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1. Introduction. Let {Xn} = {Xn; n=0,+1,...} be a g-variate weakly stationary

stochastic process (WSSP) with spectral distribution (matrix) F(A), -7 < X < m.
_ l,,ta,Uy Tiearny S?xkd!f.fJﬁJ, SsP)
An important problem in prediction theory of -suweh processes(fé to find conditions

on the process, or equivalently on its spectral distribution F, so that the

linear least square predictor of a future value of the process admits a

mean-convergent series representation in terms of the past (observed) valucs

of the process. This problem was solved by Wiener and Masani [18), and Masani
-1ML6}'by imposing some boundedness conditions on f, the spectral density (matrix)

function of the process.

Recently, using the notion of positivity of the angle between the past-

present and the future subspaces of the process it was shown by Pourahmadi

?{&3;%&47_45+—that the series representation of the predictor is possible under

somc weaker conditions. This was made possible by using the idea of angle duc

- - ——————

to Helson and SzegS/[S] (see also Miamee [lO]Hfor a multivariate extension of

this). However these results hold under conditions which require the process
.« Aocumt,

to be of full rank. The main purpose of the present—study is to consider the

same problem, including their autoregressive representation, for the degenerate

/ —_— . . -
Wssp's. Addiln, k /a;rw» vy Lo age A la e, —
. ( v
Now we explain the results of this paper .

It is well-known [7] that every purely nondeterministic WSSP has a

one-sided moving average representation as

(1.1) X =¢ +Ce .+ ...=)C

where {En} is the innovation process of {Xn} and {Ck} is a sequence of qxq

constant matrices with

oo
Jtr €. Cr < o,
k=0

k 'k
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This moving average representation plays an extremely important role in
prediction theory and statistical analysis of {Xn}. For example, from (1.1)

one can obtain the v-step ahead predictor of xn+v (denoted by xn+v) based on

Xn’ xn-l""’ as
A oo
(1.2) Xn+\) =ka Cken*\)-k’ -
~ v-1
(1.3) X o ™ Xouy =kzock€"*"'k'

Also the moving average representation (1.1) is used in studying the limiting
distribution of certain statistics, such as the estimators of the autocovariance
and the spectral density matrix, which are useful in the analysis of time

series data collected from {Xn}.

To render the moving average representation (1.1) and the form of the best
linear predictor fully satisfactory we should be able to express the innovation
process En in terms of the past (observed) values of the process Xn itself, so
that the best linear predictor would be also expressed in terms of these

observed values of the process.

1.4 Definition. We say that the moving average processes Xn in (1.1) has an

£

utcresressive rerresentatiorn if there cxists a sequence {Ak} o€ qxq matrices

such that

a0

(1.5) € =X/\vX )
n k=0 k n-k

where the infinite scries 1s to converge in the mean.
It is useful to note that (1.1) can be viewed as a stochastic difference

cquation in ien} with Xn as the input. The existence of the autoregressive




representation (1.5) assures that the difference equation (1.1) has a solution
and therefore (1.5) can be viewed as a stochastic difference equation in {Xn}
with €, as the input, i.e. the roles of Xn and €, can be reversed. Due to
this reversal of roles, the term invertibility of the moving average (1.1) is
sometimes used in the literature on time series, instead of the autoregressive
representation.

Note that if {Xn} has an autoregressive representation, then it follows
from (1.5) that the one step ahead predictor of {Xn} satisfies the equation

oo}
(1.6 Ao Xne =k§1Ak Xhe1-x?

A

which can be solved for Xn expressing it (uniquely) in terms of the obsecrved

+1°
values of the process, provided that AO is invertible. However, as we shall

see in section 4 the invertibility of A0 is tied up with the invertibility of
the prediction error matrix G. Thus the question of the rank of G, or equiva-
lently the rank of the process {Xn}, enter the scene. Also, it follows from
(1.5}, upon formal substitution in (1.2), that the autoregressive representation

of {Xn} may entail an autoregressive representation of its linear least square

predictor,

1.7 Definition, Let {Xn} be as in (1.1) and v > 1 be a fixed integer. We say

that the linear least square predictor of {Xn} has an autoregressive representation

o
if there coxists a sequence of constant gxq matrices {"vk}k-n such that

~

(1.8) X =) E X,
V2o vk "n-k

where the infinite series is to converge in the squarc mean.

In the light of Definitions 1.4 and 1.7 it is natural to ask how the




autoregressive representation of {xn} and that of its lincar least square
predictor are related. In section 4 we show that these two representation arc,
indeed, equivalent regardless of the rank of the process {Xn}, and in fact A
can be taken to be I. This result shows the importance of the autoregressive
representation problem of {Xn} in prediction theory. To solve this problem

one has to find conditions on the spectral distribution F, so that the infinite

series in (1.5) converges in the mean, which is in turn equivalent to the

convergence of

Although our initial results in sections 3 and 4 have becn worked out in the
time domain, which is useful as to the application in time series is concerned,
to get such spectral criteria for the autoregressive representation problem we
have to move to the spectral domain.

