Ţ	AD-A1	58 69 SSIFI	93 EI Ei Si IED	IITTANCE ECTRON PRING MD	NEASU BEAN(U) W NAI	REMENT:) NAVAI MKUNG (S OF SP L SURFA ET AL.	ACE CH ICE WEA 01 JUN	ARGE DO Pons ce 85 NSV	MINATE NTER S C/TR-B F/G	D ILVER 5-244 20/7	1/	1	
			2-13											
											_			
						END PATE C 85								
•														

•

AD-A158 693

BY NON MANYLINE MINOR CONSIDERED

RESEARCH AND TERMINOLOFIC CONSULTIONS

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION	NO. 3. RECIPIENT'S CATALOG NUMBER
NSWC TR 85-244	672
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVER
EMITTANCE MEASUREMENTS OF SPACE CHARGE	Final
DOMINATED ELECTRON BEAM	5. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(*)
WON NAMKUNG AND ERIC P. CHOJNACKI*	
PERFORMING ORGANIZATION NAME AND ADDRESS Naval Surface Weapons Center (Code R43) 10901 New Hampshire Avenue Silver Spring, Maryland, 20903-5000	10. PROGRAM ELEMENT, PROJECT, TAS AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
	1 June 1985
	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Offi	ce) 15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	154. DECLASSIFICATION DOWNGRADIN
Approved for public release, distribution unli	mited.
Approved for public release, distribution unli	mited. nt from Report)
Approved for public release, distribution unli 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different 18. SUPPLEMENTARY NOTES	mited. n: from Report)
Approved for public release, distribution unli 17. DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, if different 18. SUPPLEMENTARY NOTES *University of Maryland, College Park, Marylan	mited. nt tran Report) nd 20742
Approved for public release, distribution unli 17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES *University of Maryland, College Park, Marylan 19. KEY WORDS (Continue on reverse elde II necessary and identify by block nu	mited. nt trem Report) nd 20742
Approved for public release, distribution unli 17. DISTRIBUTION STATEMENT (of the observed on Block 20, if different 18. SUPPLEMENTARY NOTES *University of Maryland, College Park, Marylan 19. KEY WORDS (Continue on reverse olde if necessary and identify by block nu Emittance Space Charge Dominated Beam	mited. nt tran Report) nd 20742 mbor)
 Approved for public release, distribution unli 17. DISTRIBUTION STATEMENT (of the observed in Block 20, if different 18. SUPPLEMENTARY NOTES *University of Maryland, College Park, Marylan 19. KEY WORDS (Continue on reverse olde if necessary and identify by block nume Emittance Space Charge Dominated Beam 20. ABSTRACT (Continue on reverse olde if necessary and identify by block nume A diagnostic technique of the beam emittation beams with diverging envelopes under strong sp profiles of current density, local temperature measured by the slit-pinhole method for axisym distribution function in transverse phase space rms emittance is obtained by numerical integration of the supervisor of the comparisor 	mited. nf from Report) nd 20742 mber) nnce is developed for electron pace charge forces. Radial e, and divergence angle are mmetric beams. The particle ce is then constructed and the ations. A 5 kV, 200 mA, and h between theory and experimen
Approved for public release, distribution unli 17. DISTRIBUTION STATEMENT (of the observed in Block 20, If different 18. SUPPLEMENTARY NOTES *University of Maryland, College Park, Marylan 19. KEY WORDS (Continue on reverse aldo If necessary and identify by block nu Emittance Space Charge Dominated Beam 20. ABSTRACT (Continue on reverse aldo If necessary and identify by block nu Emittance Space Charge Dominated Beam 20. ABSTRACT (Continue on reverse aldo If necessary and identify by block nu Emittance Space Charge Dominated Beam 20. ABSTRACT (Continue on reverse aldo If necessary and identify by block nu Emittance Space Charge Dominated Beam 20. ABSTRACT (Continue on reverse aldo If necessary and identify by block nu Emittance Space Charge Dominated Beam 20. ABSTRACT (Continue on reverse aldo If necessary and identify by block nu Emittance Space Charge Dominated Beam 20. ABSTRACT (Continue on reverse aldo If necessary and identify by block nu Emittance Space Charge Dominated Beam 20. ABSTRACT (Continue on reverse aldo If necessary and identify by block nu Emittance Space Charge Dominated Beam 20. ABSTRACT (Continue on reverse aldo If necessary and identify by block nu Emittance Space Charge Dominated Beam 20. ABSTRACT (Continue on reverse aldo If necessary and identify by block nu Emittance Space Charge Dominated Beam 20. ABSTRACT (Continue on reverse aldo If necessary and identify by block nu Emittance Space Charge Dominated Beam 20. ABSTRACT (Continue on reverse aldo If necessary and identify by block nu Emittance Space Charge Dominated Beam 20. ABSTRACT (Continue on reverse aldo If necessary and identify by block nu Emittance Space Charge Dominated Beam 20. ABSTRACT (Continue on reverse aldo If necessary and identify by block nu Emittance Space Charge Dominated Beam 20. ABSTRACT (Continue on reverse aldo If necessary and identify by block nu Emittance Space Charge Dominated Beam 20. ABSTRACT (Continue on reverse aldo If necessary and identify by block nu Emitt	mited. nt from Report) nd 20742 mbor) nnce is developed for electron pace charge forces. Radial e, and divergence angle are mmetric beams. The particle ce is then constructed and the ations. A 5 kV, 200 mA, and h between theory and experiment

