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ABSTRACT

~ Two important results relating to the uniqueness of image flow solutions for planar
surfaces in motion are presented here. These results relate to the formulation of the im-
age flow problem by Waxman and Ullman (1], which is based on a kinematic analysis of
the image flow field. The first result concerns resolving the duality of interpretations
that are generally associated with the instantaneous image flow of an evolving/:’image se-
quence. It is shown that the interpretation for orientation and motion of planar surfaces
is unique when either two successive image flows of one planar surface patch are given or
one image flow of two planar patches moving as a rigid body is given. We have proved
this by deriving explicit expressions for the evolving solution of an image flow sequence
with time. These expressions can be used to resolve this ambiguity of interpretation in
practical problems. The second result is the proof of uniqueness for the velocity of ap-

proach which satisfies the image flow equations for planar surfaces derived in ) Inad- laxman =

dition, it is shown that this velocity can be computed as the middle root of a cubic equa-
tion. These two results together suggest a new method for solving the image flow prob-
lem for planar surfaces in motion. YS9 / P oloty
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1. INTRODUCTION

The relatlve motlon of a pln-hole camera with respect to a rigld, textured
surface results In a tlme-varylng lmage on Its projectlon screen. The Image flow
problem concerns the recovery of space motlon and surface structure by analyz-
Ing Its evolving Image sequence. Waxman and Ullman (1] developed a formula-
tlon of the Image flow problem In which the motlon and structure parameters of
the surface are glven by the solutlon of a set of twelve non-llnear algebralc equa-
tlons. These equatlons were derlved by a kinematic analysls of the Image flow
fleld. This paper extends thls earller work of Waxman and Ullman for the speclal

case of planar surfaces In motion.

There are two Important results presented In thls paper which relate to the
unlqueness of solutlons for planar surfaces In motlon. Our first result concerns the
unlqueness of Interpretation for orlentatlon and motlon. Glven two successlve
Image frames (or the Instantaneous flow) of an Image sequence, 1t has been shown
by Waxman and Ullman (1] that there are generally two Interpretations which
are duals of each other. In thls paper we show that this duality can be resolved
to glve a unlque Interpretatlon when elther three successive Image frames (or two
successlve flows) of one planar surface patch are glven, or two frames (or one flow
fleld) with two planar patches moving as a rigld body are glven. A simllar result
has been obtalned frocm a different approach In the 4-polnt formulation of Tsal
and Huang [3]. Our approach to the first case conslsts of derlving expllclt expres-

slons for the evolving solutlon over successlve Image frames for the two dual
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Interpretations, and then comparing these expressions at a later time when they
are no longer dual. These expressions can be used In practical problems to resolve
the ambligulty in Interpretation. In the second case, we simply note that the
spurlous solutlons for orlentatlons are the same and the rotatlon parameters are
(In general) different for all planar surfaces which are statlonary with respect to
each other In space. Our second main result concerns the uniqueness of the
translational velocity component along the llne of sight. Waxman and Ullman's

solutlon of the Image flow equations suggested that this velocity was, Indeed,

uniquely determlined (with the duality described above being the sole form of
non-unlqueness); however, this was not proved. Here, we show that glven only the
Instantaneous image flow, the veloclty component along the iine of sight ls
unlquely determlned. Further, 1t 1s shown that this veloclty component can be
computed as the middle root of a cuble equation. These results are derived
directly from the formulation of the image flow problem in [1]. Reference to a

simllar result recently obtained by Longuet-Hlggins for a different formulation of
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the problem is found In Buxton [4].
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The organlization of this paper Is as follows. In the next sectlon we brlefly

summarize the formulatlon of the Image flow problem of Waxman and Ullman [1]

for planar surfaces. In Sectlon 3, we discuss and lllustrate the dual nature of

,:_‘,"_ planar surface solutions. In Section 4, uniqueness of interpretation for orientation
> .
S
:t.:. and motlon of planar surfaces two Image flows Is proved. In Section 5, the
Sy
v B uniqueness of the translational velocity component along the llne of sight for the
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Instantaneous {mage flow Is proved. Our results in Sections 4 and 5 lead to a new
method for solving the structure and motlon of a planar surface, which Is out-

