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LIGHT SCATTERING FROM BUBBLES IN LIQUIDS

Abstract

by Dean Scott Langley, Ph.D.

Washington State University, 1984

Chair: Philip L. Marston

The scattering of laser light from bubbles in liquids was

photographed, and angular features in the far-zone intensity are

compared with models. Diffraction effects are prominent in three

regions of the scattering: near the critical angle,' and in the

forward and backward directions. The forward and backward scattered

light exhibits the intensity enhancement known as the glory. Simple

geometrical optics is unable to approximate the scattering pattern in

the diffraction regions. Physical-optics models are presented for

each case and shown to be in agreement with the observations. These

models give insight into the optical properties of scatterers whose

refractive index is less than that of their surroundings.

Comparisons also include the results of Mie theory computations for

the critical-angle and forward regions. Some applications of the

results to the sizing and detection of bubbles are discussed.
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CHAPTER I

INTRODUCTION

1.1 Overview

This dissertation is concerned with the Liaht scattering

properties of bubbles. A~ bubble is distinguished from a droplike

scatterer by a refractive index n~ v hich is smaller than that of

the surrounding medium no0; thus, the relative index m, - a n 0n < I.

f or bubbles while M > 1 for drops. The literature on light

scattering contains comparatively little information on the

scattering properties of bubbles, but significant differences from

the scattering by drops can be observed. The purpose of this thesis

is to present measurements and models of the scattering from bubbles,

emphasizing certain angular, regions which cannot be adequately

described by simple geometrical optics. There are three such

regions, and these constitute the major subdivisions of the present

research: the forward and backward directions, where exceptionally

strong (glory) scattering is present, and at the critical angle where

the transition from partial to total reflection of rays at the

bubble's surface occurs. In each of these regions, a correct

description of the scattering requires that diffraction effects be

included, even for bubbles much larger than the wavelength of light.

Features in the scattered light can provide useful information about

the bubble, while a successful model can give insight into the

scattering process.



The problem of determining the pattern of scattered light

from a particle of know shape, size, and composition is generally a

difficult one. in some cases, complete solutions of Maxw~ell's

equations can be obtained, giving the exact amplitude and phase of

the scattered electromagnetic field everywhere. Though such

solutions are certainly valuable, they are not always the most

desirable. They often present significant computational

difficulties, and the effects of changes in characteristics of the

particle may be hard to assess. In many cases, approximate solutions

can be developed having a limited domain of applicability but

clarifying the important physics of problems within that domain. Of

course, there is much more physical insight to be gained when an

approximate theory can be compared on coummon ground with an exact

one, and when both can be checked against experiment. This is the

approach followed here when possible. Comparisons of models and

measurements are based mainly on the angular locations of features in

the scattered intensity. Throughout this thesis, intensity is used

to denote the modulus of the Poynting vector.

With increasing size, bubbles in liquids pass from spherical

shapes into an ellipsoidal regime, and very large bubbles take on a

spherical-cap form. 1  The bubbles studied in this work were much

larger than the wavelength of light, but small enough to retain the

near-spherical form. The lower size limit removes the scattering

from the realm of the Rayleigh small-particle approximation. 2 early

spherical bubbles are coon in nature and convenient to work with in



experiments. As a consequence of their symmetry, such bubbles

display a scattering enhancement, known as the glory, in the forward

and backward directions; critical-angle effects like those to be

described may be observed from bubbles of other shapes as veil.

Three models of the scattering are of interest for comparison with

observations: the Mi. theory, the geometrical-optics approach, and

physical-optics models. These will be discussed in Section 1.2.

The optical properties of bubbles are of interest in a

variety of fields. In oceanography, for example, the vast numbers of

gas bubbles which inhabit the upper layers of the ocean are seen as

important components of the ecosystem, 34as veil as being an

influence on the color of the sea 5and on its sound transmission

properties. 6Various probes have been used to measure the oceanic

bubble size distribution, 68but considerable disparity exists

between optical and acoustical findings; it appears that more

sensitive optical techniques are needed. 9In the science of nuclear

particle detection, the analysis of tracks in bubble chambers may be

aided by more sophisticated models of the scattering from

bubbles. 10-12  In hydrodynamics research, bubbles have been used as

scatterers for laser-Doppler velocimetry, 13and as tracers in

photographic flow-visualization studies. 14 The work presented in

this thesis may be of value in any application where bubbles are to

be detected, sized, or discriminated from other types of particles.
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1.2 Scattering Models

A) The Mie Scattering Theory

A well-known exact solution exists for the scattering pattern

*of a homogeneous dielectric sphere under plane-wave illumination.

Published by M'ie 15  in 1908, the solution is presented in a modern

form by many authors (e.g. Ref s. 16-18). The Hie theory has found

widespread application to scattering problems since it places no

formal restrictions on the size or the refractive index of the

sphere. Some details of the Mie solution which are relevant to the

problem at hand will be reviewed here.

Let the sphere have a radius a and relative refractive

index m, and let the incident light be of wavelength X)0 in the outer

medium. The dimensionless size parameter commonly used is ka =

2im/.X , where k is the wavenumber of the light; ka >> 1 for all

the bubbles observed in this research. The Hie theory gives the

amplitude and phase of the scattered electromagnetic field inside and

outside the sphere, but in the present work only the field at

distances R >> a from the center of the sphere is of interest.

The scattered light from a sphere can be completely

characterized by the complex amplitude functions S 1($ ) and S0 )

where 40 is the scattering angle measured with respect to the incident

wavets direction. The subscripts 1 and 2, respectively, denote the

polarization components perpendicular and parallel to the scattering

plane; the plane of the scattering is defined by the directions of
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the incident and scattered light. At a distance R the intensity of

the scattered radiation having polarization j - 1 or 2 is

I (R,$) - IojISlI2(kR)-2  (.1)

where Ioj is the intensity of the J-polarized component of the

incident light. Most often in this dissertation the scattered

intensity will be normalized to the intensity IR  from a perfectly

reflecting sphere of radius a,

IR = Ioj (a/2R)
2  1, (1.2)

in which case the scattered intensity I is given by

I.(R,$) - IS i2 (2/ks)2. (1.3)

The Mie theory gives the scattering amplitudes S ($) in the forms

2n + 1 (air +bT
1 n n(n + 1) nO n bn

n-i

(1.4)

2n+1 (bir +ar)
2( n n(n +1)bn n nn

n-i

The angle dependance in Eq. (1.4) is contained in the functions

if M Pi(cos O)/sin (
n n 1(1.5)

Tn a d [ Pn(Cos b)]d,,



using the associated Legendre polynomial p U(Cos 0). The

coefficients a and b in Eq. (1.4) are functions of then n

physical parameters of the problem. Letting x - ka and y - mka,

these coefficients are expressed by

an ' " (y)Vn(x) - MYn(y) '(x)

(1.6)

bn n- () F'
'm'(y) ;n(Y) 'V(Y y)Y(x)

using the Ricatti-Bessel functions and their derivatives

IVn (z) - (1 z) 1 n+j(z),

T'(z) - dn (z)/dz,

n n( 1 1.7
Cn(z) - ( rz) Hn+j(z),

;'(z) dC(z)/dz,

where Jn+,(z) is the Bessel function of the first kind and R,+, (z)

is the Hankel function of the first kind.

The solution outlined above is correct for spheres of

arbitrary size. There is, however, a practical limitation on

Mie-theory computations that arises in connection with the size

parameter ks. The expressions (1.4) for the S converge after

n a ka terms of the series so that for a single angle $ the

computing time increases as ka. Moreover, when scattering results

are desired over a fixed range of angles, the angular resolution of

the computations may also have to be increased roughly in proportion
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to ka to allow fine details to be resolved. 19  The steps

(1.5)-(1.7) required to generate each term of Eq. (1.4) are somewhat

tim-cosumng,20 hence for large values of the size parameter Hie

calculations involve a considerable investment in computing time.

Though they cannot dispel this basic difficulty, efficient algorithms

such as those of Wiscombe 19are welcomed when the Mie theory is used

to study angular scattering features or the effects of changes in the

parameters m or ka.

It should be noted that the assumption of an incident plane

wave is not regarded as an inherent restriction on Mie results. This

assumption is a common one in scattering theories since any

electromagnetic wave can be decomposed into a linear combination of

plane-wave components by Fourier analysis. Similarly, the scattered

field arising from a non-planar incident wave can be regarded as a

superposition of the scattered fields from incident plane waves. But

where such a solution is called for, the calculation of Mie results

to be superposed means yet another considerable increase in computing

time.

Exact solutions to the scattering problem are also available

for particles which are not homogeneous spheres; a number of these

are discussed by Bohren and Huffmuan (Ref. 18, Chap. 8). Different

shapes or other properties of the particle introduce additional

parameters into the theory, of course, and make the computations much

more arduous than for the Mis equations. Ana previously mentioned,

the bubbles observed in the research presented here were very nearly



spherical; hence no "improved" exact models of the scattering were

considered necessary.

It is possible to use exact scattering solutions to study the

effects of changes in the size, shape, or refractive index of the

scatterer, and of variations in the form of the incident wavefront.

But approximate models which will account for the resulting trends

become rather attractive in view of the computational difficulties

mentioned above for exact solutions, especially when the scattering

particle is large. At the same time, however, the exact solution

allows the validity of such approximations to be tested without

introducing the uncertainties that go with experiments. The Hie

theory is a valuable aid in developing models and understanding the

physics of light scattering from bubbles.

(B) Geometrical Optics

A useful approximate solution to a given scattering problem

can often be developed based on simple geometrical optics. in this

approach the incident light is treated as consisting of rays whose

scattering angles and intensities follow from the laws of reflection

and refraction applied at the surface of the scattering object. The

total intensity in any direction is then obtained by summing the

intensities of Individual scattered rays. This type of solution

neglects interference and diffraction phenomena, usually with the

assumption that these effects are small when the scatterer is large

compared to the wavelength of the light. This assumption is not

always correct, but the simple model may still give some acceptably



accurate results and some useful insights. As a well-known example,

the existence of the rainbow and several of its main features can be

understood from the geometrical optics of sunlight on a water drop.
21

A complete theory of the rainbow must include diffraction, however,

since the naive model incorrectly ascribes to it an infinite

intensity. For most other angles the range of wavelengths in

sunlight will mask the effects of interference so that geometrical

optics can approximate the average scattered intensity. But where

diffraction is prominent, interference effects will also appear; for

water drops this includes the vicinity of the rainbow and also the

forward and backward directions. 16 The rainbow exists only for

scatterers which are droplike ( m > 1 ). For bubbles ( a < 1 ) total

reflection of certain incident rays will occur, giving rise to new

diffraction effects in what is called the critical-angle scattering

region. The forward and backward directions also exhibit diffraction

effects for bubbles; as is the case for drops, the scatttering in

these regions is extraordinarily bright and is frequently referred to

as the "glory". A geometrical-optics approximation was given by

Davis 2 2 for the scattering from a large air bubble in water. Some

aspects of this kind of model will be reviewed here with mphasis on

the regions of diffraction, where the need for a more sophisticated

approach becomes apparent.

The goal of the geomtrical optics model as defined above is

to approximate the scattered intensity as a function of the

scattering angle 6. first, it mo~t '4 determined which incident rays
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are scattered to a given 0. Next, the intensity associated with each

of these rays must be found. The bubbles's cross-section in the

scattering plane is assumed to be circular with radius a, and its

refractive index is m. Figure 1.1 illustrates several rays directed

to the same scattering angle. It is helpful to denote each ray by a

pair of parameters (p, 2.), where p - the number of chords the ray

makes inside the bubble and I - the number of tines the ray crosses

the optic axis (including crossings which may occur after the ray

exits the bubble). The scattering angle for a (p,l) ray is

$ 2(-1) [pp - 8p + JW(I - p + E)], (1.8)

where E 4[ i + (-1) 1 and 8p and 0p are the positive local

angles of incidence and refraction, respectively. For any b, an

infinite number of (p,l) rays will exist, subject to Snell's law,

sin ep M m sinP O* (1.9)

For a given value of b, the incidence angle e of a (p,Z) ray willP

generally be found numerically from Eqs. (1.8) and (1.9). However,

exact trigonometric solutions for 6 p() are possible in some cases

(see Appendix B of Chapter 3).

The intensity of a (p,l) ray is reduced at each internal

reflection by a factor rj 2 , where
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(0,0) /
(1,0) P/

OPTIC 1
AXIS

(2.1)(3,1) -

Figure 1.1. Rays in the scattering plane emerging at the scattering
angle 0 - 50° . Rays are specified by the parameters p - the number
of chords within the bubble, and L - the number of crossings of the
optic axis.
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sin(8 - p tan(e - p
rl sin(ep + p)2 tan(ep + :p)

p p p p

are the Fresnel reflection coefficients for the light polarized

.perpendicular (j - 1) and parallel (j - 2) to the plane of the

scattering. Transmissions into and out of the bubble introduce a

factor (1 - rj2)2  into the scattered intensity. Also, a geometric

divergence factor D must be included to account for the spreadingp

of the incident energy over a different area after the scattering.

The geometry of the problem leads to the expression

DP sin 2e PIde pdI /sin$® (1.11)

(see Ref. 22, Sec.IV-A). From Eqs. (1.8) and (1.9) above,

Id./de p - 2IpT - iI (1.12)

where T- d p/d - tan p/tan e, hence

D a *sin28 IpT - III/sin0. (1.13)

By this analysis, the intensity of a (p,I) ray is found to be

(1 - r2) 2 r2 (P-1)Dp, (1.14)

Pj !
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normalized to the intensity from a perfectly reflecting sphere as in

Eq. (1.3). The total scattered intensity at (b according to simple

geometrical optics is then

I((0) 1 Pi W (. (1.15)
(p4)

The summation in Eq. (1.15) includes all possible (p,2, ) rays

scattered to *,but ordinarily only those rays having small values of

p are necessary, because of the factor r ( - 1) in Eq. (1.14).

