T SCATTERING FROM BUBBLES IN LIQUIDSIU) WASHINGTON
E UNIV PULLMAN DEPT OF PHYSICS D S LANGLEY DEC 84
N00014-80-C-~0838

F/6 20/8




~%

' TP IR

H Ny ATV L

=

\\l\\%

=

]
I".'
Py
"]

FEERRER
HHE

||»

L e

mg

22
=

M=

=

= =




OTIC riLE COPY

‘\

== AD-A158 736 ==
\GE

READ INSTRUCTIONS
BEFORE COMPLETING FORM
., TR "SOVT ACCESHION NOJ ATALOG NUMBER
N00014-80-C-0838~TR4 [
& TITLE (ond Subsitio) S. TYPE OF REPOAT & PEMOO COVERED

LIGHT SCATTERING FROM BUBBLES IN LIQUIDS Technical Report

ean S. Langley N00014-80~C~0838

. PUNPORMING ONGANITATION NAME AND AGORESS 3

Department of Physics Program Element: 61153N
Washington State University ‘rasz Area: :;011-08-02

Pullman, WA 99164~2814 Work Unit: NR384-934

RAM . ’
& WORK UNIT NUNBERS

e ———————————————
& PERFOAMING ORG. AEPOAT NUMBSER

hw & CONTRACY O GRANT nuwaens) |
D

11. CONTROLLING OFFICE NAME AND AOORESS 12. REPORT DATE
Physics Division Office (Code 412) December 1984

Office of Naval Research 3. NUMGER OF PAGES

Arlington, VA 22217 119 + x
‘ » ] A @i forent fram Controlling Ofios) | 18. SECURITY CLASS, (of e repest)
Unclassified

WW‘

e Eﬂﬁﬁﬂu ?A?EE? (od ihie Repevt)

Approved for public release; distribution unlimited

e ———————————— —
7. ISTRMIBUTION STATEMENT (of the shetrast entored in Block 20, it ditferent e Repast)

6 SUPWLCHENTARY NOTES

Doctoral dissertation of D. S. Langley completed July, 1984 ‘

[T5. KEV WORDS (Caninwe on rovesse cido If Rotecomy Grd (Geniily by Liochk mumber) o
Bubbles, Light scattering, Mie theory, Forward scattering, Backscattering,
Ocean optics, Cptical properties of water, Cavitation, Optical or acoustical
inhomogeneities, Laser-Doppler velocimetry, Bubble size measurement,
Two-phase flow

R FOTUreD side (f ascvceary and ideuiily by Mash

The scattering of laser light from bubbles in liquids was photographed, and
angular features in the far-zone intensity are compared with models. Diffrac-
tion effects are prominent in three regions of the scattering: near the _
critical angle, and in the forward and backward directions. The forward and .~
backward scattered light exhibits the intensity enhancement known as the iloq.
Simple geometrical optics is unable to approximate the scattering pnctorﬁ in
the diffraction regions. Physical-optics models are presented for each case ~

DD ,joen W73  eoxmow op 1 wev ¢8 s cssereTy

Al ket o A V & 4 “mg%%%mm

>

. Bya i




Unclassified

SECUMTY CLASIFICATION OF TS PAGE (When Dase Sntereg

20.

shown to be in agreement with the observations. These models give
insight into the optical properties of scatterers whose refractive index
is less than that of their surroundings. Comparisons also include the
results of Mie theory computations for the critical-angle and forward
regions. Seome applicati of the results to the sizing and detection of
bubbles are discussed. ;

$/N 0102- L% 014- 6401

Unclassified .
SECUMTY CLASHIFICATION OF THIG PAGE(TRen Dase Bntered




LIGHT SCATTERING FROM BUBBLES IN LIQUIDS

By
DEAN SCOTT LANGLEY

A dissertation submitted in partial ‘fulfillment of
the requirements for the degree of *

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY
Department of Physics

1984

85 09 08 077




To the Faculty of Washingtonm State University:
The members of the Committae appointed o
exanine the dissertacion of DEAN SCOTT LANGLEY find

it satisfactory and rscommend that it be accepted.

TP L Thoardom

/ 7 //(&amcg_




Soli Deo Gloria

“Like the appearance of the bow that is in the cloud
ou the day of rain, so was the appearance
of the brightness round sbout.
Such was the appearance
of the likeness of the

glory of the Lord.”

Ezekiel 1:28

iii




ACKNOWLEDGEMENTS

It is a pleasure to thank Professor Philip Marston, my thesis
advisor, for his help, advice, and encouragement during my graduate
years. His “theoretical and technical expertise were of gréat
assistance, his enthusiasm regarding this research made the work
continually interesting, and his open office door invited many
valuable discussions. I am also grateful to Prof. Marston for the
opportunities I received to present this work in publications and to
attend a number of professional meetings.

For their encouragement and prayers I wish to thank my
family, especially my parents, Mr. and Mrs. Mark Langley, and many
dear friends in Pullman. And special thanks to Lea, my wife, for her
help in assembling this dissertation, for her patience these years,
and for her love always.

I would 1like to express my gzratitude for the initial
assistance to this research by a Washington State University
Grant-in-Aid, and for the continued support from the Office of Naval
Research which provided the majority of the funding. In addition,
valuable aid was received through the Sloan Foundation Fellowship
held by P. L. Marston. Thanks are also due to W. J. Wiscombe for
providing the computer program from which the Mie scattering routine
was derived, and to the Electrical Engineering Department of W.S.U.

for the use of their computing facilities at unbeatable rates.

iv




LIGHT SCATTERING FROM BUBBLES IN LIQUIDS

Abstract

by Dean Scott Langley, Ph.D.

Washington State University, 1984

Chair: Philip L. Marston

The scattering of 1laser light from bubbles i{n liquids was
photographed, and angular features 1in the far-zome intensity are
compared with models. Diffraction effects are prominent in three
regliong of the scattering: near the critical angle, and in the
forward and backward directions. The forward and backward scattered
light exhibits the intensity enhancement known as the glory. Simple
geometrical optics is unable to approximate the scattering patteran in
the diffraction regions. Physical-optics models are presented for
each case and shown to be in agreement with the observations. These
models give insight into the optical properties of scatterers whose
refractive index is less than that of their surroundings.
Comparisons also include the resiults of Mie theory computations for
the critical-angle and forward regions. Some applications of the

results to the sizing and detection of bubbles are discussed.
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CHAPTER 1

INTRODUCTION

l.1 Overview

This dissertation is concerned with the light scattering
properties of bubbles. A bubble is distinguished from a droplike

scatterer by a refractive index n, which 1s smaller than that of

i
the surrounding medium n,; thus, the relative index m = ni/n° <1

for bubbles while =n > 1 for drops. The literature on 1light
scattering contains comparatively 1little information on the
scattering properties of bubbles, but significant differences from
the scattering by drops can be observed. The purpose of this thesis
1s to present measurements and models of the scattering from bubbles,
emphasizing certain angular régions which cannot be adequately
described by simple geometrical optics. There are three such
regions, and these constitute the major subdivisions of the present
research: the forward and backward directions, where exceptionally
strong (glory) scattering is present, and at the critical angle where
the transition from partial to total reflection of rays at the
bubble's surface occurs. In each of these regions, a correct
description of the scattering requires that diffraction effects be
included, even for bubbles much larger than the wavelength of 1light.
Features in the scattered light can provide useful informstion about

the bubble, while a successful wmodel can give insight 1into the

scattaring process.




The problem of determining the pattern of scattered light
from a particle of known shape, size, and composition is generally a
difficult ome. In some cases, complete solutions of Maxwell's
equations can be obtained, giving the exact amplitude and phase of
the scattered electromagnetic field everywhere. Though  such
solutions are certainly valuable, they are not always the most
desirable. They often present significant computational
difficulties, and the effects of changes in characteristics of the
particle may be hard to assess. In many cases, approximate solutions
can be developed having a 1limited domain of applicability but
clarifying the important physics of problems within that domain. 0f
course, there is wmuch more physical insight to be gained when an
approximate theory can be compared on common ground with an exact
one, and when both can be checked against experiment. This is the
approach followed here when possible. Comparisons of models and
measurements are based mainly on the angular locations of features in
the scattered intensity. Throughout this thesis, intensity is used
to denote the modulus of the Poynting vector.
With increasing size, bubbles in liquids pass from spherical
shapes into an ellipsoidal regime, and very large bubbles take on a
spherical-cap forn.1 The bubbles studied 1in this work were much
larger than the wavelength of light, but small enough to retain the
near~spherical form. The lower size limit removes the scattering
from the reala of the Rayleigh small-particle lpproxination.z Nearly

spherical bubbles are common in nature and convenieant to work with in




experiments. As a consequence of their symmetry, such bubbles
display a scattering enhancement, known as the glory, in the forward
and backward directiouns; critical-angle effects 1like those to be
described may be obseryed from bubbles of other shapes as well.
Three models of the scattering are of interest for comparison with
obgervations: the Mie theory, the geometrical-optics approach, and
physical-optics models. These will be discussed in Section 1.2.

The optical properties of bubbles are of 1interest {n a
variety of fields. 1In oceanography, for example, the vast anumbers of
gas bubbles which inhabit the upper layers of the ocean are seen as

important components of the ecosys:em,3’4

as well as being an
influence on the color of the sea5 and on 1its sound transmission
properties.6 Various probes  have been used to measure the oceanic
bubble size discribution,6-8 but considerable disparity exisqa
between optical and acoustical findings; it appears that more
sensitive optical techniques are needed.9 In the science of nuclear
particle detection, the analysis of tracks in bubble chambers amay be
aided by wmore sophisticated wmodels of the scattering from

bubbles. 10712

In hydrodynamics research, bubbles have been used as
scatterers for laser-Doppler valocimetry,13 and as tracers in
photographic flow-visualization ocudiu.lA The work presented in
this thesis may be of value in any application where bubbles are to

be detected, sized, or discriminated from other types of particles.




1.2 Scattering Models

A) The Mie Scattering Theory

A well-known exact solution exists for the scattering pattern
‘'of a homogeneous dielectric sphere under plane-wave illumination.
Published by Miels in 1908, the solution is presented in a modern
form by many authors (e.g. Refs. 16-18). The Mie theory has found
widespread application to scattering problems since it places no
formal restrictions on the size or the refractive index of the
sphere. Some details of ﬁhe Mie solution which are relevant to the
problem at hand will be reviewed here.

Let the sphere have a radius a and relative refractive
index =m, and let the incident light be of wavelength Ao in the outer
aedium. The dimensionless size parameter commonly used is ka =
ZNI/)b, where k 1is the wavenumber of the light; ka >> 1 for all
the bubbles observed in this research. The Mie theory gives the
amplitude and phase of the scattered electromagnetic field inside and
outside the sphere, but in the present work only the field at
distances R >> a from the center of the sphere is of interest.

The scattered 1light from a sphere can be coumpletely
characterized by the complex amplitude functions 81(0 ) and Sz(¢ ),
vhere ¢ is the scattering angle measured with respect to the incident
wave's direction. The subscripts 1 and 2, respectively, denote the
polarization components perpendicular and parallel to the scattering

plane; the plane of the scattering is defined by the directions of




the incident and scattered light. At a distance R the intensity of

the scattered radiation having polarization j =1 or 2 is

2,, 0y=2
Ij(R.¢) - Iojlsj| (kR) (1.1)

where Ioj is the intensity of the j-polarized component of the
incident light. Most often in this dissertation the scattered
intensity will be normalized to the 1intensity IR from a perfectly

reflecting sphere of radius a,

2 _
IR = Ioj (a/R)® =1, (1.2)
in which case the scattered intensity Ij is given by
2 2
Ij(R.¢) = ISJI (2/ka)“. (1.3)

The Mie theory gives the scattering amplitudes Sij) in the forms

Sl(¢) - Z 2n + 1 (an"

asl n(n + 1) at bnrn)'
(1.4)
T 2n+1
Sy(0) = ] E e (bm, + 8T ).
The angle dependance in Eq. (1.4) is contained in the functiomns
LA Ptll(cos ¢)/sin ¢
(1.5)

T, = d[Py(cos 8)1/ do,




using the associated Legendre polynomial Pnl(cos ¢). The
coefficients a, and bn in Eq. (1.4) are functions of the
physical parameters of the problem. Letting x =ka and y = mka,
these coefficients are expressed by
! -nm¥ '(x
' o e
n n n n

(1.6)
m¥1(y) ¥ (x) = ¥o(y) ¥100)

b —

o (y) g (x) = ¥ (y) g (x)

using the Ricatti-Bessel functions and their derivatives

v () = Gt .,
?;(z) - d?n(z)/dz,
2,(2) = G H,y(2),
§a(2) = dg (2)/dz,

(1.7)

where Jn+§(z) is the Bessel function of the first kind and Hm+§ (z)
is the Hankel function of the first kind.

The solution outlined above is correct for spheres of
arbitrary size. There 1is, however, a practical 1limitation on
Mie~theory computations that arises in connection with the size

parameter ka. The expressions (l1.4) for the S,(¢) converge after

3
n = ka terms of the series so that for a gingle angle ¢ the
computing time increases as ka. Moreover, when scattering results
sre desired over a fixed range of angles, the angular resolution of

the coaputations may also have to be increased rouwghly in proportion




to ka to allow fine details to be resolved.19 The steps

(1.5)=(1.7) required to generate each term of Eq. (l.4) are somewhat
:1lo—coa=uning,2° hence for large values of the size parameter WMie
calculations involve a considerable investment in computing time.
Though they cannot dispel this basic difficulty, efficient algorithms
such as those of w1scombe19 are welcomed when the Mie theory is used
to study angular scattering features or the effects of changes in the
parameters m or ka.

It should be noted that the assumption of an incident plane
wave is not regarded as an inherent restriction on Mie results. This
agssumption 1is a common one in scattering theories since any
electromagnetic wave can be decomposed into a linear combination of
plaﬁe-wave components by Fourier analysis. Similarly, the scattered
field arising from a non-planar incident wave can be regarded as a
superposition of the scattered fields from incident plane waves. But
where such a solution is called for, the calculation of Mie results
to be superposed means yet another considerable increase in computing
time.

Exact solutions to the scattering problem are also available
for particles which are not homogeneous spheres; a number of these
are discussed by Bohren and Huffman (Ref. 18, Chap. 8). Different
shapes or other properties of the particle iatroduce additional
parameters into the theory, of course, and make the computations much
more arduous than for the Mie equations. As previocusly aentioned,

the bubbles observed in the research presented here were very nearly




spherical; hence no “improved™ exact models of the scattering were
considered necessary.

It is possible to use exact scattering solutions to study the
effects of changes in the size, shape, or refractive index of the
scatterer, and of variations in the form of the incident wavefront.
But approximate models which will account for the resulting trends
become rather attractive in view of the computational difficulties
mentioned above for exact solutions, especially when the scattering
particle is large. At the same time, however, the exact solution
allows the validity of such approximations to be tested without
introducing the uncertainties that go with experiments. The Mie
theory is a valuable aid in developing models and understanding the

physics of light scattering from bubbles.

