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FOREWORD

This report provides some new insights into and approaches toward image
modeling as applied to target identification, whether that target be a ship, an
incoming missile, or an aircraft. The approach taken is that of examining the
energy in prescribed wave-bands which emanates from a target and correlating the
emissions. Typically one might be looking at two or three infrared bands,
together possibly with several visual bands as well. The target is segmented,
using both first and second order modeling, into a set of "interesting
components," and these components are correlated in such manner as to enhance
the classification process.

A Markov-type model is used to provide an a.priori assessment of the
spatial relationships among critical parts of the target, and a stochastic model
using the output of an initial probabilistic labeling is invoked. The tradeoff
between this stochastic model and the Markov model is then optimized so as to
yield a best labeling for identification purposes. In an identification of
friend or foe (IFF) context, the methodology presented in this report could be
of great interest, for it provides the ingredients for such a higher level of
understanding.
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CHAPTER 1

INTRODUCTION

In recent work on aircraft identification 1,2 and ship classification, the

classical theory of invariants 3 was employed in order to classify a target

known to belong to one of a given number of target classes. The classes were

constructed in the following manner: A target prototype from the class was

viewed from a number of perspectives and under ideal imaging conditions. Then,

thinking of the two-dimensional projections of the target as binary images, the

moment area method was used to construct a feature vector for the given

perspective. Each feature, being a proper combination of moments, had three

fundamental invariance properties, which were invariance to position of the

image in the field of view, invariance to rotation in the image plane, and

invariance to range of the target. Of course, a real target is a superposition

of an ideal target and background noise due to environmental effects. In

addition, noise will be introduced by the imaging system itself. Therefore,

before one can successfully apply any pattern recognition method, he must be

able to extract this noisy target from the background. There are two steps to

this process: (1) The picture is subjected to some kind of smoothing

operation, so that, hopefully, the noise is reduced to a manageable level.

(2) Now that one has a sensible picture, one extracts the target by boundary

identification, which often requires some kind of gradient algorithm. Once the

object has been extracted, it is compared to the data base of ideal target

prototypes, and the object is assigned to that class which is closest, in some

well-defined sense, to the image representation.

We would like to emphasize at this point that previous work has often been

centered around a rather naive interpretation of the object of interest. Each

image, be it optical, infrared, or otherwise, is conceived in terms of two color

levels, black and white, with black being assigned a 1 and white a zero (or vice

versa). Such a two-level description is deemed appropriate from the point of

view of computational feasibility, provided that all that is really necessary

anyway is a crude target assignment. However, in practice, it is easy to

imagine a situation in which a higher level description is not only desirable,

but indeed necessary. For example, it is one thing to determine that a given

ship is a destroyer, rather than an aircraft carrier or a tanker, but it may be

1-1
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"* quite another to ascertain whether or not it is an enemy or a friendly

" destroyer. (Imagine a combat situation in which such discrimination is

crucial.)

The use of relaxation methods for target discrimination seems to be ideally

suited to the task at hand. In particular, the work of Rosenfeld, Hummel and

Zucker 4 appears to be of fundamental interest. One sees immediately that such

methods should engender a higher-level definition of the object if one can

appropriately define the components of interest, together with a meaningful

*. assignment of their interrelationships. However, what one does not usually see

in the literature is a marriage of the concepts of relaxation and multispectral

*classification. This would seem to be a natural extension, and one of the

-1 purposes of this document will be to investigate the potential of such a

. union. In addition, we shall pursue the theory of contour or boundary

*i extraction in the context of multispectral information. We note that some work

in this direction has been pursued recently by Eklundh, Yamamoto, and

Rosenfeld, 5 and that the results have been quite encouraging. Also, we shall

invoke the work of Haralick, 6 Nahi,7 Kaufman, 8 and Woods 9 and attempt to unify

i their concepts in a meaningful way.

Our analysis will begin with a procedure similar to that of Chen and

Pavlidis. 10 That is to say, we shall show how to devise a split-and-merge

algorithn for our purpose. Implicit in this methodology is the incorporation of

the idea of the quad tree.
1 I

It is hoped that this work will prove useful in more carefully defining the

*" structure of targets.

.

4
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CHAPTER 2

THE GENERALIZED SPLIT-AND-MERGE ALGORITHM

We shall describe here in general terms what we propose to do with regard

to a unification of the work of Haralick 6 and Chen and Pavlidis. 10 Haralick's

sloped facet model is to be employed in conjun,ion with the splitting phase of

the Chen and Pavlidis procedure. That is one new idea. Secondly, we shall

superimpose a color (or pseudocolor) scheme for two reasons: (1) It is well-

known that, by so doing, one may make the target intensity profile insensitive

to changes in illumination. 12 This is a distinct advantage from a physical

point of view. (2) In infrared detection, where our methods may prove most

valuable, it is important to examine gray-level intensity in different wave

bands and to correlate the results so obtained. Such methodology has proved to

be of great value in LANDSAT image studies.

Now let us begin with the idea of the quad tree. Suppose that we have a

rectangular target area, as shown in Figure 2-1. We shall divide this rectangle

into four congruent subrectangles as shown. Now let us assume that our target

pixels are described in terms of normalized primary colors (or their

equivalents). That is, we have the nonnegative vector (gR, g, gG)t, with
gR + gB + gG = 1. Then let us compute the sample covariance matrix 13 for the

entire rectangle and compare it with those for the subrectangles. Suppose that

K is the overall covariance matrix and that Ki, 1 i • 4, is the matrix for

subrectangle i, as indicated in the figure. The game will now be

2-1
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FIGURE 2-1. THE QUAD-TREE SPLIT-AND-MERGE ALGORITHM

played as follows: If the maximum norm of the difference between K and Ki,

- i.e., max IIK - Kill, does not exceed some small positive , then we

' proceed with Haralick's method for determining whether or not all the

suhrectangles belong to the same sloped surface (facet), On the other hand,

when the max of the norms does not pass the epsilon test, we do not use

Haralick's procedure. In that case, we subdivide rectangles 1, 2, 3, and 4 into

*- subrectangles. Eventually we shall arrive at a dissection for which the equal

.. cova~riance assumption is valid. From that point onward the scheme is

applicable. Roundary determination shotild fall out of this process naturally in

* terms of small hoxes containing the boundary points, as illustrated in Figure
*- ?-1.

What we really have in mind is the determination of a number of pertinent

components of a target which are iiseable in later identifying it. The idea is

. that, once we know the boundaries, we automatically have the regions, which are

. formed by merging of subregions having the same parameters associated with

them. This is the "merge" part of the algorithm. The next chapter is devoted

to the modification of Haralick's scheme.

.9 2-2
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CHAPTER 3

THE GENERALIZED SLOPED FACET MODEL

In what follows we shall make use of the quad-tree concept,11 whereby a

rectangle is divided into four equal parts and each part is again divided into

four parts and so on, until a certain group of criteria are met. As shown in

Figure 3-1, let us assume that we have a rectangular lattice of points and that

the equal covariance assumption of Chapter 2 is valid. Point 0 is the center of

our large rectangle, and point 01 is the center of subrectangle i. Note that

all four subrectangles meet at 0. We want to test the hypothesis that all

C

-- '" r

S 01 P * 02

--

0"*" * 0 . .

* 00 0 0 0

, • •03 • 04

FIGURE 3-I. TESTING THE SLOPED FACET MODEL ASSUMPTIONS

subrectangles are associated with the same sloped planes. We are assuming,

therefore, a regression model of the following type:

gR(rc) = aRr + BRC + YR 
+ nR(rc)

9 (r c ) = aBr + + B + nBIrc) (3-1)

gG(r c) - + GC + YG + nG(r'c)'

where gR + g3 + gG 1, r is the row index, and c is the column index. Of

course, the constraint that all three color components sum to one allows us to

incorporate into the state vector any two of them. We shall assume that,

3-1
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although the red, blue and green components may be statistically correlated at a

given point in the image, they are independent from point to point. Note that

this is a first-order assumption, which is given for computational convenience;

* win fact, a higher order model will be given later in this report. Selecting the

red and blue quantities in (3-1), we present the matrix formulation

:. tR OR YR (r) +n,
= (aRRR' n B) (3-2)

\BI B 8 BB1 \B

In the usual way, assuming that K is the 2 by 2 covariance matrix for the noise
n

term in (3-2), we may formulate the least squares problem of minimizing

e t K -  e (3-3)
rER ceC r,c n -r,c'

where t denotes transpose of the error vector er,c, R is the row index set for

the rectangle, and C is the column index set. Furthermore,

( ̂  g R RY Vr
"rc (g 1 

(3-4

where the matrix in (3-4) is the array of expected coefficients. Note now the

fact that K -1 is symmetric and positive definite, so that it may be
•1

diagonalized by an orthogonal matrix P:

) = P K -1 Pt (3-5)
n n

where Dn = diag (Xl, X2 ) and xl, X2 are positive. We are here assuming, of

course, that the process is erqodic 14  so that K 1 is estimable by means of

the spatial information given in the gray level profiles.

Substituting (3-5) into (3-3), one has to minimize

D. "^ t D (3-6)
r-R cc -r,c n -r,c'" " rFR ce Cn

where f = P e Thus-r c -rc

3-2
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B BI :RjaB Y )( I)
~R 8 R ~ R r(3-7)

\gB aB B Y 1

It follows that (3-6) may be rewritten as

er= + R + A - g (rc)]2

r c (3-8)

I - cB 2 .
+ X2 [aB r + B'c +Y' - gB' (r,c)J

r C

Differentiation of (3-8) with respect to GR OR and YR" imposition of the

conditions I r = I c = 0 (corresponding to appropriate choice of origin 0 as
rcR ccC

indicated in Figure 3-1), and setting the results equal to zero lead to

expressions for aR"' OR" YR'' MB" OB"I and aB' in terms of their true values

and additive noise terms. The optimal values for MR R' and YR are then

A 2

MR = IR + ) rnR (r,c)/ Z r
r c r c

+ (r,c)/ 2 c2  (3-9)

OR OR 128R' I I
r c r c

I YR + I nR (rc)/X 1 1,r c r c

where aR R I YR are the true values of the parameters. If one replaces the

subscript R by B, one obtains the analogous relations for the blue parameters.

One sees from (3-9) and the corresponding blue relations that the estimates are

unbiased. Furthermore, using the covariance matrix for the noise, namely,

D -1, one may develop the covariance matrix for the estimates. This is seen to

be a six by six diagonal matrix with

3-3
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l - o1/ Z r2
VaR a,1 2

r c

V(8R)= 1 2 (3-10)

r c

V(YR) 0 o12/Z Z 1,
r c

just as in Haralick's paper,6 where O2 1/X1. Similarly, for the blue

parameters one gets expressions analogous to (3-10) with 022 = 2

replacing al2. The covariance terms are zero as before.

Now consider any two subrectangles, as, for example, those with local

origins 01 and 04 in Figure 3-1. Note that these subrectangles meet at 0, which

is also the midpoint of the line segment joining 01 to 04. Assuming a linear

model representation over both subrectangles, we would like to test the

hypothesis that both linear facets (for red and blue components individually)

are really part of the same facet. For this to happen, clearly alR' = a4R'

""R = 4R' a 1B '4B1 and B1.' = 84B Now suppose that regions 1 and 4 are

.. equally sized, i.e., have the same number of grid points similarly placed, as

indicated in Figure 3-1. Furthermore, suppose that 0 is not a grid point of

"; either region. For purposes of calculation, then, the two subrectangles are

"* mutually exclusive, and we find that both NIR = (aiR - a4R')( I I r2/2)1/2

. and N2R = (IRM 4 - c2/2) 1 / 2 are normal random variabls Cwith mean 0
- r c

' and variance 2I . Similarly, one observes that their blue counterparts have

" mean 0 and variance 022. Now, as in Haralick's paper, we observe that, in order

for the sloped surfaces to coincide, it follows that their heights must coincide

at point 0. The coordinates of 0 relative to 01 are seen to be (Ar/2, Ac/2),

and those of 0 relative to 04 are (-Ar/2, -Ac/2), where (Ar, Ac) represents the

position of 04 relative to 01. For the red component, the true height of the

surfaces at point 0 is given by alR Ar/2 + 1R' Ac/2 + Y1R' and a 4R (-Ar/2)
+ 4 R'(-Ac/ 2 ) + Y4R' respectively. Therefore, under the same sloped surface

S-hypothesis, we must have

(cxR' + a4R ')Ar/2 + (1R' + 84R')Ac/2 + R' -4R' = 0 (3-11)

3-4
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Once (3-11) is true, it is seen that

-1N3R = 01R' + a4R' )Ar/2 + (6IR' + 04R ' )c/2 + Y1R -4R (3-12)

is normal with mean 0 and variance

OR  = 2a 2 C(Ar/2) 2/ I I r2+(Ac/2) 2/ Z c2+1/ [ 1]. (3-13)
r c r c r c

We note also that

EE(L1R I+ 4R IR " cR ) ] = EE 1R' + 04R )(1R - 04R)] 0.

Letting

C iR [iR r+iR c + YiR' R (rc)]2  i=14, (3-14)

r c

2 2and using the results of Haralick's paper, we note that LiR2/l 2 and
24R 2 are independent chi-squared random variables, each with

S1 - 3 degrees of freedom. Note also that it makes sense for us to consider
r c

the red and blue facets individually in the transformed (prime) variables, since

the estimators CR" BR' YR" cB" BB" and YB' are statistically independent.

Therefore, one is led to consider the F statistic

F"= (N1R 2 + N2R 2 + a12N3R 2/aR 2 )/3
FR 2 (3-15)

[(elR + e4R )/(2 1 1 1- 6)]
r c

and a similar statistic FB for the blue component. If FR and FB are both

sufficiently small, we agree to accept the hypothesis that rectangles 1 and 4

are part of the same component.