After setting up the notations and preliminary results in section 2, we
consider in section 3, a problem which is more general than the autoregressive
representation, namely, to find conditions on F which enables one to write any
Y in the time domain of {Xn} as a unique series cxpansion in terms of Xn's‘ The
main result here is Theorem 3.8, which provides some characterization for
this general property. An important conscquence of this characterization and
the other results in this section is the fact that if the angle between past
and futurc is positive then the range of the spectral density f()) is constant,
This fact, together with a technique usced by Miamece and Salehi [12]) (¢f. also
{11]) reduces our problem regarding a degencrate rank (-variate WSSP to the same
problem for a corresponding full rank p-variate (p < q) WSSP,

In section 4 we prove the equivalence of the autoregressive representiation
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of Xn and that of its predictor and we show that this happens if and onlv if
the Fourier (Tavlor) series of the reciprocal Q°1 of the factor Q of the
generating function ¢ = Q /G of the process, converges to it in the norm of
Lz(f) (This is Corollary 4.16). We should say here that it seems there is no
betier speetral criterion for the autoregressive representation, without
Ffurther restrictions on Xn' This is important in view of Professor Masani's
call to find a :0od necessary and sufficient condition for the validity of the
autoregressive representation for Xn or its predictor.

Of course, the necessary and sufficient condition just mentioned is not
very uscful because it is not expressed directly in terms of the spectral
density. However, using this in conjunction with our other results, we give
several concrete and useful sufficient conditions for the validity of the
autoregressive representation, Bv a theorem of Matveev [9], the density of
every purcly non-deterministic process has constant rank and our work in
section 4 is under the additional requirement that the range of f is constant,
which is of course motivated by the results of section 3 mentioned above. It
is' also shown that analogues of the sufficient conditions duec to Masani [6]
and Pourahmadi [14,15] holds true in the degenerate rank as well.

We finally remark that in the presentation of this study a special attempt
i< made to work in the time domain as far as possible. Such a program is
rarticularly useful for the purpose of applications. Also this, and especially
working with the nonnormalized process {cn}, is helpful as it postpones the
complications arising from the degeneracy of the rank of f, and results in a
tactorization of f(}) in the form Q(AYGR(X)1*, which whows that the degencracies

of () stem from a constant matrix, namely the prediction error matrix (.,

tlFor more on this sec |7, Theorem 13.3].
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2. Preliminaries. Let (Q,G,P) be a probability space. H = LS(Q,G,P) denotes

the Hilbert space of all complex-valued random variables on & with zcro

expectation and finite variance. The inner product in H is given by
(x,y) = Exy, x,y € H.

Following [7}, for q > 1, H? denotes the Cartesian product of H with
itself q times, i.e. the sct of all column vectors X = (x ,xq,...,xq)q with
x, = H, 1 = 1,2,...,2. HY is endowed with a Gramian structure: For X and Y

in 1Y their Gtamwan is defined to be the qxq matrix (X,Y) = [(xi,yi)]? j=1°

HY is a Hilbert space under the inner product ((X,Y)) = trace (\,Y) =

it~ £

(xi,yi) and norm ||X]|| = /((x,x)) provided the linear combinations arc
l - -
formed with constant qxq matrices as coegficients.

J

For a gxq matrix A = (aij)’ tr A = z ajj’ A* = (Eﬁi) and det A stands for
i=1

determinant of A. When A is singular A* denotes its Moore-Penrosce generalized
inverse. Functions are defined on (-7,7] and we identify this interval with
the unit circle in the complex plane in the natural way. Typical values of
a function f defined on (-7,7] or on the unit circle will be denoted by f(7).
dm denotes the normalized Lebesgue measure on (-m,nm]. For 1 <p <o, LP(HD)
denotes the usual Lebesgue (Hardy) space of functions on the unit circle.
Lqu(HZ)qi denotes the space of all gxq matrix-valued functions whosc entries
arc in Lp(llp) .

et {Xn, no= 0.+, 1 . 1t s said that {Xn} is a g-variate weakly
stationary stochastic process (WSSP), if the Gramian matrix (Xm,\n) depends only
on m-n, [t can be shown [7] that such a process has a speetral rerresentaton

ot the form




..........

--------
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where Z(*) is a countably additive orthogonally scattered Hq-valued measure.
The (¥q nonnegative matrix valued measure F(:) = (Z(:),2(-)) is called the

srentral distribution of {Xn}.

_
T dm’

;
distribution F is denoted by L7 (dF) and is defined by

In case F <<dm, we say that {Xn} has the

ereciral censitu f = F° The spectral domain corresponding to the spectral

Lg(dF) = {v; ¥ is a gxq matrix valued function with ||W|[§ =
(TT
J tr¥(9) dF(8) ¥* (8) < =},
-T

,
It is well-known [7] that L"(dF) with inner product

fall
((9,¥)) = J tr ¢ dFy*
-7
is a Hilbert space.
For each subset ...} of Hq, sp {...} stands for the closed linear span

of elements of ...} in the metric of HY and the following subspaces associated

to our process {Xn} are needed.

HOX) = sp {X,; k = 0,+1,...1,

P (X) = sp {xk; k <n}, n=0,+,...,
FLX) = sp Xpo k>nb, n=0,41,...,
+(r
Px) =0 P o(x),
i n=-e M
M (XD = sp {\k: K#gnl, n=0,+1,...,
+o0
M (X)) =0 M (X).
n=-w

N .'\-'_

L et




The space H(X) is referred to as the time domain of the process {Xn}. It is
well-known [7] that the correspondence

{TT
T: ¥ > J Y(A) dZ (X))

-m
. . . . 2. .. . .

is an isometric isomorphism from L (dF) onto H(X). T is called the “clmonoroy
igomorrhism between the spectral and time domain, and plavs an important role
in finding analvtical conditions,in terms of F, for the following important

geometrical (regularity) properties of the WSSP {Xn).