lined ln Sectlon 8.
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.:j 2. FORMULATION OF THE IMAGE FLOW PROBLEM
2
"_’.::j The relationshlp between a rigld object’s structure and motlon and the gen-
N
erated Image flow fleld has been discussed by Waxman and Ullman(1|. Thelr for-
. mulation In terms of ‘“‘observables” or ‘‘deformation parameters” [2] Is central to
o the approach taken here.
oy
. 2.1 Coordinate System and Notation
v :".:_'_ We attribute the relatlve rigld body motlon to an observer represented by
: the spatial coordlnate system (X, Y, Z ) In Figure 1. The orligin of thls system ls
located at the vertex of perspectlve prolection, and the Z-axls Is directed along
:'.-_f the center of the Instantaneous fleld of view. The Instantaneous rigid body
1A
"
motlon of thls coordinate system Is specified In terms of the translational velocity
V=(Vyx,Vy,Vz) of 1ts origin and Its rotatlonal velocity
.-'j". Q= (Qx, 0y, Oz ). The 2-D Image sequence Is created by the perspective pro-
)
o Jection of the object onto a planar screen orlented normal to the Z -axis. The orl-
I:'EI gin of the Image coordlnate system (z, y) on the screen Is located In space at
o (X,Y,Z)=1(0,0,1); that 1s, the Image Is relnverted and scaled to a focal
’ length of unity.
7':::
Z;:j Due to the observer's motlon, a polnt P In space (located by position vector
l'f
5 R ) moves with a relatlve velocity U = - (V + QX R ). At each Instant, polnt
7
0 P projects onto the screen as point p with coordinates
L (z.y)=(X/2,Y/2) ¢
"::j The corresponding image velocltles of polnt p are (v, , v,) = (z, y), obtalned
L,
o,
o 4
"‘ 3
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o
‘ by differentlating the lmage coordinates with respect to time and utilizing the
n components of U for the time derivatlves of the spatlal coordinates of P. The
:::-
Y result Is
.
Vz Vx
v,={z————}+[:ty Oy -(1+2H)0y +y Qz ], (2a)
o Z VA
o v, V
" 2 Y
vy={07-—z—}+[(1+y2)ﬂx"-“yﬂ¥'3ﬂz]- (2b)
T:'_E These equations deflne an Instantaneous lmage flow fleld, asslgning a unlque
::'{' 2-D Image velocity v to each direction (z, ¥ ) In the observer's fleld of view. For
A d
. our formulation, we conslder only a single surface patch of some object In the
fleld of view.
w 2.2 Image Flow Equations for Planar Surfaces in Motion
o
‘. A small but finite surface patch may be locally approximated by a quadric
D, surface described by six parameters: 1ts distance along the llne of sight Z 0
‘-'.;':f (assumed to be greater than zero throughout), 1ts two slopes Ty, Ty and three
L
- curvatures. If this surface patch Is described In our viewer-centered spatlal coordl-
-f: nate system by Z = f(X,Y), then wuslng (1), 1ts local representation
jf?fj Z = f(z,y) can be obtalned as a second-order polynomial In terms of lmage
;" coordinates [1]. Using thls representation of the surface and performing a
:j.'- kinematic analysis of the lmage veloclty equations (2) In a small nelghborhood
v _
-':j around the ilne of sight, we can derlve a set of twelve non-llnear, algebralc equa-
be "
tions relating the motion and structure of the surface to a set of ‘‘observables’™ or
b
o
'3 5
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“*‘deformation parameters’’. In these equatlons, the distance Z, between the sur-

face and the camera along the llne of sight always appears In ratlo with the
translatlonal velocity V' and therefore Is not recoverable (from a monocular flow
fleld). The deformation parameters are llnear combinations of partlal derivatlves
(up to second order) of the image velocity fleld evaluated at the center of the
fleld of view. They describe the geometrical distortion of the Image In a small
nelghborhood around the llne of sight. For planar surfaces represented In the
form Z = Zy+TxX+Ty Y, since the curvatures vanlsh, we get the following

eight independent equations and four consrtalnts:

01=—‘/z —ny ’ (33)
O,=V, +V, Ty, (3¢)
1
1
Og = -0y +;(Vy Ty -V, Ty), (31)
07=—2 @y + Vz TX)v (3g)
and
O,=+0 0,=+0 b
o= 75 O, 2= 7 0Oz, (4a,b)
O,0=204, Ou=“;‘ Osg . (4c,d)
where
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3 V Vv Vv
™ X Y Z
s V, ==, V, ==, V, === forZ,>0, (5)
: T Z, 0 YT 2, Tz,
e and
o ov, Ov,
I.“ 01='Uz ’ 02= vy ’ 03‘—" az ) O4= a ’ (Ga.d)
ov v ov dv.
“) Os=l’[ z + y], Os_‘l— e z]’ (Be,f)
2\ Jy Oz 21 oz oy
o o 8%v, 8%, v, dv, (6-1)
= , == e— = em—— == e— g-
. 7 9z 8 9z Oy 9 8z Oy 10 dy?
1 8%, 0%y, 1 { 8%, 8%,
e O n= - - . (0] 12 = - - . (Gk,l)
21 0z9y 922 2l gy2 0z 0y
:’_I:' The quantitles O, through O, are the lmage deformatlon parameters com-
‘Z:'_Z puted at the origin of the Image plane. These deformatlon parameters can be
1500
computed If the Image velocltles at four polnts (no three of them colllnear) on the
:ji_? Image plane are known (by fitting a second-order polynomial in image coordinates
‘Z:f-t to the velocity fleld; see the next sectlon.). Also, two methods of extracting these
)
: deformation parameters using contours from successlve Image frames have been
Yy
o described by Waxman and Wohn [2].
{ The image flow equatlons (3) form a set of elght coupled, non-llnear alge-
M e
;Ef;j.- bralc equations among elght unknowns. The method used In (1] to solve these
.
' elght equatlons Involved numerleally computing a transform angle which allgned
il
B~
::::- one of the Image axes with the dlrection of zero slope at the point on the surface
o Intersected by the llne of sight. In Sectlon 5 we describe a new approach to solve
- these elght equations which requires only the solution of a cuble equatlon.
-"_\
i n‘:' 7
‘.l
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3. DUALITY OF PLANAR SURFACE SOLUTIONS

