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1.0 INTRODUCTION

" The caMteL orLqram PAPST, standing foPlastic- isynetric Planar
STructures*[Reference 1) , has been developed with th rNavy with thg aim of

-d~dressing the elastic-plastic crack problems which arise fran material and
structural considerations associated with the use of high toughness
materials. Both power hardening and multilinear models for uniaxial
stress-strain response are available. Enriched elements may be used to model
the material crack tip response for the multilinear material model. For
crack problems, both path values for the J integral and values based on the
anplitude of the singular solution can be computed.

The program has beett us~ in support of laboratory programs to develop
material property data for J T.and other pertinent parameters for fracture
characterization. More rece ly, the capabilities of PAPST have beenI extended to include simulation of quasi-static crack g ,th- This npocedure

5 is of interest in determination of the Tearing Modulus (Reference 2) and in
assessig the stability of crack growth.

Incorporated into PAPST is its predecessor tanding for
Axisyrmetric/Planar Elastic Structures References 3,4). Also developed

)-with the Nav, APESprformi?-linear elastic fracture mechanics for Mode I
and Mode II problems. It has the capability to handle crack face loadings
and a limited capability to deal with orthotropic materials.

Atl

;"I

I

I

I
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~ 1 2.0 PROGRAM DESCRIPTION

This report is to review and update the theoretical basis and present
capabilities of the computer program PAPST. This program, and its
predecessor APES, have been in development for ten years by the Navy. The
present revision of PAPST has involved a major restructuring of the basic
computer code to facilitate future development. Several options that were
in previous revisions have been dropped because they proved to be
inaccurate. Many of the important capabilities have been rederived to beI internally consistent. New features have been added to enhance the program.
The modifications are extensive, requiring a complete review of the program.

Present capabilities include:

1) Elastic orthotropic material properties.

3 2) Elastic/perfectly plastic, power hardening, and multilinear
isotropic models for elastic/plastic material behavior.

3) Cubic isoparanetric plane elements with three (9-node) or four
(12-node) sides, with optional enrichment to accommodate the crack
tip asymptotic solution.

3 4) Concentrated and distributed elastic springs.

S5) Tied nodal displacements.

6) Concentrated and distributed tractions.

3 7) Crack face pressure loading.

8) Thermal loading.

:9) Mode Iand II elastic stress intensity factors.

1 10) Mode I plastic stress intensity factors.

11) J-integral calculation from stress intensity factors and from path
integrals.

12) Finite strain treatment.

3 13) Load, displacement or thermal controlled incremental loading.

14) Wavefront reordering.

15) Plotting of displacements, stress contours and thermal contours.

Both enriched and regular models can be analyzed using the non-linear
I stress-strain relationships detailed in Section 2.1. The program will

automatically scale the elastic solution to yielding of the highest
. stressed quadrature point. Subsequent increments are either defined by the

user or evenly stepped to full loading. Inclusion of the large deformation
calculation is optional. The degree of accuracy can also be user supplied.

S2 A Arthur D. little, Inc.
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* 32.0.1 Plasticity Theory

PAPST incorporates incremental J -flow t-heory plasticity (von Mises
5 yield criterion). The components of ihe deviatoric strain rate are

expressed in terms of the current deviatoric stress components and the
components of the deviatoric stress rate as

i±.S. 3 f = c dli (2.0.1-1)
Sj + 3f (a e) Sij Ie > 0

ei+ S.. (otherwise)

, where ei, are the deviatoric strain rate components

e i - p ~i (2.0.1-2)
*13 ii 3 PP. '.

ljSi. are the current deviatoric stress components

Sij : uij - 3 'pp jj (2.0.1-3)

S. are the deviatoric stress components measured from the center of
. the curent yield surface

SSi = Si. - aij (2.0.1-4)

a.. are the coordinates in stress space of the center of the yield
" surfac -'1 is the vun Mises effective stress

0 ss(2.0.1-5)
Se J1 S J~

and a is the effective stress as measured from the center of the
yield surface and a yd is the yield stress.

21 1 3(2.0.1-6)
,a3 S1 S.]| e = 2 1)i

I

I A&t Arthur D. Little, Inc.
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I
I The function f(ce) in Equation 2.0.1-1 is derived from a naxial

stress-strain curve as described subsequently (Reference 5)

The hydrostatic strain rate is given in terms of the mean stress rate
as

pp = 1 pp (2.0.1-7)

I
The center of the yield surface can move under plastic deformation at

a rate proportional to 'the projection of the stress rate vector onto the
local normal to the yield surface. The motion of the yield surface center
is directed along the vector describing the deviatoric stress relative to

i the yield surface center,

(2.0.1-8)

23 ~k1 k1 Si (e)2 [ y =

aij>

3 0 [otherviise]

0o< a< 1i

where is to be specified by the program user. Isotropic hardening is
achieved by setting 3 equal to zero and kinematic hardening results when...

. is set equal to one. Intermediate cases between these two extremes may be
achieved. These possibilities are indicated in Figure 2.0.1-1 which shows
various yield surfaces on the 7 plane in stress space, and corresponding
examples of uniaxial bilinear stress strain curves obtained with each
hardening model. For uniaxial or proportional states of stress, all
hardening models would give the same result provided there is no reversed
yielding. For multi-axial states of stress, n the other har, the
kinematic and isotropic hardening models can give significantly different
results if the loading is strongly non-proportional and/or if reverse

I yielding occurs.

2.0.2 Finite Strain Treatment

I1 PAPST incorporates finite strain effects through the use of an updated
Lagrangian formulation (Reference 6), i.e., the coordinate system is
convected with the deformation. In this coordinate system the relationship
between true strain rate and the deformation rate (or velocity) is
unchanged from the small strain theory equations. Also the true (or
Cauchy) stress rate tensor relates to the true strain rate in the classical] sense,

__4 _A& Arthur D. Little, Inc.
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(a,2 + 022 + 032 = yd)

INTERMEDIATE (P=0 .f

3a3 (71
- Plane Comparison of Subsequent Yield Surfaces for
Various Hardening Rules

cYIELD 
-T

2aYIELD

(8-1) KINEMATIC _ _I

1 (-0) ISOTROPIC

Uniaxial Bilinear Stress-Strain Curves for Kinematic
*1 and Isotropic Hardening Models

Figure 2.0.1-1 Diagrams of Isotropic and Kinematic Hardening Models
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3ij : Cijkl ki (2.0.2-1)

where the subscripts take values of one to three and repeated subscripts
imply sLurnation.

The Cauchy stress tensor is not invariant under finite rotations, but
rather at zero strain rate it changes at the rate (Reference 31).

jj :ip P - Pj iP (2.0.2-2)

where W.. is the rotation rate tensor. Equations 2.0.2-1 and 2.0.2-2 are
combined3to express the Cauchy stress rate in terms of the true strain and3 rotation rates as

.c + WiC
cij : kl ki Wkk. " Wkj -ik (2.0.2-3)

3 I2.0.3 Iterative Solution Procedure

The governing matrix equation for finite elements is

KU=P (2.0.3-1)

Where: K is the stiffness matrix

U is the displacement vector

I P is the load vector

For elastic solutions, the stiffness matrix is constant, and the
solution can be determined explicitly. Incremental plasticity implies thatI the stiffness matrix is a function of the displacement vector. Because of
this, the stiffness matrix can only be determined instantaneously. This

0. requires that the loading be incremental and that the solution must be
iterated until the instantaneous stiffness matrix and the incremental
displacements agree with the applied loading increent,i.e.,

K(u) LP (2.0.3-2)

1 6 /t Arthur D. Little, Inc.
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I
The formulation of the instantaneous stiffness matrix is:

k(u) = IBT(u) Cu)B(u) dA (2.0.3-3)

elements area

I Equation 2.0.3-2 is solved for the estimate of XU by using the
previous U vector to calculate K(u).

I The load correction vector is then determined as

I P - K(u) AU A.P (2.0.3-4)

increments increments

and the equation3 (2.0.3-5)

K(u)AAU = 'P

4s solved to obtain the correction to AU.

: However, it is not necessary to perform the complete computation
Smplied in Equation 2.0.3-3 to obtain the load correction vector, rather

I K(u) A U fBT(u) CCu) Bu) dAAU

elements area
:: I SJB(u) C(u) dA

"I elements area
(2.0. 3-6)

f BT(u)A dA

elements area

- I An exception to this procedure should be made for any elements for

* which the stiffness matrix is readily available. This is the case for both
concentrated and distributed springs since they are elastic, i.e.,I

I 7 &t Arthur D. Little, Inc.
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( 3 U BT(u) 6c dA +

elements area springs

.3do different convergence criteria have been set-up:

H .1 1 2  < conv 1  (2.0.3-8)

3 for overall convergence, and

S ,pIPIJ/1,P ]1/2 < conv 2  (2.0.3-9)

I
for increment convergence. Both must be satisfied in PAPST at each
increment.

I 2.0.4 Yield Surface Modification

Once an increment has converged, the yield surfaces of each node and
quadrature point are modified to reflect the new stress state. The new
coordinates of the center of the yield surface are:

r] S'jaI j 1 {

4j = aij + [e r Si e  (2.0.4-1)

J where r = radius of the previous yield surface

! =, r +Ci-,) (o, -r) (2.0.4.2)

l 7e yield surface is modified when the increment calculation has

converged.

