC28(1))
WEND: IF Tephaze=T1 THEN $=CVS{Z${2)): GOTO found
SETHA Min: T1=CUS(Z8(1)): #1=(VS(2$(2)): IF T4phaze=T! THEN #=#1: GOTO found
GETH4 Max: T2=CUS(I$(1)): +2=CVS(2$¢(2)): IF T+phaze=T{ THEN =¢2: GOTO found
f=(T+phaze-TH){$2-41)/(T2-T1)4f1 * interpolate
found: CLOSEN4: BUTTON 10,1: RETURN

Guass: BUTTON 14,2

FOR i=! TO n:MA=KR(i,i):FOR j=1 TO Ne1:K¥Ci,j)=KNCi, j)/MENEXT j

FOR k=1 TO n:IF K(>i THEN Mi=KCk,i)sFOR j=i TO nef:KBCK, §)=KNCK,j)-KHCi, j) 0 NEXT
NEXT K,i: BUTTON 14,1: RETURN

AssembieForceMat: BUTTON 7,2
FOR i=! TO GN: GETMl,i ‘ read specified nodal loads
FOR j=0 TO DOF-1
index=(i-~1)#D0F+j+1:k=3434)
’--~ NodeDynForces:
Dload=0: A=3+j34
IF MID$(Figi$,A,2)="11" THEN amp=CVS(N${K+1)):angie=CVSIN$(K+2)) :phase=CUSIN$(Kk+3)):Dload=amp#SIN(t4angle+phase) ha
m
IF MID$(F1qi$,A,2)="10° THEN History$=E$(k+4):605UB ReadHistoryFile:Dload=# ‘ non-harmonic load
Fd#(index)=FdW{index)+Dload ‘ add in force; positive to right, upward, clockwise
Ul#Cindex,1)=0:k=144%;:1F NID$(F1g1$,k,1)="0" THEN Ul#(index,1)=1 ’ Flag essential B.C., used later
NEXT j,it BUTTON 7,1: RETURN

4

Essential .B.C: BUTTON 13,2]
Disp1=0: Node=INT((i+2)/D0F): j=(i+2) MOD DOF: K=3¢j¥5: A=144%j:1F j=0 THEN GETN1,Node]
IF MIDS(F1ql$,A+1,1)="1" THEN Displ=CVUS(N$<K)) “static displacement *
IF MID$(F1g1$,A42,2)="11" THEN amp=CVS(N${K+1)) :angle=CUS(N$CK+2)) :phase=CVS(N$(k+3)):Displ=Displ+ampsSIN(trangle+phase)
) 1
IF MID$¢F1qi$,A+2,2)="10" THEN History$=E$(k+4):605UB ReadHistoryFile:Displ=Displ+f ’ non-harmonic Displacement]

BUTTON 13,1: RETURN

ElementMatrixAssenbler: BUTTON 8,2
FOR ELEMENT={ TO NE
G0SUB BuildElementMatrices
IR=(N17%-1) %00F : 1C=(NZ.-1) *DOF
/=== Assem.Dyn.Elen.Forces
FOR i=1 T0 DOF: FORCIR¢i)=FANCIRAiD+$N(i) s FORCICHi)=FONCIC+i)+£MCi+4DOF): NEXT i

Page# A - 25

.t

NS TR AR iy T —— n . R T T RN—~—— LI i JEnt i Ml St el Sl st St seull oSt e A et And Sad et d