The fact that the lmage flow equations (3) are non-llnear !mplles the possi-
billty of multiple solutlons corresponding to more than one Interpretation of the
scene. In fact, It was shown In (1] that for any non-zero value of V, satisfying
equations (3), there are two solutlons (V/Z,, 0, Ty, Ty), (V/Z,, 0, Tx, Ty)

which satisfy the following duallty relatlonship:

Ty =-V, ) V,, (7a)
Ty =-V, /V,, (7b)
V, =-Tx V,, (7¢)
V,=-TyV,, . (7d)
v, =V,, (7e)
Q =Qy -V, -V, Ty, (71)
Qy =Qy + V, + V, Ty, (7)
Q; =Q; +V, Ty -V, Ty . {(7h)

Notlce how the slopes TX, Ty and the components of translation parallel to the
image plane V,, V, play Interchangeable roles In the two solutlons. There are
two exceptions to thls duallty. The first Is when Vz =0 (l.e. the velocity com-
ponent along the line of sight 1s zero) and the second Is when the translational
veloclty through space Is parallel to the surface normal (le. V, /V, = -Ty and
Vy /V,=-Ty )In w}llch case equatlons (7) degenerate to ldentltles. Many
numerical examples In [1] had Indicated that there was only one value of V.,

which satlsfled equations (3), thereby suggesting that there are at most two solu-




o tlons to equations (3). A formal proof of this Is glven In Section 4. We lllustrate

the nature of the dual solutions below.

3.1 Illustration of Dual Solutions

In the recovery of surface structure and 3-D motlon from lmage flow, It has
been shown that 1t is sufficlent to describe an image flow as a locally second-order
flow fleld (1,2]. This has implicatlons with regard to the surfaces which generate

the flow Itself. For example, consider a planar surface patch
Z2=2,+TxX+TyY forZy,>0. (8)

Using relatlons (1), thls may be expressed In terms of lmage coordlnates as
Z = Z,(1-Txz-Tyy)". Subsiltution of this Into the image veloclity equations
(3) ylelds the following expressions which are In the form of a second-order poly-

nomial In the Image coordinates:

) . v, = (zV,-V;)(1-Tyz-Tyy) + [zynx -(1+z% Qy + ynz] (9a)
v, = (yV,-V;) 1-Txz-Tyy) + [(1+y2) Qy -zyQy -z0y ] (9b)
For planar surfaces, such second-order flows are globally valid (for quadric sur-
- faces the flow can be locally approzimated as second-order). The coefficlents of

this second-order flow then determine the slopes and (scaled) space motion of the

> . planar surface.

Since the above two equatlons are globally valld, lmage velocltles at four

points (no three of them colllnear) or more on the plane allow a solution to be
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obtalned. Of course normal flow along contours (or edge fragments) may be used
as well [2]. We can graphically 1llustrate thls duallty of solutions by reexpressing

the slopes in terms of angles:

Ty =tand and Ty = tan ¢ ror—12r-§0,¢<-72—r-, (10)
and then searchlng the 6#-¢ space for solutlons. Substitution of wvalues for
Ty, Ty renders equatlons (9) llnear In the unknown motlon parameters. There-
fore, If lmage velocitles at more than four polnts are known (and the data Is
nolsy), a linear least-square error minlmization technlque can be used to solve for
the correspondlng motlon parameters. A typlcal plot of the least-square error In
the 6-¢ space Is shown In Figure 2. The actual error values have been thres-
holded and Inverted so that peaks In the flgure represent error minlma. Loca-
tlons of peaks representing zero error (for nolse-free data) give the solutions for 4
and ¢. In the figure we see that there are two such peaks corresponding to two
dual solutions. In Flgure 3 we lllustrate how the solutlon for structure (and con-
sequently motion) becomes unlique as the veloclty component Vz along the llne of
sight approaches zero. As V, —0, one of the two peaks corresponding to a dual
solutlon (from Figure 2) moves towards the boundary of the §-¢ space and finally
‘‘dlsappears’’, resultlng !n a unlque Interpretation. This Is consistent with the
duallty relatlons (8a,b) in which TX and Ty approach infinity. In Flgure 4 we
lllustrate the behavlor of the dual solutions as the dlrectlon of the translational
veloclty V' approaches the dlirectlon normal to ihe planar surface. In thls case,
the peaks (from Figure 2) gradually move towards each other and flnally merge

