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" In this report, which consisis of two parts, the problem
of radar target detection in a background of non-stationary
external interference 1is considered. Thc object of the analysis
is to treat this problem from the point of view of statistical
decision theory, and to derive a signal processing algorithm
which accepts the totality of inputs on which final decision is
to be based, and performs botrh initerference suppression and
target detection. It is assumed that the radar is provided with
multiple RF input channeis and that target~free samples, from
range gates oiher than the on¢ in which a target is being sought,
can be used for the estimation of the interference statistics.

In Part T a general formulation is given and a likelihood
ratio detection rule is derived, The probabilities of detection
and false alarm »re evaluated exactly and the performance of the
test is illustrated numerically. In Part II, a more specific
interference model 1s introduced, which gives a more realistic
representation of the situations likely to be encountered in
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practice. /i1 decision rule 1is devrived which approximates
likelihcod ratio trst for this case, and approximations for the

detection «nd false alarm probabilities are found.
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PART I
(1) INTRODUCTION

This two-part study is devoted to certain aspects of the
problem of radar target detection in a background of external
interference which is non-stationary in character. Tn many
discussions of this problem, interference rejection is treated as
a distinct stage of the processing, target detection taking place
as a subsequent operation. it is the object of the present
analysis to deal with this problem in a unifjed way, leading to a
single algorithm which accepts the totality of inputs on which
final decision is to bz based, and performs both suppression of
interference and target detection,

The physical means with which a radar copes with
interference, which usually take the form of multiple RF input
channels and target-free data which can be used for the
estimation of the interference statistics, are taken as givens.
The target-free data is assumed to be provided by the samples
from range gates other than the one in which a taryet 1is being
sought. It is convenient to refer to the former as secondary
data, while the samples from the range gate being processed for
targets are called the primary data.

The analysis of Part I of this study is essentially a
generalization of that of the well-known paper(l) £ Reed,

Mallett and Brennan (RMB). These authors discuss an adaptive
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procedure for the detection of a signal of known form in the
presence of noise (interference) which is assumed to be Gaussian,
but whose covariance matrix is totally unknown., The possibility
of signal presence is accepted for the primary data, while the
secondary inputs are assumed to contain only noise, independent
of and statistically identical to the noise components of the
primary data. In the RMB procedure, the secondary inputs are used

to form an estimate of the noise covariance, from which a weight

vector is determined. This weight vector is then applied to the
primary data in the form of a standard colored noise matched
filter.

If the output of this filter were compared to a threshold,
a complete detection procedure would be obtained. However, no
predetermined threshold can be assigned to achieve a given PFa,
since the detector is supposed to cperate in an interference
environment of unknown form and intensity. Instead, in the RMB
paper an analysis is given of the signal to noise ratio (SNR) of
this filter outpur, for given values of the secondary data. This

A.}—.A P |

SNR 1s a function of the secondary data and is therefore a random

y da
variable. The probabhility density function (PDF) of this SNR is
deduced, which has the remarkable property of being independent
of the actual noise covariance matrix; it is a function only of
the dimensional parameters of the problem.

In the present study, the problem is reconsidered as an

exercise in hypothesis testing, and the ad hoc RMB procedure 1is
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replaced by a likelihood ratio test. Mo optimality properties are
claimed for this test, involving as it does the maximization of
two likelihood functions over a set of unknown parameters. The
form of the test is, however, reasonable, and the RMB matched
filter output appears as a portiocn of the likelihood ratio
detection statistic. This test exhibits the desirable property
that its PFA is independent of the covariance matrix (level and
structure) of the actual nolse encountered. This is a general-
ization of the familiar constant false alarm rate (CFAR) behavior
of. detectors using scalar input data, in which only the level of
the noise is unknown, In addition, it 1is shown that the effect of
signal presence depends only on the dimensional parameters of the
problem and a parameter which is the same as the SNR of a
conventional colored noise matched filter.

A brief outline of Part I of this study follows. The
detection problem is formulated in a particular radar context in
Section 2, where it is also pointed out that the actual
mathematical analysis is considerably more general in nature., The
1
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ikelihood ratic test is der
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vaed in Section 2, where it i
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compared to the RMB procedure mentioned above. In Section 4, the
general form of the test is discussed, and its basic properties,
in particular its CFAR property, are exhibited. The performance
of the test is treated in Section 5, where the probabilities of

detection and false alarm are obtained. This performance is




illustrated numerically in Section &6, which also contains a
discussion of the results. Supporting material, including an
alternate derivation of the RMB result, is provided in four
appendices.

The analysis in Part 1 is self-contained, dealing with a
single well-defined problem, A more specific (and more difficult)
version of the detection problem is addressed in Part I1I, in
which the results of Part I are freely used. The analytical
methods used here lean heavily on the techniques of the RMB paper
(which in turn is largely based on the analysis of Capon and
Goodman(2)) with the difference that the matrix transformations
required are carried out here directly on the variables of the
problem, so that much less reliance is placed on known properties

of the Wishart distribution.




(2) FORMULATION OF Tiald FROBLEM

The mathematical asetting for the formulation of this
detection problem will actually ne gquite general, but it is
introduced here first in a relatively specific way, in order to
lend conc¢reteness by way ©f example, Suppose that the antenna
system of a radar provides a number, say M, of RF signals. These
may be the outputs o©i array elements, subarrays, beamformers or
any mix of the above. The radar waveform is supposed to be a
simple burst of identical pulses, say J in number, and target
detection is to be based upon the returns from this burst.
Further processing is possible, of course, and the ‘'detections’
of the burst processor may be taken as inputs for subsequent
binary integration over a string of bursts., In any case, the
burst processor makes a decision, comparing some function of its
input data (called the detection statistic) to a threshold, and
the design of this processor is the same as if its decision were
to be the final one,.

In effect, the radar front end carries out amplification,
filtering and reduction to base band, at which point the
quadrature signals are subjected to pulse compression, the final
stage of filtering. The order in which these thinygs are carried
out is immaterial to the present model, since 1t is not addressed

to the problems of realization and channel matching, although

these are of great importance in practice. The in-phase and




quadrature output pairs are next sampled to form range gate
samples for each pulse, say, G range gates.per pulse . This
results in a total of MJG complex samples for the burst, Signal
presence 1s sought in one range gate at a time, hence the primary
data consists of the MJ samples from a single, unnamed range
gate, These samples are arranged in a column vector, z, of
dimension N =My . The secondary data consist of the outputs cf X
range gates, forming a subset of the G-1remaining ones, and
these are described by the set of vectors, z(k), (k = 1l.,.K). The
decision rule will be formulated in terms of the totality of
e input data, without the a priori assignment of different
functions to the primary and secondary inputs,

The secondary data are assumed to be free of signal
components, at least in the design of the algorithm, and any
:i selection rules applied to make this assumption more plausible
fﬁ are ignored, The primary data may contain :» signal vector,
written in the form bs, where b is an unknown complex scalar
amplitude, and s is a column vector of N components describing
the signal which is sought. The modeled variation of signal
amplitude and phase among the array inputs is included in s, as
well as pulse to pulse variations, such as those relating to a
particular target doppler velocity. The problem of unknown

doppler, or other unknown signal parameters, is mentioned briefly

below. It should be noted that the signal vector, s, can be




normalized in any convenient way, since an unknown amplitude
factor is aiready included, and we retain the freedom to assign a
norm to 8 at a later point, where it will be most advantageous to
make a specific choice,

The total noise components of the data vectors,
representing all sources of internal and external noise and
interference, are modeled as zero-mean complex Gaussian random
vectors. The noise component of the primary vector, z, is
ché acterized by the unknown covariance matrix, M, Each of the
z{k) is assumed to share this NxN covariance matrix,; and the
vectors z and the z(k) are all mutually independent. All Gaussian
vectors are assumed to have the ‘circular' property usually
associated with I and Q pairs.

The key features of this model are the Gaussian
assumption, the independence of the primary and secondary inputs,
and the assumption that these share a common covariance matrix.
The structure of the N-vectors, in particular the doubly indexed
model used to describe multiple pulses and multiple array
outputs, is not used in the following. One may equally well think
of J as being to unity, in which case the analycis corresponds to
a situation in which detection is based on the returns from a

single pulse.




; {(3) THE LIKELIHOOD RATIO TEST
é Consider a single input vector from the secondary data
5 set, say z(k)., If the covariance matrix of this vector is M:
M = Ef z(k) z(k)t §,
E then the N-dimensional Gaussian PDF of this complex random vector
will be -
__ 1 a=z(k) M z(k)
EOT= '

E In the notation used here the double bars signify the determinant
z' of a matrix, and the superscript dagger symbolizes the conjugate
; transpose of a vector., Each of the secondary data vectors has
; this same PDF, and under the 'noise~alnne' hypothesis, the
;; primary vector does so as well, hence the joint PDF of all the
3 input data is the product:
'[" folz,2(1),...2(K)] = [z] 11_11 flz(k)] .
-

If v is any N-vector, we can write the following irner

L RO R AN . AP

product in the form of a matrix trace (Tr):

vl = r'v)
where VvV is the open product matrix
vV =yt
When this equivalence is applied to all the factors of the
joint PD¥, it will be seen that the latter may be written in the

convenient form

-,Ivvv-rw )
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-1 K+1
folz2(1)uwz(K)] = im o Tr(M T°)§

where
K t
o=y (221 2 20 209 ).
K+1 =1

Under the 'signal-plus-noise' hypothesis, the z(k) have
the same PDF as before, and the PDF of the primary vector is
obtained by replacing z by

z—-€Ejz} =z—-bs.

The resultiing joint PDF of the inputs is then

-1 K41
f,[z,z(1),...2(K)] = g,m o— Tr(M T1)§

where now

K
T, =L ( (s-b)abe)! + 3 2 2()' ) .

T K+ =

In the likelihood ratio testing procedure, the PDF of the
inputs is maximized over all unkrown paramcters, separately for
ecach of the two hypotheses. The ratio of thesc maxima is
the detection statistic, and the hypothesis whose PDF is in the
numerator is accepted as true if it exceeds some preassigned
threshold., The maximizing parameter values are, by definition,
the maximum likclihood (ML) estimators of these paramcters, hence
the maximized PLE's are obtaired by replacing the unknown

parameters by their ML cstimators.
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We begin with the noise-~alone hypothesis, maximizing over
the unknown covariance matrix, M, Of all pecsitive definite M
matrices, the one which maximizes the expression inside the curly
brackets of this PDF is simply Tg. This is equivalent to the
statement that the ML estimator of a covariance matrix is equal
to the sample covariance matrix, which is well known(3), When
this estimator is substituted in the PDF, the trace which appears
there becomes the trace of the NxN unit matrix, which is just N,

and we find

1 K41
et (et )
w0\ (em) | To |

The same proceﬁure, applied to the signal-plus-noisc U

hypothesis yields the formula

gt = ()

and it remains to maximize this expression over the complex
unknown signal amplitude, b. Since b appears only in this PDF, we
can form a likelihood ratio, L(b), at this point and subsequently
maximize it over b, It is more convenient to work with the
(¥+1)st root of this ratio, and we put

L(b) = BN

Obvicusly,

Tl
©= T

1-10




. and the final likelihood ratio test takes the form

Max ¢(b) =1 Tall > .
) MLn T,

The threshold parameter on the right will evidently be greater
*han unity, since the denominator on the left equals the
numerator for the cheoice b = 0, and we are maximizing over b,

To proceed, we define the matrix
K
3= Z z(k) z(k)'!
k=1

which involves only the secondary data, This macrix is K times

the sample covariance matrix of these data, and it satisfies the

IR YT T P R YRR T Ty Wi v

well-known Wisharct distribution, The only property of this

s

i e

distribution that we need here is the fact that for K > N, a

condition we now impose, the matrix 5 is non-~singular with

et

probability one. S is, of course, positive definite;, and hence
Hermitian, We use a lemma proved in Appendix B to evaluate the
i determinants of both sides of the eguation

(K+1) To=S+zz'
with the result

. [y

K+ I Tl =S (1 + z's-*z) .

Similarly, we have

(K-i-‘l)N |1, 0 =1sl (1 + (z—-bs)’S_l(z—bs)) .
How is a good time to minimize this quantity over b, and we

do this by completing the squarc:

1-11
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(z-bs)1S Y (u—bs) = (z157'2) + b (s'S7's) — 2 Refb (25 7's)]

stg! 2 sTs 1)
= (z1s7'2) + (s's™s) |b - E——F:_g - K(—'sfss_“%‘

The minimum is clearly attained when the positive factor
containing b is made to vanish, and the resulting likelihood

ratio is given by

L = Max {(b) = 1+ (s7e)
G T4 (sz"z)—K—sts_-z)Jz
(s's7's)

It is convenient to introduce the guantity n, defined by

_le'st)P
K (s?Smls)[l +-(z'S_lz)]

so that
t':-:l
l."'l]
Then the test
is equivalent to the test

>DMNg=—"7""-
7 0 ‘
We note that ng lies between the values zero and one.
1f the target model is ¢generalized, so that the signal

vector still contains one or more unknown parameters (such as

target doppler), the likelihood ratio obtained above must next be

maximized over these parameters. 1t is clear that this is




equivalent to maximising n itself over the remaining target
parameters, This maximization generally cannot be carried out
explicitly, and tlie standard technique is to approximate it by
evaluating the test statistic, in this case n, for a discrete set
of target parameters, forming a 'filter bank', and declaring
target presence if any filter output exceeds the threshold. Our
purpose in discussing this here is only to show how our test can
be generalized in this straightforward way, but from now on we
ignore any additional target parameters, which is equivalent to
concentrating on the performance of a single member of the filter
bank.
For comparison with the RMB procedure, we introduce &, the
ML estimator of the noise covariance, based on the secondary data
alone. We have already noted that this estimator is equal to
Mm=ls.
The likelihood ratio test can then be written in the form
I(s"M~"2))?
(s'g'ls) 1+ :z(z'g—lz)]

>Kng .