The contribution from a ray with many internal reflections becomes

insignificant, except when D Pbecomes very large, as noted below.

There are certain angles in the scattering from bubbles which

require special attention, as further examination of D pwill show.

First, for axial rays (incident along the optic axis), Oe a 0 and $ -

0 or 1800, so that Eq. (1.13) is indeterminate. But its limiting

form in this case becomes Dp W [2(pml - 1)1- ; axial rays present

no particular difficulties if this form for D pis used. There

will, however, also be rays scattered to angles (b - 0 or 1800 but

with 0 0 . In such cases D becomes infinite. These are the
p p

glory rays, scattered parallel to, but not coincident with, the optic

axis. Their relative intensities may be quite large but they are not

infinite; glory scattering cannot be properly dealt with by simple

geometrical optics.

Another exceptional angle is evident in graphs of the

intensity distribution obtained in Eq. (1.15) (e.g. see Fig. 18 of
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Ref. 22 or Fig. 5 of Ref. 12). A cusp occurs in the intensity

pattern at the critical scattering angle $0 - 1800 - 2e c, where e8 -

arcsin m is the critical angle of incidence. From Eq. (1.9) the

refraction angle becomes 900 when 68 - 8 cand So TF - -. Then the

only ray having a nonzero value for D pis the externally reflected

(0,0) ray.Rays incident at angles > 8 care totally reflected at the

bubble's surface, contributing to an enhanced intensity in the region

from 4 - 0 to (0 . The transition to total reflection also introduces
c

a phase shift into the scattered ray, since the reflection

coefficients in Eq. (1.10) become imaginary when 8 exceeds ec

Simple geometrical optics is inadequate for describing this

transition region. The angular derivative of the intensity, dI/dOb

is predicted to become infinite at 0b , which is physically untenable,

and Eq. (1.15) does not succeed in predicting even the average

intensity for angles in the near vicinity of $0

The geometrical-optics approach gives helpful insights about

the scattering properties of bubbles, and also serves to identify the

angles where a more sophisticated model is necessary. The existence

of the critical-angle scattering region is a consequence of the

refractive index m being less than unity for bubbles. Details of

the phenomena which appear in this region were, until recently, not

well-explored and will be the topic of Chapter 2. Glory scattering

is found to be a result of the spherical symmetry of the bubble.

Analogous effects exist in the scattering from spherical drops,162

and also in particle scattering by central forces. 24 Chapter 3 will



present models and measurements of the phenomena which accompany the

forward and backward glory of bubbles.

(C) Physical optics

The physical-optics approximations used in this research are

described in detail in the following chapters and their references.

Here it is worthwhile to note some general characteristics of the

method for the purpose of comparing it with the two models described

above.

Unlike simple geometrical optics, the physical-optics

approach recognizes the wave nature of light and deals with

diffraction and interference effects in the scattering. But unlike

the Mie theory, full solutions to Maxwell's equations are not

determined. Instead, the physical-optics model approximates certain

scattered wavefronts near the bubble and uses diffraction theory to

find the resulting pattern of light far away. Much of the physical

insight given by the geometrical approach is retained, however, in

formulating characteristics of the scattered waves. The curvature

and relative phases of wavefronts are determined geometrically, while

their amplitudes are derived using the Fresnel coefficients and

appropriate divergence factors. By considering only the most

significant scattered waves, the physical-optics approach can give a

fair approximation to features in the scattering while avoiding the

computational complexities of the Mie theory. The physical-optics

approximations presented here are succese, in removing the
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uaphysical divergences mentioned above, and they provide insights

into the scattering process.
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CHAPTER 2

CRITICAL-ANGLE SCATTERING

2.1. Introduction

Observations of light scattered near the critical angle by

air bubbles in water reveal an interesting oscillatory structure in

the far-zone intensity. Monochromatic illumination of a single

bubble gives rise to coarse undulations of intensity, reminiscent of

an edge diffraction pattern, along with a superposed fine structure.1

WJith white light the fine structure is lost, while the coarse

structure is manifested as a series of colored bands; this has been

observed for a cylindrical bubble in glass. 2 Pulfrich 3(in 1888)

reported rainbow-like colors from a sunlit cloud of small bubbles

rising in water; his observations were made with the unaided eye in

the critical scattering region. The present chapter gives the first

detailed experimental investigation of structures in the scattering

from rising bubbles. Features observed in the scattering of laser

light by single bubbles will be compared with the predictions of

models.

Figure 2.1(a) illustrates three models of scattered intensity

computed near the critical angle. The solid line in this figure

4represents the M'ie theory, which gives the exact scattering pattern

for a dielectric sphere under plane-wave illumination; the coarse and

fine structures are plainly visible. The dashed line is from a

physical-optics model1 '5 which has proven successful in approximating

the coarse structure in Mie results over a range of bubble sizes. 6 ,7
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Figure 2.1. Normalized scattered intensity from a bubble
with ka - 1633 and the electric field parallel to the
scattering plane. (a) Three models: the solid curve is
the Mie theory, the dashed curve is a physical-optics
approxiation, and the dotted curve is from simple
geometric optics. (b) The solid curve is experimntal
data taken from the photograph in Fig. 2.6(a), and the
dashed curve is the physical-optics model.
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It applies far-zone diffraction theory to certain scattered rays

whose amplitudes adjacent to the bubble are computed using

plane-surface reflection coefficients. The dotted line comes from

the naive geometric-optics model of Davis; 8it neglects the effects

of diffraction and interference, resulting in a divergent derivative

of intensity Iat the critical angle (Z82.650 for this example) and

the lose of all oscillatory structure. Figure 2.1(b) shows

extperimental data plotted along with the physical-optics

approximation. Details of the experiment and normalization of

results will be discussed in Secs. 2.3 and 2.6, but notice here how

the data compare with the different models. There is a strong

similarity to the Hie result in the appearance of the coarse and fine

structures. The average intensity near the critical angle does not

exhibit the divergent derivative predicted by simple geometric

optics, but instead decays gradually as in the physical-optics model

and Mie theory.

In this work attention has been limited to bubbles that are

much larger than the wavelength of the incident light. While the H4ie

theory is certain to give the most complete description of the

scattering for a spherical bubble, it gives no direct insight into

the origin of observed features in the scattering, nor into the

effects of nonephericity, a condition to be expected in dealing with

real bubbles of large size. The physical-optics approximation

elucidates the roles of certain rays in producing the coarse

structure, and a similar approach Is helpful in understanding the

fine structure as well. It may also be extended into the realm of
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nonapherical bodies (a physical-optics approximation has been applied

to large, spheroidal drop-like scatterers ).

Consider a plane wave incident upon a sphere of refractive

index m - ni/no, where the indices of the inner and outer media,

ni and no, are real, and ni < no . The size parameter commonly

used is ka - 21ra/X , where a is the sphere radius and k is the

wavenumber for the incident light. Note that X0, the wavelength in

the surrounding medium (water), is related to the vacuum wavelength

X v by A0  - A/n. Let i denote the scattering angle, measured

between the direction of the incident wave propagation and that of a

scattered ray leaving the bubble. Figure 2.2 illustrates, for m -

3/4, several different rays scattered to the same angle 0 - 50.

These rays may be characterized by the parameters p - the number of

chords the ray makes within the bubble, and Z - the number of times

the ray crosses the optic axis. In this chapter rays will often be

specified by their parameters (p, 2.). The scattering angle for a

(p,)) ray will be given by

$ - 2(-1)[pOp -p + 4(L - p + E£)], (2.1)

where e 1- (1 + (-1) )/2, and 8p and 0p are the positive local angles

of incidence and refraction, respectively. All rays satisfy Snell's

law,

sinep a m sinpp. (2.2)

p p mm~mmWm~m~ mmmmm m mm m
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Figure 2.2. Rays in the scattering plane emerging at the scattering

angle s = 50". Rays are specified by the parameters p - the number

of chords within the bubble, and Z - the number of crossings of the

optic axis.
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At the critical angle of incidence 6 - arcuin m the refraction

angle becomes 90*. For the equivalent plane-interface problem, the

reflection is total when the incidence angle exceeds 8 .- in the

physical-optics approximation of the scattering, total reflection

occurs foir 60> 6 cprovided ka >> 1 so that tunneling through the

bubble is negligible.

Because of this onset of total reflection, there is a

critical scattering angle (0 c- iT - 26 above which no refracted 2.-0

ray may exist. But along with the externally reflected (0,0) ray

there will be many rays having 2. > 0 directed to angles (0> 0 b Of
C

these, the one contributing the greatest intensity according to ray

optics will be the (2,1) ray, 8which suffers only one internal

reflection. The physical-optics model of the coarse structure makes

use of the (0,0) and (1,0) rays to compute the far-zone intensity in

the vicinity of 0 c(see Appendix A for a summary of the model). in

the present chapter the coarse structure observed from real bubbles

will be compared with the predictions of this model. it will also be.

shown that the interference of the (0,0) and (2,1) rays is able to

approximate the observed fine-structure period in the critical

region. In addition, the effect of the (3,1) ray on the fine

structure will be considered.

Critical-angle scattering phenomena will be present for any

scatterer with relative refractive index m < 1. An understanding of

these phenomena should be advantageous in the design of optical

instruments to detect bubbles, size them, or discriminate them from

particulate. Applications may include measurements of microbubble



25

10
populations in the sea, the photography of hydrogen tracer bubbles

for hydrodynamics research, laser-Doppler velocimetry of bubbles

carried by liquids, and the detection of bubbles in glass. Many

of these results will also pertain to the analogous problem in

acoustical scattering. 13

2.2. Calculation of the Fine Structure Period

When a plane wave is incident upon a bubble, the scattered

rays will have curved wavefronts, as if they were emerging from

source points in the scattering plane. To locate the virtual source

point, consider a (p,l) ray scattered to an angle *, and a similar

ray in the same plane scattered to 0'; the backward extrapolations of

these two rays will intersect. The virtual source point F isp

defined by this intersection in the limit as ' - b . Figure 2.3

shows the virtual sources F0  and F2  for the (0,0) and (2,1) rays.

Let a be the distance from F to an exit plane which is tangent toa p

the bubble and normal to the direction of scattering. It is shown in

Appendix B that

ap M a(1 + f(pr - )-1 cos p], (2.3)

with T - tan p /tan 6 p. Because 6 and p change with (0, the location

of each F varies with the scattering angle. To find the angular

period of interference 4 for two scattered rays while including the

movement of their virtual sources, it is helpful to consider their

relative phases.
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Figure 2.3. Rays used to model the fine-structure interference

period. Points F0  and F2  are the virtual source locations,

respectively, of the rays labeled 0 and 2 in the limit as the

dashed 0' and 2' rays approach them, and Op is the distance from

Fp to the exit plane.
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Letting the phase of the incident plane wave be zero at the

entrance plane tangent to the bubble and normal to the wave's

direction, the phase at the exit plane may be specified for any (p,Z)

ray. First, there is a phase delay np due to propagation through the

media from the entrance plane to the exit plane, given by

Ip(6pop) - 2ka(1 - cosep + pmcos p), (2.4)

where ep and Pp are the incidence and refraction angles of the (p,, )

ray. There will also be a phase advance Ii associated with total

reflection of the (0,0) ray; for eb> 8c, the Fresnel reflection

coefficients give
14

tan}cS I M2(l-j)(sin280 - m2 /Cos 0, (2.5)

where the subscript j is assigned the value 1 when the incident

electric vector is entirely perpendicular to the scattering plane and

the value 2 when entirely parallel. There also occurs a phase

advance of w/2 whenever a ray crosses a focal point.15 The two types

of focal points present in the scattering from bubbles can be seen in

Fig. 2.3. One focus occurs where adjacent rays (such as the nearby

two-chord rays labeled 2 and 2') cross in the scattering plane; a ray

with p > 0 chords experiences p - 1 such crossings with adjacent

rays. The point where a ray crosses the optic axis is also a focus

since similar rays in other scattering planes cross the axis at the
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same point. Thus, a phase advance of (p - 1 + Z)/2 is incurred by

a (p,X) ray (with p > 0) due to passage through focal points.

For the (0,0) and (2,1). rays scattered to angle *, the phase

difference at the exit plane will be [ r(e 2 ,) -7] - [no( 0, ,p) -

0) . For a similar pair of rays scattered to 0' 0 - A, the

phase difference will be identical in form but with all angles

primed. Now, if one period of the far-zone interference pattern of

the (0,0) and (2,1) rays occurs from t to (', the phase difference

must change by 2w. The condition for one interference period in the

angular spread AS becomes

2w = 2 ka{ [cos e 2(1 - cos Ae2 )- sin 82 sin A 2 ](2J - 1) (2.6)

+ cos o(1 - cosae) - sin 0 sinA1 + 6j(a0) - (8;),

where J - tan( Ao/2)/tan( A62/2), A6 - 8 - 8', and &a2 " 2 -

8 2'. To express this condition in terms of Ab, the expression for 6

may be approximated in the vicinity of 8c by

6j(e 0) : a2(l-J)( 8 tan 8C) (80 - 6c (2.7)

for e0 > c, and by 6 - 0 for 0 < 8 c . From Eq. (2.1), AS - 2A8 -

4AO2  -2A80 . Making these substitutions in Eq. (2.6) and retaining

terms down to order Ab give a quadratic equation in (ASb); the

resulting fine-structure angular period (in radians) is

a X 0 o/B2 - 0[(Xo/B 2)
3 /2], (2.8)
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where B 2 = a(sin 6 0 + sin 6 2) is the sum of the impact parameters

of the two rays and also their lateral spacing in the exit plane.

