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FOREWORD

4 diagnostic technique of the beam emittance is developed for electron
beams with diverging envelopes under strong space charge forces. Radial
profiles of current density, local temperature, and divergence angle are
measured by the slit-pinhole method for axisymmetric beams. The particle
distribution function in transverse phase space is then constructed and the
rms emittance is obtained by numerical integrations. A 5 kV, 200 mA, and
3 psec electron beam is used in the comparison between theory and experiment
on this diagnostic method.
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SECTION 1

INTRODUCTION

There are numerous applications of charged particle beams ranging from

electron microscopes to high energy particle accelerators. In their various

stages of formation, acceleration, transport, and focusing, charged particle

beams are commonly required to be of high quality. One of the physical

quantities that measure beam quality is the emittance, which is proportional

to the phase space area occupied by the beam particles. The emittance is

closely related to the brightness in electron microscopy and to transverse

temperature in plasma physics. 1 Even though the definition of emittance and

its measurement principles are very simple, it is known that experimentally

obtaining a meaningful and/or comparable quantity is very difficult. Various

methods of emittance measurement 2,3 have been introduced in the past,

especially in particle accelerator physics.

In free space, the envelope of a non-neutral charged particle beam

expands due to space charge forces and transverse beam emittance. Depending

on relative contribution to. envelope expansions, one may classify a beam as

either space charge dominated or emittance dominated. In the space charge

dominated beams, for reasons which will be apparent in Section 3, sample

beamlets are distorted so that results from conventional methods are

inadequate in representing beam quality.

1m m rm mm m ~ m m ~ l I mm l m ~ m
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Recently the emittance changes under the strong influence of space charge

forces have been experimentally investigated for electron beams at the

University of Maryland.4 In this experiment one should compare the measured

emittances under various conditions. This work 5 ,6 has been carried out in

connection with the University of Maryland electron beam transport experiment,

in which a space charge dominated electron beam is transported through a

solenoid focusing channel to investigate the emittance growth.

In this paper, briefly reviewing various emittance definitions for

practical beams, the slit-pinhole method is introduced to find parameters in

constructing the distribution function in transverse phase space for an

axisymmetric beam. A low energy electron beam in space charge dominated

regime is used to evaluate this diagnostic technique.

2
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SECTION 2

ROOT-MEAN-SQUARE EMITTANCE

When a particle beam propagates along the z-direction, one denotes

f4 (x,Pxypy) as the distribution function in transverse phase space. In the

paraxial approximation where pz is approximated to be constant and far greater

than Px and py, the distribution function is conveniently described as

f4(x,x',yy'), where x'= px/pz = dx/dz and y'= Py/Pz = dy/dz. In xx' phase

space, the particle distribution is then

f2(x,x') = ff f4 (x,x',y,y')dydy'. (1)

The phase space area occupied by beam particles can be described as

Ax = ff dxdx', (2)
f2t o

and beam emittance is then defined as

Ax
Ex - (3)

Similarly £y is defined in yy' phase space. In general, ex and cy are not the

same unless the beam is axisymmetric. One may further define the normalized

emittance

3
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e n,x = Yoex (4)

as a conserved quantity with respect to changes in pz such as in an

accelerating system.

For most real beams, the phase space area defined in Eq. (2) is

unbounded. However, experimental measurements will give a finite value due

mainly to instrument resolution. This results in beam quality as measured by

emittance is a function of instrument resolution. In addition, the phase

space area is often deformed by various nonlinear force effects so that the

emittance defined through Eqs. (2) and (3) is inconvenient from the practical

point of view.

In order to avoid these difficulties encountered in determining phase

space area, a root-mean-square(rms) emittance is introduced, especially, in

particle accelerator physics. The rms emittance e is defined I as
X

C =4 [ <x2> < , <xx'> 2 112, (5)

where, < > denotes an average value over f2(x,x') distribution. We also

define fl(x), and fl(x') as

fl(x) = f f2 (x,x')dx', (6)

and

fl(x') = I f2 (xx')dx. (7)

One should note that fl(x) and fl(x') are particle distributions

projected onto the x- and x'-coordinates. An ideal particle distribution

4
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function called the Kapchinskij-Vladimirskij (K-V) distribution, 1 is often

used for theoretical studies. In this distribution, particle distribution

projected onto any two dimensional space is uniform, and beam emittance ex is

the same as rms emittance E defined in Eq. (5). The rms emittance is,X

therefore, used in comparison between a real beam and the corresponding ideal

beam.

In real beam cases, the distribution function f2 (x,x') is graphically

exiressed by equidensity contour lines in the xx' plane. These contour lines

are, in general, ellipses with major axis tilted with respect to the

coordinate axis. In a special case, where the major axis coincides with the

coordinate axis, i.e., in upright ellipse case, Eq. (5) becomes

= 4 <x2>112<x,2>1/ 2 = 4 (8)

Eq. (8) implies that it is sufficient to know f1(x) and f1 (x') to determine

rms emittance of a beam. This case of an upright ellipse occurs at extrema of

the beam envelope along the z-axis. The envelope maximum point may not be

accessible due to the fact that it occurs at the lens center. The minimum

point is not a practical choice since the sampling points are dramatically

reduced or the waist is not often predicted. Thus, emittance measurements are

usually done on a diverging or converging beam.