We notc that the secondary inputs enter this test only through

the sample covariance matrix, M, and also that

(stM~'z) = (w'z)

where w is the RMB weight vector
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The RMB test itself is just

[(w z)|® > threshold,
which has the form of the colored noise matched filter test, with
ﬁ replacing the usual known covariance matrix of the noise.

The presence ©of the signal-dependent factor in the
denominator of the expression fcor n causes this detection
statistic to be unchanged if the signal vector is altered by a
scalar factor. Since the normalization of this vector has been
left arbitrary, this invariance is highly desirable, In effect,
this factor in the denominator is normalizing s for us,

in terms

of the estimated noise covariance. The entire detection statistic

is also invariant to a common change of scale of all the input

data vectors, a minimal CFAR reguirement. Further properties of n

will be developed in the following section,

In the limit of very large K, one expects the estimator,
ﬁ, to converge to the true covarianbe matrix, M, at least in
probability. Moreover, it can be shown that the quantity

(z'M1z)

an inner product utilizing the actual covariance matrix instead
of its cstimator, obeys the chi-sguared distribution, with 2N
degrees of freedom, and hence this term, when divided by K,
copverges to zero in probability, as K grows without bound. In

this sense the likelihood ratio test passes over into the




conventional colored noise matched filter test, as the number of

sample vectors in the secondary data set becomes very large.

TEY
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(4) PROPERTIES OF THE LIKELIHOOD RATIO TEST

The likelihood ratio test will be discussed in terms of

th vandom variable n, the decision statistic eventually obtained
in .3 preceding section. The definition of n, as well as that of
the matrix S on which it depends, are reproduced here for

colt vijiences
_ (s's™'z)?
(s's7!s) [1 + (z's7'2)]

K
S = k) z(k)' .
2;4)2()

The random variable n is, of course, a function of both the
primary and secondary data, and as a preliminary to discussing
its actual PDF, some useful properties are first derived. We
begin with the noise-alone case, and assume that the actual noise
covariance matrix is M,

The matrix M is positive definite, and hence a positive
definite square root matrix can be defined. Since M can be
diagonalized by a unitary transformation, it can be represented
in the form

M=uaut

where the columns of the unitary matrix, U, are eigenvectors of

M, and A is diagonal. The diagonal elements of A, say A(n),
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(n=1,..N), are the real, positive eigenvalues of M, In case of
degeneracy of an eigenvalue, the corresponding eigenvectors are
assumed to have been orthogonalized. The square root may be
defined by the representation
M =uadyt

where Al/2 is diagonal, with diagonal elements [A(n) ]1/2,
M~1/2 js similarly defined in terms of A~1/2, and it is
easily seen to be the inverse of Ml/2, Unigqueness of the square
roots is not necessary for our purpose, only their existence and
positive definite (hence also Hermitian) character.

Now consider the vector

7= M—Lz s
and the similarly transformed secondaries
OELELOF
The new vectors are zero-mean Gaussian variables, but with
covariance matrix equal to Iy, the NxN identity matrix. This
follows directly from the definitions:
ept=meptiwt=wbuwi=g,,

with identical reasoning for the transformed secondaries. The
linear transformation introduced here is, of course, a whitening
transformation,

We note that the scalar, n, depends on the data and signal

vectors only through inner products, By inverting the whitening

transformation we may evaluate, for example, the product




(2's72) = (' mds b 5) = (r‘ (vBsu byt 7) '
We define the new matrix
PRVE PYVE

and substitute for S, finding
K K
2= Y W h200 200" = 3 00 2007
k=1 k=1

Therefore, the new S-matrix is K times the sample covariance
matrix of the whitened secondaries, and the random variable
5= (2'57'2)= ("¢ ™)
is seen to be independent cf M, being expressible as a function
of K+1 independent Gaussian vectors, each of dimension N, and
each sharing the covariance matrix, Iy. The PDF of I, like thac
of the RMB signal-to-noise ratio, is therefore a universal
function of the dimensional parameters, N and K, alone.
The other inner products in the decision statistic

are handled in an analogous manner; thus

(s's7'2) = (M4 ™1y) = (9 ™)
where t stands for the whitened signal vector

t= M"é s.

At this point we make the deferred definition of signal

normalization, by taking t to be a unit vector:

(¢te)y=(s"M's) s 1,

This choice gives specific meaning to the signal amplitude
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parameter, b, whose square is now a proper signal-to-noise ratio,

for which we introduce the symbol a:

asp®= (Eiz;* ME{z )

When the obviocus substitutions are made in the final inner
product, we obtain

__ leemar
e+ Gyl

The dependence on M is now confined to t, and it will be shown
below that even this dependence on the true covariance matrix is
illusory. When a signal is present, z is replaced by

z=bs+n
where n has all the properties attributed to z in the noise-alone
cage. In this situation, the whitened data vector is

7=M—£z=bt+v

where

vEM“%n,
which is statistically identical to the whitened data vector in
the noise—-alone case. We have therefore found that when signal is
present, the PDF of n depends on M only through b and t, and the

dependence on the unit vector, t, is again only apparent, as we

now proceed to show. *
Suppose the whitening transformation is followed by a

unitary one, in which the whitened vectors are expressed as the

I-19




products of a unitavy matrix and a new set of random vectors,

These new random vectorg are statistically indistinguishable from

their predecessors, and it would only be confusing to introduce a
new notation for them. Tracing this transformation through the
inner products, Wwe find that only the normalized signal vector is
changed: t 1is :-eplaced by
L=aUd :

where Uj is the unitary matrix characterizing this last
transformation. Any unit vector in the complex HN-space can be
realized, as t3j, by such a transformation. In particular, we
can cause t] to be a 'coordinate vector', for which a single
element is unity, the remaining (N-1) elements vanishing. It is
for this reason that the PDF of n depends on M only through the
meaning of the signal amplitude parameter, b. In fact, this PDF
can depend only on b, N and K, and hence the false alarm
probability of the likelihood ratio detector, namely

PFA = Probin > n,i,

is independent of M, and this is the generalized CFAR property

claimed in section 1,
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(5) PROBABILITY DISTRIBUTION OF THE TEST STATISTIC

We now take advantage of our freedom to make a unitary
transformation, and choose for t) a vector whose first element
is unity, all others being zero., This can be accomplished by
choosing for U} a matrix whose first row is the conjugate
transpose of t, and whose other rows are the conjugates of unit
vectors orthogonal to t. Understanding that this choice has been
made, we drop the subscript on t, so that n is still given by the
formula of the preceding section,

This form for t makes it expedient to decompose all
vectors intoc two components, an A-component consisting of the

first element only, and a B-component consisting of the rest of

[

where the A-component is a scalar and the B-component is an

the vector, Thus we write

(N-1)=-vector. In this notation, the signal vector is just

_1]
Lol”’

the zero being (N-1) dimensional. Matrices are decomposed in

i =

analogous fashion, and we write
3;=l:33A 3& ]
3;A'ﬂm

Note that the AA-eclement is a scalar, the BA-element is an (N-1)




dimensional column vector, and so on., We also give a name to the

inverse of this matrix, decomposing it as well:

'?AA ?AD] .

gl=p= [
yBA ?BB

With this notation we have, simply,

=P =7, ,

while
PP 7s
tT‘Y—ly):[lO][ AA AB][ :|
( SDBA ?aa ¥d:]

=S Pt t Pty -

It is important to keep in mind that we now have a four-fold
decomposition of the total input data set into primary and
secondary vectors, cach of which is divided into A~ and
B-components,

According to the Froﬁenius relations for partitioned
matrices, .

P = (b‘m\ - .f“‘f“—ld") o,
which is a scalar, and also
P = "‘Yn—l‘fn’)u .

Since the NxN sample covariance matrix and its inverse are

Hermitian, we ohtain




: -1
PR I,At = =® i

and therefore
(fo7'y) = Falen - 3»'7“_1?-) .
The final inner product is e¢xpanded as follows:
(7"‘,_17) = ’AJ?'A'E + 2 RO{?A.”“?J + (?l"HVI) ’

where we have applied the identity

@ = ¢'o*
to the (N-1) dimensional inner product

’IT’;A .

Next, we complete the square in this last expression, writing

- -1 2
(7"Y 17) =200+ %, Tty

+ ht(”g = ’AA-I’UA’Ag)h ’

and by using a Frobenius relation in reversc we see that
-1 g 1
Fa =T PP -
Finally, combining these rezults, we find
-1 -1 1 -1
Y70 = 20100~ Yanm htg + (20 % 1) -

When these evaluations are substituted into our expression

for n, the result can he expressed in the apparcently simple form:
.—.'—----—-X-w—--- .
N 14 X4 %,

We have introduced here the notation

Ly = (Tﬁ"yn—lh) :

which will be retained, and the temporary notaticn




42 ¥
=200 = T nl - o
) Note that 7p is just like the quantity ? defined earlier,

except that the dimensionality of the vectors involved is now

N-1, The last form of the decigion test, namely

| N> M
is evidently equivalent to ﬂ
. X > 2 (L4 ).
i We shall leave the test in this form for a time, while we examine g
the statistical properties of the guantities which enter into
it,
{ A previous evaluation for the leading factor in X can be g
used to obtain the following form: .
X = lb___""g\f‘f:_e _’1 ‘gf '
] Yan T VapYer Ve

We make use of the definitions to express the denominator as a

sums

| ¢
JAA - ‘f/AH‘ym‘l‘ygA = 2_: <’,A(k) - “fAn‘st_li'n(k)> ?'A(k)‘ .
k=1

This in the same ag the sum of syguarces

) K
\ . ., =1 [
2,4 [2,(K) = L20n 7" -3
=1
because the terms supplicd to complete this square add up to !f
5 LTS
»

~ Ty




K

2:‘,1(&(“) - -ﬂ.%{‘h(k)) ( A..ff.._’?g(k))'

K K
= ;lh(k)h(k)?‘fn_iyn - 3“3“‘1 kZﬁ-,,(k)h(k)‘ 335_1:{“

-1 -1 g —1 -
= ¥y top Tar — TaeTon FosTen Jar =0

The evaluation of the sums here follows from the definitions of
the partitioned matrix elements, We introduce the notation

y(k) = 7,(K) = e 1alK)

for the terms of the sum, and the analogcous notation
-1
YEh—Iadn b
for the guantity appcaring in the numerator of X, so that the

likelihood ratio test can be written in the more explicit fornir

X= lle > "70
TS g 1T
k=1

L+ %) .

We proceed by fixing the B-vectors temporarily, and
consider the probability densities of all guantitices entcering
into the decision statistic to be conditioned on these values.
The conditional probabilities of detection and falsc alarm will
be evaluated first, and the condition will then be removed by
taking crxpectation values over the jnint PDF of the B-vzctors,

With the B-vectors fixed, only the K41 scalar A-components arc

random, and we show now, under Lhis condition, that y and the




Y ) A AL

y(k) &re Gaussian variables, that y is uncorrelated with the
y(k), and that the latter have a covariance matrix with simple
properties,

Using the definitions of the y's and of the AR matrix
element which enters there, we can express thase quantities in

the form

K
Y= 2 ?A(k)fn(k)t'ygg—ifg

and

K
y(k) = ,(k) - ?—“1 22027 1K)

This represents the y's as linecar combinations of the

A-components, and hence proves their conditional Gaussian

character., Moreover, the v(k) have zero mean in all cases, while
the conditional mean, written Ep, of y in the gencral case is
Egy =Ez,=b .
as a result of our choice of signal vector.
The linzar dependence of the y's on the M-components is
best cxpressea in terms of the quantitics
K)o,
q(k) = 2,() Fea " #s
and
Q(ik) = 7, ()7~ 2, ()
. tn o Pp ’

which are constants under the conditioning. Obviously,

K
P ;?31 #4(k) gk)




and
K
y(K) = 2,() = 3 2.0 QLK) ,
k=1
The g(k) may be considered as the components of a K-vector, g,
and the Q(i,k) as the elements of a KxK matrix, Q. The desired

properties of the y's flow from the following facts about this

new vector and matrix:

Qq=gq
and
*=q .
To prove the first of these, we write it out in component
form:
K K
Ly S _ ty -t

The sum over i regenerates the BB matrix element:

K
?_:1 nr0Ot =9, .