To a first approximation the fine-structure period is

equivalent to the interference period of two point sources separated

by a distance B 2. The 0[(> /B22 3/2 1term comes from including the

reflection phase shift of the (0,0) ray when 6. > ec, while terms

attributable to movement of the virtual sources of the scattered rays

are of the order (X 1o /2) 2and smaller. In Sec. 2.5 of this chapter

the first-term approximation of Eq. (2.8),

60 -- X /B 2, (2.9)

is shown to give a fair description of the fine-structure period

observed from real bubbles. This approximation was previously

obtained using elementary methods. 
7 ,13

2.3. Experimental Methods

The experiments that are described in this section provided

absolute-angle, relative intensity measurements of the far-zone

scattering from single bubbles in the critical angle region. To

minimize the effects of bubble nonsphericity, the scattering plane

was chosen to be horizontal. The chamber in which the scattering

took place was fashioned from an aluminum block with portholes, and

was filled with distilled water. The incident light, from a He-Ne

laser, entered the chamber through a front window, and the scattering

was photographed by a camera through a side window. The camera lens

was focused at infinity so that the far-zone scattering pattern was
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recorded. Bubbles were injected by a syringe and a steel needle

which entered through the floor of the chamber. The scattering was

photographed either with the bubble La a pendant form (attached to

the tip of the needle), or else rising freely through the water.

Bubble diameters were measured using a microscope situated in air

above the top opening of the scattering chamber. Rising bubbles were

trapped by a glass slide across this opening so their sizes could be

measured. From microdensitometer scans of negatives, relative

intensity profiles could be derived for the scattering by bubbles.

Since the camera was in air, refraction at the viewing window

had to be taken into account in determining the absolute scattering

angles represented in the photographs. Figure 2.4 shows a diagram of

the apparatus as it was used to perform the angle calibration. A

flat glass reflector was suspended vertically through the top opening

of the water-filled chamber. By turning the reflector about a

vertical axis, the incident laser beam could be directed to angles in

the horizontal plane. A goniometer attached to the axis of this

rotatable reflector allowed its orientation to be measured. To

relate the goniometer readings to scattering angles, the setting

which gave direct backscattering ( $- 1800) was established using the

optical system shown in Fig. 2.4. The backscattering setting was

determined by focusing light returned by the rotatable reflector to

the same spot on the screen as light from the beamsplitter and

retroreflecting (corner-cube) prism. The beam could then be directed

into the camera at known scattering angles. A multiple-exposure

photograph of the beam at several angles provided data relating
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Figure 2.4(a) Top-view diagram of apparatus set up for angle
calibration. To observe bubble scattering the rotatable
reflector was removed and bubbles were injected by a needle
entering the bottom of the aluminum block. A microscope above
the top opening was used to measure bubbles. The screen (used
during angle calibration of the rotatable reflector) is at the
optical-transform plane of the lens. The systematic uncertainty
in the angle calibration was < 0.020.

Figure 2.4(b) Photograph of the experimental apparatus. The
numbered devices are: (1) front end of laser, (2) beam expander,
(3) polarization rotator, (4) mirror, (5) beam splitter, (6)
retroreflecting prism, (7) lens, (8) scattering chamber, (9)
camera, (10) mechanism of angle-calibration goniometer and
rotatable reflector.
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points across the camera's field of view to scattering angles i

Typically, about 1.5 of these calibration points wore taken across a

negative, and each roll of film contained one to three such frames of

angle information.

The glass rotatable reflector was removed from the chamber

when scattering from bubbles was to be observed. The inner walls of

the scattering chamber had been blackened to absorb stray light. To

further reduce the background intensity, particulate larger than

0.2-um diameter were filtered from the water. The incident beam,

from a 1.5 mIJ He-Ne laser, had a Gaussian intensity profile

proportional to exp(-r 2/d2 ) where oi 2.8 mm. The beam was muade to

be highly collimated in the region of the scattering using a

parallel-plate shearing interferometer. 16 A polarization rotator

(back-to-back Fresnel rhombs) allowed the plane of the beam's

polarization to be selected; the incident electric field was oriented

either (a) perpendicular to the plane of scattering, corresponding to

j - 1 in the preceding analysis, or (b) parallel to the scattering

plane, corresponding to j - 2. The central region of the incident

beam is expected to closely approximate a plane wave for a scatterer

whose radius is small compared to the beam radius. 17 To place

pendant bubbles in the center of the beam, a blackened needle was

made to stand vertically with its tip near the beam axis. Rising

bubbles were injected at the bottom of a glass tube (0.8-cm i.d.) and

rose into the scattering chamber where they passed through the

central part of the beam. A path length of - 9 cm helped dampen

oscillations of the moving bubbles. The viewing window, optically
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Polished fused quartz, was oriented so that normal incidence was for

light scattered horizontally at (0.77*. For most of the photography

the lens used had an effective focal length of 85 mm and the viewed

angular range was limited to -170; other lenses used had effective

focal lengths of 50 and 135 mm. Only one lens was used for each roll

of film, since interchanging lenses necessitated a new angle

calibration as well.

obtaining properly exposed negatives turned out to be simpler

for rising bubbles than for pendant ones. Each pendant bubble was

photographed at several shutter speeds for both polarizations of the

incident beam. Best detail was usually obtained when the camera's

built-in light meter indicated a slight underexposure; the times

varied from -1 second for small bubbles (- 0.1-mm radius) to 1/80

second for large bubbles C-1-umm radius). With rising bubbles this

procedure was impossible since only a single photograph could be

taken for each bubble. It was found, however, that by simply holding

the camera shutter open as the bubble traversed the beam, acceptable

exposures were obtained despite the wide range of bubble sizes

observed. To understand this fortuitous result, consider a bubble

whose radius, when spherical, is a. Its terminal velocity is found

to be approximately proportional 119to a 2 for a 1 0.7 am, so

such a bubble traverses the beam in a time interval t a a-2. But

the scattered intensity 1I6 from the bubble, based on geometrical

8 2considerations, is also roughly proportional to a * Since the

exposure received by the film depends on the product I t, it will be

approximately independent of the bubble radius for small enough a
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values. For a 0.7 = the terminal velocity begins to decrease

from the az dependence, resulting in increased exposure, so an

appropriate combination of beam intensity and film sensitivity may be

expected to yield adequate exposures up to some bubble size limit.

The film used in the experiments was Tri-X (400 ASA). Rising bubbles

were produced ranging in size from - 0.026- to 0.81-mm radius, and

acceptable negatives were obtained throughout this range. For very

small bubbles, the background scattering often became significant

during the long exposure times required. In such cases photographs

were also taken with no bubbles present, to allow the background

intensity to be subtracted from the scattering measurements.

The absolute intensity of scattered light was not determined

in the experiments. Relative intensity values were important,

however, for comparing coarse-structure results with models.

Negatives were scanned with a microdensitometer to obtain their

transmittance profiles, and from the transmittance T a value for

the relative intensity Ir was inferred. To make this conversion

from T to I possible, a response curve for each film was

determined. A relationship exists between the photographic density

D - -log T of a negative and the exposure E which it received,

where E - I& t, with I athe absolute intensity and t the time of

exposure. Film response is usually shown by the H-D curve, 20where

D is plotted vs log E. In the experiments several frames on each

film were exposed to a constant radiant flux (the laser beam diffused

by a ground glass screen) for a set of time intervals ti. The

negatives gave a set of densities Di, from which the R-D curve was



36

obtained by setting log E -log t + k, with k - log 1a an

undetermined constant. A cubic equation was found to provide a good

fit to this curve. Then, for other negatives on the same film, 21

each D (hence each T) value had a corresponding log E, obtainable

to within the unknown additive constant k. Since only relative

intensities were of interest, it was sufficient to set Ir = - t

where the normalization factor K - 10 kwas a free parameter. The

procedure for selecting values of K is described in Sec. 2.6. The

exposure time t could be treated as part of the scale factor K,

except when background intensities were to be subtracted. In such

cases, t was needed for photographs of the bubble scattering and of

the background light to permit subtraction of a properly scaled

background intensity. An electronic timaer connected to the shutter

synchronization terminal of the camera measured t for each

photograph.

The transmittance profile of each negative was obtained as a

function of absolute scattering angle $. As mentioned previously,

one or more negatives on each film contained a set of exposed dots

representing known angles (b . Microdensitometer scans of these

negatives gave a series of sharp transmittance minima whose positions

x were measured. A cubic polynomial for (O(x) could then be

obtained by least-squares fitting. Sprocket-hole edges on the film

provided a reference for the X - 0 position corresponding to the

edge of a frame. A small, regular shift was detected in the

positions of the sprocket hales relative to the camera's field of

view, accumulating at a rate of -9 Urn/frame. This was discovered by
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comparing the results of the fitted formula (Oxd with the actual

angle data $4 (xi) for films with more than one angle calibration

frame. It became evident that the difference $(xi) - si (x i) had a

nearly linear dependence on the frame number relative to the

beginning of the roll. This shift was accounted for in the final

conversion of x values into scattering angles. The camera, a Nikon

F2, was mounted in such a way as to inhibit angular motion which

might otherwise have occurred during the (motorized) film

advancement. This angular shift appeared to be due to the filling of

the camera's take-up reel.

2.4. Bubble Shapes

The physical-optics model of the coarse structure (Appendix

A) assumes the bubble surface to be spherical at the scattering

plane. The degree of nonaphericity of real bubbles is important,

therefore, in assessing the applicability of this model, and of M1ie

theory as well. The scattering observed in these experiments was

from near the plane of the bubbrle's equator; the equatorial plane of

a bubble is defined here as the horizontal plane in which its

diameter is a maximum. Let X denote the aspect ratio of a vertically

axisymmetric bubble: the ratio of its horizontal and vertical

dimensions. From measurements of the equatorial diameter, values of

X may be estimated for the pendant and rising bubbles observed.

For pendant bubbled X- a Is/, where 2a Pis the equatorial

diameter and z is the distance from the plane of the equator to the

top of the bubble (the bottom of the bubble is attached to a needle).

Numerical analysis 22for the shapes of stationary bubbles allow z
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to be determined if a pis known. For the largest pendant bubble

observed, which had a p- 0.981 mr, an aspect ratio of X - 0.969 is

predicted. For smailler values of a P X approaches unity. A surface

tension for water of 72.7 dyn/cm was assumed in using Hartland and

Hartley's 22tables.

Rising bubbles were trapped beneath a flat glass slide to be

measured; from the equatorial radius a s of the sessile (trapped)

bubble, the aspect ratio of the same bubble when rising may be

estimated. For the largest sessile bubble observed, which had a

0.814 mm, tabulated vle22indicate a sphere of the same volume has

radius av - 0.803 m. Then, from the shape measurements made by

Siemes 23 for air bubbles rising in water, an aspect ratio of X -

1.056 may be interpolated for the moving bubble. Again, for smaller

bubbles X tends toward unity. The equatorial region of observed

pendant and rising bubbles should, by this analysis, present a highly

spherical scattering surface.

The fine structure model in Sec. 2.2 assumes a bubble with a

circular cross-section in the scattering plane; in testing this model

the equatorial radii of bubbles were needed. The rising bubble's

radius ar may differ somewhat from that of the sessile bubble a

To estimate the difference, consider again the rising bubble with X

1.056 whose volume equals that of a sphere with radius a. M 0.803

M. Assuming an oblate spheroidal shape 24for the rising bubble

gives ar aavX 1/ 0.818 m, which differs from the sessile radius

as a 0.814 mm by only 0.5%. This suggests that the error in

approximating arby a 9is negligible. The above procedure may
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slightly underestimate the ratio ar/as since the water used in

Siemes' measurements may have been less pure than ours. For rising

bubbles X is known to increase with water purity for the size range

under consideration. 23,24

Rising bubbles were photographed .2 cm below the level where

their size was measured. The volume change due to this height

difference may be estimated by assuming the bubble to be an ideal gas

in equilibrium with the water. The bubble radius should increase by

1/3a factor (1 + APIP) , where the change in pressure 6P = 196 Pa

corresponds to a 2-cm column of water, and P - 1 atm a 105 Pa; the

small difference in heights makes this effect negligible.

2.5. Fine Structure in the Scattering

Fine-structure intensity oscillations in the scattering from

bubbles may best be observed near the critical angle $ *. Coarse

oscillations occur for angles of < (0cas is evident in Fig. 2.1,

while as (b continues to increase the average intensity gradually

decays. In the near vicinity of 0 , therefore, moderately intense

fine-structure lines are visible without the complications of a

superposed coarse structure. For (b approaching 1800 the intensity

increases again as "glory" scattering phenomena begin to appear; the

structures associated with this region are described in Chapter 4.

in the present section, measured spacings of fine-structure lines

near (0will be compared with the prediction of Eq. (2.9).

Figure 2.5 shows the experimental fine-structure frequency

(A~1 plotted versus the measured equatorial radius for 120 rising

bubbles and 23 pendant bubbles (note that for rising bubbles the
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Figure 2.5. Measurements and model for the angular frequency
of fine-structure lines. Data are displayed for 120 rising
and 23 pendant bubbles, whose radii as  and ap, respectively,
were measured by microscope. Mie results were obtained from
high-resolution computations.
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measured radius is a8 , as discussed in Sec. 2.4). The average

angular separation of fine-structure lines near $c was determined

from microdensitometer scans of negatives. The region of measurement

typically had a width of -2.5*.

The straight lines in Fig. 2.5 represent Eq. (2.9) adapted to

rising or pendant bubbles. The values used for B2 and X are based

on the average value of the relative (air-water) refractive index m

in the experiments. The temperature was measured during the

experiments, so m could be calculated 25 for the laser wavelength in

air X% - 6328 A. Deviations from the average value of m - 0.75098a
0

were negligible, so X - m - 4752 A for all the data. Also from

m, the critical angle $ - 82.6490 is obtained. The correspondingc

incidence angles of the (0,0) and (2,1) rays are e0 0 48.6750 and e2

- 27.6460, so the sum of their impact parameters is B2 - 1.2150a,

where a is taken to be as or a , for rising or pendant bubbles,

respectively.