. 3

. .

n

A UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (The Date Enter ×D \searrow on this diagnostic method. \mathbf{x} 5/N 0102- LF- 014- 6601 UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(Then Date Entered)

• •

10 m - 1

FOREWORD

A diagnostic technique of the beam emittance is developed for electron beams with diverging envelopes under strong space charge forces. Radial profiles of current density, local temperature, and divergence angle are measured by the slit-pinhole method for axisymmetric beams. The particle distribution function in transverse phase space is then constructed and the rms emittance is obtained by numerical integrations. A 5 kV, 200 mA, and 3 µsec electron beam is used in the comparison between theory and experiment on this diagnostic method.

We are grateful to Drs. M. J. Rhee, J. Y. Choe, and J. D. Lawson for helpful discussions. This work is supported by the Independent Research Fund at Naval Surface Weapons Center and by the Department of Energy at the University of Maryland.

Approved by:

In M Blatstein

IRA M. BLATSTEIN, Head Radiation Division

Aucon	sion For					
WEIS	GRA&I	X				
DIIC TAR						
Justi	fication_	LJ 				
Ву						
Distr	ibution/					
Avai	lability	Codes				
Dist	Avail and Special	l/or				
AI						

DTIC COPY NSPECTED 3

i

Ì

;t,

TTATION STREET

CONTENTS

Section		Page
۱	INTRODUCTION	1
2	ROOT-MEAN-SQUARE EMITTANCE	3
3	SLIT-PINHOLE METHOD FOR SPACE CHARGE DOMINATED BEAM	7
4	FINITE SLIT WIDTH EFFECT	11
5	DESCRIPTION OF EXPERIMENTAL APPARATUS	13
6	EMITTANCE MEASUREMENT OF SPACE CHARGE DOMINATED ELECTRON BEAM	15
	REFERENCES	27
	DISTRIBUTION	(1)