(as happened when the denominator of X was expresed as a sum of
squares), and the result follows immediately. The idempotent
character of Q is proved in the same way. We also note that O is
Hermitian, and that its trace is N-1:
K
Tr(Q) = 2: ()% 7a(K)

K

= Tr(:f.."1 E 7.(k)7.(k)7>
k=1

=Tr(l) =N-1.
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Note that we are dealing with the trace of a K¥X matrix on the
left side here, and of {(N-1)x(N-l) matrices on the right., All of
these results will be required in the following.

The fact that y and the y(k) are conditionally
uncorrelated now follows easily from the independence of the

A-components themselves:

K
Eyy(k) = —E, (1;1 q(i)h(i)n(k)'>

/

K K . *
+Ey (?::1 a(Dz,(1) 2—_;1 7.(n) Q(n.k) \

K
= - q(k) + Y{,_:‘ q(Nak,i) =0 .

Next, consider the conditional variance of y:

Substituting for the g(k), we have

K K
;1 la(k)® = kZ_1 o Fes 25 ()75 (K) T 74

-1 _
= hf.y" 7= Ly o

3 and hence
Ely-bf =1+1%, .

This last result is responsible for a significant simplification

of the statistics of the likelihood ratio test.,




Finally, we compute the conditional covariance of the
y(k)., We use the ncoctation 6(i,k) for the elements of the unit

matrix, so that y(k) can be written

K
y(k) = ; 7,00 [601k) - Q(LK)]

Using the independence of the A~variables again, we obtain

K
Ey(k)y(n) = 3 [6(Lk) ~ Q(Lk)] [6(Ln) ~ ()]
1=

K
= 8(k.n) - Q(nk) — Q) + 3 aLk)Q(nY .
. =

Since Q is Hermitian and idempotent, we find the simple result

Ey(k) y(m)" = 6(nk) = Q(nik) .
The likelihood ratio test is now rearranged slightly to

read

lyf? Mo
e S ;ly(k)l

In view of fact that the conditional variance of y equals the
denominator on the left, it makes sense to define a normalized
variable

Conditioned on the B-vectors, w is Gaussian and independent of
the y(k). It has a conditional variance of unity, and a

conditional mean value:
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b
w = .
b (1+5,)7*
In the noise-alone case, the conditioning has no effect on the
PDF of w. The sum over k is also given a name:

K
T=Y y(kf .
k=t

and the test is now written
F’ WE > (g~ 1T .
- where the original threshold constant has bheen reintroduced. In

fact, it is easily verified that our original likelihood ratio is

given by
Iw*

l=14+—,
T
We now turn to the properties of T. Given the B-vectors,
the joint PDF of the y(k) is zero-mean Gaussian with covarince
matrix J:
J(ik) = 6(1k) - alkl) .
The conditional characteristic function of T is therefore
IAT a—1
o,(A)=Efe =1 -1\ .
Since Q 1is idempotent, its eigenvalues are either zero or
one, and from the value of its trace we see that 0 must have
exactly N-1 unit eigenvectors. 1t follows that J has K+1-N unit
eigenvectors, the others being zero, and thus
By(\) = (L~ 1n)"KH1-N)

This is the characteristic function of a chi-squared random
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variable, and the PDF of T is simply

K~-N

f.(T) = _(?—?—)l (]

-~T

It is remarkable that the statistical properties of T are
independent of the actual values of the conditioning B-vectors,
and we can consequently drop the subscript on its PDF. Moreover,
T is statistically equivalent to the sum of the squares of K+1-N
independent, complex Gaussian variables, each of which has zero
mean and unit variance, If we let w(k), (k=1,.,K+1-N), be such a

set, then T is statistically indistinguishable from the sum

K+1-N

2} lw(i

=1
The properties of the likelihood ratio test are therefore
identical to the properties of the simple test
K+1-HN
Wl > (45~ 1) 1 Iw@)f
where the w(k) are now also taken to be independent of w, Tae
probability of the truth of this ineqguality is still conditioned
on the B-vectors, but this conditioning appears only through the
quantity 7p, which is contained in the conditional mcan of w,
This eguivalent decision rule represents the behavior of a

simple scalar CFAR test, in which the power in one complex sample

(a single radar hit), beinyg tested for signal presence, is

comparcd to a threshold proportional to the sum of the powers of




K+1—-N samples of noise. This problem is quite familiar, and the
test just described is also a likelihood ratio test in the
corresponding situation. The performance of the scalar CFAR

detector is very simple, and in particular, its PFA is just

( 1)K+|-N
4 :

In this case, when the signal amplitude is zero, the conditioning
B-vectors do not appear at all, and hence this simple formula
gives the PFA for our original likelihood ratio test.

The probability of detection (PD) of the scalar CPFAR test
is also well known, and in our case it depends on the conditional
SNR, which is the squared magnitude of the conditional mean of
w. In terms of the colored noise matched filter SNR, a, defined

earlier, and the gquantity
1 -
1+%,
this conditional SNR is just ra. The factor r represents a loss

factor, applied to the SNR, and causcd by the necessity of
estimating the noise covariance matrix. The PD of the CFAR
detector can be expressed in a particularly convenient way as a
finite sum(4):
1 L L k ra
Pp=1 e 21(k)(‘° ~1) Gk(_‘—‘;) ,

where 1, = K+1-N. The functicn G which enters here is itself a

finite sum:




In order to complete our computat on of the PD of the
likelihood ratio test, we must take the expectation value of this
conditional PD over the joint PDF of the B-vectors. These,
however, enter the final result only through the loss factor, r,
which acts as a fluctuation model for the signal. Unlike more
familiar fluctuation models, this one is characterized by a
factor lying in the range zero to one. The present situation is
similar to that discussed in the RMB paper, except that besides a
SNR loss, our test wiil suffer a CFAR loss as well, when compared
to a colored noise matched filter test in which everything is

known concerning the noise or interference.

Although the loss factor found here depends on the primary
data, through its B-component, while the RMB ‘nss factor is a
function only of the secondary data, it turns out that the two
factors have exactly the same PDF. The procf of this interesting
result is deferred to Appendix A, in which the RMB loss factor is
also expressed in our notation, and the evaluation of the PDF's
of hoth these quantities is carried out in parallel.

The PDF shared by these loss functions is the beta
distribution:

0= 0




7; and the final expression for the PD of our test can be written
; e B - o)
: D o\ 0 )"
In this formula, the H~functions are the expected values of the

i G's:

1

H(y) = f G, (ry)t(r)dr .

0
E These integrals are elementary, although not simple, and their
; detailed evaluation is presented in Appendix C, where the result -

is also recast in a form more suitable for computation,

A Ty

v

a ‘a 'y
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(6) NUMERICAL RESULTS AND DISCUSSION

The performance of the likelihood ratio test depends only
on the dimensional integers, N and K, and the SNR parameter, a.
The latter is a function of the true signal strength and the
intensity and character of the actual noise and interference, Our
analysis deals with a very general problem, and nothing can be
said about the anticipated values of a, The ability of a system
to function effectively in interference depends principally on
the arrangements which have been made in its design to achieve a
gool colored noise matched filter SNR in its intended
environment, These arrangements will usually take the form of
diversity of RF inputs in one form or another. An additional
regquirement is the need to have inputs available from which the
actual noise¢ characteristics can be =2stimated, and this is the
aspect of the problem which has been addressed here. In
particular, for given values of PD and PFA, we can determine what
SNR is actually required to achieve those values using the
likelihood ratio detectcr, and compare that number to the SNR
which would be adeqguate to achieve identical performance if the
roise covariance matrix were known in advance. The difference is
the peralty for having te estimate the noise covariance, and we
expect that penalty to vary sharply with the number, K, of
available secondary input vectors.

This penalty has two components: one due to the CFAR

character of the decision rule and another due to the effective




SNR loss factor. The latter is expected to benave much as the Zf
results of the RMB analysis would predict, based on the
statistical properties of the loss factor alone. The CFAR loss
will decrease as the value of K increases, and it may be expected
to depend largely on that parameter, while the SNR loss effect
depends roughly on the ratio of K to N,

These expectations are borne out by the numerical
consequences of our analysis, as shown in the accompanying
figures, In Figs. 1 through 4, probability of detection is shown
as a function of a, the SNR, for three detectors (PFA is fixed at
10~6 for these curves). The detector performing best is a
matched filter with known noise covariance, and the worst is the
likelihood ratio detector which, of course, is estimating the
noise covariance. The middle curve (dashed) in these plots shows
the performance of a simple, scalar CFAR detector using L=K+1-N
noise samples, and it differs from the behavior of the likelihood
ratio detector only in that the SNR loss factor has been
ignored., This detector is included in the comparison in order to
show how much of the degradation imposed by noisec estimation is
due to each of the two contributing effects.

We note that doubling both K and N has little etfect on
the portion of the degradation due to SNR loss, while the CFAR
part is reduced, simply because K is beinyg increcased. The curves

also show the significant improvement which results from
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increasing the ratio of XK to N. When this ratio is equal to five,
the SNR loss contribution to the performance degradation is abcut
0.9 dB, in agreement with the mean value of the SNR loss as
obtained from the beta distribution, Likewise, the CFAR
contrihbutions are directly comparable with the ordinary CFAR loss
for a detector of nonfluctuating targets with no nonccherent
integration (i.e. a single radar hit),

The detector performance is characterized in a different
way in Figs. 5 through 8, which show the additional SNR required,
when estimating the noise covariance, to achieve the same PD and
PFA as a matched filter for known noise. In all these figures,
the P is specificed at 0.9, hut the results will not depend
strongly on tne chosen PD level, since the curves of PD vs SNR
arc nearly parallcl for the two detectors. Three Pra values are
represented on each plot, Thq independent variable for these
curves is the number of secondary vectors, and this variable
always covers the range 2N through ON, for four different N
valuc¢s, It can be scen that SNR loss is not strictly a fun:tion
of the¢ ratio K/N, but gencrally decrcases with increasing N, with
this ratio held constant. The louss shown 1s the total loss, duc
to the CKFAR cffect and the SHR loss factor itself,

1t was noted ecarlier that K, the number of sccondary
vectors, mugt coxceced N, the dimension of cach of the data

vectors, in order to have a non-singular sample covariance
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matrix. It is clear from the results just discussed that K must
exceed N by a significant factor if noise estimation is not to
cause a serious loss in performance. Since N is the dimension of
the total vector of data used for detection, the requirements on
the number of secondaries can become very large. In the radar
example mentioned in Section 2, N was the product of the number
of RF channels (M) and the number of pulses (J) in a coherent
processing interval, usually a large number, On the other hand,
our resultsvare equally valid for the case J=1, which represents
a situation in which detection is based on the inputs from a
single pulse. In the latter case, the RF inputs could be the
elements of an adaptive array, and N might then be a much smaller
quantity.

In the original application, the rcason that so many
secondaries are required is the generality of our formulation, in
which any interference covariance matrix is allowed., In the radar
cxample, this includes the possihility of arbitrary correlation
hetween interference inputs from pulse returns widely spaced in
time, although it is more realistic to assume independence (but
not. statistical identity) of the interference inputs accompanying
distinct pulse returns. The fact that we have allowed correlation
between separate pulse returnsz, but still assumed that the
sccondary data is independent of the primaries is somewhat

inconsistent, since the sccondaries arce Laken trom adjacent ranye
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gate samples. Instead, the present analysis should be viewed as a
formulation of the problem which does not preclude pulse to pulse
independence, but does not incorporate it as a feature of the
model,

If the problem is reformulated with pulse to pulse
independence as a specific assumption, there will be only JM2
real unknown parameters for the noise matrix instead of (MJ)?2
parameters, which could be an enormous difference. One expects
the possibility of improved performance when fewer unknown, or
nuisance, parameters are being estimated, and one would also
expect that fewer secondaries would be required. This case is the
subject of Part II of this study, where it is shown that these
expectations are indeed borne out.

Returning to the general problem addressed in the present
analysis, it should be mentioned that the likelihood ratio
decision statistic can be reformulated in a way which
significantly reduces the number of matrix inversions (or
Cholesky factorizations) required, Suppose that a set of K+1 data
vectors is specified, and one of these is singled out as a
primary vector for the likelihood ratio test, Since targets can
usually appear in any range gate output, one would next return
the selected vector to the data pool and choose another as

primary, and so on. Each stage requires the inversion of a

different NxN matrix, or K+1 inversions to test for signals in




all the vectors of the original set. It is shown in Appendix D

5' that one can form a single sample covariance matrix, using all
E K+1 vectors, then invert it (or factor it), and use this matrix
- in all the K+l tests for target presence in the individual range
I gates.
Although the reformulated test is precisely equivalent t
the original, the question naturally arises as to the effect of
E signal presence in more than one of the range gate outputs. This
' is a problem in any CFAR, and it is usually minimized by the
application of some screening procedure to keep signal-bearing
; vectors out of the set used for noise estimation. Such a
: procedure would limit the applicability of the reformulated test,
- except among the vectors which passed the screening test
ﬁ themselves. Without screening, the presence of unwanted signals
in the secondaries will degrade performance., This degradaton
could be evaluated, but the PDF of the likelihood ratio decision
i statistic would become much more complicated than it is without
unwanted signals, and this topic will not be discussed further

here,
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APPENDIX A THE PROBABILITY DENSITY FUNCTION OF THE LOSS FACTOR

The SNR loss factor derived in the text was expressed in

the form
r= i
1+,
where
_ -1
|‘?lt‘l’u h

Before discussing the PDF of Ip, from which the PDF of r
follows easily, we express the RMB loss factor, p, in our
notation., From the RMBE paper,

__I@ts)P
(s'M ) (WM W)

where M is the actual noise covariance matrix, s is the signal
vector, and ; is a weighl vector:
w=kM's .

