






Interpretations, and then comparing these expressions at a later time when they

are no longer dual. These expressions can be used In practical problems to resolve

the ambiguity In interpretation. In the second case, we simply note that the

spurious solutions for orientations are the same and the rotation parameters are

(in general) different for all planar surfaces which are stationary with respect to

each other In space. Our second main result concerns the uniqueness of the

translational velocity component along the line of sight. Waxman and Ullman's

solution of the Image flow equations suggested that this velocity was, indeed,

uniquely determined (with the duality described above being the sole form of

non-uniqueness); however, this was not proved. Here, we show that given only the

Instantaneous Image flow, the velocity component along the line of sight Is

uniquely determined. Further, It Is shown that this velocity component can be

computed as the middle root of a cubic equation. These results are derived

directly from the formulation of the Image flow problem In [1]. Reference to a

similar result recently obtained by Longuet-Higgins for a different formulation of

-: the problem Is found In Buxton [4].

The organization of this paper Is as follows. In the next section we briefly

summarize the formulation of the Image flow problem of Waxman and Ullman f1]

for planar surfaces. In Section 3, we discuss and Illustrate the dual nature of

planar surface solutions. In Section 4, uniqueness of Interpretation for orientation

and motion of planar surfaces two Image flows Is proved. In Section 5, the

PL uniqueness of the translational velocity component along the line of sight for the
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Instantaneous Image flow Is proved. Our results In Sections 4 and 5 lead to a new

method for solving the structure and motion of a planar surface, which Is out-

lined In Section 6.
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2. FORMULATION OF THE IMAGE FLOW PROBLEM

The relationship between a rigid object's structure and motion and the gen-

erated Image flow field has been discussed by Waxman and Ullman(11. Their for-

mulation In terms of "observables" or "deformation parameters" [21 is central to

the approach taken here.

2.1 Coordinate System and Notation

We attribute the relative rigid body motion to an observer represented by

the spatial coordinate system (X, Y, Z) In Figure 1. The origin of this system Is

located at the vertex of perspective projection, and the Z-axis Is directed along

the center of the Instantaneous field of view. The Instantaneous rigid body

motion of this coordinate system Is specified In terms of the translational velocity

V (VX, Vy, Vz) of its origin and Its rotational velocity

0= (OX, ly, O Z ). The 2-D Image sequence Is created by the perspective pro-

Jection of the object onto a planar screen oriented normal to the Z-axls. The ori-

gin of the Image coordinate system (z, y ) on the screen Is located In space at

(X, Y, Z ) (0, 0, 1); that Is, the Image Is reinverted and scaled to a focal

length of unity.

Due to the observer's motion, a point P In space (located by position vector

R) moves with a relative velocity U =- (V + n X R). At each Instant, point

P projects onto the screen as point p with coordinates

(Z, Y ) -- (X/ z, Y/ Z).()

The corresponding Image velocities of point p are (v, , v.) - ( , i), obtained
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by differentiating the Image coordinates with respect to time and utilizing the

components of U for the time derivatives of the spatial coordinates of P. The

result Is

V VZ f [T+[y nx - (1+z2)ny +y nz], (2a)

V= Z V1 + [(1 +y 2 ) nx - Zy ny X nZ] (2b)

These equations define an Instantaneous Image flow field, assigning a unique

2-D Image velocity v to each direction (z, y) In the observer's field of view. For

our formulation, we consider only a single surface patch of some object In the

field of view.

2.2 Image Flow Equations for Planar Surfaces in Motion

A small but finite surface patch may be locally approximated by a quadric

surface described by six parameters: Its distance along the line of sight Z o

* (assumed to be greater than zero throughout), Its two slopes TX, Ty and three

", curvatures. If this surface patch Is described In our viewer-centered spatial coordl-

nate system by Z - f(X,Y), then using (1), Its local representation

Z -- f(x,y) can be obtained as a second-order polynomial In terms of Image

coordinates [1]. Using this representation of the surface and performing a

kinematic analysis of the Image velocity equations (2) In a small neighborhood

around the line of sight, we can derive a set of twelve non-linear, algebraic equa-

tions relating the motion and structure of the surface to a set of "observables" or
4b•
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"deformation parameters". In these equations, the distance Z o between the sur-

face and the camera along the line of sight always appears In ratio with the

translational velocity V and therefore Is not recoverable (from a monocular flow

field). The deformation parameters are linear combinations of partial derivatives

