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PREFACE

This Note covers wcri done on the problem of modeling and

estimatirg the demand for aircraft spare parts while the author was a

consultant to The Rand Corporation in the summer of 1983. The research

began under the Project AIR FORCE Resource Management Frogram study
entitled "The Driving Inputs and Assumptions of Stockage Assessment
Models.” The Note is being published as part of a follow-on study
entitled "Enhancing the Integration and Responsiveness of the Support
System to Meet Wartime and Peacetime Uncertainties."

This work grew out of a study of parts failure data from several
Air Force units, strongly indicating that either current models of part
failure behavior or prevailing beliefs abourt the inherent stability of
this bchavior, or both, were wrong. The results here support this
indication, but they are of general interest for wmodeling and estimating
nonhomogeneous Poisson processes.

This Note will be of interest to those concerned with forecasting

inventory requirements in the Department of Defense or industry.
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SUMMARY

Mathematical models are commonly used to study tle performance of
the Air Force's spare parts supply and repair systems. But accurate
evaluations of supplv policies are not possible without accurate models
of the supply system, and models that understate the variability in the
supply system will bias evaluations in favor of policies that rely on
accurate predictions of part failures. This Note examines the model for
part failures used in The Rand Corporation Supply System model
Dyna-METRIC.

Section I gives a short description of Dyna-METRIC and then a longer
description of common probability models for part failures. The
strengths and weaknesses of these models are discussed, with particular
attention to sources of variability in observed part failure behavior
that the models do not appear to capture.

Section 1l has two purposes. The first is to examine the plausibility
of Dyna-METRIC's current probability mwodel for part failures in the
light of some new Air Force data. This model treats the number of
failures of a particular part, at a particular air base, in a time
period of given length, as a Poisson random variable with mean lf, where
f is the total number of hours flown in that time period, and A is an
unknown constant characteristic of the part and airbase. The second
purpose is to derive some new prcperties of V, a commonly used estimator
of the variance-to-mean ratio, under thre_ different probability models
for part failures. These properties of V indicate strongly that
Dyna-METRIC's current probability model does mot permit enough
variability to credibly explain the Air Force data. Further, 21though
the data do indicate that it is preferable to model mean part failures
as a + Bf for ¢ and B unknown constants and a not necessarily zero, a
Poisson model with this mean still does not allow enocugh variability. A
negative binomial model with mean « + B8f is preferred.

Finally, Sec. 1l shows that U is alwavs biased low for the
probability model in which it is intended to be used--i.e., with part

failures distribured as negative binomial random variables with mean Af

PREVIOUS pAGE
IS BLANK




i v" o°' \’.

and variance-to-mean ratio p. This bias is an incrzasing function cf p

for a fixed number of total expected failures and can be very large for

large p.

Section 111 contains suggestions for estimating the parameters of the

models recommended in Sec. II. Maximum likelihood estimates are suggested

because they are tractable and because they appear to solve the bias

problem noted above.
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I. THE REAL WORLD PROBLEM, SOME CURRENT MODELS,
AND SOME MODELING ISSUES

INTRODUCTION

One of the missions assigned to the Air Force is to be able to
relocate fighting units and associated service amnd supply facilities to
far-fiung places on short notice, to meet a variety of policy
commitments. A remarkable amount of materiel is needed to keep such
units operational, and airlifting capacity is limited and expens :ive.
Because of this limited capacity, several policy choices must be made.
One such choice is how best to handle spare parts supply -equiremeants--
i.e., is it possible to design spare parts kits that don't take up toc
mucn airlift space but are sufficient to maintain an adequate number of
operational planes for some desired length of time; or would it be
preferable to have a "responsive"” supply system in which, for example, a
dedicated fleet of planes hauls spare parts around as needed, reducing
spare parts kits airlifted with the units accordingly? Given the choice
of a general approach to supplying parts, how often should shipments be
made, how large should these shipments be? And so on.

These kinds of questions have long been examined with the help of
mathematical models intended to simulate the wartime performance of the
spare parts supply and repair system. One model developed at Rand and
in wide use within the Air Force is called Dyna-METRIC (for Dynamic
Multi-Echelon Technique for Recoverable Item Control); henceforth I will
often refer specifically to Dyna-METRIC, but its features are not
atypical of such models.

x
3
-
o
-
-
.
-

These models attempt to characterize the (1) numbers of failures of

.
. by $ 4,

parts on planes, where proneness to failure is allowed to deperd on the
intensity of use as dictated by a war scenario (thus "Dynamic™); (2)
repair times of those parts that can be repaired, either at the forward
airbase or at some more centralized rearward repair facility (thus
"multi-echelon™); (3) trans,ortation times and other delays, where
relevant; and (4) stocking reguirements, the levels of stocks of parts
kept at the forward base and at the more centralized repair facility,

ard lavels of and timing of supplies of new parts.
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The general scheme of the Dyna-METRIC model is depicted in Fig. 1
which is a simplified version of Fig. 1 in Hillestad (1982). 1In

’

Dyna-METRIC, the numbers of part failures are modeled as random
variables whose probability distributions depend on the number of hours
flown, the measure of intensity of use. To be more specific, comnsider a
particular Air Force unit, and a part i, which is in all of the planes

in that unit. Let Xj(i) denote the number of failures on part i in that

unit in time period j. In Dyna-METRIC, the parameters of the

[ AR Sy L I L T

probability distribution of Xj(i) are assumed to depend on total hours
flown by the unit in the jth time period. The effects of different war

scenarios on failures are examined by manipulating the number of hours

TN

flown, the number of planes used, and other factors affecting the

distributions of Xj(i) for the various parts.
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Repair times for individual failed parts are treated as random
variables having exponential or degenerate distributions, and assumptions
are made about the orobabilities that parts can be repaired only at the
rearward centralize] facility. The exponential dist.ibution was chosen
for mathematical convenience, but it seems to be a satisfactory
assumption. Both under the assumption of an infinite number of repair
stands (Crawford, 1981) and, as far as is known, under the assumption of
a finite number of repair stands, the supply system performance
measurements produced by Dyna-METRIC are fairly insensitive to the
distributional forms assumed for repair times.

The effects of various stockage policies can be introduced by
v8 -ying purchases from vendors and decisions about allocating spare
parts to the stock of the forward bases or the rearward facility. It is
assumed that stoci:ng policy is nonstochastic, and these policies are
represented by changes at prescribed times in the numbers in stock at
the bases and the rearward facilitv.