I
/ Arthur D. Little, Inc.
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1 2.1 Material Models

C- The material model describes the relationship of the stress vector
i to the strain vector:

* 0 = I--
I C A (2.1-1)

S (2.1-2)

is the stress vctor

is the strain vector

'Where C and D are the constitutive material matrices

The material matrices in the elastic range are constant and may be
specified with direction dependent (orthotropic) properties. In the
plastic analysis, the matrices are restricted to isotropic properties but
may describe a non-linear stress-strain relationship. The material
matrices will then reflect the instantaneous relationship. Options are
available for either power hardening or multilinear material models.
Either of these models can be used to approximate a true stress/true
strain curve that has been experimentally derived.

d 2.1.1 Orthotropic Elastic Model

* - The orthotropic stress-strain relation for an axisymetric element
* is:

x "1/Ex  -vyx/E - z 0 x

x / (2.1.1-1)
..Y"' Xy x /y . E 0zy

Cz -V x/Ex /E I/E 0

J 0 0 0 1/Gx [T xy

The ten independent variables reduce to seven if we impose the
Maxwell's reciprocal relations:

________________ 9 /t Arthur D. Little, Inc.
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E Ex E-_ = - -

I , v"xy vyx y "z y ZY x % XZ zx (2.1.1-2)

Isotropic properties are a special case in that there are only two
independent parameters:

Poisson's Ratio v =vxy Vyz  VZX (2.1.1-3)

Young's Modulus E : EX  Ey E (2.1.1-4)

1Z
| , ith. . G =G y Z/( +,,f

GG E/2 + (2.1.-5)

* 1For plane strain, the constraint exists that the out-of-plane strain
must be zero:

i -0
4Z (2.1.1-6)

Z

I For this case the C matrix remains unchanged, but the D matrix becomes:

D13 31 D13D32  D 13D34  (2.1.1-7)". D 11 D12 D0 D1

*. U33  " D33 14 D33

02 -D2 24-D 23D34
D D 23 D32 0 D 23 3

22 033 D33

0 0

L SYM] D 43034- [SM] 44 D33

*" For plane stress the constraint is on the out-of-plane stress:

D.

- 10 it Axthur [1 Lttle Inc.
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F, 0z (2.1.1I-8)

The D matrix remains unchanged, but the C matrix is modified similarly to
the D matrix in plane strain.

____ ____ - _____ (2.1.1-9)C13 31 C13C32 0 C 1 3 334(.i.-)

C 11  C C 12  C 14  C33

C 23C32 0 C24  C 23C34
C22 C33  C33

0 0 C43C34
[SYM] C44  C33

The program has fully implemented the use of the orthotropic

relationship for elastic problems.

2.1.2 Elastic/Perfectly Plastic Model

For a uniaxial stress state the following relationship exists for
this model:

IdE for < ayd/E (2.1.2-1)

yd for >Oyd/E

This relationship is useful in plasticity calculations only. It
is not used in fracture mechanics or J-integral analyses. The
application of this relationship iz primarily for comparison of results
to theoretical solutions for which it is analytically convenient to
assume elastic/perfectly plastic behavior.

The power hardening and multilinear models can be specified such
that they simulate elastic/perfectly plastic material response.

11 Arthur D. Litle, Inc.
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[ 2.1.3 Power -_-dening (Ramberg-Osgood) Model

In the c - o the power hardening simulation of material response
(Ramberg-Osgo: , the uniaxial response is given as

/ for c y (2.1.3-1)

./E + [( )n1  dj for a> ad
E yd

"yd Y

i

The correlatio-. oarameters and the initial yield stress are chosen to
best model the :bserved behavior. Note that if n = 1, A bilinear
material model :s achieved. In this case the strain hardening slope is

" !given by:

L -/Le = E/(I +3) (2.1.3-2)

For the power -. rdening material model, the plastic component of the
* strain is give. by

SctO d%-LY
p =-Ea d - E (2.1.3-3)

* and the plastic strain rate is thusi
n-1

n-i (2.1-3-4)P Eay.d

The power hardening material model is illustrated in Figure 2.1-1. For
this model, the function f( ce) (Equation 2.0.1-1) which relates the
plastic strain rate to plastic stress rate is

d

) n e n-2

e Ecyd L(2.1.3-5)

12 /T Arthur D. Little, Inc.
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E yd

i!y

+vd IFpc > aE E' L cyd E yd

Power Hardening Material Model

S 4---a(TO 
INFINITY)

030c

a yd -

c IF a I< 0 yd

C~~~ 7%A )t2

Multilnear Material Model

Figure 2.1-1 Available rrue Stress -True Strain Models
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* 12.1.4 Multilinear model

The mathematical form for the multilinear model of material behavior
is

E -(a ) + -- (a3  2)+ ( M )  (2.1.4-1)

am < a C< Gm+1 (2.1.4-2)

For this material model, the plastic strain rate is given by

p m e (2.1.4-3)

and

f (a / Ea
e m e (2.1.4-4)

The multilinear material model divides the uniaxial response into
one elastic and m-l plastic straight line segments, where -M is used as
data input to indicate the nunber of stress-strain pairs or "breakpoints"
needed to define the multilinear model. The user then specifies the true
stress and true strain at yield and (m-l) other points on the response
curve. The last (mth) segment continues at constant slope to infinite
strain regardless of the strain level actually used to define the slope
of this segment. An example of this model is shown in Figure 2.1-1.

14 A Arthur D. Ittle, Inc.
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2.2 Elements

The element library of PAPST contains six elenent-:

1) 12-node isoparametric quadrilateral
2) 12-node enriched quadrilateral
3) 9-node isoparametric triangle
4) 9-node enriched triangle
5) 2-node concentrated spring
6) 8-node distributed springI
Except for the concentrated spring, the element stiffness matrix

formulation is based on the Gaussian quadrature integration described in
Zienkiewicz (Chapter 8, Reference 7). The concentrated spring stiffness
matrix can be defined explicitly so that integration is not necessary.

The following discussion is provided so that the user can understand
the basic theory and so that the notation can be defined.

Isoparametric elements are defined as elements in which the functions
used to describe the geometry and the displacements are the sane. Depending
on the element, these shape functions can describe a line, an area, or a
volune. Using these functions, we can map a distorted shape in physical
coordinates to a simple shape in local or mapped coordinates. The stiffness
matrix of the simple shape can be found generically and used for a larger
class of physical element shapes. For example, the 12-node element is
applicable to rectangles, trapezoids, parallelograms, four-sided circular
sectors, and so on for any element with four sides in which each side can be
described adequately by a cubic function.

For purposes of this discussion, we will use shape functions that
define an area element. The shape is restricted to the X-Y physical
cooodinate system. In mapped space, this translates to the s-t local
coordinate system. The shape functions will be polynominal in the s-t
coordinate system.

t The geometry can be described at a point by the shape functions
evaluated in the mapped space multiplied by the nodal values of the global
coordinates. (Note: there are as many shape functions as nodes.)

n n (2.2-1)

L X = Ni(s't)X i  ; Y =7 Ni(s't)Y i

where: Ni are the shape functions
Xi and Y are the nodal global coordinates

1

15 AArthur D Little, Inc.

" ... 'bf" "% 4W " + o" " ," ." °" "N. AV % ", I ' % ." ," .= ." W" % % -% % " e -



: j Similarly, the displacements at these nodes are described:

i n n
U : S Ni(s't)Ui ; V = S Ni(s't)Vi (2.2-2)

•, i =l i=l

where Ui and V. are the nodal global displacements (U corresponds to X and V
to Y). *

The strains within the area can be found by using the appropriate
derivatives of the-shape functions:

= B8 iIn [(2.2-3)€:BS: Vi

i1

where: B is the matrix of shape function derivatives appropriate for thetype of analysis. In plane stress or plane strain the following holds:

3N. F (2.2-4)ax- Ui'

n 0 i V

YY i=l v x

while in axismnmetric problems:

;N.

r (2.2-5)

.:0 aN i  LVj

z n az
0

L.r Ni  )Ni-" rz .j N

a 
a

" 
UZ

r

I. '&Nd.J MU, .l a. 4 W , 4 f l f l f . u 4 . 1 6 / t A r t h u r D . l i t t l e , I n c .
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jNote: in PAPST the axisymmetric coordinate system is: r, z,

corresponding to (x, y, z). Also, for consistency all problems take the
dimensions of Equation 2.2-5 and for plane problems the terms in B
corresponding to E z are zero.

F- The element stiffness matrix is defined as
(1 1

K aIBT C B fI BTC B idet Jl ddt (2.2-6)

K area

* where C is defined in Equation 2.1-1 and det J is the determinate of the
Jacobian of the coordinate transformation. The integration is performed

using Gaussian quadrature as

K = IB T CB I detJI 1iWj (2.2-7)

'. s. ,t.

where W. is the weight function corresponding to the ith quadrature point.