(B) Geometrical Optics

A useful approximate solution to a given scattering problem
can often be developed based on simple geometrical optics. In this
approach the incident light 1is treated as consisting of rays whose
scattering angles and intensities follow from the laws of reflection
and refraction applied at the surface of the scattering object. The
total intensity in any direction is then obtained by summing the
intensities of 1individual scattered rays. This type of solution
neglects interference and diffraction phenomena, usually with the
assumption that these effects are small when the scatterer is large
compared to the wavelength of the light. This assumption is not

alwvays correct, but the simple model may still give some acceptably




accurate results and some useful insights. As a well-known exanmple,
the existence of the rainbow and several of its main features can be
understood from the geometrical optics of sunlight on a water drop.21
A complete theory of the rainbow must include diffraction, however,
since the naive model incorrectly ascribes to it an infinite
intensity. For most other angles the range of wavelengths in
sunlight will mask the effects of interference so that geometrical
optics can approximate the average scattered intensity. But where
diffraction is prominent, interference effects will also appear; for
water drops this includes the vicinity of the rainbow and also the
forward and backward directions.16 The rainbow exists only for
scatterers which are droplike ( m > 1 ). For bubbles ( m < 1 ) total
reflection of certain incident rays will occur, giving rise to new
diffraction effects in what 4is called the critical-angle scattering
region. The forward and backward directions also exhibit diffraction
effects for bubbles; as is the case for drops, the scatttering in
these regions is extraordinarily bright and is frequently referred to
as the “glory”. A geometrical-optics approximation wag given by
Davis22 for the scattering from a large air bubble in water. Some
aspects of this kind of model will be reviewad here with emphasis on
the regions of diffraction, where the need for a more sophisticated
approach becomes apparent.

The goal of the geometrical optics model as defined above {s

to approximate cthe scattered intensity as a function of the

scattering angle §. TPirst, it must “e deteruined which incident rays




are gcattered to a given ¢. Next, the intensity associated with each
of these rays must be found. The bubbles's cross—section in the
gcattering plane {s assumed to be circular with radius a, and its
refractive index is m. Figure 1.1 illustrates several rays directed
to the same scattering angle. It is helpful to denote each ray by a
pair of parameters (p, L), where p = the number of chords the ray
makes inside the bubble and & = the number of times the ray crosses
the optic axis (including crossings which may occur after the ray

exits the bubble). The scattering angle for a (p,%) ray is
o = 2=1)*[po, - 8 + ¥n(2 - p + £, (1.8)

where 52 =41 + (_1)1 ] and Bp and op are the positive local
angles of incidence and refractica, respectively. For any ¢, an

infinite number of (p,L) rays will exist, subject to Snmell's law,
sin® = msinp_. 1.9
p Po (1.9)

For a given value of ¢, the incidence angle ep of a (p,%) ray will
generally be found numerically from Eqs. (1.8) and (1.9). However,
exact trigonometric solutions for 9p(¢) are possible in some cases
(see Appendix B of Chapter 3).

The intensity of a (p,%) ray is reduced at each internal

reflection by a factor rjz, where

10




11

(p. )
(0,0)

(1.0)

QPTIC
AXIS

-
— )
N’ N’

Figure 1.1. Rays in the scattering plane emerging at the scattering
angle ¢ = 50°., Rays are specified by the parameters p = the number
of chords within the bubble, and £ = the number of crossings of the
optic axis,




- 8 -
. sin(® DE) ’ . tan( b DE)
1 sin(8, + o)) 2 tan(8, + o)

(1.10)

are the Fresnel reflection coefficients for the 1light polarized

_perpendicular (j = 1) and parallel (j = 2) to the plane of the

scattering. Transmissions into and out of the bubble introduce a

factor (1 - r 2,2

3

) into the scattered intensity. Also, a geometric

divergence factor DP must be included to account for the spreading

of the incident energy over a different area after the scattering.

The geometry of the problem leads to the expression
D = $sin 26 |d8 /d sin
0 tsi pl p/ ¢| /sin ¢
(see Ref. 22, Sec.IV-A). From Eqs. (1.8) and (1.9) above,
|do/de | = 2[pt - 1]
where T = dpp/d Bp = tan op/tan Gp, hence
D = $sin26_|pT - 1|-1/sin¢.
P P
By this analysis, the intensity of a (p,L) ray is found to be

L1 - o242 2 (p-1)
Tpg = (L =rpiry ™™ 2Dy,

(1.11)

(1.12)

(1.13)

(1.14)

12




normalized to the intensity from a perfectly reflecting sphere as 1in
Eq. (1.3). The total scattered intensity at ¢ according to simple

geometrical optics is then

= Ad). .
I,() (pgz) I5(®) (1.15)
The summation in Eq. (1.15) includes all possible (p,% ) rays
scattered to ¢, but ordinarily only those rays having small values of
'p are necessary, because of the factor rj2(p - in Eq. (l.l4).
The contribution from a ray with many internal reflections becomes
insignificant, except when DP becomes very large, as noted below.
There are certain angles in the scattering from bubbles which
require speclal attention, as further examination of Dp will show.
First, for axial rays (incident along the optic axis), ep =0 and ¢ =
0 or 180°, so that Eq. (1.13) is indeterminate. But its limiting
form in this case becomes Dp = [Z(pm-1 - 1)]-2; axial rays present
no particular difficulties 1f this form for DP is wused. There
will, however, also be rays scattered to angles ¢ = 0 or 180° but
with Op z 0. In such cases Dp becomes infinite. These are the
glory rays, scattered parallel to, but not coincident with, the optic
axig. Their relative intengsities may be quite large but they are not
infinite; glory scattering cannot be properly dealt with by simple
geometrical optics.
Another exceptional angle is evident in graphs of the

intensity distribution obtained in Eq. (1.15) (e.g. see Fig. 18 of

13



Ref. 22 or Fig. S of Ref. 12). A cusp occurs in the intensity
pattern at the critical scattering angle ¢E = 130° - 26c, where Bc -
arcsin m 1is the critical angle of incidence. From Eq. (1.9) the
refraction angle becomes 90° when Gp = Gc, and s0 T =%, Then the
only ray having a nonzero value for Dp is the externally reflected
(0,0) ray.Rays incident at angles > Sc are totally reflected at the
bubble's surface, coantributing to an enhanced intensity in the region
from & = 0 to ¢c. The transition to total reflection also introduces
a phase shift into the scattered ray, since the reflection
coefficients in Eq. (1.10) become imaginary when ep exceeds Bc.
Simple geometrical opties is 1inadequate for describing this
transition region. The angular derivative of the intensity, dI/dd

is predicted to become infinite at Q:, which is physically untenable,
and Eq. (1.15) does not succeed in predicting even the average
intensity for angles in the near vicinity of ¢c.

The geometrical-optics approach gives helpful insights about
the scattering properties of bubbles, and also serves to identify the
angles where a more sophisticated model is necessary. The existence
of the critical-angle scattering region 13 a consequence of the
refractive index m being less than unity for bubbles. Details of
the phenomena which appear in this region were, until recently, not
well-explored and will be the topic of Chapter 2. Glory scattering
is found to be a result of the spherical symmetry of the bubble.
Analogous effects exist in the scattering from spherical drops,w’z3

2
and also in particle scattering by central forces.‘b Chapter 3 will
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present models and meassurements of the phenomena which accompany the

forward and backward glory of bubbles.

(C) Physical Optics

The physical-optics approximations used in this research are
described in detail in the following chapters and their references.
Here it 1s worthwhile to note some general characteristics of the
method for the purpose of comparing it with the two models described
above.

Unlike simple geometrical optics, the physical-optics
approach recognizes the wave nature of light and deals with
diffraction and interference effects in the scattering. But unlike
the Mie theory, full solutions to Maxwell's equations are not
determined. Instead, the physical-optics model approximates certain
scattered wavefronts near the bubble and uses diffraction theory to
find the resulting pattera of light far away. Much of the physical
insight given by the geometrical approach 1is retained, however, in
formulating characteristics of the scattered waves. The curvature
and relative phases of wavefronts are determined geometrically, while
their amplitudes are derived using the Fresnel coefficients and
appropriate divergence factors. By considering oanly the most
significant scattered waves, the physical-optics approach can give a
fair approximation to features in the scattering while avoiding the
computational complexities of the Mie theory. The physical-optics

approximations presented here are succese: ° {(n removing the




unphysical divergences mentioned above,

into the scattering process.

and they provide insights
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CHAPTER 2

CRITICAL-ANGLE SCATTERING

2.1. Introduction

Observations of light scattered near the critical angle by
air bubbles in water reveal an interesting oscillatory structure in
the far-zone intensity. Monochromatic illumination of a single
bubble gives rise to coarse undulations of intensity, reminiscent of
an edge diffraction pattern, along with a superposed fine structure.1
With white 1light the fine structure is 1lost, while the coarse
structure is manifested as a series of colored bands; this has been
observed for a c¢ylindrical bubble in glass.2 Pulfrich3 (in 1888)
reported rainbow-like colors from a sunlit cloud of small bubbles
rising in water; his observations were made with the unaided eye 1in
the critical scattering region. The present chapter gives the first
detailed experimental investigation of structures in the scattering
from rising bubbles. Features observed in the scattering of_ lager
light by single bubbles will be compared with the predictions of
models.

Figure 2.1(a) illustrates three models of scattered intensity
conputed near the critical angle. The solid 1line in this figure
represents the Mie theory,4 which gives the exact scattering pattern
for a dielectric sphere under plane-wave illumination; the coarse and
fine structures are plainly visible. The dashed 1line {s from a

physical-optics model which has proven successful in approximating

the coarse structure in Mie results over a range of bubble sizes.6’7
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Figure 2.1. Normalized scattered intensity from a bubble
with ka = 1633 and the electric field perallel to the
scattering plane. (a) Three models: the solid curve is
the Mie theory, the dashed curve is a physical-optics
approximation, and the dotted curve is from simple
geometric optics. (b) The solid curve is experimental
data taken from the photograph in Fig. 2.6(a), and the
dashed curve is the physical-optics model.
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It applies far-~zone diffraction theory to certain scattered rays
whose amplitudes adjacent to the bubble are computed using
plane-surface reflection coefficients. The dotted 1line comes from
the naive geometric-optics model of Davis;8 it neglects the effects
of diffraction and interference, resulting in a divergent derivative
of intensity1 at the critical angle ( ¥ 82.65° for this example) and
the loss of all oscillatory structure. Figure 2.1(b) shows
experimental data plotted along with the physical-optics
approximation. Details of the experiment and normalization of
regsults will be discussed in Secs. 2.3 and 2.6, but notice here how
the data compare with the different models. There {s a dtrouog
similarity to the Mie result in the appearance of the coarse and fine
structures. The average intensity nunear the critical angle does unot
exhibit the divergent derivative predicted by simple geometric
optics, but instead decays gradually as in the physical-optics model
and Mie theory.

In this work attention has been limited to bubbles that are
much larger than the wavelength of the incident light. While the Mie
theory is certain to give the most complete description of the
scattering for a spherical bubble, it gives a0 direct insight into
the origin of observed features in the scattering, nor into the
effects of nonsphericity, a condition to be expected in dealing with
real bubbles of large size. The physical-optics approximation
elucidates the roles of certain rays in producing the coarse
structure, and a similar spproach is helpful in understanding the

fine structure as well. It may also be extended into the realm of
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nonspherical bodies (a physical-optics approximation has been applied
to large, spheroidal drop-like scatterersg).

Consider a plane wave incident upon a sphere of refractive
index m = ni/no, where the indices of the inner and outer media,
n, and n , are real, and ny < . The size parameter commounly
used i3 ka = Zﬂalkb, where a is the sphere radius and k 1is the
wavenumber for the incident light. Note that Ao’ the wavelength in
the surrounding medium (water), is related to the vacuum wavelength
Av by Ao - Av/no. Let ¢ denote the scattering angle, measured
between the direction of the incident wave propagation and that of a
scattered ray leaving the bubble. Figure 2.2 illustrates, for m =
3/4, several different rays scattered to the same angle ¢ = S50° .
These rays may be characterized by the parameters p = the number of
chords the ray makes within the bubble, and 2 = the number of times
the ray crosses the optic axis. In this chapter rays will often be

specified by their parameters (p, £). The scattering angle for a

(p,4) ray will be given by

¢ = 2(-1)3'[90p - ep + 4L -p + El)]’ (2.1)
where ez’- (1 + (-1)1)/2, and Sp and pp are the positive local angles
of incidence and refraction, respectively. All rays satisfy Snell's

law,

sinep - usinop. (2.2)
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Figure 2.2.

Rays in the scattering plane emerging at the scattering

angle ¢ = 50°. Rays are specified by the parameters p = the number
of chords within the bubble, and £ = the number of crossings of the

optic axis.




At thre critical angle of incidence Gc = arcsin m the refraction
angle becomes 90°. For the equivalent plane-interface problem, the
reflection is total when the incidence angle exceeds ec. In the
physical-optics approximation of the scattering, total reflection
occurs for 60 > ec provided ka >> 1 so that tunneling through the
bubble is negligible.

Because of this onset of total reflection, there is a
critical scattering angle ¢c = T - 26c above which no refracted £ = 0
ray may exist. But along with the externally reflected (0,0) ray
there will be many rays having % > 0 directed to angles ¢ > q:. of
these, the one coutributing the greatest intensity according to ray
optics will be the (2,1) ray,8 which suffers ounly one internal
reflection. The physical-optics model of the coarse structure makes
ugse of the (0,0) and (1,0) rays to compute the far-zone intensity in
the vicinity of ¢c (see Appendix A for a summary of the model). In

the present chapter the coarse structure observed from real bubbles

will be compared with the predictions of this model. It will also be -

shown that the interference of the (0,0) and (2,1) rays is able to
approximate the observed fine-structure period in the critical
region. In addition, the effect of the (3,1) ray on the fine
structure will be considered.