Now let us adopt a general point of view. Suppose, from practical

considerations, that we decide that the "hottest part of a ship" (which might be

its engine room) is an item of critical interest as far as identification of the

ship is concerned. Let us also agree that hot corresponds to dominance in

3-5
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amplitude of the blue component over the red component. (In infrared

terminology, one might be looking at radiance in one wave band as opposed to

another.) We agree to examine closely those pixels for which gB(r,c) > T, where
T is a high threshold. Referring to Figure 3-1, let us examine rectangles 1, 2,

3, and 4 in turn. Now simply count the number of pixels ni for which 9B ; T,

where ni is the number of such elements in box i. Suppose it turns out that

only box 1 contains pixels for which the threshold criterion is valid. Then, if

the equal covariance matrix assumption is valid, we apply the analysis of the

preceding paragraph to determine whether, in turn, rectangles 1 and 4, 1 and 2,

and 1 and 3 can be considered as part of the same sloped surface. We store the

parameters for each rectangle in the process, so that we can recover them for

*i later use. If rectangles 1 and 2 are part of the same surface, but that surface

is not continuable into boxes 3 and 4, then we have located our region of

interest, namely, the union of rectangles 1 and 2, whose boundary is just the

horizontal line bisecting the big rectangle. When analyzing regions 1 and 2 to

determine whether the same facet applies, we use point P as that point for which

-[ the two facets should agree. Similarly, for boxes 1 and 3, we use point Q. Now

suppose that the sloped facet for rectangle 1 is not extendible into any of the

remaining boxes. If that is the case, we subdivide rectangle I into four boxes

and apply our threshold logic again to determine those subrectangles containing

pixels for which g > T. Let us record these rectangle numbers. Also, observe

that subrectangle of rectangle 1 containing the largest number of pixels for

which 9, > T. Test that subrectangle against the other subrectangles of box 1

to see whether its sloped facet is extendible. If so, we mark off the

appropriate subrectangles and the parameters associated with them and proceed to

examine the remaining subrectangles containing pixels for which g. ; T.

Otherwise, let us further subdivide the given subrectangle and reapply our

*procedure. Eventually, one of two situations will occur: (a) We find a subbox

*completely contained within the component of interest, together with other

* subboxes containing part of the component. (b) We arrive at a box containing

too few pixels to apply the sloped facet mode. In case (a), we simply record

the subbox of interest, together with its a, s, and y parameters and proceed to

backtrack one step up the quad-tree, looking at the remaining boxes containing

the pixels of interest. We use the maximum number criterion again when we

dissect the remaining boxes. Case (b) can arise in two circumstances: The

3-6
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first occurs when every box which could be within the component of interest

contains too few pixels. This is a signal that either our pixel structure is

too course to resolve what is happening or our threshold criterion is too

stringent or both. The second circumstance is that in which we are indeed in

the vicinity of a boundary point. In that case, we may mark the box as a

"boundary box." We then back up one step in the quad-tree and continue the

process to find the remaining boundary points. The entire scheme should yield

both the red and blue parameters for the region of interest, together with the

boundary boxes. A polygonal line can then be drawn through such boxes, and the

resulting line can be accepted as a first-order approximation to the boundary.

The logic involved in this process is flow-charted in Figure 3-2.

3-7
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Now suppose that we have prioritized the subcomponents of the target of

interest to us. Let us agree that the blue component intensity is of

interest. Scanning the target, one finds that the largest value of gB(r,c)

is T1 . One then looks for the component (or components) containing such

pixels. Physically, such components might be the hottest parts of the

target. Having found those portions of the image, we eliminate them from

consideration and focus our attention on the remaining pixels. Continuing with

the same line of reasoning, let us now find those pixels in the rest of the

figure for which gB(r,c) is again maximum, i.e., gB(r,c) = T2. Pursuing again

our quad-tree analysis, we find those subcomponents containing the pixels for

which gB(r,c) = T2. Continuing this process would obviously lead to a first-

order dissection of our rectangle into all its primitive subregions. Of course,

since gB is a noisy field, it is not necessarily the case that the components

containing those pixels for which gB is maximum are indeed those corresponding

to the hottest portions of the target. That is, the smoothed versions might

actually correspond to other subregions. If that is the case, so be it. All

that one can say is that the noisy version gives us a priori information and

that we shall hopefully learn through a posteriori analysis the underlying

nature of the components of interest. If all goes well, there will be a minor

reshuffling. Notice that there is a potential saving in this approach in that

perhaps only a certain number of subcomponents of a target may be critical to

its classification. Also, when all is done, (3-8) should serve as a weighted

measure of just how well a sloped facet model of this type represents the data.

THE SOBOLEV MODEL

Before leaving this topic, we shall introduce a new concept which might at

times prove useful in generating a sloped facet target description. The idea

will be to use the Sobolev norm as either a validation tool or possibly as a

means to obtain a better sloped facet model. We must, of course, explain what

such a norm is and how it might be helpful. First of all, let us consider the

1-dimensional case. Then the norm is given by

iIfls = +L2  (1-s)g) II 1 2 (3-16)
L L

for any continuously differentiable function f, where

3-9
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lfill2 f b f2(x)dx,

L a

0 < a 4 1, and the domain of definition of f(x) is the closed interval [a,b].

* Now a discrete version of (3-16) may be given in which one replaces th! notion

of derivative by that of divided difference and in which integration is replaced

by summation.

Refer then to Figure 3-3. Here the function f(x) is defined only at the

V

XO X2 X4 ... Xn

FIGURE 3-3. POLYGONAL LINE APPROXIMATION TO f(x) ON ORIGINAL GRID

control values x.i, 0 <i <n, and the polygonal line indicated simply connects

* all of the points (xi,f(x1)) in some systematic fashion. As drawn, the average

slope of the individual line segments might reasonably approximate that of the

line PQ. However, the variance of these slopes from the average may be

* substantial. If, on the other hand, we double the mesh size, so that we sample

* only the values of f at xO, x2, x4,..., we see that, roughly speaking, as

indicated by the dashed lines, the new set of slopes, half of the previous

number, still may have an average value close to the true slope, but now the

variance of the slopes seems substantially smaller. Therefore, a rather

* interesting validation procedure suggests itself. What happens if one decides

* to use only the values of f(x) on the coarse mesh, together with the slopes

* (divided differences) as approximations to the derivatives, the slope

3-10
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informatie eplacing half the function information, and formulate a least

squares problem using a Sobolev norm adapted to the mesh? How would the

regression line obtained compare with that procured by using all of the function

information on the original mesh?

The above is a one-dimensional version of the process in which we are

really interested, the latter being two-dimensional. In our situation we have a

two-dimensional grid of points. Suppose that one finds, by conventional means,

that a sloped facet reasonably represents the noisy data. Could one have done

better by doubling or perhaps tripling the mesh size, eliminating half or more

of the original grid points, and substituting for the red and blue intensity

values divided difference approximations to their first partial derivatives?

The new least squares problem would then involve a finite Sobolev norm. The

question to be asked is: Would the new technique yield an improvement on the

least squares fit? If so, how much of an improvement would there be?

The answers in one dimension were worked out by the author ten years

ago.15 There it was shown that one could derive estimators that were

theoretically better than the classical one. It was also shown in another

report, 16 in which a shock tube experiment was involved for fitting time of

arrival and shock peak pressure data, that such techniques could be used for

validation purposes, in that case for determining whether the fit to pressure

obtainable through differentiation of a linear fit to time of arrival data was

reasonable. We shall here adapt the work in the former report 15 to our 2-D

problem. Let us assume that, at each pixel (r,c), we have three measured

quantities, written in vector fashion as (x(r,c), xr(rc), xc(r,c))t, where xr

signifies the partial derivative of gray level in the r direction and xc

indicates the partial derivative in the column direction. Of course, e(r,c)

itself is to be the gray level at pixel (point) (r,c). In line with our

previous development, x would generally be either a red or blue intensity. One

would use a divided difference at (r,c) in the r direction to ascertain xr and,

similarly, a divided difference in the c direction to obtain xc.

There are three types of divided differences which could be used, namely,

forward differences, backward differences, and central differences. Inasmuch as

there are advantages and disadvantages to the use of the different types, we

shall present one model based on the use of forward differences and another

3-11
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predicated on utilization of central differences. The latter would be more

accurate and more straightforward except for the fact, as we shall see, that a

coarser grid is demanded. We shall also see that forward differences have the

*' disadvantage of being correlated with function values, whereas central

differences are not, provided the points used to calculate them are adequately

separated.

Suppose that the pixels are so separated that x(r,c) is independent of

x(rl,c 1 ) for (r,c) * (rl,cl). Furthermore, assume that

x(r,c) = ar + Bc + y + nl(r,c), (3-17)

where estimates of a, B, and y are to be obtained and nl(r,c) is a zero-mean

22
.. Gaussian random variable with variance a2 . We hypothesize that nl(r,c) has

variance a2 regardless of the particular point (r,c) involved. Let us treat

first the forward divided differences, and suppose that we want to form xr(r,c),

an estimate of the partial derivative in the r direction. We do this with some

care so as to insure that xr(r,c) is independent of x(rl,cl), xr(rl,cl), and

xc(rl,cI) whenever (r,c) * (rl,cl). Let us suppose that x(r,c) and

x(r + 2Ar,c) are two intensity values at adjacent grid points in a column.

* Assume that the value x(r + Ar,c) is available and is statistically independent

-- of x(r,c). Then we shall form the divided difference of x(r,c) and x(r + Ar,c)

and use that as the estimate for xr(r,c). Now we find that

-. x (r,c) = x(r + Ar,c) - x(r,c) n(r + Ar,c) n(r,c)8)

r Ar "

Two facts emerge immediately from (3-18). First, xr(r,c) is an unbiased

estimator of a. Secondly, the noise term for xr(r,c) has been derived using (3-

17), but is still Gaussian with mean 0. In addition it has variance

2a2/(Ar) 2 . Another observation that we can make is that xr(r,c) will not be

correlated with the vector (x(rl,cl), xr(rl,cl), xc(rl,cl)), since the latter's

noise terms do not appear in (3-18). Using (3-17) and (3-18), one sees that

3-12
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coy (x(r,c), x r (r~c)) =E n1 rc n( Arc)-n(c)

-E (n12(r,c)) (3-19)

-0 Ar

Furthermore, the correlation coefficient, defined, as usual, as

P(xXXr) coy (x~x r a x ax'
r

becomes

P(XxXr) = -11.(3-20)

Similarly

x~ (~c)= +nl(r,c + AC) - nl(r,c) (-1

representing the partial derivative in the column direction. We assume, as

before, that adjacent points in a row are representable by x(r,c) and

x(r,c + 2Ac). One finds that xc(r,c) is an unbiased estimator of a and that the

variance of Xc(r,c) is 2a 2/AAc)2. Analogous to (3-19) one has

coy (x(r, c), x C (r,c)) - /Ac. (32)

Of course, the correlation coefficient will be the same as in (3-20). Finally,

we want coy (xr(r,c), xc(r,c)). Invoking (3-18) and (3-21), we have

coy (x r (r,c), x c (r,c)) 2 /Ar Ac. (3-23)

3-13
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Our model equations may be represented by

x(r,c) = cr + Bc + y + nl(r,c)

xr(r,c) = a + n2 (r,c) (3-24)

x c(r,c) = B + n3(r,c),

where n2(r,c) is given in eq. (3-18) and n3 (r,c) in eq. (3-21). The covariance

. matrix for (3-24) is

o2 - 2 /Ar - 2/Ac

2 2 2 1
K - 2/Ar 2/(Ar)2  2 /ArAc

2 2 2 2

;7Tzr),& 2a /(AC)1r(-)

"4 a(Ar) L r 1 2/a

where a = Ac/Ar is the aspect ratio for the grid. The inverse matrix for

(3-25), often called the information matrix, is

aJ"r _ 2 3/a(Ar)2 I/aAr i/Ar 1

-K -1  2 l/aAr 1/a 0 (3-.26)

.1/Ar 0 a

Let us form the likelihood function L17 for our process:

3-14
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L(t,8,y,a2 ) = (2w)- 3MN/2 (det K)MN/2

exp - (n(ri,cK (3-27)

1 ,J

.(nI ri s ,c),n2 (ri , c j)n 3(ri ,c)t]

where det K is the determinant of K and is a6/a2 (Ar)4 , as follows using

(3-25). Now maximization of (3-27) is certainly possible, but the calculation

of the solution to the likelihood (normal) equations is laborious. It would be

computationally advantageous perhaps to approximate the information matrix K-1

by a diagonal matrix. It turns out that, for large Ar, the off-diagonal terms

in (3-26) may be deleted without appreciable loss. In fact, we shall show that

K'K IV1/11K 1 11 + 0 as Ar + + -, where KI-1 is the diagonal matrix diag

2 2 2 2 2(31a, (Ar)2/a2, (Ac) / 2 ) The double bars denote the norm, here taken to be

Euclidean, of the matrix. Using (3-26), we have

.lK I-KI-1 1/IKI-1 I1 = (2(a2+ 1))12 Ar/( 9 + (Ar) 4+ a 4(Ar)4 ) /2, (3-28)

from which the result follows easily. Also, det K1 = ad/3a2 (Ar)4 . Let us form

this new likelihood function, which we shall call L1 , and consider its negative

logarithm. One wants to minimize

6 2 4
-log L1 = MN (3 log 2w + log (a /3a (Ar) ))/2

(3-29)

+ .1[3n,2 (ri,cj) + (Ar) 2n22 (ri,c) + (Ac)2n32(ri,cj)]/2o2
1i,j

over (a, , y, a2). In order to do this, we would differentiate (3-29) with
.2 respect to a, 8, y and a 2in turn. Setting the four quantities thus obtained to

2zero, we would solve for a, 8, y and a We suppose that the solution exists

and is unique.