The results displayed in Fig. 2.5 compare favorably with the

fine-structure model of Sec. 2.2. The lines representing Eq. (2.9)

-l -1
have a slope of 44.625 deg m- . Linear least-squares fits to the

experimental data, constrained to pass through the origin, have

slopes of 44.444 ± 0.002 deg- 1 m - I for the rising bubbles and 45.040

± 0.035 deg-' ,m-1 for the pendant bubbles. In addition, six

fine-structure measurements taken from Mie theory calculations near

$ for different bubble sizes have been included in Fig. 2.5; aC

linear fit to these results and passing through the origin has a

slope of 44.625 ± 0.014 deg- 1 ,-l, in agreement with the
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aforementioned result of Eq. (2.9). The symbols used to plot the

data in Fig. 2.5 indicste the polarization of the incident electric

field relative to the scattering plane. The effect of polarization

on the fine-structure frequency is too small to be detected in these

experiments, as expected from Eq. (2.8) for bubbles of the size range

considered here.

Consideration of the model leading to Eq. (2.9) suggests that

60 could be best predicted for the rising bubbles by taking ~

1.2150 a r, where a ris the actual radius while rising as discussed

in Sec. 2.4. Unfortunately a r could not be directly measured;

however, the analysis of shapes in Sec. 2.4 indicates that the

differences between a r and a s should be negligible f or the

observed sizes. The agreement with measured AO found by taking 3 2 =

1.2150 a sappears to confirm that differences between a rand a

were small for the distilled water used in the present experimient.

Figure 2.6 shows four examples of scattering observed near

the critical angle from rising bubbles of different sizes: these are

positive reproductions of photographs. The fine structure is evident

in each case as closely spaced vertical lines. For Figs. 2.6(a)-(d),

the respective fine-structure periods 60 in degrees are: 0.1816,

0.0577, 0.0386, and 0.4866. From Eq. (2.9) the rising bubble radius

a rmay be calculated. The respective a r(and sessile radii a s) in

mmi are: 0.1235 (0.1171), 0.3890 (0.3880), 0.5808 (0.5817), and

0.0461 (0.0436). The uncertainties associated with a smeasurements

are larger than those for a r values derived from A~b measurements,
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b)I

(c)

I I I I
70 75* o*980°c

Figure 2.6. Photographs of far-zone scattering from rising bubbles in

water. Each photograph is aligned with the bottom scale showing the

scattering angle C. The bubble radii and incident polarizations are

(a) ar a 0.1235 mm, j a 2; (b) 0.3890 mm, j a 2; (c) 0.5808 mm. j - l;

(d) 0.0461 mm, J a 1. The corresponding intensity profiles are shown

in Figs. 2.1(b) and 2.7-2.9.
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due to difficulties in identifying the bubble edges with a

microscope.

2.6. Coarse Structure in the Scattering

Diffraction phenomena are prominent in the critical-angle

scattering region of bubbles. Coarse oscillations of the scattered

intensity are present for 4) < (0 c, followed by a smooth decay of

intensity as 0 continues to increase. Figures 2.6(a)-(c) each show

several coarse-structure oscillations, the broad, vertical light and

dark bands with superposed fine-structure lines; they also show the

gradual decline of average intensity at higher b. Figure 2.6(d),

because of the smallness of the bubble, contains only one faint

coarse-structure band, with an intensity peak near 75". Simple

geometric optics, 8neglecting diffraction effects, is unsuccessful in

the critical region, predicting a cusp in the scattered intensity at

(Oas illustrated in Fig. 2.1(a). The physical-optics model

described in Appendix A is able to approximate the coarse structure

in Mie results for a range of bubble sizes. 6 ,7  In this section the

scattering observed from real bubbles will be compared with this

physical-optics model.

Figures 2.1(b) and 2.7-2.10 shov experimental data for the

intensity as a function of the scattering angle for rising bubbles of

different sizes. In each graph the physical-optics model result for

a bubble with the same radius is shown by a dashed curve. To compute

the model, the size parameter ka - 2 ira/X is used, where a is

taken to be the equatorial radius a r of the rising bubble, a

quantity which was not directly measurable. Sections 2.4 and 2.5
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2.

2 1

0.
e8. 72. 75. 80. 84.

SCATTERING ANGLE (C=d )

Figure 2.7. Normalized scattered intensity from a bubble with ka - 5144
and the electric field parallel to the scattering plane (j - 2 scattering).
The solid curve is data taken from the photograph in Fig. 2.6(b), and the
dashed line is the physical-optics model.
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2.

0.
5S. 72. 75. 80. e4.

SCATTERING ANGLE Cdegj

Figure 2.8. Like Fig. 2.7 but with ka - 7680, j - 1, and the solid
curve corresponding to the photograph in Fig. 2.6(c).
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2.

0.
59. 7.77. el. 85.

SCATTERING ANGLE Cd.9S)

Figure 2.9. The j *1 scattered intensity for ka - 612. The solid
curve is data from the photograph in Fig. 2.6(d), the dotted curve is the
Mi. result, and the dashed curve is the physical-optics model.
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(a)
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Io I

59. 73. 77. 8i. 85.
SCATTERING ANGLE (dog)

Figure 2.10. Normalized scattered intensity for ka of
(a) 2748 and (b) 9699. These ka were determined from
the respective radii of 0.2078 and 0.7335 mm which were
inferred from the measured fine-structure spacing. The
solid curves are measurements; in (b) they were smoothed
to remove the fine structure. The dashed curve is the
physical-optics approximation.
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suggest that the sessile bubble radius a closely approximates as r

in these experiments; however, for computing the physical-optics

model, ar was derived from measurements of the fine-structure

spacing using Eq. (2.9). Justifications for this procedure were

the following: (a) Uncertainties in the derived a are smaller

than in the measured as, due to the difficulty of locating bubble

edges by microscope. (b) The results of Sec. 2.5 confirm that Eq.

(2.9) models the relationship of Ab to the bubble radius. (c) When

this procedure is used, the model of the coarse structure shows

substantial agreement with the experimental data.

In the present chapter the subscript j denotes the

polarization of the incident electric vector relative to the

scattering plane; j - 1 or 2 for the perpendicular or parallel

case, respectively. The model intensity is given by

I. Is.12 (2/ka) 2, (2.10)

where the scattering amplitudes Si, defined in Appendix A, are

expressed in units commonly used 15'26  in Mie theory. The

normalization of the model is chosen so that I (0) - I represents

the geometric-optics result for a perfectly reflecting sphere8  of

radius a. The actual intensity at a distance R >> a from the

center of the bubble is the incident intensity multiplied by

2I (a/2R) . As discussed in Sec. 2.3, experimental scattering results

taken from photographs were in the form of relative intensity

profiles I r(), with a free parameter K to be used as a scale

r m m m m m mmmm m m
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factor for I' For each of the graphs in Figs. 2.1(b) and 2.7-2.10,

the constant K was selected to optimize agreement with Eq. (2.10).

Figures 2.1(b) and 2.7-2.9 contain the intensity profiles

corresponding to the photographs in Figs. 2.6(a)-(d), respectively;

from fine-structure measurements, their respective bubble size

parameters ka are: 1633 ±t 17, 5144 ±t 17, 7680 t 28, and 612.0 ±t

2.7. Additional intensity profiles are shown in Fig. 2.10. In each

case the physical-optics approximation demonstrates close agreement

with the data in the angular locations of coarse maxima and minima.

Some differences between the data and the model are apparent in the

relative intensities of coarse oscillations. These discrepancies may

be due in part to the simplicity of the model, which incorporates

only two scattered rays. The model is not an asymptotic

approximation; as ka becomes large it underestimates 2 ,5 ,13 the I

for (b> , as is evident in Figs. 2.7, 2.8, and 2.10(b). The

amplitude of coarse-structure oscillations is observed to be greatest

when j - 2, as the physical-optics model predicts, 56and the

fine-structure amplitudes are greatest when j - 1. -No figures

display both I for the same ka, but the effect of j on the

coarse and fine amplitudes can be appreciated by comparing Figs. 2.7

and 2.8.

Figures 2.1(b) and 2.7-2.10 are representative examples of

the scattering data collected from real bubbles. Graphs shoving

similar agreement between the data and the physical-optics model were

also obtained for bubbles with the following size parameters ka

(and radii ar in on): 1364 (0.1031), 1635 (0.1237), 1780 (0.1346),
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2117 (0.1601), 3001 (0.2269), 5899 (0.4461), 6600 (0.4992), 6867

(0.5193), 7428 (0.5618), 7847 (0.5935), 8995 (0.6803), and 10 742

(0.8124). These are presented as supplemental examples in Appendix

C.

2.7. Fine-Structure Contrast Modulations

Modulations in the contrast of the fine structure were

usually visible in j - 1 scattering from bubbles. These

modulations give some fine-structure lines a blurred appearance in

photographs; two examples are conspicuous in Fig. 2.6(d) at angles of

- 74.8 and 77.80. Contrast modulations were also visible in

previously published Zlie computations: Fig. 3(a) of Ref. 6 and Fig.

4 of Ref. 7. In the present section the angular period of such

modulations will be approximated, and applications to bubble sizing

will be described.

Consider a bubble with a circular cross-section of radius a

in the scattering plane; Fig. 2.2 illustrates some of the scattered

rays. The far-zone angular period of interference of two rays may be

derived by the method outlined in Sec. 2.2. The interference of the

(0,0) and (3,1) rays has an angular period of - X o/3 radians, where

B3 0 a(sin 60+ sin 3 ) is the distance separating the two rays as

they. enter and exit the bubble. From geometric-optics

consideration., the intensity of the (3,1) ray taken alone is

expected to be only about one-tenth that of the (2,1) ray in the

critical-angle region.8 Superposing the interference pattern of the

(0,0) and (3,1) rays onto the fine-structure pattern of the (0,0) and
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(2,1) rays should result in contrast modulations with an approximate

angular period (in radians) given by

= X/(B3 - B2 ). (2.11)

In the present experiments the relative refractive index was
0

0.75098, so that -- 82.6490 and X - 4752 A. The incidencec o

angles of the (2,1) and (3,1) rays scattered to 0c are 9 2 a 27.6460

and 63 - 40.420, respectively, so B3 - B2  M 0.1944a. Comparing

Eqs. (2.9) and (2.11) for this case indicates there should be - 6.6
fine-structure oscillations within a period (60). The two nodes in

the fine-structure data of Fig. 2.9 are spaced in accordance with

this prediction. In addition to Fig. 2.6(d), contrast modulations

are visible in the photograph in Fig. 2.6(c), and in the intensity

profiles in Figs. 2.8 and 2.10(a); these may be used to estimate the

bubble size. There are 18 modulation cycles counted between the

angles of 80.13 and 84.770 in Fig. 2.8, giving (A)M = 0.2550. From

Eq. (2.11) the bubble radius in the scattering plane should be -

0.5790 mm; this compares favorably with the value of 0.5808 m

obtained from AS in Sec. V.

It is possible to determine bubble sizes with high precision

by fitting observed intensity profiles with ie theory results. In

Fig. 2.9 the dotted curve shows 'Hie results computed for a bubble

with size parameter ka - 612.0; for this case, the close conformity

to the data is lost if ka is changed in excess of ± 1 in the Mie

calculation. The accuracy of the angle calibration for the data
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places an upper limit on the size for which this fine-structure

fitting is reliable. The alignment of contrast modulations in Hlie

results with those in the data permits precise ka determinations up

to a larger size limit. Such a procedure may become very difficult,

however, if ka is not already known to within t 20. The reason for

this is as follows. From Eq. (2.3), the propagation phase difference

of the (2,1) and (3,1) rays is n3 - n2 -2ka (3m cos p O3 - Cos 3  -

2m cos P + cos 6 ) ; for scattering at d) with m a 0.75098 this

becomes n3 - T2 
= 0.161 ka. If ka changes by 39, the phase

difference T 3 - changes by 21, causing the contrast modulations at

$ to pass through one modulation cycle. If the original uncertaintyc

in ka exceeds - 20, modulation features in Mie results may be

misaligned with those in the data by more than half a period (&0)M"

2.8. Discussion

The physical-optics approximation properly locates the angles

of coarse maxima and minima. However, the data obtained for large

bubbles confirm that this model underestimates the scattered flux

into 0 Z $, especially for polarization j - 1. Previous

comparisons of Mie computations6'7'12'27 with the approximation show

that this discrepancy should depend not only on ka and J, but also

on the refractive index m. For example, the mean intensity at c

(neglecting fine structure) is well approximated for bubbles in

water6 having ka x 100; but for vapor bubbles in liquid helium (m -

1/1.03, Oc - 27.70) it is necessary to increase ka to roughly 1000

to obtain similar agreement.
27
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The scattering measurements are relevant to optical

techniques for detecting, sizing, and counting bubbles in water. For

example, scattering at a 900 is sometimes used for sizing. 10 The

present experiments suggest that when bubbles are small (so that it

is desirable to maximize the detected flux) it would be preferable to

detect scattering with 0 somewhat less than 0 Z 82.70.

Each of the three types of structure described in Secs.

2.5-2.7 can be useful in the sizing of bubbles. The bubble radius a

in the scattering plane is approximately related to the

fine-structure period A~ by Eq. (2.9) and to the modulation period

AO by Eq. (2.11). For large bubbles the fine structure may be

poorly resolved making A(O difficult to obtain, but (&) may still be

measurable. For a wide range of sizes, use may be made of

coarse-structure oscillations of the model, w~hich have an angular

quasi-period roughly 5 7  < ( x a/a)i rad. Bubbles may be sized by

matching coarse maxima and minima of the data and model, as in Figs.