In this last formula, ﬁ is the sample covariance matrix of
the secondary data and k is an arbitrary constant. The loss
factor itself is the ratio of the conditional SNR of the output
of a filter which uses Q as a weight, relative to the SNR of the
colored noise matched filter for known M. The cénditioning in
this case corresponds to given values of the secondary data,

Choosing k=1/K, we obtain

w=S"s ,

in terms of the S matrix used in the text, and then




- (sts™'s)?
M is) (s'sIMss)

Note that p is unaffected if s is changed by a constant factor.
We now carry out the whitening transformation, as in the
text, and normalize the signal vector as before. The result is
RGEE)s
B Gla)
C(etey)
A unitary transformation is now applied to convert the signal
vector to the final one used in the text, and the matrices aré

decomposed in the same way. This gives the simple expression

It is clear at this point that the PDF of p will be independent

of the actual covariance matrix M,

Using the Frobenius relations, we obtain

(?a)m = (9;\5)2 + P40 %,
2! -2
=(2,,) \1 + 0w .YM) ,

and therefore

where

L -2
Loy Ju o




Note that the RMB loss factor depends on the secondary data only,
both A- and B-components, while r depends on the B--components of
both primary and secondary data.

We proceed to analyze the two loss factors together, and
begin by conditioning on the B-components of the secondary data

vectors, on which both loss factors depend. Then

K
I = s\K/)?» '
» 217 (k)?’ (k)

is a constant matrix, positive definite and non-singular for all
sets of conditioning vectors (except for a set of probability
zero). We can therefore introduce the square yoot of this matrix

and define the vectors

f Y -’-/..
Hr%v9m N
and
-y Tty
sp ”n [ T3
With the conditioning, these quantities are zero-mean Gaussian
vectors; the former is a linear function of the elements of the

B-~component of the whitened primary vector, and the latter is

expressible in terms of the secondary A~components:

= “L TR CTR I

We use the subscript C to denote the present conditioning,

and compute the conditional covariance matrices of these vectors:




- - -1
Ecéy €l1 = Sy e Ee hht‘yn YA = 7 e

and
ey -t -1
Eofﬁpt =S Wy
where
K K
W=E, ;1 #s(K)7, (k) ;: ROIXOY
= :1
I K1
| = 2:1 Nt =g, .
Therefore

— ~1
Ec fp fp' - .7“ ’

B-vectors. Since

j

[ and the two f£-vectors are statistically equivalent under the

: conditioning. They therefore share the same final PDEF when the
L conditioning is removed by averaging over the secondary

|

L, = (é‘.' ¢)
and
,=(,%,) .
this proves that the loss factors themsclves are statistically
identical, and we continue with the loss tactor, rt.
F Since &y is a Gaussian (N-l)-vector, the conditional

joint PDF of its componcents is

.. .
E fg(fl) = "—":'%Ell e"“! ‘YuEn) .

The S matrix which enters here is itself subject to the Wishart

mA - I
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PDF, which in the present case (in which the sample vectors are
of dimension N~1 and the covariance matrix is equa to the

identity) takes the form

K4+1~N
Al

~Tr(A)
cN=1,K) °

fw(A) =

In thigs formula

o N
C(N,K) = o [ Tx=n)i
n=1

is the Wishart normalization factor. The volume element for this
PDF will be written d(A). It is (N-1)2 dimensional, ranging

over the diagonal elements and the real and imaginary parts of
the upper off-diaygyonals, of all positive definite matrices, A.

For our purnose, only the normalization integral of the Wishart

PDF is required, hence we need not dwell on the detfailed
propertics of this fascinating distribution,

Since £p depends on the conditioning data only through
the S matrix, its unconditioned PDF can be written

() = [~ [EERMa¥OLE

™

-

As in the text, we have replaced the exponential part of the
Gaussian PDF by a trace, this time involving the open product
matrix
LR AN
When we substitute for the Wishart PDF in the expresson

above, we encounter the integral
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This is the same as the normalization integral for another
Wishart PDF, of dimensions N-1 and K+1, and for which the
underlying sample vectors share the covariarnce matrix

Mo (L, 87,
The normalization factor for this slightly more general Wishart
PDF is just

C(N-1,K-+1) [l

_C(N-1,K+1) _ C(N-1,K+1)
[ S P (AR i

(the cvaluation of the determinant uses the same lemma utilized in

Szction:3). Combining these facts, we ontain the simple result

- 1 C(N-1,K+1) , 1 ~(K+1)
f(fl) N C(N—I.K) [1 r (f- f.)]
e K gy

I K41-N)I
The remainder of the derivation is identical to the final
few steps given in the Appendix of the RMB papcer. The norm of the
vector Ly is interpreted as the square of the radial coordinate
in a (2N-2)-dimensional Cartesian space, a change to polar
coordinates is made, and the angular coordinates integrated out.
This process yields the PDF of Ly, and then a simple change of

variable provides the desired PDF of r:

f(r) =- KI RS Ml L LA
CKH1=N)I(H=2)1
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APPENDIX B. EVALUATION OF A DETERMINANT

In the main derivation in the text, and again in Appendix
A, a lemma was used which may be stated as follows:

A + ab®|| = |Al(1 + bTA™ @)
where A is assumed to be nonsingular. Because of this assumption,
we can write
a=Ac
and factor ocut the matrix A, and hence its determinant. It
remains to bhe shown that
1, + cb|l =1 + b'e

where In is the NxN identity matrix. The desired evaluation
then follows by elimination of c.

The above rosult is proved by induction; and it is obvious

o

for N=2, In general, the matrix

MEIN*‘Gb?

is decomposed as follows

M= [ My VtJ
“lwtL

where the first row and column have been singled out. In terms of

the (N-1)-vectors
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b= }?“]
- b“
o we can write
. —
w=bc
—— o
V bkl Clb
and
— Rt
L=1,,+¢cb
Using the Frobenius relations again, we have
-1
P, IMll = My, L - wMy, VT”
. Of course,
Ml,l =1+ clbl.
and we also have
t = 6. b’3E
wy' = ¢ b, ob!
Therefore
b.
- C ——a
L—wM;, vt = Lt (1 —-—-vl—l—-’.'>cb1
" 11 ¢.by
., W
i R W clb:
Assuming the validity of the evaluation for the N-1 .
dimensional case, we get
)
B'c !
= w1 4—=)
. 14 ¢b
& =14 be, +B'T=14b'c
.
and thc lemma is proved.




APPENDIX C, COMPUTATION OF TUE PRORKRBILITY CF DETECTION
The probability of detection obtaiuned in the text has the
form
1 E\ L ky (9
Po=1-"% 2, (k)(lo - )'H()
0 k=1 L
where L=K+1l-N, a is the colored noise matched filter SNR and &g
is the likelihood ratio threshold parameter, The functions Hy
- are the expected values of the Gg, averayed over the PDF of r,

the likelihood ratio SNR loss factor:

1
H(y) = EG(ry) = f G (ry)(r)dr .
[V]

The Gp functions are the sums
k-1 »
Gly)=e” 2;0 L
(which are directly related to the incomplete gamma function),
and the PDIF of the loss factor is the bheta distribution
£(r) = FINL) (=) 2t

The normalizing facvor here is

_ (N+L--1)1

FNLY =1 (N=2)l °

The false alarm probability is given by the very simple

formula
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and it can be seen that PD reduces to PFA when a vanishes, since
Gk(0)=1. This implies that Hkx(0)=1, and the result then
follows from the fact that PD becomes an incomplete binomial
sum,

To obtain an explicit solution for PD, we substitute for

the Gix(y) and write

k-1
Hg(Y) = Z In(y)
n=0

where
n 1
I(y)= :—Ifl F(N,L) f e (1-r)" Pty
o
Next, a binomial ecxpansion provides the formula

n N—2 1
IL(y) = r{_l F(N,L) Z_:O (N;2>(_1)p f o™ P yr |
p= 0

The integrals which enter herc are elementary, and it
proves useful to define the functions

1

T (y) = e’ f o rMdr .
g
In terms of the T functiong, we have

- DT
o) = o7 Grn 3 (2P Trmig)

and it is casily verficd that




mi AL
Tm(Y) =—mH (°y - }_; :;i )
Y 3=0"

ml
:'--;m 0’(1 - Gm+1(Y)) .

The combination of these steps provides a formal solution
to our preblem, but the result obtained is not useful as a basis
for numerical evaluation. Especially when y is small, the direct
evaluation of the T functions for large and growing m-values
invoives the products of factors, one of which is increasingly
large while the other is inceasingly small., The alternating sum
into which the T evaluations must be substitued further stresses
the num2rical precision of the computation,

To avoid the altcrnating sum and its attendant numerical
problems, a different approach has been taken to the evaluation
of the 1 functieons. In the integral which appears in the
definition of these functions, the variable of integration is

changed from r to (l-r), and we write

)
t

n
)= Lo 3 (y)
where

1
n

3.(y) = F(N.L) J off (1—r)" 2 ar |
0

The exponential is now expanded in a power series and the

integral evaluated term by term, Each of the integrals




encountered is the normalizing integral of another beta
distribution, and is easily evaluated from the definition, The J
functions then appear as infinite series, which can be

expressed in the form

J =D T (y,k
o) ,.2;0 A(yik)

where

D . Ki{L+n)!
“ T (K+n)IL
and

_ (N=2+K (K+n)! ¥
a0k = (21 (i)l

These guantities are easily genera-ed recursively, and the
series is terminated after a total of, say, k terms. The
truncation error is then

.(y.k) =D, Y T (y.8)
s=k

=D, Z,. T, (y:k+s) .

3=V

It is not difficult to show that

e\(1) =D, Ty (k) 32 Q,k5)

where

Qn(k,s)E(N_Z'H‘:‘*S)l {Fanik)l o ksl

(N=2+K)1  (bn+kes)i (ktr)l




In our application K exceeds N, and this ensures that the O
sequence decreases with increasing values of 1, Since
Qn(k,0)=1, we see that
e,(v:k) <D, T (y.k)e" .

If a truncation error bound, ¢, is prescribed, then the series
for Jo(y) can be terminated when

D, T,(yk) <8 .
and this provides a simple algorithm for the computation of the I
functions. The sum sequence of the I's is the sequence of H
functions, required in the final finite summation for Pp, The
other coefficients needed in this sum (the first formula of this
Appendix) are easily generated by recursion. This procedure has

been used to obtain the numerical results illustrated in the

text.
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APPENDIX D, ALTERNATIVE FORMULATION OF THE DECISION RULE

At first it seems unlikely that a test will perform as
well if the primary vector, thought to contain a signal
component, is included with the secondaries in the estimation of
the noise covariance matrix. A simple CFAR example will, however,
show that this can be an entirely reasonable procedure. Suppose
that K+1 complex samples are available, denoted by z(k),
k=0,1,..K. A CFAR test for signal presence in z(0), using the
other samples for the estimation of noise level, would have the

form
2O > & (Jat)F + = + |z<.<)|=)

where the constant o is to be determined by the assigned value of
PFA. However, by simply adding

«[z(0)®
to both sides of this inequality, and then dividing through by

l+a, we find the equivalent form

RO > 2 (12O + B F + - + 2 F)

1+a

All the samples now enter into the noise level estimate,
which can be used unchanged for tests of signal presence in each
of the other samples in turn. The performance attained by this
detector, and in particular the losses caused by the presence of

unwanted targets in the samples used for noise estimation, is
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identical to that of the original form of the test. Formulas for

various kinds are present in the noise estimate, may be found in
Ref, 4,

We expect that a similar reformulation is possible in the
present problem, and begin by returning to the analysis of

Section 3, The likelihood ratic test was expressed there in the

form
LTl
Min|} T
| KA
b
where
; (K+1) Ty =S +z32!
; and
d t
(K+1) T, = S + (z—bs) (z—bs)' .
We now define
S=S+zz7'
F and notc that this matrix is K+1 times the sample covariance

matrix formed from all the input data vectors,

1 1 .
Ligarly,y W& Can CHpTO

(K+) T, = S + (z—bs) (z-bs)t - 12"

and, of course,

(K41)T,=§ .

Hext, we fector out: the new S-matrix, and write
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the performance of such a CFAR detector, when unwanted targets of
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(K+1)T, =S (1,‘ +ab + ch).

where
a =S (z—bs)
b = z—bs
c=S5"z

and
d=s-—-z

The matrix ratio is now simply

7 0
I To

nd we can again use the lemma of Appendix B in the following

= I, +abl +ed'| ,

! way. Let P be the matrix

P=1,+abl,
then

I, + ab! + cd'||=||P + cd'|

Lol e e\
=IPl{1+ (dFP™e)) .

Ry the same lemma,

1Pl =1+ (bta),

and it is casily verified that




ab!