The proof that the quantities a, B, y, a thus obtained represent the

maximizing point of L1 (or, equivalently, the minimizing point of -log LI ) is

not too difficult. In fact, let us first establish the following: For any V>O,

3-15
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2 2 2 2 2 2
there exists an R > 0 such that -log L, ; V whenever a + B+ y + >a) R

Note that

-log L = MN (3 log 2w + log (a 6/3a 2(Ar) 4))/2

+ 1 [3 (x. - ari -. cj - y2 (Ar)2 xrij . 2 (3-30)

2 2 2+ (Ac)2c -8) ]/2a

* where xrij and Xcij are the measured slopes for pixel (ri,cj) in the r and c

directions, respectively, M is the number of columns, and N is the number of

rows. Also, observe that

2 2 2
-a log LI = a2O(log(a )) + g(a,oy)

(3-31)

f(a2 ) + g(alg,Y),

so that f(a) + as a2 + + - and f( ) + 0 as 2 + 0. We see that (3-31) is

the sum of two quantities, one of which is a function of a alone and the other
2

of which is a function of a, 8, and y. Furthermore, although f(a ) becomes:. 2
negative in 0 4 a 1 I, it is bounded there, i.e., there exists a positive

constant k such that If(a2 )1 I k whenever a is in LO,1]. Also, it is well-

known 18 that there is an RI > 0 such that g(a,8,y) > V + k whenever
a2+ 82 + y12 > RI-. Therefore, -a21og L 1 V for a2 4 1 and
2 2 2 2 2

a + + Y + (a) R1 . Since a2  1, - log L1  V. Now suppose that
2

a > 1, and note that there is a positive number P such that, whenever
(a2)2 ; p2, f( 2 )2 > V. In that case, - log L1 > V automatically. Finally,

2assume that 1 a • P. Note then, by reasoning similar to that given

previously, that there exists an R2 > 0 so that g(a,8,y)/a > g(a8,,Y)/P > V
2 2 2 _2 2

whenever a + 8 + y > - P. Under these conditions it likewise follows

that - log L1 0 V. If we let R : max(R 1, R2 ), we have that - log L, > V
2 2 2 2 2 2

whenever a + B + y + (aY > R . On the other hand, by continuity, for

any e > U, there exists a 6 sufficiently small and positive such that,2 2+2 + (a22  2

when a2 + 2 + Y + 2)2 ' , I-a2 log LI - g(O,U,U)1 4 C. That is, on such

a closed ball,

3-16
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g(OOO) - c -a2 log L1 4 g(O,O,O) + £ (3-32)

Assuming that g(O,O,O) > 0, one ascertains e so that g(0,0,0) -e > 0, also. Now

let 62 = (g(0,O,0) - c)/V, and set 6 = min (61,62). From (3-32)

-(-a2 log LO) (g(O,O,O) - c)/((g(O,O,0 ) - )/V) = V. (3-33)

a

From (3-33) it follows that - log L1 ) V on the closed ball

{(a',a, 2)l ,2+ 02+ y2+ (G2 )2 62}. If we now choose the compact set
C {(Q,8 2)162 4 a -+ ( )2 R }, where op= (,8,y,2)eC, it is

clear that i is the minimizing point. Remembering that ri = cj = 0, the
opt

(unique) solution is found to be

= (3 . rix i + (Ar)2 x Xrij)/M( 3 . ri + (Ar)2 N) (3-34a)

A 2 2
8 = (3 cjx. + (Ac) X ci)/N(3 Z cj2 + (Ac) M) (3-34b)

j ij j

y . xi/MN (3-34c)
• 1

2 2 2 2
a :{ .. 3 (xij - ri-Oc j -y) + (Ar)j(. )

2 2 (3-34d)

+ (Ac) (x - B) }/3MN,

where xi  xij and x x... Here , 8, and are seen to be unbiasedj i J • lJ-

estimators of , 8, and y, respectively.

We next would like to compute the covariance matrix for a, 8, and y. This

is a straightforward exercise, using the fundamental distributive property

cov (X + Y, Z) = cov (X,Z) + coy (Y,Z), where X, Y, and Z are any three random

variables and cov means covariance. Again, using the covariance matrix K and

the fact that ri = cj = 0, one sees that

var ( 2) = a2 (9 ri2+ 2N(Ar) 2)/M (3 ri 2+ (Ar)2N)2  (3-35a)

var (8) = a2 (9 c.2+ 2M(Ac)2 )/N (3 .cj2+ (Ac)2M)2  (3-35b)

3-17
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var (y) = 2/MN (3-35c)

=2 2 2 2 2cov (,B) = aAr Ac/(3 . ri + (Ar) N) (3 c. + (Ac) M) (3-3bd)

coy (0,y) = - 2Ar/M (3 . r 2+ (Ar)2N) (3-3be)
"w 1

cov (6,y) = - 2Ac/N (3 . c 2+ (Ac) 2M). (3-3bf)

Note that all of the variances and covariances except for var (y) involve

Ar or Ac or both Ar and Ac. Note also that making Ar and Ac larger has the

effect of decreasing the values of these parameters. On the other hand,

reducing the number of points decreases M and N and the sums of the ri2 and

cj 2. This sets up tradeoffs which we shall consider in more detail later.

Let us note that

A A *2 A 2AA Avar (ar+ Sc + y) =r var C + c. var B + var y + ric.cov (c,)

(3-36)
+ ricov (a,y) + cjcov (B,y)

for every pair (ij). Therefore, one can use (3-35 a-f) in order to determine

the variance of the estimated facet from the true facet at any point (ri,cj).

Now let us go back and consider the real likelihood function L, as given by

(3-27). Forming - log L, as we did before, and solving the normal equations,

one finds that

[ . (3ri+ Ar)xi+ &r A (ri+ Ar)x rij + aar rx cij - ArMNy]
1." 2 2 (3-37a)

M [3 . ri + N (Ar) 2 ]

1

P (3c .+ aAr)x ij Ar c .c ri.+ aAr . (c .+ Ar)x cij - aAryMN]
2,j i, 2 2 (3-37b)

N [3 . c. + a M(Ar) 2 ]

3-18
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[3 xij Ar.ir .. +a x .. ) - ArMN (a + ai)]
i -,j lj (3-37c)

where a Ac/Ar, as before. As opposed to (3-34c), (3-37c) contains the

influence of the r and c partial derivatives of xij. Note that a and 8 depend

solely on y. Indeed, (3-37a) and (3-37b) may be substituted into (3-37c), and

one obtains, after a laborious calculation,

{3~ x -- +(r2 3c2+(..

( xi~jOr32 + (Ar) ) (3c. + (Ac)2 + Ari I ( x r i j - ax r i j )

(3r i 2 + (Ar) 2 )(3cj7+ (Ac) 2)

3c2 2
-y -Ar(3c + (Ac) 2 ) L Z (3r.+ Ar) x. .+ Ar I (r.+ Ar) xi~ j l J i ,J

+ AcI i x cij
1,3

2
- Ar(3ri + (Ar) 2 ) [a I (3c.+ Ac)x ij+ .c i.Xri jij J icj

+ aAc . (cj+ Ar) x cij] (3-38)
1 ,J

2 2 22 2 2 2 2
(Ac) (Ar) +6 (Ar) cj + 27 ri  c. +6 ri (Ac)

3-19
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S ci 2/M.

where ri  - ri /N and c -. We shall not pursue any further details

concerning , 8, and y.

Let us now consider the case where central differences are employed, i.e.,

instead of (3-18), one uses

Xr(r,c) _ x(r+Ar,c) - x(r-Ar,c) nl(r+Ar,c) - nl(r-Ar,c)

, 2Ar +  2Ar . (3-39)

Then one sees immediately that, provided Ar is so large that the noise sources

are uncorrelated, x(r,c) and xr(r,c) are uncorrelated. Furthermore, we can

arrange the grid, in a fashion similiar to that for the one-sided differences,

so that xr(r,c) is not correlated with x(rl,cl), xr(rl,cl), and xc(rl,c) either

when (r,c) * (rl,cl). Clearly xr(r,c) has mean and variance a 2MAO
Likewise one has

S-= + nl(r,c + Ac) - nl(r,c - Ac)
Xc (r,c) = 8 + 2Ac '(3-40)

*-. from which one sees that the mean of Xc(r,c) is 8 and that the variance is

a2/2(Ac)2 . Adjacent points in a row might be represented by x(r,c) and

* x(r,c + 4Ac) in this model and adjacent points in a column by x(r,c) and

x(r + 4Ar,c). Note that this imposes a certain coarseness on the mesh that was

* not present in the formal difference model. However, we shall see that the

* central difference model has the advantage of simplicity. The basic model

equations are the same as in (3-24). As opposed to (3-25), however, we have a

much simpler covariance matrix, namely,

0 2 (Ar)2

K = 2 Mar) 2 . (3-41)
L2/2(Ac)2  2(ar) 1/a2 J

The information matrix K"1 is

3-20
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1
K-1 2 r 2. (3-42)

a 2

0 ~ a2

The negative logarithm of the likelihood function for our process is

6 2 4
- log L = MN (3log 2w + log (a /4a (Ar) ))/2

(3-43)

+ j.[n1 2(ri,c 
+ 2(ar)2n2 ,cj, + 2(Ac) 2n3 2(ric

)1/2a2

i1 ,j

2

to be minimized over (a, s, 
y, 2

Solving the normal equations, we have

= x(ri,c 3 ) + 2(Ar)
2  Z.xr(ri cj)iir i, - (3-44a)

M ( ) r 2 + 2N(Ar) )

cj x(ri,c j ) + 2(Ac)
2  x c (r c)

iJ, ij (3-44b)

N ( cjZ + 2M(Ac) )

Y: x(rilc)IN (3-4 4c)

*~~ )/MN.(34)
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One notes that a, 8, and y are now uncorrelated. Furthermore, the variances of

a, 8, and y are, respectively,

var () . 2+ 2(Ar)2N)/M ( r r 2 + 2N(Ar)2 )2 (3-45a)

var (6) = 2  Z cj2 + 2(Ac) 2M)/N ( . cj2 + 2M(Ac)2 ) 2 (3-4bb)
J

var (y) = a2/MN (3-4bc)

The rest of the process parallels that of the earlier calculations, so that we

need not discuss that matter further.

Now let us consider the circumstances in which one might use a Sobolev

version of the sloped facet model. For illustrative purposes, we examine the

forward difference formulation. One might ask the following question: Since
making the grid coarser could improve our slope estimates, what happens when we

double (or perhaps triple) the grid size, eliminating half (or two thirds) of

the gray level information from consideration, but, at the same time, replacing

that knowledge with divided difference estimates for the row and column partial

derivatives? First of all, note that a least squares fit to intensity data

alone corresponds to setting Ar and Ac both to zero in (3-3ba-b). This gives

var ( a) = a2/M . ri 2 (3-46a)
1

var () = a2/N cj2 . (3-46b)

Next let us see what happens when we decide to eliminate half the grid

points. For purposes of illustration, suppose that both M and N are odd. Then,

for example, referring to Figure 3-4, rows might be indexed from top to bottom

as shown, where we choose to eliminate from consideration rows r2 , r4 , and rb.

For columns the analysis is similar, proceeding from left to right. In general

there will be (N-1)/2 rows and (M-1)/2 columns remaining, and the new grid

3-22
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spacing in the row direction will be 2Ar, where Ar is the original spacing.

Similarly, there is a new column spacing 2Ac, where Ac is the original grid

size. It is here that one might use the original grid spacings Ar and Ac to

procure divided differences, in line with our previous development. According

to (3-3ba-f), we obtain a covariance matrix for the estimates a, ;, and y, but
M-1 N-ibased on ( T-) (-T-) points. The relevant quantities can be calculated from

(3-3ba-f) after the appropriate substitutions are made. We note that our

symmetry conditions I r = c = 0 are still valid after the modification process

just described, so tRat the theory is still applicable. It is indeed

conceivable that a game could be played to ascertain just how many points could

be deleted in order to secure a meaningful reduction in variance. The tradeoffs

mentioned before with regard to increase in grid size, corresponding to

improvement in slope characteristics, but at the same time corresponding to

degradation due to a decrease in number of grid points, come into interesting

interplay. Note, from (3-25), that doubling of grid size, leading to a doubling

of mesh size for divided difference considerations, reduces variances by a

factor of four.

:0 C.

* 0 0 0 0 a 0 0

. - 4

FIGURE 3-4. TESTING THE SOBOLEV FACET MODEL
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If one wants to apply Sobolev modeling in a multispectral framework, some

preprocessing of information is generally required. For instance, it is quite

likely that red and blue intensities, for the same pixel, are correlated. Now

suppose that we want to use a linear facet model description for YR(r,c) and

gB(r,c), where

gR(r ' c) = oRr + aRr + + nlR(r'c)

(3-47)
gB(r ' c) = a r + 0Br + B+n(r'c)-

Having an estimate for the covariance matrix C of the noise vector (nlR,nlB)t,

we know that there exists a 2 by 2 orthogonal matrix P which converts C to a

diagonal form, i.e.,

PCP t = D. (3-48)

Therefore, applying P to (3-47), we have

gR (r'c)) p gR ( r c))

(9 (r,c = (r c)

B\ 19B :BJ \
aR OR Y R) (r) (nlR(r'c))

=P aB CB +B nIB(r c) (3-49)

(a B 8BB YB' 1 nlB (r'c) '

with

(nR: ( r c )  nRr) t

coy (r,c) : P cov kn lB(rc)) = D, (3-bO)

3-24
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so that, in the transformed version, the covariance matrix (and hence the

information matrix) is diagonal. Now it is feasible to apply the Sobolev norm
A A A A AA

to determine estimates aR 1 ' O YR' OB' OB ' and YB ' There will be a b by 6

covariance matrix for these quantities expressible as a direct sum of two 3 by 3

covariance matrices, since red and blue information are decoupled from each

other. Once these estimates have been determined in primed coordinates,

premultiplication of (3-49) by pt gets one back to the original gray level

context, and the variance-covariance properties in the unprimed frame are easily
obtained through linear combinations evolving from

.. t R R YR.3-1

\aB OB YB

For example, if

pt =(P11 P12 ) (3-b2)
tP2 1  P2then

a R P11R + P12LB , (3-b3)

so that

- 2 ( ., 2 A
var(a R) = pl var R') + R 'Pp2cov(aR1aB ) + P12 var( B). (3-54)

It must be realized that nothing dictates that we must use divided

difference approximations for derivatives. In fact, as was done in one of the
lb

author's reports , we may use any estimates that we have available in the

context of the physical situation.

3-25
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We conclude this chapter by remarking that what we now have is a first

order model for target description in the sense that the mesh is assumed so

coarse that we can hypothesize independence of noise from one pixel element to

the next and in the sense that no distinction has been made as to the kind of

noise present, i.e., instrument noise and process noise (cloud effects, spurious

reflections off targets, etc.) have not been distinguished. The separation of

such noise sources leads to the conception of Kalman filtering (and other kinds

of filtering as well). The next chapter will be devoted to deriving two-

dimensional filters in the context of multispectral analysis and to interfacing

the sloped facet logic and these filter models.

3-26
......................... . .
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CHAPTER 4

TWO-DIMENSIONAL FILTERING APPLIED TO COLOR IMAGING

THE KALMAN FILTER

Before embarking on our discussion of the two-dimensional Kalman Filter,

let us again adopt a philosophical point of view. Up to this point, we have

used the concept of the quad-tree, together with sloped facet modeling and F

tests of significance, in order to ascertain components of interest. We have

observed that the boundaries of the components flow naturally out of this

procedure, there being no need even to make use of edge detection operators

based on gradient or gradient-like methods. However, we also noted that

inherent in the methodology was the assumption of independence of noise between

pixels. This assumption seems to imply a coarse mesh, so that the correlation

between points can be neglected. We shall see that a Kalman filter is based on
19an autoregressive process; , so that some kind of Markov hypothesis is at

work. Therefore, one is Pble to refine the mesh and take account, in a

systematic way, of the noise dependencies thus engendered. Furthermore, we

shall be able to separate out the effects of noise entering the process itself

from the instrument, or observation, noise. Our idea will be to use the sloped

facet model results in two ways: (1) In order to derive an a priori covariance

matrix for the state vector so as to implement locally the two-dimensional

Kalman filter; (2) in order to generate initial geometrical information about

the boundaries of components of interest. Of course, the sloped facet model

itself has another virtue: Inasmuch as it provides a first-order description of

an image, that description might be good enough. On the other hand, if one is

interested in higher levels of detail, where one needs to employ a fine mesh,

the Kalman filter should provide an improvement.