ii

ILLUSTRATIONS

٠

'n

ł

Figure	Page
1	SCHEMATIC OF THE SLIT-PINHOLE METHOD FOR BEAM EMITTANCE MEASUREMENTS
2	GEOMETRY OF THE SLIT-PINHOLE METHOD IN THE X-Z PLANE
3	DENSITY PROFILES OF A SHEET BEAM WITH THE FINITE SLIT WIDTH; d IS THE HALF WIDTH OF THE SLIT AND L IS THE DISTANCE BETWEEN THE SLIT AND THE SCREEN
4	SCHEMATIC OF THE ELECTRON BEAM TRANSPORT EXPERIMENT AT THE UNIVERISTY OF MARYLAND20
5	TYPICAL BEAMLET PROFILE IN THE SLIT-PINHOLE MEASUREMENT21
6	BEAM DENSITY $n(r)$, DIVERGING ANGLE $n(r)$, AND TRANSVERSE TEMPERATURE $\sigma(r)$ FOR A 5 keV, 200 mA ELECTRON BEAM TRANSPORTED THROUGH THE PERIODIC FOCUSING CHANNEL
7	EMITTANCE DIAGRAM OF THE ELECTRON BEAM. THE CONTOUR LINE REPRESENTS EQUIDENSITY OF $f_2(x,x') = 0.1 f_2(0,0)23$
8	DENSITY PROFILE PROJECTED ON THE X-AXIS
9	DENSITY PROFILE PROJECTED ON THE X' AXIS

iii/iv

SECTION 1

INTRODUCTION

There are numerous applications of charged particle beams ranging from electron microscopes to high energy particle accelerators. In their various stages of formation, acceleration, transport, and focusing, charged particle beams are commonly required to be of high quality. One of the physical quantities that measure beam quality is the emittance, which is proportional to the phase space area occupied by the beam particles. The emittance is closely related to the brightness in electron microscopy and to transverse temperature in plasma physics.¹ Even though the definition of emittance and its measurement principles are very simple, it is known that experimentally obtaining a meaningful and/or comparable quantity is very difficult. Various methods of emittance measurement^{2,3} have been introduced in the past, especially in particle accelerator physics.

In free space, the envelope of a non-neutral charged particle beam expands due to space charge forces and transverse beam emittance. Depending on relative contribution to envelope expansions, one may classify a beam as either space charge dominated or emittance dominated. In the space charge dominated beams, for reasons which will be apparent in Section 3, sample beamlets are distorted so that results from conventional methods are inadequate in representing beam quality.

Recently the emittance changes under the strong influence of space charge forces have been experimentally investigated for electron beams at the University of Maryland.⁴ In this experiment one should compare the measured emittances under various conditions. This work^{5,6} has been carried out in connection with the University of Maryland electron beam transport experiment, in which a space charge dominated electron beam is transported through a solenoid focusing channel to investigate the emittance growth.

In this paper, briefly reviewing various emittance definitions for practical beams, the slit-pinhole method is introduced to find parameters in constructing the distribution function in transverse phase space for an axisymmetric beam. A low energy electron beam in space charge dominated regime is used to evaluate this diagnostic technique.

SECTION 2

ROOT-MEAN-SQUARE EMITTANCE

When a particle beam propagates along the z-direction, one denotes $f_4(x,p_x,y,p_y)$ as the distribution function in transverse phase space. In the paraxial approximation where p_z is approximated to be constant and far greater than p_x and p_y , the distribution function is conveniently described as $f_4(x,x',y,y')$, where $x' = p_x/p_z = dx/dz$ and $y' = p_y/p_z = dy/dz$. In xx' phase space, the particle distribution is then

$$f_{2}(x,x') = \iint f_{4}(x,x',y,y') dy dy'.$$
(1)

The phase space area occupied by beam particles can be described as

$$A_{x} = \iint_{2} dx dx', \qquad (2)$$

and beam emittance is then defined as

$$\varepsilon_{\rm X} = \frac{A_{\rm X}}{\pi} \tag{3}$$

Similarly ε_y is defined in yy' phase space. In general, ε_x and ε_y are not the same unless the beam is axisymmetric. One may further define the normalized emittance

$$\epsilon_{n,x} = \gamma \beta \epsilon_x$$
 (4)

as a conserved quantity with respect to changes in ${\rm p}_{\rm Z}$ such as in an accelerating system.

For most real beams, the phase space area defined in Eq. (2) is unbounded. However, experimental measurements will give a finite value due mainly to instrument resolution. This results in beam quality as measured by emittance is a function of instrument resolution. In addition, the phase space area is often deformed by various nonlinear force effects so that the emittance defined through Eqs. (2) and (3) is inconvenient from the practical point of view.