The purpose of these models is to comnect dollars and cemnts policy
decisions to aircraft performance of assigned missions. Dyna-METRIC
and other models produce several performance measures. Some are
inventory measures, such as the probability distribution of the maximum
backorder across all parts, the probability that a failure of a
particular part will be filled immediately from stock, and so on. These
measures are derived analytically, based on the distributions assumed
for failures and repair times. More relevant to the poli:y questionms,
if mission requirements can be specified in terms of numbers of planes
with particular capabilities, it is possible to derive a probability
distribution for mission capability from the already noted inventory

measures.

MODELING FAILURES (DEMANDS)
These performance measures are no better than the model that
generates them. The particular area of concern here is modeling the

numbers of failures, or demands, and estimating the parameters in those
models.




A common assumption is that the number of failures X in a period of

given length has a Poisson distribution with parameter u, in which case
PX=Kk)=e 'u /k! for k=0, 1, 2, ....

Under this assumption, both the wean and variance of X are equal to u,
so that the variance-to-mean ratio p = var(X)/E(X) is equal to 1. To
model applications in which p exceeds one, a negative binomial
distribution is oftea hypothesized. Here,

P(X = k) =(k e 1)(1 -p%F  fork=0,1, 2, ...,

where r > 0, 0 < p < 1. In this case, E(X) = r(1 - p)/p and var(X) =
(1l - p)/pz, so that p = 1/p > 1. As is well known, the Poisson

distribution is a limit of negative binomial distributions as p * 1 and

V)

i .
oot

r * « in such a way that r(1 - p) remains fixed at u (Feller, 1968, p.
172).

fi

"

v,

The current version of Dyna-METRIC assumes that demand for a
particular part for a particular Air Force unit in some period of given
length is either Poisson or negative binomial. W¥hen the Poisson
distribution is used, its mean is assumed to equal Af, where X is an
unknown constant peculiar to the part and unit, and f is the number of
hours flown by the unit in the given period. When the negative binomial
distribution is used, its mean is also assumed to be Af, and its
variance-to-mean ratio is assumed to be p, so that r = Af/(p - 1) and
p = 1/p.

The negative binomial is a "compound Poisson” distributior in both
senses in which that term is commonly used. In the first sense, usvally
associated with probabilists, the random variable SN = Xl + Xz + ... +
XN can be shown to be negative binomial if the Xj are independently and

identically distributed with
P(X. =n) = (1 - p)"/(-n n p), n=1,2, ...,

for 0 < p < 1, and N is independently distributed as a Poisson random
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variable with y = - r 2n p (Feller, 1968, pp. 268-269 and 286-291). In
the second sense, usually associated with statisticians, if the
conditional distributicn of a random variable X, given its mean u, is
Poisson, and p itself has a gamma distribution with density

g = 8% e B/r (o),

then unconditionally X has a negative binomial distribution with r = «
and p = (B + 1) (Hogg and Craig, 1970, pp. 99-211). More generally,
compound Poisson distributions are defined by replacing P(Xj = n) with
an appropriate distribution in the first sense, or by replacing the
gamma distribution appropriately in the second sense.

Aside from mathematical tractability, the use of compound Poisson
models has been rationalized by at least two substantive considerations.
First, it follows from Levy's work on infinitely divisible distributions
that any arrival process where the numbers of arrivals in disjoint time
intervals are independent is Poisson or compound Poisson in the first
sense above (Feller, 1968, pp. 289-290; Crawford, 1981, p. 10). Thus an
assumption of independence of failures in disjoint time intervals
justifies using compound Poisson models, although it does not justify
the use of any particular compound Poisson model. Second, under some
conditions the Poisson distribution is a good approximation to the
distribution of the s»m Pn = Xl + ... + Xn of n mutuaily independent
random variables Xk witi distributions P(Xk =1)= P = 1- P(Xk = 0).
If the probabilities Py depend on n in such a way that the largest Py
rends to zero but the sum P, +--- + P, = )\ remains constant, then in
the limit as n * =, Sn has a Poisson distribution with parameter A
(Feller, 1968, p. 282). Thus for large n and moderate values of )\, the

- distribution of Sn can be approximated by a Poisson distribution. This

!

[l
(3
o

justification of a Poisson model has appeal for modeling failures of

UMM (9

)
10
L)
L D )

suach parts as landing gear, for which it is more natural to assume that

1" u“ !’ ¢
o 8t "A' ‘

a failure will occur with scme fixed probability on each mission than to

I.'
[ ]

assume a Poisson failure distribution for landing gear directly.

i

‘ "‘.

Both of these substantive considerations rely on an assumption of
independence. In some situations this may be clearly inappropriate, for

example, for parts that age rapidly or have very high failure rates
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(Crawford, 1981, p. 11). However, loosening the independence assumption
would require extensive reworking of the protability theory underlying
the failure models, and currently the indepe-r dence assumption is not
believed to be inaccurate enough to justify ciis reworking. Henceforth,
we will assume that failures follow a compounZ Poisson distribution.

At this point, several modeling issues czn be raised:

1. As already noted, independence of nuzbers of failures in
disjoint time intervals is assumed. This will not be pursued
further.

2. 1Is the failure distribution really stationary in peacetime?
For example, is there seascnal variation in the failure
behavior of certain kinds of parts? Available data indicate
that there is scme seasonal variation, and it is not difficult
to imagine that there would be some ir extreme climates.
Stationarity will henceforth be assumed.

3. Even assuming independence, is there any reason other than
convenience to assume that the appropriate compound Poisson is
a negative binomial and not some othex compound Poisson? There
has been some investigation indicating that, for real aircraft
failure data, the variance-to-mean ratio increases with the
mean. which is not a property of the nagative binomial although
it is a property of other compound Poisson distributions. The
actual import of this apparent finding is unclear, because it
may simply be an artifact of the estimator used.

4. The relationship between mean demands and flying hours is not
well understood. First, it is not at all clear that flving
hours are an appropriate "clock”--e.g., for landing gear what
matters is not how long the plane is it the air, but how often
it lands; also, some radar parts spend substantial amounts of
time switched on and running while the plane is on the ground,
so that flying hours understate the ac:ual intensity of use.
Second, there is no particular reason to assume that the
relationship between flying hours and mean demands goes through
the origin. If the planes simply sat in the hangars, some
failures would occur anyway. Also, if this relationship were
nonlinear with a positive second derivative, and it was desired
to approximate the relationship for higher numbers of flying
hours, a linear approximation might be appropriate, but its
intercept would be negative. Third, there is no particular
reason to assume that mean demands are a linear nondecreasing
function of flying hours. On the contrary, there is evidence
that high sortie rates can actually improve the "health"” of
some aircraft parts. A study by Crawford and Kamins
(forthcoming) of objective measures of the health of components
in the fire control and weapons delivery system of F-16s,
gathered during a surge of aircraft activity during an
exercise, found that reported rates of malfunctions, as
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measured by the aircraft systems, actually declined com»ared
with rates reported in periods of lower activity before and
after the surge.