2.1 Definition: Let {Xn} be a q-variate WSSP
a) {Xn} is said to be »rurely nondeterministic (regular) if

P o (X) = {0},

b)Y {X } i1s 5aid to be minimal if for some n

\
n

M_(X) # H(X)
¢) ixn} is said to be Jo-regular if

M _(X) = {o}.

d) It is said that the past-present and the future subspaces of {Xn} arc at

rogitive wnsle if

p(N)= p(F) <1,
where

ciN)= o(F) = sup {((Y,2)): Y r PO(X), Z ¢ F (X) and

LIYID = 1.tz = 1




Let {X_} be a purely nondeterministic WSSP, The best linear predictor

n
v > 1, based on Xp, X is given by

of \ .
n+v

n-1""

~

S S LN € OD It

where the latter denotes the orthogonal projection of Xn+v on the subspacc

Pn(XJ of H(X). For such a process we define a new process {en} by

= X_ - (x_|P X =0 .
e = Xy - O IP (X)), =0k,

N

and it is called the Znnovation rrocess of (Xn}. It is known that {En} satisfies
(-m,en) = 6m’nG, and G is called the prediction error matrix of lag 1. A

WSSp {Xn} is said to be of full rank if its matrix G is invertible (full rank).
Otherwise, the process {Xn} is of degenerate rank.

It tollows from (1.1) that the spectral density f(}) of a purely nondeter-

ministic process admits a factorization of the form

FOO) = G * = 962 o6 2,

where
S . iK)
Q) = ] cett,
k=0
1S in H;‘q. It is shown in [7] that Q(-) is an almost evervwhere invertible
function. Thus, it follows that when {Xn} is not of full rank then f(.) is

not invertible,
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3. Basicity and positivity of the angle.

In this section we will define the idea of generalized Schauder basis for
a set of vectors and also give the definition of the angle between past-present
and future for a q-variate WSSP, and then we give scveral criteria for a WsSP
Xn to torm a Schauder basis for its time domain H(X). We will also get
several other results which are essential in dealing with the problem of
autoregressive representation for degenerate rank multivariate processes in the
next section.

Because of the imporatnce of the mean-square convergences in different
areas of applications (particularly time series analysis) it seems that the
idea of i\n} forming a generalized Schauder basis is more appropriate than
the weaker requirement of {Xn} forming a conditional basis as studied by
Rozanov [17, pp. 104-108].

To pet a feeling as to how the question of uniqueness of the representation
of elements of H(X) in terms of a sequence will arise and should be scttled

in the non full rank case we start this section with an example:

5.1 Example. Let {en} be a univariate white noise process, i.c. Ecmcn = ﬁm n’
’

and let {Xn} be the bivariate process defined by

= , n=0,+1,+2,.., .

c
tor a fixed k, consider the clement Y = k ] »H(X). Notc that for this
°) J

clement we have scveral different representations in terms of {Xn}, viz.,
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i.e. there is no unique representation for Y in terms of Xn's.

In view of this simple example and the need for uniqueness of the lincar
representation in terms of Xn's in practical problems, it is important to find
conditions on {Xn} so that every element of H(X) has a linecar representation
in terms of {Xn} which is unique in some sense.

Next we define two kinds of uniqueness for linecar representation of
elements of H(X). Throughout this section {Ak} denotes an arbitrary sequchce

©
of g-q matrices, and it is understood that the infinite series Z Aan converges

= -00

in the norm of H% or in the square mean.
3.2 Definition. Let {Xn, n=0,+1,+2,...} be a q-variate process in HY.

a) {xn} is said to be a Schauder basts for H(X) if every Y e H(X) has a unique

representation

(s ]
Y = Z /\an,
n=-c
then,
A = A", for all n.
n n

bj It is said that {Xn} is a sencralined Schauder bagis for XY if cvery

o« - - - . AN - N
L AL AR AN
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Y € H(X) can be represented as

and furthermore this representation is unique in the sense that if Y has

another representation as

then,

3.5 Remarks.
a) It should be noted that the notion of Schauder basis for H(X) defined in
3.2(a) is different from that defined in the literature on classical Banach
spaces. Since here H(X) is a linear space over the ring of qrq matrices instcad
of the field of scalars. In this setting it is possible to develop a theory
of Schauder basis for H(X) which is similar, but technically different from
that for classical Banach spaces.
b) For the classical Banach spaces the notions of Schauder and generalized
Schauder basis are equivalent. This is not the case for H(X) as Example 3.1
shows. In this example {Xn} is a generalized Schauder bhasis but not a Schauder
basis,

Since a generalized Schauder basis for H(X) is not necessarily a Schauder
basis, it is of interest to impose conditions on {Xn} or I' so that the two

notions become cquivalent.  When {Xn} is a g-variate WSSI' we have:

3.0 theorem.  let {Xn} be a g-variate WSSP with the spectral distirbution ¥

mn

and det D= (NN = f_” dF(V). Then the following conditions are cquivalent:




a) {Xn} is a generalized Schauder basis for H(X) and FO is invertible,

b) i\n} is a Schauder basis for H(X).

Proof. a =>b.

Let Y € H(X) have two representations, viz.

sinze {Xn} s a gemeralized Schauder basis for H(X) we have

A X = A°X , for all n,
nn n'n

Thus
AnTO = An(Xn,Xn) = An(Xn,Xn) = AnFO’ for all n.

But, since FO 18 invertible we get
A = A;, for all n,

n

i.e. {Xn} 18 a Schauder basis for H(X).