In order to avoid these difficulties encountered in determining phase space area, a root-mean-square(rms) emittance is introduced, especially, in particle accelerator physics. The rms emittance $\overline{\epsilon}_{x}$ is defined¹ as

$$\overline{\epsilon}_{x} = 4 \left[\langle x^{2} \rangle \langle x'^{2} \rangle - \langle xx' \rangle^{2} \right]^{1/2},$$
 (5)

where, < > denotes an average value over $f_2(x,x')$ distribution. We also define $f_1(x)$, and $f_1(x')$ as

$$f_1(x) = \int f_2(x, x') dx',$$
 (6)

and

$$f_1(x') = \int f_2(x,x')dx.$$
 (7)

One should note that $f_1(x)$ and $f_1(x')$ are particle distributions projected onto the x- and x'-coordinates. An ideal particle distribution

function called the Kapchinskij-Vladimirskij (K-V) distribution,¹ is often used for theoretical studies. In this distribution, particle distribution projected onto any two dimensional space is uniform, and beam emittance ε_{χ} is the same as rms emittance $\overline{\varepsilon}_{\chi}$ defined in Eq. (5). The rms emittance is, therefore, used in comparison between a real beam and the corresponding ideal beam.

In real beam cases, the distribution function $f_2(x,x^4)$ is graphically expressed by equidensity contour lines in the xx⁴ plane. These contour lines are, in general, ellipses with major axis tilted with respect to the coordinate axis. In a special case, where the major axis coincides with the coordinate axis, i.e., in upright ellipse case, Eq. (5) becomes

$$\overline{\epsilon}_{x} = 4 \langle x^{2} \rangle^{1/2} \langle x^{*2} \rangle^{1/2} = 4 \overline{x} \overline{x}^{*}.$$
(8)

Eq. (8) implies that it is sufficient to know $f_1(x)$ and $f_1(x')$ to determine rms emittance of a beam. This case of an upright ellipse occurs at extrema of the beam envelope along the z-axis. The envelope maximum point may not be accessible due to the fact that it occurs at the lens center. The minimum point is not a practical choice since the sampling points are dramatically reduced or the waist is not often predicted. Thus, emittance measurements are usually done on a diverging or converging beam.

SECTION 3

SLIT-PINHOLE METHOD FOR SPACE CHARGE DOMINATED BEAM

The distribution function $f_2(x,x')$ can be measured by employing a pair of long slits separated by a proper axial distance. The first slit plane stops most of the beam particles except those with the same x value of the slit. The second slit is then scanned along x direction in order to obtain $f_2(x,x')$ at the given x value. Repeating this at other x values, one can scan the particle distribution in whole xx' space. In this procedure, one has to keep the slits parallel. This is very difficult experimentally. In addition, there arises another difficulty; when the beam particle distribution is not uniform in real space, the sample beamlet passing the first slit plane bends like an arc due to nonlinear diverging forces. The particles detected by the second slit due to this bending effect can not be distinguished experimentally from that of the velocity distribution. Therefore, the slit-slit method is not an adequate one for space charge dominated beams. When one employs a small-pinhole moving along the x-axis instead of the second slit, these difficulties, i.e., alignment and beamlet bending will be overcome. The phase space distribution measured in this way is not the same to the one defined in Eq. (1). Therefore, we discuss the procedure in obtaining the rms emittance in the slit-pinhole method.

Consider an axisymmetric beam with an envelope diverging in free space under its own space charge forces. Assume further that the local

temperature $T_{\perp}(r)$ represents the Maxwell-Boltzmann velocity distribution. We may then restate the assumptions without loss of generality as follows:

1. The particle density distribution in real space is a radial function n(r).

2. The beam diverges radially, i.e., a cylindrical shell of radius r in the beam diverges with a slope n(r).

3. The transverse temperature is also a radial function $T_{\perp}(r)$. It is conveniently described as $\sigma(r) = (kT_{\perp}(r)/mv_0^2)^{1/2}$, where k is the Boltzmann constant and v_0 is the axial velocity of the particles. The distribution function of the beam in transverse phase space can be written as

$$f_{4}(x,x',y,y') = n(r) \left[\frac{1}{2\pi\sigma^{2}} e^{-(x'-\eta_{x})^{2}/2\sigma^{2}} e^{-(y'-\eta_{y})^{2}/2\sigma^{2}}\right]$$
(9)

where, $n_x = n(r)x/r$, $n_y = n(r)y/r$, and n(r) is a normalized radial density distribution function satisfying

$$2\pi \int_{O} n(r) r dr = 1. \tag{10}$$

When n(r), n(r), and $\sigma(r)$ are measured experimentally, $f_2(x,x')$ can be obtained by analytical and/or numerical integration of f_4 over y and y'. The slit-pin hole method can be used to obtain these parameters.

The diagnostic arrangement for the slit-pinhole system is schematically shown in Figure 1. The slit plane is located at z = 0 with a narrow slit parallel to the y-axis. A sheet beamlet passes through the slit of width 2d and the diverging beamlet profile is scanned by a current (particle) collector in the screen plane z = L. The current collector is covered by a plate with a pinhole of radius r_p which travels on the ξ -axis, This system is commonly

designed as L > a (beam radius) >> d > r_p that the side dimension of the sheet beamlet spreads due mainly to the transverse temperature of the beamlet.

When the slit is located at $x = x_0$, the density n_p detected by a pinhole collector on the ξ -axis, i.e., $\zeta = 0$, becomes

$$n_{p}(\xi;x_{0}) = \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} dy' \int_{-\infty}^{\infty} dx' \int_{-\infty}^{x_{0}+d} f_{4}(x,x',y,y')(\frac{1}{L^{2}})\delta(x'-\frac{\xi-x}{L})\delta(y'+\frac{y}{L}) \quad (11a)$$

$$= \frac{d}{\pi L^2} \int dy \frac{n}{\sigma^2} e^{-(\xi - x_0 + n_x L)^2 / 2\sigma^2 L^2} e^{-(y + n_y L)^2 / 2\sigma^2 L^2}, \quad (11b)$$

where the argument for n, n, and σ is $r = (x_0^2 + y^2)^{1/2}$. Here, we have used the condition that the slit opening 2d is very small, $d < \sigma L < \sigma$. The effect of a finite slit width is discussed in the next section.

The last term in Eq. (11) is a monotonically decreasing even function of y from its peak value at y = 0. When $\sigma L \ll 1$, it can also be approximated as

$$e^{-(y + n_y L)^2 / 2\sigma^2 L^2} \xrightarrow{\sigma L <<1} \sqrt{2\pi} \sigma L \delta(y). \qquad (12)$$

Substituting Eq. (12) into Eq. (11), we obtain

$$n_{p}(\xi; x_{0}) \approx \frac{2d}{\sqrt{2\pi} L} \frac{n(x_{0})}{\sigma(x_{0})} e^{-(\xi - x_{0} + nL)^{2}/2\sigma^{2}L^{2}}$$
 (13)

Therefore, n(r), n(r), and $\sigma(r)$ can be obtained from Eq. (13). The beamlet profile $n_p(\xi;x_0)$ is a gaussian with a peak value proportional to $n(x_0)/\sigma(x_0)$, the peak shift nL, and the rms width σL . This relationship is shown in Figure 2. One notes that we should integrate Eq. (13) to obtain $n(x_0)$ unless $\sigma(x_0)$ is constant throughout the beam cross section.

SECTION 4

FINITE SLIT WIDTH EFFECT

In order to see the finite slit effect of the sheet beamlet profile on the screen, let us consider an one-dimensional sheet beam: A sheet beam of uniform density n_0 and thickness 2d is located on the y-axis. Let us assume that the velocity space distribution is a Maxwellian with a temperature T and the beam (current) density is so small that we can neglect the space charge broadening of the sheet beam. The density distribution in the screen plane z = L is then expressed as

$$n(\xi) = \frac{n_0}{\sqrt{2\pi} \sigma L} \int_{-d}^{d} e^{-(\xi - x)^2/2\sigma^2 L^2} dx$$
(14a)

$$= \frac{n_o}{2} \left[\text{erf} \left(\frac{|\xi| + d}{\sqrt{2}\sigma L} \right) - \text{erf} \left(\frac{|\xi| - d}{\sqrt{2}\sigma L} \right) \right], \quad (14b)$$

where

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} dt$$
 (15)

is the error function. $n(\xi)$ is peaked at $\xi = 0$ and it is a decreasing even function of ξ . The profile shape is characterized by three parameters; d, σ , and L.