4 or g v
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The available data are somewhat less than ideal. The Air Force
iogistics Command accumulates failurec date for ea2ch parit over
all bases worldwide, and disaggregated data are not curremtly
available, as far as I know. The base data available for this
study were collected at Rand for 20 parts with fairly high
demand rates, on five airbases, over at most 13 quarters.

Among the problems with these data were: (a) "managed demand,”
cr possible changes in reported numbers of failures associated
with management decisions related to reporting or servicing;
and (b) a small number of observations for each part/base
combination.

1
Wb,

»

6. There was a manifest lack of enthusiasm anong data collectors
(mechanics), the utility of the data not having been strongly
impressed on them.

This Note will consider only the third of these issues, the nature
of the compounding distribution, and the fourth, the relationship
between flying'hours and the mean numbers of failures. This emphasis
does not imply a judgment that the other issues are unimportant. In
fact, they are so poorly understood that their importance cannot be
assessed satisfactorily. But in the consideration of competing spare
parts supply systems, it is essential to understand how well we can
predict levels of parts failures under wartime conditions; issues that

are not well understood cannot be dismissed.
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il. SOME NOTES ON AN ESTIMATOR OF
VARIANCE-TO-MEAN RATIO

INTRODUCTION

This section describes some properties of an estimator of variance-

to-mean ratio called V. TILet

number of demands in period i (i =1, 2, ..., n),

ZXi = total number of demands over all n periods,

number of flying hours in period i (i =1, 2, ..., n),

-3 Hrh ZIH?c
]

Zfi = total number of flying hours in all periods.
If N> 0, V is defined to be
V = 8%/),

where i = N/T and
2 _ _ 2.2 _ 132
(n 1)§" = Z(Xi fiX) /fi = Zfi(xi/fi X)".
If N = 0, both numerator and denominator of V are zero, and V is defined to
have the value 1 for reasons that will become clear below.

The estimator V is 1/(n - 1) times the so-called "index of

dispersion” defined by
D= 5(X., - £.0)2%/£.2
i i i™”
Note that D results from replacing E(Xi) by fii in the expression

2 _ . 2
X -Z(Ki E(X;)) /E(Xi),

. 2 . . . . .
and that D is also the X~ statistic for testing the hypothesis that the
observations X; have Poissor distributions. In this case, the

ey Xn) given N is multinomial

conditional distribution of (Xl, XZ’

G
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with parameters P; = fi/T' Hence, under the Poisson hypothesis the well-
known asymptotic result gives the conditional distribution of D given N
as approximately x2 with n - 1 degrees of freedom.

This study was prompted by an examination of the data mentioned in
Sec. I in which V was used. Judged zgainst prevailing beliefs about

values of p for actual part failure distributions, the results seemed

/

quite unusual--43 of the hundred values of V calculated were greater

}‘ "a '.'

than 5, 15 exceeded 15, and one was greater than 95. This appeared to

bar,

3
A

contradict what was known about the properties of V tor values of p

generally considered reasonable and suggested that these large values of

V were indicating model failures as well as larger than expected

Y

variability. To see whether model failures could result in values of V

e
t I
P

similar to those cbserved, and to study further properties of V under

o

the more favorable assumptions described in Sec. I, V was examined under

Ll

several sets of assumptions, three sets of which will be discussed here:
that the number of failures in a period of given length bkas (1) a

Poisson 1istribution with parameter Af, (2) a negative binomial
distribution with parameters r = Af/(1 - p) and p = 1/p, and (3) a Poisson
distribution with parameter a + 8f, a # 0.

Apart from their relevance to the part failure problem, the results
of (1) are relevant to inference for nonhomogeneous Poisson processes in
other situations. Im (3), it is shown that simple model failure alone
could not reasonably have produced the unusual observed values of V,
although plots of failures against flying hours suggest that including
an intercept term in the negative binomial mean is desirable in some
cases. The main result in (2) is that V is biased low, with the bias
increasing as p gets larger relative to AT. This implies that even if
the negative binomial model with mean Af adequately characterizes the
process generating part failures, the true variability is underestimated
on the average by V, with the largest underestimation occurring for the

largest values of p.

............
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PROPERTIES OF V UNDER POISSON ASSUMPTIONS

The properties of V are examined here under Poisson assumptions.
Expected values and variances are derived for various values of n and
patterns of flying hours, and Monte Carlo simulations of the
distribution of V are displayed and discussed.

The assumptions (henceforth referred to as "the Poisson
assumptions™) are as follows: if Xi is the nuuber of demands for a
given part in the ith period, and fi the flying hours for the ith

period, then assume

(1) Xi is a random variable with a Poisson distribution, having
mean Xfi. That is, demands are stationary over periods, with a
constant expected rate of demands per flying hour.

(2) The counts for different periods are independent.

Whether the Poisson assumptions hold or not, the denominator of V
is unbiased for A. Under the Poisson assumptions, the numerator is also
unbiased for A, and V has expectation 1. Indeed, E(V|N) = 1 for ail
values of N > 0. These results stem from the fact that, givem N, the
conditional distribution of Xi is binomia} with parameters N and P; =
fi/T' It follows that E(XiIN) = Npi = fix and

i

E{(X; - fii)zlnl = var(X,[N) = Np_(1 - p,) = fii(1 - py)-

Hence, the conditional exp:ctation of the numerator of V is
2 -1.2 _3
E(S"IN) =(n - 1) "0 (1 - fi/T) =2

and E(V|N) = E(SZ/A[N) = 1. Taking expectations yields E(SZ) = X and
E(V) = 1.

This generalizes a result by Rao and Chakravarti (1956, pp.
265-266), for the case of equal fi' Note that this result does not
require that the fi be known Appendix A contains a derivation of E(V)
under an assumption that E(Xi) = Xi, which may be of use in other

sensitivity analyses.
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The above results do not hold in general; i.e., V is not usually
unbiased for the variance-to-mean ratio. iIin particular, it is biased in
the negative binomial case, as will be seen later.

Both the conditional and unconditional variances of V are of
interast for assessing the reliability of V as an estimator of p. As is
shown below, the conditional variance of V, given a nonzero value of N,

is
var(ViN) = 2@ - 1)@ - ¢/N),

where C = 1 + [nZ - TEQ/£)]/2(m - 1). If £ = £, = ... =f, the

constant C is equal to one, and this is the largest possible value of C.
Inequality, so that

 var(VIm) 2 2(a - nla - iy,
with equality holding if and only if the fi are equal. This lower bound
should serve as a useful approximation in applications where the fi are

approximately equal.