(up to second order) of the Image velocity field evaluated at the center of the

field of view. They describe the geometrical distortion of the Image In a small

neighborhood around the line of sight. For planar surfaces represented In the

form Z = Zo+TxX+Ty Y, since the curvatures vanish, we get the following

eight independent equations and four consrtaints:

0 ---V, 11Yr  (3a)

0 2  ---Vy, +4 O X  ,(3b)

03= V2 + V.Tx, (3c)

04= VZ + VTy, (3d)

0s (V Tx + V. Ty), (3e)

07 -2 (fly + Vz Tx), (3g)

0 -O x - V, Ty , (3h)

and

1 1
0 9 = -07, 012= -07, (4a,b)

2 4
1

010= 2 0,, 011= -08. (4c,d)
2

where
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vx vy vz
VZ ZO V Zo Zo

and

0x=, , y
0t- = 0 " v ,03= - , 0 4 -- L , (6a-d)

0 5 = IV + ± I.- 06 1Iv, - (6e,f)
2 ay ax 2 a~x ay

02 v 02 v 02 v_0 -- - s - --- 0 = 0L O = -- (Og-J)
Ox2  8 Ox y 9 o Oy 2

1 i 2V 90 =1 i 2V. (92k,l)
O OxOy Ox ' 012 2Oy OO)Y

The quantities 01 through 012 are the image deformation parameters com-

puted at the origin of the Image plane. These deformation parameters can be

computed If the Image velocities at four points (no three of them collinear) on the

Image plane are known (by fitting a second-order polynomial In image coordinates

to the velocity field; see the next section.). Also, two methods of extracting these

deformation parameters using contours from successive Image frames have been

described by Waxman and Wohn [2].

The Image flow equations (3) form a set of eight coupled, non-linear alge-

braic equations among eight unknowns. The method used In [1] to solve these

A* eight equations Involved numerically computing a transform angle which aligned

%* one of the Image axes with the direction of zero slope at the point on the surface

Intersected by the line of sight. In Section 5 we describe a new approach to solve

these eight equations which requires only the solution of a cubic equation.
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3. DUALITY OF PLANAR SURFACE SOLUTIONS

The fact that the image flow equations (3) are non-linear Implies the possi-

bility of multiple solutions corresponding to more than one Interpretation of the

scene. In fact, It was shown in (11 that for any non-zero value of V, satisfying

equations (3), there are two solutions (VIZ o , f, TX , Ty), (VIZ o , i'), Tx, Ty)

which satisfy the following duality relationship:

T X -- V, VZ, (7a)

Ty - vy /vZ (7b)

V, "-Tx V, (7c)

Vy -Ty V , (7d)

, v,, (7e)

x = fX -V,- V r, (7f)

fly = y + V, + V2 Tx, (7g)

fiz = 1z + Vx Ty - Vy TX  (7h)

Notice how the slopes TX, Ty and the components of translation parallel to the

Image plane V,, V, play interchangeable roles In the two solutions. There are

two exceptions to this duality. The first Is when V, =0 (i.e. the velocity com-

ponent along the line of sight Is zero) and the second Is when the translational

velocity through space Is parallel to the surface normal (i.e. V./V 2  - -Tx and

V1 / V, = -Ty ) In which case equations (7) degenerate to Identities. Many

numerical examples In [1] had Indicated that there was only one value of V.

which satisfied equations (3), thereby suggesting that there are at most two solu-

-
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tions to equations (3). A formal proof of this Is given In Section 4. We Illustrate

the nature of the dual solutions below.

