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PREFACE

This Note covers wcrk done on the problem of modeling and

estimatirg the demand for aircraft spare parts while the author was a

consultant to The Rand Corporation in the summer of 1983. The research

"-: began under the Project AIR FORCE Resource Management Program study

entitled "The Driving Inputs and Assumptions of Stockage Assessment

Models." The Note is being published as part of a follow-on study

entitled "Enhancing the Integration and Responsiveness of the Support

System to Meet Wartime and Peacetime Uncertainties."

This work grew out of a study of parts failure data from several

"Air Force units, strongly indicating that either current models of part

failure behavior or prevailing beliefs about the inherent stability of

this behavior, or both, were wrong. The results here support this

indication, but they are of general interest for modeling and estimating

nonhomogeneous Poisson processes.

This Note will be of interest to those concerned with forecasting

inventory requirements in the Department of Defense or industry.

IS_..-
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SUMMARY

* Mathematical models are commonly used to study tie performance of

the Air Force's spare parts supply and repair systems. But accurate

evaluations of supply policies are not possible without accurate models

of the supply system, and models that understate the variability in the

supply system will bias evaluations in favor of policies that rely on

accurate predictions of part failures. This Note examines the model for

part failures used in The Rand Corporation Supply System model

Dyna-METRIC.

Section I gives a short description of Dyna-NETRIC and then a longer

description of common probability models for part failures. The

strengths and weaknesses of these models are discussed, with particular

attention to sources of variability in observed part failure behavior

that the models do not appear to capture.

Section ii has two purposes. The first is to examine the plausibility

of Dyna-NETRIC's current probability model for part failures in the

light of some new Air Force data. This model treats the number of

failures of a particular part, at a particular air base, in a time

period of given length, as a Poisson random variable with mean If, where

f is the total number of hours flown in that time period, and I is an

unknown constant characteristic of the part and airbase. The second

purpose is to derive some new properties of V, a commonly used estimator

of the variance-to-mean ratio, under thre. different probability models

for part failures. These properties of V indicate strongly that

Dyna-METRIC's current probability model does rzot permit enough

"variability to credibly explain the Air Force data. Further, although

the data do indicate that it is preferable to model mean part failures

* as a + Of for c and B unknown constants and a not necessarily zero, a

Poisson model with this mean still does not allow enough variability. A

negative binomial model with mean a + Of is preferred.

Finally. Sec- Ii shows that V is always biased low for the

probability model in which it is intended to be used--i.e., with part

failures distributed as negative binomial random variables with mean If

S= ~~~~~~~~. . . .....-.-.---. -.-..--..-...-- ..-------.----.- :-:..- ..--.... . .-
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and variance-to-mean ratio p. This bias is an increasing function of p

for a fixed number of total expected failures and canj be very large for

large p.

Section III contains suggestions for estimating the parameters of the

- models recommended in Sec. ii. Maximum likelihood estimates are suggested

because they are tractable and because they appear to solve the bias

problem noted above.

I

* . . . . . . . . . . . - . . . - - - -*i* - - - -



- vii -

ACKNOWLEDGMENTS

During this work I received the thoughtful advice and assistance ofRand colleagues Gordon Crawford, Naihua Duan, Daniel Relles, Jeff Mclver
of the Department of Mathematics, University of California, Berkeley,
and Maureen Lahiff of the Department of Statistics, University of
Minnesota. Gus Haggstrom's- comments and suggestions led to much clearer"derivations and logic; de deserves a special thanks. Finally, hats off
to Helen Rhodes, Margaret Brackett, and Joanne Loesch for their first-
rate typing and considerable patience. Such errors as may remain are,
of course, entirely my responsibility.

-.--



2. - ix-

CONTENTS

P..

PREFACE.......................................................... iii

SUMMARYC........ ................................... .............. v

•-ACKNOWLEDGMENTS..........................vii

"FIGURES ............................................. .............. xi

Section

I. THE REAL WORLD PROBLEM, SOME CURRENT MODELS, AND SOME
"M MODELING ISSUES ...................................... 1

Introduction .............................................. I

Modeling Failures (Demands) ............................... 3

II. SOME NOTES ON AN ESTIMATOR OF VARIANCE-TO-MEAN PATIO ...... 8

Introduction .............................................. 8
Properties of V Under Poisson Assumptions ................. 10
Negative Binomial ......................................... 14

" Poisson Model, with E(Xi) = a + Of ......................... 17S1
Conclusion ................................................ 29

III. SUGGESTIONS FOR ESTIMATION ................................. 31
"""Negative Binomial with Mean If " 31

Negative Binomial with Mean a + Of ........................ 32

"IV. CONCLUSION ................................................ 34

Appendix
"A. DERIVATION OF E(V) UNDER POISSON ASSUMPTIONS ............... .35
"B. DERIVATION OF VAR(V/N) AND VAR(V) UNDER POISSON ASSUMPTIONS. 36
C. ESTIMATES AND OTHER QUANTITIES FROM FITTING POISSON MODELS

WITH A HEAN A LINEAR FUNCTION OF FLYING HOURS ......... 38

REFERENCES ........................................................ 41

,-

r3oupA E

......................................

- .5 -.- : : . ...-... .-.-. .-. . ...- : - .:.: -:-.:::-- :.•:• : •:'-:-:.- -• -- '-•-'-:.., -" --



-xi-

FIGURES

71. Simplified Scheme of Parts Repair and Supply Mlodel.............2

2. Histograms of V Under Poisson Assumptions....................... 15

3. Histograms of V Under Negative Binomial Assumptions........... 18

4. Flying Hours Versus Failures for Air Force Data...............23

5. E(V) as a Functicn of a and B; Poisson Model
with Mean a Linear Function of Flying Hours.................25

6. Var(V) as a Function of a and 0; Poisson Model
with Mean a Linear Function of Flying Hours.................27

"4.U PGI

-Is



I. THE REAL WORLD PROBLEM, SOME CURRENT MODELS,
AND SOME MODELING ISSUES

'-

INTRODUCTION

One of the missions assigned to the Air Force is to be able to

* relocate fighting units and associated service and supply facilities to

far-flung places on short notice, to meet a variety of policy

"coomitments. A remarkable amount of materiel is needed to keep such

iunits operational, and airlifting capacity is limited and expe•-:ie.

"Because of this limited capacity, several policy choices must be made.

One such choice is how best to handle spare parts supply :equirements--

i.e., is it possible to design spare parts kits that don't take up toG

much airlift space but are sufficient to maintain an adequate number of

-. operational planes for some desired length of time; or would it be

-" preferable to have a "responsive" supply system in which, for example, a

_- dedicated fleet of planes hauls spare parts around as needed, reducing

spare parts kits airlifted with the units accordingly? Given the choice

.* of a general approach to supplying parts, how often should shipments be

- made, how large should these shipments be? And so on.