The unconditional variance of V is obtained by using the fact that
var(V) = var[E(V|N)] + E{var(V|N)],
and noting that var(V|N) = 0 when N = 0 gives

2(n - 1711 - cEN N > 0)JP(N > 0)

2n - D71 - 7 - cugey

var(V)

where 8 = TA and
o k -8 o %
no =22 0%k e k= e [ - v/u .
o

Since E(N '[N > 0) > 1/E(N]N > 0) = {1 - e'e)/e by Jensen's Inequality,

............
e = = e e a - L IR N U U i e
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HE) > (1 - e 9)Z/8.

This provides an upper bound for var(V) that also serves as a good
approximation for large values of 8. For a table of values of H(8) for
8 between 0.01 and 20, see Grab and Savage (1954). The approximation
H(B) = 1/(8-1) serves quite well for 8 > 5, and this approximation was

used in the work reported below.
To derive var(V|N) for N > 0, it is convenient to set
0= IX. - £.0%f
* i i i’
so that V=Q/(n - 1)), and
var(V|§) = var(QIN)/(a - 1)%%2.
Hence, it suffices to show that, for N > 0,
var(QIN) = 2(a - 1)(1 - /N2
where C is as above. By using the representation
Q= IX. - £.0%f, - TQ - 12
i i i ?
which implies that
" 2.2 2
+ T(A - X = T U.” + V.U,
{Q ( | if5 i i'j

where Ui = (Xi - fiX)Z/fi, it is straightforward to show that

E@) = MI(/E) + @ - 207 + 3@’ - D).

Then
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2. - <2 s 2
E(Q"IN) = X[):(l/fi) + (1 - 20)/T] + (A" - M/T)(@" - 1),

since \ is unbiased for A, AXZ - ‘X/T is unbiased for ).2, and N is a
complete statistic, which implies that the unbiased estimator of E(Qz)
that depends on N is unique (Lindgren, 1976, p. 266). To complete the

derivation, one can use the formula

var(QIN) = £(@2IN) - [EQIN))?

and the fact that E(Q|N) = (n - 1)).
To show how the values of var(V) depend on A, n, and {fi}, four
patterns of the values { fj} were chosen so that the average was always

2500, and thus their sum was always 2500n. These four patterns are as

follows:
1) fj=2500 j=1, ..., n
(2) fj=2500 ji=2, ..., n-1
f1 = 1000
£ = 4000
n
3) fj = 1950 + 100j for n = 10
fj = 1450 + 100j for n = 20
fj = 1225 + 50j for n = 50
%) fj = 25 + 450j for n = 10
fj=—20+240j for n = 20
fj=-50+100j for n = 50

The entrias in the table below are var(V).

As this table shows, the effect of heterogeneity in flying hours on
var(V) is more pronounced for smaller values of A. Note that pattern
(1) represents the case C = 1, and that the entries for that case serve

as a lower bound and approximation for the other cases.




A =10.01 X = 0.001
f-pattern n =10 20 50 n = 10 20 50
: 1 0.221 0.105 0.041 0.213 0.103 0.040
:' 2 0.229 0.105 0.641 0.290 0.103 G.040
;3 3 0.222 0.106 0.041 0.224 0.115 0.047
f; 4 0.242 0.115 0.948 0.432 0.203 0.116é

The histograms of the observed values of V from selected Monte
Carlo runs appear in Fig. 2. The results for fj = 2500 and X = 0.0601
were essentially the same as those for fj = 2300 and A = 0.01, so they
were not included. One thing to note here is the difference between the
last two histograms. Decreasing A from 0.01 to 0.001 flattemns the mode

and moves some of the probability to each tail.

NEGATIVE BINOMIAL

The negative binomial may be characterized by its mean and the
ratio of its variance to its mean. This characterization is of interest
because the negative binomial distribution tends to the Poisson as the
variance-to-mean ratio tends to 1, and thus in a rough sense the
variance-to-mean ratio describes the magnitude of the departure from the
Poisson assumption.

In particular, it is assumed that Xj has a negative binomial

distribution with mean ij and variance-to-mean ratio p, so that

1]
(=]
-
[
-
t9
-
-

PO, = k) = (rj a 1)(1 - %%k

where rj = ij/(p - 1), p= 1/p.

The mean of V may be derived by noting that E(Q) {n - 1)X/p, for
2 2
Q= (n - 1)S$” and S~ defined as in the introduction to Sec. II. Thus,

E(SZ) = X/p- Because A(R + N)/(R + 1), where R = Zri, also has

°
expectation A/p, it follows that this expression is equal to E{(S7|N) ay

the complieteness of N. Hence, for N > 0,

...........
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: E(VIN) = E(S2/AIN) = (R + N)/(R + 1),

I/l

and, as tefore, V=1 for N = 0 by definition. This can alsc be written

,, ‘a. 'c
[

as

. kRl
‘-"v":
Fr

1+ (p-1N-1)/(AT+p - 1).

E(VIN)

. pta BV,
T VA hy O 0
4 ' "'
DI T )

1
.I.C‘O

From either of these expressions, it follows immediateiy that

-.'

E(V) = pR + p R /R + 1),

(N TR A
1] A
Pttt

which is less than p for p > 1.

.
v
kY
v

1

This bias in V accounts for at least part of th2 apparent

)

dependence of variance-to-mean ratio on the mean. As the mean

increases--i.e., as AT increases--the bias will decrease, and E(V) will

o'y

increase. Thus, even if all of the assumptions of the negative binomial
model were satisfied, if V was used to estimate the variance-to-mean
ratio, the estimates would indicate that V increases with the mean.

Although var(V) and var(V|N) are tractable under the assumptions of

4
Voo

this subsection using straightforward algebra, the formulas are very

complicated and offer little insight.

If p and T are assumed to be large, the distribution of V can be

h ]

approximated by the same expression when ) is replaced by A, which will

be called V . It can bc shown that in the Pcisson case, with parameter

A
DALY .
SIRERTAL AL AN

.r

xf,

var(V) = [2n + I e/ @ - 12,

PO L
.v‘o‘.o‘c‘.l‘-l':,' ,"

whereas, in the negative binomial case,

var(vV) = [20/p° + (6a + BHI/ED M)/ - 1Y,

A
LA A P T Tl Tl P
LR IR N G

PN

where g = 1 - p. Thus, when the fi are large, var(V) in the negative

binomial case is approximately pz = llp2 times as large as the variance

¢
"l

¢
.

in the Poisson case.
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This approximation should be used with caution. WYhen computed for
the values of n, A, and {fj} used in the table of Poisson model
variances and p = 2, 5, and 15, the apprcximation was always greater
than the exact value, by factors as large as 8, with the error growing
larger as ) decreases, p increases, or {fj} becomes more heterogeneous.