3.1 Illustration of Dual Solutions

In the recovery of surface structure and 3-D motion from Image flow, It has

been shown that It Is sufficient to describe an Image flow as a locally second-order

flow field [1,2]. This has Implications with regard to the surfaces which generate

the flow itself. For example, consider a planar surface patch

Z Zo + Tx X + Ty Y forZ o . (8)
Using relations (1), this may be expressed In terms of image coordinates as

Z - Zo (1-Txx-Tyy)-. Substitution of this Into the Image velocity equations

(3) yields the following expressions which are in the form of a second-order poly-

nomial In the Image coordinates:

v --(xV,-V)(1-Txx-Tyy)+ -(l+x2 )fly + (ga)

v --- (yV-V) (1-Txx-Tyy) + (1--2) fh - - xf] (gb)

For planar surfaces, such second-order flows are globally valid (for quadric sur-

.---- faces the flow can be locally approximated as second-order). The coefficients of

this second-order flow then determine the slopes and (scaled) space motion of the

planar surface.

Since the above two equations are globally valid, Image velocities at four

points (no three of them collinear) or more on the plane allow a solution to be

9
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obtained, Of course normal flow along contours (or edge fragments) may be used

as well (2]. We can graphically Illustrate this duality of solutions by reexpressing

the slopes In terms of angles:

Tx =tanO and Ty=tanO for -- 1<0,0< L, (10)

2 -2

.. ~:and then searching the 0-0 space for solutions. Substitution of values for

Tx, Ty renders equations (9) linear in the unknown motion parameters. There-

fore, If Image velocities at more than four points are known (and the data Is

noisy), a linear least-square error minimization technique can be used to solve for

the corresponding motion parameters. A typical plot of the least-square error In

the 0-0 space Is shown in Figure 2. The actual error values have been thres-

holded and inverted so that peaks In the figure represent error minima. Loca-

tIons of peaks representing zero error (for noise-free data) give the solutions for 0

and €. In the figure we see that there are two such peaks corresponding to two

dual solutions. In Figure 3 we Illustrate how the solution for structure (and con-

sequently motion) becomes unique as the velocity component V. along the line of

-.. sight approaches zero. As V, -=0, one of the two peaks corresponding to a dual

solution (from Figure 2) moves towards the boundary of the 0-4 space and finally

"disappears", resulting In a unique Interpretation. This Is consistent with the

duality relations (6a,b) In which Tx and Ty approach Infinity. In Figure 4 we

Illustrate the behavior of the dual solutions as the direction of the translational

velocity V approaches the direction normal to the planar surface. In this case,

the peaks (from Figure 2) gradually move towards each other and finally merge

Into one giving again a unique Interpretation.
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The above method can, In principle, be used to solve the Image flow problem

for planar surfaces. We need to search the 0-0 space completely only once at the

beglnlng of the sequence; this search can be done efficiently by first carrying out

the search at coarse Intervals and then at finer Intervals. For subsequent Images,

we can evolve the Initial solution to the next time instant using the expressions

derived In the next section, and search a small neighborhood around this new

predicted solution. When the Image velocity data Is noisy (e.g. as much as 20%

perturbations), we have found It very useful to first filter the noise by fitting

second-order polynomials to the flow field by least-square error minimization over

all the points. The search over 0-0 space is then based on this second-order flow

field.

3.2 Extraction of Deformation Parameters from Points

Expanding equations (9) and expressing them as polynomials In image coor-

dinates, we find

v, (x,y ) = a +bx +cy +dx 2 +txy and (1la)

v. (x,y ) = a +b'y +c'y +1y 2 +dy (llb)

where

a =-V.- fly, a' =-V + fnX, (12a,b)

b = z + V TX, b' Vz + Vy y, (12c,d)

C Oz + Vz Ty, C' =- z + VY Tx, (12e,f)

d =-fly-V z TX , d' -x-Vz Ty (12g,h)

11
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The eight coefficients a, b,c d, a',, c d' can be found if v.,v. are

known at four points (no three points collinear) or more, by solving the system of

linear equations (11). If these velocities are known at more than four points (for

noisy data), the coefficients are solved by a linear least-square error minimization

method. By Inspection of equations (3) and (12), we see that the deformation

parameters 0 - 0 can be obtained from the eight coefficients:

0 1 a ,0 2 =-' , 0 3  b , 0 4 = b, (13a-d)

1 105---(c+c'), 0 8 = ('-c) 07-2d 08=d. (le-h)
2 2 -d (3eh

From these deformation parameters, we can Immediately obtain the solution for

the 3-D structure and motion parameters of the planar surface In closed form by

the methods developed In the following sections.