CE-485 Larry Goshorn
Term Project August 1985

s

NEXT element: BUTTON 8,1: RETURN

BuildElementMatrices: BUTTIN 9,2
GETN2 ,ELEMENT :N17=CVI(L13) :NZ/=CVI(Rt$) ' qget left and right global node ¥’s
GETH#T N1 :X1=CVUSINS(1)) :Y1=CVS(NS(2)) ~ get left side coord’s
BETAL NZ/:X2=CVSINS(1)) :Y2=CVS(NS{2)) / get right side coord’s
L=8AR((Y1-Y2)*2¢(X1-X2)*2) * {ind element length '
’=== Elen.Dyn,Forces:
DD10ad=0:TDloac=0
IF M1D$¢F1g2%,2,2)="11" THEN amp=CVS(E$(10)):angle=CVS(E$(11)):phaze=CVS{E$(12)):DD10ad=amp*SIN(t*angletphase) harm
IF MID${F1q2$,2,2)="10" THEN History$=E$(13):60SUB ReadHistoryFile:DDload=f ’ non-harmonic dyn load
IF MID$(F1g2$,5,2)="11" THEN amp=CVS(E3{14)):angle=CVS(E$(17)) :phaze=CVS(E$(18)):TD1oad=amp*SIN(txangie+phase) harn
IF MID$<Fig2$,5,2)="10" THEN History$=E$(19):G0SUB ReadHistoryFile:TDioad=f ‘non-harmonic tan dyn load
f8(1)=L#TD1oad/2:#8()=F4(1) ’ positive to the right
£8(2)=L20D1oad/2:$8(5)=4¥(2) ‘ positive upward
f4(3)=-L " 2%DD10ad/12: f8C4)=-F#(3) ’ positive clockwise
IF X1-X2=0 THEN angle=SGN(Y1-Y2)#Pil/2 ELSE angle=2%Pi¥-ATN((Y1-Y2)/(X1-X2))
IF angle)2¥Pi#+,003 OR angle(2*Pik-.003 THEN GOSUB TransformDynForce
BUTTON 9,1: RETURN

TransfornDynForce: BUTTON 11,2:’Subroutine to transform Stiffness, Mass, and Force element matrices

GOSUB BuildTransformationMat

FOR i=1 TO &:CHCi, 1)=0:FOR k=1 TO &:CHCi,D=CHCI, 1I4THCK, i YRERCIO NEXT K, i:FOR i=1 TO 4:#MCi)=CHCE, 1) NEXT “tran(T1%{$)
BUTTON 11,1: RETURN

BuildTransformationMat: BUTTON 12,2; / build [T)

FOR i=! TO 4:FOR j=1 TO 4:TH(i,j)=0:NEXT j,i * initialize
IF angle MOD Pift/2 THEN TH(1,1)=C0SCangle) ELSE T¥({,1)=0
TH4,4)=TH1,1):T(2,2)=TH1,1) :TKS,5)=Tk(1,1)

IF angle MOD Pill THEN T¥(1,2)=-SIN(angle) ELSE TN(1,2)=0
TH(4,5)=TH(1,2):TH(2,1)=-TH(1,2) :TIS,4)=TR(2,1)
TH3,3)=1:T4,6)=1

BUTTON 12,1:RETURN

Get.deltaT.and.Time.Steps:
T$="Enter time step t.": T53="Now many time steps?® ’ max deltal and min cycles
WINDOW 3,,(290,22)-(509,132),-4: CALL TEXTFONT(!)
CALL TEXTSIZE(12): CALL MOVETD(5,24): PRINT "Enter time step (max. shown)®: CALL TEXTSIZE(]12)
EDIT FIELD 1,74,¢5,30)-(230,4%)
CALL TEXTSI2E(12): CALL MOVET0(S5,41): PRINT “"How many time steps?": CALL TEXTSI2E(12)
EDIT FIELD 2,75$,(5,65)-(250,80): EDIT FIELD
BUTTON 1,1,"0K",(200,84)-(250,102)
i=]
Toop:
d=DIALOG(D)
IF &=1 OR d=4 THEN done ‘got OK button or RETURN
IF ¢=2 THEN i=DIALOG(2): EDIT FIELD i ‘got field selection
IF d=7 THEN i=(i MOD 2)41: EDIT FIELD i ‘got TAB Key
6070 loop
done: CALL TEXTFONT(4): CALL TEXTSIZE(9): DeltaT=VAL(EDIT$(1)): NumSteps=VAL(EDIT$(2)): WINDOW CLOSE 3
RETURN

BigText:CALL TEXTFONT(0):CALL TEXTSI2E(12):RETURN ’ Chicago

Page# A - 24

.......