Scme Monte Carlo samples were drawn from V's distribution for
varicus values of X and p, two patterns of {fj}, and n = 10. Selected
histograms appear in Fig. 3(a-j). These figures are all im the same
scale to facilitate making comparisons.

Some generalizations can be made from the histograms about the
effect on V's distribution of )\, p, and {fj}. First, decreasing A from
0.01 to 0.C001 shifts some probability to smalier values of V, apparently
away from middle values, because the upper tails do not seem to differ.
Second, changing from constant to noncoanstant fj also seems to shift
probability away from middle values, but this is divided between small
values and the upper tail. That is, changing away from equal flying
hours makes more probable both small values and very large values.

In terms of the above trends, the Poisscn case can simply be

thought of as the case with p = 1.

POISSON MODEL, WiTH E(Xi) = a+ Sfi

There are two reasons why it might be desirable to allow the mean
of the failure distribution to be a more general function of flying
hours than Af. It is possible that some parts would fail on planes that
did not fly at all,! which implies that the function relating mean
failures to flying hours can be approximated by iines with nonzero
intercepts, over suitably restricted ranges of flying hours. If flying
hours are suitzbly restricted, such approximations could have either
positive or negative intercepts, and rig. &, drawn from our Air Force
data, shows that both of these possibilities can occur, with Fig. 4a
suggesciitg & positive intercept (and a megative slope), and Fig. 4b

suggesting a negative intercept.

1Disuse, especialiy in extreme climates, may coatribute to a
significant number of failurves.
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From these and other plots, it is reasomable to postulate a model
of Poisson failure counts with mean equal to a + 8f for a not
necessarily zero. But could observations from such a model have
produced V values like those observed, thus providing an explanation for
their unexpected size? The results of this subsection indicate that
they could not reasonably be expected to do so in all the cases
examined, and that more is needed to explain the large observed V
values.

For the remainder of this subsection, the number of part failures
in a given time period is assumed to be a Poisson random variable with
parameter a + Bf. Under this assumption, the formula in Appendix A
can be used to compute E(V) as a functicn of a, B, n, and {fj).

This formula is quite complex; plots of E(V) as a function of B,
for n = 10, for several values of a and for two sets of {fj)
appear as Fig. 5(a-d). Because it is necessary that a + ij >0,
only certain values of B are permissible when a < O.

Appendix B contains a derivation of var(V) as a function of a, B,
n, and {fj}. This formula is also quite complex, and plots of var(V) as
a function of B, for n = 10 and for the same values of a axd {fj} as
above, appear as Fig. 6(a-d).

A few trends are clear. E(V) is larger for smaller values of B,
more heterogeneous {fj}, and larger |a|, and the latter effect is much
more pronounced for positive a. These trends also hold for var(V),
except that for negative o and more heterogeneous {fj}, the size of B
has little effect and that effect is not monotonic in B.

Poisson models with parameter a + ij were fitted to the 100 part-
base combinations in our data set, using maximum likelihood estimation.
The results of these fits are in Appendix C. They include the estimates
; and é, their approximate standard errors and correlation obtained from
the inverse of the information matrix, E(V) and var(V) computed frcm the
aforementioned formulas using @ and B. and the actual observed value of
V. For seven part-base combinations, the fitted values ¢ and B were
such that a + ﬁfj < 0 for some j; E(V) and var(V) were not computed for

those part-base combinations.
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Fig. 6 — Var (V) as a function of a and B; Poisson Model
with mean a linear function of flying hours
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{c)
fi=25+450i
i=1,2..,10
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Fig. 6 — (continued)
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A simulation was run for each of the 93 part-base combinations

having all a« + 8f, > 0. Observations were generated for Poisson

[

distributions with parameters o + éfj. j=1,2,..., n, and a pseudo-
ouservaticon of V was computed from them and compared with the actual
observed value of V 300 times for each admissible part-base combination.
The propcrtion exceeding tte actual observed value of V was recorded;
these proportions appear as the right-most column in Appendix C.

The message of the simulation and of E(V) and var(V) is clear.

Almost all of the large observed values of V are in the extreme upper

[

ails of their simulated distributions, assuming that failures are
Poisson with parameters a + ij. Our data clearly indicate more
variability than can be explained by simply allowing & to be nonzero.
However, the fitted values a and their approximate standard errors
suggest that a should not be assumed to be zero. Although the preceding
paragraphs cast doubt or. tha appropriateness of a Poisson model, and
thus cn the =0precximate standard errcrs derived from that model, it is
striking nonetheless that of the 93 admissible part-base combinations,

20 have la] > & s.e.(a). 28 have |a] > 3 s.e.(a), and 45 have ja] > 2

’

s.e.{(a}. It is also suggestive that of the 41 admissible part-base

v .
o
e
«

»

combinations having an observed V in excess of 5, 17 have lal > 4
s.e.(a), 22 have |a}), and 29 have la] > 2 s.e.(a).

This analysis suggests, then. that scme of the variability apparent
.n the large observed values of V are a result of assuming a = 0
inappropriately, but that the remaining variabilitv is still tco large

for a2 Poisson model to be reasonable for all part-base combinations.

CONCLUSION

The Poisson model with parameters Af is not adequate for these
failure data. Tne observed vaiues of V are too lurge for such a
postulaied model to be credible. Second, these large values of V cannot
be explained reasonably by postulating that part failures follow a
Poisson distribution with mean a + 8f and & not aecessarily zero,
ajthough the data do give reason to believe that mcdeling mean failuies

this way is more appropriate than assuming ¢ = 0.
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Taken together, these two implications suggest that an appropriate
next step in modeling the failure process would be to assume that
failures follow a negative binomial distribution with mean a + 8f and
variance-to-mean ratio g. If data amalysis indicates that a = 0 or p =
1 are reasonable modeling assumptions for some part-base combination,
then such a simpler model may be appropriate for them.

One last implication is that for cases where it is reasonmable to
assume that failures follow a negative binomial distribution with mean

af and variance afp, V may not be a desirable estimator for p-
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LR

NEGATIVE BINOMIAL WITH MEAN 1\f

A simple replacement for V that corrects fer its bias has not been

IO N > 4

!

’ 4
.

[
3

found. Two natural alternatives have flaws as seriow V's. Maximum
likelihood estimation, however, appears to avoid the: 1 - but does
not yield explicit formulas for the estimates. Thes. 'hree methods will
now be examined briefly.