12
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4. UNIQUENESS OF INTERPRETATION

The Image deformation parameters 01 0O introduced In Section 2 may be

computed for a planar surface In motion from a pair of successive Image frames

either by tracking four or more points or by observing an evolving contour on the

* surface [2]. Utilizing more than two frames will allow a more accurate determina-

* tion of these parameters. These Image deformation parameters completely

* describe the Instantaneous Image flow field. But an Instantaneous flow field in

* Itself Is Inherently ambiguous as It has two Interpretations for the orientation and

motion of the planar surface. This ambiguity In Interpretation Is manifest In the

duality of solutions to equations (3) as discussed In Section 3.

In this section, we show that the Interpretation for structure and motion of

planar surfaces Is uniquely determined In two cases. The first case Is when two

successive flow fields (or three successive Image frames) with one planar surface

are given, and the second Is when one flow field (or two successive Image frames)

0' with two planar surface patches moving as a rigid body Is given. Notice that p

from three consecutive Image frames we can extract two sets of Image deforma-

* tion parameters, one set from each pair of consecutive frames. Each of these

deformation parameter sets describes the Instantaneous velocity field at the mean

* of the two time Instants (in the limit as bt --o0) of the Image frame pair from

* which It Is extracted. We will see below that, although solving the Image flow

equations (3) for the first set of deformation parameters may yield two solutions,

only one of them will be consistent over time with the second set of deformation

13
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parameters.

4.1 Proof of Uniqueness of Interpretation:

One Planar Surface

The scheme of our proof, when two flow fields of a single planar surface are

given, Is shown In Figure 5. An image flow field F at time t generated by a

* planar surface In motion has two solutions, say

* S (V, Vi, Vs x , fly, 1z, Tx, Ty) and Its dual SD which is related to

S by relations (7). For these two solutions, assuming that the motion in space is

constant over a short time, the slope parameters change with time due to rota-

tion and the scaled translational velocity compoments change with time due to

the combined effect of translation and rotation (we shall relax this assumption

shortly). As a result, after a time 6t later, S and SD evolve into two new solu-

tions, say SE and SDE, respectively. (Explicit expressions for SE and SDE are

derived in terms of S in the Appendix). The proof of uniqueness of Interpreta-

tlon is that, although S and SD are duals of each other, SE and SDE are not

(see Appendix for details). This Implies that if F' Is the Instantaneous flow field ,

at time t +6t, then only either SE or SDE will be one of its two solutions. If

SE Is a solution of the Image flow field F' then the actual motion and slopes of

the planar surface at time t are given by S.
Ut

.4
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4.2 Resolving Duality for the General Case:

One Planar Surface

In general, for the single planar surface case, the space motion may not be

a constant over the time period 26t. We can still proceed to resolve the duality as

follows. Let '12 and 13 represent three successive Image frames of an Image

sequence taken at very short time Intervals 6t apart. Then compute the Image

flow fields (possibly represented as Image deformation parameters)

F and F' corresponding to the Image frame pairs UPi '2) and (12' 13), respec-

tively. Then use the two flow fields F and F'I to get dual solution pairs

(S, SD) and (S'1, SD '), respectively. Also, compute the time evolved solutions

SE and SDE corresponding to S and SD, respectively, using relations (A12,

A13). Now If SE Is ."closer" to one of 5' or SD' than SDE is to either of them,

then S Is the required solution of F and the solution "closest" to SE among

5' and SD' Is the required solution of F'I .(For reasons that will become

apparent In the next section, the determination of "closeness of solutions" may

be based entirely on V2 .) Once we have resolved the duality In this manner, In

subsequent time steps we need only to repeat the process of selecting the solution