2.2.1 12-Node Quadrilateral Element

The element is shown in both the global coordinate and its mapped
coordinate systems in Figure 2.2.1-1. The edges of the element correspond
to values of s or t of- 1, and the midside nodes correspond to values of s
or t of =1/3.

ii The order of the element is cubic meaning that the geometry and
displacement components can vary along the element edge as a third order
polynomial. Strains given by the derivatives of the shape functions may
vary quadratically over the element. The specific shape functions for this

-: _element are:

17 / Arthur D. Little, Inc.
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Figure 2.2.1-1 12-Node Quadrilateral Element and Local Element Node Numbers
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if I 32 (1 - t)(1 - s)[-10 + 9 (s2 + t 2 )]

2 (1 - t - s2 )(I - 3s)

p l* N3 32 (1- t)(l- s 2 )(1 + 3s)

" iTN4  (1 - t)(l +s)[-lO + 9 (s + t2)]

L3 (l + s)(1 - t2 )(I - 3t)5 32

6 2 (1 + s)(1 - t2)(1 +3t)

~ N - (I + s)(l t)[lO + 9(S 2 + t2)

7 9

N 3 2 + l- s2 )(1 + 3s)
9 22

N9  32 (1 + t)(l - )(1 - 3s)

N = '1 t)(1 - s)[-10 + 9(s+ t

N - 32 - s)(1 _ t2)(1 + 3t)
9 2

N - t)1 t
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SThe isoparametric elements can be "enriched" to account for the
singularity at the tip of a crack as is discussed in Section 2.6.1.1. The
12-node enriched element involves the addition of another shape function, or
creation of a sub-parametric element. The functions used to describe the
geometry are the same as the isoparametric case, but the displacement field
generated by the crack tip singularity is added to the displacements.
Notation for this will be:

K or K (2.2.1-2)

K11I j (if needed)

where the definition of these fields are detailed in Section 2.6.1. These
*' modifications to the shape functions are also reflected in the element

stiffness matrix:

B = B + B (2.2.1-3)

K f (B) dCBd- (2.2.1-4)

area

2.2.2 9-Node Triangular Element

* This element is developed as an extreme case of the 12-node
quadrilateral element. The shape functions for the fourth side are combined
into the first node. Gaussian quadrature is still used except that the
accuracy is biased by the skewing of the integration toward the first corner
of the element. when the element stresses are smoothed to the nodes, the
same smoothing is applied as the quadrilateral except that the stresses for
the fourth side are averaged at the first node.

Since we use the collapsed quadrilateral, no change in the enrichmient
procedure is required.

2.2.3 3-Node Distributed qpring

The 8-node distributed spring was developed to provide the same order
of accuracy in elastic boundary conditions as is provided by the 12-node
quadrilateral element. The stiffness matrix for the distributed spring is
calculated using a modified line integral based on Gaussian quadrature.
inputs to the subroutine are the axial and shear stiffnesses of the spring

- 20 AL Arthur D. Little, Inc.
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Figure 2.2.3-1 8-Node Distributed Spring
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Figure 2.2.4-1 2-Node Concentrated Spring
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defined normal to the first side. The subroutine converts these local
values into global stiffnesses. The normal at the node point makes an angle

7- with the global y-axis of:

= Arctan [ JY/ Nks Xk] (2.2.3-1)

',s' refers to the partial derivative with respect to s.

The global stiffness components at a node become:

Gx c K K Ly (2.2.3-2)

K ysin K + C 2  K (2.2.3-3)
KGy :sn KLx + os KLy

K Gxy sin a cos a (KLy - KLx) (2.2.3-4)

where:

KLX = local axial stiffness at that node

K KLY = local shear stiffness at that node

Once the global stiffnesses are known, a reduced form of the
integration described in Equation 2.2-7 can be performed. The thickness of
the element in the t coordinate direction does not enter into the
formulation. Therefore:

K = fKGdS
+1 (2.2.3-5)

f fKG(s)L.ds
-1s

_ 4( dS_ ( 1 ds

* I

where S is a measure of position along the spring elenent in the physical
space and s is the corresponding position in the mapped space.

2.2.4 2-Node Concentrated Spring

The 2-node concentrated spring allows node-to-node connections, either
. - axially or by shear. The stiffness matrix is determined explicitly from the

global geometry.

- 22 AI Arhur . Little, Im1.
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I In local coordinates the stiffness matrix is:

K : K x  -K 0 0 (2.2.4-1)

-K K 0 0

L L 0 0 xy - xyS 0 -K K

where

K is the axial stiffness
Kx  is the shear stiffness
xy

and it operates in the nodal displacement vector where U and V refer to the
local displacements at node 1 and node 2 (see Figure 2.2.4-1)

The stiffness matrix must be rotated into the global coordinate system.

This is done explicitly to reduce the amount of formulation time required
by the program:

t (2.2.4-2)
K K -K11  K12  "K12

K11  -K12  K12

K K22 -K22

[SYM] K2 2

where:

I K11 - Cos2oKx + sin 2  Kxy

KI2 s cos i sin a (Kx - K xy)

K 22 sin 2 Kx + cos
2 eKxy

the angle between the local x axis and global x axis

2.2.5 Non-equilibration of Spring Elements

The development of the spring elements was intended to supply a

23 / Arthur D. Little, Inc.
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facility for modeling of both axial restraint and frictional shear. The
axial restraint formulation is straightforward and widely documented.
However, the generality of the formulation which includes shear stiffness
results in an element which may cause non-equilibrating moments if the
element has a finite thickness or length. Force equilibrium is, however,
maintained unconditionally.

I"
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2.3 Nodal Coordinate Specification

There is limited, but very helpful, mesh generation capabilities in
PAPST. In most models, only the corner nodes of the elements are required
to define the geometry. Area elements, 12 and 9 nodes, can be specified
with just 4 or 3 nodes. Intermediate side node nunbers and coordinates are
automatically generated at third point locations. (Note: This implies
straight edges, curved edges must be explicitly specified.) The spring
elements also have generation capabilities. Distributed springs can be
specified with 2 or 4 corner nodes. If only 2 nodes are specified, the
program will generate the other 2 corner nodes at the same global

coordinates and ground then. Intermediate nodes are generated similar to
I the area elements. Concentrated springs can be specified with 1 or 2

nodes. If only one. node is specified, the other node is generated at the
same global coordinates and grounded. In the 2 node case, both nodes are
not required to be attached to the area elements.

It is suggested that this facility be used whenever possible. If the
user decides to specify the intermediate nodes, the third point spacing

SI should be maintained. Pctual coordinates may be input in either global
rectangular or local polar coordinates. The program will convert all local

* ispecification to polar before the analysis begins.

I
"=

.* I

f f
L

I -
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2.4 Nodal Constraints

Nodes may have either of two types of displacement constraints, the
displacement components at a node may be set explicitly, or they may be tied
to those of another node. Both of these constraint types are set in the
local coordinates (user specified) of the node or nodes.

*1

2.4.1 Specified Displacements

I The value of either or both dispacement components at a node may be
explicitly set by the user. The following information refers to
implementation of displacement specifications:

1) The structure must be constrained against rigid body
rotation or displacement.

2) Axisy~metric problems are automatically constrained in the
x-direction at the axis of symmetry. Only rigid body motion
in the y-direction must be constrained by the user.

3) Constraints may be specified in local coordinates, enabling
the user to model inclined supports.

4) Intermediate side nodes will be constrained automatically in
accordance with the corner node constraints.

5) When solving symmetric crack problems, a symmetry constraint should
be applied to the node corresponding to the crack tip as well as to
other nodes on the plane of symmetry. Special constraints are
required if the user if modeling tearing (see Section 2.6.4)

2.4.2 Tied Displacements

' (butUp to 30 nodes in a set may be linked together to have common
(but unknown) displacement components. Either degree of freedom at a node

may be tied to that at another node. However, each degree of freedom may not
be tied independently to separate nodes. Each node in the set must be in the
sane local coordinate system.

~ I~VdNU~~ ~26 A fthur EX Litte, Inc.
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2.5 Loadings

Both mechanical and thermal loadings are available to the user.
Concentrated forces at the nodes can be specified. Distributed tr-actions
are converted to consistent nodal forces and corrected for large

( displacement effects. Temperatures at each of the nodes can be included in
a thermal stress analysis. Pressures applied to a crack face include the
singularity effect in the consistent nodal forces.

For elastic analysis only, all loads are imposed at full value.
Thermal, load controlled, and displacement controlled analyses are all
treated separately in plastic analyses. Thermal loadings, mechanical loads,

* and non-zero displadements cannot be handled concurrently in the plastic
case. The program will handle in order of preference thermal, displacement,
and mechanical loading, and ignore additional conflicting information if
specified. Load factors defined in the non-linear analysis section (2.6.2)
apply to the temperatures, the forces or the non-zero displacements.

2.5.1 Concentrated Nokdal Loads

Concentrated forces can be applied in x and y components at each of the
unconstrained nodal degrees-of-freedctn. For axisyrrnetric problems,

* concentrated nodal loads are actually line loads which act on the complete
circumference of the structure. Such loads are input on a load per radian
basis. For example, if a load of 3 units per circumferential unit of length
acts at a distance x from the axis of symmetry, the total force F is 3 (27
x) = 67r x. The required input load, on a per radian basis, is F/27 or 3x.