into one glving agaln 2 unlque Interpretatlon.
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3
B The above method can, In principle, be used to solve the Image flow problem
NG
& for planar surfaces. We need to search the §-¢ space completely only once at the
X begining of the sequence; this search can be done efficlently by first carrying out
the search at coarse Intervals and then at flner Intervals, For subsequent images,
;:-_:‘_: we can evolve the inltlal solution to the next tlme Instant uslng the expressions
'::'_j derived In the next sectlon, and search a small nelghborhood around thls new
- predlcted solution. When the Image velocity data 1s nolsy (e.g. as much as 20%
:,:L':‘ perturbations), we have found 1t very useful to first fliter the nolse by fitting
. second-order polynomlals to the flow fleld by least-square error mlnlmization over
{2
{'_{f all the polnts. The search over §-¢ space Is then based on thils second-order flow
- fleld.
- 3.2 Extraction of Deformation Parameters from Points
. Expanding equations (9) and expressing them as polynomlals In Image coor-
)
e dinates, we find
" v, (z,y) = a+bz +cy +dz%+dzy and (11a)
- v(z,y)=d +Vy+cy+dy*+dzy (11b)
o where
g
-t
;:'. a =—Vz—ﬂy, a =-Vy+QX, (12a,b)
b= V,+V, Ty, ¥ =V, +V, Ty, (12¢,d)
e
L c =Qz+V, Ty, ¢ =-Qz+V, Ty, (12e,1)
- d =—QY—V2 Tx, d =—ﬂX—Vz Ty. (12g,h)
o
w2
e
2754

11
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The elght coefficlents a,b,c,d,d ,¥,c,d can be found if v,, v, are
known at four polnts (no three polnts collinear) or more, by solving the system of
linear equations (11). If these velocities are known at more than four polnts (for

nolsy data), the coefficlents are solved by a llnear least-square error minimization

method. By Inspectlon of equatlons (3) and (12), we see that the deformation

parameters O, - O4 can be obtalned from the elght coefficients:

O,=4a, O,=4d, O;=0b, O, =V, (13a-d)

el K

05=%(c+c’), 06=%(c'—c). O,=2d, Og=d. (13e-h)

From these deformation parameters, we can Immediately obtaln the solution for

the 3-D structure and motlon parameters of the planar surface in closed form by

the methods developed In the following sections.
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4, UNIQUENESS OF INTERPRETATION

The image deformation parameters O, — Og4 Introduced In Sectlon 2 may be
computed for a planar surface In motion from a palr of successlve lmage frames
elther by tracking four or more polnts or by observing an evolving contour on the
surface [2]. Utilizing more than two frames wlll allow a more accurate determina-
tlon of these parameters. These Image deformatlon parameters completely
describe the Instantaneous Image flow fleld. But an lnstantaneous flow fleld In
itself 1s inherently amblguous as It has two Interpretations for the orlentatlon and
motlon of the planar surface. This amblguity in Interpretation 1s manifest in the

duallty of solutions to equatlons (3) as discussed In Section 3.

In thls sectlon, we show that the Interpretation for structure and motlon of
planar surfaces Is uniquely determined In two cases. The flrst case Is when two
successive flow flelds (or three successive lmage frames) with one planar surface
are given, and the second Is when one flow fleld (or two successive lmage frames)
with two planar surface patches moving as a rigld body Is given. Notlce that
from three consecutive lmage frames we can extract two sets of Image deforma-
tlon parameters, one set from each palr of consecutive frames. Each of these
deformation parameter sets describes the Instantaneous veloclity fleld at the mean
of the two time Instants (in the limit as 6t —0) of the image frame pair from
which 1t Is extracted. We will see below that, although solving the Image flow
equations (3) for the first set of deformation parameters may yleld two solutions,

only one of them will be consistent over time with the second set of deformation

13

r ‘v!‘y.-'-’-.- .-’-',A(,(’I o

¥ 4

MO S

Ty 5 r "‘r‘v“ e 2

r

PR



: \ parameters.
4.1 Proof of Uniqueness of Interpretation:

One Planar Surface

The scheme of our proof, when two flow flelds of a single planar surface are
glven, 1s shown In Figure 5. An Image flow fleld F at tlme ¢ generated by a
planar surface in motion has two solutlons, say
S =(V;, Vy, V;,Qx,Qy, Qz, Tx, Ty) and lts dual SD which Is related to
S by relatlons (7). For these two solutlons, assuming that the motion in space is
constant over a short tlme, the slope parameters change with time due to rota-
tlon and the scaled translational velocity compoments change with time due to
the combined effect of translation and rotatlon (we shall relax this assumptlon
shortly). As a result, after a time §¢ later, S and SD evolve Into two new solu-
tlons, say SE and SDE, respectively. (Expliclt expressions for SE and SDE are

derived in terms of S in the Appendlx). The proof of unlqueness of interpreta-

S

*
v "

tlon Is that, although S and SD are duals of each other, SE and SDE are not

(see Appendlx for detalls). This Implles that If F’ Is the instantaneous flow fleld

DA
wde 3 s

at time ¢ +6¢t, then only elther SE or SDE wlll be one of Its two solutlons. If

SE 1s a solutlon of the lmage flow fleld F’/ then the actual motlon and slopes of

the planar surface at time ¢ are glven by S.
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4.2 Resolving Duality for the General Case:

One Planar Surface

In general, for the single planar surface case, the space motion may not be
constant over the tlme perlod 26t. We can stlll proceed to resolve the duality as
follows. Let I,, I, and I, represent three successive Image frames of an lmage
sequence taken at very short time Intervals §¢ apart. Then compute the Image
flow flelds (possibly represented as Image deformatlon parameters)
F and F'’ corresponding to the Image frame pairs (I,, I,) and (I,, I;), respec-
tlvely. Then use the two flow flelds F and F'’ to get dual solution palrs
(S, SD) and (S’, SD'), respectively. Also, compute the tlme evolved solutions
SE and SDE corresponding to S and SD, respectively, using relatlons (Al2,
A13). Now If SE 1s *‘closer” to one of S’ or SD' than SDE s to either of them,
then S 1s the required solutlon of F and the solutlon ‘‘closest’’ to SE among
S’ and SD'1s the required solutlon of F' .(For reasons that will become
apparent In the next sectlon, the determlnatlon of ‘‘closeness of solutions’” may
be based entlrely on Vz .) Once we have resolved the duality In this manner, In
subsequent tlme steps we need only to repeat the process of selecting the solutlon
which *“agrees most™ with our predicted solutlon. Our predicted solutlons will not
agree exactly with the computed solutlons since the time Interval 6 between
Image frames may not be small enough, and the motion In space may not be

sufficlently constant with time.

16
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Our approach of seeking consistent 3-D Interpretatlons over time may be
viewed as a kind of ‘“prediction and verlfication’’. We evolve the solutions of
flow F forward In time In order to check for the consistent solution among those
of F'. This Is an application of the princlple of ‘‘temporal coherence’ In the 3-D
domaln. Our approach may be contrasted with that of Tsal and Huang [3] who
select three consecutlve Image frames I,, I, and I; , and solve for the parameters
of the backward evolution I, — I, along with the forward evolution I, — I,.
Duallty 1s resolved by requirlng conslstency (equallty of the slopes) among the

chosen backward solution and its corresponding forward solution.

4.3 Proof of Uniqueness of Interpretation:

Two Planar Surfaces

The proof of uniqueness, when a flow fleld with two planar patches In the
scene Is given, 1s quite stralghtforward. We assume that the two planar surfaces
are stationary in space with respect to each other (l.e. they move as a rigid body)
and nelther of them passes through the origin (l.e. 245 7 0 ). Suppose that solv-
Ing the flow fleld for the structure and motlon of the two surfaces ylelds the dual

solution palrs (SV), SDM)y and (S?, SD?) where

SO = (v, v, v, a, M, q, M, q, O, Ty ® T,0) (142)

S® = (V,®, V@, v® 0, ® a,®,q, @ T,® T, @), (1)

and SD) and SD® are related to S and S® by relations (7). Then we shall

show that the solutlons corresponding to the actual Interpretation for the struc-

16
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ture and motlon of the two surfaces, say S and S?, are unlquely determined.

Suppose that the two surfaces are not parallel (l.e. they have different orlen-

tatlons); then for SV and S(*) we have
(Ty W, Ty W) 5% (Tx @, T49). (15a)

But for the slopes of SD(V) and SD®, from relations (5) and (7), we always find

that

(T @, Ty W) = (T @, T4?) (15b)

since
( _Vz(l)/ Vz(l) , —Vy(l)/.,vz(l) ) = ( _Vz(2)/ Vz(2) , _Vy(2)/ Vz(2) ), (15¢)

which reflects the rigld body motion of the planar surface palr. Furthermore,
S and S have the same rotatlon parameters, whereas, In general, this Is not
true with SDV and SD(®), Therefore, SD and SD? can be ruled out as they

are inconsistent.

If the two planar surfaces are In fact parallel but distinct (l.e.
ZM 5£ Z§?), then S and S@ stil have the same rotatlon parameters

whereas SD(V and SD(? do not. Thus, agaln we can rule out SD(1) and SD® as

, unacceptable.

'®

: Therefore, for two (or more) planar surfaces moving as a rigld body (e.g.
b

F}; faces of a polyhedron), a unlque 3-D Interpretation may be derlved from an
b

o Instantaneous Image flow fleld. Of course, the flow fleid Itself must first be seg-
b .
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i ' Tsal and Huang [8] have arrlved at a simllar concluslon as a consequence of -
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5. PROOF OF UNIQUENESS FOR V,

For a planar surface In motlon, from two successlve image frames, we can
extract a set of Image deformatlon parameters which unlquely describe the Image
flow assoclated with the image frame palr [2]. Solutlons of the lmage flow equa-
tlons (3) for these deformatlon parameters correspond to the possible Interpreta-
tlons assoclated with the lmage frame palr. In thls section, we show that the
relatlve velocity of approach V, assoclated with such an image frame palr Is
unique. As a consequence of thils result, since there Is only one palr of dual solu-
tlons assoclated with each possible V,, there are at most two Interpretations

©

assoclated with two successive Image frames.