When d << σ L, Eq. (14a) can be approximated as

$$n(\xi) \simeq \frac{n_0}{\sqrt{2\pi}\sigma L} e^{-\xi^2/2\sigma^2 L^2} \left(\frac{\sigma^2 L^2}{\xi}\right) 2 \sinh\left(\frac{\xi d}{\sigma^2 d^2}\right)$$
(16a)

$$\simeq \frac{n_o}{\sqrt{2\pi}\sigma_L} e^{-\xi^2/2\sigma^2 L^2}$$
(2d), for $|\xi| < d$. (16b)

One can readily see that Eq. (16b) is also valid for $\xi >> d$.

For cases where $d \approx \sigma L$ one needs numerical calculations for $n(\xi)$. As examples, $n(\xi)$ is plotted for various $(\sigma L/d)$ values in Figure 3. One should maintain $\sigma L/d > 0.4$ to avoid a flat top distribution in $n(\xi)$. However, one should note that a peaked profile is not a sufficient condition for diagnostics of the beam temperature, as evident from Figure 3. The rms width of the profile should be larger than d.

Since σ is an unknown quantity to be measured, L/d is a more convenient quantity for the system design. Therefore, in order for the profile to represent the velocity distribution of a sheet beam, the parameter (L/d) should be very large, since $\sigma \ll 1$ On the other hand, d is governed by the fact that the density should be uniform across the slit opening, and r_p is small enough to detect many data points over σ L.

12

SECTION 5

DESCRIPTION OF EXPERIMENTAL APPARATUS

A schematic of the electron beam transport channel at the University of Maryland is shown in Figure 4, where the beam emittance measurement has been conducted. An electron beam is produced by a converging Pierce-type gun with a cathode radius $R_c = 1.27$ cm. The gun is typically operated at 5 kV, 200-220 mA, 3 µsec pulse length, and 60 Hz repetition rate. In the first phase of the 40 period experiment,⁷ there are 14 solenoidal focusing lenses of which the first two, M1 and M2, are independently controlled for matching the beam into the channel of periodically spaced lenses, C1 to C12. The system vacuum is maintained at < 1 X 10⁻⁷ Torr by a 400 ℓ /sec turbo-molecular pump and two 8 ℓ /sec ion pumps.

The slit-pinhole system for emittance measurements is located in the main diagnostic chamber at the end of the channel. The slit is constructed from 0.05 mm thick tantalum foil and the slit opening is 2d = 0.25 mm. The Faraday cup assembly is covered by a tantalum foil with a pinhole of diameter $2r_p = 0.1$ mm. The inner cup is shaped to minimize secondary electron effects. The cup assembly is mounted on an XYZ manipulator for precise scanning of beamlet profiles. The slit-pinhole separation is L = 86.14 mm so that L/d = 345. This corresponds to $\sigma L/d > 2.0$ for a 5 keV beam generated in the cathode temperature $T_c = 1400^{\circ}K$.

SECTION 6

EMITTANCE MEASUREMENT OF SPACE CHARGE DOMINATED ELECTRON BEAM

A 5 keV, 200 mA, 3 usec electron beam is transported through the periodic channel. For a given channel focusing strength $B_{ch} = 83$ G, which corresponds to the phase shift per period in the betatron oscillation is $\sigma_0 = 70^{\circ}$. The matched beam is obtained by adjusting M1 and M2, and by monitoring the beam radius at the intermediate diagnostic chambers, i.e., between M2 and C1, and C6 and C7. It is independently confirmed by monitoring the beam envelope beyond C11.⁶ At the entrance of the main diagnostic chamber, the slit is scanned across the beam while the profile is monitored by the pinhole/Faraday cup.