Suzprose {Xn} s @ Schauder basis for W(X) and T is not invertible.

there exists a non-zero vector a = (a
q

igl %%, 7O

1,...,aq) such that

Thig Trr?ics that Jor 0 = Y v N(X) we have

(
(&4 €
Y = 0 = 1 4 ] \n,l = 0 0 [ Xn,l ,

Then




TR

14

and uet la ...0 0 ...0
1'%

0 ... Dol

O 14 | :

0 ...0 0...0

which contradicts the assumption that {Xn} 18 a Schauder basis for H(X). Q.E.D,

3.5 Remark. Since FO > G, it follows that when {Xn} is of full rank, then
the two notions of bases are equivalent.

The next theorem which provides a necessary and sufficient condition for
a g-variate process {Xn} to be a generalized Schauder basis for H(X) is essential
in the rest of this work. This theorem is a generalization of a well-known
theorm of Nikolskii, cf. [4, p. 103], to the setting of H(X). Although the
main steps of its proof are the same as those in the classical setting, the

details are different as the Ak's here are qxq matrices instead of becing complex

scalars. Since the proof is lengthy we have relegated it to an appendix.

5.6 Theorem. A g-variate process {Xn} is a generalized Schauder basis for H(X),

if and only if there exists a positive real number M such that

g )
T AX < T AX ]
n=k n=-o
[ o]
for any ¢ > k and all qxq matrices An’ n=20,+1,... , with z Aan € Hq.
n=-x
In general, it is hard to verify the condition of Theorem 3.¢. However,

when {\n} is a WSSP, then as it turns out this condition is equivalent to the
geonetrical condition that the past-present and futurce subspaces of 1xn} heing
at positive angle. This is summarized in the next lemma whose proof,heing

exactly the same as in the univariate case (¢t [3, pp. 129-130]), is omitted,

o PP
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3.7 Lemma. Let {Xn} be a q-variate WSSP. Then the following are equivalent:

a) ~(X})<1,

b) There exists a positive number M such that

£ ~
HIAX <M T Al

N=-o0o

x
for all ¢ > k and all qxq matrices An, n=20,+1,+2, ... , with Z Aan € Hq.
=00

Next, by combining Theorem 3.6 and Lemma 3.7 we get the following important

result.
5.8 Theorem, Let {Xn} be a q-variate WSSP. Then the following are equivalcnt:

a) -(X)<i,

b) {Xn} is a generalized Schauder basis for H(X).

In view of Theorem 3.8 it is important to characterize WSSP's for which
p(X1<1, i.ec. to find spectral characterization for this uscful geomectrical
property. When {Xn} is a q-variate WSSP of full rank such characterization is
given in {10,14,16]. It is important to note, however, that the techniques
used in these papers do not work when {Xn} is not of full rank,

Here we usc a different method which is based on cxploiting the character-
ization of »(N)<l given in Theorem 3.8 and the uniqueness of the representation
of clements of H(X) when {Xn} is a generalized Schauder basis. As a result
of this we show that when {Xn} is a generalized Schauder basis for li(X), then

“\ ' is 1 -regular.
n 0 k

-rcpular.,

3.9 Theorem.  lLet {Xn} be a (-viariate WSSP with p(X)<1. ‘Then {\n} is J”

Proof. Tnee o(NI<L, 7t follows from Theorem 3.8 thut {Xn} 70 0 ienervalined
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Sehauder basis for H(X). To show that {Xn} is Jo—regular, let

a
YeM _(X)= n Mn(X). Thus
n:-oo

Y € Mn(x), for all n.

flow, as in the proof of the "if" part of Theorem 3.€ one can show that

{Xk; k # n} Zs a generalized Schauder basis for Mn(X). Hence, there exists a

series reprresentation for Y;

Y = Z A X, for all n.
k#n k,n"k

From this and the uniqueness of such representations as defined in 3.2 (b) we yet
A, X =20, for all n,k,
which implies that Y = 0. Q.L.Dh.

As an immediate consequence of Theorem 3.9 we sce that if o(X)<1, then the
process {Xn} is minimal, and purely nondeterministic. The following

Corollary is very crucial for our purposes.

5.10 Corollary. Let {Xn} be a q-variatc WSSP with the spectral distribution I,

If -(X)<1, then F has the following properties:
a) I is absolutely continuous with respect to the Lebesgue measurc on (-m,7m).

by R(t} = constunt supspace d.e., where f is the density of the process and R(f)

denotes the range of f when f(-) is viewed as an operator from ¢V into .

L1 ] L . .
)t e ll . where £ denotes the Moore-Penrose generalized inverse of the
(SN

matrix ft,

'''''''''
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Proof. Since oy < 1, by Theorem 3.9 our WSSP {Xn} i8 J -regular and it is

0
cuou pn Makagon wnl Weron [5, Theorem 5.3] that {Xn} is Jo-resular, 17 i only

¥ F satisfies the conditions a,b, and c.

Corollary 3.10 gives some very useful necessarv conditions for p{(X) to be
strictly less than one, the most important of these is the condition conccrning
the constancy of the range of f as the subsequent argument will reveal. Thus

in the following we work under the following natural assumption:

3.11 Assumption.

(i) F << dm,

{ii) R(f) = constant a.c.(dm),
A D |
(i11) £ = quq'

Under this assumption our main problem is reduced to characterizing
WSSP's for which p(X)~1. Since R(f) is a constant subspace of Cq, we let R
denote this subspace and p(0 < p < q) its dimension. It follows from the

proof of Theorem 3.1 in [12] that there exists a qxq constant unitarvy matrix U

such that

fg()! 0
(3.12) UE(U* = Jameje=a |
o v 0
i
where ¢(-) is a prp matrix-valued function on (-m,m{. [t is casy to check that

g 12 the spectral density of a p-variate purcly nondcterministic full rank WSSP,
sav, ‘Y . This matrix U and the WSSP {Yn} play important roles in what

follows and their relationship with  and {X“} is prescribed by (3.12),
throughout this paper. An important conscquence of this relationship is the

tfollowinyg,
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3.13 Theorem. Let {Xn} be a g-variate (not necessarily full rank) WSSP whose

spectral Jdistribution F satisfies (3.11). Then, with notation as above, we have

p(X) <1, 1if and only if p(Y)<l1.