2.5.2 Distributed Tiractions

Each element boundary can have distributed normal and/or shear
* tractions. The distribution of such tr-actions along the element edge can be

ciompletely general; however, most problems can be treated with a constant or
linear variation. Normal tractions are positive when directed into the
element, and shearing tractions are positive when acting in a counter-
clockwise sense along the element edge. The program automatically computes

* the equivalent nodal loads for applied tractions. Consistent load
generation is especially important in large deformation calculations since
the load value and direction will change as the structure deforms.

Pressure loading can be specified along an element edge that is shared
by two, elements within the structure. The sign convention in this case will
be determined by the direction implied in the nodal input. The program will
"apply" the load on the element for which the nodal order matches the
element specification.

2.5.3 Thermal Loading

For a thermal loading, temperature information must be provided at
least at each of the corner nodes. If the temperatures are not given for
some (or all) pairs of intermediate side nodes, PAPST will automatically set
those values from a linear interpolation of the values at the corner nodes.
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*- In certain thermal problems, an abrupt change in temperature may exist
at an interface between elements, and thermal loading is desired for
elements to one side of the interface but not for those on the other. In

j this case, it is necessary to use two different materials. The coefficient
of thermal expansion should be set equal to zero for elements for which no
thermal loading should be calculated.

PAPST has the capability to do thermal loading in both elastic and
plastic analyses. In the elastic analysis, the thermal loading is combined
with loads from pressures and imposed displacements. The plastic analysis,
on the other hand, will not allow any other loadings to be applied and will
override them if specified by the user. All of the non-linear input
specifications remain unchanged, except now the load factors are applied to
the temperatures.

Thermal loading affects two sections of the program, calculation of the
strain components and body forces.

Thermally induced volumetric expansion must be subtracted from the
strain increment in order to calculate the mechanical strain increment:

mech = _ Ethermal (2.5.3-1)

where the thermal strains are:

(2.5.3-2)

thermal =AT 1

I0

a. J

28
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Thermal body forces are calculated when the elenent stiffness matrix is
Iformed. These nodal forces are integrated over the element with the sane
PGaussian quadrature:

A fBT(uC(u)AE f.b.(U)dA (2.5.3-3)

r_ area

SA ( 1 c f.b. (det J iWW

iSit i

where the shape functions and material properties are at the current values.

L -D4 3/33

for plane
strain

The D.. terms in the plane strain case refer to the terms in the current
materlil property matrix before they are modified for plane strain (see
section 2.1.1).

_ I29
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2.6 OPTIONAL ANALYSES

* The analyses contained in this section are special purposej developments to better model linear elastic and elastic-plastic fracture
mechanics problems. Specifically covered are: stress intensity

* ." :factor calculation (Reference 8), J-integral (Reference 1) calculation, and
modeling of tearing (Reference 2).

2.6.1 Fracture Mechanics

The concept of enriching conventional elements with the asymptotic
displacement field appropriate for fracture mechanics originated with
Benzley. Extensiv& application has been made for both Mode I and Mode II
in the elastic case. Implementation of the elastoplastic case is
restricted to use in Mode I with the multilinear material model.

The approach is to add the leading terms in the asymptotic expansion
to polynomial displacement field. This adds two extra unknowns to the set
of nodal displacements of which one is zero for Mode I problems.

The asymptotic crack tip singular solution is described in the next
section. The implementation of the combined mode enrichment is

* subsequently described with the Mode I formulation considered as a special
* case.

2.6.1.1 Asymptotic Crack Tip

The asymptotic displacement components at a crack tip are given in the
standard polar coordinate system centered at the crack tip.

L 3e (2611)Su = -R, 5 3v + - 88) Cos 0 + + 2 T)cos(2 -
2E 2 2

V[= L- )R2T -V-- - 8a)sine/2 - +v+ -- sin

For Mode 11: (Kilonly)

K /L12 [(9 + v - 8e) sin e/2 + (1 +v) sin 30/23 (2.6.1.1-2)
2E

v =E L 7-T [-(3 - 5v - 8a) cos e/2 - (1 + v) cos 3e/2]

- 30 /t Arthur D. Uttle, Inc.
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slope of j-s curve ( E ) (2.6.1.1-3)

r : if plastic Kp
0 if elastic K1tr

S Oif plane stress

(+ a/2) + a) otherwise
(2.6.1.1-4)

*Y X

with the angle measured from the crack line extension path.

2.6.1.2 Enriched Elements

The enriched quadrilateral element (Reference 9) has the same geometry
as the standard elements. The displacement assumption used in the enriched
element is essentially the usual displacement function plus the leading
terms of the singular displacement expansion in Equation 2.6.1.1-1-2. It

-takes the form

' a~ 2  6 2  7 3  ~2tU~ CE t (2.6.1.2-1)u :a+ a2s + a3t +L 4  + a5St + a6t+ + .12

+ a 9 st2 + al0 t 3 + Oll st3 + a 2ts3 + Klf (st) + K11g1(s't)

where ai are undetermined coefficients

KI, KII are the stress intensities for mode I and Mode II respectively

f1 (s,t) gl(s,t) are based on the singularity equations (2.6.1.1-1,-2)
:, and

evaluated in terms of the local mapped coordinates. A similiar expression
exists for the v-camnonent of displacement. In matrix form, Equation
2.6.1.2-1 may be written as

U (s,t) = P(s,t) + KIf 1 (s,t) + K11g1 (st) (2.6.1.2-2)

_ 31 / Arthur D. little, Inc.
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By evaluating Equation 2.6.1.2-2 at each of the nodes, the following
matrix equation may be writtenii

I. :- Ij = Ca + Kjfl + KI g

S$ Cg(2.6.1.2-3)

1

in which all matrices are known except O and a.

Solving for then gives

j. - C-IKIf C-KI1gl1(2.6.1.2-4)

Substituting for a then gives

U(s,t) = PC'Iu - pC-K~fl - pCK + Klfl(st) + Kllgl(st) (2.6.1.2-5)

But as shown in Zienkiewicz, (Reference 37, page 106) the matrix of
displacement interpolation functions i.e.,

xl2 12x12 xl2

P c-= N = [N1 N2 N3 .1...NI 2 ] (2.6.1.2-6)

Consequently, Equation 2.6.1.2-5 may be written

u(s,t) = z Ni ui + KI[fl(s,t) - z Nf 1 ] + KiI[gl(s,t) - Nigl] (2.6.1.2-7)
[:1 1

where the second level subscripts indicate "evaluated at Node i." The
analogous expression for the v-component of displacement is

v(s,t) = z Ni vi + K if 2(s,t) - z Ni f2i + Ki[g2(s,t) - Nig 2  (2.6.1.2-)

Equations 2.6.1.2-7 and -8 are the displacement approximations used in
the enriched element. It should be noted here, however, that in order to

provide displacement continuity between the two element types, the second
and third terms on the right-hand side should be multiplied by functions of

32 /L Arthur D. Little, Inc.
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:"-~ S and t which cause them to vanish on the boundary between enriched

elements and conventional elements. Note also that the functions modifying
* the stress intensity factors multiplying f 1 (st), f 2 (s,t), gi (s,t) and

g (s,t) lead to functions of s and t in the 26 x 26 element tiffness
mitrix which cannot be numerically integrated with the same precision as
the functions in the normal stiffness matrix. SpecificalLy, 3 x 3 or 4 x 4
Gaussian quadrature integration is adequate for the conventional elenent
whereas higher quadrature is required for accurate numerical integration of
the enriched element and 8 x 8 integration is used. Higher order
integration is not used for enriched elements in the nonlinear program.
The significantly smaller enriched element used in the plastic analysis
appears to obtain acceptable results using the standard 4 x 4 quadrature.

2.6.1.3 Additional Loading From Enrichment

The incorporation of the singularity displacement field has an effect
on the loading at the crack tip. Both the distributed pressure and the
thermal body forces must be modified to account for this added degree of
freedom.

Te pressure contribution takes the form:

r 2* ... 3-1)

P = fpudri 0 -
= r/2 f pUds

- r/2- wj ( Nip i ) . U

when reduced to the Gaussian quadrature format, where:

(2.6.1.3-2)

i' :j = v' 4(1+ -3),. _ i.:2 Ni(S.) I
where S. is the local nodal coordinate of node j, and r is the lenath of the
element edge to which the pressure is applied and the other variables are
consistent with the notation in Section 2.6.1.1.
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-I The tlhermal body force term at the crack tip is of the form:

~~(2.-o.1'.3-3)

.FB * =f B*T(u)c(u)A. f.b dA

area

i
where the notation is consistent with Section 2.5.3 and 2.6.1.2.

2.6.1.4 Stress Intensity Factor Recovery

The solution of the set of governing equations for the global
disolacements also gives the normalized stress intensity factors. Recovery
of the actual stress intensity factors becomes trivial:

K =E (2.6.1.4-1)

K = E (2.6.1.4-2)

Having the stress intensity factors enable us to calculate the strain
energy release rate at the crack tip (G in elasticity is comparable to J in
plasticity). The following equations are for cracks in orthotropic
materials that are aligned with the principal material axes. Since the
program will only accept materi8l propegties in global coordinates, this
restricts the orientations to 0 and 90 . The equations reduce to
isotropic unconditionally (Reference 38).

