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Results on Conjecture 1.

We use the definitions and notation of [1]. Let H be the subspace of

2,L .,,p spanned b , 'X tEj, and let H = H(R,T', be the corresponding reproducing

kernel Hilbert space. Assume that H has countable dimension, with CON basis :Ui .

oP. Fix a = {ak} , and consider a sample of size n.

Proposition 1. Under P a' the Uk are independent, and Uk has the

n(ak, 1/n) distribution.

L" We consider the sieve estimator defined in [I] p. 7. Then for each

m and for a sample of size n, the sieve estimator of the mean g(t) is

- I,' Z kgk t l•(1) g(t) = ( )

where ,gki is the CON basis of H corresponding

to {Ukl. We wish to pick m as a function of n so that Ili-gll -* 0 (norm in

H). But ig= -a 2 (norm in a2) = 2 + a 2
H) Bt fk-ak ak = X k'ksm k>m n m '

say. The non-stochastic tail vanishes as-n if we require m By

Proposition 1, nX is x2 (m), and the following weak result describes
C) nm
the limitations we will need to impose on m = mn.

Proposition 2. If m/n - 6, then X - 0 in P -probability iff B=O.
* I.. ni a

C.3 The Borel-Cantelli Lemma gives a sufficient condition for

-(X-0) = 1:9 a Xnm

Proposition 3. Let {mn } be chosen so that m - and such that the
nn

sequence {cn} defined by D T IC
.-1 u ELECTER%

c,, = n 1 u-M) e - u  du AU G 2 919 5 Lq

is summable for every c > 0. Then P a (Xnm4O) :1I. G

If m is chosen so that it is always even, then we may rewrite cn n
as

cn e e,_ ,(an) , f

o.,.
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n k
where a c/ - 2, n - 29, and en (x) - E X Invert -t(n), say n -(l).

n knO I-01;
Now we must choose A(Z) so that at least X/1 - and so that ee (ca) is

. summable for every m > 0. Write

eL • e (caX) + A

Using results of Buckholtz (2], we may prove the following:

Theorem 1. Let X = X(9.) be such that lk/ -k as 2. - . Then for

each aci(O,-) we have

A .(a) +- + +0( 9) t

From this and Stirling's formula we have

Corollary 1. If X/ - as . -, then for each cic(O,) the sequence

e a  e2 (cx)

is summable.

Translating back, we get the following consistency result.

Theorem 2. If m = 2.(n) = o(n) and m - -, then a - a a.s.

At first this holds a.s. P8. but since the measures in P are

equivalent, we may assert a.s. convergence without qualification. In

any case, this settles Conjecture 1. In particular, the condition

m = o(n), which was sufficient for weak convergence, also gives strong

convergence, and since m/n - 0 > 0 does not even give weak convergence,

our condition is in some sense best possible. Moreover, a result similar

to Theorem 1 allows us to see just what does hold almost surely if we

only require m/n 0 > 0:
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Theorem 3. If m/n - > 0, then for all c sufficiently large (depending

only on 0) we have

Pa (Xnm C i.o.) = 0

The distribution of the estimator g given by (1) is easy to describe.

Consider g(t) as a stochastic process. From Proposition 1 we have the

following.

Theorem 4. Under P , the process {i(t), tcT} is Gaussian with mean
m m

function I ag(t) and covariance function - E g.(s)g.(t).
i=laigi g=11 i t

For comparison we note that the reproducing kernel R(s,t) of H

may be written R(s,t) - £ gi(s)gt(t) (as long as {gi } is CON in H),

and that under Pa the true mean function is E aigt(t). What needs to
a i=l

be investigated now is the use of Theorem 4 to make confidence statements

and to test hypotheses.

Results on Conjecture 2.

The set-up here is given in [l], pp. 7-8. Let us

* fix a countably infinite orthonormal set {gkl (not necessarily complete)

in H, and consider the subset PO c P consisting of measures corresponding

to covariances of from S(s,t) = R(st) + Zlkgk(s)gk(t), where i = {l is

in the subset e2 of 93. Now the likelihood function depends only on

Let UkcH correspond to 9k as usual, and let A = {wcfl: Uk(cO)to for every k.

Certainly A is an event in A.

Theorem 5. Q(A) = 1 for every QcP, and for each outcome wn the

corresponding likelihood is unbounded over P0. Thus Conjecture 2 is

established.
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