-1
=1 - .
P N"1% (bl a)

When these evaluations are used, we obtain

:IT%% = (1+(b' q))(1+(d* c)) ~ (d'a)(pte)
= (1 N [(z—ba)*'s“-‘(z-bs)])(x - (18 z))

+ [2'§ 1 (z-bs)][(z-1s)!S 2]

After this expression is developed, it is a simple matter to

complete the square, much as was done hefore, with the result:

A s'§722) [P [s'S 2P
Fﬁ=uwb—L3—--~7rﬂn

1ol | W

where

Q= (s'g'ls)(l - (218" z)) +|(s'S2)F

The minimization over b is now trivial, and we see that the test

assumes the form

S N
Q- |(s'S*z)?

'SP
(s'S18)[1 - (1S 2))

This is the desired expression for the decision rule,

>‘0—1 .

which is very much like its predecessor, but now involves the




sample covariance formed from all the data vectors, By using the

evaluation

S =[5+ 227"

= (sﬁ (1, + 5 hzatsh ssi)"1

-&( _Shatsd )s
I TS P ’
it is not difficulr to recover the likelihood ratio test in

original form.
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PART II

(1) INTRODUCTION

In Part T of this study, a general problem of radar
detection was discussed which was characterized by the presence
of unknown non-stationary interference, The radar is assumed to
have a numper of RF channels, and target detection is based on
their outputs for a train of pulses which form a coherent
processing interval. The methods of likelihood ratio decision
theory were applied to the derivation of a detection algorithm
for this problem. Arbitrary correlation was permitted for the
interference between different pulges, as well as between
different RF channels. A decision rule was derived in closed form
and exact erpressions for the system performance were obtained,

In Part I1, the problem is reformulaced with the single
additional assumption that the interference is statistically
indepandent from pulse to pulse, The correlation properties of
the interference are still unknown, and are allowed to vary
crbitrarily from pulse to pulse, The present discussion is
largely bhased on the methods and results of Pa,t I, but the more
specific problem is rore difficult to solve, and we have not
obtained a closed form expression for the exact likelihood ratio

decision rule.
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An approximation to the likelihood ratio test statistic
has been obtained however, and this will be derived and discussed
below, Thc¢ approximation appears to be a reasonable one, and the
resulting test reduces to the exact decision rule for a single
pulse, and also to the likelihood ratio test for the analogous
multiple-pulse problem in which the noise covariance matrices are
presumed known. The form of this test itself provides
considerable insight into the detection problem.

The exact probability density function (PDF) of the

' approximate test statistic appears to be very difficult to

obtain. An approximation is developed, however, which contains
secveral of the features of the exact PDF, and expressions for the
probability of false alarm (PFA) and probability of detection
(PD) are derived for this approximation in the present report.

An essential feature of the analyses of both Part I and
the present Part II lies in the assumed existence of so~called
secondary inputs which can be used to estimate the covariance
matrices of the interference. The samples from range gates
adjacent Lo the one being examined for targets are used for this
purpose, and it is worth specifying in detail the assumptions
made in our mndel regarding them. It is assumed that all external
sources of interference are sufficiently wide-bhand in character
so that, like internal noise, samples separated in time by the

duration of a (compressed) radar pulse are independent. The key
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assumption lies in the degree of non-stationarity which is
alicwed.,

In the present model, we assume that the covariance
matrices of the total interference can be arbitrarily different
for samples separated in time by an interval as large as the
pulse repetiticn interval (PRI) of the radar. On the other hand,
the correlation properties between the RF channels are not
supposed to change so rapidly that those of successive samples
(separated by one pulse length) are widely different. The
non-stationarity of the interference is actually assumed to be
slow compared to the pulse length, but can he fast relative to
the PRI,

Samples from range gates adjacent to the one being

tested for target presence can then be assumed to be

statistically identical to the latter, as long as they are not

too large in number, while for successive pulses, the covariance

matrices shared by this set of samples can be entirely
different.

This model is admittedly somewhat contrived, but if the
interference is allowed to change arbitrarily from sample to
and

sample, then noise covariance estimation is not possible,

adaptive detection, in the sense studied here, will not be

feasible. It should he noted that the interference provided by a
group of sources with time-varying output levels does not result

in a completely arbitrary time variation of the covariance

I1-3
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matrices, and represents an intermediate case not addressed
here,

The model used in Part I assumed statistically identical
secondaries, but allowed correlation from pulse to pulse in both
primary and secondary inputs. This is not a good model of an
actual situation which might be encountered by a radar, but
should bhe viewed as a way of solving the problem in which the
pulse to pulse independence property is not explicitly employed
in the derivation of a decision rule. The results of Part I are,
however, perfectly applicable to the problem of detection using a
single pulse.

A brief summary of the following sections of this report
is given here. In Section 2, a likelihood ratio test is derived
for the simpler problem in which the interference covariance
matrices are assumed to be known, although they may vary from
pulse to pulse. This represents the limiting case of perfect
noise estimation, and the results provide useful insight intg the
problem of interest, The likelihood ratio decision rule for the
original problem is derived in Section 3, where an approximation
is introduced which is necesary to obtain a closed form for the
test., A number of properties of the approximate test are derived
in Section 4, and these tend to show the reasonableness of the
approximation made, The performance of this test is analyzed in

Section 5, where a further approximation is needed to obtain
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numerical results. The limitations of the analysis resulting from
this approximation are also discussed there, Numerical results
are included in Section 5, and a brief general summary and
discussion is presented in Section 6. Supporting analysis of the
final formula for the probability of detection and its numerical

evaluation are the subject of the Appendix.
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(2) TARGET DETECTION IN KNOWN NOM-S5TATIONARY INTERFERENCE

In the detection problem addressed in this study, a target
is sought in the samples correspond.ng to a single range gate,
while K other signal-free range gate outpu.s aie availalble as
well, If K is extremely large and if all thes- s.gnal-free
samples share the covariance matrix of the pr.mar. sa.iple, we can
use these secondary data vectors to determine en zm:curate
ecstimate of the noise covariance matrices for eact pulse. In the
limit, these estimates become the actual covariances, and the
problem reduces to the detection of a target in the primary data,
in a background of interference whose statistical properties are
completely known, The present section is devoted to the study of
this simpler problem, which is useful because it provides context
and a performance comparison for the more general problem, and
also makes a convenient vehicle for the introduction of some cf
the notation required.

The inputs to the processor are all data vectors, of
dimension M, corresponding to the M RF input channels of the
radar. ‘The sample vectors for a particular range gate (the one
being tested for signal presence) form a sequence, denoted by
zj, where j runs from 1 through J, and J is the number of
pulses in the pulse train. The sum cf internal noise and external

interference is assumed to be a zero-mean, circular Gaussian

process, and its sample vectors for the jth pulse have the




covariance matyix

Eozjz;‘=Mj .
The symbol Ep stands for expectation value on the 'noise-alone'
hypothesis and the superscript dagger represents the Hermitian
conjugate of a vector or matrix. For different pulses, the data
vectors are assumed to be independent, each pulse being
characterized by the corresponding covariance matrix, Mj. In
the present secton, all these covariance matrices are considered
tc be known.

We use the subscript 'l' to denote the ‘signal-plus-noise'’
hypothesis, and we characterize the signal component in the
following way:

Elzj=bajs
where b is an unknown, complex scalar amplitude parameter, s is
an M-vector which represents the relative signal amplitudes among
the RF inputs, and the o0j form a sequence of complex scalars
which describes the pulse-to-pulse variation in signal amplitude

and phase.
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The signal direction vector, s, is
(sts)=1,
i.e., the sum of the absolute squares of its elements is unity. No
specific normalization convention is assumed for the sequence
oy. An example of the latter would be a Doppler progression:

ijo

aj——e




where 6 is the phase change per pulse caused by target motion. It
is phyesicaily reasonable to assume that s is unchanged from pulse
to pulse, but the analilysis is easily modified to allow this
vector to be a funciion of j.

The joint probapility density function (PDF) of the data
vectors under tne noise—~alone hypothesis is

T (wl o My ZJ)>
fo(Zi,..-.L-J) - ]I'::Il ﬂ,ll ”Mju

where the doubie bar represents a determinant, There are no
unknown parametels in this PDF. Under hypothesis one, the joint
PDF is the same, except thac z is replaced by the quantity

zj — bojys in the exponent:

J . -
 (zoib) = T—rl [ 1 e—-[z,—bojs]'f M, 1 [23"b015]> .
1 } EAhaa] A i

J:Ji\r flbe

Before maximizing over 2e unknown b, we form a likelihond
ratio and take its logarithms

fl(zl,...,‘{,ﬂ_tﬁ

i(b) = log
fo(zymzg)

dJ / \
N - i -
= ; ((zjT M, ! z;) — |_:/.j~‘-bajs]t M, ! [zj-‘bcrjs])

LU

J J
LSy 2 -1 " ~
~ | Z:IIU,I (s M s) +zRe(b* 32;10;' (' ¥, 1zj)) |
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We introduce the notation
2 . ~1
Af = (st M) 9)

and

_6'¥z) M7 z)
S (stMThs) Af

Uy

and substitute in the last formula. The resilt is

J J
{(b) = ~|bf? 2: Aj2 !ajiE +2 Re(b* Z A,2 0; uj)
J”‘:l j;

T—'l
b
W 2 *
=~ Y A%lof 1 LT
PR I
]-’—‘11 ! Aj lUj} ‘
=1
) 2 *
lj=1AJ o, qu
N Rt
%ﬁAjlaﬂ

The unknown parameter, b, is now chosen to make the

quadratic term in which it appears vanish, and we have, simply

3 2
DITHEAEN
Lo M (o) = T o

Since the quantities in the denominator of this expression are
all known, the likelihood ratio test reduces to

J 2
! 21’ Aj2 aj* u; ! > constani.
| 1;1 |
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In this simple problem the likelihood ratio test is a 'uniformly

most péwerful test’, and hence

The quantities, uj, are
matched filter outputs for the
particular way. In the absence

values:

it yields an optimum detector.
recognized as colored noise
individual pulses, normalized in a

of signal they have zero mean

Eouf=0 .

but when a signal is present, we have

Elujr—'boj.

The effect of the denominator in the definition of U is to

cause these matched filters to

unaltered amplitudes.

pass the signal components with

The variance of the matched filter output is easily

computed:

1
-1 T lg) = —
Eghu = — (s"M;™ Eozyzy’ Mys) =5

R
Ay

i

and this expression gives meaning to the parameter, Aj, as the

inverse of the residual noise after the matched filter processing

({i.e. nulling) on each pulse. Another way of viewing the colored

noise matched filter processing is based on a decomposition of

each data vector into a ‘scalar component in the signal direction

and an orthogonal component, of dimension M-1. The orthogonal

component is used to predict the noise in the signal component,

and this predictor is subtracted out. The variance of the residue

after subtraction is exactly the inverse of Aj.
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Combining the means and variances just obtained, we. see
that the signal-to-noise ratio (SNR) of each matched filter
output is just-

(SNR), = bl A% lo
and this is also the SNR of the jth term in the sum on which

detection is based. If we give a name to this sum:

J
=1
then we have

Eow=20
J'\
E,w=Db Z Aj2 lcrj'g2
=1

and
J ! 2 2
2 Y, 4 2 2 __
=1 =1
The actual SNR of the likelihood ratio test is therefore the sum
of the individual SNR's:
J

]
SNR = [bf* 3 Af oy =) (SNR); .
=1 =1

This processor is simply a coherent integrator of matched i
filter outputs, in which account is taken of the varying signal
amplitudes and residual noise variances of the individual

pulses. If the signal amplitudes are constant and the total noise
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is stationary, th: processor provides a gain equal to J, the
number of pulses, relative to the SNR achieved on each pulse
after matched filtering (nulling). We will find analogues of all

these properties and parameters in the more general problem,

whose analysis begins in the next section.




(3) DERIVATION OF THE LIKELTHOOD RATIO TEST

We now return to the problem described in Section 1 and
assume that the covariance matrices, Mj, are all unknown. We
also introduce the secondary data, consisting of K vectors for
each pulse, denoted Zj(k), (k=1,..,K). These vectors have zero
mean under both hypotheses, and share the covariance matrix of
the primary yector for the corresponding pulse:

E z,(k)zy(k)" = M .