5.1 Proof

We obtaln an equation In Vz by ellminating all other parameters from equa-

tions (3) as follows. From equations (3a,b) we have

Qy =-0,-V, and Qy =0, + v,. (18)
Substituting for Iy and Qy from above In equations (3g) and (3h) and rearrang-

Ing terms, we find

V, =V, Tx -A and V, =V, Ty - B, (17)

where
Agol--;-o, and B = 0,- O, (18)

Uslng the above relatlons, we ellmlnate V, and V, from (3c-e) to get
19
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O,= V, + (V, TX -A) Ty (19a)
04= Vz+(Vz TY-B) TY (lgb)

20s=(V, Ty -B)Tx +(V, Tx -A) Ty . (19¢)

We have here three equatlons in three unknowns. Equatlons (19a,b) are qua-

dratic In Ty and Ty, respectlvely, with solutions given In terms of V, as:

A+\[A% -4V, (V,-0,)
2V,

TX+9 TX_. = (203-)

B+\/B?-4V,(V,-0,)

20b
7 (20b)

Tys Ty =

Substituting for Ty and Ty from (20) Into (19¢) and simplifylng, ylelds

404V, + AB = ++/ (A% -4V, (V,-0,)| [B?-4V,(V,-0.)] . (21)

Squaring expression (21) gives

roer

VZ(V13+CIV12+C2V3+03)=0' (22) \
where :Q
C,=-(0;3+0)), (23a) ;
C,= —(%A2+ %B2+ 02-0,0),, (23D)
1,9 1o 1

In equation (22), we disregard the case of V, = 0 since substitution of this Into
equatlon (21) leads to an ldentity not involving V, (In fact, when V, = 0, equa-
tlons (3) have a unlque solution [1]); therefore equation (22) reduces to a cublc

equation In V,. For convenlence, let us express the cublc equation In terms of a
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new parameter a:

N a®+C,a®+Cha+Cy=0 (24)

2

> We can verlfy that the three roots of equation (24) are

ag a, .=V, %{V, Tx+V,Ty+V, £V (V2+V,2+V,2) 1+ T+ T,?)} (25a)
) by expressing the coefficlents C';, Cy C3ln termsof V;, V,, V,, Tx and Ty.

These three roots can be expressed In the following suggestive way:

R .

P ao.a+,a-=Vz,;{u-)‘ + \/(V'u)()‘-)\)} (25b)
where v s the scaled translatlonal velocity vector with 1ts Z-component
~ reversed, l.e. v = (V,, Vy , =V, ), and X\ Is a vector normal to the planar surface

- given by X = ( Ty, Ty, -1).

~.E‘

- All three roots (25) are real, but two of them, a, and a_, are extraneous

.:Z: roots Introduced by the squaring of equation (21). When these roots are not
e

_' equal to o, back substitutlon Into expressions (20) ylelds Imaginary values for

the two slopes (l.e. the radicands are negative). When both radlcands are slmul-
::I taneously zero (l.e. the directlon of translational velocity 1s parallel to the planar

: surface normal), then relation (21) assigns a unique value to V, given by

::j V, = -(AB)/(40;) which corresponds to a, In general, the root a, Is the
- unlque solution for V,.

Z
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5.2 Solving for a, and the Orientation and Motion Parameters

The fact that the radlcands In equatlons (20) are less than or equal to zero
for a, and a_ and greater than or equal to zero for o, can be used to show that
a_ < ay < a,. This relatlon s useful In selecting a, from the three roots of
equation (24) without actually substituting them 1nto the radlcands of equatlons
(20). For the root a, , the radicand In equation (20a) Is greater than or equal to y

zero, l.e. ,
A%-40(ag-04 20

- aoz-Oaao—i-AZSO

— (op-A_)(ag-A,) <0 (where A, ,A_ =(1/2) (03 /02 +A?))

- A_ < ay < A, (26a)
Simlilarly, for the radicand in (20b) we find

B. < ay < B, (where B,,B_ =(1/2) (0, + \/O2+B?%)). (26b) :

Hence

max (A, B) <a,< min(4,, B,). (28¢)

Simllarly, using the fact that the two radlcands are less than or equal to zero for

the roots a, and a_, we can derlve the followlng relations:

F! { )
- R
b a, 2max(A,,B,) and a_ < min{(4d_ B)). (27) s
Ce .
£ X
e Relatlons (26) and (27) Imply that oy Is the mlddle root of the cublc equatlon (24) ¥
L 3
E? (le.a. < ag < a, ) 3]
I-i: ¢
I, o
{?‘ 22 -
E |
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Utllizing the closed form solution for the roots of a cublc equatlon, we find

the root oy, of equation (24) as follows. Let

p = 233 - Cle and ¢ = Z;s - C‘6C2 + C;‘. (282,b)
Then, if p =0,
ag = 3V"2¢ -b/3; (292)
Ifg =0,
ap= -b/3; (29b)

otherwise,

ag=2r C’os[ ﬂ:¢ ] - -:- (29¢)
where
r =sign(q V| p | and ¥ = Cos™! ‘ ia) . (302,b)
r

Having solved for Vz = a, , We obtaln the remalnlng parameters as follows.
Substitute this value of V, Into equatlon (21) and determine the sign of the right
hand slde which satisfles this equation. If this Is **+’*, then the dual solutlons for
the slopes are (Tx ., Ty,)and (Tx_.,Ty_); If 1t 1s **="", the dual solutlons for the
slopes are (Ty, .Ty_) and (Tx_,Ty,). At this polnt we can solve for V. and
V, using relations (17), and Qy and Qy using relatlons (18). Filnally, Q7 Is

found from relation (3f).