These kinds of questions have long been examined with the help of

mathematical models intended to simulate the wartime performance of the

-. spare parts supply and repair system. One model developed at Rand and

i- in wide use within the Air Force is called Dyna-IETRIC (for Dynamic

•- Multi-Echelon Technique for Recoverable Item Control); henceforth I will

- often refer specifically to Dyna-H ETRIC, but its features are not

-- atypical of such models.

These models attempt to characterize the (1) numbers of failures of

parts on planes, where proneness to failure is allowed to depend on the

intensity of use as dictated by a war scenario (thus "Dynamic"); (2)

-' repair times of those parts that can be repaired, either at the forward

airbase or at some more centralized rearward repair facility (thus

"multi-echelon"); (3) transtortation times and other delays, where

relevant; and (4) stocking requirements, the levels of stocks of parts

kept at the forward base and at the more centralized repair facility,

and levels of and timing of supplies of new parts.

...................
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-- The general scheme of the Dyna-METRIC model is depicted in Fig. 1,
which is a simplified version of Fig. I in Hillestad (1982). In

Dyna-METRIC, the numbers of part failures are modeled as random
'. variables whose probability distributions depend on the number of hours

flown, the measure of intensity of use. To be more specific, consider a
particular Air Force unit, and a part i, which is in all of the planes

,, , •-"in that unit. Let X (i) denote the number of failures on part i in that
unit in time period j. In Dyna-METRIC, the parameters of the

probability distribution of X. (i) are assumed to depend on total hours
flown by the unit in the jth time period. The effects of different war
scenarios on failures are examined by manipulating the number of hours
flown, the number of planes used, and other factors affecting the

distributions of X.(i) for the various parts.

"mabForward base Wholesale
Fig. 1- supply of parts Order and supply

( ',"Plan!ess Repair

"" -- -- - ....:

S-- .-Compon--enteaS•-'-. removal by Forward base RawrS ==-- flghtrepairflh ?ine crews repair Cmoet o
] " repairable at base fclt

S•--[:"Fig. 1 --Simplified scheme of parts repair and supply model
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Repair times for individual failed parts are treated as random

variables having exponential or degenerate distributions, and assumptions

are made about the orobabilities that parts can be repaired only at the

rearward centralizel facility. The exponential dist-ibution was chosen

for mathematical convenience, but it seems to be a satisfactory

assumption. Both under the assumption of an infinite number of repair

"stands (Crawford, 1981) and, as far as is known, under the assumption of

-'-- a finite number of repair stands, the supply system performance
*-. measurements produced by Dyna-HETRIC are fairly insensitive to the

distributional forms assumed for repair times.

The effects of various stockage policies can be introduced by

vs..ying purchases from vendors and decisions about allocating spare

parts to the stock of the forward bases or the rearward facility. It is

assumed that stock.ng policy is nonstochastic, and these policies are

represented by changes at prescribed times in the numbers in stock at

the bases and the rearward facility.

"The purpose of these models is to connect dollars and cents policy

decisions to aircraft performance of assigned missions. Dyna-HETRIC

•- - and other models produce several performance measures. Some are

inventory measures, such as the probability distribution of the maximum

backorder across all parts, the probability that a failure of a

particular part will be filled immediately from stock, and so on. These

measures are derived analytically, based on the distributions assumed

for failures and repair times. More relevant to the polizy questions,

if mission requirements can be specified in terms of numbers of planes

with particular capabilities, it is possible to derive a probability

distribution for mission capability from the already noted inventory

measures.

MODELING FAILURES (DEMANDS)

These performance measures are no better than the model that

generates them. The particular area of concern here is modeling the

numbers of failures, or demands, and estimating the parameters in those

models.
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"A common assumption is that the number of failures X in a period of

given length has a Poisson distribution with parameter V, in which case

P(X=k)e j/k! fork=, 1,2.

Under this assumption, both the wean and variance of X are equal to U,

* so that the variance-to-mean ratio p = var(X)/E(X) is equal to 1. To

model applications in which p exceeds one, a negative binomial

"distribution is often hypothesized. Here,

"P(X = k)= k + r 1-(1P)k r for1k , 1,r2,:;:.: ~k (1-p) o ,1 ,..

where r > 0, 0 < p < 1. In this case, E(X) = r(l - p)/p and var(X) -

- r(l - p)/p 2 , so that p 1/p > 1. As is well known, the Poisson

distribution is a limit of negative binomial distributions as p - 1 and

r - - in such a way that r(l - p) remains fixed at V (Feller, 1968, p.

172).

The current version of Dyna-METRIC assumes that demand for a

particular part for a particular Air Force unit in someperiod of given

length is either Poisson or negative binomial. When the Poisson

distribution is used, its mean is assumed to equal Xf, where I is an

unknown constant peculiar to the part and unit, and f is the number of

hours flown by the unit in the given period. When the negative binomial

distribution is used, its mean is also assumed to be Xf, and its

variance-to-mean ratio is assumed to b(. p, so that r = Xf/(p - 1) and

p = l/p.

The negative binomial is a "compound Poisson" distribution in both

senses in which that term is commonly used. In the first sense, usually

associated with probabilists, the random variable SN = X + X2 + _. +

XN can be shown to be negative binomial if the X. are independently andJ
identically distributed with

P(Xj = n) = (1 - p)n/(-n In p), n = 1, 2,

for 0 < p < I, and N is independently distributed as a Poisson random
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variable with U = - r In p (Feller, 1968, pp. 268-269 and 286-291). In

the second sense, usually associated with statisticians, if the

'- . conditional distribution of a random variable X, given its mean U, is

Poisson, and U itself has a gamma distribution with density

~g( ) = 1 B-p-e- mra),

"then unconditionally X has a negative binomial distribution with r C&

and p = (0 + 1)-1 (Hogg and Craig, 1970, pp. 99-211). More generally,

compound Poisson distributions are defined by replacing P(X. = n) with

an appropriate distribution in the first sense, or by replacing the

gamma distribution appropriately in the second sense.

"•-" Aside from mathematical tractability, the use of compound Poisson

models has been rationalized by at least two substantive considerations.

*. First, it follows from Levy's work on infinitely divisible distributions

"that any arrival process where the numbers of arrivals in disjoint time

S-_ intervals are independent is Poisson or compound Poisson in the first

sense above (Feller, 1968, pp. 289-290; Crawford, 1981, p. 10). Thus an

assumption of independence of failures in disjoint time intervals

justifies using compound Poisson models, although it does not justify

the use of any particular compound Poisson model. Second, under some

conditions the Poisson distribution is a good approximation to the

distribution of the s,,' -9 = X + ... + X of n mutually independent
- 1 n

random variables X. with distributions P(Xk I) P I 0).

"If the probabilities pk depend on n in such a way that the largest Pk

L-ends to zero but the sum p1 + """ + Pn = X remains constant, then in

"the limit as n -, Sn has a Poisson distribution with parameter X

(Feller, 1968, p. 282). Thus for large n and moderate values of ., the

- distribution of S can be approximated by a Poisson distribution. This•-• n

justification of a Poisson model has appeal for modeling failures of

-uch parts as landing gear, for which it is more natural to assume that

"a failure will occur with seme fixed probability on each mission than to

assume a Poisson failure distribution for landing gear directly.