Because E(V|N) = (R + N)/(R + 1) and the UMVUE of p Lased on N is

(R + N)/R in the case where R is known, it may be desiiable to correct V

LA}

'.}D" !

by a multiplier of the order of (R + 1)/R. OJne way to do this is <o

L)
PR T A &

v
1

find the estimator 3 that is a function of V and that, when V is set

0‘.

'w Y

equal to its conditional expected value, reduces to the desired (R + N)/R.

o

This estimator is

‘l .l 'l .'l
K

=N - DV - V).

However, it is easily shown that the upper bound for V for given N

is &(T/fmin - 1)/(n - 1), where fmin = @in {fj}. This bound is attained

-2 e

when Xj* = N for some j satisfying fj* = fm and Xj = 0 for j‘;
will be
or {f} are.

in

i#
and bLecause T/fmin 2 n, the bound will be no iess than N. Thus %
2,

.
)

infinite or negative with positive probsbility whatever p, n,

ol

The second natural suggestion is to use thz method of moments

. v 2 . N .2 <2 _ z
estimators A = X = N/T and p = (Zki - A"F)/N, where F = Efi . However,

A
AR

it can be shown that
EGIN) = (1 - F/TOE(VIN) € (1 - m)E(V]N)

for N > 0, and

DP HANAIOTK ™

' L
470706
,“J'."'."‘

']
Y

53

'.




o i -
A
[ Il

7,

4
»
.' ot

] ‘.l{'.l "

L

.
LN ¢
oAty ’
|.l'.r.'l.\_, A

A

’

130
(AR} ' LN
'|"l o

..
[
ot
s
L

Ch{ M
Iy 1 N
N TR

l"".'..

¢

!

924} MOMCRENRN

"'-.v -p‘” iy

ey

. L )
¢
AL

v
)

R-1

R-l)

EE =pl(1 - p ¥ Ha - mhR/R + 1) + oY

<plR+p ¥ hy/®R+ 1) - RA - p ¥ Y/mE + DY <EW

for p > 1.
Using maximum likelihood estimates cam provide an approach to the

desideratum of the second paragraph in this subsection. The log
likelihood function is

£{A, p) =R log p + N log(l - p) + £ log (ki *-;i - 1).
i

where r, = Xfi/(p - 1) and p = 1/p. Reparameterize, replacing (A, p) by
(¥, p), for ¥ = A/(p - 1) and p = 1/p, so that T, = Xfi, and momentarily
treat ¥ as fixed at ¥. Then

l(;, P) = ;T log p+Nlog (1 - p) + K(;),

K(i) being defined in an obvious way. Differentiating £(¥, p) with
respect to p and solving for ﬁ yields ﬁ = fT/(N + fT), implying that p =
(N + ¥T)/3T = (R + N)/R for R = §T. It remains to find ¥, which can b
done by substituting p into £(¥, p) and numerically maximizing the
resulting equation in ¥. By backtransforming and applying standard
large-sample maximum likelihood theory to the original log likelihood,
regions may be derived for A and p.

First order bias corrections and second order variance
approximations are available for these estimators (see, e.g., Cox and
Hinkley, 1974, pp. 309-310); however, they involve very complicated

calculations.

NEGATIVE BINOMIAL WITH MEAN « + Bf
The log likelihcod for this situation is
£p, a, B) =R log p + N log(l - p) + I log (ki +kfi - 1)
i
where r, = (a + Bfi)/(p - 1) and p = 1/p. 1If this is reparameterized by

setting ¥ = af(p - 1), 6§ = 8/(p - 1), and p = 1/p, the reparameterized
log likelihood is
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2(p, ¥, 6) = (n¥ + 6T)log p + N log (1 - p) + K(¥, §),

-~

K(¥, 8) being defined in an obvious way. Temporarily setting ¥ = ¥ and

§ = 8 and maximizing in p yields

(n¥ + 8T)/(N + n¥ + 6T),

-]
i

so that

p = (N+n¥ + 6T)/(a¥ + 8T) = (R + N)/R

for R = n¥ + 5T. Thus, maximum likelihood again provides an approach to
the desideratum of the previous subsection. Estimates ; and g can be
found by substituting B into £(p, ¥, 8) and maximizing numerically in 7
and 6. As before, back transformation gives estimates for « and B and
approximate confidence regions may be obtained using standard large
sample theory.

Computing the method of moments estimator requires the solution of

a system of three nonlinear equations and will not be pursued further.
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IV. CONCLUSION

The consideration of competing spare parts supply systems requires
understanding how well levels of parts failures under wartime conditions
can be predicted. The ability to predict levels of parts failures is
strongly affected by at least two types of uncertainty: about the
numbers of failures that will occur assuming the model is correct, amnd
about the adequacy of the model as an approximation of the process
generating parts failures.

The first type of uncertainty is systematically and inherently
understated by modeling failures as Poisson random variables.
Distributional results derived here make this quite clear. A model
that allows more variability, such as a negative binomial model, would
be more appropriate. The data also indicate that prevailing beliefs
about variation within such negative binomial models err om the
optimistic side, and that inherent variability is large, for some parts
at least.

The second type of uncertainty can be accommodated partly by using
models with more parameters; this is the course taken here by the
suggestion that mean failures be modeled as a + Bf without assuming a =
0. Some properties of possible estimators for these models have been
examined here also. Although this improvement addresses some of the
issues mentioned in Sec. I, it leaves several issues untouched. To
study the issues of stationarity of failure distribution and the
relationship between flying hours and mean failures, more and better
data are needed. In particular, it would be useful to have many years
of data to check for seasonality in failures and to observe failure
behavior under a broader range of flying hours, especially numbers of
hours that would be expected in wartime. Studying the question of
independence of disjoint time intervals awaits the elaboration of
appropriate probabilistic models that allow for dependence, and of

suitable estimation methods for them.
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Apperndix A
DERIVATICK Cr E{V) UNDEIR PDOISSGN ASSUMPTIONS
This appendix derives E(V|N) assuming that Xi is Poisson with

parameter ui- ¥hen ui = 1fi, the Poisson assumptions hold and the

expectations derived there fellow.

Ny var(%, %) + [E(X,IK) - fii]z

™
p—
~~
:‘:
[N
[
-
[
>
~
4
At
I

Np (1 - p) + [Np, - £.N/T)

. 2 2
Np (1 -p,) +N(p; -qy),

where p; = 1.xi/iui and = fi”T’ using the fact that xiix is binomial

q.
i
with parameters X and P;- It follows readily that

-1 2
IN} = - Y - -
E(VIN) = (0 - 1) {NL(p; - q;)"/q; + 2p.(1 - p.)/q,}
for N > 0. Because V was defined to be onc for N = 0,
E(V) =P(N=0) + m)=:-‘1 E(VIN = 2)P(N = m).

