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Results on Conjecture 1.

We use the definitions and notation of [1]. Let H be the subspace of

LZ{:,a,p) spanned by "X, ,teT}, and let # = H(R,T) be the corresponding reproducing

kernel Hilbert space. Assume that H has countable dimension, with CON basis {Ui}.

Fix a = {a,}ee?, and consider a sample of size n.

Proposition 1. Under P,» the U, are independent, and Uk has the
n(ak, 1/n) distribution. -

We consider the sieve estimator defined in [1], p. 7. Then for each
m and for a sample of size n, the sieve estimator of the mean g(t) is
(1) §(t) = 1h, g, (1),
where {gk} is the CON basis of H corresponding
to {U j. We wish to pick m as a function of n so that Ig-gl - 0 (norm in

H). But ig-gii? = ia-all? (norm in 22) = I (Uk-ak)2 + I aE =X+ al
<m

L a; .,
k< k>m M kom k
say. The non-stochastic tail vanishes as n ~ » if we require m + =, By
Proposition 1, nXon is xz(m), and the following weak result describes

the 1imitations we will need to impose on m = m,- P

Proposition 2. If m/n » 2, then Xnm -0 in Pa-probabi1ity iff 8=0.

The Borel-Cantelli Lemma gives a sufficient condition for

Pa(Xnm~0) = 1;

Proposition 3. Let {mn} be chosen so that m,o and such that the

sequence {c_} defined by i > I I<:::

-3 m.] EEl.EE(:-rEEIgias
] 2 -u R
c = u e ~ du .
" e o(M) AUB2 91985
ne .7 §
2
i ble f 0. Then P_(X_ Q) = 1 #
is summable for every ¢ > 0. en 2o ) = 1. ‘Ei
If m is chosen so that it is always even, then we may rewrite <h
as
- a-an e
Cn = e ez_](&ﬂ),

per SR
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where a = ¢/2, n = 22, and e (x) E 'F— . Invert £ = &(n), say n = A(2).

k=0
Now we must choose A(2) so that at least A/% + = and so that P 2(ax) is

summable for every a > 0. Write
e - e (ar) + “gr— (GA) A, (a).

Using results of Buckholtz [2], we may prove the following:

Theorem 1. Let A = A(L) be such that A/% + = as & » =, Then for

each ac(0,») we have

ai
2 A ar 1 -
A (0) ( i)" + [ + 0(‘2:). L~ .

From this and Stirling's formula we have

Corollary 1. If A/f + = as & + =, then for each ac(0,~) the sequence

A
ez(ak)
is summable.

Translating back, we get the following consistengy result.

Theorem 2. If m = 22(n) = o(n) and m + =, then i + a2 a.s.

At first this holds a.s. Pa. but since the measures in P are

equivalent, we may assert a.s. convergence without qualification. In

any case, this settles Conjecture 1. In particular, the condition

m = o(n), which was sufficient for weak convergence, also gives strong
convergence, and since m/n - 8 > 0 does not even give weak convergence,
our condition is in some sense best possible. Moreover, a result similar
to Theorem 1 allows us to see just what does hold almost surely if we

only require m/n -~ 8 > 0:

-------------
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Theorem 3. If m/n + B8 > 0, then for all ¢ sufficiently large (depending

only on B) we have

P.(X

S
al¥am > € i.0.)=0

The distribution of the estimator § given by (1) is easy to describe.

5 Consider a(t) as a stochastic process. From Proposition 1 we have the

; following.

* Theorem 4. Under P, the process {g(t), teT} is Gaussian with mean
m < m

" function I a,g.(t) and covariance function L g.(s)g.(t).

. = V1 n ooy i

9 . For comparison we note that the reproducing kernel R(s,t) of H

(- -

may be written R(s,t) = gi(s)gi(t) (as long as {gi} is CON in #),
j=] [

and that under P, the true mean function is I aigi(t). What needs to

i=1
be investigated now is the use of Theorem 4 to make confidence statements

and to test hypotheses.
Results on Conjecture 2.

The set-up here is given in [1], pp. 7-8. Let us
fix a countably infinite orthonormal set {gk} (not necessarily complete)

in H, and consider the subset P0 C P consisting of measures corresponding
to covariances of from S{s,t) = R(s,t) + zukgk(s)gk(t), where u = {uk} is
in the subset 1; of 2. Now the likelihood function depends only on .
Let U eH correspond to 9, as usual, and let A = {wel: Uk(m)fO for every k}.

Certainly A is an event in A.

Theorem 5. Q(A) = 1 for every QeP, and for each outcome weQ the

corresponding likelihood is unbounded over Po. Thus Conjecture 2 is

established.
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