The Kalman filter which we now introduce is based on the work of Woods 9

and Kaufman, Woods, Dravida, and Tekalp 8 . It will, however, be generalized to

incorporate the aspects of the color imaging procedure. First of all, one

should understand the meaning of the state vector as given by Woods. He defines

it as the minimum amount of information about past and present estimates needed

4-1
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to determine an optimal causal estimate of future response given future noisy

observations. Generally speaking, the dynamic model for this case is given by

s(m) = Fs(m-1) + Gu(m)
(4-1)

r(m) : Hs(m) + v(mi),

where s is the state vector, r is the observation vector, v is the observation

noise vector, and u is the process noise vector.

Woods points out that the concept of state vector as given in the preceding

paragraph will unfortunately generally lead to a large amount of computation

time in situations where the number of pixels in a row, N, is quite a bit larger

than the order of the support M of the filter. We shall now define more

precisely the state vector and the support M. Underlying the model is the

concept of a scalar autoregressive process given by

s(m,n) = c(k,t) s(m-k,n-t) + w(m,n), (4-Z)
n(m-k,n-£e)cRM(m,n)

- where

RM(m,n) L(m-k,n-L) (1 4 k 4 M, 0 < z < M) (4-3)

U(- M 4 k 0, 1 < M)].

The region RM(m,n) is indicated by the dots in Figure 4-1. Note that

4-2
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m SSM

• •-"R M

(ren)

FIGURE 4-1. SUPPORT REGIONS FOR STATE ANL) PSEUDOSTATE VECTORS

c(k,,), the coupling coefficient between s(m,n) and s(m-k,n-X), depends only on

the relative positions of pixels (m,n) and (m-k,n-t). Also, it is assumed that

w(m,n) is a zero mean uncorrelated Gaussian two-dimensional field. The state

vector is therefore given by

s(m,n) = [s(m,n), s(m-1,n)...,s(1,n); s(N,n-1),...,s(1,n-1);

(4-4)
] ... ;s(N,n-M),...,s(m-M,n-M)] t .

Note that (4-4) contains all relevant information from the past needed to

calculate estimates at (m+l,n),...,(N,n),(1,n+l),(2,n+1),...,(N,n+1),..., and

thus, by definition, is the state vector. Observe, also, that carrying along a

certain amount of information as a vector in this way, at the same time, allows

us to use the Kalman filter automatically to do a certain amount of smoothing.

Another way is, of course, to run a scalar Kalman filter forward and then

backward.

4-3
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Woods introduces the following pseudo-state vector corresponding to a

scalar line by line scan:

s21(m,n) = [s(m,n),...,s(m-M,n); s(m+M,n-1,...,s(m-M,n-1);

(4-5)
. .... ; s (m+M, n-M),..• , s(m-M,n-M) ].

In his updating procedure, he chooses only to calculate _(m,n) at each step

rather than s(m,n).

Up to this point, we have merely reviewed the work of Woods and his

colleagues. In order to adapt their procedures to image modeling, several

points should be made: (1) .In view of what has transpired in earlier chapters,

we see that we may not need to run the Kalman filter over the entire image. It

may very well be sufficient to localize it to a subrectangle of interest

containing a critical component. (2) If the subrectangle containing our

component is "small", it may be unnecessary to resort to the Reduced Update

Kalman Filter of Woods. In other words, use of the state vector s(m,n) instead

of s(m,n) in the update procedure may not entail that much more work. (3) The

sloped facet model should allow us to build a reasonable a priori covariance

matrix for our state vector.

In view of the above remarks, we shall not emphasize the Reduced Update

Kalman Filter in what follows, but we shall review how one estimates the

coefficients c(k,l) and the process noise variance Qw, the latter of which is

now generally assumed to vary from point to point. Also, it should be mentioned

that the state vector in our case generally consists, as before, of red and blue

normalized color components, together possibly with estimates of the first-order

partial derivatives. These are, of course, recorded throughout the support

region, as reflected in (4-4).

If we are using a primary color representation, possibly together with the

first partial derivatives, we must employ a vector analogue of (4-2). For

example, one might have

4-4
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gR (mn) = R (k,1 )gR(m-k'n'.t) + wR(mn)(M -k'n-t&)CR M(m'n) (4-6)

9gB(mn) = cB(k't )gB(m-kn-f) + wB(mn)'
(m-k,n-t)cR M(mn)

where one must estimate the coefficients cR(kL), cB(k,f), together with the

noise covariance matrix Qw for the vector (wR, wB)t. We would assume that the

vector (wR, wB)t is uncorrelated between pixels, but that wR and wB might be

correlated at the same pixel. If one has first-order partials for gR and gB to

be considered, then there would be four more relations analogous to those in

(4-6) to be invoked. One would then have a six by six covariance matrix Qw" As
9in Woods, one can express the vector s(m,n) as (sit(mn, s2t(m,n))t, with E

given by

aa(m,n) = R (m,n), gB (m,n), 9R (m-1,n), gB(m-l,n), .,,,

i R(mM,n), gg(mM,n); gR(m+M,n-l), gB(m+M,n-l)o

..0 ""9R (m-M,n-1), gB(m-M,n-1); .... (4-7)

- gR(m +M ,n -M ) ,  gB(m +M ,n M ),  - ", gR (m-M,n-M),

:,° '" gB (m-M, n-M) ]t.

The vector E(m,n) is then just the remaining part of the state vector s(m,n),

including both red and blue components. The state dynamical model now becomes

s(m,n) = C s(m-l,n) + w(m,n), (4-8)

where C is the system propagation matrix determined by (cR(k,f), cB(k,t)} and by

the ordering of the state vector s(m,n). The process noise vector is given by

4-5
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w(m,n) = (wR(m,n), wB(m,n), O,,)t.  (4-9)

. There is an observation vector equation

r(m,n) = Hs(m,n) + v(m,n), (4-10)

t 1 0 0where r(m,n) = (rR(m,n), rB(m,n) H (0 1 ..... 0)

-" and v(m,n) = (vR(m,n), vB(m,n))t . Now suppose that one has determined, using

the quad-tree analysis and sloped facet modeling, a preliminary description of a

certain component and its neighborhood in terms of the facet description, as

- indicated in Figure 4-2. Starting at the upper left-hand corner of the

rectangle, one determines, first of all, the facet corresponding to the first

pixel. By a facet corresponding to a pixel, we shall mean the following: We

identify the

FIRST PIXEL I1,1)

CRITICAL COMPONENT

FI6URE 4-2. LOCALIZING A CRITICAL COMPONENT FOR KALMAN FILTERING STUDY
facet by looking at the center of the pixel and the particular facet to which

that center pertains. Then the covariance matrix for the first pixel is
ascertained simply by computing the sample covariance matrix over all pixels in

the domain of that facet (or possibly in some prescribed window about that

pixel). For example,

4-6
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var (9 1))= (gR(i,j) - Rri - BRC - YR)I/N(Fl), (4-11)
(1,j)eD(F1 )

where D(FI ) is the domain of facet F1 corresponding to pixel (1,1) and N(F1 ) is

the number of pixels in the domain of that facet. Also,

coy (gR(l-l). g90l1l)) (901j~) - ~Rr i - ORC j - YR) (4-12)
(i ,j)eD(F1)

(9 -j) Bri -BBCj - yB)/N(Fl)-

Finally, var(gB(1,1)) is just (4.11) with B replacing R as a subscript. We

proceed to march across the first row, computing the same type of information,

remembering that, under first order modeling, gray levels are assumed

independent from pixel to pixel. In any event, at this level, let us ignore

such interpixel correlations. We shall finally procure a covariance matrix

P(m,n) for some pixel (m,n) which we shall accept as an initial covariance

matrix to start the vector processor. It will be expressed as a direct sum of

two by two matrices.

Having thus described how sloped facet modeling might be useful in starting

the Kalman filtering model, let us proceed to show how one estimates the

coefficients cR(k4,), c (k,tE), and the noise covariance matrix Qw" First of

all, let us assume, as it is customary to do, that one knows the characteristics

of his measuring apparatus, so that he can establish the covariance matrix for

the measurement noise, namely,

a2 a
vR vR

2 v
(4-13)Q- vRB avB

where avR is the measurement variance for the red component, avRB is the

measurement covariance for red and blue (which may be zero, for example), andv 2av is the measurement variance for the blue component. Following the

VB 8
development in Kaufman's paper , it turns out that the generalization to our

situation is straightforward. Let us introduce the matrix J given by

4-7
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J ( R(ln) R t \ R (1)(m 1
"J"m.n. = E t r(1)(m. n

B j BB ((m1nn)(4-14)

~(r t(m~n), r t(mn)) (E (1) nt, r(1) (m-l~n)t)(R 0

with the following elucidation of notation: rR(m,n) and rB(m,n) are simply the

measured intensities in the red component and blue component at pixel (m,n),

respectively. The column vectors of red and blue coupling coefficients area

and.cc , as given in equations (4-6). Note that they are defined over the region

RM(m,n), as illustrated in Figure 4-1. The vectors rR(1)(m-1,n) and rB(1)(m-

1,n) are pseudovectors given by

• .LR( 1)(m-1,n) = [rR(m-l,n),...,rR(m-M-l,n);rR(m+M-l,n-l),
.. rR (w-M-1 ,n-1 ) ;... ; rR(m-l-1,n-M),

..., rR(m-M-1,n-M)]t

(4-15)
(1)(m-l,n)= [rB(m-l,n),...,rB(m-M-l,n);rB(m+M-l,n-)

..., rB(m-M-l,n-1);... ;rB(m+M-l,n-M),
.. ~.*., rB (m-M-i, n-M } t-

Now we also know that

rR(m,n) = gR(m,n) + vR(m,n)

(4-16)

rB(m,n) = gB(m,n) + vB(m,n)

and that

%'

". 4-8
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=.qR(1)(m-1,n) + yR(1)(m-l,n)

(4-17)

_B(1)(m-l,n) = q (I)(m-1,n) + v_(1 (m-l,n),

where SR(1 )(m-l,n) and Z(1)(m-l,n) are obtained from (4-15) upon replacing r by

g. Likewise the noise vectors yR( 1)(m-1,n) and y(1)(m-l,n) are found by

substituting v for r in (4-Ib). In (4-16), vR(m,n) and vB(m,n) represent the

measurement noise at (m,n) in the red and blue components, respectively, and

gR(m,n) and gB(m,n) are given by (4-b). Substitution of relations (4-16) and

(4-17) into (4-14) leads to the fact that

where =t~+Qv+(4-18)

J \ t vU) V,

where v has the block form( 2 I aRBI
A vR

(0vRBI 2
lyR

and I is an identity matrix of appropriate size. This matrix is, of course,

diagonal when a = 0. Once we have estimates for cR,. -, and J, we can solve

(4-18) to obtain Ow . Following the development in Kaufman's paper, estimation

of J, given -E and .SB, is straightforward. One simply uses a window around

pixel (m,n) and computes sample expected values as approximations to true

expected values in (4-14).

Let us next discuss the estimation of and c. In order to do imbiased
2U

image parameter identification, we shall employ observation correlations

Substituting (4-1b) and (4-17) into (4-b), we find, in matrix notation, that

S.: 4-9
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(rR(m'n) I-t 0 R1 )(m-l,n) _£ t oVAR(l)(m-I,n)

r rB(m,n _cB r (1)(m-l,nV 0.~ (1)(m-l,n

(4-19)

:w WR (m~n) (vR (m, n)%

SWB (m.n) B (m,n "

Premultiplying (4-19) by the vector (rR(m-k,n-.), rB(m-k,n-L)), i.e., taking an

inner product, we find

rR (m-k,n-t) rR (m,n) + rB (m-k,n-t) rB(m,n)

: rR(m-k,n-t) c t _R (1)(m-1,n) + rB(m-k,n-t) .Ct LB ( ) (m-1,n)

(4-20)

rR(m-k,n-L) 4Rt 4R(1)(m-1,n) - rB(m-k,n-t ) 4 
t LB(1)(m-1,n)

+ rR (m-k,n-L) wR(fm,n) + rB(m-k,n-t) wB(Im,n)

+ rR(m-k,n-t) vR(m,n) + rB(m-k,n-t) vB(mn)

Taking expectations of both sides of (4-20) and choosing k and 1 sufficiently

large and positive, one finds that

E [rR(m-k,n-x) rR(m,n)] + E [rB(m-k,n-t) rB(m,n)]

Rt E[_rR(1)(m-l,n) rR(m-k,n-p,)] (4-21)

+ Bt E [rB(1)(m-1,n) rB(m-kn-t)].

Then one can obtain estimates for-jR and-SB, namely, SR and E, by posing a

least squares problem in which (4-21) is used. This completes our discussion of

the Kalman filtering methodology and of its interconnections with the sloped

facet model.

4-10
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NONLINEAR FILTERING

Linear autoregressive models, together with linear measurement

relationships, imply utilization of a linear Kalman filter for smoothing

purposes. On the other hand, nonlinear autoregressive models will implicate

nonlinear filtering techniques (or perhaps extended Kalman filter algorithms).

For example, one might have

gR(m,n) = PR[(gR(m-kn-L)1] + wR(m,n)

(4-22)

gB(mn) = PB[{gB(m-k,n-t)}] + wB(m,n),

* where PR and PB are red and blue polynomials, respectively. There may also be

some more general functional relationship among the intensities. It will be

understood, as before, that (m-k,n-L) c RM(m,n).

We shall now introduce a completely nonlinear filtering algorithm. It is

based on Bayes' theorem and goes as follows: Let us suppose that, at pixel

(m,n), one has the state vector s(m,n) given in the manner heretofore prescribed

with alternating red and blue components. Let Pb(S_(m,n)) be the probability

density for s(m,n) before updating (i.e., before invoking the measurement at

(m,n)). Assume a measurement model of the form

rR(mn) = hR(9R(mn)) + vR(m'n)
(4-23)

rB (m,n) = hB(gB(mn)) + v(m,n),

where hR and hB may be nonlinear functions. Let r(m,n) (rR(m,n), rB(mn))t .

We shall assume, as before, that (vR,VB)t is a zero-mean Gaussian vector with

covariance matrix Q.. Suppose, for simplicity, that Pb is also a Gaussian

density. Then the probability density Pa (s(m'n)fr(mn))' namely, the

probability of the state vector, given the most recent measurement, is just
.