Both of these substantive considerations rely on an assumption of

"independence. In some situations this may be clearly inappropriate, for

example, for parts that age rapidly or have very high failure rates
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(Crawford, 1981, p. 11). However, loosening the independence assumption

would require extensive reworking of the prohability theory underlying

the failure models, and currently the indepe: Jence assumption is not

believed to be inaccurate enough to justify r.iis reworking. Henceforth,

we will assume that failures follow a compoun± Poisson distribution.

At this point, several modeling issues can be raised:

1. As already noted, independence of nurbers of failures in
disjoint time intervals is assumed. This will not be pursued

-*_further.

2. Is the failure distribution really stationary in peacetime?
For example, is there seascnal variation in the failure
behavior of certain kinds of parts? Available data indicate
that there is some seasonal variation, and it is not difficult
to imagine that there would be some ir extreme climates.
Stationarity will henceforth be assumed.

3. Even assuming independence, is there any reason other than
convenience to assume that the appropriate compound Poisson is
a negative binomial and not some othe, compound Poisson? There
"has been some investigation indicating that, for real aircraft
failure data, the variance-to-mean ratio increases with the
"mean, which is not a property of the negative binomial although
it is a property of other compound Poisson distributions- The
actual import of this apparent finding is unclear, because it
may simply be an artifact of the estimator used.

4. The relationship between mean demands and flying hours is not
well understood. First, it is not at all clear that flying

* hours are an appropriate "clock"--e.g., for landing gear what
matters is not how long the plane is i', the air, but how often

it lands; also, some radar parts spend substantial amounts of
time switched on and running while the plane is on the ground,

" so that flying hours understate the ac~ual intensity of use.
Second, there is no particular reason to assume that the
relationship between flying hours and mean demands goes through
the origin. If the planes simply sat in the hangArs, some
failures would occur anyway. Also, if this relationship were
nonlinear with a positive second derivative, and it was desired
to approximate the relationship for higher numbers of flying
hours, a linear approximation might be appropriate, but its
intercept would be negative. Third, there is no particular
reason to assume that mean demands are a linear nondecreasing
function of flying hours. On the contrary, there is evidence
that high sortie rates can actually improve the "health" of
some aircraft parts. A study by Crawford and Kamins
(forthcoming) of objective measures of the health of components
in the fire control and weapons delivery system of F-16s,
gathered during a surge of aircraft activity during an
exercise, found that reported rates of malfunctions, as

S- -- - -.-. .- ".-.. -.. .- -.- .- ......... -- -
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measured by the aircraft systems, actually declined cow-oared
with rates reported in periods of lower activity before and
after the surge.

5. The available data are somewhat less than ideal. The Air Force
Logistics Command accumulates failure -3l- f..... h part over
all bases worldwide, and disaggregated data are not currently
available, as far as I know. The base data available for this
study were collected at Rand for 20 parts with fairly high
demand rates, on five airbases, over at most 13 quarters.
Among the problems with these data were: (a) "managed demand,"
cr possible changes in reported numbers of failures associated
with management decisions related to reporting or servicing;
and (b) a small number of observations for each part/base
combination.

"- " 6. There was a manifest lack of enthusiasm among data collectors

(mechanics), the utility of the data not having been strongly
-" - impressed on them.

This Note will consider only the third of these issues, the nature

of the compounding distribution, and the fourth, the relationship

--.- between flying hours and the mean numbers of failures. This emphasis

does not imply a judgment that the other issues are unimportant. In

fact, they are so poorly understood that their importance cannot be

assessed satisfactorily. But in the consideration of competing spare

parts supply systems, it is essential to understand how well we can

predict levels of parts failures under wartime conditions; issues that

are not well understood cannot be dismissed.

.- . -. 4%

- . . . --. . C .-. C
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-i. SOME NOTES ON AN ESTIMATOR OF
VARIANCE-TO-MEAN RATIO

INTRODUCTION

This section describes some properties of an estimator of variance-

to-mean ratio called V. Let

X. = number of demands in period i (i = 1, 2, ... , n),
1.

N = YX. = total number of demands over all n periods,

f. = number of flying hours in period i (i = 1, 2, ... , n),
1"T = Ef. = total number of flying hours in all periods.

"If N > 0, V is defined to be

v =S

where X = NIT and

2 i2/(n - 1)S = I(X. - f.)If. = Efi(XI/f -)2.

If N = 0, both numerator and denominator of V are zero, and V is defined to

"have the value 1 for reasons that will become clear below.

The estimator V is 1/(n - 1) times the so-called "index of

dispersion" defined by

-j2/

D = -(X f.) i /f..

Note that D results from replacing E(X.) by f..X in the expression

X 2 = £(Xi - E(Xi))2 /E(Xi),

=" 2

and that D is also the x statistic for testing the hypothesis that the

"observations X. have Poisson distributions. in this case, the

conditional distribution of (XI, X2 , ... , Xn) given N is multinomial
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- with parameters pi fi/T. Hence, under the Poisson hypothesis the well-

known asymptotic result gives the conditional distribution of D given N

- as approximately X with n - 1 degrees of freedom.

This study was prompted by an examination of the data mentioned in

*-- Sec. I in which V was used. Judged egainst prevailing beliefs about

values of p for actual part failure distributions, the results seemed

quite unusual--43 of the hundred values of V calculated were greater

than 5, 15 exceeded 15, and one was greater than 95. This appeared to

contradict what was known about the properties of V tor values of p

generally considered reasonable and suggested that these large values of

V were indicating model failures as well as larger than expected

variability. To see whether model failures could result in values of V

similar to those observed, and to study further properties of V under

the more favorable assumptions described in Sec. I, V was examined under

' several sets of assumptions, three sets of which will be discussed here:

that the number of failures in a period of given length has (1) a

-_Poisson listribution with parameter Xf, (2) a negative binomial

distribution with parameters r = If/(l - p) and p = l/p, and (3) a Poisson

distribution with parameter a + Of, a f 0.

"- . Apart from their relevance to the part failure problem, the results

" of (1) are relevant to inference for nonhomogeneous Poisson processes in

other situations. In (3), it is shown that simple model failure alone

could not reasonably have produced the unusual observed values of V,

although plots of failures against flying hours suggest that including

"an intercept term in the negative binomial mean is desirable in some

*F cases. The main result in (2) is that V is biased low, with the bias

increasing as p gets larger relative to IT. This implies that even if

the negative binomial model with mean If adequately characterizes the

process generating part failures, the true variability is underestimated

"*. on the average by V, with the largest underestimation occurring for the

-'"-"largest values of p.

•:.-- -•~ * -- -- . . ....-..- ..-.-.....-...............-.......-......-.-....-.-........- _,--.-.-.-........ ..:.--- .-.-.--.-.....
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PROPERTIES OF V UNDER POISSON ASSUMPTIONS

The properties of V are examined here under Poisson assumptions.