Critical-angle scattering phenomena will be present for any
scatterer with relative refractive index m < 1. An understanding of
these phenomena should be advantageous 1in the design of optical
instruments to detect bubbles, size them, or discriminate them from

particulate. Applications may include wmeasurements of microbubble
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populations in the sea,lo the photography of hydrogen tracer bubbles

for hydrodynamics research, laser-Doppler velocimetry of bubbles

carried by liquids,u and the detection of bubbles in glass.12 Many

of these results will also pertain to the analogous problem in
acoustical scattering.13

2.2. Calculation of the Fine Structure Period

When a plane wave 1is incident upon a bubble, the scattered
rays will have curved wavefronts, as If they were emerging from
source points in the scattering plane. To locate the virtual source
point, consider a (p,%) ray scattered to an angle ¢, and a similar
ray in the same plane scattered to ¢'; the backward extrapolations of
these two rays will intersect. The virtual source point Fp is
defined by this intersection 1in the limit as ¢' + & . Figure 2.3
shows the virtual sources Fo and Fz for the (0,0) and (2,1) rays.
Let ap be the distance from Fp to an exit plane which is tangent to

the bubble and normal to the direction of scattering. It is shown in

Appendix B that
ap = afl + #(pt - 1)'1cos6p], 2.3)

with T = tan pp/tan ep. Because 9 and p change with ¢, the location
of each Fp varies with the scattering angle. To find the angular
period of interference A¢d for two scattered rays while including the
movement of their virtual sources, it is helpful to consider their

relative phases.
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Figure 2.3. Rays used to model the fine-structure interference
period., Points Fg and Fj are the virtual source locations,
respectively, of the rays labeled 0 and 2 in the limit as the

dashed 0' and 2' rays approach them, and ap is the distance from
Fp to the exit plane,




Letting the phase of the incident plane wave be zero at the
entrance plane tangent to the bubble and normal to the wave's
direction, the phase at the exit plane may be specified for any (p,l)
ray. First, there 1s a phase delay nb due to propagation through the

media from the entrance plane to the exit plane, given by

= - 204
np(ep,pp) 2ka (1 cosep+pmcosop). ( )

where ep and pp are the incidence and refraction angles of the (p, g )

ray. There will also be a phase advance 6j associated with total
reflection of the (0,0) ray; for Q) > Qc’ the Fresnel reflection

coefficients givela

tan%dj = m2(1°j)(sin260 - n? %/cose (2.5)

0’
where the subscript j 1s assigned the value 1 when the {incident
electric vector i3 entirely perpendicular to the scattering plane and
the value 2 when entirely parallel. There also occurs a phase
advance of 7/2 whenever a ray crosses a focal point.15 The two types
of focal points present in the scattering from bubbles can be seen in
Fig. 2.3. One focus occurs where adjacent rays (such as the nearby
two-chord rays labeled 2 and 2') cross in the scattering plane; a ray
with p > 0 chords experiences p = 1 such crossings with adjacent
rays. The point where a ray crosses the optic axis is also a focus

since similar rays in other scattering planes cross the axis at the
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same point. Thus, a phase advance of (p - 1 +2)W2 is incurred by
a (p,%) ray (with p > 0) due to passage through focal points.

For the (0,0) and (2,1) rays scattered to angle ¢, the phase
difference at the exit plane will be [nz(ez,pz) -] - [no(eo,oo)
Gj(eo)]. For a similar pair of rays scattered to ¢' = ¢ - Ad, the
phase difference will be identical in form but with all angles
primed. Now, if one period of the far-zone interference pattern of

the (0,0) and (2,1) rays occurs from ¢ to ¢', the phase difference

must change by 2mw. The coundition for one interference period in the

angular spread A¢ becomes

2m = 2ka{[cos 8,(1 - cosAB,) - sin B, sinA8,](2J - 1)
. . ]
+ cos 60(1 - cos AGO) - sin 60 sin Aeo} + <SJ.(60) - GJ.(GO),

where J = tan( AQZ/Z)/tan( AGZ/Z), Aep = ep - ep" and A62 = 62 -

62'. To express this condition in terms of Ad, the expressioan for §

may be approximated in the vicinity of ec by

b

54(8g) » 22¢1=3) (g ran ec)*(e0 - ec)* (2.7)

for 60 2 Gc, and by Gj = 0 for 60 < ec. From Eq. (2.1), Ad = ZAQZ -
4A02 = -2A60. Making these substitutions in Eq. (2.6) and retaining
terms down to order Ad give a quadratic equation in (A4A¢ )i; the
resulting fine-structure angular period (in radians) is

3/2

A¢ - XO/BZ - O[(XO/BZ) ]' (2.8)
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where 82 = a(gin eo + gin 32) is the sum of the impact parameters
of the two rays and also their lateral spacing in the exit plane.

To a first approximation the fine-satructure period is
equivalent to the interference period of two point sources separated

/2

by a distance B The 0[()5/32)3 ] term comes from including the

2.
reflection phase shift of the (0,0) ray when 89 > B> while terms
attributable to movement of the virtual sources of the scattered rays

are of the order (AO/BZ)2 and smaller. In Sec. 2.5 of this chapter

the first-term approximation of Eq. (2.8),

86 = A /B, (2.9)

is shown to give a fair description of the fine-structure period
observed from real Dbubbles. This approximation was previously
obtained using elementary methods.7’l3

2.3. Experimental Methods

The experiments that are described in this section provided
absolute—angle, relative intensity measurements of the far-zone
scattering from single bubbles in the critical angle region. To
minimize the effects of bubble anonsphericity, the scattering plane
was chosen to be horizontal. The chamber in which the scattering
took place was fashioned from an aluminum block with portholes, and
wag fllled with distilled water. The incident 1light, from a He-Ne
laser, entered the chamber through a front window, and the scattering
was photographed by a camera through a side window. The camera lens

was focused at infinity so that the far-zone scattering pattern was
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recorded. Bubbles were injected by a syringe and a steel needle
which entered through the floor of the chamber. The scattering was
photographed either with the bubble in a pendant form (attached to
the tip of the needle), or else rising freely through the water.
Bubble diameters were measured using a microscope situated in air
above the top opening of the scattering chamber. Rising bubbles were
trapped by a glass slide across this opening so their sizes could be
measured. From microdensitometer scans of negatives, relative
intensity profiles could be derived for the scattering by bubbles.
Since the camera was in air, refraction at the viewing window
had to be taken into account in determining the absolute scattering
angles represented in the photographs. Figure 2.4 shows a diagram of
the apparatus as it was used ¢to perform the angle calibration. A
flat glass reflector was suspended vertically through the top opening
of the water-filled chamber. By turning the reflector about a
vertical axis, the incident laser beam could be directed to angles in
the horizontal plane. A goniometer attached to the axis of this
rotatable reflector allowed 1its orientation to be measured. To
relate the goniometer readings to scattering angles, the setting
which gave direct backscattering ( ¢= 180°) was established using the
optical system shown in Fig. 2.4. The backscattering setting was
determined by focusing light returned by the rotatable reflector to
the same spot on the screen as 1light from the beamsplitter aad
retroreflecting (corner-cube) prism. The beam could then be directed
into the camera at known scattering angles. A wultiple-exposure

photograph of the beam at several angles provided data relating




Figure 2.4(a) Top-view diagram of apparatus set up for angle
calibration. To observe bubble scattering the rotatable
reflector was removed and bubbles were injected by a needle
entering the bottom of the aluminum block. A microscope above
the top opening was used to measure bubbles. The screen (used
during angle calibration of the rotatable reflector) is at the
optical-transform plane of the lens. The systematic uncertainty
in the angle calibration was < 0.02°,

Figure 2.4(b) Photograph of the experimental apparatus. The
numbered devices are: (1) front end of laser, (2) beam expander,
(3) polarization rotator, (4) mirror, (5) beam splitter, (6)
retroreflecting prism, (7) lens, (8) scattering chamber, (9)
camera, (10) mechanism of angle-calibration goniometer and
rotatable reflector.
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points across the camera's field of view to scattering angles ¢1.
Typically, about 15 of these calibration points were taken across a
negative, and each roll of film contained one to three such frames of
angle information.

The glass rotatable reflector was removed from the chanmber
when scattering from bubbles was to be observed. The inner walls of
the scattering chamber had been blackened to absorb stray light. To
further reduce the background intensity, particulate larger than
0.2-um diameter were filtered from the water. The incident beam,
from a 15 mW He-Ne 1laser, had a Gaussian intensity profile
proportional to exp(-rzldz) where g= 2.8 mm. The beam was made to
be highly collimated in the region of the scattering wusing a
parallel-plate shearing interferometer.16 A polarization rotator
(back=-to-back Fresnel rhombs) allowed the plane of the beam's
polarization to be gelected; the incident electric field was oriented
either (a) perpendicular to the plane of scattering, corresponding to
jJ =1 in the preceding analysis, or (b) parallel to the scattering
plane, corresponding to j = 2. The central region of the incident
beam is expected to closely approximate a plane wave for a scatterer
whose radius {s small compared to the bean radius.17 To place
pendant bubbles in the center of the beam, a blackened needle was
nade to stand vertically with its tip near the beam axis. Rising
bubbles were injected at the bottom of a glass tube (0.8-cm {.d.) and
rose into the scattering chamber where they passed through the
central part of the beam. A path length of ~ 9 cm helped dampen

oscillations of the moving bubbles. The viewing window, optically
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polished fused quartz, was oriented so that normal incidence was for
light scattered horizontally at ¢ =77°., Por most of the photography
the lens used had an effective focal length of 85 mm and the viewed
angular range was limited to <~ 17°; other lenses used had effective
focal lengths of 50 and 135 mm. Only one lens was used for each roll
of film, since interchanging lenses necessitated a new angle
calibration as well.

Obtaining properly exposed negatives turned out to be simpler
for rising bubbles than for pendant ones. Each pendant bubble was
photographed at several shutter speeds for both polarizations of the
incident beam. Best detail was usually obtained when the camera's
built-in light meter indicated a slight underexposure; the times
varied from ~ 1 second for small bubbles ( ~ O.l-mm radius) to 1/80
second for large bubbles ( ~ l-mm radius). With rising bubbles this
procedure was impossible since only a single photograph could be
taken for each bubble. It was found, however, that by simply holding
the camera shutter open as the bubble traversed the beam, acceptable
expogures were obtained despite the wide range of bubble sizes
observed. To understand this fortuitous result, consider a bubble
whose radius, when spherical, is a. 1Its terminal velocity is found

18,19 .5 42 for a £ 0.7 mm, so

such a bubble traverses the beam 1in a time interval t « a_z. But

to be approximately proportional

the scattered intensicy I. from the bubble, based on geometrical
connidora:iont,s is also roughly proportional to az. Since the
exposure received by the film depends on the product I’t, it will be

spproximately independent of the bubble radius for small enough a




values. For a 2 0.7 mn the terminal velocity begins to decrease
from the az dependence, resulting 1in increased exposure, so an

appropriate combination of beam intensity and film sensitivity may be
expected to yield adequate exposures up to some bubble size limit.
The film used in the experiments was Tri-X (400 ASA). Rising bubbles
were produced ranging in size from «~ 0.026- to 0.8l-mm radius, and
acceptable negatives were obtained throughout this range. For very
small bubbles, the background scattering often became significant
during the long exposure times required. In such cases photographs
were also taken with no bubbles present, to allow the background
intengity to be subtracted from the scattering measurements.

The absolute intensity of scattered light was not determined
in the experiments. Relative intensity values were important,
however, for comparing coarse—sgstructure Tresults with models.
Negatives were scanned with a microdensitometer to obtain their
transmittance profiles, and from the transmittance T a value for
the relative intensity Ir was inferred. To make this coaversion
from T ¢to Ir possible, a response curve for each film was
determined. A relationship exists between the photographic density
D=<=1o0g T of a negative and the exposure E which it received,
where E = Iac, with Ia the absolute intengity and t the time of
exposure. Film response is usually shown by the H-D curve,zo where
D 1is plotted vs 1log E. In the experiments several frames on each
film were exposed to a constant radiant flux (the laser beam diffused

by a ground glass screen) for a set of time intervals t The

i.
from which the H-D curve was

negatives gave a set of densities Di’
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obtained by setting log E = log t + k, with k = 1log Ia an
undeteruined constant. A cubic equation was found to provide a good
fit to this curve. Then, for other negatives on the same film,z1
each D (hence each T) value had a corresponding 1log E, obtainable
to within the unknown additive constant k. Since only relative
intensities were of interest, it was sufficient to set I = E/t,
where the normalization factor K = lOk was a free parameter. The
procedure for selecting values of K 1is described in Sec. 2.6. The
exposure time ¢t could be treated as part of the scale factor X,
except when background intensities were to be subtracted. In such
cagses, t was needed for photographs of the bubble scattering and of
the background 1light to permit subtraction of a properly scaled
background intensity. An electronic timer connected to the shutter
synchronization terminal of the camera megsured t for each
photograph.

The transmittance profile of each negative was obtained as a
function of absolute scattering angle ¢. As mentioned previously,
one or more negatives on each film contained é gset of exposed dots
repre;enting known angles ¢i. Microdensitometer scans of these
negatives gave a series of sharp transmittance minima whose positions
x, were measured. A cubic polynomial for ¢ (x) could then be
obtained by least-squares fitting. Sprocket-hole edges on the film
provided a reference for the x = 0 poasition corresponding to the
edge of a frame. A small, regular shift was detected in the

positions of the sgprocket holes relative to the camera's fileld of

view, accumulating at a rate of ~9 um/frame. This was discovered by

36




comparing the results of the fitted formula ¢(x1) with the actual
angle data (&(xi) for films with more than one angle calibration
frame. It became evident that the difference ¢(xi) - ¢1(x£) had a
nearly linear dependence on the frame number relative to the
beginning of the roll. This shift was accounted for in the final
conversion of x values into scattering angles. The camera, a Nikon
F2, was mounted in such a way as to inhibit angular motion which
might otherwige have occurred during the (motorized) film
advancement. This angular shift appeared to be due to the filling of
the camera's take-up reel.

2.4. Bubble Shapes

The physical-optics model of the coarse structure (Appendix
A) assumes the bubble surface to be spherical at the scattering
plane. The degree of nonsphericity of real bubbles is important,
therefore, in assessing the applicability of this model, and of Mie
theory as well. The scattering observed in these experiments was
from near tﬁe plane of the bubble's equator; the equatorial plane of
a bubble 1is defined here as the horizontal plane in which 1its
diameter is a maximum. Let X denote the aspect ratio of a vertically
axisymmetric bubble: the ratio of 1its horizontal and vertical
dimensions. From measurements of the equatorial diameter, values of
X may be estimated for the pendant and rising bubbles observed.

For pendant bubbles X = ap/ z, where 2ap is the equatorial
diameter and z 1is the distance from the plane of the equator to the
top of the bubble (the bottom of the bubble is attached to a needle).

Numerical analysiszz for the shapes of stationary bubbles allows =z
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to be determined 1if ap is known. For the largest pendant bubble
observed, which had ap = 0.981 mm, an aspect ratio of X = 0.969 1is
predicted. For smaller values of ap, X approaches unity. A surface
tension for water of 72.7 dyn/cm was assumed in using Hartland and

22 tables.