Pa(i(m,n)Jr(m,n)) = p(r(m,n)IL(m,n)) Pb(S(m,n))/p(r(m,n)). (4-24)

4-11
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From (4-23),

N (vR" VB) v1VB/vJ

p(r(mn)Js(mn)) - 1 e . (4-25)2'IQvI

Also, if Pb is Gaussian, we have

-'(n =- . (s(m,n) - 9(m,n))tKl(s(mn) - 9(m,n))

Pb (1(mn)) (2-)(NM+M+I)/
2
1 K1  

(4-26)

where K is the covariance matrix and s(m,n) is the expected value of s(m,n)

'. before updating at (m,n), Finally, p(r(m,n)) is just the marginal density

obtained by integrating the numerator of (4-24) with respect to the state vector

s(m,n). Note that vR and vB in (4-25) are to be replaced by the differences

,. rR(m,n) - hR(gR(m,n)) and rB(m,n) - hB(gB(m,n)), respectively.

Now that we have pa(g(m,n)Ir(mn)), how do we advance the process? The

clue is to use (4-22) with m replaced by m+1 if we are not at the end of a row

and with n replaced by n+1 and m replaced by 1 otherwise. We shall illustrate

the process when we are not at the end of a row. In that case, one might set up

the system of relations

4-12
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gR(m+l,n) = P Rt(gR (m+l-k,n-t)}] + WR(m+1,n)

* g(m+l,n) = P B[{gB (m+l-k,n-,t))] + wB(m+l,n)

gR(m,n) = gR(m,n)

- gB(m,n) = gB(m~n)

gR(l~n) = gR(l~n)

* G~(,n) = gB(l~n) (4-27)

- gB(N,n-1) = gB(N,n-1)

* gR(l,n-1) = gR(l,n-l)

* gB(l~n-l) = g8(l,n-1)

gR(N,n-M) = gR(N,n-M)

* gB(N,n-M) = gB(N,n-M)

gR(m+1-M,n-M) 9Rg(m+1-M,n-M)

gB(m+1-M,n-M) -Bm'Ml-)

representing a transformation from the set {w R(m+1,n), w B(m+l,n), !R (m,n) s B}mn
t*to the set {gR (m+l,n), 9,(m+l~n), R (m,n) s ~B(m,n) }, where

(4-28)

* andaB~(m,n)t is obtained upon replacing R by B in (4-28). The Jacobian of the

* system (4-27) is just unity. Therefore, the probability density function for

the state vector (aR(m,n)t, .1.j(n,n)t, wR(m+l,n), wB(m+l,n))t, with wR(m+l,n) and

wB(m+l,n) replaced by gR(m+l,n) - P R[{gR (m+l-k,n-t)}i and gB(m+l,n) -

P B[{9B (m+l-k,n-t)}], respectively, will furnish the density at the next point

before the measurement update. If (4-24) is then applied with m+1 in place of
* m, the process will have been successfully advanced. Of course, as the process

moves along, the expected state and covariance matrix structure can be computed

4-13
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using multiple quadrature methods. For example,

E(s(ij)) = f f f ••f s(i,j)p (S(msn)jr(mn))ds(m,n) (4-29)

where s(i,j) is a component of the vector s_(m,n). Also,

- E(s(ij))s(il,j) =f f ... f s(ij)s(iljl)Pa(S (m,n) r(m,n))ds(m,n),(4-30)

-i where s(ij) and s(i1,jI ) are both elements of s(m,n). A simplified version of

--" this general process is obtainable by approximating the density of (4-24) by a

Gaussian density after computing relations (4-29) and (4-30). A variety of

.. Monte Carlo integration methods may be invoked to perform the integrations in

" (4-28) and (4-29). Of course, the parameters of the model (4-22), i.e.,

"° coefficients like the cjk's in the linear model and the process noise covariance

matrix, would have to be obtained in some fashion, perhaps analogously to the

manner in which they were secured in the linear version. This completes our

discussion of filtering methodology.

.4.

4-1
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CHAPTER 5

IMAGE BOUNDARY ESTIMATION

Having introduced methodology for smoothing the image, we still have ahead

of us the tasks of properly segmenting the target and of identifying the target

based on our understanding of the types of components thus obtained and of their

positions relative to one another. Of course, in our discussion in Chapter 3,

we observed that a first order segmentation of the target would fall out of a

region analysis as a natural by-product. In the present chapter, we shall show

how geometrical information gained from this first order approach can be input

to a more sophisticated procedure for estimating the boundary which makes use of

the output of the 2D Kalman filter.

We shall invoke the methodology due to Nahi and Jahanshahi 7. Their theory

is build around the idea of using a replacement process 21 in order to

distinguish an object from its background. In their work, a brightness function

b(m,n) was defined and conceived of as a combination of an object brightness

function bo(m,n) and a background brightness function bb(m,n) as follows:

b(mn) = y(mn)boR(m,n) + [l-y(m,n)]bbR(mn), (-i)

where y(m,n) = I or 0 depending upon whether or not the pixel (m,n) is

considered to be a point of the object or a point of the background. Therefore,

the real game was that of determining the statistical properties of y and using

them to advantage for object recognition purposes.

Since our model is to be based on the idea of using color imaging, let us

introduce the following modification of (5-1):

bR(mn) = y(m,n)boR(m,n) + [l-y(m,n)bbR(mn)
~(5-2)

bB(m,n) = y(mn)boB(mn) + [l-y(m,n)]bbB(mn),

where the task, as before, will be that of using the statistical properties

of y in order to determine whether or not (m,n) is a point of the object. Again

5-1
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y(m,n) = 1 when (m,n) lies in the object, and y(m,n) = 0 when (m,n) is outside

the object. In addition, background likewise generally has color

characteristics. Therefore, we should observe some fundamental level of red and

blue in the background as well.

As was done in the Kalman filtering analysis, it is convenient for

processing purposes to think in terms of row by row (or perhaps column by

column) scanning. In the Nahi-Jahanshahi paper, it was assumed that the object

whose boundary one would like to ascertain is horizontally (or possibly

vertically) convex. An object ECR 2 is said to be horizontally convex if, for
()= 1 1 () 2, 2 1 2 1= 2, (1) +-a (2)xM (xI 'x2 )cE,xM= (xI ,x2 )eE, with x, * x, and x2 = x2 ,ax1+(1-a)x

cE, U 4 a 4 1. An example of a horizontally convex object is given in Figure

5-1. However, this hypothesis may very well be over-restrictive. For example, a

FIGURE 5-1. A HORIZONTALLY CONVEX OBJECT

character like the letter N shown in Figure 5-2 is neither horizontally nor

vertically convex. We would like to be able to treat such objects in the

* present context. Also, objects with holes should be treatable. Therefore, we

shall provide a generalization of the Nahi-Jahanshahi theory in this regard.

5-2
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FIGURE 5-2. A NON-HORIZONTALLY CONVEX SET

We shall assume that we have used sloped facet modeling in order to isolate

a component of interest, together with a first-order approximation to its

boundary. Suppose next that we have localized the component to a rectangle

(perhaps one in the quad-tree analysis described in Chapter 3). Our task will

be to describe the use of a vector filter processor in conjunction with a

boundary estimation scheme similar to that of Nahi and Jahanshahi in order

properly to estimate y(m,n). The replacement concept is again to be invoked,

whereby we run the Kalman or nonlinear filter processor for both the background

* and the object individually. The scanner output is, in scalar form,

sR(k) = X(k) soR(k) + [1-X(k)] sbR(k)
(5-3)

sB(k) = A(k) so (k) + [1-A(k)] sbB(k),

*where soR(k) is the object red component gray level at pixel k and sbR(k) is the

background red component at point k. Similar remarks can be made about the blue

component. We shall use a number of lines of output from the vector processor

at most equal to the order M of the filter; and, as we execute the filter,-we

5-3
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shall attempt dynamically to produce a Nahi-Jahanshahi type boundary estimation

procedure.

Now let us proceed with the details of the estimation. The statistics of

. the process X(k) are to be obtained. We assume that we have before us a first

order approximation to the boundary as given through a sloped facet approach.

The geometrical information thus provided is to be input, together with the

Kalman or nonlinear filter results, in determining a better boundary estimate.

In the Nahi-Jahanshahi formulation, the problem was to determine, for each scan

line r, a vector w = (a rr), where a r is the first boundary element

encountered by the scanner and a r the second boundary element encountered by the

scanner. This representation is, of course, somewhat restrictive, as it

incorporates the concept of horizontal convexity. Let us suppose, as an

alternative, that, based on our first order boundary description, we agree to

subdivide the rectangle containing the component of interest into a number of

horizontal sections in each of which we have a given number n of boundary

points per scan line, 1 < p < NS. Here NS is the number of sections.

* Furthermore, let us assume that the number of lines in each section p does not

exceed the order M of the autoregressive process involved. Our idea is to use

-the same type of methodology proposed in the Nahi-Jahanshahi paper, but to do so

* to better advantage by appealing to a more thorough preliminary geometrical

*. description. To establish notation, let m1p be the first scan line of section p

and m2p the last scan line. Also, lettrp = (alrp' a rp'"*n rp) represent

the vector of boundary points in, for example, a left-right scan of the rth line

* of section p. We shall run through the entire process, first of all, for

section 1. Let us be clear concerning the statistical model to be used.

Suppose that we base it on a linear autoregressive model such as that given in

(4-6). Then one has a state dynamical system afforded by (4-8) with the

measurement model (4-10). In particular, consider equation (4-4) with the pair

(m,n) replaced by (M+I,M+1). Generalizing to the colored picture representation,

one has

5-4
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* s-(M+1,M+l) = [gR(M+l,M+1), gB(M+1,M+1), gR(M,M+1). gB(M,M+1),

* *** "+. ) gB(lM+l); gR(NM), g8(N,M), ... ' g90l,M), g8011M);
(5-4)

* ***;9R(N,
1), gB(N,l), ***- 90111 ), gB(1,1)]t.

Note that id(M+l,M+1), which we define to be s(M+1,M+1) stripped of its first
2(M+1) elements, represents the state of the first M rows. Equation (4-8) with

* (m,n) replaced by (M+1,M+1) is, of course,

s(N+1,M+1) = Cs(M,M+1) + w(M+1,M+1) (5-5)

Forming a vector from the 2-vectors L(M+1,M+1), r(M,M+1), L., (1,1), we have

[1(M+1,M+1) -(Et (M+1,M+1), E t (M,M+1), ... , r t(1,1)t. (5-6)

* The measurement equation which we now invoke, is

E1(M+1,M+1) !(M+1,M+1) + v I(M+1,M+1), (5-7)

where

y1(M+1,M+1) (yt (M+1,M+1), y (MjM+]), *.0* v t (l))t- (5-8)

* We then run the model (5-5), together with (5-7), for both the background and the

* object. That is, we prepare to execute the replacement process. Let
* s+(M,M+l) be the expected state vector after the measurement update at pixel

* (M,M+1) and i_(M+1,M+l) the expected state vector at (M+1,M+1) before the
* update. Since the estimate before updating is obtained by using the transition

matrix C to propagate the state, one has ; (M+1,M+1) =C;+(M,M+1). Consider then

* the equation

El(M+1,M+1) = C'-+(M,M+1) + v2(M+1,M+l)

(5-9)

= ;(M+1,M+1) + v2(M+1,M+1).

5-5
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i'

One may check, in a straightforward manner, that y2 has mean zero. It remains to

determine the covariance matrix for y2. One has

E(y2 (M+1M+1)y2
t (M+1,M+1))=E[(r'(M+1,M+1)-i(M+1,M+1))(Er(M+1,M+1)-s(M+1,M+1))tJ

= E[(yI(M+1,M+1) + s(M+1,M+I) - i(M+1,M+1))

(vl(M+1,M+1) + s(M+1,M+1) - (M++,M+))t]

(5-10)

= E[(vI(M+I,M+I) + (M+I,M+1))

.(VI(M+I, M+I ) + _(M+IM+I))t

= Q + P_(M+I,M+1),

where s s - s .

It is seen that the term E(yI(M+1,M+I) (M+1,M+1)t) involved in (5-10) is zero,

since _(M+1,M+I) does not incorporate the measurement update at (M+I,M+1).

P_(M+1,M+I) is, by definition, the state covariance matrix at (M+1,M+I) before

updating. Now let us strip off the first 2(M+1) elements of each of the three

vectors appearing in (5.9). This leads to an equation

-ld(M+ I,M+I ) = d(M+I ,M+I ) + V2d ( M+ I , M+ I ) ,  (5-11)

where d represents the deletion. The covariance matrix for Y2d is, of course,

just the appropriate principal submatrix of (5-10). Let Q be that covariance

5'- matrix, and suppose that we find an orthogonal matrix A which diagonalizes

QV -.That is, we have- . -2d

D(j) = diag (l,2,...) = AQ AT. (5-12)
2d

5-6
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If we pre- and post-multiply by
1 1

2 2
D(X) = diag (X 1 X2 90")9

we have

- - I = DI (X)AQv AtD (). (5-13)
-2d

Thus, we may premultiply (5-11) by DI(X)A and obtain

.id (M+1,M+1) = s(M+1,M+l) + v2 d(M+1,M+1), (5-14)

where now v2 (M+1,M+1) has the identity matrix as covariance matrix.

Equation (5-14), in conjunction with the replacement concept, may be

construed in the following way: After executing the sloped facet model, suppose

that we have defined an object and its boundary to first order accuracy and have

localized the object to a rectangle. Realizing that what we want to do is to

perturb the boundary using the replacement concept, we agree to use the

covariance matrix Q above and- to apply the matrix D1 (x)A in order to
V2d

transform the state vector. We map the background and object intensities

by D1 (X)A, and we apply the replacement principle to the transformed

quantities. The important point is that the noise covariance is provided by

(5-10) as applied to a first order description of the object or background,

respectively. Such covariance may be computed without exercising the filter.

The filter itself is to be executed for both the background and the object

processes in the case where either fills the entire rectangle. The object

process is to be construed as that pertaining to the actual scene consisting of

object as influenced by background and background as influenced by object. The

background process, on the other hand, is that obtained after subtracting an

object's influence. An example is that of a ship subject to environmental

effects. Taking out the ship, one has only background information. The ship

plus its background constitutes the object process. Now there are two kinds of

boundaries with which we are concerned: external and internal. For an external

boundary, such as that serving to outline a ship, there is no problem with

employing the usual replacement process. However, once internal boundaries are

5-7
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considered, one has to modify his notion of background. In effect, if we know

the boundary of the component of interest, then we would want to extrapolate the

,gray scale values for the rest of the target across that boundary. Then our new

background would consist of the original background external to the target, the

gray scale values of the target itself minus the component, and certain

artificial values created by extrapolation into the "removed component." Now a

Kalman filter, in conjunction with a reasonable first-order description of the

boundary, can be used to "create the background." To do this, one may conceive

of the removal of the component as synonymous with the deletion of data.