Expected values and variances are derived for various values of n and

patterns of flying hours, and Monte Carlo simulations of the

distribution of V are displayed and discussed.

The assumptions (henceforth referred to as "the Poisson
assumptions") are as follows: if X. is the number of demands for a

given part in the ith period, and f. the flying hours for the ith

period, then assume

(1) X. is a random variable with a Poisson distribution, having

mean .f.. That is, demands are stationary over periods, with a

constant expected rate of demands per flying hour.
- (2) The counts for different periods are independent.

- Whether the Poisson assumptions hold or not, the denominator of V

- is unbiased for 1. Under the Poisson assumptions, the numerator is also

unbiased for X, and V has expectation 1. Indeed, E(VIN) = 1 for all

values of N > 0. These results stem from the fact that, given N, the

conditional distribution of X- is binomial with parameters N and pi

f fi/T. It follows that E(XiIN) = Npi = fII and

[E[ (x - f. X)1N] = var(X. IN) = Ipi(1 - p.) = fiX(l - p.).
•.1 11

Hence, the conditional expactation of the numerator of V is

2•: ~E(S2IN) =(n - 1)-IZia - fi/T)=

"and E(VIN) = E(S 2 / IN) = 1. Taking expectations yields E(S = )I and

E(V) = 1.

This generalizes a result by Rao and Chakravarti (1956, pp.

265-266), for the case of equal f.. Note that this result does not
require that the f. be known Appendix A contains a derivation of E(V)

under an assumption that E(Xi) = X., which may be of use in other

,. sensitivity analyses.

....

. . . . . . . -. . . . . . . . . . . . . . . . . . . .., ,. . .:............ _. ...... .
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*2 The above results do not hold in general; i.e., V is not usually

unbiased for the variance-to-mean ratio. In particular, it is biased in

the negative binomial case, as will be seen later.

"Both the conditional and unconditional variances of V are of

interest for assessing the reliability of V as an estimator of p. As is

shown below, the conditional variance of V, given a nonzero value of N,

is

"var(VIN) = 2(n - 1)- (1 - C/N),

where C = 1 + - T1(l/fi)1/2(n - 1). Iff 2 f = f ,the
, 2 - n

constant C is equal to one, and this is the largest possible value of C.

Thic f-11 vs from noting that 1(1/f) (/) = n2  by Jensen's

Inequality, so that

var(VIN) > 2(n 1) (1 - 1/N),

with equality holding if and only if the f. are equal. This lower bound

should serve as a useful approximation in applications where the f. are

approxiLmately equal.
The unconditional variance of V is obtained by using the fact that

var(V) = var[E(VIN)] + E[var(VlN)],

)--.

and noting that var(VIN) = 0 when N = 0 gives

var(V) = 2(n - 1)1 - IN > O)]P(N > 0)
-•-'- )-[1 Ce-N8

= 2(n - 11 -e - CH(8)j

where 8 TX and

"k"• .'.'..'-H(O) = k= ! - (eu - W)u du.

0

Since E(N- IN > 0) > Il/E(NIN > 0) = e - e )/I by Jensen's Inequality,
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=-e 2

H(8) > (1 -e )2 /8.

This provides an upper bound for var(V) that also serves as a good

approximation for large values of 8. For a table of values of H(8) for

8 between 0.01 and 20, see Grab and Savage (1954). The approximation

H(8) = 1/(8-1) serves quite well for 0 > 5, and this approximation was

used in the work reported below.

To derive var(VjN) for N > 0, it is convenient to set

Q = (Xi - fi )2/fi,

so that V = Qj(n - l)X, and

var(Vj N) = var(QIN)/(n - 1) X

"Hence, it suffices to show that, for N > 0,

var(QIN) = 2(n - 1)(1 - C/N) i2

where C is as above. By using the representation

Q = -(X. - fiX)2/fi - T(X _ X)2,

which implies that

S[Q + T^- 1)2 2 = U.2 + EUU.
"i#j I I j

"where U. = fX. - X)2/fi, it is straightforward to show that

. E(Q 2 ) = 1[1(1/fi) + (1 - 2n)TJ + 2n2 - ).

"Then

I

. . . . . . . . . . . .

.:. * . . . . . . .. .. . . .

.J. . . . . . . .
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2. E(Q2 IN) = )[1(1/fi) + (1 - 2n)/T] + 2 /T)(n 2 1),

since X is unbiased for X, -2 - i/T is unbiased for ,2, and N is a

complete statistic, which implies that the unbiased estimator of E(Q

that depends on N is unique (Lindgren, 1976, p. 266). To complete the

derivation, one can use the formula

var(QIN) = E(Q 2 IN) - [E(QIN)]2

and the fact that E(QIN) = (n - 1)X.
To show how the values of var(V) depend on )., n, and {fi), four

patterns of the values ifj) were chosen so that the average was always

2500, and thus their sum was always 2500n. These four patterns are as

follows:

(1) f. 2500 j = 1, ... ,n

(2) f. 2500 j =2, ... ,n- 1

"fl = 1000

f = 4000
n

(3) f. = 1950 + 100j for n = 10

"" f. = 1450 + 100j for n = 20

f. = 1225 + 50j for n- 50
°*3

(4) f. = 25 + 450j for n = 10

f. -20 + 240j for n = 20

f. -50 + lOOj for n = 50•-.3

"The entries in the table below are var(V).

As this table shows, the effect of heterogeneity in flying hours on

- var(V) is more pronounced for smaller values of X. Note that pattern

"" (1) represents the case C = 1, and that the entries for that case serve

"as a lower bound and approximation for the other cases.

* .-- -- :--.-z- - :--:-:: .-- :
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1 0.01 1 = 0.001

f-pattern n =10 20 50 n ]0 20 50

1- 0.221 0.105 0.041 0.213 0.103 0.040

2 0.229 0.105 0.041 0.290 0.-03 0.040
a.

* 3 0.222 0-106 0.041 0.224 0.115 0.047

4 0.242 0-115 0.048 0.432 0.203 0.116

"The histograms of the observed values of V from selected Monte

Carlo runs appear in Fig. 2. The results for f. = 2500 and I = 0.001

were essentially the same as those for f. = 2500 and I = 0.01, so they

were not included. One thing to note here is the difference between the

"last two histograms. Decreasing I from 0.01 to 0.001 flattens the mode

and moves some of the probability to each tail.

NEGATIVE BINOMIAL

The negative binomial may be characterized by its mean and the

ratio of its variance to its mean. This characterization is of interest

"because the negative binomial distributian tends to the Poisson as the

variance-to-mean ratio tends to 1, and thus in a rough sense the

variance-to-mean ratio describes the magnitude of the departure from the

Poisson assumption.

In particular, it is assumed that X. has a negative binomial

distribution with mean )f. and variance-to-mean ratio p, so that
.3

P(X. k) +r= k (1 - )krj k = 0, 1, 2,

where r. = )af./(p - 1), p = 1/p.