Under the noise-alone hypothesis, the joint PDF of the K+l

vectors asscociated with the jth pulse is

r ]
f A ZiZs 1\',,,,2. = §__._v_,._.._.: e} j Oj %

where
| 1 X t
= te N g, . .
This representation of the PDF exactly parallels that given in

Part I, and the corresponding expression in the signal-plus-noise

case 1s
K+1
1 —Tr(M,"' T, (b))
T s et 1
flj[zj,zj(}),...,zj(K);b] = % i UMjH e ] j
where
{ K
Ty;(b) = i ( (zj~bc7js)(zj“bc7js)T -+ 1;1Zj<1()2j(k)T ) :

The signal parameters which enter here have the same significance

as in Section 2. The joint PDF's of all the data under the two
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hypotheses have the form of products:

and

To form the likeiihood ratio test, each PDF is maximized

over the unknown parameters separately, and then a ratio is

" computed. The unknown signal parameter, b, appears only in the

'number. one' hypothesis, and we defer maximization over this
parameter until last, forming a ratio first. As in the similar
derivation in Part I, the maximization over each unknown
covariance matrix is simple; we obtain
1 K+1
Max f(,'1 = 2—--—-—-];--*--—-' E
¥, (em™ Tl

and

RN
Yy T e T, ()

With b still to be varied, the likelihood ratio, L(b), is a

§K+1

product of factors, each raised to the power (K+l). It is
convenient to work w{th the (K+1)St root of the likelihood
ratio instead, and we write

K+1

L(b) = §¢(b)}

and
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where

ooy = Mol
B o

The sample covariance matrix of the secondary vectors for

pulse j is given by the sum

K

~ 1 4
M, == z,(k)z,(k) ,
i Kg;lls !

and this quantity is also the maximum likelihood estimator of the
unknown covariance matrix for this pulse, based on the secondary

data alone. In terms of this matrix, we have
(K+1) Toy = KM, + 22

and by the determinant lemma
IA + abl] = [|Al (1 +pta™? a) .
for which a proof is given in Part I, we obtain
M My 1 }_( TE{ —1z )
(K+1)"IToqll = KT Ml {1 + 2 (2 My 72y |-
By the same reasoning we find
. My 1 o -1
(KM, (o)) = K¥ i) (1 + Llabopl R [z,—bajs])

for the signal-plus-noise case, and thus we have the ratio

1 o -

{(b) = .
i 1 o -
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In analogy to the quantities introduced in Section 2, we

make the definitions

2= (s1 ﬁ,—i s)

and

35 -1 iyt
_(s"Mz)  (sMy 2y

WEIAS Ty AE
It should be noted that these new variables involve the estimator
i of the covariance matrix, and not the unknown Mj itself., It is
also convenient to use the temporary notatiocon

=3 tﬁ -1

) With the help of these definitions we can make the

evaluation

= @2y @

~ B -~ * N 2
[zj--bajs]T Mfl[zl--bajs] = N; - 2Re{b” o, A, jg + bijo i Ay

T WY . . T

LR ~ 13 2~ 2
The likelihood ratio for the jth pulse is then given by
P 1+ LN
\ K e
%(b/;:ﬁ_ mem e R - e
s by L% R 4 LR b, -0
K O KS1HTE K i
} Next, we introduce the quantity
vl ~ NP
and c¢liminate Nj, so that
' 4 L] x A
l(b) 22 surearn e« e oo - -
. 14 2|b0 -4,
-y 1( Aylboy =y,
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The signif .cance of Ly can be seen by defining an inner

wh

product as follows:
3 1
(a,b) = (a'M,"b) .
Here, a and b are arbitrary complex M-vectors, and the
corresponding norm is
2 _ (at3r-t
lal? = ("%, a) .
This definition is possible because the sample covariance matrix
and its inverse are positive definite with probability one (so

long as K exceeds M, a condition we now impose). We can now write

1l 118

Nj—uzjl

A7 =|s)P
and 3
1’

~ S,Z

sl

i e ST

This last expression is the component of zy in the direction of

the 'unit signal vector' #

S
Islh

The portion of z3 which is orthogonal to the signal

direction (in the sense.of this new inner product) is

z (SZQ s
Zy B L g
HET e)?

and in terms of this projection we obtain the desired expression

IT-17
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2
= ||z -~ I_(.s'ﬁ?’__ = || 2““2 .

s}

Thus KEj is the norm of that portion of the data vector which
is orthogonal to the unit signal vector. This separation of a
data vector into a 'signal' component and an orthogonal
component, relative to some noise-dependént inner product, will
appear again in connection with the coherent integration of
pulses,

It will be shown in a later section that Ij is exactly
analogous to the quantity Ip of Part I, and also that the

variables

represent SNR loss factors, described statistically by the Beta

distribution.
Returning to our likelihood ratio, we divide numerator and
denominator by (1 + Ej) ard make use of the above definition to

obtain the formula

The final likelihood ratio is the product of J of these factors,

a) ~

maximized over b, and wa note that Ty, Aj and uj are
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sutticient statistics for the decision process. These scalar

parémeters are, in turn, simple functions of the norms of s and
zj, and the inner product (s,z4y), as defined above.

We cannot derive an exact likelihood ratio decision rule,
because the required maximization of the product of factors (over
b) cannot be carried out in closed form. However, we note that
the parameter K, the number of secondary data vectors, will
control the accuracy of the noise covariance estimate, and we
know that K will have to be large compared to M in order to avoid
significant SNR loss. For large K, the random variables Ej and
;j will tend toward the constants Aj and uj, as the sample
covariance matrix tends to the true noise covariance matrix. In
the same limit, the loss factors, rj, will approach unity
because of the properties of the Beta distribution to which they
are subject. Thus all the quantities in the likelihood ratio,
other than K itself, remain bounded as K increases and we will
assume that for practical values of‘K, both the numerator and
denominator of the likelihood ratio (for each pulse) take the
form of unity plus a small quantity.

Motivated by this reasoning, we make the approximation
J
Uoj =114
-

1d _ ~2ap
1+ =zYr A
zg...-__,....?{._.g_i._ iy
14—1‘% AZ2lbo, — 4
K% R0

2
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4
products of a unitary matrix and a new set of random vectors.
These new random vectors are statistically indistinguishable from
their predecessors, and it would only be confusing to intfoduce a
new nctation for them. Tracing this transformation through the
inner products, we find that only the normalized signal vector is
changed: t is replaced by
t=U ¢
where U is the unitary matrix characterizing this last
transformation. Any unit vector in the complex N-space can be
realized, as t], by such a transformation. In particular, we
can cause t] to be a 'coordinate vector', for which a single
element is unity, the remaining (N-1) elements vanishing. It is
for this reason that the PDF of n depends on M only through the
meaning of the signal amplitude parameter, b. In fact, this PDF
can depend only on b, N and X, and hence the false alarm
probability of the likelihood ratio detector, namely
PFA = Prob{n > 7n,},
is independent of M, and this is the generalized CFAR property

claimed in section 1.




1< 2~ 2
=1+ g LAl

and
lijrliza *3 R
SRt Bt B |
Y-» T
Z; j|Ul
The likelihood ratio test
t> ¢y
becomes
X>£0X"EY ’
which is equivalent to
{o~
Y:>K-—~—X
lO

or, in terms of the original variables:

52 rjAs o) uj* {1
e e e K ;i 1+
"N 0
Z;ﬁ ﬂaﬂ
j..
which is the desired form. Some of the properties of this test

are derived in the next section.
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(4) PROPERTIES OF THE APPROXIMATE LIKELIHOOD RATIO TEST
The approximate likelihood ratio (ALR) test, derived in

the previous section, has a number of properties which suggest
that it is a reasonable detection procedure, in spite of the
approximation made in its derivation. Before discussing these, it
is perhaps werthwhile to point out just what is involved in its
actual implementation. The procedure requires the estimation of a
covariance matrix for each pulse, carried out by averaging the
open (dyadic) products of the secondary data vectors. Two sets of
linear eqguations must then be solved, which we may write in the
form

Mjwj==s
and

ﬁjqj =12y .

The three inner products are then given by

(s! ﬁj"l s) = (th s)

(a8, 2 = (' 2)
and

(M7 2) = (g z)) .

The variables ry., Aj and uj are, as we have seen, defined
directly in terms of these inner products, and cnly these

variables are needed for the construction of the ALR test.

I1-22
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By faf the greatest task is the sclution of the linear
equatidns, normally carried out by means of a Cholesky
factorization technique. A nulling scheme which employs the
colored-noise matched filter method directly, and which is
designed to compute new weights for each pulse, will have to
solve the first of the above equations to find the appropriate
welght vector. After factorization of the sample covariance
matrix, it does not require much extra computation to solve the
second equation as well. The inner products are, of course,
'simple complex sums, as are the sums over j which enter into the
test itself., Therefore, the implemenﬁation of the ALR decision
rule would require only a moderate increase in computational
complexity over such a matched-filter nulling processor.

From the form of the ALR test, and the definitions of
Yy, ;j and ;j, it can be seen that the test is unaltered if
the signal vector, s, is changed by a scale factor. Thus the
detection rule is not affected by our choice of signal vector
normalization. More obviously, the test is unchanged if the
sequence 03 is multiplied by a common scale factor as well.
Finally, the test is invariant to a scaling of all the data
vectors, primary and secondary, by a common scalar factor. This
last represents a weak form of CFAR behavior. It will be shown
later that the test is not a true CFAR, in the sense that ité

probability of false alarm (PFA) is completely insensitive to the
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actual covariahce matrices of the noise on all of the pulses.
However, it will turn out that the test is approximately a true
CFAR, énd we will be able to get some idea of the nature of its
departure from4the desirable true CFAR performance.

If K, the number of secondaries, becomes very large, the
ALR test passes over into the likelihcod ratio test derived in
Section 2, for the case of known noise. This follows from the
convergence of the noise covariance estimators to the true
covariance matrix in this limit, and, as discussed before, the
convergence of the Beta-distributed loss factors, ri, to
unity. In the final form of the ALR teét, given as the last
equation of Section 3, the summation over j on the right side
will rema.n finite as K increases, and hence this sum, divided by

K, will tend to zero. If the quantity

g Lo}
tO

is then defined as a new threshold constant, the limiting form is
seen to be identical with the known-noise test of Section 2,

In the case of a single pulse the ALR test 1is exact, since
the approximation we have made is irrelevant in this situation.
This case is actually the same as the general problem treated in
Part I, since we have made use of no special structure for our

M-vectors. If we put J = 1, the ALR test becomes

=

~ ~ t - -~ ~
rA%P > K2 (1 + L rA2|u§2>
0
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1

R‘I‘K

We have dropped the subscript j in these expressions.

2|1~12

G >¢-1 .

~ ~

Substituting for r, A and u, we obtain
’(sTﬂ 1:7)'2
' e (G- DA+ T)
K(s'N's)
again without the subscripts. Finally, substituting for 7, we
find
1,32
'(sfM N YRR T
>0 1- k( M7z))
(s M s) 0
which is identical to the decision rule derived in Part I.
This test can be put in another form which will provide an °
interesting analogy to the multiple-pulse ALR decision rule.
Using the inner product notation introduced in Section 3 and the
definition of the orthcgonal component of the data vector with
respect to that inner product, we can write the next to last form
for the single-pulse test as
(s.2)f
LS (4 ~1)( 5 (zi,z,)) .
(s.s) ;
Returning to the multiple-pulse test, we define a new inner

product, using square brackets to distinguish it, as follows:

J
1 > 2 #*
[a,b] = erjAj a; by .
J::

Here a and b are arbitrary sequences of complex numbers, or

IT-25



T
N

J-vectors. Using this inner product, the ALR test can be written
~12
> DK+ [uujj .
[o.0] 2
Again we can separate the data vector, this time the

J-vector u, intc two components relative to the signal vector,

o, defining an orthogonal component as follows:

[0.4]
9, =U~—-—"0 .

[0,0]

The norm of u is then the sum

~112
[G’a] — I_E_o_"__ _]]._-%- [ﬁl,ﬁl]
[o,0

and the ALR test reduces to

![U’a]lz . -~ A"
————e > (lo - 1) k + [ul'ull 3
[0.0]
which stands in remarkable analogy to the single-pulse form of
the test, just derived above.

To procede with the analysis of the ALR test we follow the
procedure of Part I and introduce a change of variables, to
'whitened' coordinates. Suppose the actual noise covariance

matrix for the data vectors of the jth pulse is Mjy. New

vectors are defined by the equations

M
=

©
-_..N

7y
and
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The covariance matrix shared by all K+1 cf these vectors is the
MxM identity matrix, and the same is true for the data vectors
for all J pulses. The sample covariance matrix of the whitened

secondariec is given by

~ _—

Lij

Do
Do

.ﬂjs

Rk

7,(k)7,(k)" = My

A~

k=1
The signal vector is also changed by the whitening
transformation into a different vector for each pulse:
-1
tj = Mj 2s ,
andAhere we see it would be very simple to allow the original s
vector to be a function of j. The ordinary norm of the
transformed'signal vector 1is
(tfe) = (sTM;Ts) = A7
the quantity encountered in Section 2, which is the inverse of
the residual noise that would remain after nulling with a filter
matched to the actual noise.

In Part I we were able to choose a convenient signal norm
which made this quantity unity, since there was, in effect, only
one pulse. That choice cannot be made here, and hence a simple
norm has been chosen for s itself. The presence of the Aj in
our expressions will be the chief difference between the present
analysis and that of Part I. The evaluations that are made next
follow very closely those of Part I, and only enough detail will

be given to make clear the small differences. Besides the
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appearance of th: Aj, we are now working with the sample
covariance matrices themselves, instead of the S-matrices of Part
I, which differ by a factor of K.
We introduce the inverses of the whitened sample
covariance matrices:
-1 L~ 3. 1
?j.:r:.,uj =M12 M‘, sz
and substitute the definitions in our three inner products. We

obtain

-~ =~ t
Ajz = (s‘rMj s) = (t; ?jtj)

(sT ﬂj-lzj) = (th 5’173)
and
(Zj"'ﬁjm1 Zj) = (3’]T ?j?j) .