, 2 FD11 2 2  [D22 + 044) 11/2 (2.6.1.4-3)
2 K-L + 2Dll

S1/2 1/2
,G2 KI 2 L-02 + (2 l44 (2.6.1.4-4)

,w ,34 i Arthur D. Little, Inc.
S. .......... .. .- .- . ..... . .... .. ..... _.....



2.6.2 J-Integral

The J-integral (Reference 2) is a measure of the amplitude of the near
crack tip stress and strain fields in an elastic-plastic material. It has
been proposed as a fracture initiation criterion. Under conditions of
sall scale yielding for which linear elascic fracture mechanics is

applicable, J reduces to the energy release rate G. It is related to the
-Mode I stress intensity factor by

p.

K /E for plane stress

=i(l-v
2) K /E for plane strain

The J-integral for elastic-plastic crack problems is given in terms of
the strain energy density:

(2.6.2-2)

: =Wf J .id
1J 

ij
'.-i ij

0

as

= ,,.. 8Ui  (2.6.2-3)
Ji f Wdy -T i --- ds)

r

where the crack lies along the local x axis and the contour is traversed
counterclockwise from one crack face to the other. Figure 2.6.2-1 shows
the general contour. The traction vector has components T. and the
corresponding displacement components are U.. The differeAtial length
along the arc is indicated by ds.

In the case of finite elements, a path must be traversed along the
element boundaries. Typical path contours are shown in Figure 2.6.2-1.
The integral is performed using the averaged nodal stresses and strains and
a line Gaussian quadrature integration. The use of averaged values avoids
any element or path dependence.

-. - The 3-integral is calculated as follows:

-35 / Arthur D. Little, Inc....................................--.



b--
I
" 1y, v (LOCAL)

Sr ds

IT

Iy

:-: ; likeCRACK TIP

T

J INTEGRATION PATH r

pp x, u (LOCAL)

[ Polar Coordinate System at Crack TiD and a
Contour for the J Path Integral

Y (GLOBAL)

" - PATH2

x (LOCAL)

\LENRICHED OR

1/9-4/9 ELEMENTS &

X (GLOBAL)

Two Typical Contours r for Evaluation of J
in a Finite Element Mesh

Figure 2.6.2-1 Contours for Evaluation of the J-Path Integral

_ 36 /t Arthur D. Little, Inc.
.. .. .. .. .. .. . .. . ". .... ........ ........



* I
I : [sin 2('Jxy U 7yy-

edges s (2.6.2-4)

+ cose 2( xy z x + y V,x)] dx

+[cos e2(W- xx - xy V, x )

-sina2(axU,Y + xy dy

1

where: (for power hardening materials)

W (1 + 2 + 0 - 2v) 2 + n ( ( n+1 1)ayd (2.6.2-5)

(for multilinear materials)

m-1 (2.6.2-5)

( + 2 + ( 1 - 2 , ) 2 i 2+ I 23 pp ~-.- (i+1 ~~ +

and:

(2.6.2-7)
pp= xx + zz

xy

E:E

An additional contribution must be included for the axisymmetric
J-integral (Reference 10):

(2.6.2-8)

Sos - x x - Oxy Vx)/z
areaP z'

A
sinja2( U - xy E )/z] dA

This area integral is added to the contour integral for all elements
that fall within the path contour, i.e.,

- = path + Jarea (2.6.2-9)

- .OW , , , /1 Arthur D. Little, Inc.
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The energy release rate defined in Section 2.6.1.4 can use the plastic
singularity to approximate the J value for a multilinear material model.
If K. is substituted for K. in equation 2.6.1.4-3, G beccmes Jp with the
foll wing modifications: "

For plane stress:

I Jp (I + a) GI  (2.6.2-10)

For plane strain:

[l + y2 /2 - 3vy/ 2 +( - 3y/4 + Y2/2)]
Jp V( - 2) (2.6.2-11)

where:

(2.6.2-12)

;- y : (s. +. /2)/(l +c~m)

and amis the slope of the last ligament of the plastic stress-strain
relationship defined by equation 2 .1.4-1

2.6.3 Tearing Modulus

14The applied Tearing Modulus is defined by

E di E AJ (2.6.3-1)
' TAPPL : -a F yT (2 3

0 0
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E is Young's modulus, a is the flow stress (average of yield and ultimate
stresses), and dJ/da represents the rate of change of the J-integral with
respect to crack length. Ductile crack growth stability is assessed using

-the tearing modulus as follows: Fracture is stable upon reaching JTC if
TAPPL < T, or unstable if T .PPL > T M_., where T .TL is thd
tearing mOiuCus of the material taKen from tes records (resistance curves)
of J versus Aa in standard JIC tests.

I | Finite element analysis including crack growth (Reference 11) can beI performed to calculate T. In PAPST, crack extension over one element can
be analyzed. This ;s done by inserting a very stiff distributed spring
along the path defined for crack growth. The user is allowed to define the
ic.value at which, the crack should grow. Cnce this value is reached, the
spring is progressively softened holding all other boundary conditions
fixed. When the program converges, a new value for J is computed. The
Tearing Modulus can then be calculated from Equation 2.6.3-1.

r
I
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2.7 OPTIONAL FEATURES

ISeveral optional features are available in the program to aid the user
in describing the model and interpreting the results. This section
describes the user selectable features.

2.7.1 Plotting

f The plotting package has the following capabilities:

a) Drawing deformed shape

b) Stress contour plots

c) Thermal contour plots

d) Enlargement of Selected Regions

I This package has been developed for use on a CALCCIMP plotter.1
2.7.2 Wavefront Reordering

* This feature is still in developnent. The user can, however, utilize
the manual reordering feature. This allows the frontal solution to be
performed in a different order from the element input ordering. See
Appendix A, Topic 6, Subject C for details.

I
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3.0 VERIFICATION

Verification of a computer program is an on-going process. Each new
Ii feature or modification to the program must be shown to work itself and be

shown to not affect the performance of other existing features of the
program. Considering the amount of modification that has been made to
PAPST during this contract, it was appropriate to collect and review the
previous verificatioon cases. Fran this collection, selected test cases
were used to baseline this version against previous versions to see what

ii differences, if any, existed, and if they did, were they a result of
improvenents and modifications. New features, such as springs and tearing,
required verification to theoretical or experimental results.

This verification effort was not exhaustive. There are many features
and combinations of features that have not been explicitly verified.
Experience with the program, both here and at the Navy, leads us to believe

c |that there are no obvious problems or errors.

3.1 General Topics

3.1.1 Elastic Analysis

A This version of PAPST was developed from the most recent version of
APES. The broad base of experience with the use of APES, which is now
fully incorporated, implies that this section of the program is partially
verified. Also, efforts required in later portions of this section require
that the elastic solution be correct. Therefore, no specific effort was
undertaken to verify this topic.

" {3.1.2 Elastic Singularities

In Section 3.5 one of the comparisons to verify the J-integral
involved the use of the elastic singular solution. The results from the
elastic singular solution were found to be consistent with previously
reported values.

3.1.3 Multiple Runs

Several of the verification test cases were run sequentially through
i the program. Included were multiple elastic and multiple elastic/plastic

cases as well as combinations of elastic and elastic/plastic cases. All of
"" the problens ran identical to cases run individually.

3.1.4 Inclined Supports

weeRotated test cases, similar to the J test cases used in Section 3.5,
were generated and run to verify that the'5olution was insensitive to the
model orientation. Table 3.1-1 sumnarizes the results. Overall comparison

* is excellent. The only noticeable discrepancy arises from the plastic
singularity, and this was expected because it is not generally accurate.

.. ; / Arthur EX Lttle, Ln
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TABLE 3.1-1

COMPARISON OF INCLINED MODEL TO UNROTATED MODEL

DESCRIPTION 0=00 0=450 A%

Model #1 - 6EL, Plastic, Plane Strain

Incr. #1 PFRAC (1) 1.312940 1.312767 -*
Highest Loaded Node 62038.339 62040.306
J 85.010 85.003
IJ2 65.263 65.256 .011

Incr. #2 Highest Loaded Node 110050.114 111451.825 1.27
d 803.70 776.55 3.378

1 2 696.78 690.79 0.86

Incr. #3 Highest Loaded Node 139335.383 140941.39 1.15
* 2079.0 2048.7 1.46

1690.06 1682.8 0.43

Model #2 - 6EL, Plastic, Plain Strain,
Enriched

Incr. # PFRAC (1) 1.244933 1.244870 -
K 5103.45 5703.87 -
Jl 77.103 77.108 -

62.876 62.878 -
Highest Loaded Node 85189.317 85210.081 .02

Incr. #2 K 28066.948 30595.377 9.01

Highest Loaded Node 130250.355 133047.625 2.15

803.75 775.62 3.5
689.61 683.47 0.89

Incr. #3 K 57500.24 60063.13 4.46
Hghest Loaded Node 174047.27 176820.054 1.59
1 1 2066.7 2033.5 1.61

J J2 1743.8 174.06 0.81

•<.01%
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3.2 Concentrated Springs

The concentrated spring verification addresses each of the pssible
uses of the spring. Features of the spring are:

1) Axial and shear stiffness
2) 1-node - grounded (zero length)
3) 2-node - between element
4) Rotated or inclined specification
5) Combined stiffness action
6) Potential violation of moment equilibrium

Four test cases were developed to cover all of these topics. Three of
the cases are statically determinate, permitting easy checking. The fourth
case demonstrates the problem with moment equilibrium.