Proof. It follows from 3.12 that

Y
U X = -L‘- ,
n
0
thus for each Z ¢ H(Y) we have
(7
n=U* |--- e H(X).
0

Assure that p(X) <l. Then by Theorem 3.8,n has a representation,

There fore,

oo
- U A U
Un =) AL U*UX,

n=-o

whizil imr lies that, with Cn = UAnU*, we have

or

o
=) by,
nn

n=-o

W b e the pap lerdinge rrineiral minor of Cn. By using the uniqueness of

-

the rerrecentatiom o n one can show that this representation of I i¢ unique

n tne eonee of Definition F.2(b). Thus {Yn} 18 a veneralized Schaudcr baets

o v
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“or H(YY ad therefore by Theorem 3.8 we get that

p(X)<1.

3
I
[\

proof o] the other direction is similar. Q.1.Dh,

Theorem 3.13 reduces the problem of characterizing non-full rank proccesses
with (X ;<1 to that for full rank processes with smaller dimension. In view of
this one can invoke the known results in the full rank casc and statc the
appropriate conditions in terms of g, the spectral density matrix of the
corresponding full rank process {Yn}. We should note that the statement of
the next theorem is not correct if one replaces g by f, as Example 3.1 provides
a counterexample to this effect. Proof of the next theorem is immediate from

5.13 and the results of [10].

3.14 Theorem. Let {Xn} be as in Theorem 3.13, then the following arc

ecquivalent:

a) o(\)<l.

2 1 . . . . 2
by LT(g) - P and the Fourier series of any function ¢ in L7(g) converges to

bl
+ in the norm of L7 (g).

Although Theorem 3.14 provides nccessary and sutficient conditions for
, : . 2 .
o(X1<1 in terms of the spectral domain L7(g) of {Yn}, it does not provide -y
concrete conditions involving the entrics of the spectral density, In the
following we review some known results which provide more tangible conditions

tfor ~(M)~1., However, in light of Thecorem 3.11, we state all these results for

a full rank WSSP,

In the univariate casc a complete characterization of WSS with «(X)71 is

_\'.i-_“';".' AJatn et S S SIS PRl A et it ool - e

T




- given by Helson and Szegd [3].

3.15 Theorem. Let {Xn} be a univariate WSSP with density f. Then p(X)<1, if

and only if
(3.16) f=e s

wherc u and v are bounded real-valued functions with IIVHOo <X , and ; denotes
2
the harmonic conjugate of the function V. i
For gq-variate processes one can find such a characterization provided that
f has some special properties. For a gxq matrix-valued function, denotc the
smallest and largest eigenvalues of f(A) by fl(x) and fq(A), respectively.

With these notations we have [14, Theorem 5.3].

3.17 Theorem, Let {Xn} be a gq-variate purely nondeterministic full rank WSSP

with a spectral density f satisfying

(3.18)

Then p(X)<l, if and only if fq satisfies (3.16).

This theorem provides a characterization for p(X)<1l in terms of the largest
eivenvalue of f(+) which in general might be hard to apply. The next lemma
provides a necessary condition for p(Xj<l in terms of the didgonal entries of
the density matrix ., Proot of this lemma is immediate from the definitions of

NV and the Kolmogorov's isomorphism,

'

.19 Lemma,  Let {\n} be a purcly nondeterministic WSSP with the spectral

density 1, If o (\M<l, then tor cach j = 1,2,...,2, fjj 1s the diagonal clement

of f which satisfies (3.16).

' - . - - . - P
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It is certainly of interest to show that the condition of Lemma 3.19 is
also sufficient for ¢(\X)<l. However, this is not true in general. It turns

out that such a condition is necessary and sufficient for p(X)<1, when f is

B . - q f-l - .l] q
nearly diagonal [1]. Let f (fij)i,j=1 and (f )i.j=1

this notation we have the following definition duc to Bloom [1].

be 1ts inverse, with

3.20 Definition. An almost everywhere invertible matrix-valued function f is

said to be nearly dic:onal, if

i . .
Ilfllf lllm,‘ o, 1= l,_,...,&{-

It is easy to sce that cvery diagonal density f is nearly diagonal,
but the converse is not truc. The next lemma provides a large class of nearly

diagonal matrices which are not necessarily diagonal.

-

3.21 Lemma. If f satisfies (3.18), then f is nearly diagonal.

The following important theorem provides a necessary and sufficicnt

condition for a g-variate WSSP {Xn} with a nearly diagonal density to have the

property [ (X)<1,

-

5.22 Theorem, let {Xn} be a q-variate purely nondeterministic tull rank WSSP

with a nearly diagonal spectral density matrix f. Then r(X)<1, if and onlv

if tor cvery i, 1< i <aq. fﬁ satisfics (3.16).

Proot. 1t is immediate from Propositions 4.2, 4.5 |1].




4, AUTOREGRESSIVE REPRESENTATION OF WSSP's.