2.7, 2.8, and 2.10(b). Such a method is possible even without a

precise angle calibration for the data, since the coarse peaks near

$0 provide an unmistakable reference angle. For small sizes coarse

oscillations are more difficult to use since the range of angles

observed must be large. For small bubbles it is possible to obtain

high-precision sizing by the alignment of fine-structure peaks or

modulations in Hie results with corresponding features in the data,

as illustrated in Fig. 2.9.

For scattering from a polydispersion of bubbles it is

expected that the fine structure would be obscured; the coarse
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structure, however, is less sensitive to bubble size and should be

retained if the size distribution is not too broad. Some photographs

(not shown here) were taken of. scattering from more than one bubble,

and these show such effects.
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APPENDIX A

APPROXIMATION FOR THE SCATTERING

The main purpose of this appendix is to summarize results of

1,5the physical-optics approximation for the scattering amplitudes

and intensity in the notation of the present paper. Most

descriptions of the scattering amplitude of spheres are phase

referenced to the point in space corresponding to the center of the

sphere (see e.g. Ref. 15). That phase reference was not used in

Refs. 1 and 5; however, in the present statement of the phase [i-qs.

(A2) and (A6)] it will be used. The final approximation for the

intensity is identical to that used in previous comparisons6'7'12  of

the model with ,ie theory (for ka from 25 to 10 000) since the

intensity does not depend on the phase reference. Some limitations

of this approximation are discussed in Sec. 2.6.

The incident wave's E-field at the point corresponding to the

center of the sphere (in the absence of the sphere) is defined to be

the real part of Ei exp(-iwt). We consider only cases where Ei  is

either entirely perpendicular to the scattering plane (corresponding

to the assignment j - 1) or entirely parallel to it (j - 2), since

these were the polarizations used in the experiments and the general

case may be obtained by superposition. The far-zone scattered-field

amplitudes may be written as Ej . iE i(kR)-IS exp(ikR - i t).
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Listed below are the approximate S which may be inserted into Eq.

(2.10) to give normalized intensities I according to the two-term

physical-optics model. Let Sj a S0,i + S 11 where S0, and S 11

are amplitudes associated with the (p,9) - (0,0) and (p,.) - (1,0)

waves, respectively. It is convenient to introduce Fpj where

Spi = -lika Fpj exp(iypj). (Al)

The approximation 5 for the reflected wave becomes

YOj = -2kacos e0 - H(Oc - 0) 6., (A2)

FOj- [F(w) - F(--)] 2- 1 exp(-in/4), (A3)

F(w) a f exp(iirz2) dz, (A4)
0

w - [(a/X 0 ) cos 3c] sin(bc - 0), (A)

wfhere from Eq. (2.1), e0  (T- s)/2. In (A2), 6 is the reflection

phase shift given by Eq. (2.5) and H is a step function giving R

1 for 0 <0c and H - 0 for 0 > Oc . An approximation to the

Fresnel integral F(w) which is useful for computation has been

previously cited.5 ' 13  To appreciate the phase factors in (Al) and

(A3) note that POi * 1 as wV * .

For the single-chord transmitted wave the approximation
5

gives
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Y1J a 2ka(mcosP 1 - cose 1 ), (A6)

F -ja 2(1 - r 2 ) D' H($ - (A7)

sin(P1 - ) tan(e1 - I)
r sin(P1 + a1) tan(8 1 + 01)

D - sin 2e 11 - (m-cos el/cos PI) 1-/si . (A)

For ¢ > 0c' Fj - 0; for (b< *. the angle of incidence is given

by
13

tane 1 - m sint i(1 - mcos 1)-i (A1O)

and the refraction angle by p, - arcsin(m -  sin

It should be noted that the sign of rI  in Eq.(A8) differs from

that in similar expressions for the Fresnel coefficients in

Eq.(l.10). This is because the particular sign convention used here

follows that of the original derivation (Ref.5) and was chosen to

Sive a concise expression for the scattered fields.
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APPENDIX B:

VIRTUAL SOURCE LOCATIONS

This appendix outlines a novel method for locating the

virtual source point of a scattered ray. Consider two coplanar (p,Z)

rays, R and a', leaving the spherical bubble at scattering angles 0

and (0', respectively; the backward extrapolations of R and R'

will intersect at some point. The virtual source point F for rayp

R is at this intersection in the limit 01 - 0. To locate F , let

an x-y coordinate system lie in the scattering plane as shown in Fig.

B.1;the origin 0 is at the bubble's center and the x-axis is along

the direction of the incident light. The equation of the line

containing a scattered ray can be expressed most simply by its normal

form. For ray R this is

xcos(0 + r/2) + y sin(0 + Ir/2) 1 a(-1) sin e p (B1)

where 8 is the angle of incidence (and departure) at the bubbles'sp

surface. For R' an identical expression holds, except that b and

e are replaced by 0' and e ,. These lines intersect at the point

p P
F' whose coordinates (x',y') are given by
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Figure B.1. Coordinate system and angles used in determining

the locations of scattered-wave virtual sources.
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x' - a(-l) 1 (sina' cosO - sine cos 0' )/sn(o - 0,),
p p (B2)

ya a a(-l) sin6 sec0 + x' tanO.

The coordinates (FYF) of the virtual source point F coincidep

with (x',y') in the limit ' * 0 , 8 '. 9 . To evaluate (12) in

this limit, L'Hospital's rule is applied using the differential

operator

d a + ( dp
0- - 7 . =a @- 7  +  Op d )  (3

p p p

- 2(-l) (p - 1)-. (B)

p

where (B4) uses Eqs. (2.1) and (2.2) and the definition T - dp '/depp

- tan P '/tan p'. The coordinates of F are

(d/de')(sine'cos0 - sin 9'cos')
xF lim , ) (15)x $',-b, 0 (d/de')[sin(0 -4)]

p p

= -a(-l) t sin 6p sin 0 - Ja(pT - I) 1 cos 6p Cos 0, (B)

YF a +81(-1) Sin ep COS $ - ja(pT -1)' Cos ep sin (. (B7)

The exit plane of ray t is normal to Z and tangent to the

bubble; its intersection with the scattering plane is shown in Fig.

B.las the line EG, which has the normal equation



62

xcosc + ysin¢ = a. (B8)

The point where R intersects its exit plane is (xEYE), where from

(Bl) and (B8)

xE = a cos 0 - a(-l) sin6 sin0, (B9)

YE = a sin b + a(-I) sine cos4( (B1)

The distance C from F to the exit plane of _ is obtained byp p

setting

12. ( XF) 2  +F 2  (11l)- . E - +(Y - ,E

which yields

Op M a(l + J(p - I) - I cose ] . (112)

This result agrees with the previous analysis of the virtual source

location of backscattered glory waves (see Appendix A of Chapter 3).

It is also applicable to the location of the virtual line sources for

waves scattered by large circular cylinders illuminated at normal

incidence and to droplike objects as well.
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APPENDIX C

SUPPLEMENTAL EXAMPLES

2.

as. 73. 77. eI. 85.
SCATTERING ANGL.E Ceq )

Figure C.1. The j a 1 scattered intensity for ka a 1364.
The solid curve is data from a photograph, and the dashed
curve is the physical-optics approxiation.
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0.
59. 73. 77. e61. .

SCATTERING ANGLE (aaq)

Figure C.2. Like Fig. C.1. but with ka -1635.
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2.

0.

9.73. 77. 81. 8 5.
SCATTERING ANGLE (caS

Figure C.3. Like Fig. C.1 but with ka = 1780.
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2.

1.

73. 77. ei. a 5
SCATTERING ANGLE (=ec)

Figure C.4. The j - 2 scattered intensity for
ka - 2117. The solid curve is data from a photograph,
and the dashed curve is the physical-optics model.
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2.

0.
69.73. 77. 81.8.

SCATTERING ANGLE

Figure C.5. Like Fig. C.1 but with ka a3001.
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2.

2

0. I\

0.1~ ..

58. 72. 76. 80. 84.
SCATTERING ANGLE w k5 S )

Figure C.6. Like Fig . C.4 but with ka -5899.
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0.

58. 72. 76. 80. 8 4.
SCATTERING ANGLE (cd.9 )

Figure 0.7. Like Fig. C.1 but with ka - 6600.
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2 1.

0.
69. 73. 77. 81.

SCATTERING ANGLE (d.o)

Figure C.8. Like Fig. C.4 but with ka 6867.
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2.

2

9v

0.1
59. 73. 77. e1. 85.

SCATTERING ANGLE (de 9 )

Figure C.9. Like Fig. C.4 but with ka - 7428.
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7:3. 77. al.
SCATTERING ANGLE C(c)

Figure C.10. Like Fig. C.4 but with ka - 7847.
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0.
72. 75. 60.6.

SCATTERING ANGLE (cioq)

Figure C.11. Like Fig. C.1 but with ka =8995.
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2.

•J \

68. 72. 76. 80. 84.
SCATTERING ANGLE (dS)

Figure C.12. Like Fig. C.1 but with ka - 10 742.
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CHAPTER 3

FORWARD SCATTERING

3.1 Introduction

The near-forward scattered light from a bubble contains

contributions of several types. This chapter is principally

concerned with the type of scattering kcnown as the glory; the other

kinds of contributions will also be discussed briefly. Photographs

and measurements of features related to the forward glory of bubbles

will be presented for both the near and far-zone scattering. A

physical-optics model will be described and its predictions will be

compared with measurements; a formally similar model for the backward

glory, was published previously and is included for reference in

Appendix A. Some results obtained from Mtie theory computations will

also be included for comparisons with the model and the data.

The strongest contribution to the near-forward scattered

light comes from what is generally called forward diffraction. For

any scattering object, that part of the incident wavefront which is

not obstructed will produce a pattern of illumination extending into

the geometrical shadow region of the object. For a large sphere of

radius a the scattering amplitude of the forward-diffracted light

is approximuately given by
1I

S D aO (1 + Cos () Jl(x sin 4)/(x sin 1), (3.1)
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where S., is defined in the same units as the S amplitudes of Eq.

(1.1). As in Chapter 1, x - 2ra/Xo  is the size parameter of the

sphere, and 0 is the scattering angle measured relative to the

forward direction. The Bessel function J1 (z) is equal to zero at z

- 0, but JI(z)/z - I in this limit; hence for exact forward

scattering SFD(0*) - x2/2. From Eq. (1.3) the normalized intensity

associated with the diffraction pattern is proportional to x; this

dependence makes forward diffraction quite dominant for large values

of the size parameter when 0 is small. To allow other types of

scattering to be observed instead, the forward-diffracted light can

be removed using polarizers since its polarization will be the same

as that of the incident light. This was done in the experiments to

be described.

The ray diagram in Fig. 3.1 serves to illustrate some other

contributions to the near-forward scattered light. The parameters

(p,2) are used to designate rays according to their number of chords

within the bubble and their number of optic-axis crossings,

respectively. In Chapter 2 a physical-optics model which made use of

the (0,0) and (1,0) rays was shown to approximate the coarse

intensity oscillations observed near the critical-angle c . The same

model approximates the coarse structure in Mie theory computations
2'3

for angles well below Oc" However, as b approaches 0 this model

eventually fails; new kinds of structure begin to appear that are not

accounted for by the interference of the (0,0) and (1,0) rays.

Though the intensities associated with these rays do not decrease in
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Figure 3.1. Non-glory scattered rays in the near-forward direction.
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the forward region, their relative importance diminishes. Part of

the reason for this can be appreciated by considering the geometrical

optics involved. For the (0,0) and (1,0) rays the bubble acts like a

diverging lens, as Fig. 3.1 illustrates. The glory rays, on the

other hand, occurring bath in the backward and forward directions,

are scattered parallel to the optic axis but are not coincident with

it; they are, in effect, weakly focused at infinity. Because of this

focusing, it is reasonable to expect that the intensity near the axis

at great distances from the bubble would be influenced more by the

glory scattering than by contibutions from diverging rays. As

discussed in Sec.1.2(B), a geometrical divergence factor D pis

sometimes useful in accounting for the redistribution of incident

energy by the scattering of rays. Finite values of D pare found

for the (0,0) and (1,0) cases, but for glory rays D pbecomes

infinite [because sin 0- 0 and 6 p 0 in Eq. (1.13)]. Geometrical

optics cannot give the intensity at a focal point; in the case of

glory scattering the intensity is incorrectly predicted to be

infinite because of the value obtained for D p. A more sophisticated

approach, to be detailed in the following sections, indicates that

the intensity associated with glory scattering is enhanced roughly by

a factor x (the size parameter) because of axial focusing. So the

near-formard region is expected to be dominated by glory effects when

x is large and the forward-diffracted light is blocked.
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3.2. Physical-optics Model of the Forward Glory

A) The Fields Near the Bubble

It is necessary to include interference and diffraction

effects to adequately model a -bubble's far-zone scattering close to

the forward direction. As discussed above, the glory scattering is

of principal interest here. The physical-optics approach to be used

begins by representing the scattered light as waves having

approximately known amplitude, phase, and wavefront curvature close

to the bubble. The present section first examines these near-zone

features of the scattering which will then be used in formulating the

far-zone model.

Figure 3.2 illustrates two different gl~ory rays and shows

some parameters imnportant for the wave description. An infinite

numnber of glory rays are possible, some taking rather more

complicated paths, but the two shown turn out to be the most

significant. The bubble is assumed to be spherical with radilus a.