Therefore, one needs to run a Kalman filter (or other filter) over the object in

*which data inside the first order boundary estimate mentioned above have infinite

(very large) measurement and process variance. This procedure will have the

desired effect of propagating the gray scale estimates into the gap created by

-the removed part. In this way one could conceivably improve on one's

* understanding of internal boundaries. In the following discussion, we shall give

the details of the boundary estimation method.

* We are now in a position to pursue the analysis further. From the above

remarks, we shall, without loss of generality, assume a model of the form

Y : S(MW) + U, (b-1)

where Y is the set of measurements of both red and blue intensities for the first

M rows, S is the state vector which starts at row ml and ends at row m2 1, there

. being M or fewer rows altogether. Now remember that the first section of the NS

. sections is characterized by the presence of nI boundary points, where

±Li denotes the vector of boundary points in the rth row of that slice.

* Generally speaking, n will be an even integer; but, when two boundary points

coalesce, a special case arises in which the number of distinct points is odd. W

* is a vector formed from w up to the number of rows in the section, and

U is the noise term whose covariance matrix is the identity matrix.

We want to be a bit more specific about the vector S(M5W), since we need to

distinguish between points within the component of interest and those outside of

it. In conformance with the notation in the Nahi-Jahanshahi paper, let

SbR(k) and SbB(k) represent the red and blue intensity, respectively, at a point

outside the component, i.e., in the background. Also, let SoR(k) and soB(k) be

5
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the analogous quantities at object (component) points. As in the above quoted

paper, let J be the number of columns of pixels. Then, for the first m11 -1 rows

(ml being thought of as random), all the s values are background quantities;

whereas, for mll4 r 4 m2 1 , one has the following row pattern:

SbR[(r-l)J+1, sR[(r-l)J+Il, ..., sbR[(r-1)J+air-l,

::i~ SbB(r-l)d+air-l]' soR[(r-l)d+ai] 1,so[(r-l)d+ai] "'"

s oR[(r-l)J+a 2r], soB[(r-l)d+a 2r), SbR[(r-l)J+c2r+l,
(5-16)

S bB[(r-l)J+ 2r+l, ...' sbR[(r-l)d+a 3rl, sbB(r-l)J+a3rl,

SoR [(r-l)d+3r ], soB[(r-lJ+3r], ... SoR (r-l)J+anl r,

S oB [(r-)J+n rl' sbR[(rl)dfn r SbBC(rl)J+an1r+I],-

s bR(rJ), sbB(r).

*.' Note that, in our formulation, m21 is generally not random. We shall attempt to

" maximize the joint probability density function p(Y Mj, W), which is just

p(Y,MW) = p(!J_,W) p(jM) p(M). (5-17)

If U is assumed to be Gaussian, we have, therefore,

p(Y,M,W) = (2 )N/2 exp {- 7 [Y - S(M,W)]'-Y - S(Mw)]

(b-18)

+ In p(WM) + In p(M)},

where N = 2Jm 21. Maximizing (b-18) with respect to M and W is equivalent to

5-9
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* max{- [Y - S JM,W))I'Y - S(,1)]_.M (5-19)

+ In p(W4) + In p(M)},

or

min {S(M,W) [S(M,W) - 2Y] - 2 In p(WIM)- 2 In p(M)}. (5-20)

Let us transform the first of the three terms within the curly brackets of (b-20)

into scalar notation. We have then

i S'[S(M.,) - 2Y]

m11-1 rJ

Kb(k)
r=1 k= r-1)J+l

m21 "(r-l)J lr - 1  (r-1)J+m2r

+ [ Kb(k) + K0 (k) (b-21)

+=M11 + r-1)J+ 1  rk )

(r-1)dnl

n r
+ Kb(k)

=(r-i)+a +1nr

where

5-10
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Kb(k) = KbR(k) + KbB(k)
(5-22)

Ko(k) = KoR(k) + KoB(k),

with

KbR(k) SbR(k) [SbR(k) - 2YR(k)]

(5-23)

KoR(k) = SoR(k) SOR(k) - 2YR(k)]

and relations similar to (b-23) for the blue components. Note that the summands

in (5-21) are all known, the unknowns being the a's and m

Now let us add to and subtract from (5-21) the following:

m2 1  (r-l)J+I2r (r-l)J+a4r
1 [ = Kb(k) + Kb(k) (5-24)

r=m 11  k=(r-i)J+a Ir k=(r-1)J+a 3 r

.. (r -i)J + n r
-. ir

+ ... + K b(k)]
k=(r-l)J+m nl 1.. , r

(b-19) is thus converted to

m2l rJ

Si'(MW,.) [S(flW) - 2Y] = I k Kb(k). . . . . r=1 k =  r-1)J+1

m 21 F(r-1)J+a 2r

rn1 Lk=( r-I)J4mlr (5-2b)

(r-1)J+a4r

k=( l Ko3 ~ k) - Kb(k)]

+ +1 [Ko(k) - Kb(k)]l,
k= r-1)J+ n1.1,r

5-11
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The first group of terms in (5-25) does not depend on ml or the ci's, so they may

be eliminated from consideration in (b-20). In other words, remembering that n,

is generally a positive, even integer and letting

nl/2 (r-l)d+c2 jr

T(w) =[K (k) - Kb(b)) ,_r j=1 k=(r-l)d+m2j l, r

one wants to consider the minimization problem

m2 1
min [-2ln p(M) - 21n p(WlM) + I T(W )]. (5-26)
M,Wr=ml

Now let us examine the nature of p(M) and p(.WJM_). First of all, p(M) is

just p(m11 ) for section 1, since m21 is preassigned. This reflects the fact that

we do not know with certainty the first row of the component. Also, in general,

let us suppose that boundary point asrp' namely, boundary point s in row r of

section p, is conditioned only on s-l,r,p and s,r-l,p' its nearest boundary

points "preceding" it in row r and r-1, respectively. It follows that

" P-WIM) =P( M21 I W21 -1) P(Y, 21- 1 h 21" 2)

• "" P(Ym11Wm1 P(wm1 '

11

where, generally,

5-12
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_ P(w IZ -I) = P(ilr'a2r , ' - ',Sn rlal,r-l1 2,r)l.., nl r-I)

1 1C r' ,r-1'n2r-1 -P(n 1,r1n2,'1 lr1

1(5-28)= ~ 01 -PC l .r~l2r llrl

P( n1-2,rkinl-3,r' 'n1-2,r-1

P(cirll,r.1).

From (5-27) one has

m21

In piM) = Z in P(Wr~ 1 ), (5-29)
r=m11

where p(lWl - P(l) " Substitution of (5-29) into (5-26) yields

m21
min {-2 In p(mll)+ I [T( r) - 2 In p(wlw_)] }  (b-30)
M,Wr=m

The reader will, of course, observe that what we have done so far is to use

the Nahi-Jahanshahi analysis in a slightly more general format. We shall

continue to follow the general outline of their modeling procedure. Therefore,

let us fix mli in (5-29) equal to that dictated by the sloped facet model

result. Then all we need do is minimize with respect to W the sum of the terms

from mll to m21 indicated in (5-30) Let us consider, first of all, the natural

logarithm of (b-28). We have

nl

in p( _l) = I in p(airPi "ir ) (b-31)i=1i- r' , - '

so that the minimization problem which we would like to consider is

m21 nl

min{ T(Wr) -2 In p(airl(i5l, r , Oi r-1)]} "  (5-32)W r=ml 11I

5-13
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The problem is that of providing a recursive, easily implementable procedure for

-(b32).

Note that

n1/2

T(w)= I (ql(a2j r) - q2("2j-l,r)), (5-33)
j=1

where

(r-1)J+2j,r

ql(=2j,r) I K(k)
k=(r-l)J+l (534)

(r-1I)~~ -,r-
q2(M~~~r K(k)

= k= r-1)J+l

and K(k) K (k) - K Now leti ad Kk)- K -Kb,(k

S h(a2j,r) : ql(a 2j,r) - 2 in P(a2j,rla2j-l,r' c2j,r-1) (5-35)

and

* o2j-l,r ) = -q2 (a2jl,r) - 2 In P(a2j l,rt2j2,r a2j-l,r1) ,  (5-36)

* where p(ci rlai_1,r, ai,r_1) is approximated by

SP(ii, is an estimate of a (5-32) then becomes.-. (O',rl i-l,r' air-1) and aj,r isa siaeo j,r .

in21  n1 2

m [h(2j,r) + g(a2j-lr)}
W r=m11  j=l (5-37)

m21  n1/2

I I [min h(ajr) + min g( ).
rmll j=1 2jr jr 2j-I r 2j-lr

5-14



NSWC TR 84-54

The minimization (5-37) can be performed recursively in a natural way. For

rwm.1 , aim is obtained by minimizing g(aI m, which is a function

of aim only. Since h(a2 ,ml ) obviously involves knowledge

of a1 ,m11 , once aimlI is determined, a2mlI can be obtained by

minimizing h( 2 ,m)11). This process is continuable, allowing us to obtain all

the minima involved in (b-37), so that (5-37) is solvable in iterative fashion.

Proceeding any further requires an understanding of the density

functions p(aj r aj-,' ajr.l). Reasonable density functions are obtainable

through our first-order understanding of the component's boundary. For example,

suppose that the sloped facet model's output is the quantity al for the

first boundary point on line mi. Assuming that we want to perturb the boundary

using the filter results on a finer grid than that used in the facet model, let

us choose a certain multiple x of coarse grid space units as our standard

deviation. That is, if a is the coarse grid spacing along a row, let xA be the

standard deviation, with 1°  the assumed mean. We shall then

Gaussian density of the form

p(a 1 x (ao- ' )2/2x2A2  (5-38)
11 12-nim 11

0In general, suppose that we have available air for every element i of any row r

ir

such fashion that new choices for ai.l, r , air, and ai+l,r will follow the

appropriate order a ilr a i a when the process is completed. Thus aappoprateordr S~l~ <  ir i+1,r

compromise is to be effected between liberty of change and disambiguity of

location of boundary points. For example, clearly two boundary points

initially yA units apart on a line would require a standard deviation of at

5-15
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most yA/6, so that their adjusted locations would not in all probability cause

a reversal of their order on the line. Let us also assume a martingale type

process, so that

E(a irlail, air 1  i,r-l' (5-39)

where E denotes the expected value operator. Then we can assume that

P r~~i a r 1 212 2A2(40

"A^ =  ZIx exp [- (air- 'ir-l)2/2Xi 2A2] (5-40)P(iir r-l r)  /-rxi A i

* where xir is chosen analogously to Xir in such fashion that a standard deviation

of X irA units leads to the proper ordering. That is, we would prefer to use

updated values for air as they become available rather than the air 0 provided by

the first order approximation. Of course, as we examine each section p, where 1<

p < NS, we may need to use information provided by the first order methodology,

especially when a large number of boundary points per line is involved

(corresponding to new branches of the boundary). Note that some of the

* difficulties inherent in the discussion of the Nahi-Jahanshahi paper are

. automatically avoided by our a priori knowledge of a reasonable boundary. Once

* we input (5-38),(5-39), and (5-40) to (5-37), we can solve (5-37) for a given

value of mi11 . A reasonable starting value for m11 would be that provided by our

first order methodology.

*Now that, for a given value of m11 , (5-37) has been solved, let us now refer

to relation (5-30). Let f(r) =  T(wr)- 21n p(Wr _l), where wr has the obvious

connotation wherein jr replaces ajr" Since f(r) is now a known quantity for

every r, consider

. m21

min E-2 in p(m11 ) + I f(r)]. (5-41)
.1 1  r=m11

.* The density p(m11 ) can be assumed to be Gaussian with mean m110 , where m110

*. is the first line of the sloped facet image. Let the standard deviation

be y1A1 where yl is some preassigned positive number and A, is the coarse grid

spacing in the column direction. For example, y1 might be taken to be 1. Then

5-16
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we have

p(m11) 1 e (m11 - m1 1 )
2/2y1

2A1
2. (5-42)P11) VZV YlAl (542

The minimization problem (5-41) can then be solved through a search procedure.

Thus we have a method for analyzing section 1. Sections 2 through NS-1 are

resolved in similar fashion, the only difference being that lines m1p and m2p for

the pth section, 2 < p < NS - 1, are known, so that the only undetermined

quantities are the a's. In general, m1p = m2,p 1 + 1, and m2p = m1,p+1-1.

Finally, for section NS, ml,NS is known, but m2,NS is random. Analogously to
(b-42), we may use our sloped facet model results to procure a density function

for m2,NS. If one desires, one may use the results thus obtained to proceed even

further. One now can construct a new background process and compare it once more

with the object process. Running through the entire operation again, perhaps

sweeping the grid in a different order, the boundary can be further refined.

After several executions of the method, that boundary corresponding to the

largest value of p(Y, M., W) could be chosen. A nonlinear filter should produce a

measurement model quite similar to (b-9); and, running background and object

nonlinear filters, we could use the estimates thus obtained as input to the

process just described. We shall not pursue this topic in any further detail.
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CHAPTER 6

TARGET IDENTIFICATION AND DESCRIPTION

GENERAL APPROACH

In some sense, the topic of target identification and description is the

most interesting of all those items discussed thus far. Much literature has been

devoted to this subject, the emphasis being placed on either a geometric or a

syntactic understanding of a preprocessed image. For the purposes of target

recognition, it seems convenient to adopt a geometric approach of some sort in

conjunction with a statistical classification strategy if one desires to

* understand certain basic target components. On the other hand, syntactic

*. descriptions can be quite useful when one wants to relate different parts of a

ship or missile. A hierarchy of understanding is possible in this manner,

allowing one, for example, to distinguish enemy from friendly ships. In this

*chapter, we shall cover both the geometric and syntactic approaches, relying, for

our purposes, on methods previously developed in the literature.

Let us begin by emphasizing the importance of multispectral, or multiband,

* analyses of a target prior to attempting to classify it. We shall illustrate the

* idea from the point of view of infrared signature processing. Imagine a

* situation, of sime practical significance, whereby a box arrives in the mail

addressed to the President of the United States. It may be that the box contains

a nice assortment of shirts and ties, but it is also possible that the box

* contains a small bomb. By merely looking at the object, one cannot ascertain its

contents, but it may well be possible to do so by making use of infrared or sonar

spectra. An analogous situation is present in target recognition problems. An

*engine room is likely to be quite a bit warmer than a passenger space, yet the

geometric shape of both compartments could be exactly the same. Therefore, a

classifier which explicityly takes into account different wave bands and which

attempts to correlate the results in these bands is much more likely to be robust

*than otherwise.