In this section we establish the cquivalence of the autoregressive repre-
sentation of a WSSP {Xn} and that of its linear least
squares predictor based on the past. As a consequence of this we obtain a
spectral necessary and sufficient condition for the latter. This spectral
characterization is used to provide morc concrcte and sufficient conditions, in

~

terms of f, for the autoregressive representation of Xn+v'

We have from the moving average representation (1.1} of {Xn}, and that

{En} is its nonnormalized innovation process:

n
[o2]
[op}

(4.1 (&m,en) for integers m,n,

4.2 (Xm,en)

"
o)
3
A
=]

For the time being wc assume that {Xn} has a mean-convergent autoregressive
representation as in (1.5) for a sequence {Ak}. First we attempt to cxpress
these Ak’s in terms of the Ck's in (1.1). We do this 1in order to show in a
natural way the importance of the rank of G in this determination. Howecver, as
we shall sce this time domain procedure does not provide a satisfactory solution
to our problem when {\n} is not of full rank. Therefore, when an} is of
degenerate rank we appeal to a spectral domain argument and resolve the problem

of determining the A 's in its full generality,

k

From (4.1) and (1.2) for any { > 0 and any integer n, we have

¢
SoGE (6 e = Y AN e o)=Y AN e ),
0, n’ n-¢ Loo k*"n-k’ n-¢ LZ0 k' n-k’ n-{
which comhined with
) . ; RN
(N i) = G 6 k20,

AR et Snglh el SEE




£
(4.3) Z AC, G = GO,K , for all £ > 0,

k=0 K7€-k
or equivalently (since C0 = 1),
Aob =G,
(4.4) ﬁ ¢ 2-1
) AC, G=0 (orAG=-) AC, .G, £>o0,
K20 Kk L-k k=0 k€-k
This shows the relationship among the matrices A 's, C 's and G, when

k k

{Xn; has a mean-convergent autoregressive representation. In particular, it

follows that when G is not of full rank, then A_,A can not (necessarily)

0Py

be found uniquely in terms of Ck's.

To reveal more fully the role of G in determining the A 's, we need to

k
introduce some notation. Corresponding to the moving average representation (1.1)

of ’Xn} we consider the matrix-valued function Q on (-7,7] given by

oo .
(4.5) Q) = ¥ ckelkx ,

k=0
it is known [7, Theorem 13.3] that for almost every ) in [-7,7] this matrix function
% is invertible and that the spectral density matrix f(2), then admits the

factorization

. “oy /2 d72
(1.0) £ = QEOGRED* = 2MNG T L0960,

1/2

where = G is referred to as the generating function of the WSSP {X }.
n

N
Let the matrix-valued function ¥(3) denote the isomorph of FU in L°(),

then it tollows from (1.5) that
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S ikA
4.7) ¥ = ] Aeth
k=0Ak

In light of (4.3) or (4.4) it is easy to check that the functions Q,¢ and

¥ satisfv the equation

(4.8) Y¢/6=¥Q6 =G.
This shows that when G is not of full rank then one may not be able to express Y,

the isomorph of ¢ ,in terms of ¢ or . However, when the process {Xn} is of full

0

rank or when G is invertible then from (4.4) and (4.8) one obtains explicit

formulas expressing Ak's in terms of the C, 's and what is more important or

k
even surprising is that from (4.8) we get ¥ = /G ¢_1 = Q_l.

The previous time domain argument along with the assumption of cxistence
of mean-convergent autoregressive representations of {Xn} was used to show the
shortcoming of the commonly used time domain approach in handling problems
related to degenerate rank WSSP's.

Next, we use a spectral domain argument to show that for any purely
nondeterministic WSSP, ¥, the isomorph of 60 in Lz(f) is given by ¥ = Q_l.

Let ¥ denote the isomorph of € then we have from (1.1) and the Kolmogovov's

0’

isomorphism that

Ie-an - (C-lnk . Cle-l(n-l)k R WO = c-ln) QY (L),
or “v= [I. But, since 2 is invertible a.e., it follows thut
(4.9 ¥YQ = [ = QY.

thus we have

1,10 Lemma. Let {Xn} be a purcly nondcterministic g-variate WSSP with the

,
spectral factorization (4.6). Then the isomorph of o in 1.7(f) is given by




vv‘-:v'v- "
(I L e e 0,

Ul 0 Mg gt i Mt S it A it A iave Jine

e_lnAQ-l(k).

Another important consequence of (4.9) is the following set of identitics

which are crucial in the proof of Theorem 4.12.

(
(4.11) {

!
L

>

=1

. 0 =
£ L
TAC, = 1Cp A =0, £>0.
k=0 k=0

In the next theorem we establish the equivalence of the mean-convergent
autorcgressive representations of {Xn} and that of its linear least squares
predictor §n+v’ v > 1. We note that the method of proof of this theorem is
similar to that used by Bloomfield [2, Theorem 1]. But his method does not
generalize to the case of %-variate degenerate rank WSSP's, because from (4.4)

one can not conclude that I Cg

Ak = 0, for £ > 0, a fact which plays a crucial
k=0

k

role in the proof of the theorem, cf. (4.15).

4.12 Theorem, Let {Xn} be a q-variate purely nondeterministic (not necessarily
full rank) WSSP with a one-sided moving average representation as in (1.1).

Then the following are equivalent:

a) JXn} has a mean-convergent autoregressive representation.

b) For v > 1, we have

o0
YE X .,
n+v k=0 vk n-k

\Y
, : . _ - n . e Series Lol
where ka Z Cv-jAj+k’ h 0,1,2,..., and the infinite series defining

Xn*” is convergent in the square mean.
u

.
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Proof. (b) => (a) is trivial in view of (1.3).