..

- . . . - -7
et el - Tt -
RS B T P e T T S LU AL SO LR . e NN N
. - - el g - - . » - - - - - P T S - -« " - . - - - ~
WIS DN L S SR R A S At ol LIPS PR, L) AP P DO ROV WAL AT PR R Wil Ry WAl v o Wy ‘.‘i

. W N T T T E W w L Tr W WL s T — Al ¥ —— e . T

CE-485 Larry Goshorn
Tern Project August 1983

LittleText:CALL TEXTFONT(1):CALL TEXTSIZE(9):RETURN ‘ Geneva
NormalText:CALL TEXTFONT(1):CALL TEXTSIZE{10):RETURN ’ Geneva
FornatedText:CALL TEXTFONT(4):CALL TEXTSIZE(9):RETURN ‘ Monaco

Start: CR3=CHR${13): Pi¥=4#ATN(1): ni=1: n3=3: né=4: n=0N2DOF: GOSUB FormatedText

/ ¢reate status windous

F$="DynFEP.info" :0PEN % AS #1 LEN=40

FIELDM1, 2 AS X1, 2 AS Y1$, 2 AS X2, 2 AS Y28, 30 AS Title$, 2 AS Types

WINDGW 2,"DynFEP Input/Output Window",(14,41)-¢512,263),1

WINDOW 1,°DynFEP Status Window®,(4,41)-(424,141),1

FOR i=1 TO 1.: GETM!,i

x1=0VIIX18) s y1=CVICY19): x2=CVI(X28): y2=CV1CY2$): As=Titles$: Kind=CVI(Type$)

WHILE RIGHT$(a$,1)=" ":a$=LEFT$(a$,LENCa$)-1) :WEND:BUTTON i,1,a$,(x1,y1)-(x2,¥2),kind
NEXT i:CLOSEM]

DIM Ki<n,n+1) Mit<n,n) ,Fd#{n) ,U0%<(n,3),UtH(n,3) N${17) ESCID)

F$=PN$+" .nodes" :0PEN F$ AS #1 LEN=92

FIELDN1,12 AS Flgi$, 4 AS N$<1), 4 AS N$(2), 4 AS N$(3), 4 A5 N$(4), 4 AS N$(3), 4 AS N3(4), 8 AS N$(7), 4 AS N3(8), 4 A
S N$(9), 4 AS N$(10), 4 AS N$(11), 8 AS N$(12), 4 AS N$(13), 4 AS N$(14), 4 A5 N$(13), 4 AS N$(14), B AS N$(1D)

F4=PN$+° .elements® :0PEN F$ AS #2 LEN=94

FIELDN2,6 AS F1g2%,2 AS Lt$,2 AS Ri$,4 AS E$(1),4 AS E$(2),4 AS E$(3),4 AS E3€4),4 AS E3(3),4 AS E$(6),4 AS ES(7) 4 AS E
$(8),4 AS E$(9),4 AS E$(10),4 AS E$(11),4 AS E$(12),8 AS E$(13),4 AS E$(14),4 AS E$(15),4 AS E$(14),4 AS E$(17),4 AS E%¢
18),8 AS E$(19)

F$=PN$+°.displ": OPEN F$ AS #3 LEN=24: FIELDH3,8 AS US,8 AS V$,B AS Ac$

Load.Global.Matrices: BUTTON 1,2
CALL Retrieve Matrix{n,nt1 KNC) PN$+® K&F.c®nd) N
CALL Retrieve.Matrix(n,n,M¥() PNS+®.M.c*,nd)]
CALL Retrieve.Matrix{n,n3,UCH() ,PNS+®,initial®,nd)
FOR i={ TO n ‘start "displ® file 9 zero
LSET US=MKD$CUOR{i 1)) :LSET V4=MKDS$CUOH(i,2)) :LSET Ac$=MKD$(UD#(i,3))
PUTH3, i sNEXT i
BUTTON 1,0
SRR AR e RE debug only
CALL DisplayMatrix{n,nt],KE(),"Stiffness”)
CALL DisplayMatrix{n,n M#(),*Mass")
CALL DisplayMatrix(n,n3,U08(),"Initial Conditions®)
RARRFRREARRAR R AR R