5/6
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SECTION 3

SLIT-PINHOLE METHOD FOR SPACE CHARGE DOMINATED BEAM

The distribution function f2 (x,x') can be measured by employing a pair of

long slits separated by a proper axial distance. The first slit plane stops

most of the beam particles except those with the same x value of the slit.

The second slit is then scanned along x direction in order to obtain f2(x,x')

at the given x value. Repeating this at other x values, one can scan the

particle distribution in whole xx' space. In this procedure, one has to keep

the slits parallel. This is very difficult experimentally. In addition,

there arises another difficulty; when the beam particle distrihution is not

uniform in real space, the sample beamlet passing the first slit plane bends

like an arc due to nonlinear diverging forces. The particles detected by the

second slit due to this bending effect can not be distinguished experimentally

from that of the velocity distribution. Therefore, the slit-slit method is

not an adequate one for space charge dominated beams. When one employs a

small-pinhole moving along the x-axis instead of the second slit, these

difficulties, i.e., alignment and beamlet bending will be overcome. The phase

space distribution measured in this way is not the same to the one defined in

Eq. (1). Therefore, we discuss the procedure in obtaining the rms emittance

in the s'it-pinhole method.

Consider an axisymmetric beam with an envelope diverging in free space

under its own space charge forces. Assume further that the local

7
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temperature T (r) represents the Maxwell-Boltzmann velocity distribution. We

may then restate the assumptions without loss of generality as follows:

1. The particle density distribution in real space is a radial function

n(r).

2. The beam diverges radially, i.e., a cylindrical shell of radius r in

the heam diverges with a slope n (r).

3. The transverse temperature is also a radial function TN(r) . It is

2 1/?
conveniently described as 0(r) = (kT1 (r)/mv0 ) / , where k is the Boltzmann

constant and v. is the axial velocity of the particles. The distribution

function of the beam in transverse phase space can be written as
(x -~ 2/'-n()2/22]

Se-(X'-nx) 2 2 a 2 e - ( y  2 (9)f 4 (x,x',y,y') =n(r) [--

where, nx = n(r)x/r, ny = n(r)y/r, and n(r) is a normalized radial density

distribjtion function satisfying

2 rfon(r)rdr = 1. (10)

When ncr), n(r), and o(r) are measured experimentally, f2 (x,x') can be

obtaine1 1y analytical and/or numerical integration of f4 over y and y'. The

slit-pin hole nethod can be used to obtain these parameters.

The diagnostic arrangement for the slit-pinhole system is schematically

shown in Figure 1. The slit plane is located at z = 0 with a narrow slit

parallel to the y-axis. A sheet beamlet passes through the slit of width 2d

and the diverging !eamlet profile is scanned by a current (particle) collector

in the screen plane z = L. The current collector is covered by a plate with a

pinhole of radius rp which travels on the -axis, This system is commonly

8
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designed as L > a (beam radius) >> d > rp that the side dimension of the sheet

beamlet spreads due mainly to the transverse temperature of the beamlet.

When the slit is located at x = xo, the density np detected by a pinhole

collector on the c-axis, i.e., = 0, becomes

x +d

n p(;xo ) = f dy f dy' f dx' f dx f 4 (x,x ,y,y' )( 2 )6(x_- ,)6(y'+ .) (11a)
p o 0 -Cc -0 x 0-d L(~'yy) )('

d yn e-(-X + nL)2 /202 L2e-(y + yL) 2 /2a 2 2

7F2fdy a , 
1b

where the argument for n, n, and a is r = (xo 2 + y2 )1/2. Here, we have used

the condition that the slit opening 2d is very small, d < < a L < < a. The

effect of a finite slit width is discussed in the next section.

The last term in Eq. (11) is a monotonically decreasing even function of

y from its peak value at y = 0. When a L << 1, it can also be approximated as

e-(y + y L)2/2 2L2 aL<<l CL 6(y). (12)

Substituting Eq. (12) into Eq. (11), we obtain

n & x ) -2d n(x0 ) -(-Xo+ nL) 2/2 2L2  (13)x 0 ) - L a ((x30)0p v' L (xO)

Therefore, n(r), n(r), and a(r) can be obtained from Eq. (13). The beamlet

profile np (;Xo ) is a gaussian with a peak value proportional

to n(x0 )/a(x0 ), the peak shift nL, and the rms width aL. This relationship is

shown in Figure 2. One notes that we should integrate Eq. (13) to obtain n(xo)

unless a(x ) is constant throughout the beam cross section.