Because N has a2 Poisson distribution with parameter A = Iu

b ]

i
b1

A

E(V) =e {1 - (n - 1)'12(pi - qi)zlqi)

o+

- 2
(@ - DAL, - g /e, + T p (1 - p)/a)

= e-h + (n - 1)'1{(A ~ e-A)i(p - q )zlq + Ip.(1 - p.)/q.}.
i i i i’ i’y

R e N~y =i i gt e g e
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Appendix B

DERIVATION OF VAR(V/N} AND VAR(V) UNDER
POISSON ASSUMPTIONS

This appendix derives var(V|N) and var(V) under the assumption that
the rumber of failures in a given period has a Poisson distribution with
parameter u,- The formula needed for Sec. II may be obtained by
substituting U, =a + Bfi‘

Using two facts, that Xi]N is binomial with parameters N and p; =
uilivj, and that the joint distribution of in’ Xj s, N - Xi - Xj )IN is
trinomial with index N and probabilities P;» pj , and 1 - P; - pj , it

is a matter of straightforward algebra to show that

var(VIN) = T%(a - 1)’2{4NA1 + AN+ A,

where

2 2 2
2 Bas 6a4 + a, + loala2 6a2 L

A
g
]

A3 = - 12a5 + 6a4 - 6a1a2 + 10322, and a; = Xpi/fi,
a, = 3p,°/f,, a, = Ip/E%, a, = Ip.°/E.°, and

a_ = ipi3/fi2-

The unconditional variance of V is obtained by using

var(V) = var[E(V|N)] + E[var(ViN)].

Employing the approximation from Sec. II and ignoring the temm e‘A,

where A = Zui,

-
E(var(VIK)) = T°(n - 1) {4MA + A,/(A - 1) + &}

................

lred)
> -—aw .=
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it is convenient to derive var(E(V|N)) by rearranging terms to

avoid difficulties introduced by setting V =1 when N = 0. Let
gm) = (n - 1) Hmk(p, - q,)%/a, + Ip,(1 - p,)/q,}
i i i i i7"

where q, = f_/T. This is E(VIN= ; for m > 0. Also, let G = E(g(N)).

Because N has a Poisson distribution with parameter A,

var(E(VIN)) = T (g(m) - EO)HZP(N =a) + (1 - Ev))Ze
m=1
= T ig(@ - 6J%P(N=m) + H,
=0

where

Thus, var(E(VIN)) = (a - 1)'2A[£(pi - qi)zlqi]z + H, aad for small e 2,

H may be ignored.

Tty
-
~ -

*
I."I

«
e

H=e (1 - Ev)? - £p,(1 - p)/a, - 6 - BV - (6 - (A - O)].

= M e
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Appendix C
Table C.1

ESTIMATCS AND OTHER QUANTITIES FROM FITTING POISSON
MODELS WITH MEAN A LIMEAR FUNCTION OF FLYING HOURS

. . R A L P(V >
v a B se(a) se(B) corr(e,B) E(V) var(V) n observed V)
(1 (2) 3) %) (3) 6) (7) (8) (9) (10)
.38 -.726 .001859 12.700 .002512 -.996 1.000 .327 7 .903
.58 -2.851 .006261 7.634 .010245 -.998 1.013 .310 7 .777
.68 -2.619 .002859 2.472 .000674 ~-.944 1.064 .209 11 .797
.91 1.262 .002112 3.922 .0060728 -.969 1.015 .174 13 .560

1.00 -4.812 -010401 5.772 .007488 ~.996 1.033 .186 12 .473

1.01 5.595 -001984 4.146 .000906 -.953 1.286 448 9 .597

1.C¢3 4.782 .005043 11.173 .001776 -.989 1.019 2174 13 .470

1.03 -10.442 -017909 6.303 .008252 -.997 1.165 .222 12 .577

1.10 5.798 .002566 8.668 .001374 -.989 1.044 .184 13 .433

1.22 -1.981 .001461 1.554 .000439 -.944 1.065 .199 11 .330

1.29 -13.809 -005895 8.676 .001431 ~-.987 1.214 .269 11 .320

1.41 ~-2.989 .002978 2.072 .000567 -.928 1.085 .195 12 .220

1.45 -.443 -005035 €.859 .008792 -.397 1.000 2177 12 .120

1.45 -10.366 .015683 8.021 .010391 -.999 x> = 12 *

1.50 6.171 -.001602 8.091 .010282 -.997 1.055 .204 12 .123

1.64 6.708 .001392 7.998 .001262 -.991 1.083 .200 13 .107

1.71 25.2533 -.022562 11.601 .01461« -.998 1.532 .426 12 .350

1.77 25.365 -~.000130 10.243 .001599 -.991 1.679 452 13 .373

1.81 i.798 .001996 7.533 .001196 -.990 1.009 .170 13 .030

1.83 -4.648 .003519 2.258 .000622 -.938 1.231 .231 12 .100

1.99 -.296 .002393 2.702 .000686 -.949 .997 .179 12 .013

2.02 9.758 -.000477 7.494 .001275 -.991 1.369 .634 7 .190

2.12 -7.822 .003404 6.214 .001008 -.987 1.096 .190 13 .9027

2.13 -12.033 .019514 4.442 .005930 -.995 1.244 .239 12 .063

2.16 12.865 -.001006 3.809 .000655 -.9381 2.645 1.001 13 .693

2.28 11.663 -.000287 3.947 .00069%1 ~.975 1.991 .633 13 .320

2.38 -4.129 .003868 4.728 .000893 -.972 1.051 2177 13 .003

2.41 18.158 -~.019012 10.237 .913223 -.99§ 1.440 .568 9 .0o07

2.45 8.537 .003144 12.172 .015315 -.997 1.045 .200 12 .003

2.51 15.206 -.000205 4.546 .000798 -.973 2.186 .708 13 .303

2.54 -7.797 .014424 5.9€3 .007782 -.996 1.091 .203 12 0

2.68 -§.396 -00405¢ 3.702 .900726 -.907 1.300 .230 13 .007

2.70 14.27 .003035 13.124 .002163 -.991 1.155 .30 10 .0i3

2.84 1.121 -.002219 7.323 .001684 -.986 1.008 2337 7 .010

2.90 -43.958 .061981 6.994 .009586 -.999 = * 12 =
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. . . P(V >

v « 5 sela) se(B) corr(c.B) E(V) var(V; n observed V)