RS PRI PRy rares

‘Get or calculate constants

delta=1/2:alpha=1/4: GOSUB Get.deltaT.and.Time,.Steps

Al=1/(alphaxDeltaT"2) :A2=1/(alphaDel taT) :A3=1/(2%alpha)-1 * calculate constants
Ad=DeltaTx(1-delta) :A7=deltasDeltaT

T TR

ad

FOR Counter=1 TO NumSteps ’ begin solution loop

Find.Dyn.Force,Mat: BUTTON 2,2 ’ status report
GOSUB AssembleForceMat: GOSUB ElementMatrixAssembler
BUTTON 2,1 ’ status report

Find.Effective Mat: BUTTON 3,2 ° also apply BC

FOR i=1 TO N:KNCi ne1)=KRCi ,n41)¢FdNCi): FANCi)=0 ‘add in dyn forces and init FdW for next time step

IF UIRCI,1DO1 THEN FOR j=1 TO N:KBCi Ne$)=KNCi ,ne 1) 4MBCi,) RCA0RUONC], 1) +A2%UORC , 2) +A3RUORCj,3)) tKICi , j)=KNC i, j) +AD%
MG,) sNEXT

Lt le et

v, Ll S el i Y A S A v N i S A A e e

Tern Project

Larry Goshorn
August 1985
IF U1#(i,1)=1 THEN GOSUB Essential.B.C: FOR j=1 TO n:K¥Ci,j)==Ci=j) :NEXT j:K¥(i,n+1)=Disp}
NEXT i

‘set spec’d displacement
BUTTON 3,1 ~

status report

Solve: BUTTON 4,2 status report
GOSUB Guass: BUTTON 4,1: BUTTON 35,2

FOR i=t TOn “ +find V and A vectors and store displacements in U

U1NCi, 1)=Ki(i ,n+1)

UIRCT 3)=A0=(ULNCT ,1)-U0NCi 1)) -A2%U0N(i ,2) -A3%U0NC i ,3)

ULHCi ,2)=U08(i ,2) +A4%UOHC 3)+A7*U1H(i, 3)

LSET Us=MKD$CU1¥¢i, 1)) LSET W=HKD$(UH(I.2)) LSET Ac$=MKD$(UI¥Ci, 3)) j=i+Counter#n:PUTH3,j * save to disk
NEXT i: BUTTON 3,1 ‘ status report
'nimmuuuuuuuuuuuunnun debug only

CALL DisplayMatrix{n,n3,U1¥),"Displacement, Velocity, and Acceleration®)
WINDOW 2: PRINT USING "Time step H#M of NN .°;counter NumSteps

PRINT USING °T = #4.M°°*° Time step = #4.08°°°°";T,deltaT: WINDOW 1
B R AR

NextTimeStep: BUTTON 4,2: WINDOW OUTPUT 2 “ status report
T=T+deitaT: WINDOW §

FOR i=1 TO n: FOR j=1 TG 3: UONCi,j)=U1Ci,j): NEXT j,i *
CALL Retrieve.Matrix(n,ne1 ,K8C) PN$+* K&F.c",nd)
BUTTON 4,1 ‘status report

NEXT Counter

rvew LA A
L e T

intialize

CLOSE: WINDOW CLOSE 1: WINDOW CLOSE 2: CHAIN *DynFEP.menu": END

’

2

Subprograms Below

Paged A - 28

A A

‘ L]
.
L

Al A i At e e A AUCIAACIL SRR AE A I R ard SV e A g L ENIL S B L NN N I A D

.............