The mean of V may be derived by noting that E(Q) = (n - l)Ip, for
9 9

Q = (n - 1)S- and S- defined as in the introduction to Sec. II. Thus,9

E(S2) = X/p. Because i(R + N)/(R + I), where R = Ir., also has
9

expectation X/p, it follows that this expression is equal to E(S2N) ,-y

the completeness of N. Hence, for N > 0,
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E(VIN) = E(S 2 1i1N) = (R + N)/(R + 1),

and, as before, V 1 for N = 0 by definition. This can also be written

*- as

E(VIN) = 1 + (p - 1)(N - l)/(XT + p - 1).

From either of these expressions, it follows immediately that

p-R-l/

E(V) =p(R + pR + 1),

"which is less than p for p > 1.

This bias in V accounts for at least part of ths apparent

dependence of variance-to-mean ratio on the mean. As the mean

" increases--i.e., as XT increases--the bias will decrease, and E(V) will

increase. Thus, even if all of the assumptions of the negative binomial

model were satisfied, if V was used to estimate the variance-to-mean

ratio, the estimates would indicate that V increases with the mean.

:-- Although var(V) and var(VIN) are tractable under the assumptions of

this subsection using straightforward algebra, the formulas are very

complicated and offer little insight.

If U and T are assumed to be large, the distribution of V can be'a

approximated by the same expression when i is replaced by X, which will

be called V . It can bc shown that in the Poisson case, with parameter

Xf,

ii*, • var(V=) = 12n + Z (1/fi.X) /(n - 1)2,

whereas, in the negative binomial case,

var(V) = [2n/p 2 + (6q + p2 )1(I/f i)/Xp3 )]/(n - 1)2,

Swhere q = 1 - p. Thus, when the f. are large, var(V) in the negative
I=| • 2 i/2

binomial case is approximately p = 1/p times as large as the variance

in the Poisson case.
-a..

a"

•].- ..- :- ..- ~~~~~~~~...-..-.-.-.-.- -. • -.- :_-..-.-.%..•..•-.--.-.-.-*-. _.-. ..-. a.. -.- _.. ;:-:. . . . ...
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hnis approximation should be used with caution. When computed for

the values of n, X, and {f.) used in the table of Poisson model

variances and p = 2, 5, and 15, the approximation was always greater

than the exact value, by factors as large as 8, with the error growing

larger as ). decreases, p increases, or {f.) becomes more Iheterogeneous.

Some Monte Carlo samples were drawn from V's distribution for

varicus values of X and p, two patterns of {fI, and n = 10. Selected

histograms appear in Fig. 3(a-j). These figures are all in the same

scale to facilitate making comparisons.

Some generalizations can be made from the histograms about the

* - effect on V's distribution of X, p, and {f.. First, decreasing X from

.•. 0.-01 to 0.001 shifts some probability to smalier values of V, apparently

- away from middle values, because the upper tails do not seem to differ.

S * Second, changing from constant to nonconstant f. also seems to shift•._"

probability away from middle values, but this is divided between small

values and the upper tail. That is, changing away from equal flying

hours makes more probable both small values and very large values.

In terms of the above trends, the Poisson case can simply be

thought of as the case with p = I.

*-"' POISSON MODEL, WITH E(X.) = a + 5f.

There are two reasons why it might be desirable to allou the mean

of the failure distribution to be a more general function of flying

hours than Xf. it is possible that some parts would fail on planes that

did not fly at all,' which implies that the function relating mean

failures to flying hours can be approximated by lines with nonzero

intercepts, over suitably restricted ranges of flying hours. If flying

hours are suitably restricted, such approximations could have either

positive or negative intercepts, and Fig. 4, drawn from our Air Force

_ data, shows that both of these possibilities can occur, with Fig. 4a

sugge:>ing a positive intcrcept (and a negative slope), and Fig. 4b

suggesting a negative intercept.

2Disuse, especially in extreme climates, may contribute to a
significant number of failures.

-.- - - - ---.- -

. - -- -
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From these and other plots, it is reasonable to postulate a model

of Poisson failure counts with mean equal to a + Of for a not

necessarily zero. But could observations from such a model have
produced V values like those observed, thus providing an explanation for

_ .t their unexpected size? The results of this subsection indicate that

they could not reasonably be expected to do so in all the cases

examined, and that more is needed to explain the large observed V

values.

For the remainder of this subsection, the number of part failures

in a given time period is assumed to be a Poisson random variable with

parameter a + Of. Under this assumption, the formula in Appendix A

can be used to compute E(V) as a function of a, P, n, and {fj.

This formula is quite complex; plots of E(V) as a function of P,
for n = 10, for several values of a and for two sets of (f.)
•o_.1

appear as Fig. 5(a-d). Because it is necessary that a + Of. > 0,

only certain values of 0 are permissible when a < 0.

Appendix B contains a derivation of var(V) as a function of a, 0,

n, and {f. This formula is also quite complex, and plots of var(V) as
•.-.o

a function of 0, for n = 10 and for the same values of a and {f.) as
.- '- above, appear as Fig. 6(a-d).

A few trends are clear. E(V) is larger for smaller values of 0,

more heterogeneous {f.), and larger jai, and the latter effect is much

more pronounced for positive a. These trends also hold for var(V),

except that for negative a and more heterogeneous {f), the size of P

has little effect and that effect is not monotonic in P.

Poisson models with parameter a + Of- were fitted to the 100 part-

base combinations in our data set, using maximum likelihood estimation.

The results of these fits are in Appendix C. They include the estimates
"a and 0, their approximate standard errors and correlation obtained from

the inverse of the information matrix, E(V) and var(V) computed from the

aforementioned formulas using a and P, and the actual observed value of
V. For seven part-base combinations, the fitted values a and P were

such that a + Of. < 0 for some j; E(V) and var(V) were not computed for

those part-base combinations.

..........- . -................... ....... A
- - - - -. -. - _- _-. . - . ., . . - . _ - . . . . . . . . . . . ., . -- _- . - _ . - . - - - _ - - - - , .
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A simulation was run for each of the 93 part-base combinations

having all a + Bf. > 0. Observations were generated for Poisson

distributions with parameters a + sf.. j = 1,2------n, and a pseudo-

. obsrrv-a:jon of V was computed from them and compared with the actual

observed value of V 300 times for each admissible part-base combination.

1The proportion exceeding the actual observed value of V was recorded;

these proportions appear as the right-most column in Appendix C.

The messape of the simulation and of E(V) and var(V) is clear.

Almost all of the large observed values of V are in the extreme upper

tails of their simulated distributions, assuming that failures are

Poisson with parameters a + Bf.. Our data clearly indicate more

variability than can be explained by simply allowing a to be nonzero.