The entrance and exit planes are tangent to the bubble and normal to

the optic axis. Along with the (2,0) glory ray in Fig. 3.2, two

other nearby (2,0) rays are also shown. It is evident from the

diagram that the incident plane wave emerges from the bubble with a

curved wavefront. The virtual source associated with the (2,0) glory

wave is at the point F 'and th itneO2is the wave's radius

of curvature in the exit plane; a general expression for a pfor any

(p,L) ray was derived in Appendix B of Chapter 2. By rotating the

figure about the optic axis, F 2 becomes a ringlike source of radius
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Figure 3.2. Forward glory rays and assiciated focal parameters.
Dashed lines show the origin of the toroidal wavefront.
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b2  and the outgoing glory wave becomes toroidal. One of the

purposes of this section is to approximate the amplitude distribution

in the exit plane due to a glory wave, so that this distribution can

be used later in modeling the far-zone scattering pattern.

Measurements will be presented in Sec.3.3 that support the

description of the ringlike source for several cases.

The amplitude of a glory wave leaving the bubble depends on

losses due to transmissions and internal reflections, and also on

changes in the area over which the incident energy is eventually

spread. Let the incident light be linearly polarized with amplitude

Ei exp(-iwt). It is useful to define a pair of orthogonal basis

vectors eh (h - 1,2) in the entrance and exit planes: let e be

parallel to the direction of the incident wave's polarization and 2

be perpendicular to it. The amplitude of the glory wave in the exit

plane will be given by its components with respect to these vectors.

Points in the exit plane are specified by the polar coordinates

(s,'), where s is the radial distance from C' (where the optic axis

intersects the exit plane), and W is the polai angle measured from

the direction of eI. The amplitude of the (p,Z) glory wave in the

IA; 2^exit plane is given by E - E p + Ep e where

Eh  Ei q ' Fh exp(inp + ik(s- b )2/2ap], (3.2)

where qp characterizes the spreading of the wavefront and Fh

includes the transmission and reflection effects. The exponential
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term gives the approximate phase at points in the exit plane, as will

be discussed below. An expression similar in form to Eq. (3.2)

appears in Eq. (1) of Appendix A where the backward glory is

desribed; the factor qp M 9p ap - a) is the same in the present

case. The amplitude factors Fh are derived using van de Hulst's

method of decomposing the incident light into perpendicular and

4parallel components with respect to the scattering plane4 . The

resulting forms are

F1 = c l sin2  +c 2
F M 1 sn 4)+ C2Cos(3.3)

F2 - ( c2 - c1) sin 2*,

where the coefficients c1  and c2  characterize the effects of

transmission and reflection on the perpendicular (j - 1) and parallel

(j - 2) components:

c3 =()(P-1)(J-1)r P- 1 (I - r) 0.4)

hhe F then express the resulting amplitudes with respect to the

more convenient basis vectors L,. The r in Eq. (3.4) are

Fresnel's coefficients as given in Eq. (1.10), evaluated using the

incidence and refraction angles 8p and p for the glory ray of

interest. In general, these angles are determined numerically from

Eqs.(1.8) and (1.9), but exact trigonometric solutions are known for

several cases, including thirteen forward glory rays; these solutions

are presented in Appendix B of this chapter. The sign factor in Eq.

(3.4) differs from the corresponding expression in Appendix A because
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the forward glory does not exhibit a geometrical inversion of

amplitudes present in the backward case. An interesting angular

2dependence can be seen from Eq. (3.3) for F , the amplitude factor

for the light having a polarization perpendicular to that of the

incident light. This "cross-polarized" scattering is predicted to

have zero amplitude at angles of 4' - 00, ±900, and 180* in the exit

plane, with 4) measured from the direction of the incident light's

polarization. Photographs will be presented in the following

sections of this chapter that illustrate a similar angular dependence

at the ringlike sources and also in the far-zone scattering.

The exponential expression in Eq. (3.2) approximates the

phase of the scattered field at the radial distance s in the exit

plane. The first term,

np= 2ka(l - cosep + mpcos p) - (p + 9 - 1), (3.5)

accounts for the total phase delay of the (p, Z) glory ray as it

propagates from the entrance plane to the exit plane, including phase

changes due to focal-line crossings; these phase considerations were

discussed in ec.2.2. The other term, k(s - bp)2/2 ap, givesan

additional phase delay for a x b . It is obtained by approximatingP

the toroidal wavefront as a quadratic surface with radius of

curvature C1 at the exit plane.P

The amplitude and phase factors described above are to be

evaluated for each Slory-wave of interest. The total field in the

exit plane due to glory scattering is then approximated by summing



87

the E ph from Eq. (3.2). But the far-zone approximation which follows

is most conveniently carried out by using the individual glory-wave

amplitudes and then summing the resulting fields.

3) The Far-Zone Scattering

The glory-scattered E-field at a distant point Q close to

the forward axis will be approximated using the amplitude

distribution in the exit plane, Eq. (3.2). Let Q be at a distance

R from the point C', where the exit plane is tangent to the bubble

on the optic axis. Figure 3.3 shows the coordinate system that will

be used. The scattering angle 0 to point Q is assumed to be small,

while R is very large; these parameters are shown out of proportion

in the figure.

The field at Q is obtained using far-zone diffraction

theory by integrating the contributions at Q from all points (s,1J )

in the exit plane, which is shown as the plane x'-y'. The procedures

for performing the integration have been given in several papers;

Appendix A outlines the method, and detailed discussions are provided

in Refs. 5 and 6. At Q the field due to the (p,L) glory wave is

approximately rp =E p 61 + E p2;2 where

z~-(k/2TirR) Eq Dh exp(ikR + in, ), (3.6)

with

Dh. Wh bp(op )iexp(iw/ 4 - ika (1 - cog$)] (3.7)p p p
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Figure 3.3. Coordinate system used in modeling the far-zone
forward glory scattering. The x'-y' plan* is the exit plane
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and

W1  T((c1 + c2 ) Jo(u) + c1 - c2) J2(u) cos 2]

W2 a T(c1 - c2) J2 (u) sin2.

The argument of the Bessel functions J and J is u - kb sin

and & is the azimuthal angle of point Q, as shown in Fig. 3.3. Like

the exit-plane polar angle 4i, the far-zone azimuthal angle & is

measured with respect to the direction of the incident polarization,

which was defined by e"' And like the near-zone amplitudes, the

E-field at Q is expressed by its components parallel (h - 1) and

perpendicular (h - 2) to the direction of the incident polarization.

From examination of Eq. (3.8) for the amplitude factor W

it is evident that the far-zone field E 2 vanishes at angles &

00, 900, and 1800. A dark cross is thus predicted in the h - 2

scattering, with arms parallel and perpendicular to the direction of

the incident polarization. The terminology used here refers to the

h - 2 scattering as "cross-polarized", not because of this

distinctive scattering pattern but because this light has a

polarization which is transverse to that of the incident light, in

the sense described in Ref.7. In the experiments to be described it

was the h - 2 glory scattering that was observed in the far zone,

because the forward-diffracted light was removed by a technique using

crossed polarizers. Equation (3.8) also predicts a ring pattern

centered on the forward axis for both polarizations. In the h - 2

case the rings are expected to be spaced according to the period of
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the J2 Bessel funtion, while for the h a I case oscillations of

both the Jo and J2 functions are involved.

The far-zone model outlined above may include as many (p,2. )

glory waves as are desired. The total approximate field at Q due
h

to glory waves is obtained by summing the Ep from Eq. (3.6) for

all the (p,k) cases included:

E hlr(R,$,4) x E Eh(R, (, ) (3.9)

glory ' PQ

The relative intensity of the glory scattering at Q is then simply

Ih Eh 12
glory glory (3.10)

It is instructive to compare the intensities which result

when each glory wave is considered alone. From Eqs.(3.6) - (3.8),

the maximum value of the h - 1 intensity from a single (p,l) glory

wave is

1(l 0*) a 2xIR(b/a)2(22:!)W(Cl c ) 2  (3.11)

since the Jo Bessel function has its maximum value of 1 at u - 0.

The maximum h - 2 intensity arising from a single (p,Z) glory wave

is given by

12(4 0 ) 2 x Iu (bp/a) (.2: -)v[0.4865(c C2 ), (3.12)

P al R P a 1 -n 2 llI
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where the azimuthal angle has been set to 45* and 4 - arcsin

(3.0542/kb p) is the scattering angle at which the first maximum of

the J 2  Bessel function occurs: 8  1 :3052 0.4865. In Eqs.

(3.11) and (3.12) the normalization factor I.R is the intensity

scattered by a perfectly reflecting sphere of radius a, as given by

Eq. (1.2). Table 3.1 compares the normalized I h for a number of

glory waves each taken separately. The size parameter xc - 4000 was

used with each of two relative refractive index values. For m

(1.403) -1this corresponds to a bubble of radius a = 287 U~m in a

silicone liquid that was used in experiments to be described. The

same value of x but with m - 0.75 corresponds to a bubble of

radius a z 3O2umI in water (taking the light to have a wavelength in

air of 632.8 rim for both examples). Some of the focal parameters

associated with each of the glory waves are also included in the

table. It should be emphasized that the intensities I phare not to

be summed as a means of obtaining the total glory-scattering

intensity. The amplitudes must be summed as in Eq. (3.9). But Table

3.1 serves to illustrate some qualities of the individual terms. it

demonstrates that some of the (p,2.) glory waves when taken separately

can yield an intensity that exceeds the intensity from a perfectly

reflecting sphere by a considerable factor. It also suggests that

the main contributions to the total glory scattering must come from

those waves having small values of the parameters p and it.

Figure 3.4 shows the physical-optics model f or the far-zone

intensity 1 2 in comparison with the results of the exact 'lie
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Table 3.1. Model Results for x - 4000 with m - (1.403)-1 and . - 0.75

8 1 1 2p (,) b/a r/a P i

(dog) (6 - 00) (4 $ 8 )

(1.403)-1 (2,0) 40.30 0.647 1.093 224.8 11.97

(3,0) 43.37 0.687 1.035 41.21 1.749

(4,0) 44.32 0.699 1.019 12.56 0.507

(5,0) 44.74 0.704 1.012 5.048 0.200

(6,0) 44.96 0.707 1.008 2.409 0.094

(7,0) 45.10 0.708 1.006 1.292 0.050

(4,2) 19.06 0.327 1.095 0.006 0.006

(5,2) 28.28 0.474 1.061 0.004 0.001

0.75 (2,0) 43.57 0.689 1.093 278.5 9.571

(3,0) 46.57 0.726 1.034 48.36 1.402

(4,0) 47.49 0.737 1.018 14.54 0.405

(5,0) 47.89 0.742 1.011 5.813 0.159

(6,0). 48.11 0.744 1.008 2.766 0.075

(7,0) 48.24 0.746 1.,006 1.481 0.040

(4,2) 20.32 0.347 1.101 0.003 0.003
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Figure 3.4. Normalized cross-polarized intensities as a function of
scattering angle. The dotted curve is a physical-optics model using
only the (2,0) glory wave; the dashed curve is the model result
incorporating the (2,0) and (3,0) waves; the solid curve is the Mie
theory result.
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theory. The size parameter is x - 4000, and the refractive index is

m - 0.75. The 1I case, which is dominated by forward diffraction,

is not included. The dotted curve in this figure is the model result

when only the (2,0) glory wave is used; its mnaximu.m intensity agrees

with the value of 9.571 listed in Table 3.1. The dashed curve is the

physical-optics model incorporating both the (2,0) and (3,0)

contributions. The solid curve is the Rie result, normalized to IR

-1I like the other two curves; this normalization of %ie results was

discussed in Sec. 1.2(A). The Hie theoretic expression for the

cross-polarized intensity is given by Eqs. (6) and (7) of Ref. 7.

Evidently, the inclusion of the (3,0) wave Sives an improved

approximation for the intensity as compared with the Mie theory. The

angular locations of the maxima and minima are well-approximated by

the simpler model using only the (2,0) wave; the incorporation of the

(3,0) term gives no appreciable improvement here.

The Hie theory curve in Fig. 3.4 is similar to one published 9

for a spherical bubble in water with x - 3040. These and other M1ie

computations confirm that for spherical bubbles in water the

cross-polarized near-forward scattering should be quasi-periodic in

for a wide range of bubble sizes.

3.3 Observations of Virtual Ringlike Sources

The experimental arrangement for observing forward glory

effects from bubbles is diagrammed in Fig. 3.5. The basic design was

the same for the near- and far-zone observations, except that
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Figure 3.5. Apparatus for observing forward glory scattering effects.



different camera lens systems 
were employed in the two cases. The 9

incident light was from a 15 mW He-tie laser. This beam was passed

through a polarizing prism to make it highly, plane-polarized. A

glass cell containing the host liquid for the bubble was immediately

followed by a second polarizing prism. This allowed the polarization

of the observed scattered light to be selected. Photographs of the

scattering were made by a camera focused at the desired range. This

section describes measurements of the glory-wave virtual sources that

appear within the bubble. Photographs of these focal circles were

taken using a Nikon bellows extender and a reversed 50 mm Nikkor lens

to allow short-range focusing with about 5X magnification.

The bubble was injected with a syringe into a silicone oil

(Dow Corning 200 Fluid) of high kinematic viscosity *( 600 000

centistokes), so that it remained almost immobilized but assumed a

nearly spherical shape. The liquid had a refractive index of 1.403.

Bubbles were produced with diameters ranging from - I to 7 mm. The

upper limit corresponded to the maximum laser beam diameter allowed

by the apertures of the polarizing prisms.

Photographs of the virtual ringlike sources inside a bubble

are shown in Fig. 3.6. The bubble radius was a - 1.875 mm. Parts

(a) and (b) show, respectively, the co-polarized (h - 1) and

cross-polarized (h - )appearances of the rings. For both

photographs the direction of the incident polarization was vertical.