Hartley's

Rising bubbles were trapped beneath a flat glass slide to be
measured; from the equatorial radius a, of the sessile (trapped)
bubble, the aspect ratio of the same bubble when rising may be
estimated. For the largest sessile bubble observed, which had a, =
0.814 mm, tabulated values22 indicate a sphere of the same volume has
radius a, = 0.803 mm. Then, from the shape measurements made by
Siemes23 for air bubbles rising in water, an aspect ratio of X =
1.056 may be interpolated for the moving bubble. Again, for smaller
bubbles X tends toward wunity. The equatorial region of observed
pendant and rising bubbles should, by this analysis, present a highly
spherical scattering surface.

The fine structure model in Sec. 2.2 assumes a bubble with a
circular cross—-section in the scattering plane; in testing this model
the equatorial radii of bubbles were needed. The rising bhubble's
radius a, may differ somewhat from that of the sessile bubble 3.
To estimate the difference, consider again the rising bubble with X =
1.056 whose volume equals that of a sphere with radius a = 0.303

mm. Assuming an oblate spheroidal shapeza for the rising bubble

gives a = avx1/3 = 0,818 mm, which differs from the sessile radius

a, = 0.814 mm by only 0.5%. This suggests that the error in

approximating a, by a is negligible. The above procedure may
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slightly underestimate the ratio ar/as since the water used in
Siemes' measurements may have been less pure than ours. For rising
bubbles Y is known to increase with water purity for the size range
under consideration.23’26

Rising bubbles were photographed ~ 2 cm below the level where
their size was measured. The volume change due to this height
difference may be estimated by assuming the bubble to be an ideal gas
in equilibrium with the water. The bubble radius should increase by

a factor (1 + AP/P)1/3, where the change in pressure AP = 196 Pa

corresponds to a 2~cm column of water, and P = 1 atm = 105 Pa; the
small difference in heights makes this effect negligible.

2.5. Fine Structure in the Scattering

Fine-structure intensity oscillations in the scattering from
bubbles may best be obgerved near the critical angle QE. Coarse
oscillations occur for angles of < ¢c, as 1is evident in Fig. 2.1,
while as ¢ continues to increase the average intensity gradually
decays. In the near vicinity of ¢c’ therefore, moderately intense
fine~structure lines are visible without the complications of a
superposed coarse structure. For ¢ approaching 180° the intensity
increases again as "glory” scattering phenomena begin to appear; the
structures associated with this region are described in Chapter 4.
In the present section, measured spacings of fine-structure lines
near <% will be compared with the prediction of Eq. (2.9).

Figure 2.5 shows the experimental fine-structure frequency
(M’)-1 plotted versus the measured equatorial radius for 120 rising

bubbles and 23 pendant bubbles (note that for rising bubbles the
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Figure 2.5, Measurements and model for the angular frequency
of fine-structure lines. Data are displayed for 120 rising
and 23 pendant bubbles, whose radii ag and a,, respectively,
were measured by microscope. Mie results were obtained from
high~resolution computations.
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measured radius 1is a,, as discussed in Sec. 2.4). The average
angular separation of fine—structure lines near ¢c was determined
from microdengitometer scans of negatives. The region of measurement
typically had a width of ~2.5°.

The straight lines in Fig. 2.5 represent Eq. (2.9) adapted to
rising or pendant bubbles. The values used for 82 and Xo are based
on the average value of the relative (air-water) refractive index m
in the experiments. The temperature was wmeasured during the
experiments, so m could be calculat:ed25 for the laser wavelength in
air ka = 6328 Z. Deviations from the average value of m = 0,.75098
were negligible, so Ao =a = 4752 Z for all the data. Also froum
m, the critical angle ¢c = 82.649° {s obtained. The corresponding
incidence angles of the (0,0) and (2,1) rays are 90 = 48.675° and 62
= 27.646°, so the sum of their impact parameters is 82 = 1,2150a,
where a 1is taken to be ag or ap, for rising or pendant bubbles,
respectively.

The results displayed in Fig. 2.5 compare favorably with the
fine-structure model of Sec. 2.2. The lines representing Eq. (2.9)

1

have a slope of 44.625 deg- um-l. Linear least-squares fits to the

experimental data, constrained to pass through the origin, have

slopes of 4k.444 + 0.002 deg > mm~! for the rising bubbles and 45.040

t 0.035 deg-1 mm-l for the pendant bubbles. In addition, six
fine-structure measurements taken from Mie theory calculatfons near
¢c for different bubble gsizes have been included in Fig. 2.5; a
linear fit to these results and passing through the ori{gin has a

slope of 44.625 t 0.014 deg-l mm-l, in agreement with the
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aforementioned result of Eq. (2.9). The syambols used to plot the
data in Fig. 2.5 indicate the polarization of the incident electric
field relative to the scattering plane. The effect of polarization
on the fine-structure frequency is too small to be detected in these
experiments, as expected from Eq. (2.8) for bubbles of the size range
considered here. ‘
Consideration of the model leading to Eq. (2.9) suggests that
AP could be best predicted for the rising bubbles by taking 32 =
1.2150 a where a, is the actual radius while rising as discussed
in Sec. 2.4. Unfortunately a could not be directly measured;
however, the analysis of shapes in Sec. 2.4 1indicates that the
differences between a, and a, should be negligible for the

observed sizes. The agreement with measured Ad found by taking 32 =

1.2150 a, appears to confirm that differences between a and a_
were small for the distilled water used in the present experiment.
Figure 2.5 shows four examples of scattering observed near
the critical angle from rising bubbles of different sizes: these are
positive reproductions of photographs. The fine structure is evident
in each case as closely spaced vertical lines. For Figs. 2.6(a)-(d),
the respective fine-structure periods Ad in degrees are: 0.1816,
n.0577, 0.0386, and 0.4866. From Eq. (2.9) the rising bubble radius
a, may be calculated. The respective a, (and sessile radii as) in
mm are: 0.1235 (0.1171), 0.3890 (0.3880), 0.5808 (0.5817), and

0.N461 (0.0436). The uncertainties associated with a, measurements

are larger than those for a, values derived from A¢ measurements,
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(@)

(b)

(c)

(d)

70° 75° 80° %

Figure 2.6, Photographs of far-zone scattering from rising bubbles in
water. Each photograph is aligned with the bottom scale showing the
scattering angle ¢. The bubble radii and incident polarizations are
(a) ap = 0,1235 om, j = 2; (b) 0.3890 mm, j = 23 (c) 0.,5808 am, j = 1;
(d) 0.0461 mm, j = 1. The corresponding intensity profiles are shown
in Figs. 2.1(b) and 2.7-2.9.
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due to difficulties in identifying the bubble edges with a
microscope.

2.6. Coarse Structure in the Scattering

Diffraction phenomena are prominent in the critical-angle
scattering regiou of bubbles. Coarse oscillations of the scattered
intengity are present for ¢ < ¢c’ followed by a smooth decay of
intensity as ¢ continues to increase. Figures 2.6(a)-(c) each show
several coarse-structure oscillations, the bfoad, vertical light and
dark bands with superposed fine-structure 1lines; they also show the
gradual decline of average intensity at higher ¢. Figure 2.6(d),
because of the smallness of the bubble, contains only one faint
coarse~structure band, with an intengity peak near 75°. Simple
geometric optics,8 neglecting diffraction effects, is unsuccessful in
the critical region, predicting a cusp in the scattered intensity at
¢c’ as 1llustrated in Fig. 2.1(a). The physical-optics model
described in Appendix A is able to approximate the coarse structure
in Mie results for a range of bubble sizes.6’7 In this section the
scattering observed from real bubbles will be compared with this
physical-optics model.

Figures 2.1(b) and 2.7-2.10 show experimental data for the
intensity as a function of the scattering angle for rising bdubbles of
different sizes. In each graph the physical-optics model result for
a bubble with the same radius is shown by a dashed curve. To coumpute
the model, the size parameter ka = 2 ﬂa/ko is used, where a is
taken to be the equatorial radius a of the rising bubble, a

quantity which was not directly measurable. Sections 2.4 and 2.5
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Figure 2.7. Normalized scattered intensity from a bubble with ka = 5144
and the electric field parallel to the scattering plane (j = 2 scattering).
The solid curve is data taken from the photograph in Fig. 2.6(b), and the
dashed line is the physical-optics model.
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Figure 2.,8. Like Fig. 2.7 but with ka = 7680, j = 1, and the solid
curve corresponding to the photograph in Fig. 2.6(c).
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Figure 2.9. The j = 1 scattered intensity for ka = 612, The solid
curve is data from the photograph in Fig. 2.6(d), the dotted curve is the
Mie result, and the dashed curve is the physical-optics model.




2. 48

(a)

I,
iimm
\N
a. e J - ! . . . | IR
83. 73. 77. 81. 8S.
2.
(b)
|
.l
I, N
L
)

a. — ; ‘
8s. 7 3. 77. 81. ss.
SCATTERING ANGLE (degd

Figure 2,10. Normalized scattered intensity for ka of
(a) 2748 and (b) 9699. These ka were determined from
the respective radii of 0.2078 and 0.7335 mm which were
inferred from the measured fine-structure spacing. The
solid curves are measurements; in (b) they were smoothed
to remove the fine structure., The dashed curve is the
physical-optics approximation.




suggest that the sessile bubble radius a, closely approximates a,
in these experiments; however, for computing the physical-optics
model, a was derived from measurements of the fine-structure
spacing using Bq. (2.9). Justifications for this procedure were
the following: (a) Uncertainties in the derived a, are smaller
than in the measured ag, due to the difficulty of locating bubble
edges by microscope. (b) The results of Sec. 2.5 confirm that ZEq.
(2.9) models the relationship of Ad to the bubble radius. {c¢) Wwhen
this procedure 1is used, the model of the coarse structure shows
substantial agreement with the experimental data.

In the present chapter the subsceript } denotes the
polarization of the incident electric vector relative to the
scattering plane; J=1 or2 for the perpendicular or parallel

case, regspectively. The model intengity is given by

IJ. = |sj|2(2/ka)2, (2.10)

where the scattering amplitudes Sj’ defined 1in Appendix A, are

15,26

expressed in units commonly used in Mie theory. The

normalization of the model is chosen so that IJ(¢) = 1 represents
the geometric-optics result for a perfectly reflecting sphere8 of
radius a. The actual intensity at a distance R >> a from the
center of the bubble is the incident intensity multiplied by
Ij(aIZR)Z. As discussed in Sec. 2.3, experimental scattering results

taken from photographs were in the form of relative intensity

profiles Ir(°)' with a free parameter X to be used as a scale
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factor for Ir' For each of the graphs in Figs. 2.1(b) and 2.7-2.10,
the constant XK was selected to optimize agreement with Eq. (2.10).
Pigures 2.1(b) and 2.7-2.9 contain the intensity profiles
corresponding to the photographs 1n Figs. 2.6(a)~(d), respectively;
from fine-structure measurements, their respective bubble size
parameters ka are: 1633 % 17, 5144 * 17, 7680 * 28, and 6$12.0
2.7. Additional intensity profiles are shown in Fig. 2.10. In each
case the physical-optics approximation demonstrates close agreement
with the data in the angular locations of coarse maxima and minima.
Some differences between the data and the model are apparent in the
relative intensities of coarse oscillations. These discrepancies may
be due in part to the simplicity of the model, which 1incorporates
only two scattered rays. The model is not an asymptotic
2,5,13

th
e IJ

for ¢ > ¢c, as 1is evident in Figs. 2.7, 2.8, and 2.10(b). The

approximation; as ka becomes large it underestimates

anplitude of coargse-sgtructure oscillations 1s observed to be greatest

5,6

when j= 2, as the physical-optics model predicts, and the
fine-structure amplitudes are greatest when j= 1. - No figures
display both Ij for the same ka, but the effect of j on the
coarse and fine amplitudes caan be appreciated by comparing Figs. 2.7
and 2.8.

Figures 2.1(b) and 2.7-2.1) are representative examples of
the scattering data collected from real bubbles. Graphs showing
similar agreement between the data and the physical-optics model were

also obtained for bubbles with the following size parameters ka

(and radii a8 in mm): 1364 (0.1031), 1635 (0.1237), 1780 (0.1346),

50




2117 (0.1601), 3001 (0.2269), 5899 (0.4461), 6600 (0.4992), 6867
(0.5193), 7428 (0.5618), 7847 (0.5935), 8995 (0.6803), and 10 742
(0.8124). These are presented as supplemental examples in Appendix
c.

2.7. Fine-Structure Contrast Modulations

Modulations in the coantrast of the fine structure were
usually visible 1in i = 1 scattering from bubbles. These
modulations give some fine—gtructure lines a blurred appearance in
photographs; two examples are conspicuous in Fig. 2.6(d) at angles of
~ 74.8 and 77.8°. Contrast modulations were also visible in
previously published ifie computations: Fig. 3(a) of Ref. 6 and Fig.
4 of Ref. 7. In the present section the angular period of such
modulations will be aﬁproximated, and applications to bubble sizing
will be described.

Consider a bubble with a circular cross—section of radius a
in the scattering plane; Fig. 2.2 illustrates some of the scattered
rays. The far-zone angular period of interference of two rays may he
derived by the method outlined in.Sec. 2.2. The interference of the
(0,0) and (3,1) rays has an angular period of ~ )‘O/B3 radians, where
33 = a(sin So + sin 63) is the distance separating the two rays as
they. enter and exit the bubble. From geometric-optics
considerations, the intensity of the (3,1) ray taken alone s
expected to be only about one-tenth that of the (2,1) ray in the
critical-angle region.8 Superposing the interference pattern of the

(0,0) and (3,1) rays onto the fine-structure pattern of the (0,0) and
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(2,1) rays should result in contrast modulations with an approximate

angular period (in radians) given by

In the present experiments the relative refractive index was
m = 0.75098, so that ¢E = 82.649° and Ab = 4752 Z. The incidence
angles of the (2,1) and (3,1) rays scattered to ¢c are 92 = 27.646°
- 3, = 0.1844a. Comparing

3 2
Eqs. (2.9) and (2.11) for this case {ndicates there should be =~ 6.5

and 63 = 40.420°, respectively, so B

fine-gstructure oscillations within a period (A¢)M. The two nodes in
the fine-structure data of Fig. 2.9 are spaced 1in accordance with
this prediction. In addition to Fig. 2.6(d), coutrast modulations
are visible in the photograph in Fig. 2.6(c), and in the intensity
profiles in Figs. 2.8 and 2.10(a); these may be used to estimate the
bubble size. There are 18 modulation cycles counted between the
angles of 80.13 and 84.77° in Fig. 2.8, giving (Acb)M = 0.255°. From
Eq. (2.11) the bubble radius in the scattering plane should be =~
0.5790 mm; this compares favorably with the value of 0.5808 mm
obtained from A¢ in Sec. V.