However, the fitted values a and their approximate standard errors

suggest that a should not be assumed to be zero. Although the preceding

paragraphs cast doubt or the appropriateness of a Poisson model, and

_ -• thus on the 4oproximate standard errors derived from that model, it is

striking nonetheless that of the 93 admissible part-base combinations,

"20 have 1aj > 4 s.e.(a), 28 have lal > 3 s.e.(a), and 45 have lal > 2

s.e.(a"). It is also suggestive that of the 41 admissible part-base

combinations having an observed V in excess of 5, 17 have jal > 4

s.e.(a), 22 have jai), and 29 have laj > 2 s.e.(a).

This analysis suggests, then. that some of the variability apparent

- - .n £he large observed values of V are a result of assuming a = 0

inappropriately, but that the remaining variability is still too large

"for a Poisson model to be reasonable for all part-base combinations.

CONCLUSION

The Poisson model with parameters Xf is not adequate for these

failure data. The observed values of V are too Thrge for such a

postulated model to be credible. Second, these large values of V cannot

be explained reasonably by postulating that part failures follow a

"Poisson distribution with mean a + 5f and a not necessarily zero,

although the data do give reason to believe that mcdeling mvan fail:;,es

this way is more appropriate than assuming a 0.
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Taken together, these two implications suggest that an appropriate

next step in modeling the failure process would be to assume that

•- failures follow a negative binomial distribution with mean a + Of and

variance-to-mean ratio p. If data analysis indicates that a = 0 or p =

1 are reasonable modeling assumptions for some part-base combination,

"then such a simpler model may be appropriate for them.

One last implication is that for cases where it is reasonable to

assume that failures follow a negative binomial distribution with mean

af and variance afp, V may not be a desirable estimator for p.

=

i -,.'-

== ,,.-:

m



S- 3 - . - .

•.-

-31 -

III. SUGGESTIONS FOR ESTIMATION

NEGATIVE BINOMIAL WITH MEAN If

A simple replacement for V that corrects for its bias has not been

found. Two natural alternatives have flaws as seriou V's. Maximum

likelihood estimation, however, appears to avoid the!. • but does

not yield explicit formulas for the estimates. Thest. hree methods will

. now be examined briefly.

Because E(VIN) = (R + N)/(R + 1) and the UMV"E of p based on N is

..1 (R + N)/R in the case where R is known, it may be desiiable to correct V

by a multiplier of the order of (R + 1)/R. One way to do this is to

find the estimator P that is a function of V and that, when V is set

equal to its conditional expected valua, reduces to the desirtid (R + N)/R.

This estimator is

- = (N - 1)V/(N - V).

[.... However, it is easily shown that the upper boun'd for V for given N

is N(T/f. - l)/(n - 1), where f. = min {f.1. This bound is attained--- -in min

when X.= N for some j satisfying fj. = fm. and X. = 0 for j 0 j ;
j* fm inn

and because T/f - n, the bound will be no less than N. Thus 'p will be
infinite or negative with positive probability whatever p, n, X, or {f) are.

The second natural suggestion is to use the method of moments
= = NIT and =(.2 i2 where

estimators A ' = N/T and p = F - )/N, where F = However,

it can be shown that

E(- EIN) = (1 - F/T 2 )E(VIN) <- (1 - n)E(VIN)

. for N > 0, and

-.-
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E(P) pM( - p-R-1 )(1 - F/T2)R/(R + 1) +R1)

:5 pfhR + p-R° )/(R + 1) - R(l - p-R-1 )/n(R + 1)) < E(V)

for p > 1.

Using maximum likelihood estimates can provide an approach to the

desideratum of the second paragraph in this subsection. The log

likelihood function is

,IX•. p) = R log p + N log(l - p) + E log (ki + r" 1)

where r. = Xf./(p - 1) and p = l/p. Reparameterize, replacing (X, p) by

(I, p), for I X/(p - 1) and p = I/p, so that r. = Tf., and momentarily

treat Z as fixed at 1. Then

la1, p) I T log p + N log (1 -p) + K(T),

K(i) being defined in an obvious way. Differentiating £(1, p) with

respect to p and solving for p yields p = IlT(N + TT), implying that p =

(N + iT)/IT = (R + N)/R for R = il. It remains to find i, which can b•

done by substituting p into L(T, p) and numerically maximizing the

resulting equation in I. By backtransforming and applying standard

large-sample maximum likelihood theory to the original log likelihood,

regions may be derived for I and p.

First order bias corrections and second order variance

approximations are available for these estimators (see, e.g., Cox and

Hinkley, 1974, pp. 309-310); however, they involve very complicated

calculations.

NEGATIVE BINOMIAL WITH MEAN a + Of

"The log likelihood for this situation is

| •-,.. k. + r. - 1
-- p, a, ) = R log p + N log(l - p) + £ log k.I

where r. (a + Ofi)/(p - 1) and p = I/p. If this is reparameterized by
1. 1

setting T = a/(p - 1), 6 = 0/(p - 1), and p =/p, the reparaneterized
log likelihood is



- 33 -

I(p, 1, 6) = (nT + 6T)log p + N log (1 - p) + K(T, 6),

K(T, 6) being defined in an obvious way. Temporarily setting X = T and

6 = 6 and maximizing in p yields

p = (ni + 6T)/(N + n" + 6T),

so that

= (N + nr + 6T)/(nl + 6T) = (R + N)/R

for R = ni + fT. Thus, maximum likelihood again provides an approach to

"the desideratum of the previous subsection. Estimates I and 6 can be

found by substituting p into £(p, T, 6) and maximizing numerically in I

and 6. As before, back transformation gives estimates for a and 0 and

approximate confidence regions may be obtained using standard large

"sample theory.

Computing the method of moments estimator requires the solution of

a system of three nonlinear equations and will not be pursued further.

°-a

L-

4.

-p.
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IV. CONCLUSION

The consideration of competing spare parts supply systems requires

understanding how well levels of parts failures under wartime conditions

can be predicted. The ability to predict levels of parts failures is

---- strongly affected by at least two types of uncertainty: about the

numbers of failures that will occur assuming the model is correct, and

about the adequacy of the model as an approximation of the process

generating parts failures.

The first type of uncertainty is systematically and inherently

understated by modeling failures as Poisson random variables.

Distributional results derived here make this quite clear. A model

* that allows more variability, such as a negative binomial model, would

•-. be more appropriate. The data also indicate that prevailing beliefs

" about variation within such negative binomial models err on the

._., optimistic side, and that inherent variability is large, for some parts

at least.

The second type of uncertainty can be accommodated partly by using

models with more parameters; this is the course taken here by the

suggestion that mean failures be modeled as a + Of without assuming a =

0. Some properties of possible estimators for these models have been
-. examined here also. Although this improvement addresses some of the

issues mentioned in Sec. I, it leaves several issues untouched. To

study the issues of stationarity of failure distribution and the

relationship between flying hours and mean failures, more and better

data are needed. In particular, it would be useful to have many years

-"of data to check for seasonality in failures and to observe failure

_ - behavior ender a broader range of flying hours, especially numbers of

- hours that would be expected in wartime. Studying the question of

independence of disjoint time intervals awaits the elaboration of

appropriate probabilistic models that allow for dependence, and of

suitable estimation methods for them.
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Appendix A

DERIVATION CF E(V UNDER. PO!SSON ASSUMPTIONS

This appendix derives E(VIN) assuming that X. is Poisson with

parameter wi When Vi =f. " the Poisson assumptions hold and the

expectations derived there follow.