Recall that the physical-optics model for the h - 2 exit-plane

amplitude predicted zeros at polar angles of 0*, 190*, and 180* [Eq.
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(a)

Figure 3.6.
Photographs of the
(a) co-polarized and
(b) cross-polarized
forward glory circles
for a bubble with a
radius of 1.88 mmin
a liquid of refractive
index 1.403.

(b)
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(3.3)]. The ring sources in Fig. 3.6(b) manifest four dark regions

with this same kind of angular dependence.

It is possible to -istinguish several different-sized rings

in the negatives from which Fig. 3.6 is taken. Microscope

measurements of these focal-circle radii are listed in Table 3.2 with

similar measurements from other bubbles. From geometrical

considerations, the virtual ring source of a (p,Z) glory wave is

expected to have a radius b - a sin Q , where e is the (p,Z) glory
p p p

ray's angle of incidence. The values listed in the table give the

ratio of the ring radius to the bubble radius for the visible rings

counted from smallest to largest. The same data- is presented in

graphical form in Fig. 3.7. The first (smallest) ring can be

associated with the (2,0) ray. It is considerably more intense than

the others; because of this it appears broader in the photographs and

its exact radius was more difficult to determine. More precise

measurements were able to be made on the second ring; its radius fit

the theoretical b/a prediction for the (3,0) glory wave source.

The higher order rings became quite dim while their spacing

decreased, making measurements of their radii less precise again.

The horizontal lines in Fig. 3.7 are the theoretical values of b I a.

Their spacing illustrates the way the focal circles coalesce as the

value of p increases.
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Table 3.2. Focal-Circle Radii for Bubbles in Silicon. Oil

a b2/a b3/a b4/a b5/a

(m) (1st Ring) (2nd Ring) (3rd Ring) (4th Ring)

0.533 0.645 ± 0.006

1.290 0.651 ± 0.004 0.684 t 0.004 0.696 ± 0.003 0.707 ± 0.004

1.823 0.652 ± 0.004 0.688 ± 0.004 0.699 ± 0.002 0.701 ± 0.004

1.875 0.651 ± 0.004 0.686 ± 0.004 0.694 ± 0.004 0.707 ± 0.004

1.993 0.649 ± 0.003 0.683 ± 0.004 0.696 t 0.003

2.046 0.655 ± 0.010 0.689 ± 0.009 0.700 ± 0.008

3.501 0.656 t 0.006 0.688 t 0.002 0.701 ± 0.002

Theory 0.6468 0.6867 0.6986 0.7039
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Figure 3.7. Ratios of focal circle radii to bubble radii for observed
ringlike sources. The data is listed in Table 3.2.
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3.4 Observations of Far-Zone Scattering

A) Single Bubbles in Silicone Oil

The far-zone scattering from single bubbles was observed

using the experimental arrangement shown in Fig. 3.5. The caiera had

a 200 ma-focal-length lens, which was focused at * to allow the

far-zone scattering pattern to be recorded. The bubbles were in

silicone oil having refractive index 1.403. Their diameters ranged

from - 0.2 to 1.9 mm, while the laser beam diameter could be adjusted

to as large as 7 ma. The beam was made to be highly collimated in

the vicinity of the bubbles by using a parallel-plate shearing

interferometer. 1 0  The polarizing prisms used were of ellipsometric

grade; attempts to observe the far-zone forward glory with polarizers

of lesser quality were unsuccessful because of a large transmitted

background. The scattering angles that could be observed were

limited to 4 04 by the aperture of the polarizer.

Figures 3.8 and 3.9 show the cross-polarized (h - 2) far-zone

patterns for bubbles of radius a - 0.203 - and a - 0.600im ,

respectively. The most distinctive features of the photographs are

the four dark lobes that form a cross pattern like that predicted by

Eq. (3.8). The direction of the incident polarization was vertical

for both photographs.

The angular spacing 64 of the dark rings was measured for

these and several other photographs, to compare them with the ring

structure predicted in Eq. (3.8). For small angles $, u X kbO ;

after the first few oscillations the zeros of the J2 Bessel function
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Idog

Figure 3.8. Photograph of the cross-polarized near-forwiard scattering

from a bubble of radius 0.203 -m in silicone oil.



I deg

Figure 3.9. Photograph of the cross-polarized near-forward scattering
from a bubble of radius 0.600 -m in silicone oil.
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are spaced by approximately ir, so A4 : /kb. Taking b = b2 a

0.6468a gives

A$ x 1.998 x 10-2(deg/m) a-1 (3.13)

as the model prediction for the approximate angular spacing of the

rings. Figure 3.10shows the average measured ring spacings from 11

photographs like Figs. 3.8 and 3.9. Also included on the graph are

measurements taken from Hie theory calculations at 3 bubble sizes.

The measurements show substantial agreement with Eq. (3.13), though

this prediction is a rather simplistic one since it takes only the

(2,0) glory wave into account. it is important to note that the ring

structures in the far-zone glory scattering have a considerably wider

spacing than would rings associated with the forward diffraction

pattern. From Eq. (3.1) it is clear that the diffraction rings would

have an angular spacing

(")FD x /(ka), (3.14)

which is smaller by a factor b/a than the glory-ring spacing found

in Eq. (3.13).

Figure 3.9 shows evidence of interference effects between

waves in the near-forward direction; the ring structure is modulated

in intensity at certain scattering angles. it has not been

determined whether these modulations arise from interference of the
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20 * Photographs
SMe Theory

0

IX I
0 2 4 6 8 10

Bubble Radius-' (mm"1)

Figure 3.10. Angular spacing of dark rings in the far-zone
cross-polarized scattering. Measurements were made from
photographs like Figs. 3.8 and 3.9 and also from Mie theory
computations. The line is the physical-optics model
prediction in Eq. (3.13).
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separate glory waves or from the presence of (0,0) and (1,0)

scattered waves.

B) Clouds of Bubbles in Water

The forward-glory scattering from clouds of small bubbles in

water was photographed using the apparatus of Fig. 3.5 with slight

modification. The glass cell was fitted with a tungsten wire

scretched across near the bottom, and this was used in forming

bubbles by electrolysis. The other electrode was a needle inserted

into the water at the top of the cell. The camera had a 200

mr-focal-length lens focused at infinity.

Figure 3.11 is an example of the cross-polarized forward

glory scattering observed. The photograph shows the distinctive dark

cross pattern that is predicted by the physical-optics model for each

bubble individually. The first few dark rings are also visible. it

is likely that a dispersion of bubble sizes was present and tended to

obscure the ring structure beyond these first intensity minima. No

direct measurements were made to try to determine an average bubble

size, but an estimate may be made from the spacing of the observable

rings. On the negative from which Fig. 3.11 was obtained, the ring

spacing is about 1 m. Vith a focal distance of 200 = this gives an

angular separation of about 0.005 rad. From Eq. (3.13) applied to

the case of water (where b2 a 0.6893) the radius a is estimated at

about 69 Vm, which is a reasonable result. From this observation it

can be concluded that freely rising bubbles of this approximate

radius and smaller are sufficiently spherical for the forward glory
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Figure 3.11. Cross-polarized near-forward scattering from a
cloud of small bubbles rising in water.
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to exist. Very large bubbles, on the other hand, take on

aonspherical shapes as discussed 
in Sec.2.4. It is to be expected

that the symmetry of the cross-polarized near-forward scattering from

large bubbles will differ from that seen 
in Fig. 3.11.
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01ory ill OPtiCAl DaICkacttering rrom Air Bubbles

Dean S. Langly and Philip L. %Uruton
Deow"wwt of Avsfes. WPahkinstow State vUnu,'mti. hibuau. waktgro, ?9 tF4

(Recetved 23 Decenbe 1960)

Oenvadcc Of lght backeomsred from air bubbles in a viSCous liquid demomcst
An iema due mto l A" ocuste. A physlcal-optlas approimainOu r dte cross-
polarized scauzring correctly dmocriues the specto at regular fefare observed. The

seor*e@ palarized aamerin is n adequately decizi-md bw a siW*l clis" of rays.

PA~s mumbeuu: 42.20.Qg, 42.IO.Mc, 92.10.Pt

The !Aie solution' for electromagnetic scatter- ad light by a spherical air bubble in a liquid or in
tog by a spherei frequently does mtlead to direct glees, the reeLL per of the refractive index of the
lterpreteiOnl at the angLAr WMaering pattearn. spherq is less tan that of the surrounding$ and
ConaiqusatlY, models have been developed to La- the models must be significantly modified. Now
clitate an unertndmng of the stucture in the phenometa appear, sobh as diffraction" Io the
scattered usnty present where ineaeuy is region of the critical scattering ange ko,. Here
plotted as A functionk of the scattering angie P or we report the first dentiled observationsl of back-
the size parameter x amba (19 is the wave number; scattering by air bubbles in liquids and give a
a is the sphere radius). These models have em- model which describes some of the observed fea-
plsied the Angular region where diffracton to tures. We reler to this as glory because, as in
Impotent for a drop of wateor in air: the ruin- the came of drops,"' the o~ - 180' scattering is en-

bw,' fl 1U~,' an e~0.' Inthe scatterig henced whenx is large.

40 1911 Tto American Physial Society 411
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Van do Hul. 4 pie partial eapilnmtion of the wavelet de Which UOS class I toth backncattered
enhancemmnt for drops by noting the axia focusing pah. Figure I sbowe de for o - 3; it emerges as
of those bACkSCUffored rare which have a noozero curve 1'e'. This curve appears to come from a
impc paramseter. When modeling this focusing ringlike Source at F known an the focal ctrcle in
in the far field, diffraction provides an essential the bnalogous P *2 scattering from drops' with
correction to ray optics because the factor in the 41~ -m '2. The Sommce is ringlike because the
scattered intensity which accounts for pemetri- figure may be rotated around the CC' axis. The
cal divergence of the May$ goes to - as 0o - 180. radius of the ring isb 6 a steki. ar the incident
Examination of this factor in ray-optics models ray crosses the -daShed vertical piane (the en-
of scattering by bubbles' shows that this infinity trance pIlnel, the propcg@Uofl phase delay for
is not restricted to drops. We have modeled the reaching the exit plane is tm -taf I - casi -U(
beckscsttering with a phystcaL-optles approaima- - cosdleec(6 -Al .2rncosol. The ray crosses
dn. The procedure is to (a) compute amplltudes the emat plane at a radius s from C' with s /a - irs]
in an exit plans in contact with the bubble via ray - (I -cos3)tan(8 -J). The radius a of arc d'Is'
optics, and (b) aw thi wave to diffract to the follows trom the curvature at s -6* a004
far fleld whome the distnce from the bubble's ds2)' -afi .4(pv- 1)"coo;], whe"r Wtg/
center it ~ka2. thy. The sprftdinq al the wavelet is character-

Figure I illustrate* several rays which lead to lead by q - 11=017Z)de as is - 0 where the bar de-
beckscattertnq. The paths are detrmined by the misse the awc length. An equivalent expression
number of chords o and mi.,m, where the te- tow q i 1i1l16b-(D)V(b -asld~ as 0-;its
fractive indices al the iner and outer me"i, on, value from L'Uospital's rate is a/ (a -a).- Vectors
and on,, are taken to be reel. Figure 1 is drawn i, (I -1, 2) denote otthogoen bais vectors in both
wtthrn *'.a1.403 which corresponds to an air hub- the entrance end the exit planes; i, in chosen
doe in the dlmethyl-silaxne-polymer liquid used parallel to the polsrtsation of the incident wave's
in the experiment. AU rays iday SW wit al.so. electric: field E, e&*- u..t).
For .0.a10, the off-axis (or ginvr) rays haveS tothe et plane, the field 6,'i, of the outgoing
-4 and ) ail, where" ; a## *(2f -2 -,090%, g is a ot glory wa- ts computed by appling Van do
nonneptive integer (so 0 for rays in Fig. 1), and Hulot's method al first decomposing the fields
'a' I requires that o - 3. The exit plane (dished perpendicular and par%"le to the scattering
lIe in Fig. 11 touches C, with its normal parael plae.~" bit-plane polar coordimates cetered
to the propaso= direction of the incident wave. on C' are (s,01, where~ *in the agle relative to

Our description at the field Ink the exit plane to i, and I anf ; defate lal besis vectors.9 We a
facilitated by considering the propagation Of a Susn x m I and use Fremein's coefficients r, fot'

the ltereal reflectione whereP 1, 2 for fields
posas"eto i and 1, respectively. I is- 6 1
the multiple Iteresl reflections give

where I 0 n(O go), F'(4 act s10n3 *. coo%,

P).The new phose term A~ accounts for the
crowsin of coustis or "taue Uses"; Its Walke
1 5t.U - r(P * 0/2. The r, aMe oeaivled at

....~e' . 4-) h o atri c, acouts fr a gea,-

odd) which is nct e9vidnIn deverwposs of Dm2
glory In drap."