It is possible to determine bubble sizes with high precision
by ficting observed intensity profiles with Mie theory results. 1In
Fig. 2.9 the dotted curve shows Mie results computed for a bubble
with size parameter ka = 612.0; for this case, the close conformity
to the data is lost 1f ka is changed in excess of +1 in the Mie

calculation. The accuracy of the angle calibration for the data
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places an wupper limit oan the size for which this fine-structure
fitting 1s reliable. The alignment of contrast modulations in Mie
results with thoge in the data permits precise ka determinations up
to a larger size limit. Such a procedure may become very difficult,

however, 1if ka 1is not already known to within £ 20. The reason for

this is as follows. From Eq. (2.3), the propagation phase difference

of the (2,1) and (3,1) rays is n3 - n2 = 2ka (3m cos pq - cos 63 -
2m cos 02 + cos 62); for scattering at ¢c with m = 0.75098 this
hecones n3 - n, = 0.161 ka. If ka changes by 39, the phase
difference n3 - nb changes by 21, causing the coatrast modulatioas at
oc to pass through one modulation cycle. If the original uncertainty
in ka exceeds ~ 20, modulation features in Mie results may be
misaligned with those in the data by more than half a period (A@)M.

2.8. Discussion

The physical-optics approximation properly locates the angles
of coarse maxima and minima. However, the data obtained for large

bubbles confirm that this model underestimates the scattered flux

into ¢ 2 ¢c’ especially for polarization j= 1. Previous

comparisons of Mie computacions6’7'12'27

with the approximation show
that this discrepancy should depend not only ou &ka and j, but also
on the refractive index a. For example, the mean intensity at ¢c
(neglecting fine structure) 1is well approximated for bubbles in
wnter6 having ka = 100; but for vapor bubbles in liquid helium (m =
1/1.03, ¢c = 27.7°) it is necessary to increase ka to roughly 1000

to obtain similar agreemen:.27
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The scattering measurements are relevant to optical
techniques for detecting, sizing, and counting bubbles in water. For
example, scattering at = 90° 1s sometimes used for sizing.lo The
present experiments suggest that when bubbles are small (so that it
is desirable to maximize the detected flux) it would be preferable to
detect scattering with ¢ somewhat less than & = 32.7°.

Each of the three types of structure described in Secs.
2.5-2.7 can be useful in the sizing of bubbles. The bubble radius a
in the scattering plane is approximately related to the
fine-structure period A¢ by Eq. (2.9) and to the modulation period
(Ad;)M by Eq. (2.11). For large bubbles the fine structure may be
poorly resolved making A¢p difficult to obtain, but (Ath)M may still be
measurable. For a wide range of sizes, use may be made of
coarse-structure oscillations of the model, which have an angular
quasi-period rough1y5-7 < ( Aola)% rad. Bubbles may be sized by
matching coarse maxima and ninima of the data and model, as {n Figs.
2.7, 2.8, and 2.10(Db). Such a method 1is possible even without a
precise angle calibration for the data, since the coarse peaks near
¢c provide an unmistakable reference angle. For small sizes coarse
oscillations are more difficult to use since the range of angles
obgerved must be large, For small bubbles it is possible to obtain
high-precision sizing by the alignment of fine-structure peaks or
modulations in Mie results with corresponding features in the data,
as illustrated in Fig. 2.9.

For scattering from a polydispersion of bubbles it {s

expected that the fine gtructure would be obscured; the coarse
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structure, however, is less sensitive to bubble size and should be
retained if the size distribution is not too broad. Some photographs
{aot shown here) were taken of scattering from more than one bubble,

and these show such effects.
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APPENDIX A

APPROXIMATION FOR THE SCATTERING

The main purpose of this appendix is to summarize results of

L5 for the scattering amplitudes

the physical-optics approximation
and intensity in the notation of the present paper. Most
descriptions of the scattering amplitude of spheres are phase
referenced to the point in space corresponding to the center of the
sphere (see e.g. Ref. 15). That phase reference was not used 1in
Refs. 1 and 5; however, in the present statement of the phase [Egs.
(A2) and (A6)] it will be used. The final approximacion for the

6,7,12 of

intensity is identical to that used in previous comparisons
the model with Mie theory (for ka from 25 to 10 000) since the
intensity does not depend on the phase reference. Soume limitations
of this approximation are discussed in Sec. 2.6.

The incident wave's E~field at the point correspoanding to the
center of the sphere (in the absence of the sphere) is defined to be
the real part of Ei exp(~iwt). We counsider only cases where Ei is
either entirely perpendicular to the scattering plane (corresponding
to the assignment j = 1) or entirely parallel to it (j = 2), since
these were the polarizations used in the experiments and the géneral
case may be obtained by superposition. The far-zone scattered-field

amplitudes may be written as £, = iE (kR)™ 'S, exp(ikR - iwt).
3 1
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Listed below are the approximate Sj which may be inserted into Eq.

(2.10) to give normalized intensities I, according to the two-term

b
physical-optics model. Let SJ = sO,j + Sl,.1 where sO,j and 31,3

_ are amplitudes associated with the (p,.) = (0,0) and (p,L) = (1,0)

waves, respectively. It is conveanient to introduce ij where
. B - i N i o] e Al
SpJ élkthJ exp(lYpJ) (Al)
The approximations for the reflected wave becomes
YOj = -Zkacoseo - H(cbc - ¢)6j, (A2)
Foy = [F() = FG==)] 27F exp(-tn/a), (43)
v 2
F(w) = [ exp(}imz®) dz, (a4)
0
- ¥ -
w [(a/lo)cosec] sin(¢c ®), (AS)

where from Eq. (2.1), 60 = (m-¢)/2. In (A2), §j is the reflection

phase shift given by Eq. (2.5) and H 1is a step function giving H =
1 for ¢'S-¢c and H= 0 for ¢ > ¢c. An approximation to the

Fresnel integral F(w) which 1s useful for computation has been

5,13

previously cited. To appreciate the phase factors in (Al) and

(A3) note that FoJ +1 ag w+ o,
For the single-chord transmitted wave the approximations

gives
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Ylj = 2ka(mcosp1 - cosel). (A6)
Py = 21 - ) 0 o - O, (A7)
sin(p, ~ 8,) tan(0, - p
r, = SR i Uil U PP
Sin(pl + el) 2 tan(el + pl)
D = *sin 26111 - (m'lcos 8,/cos pl)l-]'/ sin ¢. (A9)

For ¢ > <pc, Flj = 0; for ¢ £ @c, the angle of incidence is given

tan, = msin 4 (1 - mcos%@)-l (A10)

and the refraction angle by o, = arcsin(m.l sin el).

It should be noted that the sign of LY in Eq.(A8) differs from
that 1in similar expressions for the TFresnel coefficients in
Eq.(1.10). This 1s because the particular sign coanvention used here

follows that of the original derivation (Ref.5) and was chosen to

give a concise expression for the scattered fields.
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APPENDIX B:

VIRTUAL SOURCE LOCATIONS

This appendix outlines a novel method for locating the
virtual source point of a scattered ray. Counsider two coplanar (p,%)
rays, i and E', leaving the gpherical bubble at scattering angles ¢
and ¢', respectively; the backward extrapolations of E and i’
will intersect at some point. The virtual source point F_ for ray
R 1s at this intersection in the limit &' + ¢. To locate Fp, let
an x-y coordinate system lie in the scattering plane as shown in Fig.
B.l;the origin 0 1is at the bhubble's center and the x-axis is along
the direction of the incident 1light. The equation of the line
containing a scattered ray can be expressed most simply by its normal

form. For ray 'i this 1is
xcos(d + 1/2) + ysin(é + 1/2) = a(-1)¥sin 0, (1)

where Sp is the angle of incidence (and departure) at the bubbles's
surface. For E” an identical expression holds, except that ¢ and
Sp are replaced by ¢' and Gp'. These lines intersect at the point

F' whose coordinates (x',y') are given by
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x' = a(-l)"(sin 9; cos ¢ - sin ep cos d')/sin(o - ¢'),
(B2)

y' = a(-l)"’sin Gp sec ¢ + x' tan¢.

The coordinates (xF,yF) of the virtual source point Fp coincide

with (x',y') in the limit ¢' + ¢ , Gp' - ep. To evaluate (B2) in

this limit, L'Hospital's rule 1is applied using the differential

operator

d 3 36 3¢ d°p) 3

del; - ae; * (ae;’ * ap;, dS; 3%’ (B3)
) 3 ) (B4)
o + 2(~1)" (pT - 1)‘3?,- R
p

where (B4) uses Eqs. (2.1) and (2.2) and the definition T = dpp’/dep'

= tan Op'/tan ep'. The coordinates of Fp are

' ' - ain Q' '
(d/del)(sinepcosw s:.nep_coscb)

xp = lim (B5)
o'+0d (d/d8')(sin(d - ¢")]
9'+8 p
p P
- -a(—l)g' sin Gp sin ¢ - %a(pt - 1)'1 cos ep cos ¢, (B6)
Yp = +a(-1)9‘ sin Gp cosd - $a(pt - 1)'1 cos ep sin ¢. (87)

The exit plane of ray i is normal to i and tangent to the
bubble; its intersection with the scactering plane is shown in Fig.

B.las the line EG, which has the normal equation
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xcosd + ysind = a. (B8)

The point where i intersects its exit plane is (xE,yE), where from

(B1) and (B8)
Xp = acosd - a(-l)g‘sin Bp sin ¢, (B9)

Yg = asind + a(-l)g‘sin Op cos 6. (B10)

The distance up from Fp to the exit plane of % 1is obtained by

setting

2 2
clz) = (xE - xF) + (yE - yF) ’ (B1l1)
which yields

a.p = a[l + ¥(pt - 1)-1 cos Gp]. (B12)

This result agrees with the previous analysis of the virtual source
location of backscattered glory waves (see Appendix A of Chapter 3).
It is also applicable to the location of the virtual line sources for
waves scattered by large circular cylindergs 1illuminated at normal

incidence and to droplike objects as well.
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Figure C.1. The j = 1 scattered intensity for ka = 1364,
The solid curve is data from a photograph, and the dashed
curve is the physical-optics approximation.




Figure C.2.
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Like Fig. C,1 but with ka = 1635,
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Figure C.3. Like Fig. C.1 but with ka = 1780.
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Figure C.4. The j = 2 scattered intensity for
ka = 2117, The solid curve is data from a photograph,
and the dashed curve is the physical-optics model.
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Figure C.5. Like Fig. C.l but with ka = 3001.
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Figure C.6. Like Fig. C.4 but with ka = 3899.
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Figure C.7. Like Fig. C.l but with ka = 6600.
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Figure C.9. Like Fig. C.4 but with ka = 7428,

SI= 7 3. 77. 81 85.

71




72

Vil
L. TR YRV
1 Vv \
l’i\\\\‘v\v\/\'\’\ V/ \
i \
\
\
a. - . ! . , , ! . , N L ; ‘\
8s. 7 3. 77. s1.

SCATTERING ANGLE (deg?

Figure C,10., Like Fig. C.4 but with ka = 7847,




2.
i 7y
| it 3 NoA
l.u,' ,’u | H\,’\/ AN LT
U Y /
VI \
! \
\
N
a. i L — ]
SE= 72. 78. =] s4.

SCATTERING ANGLE (cegd

Figure C.11. Like Fig. C.1 but with ka = 8995.

73



I 1. “ ! \ | \
'b RER \
\
\
\
Q. N S B B
68. 72. 76. g8a4d.

SCATTERING ANGLE (degd

Figure C.12. Like Fig. C.l but with ka = 10742.




6.

190.

REFERENCES TO CHAPTER 2

P. L. Marston, "Critical angle scattering by a bubble:
physical-optics approximation and observations,” J. Opt. Soc.
Am. 69, 1205-1211 (1979); 70, 353 (E) (1980).

P. L. Marston, J. L. Johnson, S. P. Love, and B. L. Brim,
"Critical-angle scattering of white light from a cylindrical
bubble in glass: photographs of colors and computations,” J.
Opt. Soc. Am. 73, 1658-1664 + plate X (1983).

C. Pulfrich, "Ueber eine dem Regenbogen verwandte Ersheinung der
Totalreflexion,” Ann. Phys. Chem. (Leipzig) 33, 209-212 (1888).

G. Mie, "Beitrage zur Optik truber Medien, speziell kolloidaler
Metallosungen,” Ann. Phys. (Leipzig) 23, 377-445 (1908).

P. L. Marston and D. L. Ringsbury, "Scattering by a bubble in
water near the critical angle: Interference effects,” J. Opt.
Soc. Am. 71, 192-196 (1981); 71, 917 (E) (1981).

D. L. Kingsbury and P. L. Marston, "Mie scattering near the
critical angle of bubbles in water,” J. Opt. Soc. Am. 71,
358-361 (1981).

P, L. Marston, D. S. Langley, and D. L. Kingsbury, “"Light
scattering by bubbles in liquids: Mie theory, physical optics
approximations, and experiments,” Appl. Sci. Res. 38, 373-383
(1982).

G. E. Davis, "Scattering of light by an air bubble in water,” J.
Opto SOC. Am. 4_5, 572-581 (1955)-

J.-C. Ravey and P. Mazeron, "Light scattering in the physical
optics approximation; application to large spheroids,” J. Optics
(Paris) 13, 273-282 (1982).

B. D. Johnsoan and R. C. Cooke, "Bubble populations and spectra
in coastal waters: a photographic approach,” J. Geophys. Res.
84, 3761-3766 (1979); 7. Avellan and F. Resch, "A scattering
light probe for the measurement of oceanic air bubble sizes,”
Int. J. Multiphase Flow 3, 649-663 (1983).

75



11.

12.

13.

15.

16.

17.

180

22.

76

W. W. Martin, A. H. Adbelmessih, J. J. Liska, and F. Durst,
“Characteristics of laser-Doppler signals from bubbles,” Int. J.
Multiphase Flow 7, 439-460 (1981).

D. L. Kingsbury and P. L. Marston, "Scattering by bubbles in
glass: Mie theory and physical optics approximation,™ Appl.
opt. 20, 2348-2350 (1981).

P. L. Marston and D. L. Ringsbury, "Acoustic scattering frou
fluid spheres: Diffraction and interference near the critical
angle,” J. Acoust. Soc. Am. 70, 1488-1495 (1981).

J. A. Stratton, Electromagnetic Theory (McGraw-Hlill, New York,
1941), p. 499.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley,
New York, 1957), p. 207.

M. V. R. K. Murty, "The use of a single plane parallel plate as
a lateral ghearing interferometer with a visible gas laser
source,” Appl. Opt. 3, 531-534 (1964).

W. C. Tsal and R. J. Pogorzelski, "Eigenfunction solution of the
scattering of beam radiation fields by spherical objects,” J.
Opt. Soc. Am. 65, 1457-1463 (1975).

W. L. Haberman and R. K. Morton, "An experimental study of
bubbles moving in liquids,” Trans. Am. Soc. Civ. Eng. 121,
227-252 (1956).

G. B. Wallis, "The terminal speed of single drops or bubbles in
an infinite medium,” Int. J. Multiphase Flow 1, 491-51l1 (1974).