Test Case #1, shown in Figure 3.2-1, is one element that is pinned at
one end and restrained by a spring at the other. An overturning force is

&applied. The spring was defined by one node, resulting in the grounding of
the other end and zero length. Cnly the shear stiffness was input. The
local coordinate system defaults to the global system and thereby defines a

*spring with vertical stiffness only.

Test Case #2, shown in Figure 3.2-1, places an axial spring between two
elements. Both elements are restrained from vertical motion. The left
element is pinned at the far side and the right element has a uniform
traction applied. The force from the traction must be transferred through
the spring to the far support. Stabilizing moments at the base of each
element were checked for equilibrium.

Test Case #3, shown in Figure 3.2-2, has an axial spring that is
defined between two pinned supports. One of the supports undergoes a known
displacement. Resultant spring forces are axial.

Test Case #4, shown in Figure 3.2-2, has the sane model geometry as
Test Case #3. The difference is that both the axial and shear stiffnesses
were set to the sane value. This results in an equal restraint against
motion in all directions. The force at the displaced end of the spring is
the spring stiffness times the displacement. No other forces are developed.
The other end of the spring has a support reaction that is equal and
opposite to the force developed at the displacement. Therefore, moment
equilibriun is not maintained over the finite length of the spring.

The computer runs that were made agree completely with the analyses
shown in Figures 3.2-1 and 3.2-2.
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3.3 Distributed Springs

* I The distributed spring verification is similar to that for the
concentrated spring. Most of the possible uses and features were tested.
However, the added complexity of the distributed spring makes an identical
level of study impractical. Only the most common features are addressed,
and we rely on the generality of the derivation to cover other, less common
cases.

Pj Features of the springs are:

1) Axial and shear stiffness
2) 2-node - grounded (intermediate nodes generated)
3) 4-node - between element (intermediate nodes generated)

5) Combined stiffness action

*6) Potential violation of moment equilibrium

Three test cases were developed to cover these topics. The one case
that demonstrates the potential violation of moment equilibriumn is
statically determinate if this is kept in mind. The other two can be
quickly analyzed by hand.

Test Case #1, shown in Figure 3.3-1, is a row of elements resting on an
elastic foundation provided by the springs. Uniform suction is applied to
the top surface. The springs are defined by 2 nodes and, therefore, have
zero length and are grounded. Axial stiffness in this case corresponds to a
vertical restraint. The distribution of pressure on the top surface is
reproduced in the reactions provided by the springs.

Test Case 42, shown in Figure 3.3-2, is the same general configuration
as Test Case #1. Rather than suction, uniform shear is applied to the top
surface. Vertical restraints are defined along the bottom edge of the
elements. The springs have a finite length and only a shear stiffness.
Deformation of the elements causes some small redistribution of shear force

- -, to the springs. The moment developed by the vertical restraint
counterbalances the moment caused by the shear force. However, this moment
has a magnitude that implies that the springs are supplying the reaction at
the point of connection to the element and not at the ground of the springs.
This is consistent with the warning on the violation of moment equilibrium.
The formulation of the spring does niot account for length, and therefore,
shear springs of finite length will not balance properly.

Test Case #3, shown in Figure 3.3-3, demonstrates the use of the spring
between elements. Wo elements are connected by a spring on an inclined
surface. Suction is applied to the unsupported element and must be

* . transferred through the spring to the other element to reach a support. The
moment developed at the support bailances the moment from the suction. Equal
axial and shear stiffnesses provide a uniform stable connection between the
two elements. A biased connection could be specified by the use of
different spring stiffnesses for axial and shear components.

Computer runs made for these cases agree completely with the analyses
* shown in Figures 3.3-1 through 3.3-3.
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3.4 Thick Walled Cylinder

SThe plane strain idealization of an internally pressurized thick walled
cylinder (an axisymmetric problem) is shown in Figure 3.4-1. This problem
was enployed to verify the previous version of PAPST. The method of load
incrementation, convergence characteristics, displacements at the inside and
outside surfaces are all indicated in Table 3.4-1 and comparison is made
with the results of Reference 12. We have added the results from the
present PAPST program to Table 3.4-1.

In order to also correlate these results to analytic example, we
limited the analysis to the small scale displacement option. The outer
displacement of an elastic/perfectly plastic cylinder can be approximated
for a Von Mises yield criteria from work done by Hill (Reference 13). The
elastic/plastic boundary can be found by the equation.

i-- =(3.4-1)

Ply ln(c/a) + 112(l - c21b2)

where:

a = internal radius
b = external radius
c = elastic/plastic interface radius a c b
p = internal pressure

jyd = yield stress x 2/ V3 to account for Von Mises criterion
rather than Tresca.

The displacement field in the elastic region then becomes:

= +v) 2  2 (3.4-2)U = a---- yd.-C (1-2,)r + bZ/r(+) "
b-

* where:

E = Young's modulus
" v, = Poisson's ratio

r = radius to be evaluated

Results for this equation are compared to the computed results on Table

*" 3.4-1.
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Plastic a - e Curve
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History is Monitored are Shown by Dots

* - Figure 3.4-1 Idealization of Thick Wall Cylinder for Plastic Analysis
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- TABLE 3.4-1

RESULTS FOR 3 ELEMENT IDEALIZATION OF

THICK WALLED CYLINDER

Internal
Stress Small Scale Displ. Large Scale Disp.

Initial PAPST
Increment Yield Theory Stress New Papst (Ref. 18)
Number Stress (Ref. '3) (Ref .17) NewPapst (Ref._18)

1 0.453 NA 1 1 2 (1)
.261 .261 .262 (2)

.1616 .161 .161 .162 (3)

2 0.5 3 2 2 2
.294 .294 .294 .294

.1811 .181 .181 .181 .181
--------------------------------------------------------------------------------

3 0.55 3 2 2 2
2 .332 .337 .337 .338

- 4 0.6 4 2 2 2

.391 .387 .387 .388
.2348 .236 .234 .235 .235

5 0.65 4 2 2 2
.455 .456 .456 .457J .2723 .272 .272 .272 .273

-- --------------- ------- -- m---------- m------ --------------------- - ---------
0.7 5 3 3 3

.546 .546 .547 .549

.3215 .321 .321 .321 .323
------------- ------------ -------------- ----------------------

7 0.75 6 3 3 3
.688 .689 .691 .696

.3951 .395 .396 .397 .400
--------------------------- ------------ mm-------------- ----------- -------------
8 0.77 7 3 3 3

.770 .775 .781 .787
.4391 .438 .440 .444 .447

- ------------------ ------- --- ------ ---------- -------------------------------

9 0.79 8 3 3 3
.898 .923 .936 .950

.5094 .504 .516 .523 .531

-- --l---------------m-r----- m---- ----------------------------- m---------", (1) Number of iterations to convergence 2
-(2) Radial displacement at inside surface, in x 1(3) Radial displacement at outside surface, in x 1O2
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3.5 J-Integral - Compact JIC Specimen

A limited anount of verification of the option has been performed to
assess the validity of the J integral calculation. The previous revision of
PAPST had extensive testing and was subjected to correlation with alternate

I solutions (Reference 14). While the calculation procedure has been
completely rewritten, the basic equations and approach remain unchanged.

A single model was chosen to compare against previous results. The
geometry of the model is shown in Figure 3.5-1. It is approximately the
sane as the geometry used for Reference 14.

Three separate cases were analyzed: elastic enriched, plastic, and
plastic enriched.' The cases were run for both plane strain and plane
stress. Results for these runs are summarized in Table 3.5-1. Comparablej results are also shown for calculations done with the previous revision
of Papst (Reference 14).
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ayd = 100,000 psi

n= 1

Figure 3.5-1
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3.6 Tearing Modulus

Three separate models of a compact tension specimen were generated to
verify the tearing calculation. In all cases, the material was bilinear
with a yield stress of 138 KSI and a stress level of 152 KSI at 10%
elongation. Young's odulus was 29,000 KSI, Poisson's ratio was .3, and a
value of 890 in-lb/in was used for JIC* These properties roughly
correspond to HY-130.

Each of the models contains a different level of sophistication.
Model #1, shown in Figure 3.6-1, was 6 elenents with the crack extension
of 3.1 inches. Model #2, shown in Figure 3.6-2, was 18 elements with a
crack extension of 0.05 inches. Model #3, shown in Figure 3.6-3, was 28
elements with a crack extension of 0.02 inches. The Model #2 improvement
over Model #1 was to improve the grid in the vicinity of the crack tip.
Model #3 enhanced this grid even more by providing a refined grid at the
end of the crack growth region. It also refined the grid in the region of
compression yielding near the back surface.

Each of the models was loaded in four increments. Displacement
control was imposed on a spring in series with the specimen. Different
spring stiffnesses were tried on Models #1 and #2 to approximate changes

* in machine compliances.

w For each model and spring combination, two runs were made. The model
was first run with the initial crack and then grown to the final length.
Next the model was run with the full length crack. This was done to
compare the stress state of the growing crack to the full length crack and
to check for any numerical anomalies that may have occurred. None were
seen.