CE-485
Term Project

‘ A subset of the following SUB-Programs are used in most of the DynFEP programs:

Sub-Programs Below

SUB Retrieve.Matrix(r,c,ARC) F$ k) STATIC
IF UBOUND(AN,1)<{r OR UBOUND(AN,2){c THEN PRINT CHR$(?)"Fatal error!'®: STOP
RL=c#8: OPEN F$ AS #k LEN=RL: FIELDNK,RL AS AAS
FOR i=1 T0 r: GETHK,i: FOR j=1 TO ¢
BI=MI1D$(AAS,B2(j-1)+1,8): ANCi,j)=CUD(BS)
NEXT j,i: CLOSENK
END SuB

SUB Store.Matrix(r,c,AN() F$,K) STATIC
1F UBOUND(AW,1)<r OR UBOUND(AN,2){c THEN PRINT CHR$(7)*Fatal error!®: STOP
RL=c¥8: OPEN F$ AS #k LEN=RL: FIELDK,RL AS AAS
FOR i=1 TO r: B$="": FOR j=1 T0 ¢
Be=BMKDS$(ARCi ,j))
NEXT j: LSET AA$=BS$: PUTAK,i: NEXT i: CLOSE #K
END SUB

SUB Display.Matrix(Row,Col,AN(2),T8) STATIC
CALL TEXTFONT(1): CALL TEXTSIZE(?): PRINT T¢
FOR i=t TO Row: FOR j=t TO Col
PRINT USING “+#.80°°°° ";AN(i,j);
NEXT j: PRINT: NEXT i: PRINT
INPUT *Press ‘RETURN’ to continue®;as

END SUB

SUB Mat.times.Mat(rA,cB,cArB,AN(2) ,BAC2) ,RH(2)) STATIC
‘{A) # [B) = [R)
‘rA = drows in [A) cArB = dcols in [A) and Arows in [B]
’¢B = #cols in [B] (R] is dimensioned rA X 8
FOR i=1 TO rA: FOR j=1 TO cB: FOR k=1 TO cArB
RUCi, j)=REC , j)+ABCH K)#BNCK,)
NEXT Kk,j,i
END SUB

5UB MatTrans.times.Mat{cA,cB,rArB,AN(2) ,BA(2) ,RN(2)) STATIC
’[A transpose] # [B] = [R]
‘cA = #cols in [A) rArB = Hrous in [A) and frows in (B)
’¢B = #cols in [B] [R] is dimensioned cA X cB
FOR i=) TO cA: FOR j=1 T0 cB: FOR k=] TO rArB
RRCi, §)=RACi) +ANCK, 0) 4BRCK, j)
NEXT K,j,i
END SUB
SUB Mat.plus.Mat(r,c,C1H,AN(2),C20,B4(2)) STATIC
/C1a(A] ¢ C22(B] = result stored in (A)
FOR i=1 70 r: FOR j=1 TO c: ANCi,j)=CI83ANCi, j)+C20aBRCi, j) s NEXT j,i
END SuB
SUB Invert.Matrix(n,AN(2)) STATIC

Page# A - 29

Larey Goshorn
August 1985

L B e N J St o G sress i - e e g

Larry Goshorn

CE-485
August 1985

Tern Project

‘Takes [A] # [A)~{ = [1] AND changes TO [I] # [A1*-1 = [A)*~1 (based on Guass elimination)

’ [A)*-1 replaces [A)

DIM I8¢n,n): FOR i=1 TO n: INCi,id=1: NEXT i ‘identity matrix

FOR i=1 TO n: mi=ARCi,i): FOR j=1 TO n: ABCi,J)=ARC,j)/mits THG,5)=IRC,5)/ni: NEXT