G. C. Farnell, in The Theory of the Photographic Process (3rd
ed.), ed. by C. E. K. Mees and T. H. James (Macmillan, New York,
1966), Chap. 6, p. 72.

Reciprocity failure may alter the H.D. curve shape at different
incident light intengities. Tests indicate this effect was
negligible under the conditions of this experiment.

S. Hartland and R. Hartley, Axisymmetric Fluid~Liquid Interfaces
(Elsevier, Amsterdam, 1976).




23.

W. Siemes, "Gasblasen in Flussigkeiten, Teil II: Der Aufstieg
von Gasblagsen in Flussigkeiten,” Chem.-Ing.-Tech. 26, 614-630
(1954).

'R. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops, and

Particles (Academic, New York, 1978), Chap. 7.

S. D. H. Andreasson, S. E. Gustafsson, and N. O. Halling,
“"Measurement of the refractive index of transparent solids and
fluids,” J. Opt. Soc. Am. 61, 595-599 (1971).

W. J. Wiscombe, "Improved Mie scattering algorithms,”
19, 1505-1509 (1980).

Appl. Npt.

P, L. Marston and D. S. Langley, in Near Zero: New Frontiers in

Physics, ed. by B. S. Deaver and C. W. F. Everitt (Freeman, San
Francisco, 1984).

77




CHAPTER 3

FORWARD SCATTERING

3.1 Introduction

The near-~forward scattered light from a bubble contains
contributions of several types. This chapter is principally
concerned with the type of scattering known as the glory; the other
kinds of contributions will also be discussed briefly. Photographs
and measurements of features related to the forward glory of bubbles
will be presented for both the near and far-zonme scattering. A
physical-optics model will be described and its predictions will be
compared with measurements; a formally similar model for the backward
glory was published previously and is 1included for reference 1in
Appendix A. Some results obtained from Mie theory computations will
also be included for comparisons with the model and the data.

The strongest contribution to the near-forward scattered
light comes from what is generally called forward diffraction. For
any scattering object, that part of the incident wavefromnt which 1is
not obstructed will produce a pattern of illumination extending into
the geometrical shadow region of the object. For a large sphere of
radjus a the scattering amplitude of the forward-diffracted 1light

is approximately given by1

SFD(") - 4}::2 (1 + cosd) Jl(x sin 4)/(x sin ¢), (3.1)
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where Sep is defined in the same units as the S, amplitudes of Eq.

3
(1.1). As in Chapter 1, x = ZRa/Xb is the size parameter of the
sphere, and ¢ 4is the scattering angle measured relative to the
forward direction. The Bessel function Jl(z) is equal to zero at z
= 0, but Jl(z)/z = 4 ia this limit; hence for exact forward
scattering SFD(0°) = x2/2. From Eq. {1.3) the normalized Lintensity
associated with the diffraction pattern is proportional to xz; this
dependence makes forward diffraction quite dominant for large values
of the size parameter when ¢ 1s small. To allow other types of
scattering to be observed instead, the forward-diffracted light can
be removed using polarizers since 1its polarization will be the same
as that of the incident light. This was done in the experiments to
be described.

The ray diagram in Fig. 3.1 serves to illustrate some other
coutributions to the near-forward scattered light. The parameters
(p,%) are used to designate rays according to their number of chords
within the bubble and their naumber of optic~axis crossings,
regpectively. In Chapter 2 a physical~optics model which made use of
the (0,0) and (1,0) rays was showm to approximate the coarse
intensity oscillations observed near the critical-angle @c. The same
nodel approximates the coarse structure in Mie theory compucationsz’3
for angles well below oc. However, as ¢ approaches 0° this model
eventually fails; new kinds of structure begin to appear that are not

accounted for by the interference of the (0,0) and (1,0) rays.

Though the intensities associated with these rays do not decrease in
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Figure 3.1. Non-glory scattered rays in the near-forward direction.




the forward region, their relative importance diminishes. Part of
the reason for this can be appreciated by counsidering the geometrical
optics involved. ¥For the (0,0) and (1,0) rays the bubble acts like a
diverging lens, as Fig. 3.1 1llustrates. The glory rays, on the

other hand, occurring both in the backward and forward directions,

are scattered parallel to the optic axis but are not coincident with

it; they are, in effect, weakly focused at infinity. Because of this
focusing, it is reasonable to expect that the intensity near the axis
at great distances from the bubble would be influenced more by the
glory scattering than by contibutions from diverging rays. As
discussed in Sec.l.2(B), a geometrical divergence factor Dp is
sometimes useful 1in accounting for the redistribution of incident
energy by the scactering of rays. Finite values of DP are found
for the (0,0) and (1,0) cases, but for glory rays DP becomes
infinite [because sin ¢= 0 and ep 2 Q0 in Eq. (1.13)]. Seometrical
optics cannot give the intensity at a focal point; in the case of
glory scattering the intensity 1is 1incorrectly predicted to be
iafinite because of the value obtained for Dp. A more sophisticated
approach, to be detailed in the following sections, indicates that
the intensity associated with glory scattering is enhanced roughly by
a factor x (the size parameter) because of axial focusing. So the
near-forward region is expected to be dominated by glory effects when

% 1is large and the forward-diffracted light 1is blocked.
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3.2. Physical-Optics Model of the Forward Glory

A) The Flelds Near the Bubble

It {s necessary to include interference and diffraction
effects to adequately model a - bubble's far-zone scattering close to
the forward direction. As discussed above, the glory scattering 1is
of principal interest here. The physical-optics approach to be used
begins by representing the scattered 1light as waves having
approximately known amplitude, phase, and wavefront curvature close
to the bubble. The present section first examines these near-zone
features of the scattering which will then be used in formulating the
far-zone model.

Figure 3.2 illustrates two different glory rays and shows
some parameters important for the wave description. An infinite
number of glory rays are possible, some taking rather wmore
complicated paths, but the two shown turn out to be the most
significant. The bubble is assumed to be gpherical with radius a.
The entrance and exit planes are tangent to the bubble and normal to
the optic axis. Along with the (2,0) glory ray in Fig. 3.2, two
other nearby (2,0) rays are also shown. It is evident from the
diagram that the incident plane wave emerges from the bubble with a
curved wavefront. The virtual source associated with the (2,0) glory
wave is at the point Fz, and the distance az is the wave's radius
of curvature in the exit plane; a general expression for ap for any
(p,) ray was derived 1in Appendix B of Chapter 2. By rotating the

figure about the optic axis, F, becomes a ringlike source of radius

2
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Figure 3.2. Forward glory rays and assiciated focal parameters.
Dashed lines show the origin of the toroidal wavefront.
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b2 and the outgoing glory wave becomes toroidal. One of the
purposes of this section is to approximate the amplitude distribution
in the exit plane due to a glory wave, so that this distribution can
be wused later in modeling the far-zone scattering pattern.
Measurements will be presented 1in Sec.3.3 that support the
description of the ringlike source for several cases.

The amplitude of a glory wave leaving the bubble depends on
losses due to transmissions and 1internal reflections, and also on
changes in the area over which the incident energy is eventually
spread. Let the incident light be linearly polarized with amplitude
Ei exp(~iwe) . It i3 useful to define a pair of orthogonal Dbasis
vectors ;h (h=1,2) 1in the entrance and exit planes: let e be

1
parallel to the direction of the incident wave's polarization and 32
be perpendicular to it. The amplitude of the glory wave in the exit
plane will be given by its components with respect to these vectors.
Points in the exit plane are specified by the polar coordinates
(s,V¥), where s 1is the radial distance from C' (where the optic axis
intersects the exit plane), and ¥ is the pola: angle measured from
the direction of 51. The anmplitude of the (p,2) glory wave in the
la

exit plane is given by E; = Ep e, + E 2€ where

1 p 2
h -4 2
ED = E; a7 P explin + tk(s= b )*/2a ], (3.2)

where qp characterizes the sgpreading of the wavefront and Fh

includes the transmission and reflection effects. The exponential
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term gives the approximate phase at points in the exit plane, as will
be discussed below. An expression similar in form to Eq. (3.2)
appears in Eq. (1) of Appendix A where the backward glory is
desribed; the factor qp = qp/( ap - a) is the same in the present
case., The amplitude factors Fh are derived using van de Hulst's

method of decomposing the incident light into perpendicular and

parallel components with respect to the scattering planea. The

resulting forms are

F1 = clsinzw + czcoszw,
(3.3)
F2 - %(c2 - cl)sinZw.

where the coefficients ¢ and <, characterize the effects of
transmission and reflection on the perpendicular (j = 1) and parallel

(3 = 2) components:

¢y = (--1)(p-l)(:j.l):'l.;'-1 (1 - r?). {(3.4)
The Fh then express the resulting amplitudes with respect to the
more convenient basis vectors ah. The rj in BEq. (3.4) are
Fresnel's coefficients as given in Eq. (1.10), evaluated usinz the
incidence and refraction angles’ BP and pp for the glory ray of
interest. 1In general, these angles are determined numerically from
£qs.(1.8) and (1.9), but exact trigonometric solutioas are known for
several cases, including thirteen forward glory rays; these solutions

are prasented in Appendix B of this chapter. The sign factor in Eq.

(3.4) differs from the corresponding expression in Appendix A because

@
L

§
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the forward glory does not exhibit a geometrical inversion of
amplitudes present {in the backward case. An interesting angular
dependence can be seen from Eq. (3.3) for Fz, the amplitude factor
for the 1light having a polarization perpendicular to that of the
incident light. This “cross-polarized™ scattering 1s predicted to
have zero amplitude at angles of Y = 0° , £90°, and 180° in the exit
plane, with U measured from the direction of the incident light's
polarization. Photographs will bhe presented in the following
sections of this chapter that illustrate a similar angular dependence
at the ringlike sources and also in the far-zone scattering.

The exponential expression in Eq. (3.2) approximates the
phase of the scattered field at the radial distance s 1in the exit

plane. The first term,

np = 2ka(l - cosep + mpcospp) -4m(p+ 2 -1)," (3.5)

accounts for the total phase delay of the (p, L) glory ray as it

propagates from the entrance plane to the exit plane, including phase

changes due to focal-line crossings; these phase counsiderations were
discussed in Sec.2.2. The other term, k(s - bp)2/2 ap’ gives an
additional phase delay for s = bp. It is obtained by approximating
the toroidal wavefront as a quadratic surface with radius of
curvature Op at the exit plane.

The amplitude and phase factors described above are to be
evaluated for each glory~wave of interest. The total field in the

axit plane due to glory scattering is then approximated by summing
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the Eph from Eq. (3.2). But the far-zone approximation which follows
is most conveniently carried out by using the individual glory-wave

amplitudes and then summing the resulting fields.

B) The Far-Zone Scatt;ring

The glory-scattered E-field at a distant point Q close to
the forward axis will be approximated using the amplitude
distribution in the exit plane, Eq. (3.2). Let Q be at a distance
R from the point C', where the exit plane is tangent to the bubble
on the optic axis. Figure 3.3 shows the coordinate system that will
be used. The scattering angle ¢ to point Q 1is assumed to be small,
while R 1is very large; these parameters are shown out of proportion
in the figure.

The field at Q 1is obtained using far-zone diffraction
theory by integrating the contributioans at Q from all points (s,V )
in the exit plane, which {s shown as the plane x'~y'. The procedures
for performing the integration have been given 1in several papers;
Appendix A outlines the method, and detailed discussions are provided
1n Refs. S and 6. At Q the field due to the (p, 1) glory wave is

la 2

approximatel i E + E
ppro y P - P e P

1 °2 where

z: = (k/2TR)E, ¢~ D" exp(ikR + in.), (3.6)

1% Y

with

n: -l bp(xoap)* expl1n/6 - tka (1 = cos 8)] (3.7
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Figure 3.3. Coordinate system used in modeling the far-zone
forward glory scattering. The x'-y' plane is the exit plane
of Fig. 3.2.




and

w! o n[(c1+ cz)Jb(u) + (cl - cz)Jz(u)cosZE] 3.8)

wz - 1r(c1 - cz)Jz(u)sinZE.
The argument of the Bessel functions Jo and Jz is us= kbp sip o,
and & i{s the azimuthal angle of point Q, as shown in Fig. 3.3. Like
the exit-plane polar angle ¥, the far-zone azimuthal angle & is
measured with respect to the direction of the incident polarization,
which was defined by 31.

E-field at Q 1is expressed by its components parallel (h = 1) and

And like the near-zone amplitudes, the

perpendicular (h = 2) to the direction of the incident polarization.
From examination of Eq. (3.8) for the amplitude factor Wz,
it is evident that the far-zome field Epz vanishes at angles & =
0°, £90°, and 180°. A dark cross is thus predicted in the h = 2
scattering, with arms parallel and perpendicular to the direction of
the incident polarization. The terminology used here refers to the
h = 2 scattering as “cross-polarized”, not because of this
distinctive scattering pattern but because this 1light has a
polarization which is transverse to that of the iacident 1light, in
the sense described in Ref.7. In the experiments to be described it
wvas the h = 2 glory scattering that was observed in the far zone,
because the forward-diffracted light was removed by a technique using
crossed polarizers. [Equation (3.8) also predicts a ring pattern

centered on the forward axis for both polarizactions. In the h = 2

case the rings are expected to be spaced according to the period of
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the J2 Bessel funtion, while for the h = 1 case oscillations of
both the Jo and Jz functions are involved.

The far-zone model outlined above may include as wmany (p, 2 )
glory waves as are desired. The total approximate field at Q due

to glory waves is obtained by summing the Eph from Eq. (3.6) for

all the (p,%) cases included:

h

~ h .
Eglory(Re®:8) = 22 E,(Ry6,8). (3.9)

(p,2)

The relative intensity of the glory scattering at Q {is then simply

h h
B |2

Iglory = Eglory * (3.10)

It is instructive to compare the intensities which result
when each glory wave is considered alone. From Eqs.(3.6) - (3.8),
the maximum value of the h = 1 intensity from a single (p,2) sglory

wave is
1h(6 = 0°) = 2x I, (b /)2 (Rm)n(c, + c,)’ (3.11)
P R p a 1 27! '

since the Jo Bessel function has its maximum value of 1 at u = 0.
The maximum h = 2 intensity arising from a single (p,R) glory wave

is given by

a -a
126 = 8) = 22Ty (b /a)3(-Bm)n(0.6865(c, - c,)1,  (3.12)




where the azimuthal angle £ has been set to 45° and og = arcsin
(3.0542/kbp) is the scattering angle at which the first amaximum of
the Jz Bessel function occurs:8 J2(3.0542) = 0.4865. In Eqs.
(3.11) and (3.12) the normalization factor IR is the {intensity
scattered by a perfectly reflecting sphere of radius a, as given by
Eq. (1.2). Table 3.1 compares the normalized Iph for a number of
glory waves each taken separately. The size parameter x = 4000 was
used with each of two relative refractive index values. For m =
(1.1‘03)"1 this corresponds to a bubble of radius a = 287 um in a
silicone liquid that was used in experiments to be described. The
same value of x but with m= 0.75 corresponds to a bubble of
radius a 3302y m in wacter (taking the light to have a wavelength in
air of 632.8 mnm for both examples). Some of the focal parameters
associated with each of the glory waves are also included in the
table. It should be emphasized that the intensities Iph are not to
be summed as a means of obtaining the total glory-scattering
intensity. The amplitudes must bhe summed as in Eq. (3.9). But Table
3.1 serves to illustrate some qualities of the individual teras. It
demonstrates that some of the (p,1) glory waves when taken gseparately
can yleld an intensity that exceeds the iatensity from a perfectly
reflecting sphere by a cousiderable factor. It also suggests that
the main coutributions to the total glory scattering must come froam
those waves having small values of the parameters p and £ .