The new random vectors are, of course,vstill Gaussian, and
the secondaries still have zero means under either hypothesis.
The whitened primary vector has zero mean in the absence of
signal, and mean value

El?j = Mj*%‘Elzj - baitj
under the 'signal-plus-noise' hypothesis., These variables are
thus completely characterized statistically, and we note that the
actual noise covariance- matrices, My, appear only in the new
signal vectors, the ti.

Following the method of Part I, we next make unitary

transformations, one for each pulse, which will leave all the

I1-28



Gaussian random vectors statistically unaltered except for the
mean values of the primary vectors. These mean values are
proportional to the transformed signal vectors, and we choose the
unitary transformations to make each signal vector proportional
to the 'coordinate unit vector' whose transpose is [1,0,...,0].
Since the norms of the signal vectors are unchanged in this

process, the transformed ty will be given by

slo)

In Ehis vector, the ‘'one' is a-scalar and the '0' is an (M-1)
vector., We can think of these unitary tranformations as being
comhined with the preceding whitening transformations (which were
hoeny ¢2se noh ouniguel, and hence we make no change in the
notation to reflect the unitary transformations.

We see now that the matrices. My, affect the statistical
character of the inner products only through the numbers, Ay, a
single scalar for each pulse. Moreover, these inner products are
sufficient statistics for decision, since the ALR test itself
depends on the data vectors only through them. The only other
parameters which enter the test are the signal amplitude
constants, the o5, and we shall find that the test statistics
depend only on the products, Ajoj.

The data vectors and sample covariance matrices are now

decomposed into blocks, separating out the 'one' component,
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called the A portion, and the (M-1) dimensional remainder, the B

; S[:?mj]
i ?ip

o =[ 740 |

* portion. Thus we write

and
-'“j - [ "ujAA "uJAB ] ’
-’“'jBA "ujBB
with a similar decomposition for the inverse of the latter
matrix. These forms are substituted in the inner products, and
use is made of the Frobenius relations for partitioned matrices,
exactly as in Part I,

When this is done, it turns out that
1 t -1
Zy= g (#p Mipe #p) -

which is the exact counterpart of 7g of Part I. It follows that

the loss factors, i.e. the rj, all obey the Beta distribution

(N+L-1)! N-2 L
= 1-r r
() = g 47
where
Il = K + 1 - M .

This last parameter plays the same basic role here as did its

counterpart before, but in addition to the number of secondaries,
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I. now depends on the dimension, M, of the data vectors for each
pulse, instead of the total number, MJ, of data vectors which
enter in the detection process. This difference is due, of
course, to the more specific assumption made here concerning the

covariance structure of the interference, namely pulse-to-pulse

independence,
3 When all these substitutions are carried out, new
* . combinations of variables appear, which motivate the definitions

-1
Yi= ¥~ MiapAipp  #p
and

-1
yy(k) = #3a(k; — Myup M ipp #p(k) -
These variables are the precise analogues of y and y(k),

encountered in Part I, and we also obtain the relation

K
-1 . 1 A\ 2
"“'jAA - "“'jw "“’jma "u'jBA K kZ_1 ij(k)l )

Note the appearance of the factor 1/K in this formula, which
results because the left side is expressed in terms of the sample
covariance matrices themselves,

When conditioned on the B components of the primary and
secondary vectors of pulse j, the yj and yj(k) are Gaussian,
and yj is independent of the yj(k). The KxK conditional
covariance matrix of the yj(k) has the same structure tound
earlier; it is an idempotent matrix with L unit eiyenvalues, the

remaining M-1 eigenvalues being zero. Conditionally, the means of
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the yj(k) are always zero, and that of

by

yq is given in general

Egy, = Epz;y = PAjoy .

The subscript B denotes the conditioning, and obviously this last

mean is zero in the absence of signal,

variance of yj is related to the loss

In terms of these y-variables,

~ ¥
uj = —
A
and
2
~ KA
Af" e Y
|“ (\‘l;\
k— /

Finally, the conditional

factor, as follows:

1
Ty

it is easily shown that

v

The variables which enter into the three basic inner products

have now been written in terms of the

y'é and %j, whose

statistical properties have been completely described. The

'square-bracket' inner products themselves are expressible in

terms of these quantities, and we find

’ LI I rlyf
2 [84]=) rAfRF=K), 3=
5 =1 =17,y (k)i
- k=1

¢ L e I oralief
; 0] = 3} rRflef =K ), ot
2 =1 =1 Lllyj(k)l
-
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We have already seen that the ALR test takes a very simple form
when written in terms of these inner products.

Following the analysis of Part I, we find that the sums

K
Ty= Y lyf
k=1

are Chi-squared random variables, independent of conditioning on

the B-components, and each Tj is subject to the PDF

_r oo
1(1) = (L—1)

Note that the number of degrees of freedom is related to L and
not K, because of the mutual correlation of the yj(k). We now
introduce new, normalized random variables instead of the Ty,

namely

—i

Ty =

These new variables have unit mean values, and each has variance

equal to 1/L. These properties are central to an approximation we
shall make in the next section, in connection with the performance
of the ALR test. Like all variables relating to different pulses,

the 13 are mutually independent.
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tgain following Part I, we replace the Yj by new
variables, ;. which are defined so that they have unit
varian.e, conditioned on the B-components:
(1+2,)
The loss factors now appear in the conditional means:
1
= 2 .
To express the 'square' inner products in compact form, it
is natural to use the definition
1
These quantities are random variables, but they are dependent
only on the B-components of the data vectors, This last
definition allows us to write
Egwy = by

and the inner products are then given by the equations

I wf?
: 1 S L
R[ 4] = L.Z; T
L lg.0]= L Lol
K L Z; T

and

J *
1p o n1-1 #y Wy
kloal g ;1 T

The ALR test itsclf is therefore statistically equivalent to the

test
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Of course, the transformations we have made were based on the
actual noise covariance matrix, and the form of the test just
given will be used only to study its performance; it is not an
alternative representation to the original form, which was
written in terms of the observables themselves.

Conditioned on the B-components of the whitened vectors,
£he uj are constants and the wy are simple Gaussian
variables. We note that the conditioning is represented now only
by the presence of the loss factors, hence we can interpret the
conditional probabilities as being conditioned on a set of values
of these J independent random variables. Besides these, only the
products Ajoj appear in the test, and also in the
statistics, since the conditional means of the w3y are equal to
the numbers wuj, which are proportional to these same products.

Because of the presence of the products Aj05 in the
decision rule, it is not a true CFAR, in the sense that the
probability of false alarm is not totally insensitive to the
actual noise covariance matrices. However, the PFA is invariant
to any permutacion of these numbeirs, since the random variables
which enter the *test are independent from pulse to pulse and

statistically indentical for different pulses. The PFA is also

II-35



Pl

At
[

.7 . Ikl . ey o ot -
“. LR . T L b L Te e LA - -
. PRI e T e e R v P .

e r 1]
e

........

unchanged if all the Ay are changed by a commen factor. We
conclude that the PFA depends on the variability of the seqguence
of products, Ajdj, in some normalized way, such as the ratio

of standard deviation to mean of these numbers. It seems likely
that the dependence of the PFA on this variability is not strong,
and in the next section an approximation will be introduced which
causes this dependence to disappear entirely. This approximation
can be used to set a unique threshold for the test, for a given
assigned PFA, and the actual PFA will then vary somewhat from
this assigned value, according to the actual pulse to pulse

variations in the level of the residual noise after nulling.
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(5) PERFORMANCE OF THE APPROXIMATE LIKELIHOOL RATIO TEST

To evaluate the performance of the ALR test exactly, it would be

necessary to obtain the PDF of the quantity

*
I bW,
e VR
£ = i - v <L +y -—L)
= oV R T

=T
The probability that the detection threshold is exceeded is then
equal to
Prob(¢>0) .
Evaluation of this probability under the noise-alone hypothesis.
yields the PFA of the decision rule, and under the signal-plus-
noise hypothesis we obtain the PD. We have shown that the 5
are independent, normalized Chi-squared variables, independent of
any conditioning, and that the wj are independent. The wj are
also Gaussian, when conditioned on the loss factors contained in
the uj. Finally, the loss factors themselves are independent
and satisfy the Beta distribution given in Section 4. We would
like to bhe able to evaluate the conditional PDF of £, and then
remove the conditioning by taking the expectation value of this
probability with respecﬁjto the loss factors. This procedure was
feasible for the general problem analyzed in Part I, but appears
to be intractable here.
It was pointed out in Section 4 that the PDF of the

T4 has mean value unity and variance equal to 1/L, where

II-37




v v
Y
AL v],},)"

g

%y °r -
R 4

TR

T . —
TR 7 e

v,
.

M .

L=K+1-M. Since L will have to be large ccmpared to unity in order
to control SNR lcsses (i.e. to keep the loss factors close to
unity), it may be expected that the 73 will not differ yreatly
from unity themselves. A family of PDF curves for this normalized
Chi-squared distribution is presented in Fig. 1, for'various
values of L. It can be seen that the PDF becomes relatively
narrow and quite symmetrical about the mean, for values of L in
excess of about 50. This suggests making the simplifying
approximation

‘ Tj~1

in the expression for %, which then becomes

2

> out w1 J

¢ j-ls - olo (L +Zl leI2> .
]::

This approximation greatly simplifies the PDF of £, and it
is only this simplified form that will be discussed here. The .
penalty associated with the simplifiéation is, of course, a
failure of our results to describe all aspects of the original
problem., In Part I it was shown that the likelihood ratio test
derived there was equivalent to a simple CFAR detection process,
in which the thresholdeas estimated from secondary data, and the
target exhibited a Beta-distributed fluctuation. The threshold
estimation in that problem was represented by a single variable

exactly like one of our 7. The resulting performance
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analysis (in Part. I) also showed that the total SNR loss. could be
recogﬁized as the sum of two contributions: one due to the target
fluctuation and another due to the threshold estimation. The
latter effect, which provided the CFAR behavior, accounted for a
SNR loss very close to the standard CFAR loss for a non-
fluctuating target and threshold estimation by summation of noise
sample powers. The number of terms entering in this summation is
exactly L.'In the present problem there is a Ty factor for each
term in the sums which enter in the decision statistic, since
noise estimation is carried out for eaéh pulse. Each pulse will
then show a CFAR loss, and we expect that the overall performance
of the actual ALR test will have a CFAR loss of the same order of
magnitude (in db) as that for a typical pulse. It is this aspect
of performance that will not be described by our results when the
simplifying approximation is made.

In the approximating expression for £ we can interpret the
wy and 43y as components of complex J-vectors and, as before,

make use of the inner product notation. Then we have

|
Y By Wy =[uw]
=1
d 2
Y I =[uul
=1
and
J
)3 w2 = [w,w] .
=1
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In this J-dimensional complex vector space, we now introduce new
vectors, obtained from w and u by means of a unitary imatrix U:
w=Uw
and
M'EU[.L .
Inner products and norms are unchanged by this transformation,
and we can choose U so that u' is aligned with a coordinate
vector, just as was done in a different space in Section 3, In

particular, we can choose U so that

[« X0

The norm of u cancels out in the expression for &, which is now

simply

eniwf - 220 +;‘J1 )

_-| B~ i (L4§B |w'j|2) :

=2

We define

so that

J
= |w - (10—1)Zz|w',|2 — ({-)L
=

and note that the probability of exceeding the detection

threshold is equal to

Prob(¢'>0) .




The components of w' are independent and Gaussian, given
the loss-factor conditioning, and each has unit variance. The
conditional mean of the vector w' is

! e 1}
Egw =Dbu' ,
and therefore all components of w' except the first have zero
mean., The latter component has mean value
‘ ) \
EBW'1 = b[“,”]a = a2

where

J
a = bf [ = b Y, TyAflof -
=1

This last parameter is the basic signal parameter of the
simplified problem, and we see that it is just like the SNR of
the known-noise test (see Section 2) except for the presence of
the loss factors, the rje.

In the noise—aléne situation, a = 0, and the simplified
test performance depends only on L and the threshold parameter;
it is in this approximation a true CFAR. When a signal is added,
its presence is felt only through the parameter, a, and we shall
calculate the conditional PD for this case, as a function of a.
It will not be possible to average this PD over the PDF of a, in
order to remove the conditioning, because of the difficulty of
dealing with a weighted sum of Beta-distributed variables. Again

we appeal to the results of Part I, where it was shown that the
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exact SNR loss caused by the loss factor was very similar to the
expected value of the loss factor itself. We therefore note that

J
Ea=Erpf Z Alzlojlz

where
Er= f rf(r)dr
0

L+1 _K+2-N
N+L K+1

is the expected loss. The expected value of a is thus equal to
the known-noise SNR value times the expected value of a typical
loss factor, as found from the Bcta distribution,

It remains to derive the probability of threshold crossing
for fixed a, from the simplified version of the test statistic.
We define the characteristic function of the random variable &':

a(\) = Fe M,
and note that the desired probability can be expressed as an

integral in the complex A-plane, as follows

-—ig
1 dA
' = —— o(A) —.
Prob(¢'>0) = == J! M
—~0-1y

The interchange of order of integration required to obtain this
result is made valid by the displacement of the contour below the
real axis in the complex plane. The characteristic function

itself can be expressed in the form

(A) = e o DIA g (N) & [~(bg-2)A]




R

e

S

i
)

T T2

. MW ... w

where

L 1R
QAA)EEeiM'J
and

. ' |2
8,(\) = Ee )

is the characteristic function of the sum

;
S = J;z lw:jlz .