9/10
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SECTION 4

FINITE SLIT WIDTH EFFECT

In order to see the finite slit effect of the sheet beamlet profile on

the screen, let us consider an one-dimensional sheet beam: A sheet beam of

uniform density no and thickness 2d is located on the y-axis. Let us assume

that the velocity space distribution is a Maxwellian with a temperature T and

the beam (current) density is so small that we can neglect the space charge

broadening of the sheet beam. The density distribution in the screen plane

z = L is then expressed as

n d -(&-x)2/2a2L2

n() f 0 f e dx (14a)
-d

- [erf (A -dL) - erf (L'_)], (14b)
2 r aL r2 aL

where

erf(x) f e2dt (15)

is the error function. n(t) is peaked at = 0 and it is a decreasing even

function of E. The profile shape is characterized by three parameters;

d, a, and L.

When d << aL, Eq. (14a) can be approximated as

11
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n(t) no e- 2/2a2L2  o2L2 da

n(a) e 2 sinh ( 2 2 (16a)

0 e - /20 L (2d), for IEI<d. (16b)

One can readily see that Eq. (16b) is also valid for E >> d.

For cases where d - oL one needs numerical calculations for n(E). As

examples, n(E) is plotted for various (aL/d) values in Figure 3. One should

maintain aL/d > 0.4 to avoid a flat top distribution in n(t). However, one

should note that a peaked profile is not a sufficient condition for

diagnostics of the beam temperature, as evident from Figure 3. The rms width of

the profile should be larger than d.

Since a is an unknown quantity to be measured, L/d is a more convenient

quantity for the system design. Therefore, in order for the profile to

represent the velocity distribution of a sheet beam, the parameter (L/d)

should be very large, since a << 1 On the other hand, d is governed by the

fact that the density should be uniform across the slit opening, and rp is

small enough to detect many data points over aL.

12
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SECTION 5

DESCRIPTION OF EXPERIMENTAL APPARATUS

A schematic of the electron bean transport channel at the Iniversity of

Maryland is shown in Figure 4, where the beam emittance measurement has been

conducted. An electron beam is produced by a converging Pierce-type gun with

a cathode radius Rc = 1.27 cm. The gun is typically operated at 5 kV, 200-220

mA, 3 lisec pulse length, and 60 Hz repetition rate. In the first phase of the

40 period experiment,7 there are 14 solenoidal focusing lenses of which the

first two, M1 and M2, are independently controlled for matching the beam into

the channel of periodically spaced lenses, Cl to C12. The system vac(um is

maintained at < I X 10- 7 Torr by a 400 Z /sec turbo-molecular pump ant two 8

x /sec ion pumps.

The slit-pinhole system for emittance measurements is located in the main

diagnostic chamber at the end of the channel. The slit is constructed from

0.05 mm thick tantalum f il and the slit opening is 2d = 0.25 mm. The Faraday

cup assembly is covered by a tantalum foil with a pinhole of diameter 2rp =

0.1 mm. The inner cup is shaped to minimize secondary electron effects. The

cup assembly is mounted on an XYZ manipulator for precise scanning of beamlet

profiles. The slit-pinhole separation is L = 86.14 mm so that

L/d = 345. This corresponds to aL/d > 2.0 for a 5 keV beam generated in the

cathode temperature T. = 14000K.

13/14
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SECTION 6

EMITTANCE MEASUREMENT OF SPACE CHARGE DOMINATED ELECTRON BEAM

A 5 keV, 200 mA, 3 usec electron beam is transported through the periodic

channel. For a given channel focusing strength Bch = 83 G, which corresponds

0to the phase shift per period in the betatron oscillation is a 0= 700. The

matched beam is obtained by adjusting M1 and M2, and by monitoring the beam

radius at the intermediate diagnostic chambers, i.e., between M2 and C1, and

C6 and C7. It is independently confirmed by monitoring the beam envelope

beyond C11. 6 At the entrance of the main diagnostic chamber, the slit is

scanned across the beam while the profile is monitored by the pinhole/Faraday

cup.

A typical beamlet profile is shown in Figure 5 along with the best fit

gaussian profile in the solid curve. In this case, the measured a is 4.18

mRad, which corresponds to a transverse temperature Ti = 20270 K.

Experimental results for n(r), n(r), and a(r) are plotted in Figure 6. We

obtain f2 (x,x'), using Eq. (9) and integrating over y and y'. This is also

plotted in equidensity contours, i.e., emittance diagram, in Figure 7. The

fl(x) and fl(x') are also shown in Figures 8 and 9.

We obtain x = 7.09 mm, x' = 50.0 mRad, and <xx'> = 352.9 mm-mRad.

Therefore, the rms-emittance of the beam is 1.34 X lO 4 Meter-Radian. It may

be compared to the theoretical value 9.2 X 10.5 Meter-Radian for an electron

beam from a planar diode of radius 1.27 cm operated 5 kV and 14000K, i.e.,

15
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where eV is the beam energy.1.4
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FIGURE 7. EMITTANCE DIAGRAM OF THE ELECTRON BEAM. THE CONTOUR LINE REPRESENTS
EOUIDENSITY OF f 2(x x') = 0. if 2(00o)
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X-AXIS PROJECTED RELATIVE DENSITY PROFILE
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0
-16 -12 -8 -4 0 4 8 12 16
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FIGURE 8. DENSITY PROFILE PROJECTED ON THE X-AXIS
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