Pigure 3.4 shows the physical-optics model for the far-zone

intensity 12 in comparison with the results of the exact VMie
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Table 3.1, Model Results for x = 4000 with @ = (1.403)~} and m = 0.75

0 o 34

» (p,2) P b/a a/a P 4
(deg) (6=0% (9=9)

(1.403)~ (2,00 40.30  0.647 1.093 224.8 11.97

(3,0)  43.37  0.687 1.035 41.21 1.749

(4,0)  44.32  0.699 1.019 12.56 0.507

(5,0) 44,74  0.704 1.012 5.048 0.200

(6,0)  44.96  0.707 1.008 2.409 0.094

(7,00  45.10 0.708 1.006 1.292 0.050

(4,2) 19.06  0.327 1.095 0.006 0.006

(5,2) 28.28  0.474 1.061 0.004 0.001

0.75 (2,0)  43.57  0.689 1.093 278.5 9.571

€3,0) 46,57  0.726 1.034 48.36 1.402

(4,0) 47.49  0.737 1.018 14.54 0.405

(5,0) 47.89  0.742 1.011 5.813 0.159

(6,0). 48.11  0.744 1.008 2.766 0.075

(7,0)  48.24  0.746 1.006 1.481 0.040

(4,2) 20.32  0.347 1.101 0.003 0.003
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Figure 3.4, Normalized cross-polarized intensities as a function of
scattering angle. The dotted curve is a physical-optics model using
only the (2,0) glory wave; the dashed curve is the model result
incorporating the (2,0) and (3,0) waves; the solid curve is the Mie
theory result,




theory. The size parameter is x = 4000, and the refractive index is
m = 0.75. The I1 case, which is dominated by forward diffraction,
is not included. The dotted curve in this figure is the model result
when only the (2,0) glory wave is used; its maximum intensity agrees
with the value of 9.571 listed in Table 3.1. The dashed curve is the
physical-optics wodel incorporating both the (2,0) and (3,0)
contributions. The solid curve is the Mie result, normalized to IR
= 1 like the other two curves; this normslization of Mie results was
discussed in Sec. 1.2(A). The Mie theoretic expression for the
cross-polarized intensity is given by Eqs. (5) and (7) of Ref. 7.
Evidently, the 1inclusion of the (3,0) wave gives an improved
approximation for the intensity as compared with the Mie cheory. The
angular locations of the maxima and minima are well-approximated by
the simpler model using only the (2,0) wave; the incorporation of the
(3,0) term gives no appreciable improvement here.

The Mie theory curve in Fig. 3.4 1is similar to oune published9
for a spherical bubble in water with x = 3040. These and other Mie
computations confirm that for spherical bubbles in water the
crogs-polarized near-forward scattering should be quasi-periodic in

for a wide range of bubble sizes.

3.3 Observations of Virtual Ringlike Sources

The experimental arrangement for observing forward glory
effects from bubbles is diagrammed in Fig. 3.5. The basic design was

the same for the near- and far-zone observations, except that
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different camera lens systems were employed in the two cases. The
incident light was from a 15 nW He-Ne laser. This beam was passed
through a polarizing prism to make it highly plane-polarized. A
glass cell containing the host 1liquid for the bubble was immediately
followed by a second polarizing prism. This allowed the polarization
of the observed scatterad light to be selected. Photographs of the
scattering ;ere made by a camera focused at the desired range. This
section describes wmeasureuents of the glory-wave virtual sources that
appear within the bubble. Photographs of these focal circles were
taken using a Nikon bellows extender and a reversed 50 mm Nikkor lens
to allow short-range focusing with about 5X magnification.

The bubble was injected with a syringe into a siiicone oil
(Dow Corning 200 Fluid) of high kinematic viscosity '( ~ 600 000
centistokes), so that it remained almost immobdilized but assumed a
nearly spherical shape. The liquid had a refractive index of 1.403.
Bubbles were produced with diameters ranging from =~ 1 to 7 am. The
upper limit correspouded to the maximum laser beam diameter allowed
by the apertures of the polarizing prisms.

Photographs of the virtual ringlike sources inside a bubble
are shown in Fig. 3.6. The hubbla radius was a = 1,875 mm. Parts
(a) and (b) show, respectively, the co=-polarized (h = 1) and
cross-polarized (h = 2) appearances of the rings. For both
photographs the direction of the incident polarization was vertical.
Recall that the physical-optics model for the h = 2 exit-plane

amplitude predicted zeros at polar angles of 0°, £90°, and 180° ([=q.
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(a)

Figure 3.6,
Photographs of the

(a) co-polarized and
(b) cross~polarized
forward glory circles
for a bubble with a
radius of 1.88 mm in

a liquid of refractive
index 1,403,
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(3.3)]. The ring sources in Fig. 3.6(b) manifest four dark regilouns
with this same kind of angular dependence.

It is possible to distinguish several different-sized rings
in the negatives from which Fig. 3.6 1is taken. Microscope
measurements of these focal-circle radii are listed in Table 3.2 with
similar measurements from other bubbles. From geometrical
counsiderations, the virtual ring source of a (p,!) glory wave is
expected to have a radius bp = 3 sgin %ﬁ where ep is the (p,2) glory
ray's angle of incidence. The values listed in the table give the
ratio of the ring radius to the bubble radius for the visible rings
counted from smallest to largest. The same data- is presented in
graphical form in Fig. 3.7. The first (smallest) ring can be
associated with the (2,0) ray. It is considerably more intense than
the others; because of this it appears broader in the photographs and
its exact radius was more difficult to determine. More precise
neasurements were able to be made on the second ring; its radius fit
the theoretical b/a prediction for the (3,0) glory wave source.
The higher order rings became quite dim while their spacing
decreased, making measurements of their radii 1less precise again.
The horizoutal lines in Fig. 3.7 are the theoretical values of hp/a.
Their spacing illustrates the way the focal circles coalesce as the

value of p 1increases.
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Table 3.2. Focal-Circle Radii for Bubbles in Silicone Oil

a b,/a by/a b,/a bs/a
(am) (1st Ring) (2nd Ring) (3rd Ring) (4th Ring)
0.533 0.645 £ 0.006
1.290 0.651 £ 0,004 0.684 £ 0.006 0.696 £ 0.003 0.707 £ 0.004
1.823 0.652 £ 0.004 0.688 + 0.004 0.699 £ 0.002 0.701 = 0.004
1.875 0.651 £ 0.004 0.686 £ 0.006 0.694 £ 0.004 0.707 = 0.004
1.993 0.649 £ 0,003 0.683 + 0.004 0.696 + 0.003
2.046 0.655 * 0.010 0.689 + 0.009 0.700 * 0.008
3.501 0.656 £ 0.006 0.688 £ 0.002 0.701 + 0.002
Theory 0.6867 0.6986 0.7039

0.6468
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3.4 Observations of Far-Zoune Scattering

A) Single Bubbles in Silicone 0il

The far-zone scattering from single bubbles was observed
using the experimental arrangement shown in Fig. 3.5. The camera had
a 200 mm-focal-length lens, which was focused at ® to allow the
far-zone scattering pattern to be recorded. The bubbles were in
silicone oil having refractive index 1.403. Their diameters ranged
from ~ 0.2 to 1.9 mm, while the laser beam diameter could be adjusted
to as large as 7 mm. The beam was made to be highly collimated in
the vicinity of the bubbles by using a parallel-plate shearing
1nterferomzcer.1° The polarizing prisms used were of ellipsometric
grade; attempts to observe the far-zone forward glory with polarizers
of lesser quality were unsuccessful because of a large transmitted
background. The scattering angles that could be observed were
limited to ¢ $4° by the aperture of the polarizer.

Figures 3.8 and 3.9 show the cross-polarized (h = 2) far-zone
patterns for bubbles of radius a = 0.203 mm and a = 0.600mm,
ragpectively. The most distinctive features of the photographs are
the four dark lobes that form a cross pattern like that predicted by
Eq. (3.8). The direction of the incident polarization was vertical
for both photographs.

The angular spacing 40 of the dark rings was measured for
these and several other photographs, to compare them with the ring
structure predicted in Eq. (3.8). Por small angles 6, u = kbo;

after the first few oscillations the zeros of the J2 Bessel function

_
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Figure 3.9. Photograph of the cross-polarized near-forward scattering
from a bubble of radius 0.600 mm in silicone oil.




are gpaced by approximately ¥, so Ad = w/kb. Taking b = bzz

0.6468a gives

Ad = 1.998 x 10-2(deg/m) a-l (3.13)

as the model prediction for the approximate angular spacing of the
rings. Figure 3.10ghows the average measured ring spacings from 11
photographs like Figs. 3.8 and 3.9. Also included on the graph are
measurements taken from Mie theory calculations at 3 bubble sizes.
The measurements show substantial agreement with Eq. (3.13), though
this prediction is a rather simplistic one since it takes oanly the
(2,0) glory wave into account. It is important to note that the ring
gtructures in the far-zome glory scattering have a considerably wider
spacing than would rings associated with the forwafd diffraction
pattern. From Eq. (3.1) it is clear that the diffraction rings would

have an angular spacing

(80)gp = n/(ka), (3.14)

which i3 smaller by a factor b/a than the glory-ring spacing found
_in Eq. (3.13).

Pigure 3.9 shows evidence of interference effects between
waves in the near~forward direction; the ring structure is modulated
in 1intensity at certain scattering angles. It has not been

determined whether these modulations arigse froam interference of the
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Figure 3.10. Angular spacing of dark rings in the far-zone
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prediction in Eq. (3.13).
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separate glory waves or from the presence of (0,0) and (1,0)

scattered waves.

B) Clouds of Bubbles in Water

The forward-glory scattaering from clouds of small bubbles in
water was photographed using the apparatus of Fig. 3.5 with slight
modification. The glass cell was fitted with a tungsten wire
stretched acrogs near the bottom, and this was wused in forming
bubbles by electrolysis. The other electrode was a needle inserted
into the water at the top of the cell. The camera had a 200
mm-focal-length lens focused at infinity.

Figure 3.]11 1is an example of the cross—-polarized forward
glory scattering observed. The photograph shows the distinctive dark
cross pattern that is predicted by the physical-optics model for each
bubble individually. The first few dark rings are also visible. It
is likely that a dispersion of bubble sizes was present and tended to
obscure the ring structure beyond these first intensity minima. No
direct measurements were made to try to determine an average bubble
size, but an estimate may be made from the spacing of the observable
rings. On the negative from which Fig. 3.1l was obtained, the ring
spacing i{s about 1 mm. With a focal distance of 200 mm this zives an
angular separation of about 0.005 rad. From Eq. (3.13) applied tco

the case of water (where b, ® 0.6893) che radius a is estimated at

2
about 69 um, which is a reasonable result. From this observation it
can be concluded that freely rising bubbles of this approximate

radius and smaller are sufficiently spherical for the forward glory
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Figure 3.11. Cross-polarized near-forward scattering from a
cloud of small bubbles rising in water.




to exist. Very large bubbles, ou the other hand, take oun
nounspherical shapes as discussed {n Sec.2.4. It is to be expected
that the symmetry of the cross-polarized near-forward scattering from

large bubbles will differ from that seen in Fig. 3.11.
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Glory in Optical Backscattering from Air Bubbies

Dean S, Langley and Philip L. Marston
Depavtment of Physics. Washington State Universitv, Pullman. Waskington 39144
(Recetved 23 December 1980)

Observations of light backscastersd from air bubbles in a viscous liquid demonstrate
an enhancemesnt due o axial focusiog. A phyeical-optics approximation for the cross-
poiarized scattering correctly describes the spacing of reguiar festures observed. The
non-cross polarized scattaring is not adequately described by a single class of rays.

PACS oumbers: 42.20.Gg, 42.10.He, 92.10.Pt

The Mie solution’ {or electromagnetic scatter-
ing by a sphere {requently does not lead to direct
interpretation of the anguiar scattering pattern.
Counsequently, models have been developed to fa-
cilitate an understanding of the structure in the
scattered intensity present where intensy is
plotted a8 & function of the scattering angle v or
the size parameter x ska (¢ is the wave number;
a is the sphere radius). These models have em-
phasized the anguiar regions where diffraction is
importamt for & drop of water in air: the raine
bow >} o= 180° " and 0> 0°.)'* [n the scattering

of light by a spherical air bubble in 2 liquid or in
glass, the real part of the refractive index of the
sphery is less than that of the surroundings and
the models must be significantly modified. New
phenomena appear, such as diffraction’™* in the
region of the critical scattering angle v.. Here
we report the first detailed observations of back-
scattering by air bubbles in liquids and give a
model which describes some of the observed {ea-
tures. We refer to this as glory because, as in
the case of drops,’™ the © = 180° scattering is en-
hanced when v is large.

© (98! The American Physicail Society 93
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Van de Hulst* qave & partial explanation of the
enhancement for drops by noting the axial focusing
of those backscattored rays which have a nonzero
impact parametsr. When modeling this tocusing
in the far tield, diftraction provides an essential
correction to ray optics because the {actor in the
scattered intensity which accounts for geometri-
cal divergence of the rays goes to = as v - 180°,
Examination of this factor in ray-optics models
of scattering by bubblies’ shows that this infinity
is not restricted to drops. We have modeled the
backscattering with a physical-optics approxima-
tion. The procedure is to (2) compute amplitudes
in an exit plane in contact with the bubble via ray
optics, and (b) allow this wave to diffract to the
{ar tield where the distance from the bubble’s
center R » ka?,

Figure 1 illustrates several rays which lead to
backscattering. The paths are determined by the
number of chords » and 't *m,/m,, where the re-
{ractive indices of the inner and outer medis,
and m,, are taken to be real. Figurel is drawn
with "' =1.403 which corresponds to an air bub-
ble in the dimethyl-silaxaos-polymer liquid used
in the experiment. All rays satisfy sind =m sinw.
For v =180°, the off-sxis (or giory) rays tave ¢
o3 and o =3, where'® =08 +(2g +2=0)90°, 7 iz a
aonnagative integer (g »0 for rays in Fig. 1), and
w~1 requires that 5 = 3. The exit piane (dashed
line in Fig. 1) touches C’ with its normal parailel
to the propagation direction of the incident wave.