Since S is the sum of the squares of (J-1) complex
Gaﬁssian variables, each with mean zero and variance unity, it is
a Chi-squared variable of 2J-2 degrees of freedom, and its
characteristic function is therefore

8,(A) = (1 — A
The random variable w'j) is conditionally Gaussian, with unit
variance and a mean squared value of a, hence its characteristic

function is
8
_, el A
=e 7
%(A) 1—-1iA
Substituting, we obtain

~1)LA e
(1 — iMfL + (DA

d(\)=e " it

The final complex integral is evaluated in the Appendix,
where the desired probability is derived as a series of Marcum

O-functions. A numerical analysis of this series is also given
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there, on the basis of which the figures of the present section
have been produced. When there is no signal present, the

characteristic. function simplifies greatly, and the contour
(closed in the lower half plane) includes only the simple pole at
A = -i, The residue at this pole is easily evaluated, with the
resulting formula for the probability of false alarm
PFA = (1/4) e Db

For a single pulse, this formula and the corresponding
formula for Pp and identical to the expressions for PFA and PD
for conventional detection with a single radar hit. This is to-be
expected, since they are conditioned on given loss factors, and
the CFAR effect associated with threshold estimation has been
eliminated by our simplying approximation.

The general character of the formulas is illustrated in
Figs. 2 through 7, in which Pp(a) is plotted vs a, for several
sets of values for the parameters L and J. In all cases, the PFA
has been set to 1076.' The dashed curves on these plots
represent the PD vs SNR for a conventional detector using a
single radar hit, or Marcum's Q-function for N = 1. The two
curves are extremely clqse when J and L are large; and when the
number of pulses is la;ge, they are relatively insensitive to L,
We conclude that the performance of the ALR test can be expected
to be very similar to that of the known-noise test of Section 2,

with two additional losses: a CFAR loss typical of the parameter
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L, and a SNR loss which is essentially that predicted by the Beta

distribution for a single pulse.
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(6)  SUMMARY

It has been the intention of this two-part study to
discuss the problem of radar operation in non-stationary
interference, from the point of view of final target detection.
Those aspects of the radar design which make it possible to
achieve a satisfactory degree of interference rejection are not
analyzed here, but are taken as given. We refer here to the
provision of an adequate number of auxiliary RF channels and the
meéns to produce precisely controlled weighted sums of their
outputs. The choice of these weights is often discussed in terms
of interference rejection, or nulling, on a pulse by pulse
basis. By viewing the problem as one of target detection,
utilizing the returns from a seguence of pulses which form a
coherent processing interval (CPI), we have obtained a mpre
complete decision algorithm. This algorithm contains both the
rule for choosing the auxiliary‘weighﬁs and the procedure for
combining the weighted outputs for each pulse to form an
integrated resultant for target declaration.

Although the total interference is modeled as Gaussian
noise, the correlation éfbperties of this interference are
presumed to be unknown. Detection is only possible if these
correlation properties can be estimated, and for this purpose we
have assumed the availability of other data, namely.the outputs

of adjacent range gates, which are taken to be signal free. The
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important additional assumption is made that the interference
present in these other data is independent of, but statistically
identical to that of the main range gate in which target
detection is attempted. They can therefore provide a valid data
base from which the covariance matrices of the interference can
be estimated.

In this analysis, the available input data has been
characterized statistically and the methods of statistical
decision theory have been applied to derive a detection
procedure, based on the totality of original inputs. The
resulting procedure can be considered to have three components,
namely covariance estimation, interference rejection and coherent
integration. The first two components of this algorithm are in
agreement with standard procedures. Covariance estimation is
accomplished by means of the sample covariance matrix of the
secondary (target-free) data, and interference rejection is
performed by sample matrix invefsion and the applicatio; of the
corresponding colored noise matched filter weights. The third
component of the decision procedure is a form of weighted
coherent integration of‘all the pulses of the CPI, in which the
weights are dependent on estimates of the residual noise level
after interference rejection on each individual pulse. It was
this aspect of the problem that was of most interest at the

outset, although it is reassuring to have the eminently
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reasonable and conventional noise estimation and interference
rejection procedures appear as derived results from tﬁe theory.
In Part I the interference was allowed to have arbitrary
correlation, not only among the multiple RF input qhannels, but
also amcng all the pulses of the CPI. Because of the great number
of unknowns this entails, the number of secondary data inputs
required for noise estimation must be very great. On the other

hand, due to the generality of the formulation, an exact decision

rule was obtained, together with an exact evaluation of its

performance. The latter was given in terms of probability of.
detection and false alarm, as functions of the system
parameters. Since no special structure was assumed by which the
data from separate pulses could be distinguished, all these data
were, in effect, lumped into one input vector in which a target
is sought, and a set of secondary target-free vectors for noise
estimation. Thus, by a suitable re-interpretation, Part I can
also be said to deal with the problem of target detection based
on a single pulse.

In Part II, the multiple pulse problem is specifically
treated, with the addi;ional and reasonable assumption that the
interference is indeﬁendent from pulse to pulse. The correlation
properties of this interference are otherwise totally unknown,
and must be estimated from the target-free inputs. The number of

these secondary inputs needed to assure adequate performance is
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now nuch smaller, being related to the number of RF channels
themselves, and not to the product of this number and the number
of pulses, as in the former case. On the other hand, the analysis
is inherently more difficult, and two distinct approximgtions had
to be made to obtain useful results. The first was an
approximation to the decision rule itself, which seems to be
justified not only by the gquantitative arguments made in its
selection, but also by the reasonable character of the resulting
decision rule, the approximate likelihood ratio (ALR) test. The
other approximation was made in the performance analysis, as a
result of which these results are somewhat incomplete. The
limitations of this analysis were discussed in section 5, where
the insight gained from Part I was used to assess their probable
impact.

The general conclusions of the study are best expressed in
terms of the performance of an idealized radar which uses the
same primary inputs, but has the‘advantége of knowing the
correlation properties of the total noise. This radar can
therefore dispense with the secondary inputs of the real system,
The decision procedure for the idealized case, derived in Section
2, consists of interferenée rejection on each pulse, followed by
a weighted coherent integration of the pulses of the CPI.
Interference rejection is based on the known noise covariance

matrices, and the integrator weights are inversely proportional
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to the residual noise levels after this portion of the
processing. This detector could be described as a conventional
nulling processor applied to each pulse, followed by a colored

noise matched filter which performs integration over the CPI. If
the external interference is nulled well below the internal
noise, the integrator weights will be equal, and the second
portion of the processor becomes a simple integrator. The
advantage of using weighted integration over the CPI, compared to
the use of constant weights, will depend on the residual noise
levels and their variation from pulse to pulse. No general rule
can be given for the performance gain in this case, but it will
generally represent an improvement, relative to the use of an
incorrect set of weights.

In the actual radar processor, noise estimates are used,
both in the nulling of individual pulses and in the establishment
of the final detection threshold. The use of estimated covariance
matrices in the nulling proceés results in a loss of signal to
noise ratio on each pulse. This loss has been shown to be
statistically identical to that derived by Reed, Mallett and
Brennan, in a well-known paper(3). The relationship between
this SNR loss and the number of secondary inputs (range gates in
our case) is well understood, on the basis of the Beta
distribution to which these losses are subject. The seco.d use of

noise estimation relates to the normalization of weights for the
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coherent integrator, and the final detection threshold itzelf.
The threshold estimation provides an approximately CFAR detection
test, and also leads to a CFAR loss in performance. Because of
the approximations referred to already, the CFAR loss is not
accurately assesed by our results, but arguments havé been given
that it should not be large. It has also been shown that this
loss should be approximated by the loss of a simple linear CFAR
detector, whose threshold is based on K-M+l noise samples, where
K is the number of secondary inputs and M the number of RF

channels of the actual system,
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APPENDIX EVALUATION OF THE APPROXIMATE DETECTION PROBABILITY

In Section 5 an expression was derived for the approximate

probability of detection, conditioned on given values of the loss

factors. This probability was expressed as the contour integral

w—ig
: dA
Prob(¢'>0) = Pp(a) = 2-115 (M) ~
—oo—ig

where
a
e——i(to-—l)LA + 1_':1-}‘

A=iA)[1 + i(4g—1)AT !

d(\) =e™?

The detection probability depends on the conditioning only

through the signal parameter, a, defined in Section 5.

For a > 0, the integrand has an essential singularity when

X equals -i, a simple pole at the origin and a pole of order J-1
at 1/(2%2p-1). The path of integration is completed in the lower

half plane and then shrunk to a small circle about the essential

singularity. We can therefore write
~ -1 dA
Pp(a) = - 575 f AN X

where the contour is a small circle, now enclosing the point -i

in a positive sense.

We make the definition

y = ({g—1)L
and the change of variable

= —i{1-t) ,
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which brings the singularity to the origin. The result is

b3 yt + g
-~y e t dat
Pp(a) =2 iy s
2ni e [‘0 - (‘o-‘l) t] ( -_5

0, the singularity at the origin becomes a simple

For a
pole, and the residue easily yields the formula for PFA given in
Section 5. In general, the integral will‘not yield a closed form
answer, and a series expansion is required. The difficulty is
caused by the factor exp(yf), which causes another essential
singularity at infinity.

We make the following expansion

R ) iy +m-2) )P
[to- (el N/ mol ™ At
whose convergence is assured by the fact that the magnitude of t

is constant and arbitrarily small on the contour. Then we find
f1 ’"ii (J+m—2)< fgj)m o

e feyt+% ™ qt

1-t

The contour integrals now remaining have been discussed in

detail in Ref. 1, in relétion to the Marcum Q-function. Let
}
N-1

fN(u,a) =e W0 (%) 2 IN_1(2‘/;1I)

and
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wd 7
-1
-

Fy(y.e) = f fy(u,a)du
y
Then Fy is equivalent to Marcum's Q-function, the probability

of detection after non-coherent integration of N hits. The
parameter y is the normalized threshold and a is the normalized
total (i.e. integrated) signal to noise ratio.

In Ref. 1 it is shown that

2ni
ft|=¢

e 27V et +% tMdt 5 1-Fp(ey) ;m20
1 F_(yva) ;m<o0

where the evaluation for non-negative m has been made by

repiacing the variable of integration, t, by 1/t. Using this

result, we obtain

Pp(a) = ( ‘—1‘; ) )

(AR e

m=1

When a equals zero, this formula reduces properly, since

FN(O,Y) =1,

and
FN(Y'O) = e‘y .

The resulting expressionifbr the probability of false alarm,

-1 ¢y .
PFA = (—1—) g Uit
‘o
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is easliy solved for %,, given PFA, by the Newton-Raphson
method, '

For J = 1, the detection probability is simply

Pp(a) = Fy(y.a)

since all the binomial coefficients vanish in this case (no
expansion was necessary for J = 1). This formula describes the
detection performance of a simple coherent integrator, with total
SNR equal to a and fixed threshold, and we see that the CFAR loss
is. not accounted for, an expected consequence of the use of our
simplifying approximation.

For other wvalues of J, and in particular for large J, this
formula looks quite different, since (%)~ (J=1) will be a
small factor, and many terms of the series will contribute. As
the results presented in Section 5 show, however, our formula
produces a rather conventional PD vs SNR curve for a wide range
of values of the parameters, L and J.

Numerical results are obtained by truncation of the series

and the use of a truncation bound, which will now be derived. We

write the series in the form

Pp(a) -: (‘16):—1 {Fl(y,a.) + ‘il Tmi + &y

m=1

where

1= (J +2—2)( ‘.075_1 ) Pt - Falay)]
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is the general term of the series and €y is the error of

truncation at the Mth term:
-1 =
wm(d) L
m=M
We now make use of the identity
FN(x.y) = Fn_1(x.Y) + fN(x’Y) '

which follows easily from the integral representation given
above, and which implies that the sequence Fy(a,y) increases
monotonically with N, since the PDF fy is necessarily
non-negative, The factors

[1-Fplay)] .
then decrease monotonically, and we shall use this property to

write

e () nonennE (5 )

After replacing the index m by M+m, we find that the

inequality becomes

weld) e e ) ()

where S stands for the series

J+M+m—2)!M! ‘0‘1)
S= Z ZJ+u-2S!(n+m5!(

But
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¥ - ~2\ Mim! (b1\®
, S=2(J+M+m 2) M!m (____)

m (M+m)!\ ¢

* mm=0

o {n—1\m
J+M+m-—2\[ “0
<X ( m )( ¢o )
m=0

L1\ ~U+U-D) gy
= (1 ——— = ‘0
)

and hence

ey <[1- F,‘(a.y)}(" +§“2)(z0~1)“ =My,

The truncation bound is therefore easily computed along with the
general term of the series, using recursion for the binomials and
simple powers, and Shnidman's algorithm(z) for the Marcum

functions. This procedure has been used to produce the figures of

Section 5.
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