--

6-1
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Let us suppose that we have enumerated a number of generic ship components,

each deemed important in some way for recognizing the target. Suppose that there

are m of them, designated through the set of labels Li, 1 < i < m. Then the

first game which we want to play is that of using the gray level information in

order to make an initial assignment of a probability vector pj = (PjlPj2,

• ",PjmPj,m+l) to each of n target objects aj, 1 4 j < n. In this notation

Pji, 1 < i 4 m, is the probability that object aj has label Li, 1 4 i < m.

Also, Pj,m+l is the probability that aj has an "unimportant label", which we may

denote by Lm+1 . Now how can one use the gray level information obtained from

some component aj in order to procure the Pji's? We shall introduce two methods

* for doing so, the first based on knowledge of object boundary and the second

* based on gray level information.

BOUNDARY CLASSIFICATION METHODOLOGY

We shall first present a classification strategy based on the boundary, as

given by Duda and Hart12 . It is not a sophisticated approach, since one could

very well not tell the difference between two objects having the same boundary,

* but entirely different temperature profiles. However, it will be seen to have

- several useful inherent properties. In target recognition one attempts to devise

parameters for identification which are, in some sense, independent of

orientation in the field of view, position in the field of view, and range from

observer to object. Our boundary classifier will automatically have the first

*two properties, but not the third. In some sense, this is not detrimental when

one observes that it is physically impossible anyhow to build a recognition

capability totally insensitive to range. All one needs to imagine is two objects

of the same shape but of different size which, due to their respective distances

from the viewer, cause the same image to be produced. Therefore, what one really

tries to do is to make as many parameters insensitive to range as is feasible,

since, by so doing, one is bound to reduce computational effort considerably when

* one wants to recognize an unknown object.

Suppose that we have a discrete description of the boundary and that we have

*connected the points by a smooth curve (perhaps using cubic spline approximation

6-2
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methods). Let us look at the curvature k(s) of this approximate boundary, where

s is an arc length parameter, and develop it into a Fourier series:

k(s) = n Cnexp(2,rins/L), (6-1), n=_-

where L is the length of the boundary and

i; I L

cn - k(s) exp(-2wiins/L)ds. (6-2)n L 0

We shall then agree to use a statistically significant number of the coefficients

cn to build a "feature vector" for the boundary. In other words, one might

select a positive integer N and use the vector (cN, cN+1, ... , co, cl, ... , CN)

to characterize the boundary. Note that curvature is an intrinsic property of a

smooth curve and thus is automatically independent of orientation or position in

a field of view. However, one sees that the curvature of the image boundary

varies essentially directly as the distance of the object boundary from the

observer. The reason is as follows: The projection of a space curve (X(s),

Y(s), Z(s)) onto a viewing plane, as shown in Figure 6-1, is given by12

u(s) = g(Y(s)) X(s)

(6-3)

v(s) = g(Y(s)) Z(s),

where

g(Y(s)) = f/(Y(s)+f) (6-4)

and f is the focal length of the camera employed. Of course, as previously

,6-

bo 6-3

*. * *.. . . . . . . . . .



NSWC TR 84-54

Z,v FRONT IMAGE PLANE

FIGURE 6-1. PROJECTION OF A SPACE CURVE ONTO AN IMAGE CURVE

*mentioned, the curve (u(s), v(s)) is only a smooth approximation to the actual

* boundary curve. It follow that (X(s), Y(s), Z(s)), as related to (u(s), v(s))

* through equations (6-3), is really just an approximate representation of the

* underlying space curve. Now the curvature of the image boundary is representable

22

*by the following expression 2

KI(s) u (s)v (s) -v (s) U (s) (6-5)
{[u (s)] 2 + Lv'(s)1z2} 3/2

where a prime denotes differentiation and where we assume that u,2(s)+v'2(s) U

*for any s. Forming the derivatives required in (6-b), one finds that

6-4
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KI(s) ={2[9' (y)]2 [y '(s)] 2 [X(s) Z (s) - X(s) Z(s)]

+ g(Y) g'(Y) Y'(S) [X(s) Z''(s) -X''(S) Z(s)]

+ g(Y)g''(Y) [Y'(s)1 2[X'(S) Z(S) -X(S) ZV(s)]

+ g(Y) g'(Y)Y"(s)[X'(a) Z(s) - X(s) ZV(s)]

+ 2(y) [X'(s) Z''(s) _ X''(s) Z'(s)], (6-6)

{Cg(y~2[y(S)2[X~s)+ Z2(s)]

+ 2g(Y)g'(Y)Y'(s) [X(s) X'(s) + Z(s) V'(s)]

+ g 2(y) C(X.(s))2 + Zs)2}/

Note next that g(Y) _-f/Y, g'(Y)_ --f/Y , and g''(Y)2=2f/Y. Furthermore, a

translation of origin along the Y direction leaves Vi(s) and Y''(s) unchanged.

Therefore, factoring g2(y(s)) from the numerator and g3(y(s)) from the

denominator of (6-b), one has

* K1(s) =0(1/Y) F(s) + [X'(s) Z11Ws - X''(S) V(W~ b7
g(Y) [O(1/Y)G(s) + (X'(s)) z+W s)zI /

where F(s) and G(s) are well-defined functions of s alone and where the usual

order notation has been employed. Now let

K A(S 1 X'(S) Z''(s) - X''(s) Z'(s) (6-8)
1 g(Y) [(X'(s)) 2 + (P's) )2 13I2

where we assume that (X'(s))2 + (Z'(s))2  0 for any s. If likewise V'(s) Z''(s)

-f X'(s) V'(s) t 0, one has KIA(s)/KI(s) + 1 as Y(s) + + w. Thus, when the

caer i tanlaedalong the Yaxis, KI~)is asymptotic to KI(s) at every

point where the above requirements are met. Note further that K1 A(s)/K1 (s) tends

uniformly to 1, provided that X(s) and Z(s) are twice continuously differentiable

6-5
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and that both (X'(s))2 + (Z'(s))2 and X'(s)Z''(s) - X"(s)Z'(s) are nonzero for

every s. Also, we may replace g(Y(s)) by g(YCG) for large distances from camera

to object, where YCG is the Y coordinate of the center of geometry. We now have

k- A 1 k ), (6-9)

*- where

k A X'(s)Z"(S) - X"(s)Z'(s) (6-10)
0 [(X'(s)2 + W(s)

It follows that, for large YCG, koA(s) can be computed once one has calculated

kIA(s) and once one knows YCG* It is assumed that YCG would be obtained through

some tracking algorithm. The expression koA(s) is indeed a range-independent

quantity which we can input to (6-1) and (6-2) and for which we can build a

"" feature vector. Once we have such a feature vector, what do we do next? We must

" perform what is called a target reconstruction. That is, we examine the object

from a number of different aspects, and for each aspect i, we construct a feature

vector c-N+1 , **. , c1 , -- cN1 ), where 1< i < M and there are
M aspects considered. Assuming that there is a Gauss an process underlying the

vectors _, we then form the sample mean vector c = c/M and the sample

covariance matrix, whose entries are just mrs =

r ss
M (s

.. c cr  -c T )/M.

.

THE MOMENT AREA METHOD FOR TARGET CLASSIFICATION

Clearly, the method just presented has built-in limitations. One is forced,

first of all, to "regularize" the boundary, i.e., to smooth it in such a manner

that corners are eliminated. This may or may not be a proper procedure,

* depending on the accuracy one wishes to achieve. Secondly, a classifier derived

- through such boundary considerations may not adequately reflect the underlying

gray level signatures. We are thus led to a more sophisticated method called the

method of moments, as studied by Hu2'3 and Dudani I . They basically applied the

classical theory of moments, as developed by Cayley, to target detection.

6-6
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Theoretically, an image of an object is uniquely describable in terms of all the

moments of its gray levels. From a practical point of view, one needs to form a

significant number of such moments. Then one needs to combine them in such

manner so as to yield parameters which are invariant with respect to orientation,

position in the field of view, and range. Since this approach is well-documented

by Hu and Dudani, our discussion in this regard will be cursory.

Before we continue with our discussion of the moment method, let us prodeed

a little further with some of the geometrical aspects of target imaging. Such

aspects will be important with regard to feature vector formation. The analysis

was performed by Dudani in his doctoral dissertation and proceeds as follows:

Suppose that, as above, we have a camera coordinate system X, Y, Z as indicated

in Figure 6-1. Let us suppose that the axis system x, y, z for our three-

dimensional object is initially aligned with this system. Therefore, initially

we have

Y Y (6-11)

Relation (6-11) provides a fiducial orientation for the object. Having adopted

such an orientation, we can specify any new orientation in the following

manner: First let us rotate the object about the Y axis through an angle e.
This produces a new coordinate system (x,Y,z) fixed to the object. Next rotate

about the new z axis through an angle *, producing an (x',y,z) system. Finally

rotate about the x' axis through angle to produce an (x',y',z') coordinate

frame. Dudani notes that the product of these three transformations leads to the

connecti on

[Xl [cos eQ0 sin e [cos ~ sin 0] [1 0 01 [x
= 0 1 0 sin cos 0 0 cos f -sin 4 y (6-12)

z L-sin e 0 cose 0 0 1 [ sin f cos zJ,

where we agree, for the sake of notational simplicity, to drop the primes on the

object coordinates. Finally one translates the origin of the object frame of

6-7
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reference to a point (A, B, C) with respect to the camera coordinate system X, Y,

Z. One obtains

rXi Cos e Cos ~, -cos e sin *j cos * cos e sin * sin, -x FI+ sin e sin + sin e cos

Y sin cos * cos, -cos * sin y + B.(6-13)

-sin i cos * sin e sin * cos * -sin e sin , sin
LZ L+ cos 0 sin €+ Cos 0 Cos J € c

" Suppose next that the optical axis of the camera is directed to pass through the

* center of geometry (origin) of the object frame, so that A=C=O. Using (6-3) with

YCG replacing Y(s), one sees that

u2 + v2 = d2 (X2 + Z2), (6-14)

where d is a constant for given YCG = B. Using (6-13), together with some

algebra, one finds that, provided A=C=O, both d and X2 + Z2 are independent

of e. Therefore, the right side of (6-14) is solely a function of , *, and B.
Fixing x, y, z, *, *, and B and letting 0 vary between U and 2w, we find that the

point (u,v) traces out a circle in the uv-plane of radius d(X2 + Z2) 1/2  In

other words, rotation of the object in the e variable about its own

center of geometry merely produces rotation of the image in the uv-plane. It

follows that we need to develop features based on knowledge of * and 0. On the

other hand, if we can obtain features invariant with respect to rotation in uv-
coordinates, we may ignore variations in e.

Let us now go back to our gray scale description in terms of red and blue

intensities g(i,j) and gB(i,j) and form the two-dimensional moments of the image

m R = Wiv)up q
R _ i L gR(ui,v)

(6-15)

mpqB = I gB(ui,vi) uiPv i ,

6-8
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where gTR gR(i 'j)' gTB gB(i,J), and the sums are over all pixels in

the image. The red and blue intensities in (6-15) represent the outputs of a

time-varying random process. Typically, they might be the expected values for

red and blue signatures under a given set of environmental conditions, which

might include solar radiation, cloud cover, atmospheric emissions, and

atmospheric haze. In other words they should typify outputs corresponding to

actual conditions to which a target would be subjected. Out of (6-15), one can

- construct, based on the work of Hu and Dudani, the so-called similitude moment

. invariants with respect to size, elevation, and distance B along the optical

axis. Let these be denoted by MiR (*, *) and Mi( ,*), I < i < NI, where there

are NI invariants considered based on the red and blue information. These moment

. invariants become the elements of our feature vectors, dust as with our boundary

*' vector (CN, cN+1,...,cO, c1,...,cN), we may consider

RjB R B jR~
(MIj R (yi'i)' '€ B(Ti00 M2j R (yi'¢i M2j B(Ti'Oi) ..."MNI9R (Ti '

M MJ B(, ,*)) as a Gaussian vector, where 1 4 i < pa covers pa aspects and

1 4 j < pe covers pe sets of environmental conditions. A sample mean and a

sample covariance matrix for the pa aspects and the pe environmental situations

may then be constructed.

One may imagine selecting a number of interesting objects aj, 1 4 j < n, as

we mentioned at the beginning of this chapter, with the intent of assigning a

label probability vector _j to each, based on our feature vectors (using either a

moment area technique or a boundary technique or both). Imagine that we have

built a Gaussian distribution for each label Li, 1 4 i < m+1. Then, following

Dudani, 1 we shall adopt the Bayesian approach, wherein one writes

P(Cjlp) = P(eICj)P(Cj)/P(P). (6-16)

Here p(elCj) is the probability density for the feature vector p, given that it

belongs to class Cj, P(Cj) is the a priori probability of occurrence of class C P

and p(p) is the probability density for occurrence of p, regardless of

category. Obviously,
6-
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m+1
P(p) = p (PICj)P(Cj), (6-17)

where Cj is the class for label L . For simplicity, one may assume that

p(Cj) = 1/(m+1) for every j if one does not have any better a apriori

understanding of the occurrence of classes. In that case (6-16) becomes

m+l

P(Cjil) = p(ICj)/ p(P1Cj). (6-18)
j =1

In any event the probabilities afforded by (6-16) or (6-18) would become the

components of our probability assignment vector 2j for object aj.

RELAXATION METHODOLOGY FOR TARGET CLASSIFICATION

We come now to one of the most important phases of the classification

process, namely, that of unifying our knowledge about the individual components

of a target in order to understand the target as a whole. This is the purpose of

the so-called relaxation methodology which we now introduce. The theory has been

developed systematically in papers by Rosenfeld, Hummel, and Zucker, 4
Peleg and Rosenfeld,23 Zucker, Krishnamurthy, and Haar,24 Davis and

Rosenfeld,25 and Eklundh, Yamamoto, and Rosenfeld.5 Now there are two basic

types of probabilistic relaxation schemes, which we may call linear and

nonlinear, respectively. Both are studied in the paper by Rosenfeld, Hummel, and

Zucker just quoted. Therefore, we shall not enter into any elaborate details

with regard to convergence except for mentioning that validity of the method has

been proved under certain standard conditions for the linear case, but has not

been established, in general, for the nonlinear method. Nevertheless experiments

have shown that, in practice, the nonlinear procedure works well and yields more

realistic results than does the linear one.