The 110lM is' St a, diMiu POWn Q is coaputed as
16.1. fays wiv ea ies beeksoete. fonlow. The 1411t emism of h the CC, wes OsM"

The 10cal angle 0f InOieNe i a I.N GaI the bubles an ae y' with CQ9. When) Is small aet
suites.N k8 Ses, aeslr d~ffraction, theory and the Freen-
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be.er apprminmgioae give rqec as (.g., p -0 and 2 tn Fig. 1) Which are
proportional to at. The srongest reflection has

while 1: .0. Sire* ,, does not depend ona, ;'

( kaW and glory terms dooduste the bckacftrrig

Consider a buble with x -4000 and on I.a403".W' " F'e6lq-ik siny evo o-)1d, (3) The strongest glory terms have g0 endp-3, 4,

where g is the angle between i, and the projection and 5; the 1,1. in for -Y 0 are, respectively, 1.03,
of C- on the exit ploe. in Eq. (2), the a1prol- 0.43, and 0.16. The 1,' decrease with increasing
mation given by Eq. (1) has been ateuded beyond p as a result of the partial reflectiona In the bub-
its useful domain in a ticipatian of the stationary hi. The stongest sdal ray gives ,'

11 
. 0.021.

piee apprm gmndon (SPA) t the lnbepa a Direct The iterfex e o the fields depends on a end
evalustion of Eq. (3) g1ivs Plf, 9) .W'fy,I,sa b) a"r be* compotatis verify that the becksea-

.((C 1 +. 2 W.( C'- q.1'(s)co21end We -(C' to redlaityleuant sigply proportional to a3

.c 1).,o) sin24, whren uvbl siny . The SPA of even for this l v lne of x. The I -2 (crass-
Eq. (2) gives the pth glary contrbutia to the mait- polarized) scaftring: Is, Wswer, nerly dmi-
tedeld wh" k '0, ad thas . are large. Is ed by the aa3 glory team, eneume cc of it-
the epertmem to be describd .r 4 4000 and the mery, 1 -2 scaering v ame se v - 0. The
SPA is applies lf. 1,0, 0 0, 4) hve mam at 4 -% 45" aad * 1a ° and

The tomi field may be app mted by aumming they vanish at f., * OW, and 18. Let v my,
the Z,' from Eq. (2) w th the fields due to ml loca l s mthe first mxsa -45'). Te
ratlectioms and surface waves. Surface W&ve can- lagest 1 a2 terme have 1,t,, 45V1n *0.13 end
trbutions should be smal for the obsevedbu- 0.10 for p 3 an 4. To the etent th t p a 3 scat-
lo becamm Q9 the largenese of r. To determine terin may be neglected, the I2 intensity will be

which glory and axi terms are importnt to the quaeipes.odic tov.
tal field. aM for other beuristic reasone, can- We have mamericaily verified the validity of
seder the I-po -mied tteanty 1.' of the pth field Eq. (4) by using Debye's loalaition prnile "*
tam aiome. The SPA af 21. (2) gives to modif e theory so r onLy partlaL 1as

I,' (2/ix4 .(,.,[ 'f,,), (4) assoed with # a 3 raysw re included in the
MWs eee. Furtherm e., when Eq. (4) is Wp-

where i-r a2,4R is the tota Intemity U a d4e- pUed to epheree wth ce an m > 1 the resalting
muace am .from a pevv'ctty iwflectq SO/ere 41(ty *01 epee with the glory "amloc tabulated
of rsduea predicted by myi ophlcs.' Ifl athe to- in ed. 11. Thisa man was derived by applying
cide itensity, andf,., abl laqalm-a),as. the Weasom traeiorntation to the v m0 Me s eries.
tn Eq. (4), R hs replaced IR' from (2) and v he- Itqgrs 2 darams the eaperamet. A syringe
Come I10 -'0 because R -a Geom't t ricrl op. infected bubblee into the liquid. The liui had a
tics" gives the Intensities ,' atf st high kinematic viscosity M0000 c; 1 NO ( )

1A91X

-lam

KAN CaLL
cum". muma

546f 1m. 3. Phomops hr (a) *mowse polarimer Ii 1 2
toog~ W610 -arese pelerleer (1 0 1); am (a) mn
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I sacing of a 40 dark rings lying outside the ft
10 ring from the cefter. The error burs combine

, uinertals e n meamured a and av with those o
. correctim de to refractio at the ceL-air toter-

2 t&W and til t of the cell Figure 4 shows that
p "3 rays domie the -2 scattering. The mods-
latesn of the lMensity along 4 - 45° In ng. 3(b)
s - th otar rays coiamt to I I scattering

ehece the predcted I,'[=~
2 ca conluion, backscatering from bbles ca

a be enhanced by WIL focusing. The monber of
0 3 sig nificant glory terms depends on m. The main

nes egd' (Sol) coribuiong differ from those for wer drops

070. 4. Measeuree and model for the anular where surface wavesi and other diffraction re-
sepramn of the dark rings in the I - 2 seaeatfg. laied terms play an esmetial role. I focusing

were ofm prees, scattering by large bubble
wo ld be-I i the rqeow- ('P,.101 i. 0Z 1W,

-I cin/seicI and a singl bubble could be Observed where 10, a 2Cos .", Wor w *n~ 11.403. We almo
for hours. The laser's power output was S mW find evidene oo -3 glory in Mze computations
and the boam dismeltr was Sum. The wavelemth for btobee in .etr.
in the liquid, 2:/.b, was (632.8 nm)/1.403; it, lay This work was supported by the U. S. Office of
In the splitter's plane of Inidence. The Camera NlaaL Research. One of us (P.L.) is an Alfred
was focused on - so ths the photogaphe eM- P. Sa Research Fellow.
ed the tfar-field Imeafit p@aen.!?1 3 Phoopil
were made with a a 0.3-0.8 mm correspmding to
x = 4000-1li000. Exposure time wre typically 'G. . AM. Phye. (10i) n5. 37T (11144.

5 s for TriX film and a '00-m -. O e and IL IL as ,neig. Py. Re,. Lon.
camera les. a, 9e 1 4).
Fgure 3 demolatee that the scattering am E. C. Van de Eilse. LM * Seee*94x 6v SmogParT-

roughly the dependece OR 4 predcted by Eq. (4); ticks (Wuey, Ne York, 17.
4 .r corresponds to scattering toward the top of 'IL C. Van do Edit. .. (Ot Smc. Am. IT, If6(1947).

the plmtogsp" andY .0 correspfds to the cm- 'V. Owe a n .ILALN asveg. Pbys. Pl,. LA.

ter ol the rfm et'y. Figure 3(b) esh ththe 3 .2 ( . w
U.~ A Nvearreig and W. Jr. wisob, One. List.

- I scattering for - i0. s si a.flcaftly strox'- 5, 4 (Ism.
er for 4. i 9W than it is for 4 Wr. This aSes "P. L lisews, J. Opt. ao. Am- L9. 1205 (1L).
with the follwing model rsts: (I) (c,/¢e)'-e 1 '. M l a1pa aM P. L. re ms. J. Opt. So.
(foroDa3wepredictcvc,Sj.); and (11W for thin A.f _, 3 (VlJ.
r, the i,' deped only wely on 4 and ar dmi- 'ML Dosl, L Opt. S Am. ±, 572 (19 8.
Tmed by the I,1. One prediction d Eq. (4) could fL Kamm. m Ste v0of Lrtt and other vov-

be qusaitatively cheched: when both aim, - y and As Redaim (Anetem, Z York, UN".
",. J. msbem . P. S. Ray. smd T. W. KltMme,1, thre -F,to I's shoul be spaced by AV AM Ot. Z 210 (1919S.

red such that kb.V - 7, where for -.3, b/a .W. G Wrodat" to F21(o19 Optics
.0.447. Figure 4 comp res this with the mean (Moare Bl MBe York, t19).
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APPENDIX B

INCIDENCE ANGLES OF SCATTERED RAYS

This appendix provides some solutions for the incidence

angles of scattered (pZ) rays when the scattering angle $ and the

relative refractive index m are known. In general, e can be foundp

numerically from Eqs. (1.8) and (1.9), but a precise determination

may require numerous iterations. A few exact trigonometric solutions

for 8 p(',m) have been found, and these are given in the following

tables. For arbitrary values of s, ep may be computed for (p4.) rays

having p < 3 using the procedures given in Table B.1. For $ - 0* ,

solutions of 8p for thirteen different (p,l) cases are given in Table

B.2. In both tables, the solution gives the value of sin 8 *p

Ellison and Peetz (Ref.l1, p.118) give expressions for e for thep

forward (2,0) and (3,0) rays. While their expression for the (2,0)

ray is equivalent to the one given here, their result for the (3,0)

ray is incorrect, apparently due to a misprint.
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Table B.1. Incidence Anmles of (p.1.) Rays

(p.) sin - bp / a

(0,0) cos i*

(1,0) Msin J4 (1 + m2_ _ 2 m cos 1;) -f

(2,0) (16 - R2)I R/8, where:
(2.1)

R - A + Q - [8 + 3A2 - 2m2 - Q2 _ 2AQ-'(4 + =2 A2)

Q - [A2 + 2(4 - m2)(1 + cosY)/3],

Y - 3-1 arccos [27m 4 (1 + coss)(4- 22) - ],

A -2-a [Cos*b+ (-I) Isin to].

(3,0)
(3,1) } 3R - 4R3 , where:
(3,2) R 64 (3-A-Qcos Y) Q = (4A2 - 6A - 3m 2 +9)10

Y- 3-1 rccon (Q-3[(3-A)3 - 9(3 + A)(m 2 - A2)]},

A m acoo((-1)t(6/6- 7F/12) + (5 - 21)w/12].
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Table B.2. Incideace Angles of (9,L) Forward Glory Rays

(p,L) sin p bp /b8

(2,) m2 [1 + (1 + 83272)41

(3,0) 4.3/2(1 + 3 1)i

(4.0) } m [Q + (I - Q2 + AQ- m/32)3] *where: Q - 6-4[1 - (2.5)lcos Y]3,

Y - 3- 1 arecos [-(2.5)-1(1.4 + 27 m2/320)1.

(5,0)I

(5,0 ) m(2.5 + A(1.25 + Am)]
4

(5,2)

(7,0) m 34(7 + 71 cos Y + 21' sin Y)'

(7,2) 3 3-(7 + 71 cos T - 21' sin )

(7,4) m 3-( - 281 cos Y)l,

where Y- 3- 1 arccos C4 7-3/2(7 - 27Am)].

(9,0) m (9 - 2Q + (27 - 4Q2 + 3Q1)].

(9,2) im[9 + 2Q + (27 - 4Q2 - 3Q-l) 1

(9,4) jm[9 + 2Q - (27 - 4Q2 - 3Q-1)i]4

(9,6) im (9 - 2Q - (27 - 4Q2 + 3Q-)*. I,

where: Q = 1[9 - 8(3 - 4Am/3)4 cosy]3. *

Y - 3-1 rccos (-4.5 (1- Am)(3 - 4Aa/3)-3/ 2 .

n each of these cases, A +1 for t 0 or 4,
1 for t 2 or 6.



117

REFERENCES TO CHAPTER 3

1. C. Bohren and D. Huffman, Absorption and Scattering of Light by
Small Particles (Wiley, New York, 1983), p. 110.

2. D. L. Kingsbury and P. L. Marston, "Mie scattering near the
critical angle of bubbles in water," J. Opt. Soc. Am. 71,
358-361 (1981).

3. D. L. Kingsbury and P. L. Marston, "Scattering by bubbles in
glass: Mie theory and physical-optics approximation," Appl.
Opt. 20, 2348-2350 (1981).

4. H. C. van de Hulst, Light Scattering by Small Particles (Wiley,
Nov York, 1957), Sec. 13.31.

5. P. L. Marston and D. S. Langley, "Strong backscattering and
cross polarization from bubbles and glass spheres in water,"
SPIE Proceedings 489, (Monterey, 1984).

6. P. L. Marston and D. S. Langley, "Glory- and rainbow-enhanced
acoustic backscattering from fluid spheres: models for
diffracted axial focusing," J. Acoust. Soc. Am. 73, 1464-1475
(1983).

7. P. L. Marston, "Uniform tle-theoretic analysis of polarized and
cross-polarized optical glories," J. Opt. Soc. Am. 73, 1816-1818
(1983).

8. M. Abramowitz and I. A. Stegun (Eds.) Handbook of Mathmatical
functions, (Dover, New York, 1972), Table 9.5.

9. P. L. Marston, D. S. Langley, and D. L. Kingsbury, "Light
scattering by bubbles in liquids: t4i theory, physical-optics
approximations, and experiments," App. Sci. Re. 38, 373-383
(1982).

10. M. V. I. K. ?urty, "The use of a single plane parallel plate as
a lateral shearing interferometer with a visible gas laser
source," Appl. Opt. 3, 531-534 (1964).

Il. J. lcK. Ellison and C. V. Pets, "The forward scattering of
light by spheres according to geometrical optics," Proc. Phys.
Sac. London,174, 105-123 (1959).



118

CHAPTR 4

DISCUSSIONZ

The light scattering properties of bubbles have been examined

theoretically and experimentally with emphasis on three scattering

regions: the critical angle, and the forward and backward directions.

in each of these angular regions the scattering pattern is not

describable by the mnethods, of simple geometrical optics because of

the prominence of diffraction and interference phenomena. if the

bubble can be assumed to be a homogeneous dielectric sphere, an exact

solution to the scattering problem is provided by the H~ie theory.

Its results are valuable, but the Hie theory has certain drawbacks as

well. It is computationally intricate and time-consuming, and it

,*ives no direct insight into the physical origin of features in the

scattering. Physical-optics approximations have been developed which

can predict and explain nioteworthy features in the scattering, and

are more readily adaptable to changes in the size, shape, and

refractive index of the bubble. When dealing with less idealized

scattering situations the physical insight may be of considerable

value.

The scattering features which have been photographed and modeled

are among the most outstanding to be observed from bubbles; the

scattering in each of these diffraction regions is notably briaht.

The transition to total reflection of light near the critical angle
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is a consequence of the relative refractive index of the bubble being

less than that of the surrounding liquid. The enhanced intensity of

the forward and backward glory arises due to the spherical symmaetry

of the bubble. The physical-optics approximations given in this

dissertation allow the scattering in these transition regions to be

modeled, and provide useful techniques for the sizing and detection

of bubbles. Scattering features such as the fine structure near the

critical angle can be used for high-precision sizing of single

bubbles, while the coarse structure in that region gives information

about average sizes in a distribution of bubbles. The ring

structures in the forward and backward glory scattering are a measure

of bubble size and are also sensitive to effects of nonsphericity.

The dark cross pattern associated with the glory scattering provides

a distinctive means of detecting the presence of bubbles, whether.

singly or in an ensemble.