Te anow that (a) —> (b), from (1.3) we get

~ v-1 \¥
(4.13) xn+v - Rn+v i kZo Ck€n*V'k =j§1CV-j€n+j'
Now rom (a) or (1.5) we have
) e 1 e .OF I
Y C o€ =) C . / c .{)ANX + YAX .}
R B T I B E It A =R AL B A
TN Fe
=Y C .7 AX + ) C
i=1 VK=o MM IR g Vi) g JtK ok
x5 o
=5 C A, ) + (Y cC. .A, ) .
k=1 jok VoI UKD Tk ooy T2y VeIt ek
Alsz, From (4.11) we ‘et
v vik Cotg = 1o v =k,
(4.15) YC A= C, . =
j=k -ij-k so0 Y k-s''s
0 , V>Kk

~ o v
Ynew T Xnev T Ay *RZO (jzl LV-J j+k) n-k’
or
~ <]
Xowy = kZO e Yook Q.r.D.
It 1= shown in lLemma 4,10 that the function o-lnxu-l(k) is the isomorph of

A

. in L7(t). Thus, it follows from the isomorphism between the time and
spectral domains that {Xn} has a mean-convergent autoregressive representation

in H(X), it and only if the Fourier scries of n'l converges to Q-l in the norm

.
.....




of L2(f). This observation combined with Theorem 4.12 gives the following
important characterization of processes {Xn} which admit mean-convergent

autoregressive representation.

4.16 Corollary. Let {Xn} be as in Theorem 4.12., Then the following arc

equivalent:

a) {xn} has a mean-convergent autoregressive representation.

~

p .
ii b) For v > 1, X has a mean-convergent autorcgressive representation.

n+v

¢) The Yourier series of Q'l converges to Q-l in the norm of Lz(f).

4.17 Remark. It should be noted that for any density f with factori:zation
as in (4.6), Q—lst(f). However it i1s not necessarily true that Q~ICL;yq.
Thus, one may not be able to define the Fourier coefficients (and series) of
the function Q'l. One possible way of circumventing such difficulties is to
work with the Taylor coefficients (and series) of Q_l. This is possible since
" "(z2), |z} < 1, is an analytic function and therefore has a Tavlor cxpansion.
In this paper, however, we do not pursue this approach. Instead, by using
some of the results of Section 3 we impose appropriate restrictions on f so

that difficulties of the above typec can not occur, as the following theorem

shows,
1.18 Thecorem. Let {Xn} be as in Theorem 4.12 with o(X)<l. Then,

a) fxnl has a mean-convergent autoregressive representation,

b) For v > 1, N\ has a meuan-converpent autoregressive representation.,

n+v

Proof of this theorem is immediate trom Theorem 3.8, Note that, since {Xn}

forms a gencralized Schauder basis for H(X) the autoregressive representation

-~

of {X } or X
n 1

. is also unique (in the sense of Definition 3.2(b)). An




alternative proof of Theorem 4.18 can be obtained via Corollary 4.16 and

Theorem 3.14 and observing (from (3.12)) that

I o { )
l(gl 0 Qlllﬂlzl 1 0 19
===t = U = vauruGurugLr = (=M A2 - 7-1 JL L
{00 Sl 01 9% {sz
. ¢ Voo
1171711 :
0 Vol
i

where Gl is the one-step prediction error matrix of {Yn} introduced in Scction 3.
It follows from (4.19) that the Fourier (Taylor) series of Q'l converges to
Q-l in the norm of Lz(f), if and only if the Fourier series of Qii converges
to Q;i in the norm of Lz(g).

Theorem 4.18 provides an analogue of Theorem 4.1 [14], for the dcgenerate
rank case. Next we provide an analogue of a thcorem due to Masani [0],

when {Xn} is of degenerate rank. For thc time being we assume that f satisfies

the following conditions:

o o # 1
(4.20) qxq € quq

Therefore, it tollows from (4.6) that

(4.21) ¢ =4 “Q € L .
q>q
.. W HY/20-1 2 T .
Since v = G Q2 “ Lq‘q , from the Ricsz-Fischer theorem and the boundedness
. 4 . . # H1/2,..-1
of f, we conclude that the Fouricer scries of & = G ¢ converges to
o K1/ -1 2 . . .
o= G o in the norm of L7(f). ilowever, this does not necessarily imply

. . . . | -1 . L2
that the touricer (Tavior) scrics ot § converges to D in the norm of L7 (1)

..........
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# .
(since G is not of full rank). The latter convergence is what we need to
establish the convergence of thc autoregressive representation of {Xn) or

~

Xn*v, (cf. Corollary 4.16). Thus we need an additional condition so that

(4.21) implies that
(4.22) Q" e L-

It is easy to check that if f has a constant range then (4.21) implics (4.22).

Theretore, we have proved the following

4.25 Theorem. Let {\n} be as a purcly nondeterministic WSSP with the spectral

density matrix f. If f has a constant range and satisties (4.20) then,

a) {X ! has a mean-convergent autoregressive representation.
n

b} For =~ > 1, Xn+v has a mean-convergent autoregressive representation.

let A denote the class of densities for which ¢(X)<1l, and M denote the
class of densitiecs satisfying the conditions of Thecorem 1.23. One can define
4 larger class, denoted by A @ M, which contains cither of the previous two

¢lasses:

R R (A A S N N W a1

Let {Xn} be a WSSP with density f € A ® M, then by using the method of
proof of Theorem 3.2 in [15], one can show that {Xn} or in+v has a mean-convergent
autoregressive representation. Similarly, onc can form cven larger classces
based on A @ M, for which the corresponding processes {Xn} admit mean-summable
autoregressive representations. Here, we do not discuss the details of these

ideas, as alrcady they have bheen studied in [15]. The results of the later

part of this section reveal that the problem of autorcgressive representation
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of a degenerate rank process {Xn} can be reduced to that of a full rank
process of smaller dimension, and therefore one may utilize the known results

of the latter case. These can be found in [10, 14, 15].
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Ci. Therefore,

To finish the proot of the first part we need to show that

5. Appendix; Proof of Theorem 3.6.

Throughout this Appendix An and Cn’ n=0,+1,..., stand for gxq constant
matrices.