* which "agrees most" with our predicted solution. Our predicted solutions will not

* agree exactly with the computed solutions since the time Interval Ut between

* Image frames may not be small enough, and the motion In space may not be

sufficiently constant with time.
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Our approach of seeking consistent 3-D Interpretations over time may be

viewed as a kind of "prediction and verification". We evolve the solutions of

flow F forward in time In order to check for the consistent solution among those

of F'. This Is an application of the principle of "temporal coherence" In the 3-D

domain. Our approach may be contrasted with that of Tsai and Huang [3] who

select three consecutive Image frames 11, 12 and 13 , and solve for the parameters

of the backward evolution 12 --+ I along with the forward evolution 12 -- ) 13.I

Duality Is resolved by requiring consistency (equality of the slopes) among the

chosen backward solution and Its corresponding forward solution.

4.3 Proof of Uniqueness of Interpretation:

Two Planar Surfaces

The proof of uniqueness, when a flow field with two planar patches In the

scene Is given, Is quite straightforward. We assume that the two planar surfaces

are stationary in space with respect to each other (i.e. they move as a rigid body)

and neither of them passes through the origin (i.e. Z 0 3 0 ). Suppose that solv-

Ing the flow field for the structure and motion of the two surfaces yields the dual

solution pairs (5(1), D 1 )) and (S (2 ), SD ( 2)) where

-( V ( ), V ( 1), V, ¢'), fix () (1) ), ,z (1), Tx (1) , Ty (1) ) (14a)

S (V (2), , vZC2), nX (2), 0 Y (2), fZ (2 (2), (2), Tr (2) ) , (14b)

and SD (' ) and SD (2 ) are related to S(1) and S (2) by relations (7). Then we shall

show that the solutions corresponding to the actual interpretation for the struc-

18
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ture and motion of the two surfaces, say S (1) and S (2 ), are uniquely determined.

Suppose that the two surfaces are not parallel (i.e. they have different orlen-

tatlons); then for S(1) and S() we have

(T x ( ,Ty C) (T(),T ). (15a)

But for the slopes of SD() and SD(2), from relations (5) and (7), we always find

that

(Tx (1), T7y (1)) (tX (2), t 2 )(5b

since

(c)lV -VM 1 yz 1 ) - (=V(c)/V() , _V( 2 )/V 2 )) , (15c)

which reflects the rigid body motion of the planar surface pair. Furthermore,

S(1) and S(2) have the same rotation parameters, whereas, In general, this Is not

true with SDM' and SD (2 ). Therefore, SD (1 ) and SD( 2) can be ruled out as they

are inconsistent.

If the two planar surfaces are In fact parallel but distinct (i.e.

0 Z02)), then S() and S(2) still have the same rotation parameters

whereas SD (1 ) and SD( 2) do not. Thus, again we can rule out SD(1) and SD ( 2) as

unacceptable.

Therefore, for two (or more) planar surfaces moving as a rigid body (e.g.

faces of a polyhedron), a unique 3-D Interpretation may be derived from an

Instantaneous Image flow field. Of course, the flow field Itself must first be seg-

'7



mented Into analytic regions corresponding to Individual planar surfaces [5].

Tsai and Huang (81 have arrived at a similar conclusion as a consequence of

*their general proof or uniqueness for seven points moving rigidly through space.

Regarding uniqueness for the specific case of two planar surfaces, our proof Is far

-~ simpler and more direct.
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5. PROOF OF UNIQUENESS FOR Vs

For a planar surface In motion, from two successive Image frames, we can

extract a set of Image deformation parameters which uniquely describe the Image

flow associated with the Image frame pair [2]. Solutions of the image flow equa-

tions (3) for these deformation parameters correspond to the possible Interpreta-

tions associated with the Image frame pair. In this section, we show that the

relative velocity of approach V, associated with such an Image frame pair Is

unique. As a consequence of this result, since there Is only one pair of dual solu-

tions associated with each possible V,, there are at most two Interpretations

associated with two successive Image frames.