FOR k=1 TO n: IF k<>i THEN nd=ANCK,i): FOR j=1 TO n: ABCK,j)=ARCK, j)-ARC ,j) ol TNCK,§)=18CK, j)-10Ci) aml:s NEXT |
NEXT K, i

FOR i=1 TO n: FOR j=1 TO n: ANCi j)=I8Ci,j)s NEXT j,i: ERASE I ’ store inverse in AN

END SUB
» SUB Deterninant(n,A%(2) ,Det) STATIC
‘Uses pivital condensation to find the determinant of [A¥]
Mult=1: Sign=1 '
UHILE n=)2
i=t: WHILE ABCi,1)=0 AND i{=n: i=i41: WEND ‘check for zero in first column, then correct

IF idn THEN Det=0: GOTO Finished ‘1st col has all zeros

IF i)1 THEN Sign=-Sign: FOR j=1 TO n: SWAP ANC1,j) ,ANCi,j): NEXT j ‘swap rows and change sign
Mul t=Mult/AK(1,1)* (n-2) .

FOR i=2 TO n: FOR j=2 7O n: ANCi,j)=ANCT, 1)3AKCT,) -ANCT,) %ARC 1) 2 NEXT §,i

FOR i=1 TO n-1: FOR j=1 TO n-1: ANCi,j)=ANCi+l,j¢1)s NEXT j,i

n=n-~{

WEND

Det=SignaMultan(1,1)

Finished:

END SUB

’

Paged A - 30

......... R T T Y e T St T R R L L D N R S
.......... T T A A A St e T T e e e
B R RSl L g Tt e B e el U A S ST Ty S S S T ORI W UL

AR e bt Avares

R S ¥ e L

— . o

T -~

TV T TN T YN W Y w v -y

AU B A WA e W A I Wi vewr,

~——

R

AD NUMBER

Lynch, J

ODATEZ

M.

. DTIC ACCESSION 1
NOTICE

1. REPORY IDENTIFYING INFORMATION

REQUESTER:

A. ORIGINATING AGENCY

NAVAL POSTGRADUATE SCHOOL, MONTEREY, CA 93943
2,

1

enerating Svstems

Put your mailing address on
reverse of form.

Complete items 1 and 2. '

Re1?a8§T?Y&'ﬂ6§éff#E'3?"§§§ndby and Emergegcy3.

Attach form to reports
malled to DTIC.

C. MONITOR REPORT NUMBER

v J. Michael Lynch. June 1984

Texas AM

4. Use unclassified information
only.

D. PREPARED UNDER CONTRACT NUMBER

NO6314-73-A-2112

DTIC:

1. Assign AD Number,

2. DISTRIBUTION STATEMENT

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED.

2. Return to requester,

oTic “ORM 50

meEr AN

PREVIOUS EDITIONS ARE OBSOLETE

-
T R gt e e \]J T et a L iEh 4 P SPREE S NP
£ —
-
.
>
-
~
v —
L) Ral R LA 3 ¥ -~
LRI TSP Ay N @ mmmmmmmmw L™ W

> - W e LECY LS a7 T N -~ - v . A
= e
Q._
h-_ *
'-.
: \-\
..,
-

...
e e e e e ey wm e el el N . - e e .
A A AN N S S R A R S L T R AL IR LN N P P AT) .
L VAN i S _‘l.\.ﬁlﬁ\.ﬁy‘.‘;‘.'-:.51'!":.'{.'1'-:-..': 'p_",f.\.:'x':\ ';‘4 L 2 "..'\i":"‘g-'_g’ " .'."'.:. . '-‘i'.‘a". '-:'".' -'- o 0 - ;:"-.
" -t il SIS N P W W R R N R L IR

MICRACIMICI N A RO AN A A A g i el

e TN T TN W g W i"—YT"".-..,

———— v T w - x— _
o - e . i, RN Ty R e ——
,A N’*\""‘ Al ® AL T R R P AR S S -t PR A N Ao = Ny LNV AR o Ky Pl Tl e ot~ e Sl