First, suppose that there exists a positive number M such that

(5.1) llnzk AR [ iM|[n§-m AanH, for all k > £,

Let Y € H(x), then since H(x) is complete we have

Y = 1lim Y ,
n

n-—ro

with

m

n
v =7 cM™x,, n=1,2,...,
n . 1 1

1=k

n

where kn’ mn are integers. Next, we show that for each fixed i, {an)xi} is

a Cauchy sequence in H(X). For this, note that from (5.1) we have

< - (n), (n') : /
(5.2) ||ci X; - g Xilli‘“H‘n"an-

Since {Yn} is convergent and hence a Cauchy sequence in H(X), it follows from
(n)

(5.2) that {Ci

Xi} is a Cauchy scquence in H(X). Thus there cxists :i o H(X)

such that, for each integer i

ci(“)xj > 2, in 10, as o .

But since v;"’xi vosp {Xi} and . € sp {Xi}’ we have I, = C.X;, for some matrix

con. = 1im cMy,
1 1 1 1
]]-’)0’)
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(5.3) Y C.X. € H(X),
2 oo 11

and

(5.4) Y = iz-w . X,

For this let € > 0 be given, then we can choose kE > 0 such that
Il Y -Y, || <e, whenever n, n' > k_.
n n £

Now, for any integers m, i.ml, m, < me, by triangle inequality and (5.1) we have

m m

1 3
T (n), {n") .(n) (n")
D (G 7 U P IR D I (G PRSP PO N B¢
l:mo 1=m2
m m3
PT (n), (n'), (n) An').
< !;.3 e e 1T llizm (€% = €0 N < oM.
l—mo = 2
Letting n' » =, we get
llll m3
. .(n) My -“cx!l <™
(5.5) HLe™x -ex + Toe™Mxy iki).l < M,
1=m0 1=m2

whenever n > kc.

o

By choosing m, and m, large cnough so that

1

(k_+1)

C X. = 0, for all i t[ml,mz],

i i
we get trom (5.3) that

w m
1

Yoo+ 1 eN ] e,
i=m i=m, * -
0 >
n

Theretore | Z vixi}::l is a Cauchy scquence in (X)), Since Hi(X) is complete
i=-n

this proves (5.3). 1t remains to show (5.4).
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To this end, for given € > 0, it follows from (5.3) that there cxists

N_ > 0 such that, whenever m ,m, > Ne’ then

m1 m
(5.6) ll'z C.X, +‘§ cixill <e, forallm <m,m <mg.
1—m0 l-m2
Also, for n > k: we have
m, m,
c - - (n) - .
(5.7) ]]'2 e -.Z cixill
1=m 1=m

m, m,
lim ||} cl.(“)xi ) cgn')x.|!
=m

n'-® 1

1 1 1 1

< M lim Y. - Y ]! < oMe,
- n'-<x n n -
]
where the first equality holds true because an )Xi > Cixi’ for each i, and

the inequalities arc the result of (5.1) and the choice of kﬁ. Now, for n > ke’

we can choose m, and m, large enough so that in addition to (5.6) we have

1
m

)y .S ()
v _izm coUX, = D c X;

1 j= -0
1

where an)‘s not present in the original representation of Yn should be

interprcted as zero matrix. Then,

- L oell= 0L e -1 el
== 1=-00 1=-
m
DY M e 1t Y ™y - cx ]
ifim, ,m,) ] i jom. 1 i i7i
1’2 1
) CX <M+ De.

if[m ,m,]
Because the first term on the right hand side of the inequality is zero (recall

how m, and m, are chosen), the second term is less than Me by (5.7), and the

third term is less than ¢ by the choice of m, and m, in (5.5). And this

1

cstablishes (5.4).
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Finally, to show the uniqueness of a representation of Y in the sense of
Definition 3.2(b), suppose that
w0 oo
Yy =) CX. = ) C.X.
{=~00 i=
We have from (5.1) that

]
| CX, - CX [ < MY - YI| =0,

L
which implies Cixi = Cixi’ for all integers i.

To prove the other part of the theorem, assumc that 4Xn} i1s a gencralized
Schauder basis and define the space S by
@0

Y CiXiaH(X)}.

]=-x

S = {{cixi}‘

i=-o

It is clear that S is a linear space and the following defines a norm on S

m,

[HCX ool I = sup “.Z CiXi"“(X)'
m]_<__m7 l-ml

Now, by using the ideas in the first part of the proof of this theorem, onc
can show that S with the norm defined above is a Banach space. Consider the

operator T:S - H(N) defined by

+0

T(C. X, = C.X
(OGN e ) =

By using the two defining properties of a generalized Schauder basis it can
be shown that [ is a onc-to-on and onto operator. lurthcermore, T is hounded,
because

n

e . - \. M v - H ’ N % - Iy q [
rae b g = TR 8y = i T Y eX it o Ty
jz=-v n->o i=-n
. R G N T e e T e T T e
e T T R e N i

P e S N A B i T s Bk e e g S e R e i il ALy
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e, X Hg <M lig_w ¢ %y »

or equivalently

1 oo
ll.Z\ ijjll <M|] ] cilel, for all m < n, which is the same

1=n ]=-0

as (5.1). Q.LE.D.
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