The J value that was used for comparison was the path that fell
entirely within the elastic region of the specimen. This value compares
the best with the J integral estimate based on the applied load-load line
displacement curve. At this time, it is felt that the deviation of the
J-integral path values (previously reported) is a result of the snoothing
technique that is used to determine the nodal stresses and strains. While
the snoothing technique works acceptably for elastic strain fields, the

*complexity that arises from the elastic-plastic strain fields is not well
represented by the smoothing functions.

Figures 3.6-4 through 3.6-8 show the J vs. load line displacement
curves for the five cases reported. It can be seen that the higher
refinement in Model #3 results in closer comparison between the growing
and the grown crack predictions. Figure 3.6-9 shows the plastic zone
comparison between then. It should be noted that the strain level near
the crack tip was about 30% in both cases. This is far in excess of the
assuned ultimate of 10%.

Figure 3.6-10 shows the tearing modulus values that were calculated
from the five cases. The experimental curves that are used for comparison
are from a paper by Joyce and Vassilaros (Reference 15). Several
important differences should be noted:
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1) The material has an ultimate stress of 152 KSI at 20%

f elongation. The finite element models used a slightly higher
hardening material.

* 2) The material has a reported Jic of 870 in-lb/in2 while the "key
curve" used to genlrate the T 13 curve appears to have a J of
about 801 in-lb/in . The modlL all grew cracks near .90 1Cin-lb/in

3) The tearing curves are for continuously growing cracks. The
models, by necessity, can only grow the cracks incrementally.

4) The model is idealized as plane stress. The specimens are
finite thickness.

'-1

-I
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Figure 3.6-1 Model #1 - 6 Element
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Figure 3.6-2 Model #2 - 18 Element
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Figure 3.6-3 Model #3 - 28 Element
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12] J values

88 Crack Growth = .1"

10 . 649 188
+" 1780

!!TI:',  ~l 1077
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, -. i 579

.-. "6 a 1.4"

S97.7 + T : 13.5

9 7 .7

1 2

0

.01 .02 .03 .04 .05

Load Line DiSDiacemeit (in)

Figure 3.6-4 Model #1, J vs. Load L~rie Displacement, K = 60 K/in
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12 1 values

Crack Growth =.1"

:: j 8952380

e10 -2189

500 +

a=1.3" 840
8

2258 / a 1.4"

* .~ ~86
06

1 98

T =20.3

L .9.74

2

*0.01 .02 .03 .04 .05

Load Line Displacement (in)

Figure 3.6-5 Model #1, J vs. Load Line Displacement, K = 30 K./in

64



-7 7 . 77 -7

I
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1 24
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-
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Load Line Displacement (in)

- Fiqure 3.6-6 Model #2, J vs. Load Line Displacement, K = 60 K/in
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S-, _Figure 3.6-7 Model #3, J vs. Load Line Displacement, K. 30 K/in

66

.. ...



pI,
it

12 J values

880 -Crack Growth =0.02"110 lO 642 105n

4757

-8-

175

" 6-

4_

T - 12.0

2 12.

I [

--.0
; .0 .01 .02 .03 .04 .05

Load Line Displacpment (in)

Figure 3.6-8 Model #3, J vs. Load Line Displacement, Km  60 K/in
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Figure 3.6-10 TAPPL vs Crack Extension

Theoretical Curves From Joyce & Vassilaros, STP 743, pg 539.
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3.7 Thermal Loading

For verification of this coding, three separate models were each run
for axismmetry, plane strain, and plane stress:

1) Unconstrained with a uniform temperature field.

2) Constrained top and bottom with a linearly varying temperature
field.

3) Constrained top and bottom with a uniform temperature field and
described with bilinear elastic/plastic material properties.

Both the unconstrained and constrained models are shown in Figure
3.7-1. In all cases, the computer model matched the analytical equations.

3.7.1 Axisymmetry

Test case one, using the unconstrained model and uniform temperature,
f (produced uniform strains and no stresses or reactions. This is the trivial

theoretical case, but shows that no residual or unbalanced forces are
incurred by the thermal body forces.

Test case two used the constrained model with a lineaerly increasing
*. temperature field. This case is described generally in Reference 16. The

stresses in the body are:

(3.7-1)

a r
a E l Trdr L Trdr

"r ao 0a r " T 0" s 1 r ]r

[ 1 f Trdr + 1 2  Trd

L a

a7 = 2 [da - T]

I.° I

a z

,0

where a = outer radius
r = a radius within the body
T = temperature field expressed as a function of r
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Y or Z [Axisymmetry]

, I

I a
,~ __a , I

Unconstrained
a

X or R [Axisymmetry]

Y or Z [Axisymmetry]

-

Va

Constrained

a

X or R [Axisymmetry]

Figure 3.7-1 Thermal Models
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The linear field that was used can be expressed as:

T=T O 0 (3.7-2)

where T is the tenperature at r a0

Incorporating Equation 3.7-2 into 3.7-1 and integrating, we get the
I following stresses:

aETo r

a0 3 - [ 2 -a (3.7-3)
0- 3(1v)°

=cE0  -3rCFZ 3 (1-V) [2v

I

We can evaluate the term in brackets at the center and at the outer
z .radius:

r=O r=a

, r 1 0

* a 1 -1r
* I

a 2v 2v-3~z

Test case three also used the constrained model but with a uniform
tenperature field. The elastic stresses in this case become:1

0r =0 (3.7-4)

Ge 0

z = -aET

The plastic response was described using a bilinear material model,
*. (n = 1). The stress beyond yield in this case becomes:

_N__
1
____ A_______ '_ _,_, _ 72 A& ArthurDU D ttle,'Inc.
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E _ (3.7-5)I az -ET 1 - a TjM)

•' I where:

am  slope of the stress/strain curve beyond yield

i tempereature at yield

AT = temperature increment beyond yield

This behavior was verified in the cnputer model.

4-

-
-°t

73 /L ArthurD.lttle,Inc.
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r3.7.2 Plane Stress

Plane stress is quite similar to axisymnetry in terms of the stress
jfields for this analysis. Test case one, unconstrained with uniform

temperature, produces uniform expansion with zero stress. Test case three
with the same material properties results in uniaxial stress of the form:

cry = - ET E (3.7-6)

m
I

Test case two 'shows different behavior. We can treat the case of a
constrained element with a linearly increasing temperature field as
unconstrained expansion with a linearly increasing imposed displacement.
This displacement can be described as:

j (3.7-7)

* v(x) = -caaT(x) = -cToX

* I

The total strains therefore are:

I (3.7-8)

E* = v(x)/a + aT(x) 0

* Ex = -v(v(x)/a) + aT(x) = (I+v)ctToX

Cz = -v(v(x)/a) + cT(x) = (l+v)T T0X

i The stress field becomes therefore:

(3.7-9)

a x a z = 0

ay = -aET(x) = - ctEToX

. _ _74 /t Arthur D. Little, Inc.
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3.7.3 Plane Strain

Plane strain does not have a trivial test case as do axisymmetry and
plane stress. The Z direction is always constrained and stresses are
produced in that direction for any thermal loading.

ITest case one produces the following total strains and mechanical
stresses:

E= (+v)tT 0  (3.7-10)

E (I+v)(xTY 0

:=0
X! °x

Cy 0"" i Y

a = -aET 0

Test case two can be analyzed similarly to plane stress, except that
both Y and Z directions are constrained. The mechanical displacements
required to offset the thermal expansion can be described as:

v(x) =-caT(x) (3.7-11)
* i w(x) = -atT(x)

" i
* =

where a and t are the in-plane and transverse dimensions of the plate,
respectively.

The only non-zero strain is in the x direction.

II C - :T( x) + oT(x) = 4 =Tro (x712

.:~The resulting stress state is:

(3.7-13)

Cy= -cLET(x)/(l-v)

oz = -aET(x)/(I-v)

-A--I-A Arthur D. Little, Inc.
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+i
When these are evaluated for the linear temperature distribution in

Equation 3.7-2, they check with the results of the computer model.

Test case three results in the sane strain field as described in
*- Equation 3.7-12 except that the temperature field is constant rather than

linear. The stresses become in this case:

~y' ~z -1v ET.1 + E T]f3.7-14)i+ = .:+ [ E T 1  + E

.0 I

where the notation is similar to Equation 3.7-5.

*1

I.
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APPENDIX A - CHANGES IN THE INPUT FILE FOR PAPST

1) Crack Growth -

Group VIII - Nonlinear Analysis Data
C. J-Integral Related Data
Card 3 - Needed only if NCNR of card 1 is now zero.

The change in the crack growth mechanism required a modification to the user
input. Only one increment of crack growth is allowed. The procedure is
:described in Section 2.6.3.