A typical beamlet profile is shown in Figure 5 along with the best fit gaussian profile in the solid curve. In this case, the measured σ is 4.18 mRad, which corresponds to a transverse temperature $T_{\perp} = 2027^{\circ}$ K. Experimental results for n(r), n(r), and $\sigma(r)$ are plotted in Figure 6. We obtain $f_2(x,x')$, using Eq. (9) and integrating over y and y'. This is also plotted in equidensity contours, i.e., emittance diagram, in Figure 7. The $f_1(x)$ and $f_1(x')$ are also shown in Figures 8 and 9.

We obtain $\overline{x} = 7.09$ mm, $\overline{x}' = 50.0$ mRad, and $\langle xx' \rangle = 352.9$ mm-mRad. Therefore, the rms-emittance of the beam is 1.34 X 10^{-4} Meter-Radian. It may be compared to the theoretical value 9.2 X 10^{-5} Meter-Radian for an electron beam from a planar diode of radius 1.27 cm operated 5 kV and 1400⁰K, i.e.,

$$\bar{\varepsilon} = a \sqrt{\frac{2kT_c}{eV}}$$
(17)

where eV is the beam energy. 1,4

5

4

ĺ

2010/02/01/201

建子关闭。

ar ser

3. A. A. B. B. B.

10000

2.5

FIGURE 1. SCHEMATIC OF THE SLIT-PINHOLE METHOD FOR BEAM EMITTANCE MEASUREMENTS

NSWC TR 85-244

SLIT PLANE SCREEN PLANE

NSWC TR 85-244

Contract Contract of the

ļ

FIGURE 4. SCHEMATIC OF THE ELECTRON BEAM TRANSPORT EXPERIMENT AT THE UNIVERSITY OF MARYLAND

FIGURE 5. TYPICAL BEAMLET PROFILE IN THE SLIT-PINHOLE MEASUREMENT

NSWC TR 85-244

RELATIVE CURRENT DENSITY

NSWC TR 85-244

FIGURE 6. BEAM DENSITY n(r), DIVERGING ANGLE $\eta(r)$, AND TRANSVERSE TEMPERATURE $\sigma(r)$ FOR A 5 keV, 200 mA ELECTRON BEAM TRANSPORTED THROUGH THE PERIODIC FOCUSING CHANNEL

ł

FIGURE 7. EMITTANCE DIAGRAM OF THE ELECTRON BEAM. THE CONTOUR LINE REPRESENTS EQUIDENSITY OF $f_2(x,x') = 0.1 f_2(0,0)$

.

NSWC TR 85-244 X-AXIS PROJECTED RELATIVE DENSITY PROFILE 1.0 0.5 0 - 16 -12 0 4 8 12 16 -8 -4 X, mm

FIGURE 8. DENSITY PROFILE PROJECTED ON THE X-AXIS

25/26

REFERENCES

- 1. Lawson, J. D., <u>The Physics of Charged-Particle Beams</u> (Clarendon, Oxford, 1977), Chapter 4, p. 172.
- 2. Van Steenbergen, A., Nucl. Instru. Methods 51, 245(1967).
- 3. Lejeune, A. and Aubert, J., in <u>Applied Charged Particle Optics, Part A</u>. edited by A. Septier (Academic, New York, 1980), p. 159, and references therein.
- Namkung, W., Loschialpo, P., Reiser, M., Suter, J., and Lawson, J. D. IEEE Trans. Nucl. Sci. <u>NS-28</u>, 2519 (1981).
- 5. Suter, J., Namkung, W., Chojnacki, E., Loschialpo, P., Reiser, M. and Lawson, J. D., Bull. Am. Phys. Soc. <u>27</u>, 981 (1982).
- 6. Chojnacki, E., Namkung, W., P. Loschialpo, P., McAdoo, J., Reiser, M. and Lawson, J. D., Bull. Am. Phys. Soc. <u>29</u>, 1432 (1984).
- 7. Reiser, M., Chojnacki, E., Loschialpo, P., Namkung, W., Lawson, J. D., Proir, C. and Warner, G. P., in <u>Proc. 1984 Linear Acc. Conf.</u>, GSI, Darmstadt, W. Germany, GSI-84-11 (1984), p. 309.