(1 (2) (3) (4) (3) (6) (7 (8) (9) (10)
3,13 -2.052 LDe5797 2289 L0GLETs -.939 i.146 .23 12 0
3.15 7.7¢7 -.000577 4.777  .001487 -.981 1.621 .796 7 .057
3.15 7.519 . 004659 4£.290 .001058 -.941 1.326 .327 12 .007
3.15 5.073 000641 3.888 .000701 -.978 1.242 .276 13 .003
3.3>5 3.799 -.000103 3.734 .000656 -.574 1.774 .330 13 .033
3.35 63.208 .000485> 23.88¢ .004334 -.995 1.733 467 12 023
3.36 -17.326 .025741 16.076 .0206531 -1.000 = * 1z =
3.38 -6.088 011391 6.016 .G07813 -.997 1.065 .194 12 .007
3.73 -.571 .003320 2.573 .000672 -.927 .997 .179 12 0
3.27 21.233 -.001606 4.920 .000899 -.973 3.310 1.537 10 .350
3.82 36.181 000756 25.242 .004839 -.996 1.360 451 9 .007
3.83 -3.454 .063923 2.786 .000765 -.940 1.093 .220 11 c
3.92 -6.254 .0045%65 2.499 .000700 ~-.929 1.311 .258 12 0
3.94 8.479 .000011 4.341 .000773 ~.962 1.636 .465 13 .010
4.01 -12.277 025804 12.569 .002423 -.995 1.090 .210 12 0
4.10 ~-17.779 .033023 12.413 .016036 -.998 1.224 .245 12 0
4.16 -22.025 .006090 7.832 .001547 -.994 1.550 .343 12 0
4.30 29.394 -004525 8.555 .001546 -.971 2.117 .612 13 0
442 20.150 .001198 4.923 .001203 -.952 3.144 1.270 11 .137
4.53 -9.884 .005141 11.980 .002308 -.995 1.061 .200 12 0
4.65 -4.682 .014296 5.784 .001496 ~.939 1.043 .193 12 0
4 .85 14.496 .000176 10.876 .002064 -.995 1.172 .252 12 0
5.07 -124.014 .162206 23.615 .030812 -1.000 = = 11 =
5.08 15.661 .003134 12.2%2 .001940 -.991 1.183 .237 13 0
5.2 -10.461 .009528 6.720 .001281 ~-.967 1.160 .210 13 0
5.26 .325 .003451 4.694 .000877 -~.968 1.002 .167 13 0
5.52 -27.993 .008101 9.715 .001909 -.994 1.616 .368 12 0
5.53 -16.340 .015643 16.726 .002678 -.989 1.078 .190 13 0
5.55 14_343 .003541 15.628 .0G2982 -.994 1.079 .213 12 ¢
5.57 -14.772 .012369 1&4.657 .002350 -.989 1.080 .190 13 0
5.€63 -6.142 .002578 6.000 .000989 -.989 1.072 .183 13 o
5.78 10.586 .000478 5.208 .000932 -.98i1 1.628 445 13 0
6.02 -54%.180 .022087 2i.404 .004143 -.993 1.554 .368 12 0
6.31 -50.185 012110 13.447 .002630 -.997 3.186 .708 12 0
6.34 -29.529 .008996 7.599 .001265 -.584 1.762 .350 13 0
6.35 27.142 -.020186 12.328 .015535 -.997 1.411 .362 12 0
6.99 -54.733 012882 11.634 .002304 -.997 * * 12 =
7.09 -10.435 .005586 8.874 .001430 ~-.988 1.098 -193 13 0
7.28 48.772 -.002856 7.248 .001249 ~.976 5.996 2.487 13 .223
7.38 -104.058 .026808 11.370 .001933 -.985 5.053 .984 13 .013
6.11 66.438 -.075362 16.322 .0x0428 -.999 = = 12 *
8.25 50.765 -.033217 19.743 .025002 ~-.997 1.651 457 12 0
8§.73 -35.951 052196 13.257 .017233 -.999 * = 32 =
10.36 31.387 -.000279 $.196 .001084 -.970 3.313 1.186 13 0
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. . o P(V >

v a B se(a) se(B) corr(a,B) E(V) var(V) n observed V)

(@) 2) (3 (4) (3) (6) N (8) (95 Q10)
11.11 -£8.929 .013809 12.114 .0£2573 -.995 2.182 539 12 0
11.22 -24.905 .015779 6.886 .001355 -.957 1.650 .347 13 0
11.34 -27.346 .030189 7.181 .001926 -.935 2.006 496 12 0
13.02 -21.252 .013812 3.745 .001090 -.930 2.628 .607 i2 0
14.09 -55.819 .015297 9.574 .001935 -.991 2.484 .621 12 0
14.27 -33.828 .019319 21.990 .004241 -.994 1.195 .248 12 0
15.05 120.416 -.008942 18.086 .002791 -.993 6.726 2.782 13 c
15.25 38.252 -.002150 13.236 .002063 -.995 2.519 .845 13 (4]
16.29 43.909 -.001820 5.952 .001340 -.957 8.441 3.796 12 0
17.94 102.716 ~-.008528 16.106 .002479 -.993 6.464 2.729 13 0
18.00 -108.728 .027879 12.591 .002356 -.993 4.703 1.199 12 0
18.64 ~-.942 .011896 5.819 .001482 -.945 1.000 .181 12 o
19.35 -39.378 .010669 9.807 .001945 -.994 2.077 .496 12 0
19.84 67.724 -.000254 7.823 .001789 -.954 10.582 4.690 12 (4]
21.06 83.637 -.008222 7.500 .001233 -.976 13.579 6.392 13 0
22.44 -38.009 .024310 29.261 .005624 -.996 1.187 246 12 0
22.46 60.663 -.006681 5.570 .000878 -.976 11.678 5.604 13 ]
47.63 -14.467 .013260 21.675 .004163 -.995 1.042 .196 12 0
50.70 653.877 ~.054330 38.079 .005842 -.992 35.573 16.230 13 0
57.41 -25.283 .051312 12.164 .003102 -.953 1.617 .385 12 0
95.31 -505.081 131377 37.952 .007482 -.995 17.436 4.798 12 0

e

Cols. (2) and (3).

* jndicates that for that part and base, & + Bf; < 0
for some j, making the formulas for E(V) and var (V) inappropriate.
The estimates a and B were obtained

by maximizing the log likelihood numerically.

Cols. (&) and (5).

inverse of the observed information matrix.
Col. (6) is the approximate correlation between a and B

Cols. (7) and (8).

E(V) and var(V) are computed using @ and B

The approximate errors were obtained from the

Col. (9). n = the number of observations for that par: and base.

Col. (10) is the prcportion of 300 simulated values of V greater than

the observed value of V, where the pseudo observations were generated
from a Poisson distribution with parameter a« + Efj.

PUE R L NN N M S
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