First,

EI(X. - f i) 2 N] = var(X iN) + IE(X i) fXj) 2

= Npi(I - pi) + [NPi f iN/T] 2

-2 2"= Npi(I - pi + N2(pi qi)

where pi = iU/ZUi and qi = fi/T, using the fact that X.iN is binomial

with parameters N and p.i- It follows readily that

E(V!N) = (n - l)-l {N(Pi - qi)2/qi + IPi(l - pi)/q.i

for N > 0. Because V was defined to be ont for N = 0,

E(V) = P(N = 0) + Z E(ViN = m)P(N = m)-
L"-1

Because N has a Poisson distribution with parameter A =1u;

-A -1 2E(V) = e-{ - (n - 1) -(p -q /q.)

. + (n - I) _{A(p q)-2/qi + r Pi(l _

e--A + (n I - pl)-qA 1
•;-= { ( ) (A - e Zp-qi)/qi + IPi( .

.A1

I,°.
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Appendix B

DERIVATION OF VAR(V/N) AND VAR(V) UNDER

POISSON ASSUMPTIONS

This appendix derives var(VI.N) and var(V) under the assumption that

the number of failures in a given period has a Poisson distribution with

parameter vi. The formula needed for Sec. II may be obtained by

substituting Ui = a + 3f.'"

Using two facts, that XiIN is binomial with parameters N and pi

ui/ig., and that the joint distribution of (Xi, X. , N - X. - X. ).N is

trinomial with index N and probabilities; pi, p. , and 1I p. - p.. it

is a matter of straightforward algebra to show that

var(VIN) = T2(n - 1)-4NA 1 + A2 IN + A3 ),

where

A1 = a5 - a2 2 , A2 = 8a 5 -6a 4 + a 3 + 4ala - 6a2 - a12

2
A3 = - 12a 5 + 6a 4 -4ala 2 + 10a2 , and a1 =1p i/fi,

2 2,a= 2/f2'
12  i /fi a 3  rpf. a Ip If. , and

*a5 -2 Tip3 If .2

The unconditional variance of V is obtained by using

var(V) = var[E(VJN)] + E[var(ViN)].

-A
Employing the approximation from Sec. II and ignoring the term e ,

where A = l~is

E(var(VIN)) T-(n - 1) -{4AA1 + A2 /(A - 1) + A3 ).

1 3
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it is convenient to derive var(E(VIN)) by rearranging terms to

avoid difficulties introduced by setting V = I when N = 0. Let

g(m) = (n - 1) - q) /qi + IPiP - pi)/q i

where qi = fi/T. This is E(VIN = ) for m > 0- Also, let G = E(g(N)).

Because N has a Poisson distribution with parameter A,

OD2 2 -A
var(E(VIN)) = E (g(m) - E(V)) P(N = m) + (1 - E(V)) e

M--1

-O2
-E jg(m) - G] P(N =m) +H,

where

-A 2 p P)q2 EV)1 Gj
H = e-A(1 - E(V)) -EPi(l-p.)/q. - (G - E(V)) - (G-E(Y))(1-G)J-

Thus,"a-2A[£()) i q2/qi2 -A,

Thus, var(E(V!N)) = (n - 1) -A[(P q)/q + H, aad for smalle,

H may be ignored.

_U

" °°
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Appendix C

Table C. 1

ESTIMATES AND OTHER QUANTITIES FROM FITTING POISSON
MODELS WITH MEAN A LINEAR FUNCTION OF FLYING HOURS

P(V >
V 0 se(;) se(6) corr(;,0) E(V) var(V) n observed V)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

.38 -. 726 .001859 12.700 .002512 -. 996 1.000 .327 7 .903

.58 -2.851 .006261 7.634 .010245 -. 998 1.013 .310 7 .777

.68 -2.619 .002859 2.472 .000674 -. 944 1.064 .209 11 .797

.91 1.262 .002112 3.922 .000728 -. 969 1.015 .174 13 .560
1.00 -4.812 .010401 5.772 .007488 -. 996 1.033 .186 12 .473
1.01 5.595 .001984 4.146 .- 00906 -. 953 1.286 .448 9 .597
1.03 4.782 .005043 11.173 .001776 -. 989 1.019 .174 13 .470
1.03 -10.442 .017909 6.303 .008252 -. 997 1.165 .222 12 .577
1.10 5.798 .002566 8.668 .001374 -. 989 1.044 .184 13 .433
1.22 -1.981 .001461 1.554 .000439 -. 944 1.065 .199 11 .330
1.29 -13.809 .005895 8.676 .001431 -. 987 1.214 .269 11 .320
1.41 -2.980 .002978 2.072 .000567 -. 928 1.085 .195 12 .220
1.45 -. 443 .005035 6.859 .008792 -. 997 1.000 .177 12 .120
1.45 -10.366 .015683 8.021 .010391 -. 999 * * 12
1.50 6.171 -- 001602 8.091 .010282 -. 997 1.055 .20' 12 .123
1.64 6.708 .001392 7.998 -001262 -. 991 1.083 .200 13 .107
1.71 25.253 -. 022562 11.601 .014614 -. 998 1.532 .426 12 .350
1.77 25.365 -. 000130 10.243 .001599 -. 991 1.679 .452 13 .373
1.81 1.798 .001996 7.533 -001196 -. 990 1.009 .170 13 .030
1.83 -4.648 .003519 2.258 .000622 -. 938 1.231 .231 12 .100
1.99 -. 296 .002393 2.702 .000686 -. 949 .997 .179 12 .013
2.02 9.758 -. 000477 7.494 .001275 -. 991 1.369 .634 7 .190
2.12 -7.822 .003404 6.214 .001008 -. 987 1.096 .190 13 .027
2.13 -12.033 .019514 4.442 .005910 -- 995 1.244 .239 12 .063
2.16 12.865 -. 001006 3.809 .000655 -- 981 2.645 1.001 13 .693
2.28 11.663 -. 000287 3.947 .000691 -. 975 1.991 .633 13 .320
2.38 -4.129 .003868 4.728 .000893 -. 972 1.051 .177 13 .003
2.41 18.158 -. 019012 10.257 .013223 -. 995 1.440 .568 9 .067
2.45 8.537 .003144 12.172 .015515 -. 997 1.045 .200 12 .003
2.51 15.206 -. 000205 4.546 .000798 -. 973 2-186 .708 13 .303
2.54 -7.797 .014424 5.963 .007782 -. 996 1.091 .203 12 0
2.68 -8.396 .004056 3.702 .000726 -. 967 1.300 .23o 13 .007
2.70 14.278 .003035 13.124 -002165 -. 991 1.155 .301 10 .013
2.84 1.121 .002219 7.523 .001684 -. 986 1.008 .337 7 .010
2.90 -43.958 .061981 6.994 .009586 -. 99q - 12
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P(V >
V se()) corr(a.j) E(V) var(V) n observed V)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