5.1 Proof

We obtain an equation In V, by eliminating all other parameters from equa-

tions (3) as follows. From equations (3a,b) we have

fly =-O 1 -V, and Ox = 0 2 +V- (1)

Substituting for O X and fny from above In equations (3g) and (3h) and rearrang-

ing terms, we find

Vw hr-=V, TX-A and V,-V, Ty-B, (17)
where

A 1 -- O 7  and B O 2 -O. (18)

Using the above relations, we eliminate V., and V, from (3c-e) to get

19
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0 3  Vz + (V TX -A)Tx (a)

04= V, + (V, Ty -B) Ty (19b)

20s=(Vz Ty -B) TX +(Vz TX -A) Ty. (1c)

We have here three equations In three unknowns. Equations (i9a,b) are qua-

dratic In Tx and Ty, respectively, with solutions given In terms of VZ as:

A ±A4V, (V, -0.,)
Tx+, Tx- 21Vs(20a)

B--B -4V,(V,-0 4 )Ty+, Ty - (20b)

2 Vz

Substituting for TX and Ty from (20) into (19c) and simplifying, yields

4o 5 v, +AB-+ /[A 2-4V(V,-O 3 )I iB 2 -4V,(V,-0 4 )1 (21)

Squaring expression (21) gives

V,( V 3+ C 1 V,2 + C2 V, + C) =O, (22)

where

C 1 -(03+ 04), (23a)

C --- (.A2+1-B24+ O1 -3 O  0), (23b)

4 4

C 3 = IA2 0 4 + I.B20 3 _ -L OsAB. (23c)
4 4 2

In equation (22), we disregard the case of V, =0 since substitution of this Into

equation (21) leads to an Identity not Involving V. (In fact, when V, 0 0, equa-

tions (3) have a unique solution (11); therefore equation (22) reduces to a cubic

equation In V,. For convenience, let us express the cubic equation In terms of a

20



new parameter a:

a 3 + Cla 2 + C
2 a + C 3 - 0  (24)

We can verity that the three roots of equation (24) are

ao, a+, a- V, VTx+VTy+V,::(V+V,+V) (I+Tx+T) (25a)
21

by expressing the coefficients C, C 2 1, C 3 in terms of Vz , Vv, V, TX and Ty.

These three roots can be expressed In the following suggestive way:

ao, +, - 'V, - v2 X /(v v) (X X) (25b)

where v Is the scaled translational velocity vector with Its Z-component

reversed, i.e. v (Vi, V,, -V 2 ), and X is a vector normal to the planar surface

given by X = ( TX , Ty,-i).

All three roots (25) are real, but two of them, a+ and c_, are extraneous

roots Introduced by the squaring of equation (21). When these roots are not

equal to c0, back substitution Into expressions (20) yields Imaginary values for

the two slopes (i.e. the radicands are negative). When both radicands are simul-

taneously zero (L.e. the direction of translational velocity Is parallel to the planar

surface normal), then relation (21) assigns a unique value to V, given by

V - (AB)/(40s) which corresponds to a.. In general, the root ao Is the

unique solution for Vz .

21
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5.2 Solving for a0 and the Orientation and Motion Parameters

The fact that the radicands In equations (20) are less than or equal to zero

for a+ and a- and greater than or equal to zero for a0 can be used to show that

a-__ < o . This relation Is useful In selecting ao from the three roots of

equation (24) without actually substituting them Into the radIcands of equations

(20). For the root ao , the radicand In equation (20a) Is greater than or equal to

zero, I.e. ,

A -4 ao (ao- 03) > 0

a2 - O 3 ao- A 2 < 0

4

-' )(-A -)(ao-A+) 0 (where A+,A , -- (1/2)(0 3 - -O/ 3 )+A)

-- A_ < a0  A+. (26a)

Similarly, for the radicand In (20b) we find

B_ < ao <-- B+ (where B +B_ -(1/2)(0 4 ,/02+B)).(26b)

Hence

max (A-_, B_) < ao < min (A +, B +. (28c)

Similarly, using the fact that the two radicands are less than or equal to zero for

the roots a+ and a , we can derive the following relations:

a+ > max (A +, B+) and a-_ < min (A.., B.). (27)

r. Relations (26) and (27) Imply that ao Is the middle root of the cubic equation (24)

(.e. a- < ao < a+.