CARD 3 - NCN1, NCN2', NCN, JIC, SIGMA0

FORMAT (315, 2F10.2)

(1-5) NCNl - Present crack tip node
(5-10)NCN2 - Ultimate crack tip node
(10-15) NCN - Number of iterations to release spring (5 should be

adequate)
(16-25) JIC - Average value of the J-integral paths at which crack is

to be grown (Note: Crack will not grow unless JIC is
exceeded)

(26-35)SIGMA0- Flow stress in Tearing Mbdulus Equation (2.6.3-1)

2) Elastic Analysis -

Group VIII - Nonlinear Analysis Data
A. Nonlinear Analysis Control
Card 1

If this card is left blank or NINC = 1, the program will default to an APES
run (no further data required). The user is suggested to try his model in
this mode before attempting a PAPST run. Cost for an elastic run may be one
to two orders of magnitude less expensive.

3) Wavefront Reordering - This is so the user can change element ordering
after the fact, (i.e., "grid too big for program") without changing
input model data.

Automatic resequencing of the elements by the program is still in
development. However, the user may manually define a resequencing. This is

. particularly useful if there are a large number of spring elements since
. they are generated at the end of the area element list. T use this

facility:

• . Group I - Preliminary Data

Card 2:

(66-70)IWAVE -option for wavefront reordering
0 no change (default)
1 user specified sequence

: - .- EN1AAI,,77 /t Arthur D. Little, Inc.
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Group VII - dditional Data
D. Wavefront Reordering

* CARDS: IN (I)
FORMAT (1615)
TERMINATE WITH A FULLY BLANK CARD
IN(1) are lists of element numbers that refer to the position of the

element in the input stream. Springs are added on at the end of the area
element input and are nunbered in order of appearance in input. The

Jinitial value (and default) of this list is reflected in the output in the
nodal indices section.

4 The user may specify as many (up to 16) elements on a card as he
wishes. The solution procedure will be modified internally to use the
specified list. There is no effect on the output sequencing.

Unspecified elements in the list will be added, in order, to the end of
the user specified list.

.K I This solution may be preferred over modification of the element order
if the user gets, or suspects to get, the error message: "GRID TOO LARGE
FOR PROGRAM"

4) Convergence Criteria

Group VIII - Nonlinear Analysis Data
Card 1 Cl,C2

The equations for convergence criteria have been slightly modified, see
* Section 2.0.3. As a_5esult, the default values were modified. In the new

code, Cl defaults 10 and C2 defaults to 10

1
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APPENDIX B - NOTES ON APES AND PAPST CODES

'This manual documents the current approaches and algorithms contained
in PAPST. During the course of this work several areas of concern with
respect to the previous versions of APES and PAPST appeared. A few coding
errors in both APES and PAPST were found. Some portions of the codes were
found to have questions on interpretation. Many improvements to the code
were made for consistency and clarity. This Appendix addresses these areas.

FTopics
i) Errors - APES

1 2) Errors - PAPST
3) Warnings-on Interpretation - Previous Codes
4) Improvements - PAPST

1 5) Limitations of the new PAPST

1) Errors - APES

a) Variable NOPT or ISTRN

T1his variable changes value several times in the program. The! subroutine BB was generated from one section of the program and is called
from another where the designation has changed. It is used four times in
the subroutine. In order, the changes are:

i NOPT.GE.2 becomes NOPT.LE.1
NOPT.EQ.2 becomes NOPT.EQ.1

(x2) NOPT. NE. 3 becomes NOPT.NE.0I
There may be other subroutines where a similar problen occurs, so the

user may wish to review all references to this variable.

b) Subroutine FRON1

In the coding for inclined or rotated nodes, there is an error in the
sin/cos components:

SINA*COSA becomes SINA*COSB

These changes have been implemented in the versioon of APES at DTNSRDC

1 2) Errors - PAPST

a) Subroutine Bl - variable interchange

- - In the determination of the enriching functions, the definitions of two
of the variables were interchanged. The code should read:

TEMP8 = TEMP8 + DNF(2, I) *UXl (I)

* . TEMP9 = TEMP9 + DNF(l,I)*UYI(1)

* -For enriched, large displacement problems, this error has an effect on

! -*7 9 /t Arthur D. Little, Inc.
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the results.

b) Thermal Strains- DSTR

In plane strain, the thermal strains depend on the current material
property matrix. This was not properly handled. See Section 2.5.4 for the
correct equations. Since the material matrix is formulated differently here

*, than in the latest program, no simple fix is described. These errors have
been corrected in the latest version of PAPST available at DTNSRDC.

1 3) Warnings on Interpretation - Previous Codes

This section covers areas where the user may have a misunderstanding
about what the program is doing. This misunderstanding may have an impact
on how the user interprets his results.

a) Subroutine ENSTR-APES

* This subroutine calculates the crack tip loading for crack face
pressure. we have been unable to reconstruct the coding in this section.
However, we have no evidence that it is wrong. The user may want to compare
the crack tip contribution in the present subroutine PRESS to that in ENSTR.

* b) Jaunann Stress Rate and Enriched Elements - PAPST

The rotation components used in the computation of the stress rate
correction term were not updated for the enriched contributions. This will
effect the answers slightly and are now included in the new program.

c) Hydrostatic Expansion - PAPST

We have found in .Jviewing output for the previous version of PAPST that
in plastic zones, the hydrostatic stress and strain do not satisfy the
equation:

(ar) +a + = F + + (B-l)

This is believed to be a numerical inaccuracy inherent in the former code
and is satisfied in the current code.

" d) Subroutine OUTPUT - Effective Stress - PAPST

The average effective stress output is the average of the effective
stresses. It is not the effective stress of the averaged stresses printed
on the sane line. This may be confusing to the user who is trying to use
the averaged stresses in conjunction with the effective stress (see Section
4 d).

.3 X3NA 1l4 80 t Arthur D. Little, Inc.
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I rle) J-Integral Path Values - PAPST

i f The path taken for the J-integral is taken within an element at the

edge. The element is selected by sorting through the nodal indices.
Rearrangement of the indices can result in a change in the elements chosen
for a given path, and as a result, in a numerically different J-integralI value (see Section 4 f).

4) Improvements - PAPST

a) Subroutine PRESS

This subroutine 'as changed from an edge integral to a line integral,
simplifying the code. The crack tip loading term has been generalized to
handle plastic as well as elastic singularities.

b) Deformation Gradient Contributions

The deformation derivatives (U, y and V, x) are now snoothed to the
-nodes in the same manner as the strain components. The enriched terms have

been included in the quadrature point calculations, so that the Jaunann
Stress Rate is calculated consistently.

*c) Yield Surface Modification

The yield surface is updated only for converged increments. The scaling
algorithn for increments crossing the yield surface has been substantitally
revised. This seems to reduce the problem of yield surface "wandering"
during iterations. Equation B-1 also seems to be enforced more accurately.

' 'd) Subroutine CUTPT2 - Effective Stress

The effective stress listed with the averaged and principle stresses is
calculated from the averaged stresses. This keeps the output
self-consistent.

- e) Stress Intensities

The stress intensity coding has been completely redone. The elastic and
plastic singularities now use forms of the same equations.

f) J-Integral, Path Values

SThe J-Integral has been rewritten so that it uses the averaged nodal
stress and strain values. This removes any sequencing dependence and

. +appears to give more consistent results.

g) Thermo-Plasticity

The the-mo-plastic analysis has been re-written to fully incorporate all
of the plasticity effects.

• 81
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5) Limitations of the New PAPST

a) Smoothing Functions

Comparison of nearby quadrature point stress levels with the smoothed
i Inodal values has brought up a question of adequacy of the smoothing

functions in regions of high plasticity. It is felt that some of the
divergence of the J-integral path values may be a result of this limitation.

. I b) Orthotropic Plasticity

The program is designed to do orthotropic elasticity or isotropic
plasticity. While the program will accept orthotropic values for a
plasticity problea, the user is warned against doing this. The program may
or may not run if the user does specify these types of parameters. The

* validity of the results, if any, could only be determined by the user. We
have not tested this case as it constitutes an incorrect application of the
program.

IL
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tI Appendix C - JCL and Usage

Version 2.0 of PAPST has been broken into two separate programs.SPAPST is the source code for the analysis program. SPPOST is the
source code for the plotting package. The following files are of
interest to the user:

TAPE5 - Local name for the input file
TAPE6 - Local name for the output file
TAPE47 - Binary file passed between PAPST and PPOST with-l information for plotting
TAPE48 - Plotting file from PPOST to be passed to plotting

hardware

Table C.l gives an example of how a typical job control file (JOL)
might be set up for a CDC machine.

°" *I'
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TABLE C.1

Example JCL Run Fi~le

3 CL COMMENTS

USER
/CARGE

rGET7TAPE3=IFN. IFN=INPUT FILE NAME

tjET'FAF'STB. FAPSTB=EIINARY CODE FOR FAFST
FA PS T z. EXECUTE PAFST.

fNm::L -f7E rTAF'E6=OFN. OF'NOUTPUT FILE NAME.
1 K, 9 TAPE47. (IF TAPE47 DOESN'T EXISTY ,DROP TO EXIT.)

G P' CF S ST E PPOSTBIANRY FOR PFOST.
t- .,S:.3 . EXECUTE PFOSTB.

I 4I N T TAP E 48.
S'...A':ETAPE48=PFN. FPFN=PLOT FILE NAME.

ll'!c LF. DFN. 11[Ffl-:AYFILE NAME,

84
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