We first present the linear relaxation model and show how one adapts it to

the target classification problem. The model given by Rosenfeld, Hummel and

Zucker is

pi(X) = I cij[lPij(XIX') pj(X')], 1 4 i,j c n, (6-19)

with the following notational clarification:

6-10
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(cij) - doubly stochastic coefficient matrix of positive elements, i.e., one for

which each row and column sums to unity.

Pi (Aj ') " probability that object ai has label x, given that object aj has

label '.

pi(X) - probability that object ai has label X.

Also, pii(xx') = 1 if X = X' and 0 otherwise. Basically one is searching for a

fixed point {p (X)}, 1 < i < n, for any given label x. By the Brouwer fixed

point theorem , such a fixed point always exists. The game is to start with

some initial probabilistic labeling pj(X) for each of our objects aj and

iteratively apply (6-19) until convergence to a stochastic labeling.

Now let us interpret (6-19) in the light of target modeling. First of all,

note that the target is viewed at some aspect, say (*t', et t). where the angles

are the usual Euler angles of the type we mentioned at the beginning of this

chapter. This induces, of course, an Euler representation (*tjtjtj) for

every object aj. In Dudani's thesis two procedures were introduced for

calculating moment invariants, the first of which made use of a principal axis

transformation and the second of which produced so-called orthogonal moment

invariants. The second procedure would not, in our case, be generally

applicable, since it requires that the object be rotated about its own center of

geometry. In our case, the entire object, such as a ship, is being rotated about

its center of geometry. Clearly, for example, an engine room is not being

rotated about its own center of geometry. The analysis given by equations (6-11)

- (6-14) still applies, but with the axis of the camera system being directed

. toward the center of geometry of the ship, missile, etc., involved. One word of

caution, however, is in order here. As in any mathematical analysis of a

physical situation, one needs to focus his attention on the interrelationships

that exist and to be certain that the mathematical theory adequately reflects the

real world conditions. If, for example, one is attempting to classify a ship or

an airplane, the environment to which it is exposed may have a significant impact

on results obtained through infrared, as opposed to visual, processing. There

may be a substantial difference in results obtained during the day as opposed to

those gathered at night. In the former case, one would normally have to consider

*6-11
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the yaw, roll, and pitch of the target, since each set of angular quantities

would correspond to an entirely different radiation pattern. In the latter case,

it is expected that environmental factors (such as solar heating) would be

minimized, leaving intrinsic sources of energy to govern the signal output. Then

it would be possible to show that, if one were, for example, to view the target

broadside, pitching motion would not affect the gray level output. That is, any

- motion in a plane orthogonal to the viewing axis would be unimportant with regard

to target component discrimination. Now let us use (6-3) and (6-4) with Y(s)

* replaced by YCG, the latter being understood to be the Y coordinate of the entire

object's center of geometry. Let us assume that the ship or missile is far

* enough away so that each point of it can be considered to be at distance YCG from

-. the camera. Next let vpq be the pq central moment of the gray levels for the

original (X,Z) coordinates and p the corresponding central moments for the• , pq

image in (u,v) coordinates, which are parallel to the camera coordinates (as

shown in Figure 6-1). If there are N pixels in the component of interest, one

has

-pq g1R(i,j) (ui - u)P(vj - v)q, (6-20)
. Pq gTR N pixels

- where

U g1R(ij)ui/gITR
N pixels (6-21)

, v = 91xlgR(i"j)vj/glTR •

N pixels

Here giR(i,j) is the image red signature intensity at pixel (i,j), and

ITR = g1R(i,j). Let (Xij, Zij) be the X and Z coordinates of an
N pixels

. object point which is projected to the image point (ui,vj). Also, let

T=

X = gtR(ij)Xij/gtTR

n pixels"n pixels gt( )ZiJ/gtTR'

6-12
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where gtR(i,j) is the target red signature intensity for surface pixel (i,j) and

gtTR N pixels gtR(i,j). Now ui = dXij, G = dX, vj = dZ i, and 9 = dZ,

where d f/(YcG + f). Furthermore, assume that there exists a red attenuation

factor aR(d), solely a function of the distance traversed from object to camera

(or detector) by the red component output. Then, for every (i,j),

gIR(i'J) = aR(d)gtR(i,j). (6-23)

Substituting (6-23) into (6-2U), we find that

d dP+q V (6-24)

pq pq,

where
W1

Vp g(i,j)(X - 9)P(z i . - 2)q. (6-25)

Pq tTR N pixels

Note that (6-24) does not involve the attenuation factor aR(d). Also, we are

assuming, in our analysis, that radiation propagates along straight-line paths,

i.e., that any refraction phenomena are of secondary significance. Now, using

the fact, froii (6-24),,that "20 = d2v and eliminating d2, one sees that
(p+q)/2 

is = 2t

v~pq/1(2u is a size invariant. That is to say, if upq (1) is the result of
usigU (6-24) and (2) is the result of using pqd2 , one has

(1using d 1 in pq ) (2) onepha

Upq 1 / 2 0 ())(P+q)/
2 =pq 1(2)/( (2))(P+q)/2 Furthermore, we would like to

use for u pq certain fiducial quantities, namely, central moments with respect to

principal axes. Assuming that our origin in the image plane is at the red

intensity center of geometry of the component image and employing the rotation of

coordinates

u= u cos e - v sin e

v u sin e + v cos e, (b-Z6)

as Dudani does, one finds that

2 = (1120 -'02 ) sin 2e + 21j11cos 2e. (b-27)

6-13
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By definition, the principal axes are those for which u11' = 0. This leads to

"* the condition

tan = - 2p 1 1 /(u 20 - P0 2 ).

The angle e, as given by (6-28), is the orientation of the principal axis system

- relative to our uv coordinate frame (parallel to the camera frame). Our

invariants to size and rotation then become M /(u )(p+)/ 2  providedpq Upq/ I20' ,poie

that (p,q) * (2,0). Note that M' may be computed directly without any knowledge
Pq

-L of distance from object to image. There is one more invariant, namely,

20'/d 2 , which requires a knowledge of d for its determination. Through this

" invariant one gains an understanding of target component size. Of course one can

perform the same sequence of computations for the blue intensities.

When the objects aj are projected into the image plane of a camera, they

will, of course, adopt certain positions in that plane relative to one another.

. The probabilities Pij(XIX') in (6-19) represent compatabilities that must exist

=. among such objects and, as such, should be prespecified. Suppose now that one is

addressing k target types, say {Ti}, 1 < i < k. Suppose, also,

. that, for each target type Ti, we build a training set for a number of targetritm  tri r
* aspects (et , , t), I < r < p, there being p overall views considered.

Such training sets, inasmuch as they might be employed to derive distance

relationships among components, could be obtained under idealized conditions.

For example, the target itself, say a ship, could be studied as a model in a

laboratory setting if one's only interest is to procure the distance between the

engine room and passenger quarters at any given target aspect. A histogram

analysis could then be performed over all the ship types Ti, 1 4 i < k, and

numbers pij(l';D) could be derived over all ship types and aspects. Here

Pij(l';D) means specifically the probability that object ai has label X, given
* that object aj has label x' and is at distance D from ai. There is an

alternative point of view which could be taken at this point which should be

' mentioned. Note that, on calculating p(pICj) for input to (6-16), we have

. identified Cj with the jth ship type, so that Cj is really Tj. In effect, we

* have regarded all out target image feature vectors, regardless of target

orientation, as coming from the same Gaussian distribution. In parallel with

this concept, it is reasonable to calculate Pij(XIX';V) based on all aspects of

6-14
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the target. A better way of approaching the task perhaps is that taken by

Dudani. Instead of identifying Cj solely with Tj, one includes in Cj the target

aspect (et,Ot) , so that the basic Gaussian density p(eICj) has a different

statistical interpretation. Feature vectors are constructed under varying

environmental conditions, but for a given target aspect and target type. In the

spirit of Dudani's approach, the prior probability P(Cj) in (6-16) is

P(Cj) = P(Tj )P( t )etlet (6-29)
0 0 0

wherein P(Tj) is the probability of the target type Tj, P(*tl*t ) is the Gaussian
0

density for yaw *t, given a nominal value *t , p(tlj t ) is the Gaussian density
0 0

for roll t' given nominal *t , and, finally, p(etlet ) is the density for
0 0

pitch et, given nominal pitch a . Likewise we should now understand
0

Pij( Ix';D) a little differently. We should again perform a histogram analysis,

but condition it on target aspect. One then needs to integrate (6-19)

over all target aspects, i.e., one considers

w/!2  2w 2w
f f f Pi('I'tt)Pet loto)(t~ pt~t)otdt

"--7/2 0 U0

(6-30)

i 12  27r 2w
I Z Cij[ 1 f f f Pij(xlx';D,et,it,t)pj(x'It,it,.t)P(etlot )
j x -w/2 0 0 0

t•°•"" .- P (*t l*t )p (t I t )ae td*t d~t
t t
0 0

6-15
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If the Gaussian (or, possibly, uniform) random variables Ot, *t and *t in (6-29)
have small variances, then we may approximate pij(,xJx'; D,ettt) by

pij(A X';,Oto ,toto ). In that case (6-30) becomes

, (~etoto = Z.cij[[Pij(X .;D~e ,*to, to (6-31)

0 X0 0
.pj x a l Otolt Ot o ) ]

This mechanism is theoretically perhaps more rigorous, but, at the same time, may

* require much more work effort to implement.

Either (6-19) or (6-31) could, in principle, be used in an iterative scheme

for procuring consistent labeling vectors (pj(x)) for the components aj. Having

thus identified the components, together with their relative positions, one may,

at a higher level, be able to say, with some degree of certainty, what type of

target is present. If the target changes heading or if we permit ourselves to

walk around the target in order to improve our understanding of it and rerun the

basic iterative scheme, there is a good chance that we can improve our

understanding of the category of target involved.

We would also like to say that certain topological properties might be

"" useful in target classification.27  For example, is the object aj we are

* considering convex? Is it connected? If it is connected, what can be said about

the number of holes contained in the image? Such higher level information could

. certainly be used as a logical input to classification of components of a

.* target. This prior knowledge could indeed be utilized in defining p(Tj) as input

- to (6-29).

Let us now proceed with the nonlinear probabilistic model suggested by

Rosenfeld, Hummel and Zucker. It turns out that such a model is more useful than

the linear model in two different ways: (1) It appears to converge, in a large

number of practical applications, to a limit not depending on initial assignment

probabilities. (2) It exhibits favorable compatibility properties with regard

to generation of pi(x) consistent with correlations between objects. The model

is predicated on certain known correlations rather than compatibilities. The

correlations are denoted by r.j(xA'), where, of course, j(,x')l < 1. One

defines a quantity qi (kX) analogous to the pi(k) (the kth iterate

of pi()) defined in the linear model:

6-16
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qi(k)( W Cij ' rij(,')pj (k)( W)3. (6-32)

where again the cij are nonnegative and the matrix (cij) is doubly stochastic.

Then we define

*(k+1) ( p(k) (k) (k) ((-33pi(X() _ pi())[l+qi ( x )]/ Zpik)(X)[l+qi(k)(x)]. (6-33)

It turns out that Jqi(k)()j c 1, so that, from (6-33), 0 < pi(k+l)(A) 1

Again, we can certainly invoke a model similar to our linear version in the case

where aspect distinctions are not made. However, when they are made, as in the

case (6-26) just studied, it now becomes impossible to parallel the modeling in

(6-30), which goes through because of the linearity of the operator. On the

other hand if we assume that we know the values of * and *, i.e., if * = *oi

0 = *o and e = 0, then we need not average as we do in (6-3U), and one merely
applies (6-33), given the aspect (8 ,,*o ). The problem we now pose is that of

providing the inputs rij(,,'). For a given aspect, we suppose that

r. (X,X') depends on the distance D between the image of object ai and the image13
-of object aj. Following Rosenfeld, Hummel and Zucker, let A be the event that

*object ai has label X, and let B be the event that aj has label x'. Then

ri , ;' ) p (A and B;D) - p(A)p(B)
" [(p(A) - p 2(A)) (p(B) - p2(B))] 112

The quantity p(A and B;D) is the probability that ai has label x and aj has

label X' when it is observed that they are separated by U units in the image

-plane. We can compute, as before, a frequency of joint occurrence of labels

* X and X' for objects ai and aj separated by D units, where U 4 D < -. Also , we
can calculate the frequency of occurrence of a given label x over all target

*types and input that quantity for p(A). A similar statement pertains for

* computing p(B).

6-17
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- OPTIMIZATION OF STOCHASTIC LABELING

A scheme presented by Peleg28 is of great importance in deciding upon the

merit of a stochastic labeling and, subsequently, making a specific labeling

assignment. Peleg assumes that one wants to maximize the product of two

probabilities, one of which he calls the stochastic probability PS(n) for a given

labeling a of nodes of a network and the other of which PM(a) he calls the model

probability corresponding to the labeling n. The function to be optimized is

P(Q) = P S(Q)PM(n). (6-34)

Suppose that, after executing a relaxation procedure as previously described, we

obtain a stochastic labeling for every object aj, i.e., we have a label

probability assignment vector for each aj. Then choose that label at aj for

which the probability is maximum, and let n = (Ii,1 2 ,...,ln), where n is the

* number of objects and ai is the label for object ai yielding maximum

* probability. Let PS(nI) be the product of these n maximum probabilities. Next

form the quantity PM(n), which is the a priori probability for the given label

assignment. This can be obtained, at least approximately, using the

compatibilities previously developed (by histogram techniques). Now one can

adopt the following strategy: One may choose not to iterate (6-31) or (6-33) to

a fixed point, but instead monitor the output, stopping at that point where (6-

34) is maximum. Also, one may employ several viewer aspects in conjunction

* with (6-31), (6-33), and (6-34), again choosing that a for whidh (6-34) is

- maximum. In this way one procures a specific labeling from which one can better

identify the target.

6-18
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CHAPTER 7

SUMMARY

The intent of this report has been to attempt a unification of ideas on

image modeling presented in recent years. Also, it is felt that originality has

been injected into the basic discrimination procedures, so that more meaningful

directions may be pursued. We have emphasized the early processing of

information, since that is of paramount importance. The labeling evaluation

procedures given in Chapter 6 would certainly be meaningless unless one can

construct reasonable feature vectors as prototypes of the classes. One of the

main purposes of the work would be to make available a more sophisticated

methodology for target recognition, so that one could ultimately distinguish

enemy from friendly targets.

In the future it is hoped that this work can be interfaced in some

meaningful way with data from realistic scenarios. Hopefully a computer code can

be developed around the ideas presented here.

7-1
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