22
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Utilizing the closed form solution for the roots of a cubic equation, we find

the root a0 of equation (24) as follows. Let

C2 c C 1 c C3p= =-- and q = -+ 2. (28a,b)"-:P -- 3 g 27 6 2

Then, If p - 0,

0 - 2 /3 (29a)

If q =0 ,

a 0o -b/3; (2gb)

otherwise,

ao 2 r Cos 3 (29c)

where

r -sgn(q)VI P T and k=Cos - 1 -. (30a,b)

Having solved for V, = a o , we obtain the remaining parameters as follows.

Substitute this value of V, into equation (21) and determine the sign of the right

hand side which satisfies this equation. If this is .+", then the dual solutions for

- .the slopes are (Tx+, Ty+) and (Tx- ,Ty-); If it is "-", the dual solutions for the

slopes are (Tx+ Ty, and (Tx- Ty+). At this point we can solve for V. and

Vy using relations (17), and OX and fOy using relations (18). Finally, Oz is

. found from relation (3f).
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6. CONCLUSION

In this paper we have extended the previous work of Waxman & Ullman [1]

related to the Image flow problem for planar surfaces in motion. We have

described methods to disambiguate dual Interpretations associated with Image

flows generated by planar surfaces. We have also obtained closed form solutions

to the Image flow equations for planar surfaces. Our results suggest a new way of

solving the Image flow problem for planar surfaces, which we summarize below.

Assuming that the Image deformation parameters (which can be obtained by

either tracking points or contours on the Image plane) at two time Instants t and

t +dt are known, the key steps of this new method for the single surface case are

as follows:

a) Initially, at time t check If the velocity of approach along the line of sight

Is zero by noting If the following condition Is satisfied:

0 5 -  " 0. + A" 0 4  (31)

where A and B are as In equations (18). If the above condition Is satisfied

(or nearly so In the presence of noise), then the image flow equations (3) have

a unique solution which can be easily computed directly from the deforma-

tion parameters [1]. If the condition Is not satisfied, then proceed with the

following steps.

b) Compute V, = a 0 from the deformation parameters and then obtain the
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remaining unknowns as described In Section 5. At this point, If there are twoI

distinct (dual) solutions, proceed to the next step; otherwise, the unique solu-

tion obtained gives the actual motion and orientation or the planar surface.

c) Repeat steps (a) and (b) using the the Image deformation parameters at

time t +dt , and using the method discussed In Section 4 resolve the duality

to obtain a unique solution.

If there are two (or more) planar surfaces moving as a rigid body In the

scene, then in step (b), resolve the ambiguity of Interpretation by the method

described In Section 4.3.
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APPENDIX:

EVOLUTION OF PLANAR SURFACE SOLUTIONS

At time Instant t, let a planar surface In motion be described by

Z Z+TXX+Ty Y (Al)

* In the coordinate system shown In Figure 1, where Z0 Is the Z Intercept of the

plane and Tx, Ty are the X and Y slopes respectively. Also, let V and 0l be

the relative translational and rotational velocities In space of an observer with

respect to the planar surface. This relative motion In space Is assumed constant

* over short time Intervals (over three Image frames). We represent the relative

motion of the observer and the structure of the plane at time t In matrix form

as:

V V VZ

In this matrix, the first row represents the translational velocity components

scaled by distance Z0 f the second row the rotational velocity components and

the third row the slopes of the plane and the distance scale factor. The motion

and structure parameters, represented by S above, change with time due to the

relative motion between the plane and the observer's reference frame. In the

* remaining part of this section we derive expressions for these parameters after a

small time Interval dt has elapsed.
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To compute the change In the structure parameters during the time Interval

dt, we first take the time derivative on either side of equation (Al) to get

dZ dZo dTx dY dTy

-TTx -E + X ddt + T y "t " (A3)
dt dt dt dt

The time derivatives of (X, Y, Z) in the above expression are given by the three

components of the vector - (V + xR ) respectively which describes the rela-

tive motion of a point R = (X, Y, Z) with respect to the reference frame. Sub-

stituting these components for the derivatives, and Z 0 + TxX + Ty Y for Z and

rearranging terms, we get

Z- zo ( (fly+VxIZo)Tx - (nx-Vy/Zo)Ty - VzIZo ) +

dtX Y X Y Yj
dt ( TX(fly T X -fix Ty) + (fly + Lz Ty)) X

dt ( Ty(Dy T X - nX T y ) - (OX + li z T X ))  Y --0

In the above expression, since X, Y are independent parameters of points on the

plane In motion, we can equate each of the three terms above to zero separately

to get the exact differentials for the slopes and distance as

dZo=Zo [n+v)Tx -(nx-vTy- V2 ] dt , (A,,)

dTX [Tx(ny Tx - XT y) + (ny + nz Ty)] dt (A4b)

dTy- [Ty(ny Tx - nx Ty) - (nx+ nzTx)] dt (A4c)

Using the above relations, we can compute the new structure parameters at time

t +dt as
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T{= Tx + dTx, T - Ty + dTy and Z - Zo + dZo (A~a-c)

The new translational velocity V' at time t +dt is found (In the absence of

accelerations) from

V'=V+Vxfldt. (AO)

Dividing V' by ZI and simplifying, we get the new scaled velocity components

= = V + (VI (z - VZ ry - VZ a) dt + O(dt 2), (A7a)

V; = V + (VZ nx - VXflz - V5 .) dt +- O(dt2) , (A7b)

V-. V3 + (V ny - Vflx - Vz s) dt + O(dt2 ), (A7c)

where

--(ly + V)Tx-(Clx-Vy)Ty-V . (AS)

The rotational velocity remains unchanged since

W 0f+flXfldt (I (A1o)

Summarizing the above results, we have that, If the structure of a planar

-' surface and the instantaneous motion of an observer relative to the planar surface

at time t is S given by (A2), and at time t +dt Is SE given by

SE -- ' fl 'y fl , (All)

then S and SE are related as below. :2

r V1 IIny V
VY - V= + -OZ -8 f x  dr, (Al2a)

V Vj nY -fx - V
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(fl', nly, Z) nx, ly, ) and (A12b)

Tk] TX ny TX -11XTy f1 ny [TX]
-- Ty + -1 z  rfly TX-OX Ty -six Ty dt.(A12c)

[f o + 2 Y + VZ) -Zo(fOx-VY) -ZoV ,  1

Now we refer the reader to Figure 5 for the scheme of our proof of uniqueness.

From our discussion In Section 3, the Instantaneous Image velocity field

corresponding to S has another solution SD which Is the dual of S given by

SD = n xV-VTy fny+Vx+VTx nz+VzTy-VyT x  (A13)

Vz/ -v, /vz zo

We have expressed SD and SE In terms of S. Let SDE denote the new solu-

tlon obtained by evolving SD In time to t +dt. SDE can be obtained by substi-

tuting the elements of SD for the corresponding elements of S In expression

(A12) for SE. The proof of uniqueness of Interpretation Is that, at time t,

although S and SD are the two dual Interpretations of a planar surface In

motion, at time t +dt, their time evolved solutions, SE and SDE respectively,

are not duals. A simple way to verify that SE and SDE are not duals Is to note

that their Z-components of translational velocity are not the same (for dual solu-

tions, this should be the same.). It can be shown easily that the values of this

velocity component for SE and SDE are related by

V, (SD) -Vz(Se)+ V 2 - V2
2 Tj + V 2 - V:2 T )dt (A14)

The two velocity components are the same (i.e. the term with dt above vanishes)

when the direction of translational velocity Is parallel to the plane's normal, In

29



which case the interpretation Is unique according to our discussion In Section 3.
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19. Abstract (continued)

together suggest a new method for solving the image flow problem for planar
surfaces in motion.
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