Qur deseription of the ({ield in the exit piane is
{aetlitated by considering the propagation of a

see. i

iy

oy B o o S 0eub P

753, L. Rays which costribute 10 backscasseriag.
The local angle of incidence is ¥ and € is the bubble’s
cester.
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wavelet de which lies ciose to the backscattered
path. Figure 1 shows de for o =3; it emerges as
curve d‘e¢’. This curve appears to come from a
ringlike source at &’ known as the focal circle in
the analogous » =2 scattering irom drops® with
vZ<m <2, The source is ringlike because the
figure may be rotated around the CC' axis. The
radius of the ring is o =a sind. After the incident
ray crosses the'dashed vertical plane (the en-
trance plane), the propagation phase deiay for
reaching the exit plane is n ska{l - cosd «(1

- cosd)eee(d =J) +2np coso]. The ray crosses
the exit plane at 2 radius s from C' with s/ = gind
= (1 =cosd)tan(é -3). The radius a of arcd’e’
follows {rom the curvature at s =6: a skld'ny/
ds?) t wa(l +4(pr = 1)"* cond], where r =tang,
tand. The spreuding of the wavelst is character-
ized by ¢ slim(d’e’ ‘de) as e ~ 0 where the bar de~
notes the are leagth, An equivalent expression
tor ¢ is{Um{d = s(0) /(b =a sind)| a8 6 =3; its
value {rom L'Hospital’s rule is a/(a =a). Vectors
é, (i =1,2) denote orthogonal basis vectors in both
the entrance and the exit planes; ¢, is choaen
paraiiel to the polarizarion of the incident wave's
olectric fleld £, exp(=iwt).

In the exit plane, the field £,'¢, of the outgoing
pth glory wave is computed by applying Van de
Huls’s method of first decomposing the (ields
perpendicular and parallel to the scattering
plane.”* Exit-plane polar coordinates centerad
on C’ are (s,3), where « is the angle reistive to
é, and § and i denote local basiy vectors. We as-
sume ¢ >» 1 and use Fresnel’s coetficients », tor
the internal reflections where s «1,2 {or fleids
parallel to v and 3, respectively. It is -dixgq,
the multiple internal reflectionsg give

E, a8,q"'*F axplih +ik(s =52 /2ai, (W4

where Aeu « n(p of), Fi) e, sta¥t +c, con’y,
FAy) e flcy~c,) 8inds, and ¢, a(= 1)/ "My 272(1
=7,5. The new phase term . accounts for the
crossing of caustics or “focal lines”; its vaiue
18 «2(p+g)/2. Ther, are evalusted a2 7:
r, = otalf = 5)/sin¥ +05) and r, stanid « 3)/tan(d
+J). The sign tactor in ¢, accounts for & geo~
metrical inversion (present when ;e and p is
odd) which is not evident in deseriptions of p »2
glory ia drops.™*

The tield £,' a2 A distant point Q is computed a8
follows. The left axtension of the CC’ axis makes
an sngle y with C'Q. When ) is small and &9
sR’'»kat, sealar diffraction theory and the Fraun-~
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holer appraximation’? give
*E; explieR’
Ep" zmi;'q 4 ‘ﬂ”
« s’ explik(s =6P/2alds, (@)

W' = | F expl = iks siny costs = §)1de, ®

where £ is the angie between é, and the projection
of C°Q on the exit piane. In Eq. (2), the approxi-
mation given by Eq. (1) has been extended beyond
its useful domain in anticipation of the stationkry
phase approximation (SPA) of the integral. Direct
evalustion of Eq. (3) gives W6y, &) aWi(y, 5,5 »b)
sr{{e, +caiylu) +(c, = coiy ) cont] and WP eric,

= cyWyls) Sin2§, where u ekb siny. The SPA of

EQ. (2) gives the pth glory contribution to the scat-
tered flgid when kd?’/a, and thus ¢, are large. In
the experiments to be described ¢ > 4000 and the
SPA is applicable.

Thae total tleld may be appraximated by summing
the £, trom Eq. (2) with the {ields due to axial
reflections and suriace waves. Surface wave con-
tributions should be small for the cbserved bub-
bles becsuse of the iargeness of . To determine
which glory and axial terms are important to the
total field, and for other heuristic reasons, con-
sider the - {ntensity /,' of the pth {ield
taken aions. The SPA of Eq. (2) gives

I '(3/:)Xllfu.1[W‘(79‘)Fr @

where [y ®{;a/4R? is the total intensity at 2 die-
tance R sCQ {rom a perrectiy reflecting sphere
of radius a predicted by ro¥y optics." I, is the in-
cident intensity, and /, , 8b%a/a’g nb?(a =a)/ad.
In Eg. (4), R has replaced R’ from (2) and ¥ be~
comes (80° - v because R > 1. Geometrical op~
tiey™? gives the intenstties /,' of separats axial

CamMgRs
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. Apperams for observing backecattering from
bubbles.

reflections (e.g., » »0 and 2 in Fig. 1) which are
proportional to a>. The strongest reflsction has
p=0andi=l; fory =0, /o' sinbn = 1P/(m +1)*
while /,2 =0, Since/,, does not depend ona, [,
zka® and glory terms dominate the backscattering
when 2 is large.

Coasider a bubble with v =4000 and » »1.403"",
The strongest glory terms have g =0 and p »3, 4,
and 5; the /,!. Iy tor vy =0 are, respectively, 1.03,
0.43, and 0.16. The /,' decreage with increasing
p a8 a result of the partial reflections in the bub-
ble. The strongest axial ray gives /,'//, »0.028.
The intertference of the {isids depends on s and
our Mie computations verify that the backscat-
tered intensity is not simply proportional to a®
even for this large value of x. The [ «2 (cross-'
poiarized) scagtering is, however, nearly domi-
anted by the 5 =3 glory termi. Because of sym-
metry, | =2 scattering vanishes as y ~0. The
1,y #0,§) have maxima at £ =x 45° and £ 133° and
they vanish at § =0°, = 90°, and 180°. Lety sy,
locate the first maxima of /,*ly, ¢ »457). The
largest [ »2 terms have [,X{y,,$ »45°)//g 0.53 and

'0.10 for » =3 and 4. To the extent that p »3 scat-

tering Ay be neglected, the { =2 intensity will be
quasiperiodic in y. '
We have numericaily verified the validity of .
Eq. (4) by using Debye’s localization principle’*
to modify Mie theory so that ouly partial waves
associsted with p =3 rays were included in the
Mis series. Furthermore, when Eq. (4) is ap-
plied to sphares with certaia m > 1, the resuiting
1, (r =0} agree with the glory “"antlog” tabulated
in Ret, 11. This analog was derived by applying
the Watson transtormation to the ¥ =0 Mie series.
Figure 2 diagrams the experiment. A syringe
injected bubbles into the liguid. The liquid had a
high kinematic viscosity (= 600000 c83; 1 stoke (3)

t degres

el

rG. 3. Pwugrephs br () crvseed polariger (! * 2
seattoring); (b umsrossed polarizer (I * 1); and (0) o
polariser. The imcidest polarization was vertical.
a® Q.49 mm and « * 0030,
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FIG. 4. Measurements and model for the angular
separstion of the dark rings in the ! = 2 soattering.

a1 cm?/sec] and a singie bubble could be cbeerved
for hours. The laser’s power output was $ mW
and the beam diamaeter was Smm. The wavelength
in the liquid, 27/k, was (632.8 nm)/1.403; #, lay
in the splitter’s plane of incidencs. The camera
was focused on = 30 that the photographs record-
od the far-liald intensity pattern.*? Photographs
were made with a > 0.3-0.8 mm corresponding to
x> 4000-11000. Exposure times were typically
S s tor TriX {ilm and a 200-mm~{ocal-length
camers lens.

Figure 3 demonstrates that the scattering has
roughly the dependence ou ¢ predicted by Eq. (4);
§ =0° corresponds to scattering toward the top af
the photographs and y »0° corresponds to the cen-
tor of the symmetry. Figure 3(b) shows that the
{ =] seattering for v >0.2° is significantly strong-
er tor § == 90° than it is for § «0°. This agrees
with the {ollowing model results: (i) (c,/c)*>1
{for 5 =3 we predict c,/c, > =5.2); and (i1) for this
¢, the /,' depend only weakly on { and are domi.
nated by the /,'. One prediction of Eq. (4) could
be quantitattvely checked: when both siny vy and
u 1, the minima in /,* should be spaced by oy
rad such that kbay =1, where for » =3, b/a
20,447, Figure 4 compares this with the mean

916

spacing of =40 dark rings lying outside the 9th
ring from the center. The error bars combine
uncertainties in meagured ¢ and Ay with those of
corrections due to refraction at the ceil-air inter-
tace’ and the tilt of the cell. Figure ¢ shows that .
p =3 rays dominate the ! =2 scattering. The modu-
1ations of the intensity along i == 45° la Fig. 3(b)
show that other rays contribute to [ =1 scattering
sinee the predicted /! = [J,0) ]2

In conclusion, backscattering {rom bubbles can
be enhanced by axial focusing, The number of
significant glory terms depends on m. The main
contributions differ {rom those for water drops
where surface waves’ and other diffraction re-
lated terms® play an essential role. I focusing
were not present, scittering by large bubbles
would be « [, in the region™ (¢, +10%) 2 ¢ < 180°,
where ¢ s2cos’'m > 89" far m"' «1.403. We slso
find evidence of p =3 glory in Mie computations
for bubbles in waier.

This work was supported by the U. S. Office o
Naval Researeh. One of us (P.L.M.) is an Alfred
P. Sloan Research Fellow.
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APPENDIX B

INCIDENCE ANGLES OF SCATTERED RAYS

This appendix provides some solutions for the incidence
angles of scattered (p,f) rays when the scattering angle ¢ and cthe
relative refractive index m are known. In general, Sp can be found
numerically from Eqs. (1.8) and (1.9), but a precise determination
may require numerous iterations. A few exact trigouometric solutions
for 6p(¢,m) have been found, and these are given in the following
tables. For arbitrary values of ¢, eb may be computed for (p,l) rays
having p < 3 using the procedures given in Table B.l. For ¢=0°,
solutions of ep for thirteen diffgrent (p,i) cases are given in Table
B.2. In both tables, the solution gives the value of sin ep .
Ellison and Peetz (Ref.ll, p.l18) give expressions for ep for the
forward (2,0) and (3,0) rays. While their expression for the (2,0)
ray is equivalent to the one given here, their result for the (3,0)

ray 1s incorrect, apparently due to a misprint,
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Table B.l, Incidence Angles of L) Rays

(p,2) sin ep - bp/.

(0,0) cos ¥

(1,0) msin 3¢ (1+ ol - 2mcms*§-¢)'i
8:?% J (16 - Rz)& R/8, where:

RaA+Q-[8+3%-2a% - @ -2407 s +0? - aD)%,

Q = (A2 + 2(6 - 82)(1 + cos¥)/3]%,

1

Y = 37" arccos [27m‘(1 + cos 0)(4 - -2)'3 -1],

A =2 afcos e + (-1)% sin do].

(3,0) 5
8,3 } 3R = 4R, where:
’ Reb6F(3-2~QecosD?, Q= (4a2 - 6a - 322 + 9,

Y = 3"l arccos (Q=3[(3-4)3 - 9(3 + A)(@® - AD)]},
A = mcos[(-1)*(6/6 = #/12) + (S - 20)n/12].
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Table B.2. Incidence Angles of L) Forward Glory Ravys

(ps2) sin ep - bp /a

(2,0) +al[l + (1 +8ad)h

(3,00 #2721 + 32°H

Ez:gg } m[Q+ (3 -0q%+ a7t m/32)}], *

vhere: Q = 671 - (2.5)}cos 113,

1 arccos [~(2.5)"F(1.4 + 2702/320)].

d Y =3

g:gg b 4m{2.5 + A(1.25 + Am)*]!r

(7,0) §m3'§(7 + 7} cosY + 21* sin Y)i
(7,2) im3-§(7 s 72 cos Y - 21} sin Y)*
(7,6) ra3¥7 - 28t cos o,
where Y = 3~larccos €3 7'3/2(7 - 27Am)].

(9,00 (9 - 2q + (27 - 4Q% + 3”11}
(9,2)  tm[9+ 20 + (27 - 40 - 30~h}h
9,6)  3m[9+2q - (27 - 4@? - 3¢"HE
(9,6)  ta[9 - 20 - (27 - 4@® + "L},
vhere: Q = #{9 - 8(3 - 6Am/3)* cos Y]*. *

Y = 3 larccos [4.5(1 - Am)(3 - 4an/3)~3/2), *

+1 fort = Qor 4
In each of :hosocuu.A-{_l for L = 2 or 6:




10.

11.
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CHAPTER 4

DISCUSSION

The light scattering properties of bubbles have been examined
theoretically and experimentally with emphasis ou three scattering
regions: the critical angle, and the forward and backward directions.
In each of these angular regions the scattering pattera is not
describable by the methods of simple geometrical optics because of
the prominence of diffraction and interference phenomena. If the
bubble can be assumed to be a homogeneous dielectric sphere, an exact
solution to the scattering problem is provided by the Hie theory.
'Its results are valuable, hut the Mie theory has certain drawbacks as
well. It is computationally intricate and time-consuming, and it
2ives no direct insight into the physical origin of features in the
scattering. Physical-optics approximations have been developed which
can predict and explain noteworthy features in the scattering, and
are more readily adaptable to changes in the size, shape, and
refractive index of the bubble. When dealing with less idealized
scattering situations the physical insight may be of considerable
value.

The scattering features which have heen photographed and wodeled
are agmong the most outstanding to be observed from bubbles; the
scattering in each of these diffraction regions is notably bright.

The transition to total reflection of light near the critical angle

118




is a consequence of the relative refractive index of the bubble being
less than that of the surrounding liquid. The enhanced intensity of
the forward and backward glory arises due to the spherical symmetry
of the bubble. The physical-optics approximations given in this
dissertation allow the scattering in these transition regions to be
modeled, and provide useful techniques for the sizing and detection
of bubbles. Scattering features such as the fine structure near the
critical angle can be used for high-precision sizing of single
bubbles, while the coarse structure in that region gives Iinformation
about average sizes Iin a distribution of bubbles. The ring
structures in the forward and backward glory scattering are a measure
of bubble size and are also sensitive to effects of nonsphericity.

The dark cross patteru assoclated with the glory scattering provides

a distinctive means of detecting the presence of bubbles, whether.

gsingly or in an ensemble.
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