0.+ - 9.04) .005797 2.269 . 74 -. 939 1.146 .218 12 0
3.15 7.797 -. 000577 4.777 .001487 -. 981 1-621 .796 7 .057
3.15 7.519 .004659 4.290 .001058 -. 941 1.326 .327 12 .007
3.15 5.073 .000641 3.888 .000701 -. 978 1.242 .276 13 .003
3.3S 9.799 -. 000103 3.734 .000656 -. 974 1.774 .530 13 .033
3.35 63.208 .000485 23.886 .004534 -. 995 1.733 .467 12 .023
"3.36 -17.326 .025741 16.076 .020651 -1.000 * 12
3.38 -6.088 .011391 6.016 .007813 -. 997 1.065 .194 12 .007
3.73 -. 571 .003320 2.573 .000672 -. 927 .997 .179 12 0
3..7 21.233 -. 001606 4.920 .000899 -. 973 3.310 1.537 10 .330
3.82 36.181 .000756 25.242 .004839 -. 996 1.360 .451 9 .007
3.83 -3.454 .003923 2.786 .000765 -. 940 1.093 .220 11 0

3.92 -6.254 .004965 2.499 .000700 -. 929 1.311 .258 12 0
3.94 6.479 .000011 4.341 .000773 -- 962 1.636 .465 13 .010
4.01 -12.277 .0C5804 12.569 .002423 -. 995 1.090 .210 12 0

" 4.10 -17.779 .033023 12.413 .016036 -. 998 1.224 .245 12 0

4.16 -22.-025 .006090 7.832 .001547 --994 1.330 -343 12 0
4.30 29.394 .004525 8.555 .001546 -. 971 2.117 .612 13 0
4.42 20.150 .001198 4.923 .001203 -. 952 3.144 1.270 11 .137

4.53 -9.884 .005141 11.980 .002308 -. 995 1.061 .200 12 0
4.65 -4.682 .014296 5.784 .001496 -. 939 1.043 .193 12 0
4.85 14.496 .000176 10.876 .002064 -. 995 1.172 .252 12 0
5.07 -124.014 .162206 23.615 .030812 -1.000 * * 11 *

5.08 15.661 .003134 12.292 .001940 -. 991 1.183 .237 13 0
5.24 -10.461 .009528 6.720 .001281 -. 967 1.160 .210 13 0
5.26 .325 .003451 4.694 .000877 -. 968 1.002 .167 13 0
5.52 -27.993 .008101 9.715 .001909 -. 994 1.616 .368 12 0
5.53 -16.340 .015643 16.726 .002678 -. 989 1.078 .190 13 0
5.55 14.343 .003541 15.628 .002982 -. 994 1.079 .213 12 0
5.57 -14.772 .012369 14.667 .002350 -. 989 1.-00 .190 13 0
"5.63 -6.142 .002678 6.000 .000969 -. 989 1.072 .183 13 0
5.78 10.539 .000478 5.208 .000932 -. 981 1.628 .445 13 0

6.02 -54.180 .022087 21.404 .004143 -. 995 1.554 .368 12 0
6.31 -50.185 .012110 13.447 .002630 -. 997 3.186 .708 12 0

* 6.34 -29.529 .008996 7.599 .001265 -. 984 1.762 .350 13 0

6.35 27.142 -. 020136 12.328 .015555 -. 997 1.411 .362 12 0
6.99 -54.733 .012882 11.654 .002304 -.997 * * 12

. 7.09 -10.435 .005586 8.874 .001430 -. 988 1.098 .193 13 0
7.28 48.772 -. 002856 7.248 .001249 -. 976 5.996 2.487 13 .223
7.38 -104.058 .026808 11.370 .001933 -.985 3.053 .984 13 .013

8.11 66.438 -. 075362 16.322 .020428 -. 999 * 12 *

8.25 50.765 -. 033217 19.743 .025002 -. 997 1.651 .457 12 0
8.73 -35.961 .052196 13.257 .017233 -. 999 * * 2

10.36 31.387 -. 000279 6.196 .001084 -. 970 3.313 1.186 13 0
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P(V >
V a B se(a) se(g) corr(a,B) E(V) var(V) n observed V)

"(1) t2) (3) (4) (5) (6) (7) (8) (9) (10)

11.11 -48.929 .013809 13.114 .002573 -. 995 2.182 .539 12 0
11.22 -24.905 .015779 6.886 .001355 -. 957 1.650 .347 13 0
11.34 -27.346 .030189 7.181 .001926 -. 935 2.006 .496 12 0
13.02 -21.252 .013812 3.745 .001090 -. 930 2.628 .607 12 0

. 14.09 -55.819 .015297 9.574 .001935 -. 991 2.484 .621 12 0
14.27 -33.828 .019319 21.990 .004241 -. 994 1.195 .248 12 0
15.05 120.416 -. 008942 18.086 .002791 -. 993 6.726 2.782 13 0
15.25 38.252 -.002150 13.236 .002063 -.995 2.519 .845 13 0
16.29 43.909 -. 001820 5.952 .001340 -. 957 8.441 3.796 12 0
17.94 102.716 -. 008528 16.106 .002479- -. 993 6.464 2.729 13 0
18.00 -108.728 .027879 12.591 .002556 -. 993 4.703 1.199 12 0
18.64 -. 942 .011896 5-819 .001482 -. 945 1.000 .181 12 0
19.35 -39.378 .010669 9.807 .001945 -. 994 2.077 .496 12 0
19.84 67.724 -. 000254 7.823 .001789 -. 954 10.582 4.690 12 0
21.06 83.637 -. 008222 7.500 .001233 -. 976 13.579 6.392 13 0
22.44 -38.009 .024310 29.261 .005624 -. 996 1.187 .246 12 0
22.46 60.663 -. 006681 5.570 .000878 -. 976 11.678 5.604 13 0
47.63 -14.467 .013260 21.675 .004163 .995 1.042 .196 12 0

50-70 653.877 -. 054330 38.079 .005842 -. 992 35.573 16.230 13 0
57.41 -29.283 .051312 12.104 .003102 -. 953 1.617 .385 12 0
95.31 -505.081 .131377 37.952 .007482 -. 995 17.436 4.798 12 0

* indicates that for that part and base, & + 4f3 < 0
for some j, making the formulas for E(V) and var (V) inappropriate.

Cols. (2) and (3). The estimates a and D were obtained
by maximizing the log likelihood numerically.

Cols. (4) and (5). The approximate errors were obtained from the
inverse of the observed information matrix.

Col. (6) is the approximate correlation between a and B.
Cols. (7) and C8). E(V) and var(V) are computed using ; and B.
Col. (9). n = the number of observations for that par: and base.
Col. (10) is the proportion of 300 simulated values of V greater than

the observed value of V. where the pseudo observations were generated
from a Poisson distribution with parameter ; + .fj

S.
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