23
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6. CONCLUSION

In this paper we have extended the previous work of Waxman & Ullman (1]

related to the image flow problem for planar surfaces In motlon. We have
described methods to disamblguate dual Interpretations assoclated with image
flows generated by planar surfaces. We have also obtalned closed form solutions
to the Image flow equatlons for planar surfaces. Our results suggest a new way of

solving the Image flow problem for planar surfaces, which we summarize below.

Assuming that the Image deformation parameters (which can be obtalned by

elther tracking polnts or contours on the lmage plane) at two tlme instants ¢{ and
t +dt are known, the key steps of thls new method for the single surface case are

as follows:

a) Inltlally, at time ¢ check If the veloclty of approach along the line of sight

1s zero by noting If the following condition is satisfled:

1{B A

5 { A 3 B 4 ( )
where A and B are as In equatlons (18). If the above condltlon Is satlsfled
(or nearly so in the presence of noise), then the Image flow equations (3) have
a unlque solution which can be easlly computed directly from the deforma-

tlon parameters [1]. If the condition I1s not satisfled, then proceed with the

following steps.

b) Compute V, = ¢, from the deformatlon parameters and then obtain the

24
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remalning unknowns as described in Sectlon 5. At this polnt, If there are two
distinct (dual) solutions, proceed to the next step; otherwise, the unlque solu-

tion obtalned glves the actual motion and orlentation of the planar surface.

¢) Repeat steps (a) and (b) using the the Image deformatlon parameters at
time ¢t +dt, and using the method discussed in Section 4 resolve the duality

to obtaln a unique solution.

If there are two (or more) planar surfaces moving as a rigld body In the

scene, then in step (b), resolve the ambigulty of Interpretation by the method

described in Section 4.3.

:1-."-;-r'rynvL_v LI AP R
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- EVOLUTION OF PLANAR SURFACE SOLUTIONS ;
> e
= At time lnstant ¢, let a planar surface ln motion be described by -’
Z =Z2+TxyX+TyY (A1) :'
In the coordinate system shown in Figure 1, where Z, Is the Z Intercept of the ::'
x plane and Ty, Ty are the X and Y slopes respectively. Also, let ¥V and Q2 be ¥
o the relative translational and rotatlonal velocltles In space of an observer with X
N respect to the planar surface. This relative motion \n space Is assumed constant .
i over short tlme Intervals (over three image frames). We represent the relative N
g motion of the observer and the structure of the plane at time ¢ 1n matrix form '.f-
|
as: -
2 Vi Vy V2 3
S=|ay ay a;]. (A2) 3
N In this matrix, the first row represents the translational velocity components ::
- scaled by distance Z o » the second row the rotatlonal veloclty components and -
> v
- Iyt
L the third row the slopes of the plane and the distance scale factor. The motion b3
L
‘ and structure parameters, represented by S above, change with tlme due to the wd
! s
iy relatilve motlon between the plane and the observer's reference frame. In the ,‘
remalning part of this section we derive expressions for these parameters after a -..
-‘“ ..v
; small time interval d¢ has elapsed. |
- 2
. &,
.. ’
B 4
‘. 20 )
-. ‘
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To compute the change In the structure parameters during the tlme Interval

dt, we first take the time derlvatlve on either side of equation (Al) to get

LRI
fob, 40

dz  dZ, dX dTx dY dTy :
—_— = e—— 4 Ty — —_— 4Ty — +Y A3 iy
dt R ST e T ST dt (A3)
The time derivatives of (X, Y, Z) In the above expression are given by the three :f
components of the vector — (V' 4+ QX R) respectively which describes the rela- r
tive motlon of a polnt R = (X, Y, Z) with respect to the reference frame. Sub-
stituting these components for the derlvatives, and Z,+Ty X +Ty Y for Z and “;_
',
rearranging terms, we get 3
dZ, -
dTx
—‘&——(Tx(ﬂyTx-ﬂxTy)-i-(ﬂy +02Ty)) X + L.
dTy -::
—dz-'-(Ty(nyTX—nxTy)—(nx +‘lsz)) Y = o0. -
In the above expression, since X, Y are Independent parameters of points on the ..:
3
plane In motlon, we can equate each of the three terms above to zero separately ::
[€)
to get the exact differentlals for the slopes and distance as
dZ= 2o [ @y+V.)Tx - @x-V,)Ty - V, | dt , (ata)
dTX = [Tx(nyTx —ﬂxTy)"l'(ny +nzTy)] dt R (A4b)
dTY = [Ty(ﬂyTx -QxTy)—(ﬂx +nz Tx)] dt . (A4c)
Using the above relations, we can compute the new structure parameters at tlme }
t+dt as
.
27 N
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T =Ty +dTx , Ty =Ty +dTy and Z = 2,+ dZ,. (A5a-c)