DISTRIBUTION

Copies Office of the Secretary of Defense Lawrence Berkeley Laboratory Washington, DC 20302-7100 Chief Office of Naval Research Attn: Dr. C. W. Roberson Arlington, VA 22217 Commander Naval Research Laboratory Attn: Code 6840 (Dr. S. Ahn) Code (Dr. J. Golden) Code 4763 (Dr. R. Greig) Code 4790 (Dr. I. Haber) Code (Dr. C. A. Kapetanakos) Code (Dr. P. Loschialpo) Code (Dr. R. Parker Code (Dr. J. Pasour) Code 4790 (Dr. P. Sprangle) Washington, DC 20375 U. S. Department of Energy Division High Energy Physics Attn: Dr. R. Sah (MS-ER-22-GTN) Dr. D. Sutter Office of Inertial Fusion Attn: Dr. T. Godlove Washington, DC 20585 National Bureau of Standards Attn: Dr. M. Wilson Gaithersburgh, MD 20760 The Pentagon Attn: COL R. Gullickson (SDIO/DEW) Washington, DC 20301

2

ł

1	Attn: Dr. D. Keefe Dr. C. H. Kim	1
	Ur. E. P. Lee Dr. L. Smith	1
1	1 Cyclotron Road	T
•	Berkeley, CA 94720	
	Sandia National Laboratory	
	Division 5246	
1	Attn: Dr. B. R. Mill	1
1	Albuquerque, NM 87115	
i	Los Alamos National Laboratory	
1	Attn: Dr. L. E. Thode (MS-608)	1
1	Los Alamos, NM 87758	
1	lawrence livermore laboratory	
ī	University of California	
-	Attn: Dr. R. Briggs	1
	Dr. J. W-K. Mark	1
	Dr. V. K. Neil	1
	Dr. D. S. Prono	1
1	Dr. D. Prosnitz	1
1	Dr. S. Yu	1
	Dr. W.A. Barletta (L-321)	1
1	Livermore, CA 94550	
	University of California	
	Laboratory for Plasma Studies	
1	Attn: Prof. H. H. Fleischmann	1
	Prof. J. Nation	1
	Irvine, CA 92664	
1	Cornell University	
	Attn: Dr. L. E. Thode (MS-608)	1
	Attn: Prof. H. H. Fleischmann	1
	Ithaca, NY 14850	

- ---

Copies

DISTRIBUTION (Continued)

	<u>Copies</u>		Copies
University of Manuland		Internal Distribution	
Electrical Engineering Department		R	1
Atta: Deef U Deetley		R04	1
Acut Prof. W. Destler	1	R40	1
Prot. M. P. Keiser	1	R401	1
correge Park, MD 20742		R41 (M. Brown)	1
		R41 (R. Fiorito)	ī
University of New Mexico		R41 (M. Rhee)	1
Department of Nuclear Engineering		R41 (D. Rule)	ī
Attn: Prof. S. Humphries, Jr.	1	R41 (J. Smith)	1
Albuquerque, NM 87131		R41 (R. Schneider)	1
		R41 (H. Uhm)	1
Massachusetts Institute of Technology		R42 (C. Larson)	1
Attn: Prof. G. Bekefi	1	R43 (J.Cunningham)	1
Bldg. 36-213		R43 J. Choe)	1
77 Massachusetts Ave.		R43 (D. Jablonski)	1
Cambridge, MA 02139		R43 (A. Krall)	1
		R43 (W. Namkung)	10
Defense Technical Information Center		R44 (T. 7ien)	10
Cameron Station		R45 (H Riedl)	1
Alexandria, VA 22314	12	F34 (1 Nolting)	1
-		F35 (GIDEP Office)	1
Library of Congress		E231	1
Attn: Gift and Exchange Division	4	F232	9
Washington, DC 20540	т		3

(2)

Section of the sectio