The new translational velocity V'’ at tlme ¢ +df 1s found (In the absence of

accelerations) from
VIi=V +VX0dt. (A8)

Dividing V'’ by Z} and simplifying, we get the new scaled velocity components

Vi=V, +(V,Q; -V,Qy -V, s)dt + O(dt?, (A7a)
Vi =V, +(V,Qx -V,0; -V, s)dt + O(dt?), (A7D)
V;=V3 +(Vzny-Vyﬂx—Vz s) dt +0(dt2), (A7¢)
where
§ = (QY + Vz)TX —(nx - Vy )T}r - Vz . (A8)

The rotatlonal veloclty remains unchanged since

Q=a+axadt = Q. (A10)

Summarizing the above results, we have that, If the structure of a planar
surface and the Instantaneous motion of an observer relative to the planar surface
at tlme ¢ 1s S glven by (A2), and at time ¢ +dt is SE glven by

vV, V,' V!
SE = |y Qy Q% |, (A11)
Ty Ty 24

then S and SE are related as below.

-

V. vV, -5z -y Ve
! = Vy + |-Q7 -s Qx Vy dt , (Al12a)
Vz

! Q Y -N X -8 Vz

L]
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(n'x, ﬂ'y, n'z )=(Qx, Qy,Qz ) and (A12b)
T4 Ty |  [ay Ty-0x Ty a, ayl [74
Ty | = |Ty | + |-02 Qy Tx-Qx Ty -Qx Ty | dt.(A12c¢)
2| | 20| |zear+v)  -zgax-v,) -zov, | | 1

Now we refer the reader to Figure 5 for the scheme of our proof of unlqueness.
From our discussion In Sectlon 3, the Instantaneous Image velocity fleld

corresponding to S has another solution SD which Is the dual of S glven by

-TyV, -TyV, V,
SD = ﬂx—V,—Vz Ty ny+V, +Vz TX ﬂz+Vz Ty—Vy TX (A13)
-V 1V, =Yy 1V, Zo

We have expressed SD and SE In terms of S. Let SDE denote the new solu-
tlon obtalned by evolving SD In time to t +dt. SDE can be obtalned by substl-
tuting the elements of SD for the corresponding elements of S In expression
(A12) for SE. The proof of unlqueness of Interpretation Is that, at time ¢,
although S and SD are the two dual Interpretations of a planar surface In
motion, at time ¢ +dt, thelr time evolved solutions, SE and SDE respectively,
are not duals. A simple way to verify that SE and SDE are not duals Is to note
that thelr Z-components of transiational veloclty are not the same (for dual solu-
tlons, this should be the same.). It can be shown easlly that the values of thils

velocity component for SE and SDE are related by

Vispey=Vose)+(VE2-VATE+ VE-V.2T¢)dt  (A14)

The two velocity components are the same (l.e. the term with dt above vanlshes)

when the direction of translational velocity 1s parallel to the plane's normal, In

[ N Y
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~:_.- which case the Interpretation 1s unlque according to our discussion in Section 3.
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P Figure 1 - Spatial coordinates moving with the observer, e
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g, v )

Flgure 2. Illustration of least square error In the 6 — ¢ space. The two peaks In
the figure represent error minlma and thelr locations glve the two dual solutlions.
Here, the scaled veloclty component along the line of slght Is Vg = 0.4 and the
angle between V and the surface normal Is f = 93°.

33

AR S T e D O, 0y N LT o 0, B e A ki P LT 7, 9) 0 e R Sy, 1 ) ol By ) R ol P AN I el R X

lumAin

G AA”

ol R




(a) (b)
Flgure 3. Behavlor of dual solutlons as the veloclty component along the line of
slght approaches zero. Beglnlng from Flgure 2, we see that, as V, — 0, one of
the peaks moves towards the edge of the f — ¢ space and eventually ‘‘disappears”
resulting 1n a unlque solutlon. (a) V, = 0.1.(b) V, = 0.01 .

(a) (b)
Figure 4. Behavior of dual solutlons as the directlon of ¥V approaches that of the
surface normal. Beglnlng from Flgure 2, we see that, as 7 — 0, one of the peaks
moves towards the other and eventually merges with It resulting In a unlque solu-
tlon. (a) # = 67°.(b) B = 0°.
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3
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ATTIME t

E
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h 4

IMAGE FLOW F*

AT TIME t+ 5t assume constant

space motions

solutions

PLANAR SOLUTION s’ PLANAR SOLUTION SD*
AT TIME t+5t

AT TIME t+st
EYOLYED SOLUTION SOE
AT TIME t+ét

agree to 0(5t)

EYOLYED SOLUTION SE
AT TIME t + 5t

Figure 5. The unlqueness of the 3-D Interpretation for planar surfaces in motion
stems from coherence over time.
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